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Abstract

Gyrokinetics is a key model for plasma micro-turbulence, commonly used for fusion plasmas or
small-scale astrophysical turbulence, for instance. The model still suffers from several issues, which
could imply to reconsider the equations. This thesis dissertation clarifies three of them. First,
one of the coordinates caused questions, both from a physical and from a mathematical point of
view; a suitable constrained coordinate is introduced, which removes the issues from the theory
and explains the intrinsic structures underlying the questions. Second, the perturbative coordinate
transformation for gyrokinetics was computed only at lowest orders; explicit induction relations are
obtained to go arbitrary order in the expansion. Third, the introduction of the coupling between
the plasma and the electromagnetic field was not completely satisfactory; using the Hamiltonian
structure of the dynamics, it is implemented in a more appropriate way, with strong consequences
on the gyrokinetic equations, especially about their Hamiltonian structure.

In order to address these three main points, several other results are obtained, for instance
about the origin of the guiding-center adiabatic invariant, about a very efficient minimal guiding-
center transformation, or about an intermediate Hamiltonian model between Vlasov-Maxwell and
gyrokinetics, where the characteristics include both the slow guiding-center dynamics and the fast
gyro-angle dynamics. In addition, various reduction methods are used, introduced or developed, e.g.
a Lie-transform of the equations of motion, a litfing method to transfer particle reductions to the
corresponding Hamiltonian field dynamics, or a truncation method related both to Dirac’s theory
of constraints and to projections onto Lie-subalgebras. Besides gyrokinetics, this is useful to clarify
other Hamiltonian reductions in plasma physics, for instance for incompressible or electrostatic
dynamics, for magnetohydrodynamics, or for fluid closures including moments of the Vlasov density
of order two.
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Summary

This thesis dissertation investigates Hamiltonian reductions in plasma physics, and especially it
clarifies a few foundational questions about guiding-center theory and about gyrokinetics, which
are respectively a reduced model for particle dynamics and for plasma dynamics in a strong mag-
netic field, and which constitute key ingredients to understand the dynamics of magnetic-fusion
plasmas, and more generally small-scale plasma turbulence.

About guiding-center theory, it introduces the higher-order reduction by obtaining explicit
induction relations to go to arbitrary order in the perturbation expansion. The available freedom
in the reduction is emphasized and explored, a very efficient minimal procedure is introduced, and
a choice to obtain a maximal reduction is identified, whose lowest orders agree with previous works.

On another hand, the traditional troubles associated with the presence of a gyro-gauge in
guiding-center theory are clarified, namely the gauge arbitrariness, the anholonomy and the non-
global existence. A global, gauge-independent formulation is introduced, which removes the dif-
ficulties, and shows that the initial troubles originate from intrinsic but regular properties of the
system. It makes clearer what the true intrinsic entities of the theory are, and opens new possibil-
ities interesting for guiding-center computations.

About gyrokinetics, this document scrutinizes its Hamiltonian structure and more precisely
how it is induced by the derivation, mainly a lifting procedure which transfers the guiding-center
transformation from particle dynamics to the Vlasov-Maxwell Hamiltonian system, but also an
application of Dirac’s theory of constraints. This introduces the coupling between the plasma and
the electromagnetic field in a more complete way than in previous works. Especially, it emphasizes
the dependence of the gyro-center transformation on all the moments of the Vlasov density.

Last, about Hamiltonian reductions in plasma physics, Dirac’s method is formulated as a pro-
jection of derivative operators for the Poisson bracket, and shown to be closely associated with
a special, quarter-canonical structure in the bracket. A simplified procedure in this framework is
identified, with a link towards an efficient reduction method based on a Lie-subalgebra. Various
applications in plasmas are developed, both for kinetic and for fluid models, such as the Vlasov-
Poisson system, magnetohydrodynamics, incompressible dynamics, and fluid closures.

In the process, several complementary aspects of the concerned subjects are considered, e.g.
the mathematical origin of the lowest-order magnetic moment being an adiabatic invariant, a
polynomial structure in guiding-center expansions, the role of Dirac’s constraints to improve some
Hamiltonian systems suffering from a conditional Jacobi identity, or a formulation of gyrokinetics as
a Hamiltonian perturbation of particle dynamics. In addition, various reduction tools for dynamical
systems are involved or developed, especially Hamiltonian and non-Hamiltonian perturbations, Lie-
transforms, constrained systems, connections on fiber bundles, projection methods, or foundational
aspects of a lifting mechanism relating reductions on a coordinate space to reductions on the
corresponding field dynamics. Many possible applications or extensions of the work are emphasized.
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General introduction

Framework and subject

Dynamical reductions in plasma physics

Plasmas are quite elementary media. Roughly speaking, they just correspond to a gas of charged
particles, ideally neither too dense nor too rarefied [7, 36, 54, 120]. But they offer a rich domain in
physics, both with their many applications and with the wide range of phenomena they involve.

Fluorescent lamps, plasma display panels, flares, laser-matter interactions, particle colliders, nu-
clear fusion, polar aurora, solar winds, ionosphere, the Sun, stars, the interplanetary, interstellar,
and intergalactic media are all concerned with plasma physics. Larmor gyration, bounce average,
magnetic mirror, Debye screening, ambipolar diffusion, Alfven waves, kink instability, two-stream
instability, Landau damping, dynamo effect, Hall effect, magnetic reconnection, zonal flows are all
classical phenomena occurring in plasmas.

In fact, plasma physics remains intrinsically a complex domain, because a plasma is charac-
terized by a kinetic individual behaviour with strong local electromagnetic fields, coexisting with
an electroneutral collective behaviour at larger scale. It is intrinsically a multiscale medium, with
several ranges, such as the ones delimited by the Debye length, the Larmor radius, the plasma fre-
quency or the Alfven time, without mentioning the skin depth, the collision frequency, the trapping
rate, the thermal and sound scales, etc. and each of these scales exists typically twice, once for
ions and once for electrons.

As a result, when studying a specific question about plasmas, it is not possible and not desir-
able to take into account all the existing phenomena, and one has to focus on the ones that have a
significant contribution to the physics of interest. This is done by building a suitable model, which
discards some of the aspects of plasma physics, considered as negligible for the purpose, and retains
or focuses on other aspects, considered as essential or significant. Thus, plasma physics involves
quite a lot of models, each one corresponding to a specific description, or perspective, of the whole
physics, and having its range of validity and accuracy.

The links between models play an important role in plasma physics, as is emphasized both
by textbooks and by our whole bibliography. It may sometimes seem to be purely theoretical or
mathematical, because it often focuses on algebraic or formal structures and possibly on axiomatic
arguments. However, it is a way to better understand the physical content and limits of existing
models, to verify their relevance, their accuracy and the confidence we can have in them, and
possibly to improve them or to develop new models.

This explains the general framework of the thesis work, which is concerned with dynamical
reductions in plasma physics, i.e. with the derivation of models and with the study of relations
between models.

Hamiltonian reductions

A remarkable phenomenon in plasmas is the omnipresence of Hamiltonian models, as appears
in [104, 159] for instance, among many others1. Indeed, physical models are in general dissipative,

1 A definition of Hamiltonian systems is given at Eq. (2.10). An example in finite dimension can be found in Eqs.
(2.1), (2.11), and (2.12). An example for field dynamics is provided by Eqs. (4.2)-(4.4). For an introduction about

11
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i.e. they do not conserve the physical energy, but the non-conservation of energy can be related
to few coefficients, related to physical-dissipation phenomena. When these coefficients are set to
zero, most of the plasma models are not only energy-conserving but also Hamiltonian. This feature
is highly non-trivial, because a Hamiltonian structure is a huge requirement for a system, much
stronger than just the existence of a conserved quantity, the energy.

So, the Hamiltonian character seems to play a role in the physical relevance of models in plasma
physics [108], even for dissipative models, where the backbone remains a Hamiltonian structure and
only a few dissipative corrections depart from a pure Hamiltonian system.

From a practical point of view also, this fact is important because the Hamiltonian structure
has deep mathematical foundations and somehow constitutes a rigid structure which by itself
brings about many interesting features, for instance integrability and conservation properties. It
implies the presence of tools and methods that are not available in a general dynamical system. In
addition, because of that, a special care was carried on Hamiltonian systems and some tools that
are available in other dynamical systems have been more developed in the Hamiltonian context.
So, Hamiltonian systems come along with a very attractive artillery [107, 108, 159], for instance in
perturbation theory [27,86,88,92], in control theory [30,38,39,76,151,153], in the study of equilibria
and their stability [70, 116, 140, 148,149], in conservation laws and symmetries [20, 27, 43, 139], etc.
This may be of great value both in plasma theory and in numerical simulations.

With regard to our general purpose, the relations between plasma models, the Hamiltonian
structure offers powerful reduction tools. Not only this may be interesting to better understand
the existing models or open efficient ways to derive new models but also it may be decisive in ver-
ifying the relevance of existing models, since physically important models are expected to have a
Hamiltonian backbone (i.e. to be Hamiltonian when physical dissipation coefficients are set to zero).

Indeed, most models are initially derived by working on the equations of motion, which does not
guarantee to keep them Hamiltonian, whereas the parent model is Hamiltonian (when dissipative
terms are negligible), and the same is expected for the reduced model if no fake dissipation is
introduced in the reduction process [108]. Usually, the preservation of the Hamiltonian structure
is considered a posteriori, but it may be quite difficult to conclude about it, and it may occur that
the model is not Hamiltonian and has to be corrected in order to become so. An alternative way is
to work directly on the Hamiltonian structure and to use Hamiltonian reduction methods, which
automatically preserve the Hamiltonian structure, so that if the relevant constraints are imposed,
the resulting equations can be expected to be physically relevant. For an example, see [136, 138]
for instance, or the sequence [29,86,122].

This explains the more restricted positioning of the thesis work, which is interested in Hamilto-
nian reductions in plasma physics. Notice that it will not be considered as a limitation, and non-
Hamiltonian reductions will be worked on when useful; for instance, in Part 1 of the manuscript,
it will be the case of the first and third chapters. All the same, when mentioning a plasma model,
we will most often implicitly have in mind its conservative, Hamiltonian version.

The four main models of plasma dynamics

Among the various plasma models, the thesis is primarily interested in gyrokinetics [17,29,80]. In
order to better position it, let us remind that plasma theory can be considered as roughly based on
four main dynamical systems [7,36,54,120], each of them being Hamiltonian, either intrinsically or
when physical dissipation is negligible.

In the first of them, the plasma is considered as a set of particles, where each particle corre-
sponds to a six-dimensional position-momentum phase space, and particles are coupled through the
electromagnetic field, which evolves through Maxwell’s equations. For a Hamiltonian formulation
of this dynamical system, see e.g. [5]. This model is related to PIC simulations. In theoretical
studies, it is often used when considering the electromagnetic field as given (external) in order to

Hamiltonian systems, see [53, 99,107,109,141] for instance.
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study the behaviour of the basic components of the plasma, which are particles, each of which has
negligible effects on the electromagnetic field (and also on the plasma). For instance, this model
justifies the guiding-center approximation, the various drifts (grad-B drift, curvature drift, ExB
drift, Baños drift, etc.), the Larmor radius and frequency, the bounce frequency, etc. It will be at
the core of Part 1 of the present dissertation.

This model can be typified as a Lagrangian description of a phase-space fluid. It is not com-
pletely satisfactory, since it does not fit with the natural point of view, where particles can not be
followed individually, and what is measured is rather particle densities in a fixed space.

It is why the second model is just an Eulerianization of the first one. It replaces the collection
of particles, characterized by their phase-space coordinates evolving in time, by a particle density,
called Vlasov density, evolving on a fixed phase space. Then the dynamics is given by Vlasov-
Maxwell equations. It is often designated as the kinetic description of plasma dynamics, and will be
at the core of Part 2 of the present dissertation. Here it is considered in the Klimontovitch approach
as a complete classical deterministic description of the plasma. In the BBGKY approach [120], it
corresponds to taking the lowest-order equation. For a Hamiltonian formulation of this dynamical
system, see e.g. [5].

The issue with the second model is that it is too complete in some way. Indeed, the plasma
density is defined over a six-dimensional space, and in addition the elementary time step is generally
very small. This makes numerical simulations for a three-dimensional configuration space far out
of reach of present-day High Performance Computers.

The third model replaces the kinetic description (i.e. fluid description in phase space) by a
fluid description in configuration space, by taking the velocity moments of the Vlasov density and
truncating the resulting infinite series of equations by a closure assumption. This approximation is
often justified by a collision argument, with its local thermodynamical equilibrium, and the model
includes only the zeroth and first moment, i.e. the plasma densities (in configuration space) for
mass and momentum (or velocity), together with the entropy density or pressure.

The corresponding model is the well-known fluid description of the plasma, with the Euler-
Maxwell equations. It can be called multi-fluid model because in this model, as in the previous
ones, each species (electrons, ions, etc.) is described by its own field variables (either the Vlasov
phase-space density for the kinetic model, or the position-space densities in mass, momentum, pres-
sure, etc. for the fluid model). This model is most used in numerical simulations, because fields
are defined over a three dimensional grid, which is quite tractable for present-day computers. For
a Hamiltonian formulation of this dynamical system, see e.g. [107]. It will be at the core of Part 3
of the present dissertation, together with the next one.

The last model, which is most used as well, both in theory and in simulations, is called magne-
tohydrodynamics (MHD). It comes because in many physical applications, at the scales of interest,
the plasma can be considered as composed of mainly two species, electroneutral, non-relativistic
and obeying a kind of Ohm’s law. These assumptions allow for a description where the plasma is
treated as a single fluid (in configuration space), i.e. only by three fields, e.g. total density, total
momentum density and total entropy density. This model is thus a huge simplification compared
to the Vlasov-Maxwell system, and it allows for a much simplified treatment, both for theory and
numerical simulations, but it retains most aspects of the basic large-scale behaviour of a plasma
and in many application, its assumptions are quite accurately satisfied [6, 46]. For a Hamiltonian
formulation of this dynamical system, see e.g. [104].

All the same, there are many cases where it is not accurate enough for the problem under
consideration or it does not include some physical effects, crucial for the purpose but eliminated as
a result of the assumptions adopted, for instance phenomena related to the presence of two fluids
or to a kinetic behaviour (e.g. the two-stream instability or the Landau effect) [7,36,54,120]. Then
one may have to come back to the more complete multi-fluid or Vlasov-Maxwell models. Finally,
in some cases, none of these models is satisfactory and one has to build and use another model,
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e.g. a variation of one of them or an intermediate model. This is the case for gyrokinetics.

Gyrokinetics

Gyrokinetics [17, 29, 80] can be characterized as the kinetic model with elimination of the (small)
Larmor scales both in time and in space (see next subsection for a definition of Larmor scales). A
motivation is that Vlasov-Maxwell dynamics involves much useless information when those scales
are not needed, which obfuscates the essential phenomena; in addition, retaining Larmor scales is
completely out of range of present-day numerical simulations. The broad validity comes because
most physical phenomena occur at rather large scale, where the much smaller Larmor scales have
only averaged effects. Practical solicitations can be found in astrophysical turbulence and in nuclear
fusion by magnetic confinement (see e.g. [132]) and [51]).

In astrophysical turbulence, the dissipation range does not occur at large scales, standard fluid
models are not satisfactory for an accurate description of the dissipation phenomena, and kinetic
effects must be taken into account. One has to use intermediate models between Vlasov-Maxwell
and Euler-Maxwell.

One way to do so is to refine fluid models by including some kinetic effects in the closure as-
sumption [14, 55, 75, 147, 154, 155]. For instance, this idea gave rise to FLR-Landau fluids, which
allowed the model to better describe the mirror instability of anisotropic plasmas, and especially
its small-scale behaviour [147]. However, when a more complete account of the kinetic behaviour
is needed, instead of refining fluid models it may be preferable to derive a truly kinetic, yet sim-
plified model, by eliminating (averaging) from the Vlasov-Maxwell system the Larmor scales while
retaining their effects over larger scales (called Finite-Larmor-Radius effects, or FLR effects).

This feature is still more crucial in nuclear fusion by magnetic confinement, which is presently a
very active domain, as is emphasized by the worldwide project ITER (International Thermonuclear
Experimental Reactor), with its tokamak device [12]. Then the plasma behaviour is deeply kinetic,
because of the very high temperature and very low collisionality, which precludes the use of fluid
models for an accurate description of the plasma, in the core of tokamaks for instance. At the
same time, the magnetic field is very strong, and hence the Larmor scales are very small (compared
to the other physically important scales), which both makes it impossible to retain these scales in
numerical simulations and justifies an averaging process that eliminates these scales while retaining
their effects over larger scales.

Thus, gyrokinetics can be viewed as an intermediate model between Vlasov-Maxwell and Euler-
Maxwell; when the magnetic field is strong enough, it retains a kinetic behaviour although elimi-
nating small Larmor scales; it is a key model in plasma microturbulence and especially in magnetic
fusion physics [80].

In the case of gyrokinetics, the presence of Hamiltonian structures is crucial [17, 29, 64,65,80].

It originates from the parent models (particle dynamics and Vlasov-Maxwell dynamics in the
Klimontovitch approach) being Hamiltonian. In the BBGKY approach, Vlasov-Maxwell is not
Hamiltonian by itself, because of the collision term, but this last is small when the plasma is at
high temperature, so that it can be considered as a small correction in the dynamics, which is
mainly Hamiltonian.

In addition, the derivation of the model reached its present-day efficiency only when introducing
(non-canonical) Hamiltonian perturbation methods, especially because in the averaging procedure
they naturally implement the presence of the magnetic moment, which is an additional reduction
for the resulting model, as will be explained with more details in a few lines.

Last, Hamiltonian methods are desirable in the derivation of the model because they guarantee
the preservation of the Hamiltonian structure, whose conservative properties are crucial (e.g. in
numerical simulations) when studying long-time behaviours, as is needed in nuclear fusion.
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The gyrokinetic reduction

Let us have a few words on the derivation of the gyrokinetic model [17], which most of the disser-
tation will look into with more details. It works in two stages.

The first stage is called guiding-center theory [29] and concerns a reduction of particle dynamics,
where the electromagnetic field is considered as external and often the electric field is neglected.

When the magnetic field is strong, the particle trajectory is roughly a helix around the magnetic
field lines, with a small (negligible) radius and a small (negligible) period, corresponding to the
Larmor radius and time. The idea is to perform an averaging transformation that removes from
the effective dynamical coordinates the fast angle around the helix, namely the gyro-angle. In
addition, the radius of the helix can be removed from the dynamical variables, because it is related
to a constant of motion, called magnetic moment. Thus guiding-center theory reduces the dynamics
from six to four dimensions. In this transformation, the particle position is changed to another
point, called the guiding-center, which can be considered as (sliding) the center of the helix.

This transformation is not performed in one single stroke, but in an iterative way through a
perturbation theory corresponding to an expansion in a small parameter, related to the ratio be-
tween the Larmor radius and the other physical lengths, such as the characteristic length at which
the magnetic field varies.

After guiding-center theory comes the second stage, which is the true gyrokinetic stage. It
works not at the level of particle dynamics but at the level of field dynamics, and proceeds in four
steps. First, it performs the guiding-center change of coordinates for the Vlasov density. This
corresponds to a transformation for field variables. It is called a "lifting" of the guiding-center
transformation [115], which is "lifted" from the particle level to the field level. Second, it restores
the coupling between the plasma and the electromagnetic field, i.e. it makes the electromagnetic
field not external any more, but evolving in time consistently with the Vlasov density through
Maxwell’s equations. This slightly spoils the reduction previously obtained, and the third step is
to perform a second perturbative transformation, called gyro-center transformation [17], in order
to restore the desired reduction in the presence of the coupling. Then, the characteristics of the
(transformed) Vlasov density are such that the magnetic moment coordinate is not dynamical any
more, and the gyro-angle coordinate, although dynamical, has no effect on the other dimensions,
so that it can be dropped (averaged out), which constitutes the fourth step.

At the end of the reduction, the dynamics of the (reduced) Vlasov density is such that its char-
acteristics follow the slow, four-dimensional gyro-center trajectories. As for the reduced Maxwell’s
equations, the dynamics of the electromagnetic field involves source terms given by the reduced
Vlasov density, with polarization and magnetization terms being induced by the process, and more
precisely by the transformation of particle coordinates.

Perhaps it is useful to emphasize that the gain for numerical simulation is huge, because for
typical applications in magnetic fusion, the time step is reduced by a factor of the order of 103. In
addition, the dynamical dimensions are reduced from 6 to 4. Indeed, the gyro-angle is completely
removed from the theory; as for the magnetic moment, it is not dynamical any more and remains
only as an index for the Vlasov density; it contributes in the computation of the current (or charge
density), but since it is not dynamical, a few values can be enough to get relevant results. Thus,
for a discretization of the numerical grid with 102 − 103 points per dimension, the size of the grid
is reduced by a factor of the order of 105.

Such a reduction is needed to make numerical simulations doable: even after the reduction,
simulations can be done only on supercomputers and in the electrostatic limit.

Electrostatic gyrokinetics

Most often, the electrostatic limit can be used in a first approximation. In fusion simulations for
instance, gyrokinetics is ordinarily just electrostatic gyrokinetics [17, 42, 56, 65]. This is because
a dynamical magnetic field would complicate simulations, whereas the strong magnetic field is
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mainly not dynamical (not self-consistently generated by the plasma), so that the main effects of
the dynamical electromagnetic field come from the electrostatic field.

In the electrostatic case, the guiding-center stage consists in setting the electric field to zero. As
for the gyrokinetic stage, after lifting the guiding-center transformation, it consists in restoring the
Poisson equation, with its non-zero electric field. As usual, this spoils the guiding-center reduction,
which is remedied by the gyro-center transformation.

So, the overall two-stage five-step reduction becomes the following:

1) The guiding-center reduction of particle dynamics reduces the number of dynamical coor-
dinates from six to four. The electric field is zero, the magnetic field is static. The method is
to perform a perturbative coordinate transformation on the phase space such that the magnetic
moment is a constant of motion and the gyro-angle has a skew decoupled dynamics and can be
dropped (averaged out); "skew decoupled" means that it does not influence the other coordinates,
but that it depends on them, it is a one-way dependence.

2) The gyrokinetic reduction of plasma dynamics reduces the dimension of the grid over which
the Vlasov density evolves from six to four (the magnetic moment is kept just as a label, not as
a dynamical dimension). The electric field is dynamical and evolves consistently with the Vlasov
density, the magnetic field remains static. This second stage proceeds in four steps:

a) to "lift" the guiding-center reduction to the field level by performing the guiding-center
transformation for the Vlasov density. This reduces the Vlasov dynamics when the electric field is
zero.

b) to restore the coupling, by putting back the Poisson equation. This spoils the reduction of
the Vlasov equation, because of the non-zero electric field.

c) to rectify the guiding-center transformation to take into account the presence of the electric
field, by performing the gyro-center transformation. In a similar way as for the guiding-center
transformation, the gyro-center transformation is done on particle dynamics and lifted to the Vlasov
density. Then, the fast gyro-angle coordinate is indeed skew-decoupled for the characteristics of
the (transformed) Vlasov density, but it has not been dropped yet.

d) to average the gyro-angle out, which removes the fast time scale from the dynamics, and
actually reduces the dimension of the base space for the Vlasov density. Then the reduced dynamics
is obtained, which is called (electrostatic) gyrokinetics.

The guiding-center and gyro-center transformations can be done simultaneously in Step 1 by
including directly the presence of both a strong magnetic field and a weak electric field [128]; it is
what we will do. Then, Step 2c is done in the same time as 1 and 2a. Only Steps 1, 2a, 2b, and
2d remain, because Step 2b does not spoil the reduction, since the electric field has already been
taken into account in Step 1.

In this case, the difference between guiding-center and gyro-center somehow disappears, and
the reduction of particle dynamics (Step 1) often remains called guiding-center reduction. If there
is a need, the difference can be easily identified afterwards thanks to the order in the electric field.

In our Hamiltonian approach, the gyrokinetic reduction from the Vlasov-Poisson system (elec-
trostatic gyrokinetics) has the same ingredients as the reduction from the full Vlasov-Maxwell
system (electromagnetic gyrokinetics), the only difference is that it makes several aspects simpler
to identify and sometimes to work out. Accordingly, most of the time, we will not specify whether
we have in mind the electrostatic or the electromagnetic case, and we will often use a wording best
suited to the standard Vlasov-Poisson framework, whereas most of our derivation will concern the
more complete Vlasov-Maxwell system.

Notice that even if the word "Vlasov-Poisson" may evoke just the Vlasov density coupled with
an electric field, here it will always implicitly have in addition a (strong static) magnetic field, as
is usual in gyrokinetics.
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Thesis work

Addressed questions

Although well established the foundations of gyrokinetics are still worth some study, for some ques-
tions remain unanswered in its derivation. As a result of recent advances in physics, the model
became more widely used, which made clearer and possibly crucial the need for improvements or
clarifications about these questions.

1) For instance, the model is obtained through a perturbation theory, but previous results in-
cluded only a part of the second order [29]. Recent works show that going further in the expansion
is needed for a proper description of the conservation of angular momentum [26,127], which plays a
crucial role in the intrinsic rotation of plasmas in tokamaks, an important phenomenon in magnetic
fusion to stabilize turbulence and improve the confinement of energy [63].

2) In addition, when deriving the model, the fast gyro-angle, which is somehow the pivotal
coordinate, suffers from difficulties. It can not be defined without choosing arbitrarily an axis for
the zero of the angle (see formula (1.2)), which corresponds to introducing a local gauge. It turns
out that such a gauge does not exist globally for a general magnetic geometry [25, 79, 145, 146].
Thus, not only the coordinate system is gauge dependent, but also it is not globally defined in
many physical systems. These difficulties about the gyro-gauge are especially important to clar-
ify in order to address the higher-order reduction [26, 145]. An additional awkward feature about
the gauge-dependent gyro-angle is that it implies an anholonomic phase in the momentum: when
performing a loop in configuration space, at the end, some of the quantities of the theory do not
recover their initial value [86,90].

3) Another question concerns the Hamiltonian structure of the model. Indeed, among the two
stages of the reduction, the guiding-center stage treats charged-particle dynamics, and it is here
that the Hamiltonian structure (of particle dynamics) is essential to efficiently obtain the reduced
model. On the contrary, the second stage, the true gyrokinetic stage, is performed at the level of
the equations of motion, which generally does not guarantee the preservation of the Hamiltonian
structure.

This asks the question whether the resulting model is Hamiltonian, or whether some fake
dissipation has been introduced in the reduction process [108]. Previous attempts showed that
answering directly this question by guessing the gyrokinetic Poisson bracket can be difficult. It
may be more efficient to study what happens at the level of the Hamiltonian structure (of Vlasov-
Maxwell dynamics) through the lifting and the restoring of the coupling. In addition, this strategy
has the advantage of relating the Hamiltonian structure of gyrokinetics to the one of Vlasov-Maxwell
dynamics.

Identifying the Hamiltonian structure is needed not only to validate the model somehow, and to
insure conservative properties, useful when studying long-time behaviours, but also to clarify some
questions about its conservation laws, such as the conservation of angular momentum [21, 133],
whose answer would be much clarified in the presence of a Hamiltonian system.

Complementary question

The thesis work deals with those three questions, but a complementary question is addressed. In
order to study the Hamiltonian structure of gyrokinetics, instead of lifting a reduction of particle
dynamics, it may be more interesting to apply directly Hamiltonian reduction methods to the
Vlasov-Maxwell system. This is an extension of the third question above, which aims at better
understanding the Hamiltonian reduction from Vlasov-Maxwell to gyrokinetics.

In addition, this extension will be needed in order to perform Step 2d of the reduction process
in a Hamiltonian framework. In fact, after the lifting process, in order to remove the gyro-angle
dimension from the base space of the Vlasov density (averaging reduction), an additional Hamil-
tonian reduction at the level of Vlasov-Maxwell field dynamics will appear as necessary before
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definitely concluding about the Hamiltonian structure of gyrokinetics.
Last, it could lead to an improvement of the reduction method for gyrokinetics, in the same

way as what occurred for the guiding-center reduction, where Littlejohn’s Hamiltonian method was
so efficient that it replaced previous methods working on the equations of motion.

Several indices suggest that Dirac’s theory of constrained systems [44] could be efficient for
the purpose, and a recent result in the literature [144] somehow confirms these indices. Especially
in some cases, it produced just a bracket truncation, i.e. the removal of the irrelevant terms
from the Poisson bracket. However, this property is not observed in general, and in addition the
gyrokinetic reduction does not seem to fit with a straightforward application of Dirac’s theory from
the Vlasov-Maxwell system as it worked in plasma models up to now [31–33,118,119], since no field
is constrained in the process. In order to develop tools and make the method more suited to the
purpose, in particular closer to a bracket truncation, the thesis work is interested in variations of
Dirac’s theory, and as a guideline, several reductions of plasma dynamics are investigated from the
point of view of Hamiltonian reductions. This part of the work leaves the mere gyrokinetic model,
broadens the perspective and pertains the more general framework of Hamiltonian reductions in
plasma physics.

Organization of the document

The document is organized in three parts, which we will call "episodes" 2, in order to avoid the
word "part", which could be confusing since "a part" (of the work) can denote a section of the
current chapter, or an episode of the whole manuscript, or even some less defined part of the thesis
work.

The three episodes are independent of each other, in the sense that they pertain a completely
different framework and proceed with completely different sets of methods. They can be consid-
ered as three successive stopovers towards the full gyrokinetic reduction, although the third episode
touches many other reductions as well.

- In the first episode, we address the first two questions, because they concern the same part
of the derivation, which is guiding-center theory (Step 1), with the reduction of particle dynamics
in a strong magnetic field. We propose an intrinsic formulation, i.e. a formulation that avoids
introducing a gyro-gauge (considered as extrinsic). We study how the reduction can be performed
in this framework and to arbitrary order in the perturbation expansion. First, we consider simplified
reductions concerned either with the magnetic moment, or with the averaging process. Second we
turn to the full reduction. Last, we come back to the troubles about the traditional (non-intrinsic,
gauge-dependent) approach, in the light of the intrinsic approach.

- In the second episode, we turn to Steps 2a-2c, i.e. the reduction of plasma dynamics in a strong
magnetic field, and we address the third question, by studying how the Hamiltonian structure is
affected by the lifting and the coupling. This is first done for a simplified transformation suggested
by the magnetic-moment reduction, and second for a general change of particle coordinates for
Vlasov-Maxwell dynamics, which we then apply to the guiding-center and gyro-center transforma-
tions considered by gyrokinetics. Finally, the two-stage gyrokinetic reduction is shown to fit with
the Hamiltonian structure of Vlasov-Maxwell and to be proper for a Hamiltonian perturbation
theory.

- In the third episode, we turn to Step 2d, and address the fourth question. We study Dirac (or
more generally Hamiltonian) reductions in plasma dynamics, in the goal of obtaining the gyroki-
netic model by applying Hamiltonian reductions on the Vlasov-Maxwell system. We first consider
examples where Dirac’s procedure can be simplified, and show that the simplifying phenomenon is
related to a different, very efficient reduction method, based on bracket truncations and Poisson
subalgebras. Several applications are obtained in plasma physics, both to kinetic and to fluid mod-
els, especially for the derivation of incompressible dynamics, of the Vlasov-Poisson system, of the
MHD model and of Hamiltonian fluid closures. By the way, the gyrokinetic reduction is shown to

2The motivation for this term purely relies on practical reasons, and on the sake of clarity. We do not intend to
originality or to humour at all, but we have not found an alternative word, which would be both more common for
a thesis manuscript and unambiguous. Perhaps the word "episode" is unusual, but sure it will be clear.
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fit with this kind of reduction; this provides a way to implement the averaging reduction (removal
of the gyro-angle coordinate) in the Hamiltonian structure of the Vlasov-Maxwell system, which
constitutes the last step (Step 2d) towards the Hamiltonian structure of gyrokinetics.

Comments for the reader

Each episode is divided into several steps towards its final result. Each step is devoted a chapter,
which aims at clarifying a specific aspect of the overall problem. In the process, each chapter
investigates additional, incidental but interesting, questions touching the corresponding subject.
In some places, these complementary questions can have great interest in themselves, and possibly
become an essential motivation for the chapter, besides the initial one coming from the progression
of the thesis work.

For instance, Chapters 1, 2, and 10 aim at obtaining more and more complete intrinsic guiding-
center reductions, but they are also interested in using the derivation to identify structures in
guiding-center expansions, to exploit the non-uniqueness of guiding-center transformations, or to
obtain a maximal reduction. As for Chapter 3, it mainly investigates the intrinsic formulation
of the guiding-center anholonomy and gauge arbitrariness, but it is also interested in using this
formulation to identify the existence condition for a scalar gyro-angle and the link with the existence
condition for a (global) gyro-gauge. Chapter 7 mainly explores a formulation of Dirac’s reduction
as a projection of derivatives, in order to better understand the simplifying phenomenon occurring
in some Dirac reductions in plasmas, but it is also interested in using this formulation to improve
Poisson brackets that suffer from a conditional Jacobi identity, and this can be considered as an
essential motivation for the work reported in this chapter.

As a result, each chapter can be considered as an independent work, with its own framework,
viewpoint, subject and focus. So, we have written each of them in a rather self-consistent way, and
they will come with an abstract, announcing the specific goals and results. Only the transitions
between chapters (beginning of the introduction and end of the conclusion) will position the work
of the chapter in the general progression of the thesis work. This presentation will imply a few
repetitions between chapters in some points, but they will remain limited and should make the
reading easier, especially by dividing this rather long document into shorter elementary entities3.

It is useful to notice that the work of all chapters do not have the same degree of completion.
Some works have been fully developed, exploited, and shaped for publication. For instance, it is
the case of Chapters 1-4. Other works remain closer to an exploratory level. Their point of view,
content, and formulation are more abstract and more formal-focused. They have not been shaped
towards applications and publication yet. Such are Chapters 6 and 12, for instance. Of course,
many chapters stand at an intermediate level. For the present manuscript, we have retained all
the chapters that we feel play a role and do contribute in the overall understanding of the thesis
matter, each with its own present positioning.

In order to avoid excessive length for this thesis dissertation, we have sent into an appendix
episode several chapters, named "Appendix chapters", and we have kept in the main body only
the essential steps of the work. Be careful that still two other kinds of appendix objects can be
met in the manuscript. First, in some places, parts of the content of a chapter have been put as
appendix material at the end of the chapter. Second, this document has two appendices, given for
information. Appendix A on page 283 is a list of publications. As for Appendix B on page 285,
it is a paper of ours whose content has not been detailed elsewhere in the manuscript. It analyses
some aspects of the gyro-angle dynamics and is quite aside from the four main questions to be
addressed.

Notice that for interested readers, the appendix chapters 10-14 should not be read at the end,
after Chapters 1-9, but rather in their place according to the general progression of the investiga-
tion. For instance, Chapter 10 takes place at the beginning of Chapter 1, and Chapter 11 takes

3The appendix chapters 12 and 13 are exceptions from this point of view. They behave somehow as sections of
Chapter 8, where the notations are introduced once for the three chapters.
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place at the end of Chapter 4. For each appendix chapter, the place where it should be read is
clearly indicated in the main body of the document, as well as at the beginning and at the end of
the corresponding appendix chapter.

Under the title of each chapter, collaborators concerned with the corresponding work are indi-
cated. We want to express here our deep gratitude to them, and especially to Michel Vittot, Cristel
Chandre, Phil Morrison, and Alain Brizard. They have much helped us make the thesis instructive
and productive. As a result, some readers can need to know what our relative contribution is, and
more precisely which parts of the dissertation are more specifically ours or theirs. So, we have to
stress that the present document focuses on our personal work. The material retained is only the
one for which we are the main contributor, and most often by far. The only places where it is not
completely the case concern Sects. 4.1-4.5, Sect. 6.1, Sect. 7.2.2, as well as the framework of chap-
ter 10. These parts of the thesis have been included rather for pedagogical purpose. For the rest
of the dissertation, the role of our collaborators was mainly to suggest directions to investigate, to
verify the outcomes, to advise us how to complement the work, to obtain some results differently, or
to offer formulations for publications. Nevertheless, we insist that they have played a determinant
role in guiding us so wisely and so liberally throughout our investigations. We wish to deeply and
heartily thank them.
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Introduction of the episode

In this first episode, we are interested in clarifying the first two questions about the foundations
of gyrokinetics mentioned in the general introduction, which concern the higher-order reduction
and the gyro-gauge issues. Rather than gyrokinetics itself, they affect guiding-center theory, which
is the preliminary stage of gyrokinetics (denoted as Step 1 on page 16), and hence do not really
pertain plasma dynamics but rather particle dynamics.

Let us remind the principle of the reduction with a few more details [29,86,88,122], to help the
reader expect the procedure which will be used. When the magnetic field is strong, the particle
trajectory is roughly a helix around the magnetic field lines with a small radius compared to the
other scales of interest and a frequency much faster than the time scales of interest. This justifies
both a perturbation expansion in the corresponding small parameter rL/L (where rL is the Larmor
radius and L indicates the other scales of interest, e.g. a characteristic length of the magnetic
geometry) and an averaging reduction, which replaces the particle position by the center of the
helix, called guiding-center position, whose motion is slow and averaged at lowest order. The same
averaging can be done with other coordinates, except that the gyro-angle keeps a fast dynamics.

This removes the fast time scale from the theory, because the slow dynamics can be studied
independently of the fast dynamics: it does not depend of the only fast coordinate, the gyro-angle.
But this is valid only at lowest order. At first order, the dynamics of the guiding-center (and other
coordinates) depends on the gyro-angle. Thus a first-order transformation must be performed
to average also these terms. Then, the dynamics depends on the gyro-angle only for order two
and higher. Iterating the process to infinity provides a perturbative change of coordinates that
completely removes from the equations of motion the presence of the gyro-angle, the only fast
variable. Since the gyro-angle affects only short time scales and small spatial scales, it can be
ignored (averaged out) and the theory remains with only five coordinates and a much less stringent
time scale.

In addition, one of the remaining coordinates can also be removed from the dynamical variables,
by making it a constant of motion. Indeed, the magnetic flux through the helix is an adiabatic
invariant [68, 122], which means that at lowest order, it is a constant of motion. At first order,
its dynamics is not zero, but a first-order transformation can make it conserved up to first order.
Iterating the process to infinity provides a constant of motion to all orders, called the magnetic
moment.

Practically, the transformation for the averaging reduction and the one for the magnetic mo-
ment are done simultaneously at each order. Thus, guiding-center theory reduces the dynamical
dimensions from 6 to 4 by identifying a suitable perturbative coordinate transformation.

The reduction was initially obtained by averaging the equations of motion and trying to combine
the results to identify the magnetic moment [8,122,123], which became very difficult, if not impos-
sible, for higher orders. Since Littlejohn’s Hamiltonian approach [85,86,88], it is rather obtained by
Lie-transforming the phase-space Lagrangian, because it is a very efficient method, especially for
the magnetic moment. In addition, it naturally provides the reduced motion with a Hamiltonian
structure.

The first point to be developed about this reduction is that in previous works, the reduction
was performed only up to the order one and a half [29]. Recent results emphasize that going further
can be needed for the physical relevance of the equations, especially for the conservation of angular
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momentum [26,127]. This is essential in order to properly describe the intrinsic rotation of plasmas
in tokamaks, which plays a crucial role in the stabilization of plasma turbulence, and hence in
improving the heat confinement, which is the main goal in magnetic fusion.

So, in this thesis, we are interested in studying the reduction at higher orders. In the present
episode, this point will be addressed by obtaining algorithmic reductions with explicit induction
relations to arbitrary order in the perturbation expansion.

The second question comes from the definition of the gyro-angle, which is the angle determining
the direction of the so-called perpendicular momentum (or velocity), the component of the momen-
tum perpendicular to the magnetic field. Indeed, the definition of this angle implies to choose
an axis (a unit vector e1) from which the gyro-angle is measured (see formula (1.2)). Since the
vector e1 must be orthogonal to the magnetic field B(q), this choice is to be made at each point in
configuration space.

This corresponds to fixing a gauge in the theory, the so-called gyro-gauge, because the value of
the gyro-angle depends on the choice made for e1. A first aspect of the question concerns the need
for this gauge dependence in the coordinate system, whereas the particle state and all the physics
do not explain such a gauge dependence [86, 90]. A second, more important aspect is that the
gyro-gauge can not be defined globally for a general magnetic geometry [25,79,145,146]. Hence the
coordinate system does not exist in the whole physical system in general. Last, awkward features
are involved in the gyro-angle, with the presence of an anholonomic phase in the momentum [86,90].

These troubles come because this coordinate is not purely physical. In order to address them,
a natural idea is to avoid introducing such non-physical quantities in the theory, and hence to
remain as close to the physical coordinates as possible. This formulation will be named "intrinsic",
because it avoids introducing any arbitrary (extrinsic) gyro-gauge, and it is directly induced by the
(intrinsic) state of the system. A first goal will be to identify the corresponding intrinsic gyro-angle
coordinate, which suggests to identify it a posteriori instead of defining it a priori. So, we should
start the work without defining it.

On another hand, as will be seen in the next episode, when tackling the third issue mentioned
in the introduction, related to the Hamiltonian structure of gyrokinetics and the lifting procedure,
some difficulties will be induced by the introduction of a guiding-center, i.e. by a change in the
spatial point. So, we are interested in an approach that changes as little as possible the coordinates,
and especially that does not change the spatial position.

This excludes the averaging reduction, and suggests to focus on a simplified reduction, which
takes into account only the magnetic moment, and not the removal of the fast angle. Then only
one of the coordinates has to be changed, e.g. the norm of the momentum, to be replaced by the
magnetic moment. The other coordinates keep their initial definition, both the spatial position and
the unit vector of the momentum. Especially, no gyro-gauge is defined for the gyro-angle.

So, the magnetic-moment reduction is both the best way to look for an intrinsic formulation of
gyrokinetics and a good way to prepare the lifting procedure.

Especially, this simplified reduction should show how gyrokinetics can work with no gyro-gauge,
because the magnetic moment is the action conjugated to the gyro-angle [81,86,88], and hence its
derivation will be related to Larmor gyration. Then, equipped with the resulting intrinsic formalism,
less simplified guiding-center reductions will be considered.

The intrinsic gyro-angle will turn out to be a constrained coordinate, namely the direction
(unit vector) of the perpendicular momentum (as could be guessed a priori, actually), which is con-
strained to remain of unit norm and perpendicular to the magnetic field. This will introduce new
features in the theory, which must be dealt with carefully, especially because they could contain
counterparts of the issues associated with the traditional gyro-angle. So, before going to the full
guiding-center reduction, we will have to consider a simplified, introductory form of the averaging
reduction.

As a result, this episode of the thesis manuscript is composed of four chapters.
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- In a preliminary scrutiny, we study a transformation that keeps the spatial position unchanged,
as well as the unit vector of the momentum. Its goal is just to obtain the magnetic moment
reduction. It is not a guiding-center transformation (since there is no guiding-center), but it will
introduce an intrinsic formalism for gyrokinetics, especially for the basic gyro-operators (gyro-angle
derivation, gyro-integral, averaging and fluctuating operators), as well as an intrinsic coordinate
for the gyro-angle, which will appear as a constrained coordinate. In order to avoid excessive
length for the main body of the manuscript, this work will be put among the appendix chapters,
in Chapter 10.

- Then, in order to identify how the guiding-center reduction works with this constrained co-
ordinate, we investigate the opposite limit, i.e. a transformation that just averages the motion of
the four slow reduced coordinates. This minimal guiding-center transformation will be the topic of
Chapter 1.

- Next, in Chapter 2, we will generalize the intrinsic formulation by studying how the constrained
coordinate can be used for the full guiding-center reduction, which is more involved because it
works on the phase-space Lagrangian, not just on the equations of motion, and it can be viewed
as a maximal reduction. In this reduction, as in the previous ones, in addition to using a gauge-
independent gyro-angle, we will be interested in the higher orders, and will propose an algorithmic
induction procedure.

So, for the methods used, our work will parallel and reconsider the historical path: the full
reduction will be more efficiently obtained by working on the phase-space Lagrangian whereas
the minimal averaging reduction will be more efficiently obtained by working on the equations of
motion, but instead of an averaging procedure, a Lie-transform will make the scheme clearer and
more straightforward.

- Last, after obtaining all the results of standard guiding-center reductions within the gauge-
independent framework, it will be interesting to revisit the troubles associated with the traditional
gyro-angle coordinate in the light of the intrinsic approach, in order to see what intrinsic features
underlie these troubles, and to emphasize more clearly what the essential novelties of this approach
are. This will be the purpose of Chapter 3.
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Chapter 1

A gyro-gauge independent minimal

guiding-center reduction by

Lie-transforming the velocity vector field
in collaboration with Michel Vittot
Paper accepted in Phys. Plasmas (2013)

Abstract: We introduce a gyro-gauge independent formulation for a simpli-
fied guiding-center reduction, which removes the fast time-scale from particle
dynamics by Lie-transforming the velocity vector field. This is close to Krylov-
Bogoliubov method of averaging the equations of motion, although more geo-
metric.
At leading order, the Lie-transform consists in the generator of Larmor gyra-
tion, which can be explicitly inverted, while working with gauge-independent
coordinates and operators, by using the physical gyro-angle as a (constrained)
coordinate. This brings both the change of coordinates and the reduced dynam-
ics of the minimal guiding-center reduction order by order in a Larmor radius
expansion.
The procedure is algorithmic and the reduction is systematically derived up to
full second order, in a more straightforward way than when Lie-transforming the
phase-space Lagrangian or averaging the equations of motion. The results write
up some structures in the guiding-center expansion. Extensions and limitations
of the method are considered.

Introduction

As announced in the introduction of the episode, the preliminary step towards our intrinsic for-
mulation of the guiding-center reduction focuses on a simplified reduction taking into account only
the magnetic moment, but not the removal of the fast time scale. It is reported in the appendix
Chapter 10.

−→ See the appendix chapter 10

It shows that the physical variable playing the role of the gyro-angle is the unit vector of the
perpendicular momentum. Unlike the standard gyro-angle used in the literature, it is not extrinsic,
in the sense that no arbitrary gyro-gauge is involved in its definition, so that it is directly induced
by the particle state.

The simplified reduction of Chapter 10 only constituted a small introductory part of the guiding-
center reduction, since it did not remove the fast time scale from the theory, and had no guiding-
center. As the next step towards our intrinsic approach, we now turn to a true guiding-center
reduction, i.e. we aim at eliminating the fast time scale from the dynamics while using the physical
gauge-independent coordinate for the gyro-angle.
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To make this chapter clear for the reader, and somehow self-consistent, let us remind briefly
the framework and purpose.

The basic idea of guiding-center theory is that particle dynamics in a strong static magnetic
field implies a separation of scales, with the existence of a fast Larmor rotation, slower drifts, and
an adiabatic invariant. This allows for a reduction, the so-called guiding-center reduction, which
removes the fast time scale and the fast angle from the dynamics, builds a constant of motion, the
magnetic moment, and thus provides a slow motion reduced by two dimensions [29]. The fast angle
is the gyro-angle, which is an angle measuring the Larmor gyration. The main principle of the
reduction is to remove the presence of the gyro-angle in the dynamics of the other coordinates, by
building suitable coordinates order by order in a small parameter expansion, related to the Larmor
radius. The averaging transformation is usually identified by Lie-transforming the phase-space
Lagrangian, because it naturally provides the constant of motion and a Hamiltonian structure for
the slow reduced motion.

The usual coordinate for the gyro-angle suffers from several issues, both from a mathematical
and from a physical point of view [25,79,90,145,146]: it is gauge dependent, does not exist globally
for a general magnetic geometry, and implies an anholonomic phase in the momentum. The gauge
dependence induces some subtlety about gauge invariance, while the non-global existence and the
anholonomy are still more puzzling. In order to avoid these issues and to give a more intrinsic
framework to the theory, we consider performing the reduction using the initial physical gauge-
independent coordinate for the gyro-angle, as suggested by the work reported in Chapter 10. Thus,
not only will the theory be gauge invariant and the physical results be gauge independent, but all
the theory itself will be gauge independent and defined globally, with all of its quantities.

The corresponding coordinate is constrained, which makes the scheme more involved. As a
first step towards the full reduction, we study in this chapter a simplified guiding-center reduction,
where we focus on the averaging reduction (i.e. we do not take into account the magnetic moment,
which is the opposite limit compared to the previous step, considered in Chapter 10). The advan-
tage is that only the four slow reduced coordinates have to be changed, since only they have to
be gyro-averaged. For the remaining coordinates one can rely on the initial physical coordinates,
which are gauge independent. The scheme also is strongly simplified, since one can work directly
on the equations of motion, which makes it easier to identify how to deal with the gyro-angle using
an intrinsic but constrained coordinate.

This simplified guiding-center transformation is obtained here by Lie-transforming directly the
velocity vector field, which is the geometric point of view of how a coordinate transformation affects
the equations of motion [27, 87]. As a result, it is much more efficient than previous methods
either Lie-transforming the phase-space Lagrangian [29, 88] or averaging the equations of motion
[8, 9, 81, 122, 123]. This makes it easier to go to higher order in the reduction and to identify
structures in guiding-center expansions. The whole second-order reduction is obtained in a direct
computation, despite the complicated expressions of the second-order transformation, and the
algorithm can be easily implemented in a computer to reach any order.

The method is not intended to replace the traditional derivation by Lie-transforming the phase-
space Lagrangian. Indeed, with some additional refinements, it can also provide the constant of
motion as in Chapter 10, but it does not guarantee a Hamiltonian structure for the slow reduced
coordinates, with all the associated conservation properties. All the same, it induces a complemen-
tary and faster derivation to get additional information on the reduction, and especially it is the
first step towards a gauge-independent approach of guiding-center theory.

When applied to the velocity vector field, the Lie-transform method is close to Krylov-Bogoliubov
method [82], but more geometric and more straightforward. Bogoliubov’s procedure [8,9] also relied
on a near-identity change of coordinates in the equations of motion and achieved greater efficiency
than other methods working on the equations of motion, but it relied on substitutions and chain
rules, whose process remained rather involved, so that it was not implemented further than the
first-order transformation. The Lie-transform method condensates all the procedure into one single
operation, related to the transformation generator.



1.1. LIE-TRANSFORMING THE VELOCITY VECTOR FIELD 29

It also comprises an interesting approach of the guiding-center arbitrariness. Indeed, the
guiding-center reduction is not unique, as is again emphasized by some recent results [23, 128].
Such an arbitrariness caused troubles in some works dealing with the equations of motion, where
it was unclear what the natural choices were to be at second order [123]. Hamiltonian ap-
proaches [85, 86, 88] did not really address the arbitrariness in the averaging procedure, because
they average not just the dynamics of the four reduced coordinates, but the whole reduced La-
grangian, with its seven components, including the Hamiltonian and the Poisson bracket. Now,
when Lie-transforming the equation of motion, the arbitrariness is distinct and the natural choice
consists in setting to zero all arbitrary terms in the transformation generator, exactly as it was done
at first order to define the guiding-center position. This also agrees with Bogoliubov’s works [8,9].

The resulting guiding-center reduction is unique and minimal. The requirements are just tai-
lored to reduce the dynamical dimensions, which means just to extract a slow dynamics for the
four reduced coordinates, the guiding-center position and the parallel velocity or the pitch-angle
(the angle between the magnetic field and the particle velocity). Then, the method is forthright
from the requirements to the related equations to be solved; it just corresponds to making a near-
identity change of coordinates, i.e. a Lie-transform of the velocity vector field. Computations are
straightforward and fully algorithmic, since the equations are solved just by an explicit inversion
of the Larmor gyration generator. Last, the result is the minimal transformation for the desired
reduction, in the sense that it is the only four-dimensional generator with zero average that allows
for the reduction, and that the reduction can not be performed without this minimum needed. This
does not preclude the possible existence of other minimal guiding-center reductions when different
minimization criteria are used, but it seems the criterion considered here is best suited to the main
goal and procedure of guiding-center theory, concerned with the averaging reduction.

The chapter is organized as follows. In Sect. 1.1, the goals of the reduction are introduced and
written as equations for the transformation generator. It is shown that these equations can be
solved explicitly at any order in the Larmor radius, and the iteration mechanism of the reduction
is identified. In Sect. 1.2, it is shown how the reduction is computed and the resulting algorithm
is given. In Sect. 1.3, the result is written to full second order in the Larmor radius, obtained in
a straightforward computation; a comparison is done with previous guiding-center reductions, and
some insights are brought into the general structure of guiding-center results.

In Sect. 1.4, a few possible extensions and limitations of the method are studied, such as the
presence of an electric field or non minimal guiding-center reductions. For instance, averaging
also the dynamics of θ is considered, as well as including the magnetic moment in the reduced
coordinates or providing the reduced dynamics with a Hamiltonian structure.

1.1 Lie-transforming the velocity vector field

The dynamical system is simply a charged particle with position q, momentum p, mass m and
charge e, under the influence of a static inhomogeneous magnetic field B. The motion is given by
the Lorentz force

q̇ = p
m ,

ṗ = p
m × eB .

For the sake of clarity, we consider no electric field. The presence of an electric field satisfying
the guiding-center ordering would not change the method (see Sect. 1.4).

When the magnetic field is strong, the motion implies a separation of time-scales. This is best
seen by choosing convenient coordinates for the momentum space

p := ‖p‖ ,
ϕ := arccos

(
p·b
‖p‖

)
, (1.1)

c := p⊥
‖p⊥‖ ,
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where b := B
‖B‖ is the unit vector of the magnetic field, and p⊥ := p − (p · b)b is the orthogonal

projection of the momentum onto the plane perpendicular to the magnetic field. The coordinate
p is the norm of the momentum, ϕ is the so-called pitch-angle, i.e. the angle between the velocity
and the magnetic field. Following Littlejohn’s notations [85, 86, 88], the vector c is the unit vector
of the perpendicular velocity.

In order to avoid misreadings, we insist that several conventional notations exist. Here, following
many of our bibliographic references, we will denote the gyro-angle by θ (see Eq. (1.2)), and the
pitch-angle will be denoted by ϕ, because (p, θ, ϕ) constitutes a spherical coordinate system for the
momentum.

Differentiating Eqs. (1.1), the equations of motion are found as

q̇ = p
m ,

ṗ = 0 ,

ϕ̇ = − p
m · ∇b · c ,

ċ = − eB
m a− p

m · ∇b · (cb+ aa cotϕ) ,

where p is now a shorthand for p(b cosϕ+c sinϕ), B is the norm of the magnetic field and a := b×c

is the unit vector of the Larmor radius, following Littlejohn’s notations, so that (a, b, c) is a (ro-
tating) right-handed orthonormal frame. The computation of ċ is rather involved, but it can be
avoided by using Eq. (1.12).

In the case of a strong magnetic field, the only fast term, the Larmor frequency ωL := eB
m

concerns only one coordinate, c, the direction of the vector p⊥ in the 2-dimensional plane perpen-
dicular to the magnetic field. This corresponds to an angle, the so-called gyro-angle, and measures
the Larmor gyration of the particle momentum around the magnetic field.

To get a true scalar angle instead of the vector c, one chooses at each point q in space a direction
which will be considered as the reference axis e1(q) ∈ B⊥(q). Then, the gyro-angle θ is defined
from the oriented angle between the chosen reference axis e1(q) and the vector c:

c = − sin θe1 − cos θe2 , (1.2)

and the equation of motion for θ is

θ̇ = eB
m + cotϕ p

m · ∇b · a+ p
m · ∇e1 · e2 ,

with e2 := b× e1 is the unit vector such that (b, e1, e2) is a fixed right-handed orthonormal frame.

To emphasize the fast term of the dynamics in strong B, the equations of motion can be
expanded in B−1. Writing z := (q, p, ϕ, θ), we get

ż = eB
m



(

0
0
0
1

)
+ p sinϕ

eB




b cotϕ+c

0

−(b cotϕ+c)·∇b·c
(b cotϕ+c)·(cotϕ∇b·a+∇e1·e2)






= ż−1 + ż0 ,

with ż−1 :=

(
0
0
0
eB
m

)
,

ż0 :=




p
m
0

− p
m ·∇b·c

p
m ·(cotϕ∇b·a+∇e1·e2)


 , (1.3)

where the indices correspond to the order in B−1. The term of order B1 has dimension of eB
m ,

whereas all the terms of order B0 have dimension of p
m · ∇, if we use the correspondence between

the vector field q̇ and the differential operator q̇ · ∇.
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The ordering parameter, that is the ratio of two following terms in the perturbation expansion,
is then ε = ż0

ż−1
= p sinϕ

eB ∇, which is the dimensionless quantity rL∇, with rL := p sinϕ
eB the Larmor

radius. This parameter is well-known as the magnetic inhomogeneity at the scale of the Larmor
radius, because in rL∇, the gradient always acts on the magnetic field, which is the only local
property of the configuration space.

The ordering parameter is sometimes considered just as the Larmor radius rL, or as B−1, in
agreement with an expansion in strong magnetic field. Also, it is often considered symbolically as
e−1, because it is an equivalent expansion but it avoids to deal with a space-dependent parameter
involving B; this is symbolic, because e−1 is not dimensionless. Notice that the ordering parameter
rL∇ is not just a scalar but an operator; it has only a kind of dimensional meaning: the terms of
order ε2 may not have a prefactor of (rL∇)2, but they will have the dimension of p2

e2B2∇2. This
point will be illustrated by the results of Sect. 1.3.

The goal is to isolate the dynamics of the slow variables from the fast variable, i.e. to perform a
change of coordinates τ : z → z̄ such that the dynamics of the remaining coordinates (q̄, ϕ̄, p) does
not depend on θ. This is already obtained for p, so one only has to change coordinates on q and
ϕ. The coordinate transformation τ transfers to functions by duality through the "push-forward"
operator 1 T−1, defined by the scalar invariance property [17]:

(T−1f)(z̄) = f(τ−1z̄) .

At the lowest order in the Larmor radius ε−1, the requirements are trivially satisfied. So,
the transformation can be near-identity. It can be written as the exponential of a Lie-transform
z̄ = e−Xz, with −X a vector field, generator of the diffeomorphism τ , which satisfies

Xp,θ = 0 ,

since only the coordinates q and ϕ need to be changed. The index notation is used to indicate the
components, e.g. Xϕ denotes the component ϕ of the vector X, and Xp,θ denotes a 2 dimensional
vector, whose coordinates are the components p and θ of X. Through the transformation, the
equations of motion become

ż → ˙̄z = eLż ,

with L := LX the Lie-transform along the vector field X.
Now, the goal is that the equations of motion for q and ϕ do not depend on θ, which means

that all their non-zero Fourier components (i.e. purely oscillatory terms) are zero:

osc( ˙̄z)q,ϕ = 0 ,

where following Littlejohn’s notations, osc = 1− avg is the projector onto gyro-fluctuations, with
avg the complementary projector onto gyro-averages:

avg(f) = 1
2π

∫ 2π

0
dθ f

for any function f .
Last, L is expanded in series in the small parameter ε

0 = osc
(
˙̄z
)
q,ϕ

= osc

(
eL1+L2+...ż

)
q,ϕ

, (1.4)

1Notice that some works [131] use the word "pull-back" to transform functions (and differential forms) both in
the direct sense and in the reverse sense. They name Tf̄ the pull-back of f̄ (by τ), and T

−1f the pull-back of
f (by τ−1). In this chapter, following references in the guiding-center literature [17, 87], we distinguish between
direct and reverse transformations by naming T

−1f the push-forward of f , which emphasizes that the corresponding
transformation is not backwards, but forwards.

Be careful that the word push-forward may refer to a different concept, namely transformations of vectors (or
contravariant tensors), as opposed to forms (or covariant tensors). However, when τ is bijective, for instance for the
guiding-center transformation, a unified treatment in the case of general tensors (mixed covariant and contravariant
tensors) implies to consider the pull-back as the push-forward of the inverse transformation, and vice-versa, which
leads to the terminology used in the guiding-center literature.
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where Li is of order εi.

Eq. (1.4) is the equation to be solved for the change of coordinates Ln+1. Expanding it in series
in ε, we get an equation for each order:

0 = osc (ż−1)q,ϕ ,

0 = osc (L1ż−1 + ż0)q,ϕ ,

0 = osc

(
L2ż−1 +

L21
2 ż−1 + L1ż0

)
q,ϕ

,

... (1.5)

At each order n > 1 in ε, the highest-order unknown Ln+1 is involved only in one term. Isolating
it, the equation writes

− osc(Ln+1(ż−1)q,ϕ) = (Nn)q,ϕ , (1.6)

where Nn is a shorthand for all the terms of Eq. (1.4) that are of order n and that do not include

the unknown Ln+1, e.g. N1 := osc

(
L21
2 ż−1 + L1ż0

)
q,ϕ

.

The operator to be inverted is

−osc(Ln+1(ż−1))q,ϕ

= −osc ((Xn+1)ipi(ż−1)q,ϕ − (ż−1)i∂i(Xn+1)q,ϕ)

= osc ((ż−1)θ∂θ(Xn+1)q,ϕ)

= eB
m ∂θ(Xn+1)q,ϕ , (1.7)

where, in the first equality we used the usual formula (1.18) for the Lie-transform of a vector field,
in the second equality we used (ż−1)q,ϕ = 0, and in the third equality we used that osc ∂θ is just
∂θ, because ∂θ takes its values in the gyro-fluctuations, i.e. the non-zero Fourier component in the
variable θ.

The operator ωL∂θ is the generator of Larmor gyration, with the Larmor frequency as a coeffi-
cient. Eq. (1.6) has a solution because the right-hand side (Nn)q,ϕ is in the range of the operator
∂θ, since it is a pure gyro-fluctuation. The operator is easily inverted as

(Xn+1)q,ϕ = avg

(
(Xn+1)q,ϕ

)
+ 1

ωL

∫
dθ (Nn)q,ϕ , (1.8)

where avg(Xn+1)q,ϕ is a free element in the kernel of ∂θ, that is a free gyro-averaged function.
We defined

∫
dθ (Nn)q,ϕ as the primitive of (Nn)q,ϕ with zero gyro-average, i.e.

∫
dθ (Nn)q,ϕ :=

osc (N ) with N any primitive of (Nn)q,ϕ.

As a result, Eq. (1.5) can be solved to arbitrary order in the small parameter ε through Eq. (1.8).
At each order, one only has to write Eq. (1.5) to the n-th order, group into (Nn)q,ϕ all the terms
that depend only on quantities that are already explicitly known, expand the result, and last invert
the Larmor gyration operator through Eq. (1.8).

This is close to Kruskal’s averaging procedure [81], whose principle was to expand the function
defining the motion and average this expansion. Here, we focus on the vector field defining the
motion and Lie-transform it so as to make it independent of the fast coordinate. Such a procedure
actually does not rest on averaging methods so much; it could rather be related to normal form
methods [57], which aim at giving a simplified form to a vector field, when studying the local
dynamics, the stability and possible bifurcations of an equilibrium point.

In the guiding-center transformation, at each order, the fluctuating part of Xn+1 given by
Eq. (1.8) is necessary and sufficient to solve Eq. (1.4). The averaged part is completely free, but
also completely useless to solve Eq. (1.4). So, a natural choice is to put it to zero

avg (Xn+1) = 0 . (1.9)
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This makes the transformation unique: the result is the minimal guiding-center reduction, i.e.
the only transformation which gives the desired requirements and whose only non-zero components
are the fluctuating part of (Xn+1)q,ϕ.

In this guiding-center reduction, the transformation affects only the coordinates (q, ϕ). The
transformation generator has no gyro-angle component. Now, the corresponding coordinate θ is
not intrinsic. It implies a non-trivial gauge fixing, whose global existence can fail [25, 145]. It is
not purely physical: in all physical results, what appears is the physical quantity c, as is clear in
the literature [29,86,88]. The use of θ is a detour and should be avoidable.

So, we remain with the variable c with its initial definition: the unit vector of the perpendicular
velocity

c := p⊥
‖p⊥‖ = p−(p·b)b

p sinϕ . (1.10)

With this variable, the coordinate space is constrained: the gyro-angle c is not independent of
the spatial position, since c ∈ b⊥, and b depends on q. When the q coordinate is changed, the
c coordinate cannot be kept unchanged, otherwise it may get out of b⊥. Differentiating relation
(1.10) with respect to q, we find

∇c = −∇b · (cb+ aa cotϕ) . (1.11)

This formula can be obtained more easily by noticing that in the change of coordinates (q,p) −→
(q, p, ϕ, c), we have

− sinϕ∇ϕ = ∇ cosϕ = ∇b · p
p = ∇b · c sinϕ

⇒ ∇ϕ = −∇b · c
⇒ 0 = ∇

(
p
p

)
= ∇c sinϕ+∇b cosϕ+∇ϕ(−b sinϕ+ c cosϕ)

= (∇c+∇b · cb) sinϕ+∇b · (1− cc) cosϕ

⇒ ∇c = −∇b · (cb+ aa cotϕ) . (1.12)

in which ∇ means differentiation with respect to q while keeping p constant, and we used that

1 = aa+ bb+ cc and that b is a unit vector, which implies ∇b · b = ∇
(
b2

2

)
= 0.

The action of ∇ on the vector c must be taken into account through Eq. (1.11) when computing
the action of żq or (Xn+1)q, but also when defining the components of ż: writing ḟ = ż · ∂zf in
coordinates z := (q, p, ϕ, c) with the property (1.11) implies

ż = eB
m



(

0
0
0
1

)
+ p sinϕ

eB




b cotϕ+c

0

−(b cotϕ+c)·∇b·c
0






= ż−1 + ż0 ,

with ż−1 :=

(
0
0
0
eB
m

)
,

ż0 :=




p
m
0

− p
m ·∇b·c

0


 . (1.13)

Notice that the c component of ż0 is zero, because the term − p
m ·∇b ·(cb+aa cotϕ) in the dynamics

of c comes from żq · ∇f with Eq. (1.11).

1.2 The reduction algorithm

In this section, it is shown how the computation proceeds for the minimal guiding-center transfor-
mation. To lowest order ε−1, the equation to be solved (1.5) writes

0 = osc (ż−1)q,ϕ .
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From the definition (1.3) of z−1, this is trivially verified, and it is actually a condition for the
near-identity Lie-transform to isolate the fast time-scale, which is possible only because at lowest
order, the motion concerns only the fast variable c.

To order 0, the equation to solve (1.5) is

0 = osc (L1ż−1 + ż0)q,ϕ .

The solution for the first-order change of coordinates X1 is given by Eq. (1.8) with the choice
(1.9)

(X1)q,ϕ = 1
ωL

∫
dθ osc(ż0)q,ϕ . (1.14)

The spatial component gives the lowest-order Larmor radius, which is often identified with the
Larmor radius itself

(X1)q=
m
eB

∫
dθ osc(ż0)q

= p
eB

∫
dθ osc(b cosϕ+ c sinϕ)

= p
eB

∫
dθ c sinϕ = p sinϕ

eB a = rLa , (1.15)

where the action of osc and
∫
dθ can be computed trivially by using Eq. (1.2). One can avoid this

trick and make the computation with purely intrinsic operators using the results of Chapter 10.
On another hand, the component ϕ of Eq. (1.14) gives the expression of the first-order change

for the coordinate ϕ

(X1)ϕ=
m
eB

∫
dθ osc(ż0)ϕ

=− p
eB

∫
dθ osc((b cosϕ+ c sinϕ) · ∇b · c)

=− p
eB

∫
dθ (cosϕ b · ∇b · c+ 2 sinϕ∇b : ¯̄a2)

=−p sinϕ
eB

(
cotϕ b · ∇b · a− 1

2∇b : ¯̄a1
)
, (1.16)

with ¯̄a1 := −ac+ca

2 and ¯̄a2 := cc−aa

4 the standard dyadic tensors of guiding-center works [29, 86].
Eqs. (1.15)-(1.16) agree with the usual fluctuating first-order generator of the guiding-center re-
duction [29,86, 88].

To order one, Eq. (1.5) writes

0 = osc

(
L2ż−1 +

L21
2 ż−1 + L1ż0

)
q,ϕ

.

As usual, it is already solved by Eq. (1.8) with condition (1.9)

(X2)q,ϕ = 1
ωL

∫
dθ osc

(
L21
2 ż−1 + L1ż0

)
q,ϕ

. (1.17)

All we have to do is to make the left-hand side of Eq. (1.17) explicit. This is completely
algorithmic. The first step is to compute the Lie derivatives using the standard formula

Lnw = LXn(wk∂k) (1.18)

=
(
(Xn)j∂jwk −wj∂j(Xn)k

)
∂k + (Xn)jwm[∂j , ∂m] ,

for any vector field w. Einstein convention is used and repeated indices are implicitly summed.
The derivative operator ∂k corresponding to the gyro-angle variable c is p · b× ∂p = −a · ∂c, since
it is the generator of Larmor gyration (see Chapter 10), and is equal to ∂θ.
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In Eq. (1.18), the commutator of derivatives [∂j , ∂m] appears because the coordinate c is con-
strained, it is space-dependent, and the corresponding connection involves the pitch-angle. So, the
following commutators are non-zero:

[∇,−a · ∂c] = cotϕ (∇b · c) (a · ∂c) ,
[∇, ∂ϕ] = −(1 + cot2 ϕ)(∇b · a) (a · ∂c) ,
[∇i,∇j ] = (1 + cot2 ϕ)

[
(∇ib · c) (∇jb · a) ,

− (∇jb · c) (∇ib · a)
]
(a · ∂c) .

Eq. (1.18) is systematically applied to L1ż0, then to L1ż−1, and last to L1
2 (L1ż−1), which ap-

pear in the right-hand side of (1.17). Although uncomplicated, computations must be very orderly
to remain tractable since the products and the Leibniz rule generate many terms from a single

expression such as L21
2 ż−1 .

The second step is to perform the action of the gyro-integral
∫
dθ osc. It acts only on the

variables c and a, involved in expressions such as

a · ∇B c · ∇b · a = (aca)ijk (∇B ∇b)ijk ,

upon which
∫
dθ osc operates on the first tensor in the left-hand side by mixing the c and a.

A way to perform the action of
∫
dθ osc is to compute its action on the basic tensors c, cc, ccc,

etc. and to deduce its action on the other tensors by using cross products with the magnetic field
(b×)ij = εikjbk; this last operator is usually denoted by bij . For instance, (aca) can be written

(aca)ijk = bim bkn (ccc)mjn . (1.19)

Last, the action of
∫
dθ osc on the elementary tensors c⊗N can be computed by using the

intrinsic calculus introduced in Chapter 10, or by introducing a local fixed basis (e1, e2) through
the change of coordinate:

c=− sin θe1 − cos θe2 ,

a:=cos θe1 − sin θe2 ,

as is standard in guiding-center reductions. With the fixed basis, the action of
∫
dθ osc is trivial

to compute: osc just cancels the zeroth Fourier component (gyro-average), and
∫
dθ is an easy

integral. If N is large, the computation by hand may be tedious but it remains trivial with a
computer. Then one can come back to the initial basis (c, a) to get

∫
dθosc(c⊗N ).

For instance, the lowest-orders formulae are
∫
dθosc (c) = a ,

∫
dθosc (cc) =

ca+ ac

4
, (1.20)

∫
dθosc (ccc) = 1

3

[
acc+ cac+ cca+ 2aaa

]
,

∫
dθosc (cccc) = 1

32

[
5(accc+ cacc+ ccac+ ccca)

+ 3
(
caaa+ acaa+ aaca+ aaac

)]
.

These are all we need to get the second-order reduction. Higher harmonics could be as easily
dealt with. In practical computations, the relations given above can often be simplified by the
symmetries of the tensor which c⊗N is contracted with.

Notice that
∫
dθosc is a linear operator which preserves the order in the fast variable c or a.

It is a left-inverse for ∂θ. If we restrict the operator ∂θ to the set of tensors that are harmonics of
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order n in the fast variable, it becomes just a matrix with finite dimension 2n. If n = 2N+1 is odd,
the matrix is invertible, and is easily obtained (on a computer for instance) and gives the action
of
∫
dθosc. As regards even harmonics n = 2N , the kernel of ∂θ is not zero, but it is a comple-

mentary space to the range of ∂θ, as is obvious in Fourier series, for instance. So, after identifying
the kernel and the range of this operator, one gets an invertible matrix by restricting the operator
to its range. Then, the action of the operator

∫
dθosc is just this invertible matrix on Range(∂θ)

and zero on ker(∂θ). It is actually a very efficient way to perform the action of the operator
∫
dθosc.

After using Eqs. (1.19) and (1.20) on each term of L21
2 ż−1+L1ż0, recombining the various terms

and simplifying the result with formula

b · ∇B = −B∇ · b , (1.21)

coming from ∇ · B = 0, one obtains the second-order generator of the minimal guiding-center
transformation X2, which is given by Eqs. (1.22)-(1.23) in the next section.

The result is somehow intricate, especially for (X2)ϕ, but this was expected for a formula
at second order, which even was not reached in usual derivations of guiding-center reductions.
Actually, it emphasizes how efficient Lie-transforming the velocity vector field is, since it provides
by a straightforward computation such a complicated result.

The explicit computation at order 2 illustrates the method to perform the derivation to arbitrary
order. To each order in the Larmor radius expansion, the algorithm consists in writing down
Eq. (1.8) and making all the terms explicit. Only two special operations are involved: the Lie-
derivatives in the computation of (Nn)q,ϕ, given by Eq. (1.18), and the gyro-integral

∫
dθ osc

computed by (1.20); these are automatic operations.
If computations soon become tedious, it is only because the numbers of terms rapidly increases,

as a result of products in Lie derivatives, of the Leibniz rule for the action of gradients, and of the
gyro-integral operator. This is what generates the complicated formula (1.23) for (X2)ϕ. But this
is no trouble, since computations are completely algorithmic and very direct: Eq. (1.23) for (X2)ϕ
was obtained with no trouble by hand, and computations at higher order can be very easily done
by computer-assisted symbolic calculus.

The fast growth of the number of terms with the order of expansion raises the question of
the convergence of the series, but in perturbation expansions, convergence is not the first issue,
even if it is important to be addressed [9, 87]. In addition, a factorial growth is quite standard
and convergence is generally obtained only with methods of accelerated convergence [10]. When
convergence is not guaranteed or when non-convergence is proven, the asymptotic expansion, with
its truncated perturbation expansions, all the same allows for a strong reduction of the effect of
the fast time-scale in the dynamics of (q̄, ϕ̄), as emphasized in [81].

From this point of view, a simplified derivation, such as the minimal guiding-center reduction, is
an interesting way to control the iteration process and to obtain more information on the asymptotic
behaviour.
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1.3 The result to second order

By applying the procedure introduced in last section, the second-order generator of the minimal
guiding-center transformation is obtained

(X2)q :=
(
p sinϕ
eB

)2 [
b

(
−2φc̄b′b+

āb′a− c̄b′c
8

)
(1.22)

+ φ2
cc̄− aā

4
b′b +φ

8

(
4cāb′a+ 7ac̄b′a− 9aāb′c

)]
,

(X2)ϕ :=
(
p sinϕ
eB

)2 [
B′
24B

(
4cc̄b′c− 4cāb′a+ 5ac̄b′a+ 5aāb′c

)

+ φ3
{ āā− c̄c̄

4
b′bb′b

}
(1.23)

+ φ2
{
−c̄b′′bb+

(
− c̄b′

20cc̄+ 9aā

8
+ āb′

7cā− 16ac̄

8

)
b′b

}

+ φ1
{
āb′′a− c̄b′′c

8
b+ (āb′a− c̄b′c)

9āb′a+ 7c̄b′c
32

− āā− c̄c̄

8
b′bb′b+ (c̄b′a+ āb′c)

3āb′c− 5c̄b′a
32

}

+ φ0

24

{
8c̄b′′cc− 5c̄b′′aa+ 11āb′′ca

+
(
− 16c̄b′cc̄+ 10c̄b′aā− 11āb′cā− 11āb′ac̄

)
b′b
}]

,

where φ is a shorthand for cotϕ. To make expressions easier to read, we used the primed notation
for spatial gradients, and the over-bar over a vector c or a means matrix transpose, e.g. āb′′ab′c
means c · (∇b) · [(a · ∇)(∇b)] · a. This notation is close to Littlejohn’s notations (abc) in [88], but
it is more suited for higher-order derivatives and more explicit, as in Chapter 10.

In Eq. (1.22), the first line is the b-component, parallel to the magnetic field, and the following
two lines are perpendicular to b. In Eq. (1.23), the first line contains the terms depending on ∇B
and the following lines are organized as a polynomial of the pitch-angle, or rather its cotangent
φ. Note that the terms depending on b · ∇B do not appear in the first line, because they are
rewritten using Eq. (1.21). The expressions involved in such a second-order result can be written
in many different but equivalent ways, as already noticed by Northrop and Rome, and a rule for
standardizing them is needed for the derivation to be efficient.

If there are many terms, this is especially because each term appears several times, with per-
mutations of a and c; these permutations are often condensed into one single tensor. For instance,
the last line can be written just

∇b : Π · (b′b),

by defining the triadic tensor

Π := −16ccc+ 10aca− 11caa− 11aac

Then the number of terms is strongly reduced, each order in φ has one or two terms, which shows
that the result is not that complicated actually. However, we chose to avoid introducing such in-
termediate quantities, since they make formulae shorter but less explicit.

The second-order vector field gives the minimal guiding-center change of coordinates to second
order

z̄ =
[
1− (L1)− (L2) +

(
L21
2

)
+O(ε3)

]
z ,

where the vector fields X1 and X2 generating the Lie-transforms L1 and L2 are given by Eqs. (1.15),
(1.16), (1.22) and (1.23).
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So, to second order, the Larmor radius is

rL =(z− z̄)q = (X1)q + (X2)q −
(
(X1)z · ∂z(X1)q

2

)
+O(ε3)

=p sinϕ
eB a (1.24)

+
(
p sinϕ
eB

)2 [
b

(
−2φc̄b′b+

5āb′a− c̄b′c
8

)

+ aB
′a

2B + φ2 b
′b
4 + φa

(
c̄b′a− āb′c

)]
.

And to second order, the reduced pitch-angle is

ϕ̄ =
[
1− (L1)− (L2) +

(
L21
2

)
+O(ε3)

]
ϕ

=ϕ− p sinϕ
eB

[
−φāb′b− c̄b′a+ āb′c

4

]
(1.25)

−
(
p sinϕ
eB

)2 [
B′
12B

{
− 6φaāb′b+ 2cc̄b′c

− 2cāb′a+ ac̄b′a+ aāb′c
}

+ φ3
{ āā− c̄c̄

4
b′bb′b

}

+ φ2
{
−c̄b′′bb+

(
−5c̄b′

2cc̄+ aā

4
+ 3āb′

cā− 2ac̄

4

)
b′b

}

+ φ1
{
5ā(b′b)′a− c̄(b′b)′c

8
+

3āā+ c̄c̄

8
b′bb′b

−3(āb′a− c̄b′c)2

32
+ (c̄b′a+ āb′c)

āb′c− 3c̄b′a
16

}

+ φ0

12

{
4c̄b′′cc− c̄b′′aa+ 7āb′′ca

+
(
− 8c̄b′cc̄+ 5c̄b′aā− 4āb′cā− 7āb′ac̄

)
b′b
}]

.

The ordering in the Larmor radius is obvious. The first line corresponds to the zeroth- and
first-order terms, and all the following lines are the second-order terms, which are organized as in
Eq. (1.23).

We wrote all these formulae exactly as they are yielded by the procedure, because it illustrates
both the mechanism of the derivation and the structure of the resulting change of coordinates.

Indeed, all the above formulae rely only on a very restricted alphabet of entities: B, b, c, a, ∇
and the variable ϕ, or more precisely φ, if we discard the sinϕ occurring in the pre-factor (Larmor
radius) and the quantities p and e, which are mute parameters in the derivation.

Each formula is a series in the Larmor radius rL = p sinϕ
eB , or more precisely in the ordering

parameter of guiding-center reduction ε = rL∇, i.e. the magnetic inhomogeneity at the scale of
the Larmor radius. This dimensionless parameter is not just a number, it is to be understood
in the sense that the only dimensional quantities involved are the Larmor radius, appearing as a
pre-factor to the power given by the expansion order, and the gradients (acting on the magnetic
field B and b), with the same order as the expansion order.

At each order in ε, formulae are polynomials in each of the variables (except B whose disposition
obeys trivial dimensional rules). This fact is useful to make the derivation easier: finally, the
iteration at each order consists in one single formula (1.8) with two elementary operators (derivatives
and gyro-integral), applied on terms composed of very few elementary entities, and those terms are
just polynomials.

As the order in the small parameter ε grows up, the polynomial increases its order in each of the
variables. From the iteration mechanism, a rough estimate shows that the n-th-order generator Xn

should be a polynomial of order at most φ2n−1b3n−1c2n, in addition to being a monomial in rnL∇n.
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Such features in the reduction transformation are useful to consider when the asymptotic behaviour
is addressed. For instance, a hypothetical convergence condition would clearly involve the expected
condition on the magnetic inhomogeneity at the scale of the Larmor radius, but the role of φ
suggests conditions on the pitch-angle as well. This means that in the guiding-center reduction,
the direction of the particle velocity must not be too close to the direction of the magnetic field.
This is in complete agreement with the physical intuition, but the polynomial behaviour can help
make this intuitive statement more precise.

Another interesting feature is well emphasized by the formulae as they are written: there is a
link of parity between the order in φ, the order in rL and the fast-angle harmonic (which corresponds
to the order in c or a). All non-zero terms of order riLφ

j are harmonics of parity (−1)i+j in c for
Xq, and harmonics of parity (−1)i+j+1 in c or a for Xϕ. This parity relation could already be
observed in the first-order results (1.15)-(1.16), although it was not so obvious, because few terms
were present.

It seems that the polynomiality in φ and the parity relation were first noticed in [62] (which is the
work reported in Chapter 10), where they were observed in the derivation of the magnetic moment
series, and originated from the structure of the operator to be inverted for the secular equation.
Here, they are obtained in the guiding-center reduction, and appear as originating directly from
the equations of motion (1.3) or (1.13), and from the action of derivatives, especially ∂ϕφ and ∇c.

This polynomiality is related to the coordinate φ. Previous works used the parallel velocity
v‖ as a coordinate instead of φ. Their results were not polynomials (see e.g. [8, 29, 88]), but when
expressed with the coordinate φ, they become also polynomials.

The second-order results can be expressed using well-known quantities in guiding-center works.
For instance, in the term of order φ1 in Eq. (1.25), c̄b′a + āb′c and c̄b′c − āb′a can be recognized,
commonly written −2∇b : ¯̄a1 and 4∇b : ¯̄a2 where the dyadic tensors ¯̄a1 = −ac+ca

2 and ¯̄a2 = cc−aa

4
are well-known in guiding-center works [29, 86], and they were already met in first-order results
(1.16).

Also, in the last line of Eq. (1.25), each of the terms is harmonic of order 3 in the fast angle c

or a. The sum can be rewritten
(
− 3τmā+ āb′(b×)− 8∇ · b c̄+ 2c̄b′a ā

)
b′b , (1.26)

where three out of four terms have been combined to obtain an harmonic of order 1 in the gyro-
angle, which is the maximum we can do. Then, in the coefficients, the divergence of magnetic field
lines ∇ · b = c̄b′c+ āb′a is recovered, as well as their twist

τm := b · ∇ × b = (b×∇) · b = āb′c− c̄b′a ,

which quantities are most used in guiding-center theory.
Such an expression as (1.26) is useful to get a physical intuition of the terms involved, but it

does not emphasize as much the mechanism of the derivation nor the polynomial structure of the
results. Furthermore, it is not unique, e.g. it could equally be written

(
− 5τmā− āb′(b×)− 6∇ · b c̄− 2c̄b′c c̄

)
b′b ,

or even (
− 13τmā− 9āb′(b×)− 8c̄b′ + 2āb′ac̄

)
b′b ,

or (at least) nine other equivalent ways of writing this expression. In all of them, three out of four
terms have been combined to obtain harmonics of order 1 in the gyro-angle, and only the last term
remains an harmonic of order 3.

So, we preferred to give the expressions as they come out from the procedure, decomposed
in elementary terms in a unique, standardized way, as is needed for an algorithmic procedure,
especially when it can generate very many terms.

Anyway, it is quite common in perturbation theory and well known in guiding-center theory
that when the order increases, formulae become messy and complicated, and the physical interpre-
tation of each term loses some of its relevance [123]. The main point is to standardize the derivation
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and the involved expressions, to make things tractable and as clear as possible.

Compared to the literature, our fluctuating first-order results are exactly identical to the usual
results of guiding-center derivations, e.g. in [8,29,86,123]. This is because this part of the reduction
is unique for all guiding-center reductions, since the arbitrariness is only in the average transfor-
mation generator. Our second-order results are almost identical to previous results. For instance,
the Larmor radius (1.24) is exactly identical to the standard result of [86], except for the term φ2,
which was absent from Littlejohn’s result. As for the pitch-angle, the first-order term in (1.25) is
exactly the same as in [86], except the averaged term, which is absent from our result.

A difference with previous results is not a surprise because here the minimal guiding-center
reduction is considered, and the averaged part of the transformation generator X have been set to
zero. It is just an effect of the guiding-center reduction non-uniqueness, which was well emphasized
in [123] and [23]: even between the classical derivations by Lie-transforming the phase-space La-
grangian, such as [23, 86, 88, 128], various changes can be identified in the choices adopted for the
second-order reduction.

In previous publications, the second-order pitch-angle generator (X2)ϕ was not computed. The
works aiming at averaging the equations of motion were not able to reach the second-order trans-
formation [8, 123]. The works using a Lie-transform of the Lagrangian, although more efficient,
required quite a lot of algebra to get (X2)ϕ and did not reach the full second-order transforma-
tion [29, 86]. Even the recent work [128] explicitly chose not to compute it, even though it aimed
at improving the second-order terms and already made quite a lot of computations. Similarly,
the work [23] uses a special property between the second- and first-order terms to identify the
second-order reduced dynamics without computing the second-order transformation X2.

These difficulties can be partially explained because when Lie-transforming the Lagrangian,
there is some mixing between the orders in ε of the various quantities [29, 88]. Thus, some com-
ponents of the first-order transformation generator X1 are identified at the first-order analysis of
the reduced Lagrangian Γ̄1; other components of X1 are determined at second-order analysis Γ̄2,
at the same time as some of the components of X2; and the last components of X1 are determined
at third order Γ̄3, at the same time as some components of X2 and of X3. It clearly makes the
scheme more involved.

This is very different from what happens when Lie-transforming the equations of motion, where
there is no mixing between the order in ε of the various quantities, and the non-trivial expression
for (X2)ϕ was obtained by a direct derivation to order two with very limited algebra.

Let us turn now to the guiding-center equations of motion. Eqs. (1.4) and (1.5) show that to
second order, the drift equations are given by

˙̄z = eLż = R
(
eLż
)

= R
[
1 + (L1) + (L2) +

(
L21
2

)
+O(ε3)

]
˙̄z . (1.27)

This is just the zero Fourier component of eLż, which was put to zero when computing the
action of osc in (1.4). So, this term was already computed in the derivation.

In this sense as well, Lie-transforming the equations of motion is more straightforward because
one actually directly derives the reduced motion, whereas when Lie-transforming the Lagrangian,
one derives the reduced Lagrangian; the reduced equations of motion must be obtained in a second
step, for instance by Eq. (1.27), which involves some algebra because of the lengthy expressions at
order 2.

Also, it should be noticed that Eq. (1.27), together with Eq. (1.5), implies that the n-th order
step of the algorithm provides the n-th order transformation, but the (n − 1)-th order reduced
motion. This lag originates from the fast lowest-order motion being of order −1.
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So, the reduced equations of motion are obtained here with no additional computation as

( ˙̄z)q :=p sinϕ
m

[
bφ+ p sinϕ

eB

(
B′
B

ca−ac

2 (1.28)

+b āb′c−c̄b′a
2 + φ2

(
ac̄− cā

)
b′b
)]

=p sinϕ
m

[
bφ+ rL

(
b×∇B
2B + bb·∇×b

2 + φ2b× b′b
)]
,

( ˙̄z)ϕ :=p sinϕ
m

[
− c̄b′c+c̄b′a

2 (1.29)

+p sinϕ
eB φ

(
B′
B

ac̄−cā

2 b′b+ ā(b′b)′c−c̄(b′b)′a
2

)]

=p sinϕ
m

[
−∇·b

2 + rLφ
(
B′
2Bb× b′b+ b·∇×(b′b)

2

)]
.

For comparisons with the literature, remind that ϕ is the pitch-angle, and φ is its cotangent,
so that p sinϕ = ‖p⊥‖ is the scalar perpendicular momentum, whereas pφ sinϕ = p‖ is the parallel
momentum.

In these equations, we first gave the expression provided by the algorithm and then rewrote it
using physical quantities, in order to show that the equations are indeed gyro-averages, and do not
depend on the fast variables c and a.

The right-hand side of Eqs. (1.28)-(1.29) is expressed in the reduced variables (e.g. the field
is evaluated at the guiding-center position q̄ and the pitch-angle is actually the reduced pitch-
angle ϕ̄), but we dropped the bars for simplicity. Notice that the right-hand side of Eqs. (1.28)-
(1.29) is expressed in the initial variables. It is why Eqs. (1.22)-(1.25) indeed define a coordinate
transformation, whereas Eqs. (1.28)-(1.29) indeed define the guiding-center dynamics [86].

In results (1.28)-(1.29), the lowest-order term is again exactly identical to the usual guiding-
center reductions, and the second-order drifts are almost identical. The guiding-center dynamics
(1.28) contains exactly the four expected terms [8, 123]: the parallel motion along the magnetic
field lines, the grad-B drift, the curvature drift, and the Baños drift. But the Baños term bb·∇×b

2
was not in the reduced dynamics of [86]. This is again because the minimal reduction does not
aim at minimizing the average dynamics, but at minimizing the change of variables. To make it
short, it can be said that the reduction of [86] puts the Baños term into the change of variables
X whereas the minimal reduction lets it in the equations of motion. This difference is mentioned
in [8, 123] and further explored in the next section.

1.4 On non-minimal guiding-center reductions

In case there is an electric field E in addition to the strong magnetic field, the initial equations of
motion (1.13) become

ż = eB
m

[(
0
0
0
1

)
+ p sinϕ

eB




b cotϕ+c

0

−(b cotϕ+c)·∇b·c
0




+ m
Bp sinϕ




0
E·p sinϕ

E·
(
cosϕ

p
p−b

)

(E·a)a




 ,

As for the variable θ, its dynamics becomes

θ̇ = eB
m + cotϕ p

m · ∇b · a+ p
m · ∇e1 · e2 − eE·a

p sinϕ .

In these time evolutions, the two common small parameters of guiding-center theory appear:
in strong magnetic field, only one term implies fast dynamics, it is of order ωL; among the other
terms, the ones that do not depend on the electric field are of order p∇

m , and the ones that do
depend on E are of order e E

p sinϕ . Thus, two ordering parameters are now involved, the magnetic

parameter ε := p∇
ωLm

= p∇
eB is the same as in the case of a pure magnetic field; the second parameter
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εE := e E
ωLp sinϕ = E

v⊥B
is induced by the electric field. It is the electric force over the magnetic

force, and is assumed to be small in guiding-center theories [17,29,128].
Under this assumption, the procedure for the minimal guiding-center reduction is unchanged;

the presence of an electric field only causes some additional contributions in the term Nn of
Eq. (1.8), and makes the transformation include one more coordinate: as the norm of the par-
ticle momentum is no more conserved, this coordinate must be changed exactly in the same way as
the coordinates (q, ϕ) in the previous sections. Notice that this minimal guiding-center reduction
will imply p̄ to have slow dynamics, but not to be a constant of motion. We turn to this point in
a few lines.

In the previous sections, the minimal guiding-center reduction appeared as a natural choice
when Lie-transforming the velocity vector field. Other possibilities are available.

For instance, one can think of treating the gyro-angle θ as the other coordinates, and changing
coordinate θ → θ̄ to gyro-average its dynamics as well. Thus, all of the reduced dynamics would
involve only slow variables. Especially, the reduced gyro-angle θ̄ would have fast dynamics, but
would depend only on the slow dynamics, since it would be independent of θ̄ itself: ˙̄θ = ˙̄θ(q̄, ϕ̄, p).
So, once the motion of the slow variables (q̄(t), ϕ̄(t)) is known, the fast dynamics would be trivial
to integrate:

θ̄(t) = θ̄(t0) +

∫ t

t0

dt ˙̄θ
(
q̄(t), ϕ̄(t), p

)
.

The corresponding requirement relies on Eq. (1.4) written for the gyro-angle component

0 = osc

(
eL1+L2+...ż

)
θ
, (1.30)

which is to be solved for Lθ (or rather Xθ). The operator to be inverted is exactly the same as in
the previous sections, since

−osc(Ln+1(ż−1))θ

= −osc

(
(Xn+1)i∂i(ż−1)θ − (ż−1)θ∂θ(Xn+1)θ

)

= eB
m ∂θ(Xn+1)θ + o.t. , (1.31)

where o.t. means other terms that are already known: they do not contain the unknown (Xn+1)θ
because (ż−1)θ does not depend on θ. So, just as in the previous sections, a solution of Eq. (1.30)
can be found at arbitrary order in the small parameter, and the dynamics of θ can be averaged as
well as the dynamics of (q, ϕ), as is generally done in guiding-center reductions [8, 29, 86].

Notice that the averaging process for the reduced coordinates (q, ϕ) is possible without having
to deal with resonances [57,117] because there is no small divisor since the fast part of the dynamics
involves only one angle θ, as illustrated by Eq. (1.8). This is a rather broad property. Now, for the
dynamics of θ, the averaging process is possible only because the lowest-order term in the motion
does not depend on θ itself, as is illustrated by Eq. (1.31). This is a more specific property.

For instance, after the guiding-center reduction has averaged the motion over the gyro-angle,
the bounce-angle can be used to bounce-average the motion [16, 29]. For this reduction, the pro-
cedure of section 1.1 can be applied to remove the bounce time-scale from the dynamics of the
three other components, but averaging the dynamics of the bounce-angle coordinate θb as well
is guaranteed only if the lowest-order bounce-angle dynamics is independent of the bounce-angle,
which is a condition over the definition of θb.

A second natural requirement concerns the average part of the change of variables avg(X). In
the minimal derivation, it is trivially put to zero. In the case of a non minimal reduction, it appears
as an additional freedom in the reduction process, which allows for additional requirements, to be
chosen.
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For instance, the transformation being a pure gyro-fluctuation avg(z̄ − z) = 0 would be in-
teresting: once the effects of the fast coordinate averaged, then the transformation would become
zero; so, the reduced coordinates would remain in some sense close to the initial ones.

In the minimal guiding-center reduction, this result is almost obtained, since the transformation
generator X is already a pure gyro-fluctuation, but the whole transformation is not a pure fluctua-
tion, because the non-linear terms in X have non-zero gyro-averages (see, e.g. Eqs. (1.24)-(1.25)).

This can be corrected by defining a non-zero average avg(X) to cancel the average of the
non-linear terms. Indeed, the requirement

0 = avg

(
z̄− z

)
= avg

(
e−Lz− z

)

implies

avg

(
Lz
)
= avg

(
e−Lz− (1− L)z

)
.

Now, in the equation at order n

avg

(
Xn

)
= avg

(
Lz
)
n
= avg

(
e−Lz− (1− L)z

)
n

= avg

( ∞∑

i=2

(−L)i

i! z

)

n

(1.32)

= avg

(
Ln−1L1+Ln−2L2+...

2 z− Ln−2L1L1+...
3! z+ ...

)
,

the right-hand side depends only on generators of orders lower than n. So Eq. (1.32) is no more an
equation, but just a definition of avg(X). Up to second order, Eq. (1.32) writes

avg(X1):=0 ,

avg(X2):=avg

(
L21
2 z
)
.

The right-hand side was already computed in the minimal derivation, so that the additional re-
quirement does not imply an additional computation.

Another possible requirement, commonly considered, is to include the magnetic moment µ̄
among the reduced coordinates as a conserved quantity instead of p (see Eq. (2.22)). Indeed, the
basic conserved quantity p is not an adiabatic invariant in general when an electric field is present,
whereas µ is so [122]. The requirement is to put to zero not only the fluctuating part of the reduced
motion osc( ˙̄z)µ, as in Eq. (1.4), but its averaged part as well avg( ˙̄z)µ = 0, which simplifies the
reduced dynamics in a drastic way.

For the other coordinates, the same requirement can not be asked, because there is no con-
stant of motion independent of p and µ̄, since otherwise the Hamiltonian motion with 3 degrees
of freedom and 3 independent constants of motion would be integrable. For other coordinates,
one can not ask so strong a simplification of the reduced dynamics avg( ˙̄z) for all orders in ε, but
one can ask it for the orders higher than two for instance. In this way, the reduced motion would
be exactly known to all orders even before computing the change of variables. Of course, this is
not guaranteed, since it is possible only if the chosen reduced dynamics is equivalent to the initial
particle dynamics [57].

As an example, the minimal guiding-center reduction lets an average contribution (1.29) in the
equations of motion for the reduced pitch-angle. Perhaps a stronger reduction could cancel it at
least for the orders higher than two, by choosing a convenient (non-zero) averaged part X for the
transformation generator. More precisely, in the equation at lowest order, the unknown X1 has no
influence on ˙̄z0, which means that ϕ̄ can not be made a constant of motion, as was expected. But
at the following order, X1 now contributes, since at that order, the equation 0 = avg

(
eL1+L2+...ż

)
ϕ

writes

avg

(LX1
LX1

+ L
X̃1

LX1
+ LX1

L
X̃1

2
ż−1 + LX1

ż0

)

ϕ

= o.t. , (1.33)
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where we used that avg (LX2 ż−1)ϕ = 0; X and X̃ denote respectively the averaged and the fluctu-
ating part of X; and the symbol o.t. is a shorthand for all the other terms, which do not contain
X1.

Eq. (1.33) shows that, with the additional requirements, the operator to be inverted for X can
be quadratic. Even when it is not, e.g. at the next order, the linear operator may not be trivial; a
part of it will be given by LX1

ż0 = (X1)j∂j ż0 − (ż0)j∂jX1, whose coefficients have the non-trivial
expression given by (1.3). Such an operator may not be invertible: if the right-hand side is not
in its range. This is the classical problem of secular terms in perturbation theory. Even when the
operator is invertible, an explicit inverse may not be obvious to get.

Less strong requirements can be considered than putting to zero the higher-order reduced
dynamics. For instance, the paper [123] mentions the possible requirement b · ˙̄q = 0, i.e. the
guiding-center motion is a pure drift across the magnetic field lines, whereas the paper [8] mentions
a requirement relating the parallel motion of the guiding-center and the reduced parallel velocity
v̄‖ (where the parallel velocity v‖ is used as a coordinate corresponding to the pitch-angle). In any
case, care must be taken about additional requirements. They imply differential equations that
are not so simple to deal with, and that even can be impossible to solve. It reminds as well that
the minimal guiding-center reduction is very nice with its trivial operator eB

m ∂θ or equivalently
− eB

m a · ∂c.
The requirement aiming at the magnetic moment plays a special role. Its existence can be

viewed as a consequence of the averaging reduction, as shown by Kruskal [81]. The corresponding
secular differential equation can be solved at any order, but the procedure is more involved than
the minimal one considered in this chapter, as appeared in Chapter 10.

In the approach based on Lie-transforming the equations of motion, the additional requirements
do not change the equation (1.4) that gives the fluctuating components of the transformation; they
generally aim at a further simplification of the reduced dynamics and imply additional differential
equations such as (1.33), which impose the averaged components of the transformation. Those
equations are not easily solved, and from this point of view, the method of Lie-transforming the
phase-space Lagrangian is more powerful, because it does not rely on differential equations, but on
algebraic equations, easier to study.

For instance, the idea to put to zero the averaged components of the reduced motion (at least at
orders higher than 2 or 3 in the ordering parameter) is included in usual guiding-center derivations,
which obtain that it is possible for six components of the Lagrangian, out of seven. This kind of
result would not be so easy to get by Lie-transforming the velocity vector field.

Another additional requirement regards the Hamiltonian structure of guiding-center dynamics.
The initial motion ż is Hamiltonian, and the reduced motion should be Hamiltonian. Indeed, the
full reduced motion ˙̄z is Hamiltonian, even if it has a different Poisson bracket as the initial motion,
since it is just given by a (non-canonical) change of coordinates.

However the true reduced motion involves only the slow variables (q̄, ϕ̄), and the corresponding
dynamical system ( ˙̄q, ˙̄ϕ) is not guaranteed to be Hamiltonian, because it is given by a truncation of
the full reduced dynamics, and truncations do not preserve the Hamiltonian structure in general.

The preservation of the Hamiltonian structure for the 4-components guiding-center dynamics
can be considered as an additional requirement. It is hard to obtain by Lie-transforming the
equations of motion, because when deriving reduced models by working on the equations of motion,
the Hamiltonian character is not worked on, it is observed a posteriori as preserved or not. On the
contrary, a Hamiltonian 4-components guiding-center dynamics is easily obtained when working
on the phase-space Lagrangian, for instance by Lie-transforming it in such a way that the reduced
Poisson bracket is quarter-canonical.

Achieving this in a gauge-independent framework makes the scheme much more involved than
the one considered in this chapter. The reduction mechanism is much more elaborated, all of the
coordinates have to be changed, and the formalism involves not only derivative operators, but also
differential forms, which must be considered carefully because of the constrained coordinate c. This
will be considered in the future.
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Conclusion

A gauge-independent minimal guiding-center reduction can be performed at any order in the Lar-
mor radius expansion by Lie-transforming the velocity vector field. The procedure is very efficient
and systematic: it just writes the minimal requirements for the reduction, expands the equation
in the Larmor radius, and inverts the generator of Larmor gyration to get both the change of
coordinates and the reduced equations of motion order by order. The full second-order reduction
was straightforwardly obtained, in contrast with previous derivations of the guiding-center reduc-
tion, and the algorithm will be easily implemented in a computer to reach higher-order results, e.g.
second-order drifts.

The corresponding transformation generator is a pure gyro-fluctuation and only four of its
components are non-zero. This is the bare minimum since exactly the fluctuating part of the slow
reduced motion involves a fast time-scale that has to be removed. Thus, the reduction is minimal
and unique. All the arbitrary components of the transformation generator are set to zero.

The results bring insights into the structure of the guiding-center formulae, which show up a
polynomiality in b, c, a, rL, ∇ and φ, and a parity relation between the orders in rL , φ and the
fast angle c or a. This polynomiality makes easier the algorithm, which consists in applying at
each order two operations (derivatives, and gyro-integration) onto a polynomial of a very restricted
alphabet of entities.

The method can be applied to perform the bounce-average reduction. Also, when an additional
electric field is present, the procedure is exactly unchanged even if formulae have additional terms.

In the derivation, the gyro-gauge is never used nor introduced. The gyro-angle is defined and
dealt with as usual, but with the intrinsic, physical coordinate c. Accordingly, the whole theory,
with all its quantities and results, can not be but gauge-independent and globally defined, with no
use of tricks or conditions, and not only its main results (e.g. guiding-center dynamics), but also
all other results (e.g. gyro-angle coordinate and dynamics).

These features could not be aspired at in the standard formalism, as was explicitly stressed in
Littlejohn’s papers and confirmed in subsequent works, where the theory could not get rid of the
gyro-gauge dependence of several quantities, and the main results were made gauge independent
only by requiring special conditions, for instance on the structure of the reduced Lagrangian.

The absence of a gyro-gauge removes from the theory the issues associated with the traditional
gyro-angle θ, and could bring interesting contributions to clarify these issues in previous results.
Indeed, a recent work [25] was lead to a similar orientation when studying the questions raised by
the non-existence of a global gauge to define a gyro-angle. This point will be further explored in
Chapter 3.

Thus, this approach of the guiding-center reduction, with its minimal procedure and results
as well as its gauge independence, can contribute to a better understanding of the guiding-center
reduction by giving a simplified and more intrinsic point of view.

All the same, it is only the first step towards a gauge-independent guiding-center theory. Stan-
dard guiding-center reductions impose additional (non-minimal) requirements for the reduction.

The magnetic moment is commonly included in the reduced coordinates. This can be done
using the gauge-independent gyro-angle and working on the equations of motion by solving the
corresponding secular differential equation, but the derivation is more involved, as emphasized in
Chapter 10.

Some averaged terms can be transferred from the reduced dynamics to the change of variables,
in order to get a stronger guiding-center reduction. This means having non-zero gyro-averaged
components in the transformation generator, and these components are again identified by solving
secular differential equations.

Such non-minimal guiding-center reductions are more efficiently obtained by Lie-transforming
the phase-space Lagrangian, especially because it mainly relies on algebraic equations. Also, it
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guarantees a Hamiltonian structure for the 4-components guiding-center dynamics. Introducing
the gauge-independent coordinate in this framework is the next step of the work. It makes the
scheme more subtle for the constrained coordinate c, especially because of the presence of differential
forms. It will be considered in the next chapter.
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Gyro-gauge independent formulation

of the guiding-center reduction

to arbitrary order in the Larmor radius
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Paper accepted in Plasma Phys. Control. Fusion (2013)

Abstract: The guiding-center reduction is studied using gyro-gauge indepen-
dent coordinates. The Lagrangian 1-form of charged particle dynamics is Lie
transformed without introducing a gyro-gauge, but using directly the unit vec-
tor of the component of the velocity perpendicular to the magnetic field as the
coordinate corresponding to Larmor gyration. The reduction is shown to pro-
vide a maximal reduction for the Lagrangian and to work to all orders in the
Larmor radius, following exactly the same procedure as when working with the
standard gauge-dependent coordinate.
The gauge dependence is removed from the coordinate system by using a con-
strained variable for the gyro-angle. The closed 1-form dθ is replaced by a more
general non-closed 1-form, which is equal to dθ in the gauge-dependent case.
The gauge vector is replaced by a more general connection in the definition of
the gradient, which behaves as a covariant derivative, in perfect agreement with
the circle-bundle picture. This explains some results of previous works, whose
gauge-independent expressions did not correspond to a gauge fixing but indeed
correspond to a connection fixing.
In addition, some general results are obtained for the guiding-center reduction.
The expansion is polynomial in the cotangent of the pitch-angle as an effect of
the structure of the Lagrangian, preserved by Lie derivatives. The induction
for the reduction is shown to rely on the inversion of a matrix which is the
same for all orders higher than three. It is inverted and explicit induction
relations are obtained to go to arbitrary order in the perturbation expansion.
The Hamiltonian and symplectic representations of the guiding-center reduction
are recovered, but conditions for the symplectic representation at each order
are emphasized.

Introduction

In the quest for an intrinsic formulation of the guiding-center reduction, the work reported in
Chapter 10 studied a first aspect, with the magnetic-moment reduction, while the previous chapter
focused on the second aspect, with the averaging transformation. We now turn to the full guiding-
center reduction.

Indeed, in the previous chapter, the idea was to use a simplified reduction method, by Lie-
transforming directly the equations of motion instead of Lie transforming the Lagrangian, as is
usually done [27,87]. Especially, it provided the minimal guiding-center reduction which concerned
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48 CHAPTER 2. INTRINSIC FULL GUIDING-CENTER REDUCTION

only four coordinates (instead of six): the transformation generator had no gyro-angle component.
So, for the gyro-angle, the initial gauge-independent coordinate suggested by Chapter 10 could be
used, and no gauge fixing was needed. This physical coordinate is the unit vector c of the component
of the velocity orthogonal to the magnetic field, which defines the direction of the perpendicular
velocity.

A limitation of that approach was that it was not suited to non-minimal guiding-center reduc-
tions, for which the method relying on Lie transforming the Lagrangian appeared as necessary, or
at least much more efficient.

For instance, it is interesting to have the slow reduced motion Hamiltonian, but the Hamiltonian
structure of the reduced model is hard to deal with when working on the equations of motion. In
addition, the magnetic moment is usually taken as one of the reduced coordinates; this can be done
by working on the equations of motion, but it is not so straightforward, as shown in Chapter 10.
In a deeper way, the freedom involved in the gyro-averaged part of the coordinate change can be
employed for the reduced motion to be as strongly reduced as possible, to make the guiding-center
dynamics as simplified as possible.

Obtaining such a maximal guiding-center reduction by Lie transforming the equations of motion
is far from simple, especially because it implies to solve non-trivial secular differential equations.
On the contrary, Lie transforming the Lagrangian 1-form basically relies on algebraic equations,
and the requirements for a maximal reduction are not much more difficult to get than the minimal
ones. This method also guarantees that the 4-dimensional slow reduced motion is Hamiltonian, by
working on a quarter-canonical structure in the Poisson bracket.

So, the goal is to use the physical gauge-independent coordinate also when Lie transforming
the Lagrangian, in order to consider a gauge-independent maximal guiding-center reduction.

The introduction of a vectorial quantity c for the gyro-angle coordinate raises some questions,
because the coordinate system becomes constrained: the variable c has to remain normalized and
perpendicular to the magnetic field. Changing the spatial position q implies to change the coordi-
nate c at the same time. This induces a connection for a covariant derivative on a space-dependent
circle, which is related to the circle-bundle picture underlying in the gyro-angle coordinate [25,81].
It was already present in Chapter 1 when Lie transforming the equations of motion, but it is more
involved to deal with for the full guiding-center reduction, because the coordinate c will be changed
as well, and not only derivatives or vector fields are involved, but also differential forms.

The resulting reduction will naturally provide gauge-independent results, whereas in the usual
approach, they were obtained only for a part of the reduced quantities. This fact can shed interesting
light on previous guiding-center results, especially those related to gauge invariance. For instance,
in the usual approach, the gradient is not gauge-independent, and the reduced Poisson bracket
involves a gauge-independent corrected gradient. A comparison with the results of the gauge-
independent formulation is a way to get an intrinsic interpretation for this corrected gradient.

The results of the gauge-independent formulation can also be used to explore other questions
about the gauge-dependent approach, for instance related to gauge arbitrariness and anholonomy
[86, 90]. To avoid confusion, they will be the topic of the distinct chapter 3. Here, we show how a
maximal guiding-center reduction can be derived in a gauge-independent formulation to arbitrary
order in the Larmor radius.

The proof relies on explicit induction relations to all orders, because the induction can be
written as a matrix product, with some coefficients being differential operators. Through inversion
of this matrix, a maximal reduction can be studied, towards a more complete reduction and a
more general viewpoint on special reductions considered in previous works, such as the so-called
Hamiltonian and symplectic representations identified in [23].

In the derivation, the cotangent of the pitch-angle is used as the coordinate corresponding to
the parallel velocity (component of the velocity parallel to the magnetic field), since this coordi-
nate simplified computations for the minimal guiding-center reduction in Chapter 1 and made all
formulae polynomials. This will clarify why this polynomiality can be observed in the results of
the full guiding-center reduction as well.
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Taking care of the reduction at higher order is interesting, if not needed, for two reasons. On
the first hand, it is necessary to validate the gauge-independent approach. Indeed, the gauge issues
became more sensitive when addressing the second-order reduction [26,145]. An acceptable solution
to these issues, which is the goal of the present chapter, needs to be appropriate for higher orders.

On the other hand, it is motivated because standard works proceeded only up to part of the
second-order reduction, but recent results emphasize the importance of higher-order terms, for in-
stance because they are involved in the conservation of angular momentum [26,127] and are crucial
for a proper description of intrinsic rotation of tokamak plasmas, a key phenomenon to stabilize
turbulence and increase the energy confinement time, which is the main goal of magnetic fusion.

The chapter is organized as follows. In Sect. 2.1, a few facts are reminded about the initial dy-
namics, the choice of coordinates for the gyro-angle, the method of Lie transforming the Lagrangian
1-form, and the hierarchy of requirements involved in the guiding-center reduction.

For the sake of completeness and clarity, the mechanism of Lie transforming the Lagrangian
through an expansion in a small parameter is described in an appendix, with emphasis on the three
steps it involves: an initialization for the lowest orders, whose choices are the key to make the
reduction work and possibly be optimal; an algorithm which applies for higher orders, is purely
mechanical and can be applied to study the reduction to arbitrary order; and an intermediate step
in between.

In Sect. 2.2, the method is applied to the guiding-center reduction in case the gyro-angle co-
ordinate is chosen as the physical variable c. The derivation is written in matrix form, which
emphasizes both the lowest-order choices that allow the reduction to work and to be maximal for
the Lagrangian, and the algorithmic character of the procedure at higher orders. The full derivation
is explained because we are interested in the reduction at arbitrary order in the Larmor radius,
which implies to use all the ingredients of the detailed mechanism at work. For orders lower than
3, the procedure follows the same lines as when working with the gauge-dependent coordinate, but
formulae have to be used in their intrinsic version, for instance because the basis of 1-forms involves
non-closed 1-forms. Finally, for orders higher than 2, explicit formulae are given for the induction
relations, allowing to go to arbitrary order, and to give a unified framework where recent results
may seem to discord somehow with each other [23, 128].

In Sect. 2.3, the results are compared with previous works, either Lie transforming the equations
of motion, or using a gauge-dependent gyro-angle.

For the sake of simplicity, we consider the special case where there is no electric field, but the
generalization for a non-zero electric field is straightforward, as will be shown in Subsect. 2.3.1.

2.1 Coordinates, method and requirements

The dynamical system is simply a charged particle with position q, momentum p, mass m and
charge e, under the influence of a static inhomogeneous magnetic field B. The motion is given by
the Lorentz force

q̇ = p
m ,

ṗ = p
m × eB . (2.1)

When the magnetic field is strong, the motion implies a separation of time-scales. This is best
seen by choosing convenient coordinates for the momentum space, for instance

p := ‖p‖ ,
ϕ := arccos

(
p·b
‖p‖
)
,

c := p⊥
‖p⊥‖ ,

where b := B
‖B‖ is the unit vector of the magnetic field, and p⊥ := p − (p·b)b is the so-called

perpendicular momentum, i.e. the orthogonal projection of the momentum onto the plane B⊥

perpendicular to the magnetic field. The coordinate p is the norm of the momentum; the coordinate
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ϕ is the so-called pitch-angle, i.e. the angle between the velocity and the magnetic field. The last
coordinate c is the unit vector of the perpendicular velocity.

Then, the equations of motion write

q̇ = p
m ,

ṗ = 0 ,

ϕ̇ = − p
m ·∇b·c ,

ċ = − eB
m a− p

m ·∇b·(cb+ aa cotϕ) , (2.2)

where p is now a shorthand for p(b cosϕ+ c sinϕ), the norm of the magnetic field ‖B‖ is denoted
by B, and following Littlejohn’s notations [85,86,88], the vector a := b× c is the unit vector of the
Larmor radius, so that (a, b, c) is a right-handed orthonormal frame (rotating with the momentum).

Notice that we have adopted above the spherical coordinates (p, ϕ, c) for the momentum as is
natural at first. Later on, p and ϕ will be replaced by other coordinates, which will appear more
convenient for the guiding-center reduction (see Eqs. (2.25) and (2.26)).

In the case of a strong magnetic field, the only fast term is the Larmor frequency ωL := eB
m .

Writing the dynamics as ż·∂z, all other terms as ωL appear to be of order p
m∇, which means that the

small parameter of the theory is of order p
mωL

∇ = p
eB∇. A more detailed study (e.g. [29,59,86,122])

shows that it is rather
ε := p sinϕ

eB ∇ . (2.3)

It is an operator, but the gradient ∇ has only a meaning for orderings; it acts on the magnetic
field and can be given a more precise meaning by relations such as ∇ ≈ ‖∇n+1B‖

‖∇nB‖ . The ordering

parameter ε is related to the magnetic inhomogeneity at the scale of the Larmor radius rL := p sinϕ
eB .

By abuse of language, it is often considered as just the Larmor radius, or as the inverse charge
e−1 [29, 86,122].

2.1.1 Choice for the gyro-angle coordinate

The Larmor frequency ωL := eB
m concerns only one coordinate, c, the direction of the vector p⊥

in the 2-dimensional plane perpendicular to the magnetic field. This corresponds to an angle,
the so-called gyro-angle, and measures the Larmor gyration of the particle momentum around the
magnetic field.

To get a true scalar angle instead of the vector c, one chooses at each point q in space a direction
which will be considered as the reference axis e1(q) ∈ B⊥(q). This corresponds to fixing a gauge
in the theory, the so-called gyro-gauge. Then, the gyro-angle θ is defined from the oriented angle
between the chosen reference axis e1(q) and the vector c through the following relation:

c = − sin θe1 − cos θe2 . (2.4)

The equation of motion for θ is

θ̇ = eB
m + cotϕ p

m ·∇b·a+ p
m ·∇e1·e2 ,

with e2 := b×e1 the unit vector such that (b, e1, e2) is a (fixed) right-handed orthonormal frame [86].

The coordinate θ is not intrinsic, it depends on the chosen gauge e1(q), which raised some
questions about the gauge invariance of the theory, about the failure of global existence for e1, as
well as about the presence of an anholonomic phase in the coordinate system [22, 25, 86, 90, 91].
All these difficulties originate because θ is not given by the physics, it is not a purely intrinsic
coordinate. For physical results, what is needed is not θ but only c. This is clearly illustrated by
all the results of guiding-center theory, e.g. [29, 86, 88, 122], where θ intervenes only through the
quantity c everywhere (except in its own definition and in subsequent relations). So, we will avoid
this coordinate and keep the corresponding initial variable, c, as in Chapter 1. The quantity θ will
be used only with a symbolic meaning for the fast angle, or when making comparison with the
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gauge-dependent approach.

The use of a unit vector avoids having to fix a gauge for the zero of the angle, and it allows to
work with a physical quantity: the unit vector of the perpendicular velocity

c := p⊥
‖p⊥‖ = p−b(b·p )

p sinϕ , (2.5)

which indeed corresponds to the direction of the perpendicular velocity, and is a coordinate mea-
suring the Larmor gyration. It is an angle, since it is a unit vector in a plane, namely the plane B⊥,
orthogonal to the local magnetic field. But this unit vector is immersed into R3, which means it is
in S1(q). This spatial dependence implies that the coordinate space is constrained: the gyro-angle
c is not independent of the spatial position.

When the coordinate q is changed, the coordinate c cannot be kept unchanged, otherwise it
may get out of B⊥. Differentiating Eq. (2.5) with respect to q gives

∇c = −∇b·(cb+ aa cotϕ) . (2.6)

This formula can be obtained more easily by noticing that in the change of coordinates (q,p) −→
(q, p, ϕ, c), the following relations hold

− sinϕ∇ϕ = ∇ cosϕ = ∇b·pp = ∇b·c sinϕ ,
⇒ ∇ϕ = −∇b·c ,
⇒ 0 = ∇

(
p
p

)

= ∇c sinϕ+∇b cosϕ+∇ϕ(−b sinϕ+ c cosϕ)

= (∇c+∇b·cb) sinϕ+∇b·(1− cc) cosϕ ,

⇒ ∇c = −∇b·(cb+ aa cotϕ) , (2.7)

in which ∇ means differentiation with respect to q while keeping p constant, and we used that

1 = aa+ bb+ cc and that b is a unit vector, which implies ∇b·b = ∇
(
b2

2

)
= 0.

Eq. (2.6) is not well defined where ϕ = 0 (mod π), i.e. where p is parallel to B. But this
is no trouble, since it fits in with a usual limitation of guiding-center theories. For instance,
guiding-center transformations are not defined where ϕ is zero, since they involve many sinϕ as
denominators [29,86,88,122]. At the points where ϕ = 0 (mod π), the vector c itself is not defined,
neither is the coordinate θ. It is an implicit assumption in all gyrokinetics and guiding-center works
that those points are excluded from the theory.

If the coordinate θ was used, Eq. (2.6) would be replaced by

∇c = −∇b·cb+∇e1·e2 a , (2.8)

where ∇e1·e2 is the so-called gauge vector, which is usually denoted by R, depends only of the
position q, and is related to the choice of gauge.

To fit in with both coordinates, we define a more general function Rg(q,p):

Rg := ∇c·a .
Then, in any coordinates, the previous formulae (2.6) and (2.8) write

∇c = −∇b·cb+Rga . (2.9)

The value Rg = −∇b·aa cotϕ corresponds to the physical definition of c, and the corresponding
Eq. (2.6). The value Rg = ∇e1·e2 = R will be linked with the usual case relying on the gauge-
dependent coordinate θ, according to Eq. (2.8).

The spatial dependence of the vector c through Eq. (2.9) must be taken into account each time
a gradient acts on a function that depends on the fast angle c, e.g. in total derivatives, in Lie
transforms, and when computing the action of a spatial component of the change of variables.

A more detailed study of the coordinate system in Chapter 3 shows that Rg is the connection
associated to the gyro-angle circle bundle, which indeed can be any function of the phase space,
and that ∇ is the (spatial part of the) corresponding covariant derivative.
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2.1.2 Lie transforming the Lagrangian 1-form

The goal is to isolate the slow part of the dynamics from the fast angle θ (or c), by performing a
near-identity change of coordinates such that the dynamics of the remaining coordinates does not
depend on θ; this averaging procedure is the primary requirement for the guiding-center reduc-
tion. We showed in Chapter 1 how it can be derived by Lie transforming the equations of motion
when keeping the physical coordinate c. It appeared to be very straightforward for the minimal
guiding-center reduction, but the additional requirements (e.g. the use of the magnetic moment
as a coordinate or a further simplification of the reduced dynamics) were not so easy to obtain.
They are more efficiently obtained by Lie transforming the Lagrangian 1-form, which relies on the
Hamiltonian structure of this dynamical system.

Let us remind that a dynamical system with coordinates z is Hamiltonian when its dynamics
is given by Hamilton’s equation1:

ż = {z, H} , (2.10)

where H(z) is a function, which is conserved in time and called the Hamiltonian function (or just
the Hamiltonian). The operation {·, ·} is called a Poisson bracket; it takes two functions as its
arguments and the result is a function. It is antisymmetric, bilinear, verifies the Leibniz rule, and
satisfies the Jacobi identity, which respectively mean

{g, f} = −{f, g} ,
{f, g + h} = {f, g}+ {f, h} ,

{f, gh} = {f, g}h+ {f, h}g ,
{f, {g, h}} = {g, {f, h}}+ {h, {g, f}} ,

for any functions f , g, and h.
In order to define a Hamiltonian field dynamics, take the definition above, while replacing the

finite dimensional space z by a set of functions over a continuous space (see e.g. Eqs. (4.2)-(4.4)).
For an introduction about Hamiltonian systems, see e.g. [53, 99,107,109,141].

For the dynamics of a charged particle in a magnetic field, the coordinates (p,q) can be grouped
in a single phase-space vector z := (p,q). The Hamiltonian function is just the particle kinetic
energy

H := p2

2m . (2.11)

The Poisson bracket is non-canonical, it contains the gyro-magnetic coupling term

{F,G} = ∂qF ·∂pG− ∂pF ·∂qG− ∂pF ·eB× ∂pG . (2.12)

Together, this Poisson bracket and this Hamiltonian induce the equations of motion through
Hamilton’s equations (2.10), which just produce the traditional Lorentz-force motion (2.1), or the
equations of motion (2.2) when the coordinates (q, p, ϕ, c) are used.

Instead of working with the Poisson bracket and the Hamiltonian, it is easier to work on the
Poincaré-Cartan 1-form Γ [88]. This last is usually called just a Lagrangian 1-form, or simply
a Lagrangian. It concentrates all the information on the Hamiltonian structure into one single
quantity, which in addition is much less constrained than a Poisson bracket. It is a 1-form, defined
over a 7-dimensional space y := (p,q, t) by [29,87,88]

Γ := (eA+ p)·dq−Hdt , (2.13)

which yields a variational formulation of the dynamics with the action [86]:

A :=

∫
Γ .

1Notice that the convention ż = {H, z} is equivalently used, by inverting the sign of the Poisson bracket.
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The symplectic part of Γ is Γs := (eA + p)·dq [29, 88]. It is a 1-form Γs = Γisdz
i in the usual

6-dimensional phase space, which gives the Lagrange 2-form through exterior derivative

ωs := dΓs = (∂iΓ
j
s − ∂jΓ

i
s) dz

i ⊗ dzj , (2.14)

where ⊗ means tensorial product, and Einstein’s convention is used: there is an implicit summation
over repeated indices. In turn, ωs is invertible, and its inverse gives the Poisson bracket

J := ω−1
s ,

with J the bivector defined by the relation {F,G} = ∂iFJ
ij∂jG.

In the presence of a strong magnetic field, the small parameter ε allows for a perturbation
expansion of all quantities. The Lagrangian Γ from Eq. (2.13) can be written

Γ = Γ−1 + Γ0 ,

where the index refers to the order in the magnetic field, (or in e−1, following Northrop’s work
[121,122])

Γ−1:=eA·dq ,
Γ0:=

p
m ·dq− p2

2mdt , (2.15)

whose ratio is indeed of order ε. The lowest order being −1 reminds that the guiding-center is a
singular perturbation theory.

The Lagrangian is transformed by the exponential of a Lie transform

Γ −→ Γ := eLXΓ ,

where LX is the Lie derivative along the vector field X, whose inverse is the generator of the
near-identity coordinate transformation:

y −→ y := e−Xy .

The generator can be expanded X = X1 +X2 + ..., where Xn is the term of X that is of order
n in ε. In fact, it is equivalent but simpler to replace the single transformation eLX1

+LX2
+... with

a complicated generator by a series of transformations with a simple generator for each of them

y −→ y := ...e−G2e−G1y ,

where −Gn is the vector field generating the n-th transformation, and is purely of order εn. The
Lagrangian then transforms as

Γ −→ Γ := ...eL2eL1Γ ,

where Ln := LGn is the Lie derivative along the vector field Gn. Notice that LX 6= L1 + L2 + ...
because Gn 6= Xn.

As the Lagrangian is time-independent, it is interesting to use time-independent perturbation
theory, by imposing a transformation that does not depend on time and does not affect the time
coordinate: G is constant in time and Gt = 0.

This implies that the Hamiltonian will transform as a scalar function. Indeed, for any time-
independent vector field G and any 1-form,

LGΓt = [iG·dΓ]t + [d(iGΓ)]t

=
[
Gi∂yi(Γj)dy

j −Gi∂yj (Γi)dy
j
]
t
+ ∂t(G·Γ)

= G·∂yΓt + ∂t(G)·Γ = G·∂yΓt ,
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where Eq. (2.17) was used for Lie derivatives, and Eq. (2.14) for exterior derivatives (here in the
7-dimensional space).

Another consequence is that at each order n in ε, there will be seven requirements (see next
subsection), one for each component of the reduced Lagrangian Γn, and only six freedoms, one for
each component of the time-independent transformation generator Gn. One freedom is missing
in Gn and must be looked for elsewhere. Now, the Lagrangian is defined only to within a total
derivative, since only its exterior derivative has a physical meaning, and d(Γ+dS) = dΓ+d2S = dΓ
for any function S, which is called a gauge function [29]. Be careful, this gauge has nothing to see
with the gyro-gauge nor the gyro-angle, it is just an arbitrariness in the definition of the Lagrangian.
Rather, it corresponds to the electromagnetic gauge, since it can be absorbed in a redefinition of the
potential A (together with Φ when there is a non-zero electric field, see page 81): the Lagrangian
is expressed in terms of the potential, and does depend on the electromagnetic gauge, but the
dynamics, as well as all physical quantities, are electromagnetic-gauge invariant, they depend only
on the electromagnetic field.

The freedom embodied in S is needed to obtain the maximal reduction, since it gives the
expected seventh freedom. Then the reduced Lagrangian is :

Γ :=
(
...eL2eL1

)
(Γ−1 + Γ0) +

(
dS−1 + dS0 + ...

)
.

It will be determined order by order in εn:

Γ−1 = Γ−1 + dS−1 (2.16)

Γ0 = L1Γ−1 + Γ0 + dS0

Γ1 =
(
L2 +

L21
2

)
Γ−1 + L1Γ0 + dS1

Γ2 =
(
L3 + L2L1 +

L31
6

)
Γ−1 +

(
L2 +

L21
2

)
Γ0 + dS2

Γ3 =
[
L4 + L3L1 + L2

(
L2
2 +

L21
2

)
+

L41
24

]
Γ−1

+
[
L3 + L2L1 +

L31
6

]
Γ0 + dS3

...

In principle, these are differential equations for G, because the action of a Lie derivative LG

over a 1-form γ writes

LGγ = (iGd+ d iG)γ , (2.17)

where the operator iG is the interior product, e.g.

iGγ = G·γ = γ(G) . (2.18)

So, the first term in (2.17) is algebraic in G, but the second one is differential in G.
However, the differential operators can be avoided by the following argument. The last term in

(2.17) involves an exterior derivative, and can be removed by redefining the gauge function S. In
addition, Eq. (2.17) together with the property d2 = 0 imply that the exterior derivative and the
Lie derivative commute:

LGd = dLG = d iGd .

This means that for any vector fields X and G

LGLXΓ = (iGd+ diG)LXΓ = iGd(iXd+ diX)Γ + d(iGLXΓ)

= iGdiXdΓ + d(iGLXΓ) .

In computations for Γ, the last term can again be removed by redefining the gauge function S. By
induction, it is now easy to see that in Eq. (2.16), exponentials of Lie derivatives can be considered
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as just exponentials of interior products provided the gauge function Sn is defined in a convenient
way at each order εn to absorb all the exterior derivatives involved in Eq. (2.16):

LGn1
LGn2

...LGnk
Γ + dS

= (iGn1
d)(iGn2

d)...(iGnk
d)Γ + dS′ .

For the following, we will redefine S according to this rule, but for simplicity, we drop the prime
and write S for S′.

Using this rule and the fact that in the equation for Γn, the Γi<n are already known, Eqs. (2.16)
can be written

Γ−1 = Γ−1 + dS−1 (2.19)

Γ0 = G1·ω−1 + Γ0 + dS0

Γ1 = G2·ω−1 +
G1
2 ·(ω0 + ω0) + dS1

Γ2 = G3·ω−1 +G2·ω0 +
G1
6 ·d

[
G1·(2ω0 + ω0)

]
+ dS2

Γ3 = G4·ω−1 +G3·ω0 +G2·ω1 − (G2·d)2
2 ω−1

+ (G1·d)2
24 G1·(3ω0 + ω0) + dS3

...

where the notation G· := iG is used for the interior product, as in Eq. (2.18). In addition, the
n-n-order Lagrange 2-form was defined in the natural way:

ωn := dΓn .

In the next subsection, we study the properties that are wished for Γ. In the next section, the
unknowns Gn and Sn will be determined such that Γn has those desired properties.

2.1.3 The hierarchy of requirements

A) The primary requirement for the guiding-center reduction is to isolate the slow dynamics of
the coordinates (q, ϕ) from the fast gyro-angle θ. From the point of view of the Lagrangian Γ, it
may be obtained by making Γ independent of θ. This is actually stronger than the strict minimal
requirement, since it implies to average the dynamics of θ as well. However, in the Lagrangian
approach, contrary to when working on the equations of motion, the minimal requirement would
be difficult to get, if not impossible, and it is quite easier to average all the reduced dynamics.

So, the goal is that the reduced Lagrangian does not depend on the reduced gyro-angle, which
means that all its non-zero Fourier components (i.e. purely oscillatory terms) are zero:

osc(Γn) = 0 , (2.20)

where following Littlejohn’s notations, osc = 1− avg is the projector onto gyro-fluctuations, with
avg the complementary projector onto gyro-averages:

avg(f) = 1
2π

∫ 2π

0
dθ f ,

for any function f . This average can be computed without introducing any gauge: either using the
intrinsic calculus introduced in Chapter 2, either using the matrix calculus introduced in Chapter 1.
Also, the coordinate θ can be used as an intermediate quantity for this computation, which is made
at constant q, so that the presence of a gauge (only for the intermediate computation) is of no
consequence.

B) Averaging the motion or the Lagrangian does not determine the average components of the
coordinate change, as is clear in Chapter 1, for instance. This lets some freedom in the procedure
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and suggests to impose stronger requirements for the reduction. The basic idea is to use the
available freedoms to make the reduced dynamics as simplified as possible.

A natural prospect is to make trivial the reduced dynamics

ż
j
= 0 ,

for some components j, by including constants of motion in the reduced coordinates. For the
remaining coordinates, one can consider putting their reduced dynamics to zero just for orders
higher than 2 or 3 for instance:

ż
j
n = 0 ,

for all higher orders, where the index n refers to the order in εn and the exponent j indicates the
component of the vector ż.

When this is achieved, the reduced dynamics is given just by lowest-order terms; it is exactly
known after the lowest orders have been derived, without computing the reduction at higher orders,
which are useful only to determine the transformation.

In the procedure working on the Lagrangian 1-form, the "components" are not the ones of the
reduced equations of motion, but the ones of the reduced Lagrangian

Γ
j
n = 0 , (2.21)

for higher n. For differential forms, we use the same convention as for vectors: the index n indicates
the order in εn and the exponent j refers to the component. It departs from the usual notation
Γn = (Γn)jdz

j , but it avoids excessive use of parentheses.
Eq. (2.21) gives additional (i.e. non minimal) requirements for the reduced Lagrangian Γ and

it is used to determine the averaged transformation generators. When it can not be obtained com-
pletely, the goal is to obtain it for as many components j as possible, to get what can be considered
as the maximal reduction.

C) When studying the Lie transform of the Lagrangian 1-form, one variable, namely the mag-
netic moment µ, plays a key role, as the variable conjugated to the gyro-angle.

Basically, including µ among the reduced coordinates is a way to obtain a more efficient reduc-
tion process by making one of the components of the reduced Lagrangian trivial µ := Γ

θ
. Indeed,

when the derivation is performed with the variable p, then the θ-component of the Lagrangian is
given by a whole series, which is the magnetic moment. Changing the variable p in such a way that
the new variable absorbs this series is a way to have the reduced θ-component trivial, just given by
a coordinate. This also simplifies the reduction algorithm, by providing a simpler expression for ω,
which will play a key role in the derivation.

Second, the resulting variables θ and µ are conjugated, which implies that the magnetic moment
is a constant of motion besides the norm of the momentum p. And this conserved quantity is
preferable to the variable p because, unlike p, it remains an adiabatic invariant in the presence of
a wide class of electric fields [122].

The variable µ is a whole series in the Larmor radius, and its lowest-order term is the well-known
adiabatic invariant µ often confounded with µ

µ ≈ µ := (p sinϕ)2

2mB . (2.22)

So, an interesting additional requirement is to include the magnetic moment in the reduced
coordinates. For the equation to be solved, this requirement is expressed by

Γ
θ
:= µ . (2.23)

Indeed, then the reduced Poisson bracket verifies

J
µθ

= 1, and J
µi

= 0 , (2.24)
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for i 6= θ, which means that the dynamics of µ is zero

µ̇ = {H,µ} = −∂θH = 0 ,

since the Hamiltonian H does not depend on θ, as a consequence of (2.20).

There is a third reason for including the magnetic moment among the reduced coordinates and
requiring Γ

θ
= µ. It is concerned with the Hamiltonian structure of guiding-center dynamics. The

6-dimensional reduced motion ż is Hamiltonian, since it is just the transform of the Hamiltonian
motion ż. But the true reduced guiding-center motion is the 4-dimensional slow motion (q̇, ϕ̇). It is
the truncation of the full dynamics ż, but truncations of a Hamiltonian dynamics are in general not
Hamiltonian. However, in some cases, truncations are automatically Hamiltonian, and a special
case is the quarter-canonical structure of the Poisson bracket, defined by conditions (2.24). This
can be seen by imposing Dirac’s constraints (µ, θ) to the reduced dynamics, or by verifying that the
truncated bracket is actually just given by starting from the initial Lie algebra of all functions of
the phase space f(z), and taking the subalgebra of functions that do not depend on the gyro-angle
f(q, ϕ, µ). Thus, including µ in the reduced coordinates is a way to guarantee the reduced slow
motion to be Hamiltonian.

The requirement on the magnetic moment fixes one of the freedoms involved in the average
components of the coordinate change. The other freedoms are used to make the reduced dynamics
as simple as possible, by putting to zero as many average components of Γn as possible for higher
n, as indicated by Eq. (2.21).

D) To sum it up, the guiding-center reduction involves a hierarchy of requirements: The primary
requirement (minimal reduction, with an averaged reduced dynamics) is to remove the fast time-
scale by averaging the Lagrangian over the gyro-angle; the corresponding equation is (2.20). The
secondary requirement (intermediate reduction, with a constant of motion and a Hamiltonian slow
reduced motion) is to include the magnetic moment among the reduced coordinates by the quarter-
canonical structure; the corresponding equation is (2.23). The third optional requirement (maximal
reduction, with a simplified reduced dynamics) is to use the remaining freedoms to make the reduced
Lagrangian as simplified as possible; the corresponding equation is (2.21).

This makes seven requirements at each order in ε, one for each component of the reduced La-
grangian Γn in Eqs. (2.16), and seven freedoms are needed. For a time-independent transformation,
those are Gz

n and Sn, as announced in the previous subsection.

2.2 Derivation of the reduction

Let us now turn to the guiding-center reduction. The details of the procedure as well as the practical
computations may seem intricate and they hide somehow that the basic ideas of the reduction are
very elementary. It is why the principles and general lines of the procedure are presented in the
appendix, to give a clear view of the reduction process.

In this section, the three stages of the method presented in the appendix are shown to work
with the coordinate c in a similar way as with the standard approach relying on a gyro-gauge. The
transformation at lowest orders is computed for comparison with previous works, and it is shown
how the reduction can be performed to arbitrary order in the Larmor radius by obtaining explicit
induction relations.

Each order of the derivation can be given several numbers. For instance, what is usually called
the first order is the order just after the lowest order. For the Lagrangian, it corresponds to Γ0

(since the lowest order corresponds to Γ−1), which is rather considered here as the order 0. In
addition, the order in the various quantities will be mixed up: for instance, in the derivation, the
order involving Γ2 will be the equation for Ga,c

3 , as well as for Gb,φ
2 and also for Gθ

1. For the sake
of clarity, we will always consider the order n as the one corresponding to Γn (or rather Γn), and
we will often use the expression "at order Γn", instead of "at the order corresponding to Γn".
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2.2.1 Preliminary transformation and initial setting

The goal is to solve Eq. (2.19) for the guiding-center reduction, with the Lagrangian (2.15), and
with the requirements (2.20)-(2.23) for the averaging reduction, for the magnetic moment reduc-
tion, and for the maximal reduction.

First of all, the change of coordinates from the norm of the momentum p to the magnetic moment
µ is not near identity, as is clear in Eq. (2.22). Before beginning the reduction, a preliminary
change of coordinates must be done, so that all the remaining transformation will be near identity.
A suitable preliminary change of coordinates is

(q, ϕ, p, c) −→ (q, ϕ, µ, c) ,

where µ is the zeroth-order magnetic moment

µ = (p sinϕ)2

2mB , (2.25)

which is a well-known adiabatic invariant, and often confounded with µ. In the new variables, the
Lagrangian becomes

Γ :=
[
eA+

√
2µmB(b cotϕ+ c)

]
·dq− µB(1 + cot2 ϕ)dt .

Interestingly, the pitch-angle ϕ intervenes only through its cotangent, which was mentioned in
Chapter 1 as making all quantities polynomials. Here, this feature is obvious in the Lagrangian, and
it is preserved by derivatives, so that it will be preserved throughout all of the derivation. Actually,
the magnetic moment makes the polynomiality still more accurate than in Chapter 1, where the
variables ϕ and p were used, and the Larmor-radius prefactor rL = p sinϕ was not polynomial in
cotϕ. Here, the magnetic moment µ absorbs the p sinϕ and all formulae will be purely polynomials
in cotϕ and monomials in

√
µ, which is useful to simplify computations.

So, we actually choose to change coordinates according to

(q, ϕ, p, c) −→ (q, φ, µ, c) ,

with
φ := cotϕ (2.26)

the variable that makes all formulae polynomials.
Also, the structure of the Lagrangian shows that one can make the coefficients e and m disap-

pear by noticing that the magnetic field B appears only through eB, provided µ is considered as
appearing only through µm/e, and dt appears only through dt/m.

The particle charge e is usually kept in guiding-center works because the order in e−1 indicates
the order in ε [121,122]. Here, it is useless since the order in ε is already indicated by the order in

other quantities: Γn and Γn are of order mµ
e

(√
mµ
e2B

∇
)n

. The reason is that all quantities will be

series in rL∇ =
√

2mµ
e2B

∇, as a result of the structure of the Lagrangian, and as will be confirmed by

the derivation, e.g. Eqs. (2.37), (2.48)-(2.50), (2.60)-(2.62), (2.63)-(2.64), etc. Hence the order can
be readily obtained by the overall order in

√
B or ∇. These last two quantities have the drawback

of being an operator, or a space-dependent function; in addition, their order is only dimensional,
e.g. ∇B∇B√

B
is of order ∇2B3/2. For a readily control of the order, it is useful to have a scalar

parameter, which was considered as e−1 in previous works. Here, this role can be played by
√
µ,

since all quantities will be monomial in it. Thus, keeping e to indicate the order of expansion is
indeed not necessary.

Thus, we make the scaling

A −→ A := eA

B −→ B := eB (2.27)

µ −→ µ := µm
e = (p sinϕ)2

2eB

t −→ t := t
m ,
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which avoids unnecessary coefficients in the derivation. It agrees with the physics, where the effect
of the magnetic field on particle dynamics always includes the coupling constant e. For simplicity,
we will drop the underline, e.g. we will write B for B. The Lagrangian becomes

Γ :=
[
A+

√
2µB(b cotϕ+ c)

]
·dq− µB(1 + cot2 ϕ)dt .

The derivation starts from the Lagrangian with the expansion (2.15)

Γ := Γ−1 + Γ0 ,

with

Γ−1 = A·dq ,
Γ0 =

√
2µB (bφ+ c)·dq− µB(1 + φ2)dt . (2.28)

It can be divided into its average and fluctuating part

avg(Γ−1) = Γ−1 = A·dq
avg(Γ0) =

√
2µB bφ·dq− µB(1 + φ2)dt

osc(Γ0) =
√

2µB c·dq . (2.29)

The previous section showed that the process involves the Lagrange 2-form ωn. It can be split
in three basic terms

ω = dΓ = ω−1 + ω̃0 + ω0 , (2.30)

with

ω−1 := dΓ−1 = d(A)· ∧ dq
ω̃0 := dosc(Γ0) = d(

√
2µBc)· ∧ dq

ω0 := davg(Γ0) = d(
√

2µBbφ)· ∧ dq− d
(
µB(1 + φ2)

)
∧ dt ,

where the symbol ∧ denotes the antisymmetry operator

da.b. ∧ dc = da.b.dc− dc.b.da ,

for any matrix b and any vectors a and b.
The first term in (2.30) is the lowest-order Lagrange 2-form, related to Larmor gyrations. The

second (resp. third) term in (2.30) is the exterior derivative of the oscillating (resp. average) zeroth-
order Lagrangian. Be careful, this is not the oscillating (resp. average) zeroth-order Lagrange
2-form; for instance

ω̃0 := d
(
osc(Γ0)

)
6= osc(ω0) = osc(dΓ0) ,

because the exterior derivative does not preserve gyro-fluctuations.

The contributions (2.30) to the Lagrange 2-form are explicitly given by

ω−1 : = dΓ−1 = dq·∇(A)· ∧ dq = dq·(−B)× dq (2.31)

ω0 : = davg(Γ0) = d(
√

2µBbφ)· ∧ dq− d(µB(1 + φ2)) ∧ dt
=
√

2µB
{
dφb+ dq·∇b+

[
dq·∇B
2B + dµ

2µ

]
φb
}
· ∧ dq

−
{
(1 + φ2)(Bdµ+ µdB) + 2µBdφ

}
∧ dt
m

ω̃0 : = dosc(Γ0) = d(
√

2µBc)· ∧ dq
=
√

2µB
{
dc+

[
dq·∇B
2B + dµ

2µ

]
c
}
· ∧ dq .
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Now, dc involves two contributions: one corresponding purely to the gyro-angle, in which the
variable c is changed at constant q, and a second one coming from a change in the coordinate q,
which comes because the gyro-angle is a constrained coordinate, as mentioned about Eqs. (2.6)
and (2.9). The second part is given by

dq·∇c = −dq·∇b·cb+ dq·Rga .

The first one is then (dc− dq·∇c), but it is written more precisely as (dc− dq·∇c)·aa since when
q is constant, the variation of c can only be in the direction of a, i.e. along the circle S1(q). On
the whole

dc = −dq·∇b·cb+ dq·Rga+ (dc− dq·∇c)·aa .

This shows that, in the gauge-independent approach, the natural form corresponding to dθ is

δθ := −(dc− dq·∇c)·a ,

where the minus sign comes to agree with the usual convention (2.4) on the orientation of the
gyro-angle. Unlike dθ, this form is not closed in general; it is why it is written δθ. In the gauge-
dependent case, it is closed and indeed corresponds to dθ, as a consequence of (2.8).

As the reduction process mainly relies on inversions of ω = dΓ (or rather ω), which can be
viewed as a matrix inversion, a matrix notation is well suited and makes the discussion clearer.
This implies to choose a basis of 1-forms; the derivation of ω above shows that a natural basis is

(
c·dq, a·dq, b·dq | dφ, dµ, δθ | − dt

)
, (2.32)

where a vertical dash | is put to separate the space-, the momentum- and the time-components.
The choice of −dt makes the corresponding coordinate H instead of −H.

Those 1-forms are not closed, unlike the standard dzi, but it is not needed, provided one is
careful of using intrinsic definitions for the operations involved in the procedure (see Eqs. (2.35)
and (2.55) for instance).

In this basis, Eqs. (2.31) become

ω−1 = B




0 1 0
−1 0 0
0 0 0

0 0

0 0 0

0 0 0


 (2.33)

ω0 =




0 −J I 0 0 0 c·∇H0

J 0 −K 0 0 0 a·∇H0

−I K 0 −
√
2µB −φ

√
2µB
2µ

0 b·∇H0

0 0
√
2µB ∂φH0

0 0 φ
√
2µB
2µ 0 ∂µH0

0 0 0 0
−c·∇H0 −a·∇H0 −b·∇H0 −∂φH0 −∂µH0 0 0




ω̃0 =




0 −J̃ Ĩ 0 −
√
2µB
2µ

0

J̃ 0 −K̃ 0 0
√
2µB 0

−Ĩ K̃ 0 0 0 0
0 0 0√
2µB
2µ

0 0 0 0
0 −

√
2µB 0

0 0 0



,

where for visual purpose, vertical and horizontal lines are used to separate the position-, momentum-
and time-components. The spatial part of the matrix ω0 (resp. ω̃0) is just a vector product v×,
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with the vector v := Ia+ Jb+Kc (resp. v := Ĩa+ J̃b+ K̃c), where the coefficients are

I := −a·∇ × (
√

2µBφb) =
√
2µB φ

(
c·∇B
2B − b·∇b·c

)

J := −b·∇ × (
√
2µBφb) =

√
2µB φ

(
a·∇b·c− c·∇b·a

)

K := −c·∇ × (
√
2µBφb) =

√
2µB φ

(
b·∇b·a− a·∇B

2B

)

Ĩ := −a·∇ × (
√

2µBc) =
√
2µB a·∇b·a−c·∇b·c

2

J̃ := −b·∇ × (
√
2µBc) =

√
2µB

(
a·∇B
2B − c·Rg

)

K̃ := −c·∇ × (
√
2µBc) =

√
2µB (a·∇b·c+ b·Rg) .

2.2.2 Immediate orders −1 and 0

At lowest order n = −1, the reduced Lagrangian (2.19) writes

Γ−1 = Γ−1 + dS−1 .

The change of variable has no effect at this order, since it is near-identity. But the averaging
condition is trivially verified; it is actually a condition for the near-identity Lie transform to remove
the fast time-scale, which is possible only when at lowest order, the Lagrangian is already gyro-
averaged. Now, the only freedom involved S−1 can not be useful and is set to zero

S−1 = 0 .

At the following order n = 0, the reduced Lagrangian is

Γ0 = G1·ω−1 + Γ0 + dS0 . (2.34)

To write vectors in matrix form, a basis has to be chosen for vector fields also. It is most convenient
to choose the dual of the basis (2.32) for 1-forms, so that the coupling G1·ω−1 is computed as a
standard matrix product. The desired basis is easily identified as (using the natural isomorphism
between vector fields and differential operators)

(
c·∇, a·∇, b·∇ | ∂φ, ∂µ,−a·∂c | − ∂t

)
, (2.35)

because ∇ can be written ∂q|c+∂qc·∂c|q. The operator −a·∂c is the generator of Larmor gyrations,
as shown in Chapter 2. It just an intrinsic definition of the usual ∂θ. The set (2.35) is actually the
natural basis for vector fields, which confirms the relevance of the basis (2.32) for 1-forms.

Be careful that the chosen bases are not averages and they must be taken into account when
computing averages or fluctuations of a quantity. For instance, it could seem that a vector (resp.
a 1-form) with components (1, 0, 0 | , 0, 0, 0 | 0) is averaged, whereas it is not, since it is equal to
c·∇ (resp. c·dq).

Then, Eq. (2.34) is easily computed in matrix form

Γ0 = G1·ω−1 + Γ0 + dS0 (2.36)
= ( −BGa

1 BGc

1 0 | 0 0 0 | 0 )

+ (
√
2µB 0

√
2µBφ | 0 0 0 | µB(1 + φ2) )

+ ( c·∇S0 a·∇S0 b·∇S0 | ∂φS0 ∂µS0 −a·∂cS0 | 0 )

,

where, as usual, 1-forms are written as 1 ∗ 7 matrices: each column is an equation to be solved for
the freedoms G1 and S0 in such a way that Γ0 satisfies the desired requirements.

The lowest-order Lagrange 2-form ω−1 is linked to Larmor gyration, as appears in (2.31). It is
not invertible. Only two components of G1 are involved in the equation: Gc

1 and Ga
1; and only two

components of Γ can be controlled by these freedoms: Γ
c

1 and Γ
a

1. As announced in the appendix,
the inversion is possible only under some conditions on the term R0 = −Γ0 + Γ0 + dS0, and the
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solution, if it exists, is not unique.

More precisely, for the averaging requirement (2.20), the condition of the right-hand side of
Eq. (2.91) being in the range of ω−1 is satisfied, since the only fluctuating terms are in Γ

c,a
1 , which

can precisely be controlled by the freedoms Gc,a
1 . The solution imposes the fluctuating part of Gc,a

1 ,
which is given by

osc(Gc

1c+Ga

1a) :=
√
2µB
B a . (2.37)

Notice that the oscillating and averaged parts of the components Gc
1 and Ga

1 must be dealt with
together through the combination Gc

1c + Ga
1a. This is easily illustrated with an example vector

X := b·∇b·cc·∇: it is not a pure fluctuation, whereas its c-component Xc := b·∇b·c is a pure
fluctuation, and its fluctuating part is 1

2b·∇b·(cc− aa)·∇, which mixes up the components Xc and
Xa.

At this point, the average part of Γ
c,a
1 remains free and must be identified by the secondary and

tertiary requirements (2.21) and (2.23). The magnetic moment requirement (2.23) is not concerned

here, since Γ
θ

is automatically zero. Last, for the requirement for the maximal reduction (2.21),
only the components Γ

c,a
1 can be controlled, and setting them to zero imposes the average part of

Gc,a
1

avg(Gc

1c+Ga

1a) := 0 . (2.38)

Eqs. (2.37)-(2.38) give the traditional (lowest-order) Larmor radius, which is usually confused
with the exact Larmor radius rL := q− q̄:

(rL)1 := (q− q̄)1 = Gc

1c+Ga

1a+Gb

1b =
√
2µB
B a = p sinϕ

B b× c = B×p

B2 ,

where the index denotes the order, and Eqs. (2.77) and (2.48) were implicitly used.
In a similar way, what is usually called guiding center in the literature actually corresponds to

the first-order guiding center:
q̄ := q − B×p

B2 +O(ǫ2)

where we recover the traditional formula for the (first-order) guiding center, since we remind that
here B stands for B = eB (see Eq. (2.27)).

All other components of the first-order transformation generator Gb,φ,µ,θ
1 still remain undeter-

mined. They embody the non-uniqueness of the matrix inverse (ω−1)
−1 and the corresponding

freedom will be useful for the solvability conditions at the next order. As a consequence, there will
be some order mixing: the components b, φ, µ, θ of G1 will be determined at higher order, at the
same time as the components c, a of G2.

Last, the gauge function S0 can not be useful and is set to zero

S0 = 0 .

The final zeroth-order reduced Lagrangian (2.36) writes

Γ0 =
√

2µBbφ·dq− µB(1 + φ2)dt . (2.39)

It is just the average of the zeroth-order initial Lagrangian Γ0: Γ0 = avg(Γ0). The zeroth-order
reduced 2-form ω0 is then

dΓ0 = ω0 ,

which justifies the notation ω0 introduced in (2.30).
It is easy to see that the matrix ω−1 + ω0 is not invertible, for instance all its gyro-angle

components are zero. So, the pivotal matrix for high orders M∞ mentioned in the appendix (see
page 90) is not identified yet.
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2.2.3 Turning point: Order 1

At the following order n = 1, the reduced Lagrangian is given by (2.19), which is rather written
with the unknown G1,2 on the left-hand side

G2·ω−1 +
G1
2 ·(ω̃0 + 2ω0) = Γ1 − dS1 .

As announced in the appendix, the pivotal matrix is the set of ω−1 and (ω̃0 + 2ω0)/2, acting
on the set of unknown components of (G2,G1). Again, it is not invertible; this corresponds to the
case where the inversion is possible only under some integrability conditions on the right-hand side
Γ1−dS1, to which one must add the set of −ω−1 and −(ω0+ω0)/2 acting on the set of components
of (G2,G1) that are already known, i.e. on Gc,a

1 . And the solution, if it exists, is not unique.
More precisely, using a matrix notation and grouping in the left-hand side only the terms with

unknown components of (G2,G1) gives




Gc
2

Ga
2

Gb
2

G
φ
2

G
µ
2

Gθ
2
0




T

·




0 B 0
−B 0 0
0 0 0

0 0

0 0 0

0 0 0




+




0

0

Gb
1

G
φ
1

G
µ
1

Gθ
1
0




T

·




0 −J21 I21 0 −
√
2µB
4µ

0 ∂cH0

J21 0 −K21 0 0
√

2µB
2

∂aH0

−I21 K21 0 −
√
2µB −φ

√
2µB
2µ

0 ∂bH0

0 0
√
2µB ∂φH0√

2µB
4µ

0 φ
√

2µB
2µ 0 ∂µH0

0 −
√

2µB
2

0 0

−∂cH0 −∂aH0 −∂bH0 −∂φH0 −∂µH0 0 0




= −




Gc
1

Ga
1

0
0

0

0
0




T

·




0 −J21 I21 0 −
√

2µB
4µ

0 ∂cH0

J21 0 −K21 0 0
√
2µB
2

∂aH0

−I21 K21 0 −
√
2µB −φ

√
2µB
2µ

0 ∂bH0

0 0
√
2µB ∂φH0√

2µB
4µ

0 φ
√
2µB
2µ 0 ∂µH0

0 −
√
2µB
2

0 0

−∂cH0 −∂aH0 −∂bH0 −∂φH0 −∂µH0 0 0




+ ( Γ
c

1 Γ
a

1 Γ
b

1 | Γ
φ
1 Γ

µ
1 Γ

θ
1 | H1 )

− ( ∂cS1 ∂aS1 ∂bS1 | ∂φS1 ∂µS1 ∂θS1 | 0 ) , (2.40)

where the exponent T indicates matrix transpose. The coefficient I21 is defined by I21 := 2I+1Ĩ
2 ,

and J21 and K21 are defined the same way. Last, for shortness, we used the short-hands

∂c := c·∇ ,

∂a := a·∇ ,

∂b := b·∇ ,

∂θ := −a·∂c .

Be careful, ∂c is different from ∂c.
Let us have a word on the graphical presentation for these matrix products, because it may

seem surprising at first glance and it will be frequently used. In principle, 1-forms are row-matrices,
vectors are column-matrices, so that the pairing between them is just given by the matrix product.
Now, if 2-forms are presented as a 2 ∗ 2 matrix, then the vector implied in the left-pairing must be
written as a row-matrix, for the pairing to be just the usual matrix product. In this chapter, in order
to save room in the manuscript, we wrote this row-matrix as the transpose of a column-matrix. By
the way, it makes formulae easier to read, because each component of the vector is facing precisely
the row of the matrix which it multiplies: for instance in the second term of Eq. (2.40), the third

row Gb
1 of the vector G1 multiplies the third row (−I21,K21, 0 | − √

2µB,−φ
√
2µB
2µ , 0 | ∂bH0) of
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the matrix 2ω0 + ω̃0 which is on its right. So, this graphical presentation seems to be well-suited.

Eq. (2.40) can be simplified by removing the components that do not contribute

(
Gc

2
Ga

2

)T
·
(

0 B 0 0 0 0 0
−B 0 0 0 0 0 0

)

+




Gb
1

G
φ
1

G
µ
1

Gθ
1



T

·




−I21 K21 0 −
√
2µB −φ

√
2µB
2µ

0 H0
∂bB

B

0 0
√
2µB 2µBφ√

2µB
4µ

0 φ
√
2µB
2µ 0

H0

µ

0 −
√
2µB
2

0 0




=−
(

Gc
1

Ga
1

)T
·
(

0 −J21 I21 0 −
√
2µB
4µ

0 H0
∂cB
B

J21 0 −K21 0 0 φ
√
2µB
2

H0
∂aB
B

)

+ ( Γ
c

1 Γ
a

1 Γ
b

1 | Γ
φ
1 Γ

µ
1 Γ

θ
1 | H1 )

− ( ∂cS1 ∂aS1 ∂bS1 | ∂φS1 ∂µS1 ∂θS1 | 0 ) . (2.41)

This formula illustrates the typical form for Γn announced in the appendix. In the left-hand side, a
matrix product involves the unknown components of (Gn+1,Gn, ...). In the right-hand side, there
are two kinds of terms: the terms with the known components of (Gn,Gn−1, ...), and the terms
involving the freedoms to be determined by the integrability conditions, i.e. Γn and Sn.

The requirements concern the seven components of the reduced Lagrangian Γ
i
n, which are ideally

put to zero. The freedoms are embodied in six components of (Gn+1,Gn, ...) and in the gauge func-
tion Sn. More precisely, the primary requirement (averaging reduction) means that the fluctuating

part of the reduced Lagrangian must be zero: osc(Γ
i
n) = 0; actually, the chosen basis for 1-forms is

not averaged, so that each component can not be averaged separately, e.g. neither b·∇b·a a·dq nor
b·∇b·c c·dq are averages, but the sum of them b·∇b·dq is an average. The secondary requirement
(magnetic moment reduction) means that the gyro-angle component of the Lagrangian must be the

magnetic moment: Γ
θ
1 = µ, and Γ

θ
n = 0 for n 6= 1. The tertiary requirement (maximal reduction)

means that the average part of the reduced Lagrangian should be zero as well: avg(Γ
i
n) = 0 (ex-

cept Γ
θ
1). When integrability conditions can not be solved for so strong requirements, the tertiary

requirement is released, but as little as possible, and one sets to zero as many components Γ
i
n as

possible.

Let us solve Eq. (2.41). The pivotal matrix is not invertible. It has six columns and seven
rows; the columns φ and µ are not linearly independent; in addition, its column for θ is zero, which
means that Γ

θ
1 can not be controlled by the freedoms (G2,G1). So, the existence of solution is

submitted to integrability conditions (by which the freedoms S1 and Γ
i
1 can be constrained), and

then the existing solutions are not unique.

The integrability conditions are automatically satisfied. The overall equation for the column φ
will be automatically zero, because the procedure will imply Gb

1 = 0, and S1 = 0.
As for the column θ, it writes:

0 = −
√
2µB
2 Ga

1 + Γ
θ
1 − ∂θS1 .

The averaging requirement means that ∂θS1 = 0, which implies

osc(S2) = 0 .

The average part of the equation then writes

Γ
θ
1 =

√
2µB
2 Ga

1 = µ , (2.42)

which makes the automatically verified for this component. In fact, if µ had not been chosen as a
preliminary coordinate, it is here that it could be identified.

As a side comment, it might seem that the right-hand side of Eq. (2.42) should be µ instead
of µ, because of Eq. (2.23). However, in the derivation, all expressions for Γ are functions of µ.
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In the reduced system, the corresponding expressions will be the same functions evaluated on the
reduced coordinate µ, as is well emphasized in [86]. So, Eq. (2.42) means that the first-order
reduced Lagrangian Γ1 will actually have its θ component equal to µ. It is why this result verifies
the requirement (2.23) on the magnetic moment. We will not insist more on this point.

With the result (2.42), the reduced Lagrangian will contain the term µδθ, implying the presence
of the vector Rg, which is not determined. This feature already appeared in the computation of ω0,
but the vector Rg involved in δθ = −(dc − dq·∇c)·a came from a term −dc·a, so that the overall
contribution of the vector Rg actually cancelled. Just the same way now, the term µδθ is required
to come from a total contribution

−µa·dc = µ(δθ − dq·Rg) .

This imposes a non-zero contribution for Γ
q
:

Γ
q
:= Γ

′q − µdq·Rg .

For a maximal reduction, minimizing Γ
q

then means minimizing Γ′q (and ideally setting it to zero).

For the remaining 5 columns, the pivotal 5 ∗ 5 matrix is invertible for the five unknowns(
Gc

2,G
a
2,G

b
1,G

φ
1 ,G

µ
1

)
, as is clear through the following argument:

- The freedom Gb
1 controls the column for Γ

φ
1 , since the coefficient −√

2µB = −p sinϕ is
invertible and no other unknown component of (G2,G1) appears in this column. This does not
determines fully Gb

1, since the freedom avg(S1) appears in the column, and avg(S1) is to be

identified by the column Γ
µ
1 , in which Gb

1 appears again. Thus, the set of
(
Γ
φ
1 ,Γ

µ
1

)
can be considered

as a coupled set of equations for
(
Gb

1, avg(S1)
)
. But it is solvable; it implies that

avg(S1) = K(φ
√
µ,q) , (2.43)

is an arbitrary function of φ
√
µ and q, and that

Gb

1 = 1√
2µB

∂φavg(S1) . (2.44)

- In a similar way, the set of
(
Γ
′b
1 ,Γ

t
1

)
is a coupled set of equations for

(
Gφ

1 ,G
µ
1

)
, which is

solvable.
- Indeed, the freedom Gφ

1 controls the column for Γ
′b
1 , since the coefficient

√
2µB is invertible.

The solution for Gφ
1 is then parametrized by Gµ

1 , which is still unknown, but appears in this column.

- Then the freedom Gµ
1 controls the column for Γ

t
1 = H1, because when inserting the solution

for Gφ
1 , the coefficient of Gµ

1 becomes just B, which is invertible.
- The freedom Ga

2 controls the column for Γ
′c
1 , since the coefficient −B is invertible and no

other unknown component of (G2,G1) appears in this column (because now Gb
1 and Gµ

1 are not
unknowns any more).

- The freedom Gc
2 controls the column for Γ

′a
1 , since the coefficient B is invertible. The solution

for Gc
2 is then parametrized by Gθ

1, which is still unknown, but appears in this column.
- Then, all the components of Γ′

1 remain free. They can be used to explore the various guiding-
center representations [26]. Here, we are interested in a maximal reduction, which means to set
them to zero, so that the optimal requirements are fulfilled. The freedom K in avg(S1) (which is
a parameter in the formulae obtained for Gb

1, G
φ
1 , Gµ

1 , Ga
2, and Gc

2 can not be useful to improve
anything and is set to zero:

avg(S1) = 0 . (2.45)

- The freedom Gθ
1 is still undetermined, it embodies the non-uniqueness of the solution implied

by the pivotal matrix being not invertible. This freedom will be useful for the requirements at the
following order. As a consequence, the order mixing will not include only two orders, but three of
them, and the pivotal matrix will act on components of (Gn+1,Gn,Gn−1). In addition, the orders
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will not be solved independently, since the unknown Gθ
1 will be identified at order Γ2, whereas it

already appeared in the equations at order Γ1, so that it is a parameter in the expression computed
for Gc

2.

This procedure shows that the average and fluctuating parts of the equations are dealt with
the same way, because the equations for Gn is algebraic. This is very different from the minimal
guiding-center reduction by Lie transforming the equation of motion, whose equation relies on the
operator ∂θ, and which easily controls the fluctuating part of the equation, but involves secular
differential equations for the average part of the equation, as happened in Chapter 1.

At that point, it seems that the order Γ1 has been completed: it is indeed completely satisfactory
in itself, since all of the requirements are perfectly fulfilled, with the resulting reduced Lagrangian
Γ1 = −µa·dc. However, the procedure will have to be slightly changed, because at the following
order the secondary requirement for Γ

θ
2 can be controlled by no higher-order freedom; it can be

controlled only by avg(Gµ
1 ), which was already determined above by the tertiary requirement for

Γ
t
1. These two requirements can not be simultaneously fulfilled and one of them has to be dropped.

It is here that the requirements are not dealt with in the same way: as one of them must be
dropped, the choice is imposed by the hierarchy and the secondary requirement must be preferred
to the tertiary one.

As a consequence, avg(Gµ
1 ) must be let free at first order. It remains a parameter in Ga

2 and

in H1. Another consequence is that the tertiary requirement for Γ
t
1 has been lost, and H1 has a

non-zero value. Actually, the equation for H1 was coupled with the one for Γ
′b
1 , and the non-zero

term can be put in either of these components of Γ.
One can consider recovering a zero value for this term by using the freedom K available in

avg(S1), which had been arbitrarily fixed to zero in the process above in Eq. (2.45). But the
corresponding equation for K has no solution. Indeed, requiring avg(H1) = 0 is an equation for K,
which is the only available freedom

[
φ∂b +

∇·b
2 (1 + φ2)∂φ

]
K = B√

2µB
avg(Gµ

1 ). (2.46)

With the expression (2.60) for avg(Gµ
1 ), it can be studied by expansion in series K(φ

√
µ) =∑

k Kk(φ
√
µ)k. Expanding the right- and left-hand side of the equation and equating the coef-

ficient of the same orders in φ and µ gives a non-solvable equation. For instance, the coefficient of
order φ1µ1 implies the following equation

∇·b K2 = −b·∇ × b , (2.47)

which has no solution for a general magnetic geometry. So, the only available freedom can not be
used to obtain the full reduction Γ

′b
1 = 0 and H1 = 0. One of those components has to be non-zero.

Computing explicitly the expressions for the solution at order Γ1 according to the procedure
identified above gives the following results

osc(S1) = Gb

1 = 0 (2.48)

osc(Gφ
1 ) =

√
2µB
B (1 + φ2)

[
c̄b

,
a+āb

,
c

4 + φāb
,
b
]

osc(Gµ
1 ) = µ

√
2µB
B

[
− B

,
a

B − φ c̄b
,
a+āb

,
c

2 − 2φ2āb
,
b
]

(2.49)

avg(Gφ
1 ) =

1√
2µB

[
Γ
′b
1 + µ c̄b

,
a−āb

,
c

2

]
− φ

2µavg(G
µ
1 )

H1 =
√

2µBφ
[
Γ
′b
1 + µ c̄b

,
a−āb

,
c

2

]
+Bavg(Gµ

1 )

Ga

2 =
µ
B

[
φ7c̄b

,
a−9āb

,
c

4 − φ2āb
,
b
]
+ 1

2
√
2µB

avg(Gµ
1 )

Gc

2 = −
√
2µB
B

Gθ
1
2 − µ

B āc
,
a , (2.50)
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where following Littlejohn, a condensate notation is used for gradients: the curved prime is used
to indicate gradients of the magnetic field, and the short overbar over a vector c or a indicates the
matrix transpose (for the euclidean scalar product), so that c̄b

,
a := a·∇b·c and B

,
a := a·∇B. This

notation is similar to the one used in [88], with a slightly adaptation to make it more explicit, in
order to fit in with higher-order expressions as in Chapters 1 and 10. The context (the presence of
c and a, together with a contraction with other vectors) should avoid any confusion with other uses
of primes and overbars. For safety, in this chapter, we emphasize the difference by the notation:
the straight prime and the long overline do not indicate gradients or matrix transpose, e.g. in Γ

′
.

Finally, the first-order reduced Lagrangian writes

Γ1 = −µa·dc+ Γ
′b
1 b·dq−H1dt . (2.51)

In the results above, the term Γ
′b
1 was kept free in order to include both of the choices considered

above. As Γ
′b
1 is free, the natural choice for a maximal reduction is Γ

′b
1 = 0; then the reduced

Hamiltonian is non-zero:
H1 = µ

√
2µBφ c̄b

,
a−āb

,
c

2 +Bavg(Gµ
1 ) .

Alternatively, H1 can be set to zero, by choosing

Γ
′b
1 = − B√

2µBφ
avg(Gµ

1 )− µ c̄b
,
a−āb

,
c

2 . (2.52)

This last choice is possible only if the inversion of φ does not cause a singularity, i.e. if avg(Gµ
1 ) has

no overall contribution of order zero in φ, which will have to be verified when avg(Gµ
1 ) is identified

(see Eq. (2.60)).
The first-order Lagrangian (2.51) induces the following first-order reduced Lagrange matrix,

which will be part of the pivotal matrix at higher orders:

ω1 =




0 Rg ·c 0 ∂cH1

ω
q;q
1 0 Rg ·a 0 ∂aH1

−∂φΓ
′b
1 −∂µΓ′b

1 +Rg ·b 0 ∂bH1

0 0 ∂φΓ
′b
1 0 0 0 ∂φH1

−Rg ·c −Rg ·a −Rg ·b+ ∂µΓ
′b
1 0 0 1 ∂µH1

0 0 0 0 −1 0 0

−∂cH1 −∂aH1 −∂bH1 −∂φH1 −∂µH1 0 0



, (2.53)

where the matrix ωq;q
1 is defined by

dq·ωq;q
1 ·dq := dq·

[
− µ∇b·a ∧ c̄b

,−
(
∇×

(
Γ
′b
1 b
))

×
]
dq .

At the end of the first-order analysis, three freedoms remain: Gθ
1, which is a parameter in Gc

2;

Gµ
1 , which is a parameter in Gφ

1 , in Ga
2 and in H1; and either Γ

′b
1 or H1, which is a parameter in

the other one.

The results (2.48)-(2.50) have physical implications. For instance, Gc,a
2 determines (together

with G1) the perpendicular component of the second-order Larmor radius through the formula
(q− q)2 = Gq

2 − 1
2G

z
1·∂zGq

1 . Its averaged contribution will imply that the Larmor radius is not a
pure fluctuation, and later on, a non-zero Gb

2 will be obtained, which will imply that the Larmor
radius is not purely transverse to the magnetic field.

Those features are well known in guiding-center works, and we do not insist on them. Here,
we focus on the mechanism of the reduction, to show how it can be performed to arbitrary order
in the Larmor radius using gauge-independent coordinates for the gyro-angle, and why it can be
considered as a maximal reduction.

This point is the turning point of all the reduction: the matrix ω−1 + ω0 + ω1 is invertible.

Thus, in the induction for high orders, the pivotal matrix M∞ will be the set of
(
ω−1, ω0, ω1

)

acting on the set of unknown components of (Gn+1,Gn,Gn−1).
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It means that with respect to the reduction procedure announced in 2.3.5, the first stage of the
reduction is achieved, and the order at which ω−1+ω0+ ...+ωnb

becomes invertible is nb := 1. So,
the critical order at which the pivotal matrix becomes the same at each order is nc 6 2nb + 2 = 4
(see the appendix for a more detailed analysis of the reduction procedure, with especially the role of
the orders nb and nc, introduced in pages 90 and 90). Accordingly, the algorithm for the derivation
at high orders (third stage mentioned in the appendix) can be identified by now, but it will be
efficient only for orders n > 4. The intermediate orders (named "second stage" in the appendix)
must be studied separately.

In order to introduce the derivation order by order, we first go through the second stage and
postpone the third stage, but it is important to notice that this last is independent of the second
stage and could be studied before. Especially, all the high-orders algorithm relies on the matrix
M∞, together with the differential operators involved in dSn. They are already known by now, and
are determined by the choices that have been made previously, and mainly by the choices at order
1.

2.2.4 Core of the second stage: order 2

At the following order n = 2, the reduced Lagrangian is given by (2.19)

Γ2 = G3·ω−1 +G2·ω0 +
G1
6 ·d

[
G1·(3ω0 + 2ω̃0)

]
+ dS2 . (2.54)

At the previous orders, it appeared that for the algebraic part of the equations, the requirements on
the average Lagrangian were dealt with exactly the same way as the requirements on the fluctuating
Lagrangian. So, they will not be studied separately. Only the integrability condition will restore a
difference between them for some of the unknowns.

At this point, the scheme for the unknown Gi is not purely algebraical: G1 is still not completely
known, and it is involved in a first-order differential non-linear equation because of the term iG1dλ,
with

λ := 1
6G1·(3ω0 + 2ω̃0) .

In Eq. (2.54), the exterior derivative must be computed for the 1-form λ that is not explicitly
known yet. Unlike in previous subsections, an explicit computation is not possible, and an abstract
formula must be used; care must be taken that the usual formula (2.14) for exterior derivative can
not be used, because it is valid only when the basis is composed of closed 1-forms. Otherwise, it is
replaced by the more general formula:

dγ = d(γjej) = d(γj) ∧ ej + γjdej (2.55)

= ei(∂iγ
j − ∂jγ

i)ej + γjdej ,

for any 1-form γ, with components γj in the basis ej .
In Eq. (2.55), two operations are to be identified: the action of the exterior derivative on scalar

functions dγj expressed in the chosen basis for 1-forms, and the exterior derivative of the basis dej .
For the exterior derivative on scalar functions dγj , it writes as usual

d(γj) ∧ ej = ei(∂iγ
j − ∂jγ

i)ej ,

provided the differential operators ∂i are given by the dual basis (2.35) to the chosen basis (2.32)
of 1 forms ei.

As for the exterior derivatives of the basis dei, they are easily computed as:

d(dφ) = d(dµ) = 0

d(b·dq) = −dq·(∇× b)× dq

d(c·dq) = −dq·(∇× c)× dq− δθ ∧ a·dq
d(a·dq) = −dq·(∇× a)× dq+ δθ ∧ c·dq
d(δθ) = −āb

,
dq ∧ c̄b

,
dq+ d(āc

,
) ∧ dq .
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In dδθ, the derivative a·c, appears. Such terms should be avoided, since they are not determined,
as shown by (2.9). But there is no trouble here, since in all the 1-forms in this derivation, the term
eθ = −a·(dc − dq·∇c) comes from a·dc = −e1 + dq·∇c·a. The exterior derivative of the second
term will generates d(a·c,) ∧ dq, which will automatically cancel the term Rg coming from dδθ.

As a result, there is no need to compute those terms. Computing the exterior derivative of a
1-form γ can be made according to the following procedure: write γ = γ′ − γθRg·dq, where now
the spatial components γ′q·dq do not involve ac

,
. Then apply Eq. (2.55) to γ′ and to −γ′θRg·dq.

The cancellation of the terms containing d(Rg)· ∧ dq gives the resulting formula:

dγ = ei(∂iγ
′j − ∂jγ

′i)ej + γ′id′ei − ei∂iγ
′θ ∧Rg·dq , (2.56)

in which d′ei = dei − δiθd(a·c,) ∧ dq, where δ is the Kronecker delta, which means that d′ei is
exactly dei but without the problematic term in d(δθ).

With Eq. (2.56), the quadratic term in G1 is found to have its momentum components linear

in the unknowns
(
Gθ

1, avg(G
µ
1 )
)
, and differential only for Gθ

1:

6
(
iG1dλ

)φ
= −Ga

1∂φ
[
2Ga

1Rg·a− 2Gθ
1

]
(2.57)

6
(
iG1dλ

)µ
= −Ga

1∂µ
[
2Ga

1Rg·a− 2Gθ
1

]
+ 4Ga

1Rg·a− 4Gθ
1

6
(
iG1dλ

)θ
= −Ga

1∂θ
[
2Ga

1Rg·a− 2Gθ
1

]
+ 6Gµ

1 +Ga

1.6J322 ,

where the coefficient J322 is defined by

J322 :=
µ
3

(
3J + 2J̃ + 2Rg·a

)
= µ

[
φ(c̄b

,
a− āb

,
c) + B

,
a

3B

]
.

Notice that it does not depend on Rg, precisely because the term 2ac′a coming from Eq. (2.55)
cancels the corresponding term in J̃ .

The differential equation for Gθ
1 does not make things much more complicated, since it can be

easily solved, e.g. by expansion in
√
µ and φ. Alternatively, a trick can be used to make the scheme

purely algebraical [24]; it is not essential for the derivation, but we will use it because it simplifies
much the explanations.

The idea is to notice that in this case, the only differential operators involved come from the
second term of the exterior derivative (∂iλ

j − ∂jλ
i) dyi⊗ dyj , i.e. they are involved in expressions

that write −Gi
1∂jλ

idyj = −Gi
1dλ

i. In addition, in the sum over the index i, only one of the terms
involves a differential operator d acting on the unknown Gθ

1, namely the term with i = a. An
integration by parts over this term can transfer the differential operator over the pre-factor Ga

1,
which is already known. This is a way to make the equation algebraic.

This integration by parts is justified by the gauge function. The equation for Γ2 can be added
a total derivative, which can be chosen d(Ga

1λ
a) and extracted from dS2 by dS2 = dS′

2 + d(Ga
1λ

a):

−Ga

1dλ
a + dS2 = −Ga

1dλ
a + dS′

2 + d(Ga

1λ
a) = dS′

2 + λadGa

1 ,

and this formula is not differential any more, but algebraic for Gθ
1, which is contained in λa.

Then, Eq. (2.54) becomes

Γ2 = G3·ω−1 +G2·ω0 + Λ+ dS′
2 , (2.58)

with

Λ :=iG1dλ+ d(Gaλa)

= ( Λc Λa Λb | 0 0 0 | Λt )

+

(
Ga

1

G
µ
1

Gθ
1

)T
·
(

0 āc
,
a J322

0 0 0 1 0
0 −1 0

)
,
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where the momentum components are written in matrix form because they will determine the
unknowns

(
Gθ

1, avg(G
µ
1 )
)
.

Now, the induction relation just relies on a pivotal matrix M2, which appears in the set of
(
G3·ω−1,G2·ω0,Λ

)
,

in which a linear algebraic operator (a matrix) acts on the unknown components of (G3,G2,G1).
It is invertible in the sense that it determines six unknown components of (G3,G2,G1), which

is the maximum that can be done at each order. Remember the matrix can not be fully invertible,
since the transformation is time-independent, so that Gn is 6-dimensional, whereas the matrix
has value in the 7-dimensional space (q,p, t); and by the way, the 7-dimensional matrix is anti-
symmetric, hence not invertible. The seventh requirement is to be provided by the gauge function
S′
2, which is the only integrability condition involved at this order.

More precisely, removing all the coefficients that do not contribute, as was done in (2.41),
Eq. (2.58) becomes

(
Gc

3
Ga

3

)T
·
(

0 B 0 0 0 0 0
−B 0 0 0 0 0 0

)

+




Gb
2

G
φ
2

G
µ
2

Gθ
2



T

·




−I K 0 −
√
2µB −φ

√
2µB
2µ

0 H0
∂bB

B

0 0
√
2µB 2µBφ

0 0 φ
√
2µB
2µ 0

H0

µ

0 0 0 0




+
(

G
µ
1

Gθ
1

)T
·
(

0 0 0 0 0 1 0
0 0 0 0 −1 0 0

)

=−
(

Gc
2

Ga
2

Ga
1

)T
·
(

0 −J I 0 0 0 H0
∂cB
B

J 0 −K 0 0 0 H0
∂aB
B

0 0 0 0 āc
,
a J322 0

)

− ( Λc Λa Λb | 0 0 0 | Λt )

+ ( Γ
c

2 Γ
a

2 Γ
b

2 | Γ
φ
2 Γ

µ
2 Γ

θ
2 | H2 )

− ( ∂cS′
2 ∂aS

′
2 ∂bS

′
2 | ∂φS′

2 ∂µS′
2 ∂θS

′
2 | 0 ) , (2.59)

where the left-hand side contains just the terms involved in the matrix inversion to determine the
unknown components of

(
G3,G2,G1

)
.

Eq. (2.59) is similar to (2.41), and the same comments can be done as at the previous order, in
the two paragraphs following formula (2.41).

To solve the equation, an analysis similar to the one at the previous order leads to the procedure
summarized in the following tabular, where each row corresponds to one of the equations. The
component Γ

i
2 of the reduced Lagrangian involved in the corresponding equation is indicated in

the first column; the unknown which controls the equation and permits Γ
i
2 = 0 is indicated in the

second column; the coefficient to be inverted is indicated in the third column.

Equation Unknown Coefficient

avg(Γ
θ
2) avg(Gµ

1 ) 1

osc(Γ
θ
2) osc(S′

2) ∂θ

Γ
φ
2 Gb

2 −√
2µB

Γ
µ
2 Gθ

1 −1

Γ
b

2 Gφ
2

√
2µB

H2 Gµ
2 B

Γ
c

2 Ga
3 −B

Γ
a

2 Gc
2 B

A few comments are in place. As had been announced in the derivation of Eq. (2.49), the new

feature is that the equation for avg(Γ
θ
2) can be controlled only by the average first-order magnetic

moment avg(Gµ
1 ). It is why it was not available at the previous order.
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The coefficient ∂θ is an operator, but it is invertible over gyro-fluctuations.

The set of
(
Γ
φ
2 ,Γ

t
2

)
is a coupled set of equations for

(
Gφ

2 ,G
µ
2

)
, but each of the unknowns can

be assigned to one of the equation because the system can be solved in the following way. The
freedom Gφ

2 controls the column for Γ
b

2, since the coefficient
√
2µB is invertible. The solution for

Gφ
2 is parametrized by Gµ

2 , which is still unknown, but appears in this equation. Then, the freedom

Gµ
2 controls the column for Γ

t
2 = H1, because when inserting the solution for Gφ

2 , the coefficient
of Gµ

2 becomes B, which is invertible.
At the end, the reduced Lagrangian Γ2 is free and can be set to zero, as required for the maximal

reduction. The freedom avg(S′
2) (which is a parameter in the formulae obtained for Gθ

1, G
b
2, G

φ
2 ,

Gµ
2 , Ga

3, and Gc
3) can not be useful and is set to zero.

In a similar way as at the previous order, at that point, the order Γ2 is completely satisfactory
in itself, since the reduced Lagrangian has been fully reduced Γ2 = 0.

However, the procedure will have to be changed, because at the following order the secondary
requirement for Γ

θ
3 can be controlled only by avg(Gµ

2 ), which is therefore not available to get the

tertiary requirement for Γ
t
2. So, this last requirement has to be dropped.

Accordingly, avg(Gµ
2 ) remains free at this order, and it is a parameter in Ga

3 and in Γ
t
2. This

last has a non-zero value, but its equation was coupled with the one for Γ
b

2, and the non-zero term
can be put in either of these components of Γ2.

One can consider recovering a zero value for this term by using the freedom avg(S′
2), whose

value had been arbitrarily fixed to zero in the process above.
Indeed, if avg(Sn) is let as a free parameter in Gb

2, Gθ
1 and Gφ

2 , then when replacing these
variables by their expression, the requirement avg(H2) = 0 becomes an equation for avg(S′

2).
Unfortunately, this equation is not easily studied.

As a first attempt, S′
2 can be chosen such that it is absent from Gθ

1, as it was done in Eqs.
(2.43)-(2.44). Then it is easy to see that the equation for avg(S′

2) will have the same structure as
Eq. (2.46). This equation may not be integrable, as it was the case for Eq. (2.46). In this case,
one should relax the condition for avg(S′

2) to be absent from Gθ
1, and the differential equation for

avg(S′
2) could be more difficult to study, because Gθ

1 is involved in the 1-form Λ in Eq. (2.59) in a
rather intricate way.

Applying the procedure identified above gives

avg(Gµ
1 ) = µ

√
2µB
B φ(āb

,
c− c̄b

,
a) (2.60)

osc(S′
2) = µ

√
2µB
B

[
− 2B

,
c

3B + φ āb
,
a−c̄b

,
c

4 − 2φ2c̄b
,
b
]

Gb

2 = µ
B

[
āb

,
a−c̄b

,
c

4 − 4φc̄b
,
b
]
+

∂φavg(S
′
2)√

2µB

Gθ
1 =

√
2µB
B

[
ac′a− B

,
c

B + φ āb
,
a−c̄b

,
c

4 − φ2c̄b
,
b
]

+ ∂µavg(S
′
2) (2.61)

Ga

3 =
1
B

[√
2µB

{
JGa

2 − IGb

2

}
+ S′

2c+ Λc

]

Gc

3 =
1
B

[√
2µB

{
JGc

2 −KGb

2

}
− S′

2a− Λa

]

osc(Gµ
2 ) =

osc

−B

[
Rt2 +Gb

2(1 + φ2)µB
,
b−

√
2µBφRb

2

]

osc(Gφ
2 ) =

osc

2µB

[
φRt2 + (1 + φ2)

{
Gb

2φµB
,
b−

√
2µBRb

2

}]

avg(Gφ
2 ) =

avg

2µB

[
−BφGµ

2 +
√
2µB

{
Γ
b

2 − Rb

2

}]

H2 = avg

[
Rt2 +Gb

2(1 + φ2)µB
,
b

+BGµ
2 +

√
2µBφ

{
Γ
b

2 − Rb

2

}]
, (2.62)
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where

R2 :=Λ + dS′
2 +

(
Gc

2

Ga
2

)T
·
(
0−J I 0 0 0 H0

∂cB
B

J 0 −K 0 0 0 H0
∂aB
B

)
.

With the results (2.60)-(2.62), the parameters involved in Eqs. (2.48)-(2.50) can be made
explicit:

avg(Gφ
1 ) =

1√
2µB

[
Γ
b

1 + µ1+2φ2

2 (c̄b
,
a− āb

,
c)

]
(2.63)

H1 =
√

2µBφ
[
Γ
b

1 − µ c̄b
,
a−āb

,
c

2

]

Ga

2 =
µ
B

[
φ5c̄b

,
a−7āb

,
c

4 − φ2āb
,
b
]

Gc

2 =
µ
B

[
− B

,
c

B + φ āb
,
a−c̄b

,
c

4 − φ2c̄b
,
b
]
+

√
2µB
B

∂µavg(S′
2)

2 . (2.64)

The reduced first-order Hamiltonian for the choice Γ
b

2 = 0 is

H1 = µ
√

2µBφ āb
,
c−c̄b

,
a

2 .

The reverse choice H1 = 0 is possible, since its existence condition in Eq. (2.52) is satisfied, as is

clear in (2.60). It corresponds to a component Γ
b

1 of the reduced Lagrangian given by

Γ
′b
1 = µ c̄b

,
a−āb

,
c

2 , (2.65)

which is regular in φ = 0, as expected.
In Eqs. (2.60)-(2.64), the components G1 and Gq

2 have been completely computed and simpli-
fied for comparison with previous results, because it is the point where usual derivations stop.

For the other components Gφ
2 , Gc

3, G
a
3, and H3, Eqs. (2.60)-(2.64) are explicit solutions. Their

right-hand side involves only known quantities (or quantities that are free parameters for these
relations), but it has not been not expanded and simplified. This can can be done in a straightfor-
ward way just by computing explicitly the terms involved, but we will not pursue in that direction,
since the calculation for the Λc,a,b is lengthy, and useless for our purpose, which is just to show
how the procedure can be performed to arbitrary order. In addition, they are the topic of a work
by the authors of [23], and were already partly introduced in [128].

In the results, the term Γ
b

2 was kept free to include both of the choices considered above: setting

the non-zero term in H2 just means choosing Γ
b

2 = 0. The other choice H2 = 0 corresponds to

Γ
b

2 = avg

[
Rb

2 − 1√
2µBφ

{
BGµ

2 + Rt2 +Gb

2(1 + φ2)µB
,
b
}]

.

This last choice is possible only if the term inside the curled parentheses has no overall contribution
of order zero in φ.

Also avg(S′
2) was kept free, because one can consider using it to obtain the full reduction with

both Γ
b

2 = 0 and H2 = 0: it will imply a differential equation for avg(S′
2), which might not be

integrable, just as happened at the previous order in Eq. (2.46), but it might be integrable, or
partly integrable, and then provide the full reduction, or at least a stronger reduction. Otherwise,
it can be set to zero.

At the end of the analysis at order n = 2, it remains one unknown, one freedom, and a binary
choice. The unknown is avg(Gµ

2 ); it is a parameter in Gφ
2 and in H2 (or Γ

b

2); it will be deter-
mined at the following order. The freedom is avg(S′

2), which remains free, but could not be used

to improve the reduction. The binary choice is that either Γ
b

2 or H2 is set to zero, the other is
computed accordingly. This is very similar to what had occurred at the previous order, but now,
the unknown Gθ

2 does not appear as a parameter, since it is not at all involved at this order, as is
clear in Eq. (2.59).
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2.2.5 End of the second stage: order 3

Let us turn now to the following order Γ3. The equation writes (2.19)

Γ3 = G4·ω−1 +G3·ω0 +G2·ω1 − (G2·d)2
2 Γ−1

+ (G1·d)2
24 G1·(3ω0 + ω0) + dS3 .

The unknowns are components of (G4,G3,G2). The pivotal matrix is not M∞, i.e. not just given

by (ω−1, ω0, ω1), because of the correcting term − (G2·d)2
2 Γ−1. This term might make the derivation

more difficult, since it is not algebraic, but non-linear and differential for G2

−G2
2 ·d(G2·dΓ−1) = −G2

2 ·
[
d
{
−B(Ga

2c) +B(Gc

2a)
}
· ∧ dq

]
.

It can be written in matrix form

−1
2



Gc,a,b

2

Gφ,µ,θ
2

0




T

·



M11 M12 0

M21 0 0

0 0 0


 ,

where the matrices Mij have obvious definitions, and are independent of Gµ,θ
2 .

This is enough to show that this additional term can be transferred into the right-hand side,
i.e. it involves only terms that are already known at each step of the computation.

When computing Γ
p

3 for the unknowns Gθ
2, avg(G

µ
2 ), G

b
3 and osc(S3), the only components of

G2 involved in the correcting term are in Gq
2 , which is already known at that point. Then, when

computing Γ
q,t
3 for the unknowns Gφ

3 , Gc
4, G

a
4, and osc(Gµ

3 ) all the components of G2 are involved
in the correcting term, but they are all known at that point.

As a consequence, the correcting term can be put in the right-hand side of the equation, and
the pivotal matrix is actually M∞, i.e. the set of (ω−1, ω0, ω1) acting on the unknown components
of (G4,G3,G2). This means that the critical order at which the pivotal matrix becomes the same
at each order is nc := 3, and the order Γ3 can be included in the third stage, with all higher orders,
which is studied in the following section.

2.2.6 Third stage: algorithmic orders 4 and higher

Now, the second stage of the method mentioned in appendix is ended and the third stage is
beginning, which means that the matrix to be inverted is always the same at any order n > 3, and
it is indeed invertible. So, the reduction can be performed to arbitrary order. The only possible
complication comes from the integrability condition for the gauge function Sn (and possibly Γn),
but after settling it, the reduction process becomes fully algorithmic and unique.

Equation and algorithm

This is proven by induction. Let us suppose that at some order n > 3, the set of unknowns are

gn :=
(
Γn, Sn,G

θ
n−1, avg(G

µ
n−1),osc(G

µ
n), (2.66)

Gb

n,G
φ
n,G

c

n+1,G
a

n+1

)
,

which means that before that order, all lower-order quantities gi<n are already determined, and
that after that order, all higher-order quantities gi>n will remain free parameters. This assumption
is verified at order n = 3, which initializes the induction. As announced in the appendix, we have
included the reduced Lagrangian Γn in the vector gn, because some components of Γn can not be
set to zero and have to be computed in the process.

The reduced Lagrangian is given by Eq. (2.95)

Gn+1·ω−1 +Gn·ω0 +Gn−1·ω1 = Γn − Rn − dSn ,
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where Rn indicates all terms of ...eG2eG1Γ that are of order n but do not involve Gn+1, Gn or
Gn−1:

Rn := [...eG2eG1Γ]n − [Gn+1·ω−1 +Gn·ω0 +Gn−1·ω1] ,

in which the index n indicates the term of order n.

Then, the pivotal matrix M∞ is the set of

(
ω−1, ω0, ω1

)
,

acting on the unknown components of (Gn+1,Gn,Gn−1).

It is invertible in the sense that it determines six unknown components of (Gn+1,Gn,Gn−1),
which is the maximum that can be done at each order. The last requirement is provided by the
integrability condition for the gauge function Sn.

More precisely, grouping as usual in the left-hand side only the terms with unknown components
of (Gn+1,Gn,Gn−1), and removing all the coefficients that do not contribute, the induction relation
for Γn writes

(
Gc

n+1

Ga
n+1

)T
·
(

0 B 0 0 0 0 0
−B 0 0 0 0 0 0

)

+

(
Gb

n

G
φ
n

G
µ
n

)T
·
(

−I K 0 −
√
2µB −φ

√
2µB
2µ

0 H0
∂bB

B

0 0
√
2µB 0 0 0 2µBφ

0 0 φ
√

2µB
2µ

0 0 0 H0

µ

)

+
(
avg(Gµ

n−1)

Gθ
n−1

)T
·
(

0 0 ∂µΓ
′b
1 0 0 1 ∂µH1

0 0 0 0 −1 0 0

)

=− R′
n (2.67)

+ ( Γ
c

n Γ
a

n Γ
b

n | Γ
φ
n Γ

µ
n Γ

θ
n | Hn )

− ( ∂cSn ∂aSn ∂bSn | ∂φSn ∂µSn ∂θSn | 0 ) ,

where the terms involving known components of (Gn+1,Gn,Gn−1) have been grouped with Rn:

R′
n = Rn (2.68)

−
(

Gc
n

Ga
n

)T
·
(

0 −J I 0 0 0 H0
B
,
c

B

J 0 −K 0 0 0 H0
B
,
a

B

)

−




Gc
n−1

Ga
n−1

Gb
n−1

G
φ
n−1

osc(Gµ
n−1)

0
0




T

·




0 0 0 ∂cH1

ω
q;q
1 0 0 0 ∂aH1

−∂φΓ
′b
1 −∂µΓ′b

1 0 ∂bH1

0 0 ∂φΓ
′b
1 0 0 0 ∂φH1

0 0 ∂µΓ
′b
1 0 0 1 ∂µH1

0 0 0 0 −1 0 0

−∂cH1 −∂aH1 −∂bH1 −∂φH1 −∂µH1 0 0



.

Again, the same comments as the ones after Eq. (2.41) are in place. Also, when computing Rn,
Eq. (2.56) is to be used to account for the derivative of the chosen basis of 1-forms and for the
cancellation of the derivatives of Rg.

When solving the induction relation, the mechanism is the same as at order Γ0 for Γ
c,a
n , and the

same as at order Γ1 for Γ
b,φ,t
n and osc(Γ

θ
n). In addition, the new feature is the presence of ω1 for

Γ
µ
n and avg(Γ

θ
n), but the mechanism is similar to what happens at order Γ2, in the sense that the

pivotal coefficients are the same. Mainly, the procedure relies on three conjugation-like relations:
(c, a) are conjugated for ω−1; (µ, θ) are half-conjugated for ω1, in the sense that the structure is
quarter-canonical; and (b, φ) are half-conjugated for the symplectic part of ω0.
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The same procedure can be applied, which is reminded in the following tabular.

Equation Unknown Coefficient

avg(Γ
θ
n) avg(Gµ

n−1) 1

osc(Γ
θ
n) osc(S′

n) ∂θ

Γ
φ
n Gb

n −√
2µB

Γ
µ
n Gθ

n−1 −1

Γ
b

n Gφ
n

√
2µB

Hn Gµ
n B

Γ
c

n Ga
n+1 −B

Γ
a

n Gc
n+1 B

Then, all the components of Γn remain free. This can be used to explore the various guiding-
center representations at higher orders [26]. Here, we are interested in a maximal reduction, which
means to set them to zero, so that the optimal requirements are fulfilled. The freedom avg(Sn),
which is a parameter in the formulae obtained for Gθ

n−1, G
b
n, G

φ
n, G

µ
n, Ga

n+1, and Gc
n+1, can not

be useful and can be set to zero.

In the same way as at orders 1 and 2, avg(Gµ
n) must remain free at that order, because it will

be needed to solve Γ
θ
n+1 at the following order, just as avg(Gµ

n−1) is needed here to solve Γ
θ
n. So,

one can not have the reduced Lagrangian fully simplified Γn = 0. One of its component remains
uncontrolled, either Γ

t
n or Γ

b

n.
One can consider recovering a zero value for this component by using the freedom avg(Sn),

whose value had been arbitrarily fixed to zero in the process above. Then, when computing
Gθ
n−1, G

b
n and Gφ

n, the average gauge function avg(Sn) remains a free parameter. When replacing
these variables by their expressions, the equation avg(Hn) = 0 becomes a differential equation for
avg(Sn), whose structure is2

[
φ∂b +

∇·b
2 (1 + φ2)∂φ

]
avg(Sn) = o.t. , (2.69)

where o.t. means other terms that can be explicitly computed. This resembles Eq. (2.46), but
here, the condition (2.43) has not been required in the process, contrary to what happened in
previous orders. The reason is that now Γ

µ
n is controlled by Gθ

n−1, which has no effect on Hn. The
integrability of Eq. (2.69) will depend on the right-hand side and must be studied at each order; a
priori, it is not guaranteed, since obstructions such as (2.47) are possible.

So, a systematic procedure can not use the freedom avg(Sn) to get the additional requirement
Hn = 0, which must be dropped. Then the freedom avg(Sn) is useless and can be set to zero.

At the end of the n-th-order analysis, exactly all of the unknowns gn have been determined. All
the components of (Gn+1,Gn,Gn−1) that remain unknown are in gi>n. Yet, this does not allow
us to conclude that the induction is proven, because the unknown avg(Gµ

n) already appeared as a
parameter in Ga

n+1 and in H1; hence it is not completely free, whereas the induction assumes it
is free (independent of the quantities gi6n), since it is in gn+1; it will be determined at the next
order, and this could imply coupled equations, whose solvability is to be verified.

However, avg(Gµ
n) will be computed in equation for avg(Γ

θ
n+1), which corresponds to the column

Γ
θ
n in Eq. (2.67) at the next order, and does not involve any of the parameter-dependent quantities.

Thus, there is no coupled equations, and the solutions are indeed explicit. This terminates the
proof of the induction: the reduction can be performed to arbitrary order in ε.

Notice that here, the induction relation is considered from the point of view of Γn; this caused an
interlocking between the orders, where in the solution at each order, a parameter is involved, which
will be identified at the next order, when computing Γ

p

n+1. To avoid this interlocking phenomenon,

it is possible to consider the induction relation from the point of view of
(
Γ
q,t
n ,Γ

p

n+1

)
. The drawback

2Interestingly, the operator to be inverted is the same as for the secular differential equation for the magnetic
moment, see e.g. Eq. (10.17).
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would be that when solving the equations for Γ
p

n+1, one would begin the heavy computations for
R′
n+1, which are involved in Γ

q

n+1, hence at the next order. In computations by hands, this can be a
trouble, but when using computer-assisted computations, this is no trouble and it would probably
be a more relevant choice.

Explicit induction relations

The argument above emphasizes the distinction to be made between four kinds of quantities. First,
some of the quantities are already known before the computation at order n, namely gk<n.

Second, for i 6∈ {b, t} the components Γ
i
n have not been computed yet, but they can be excluded

both from the unknowns and from the parameters, since the algorithm shows that before any
computation, they are already known to be zero for all n > 3, to fulfil the requirements (2.20)-
(2.23) for Γ.

Third, some quantities are not known yet, and will be determined after the matrix inversion,
namely

(gn)∞ :=
(
avg(Gµ

n−1),osc(Sn) | (2.70)

Gb

n,G
θ
n−1,G

a

n+1,G
c

n+1 |
avg(Gφ

n), osc(G
φ
n), osc(G

µ
n), Hn

)
,

in which a vertical dash | was written at the places where a vertical line will be written in the
matrix M∞ below.

Last, other quantities are not known and will remain free after the matrix inversion, namely Γ
b

n,
avg(Sn) and gk>n; the variables gk>n will be determined at higher order, but one of its component,
avg(Gµ

n), is already involved in the equations at order n and behaves as a parameter in this matrix
inversion. So, the parameters are

(gn)α :=
(
avg(Gµ

n), avg(Sn),Γ
b

n

)
. (2.71)

Notice that avg(Gµ
n) is included in the parameters (gn)α even if it is not an element of gn but of

gn+1.

With the procedure above, the left-hand side of Eq. (2.67) can be written as just a matrix
product, provided the pivotal matrix is extended, to act on all the quantities (gn)∞ to be computed
at this order, even the reduced Hamiltonian Hn and the gauge function Sn. To include the gauge
function Sn in the vector which is acted upon by the matrix, some coefficients in the matrix must
be operators, and the equation will be transposed, so that the operators act on their right. For
clarity, the order of the columns is chosen to fit with the steps of the algorithm

(
avg(Γ

θ
n), osc(Γ

θ
n) | Γ

φ
n,Γ

µ
n,Γ

c

n,Γ
a

n |

avg(Γ
b

n), osc(Γ
b

n), osc(Γ
t
n), avg(Γ

t
n)
)
,

so that the equations are solved one after the other in order. A vertical dash | was written at the
places where a horizontal line will be written in the matrix M∞ below.

With this order for the rows and for the columns, the equation becomes

M∞·(gn)T∞ +Mα·(gn)Tα + R′T = 0 . (2.72)

Here, the rows are the equations to be solved, corresponding to the (re-ordered) columns of
Eq. (2.67). The first term involves exactly the unknown quantities to be identified at this or-
der. The second term involves exactly the parameters involved at this order but which will remain
free at the end of this order. The third term involves only quantities that are already known at the
beginning of this order.
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The matrices are given by

M∞ :=




1
∂θ
∂φ−

√
2µB

∂µ−φ
√

B
2µ−1

∂c −I −B
∂a K B

avg∂µΓ
b

1 ∂b
√
2µB

osc∂µ(Γ
b

1) ∂b
√
2µBφ

√
B
2µ

osc∂µ(H1) −H0∇·b 2µBφ H0
µ

avg∂µ(H1) −H0∇·b 2µBφ −1




, (2.73)

and

Mα :=




0 0 0
0 0 0

∂φ
∂µ
∂c
∂a

φ
√

B
2µ ∂b −1

∂b
0 0 0
H0
µ




,

in which the zeros were written only in the empty rows, for clarity, and we used that ∇·B = 0
implies ∂bB

B = −∇·b.

In the matrix M∞, grouping together the eighth and ninth rows and columns produces a 9 ∗ 9
lower triangular matrix, whose coefficients on the diagonal are invertible, since the operator −a·∂c
is invertible on gyro-fluctuations. The eighth and ninth rows and columns have been grouped
together because they constitute an invertible 2 ∗ 2 matrix on the diagonal. A convenient way to
invert the resulting 9 ∗ 9 matrix is to separate its diagonal terms:

M = M′ + D ,

where M′ has null diagonal and D is purely diagonal. Then the equation can be written

−D·(gn)T∞ = M′
∞·(gn)T∞ +Mα·(gn)Tα + R′T .

The solution of Eq. (2.72) is then

(gn)
T
∞ = (−D)−1·

[
M′

∞·(gn)T∞ +Mα·(gn)Tα + R′T
]
, (2.74)

where (−D)−1 is a diagonal matrix with coefficients

(−D)−1 := Diag
(
− 1,−(∂θ)

−1 | 1√
2µB

, 1, 1
B ,− 1

B |

− 1√
2µB

,−D−1
2 , 1

)
,

in which D−1
2 is the inverse matrix for the coupled system (the eighth diagonal term of the 9*9

matrix mentioned above)

−D−1
2 := −

(
√
2µB φ

√
B
2µ

2µBφ B(1+φ2)

)−1

=




− 1+φ2√
2µB

φ
2µB

φ

√
2µ
B − 1

B


 .
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The operator ∂−1
θ is the gyro-integral operator. It can be computed without introducing any

gyro-gauge, with the intrinsic calculus introduced in Chapter 2, or with the matrix calculus in-
troduced in Chapter 1. Also, the coordinate θ can be used as an intermediate quantity for this
computation, which is made at constant q, so that the presence of a gauge (only for the interme-
diate computation) is of no consequence; then ∂−1

θ is the primitive with respect to θ such that its
gyro-average is zero. Over the Fourier modes k 6= 0 (i.e. over gyro-fluctuations), it is the operator
1
ik .

Even if (gn)α appears in its right-hand side, Eq. (2.74) is an explicit solution for the induction
relation: in the matrix M′

∞, all the coefficients on the diagonal or above it are zero, so that when
computing the unknowns one after the other starting from the left, each of them is computed as a
function of previously computed quantities, i.e. the right-hand side contains only known quantities
or parameters, but none of the remaining unknowns. Alternatively, the induction can be solved
using a standard matrix inverse

(gn)
T
∞ = −M−1

∞ ·
[
Mα·(gn)Tα + R′T

]
, (2.75)

with M−1
∞ easily computed from (2.73), but the coefficients are more complicated, and practical

computations usually follow the procedure of Eq. (2.74).
For the solution gn, Eq. (2.74) or (2.75) must be completed by the following relations for the

trivial components of Γn:

Γ
i
n = 0 for all i 6∈ {b, t} ,

and by the determination of the parameters (gn)α.

The first parameter avg(Gµ
n) will be determined at the following order, in an equation that

does not involve Gφ
n and Hn, so that there are not coupled equations between the orders.

The second parameter Γ
b

n is either put to zero or adjusted so as to make the reduced Hamiltonian
Hn zero by the relation

Γ
b

n =avg

[
R′b
n +Gµ

n−1∂µΓ
′b
1 + ∂bSn (2.76)

− 1√
2µBφ

{
Gµ
n−1∂µH1 −Gb

nH0∇·b+BGµ
n + R′t

n

}]
.

This last choice is possible only if the term inside the parentheses has no overall contribution of
order zero in φ.

The last parameter avg(Sn) is determined by Eq. (2.69), in order to make both Γ
b

n and Hn

zero, when the equation is integrable. Otherwise, it is determined to cancel as many terms of Γ
b

n

and Hn as possible, or it can be set to zero for simplicity.
Accordingly, at the end of each order n > 3, the situation is the same as at the end of order

2, with the presence of one parameter avg(Gµ
n), of one binary choice between Γ

b

n and Hn, and
of one free variable avg(Sn). When the integrability condition can be satisfied, the reduction of
the Lagrangian Γn is complete and the solution is defined to within an element in the kernel of
the operator (2.69). Otherwise, avg(Gµ

n) is generally set to zero, and after the binary choice the
transformation is unique, but on the whole there are two maximal reductions. As announced in
the appendix, the unicity of the transformation is determined by the integrability condition for Sn,
and possibly by an additional criterion for simplicity.

2.3 Comparison with previous works

2.3.1 Agreeing results

Computations of the previous section for the guiding-center transformation and reduced Hamil-
tonian can be summarized by Eqs. (2.37), (2.48)-(2.50) and (2.60)-(2.64). As for the reduced
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symplectic Lagrangian, it is exactly known, and is given by Eqs. (2.39) and (2.51), together with

the prescription that all other terms Γ
j
n are zero, except Γ

b

n>2 (as well as Γ
′b
1 ), which can be freely

chosen, for instance it can be chosen zero, or such that it makes the reduced Hamiltonian Hn zero
by Eq. (2.76).

These results agree with the standard results of the literature, provided the connection vector
is defined as Rg := R, which corresponds to the traditional gauge-dependent framework. For in-
stance, in the paper [88] Littlejohn made the choice Γ2 = 0, and accounting for this choice, our
formulae agree with his ones. In the paper [29], the choice is H2 = 0, and again, accounting for this

choice through Eq. (2.65) for Γ
′b
1 , our results agree with the ones of [29]. Thus, the procedure of the

previous section succeeds in obtaining the standard guiding-center reduction without introducing
any gyro-gauge and using purely intrinsic coordinates.

The explicit induction relation (2.74) shows that the reduction is possible to arbitrary orders,
but it also gives an explicit formula to practically compute the transformation generator order by
order. At any order in the Larmor radius, all that remains to do is to develop the Lie derivatives
involved in the term R′

n. Only the number of terms generated by the Leibniz rule makes the process
difficult to compute by hand at higher order, but the explicit induction involves few basic operations
(just exterior derivatives and matrix products) and can easily be implemented to higher orders on
a computer. Actually, as the series is a polynomial, the derivation does not rely on formal calculus
but just on symbolic calculus, which is still easier to implement.

Once the generators Gn are obtained, the guiding-center coordinate transformation is given by

z −→ z := ...e−G2e−G1z . (2.77)

The reduced Lagrangian 1-form is

Γ = avg(Γ)− µa·dc+
[
Γ
′b
1 +

∑

n>2

Γ
b

n

]
b·dq−

∑

n

Hndt (2.78)

= (A+ Γ
b
b)·dq− µa·dc−Hdt ,

where the Hamiltonian terms Hn are provided by (2.74), whereas the parallel Lagrangian terms

Γ
′b
1 and Γ

b

n are chosen freely at each order n, and can be chosen zero.
The reduced dynamics is obtained the usual way, by computing the Lagrange matrix ωs := dΓs,

then inverting it to get the Poisson matrix J := ω−1
s , and last computing Hamilton’s equations

żi := Jij∂jH. Alternatively, the reduced equations of motion can be obtained by Lie transforming
directly the velocity vector field

ż −→ ż := ...eL2eL1 ż .

Here, performing these computations is useless, since the reduced Lagrangian (2.78) completely
agrees with previous results in the literature in the gauge-dependent case, and so will the reduced
motion.

We only indicate the guiding-center Poisson bracket, in which the effects of the gauge indepen-
dence and of the higher-order corrections are interesting. It is computed from the Lagrange 2-form,
easily obtained from Eq. (2.78) in a matrix form:

ω := dΓ =




0 −B A 0 x 0 c·∇H
B 0 −C 0 y 0 a·∇H
−A C 0 −D z− E 0 b·∇H
0 0 D 0 0 0 ∂φH

−x −y E− z 0 0 1 ∂µH
0 0 0 0 −1 0 0

−c·∇H −a·∇H −b·∇H −∂φH −∂µH 0 0




,
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with

A := −a·∇ × (A+ Γ
b
b)− µc·∇b·b× b

,
b = I +O(B0) , x := Rg·c ,

B := −b·∇ × (A+ Γ
b
b)− µa·∇b·b× b

,
c = −B + J +O(B0) , y := Rg·a ,

C := −c·∇ × (A+ Γ
b
b)− µb·∇b·b× b

,
a = K +O(B0) , z := Rg·b .

D := ∂φΓ
b
=
√
2µB +O(B0) , (2.79)

E := ∂µΓ
b
= φ

√
2µB
2µ +O(B0) ,

where we used the fact that the order in
√
B indicates the expansion order, as mentioned about

Eq. (2.27).
Then the Poisson bracket in matrix form writes:

J := (ωz;z)−1 =




0 1
B

0 C
BD

0 y

B

−1
B

0 0 A
BD

0 −x
B

0 0 0 B
BD

0 0

− C
BD

− A
BD

− B
BD

0 0 −α
0 0 0 0 0 −1
−y

B
x
B

0 α 1 0



,

with

α := −E

D
+

Cx+ AY+ Bz

BD
= −E

D
+

B∗·Rg

BD
,

where the reduced magnetic field B∗ is defined as usual by Eq. (2.82). The coefficients B and D are
invertible since Eq. (2.79) shows that they are small corrections from −B and

√
2µB, which are

invertible.
As a result, between two arbitrary functions of the reduced phase space f(z) and g(z), the

Poisson bracket is

{f, g} = −∇∗f · b
B
×∇∗g +

B∗
BD

· ∇∗f ∧ ∂φg +
E

D
∂φf ∧ ∂θg + ∂θf ∧ ∂µg , (2.80)

where the symbol ∇∗ is a shorthand for the operator

∇∗ := ∇+Rg∂θ , (2.81)

which does not depend of the free function Rg, since for any choice of Rg the definition (2.81) gives
the same result, which is equal to the covariant derivative ∇ when the gauge vector is chosen zero,
i.e. (Rg)∗ = ∇∗c·a = 0.

The Poisson bracket (2.80) agrees with the literature, e.g. [17, 29, 86, 88, 128]. Especially, the
traditional ordering is patent: the last two terms are of order µ−1, and correspond to the fast
gyro-angle dynamics; the second term is of order ∇√

µB
= µ−1ǫ, and corresponds to the intermediate

motion along the magnetic field lines; as for the first term, it is of order B−1∇2 = µ−1ǫ2 , and

corresponds to the slow drifts across the magnetic field lines. Remind ǫ := rL∇ =
√

µ
B∇, as defined

in (2.3), is the usual small parameter of guiding-center theory.
In previous works, the reduced Poisson bracket often had only three coefficients (the ones for

B∗, namely A, B, and C), either because of incidental lowest-order simplifications, or because of

the choice they had performed for Γ
b
. For a general result about maximal reductions at arbitrary

order, the Poisson bracket is given by Eq. (2.80), where the higher-order correction Γ
b

n>1 to the
Lagrangian impacts five coefficients A, B, C, D, and E (and hence B∗), through the definitions (2.79),

i.e. as an effect of the five derivative operators ∂c, ∂a, ∂b, ∂φ, ∂µ, acting on the seminal term Γ
b

n>1.

The only difference compared to previous results, besides the coordinate system and the term
Γ
b

n>1 being let free, is that the gauge vector R = ∇e1·e2 is replaced by the general connection
Rg = ∇c·a. This difference could impact the reduced magnetic field B∗, given by

B∗ := −Aa− Bb− Cc = ∇×
(
A+ bΓ

b
)
+V , (2.82)
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where the vector V is generated by the term −µa·dc in the Lagrangian Γ, which implies for the
Lagrange 2-form the presence of the term

−µ da· ∧ dc = −µ da·(aa+ bb+ cc)· ∧ dc
= −µ da·b ∧ b·dc
= −µ db·a ∧ c·db
= −µ dq·∇b·a ∧ c·b,dq
= −µ dq·∇b·b× b

,
dq

=: −dq·V × dq . (2.83)

The first equality comes by inserting the identity (aa+bb+cc) beside the wedge symbol. The second
and third equalities come because (a, b, c) is orthonormal. The fact that the vector b depends only
on q implies the fourth equality, which can be rewritten to get the final answer.

Eq. (2.83) shows why the vector V (and hence also the reduced Poisson bracket) is indeed
independent of the free function Rg. In the reduced Lagrange 2-form, the concerned term (2.83)
is the counterpart in the gauge-independent approach of the term dq · (µ∇ × R) × dq involving
the gauge vector in the traditional approach. Actually, the curl of the gauge vector ∇×R is also
gauge-independent, and the corresponding term is explicitly given by

−µ d(dq·∇e1·e2) = −µ dq·∇e2· ∧ e1
,
dq

= −µ dq·∇b·b× b
,
dq , (2.84)

where again, the second equality comes by inserting the identity (bb+e1e1+e2e2)· beside the wedge
symbol and by using the fact that (b, e1, e2) is orthonormal.

So, in the reduced magnetic field B∗, the term with Rg exactly fits with the corresponding term
with R of previous results. This is a good illustration of how the approach using the coordinate c

completely agrees with the gauge-independent part of the usual results, whereas it proceeds in a
different way and never introduces the gauge e1. Indeed, in the usual approach, ∇e1·e2 is assumed
to depend only on the position, which implies the formula above. On the contrary, in the gauge-
independent approach, the velocity is present in the first lines of (2.83), but it comes out from the
computation that the result is naturally just a purely spatial term in the Lagrange matrix.

By the way, the argument above shows that V is indeed the curl of −µRg = −µ∇c·a, but it is
not surprising since the spatial part of a term df ∧ dg is given by the cross product with the curl
of −f∇g:

dq·(df ∧ dg)q;q·dq = dq·∇f ∧ g,dq
= dq·(∇(fg

,
)) ∧ dq

= −dq·(∇× (fg
,
))× dq .

Thus, Eq. (2.82) can be rewritten

B∗ := ∇×
[
A+ b

{√
2µBφ+ Γ

′b
1 +

∑

n>2

Γ
b

n − µRg

}]
,

which is manifestly divergenceless.

Here, for clarity and following previous works, we considered no electric field, in order to focus
on the reduction mechanism. The extension for a non-zero electric field is straightforward, because
the Lagrangian is changed only by the addition of −eΦdt, with Φ(q) the electric potential [17,29,88].
It affects the spatial part of ∂zH, which plays no pivotal role in the derivation: it always appears
in the right-hand side of the equations, i.e. in terms that are already known. As a consequence,
the presence of this term does not change the procedure at all. In the results, each term of order
n becomes a polynomial in Φ (or rather ∇Φ), which introduces a second parameter εE in the
theory, which corresponds to mE

pB or to mE∇
eB2 . A more detailed study shows that the momentum

in denominators is only the perpendicular momentum ‖p⊥‖, and that at the lowest orders the
perpendicular electric field can be one order higher than the parallel electric field [17, 86, 88].
The series remains perturbative provided the associated parameter is small εE << 1, as usual in
guiding-center reductions.
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2.3.2 Polynomiality in the momentum coordinates

In the results above, the usual expansions are recovered, but the choice of the coordinates c and
φ makes all quantities polynomial in the used coordinates and monomial in

√
µ and

√
B. This is

useful to simplify the derivation, which can be considered as a symbolic-calculus algorithm based on
just two operations acting on words (polynomials) composed from a very restricted alphabet. Such
structures can also be useful when going beyond the formal expansions and considering them as
asymptotic series. For instance, the polynomiality in the cotangent of the pitch-angle is important
to control the loss of accuracy of the expansion in the domains where the direction of the particle
momentum is close to the direction of the magnetic field.

Previous results were obviously polynomial in the variable c, but they did not use it as a
coordinate, since they replaced it by the variable θ. In addition, the expansion in the usual small
parameter ε :=

√
2µ/B∇ := rL∇ was also present, but it did not correspond to an expansion in

µ nor in B, but only in ∇, which is not a scalar quantity; it is why keeping the quantity e−1 was
useful to indicate the expansion order. Here, the order is directly indicated by the power in

√
µ or√

B, since each order is a monomial in those quantities.

The monomiality in
√
µ is especially interesting, because the orders in the operator ∇ and in the

function B have only a dimensional meaning: the term of order εn will involve terms like
(∇B
B

)n
,

but also terms like ∇n−kB
B

∇kB
B , or ∇nb. In a similar way, the order in B is given by the order of

the prefactor rnL =
√
2µ/B

n
, but the variable B appears in other places when it is acted upon by

gradients; then, it is compensated by a B in the denominator, which means that gradients act only
on the variable lnB.

The use of the variable φ instead of the usual v‖ is crucial for the results at each order to be both

polynomial in the coordinates and monomial in
√
µ and

√
B. It is a generalization of Chapter 1,

which considered only the minimal guiding-center reduction. It seems it had not been noticed in
previous works on the full guiding-center reduction [29,86,88,128].

When using the standard variable v‖ instead of φ, the monomiality in
√
µ and

√
B is not

verified: for instance, in Gθ
1, the term of order φ2 writes − v2‖

B
√
2µB

c̄b
,
b, which is not a polynomial

in
√
µ and which is not of the same order in

√
µ nor in

√
B as the term of order φ1, since this last

writes
v‖
B

āb
,
a−c̄b

,
c

4 , as is confirmed in [29,88], for instance.

On the contrary, when using the variable φ, the polynomiality is verified, because of the structure
of the Lagrangian, of the action of derivatives, especially (2.9), and of the coefficients to be inverted
for the matrix inversions involved in the derivation. Notice that the induction procedure also
guarantees that all formulae will be polynomial in the variable b.

As for the monomiality, it is easily understood from a dimensional analysis: only three inde-
pendent dimensional quantities are involved in the results, e.g. ∇, B and p. When using the
momentum coordinates (φ, p, c) or (φ, µ, c), two of them are dimensionless, and only one of them

can generate the dimension of p, namely p or
√
µ. For an expansion in rL∇ =

√
µ
B∇, the variable

µ can be involved only in the pre-factor of each order, otherwise, it could not be compensated to
generate a dimensionless quantity.

On the other hand, when using the momentum coordinates (v‖, p, c) or (v‖, µ, c), there is a
redundancy in dimension between v‖ and p (or

√
µB), which means that ratios of them are expected

in order to get dimensionless quantities. In an expansion in ε, if the term of order (rL∇)n is a
polynomial in v‖, it has to be actually a polynomial in

v‖
p or

v‖√
µB

. As a consequence, formulae will

be sums of terms (p∇B )n
(
v‖
p

)j
, which is not a monomial in p (or equivalently in

√
µ and

√
B); by

the way, it is not a polynomial either, because of the terms where j > n.

Last, the polynomiality in φmeans that each term writes (p sinϕ∇B )n
(
p cosϕ
p sinϕ

)j
=
(
p∇
B

)n
cosj ϕ sinn−j ϕ,

which agrees with the idea that the entities cosϕ and sinϕ come from expansions of the momentum
p, or rather the corresponding dimensionless vector p

p .
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2.3.3 A two-fold maximal reduction

In addition to the averaging reduction and the inclusion of the magnetic moment among the reduced
coordinates, the goal was to obtain a reduced dynamics as strongly reduced as possible. So, a
complete achievement is obtained when all the components of Γn are zero, at least for higher
orders. For the procedure, it means using the seven unknowns to solve the seven corresponding
equations, or rather twice these numbers, if one considers the average and the fluctuating parts as
different variables. It did work for all the requirements but one, which could not be satisfied and
had to be dropped.

The obstruction for a complete reduction Γn>3 = 0 comes from the requirement (2.23): it im-

poses to obtain Γ
θ
n by fixing the freedom avg(G), which was the only freedom available for the

equation Γt = 0 and is no more available for it. It is why one of the requirements has to be dropped.
Then, it remains more unknowns than requirements. So, the transformation is not unique. Espe-
cially, while it naturally appeared in H, the non-zero component of Γ can be transferred to Γ

b
.

Thus two maximal reductions can be considered.

The first alternative (called the Hamiltonian representation in [23]) sets (Γs)n>2 = 0. Then,
the reduced Poisson bracket is completely known before computing the transformation to higher
orders; it is given by the lowest three orders of the symplectic Lagrangian (Γs)n61. The reduced
Hamiltonian is not exactly known; it is given by a whole series in ε and must be computed order
by order. The reduced dynamics is a Hamiltonian perturbation of the guiding-center equations of
motion at order 2.

The second alternative (called the symplectic representation in [23]) is to set Hn>1 = 0. Then,
the Hamiltonian is completely known, and the structure of the Poisson bracket is also known.
The only unknown information on the reduced dynamics is concentrated in the component of the
reduced Lagrangian parallel to the magnetic field Γ

b

n, which is given by a whole series in ε. The
Poisson bracket includes a kind of reduced magnetic field B∗, induced by the higher-order terms of
the Lagrangian.

The choice of symplectic or Hamiltonian representation can be made at each order in the deriva-
tion, but it seems more convenient to be consistent and to make the same choice for all orders, as
suggested in [23].

These two maximal reductions give a unified view of various choices that can be found in the
literature, and they anticipate what will happen at higher orders. Indeed, even in the standard non-
canonical Hamiltonian approach of the guiding-center reduction introduced by Littlejohn, several
transformations can be found, often related by differences of choice related to this two-fold maximal
reduction. For instance, Littlejohn’s initial guiding-center reduction [86] corresponded to the second
possibility above at order n = 1, but at higher order, it is unclear whether the procedure provided
a maximal reduction, or if some terms could remain both in the Hamiltonian and in the Poisson
bracket. The seminal reduction by Lie transforming the Lagrangian [88] corresponded to a maximal
reduction with the first choice ("Hamiltonian representation").

Later papers by Lie transforming the Lagrangian turned to the other choice, e.g. [29] used a
maximal reduction (at order n = 1) but with the second possibility. Recently, while improvements
in the second order were addressed [23, 128], interest was renewed in the first possibility. The pa-
per [128] actually corresponds to a mixed choice, where the second possibility is used at order n = 1
and the first one is used at order n = 2. The work [23] introduced the designation of Hamiltonian
and symplectic representation to differentiate between the two choices, and studied an "equivalence
relation" between the two choices (when the same choice is made for all orders), which is a way to
go from one representation to the other by a redefinition of the reduced parallel momentum p‖ (or

equivalently of φ).

The algorithm at higher order, with the condition (2.76) for the symplectic representation, had
not been studied in detail. In the previous section, the Hamiltonian representation appeared as
indeed guaranteed at arbitrary order, and as naturally provided by the procedure as a maximal
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guiding-center reduction, whereas the symplectic representation appeared as submitted to a condi-
tion at each order in ε: in Eq. (2.76), the term inside the bracket must have no overall contribution
of order 0 in φ. This could explain why first papers addressing both the first and the second order
in ε systematically used the Hamiltonian representation; the symplectic representation was used
only later, when the condition was observed as verified.

The equivalent relation introduced in [23] relies on a relationship between these representations,
which allows to go from one to the other. Hence it might seem that it guarantees the existence of
the symplectic representation, but it is not the case.

The underlying idea (see Eq. (17) in [23]) is the following. Start from the reduced Lagrangian
written in symplectic representation (we use here the variable p‖ instead of φ, and the symbol (Π‖)n

for the higher-order terms of Γ
b

in order to better agree with the notation used in [23]):

H = µB +
p2‖
2 ,

Γ
b
= p‖ +

∑

n>1

(Π‖)n .

Then, redefine the reduced parallel momentum so as to absorb all the series Γ
b

in it:

p′‖ := p‖ +
∑

n=1

(Π‖)n . (2.85)

With this coordinate, the symplectic part of the Lagrangian is fully reduced:

Γ
b
= p′‖ .

To obtain the reduced Hamiltonian with this coordinate, one just inverts the series (2.85):

p‖ := p′‖ −
∑

n>1

(Π‖)n = p′‖ +
∑

n>1

(Π′
‖)n , (2.86)

with (Π′
‖)n some coefficients easily obtained by inserting iteratively the first equality in the occur-

rences of p‖ in
∑

n=1(Π‖)n, as is standard to invert a near-identity series.
Then the reduced Hamiltonian in the new coordinate writes

H = µB + 1
2

[
p′‖ +

∑

n>1

(Π′
‖)n
]2
.

It is a full series in ε, which corresponds to the Hamiltonian representation. This is a constructive
procedure showing that when the symplectic representation exists, then the Hamiltonian represen-
tation exists and is easily obtained.

Now, what is actually needed is to go in the reverse direction, since the derivation of the
guiding-center reduction shows that the Hamiltonian representation is natural and guaranteed to
exist, whereas the symplectic is suspected of having existence conditions.

It turns out that the procedure in the reverse direction can break down. Start from the reduced
Lagrangian written in Hamiltonian representation:

H = µB +
p2‖
2 +

∑

n>1

Hn ,

Γ
b
= p‖ . (2.87)

Then, redefine the reduced parallel momentum so as to absorb all the higher-order terms
∑

n>1Hn

in the term with p‖:

p′2‖ := p2‖ + 2
∑

n>1

Hn . (2.88)
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With this coordinate, the Hamiltonian part of the Lagrangian is fully reduced:

H = µB +
p′2‖
2 .

To obtain the reduced symplectic Lagrangian with this coordinate, one just inverts the near-identity
transformation (2.88) by writing it as:

p′‖ := ±
√
p2‖ + 2

∑

n>1

Hn = p‖

√
1 +

2
∑

n>1Hn

p2‖
, (2.89)

and then by expanding the term
√
1 + ε. This assumes that the ratio 2

∑
n=1Hn

p2‖
is small. The point

is that this condition is not guaranteed a priori, even if the series is near-identity.
Indeed, the derivations here are formal. "Near-identity" has only a dimensional meaning. It

means that the ratio between the first and zeroth-order term is of order ε = rL∇, but only in
dimension, its value might not to be small if it is multiplied by a large dimensionless factor such
as 1/ cosϕ, as in (2.89). Thus, a division by p‖ can cause a singularity.

When going from the symplectic to the Hamiltonian representation, no such a division was
needed, since the series inversion (2.86) just consisted in composing series. On the contrary, when
starting from the Hamiltonian representation, the series inversion (2.89) involves a division by p2‖.

This causes a singularity if Hn contains a term of order 0 or 1 in p‖.
It is interesting to see that difficulties arise here at p‖ = 0 (or equally at φ = 0), which is precisely

where they appeared in the guiding-center reduction in the previous section. This suggests that
singularities in φ = 0 are indeed a difficulty for the symplectic representation. Accordingly, at each
order, it can be used only when the absence of singularity in (2.76) is verified.

2.3.4 Gyro-gauge independence

The intrinsic formulation of the guiding-center reduction was motivated by questions about the
traditional gyro-angle variable θ. The derivation with the coordinate c shows that it does succeed
in shedding light on those questions.

First, the traditional coordinate was a detour. In all guiding-center works, the variable θ never
appears in itself (except in its own definition and subsequent relations); for instance, it does not
appear explicitly in one of the components of G or Γ, which all depend on θ only through the
corresponding physical quantity c (or a := b× c); even the gyro-angle component of the generator
Gθ verifies this statement. The detour is not given by the physics, since it imposes to fix arbitrarily
a gauge e1(q), which is not related to the physics of the problem. The role of the intrinsic approach
was to avoid this detour, and it achieves its goal since it obtains the full guiding-center results
without introducing any gauge and by working purely with c.

From a mathematical point of view also, the use of the variable θ was not completely satisfac-
tory, because the gyro-angle corresponds to a circle bundle [25, 81, 90]. The traditional coordinate
θ makes this structure somehow disappear, because the manifold trivially becomes R3 × S1. It is
why the variable θ does not have a global existence in a general magnetic geometry [25]. On the
contrary, when using the physical variable c, the circle bundle naturally arises: as c is defined on a
space-dependent circle, spatial displacements imply a variation of c, so that a covariant derivative
is involved, which encodes the circle-bundle geometry for the gyro-angle [25] and does not imply
some restricted class of circle bundle. A more detailed study of the coordinate system is outside
the scope of the present chapter, and will be reported in Chapter 3.

In some way, the relevance of this coordinate is obvious, since it just results from keeping the
initial coordinate, in which all the circle-bundle picture was included. From this point of view,
performing the derivation with this variable is a way to see how it globally agrees with the physics
and the mathematics of the problem, and to make intrinsic definitions arise naturally for all the
quantities involved in the process.

Indeed, the previous section shows that the reduction follows the same procedure with the
vectorial constrained coordinate c as with the scalar coordinate θ, but that there are slight changes
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in the quantities used. The gauge vector R came as naturally replaced by the connection Rg for the
covariant derivative. The generator of Larmor gyrations ∂θ came with an intrinsic definition −a·∂c.
The basic 1-form for the gyro-angle dθ appeared as replaced by a non-closed 1-form δθ, which agrees
with the fact that θ considers the circle bundle trivial, whereas it should not. This implied to use
more intrinsic definitions for the operations used, such as (2.55) and (2.56) for exterior derivatives.
Also, this implied to be careful on how the basis of 1-forms and of vector fields are chosen, but the
natural ones were found to agree with each other.

Thus, the formalism with c is slightly more involved, but it perfectly fits both with the physics
and the mathematics of the problem, which correspond to a non-trivial circle bundle.

From a formal point of view, the results with the physical variable c mainly correspond to
replacing the gauge vector R by the connection term Rg. Thus, they include the standard gauge-
dependent results as a special case, but they are more general: in the usual approach R(q) depends
only on the position and can not be chosen freely (e.g. R = 0 is not possible [25, 86, 90]); here,
Rg(q,p) can be any function of the position and momentum. Especially, the physical definition of
c corresponds to the function Rg := −φ∇b·c, which depends also on the momentum and preserves
the polynomiality in φ.

Other gauge-dependent quantities are interesting to consider. In previous works, the coordinate
transformation θ −→ θ was gauge dependent (see for instance Eq. (30c) in [88], or in [17] the solution
for the generator Gζ

1 below Eq. (5.45)), as well as the definition of the coordinate θ, and also the
gradient ∂q|θ. It is why the gauge vector R was involved in some of the resulting formulae, e.g.
the Poisson bracket, in such a way as to make all the physical or geometrical (intrinsic) quantities
gauge-independent. For instance, in the Poisson bracket, gradients appear only in the combination
∇∗ := ∇ + R∂θ [17]. It would be interesting to interpret it as the gradient corresponding to a
special gauge, because it would remove the appearance of the gauge vector in all the derivation,
and would simplify computations. The issue is that it is not possible because it would correspond
to fix the gauge in such a way that ∇e1·e2 = 0, which is not possible even locally [86,90].

In the gauge-independent approach, all the coordinates, including the gyro-angle c, are gauge-
independent, as well as the transformation c −→ c: at first order, it is not transformed by aGθ

1,
because the covariant derivative must be taken into account, which means that it is given by
aGθ

1 − Gq
1 ·∇c. This last quantity is indeed independent of the connection vector Rg := ∇c·a,

as can be verified in (2.61). In the same way, at higher order, all the transformed coordinates
z = ...e−G2e−G1z will be independent of Rg, where z := (q, φ, µ, c) are physical coordinates.

Gradients are also involved in combinations involving Rg (see Eq. (2.80), for instance). This is
no surprise, since the connection on the fiber bundle involves some arbitrariness, but the combi-
nations can always be written ∇∗ := ∇ +Rg∂θ, which is connection-independent. In addition, it
can be interpreted as the covariant derivative associated with the trivial connection Rg = 0. Thus,
when working with the coordinate c, this choice can be used to simplify computations and to make
them connection-independent.

2.3.5 Maximal vs. minimal reduction

The derivation procedure confirms the respective interests of Lie transforming the velocity vector
field and the Lagrangian 1-form.

As with concerns the minimal requirements for the guiding-center transformation, working on
the equation of motion is much more efficient, since it systematically obtains the fluctuating part
of the reduced motion just by inverting the operator ∂θ.

The procedure with the Lagrangian is much more involved, as can be seen in previous sections,
especially because the order mixing makes the scheme more elaborated and because the algorithmic
stage begins only at higher order: the induction matrix mixes up the orders, changes at each order
for n 6 3, and involves differential operators in some coefficients. It is why in this chapter, as in
previous works, only a part of G2 is explicitly computed, whereas Chapter 1 directly obtained the
full second-order generator G2.
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In addition, the minimal guiding-center reduction can hardly be obtained by working on the
Lagrangian, because going from the Lagrangian to the motion mixes the components up. To guar-
antee an averaged slow reduced motion for the four coordinates (q, φ), one would need to average
all of the seven components of the Lagrangian, which is not a minimal transformation.

As with concerns the additional requirements for the slow dynamics, working on the equation
of motion is not efficient, because the equations to be solved are secular differential equations
that are not simple to deal with, as shown in Chapter 1. Working on the Lagrangian is more
efficient, because it essentially consists in algebraic equations, which deals the same way with gyro-
averages as with gyro-fluctuations. This makes it easy to identify good choices for the averaged
transformation generator avg(Gn) in order to obtain a reduced Lagrangian as strongly reduced as
possible. Thus, it provides a maximal guiding-center reduction almost as simply as the minimal
one.

Also, working on the Lagrangian 1-form makes it easy to impose requirements on the reduced
Hamiltonian structure, for instance to obtain a quarter-canonical structure for the coordinates
(µ, θ), which both provides a constant of motion µ and a Hamiltonian sub-dynamics for the 4-

dimensional reduced motion (q̇, φ̇).

Conclusion

The full guiding-center reduction can be performed to arbitrary order in the Larmor-radius ex-
pansion by Lie transforming the Lagrangian 1-form while keeping physical gyro-gauge independent
variables as coordinates, following the same procedure as when working with the standard gauge-
dependent gyro-angle.

For higher orders, the procedure was shown to be completely algorithmic. The pivotal role is
played by the inverse of the lowest-order Lagrange matrix ω−1 +ω0 +ω1, together with a differen-
tial equation for the function Sn. An extended matrix was defined and used to explicitly solve the
induction equation to arbitrary order in the Larmor radius.

The results exactly agree with previous works, but they were obtained without introducing any
gyro-gauge, and working purely with the physical coordinate c as the gyro-angle coordinate. In
addition, the choice of the cotangent of the pitch-angle as a coordinate for the parallel velocity
made the results purely polynomial in the coordinates and monomial in

√
µ and

√
B.

Compared to the method by Lie transforming the equations of motion, the process is much more
elaborated, especially because of the order mixing, but it easily obtains a much stronger result.
It does not rely on differential equations for the reduced motion, but on algebraic equations for
the reduced Lagrangian. A quarter-canonical reduced Hamiltonian structure provides a constant

of motion µ and a Hamiltonian sub-dynamics for the 4-dimensional slow reduced motion (q̇, φ̇).
In addition, the procedure makes the reduced dynamics trivial not only in the gyro-fluctuating
components of the Lagrangian, but also in six of the averaged components out of seven.

As a result, all but one of the components of the reduced Lagrangian 1-form are put to zero
for all orders higher than two. Only one of them can not be made exact, and is given by a whole
series. The two canonical choices are recovered: either to enclose the series into the Hamiltonian
(Hamiltonian representation), then the reduced Poisson bracket is exact, or to enclose the series into
the spatial component of the Lagrangian parallel to the magnetic field (symplectic representation),
then the Hamiltonian is exact and the uncertainty of the reduced motion is traduced by a kind of
reduced magnetic field B∗.

The Hamiltonian representation appeared as naturally induced by the reduction process, whereas
the symplectic representation is subjected to a condition at each order, to avoid a singularity in
φ = 0, i.e. at the bounce points of particle trajectories.

These representations make the reduction maximal because for a general magnetic field, the
procedure can not get a stronger reduction for which even the last component of the Lagrangian
would be zero. The obstruction originates from the special role of the magnetic moment; in the
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Hamiltonian representation, this can be viewed because the magnetic-moment component of the
transformation generator can remove only the fluctuating part of the reduced Hamiltonian function,
since the averaged part is imposed by the requirement of adiabatic invariance.

The use of gauge-independent coordinates had little effect on the reduction procedure. All the
ingredients of the standard reduction with gauge-dependent coordinates were found to be present,
but they naturally arose with an intrinsic definition or they were replaced by a different intrinsic
object playing a similar role.

It was observed to fit in with both the physics and the mathematics of the system, by restoring
the general circle-bundle framework, which practically disappeared with the coordinate θ, and by
making the coordinates directly induced by the physical state of the system.

For instance, the gauge removal introduced a vectorial quantity c for the gyro-angle coordinate.
This caused the coordinate system to be constrained and implied a connection for the covariant
derivative on a space-dependent circle, which is directly linked to the circle-bundle structure un-
derlying in the gyro-angle coordinate and which replaced the gauge vector of the gauge-dependent
approach.

The closed 1-form dθ was replaced by a non-closed 1-form δθ, which is related to the non-
triviality of the circle bundle for a general magnetic geometry.

In previous works relying on the coordinate θ, the gauge independence of the physical results
implied that gradients were systematically involved in special expressions, which were not related
to derivative operators because no gauge fixing were suited to them. These expressions were found
to be related to covariant derivatives corresponding to suitable connections.

Unlike the gauge fixing for the coordinate θ, the connection fixing for the coordinate c depends
not only on the position, but on the momentum as well. This is all the more convenient as
the physical definition of c and its associated connection depend on both the position and the
momentum. In addition, this removes one of the assumptions causing the presence of anholonomy
in the gyro-angle motion.

So, the intrinsic gyro-angle coordinate c is a way to tackle some of the questions involved in
the guiding-center anholonomy and gauge- (or connection-) arbitrariness. These questions will be
the topic of the next chapter.

In the present chapter, we focused on the formal derivation of perturbation series, as is usual
in guiding-center works, and as is the standard first step in perturbation theory [87]. A possible
continuation for future works will be to relate these formal expansions with asymptotic series, in
a similar way as what was done in [4] for Kruskal’s work, and what is beginning being done about
Littlejohn’s works [47,48]. Also, as usual in perturbation theory, convergence of the guiding-center
series is an interesting question to investigate, probably with methods of accelerated convergence
[10]. In these attempts, the structures of the expansion series, such as the polynomiality induced
by the cotangent of the pitch-angle, are expected to play a role.

Appendix: Mechanism of the reduction

In this appendix, we introduce the mechanism at work when Lie transforming the Lagrangian 1-
form. Indeed, the basic ideas of the derivation are very elementary, but they are hidden by the
details of the procedure, which are rather involved because of some order mixing and other subtleties
between algebraic and differential integrability conditions. In addition, practical computations in
the case of the guiding-center are somehow intricate. All the same, the method is very efficient and
has quite a wider domain of application than just the guiding-center reduction. So, it seems useful
to give a general overview of the method for people not familiar with it.
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Fundamental ingredients

A) The goal is to solve Eqs. (2.16) for the unknowns Gn and Sn, with the requirements (2.20),
(2.21) and (2.23) identified above. Ideally, the maximal reduction sets Γn = 0 for all higher orders
n, as a result of (2.21).

The solution is built order by order in the Larmor radius. Each order implies to solve the
equation

Γn = Gn+1·ω−1 + Rn + dSn ,

where Rn is a shorthand for all other terms, that do not contain the highest-order generator Gn+1.
The very basic idea of the reduction is that Gn+1 is involved only through a matrix product.

So, at any order, the solution is just given by a matrix inversion

Gn+1 = (ω−1)
−1·
[
Γn − Rn − dSn

]
, (2.90)

provided ω−1 is invertible; then Γn can be chosen zero, and Sn is not useful and can also be set
to zero. This idea of matrix inverse is the key ingredient of the underlying mechanism, even if
the corresponding basic picture is not true at the lowest orders, and at higher orders, it is slightly
complicated by some order mixing and integrability conditions, especially for Sn.

B) As a matter of fact, the matrix ω−1 is usually not invertible, since it corresponds to the
fast part of the dynamics, here the Larmor gyration, which does not concern all the phase-space
coordinates.

At zeroth order, under the requirement Γn = 0, Eq. (2.16) writes

G1·ω−1 = −Γ0 − dS0 .

It has a solution only if the right-hand side −Γ0−dS0 is in the range of the matrix ω−1 (solvability
condition); this is a necessary condition for the corresponding reduction to exist. Usually, it is not
verified for so strong a requirement as Γ0 = 0, and the reduced Lagrangian Γ0 has to be used as a
softening parameter. Then Eq. (2.16) writes

G1·ω−1 = Γ0 − Γ0 − dS0 . (2.91)

One has to check that, with the freedoms S0 and Γ0, the solvability condition can be satisfied
at least for the minimal requirement (2.20) and if possible for the intermediate requirement (2.23);
then, the reduction is possible, and the maximal requirement (2.21) can be considered by trying to
remain as close as possible to the condition Γ0 = 0.

At that point, the solution exists, but it is not unique; it is defined to within an element of the
kernel of ω−1. The choice of this element may be free at this stage of the reduction, but care must
be taken that it may be constrained by the solvability conditions at the following order.

At the next order n = 1, Eq. (2.16) writes

G2·ω−1 +
G1
2 ·(ω0 + ω0) = Γ1 − dS1 . (2.92)

Now, the pivotal matrix M1 to be inverted is the set of ω−1 and ω0+ω0
2 , acting on the set of unknown

components of (G2,G1). Its rank is greater than (or equal to) the rank of ω−1. Care must be taken
that some of the coordinates of G1 are already determined. This introduces some order mixing,
where some components of Gn are determined at order Γn−1, others are computed at order Γn at
the same time as some of the components of Gn+1.

Notice that M1 can not be invertible on the unknown components of G2, because of the non-
trivial kernel of ω−1. In the same way as at zeroth order, this kernel has to be excluded when
studying the invertibility of M1, because it will be involved only at the following order.

Then, if the pivotal matrix M1 is invertible for the ideal requirement Γ1 = 0, then the solution
exists and is unique. Otherwise, there is again both a solvability condition and a non-uniqueness
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of the solution. More precisely, the solvability condition means that there is a solution only if the
right-hand side is in the range of the matrix to be inverted, and that in order to fulfil this condition,
the reduced Lagrangian Γ1 may have be chosen non-zero, but having as many null components as
possible. The non-uniqueness means that the solution is determined only to within an element of
the kernel of the pivotal matrix M1. The choice of this element may be free, but care must be taken
that it may be constrained by the solvability condition at the following order.

At the next orders, the same process goes on. The pivotal matrix Mn evolves at each order
and its rank increases to determine more and more of the unknowns. At high orders, it becomes
of constant rank, and actually it becomes the same at each order. The critical value of n at which
this occurs will be denoted by nc, and the corresponding pivotal matrix will be denoted by M∞.
So, for n > nc, the pivotal matrix verifies Mn = M∞, whereas for n = nc − 1, it verifies Mn 6= M∞.

This can be explained as follows: Eq. (2.19) generically (i.e. at high orders) writes

Γn =
[
(Gn+1·d) + (Gn·d)(G1·d) + ...+ (G1·d)n+1

n+1!

]
Γ−1

+
[
(Gn·d) + (Gn−1·d)(G1·d) + ...+ (G1·d)n

n!

]
Γ0 + dSn . (2.93)

In this analysis, low orders are excluded because there would be some additional coefficients coming
from the exponential series: for instance for n = 1, the term (Gn·d)(G1·d) has a factor 1/2 and is

confounded with the last term (G1·d)2
2! .

Denoting Gn·d by Gn, and grouping together the highest-order Lie derivatives, which contain
the unknowns (which are some of the components of (Gn+1,Gn, ...)), the previous equation becomes

Γn = Gn+1Γ−1

+ Gn
(
G1Γ−1 + Γ0

)

+ Gn−1

[(
G2 +

G2
1
2

)
Γ−1 + G1Γ0

]
(2.94)

+ ...

+ G1

[
(G1)n

n+1! Γ−1 +
(G1)n−1

n! Γ0

]
+ dSn .

Using (2.16) for the lowest-orders reduced Lagrangian Γk, that are already known, the previous
formula can be rewritten

Γn = Gn+1

(
Γ−1 − dS−1

)
+ Gn

(
Γ0 − dS0

)
+ Gn−1

(
Γ1 − dS1

)

+ ...+ G1

[
(G1)n

n+1! Γ−1 +
(G1)n−1

n! Γ0

]
+ dSn

= Gn+1·ω−1 +Gn·ω0 + ...+ dSn + Rn , (2.95)

where Rn indicates all other terms, that are already known, since they do not involve (Gn+1,Gn, ...).
Eq. (2.95) shows that the pivotal matrix Mn is given by the set of matrices ω−1, ω0, etc., acting

on the set of unknown components of (Gn+1,Gn, ...). The matrix Mn is the same at any (high)
order. It is exactly given by the reduced Lagrange matrix at lowest orders.

As a consequence,the pivotal matrix M∞ for all high orders is identified as soon as the set of
(ω−1, ω0, ...) is observed to be invertible on the set of unknown components of (Gn+1,Gn, ...), i.e.
as soon as ω−1+ω0+ ... becomes invertible. We will call nb the order such that ω−1+ω0+ ...+ωnb

is invertible, whereas ω−1 + ω0 + ...+ ωnb−1 is not.
At that point, the basic picture of A) has become a simple picture B), which includes two stages.

At low orders it consists in dealing with non invertible pivotal matrices changing at each order,
and in choosing Γn such that it both fulfils the requirement and leads to an interesting invertible
matrix ω−1 + ω0 + ... + ωnb

. Then at high orders, the induction becomes just a matrix inversion
M−1

∞ , as in the initial basic picture A).

C) The simple picture B) has to be refined. Between these two stages, an intermediate stage
takes place, since usually nc > nb+1. For n ∈ {nb+1, nb+2, ..., nc− 1}, the higher-orders pivotal
matrix is already known but not yet efficient.
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The reason is that Eqs. (2.93)-(2.95) hold only for orders that are high enough, because of the
coefficients generated by expanding the exponentials. If the factors involving (Gn+1,Gn, ...) have
some coefficients non unity, then Eq. (2.95) does not hold, which spoils the conclusion.

But this concerns only low orders. Eq. (2.94) shows that the coefficients will be unity as soon
as n > 2nb + 1, which means that nc 6 2nb + 2.

As an example, consider ωn for n = 0. When computing the next order Γn+1 = Γ1, then Γ0 is
already known, but it is not yet efficient: in Eq. (2.95)

Γ1 = G2Γ−1 + G1

(
1
2G1Γ−1 + Γ0

)
+ dS1

6= G2·ω−1 +G1·ω0 + dS1 ,

the operator to be inverted is not just the set of (ω−1, ω0) because of the factor 1/2 in the first line,
which comes because the generator G1 outside the parenthesis has the same order as the generator
G1 inside the parenthesis. For all higher orders, this will not happen, as is illustrated by the next
order

Γ2 = G3Γ−1 + G2

(
G1Γ−1 + Γ0

)
+ o.t.

= G2·ω−1 +G1·ω0 + o.t. ,

where o.t. is used for "other terms", in order to avoid writing uninteresting terms.

D) The order mixing can also slightly complicate the picture of C), by spoiling the linear
algebraic framework, mainly at order n = 1. Indeed, the first equation to be solved for G2 is
(2.92). However, if some of the components of G1 are still not determined at that point (this is
fairly general as ω−1 is usually not invertible), then they can be involved in a differential equation.
Indeed, Γ0 can be undetermined at that point, and Eq. (2.92) must be let under its initial form
(2.16)

Γ1 =
(
G2 +

G1·d
2 G1

)
·ω−1 +G1·ω0 + dS1 ,

which is now a differential equation for G1, and may even be non-linear in the unknown compo-
nents of G1. This can make the scheme much more complicated: even solvability conditions may
be difficult to identify.

E) Finally, one last point has to be taken into account as well and still makes the scheme
more elaborated than the picture D) above. The pivotal matrix Mn determines the unknown
components of the generator (Gn+1,Gn, ...), but this can generate non-zero time-component Gt

n

for the generator.
For a time-independent transformation, the requirement Gt

n = 0, reduces the dimension of the
effective generator Gn. Then the pivotal matrix can be inverted only if some integrability conditions
are fulfilled. Another way of saying it is that Γn has seven components (seven requirements) whereas
Gn has only six freedoms. The additional freedom comes from the gauge function Sn.

Actually, the presence of this integrability condition for the pivotal matrix M∞ is completely
general and comes because M∞ is antisymmetric. It is not invertible on the 7-dimensional space
(q,p, t), and can be invertible only on a subspace, e.g. on the 6-dimensional phase space (q,p).
For a symplectic Hamiltonian system, the high-orders pivotal matrix M∞ is indeed invertible when
restricted to the phase space, since the Lagrange 2-form ωs is invertible, and so is ωs.

So, the gauge function Sn is not determined by the algebraic matrix inversion, but by the
solvability condition for the matrix inversion. Furthermore, it appears in a differential equation.
Existence of solution for this differential equation can involve other integrability conditions. For
instance, in an equation such as

∂θSn = fn ,

inverting ∂θS implies the function fn to have no gyro-average.
As a result, both the algebraic and the differential integrability conditions must be played with

so as to make Γn = 0. If it is not possible, one has to choose a non-zero reduced Lagrangian
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Γn 6= 0. This means playing with the requirements also, and releasing them slightly, so as to make
the integrability conditions fulfilled and at the same time to keep Γ as strongly reduced as possible.

All these features do not spoil the algorithmic character of the reduction for high orders, because
the differential scheme is very simple (the operators are just ∂zk) and in addition, at all n > nc,
the algebraic scheme for (Gn+1,Gn, ...) is fixed, which makes it possible to conclude about the
differential scheme for Sn so as to make the resulting reduction maximal.

At the end, the induction relations can be written in matrix form provided some coefficients
of the matrix are differential operators. By such a redefinition of the matrix M∞, the induction
relation for high orders n > nc just relies on a matrix inverse M−1

∞ . Then, the basic picture of
Eq. (2.90) becomes efficient: Eqs. (2.16) are solved at arbitrary order through a formula completely
analogous to (2.90), even if the framework is much more elaborated. We want to stress this fact
because the order mixing and the presence of integral operators may hide the triviality of the
induction mechanism.

Resulting procedure in three stages

The previous subsection shows that the reduction is performed in three stages. The first stage
corresponds to the first few orders n 6 nb. The work consists in verifying that the freedoms can
be used both to make the solvability conditions satisfied and to get an interesting invertible matrix
M∞. At the end n = nb, the invertible high-order pivotal matrix M∞ becomes identified, and the
first stage is ended.

The second stage corresponds to a transition stage. The pivotal matrix for high order is identi-
fied, but it is still not efficient at that order. The goal is only to check that the solvability conditions
can be satisfied at these intermediate orders.

The third stage begins at order n = nc, i.e. as soon as the matrix to be inverted becomes M∞.
From that order on, it is sure that the reduction can be performed to any order in the Larmor
radius. As the matrix is now invertible, the solution exists and is unique to each order, and the
process becomes fully algorithmic.

In order to get a formula analogous to (2.90), the pivotal matrix must be extended to include
the gauge function Sn, and some coefficients of the inverted matrix M−1

∞ are then integral oper-
ators. In addition, in order to deal with the order mixing, some intermediate quantities must be
introduced to isolate the components of (Gn+1,Gn,Gn−1) that are already known from the ones
that are not identified yet.

For example, if the pivotal matrix M∞ involves only ω−1 and ω0. Then, Eq. (2.16) or (2.95)
writes

Γn = Gn+1·ω−1 +Gn·ω0 + dSn + Rn , (2.96)

where Rn indicates all terms of (2.16), that do not depend on the unknowns, which are the gauge
function Sn and some components of (Gn+1,Gn). These last quantities can be grouped into one
single vector

gn :=
(
Gn+1,Gn, Sn

)
. (2.97)

The pivotal matrix Mn is then extended to act on all gn (including the gauge function) in (2.96)
and is defined by

Mn·gn := Gn+1·ω−1 +Gn·ω0 + dSn .

As announced, some of its coefficients (the ones acting on the component Sn) are differential
operators. With these conventions, Eq. (2.96) writes

Γn = Mn·gn + Rn .

Now, some of the components of (Gn+1,Gn) are already identified at that order. Let us denote
them by the index a, and the remaining components of g, which are not identified are denoted by
the index ∞:

g =
(
(gn)a; (gn)∞

)
,
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with (gn)a fully identified and all terms of (gn)∞ fully unknown. The Lagrangian writes

Γn = (Mn)a·(gn)a + (Mn)∞·(gn)∞ + Rn , (2.98)

with obvious definitions for the linear operators (Mn)a and (Mn)∞. By assumption, the quantities
Rn and (Mn)a(gn)a are known; in addition, (Mn)∞ = Mn = M∞ is known and invertible. As a
consequence, the induction relation writes

(gn)∞ = M−1
∞ ·
[
Γn − (Mn)a·(gn)a − Rn

]
. (2.99)

It is explicit and makes the basic picture (2.90) apply to all orders n > nc. Some coefficients of M−1
∞

are integral operators, since in the inverse matrix M∞ some coefficients are differential operators.
A few comments are in place. First, some components of Gn+1 remain non-identified after the

order n; they must be excluded from (gn)∞ to get an invertible matrix, because they are elements
of the kernel of ω−1 and will be determined at the next order; this is well illustrated by (2.66) and
(2.70)-(2.71). Second, the components (gn)a can be extracted from gn and its term (Mn)a(gn)a
can be grouped with Rn (see Eq. (2.68)), which plays the same role. Last, the reduced Lagrangian
Γn is in principle taken to be zero, but it was kept free because integrability conditions for Sn can
make it necessary to choose some of its components non-zero; then, it can be included in the vector
gn, as is done in (2.66) and (2.70)-(2.71).

The final algorithm to be iterated for the n-th-order term is trivial: in Eq. (2.99), replace the
lowest orders terms by their expression, already known, then compute the Lie derivatives involved
in the term Rn, and last apply the matrix product with M−1

∞ . The mechanism involves just two
kinds of operations, derivatives and a matrix product, which can be easily implemented to arbitrary
order using computer-assisted formal calculus.

The basic idea shown in (2.90) and (2.99) explains why Lie transforming the Lagrangian 1-form
has the advantage of algebraic equations, which makes it easy to reduce also the averaged part of
the reduced motion, and thus to get non-minimal guiding-center reductions. Indeed, computations
for the non-minimal requirements are treated the same way as for the minimal ones, the only
difference concerns the priority: if all requirements can not be satisfied, then the order of priority
may impose the requirements to be preferred and the ones to be released. This is an essential
advantage of Lie transforming the Lagrangian.

But the overall process is much more involved than the method relying on a Lie transform of
the equations of motion. This last has the essential advantage of relying on just a gyro-integral,
which makes it much more efficient to work on the fluctuating part of the reduced dynamics and
to perform the minimal guiding-center reduction, as is clear in Chapter 1.

In both cases, the reduction relies on explicit induction relations, but when working with the
Lagrangian, the algorithmic stage (third stage introduced above) is efficient only for higher or-
ders. For lowest orders, the reduction is not systematic at all, the choices are crucial to make
the reduction work or not, but they must be guessed rather than derived. In addition, many solv-
ability conditions appear in the process, and there is no a-priori guarantee that they can be satisfied.

In the case of the guiding-center reduction, good choices appear rather naturally, solvability
conditions come as easily satisfied, and the reduction can be considered as rather straightforward,
but two specificities must be taken into account.

Indeed, as expected, at each order, the fluctuating part of Gn is imposed by the minimal
requirement (2.20), which means to put to zero the gyro-fluctuating part of the Lagrangian; and
the averaged part is imposed by the other requirements (2.21) and (2.23), which mean to put to

zero the averaged part of the Lagrangian as well (except that Γ
θ
1 = µ).

However, one of the components of (Gn+1,Gn, ...) that remains not identified is already present
in Eq. (2.96): avg(Γµn) remains as a parameter in the right-hand side of (2.99).

Furthermore, the integrability conditions on Sn can not be fully satisfied, one of the optional
requirements (2.21) must be dropped; so, the average component Γ

b
(or alternatively Γ

t
) is not
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zero but used to make the integrability condition satisfied. Accordingly, one of the freedoms (the
average gauge function avg(Sn)) remains undetermined for the maximal reduction. To determine
it, a prescription must be added. For the simplest maximal reduction, it is put to zero.

All these features will suggest to define and decompose the vector gn in a different way as in
(2.97) and (2.98), by including in this vector only the unknowns that are involved at that order
(see Eq. (2.66)), and by distinguishing between the unknowns that will be identified and the ones
that will remain parameters (see Eqs. (2.71)-(2.70)).
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Abstract: In guiding-center theory, the traditional gyro-angle coordinate im-
plies a gyro-gauge dependence, a non-global existence, and some anholonomy
questions (non-zero variation after a closed loop), related to the presence of an
artificial gyro-gauge. A recent formalism gets rid of the gyro-gauge and defines
the gyro-angle directly from the particle state. We investigate whether the tra-
ditional troubles were artificial and disappear in this global, gauge-independent
framework, or whether they have counterparts, related to intrinsic properties
of the system.
Counterparts are indeed observed, because the gauge-independent gyro-angle
is not a common coordinate, but a constrained coordinate. It is a unit vector
orthogonal to the magnetic field, which is not completely independent of the
spatial position. In a similar way as for tangent vectors on a curved space,
e.g. in general relativity, derivatives have to be covariant ones. It induces the
presence of both arbitrariness and anholonomy in the theory, but it emphasizes
their true intrinsic meaning and content, and it fits with the principal circle
bundle associated with the gyro-angle.
Last, we investigate whether the intrinsic framework can be simplified by remov-
ing the presence of anholonomy and covariant derivatives, in order to become
closer to a common coordinate system. Throughout the whole chapter, the
key ingredient is the connection of the covariant derivative, which corresponds
to its arbitrary term, and to a choice of parallel transport for the gyro-angle.
Insights are obtained on previous works, for instance on Littlejohn’s approach
of gyro-angle parallel transport and on the existence condition for a global
gyro-gauge.

Introduction

Chapters 1 and 10 showed that both aspects of guiding-center theory (averaging reduction, and
presence of the magnetic moment) can be addressed while using a global, physical coordinate for
the gyro-angle, which is the unit vector of the component of the momentum perpendicular to the
magnetic field. No gauge fixing was needed. Then, it was shown in Chapter 2 that this intrin-
sic coordinate can be used also in the standard procedure for the guiding-center reduction, which
provides a Hamiltonian structure for the guiding-center dynamics and a maximal reduction for the
guiding-center Lagrangian. All the results of the literature can thus be obtained using this physical
but constrained coordinate.

95
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In the light of this intrinsic approach, we now come back to the troubles about the usual
coordinate. This can clarify whether they are artefacts of those coordinates, or related to intrinsic
properties of the physics and mathematics of the system. In the latter case, it is interesting to
study how these properties can be observed in the gauge-independent formulation, i.e. what the
counterparts of the traditional troubles are. Indeed, the guiding-center derivations in Chapters 1,
2, and 10 showed that in the intrinsic approach, all the features of the traditional approach seemed
to be present, including a kind of generalized gauge vector. This makes it necessary to clarify
whether the gauge-independent coordinate actually resolves the issues or only transfers them into
other issues.

An additional advantage of such a study is to make clearer the essential differences between the
two coordinate systems. This can open the way to variations of the intrinsic approach, for instance
in order to simplify it by eliminating the presence of a constrained coordinate and by providing it
with a scalar gyro-angle coordinate.

Thus, the goal is twofold: first to identify the intrinsic counterparts of the guiding-center an-
holonomy and gauge arbitrariness, second to investigate whether it is possible to remove from the
intrinsic framework the intricacies induced by its constrained coordinate system. The two goals are
complementary, because the first goal rather goes from the traditional coordinate system towards
the intrinsic one, whereas the second goal rather goes the other way around.

The chapter is organized as follows. First, in sect. 3.1, we remind the standard and the gauge-
independent gyro-angles; this will emphasize that when using this last variable, the traditional
troubles associated with the gyro-angle have disappeared from the coordinate system; especially, the
main difficulty, i.e. the non-global existence, will not have a counterpart in the intrinsic approach.

In sect. 3.2, we turn to the intrinsic counterpart of the second traditional trouble, the gauge
arbitrariness. It comes because the gauge-independent gyro-angle is a constrained coordinate. It
is not completely independent of the spatial position: when the spatial position is changed, the
gyro-angle has to be changed in order to remain perpendicular to the magnetic field. This is similar
to what happens to tangent vectors on a curved space, e.g. in general relativity. Thus, gradients
are actually covariant derivatives, whose definition involves a free term, called the connection of
the covariant derivative, which embodies the choice of a parallel transport for the gyro-angle. In
the circle-bundle picture, it corresponds to the connection 1-form.

In sect. 3.3, we turn to the third trouble, the anholonomy question. Basically, it is a non-
zero variation of some quantity after a closed loop. In the intrinsic framework, it will results
from the curvature of the coordinate space, encoded in covariant derivatives, or more precisely in
commutators between them. In the circle-bundle picture, it corresponds to the curvature 2-form.

After investigating in Sects. 3.1 and 3.3 our first goal, namely the remnants of the three tra-
ditional troubles inside the intrinsic framework, we will turn in Sects. 3.4-3.5 to our second goal,
which aims at simplifying the gauge-independent formalism by removing the presence of anholon-
omy and covariant derivatives, because they cause intricacies, which it would be nice to get rid
of.

In sect. 3.4, we consider using the freedom embodied in the connection in order to remove the
anholonomy, by making covariant derivatives commute. This will provide an interesting approach
of the existence condition for a scalar gyro-angle coordinate.

In sect. 3.5, we turn to the flaws raised by the presence of a constrained coordinate, and show
how they can be eliminated by avoiding the splitting between the gyro-angle and the pitch-angle
in the coordinate system.

3.1 A global gauge-independent coordinate for the gyro-angle

The physical system under consideration is a charged particle with position q, momentum p, mass
m and charge e, under the influence of an electromagnetic magnetic field (E,B). The motion is



3.1. A GLOBAL GAUGE-INDEPENDENT COORDINATE FOR THE GYRO-ANGLE 97

given by the Lorentz force

q̇ = p
m ,

ṗ = p
m × eB+ eE .

When the magnetic field is strong, the motion implies a separation of time scales. This is best
seen by choosing convenient coordinates for the momentum space, for instance as in Chapter 1

p := ‖p‖ ,
ϕ := arccos

(
p·b
‖p‖

)
, (3.1)

c := p⊥
‖p⊥‖ ,

where b := B
‖B‖ is the unit vector of the magnetic field, and p⊥ := p − (p·b)b is the so-called

perpendicular momentum, i.e. the orthogonal projection of the momentum onto the plane perpen-
dicular to the magnetic field. The coordinate p is the norm of the momentum; the coordinate ϕ
is the so-called pitch-angle, i.e. the angle between the velocity and the magnetic field. The last
variable c is the unit vector of the perpendicular momentum.

Then, the equations of motion write

q̇ = p
m ,

ṗ = eE·p
p ,

ϕ̇ = − p
m ·∇b·c+ eE

p sinϕ ·
(
cosϕ p

p − b
)
, (3.2)

ċ = − eB
m a− p

m ·∇b·(cb+ aa cotϕ) + eE·a
p sinϕa ,

where p is now a shorthand for p(b cosϕ+c sinϕ), B is the norm of the magnetic field and, following
Littlejohn’s notations [86,88], the vector a := b× c is the unit vector of the Larmor radius, so that
(a, b, c) is a right-handed orthonormal frame (rotating with the momentum).

In the case of a strong magnetic field, the only fast term, the Larmor frequency ωL := eB
m ,

corresponds to the gyration of the particle momentum around the magnetic field. It concerns only
one coordinate, c, the direction of the perpendicular momentum p⊥ in the 2-dimensional plane
perpendicular to the magnetic field. It corresponds to the gyro-angle.

To get a scalar angle instead of the vector c, one chooses at each point q in space a direction
e1(q) ∈ B⊥(q) in the plane perpendicular to the magnetic field, which will be considered as the
reference axis. Then, the angle θ is defined as the oriented angle between the chosen reference axis
e1(q) and the vector c through the following relation :

c = −e1 sin θ − e2 cos θ , (3.3)

with e2 := b×e1 the unit vector such that (b, e1, e2) is a (fixed) right-handed orthonormal frame [86].
The angle θ is the usual coordinate for the gyro-angle [8, 29,86, 122]. Its equation of motion is

θ̇ = eB
m + cotϕ p

m ·∇b·a+ p
m ·∇e1·e2 − eE·a

p sinϕ . (3.4)

From the initial dynamics (q̇, ṗ, ϕ̇, θ̇), guiding-center reductions perform a change of coordinates
(q, p, ϕ, θ) −→ (q̄, p̄, ϕ̄, θ̄), to obtain a reduced dynamics with suitable properties, mainly a constant
of motion ˙̄p = 0, and a slow reduced motion ( ˙̄q, ˙̄ϕ) that is both independent of the fast coordinate θ̄
and Hamiltonian [29,60]. The reduced position q̄ is the guiding-center, and the constant of motion

p̄ is the magnetic moment; it is close to the well-known adiabatic invariant µ :=
p2
⊥

2mB , and is usually
written µ̄ instead of p̄.

In the definition of θ, the necessary introduction of e1 implies important and awkward features
in the theory.
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First, the choice of e1 is arbitrary, which induces a local gauge in the theory. The coordinate
system is gauge dependent, since the value of θ depends of the chosen e1(q). For a general reduction
procedure, the guiding-center dynamics can end up gauge-dependent. For instance, the maximal
reduction by Lie-transforming the phase-space Lagrangian is gauge dependent in Chapter 2.

Guiding-center reductions have to use prescriptions in order to avoid such unphysical results.
For instance, in the reduced Lagrangian, the 1-form dθ must appear only through the quantity
dθ−(dq·∇e1)·e2 [29,88]. These gauge-dependence issues emphasize that the gyro-angle is artificial,
it is not given by the physics and its meaning is restricted.

Second and more substantial, a continuous choice of e1 does not exist globally in a general
magnetic geometry [25, 146]. This is easily explained because the possible values for e1 define a
circle bundle over the configuration space [25, 81], and a specific choice e1 is a global section of
the bundle, which corresponds a trivialization of the bundle, whose coordinate system is precisely
(q, θ). But such a trivialization does not exist globally for a general circle bundle. In the case of
the guiding-center, this global non-existence can be proven by using the theory of principal bundles
and characteristic classes [25]. Thus, the gyro-angle does not exist in the whole physical system
in general, which means that it does not capture the mathematical description of the system, but
only a strongly simplified description, valid only in the trivial case.

It was mentioned in [25] that the local descriptions agree with a global description provided
the change of local descriptions satisfy some relations; for instance, it explains why the 1-form dθ
must appear only through the combination dθ − (dq·∇e1)·e2. This means that working with θ is
not meaningless; for instance, it indeed gives a slow guiding-center dynamics ( ˙̄q, ˙̄ϕ) that is globally
defined, but it does not imply that the local coordinate θ has a global meaning, neither does it
explain what the global description of the gyro-angle is.

Last, even the local description is not completely regular, because it involves a non-holonomic
phase in the gyro-angle. When a loop γ is performed in position space, then at the end of the
process, all the physical quantities have recovered their value, but the variation of the gyro-angle
involves a contribution (which is related to the third term in the right-hand side of Eq. (3.4))

∆θg :=

∮

γ
(dq·∇e1)·e2 ,

called the geometric phase, which is not zero [86, 90, 145]. This is the well-known anholonomy
about the gyro-angle coordinate.

A similarity with Berry’s phase and more generally with Hannay’s phase was often pointed
out [86, 90, 91], but there are significant differences, as mentioned in [90]. Especially, these phases
are related to adiabaticity, with a single path in parameter space followed by the system, which
makes them physically determinable. On the contrary, guiding-center anholonomy is related to
path dependence in configuration space, with all paths coexisting simultaneously. This precludes
any definite value for this phase at any point in the system, which raises questions whether this
phase is physically meaningful or if it affects only non-physical quantities concerning the extrinsic
coordinate system.

All these troubles come because θ is only an artificial quantity. They motivated to keep the
primitive gauge-independent coordinate c instead of introducing θ. Even if this quantity does not
have scalar values, it embodies all the same an angle, since it is a unit vector in a plane and hence
belongs to a circle S1.

It does represent the physical quantity corresponding to the gyro-angle: θ never appears by itself
in the theory (e.g. in guiding-center transformations), except in its own definition and subsequent
relations; what appears everywhere is the vector c [29, 86, 122]; even the correction to the gyro-
angle θ̄ − θ in guiding-center reductions does not involve θ by itself, but only through c. A simple
illustration of this argument, as well as of the gauge-dependence or not, can be found in the
equations of motion (3.2) and (3.4).

The coordinate c is globally defined, since the perpendicular momentum is well defined every-
where. It is useful to remind that the points where the momentum is parallel to the magnetic field
are always implicitly excluded from guiding-center theory, even in the local description using the
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scalar coordinate θ. Indeed, at those points, the angle θ can not be defined. In addition, guiding-
center expansions involves many sinϕ in denominators, which implies to exclude the mentioned
points.

The variations of the variable c do not include the gauge contribution (dq·∇e1)·e2, with its
anholonomic geometric phase. After a loop in configuration or phase space, when all physical
quantities come back to their initial value, so will the contributions to the quantity c, since it is
directly related to the particle state.

Last, the coordinate c agrees with the mathematical description of the system. For any magnetic
geometry, it induces a circle bundle [25, 81, 90]: the circle for c is position-dependent since c is
perpendicular to the magnetic field, which means that c is not just in S1, but in S1(q). A few
consequences will be studied in the next sections. In the traditional coordinate system, this picture
is absent, since θ is independent of the position; the circle bundle rather concerns the vector e1, but
the corresponding bundle is different from the intrinsic bundle for the gyro-angle, since it is not
defined by the whole phase space, but confined to the four-dimensional space (q, e1). In addition,
the global section e1 assumes the topology of the bundle trivial.

Accordingly, the use of the gyro-angle c removes from the coordinate system all of the troubles
involved in the traditional gyro-angle θ. It indeed provides the intrinsic description of the physics
and mathematics of the system.

3.2 Intrinsic counterpart of the gauge arbitrariness

The previous section showed that in the intrinsic framework, the gauge arbitrariness disappears
from the coordinate system. However, it does not completely disappear from the theory, as will be
shown in this section.

The origin is that when using the coordinate c, the spatial dependence of S1 implies that the
coordinate space is constrained, i.e. the coordinates are not completely independent of each other.
When the position q is changed, the coordinate c cannot be kept unchanged, otherwise it may get
out of b⊥:

∇c 6= 0 .

Differentiating Eq. (3.1) with respect to q, we find (as in Chapter 1, but this formula is reminded
here for consistency of the current chapter)

∇c = −∇b·(cb+ aa cotϕ) , (3.5)

which is well defined everywhere, since the points where cotϕ = ±∞, i.e. where p is parallel to
the magnetic field B, are excluded from the theory.

Eq. (3.5) must not be given a completely intrinsic meaning, because the two terms in its right-
hand side play a very different role through coordinate change: the first term is always unchanged,
whereas the second one is generally changed. For instance, if one uses the scalar angle θ as a local
coordinate for c, then Eq. (3.5) becomes

∇c = −∇b·c b+R a , (3.6)

where
R := ∇e1·e2

is the so-called gauge vector. It is a function of the position q, and is not unique: it depends of
the choice of gauge e1(q).

The reason for this difference of role is that the definition space S1(q) for the coordinate c

imposes exactly the first term in Eq. (3.5), but gives no constraints on the second term. Indeed,
the gyro-angle c is a free 1-dimensional coordinate, but it is at the same time a vector, immersed
in R3, and the two remaining dimensions are fixed by the condition for c to have unit norm c·c = 1
and to be transverse to the magnetic field c·b = 0. This implies

∇c·c = 0 and ∇c·b = −∇b·c .



100 CHAPTER 3. INTRINSIC GC ANHOLONOMY AND GYRO-GAUGE ARBITRARINESS

Thus, in ∇c, only the component parallel to a is not imposed by intrinsic properties linked with
S1(q). It is induced by the specific definition chosen for the gyro-angle coordinate, but from an
intrinsic point of view, it is completely free:

∇c = −∇b·c b+Rg a , (3.7)

where
Rg := ∇c·a

is a free function of the phase space.

The geometric picture of this freedom is the following. In the gradient ∇c, i.e. in the effects of
an infinitesimal spatial displacement, one of the terms, −∇b·c b, is mandatory, since it is necessary
and sufficient for c to remain perpendicular to b in the process of spatial transportation; this is
easily seen on a diagram. The other term is only optional. It corresponds to a rotation of c

around b (hence a gyration around the circle) accompanying the spatial displacement, but it could
be removed, or given a different value. It is not imposed by intrinsic properties and has to be
arbitrarily chosen, in a similar way as when the target set of a projection is determined, but not
the kernel. It corresponds to the way points in a circle S1(q1) at the position q1 are "projected"
(more precisely connected) to points in the circle S1(q1 + δq1) at a neighbouring position.

This phenomenon is exactly the same as what occurs to tangent vectors on a curved space, for
instance in general relativity, or on the surface of the Earth: when the spatial position is moved,
then the tangent vectors from the initial point have to be moved into the tangent space of the
final point, otherwise they are not tangent vectors any more. Then the gradient is actually a
covariant derivative, that is an infinitesimal operator that not only changes the position, but also
all other quantities in such a way that they remain inside their definition domain throughout the
displacement. This phenomenon has to appear as soon as the coordinate space is constrained, i.e.
when the definition domain of some coordinate (or parameter) depends on other coordinates.

In the definition of the covariant derivative, there is always some freedom, since the definition
domain at the initial point can be connected to the definition domain at the final point in an
arbitrary way. The free term in the covariant derivative is called its connection, it determines the
way objects are parallel transported. In the example of tangent vectors on a curved surface, the
so-called affine connection corresponds to the well-known Christoffel symbols. For the gyro-angle
c, the connection freedom is embodied in Rg.

More generally, the connection freedom could affect not only gradients ∇, but also other deriva-
tive operators, which could also become covariant derivatives impacting the gyro-angle, i.e.

∂pc = f1 a and ∂ϕc = f2 a , (3.8)

with f1 and f2 arbitrary functions of the phase space. However, this additional refinement will not
be used here, because it does not seem to be useful nor natural, since the definition space for the
gyro-angle c depends only on the magnetic field, and hence of the spatial coordinates.

All these features agree with the gyro-bundle picture and emphasize its relevance, which was
hidden and even suppressed from the coordinate system when using the gauge-dependent gyro-
angle. Indeed, instead of viewing the phase space as a constrained coordinate system (q, p, ϕ, c) as
we did above, one can equivalently consider it as a principal S1-bundle with a base space given by
(q, p, ϕ) and a fiber S1. This setting offers rigorous mathematical structures, where the covariant
derivative is viewed as the parallel transport associated to a chosen connection 1-form, i.e. a 1-form
on the fiber bundle that evaluates to 1 on the canonical infinitesimal generator of gyro-rotation
(see e.g. Ref. [99] for an introduction to the subject). In the present chapter, we prefer to avoid
focusing on this more technical viewpoint, whose terminology and concepts could seem unfamiliar
to some readers and are not indispensable to investigate the guiding-center system, which can be
considered in the more basic picture of a constrained coordinate system.

In either formalism, the conclusion is that although the gyro-gauge with its arbitrariness is ab-
sent from the intrinsic approach, some arbitrariness is present, not in the coordinate system itself,
but in the choice of a connection for the covariant derivative.
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The comparison with the gauge-dependent approach emphasizes the relationship between the
two arbitrarinesses. Eq. (3.6) shows that the connection is then embodied in the gauge vector R.
This quantity is called gauge vector because it exactly embodies the information on the local gauge.
Changing the gauge e1(q) −→ e′1(q) just means adding to the value of θ a scalar function ψ(q),
whose value is the angle between e1 and e′1 at q [86, 90]. Under this change, the gauge vector is
changed by

R′ = R+∇ψ . (3.9)

The term ∇ψ exactly embodies the purely local gauge. The remaining part of the gauge corresponds
to a global gauge, i.e. the value of ψ at a reference point q1; changing it corresponds to a global
rotation by the same angle ψ(q1) for all points q; it is not specifically a (local) gauge, but rather
a common change of angular coordinate.

As a side comment, which will be useful for the following, Eq. (3.9) shows that even if the gauge
vector is gauge dependent, its curl is not, it is related to intrinsic properties of the system [86]

∇×R =N , (3.10)

with N :=b

2

(
Tr(∇b·∇b)− (∇·b)2

)

+ (∇·b)b·∇b− b·∇b·∇b . (3.11)

Accordingly, the gauge vector can not be a free function of the position space, but it must satisfy
the integrability condition (3.10). Especially, the choice R = 0 is not available in general, even
locally.

With the interpretation above for R, Eq. (3.6) means that the local gauge freedom is exactly
the counterpart of the connection freedom Rg. The geometric reason is that θ is the angle between
e1 and c; through spatial transportation δq with θ unchanged, the gauge vector R means that e1
is rotated around b by an angle δq·R, which implies that c undergoes the same rotation. Thus,
the connection for e1 is at the same time a connection for c.

It explains why the gauge arbitrariness originated from an inherent property of the system,
but it makes more precise the meaning and the content of the intrinsic arbitrariness: first, it does
not represent an arbitrariness in the coordinate system, but a choice in the covariant derivatives
∇; second, it implies not only a restricted class of functions of the configuration space but a free
function of the phase space.

The first point clarifies how in the intrinsic formulation, the arbitrariness is present, but it
does not affect the coordinates at all, whereas in the standard formulation, it affects also the
coordinate θ. This is illustrated by the guiding-center transformation: for the gyro-angle c, the
transformation is connection-independent, as was clear in Chapters 1 and 2; for the coordinate θ,
the transformation θ̄ = ··eG2eG1θ is gauge-dependent, but in such a way as to make the induced
transformation c̄ = ··eG2eG1c for c gauge-independent, with Gn the vector field generating the n-th
order transformation; for instance, the first-order reduced gyro-angle θ̄ is given by Gθ

1, which is
gauge-dependent, but the first-order c̄ is given by (Gq

1 ·∇+Gθ
1 ∂θ)c, which is gauge-independent [29,

86,88]. Another example is given by the guiding-center Poisson bracket; when using the coordinate
θ, its expression is gauge-dependent because of the presence of the gauge vector R [86, 88]; it was
noticed that this presence can be combined with the gradient through the combination ∇+R ∂θ [17];
actually, this is exactly the connection-independent gradient for the coordinate c; indeed, formally
the covariant derivative ∇ can be written ∂q|c + ∇c·∂c|q, which is connection-dependent, but in
such a way as to make the quantity ∇−∇c·∂c|q = ∇+∇b·c b·∂c−Rga·∂c connection-independent;
this last quantity is not a gradient because the second term in the right-hand side brings c out of its
definition space; thus, this term has to be removed to obtain the connection-independent gradient
∇∗ := ∇+Rg ∂θ; it is the minimal connection, since it formally writes ∇∗ = ∂q|c−∇b·c b·∂c|q, which
corresponds to ∇∗c = −∇b·c b, or equivalently (Rg)∗ = 0. This minimal connection corresponds
to the orthogonal projection, in the picture mentioned above where the connection is viewed as a
projection from the circle S1(q) to the circle S1(q+ δq).

The second point can have practical consequences. For instance, the physical connection (3.5)
is not available when using the traditional coordinate θ, because it does not correspond to a gauge
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fixing (since it depends on the momentum variables), neither does the connection R = 0, which
would simplify computations and remove the arbitrary terms from the theory. As a result, there
is no natural gauge fixing in this case, and previous works tried to identify a natural fixing based
on the magnetic geometry [90, 145]. On the contrary, with the gauge-independent coordinate c,
the physical choice Rg = − cotϕ∇b·a does correspond to a connection fixing, and the simplifying
choice Rg = 0 is just the minimal connection, as well as the natural geometrical connection, i.e.
the one which is induced by the definition of S1(q) and the one that corresponds to the connection-
independent gradient, as shown in the previous paragraph.

Thus, the intrinsic approach is not just an optional reformulation of the theory. It emphasizes
the intrinsic properties underlying the gauge arbitrariness, which concern the connection of the
covariant derivative ∇ rather than the coordinate system, and it makes available some relevant
gradients which were inaccessible in the gauge-dependent formulation.

3.3 Intrinsic counterpart of the anholonomy

We now turn to the remnants of the traditional guiding-center anholonomy in the intrinsic approach.
Anholonomy means that some quantity does not recover its initial value after performing one closed
path. The traditional guiding-center anholonomy initially concerns the gauge e1. It comes because
after one closed loop γ in configuration space, while parallel transported along the connection R,
the vector e1 does not recover its value. It has rotated by a non-zero angle [86,90]

∆θg :=

∮

γ
(dq·∇e1)·e2 =

∫

S
∇×R·dS 6= 0 , (3.12)

where S is a surface with boundary ∂S = γ.
Eq. (3.12) assumes that the loop γ is contractible. We will consider in this whole chapter that

it is the case. Otherwise S does not exist and there is no relation equivalent to the second equality
in (3.12). This assumption is enough to study the local structure of the system, since locally in
a three-dimensional domain any loop is contractible. In order to study also global aspects, the
assumption must be released, for instance in a tokamak all loops are not contractible. This should
not cause a problem because the results of the next section together with the results of [25] evidence
that the assumption on contractible loops plays no essential role, it is useful only to simplify the
argument.

The non-zero angle (3.12) impacts the coordinate θ in the sense that its variations do not depend
only on the state of the particle, but also of the gauge fixing e1. This last contribution is called the
geometric phase, denoted by ∆θg, which is anholonomic because of Eq. (3.12).

As the integrand is given by Eq. (3.11), it is gauge-independent and the anholonomy term (3.12)
can not be made zero by a choice of gauge. It suggests that it corresponds to an intrinsic property
of the system; it is why this trouble was considered as unavoidable in guiding-center coordinates
1 [86, 90].

With the gyro-angle c, the anholonomy does not concern the coordinate system, since the
coordinates are defined directly from the physical state. There is no extrinsic quantity (such as e1)
implied in the definition of this gyro-angle to generate anholonomy.

However, it does not preclude the possible presence of anholonomy in the intrinsic framework.
To investigate this point, we will first try to identify the intrinsic counterparts of the quantities
involved in the traditional guiding-center anholonomy, mainly the total variation of the gyro-phase
dθ and of the geometric phase ∆θg; then the question of anholonomy in the gauge-independent

1 In principle, anholonomy in a principal fiber bundle is not related to a coordinate system, but induced by a
choice of connection. However, in the traditional description of the guiding-center system, the fiber bundle is induced
by (q, e1), and the choice of a connection on this bundle corresponds to the choice of a gyro-gauge, which in turn
corresponds to the choice of a coordinate θ. It is why there is a direct correspondence between the anholonomy and
the traditional gyro-angle coordinate system, although the anholonomy does not concern θ itself, but the vector e1

through the parallel transport defined by the connection.
Interestingly, when using the intrinsic gyro-angle c, this correspondence disappears. As it should, the anholonomy

in not related to the coordinate system any more, but only induced by the connection or the covariant derivative.
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framework will become clear.

To begin with, the gauge-independent gyro-phase c is not a scalar angle, it is a vector, and its
infinitesimal variations are two-dimensional, as shown in Eq. (3.7). For an intrinsic description of
the phenomenon at work in Eq. (3.12), it is convenient to identify a scalar quantity for the variation
of the gyro-angle c.

The change of c in the direction b is not relevant, since it just corresponds to maintaining c

in its definition space through spatial displacement. Thus, the effective variation of the gyro-angle
is only in the a direction; more precisely, it corresponds to the change of c after removing the
contribution coming from the spatial displacement; from this point of view,

δΘ := −a·(dc− dq·∇c) = −a·dc+ dq·Rg (3.13)

is the quantity measuring the Larmor gyration; the minus sign in the prefactor is a convention in
order to agree with the usual orientation for the gyro-angle θ.

The relevance of the scalar variation δΘ is emphasized by the set of 1-forms

(
dq, dp, dϕ, δΘ

)
(3.14)

being the dual basis to the set of vector fields

(
∇, ∂p, ∂ϕ, ∂θ

)
,

which are the natural derivative operators of the theory. Here the generator of Larmor gyration is
written ∂θ, but its definition does not depend on the gauge:

∂θ := −a·∂c .

In addition, when the local gauge-dependent description for the gyro-angle is used (implicitly
chosen as usual such that inside the local description, there is a globally defined e1, and Rg is defined
by R), it is readily checked that δΘ = dθ, which confirms that δΘ is the intrinsic (global) quantity
corresponding to dθ. This explains why the 1-form dθ is gauge-dependent, and the associated
gauge-independent 1-form is dθ − dq·R, since δΘ depends on Rg, and the associated connection-
independent quantity is −a·dc = δΘ− dq·Rg. An essential difference compared to dθ is that δΘ is
not closed:

d(δΘ) = −(dq·∇b)·(b× b′dq) + dRg· ∧ dq , (3.15)

where for notational convenience, the primed notation was used for gradients acting on their left:
b′dq = dq·∇b. The wedge symbol ∧ indicates antisymmetry: a. ∧ b = a.b− b.a.

In Eq. (3.15), the magnetic term can be rewritten using Eq. (3.20). It agrees with Littlejohn’s
results [90]. However, Littlejohn derived the curvature of δΘ in the special case where Rg = 0.
He did not consider a more general connection, nor did he indicate that there was any freedom in
selecting the connection. The interest of Eq. (3.15) is that it applies to any connection Rg.

For completeness, let us mention that for the most general connection for the gyro-angle c,
Eq. (3.13) would write

δΘ = −a·dc+ dq·Rg + f1dp+ f2dϕ ,

where f1 and f2 are arbitrary functions of the phase space. Then Eq. (3.15) would become

d(δΘ) = −(dq·∇b)·(b× b′dq) + dRg· ∧ dq+ df1 ∧ dp+ df2 ∧ dϕ .

Non-zero f1 and f2 would imply that the connection and the covariant derivative concern not only
spatial displacements (i.e. variations of the coordinate q), but also variations of the two other
non-gyro-angle coordinates p and ϕ, as in Eq. (3.8). This refinement is useless here, and for the
following, we will set f1 = f2 = 0, and remain with only the connection Rg.
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The variation of Θ is defined along a path γ by ∆Θ =
∫
γ δΘ. After performing one closed path,

it is given by:

∆Θ =

∮

γ
δΘ =

∫

S
d(δΘ) 6= 0 , (3.16)

which is non-zero in general. Thus, Θ is not an holonomic quantity.
More precisely, using Eq. (3.15), the anholonomy (3.16) of the scalar angle can be written

∆Θ = ∆ΘB +∆Θc ,

where the first contribution comes from the magnetic geometry

∆ΘB = −
∫

S
(dq·∇b)·(b× b′dq) , (3.17)

and the second contribution comes from the choice of connection

∆Θc =

∫

S
dRg· ∧ dq (3.18)

and is expected to be the intrinsic counterpart of the geometric phase.

When the local gauge-dependent coordinate θ is used for the gyro-angle, the connection vec-
tor Rg = R = ∇e1·e2 depends only on q, and the integrand of its contribution (3.18) exactly
compensates the magnetic contribution (3.17), since it writes

dR· ∧ dq = (dq·∇e2)· ∧ (dq·∇e1) (3.19)

= (dq·∇b)·(e2e1 − e1e2)·(b′dq)
= (dq·∇b)·b× (b′dq) ,

where the first equality comes from the antisymmetry, and the second comes by inserting the
identity matrix (bb+ e1e1 + e2e2)· and by using that

(dq·∇e1)·e1 = 0 ,

(dq·∇e2)·e2 = 0 ,

(dq·∇ei)·b = −(dq·∇b)·ei ,

because (b, e1, e2) is an orthonormal basis.
For a comparison with the anholonomic phase (3.12), the integrand of the connection contribu-

tion (3.18), which is only a function of the position, can also be written

dR· ∧ dq = dq·(∇R−R′) dq

= −dq·(∇×R)× dq ,

which indeed agrees with (3.12).
These results can be shown to agree with Littlejohn’s expression (3.11), using the antisymmetry

of the matrix ∇b·b× b′ to write it as a cross product:

(dq·∇b)·(b× b′dq) = dqi∇ib·b×∇jb dqj (3.20)

= dqidqj 12(δ
ikδjl − δilδjk)∇kb·b×∇lb

= dqidqj 12εijAεAkl∇kb·b×∇lb

= εiAjdq
i
(
−1

2

)
εAkl∇kb·b×∇lb dq

j

= dq·N× dq ,

with

NA :=
(
−1

2

)
εAklεαβγ∇kbαbβ∇lbγ

=bA

2

(
Tr(∇b·∇b)− (∇·b)2

)

+ (∇·b) (b·∇b)A − (b·∇b·∇b)A ,
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which is exactly Littlejohn’s expression Eq. (3.11). In this computation, the first equality (3.20)
comes from the antisymmetry of the matrix ∇b·b × b′, and all the other equalities are properties
of the Levi-Civitá symbol. An alternative (more direct but heavier) way of proving the result is
to insert the identity matrix (bb+ e1e1 + e2e2)· everywhere in (dq·∇b)·(b× b′dq); then expanding
and simplifying the formula gives the expected result.

So, in the local gauge-dependent case, the connection contribution is exactly the geometric
phase

∆Θc = ∆θg ,

which confirms that ∆Θc is the intrinsic counterpart of the geometric phase. In addition, it exactly
compensates the integrand of the anholonomic magnetic contribution (3.17):

∆Θc = −∆ΘB ,

which explains both that the corresponding gyro-angle θ is holonomic d(δΘ) = d2θ = 0, and that
the associated geometric phase δθg is anholonomic.

A first consequence can be noticed by now: in the intrinsic approach, the geometric phase
is arbitrary and it can be made holonomic; even the integrand can be set to zero, since Rg can
be chosen freely. This natural geometrical definition Rg = 0 makes the geometric phase zero
∆Θc = 0. So, the anholonomy in the gauge-dependent approach is not intrinsic in itself. On an-
other hand, choosing the geometric phase zero makes the total phase ∆Θ anholonomic, since it is
exactly given by the anholonomic term (3.17) due to the magnetic geometry. This suggests that in
the intrinsic framework, anholonomy is not only present but essential in the structure of the system.

To investigate this point, let us remind that the introduction of a scalar variation for c was used
only to identify the correspondence between the local and global descriptions. From an intrinsic
point of view, what we have obtained is just that δΘ is not closed and hence Θ is not a proper
coordinate, but it is not needed, since the gyro-angle coordinate is the vectorial quantity c. All the
same, anholonomy effects can be viewed even in this intrinsic framework from two complementary
(dual) points of view.

The first of them considers the properties of the basic 1-forms (3.14) of the theory. The previous
investigations showed that the basic differential form for the gyro-angle is δΘ, and that it is not
closed. This implies anholonomy, as appeared in Eq. (3.16) and as can be found in textbooks, e.g.
in Ref. [97]. In the fiber bundle approach, this conclusion is still clearer, since anholonomy is given
2 by the curvature 2-form, here d(δΘ).

The second point of view still more basically considers the properties of the elementary vector
fields of the theory. Indeed, the effects of an infinitesimal loop in configuration space are evaluated
with the commutator of gradients, as is confirmed in Ref. [99] or [84], for instance. Here, it is
easily computed as

[∇i,∇j ] =
(
∇ib·b×∇jb−∇i(Rg)j +∇j(Rg)i

)
∂θ , (3.21)

which is a dual formula to Eq. (3.15).
The non-commutation of gradients in Eq. (3.21) is a consequence of the presence of a constrained

coordinate system, with its associated non-zero connection, which means that the action of gradients
does not fit directly with the coordinate system. After a closed path in the sense of the gradients, i.e.
of the sum of infinitesimal variations, the coordinates do not recover their initial value. Conversely,
after one loop in coordinate space, the coordinates recover their initial value, but the sum of
infinitesimal changes is not zero. Thus, not only anholonomy is inherent to the introduction of a
scalar angle, which generalizes the conclusion of [86, 90], but it is an intrinsic feature of the space

2 More precisely, the anholonomy is measured by the variation of the angle after a closed loop γ in the base
space, which is computed by integrating the connection, here δΘ, along γ. When the loop can be used to define a
two-dimensional surface S with boundary ∂S = γ, as is the case with the base space (q, p, ϕ), then the result can
be expressed as the integral of the curvature 2-form on S.
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of particle states (q, p, ϕ, c). This feature, although absent from trivial coordinate systems, is not
an issue. It is quite common in spaces with non-zero curvature, e.g. in general relativity.

The issue comes with the gauge-dependent approach, when requiring a coordinate system that
fits with the action of gradients, which is possible only when the geometry of the bundle trivial and
which does not settle the anholonomy question. As a result, the scalar coordinate θ for the gyro-
angle has holonomic (commuting) gradients but all the same involves anholonomic (unphysical)
phases, and is valid only locally, because it loses (makes trivial) the geometry of the coordinate
space; on the contrary, the global gyro-angle c has anholonomic gradients rather than anholonomic
phases, but it retains all the geometry of the guiding-center coordinate system.

This necessary alternative comes from Eq. (3.15) or (3.21), which shows that anholonomy is
unavoidable and intrinsically related to the magnetic geometry, through the anholonomic term
∇b·b× b′, which has to be put either as a non-zero commutator of gradients, or as an anholonomic
phase for the gyro-angle.

3.4 Towards a scalar intrinsic gyro-angle

The previous three sections, concerned with the first goal of this chapter, studied how the intrinsic
approach actually solves the difficulties and clarifies the troubles caused by the presence of a gyro-
gauge, but how it emphasizes the true intrinsic properties that were underlying in the traditional
guiding-center anholonomy and gauge arbitrariness. We now turn to the second goal of this chapter,
which means to investigate how the intricacies caused by the presence of anholonomy and covariant
derivatives can be eliminated from the intrinsic approach; the former is studied in this section, while
the latter will be considered in the next section.

So, we are presently interested in removing the anholonomy effects observed in the previous
section. The basic idea is to use the freedom embodied in the connection in order to make the
commutator of gradients zero. This question comes very timely, since one point is to be clarified
about our previous results: when the connection is given its physical expression (3.5), then the
gyro-angle c is just the perpendicular velocity, which should be holonomic (i.e. it should not have
non-zero commutators of gradients), since it is directly given by the physical momentum and the
magnetic field, both of which are holonomic.

The reason for this anholonomy is that the connection was defined through the physical def-
inition of c, but not the physical definition of the whole momentum. To do so, a more general
connection should be used, which would concern also the pitch-angle ϕ.

The variable ϕ is not a constrained coordinate, since it is defined over an independent space
R1. Unlike the variable c, it does not have to change value through spatial transportation, but
it is allowed to. A flat (zero) connection is possible but it is only the trivial choice, analogous to
the choice Rg = 0 for the coordinate c. In the same way as the free term Rg, the coordinate ϕ
can have an arbitrary connection. Especially, its definition from the physical momentum through
Eq. (3.1) induces a non-zero connection

∇ϕ = −∇b·c . (3.22)

Notice that here two different gradients are implied: the one in the initial coordinates ∂q|p and the
one in the final coordinates ∇, which is roughly ∂q|p,ϕ,c, but which takes into account the necessary
connection for c and the possible connection for ϕ. When acting on functions of q only, e.g. in the
right-hand side of Eq. (3.22), they are equal, but in general they are not. What we call the physical
connection is the one that makes them equal. For instance for the coordinate ϕ, it is defined by

∇ϕ = ∂q|pϕ .

Notice also that the connection for ϕ naturally comes from the above-mentioned viewpoint inspired
by the initial momentum coordinate, and by the constrained-coordinate picture. In the fiber-bundle
picture, it would imply to change the framework, since the coordinate ϕ would be considered in
the fiber, not in the base space.
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The physical relevance of this connection can be viewed in the components Vi of the velocity
vector field, which are defined by the relation ḟ = Vi·∂if for any function f of the phase space.
Because of the non-trivial connection, the components of the velocity vector field Vi are different
from the components of the velocity żi, where z = (q, p, ϕ, c) is a vector grouping all the coordinates.
They are related by

żi =
d
dtzi =

∑

j

Vj ·∂jzi = Vi +Ki , (3.23)

where Ki :=
∑

j(1 − δij)Vj ·∂jzi is a connection term (be careful, the index i is not summed,
although repeated), since it does not contribute when ∂jzi = 0 for i 6= j. Here, the connection is
involved only when a gradient acts on the coordinates c and possibly ϕ, and Eq. (3.23) is simply a
way to write

d
dtc = (∂t + q̇·∇)c ,

and the same formula with c replaced by ϕ.
With the physical connections (3.22) and (3.5) for the pitch angle and the gyro-angle, the

components of the velocity vector field are given by

Vi :=




p
eE·p
p

+
eE

p sinϕ ·
(
cosϕ

p
p−b

)

− eBm a+
eE·a
p sinϕa


 .

They perfectly agree with the physical force, which is just the Lorentz force. Especially, the limit
where there is no electric field E = 0 is expressive: there remain only the velocity Vq = p/m
and the Larmor gyration Vc = −eBa/m. All the additional terms in the components ϕ and c of
equations (3.2), which do not come from the physical dynamics but from the magnetic geometry,
are absorbed in the connection. This is satisfactory since the role of the connection is precisely to
encode the change of the momentum coordinates through spatial displacement, as a result of the
magnetic geometry.

When using the coordinate θ, the geometric contributions in Eq. (3.4) can not be absorbed in a
connection contribution, since the scalar coordinate θ is introduced to make the coordinate system
trivial, and hence to have flat connection. Providing θ with the corresponding connection would
amount to using the intrinsic approach, with an additional detour by the gauge e1.

The dynamics of the gyro-angle can be reinterpreted in this light, in relation with [22, 91]. In
the dynamics (3.4) of the gyro-angle θ, only the first and last terms are contributions due to the
physical dynamics. The second term corresponds to the so-called "adiabatic phase" in the case
considered by [91]; it comes from the magnetic term in the physical connection (3.5), related to
the definition for c to be physically the unit vector of the perpendicular momentum; it is induced
by the change of the projection as a result of the change of the magnetic field (through spatial
displacement); thus it concerns also the intrinsic gyro-angle c, e.g. in Eq. (3.2) or Eq. (3.5), and
it is expected to be adiabatic only for the specific case considered by [91], but not for a general
(inhomogeneous) strong magnetic field, which is confirmed by [22]. As for the "geometric phase",
i.e. the third term in Eq. (3.4), it is actually a gauge phase, since it is purely related to the choice
of gauge, and hence is absent from the intrinsic dynamics (3.2) or connection (3.5).

With the full physical connection (3.5) and (3.22), the coordinates c and ϕ are not independent
of the variable q, but they behave exactly as the components of a vector v̂ := b cosϕ+ c sinϕ that
is independent of q, i.e. that has flat connection:

∇v̂ = ∇(cosϕb+ sinϕc)

= cosϕ∇b+ sinϕ ∇c+∇ϕ (−b sinϕ+ c cosϕ) = 0 .

Actually, this computation shows that the flat connection ∇v̂ = 0 is obtained if and only if the
connection is the full physical one. The vector v̂ stands for the unit vector of the momentum

v̂ := p
p . (3.24)
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As a consequence, and as expected from the physical intuition, the commutator of gradients
with this connection is zero:

[∇i,∇j ] = 0 ,

which is easily verified by direct computation and traduces that after one loop in configuration
space, both the momentum and the magnetic field come back to their initial value.

All the same, even with this connection, the non-triviality of the fiber bundle for a general
magnetic geometry should imply non-zero commutators. This is true, but in the gauge-independent
approach, the space defined by the bundle is not the space of all (q, c), but the whole phase
space (q, p, ϕ, c). All the conclusions above apply, but replacing the gradients operators ∇ by
the complete set of basic derivative operators ∂z = (∇, ∂p, ∂ϕ, ∂θ). Non-zero commutators are
indeed present between these operators, as is shown in Eq. (3.25), where non-trivial commutators
of elementary derivatives are given for a general connection both for the gyro-angle Rg := ∇c·a and
for the pitch-angle Rϕ := ∇ϕ. This includes as special cases each of the four choices of connection
previously mentioned: the connection (3.6) for the gauge-dependent case with coordinate θ; the
physical connection (3.5) for c; the general connection (3.7) for c; and the full physical connection
(3.5) and (3.22) for c and ϕ.

[∇i,∇j ] = ∇ib·b×∇jb ∂θ

−
(
∇i(Rg)j −∇j(Rg)i

)
∂θ

+
(
∇i(Rϕ)j −∇j(Rϕ)i

)
∂ϕ , (3.25)

[∂p,∇] = −∂pRg ∂θ + ∂pRϕ ∂ϕ ,

[∂ϕ,∇] = −∂ϕRg ∂θ + ∂ϕRϕ ∂ϕ ,

[∂θ,∇] = −∂θRg ∂θ + ∂θRϕ ∂ϕ .

In practical case, Rg does not depend on p, because the gyro-angle comes from the splitting of
the coordinate v̂ into the pitch-angle and the gyro-angle via the magnetic geometry B(q), in which
the coordinate p plays no role.

Eq. (3.25) clearly emphasises the crucial role of the anholonomic magnetic term ∇b·b×b′, which
is the only affine term in the connection. For the minimal connection, it is the only non-zero term,
which indeed simplifies computations. As for the full physical connection, it cancels this term,
and also the whole commutator of gradients, but the two commutators [∂ϕ,∇] and [∂θ,∇] become
non-zero, since for instance ∂ϕRg 6= 0, and ∂θRϕ 6= 0.

With the general setting considered in Eq. (3.25), one can look for a connection that would make
all commutators zero. This would provide a splitting of the vector v̂ into proper scalar coordinates
both for the pitch-angle and the gyro-angle, i.e. coordinates which fit with the action of commuting
derivative operators. These quantities would be defined from the value of the quantity ϕ and c at
one point in phase space through parallel transportation by the commuting derivative operators 3.

A solution is expected not to be generally possible since a scalar coordinate for the gyro-
angle means that the circle bundle is trivial. The goal is to identify existence condition for the
desired coordinate system. Indeed, the free 4-dimensional connection function of phase space(
Rg(z),Rϕ(z)

)
opens new possibilities. One can consider using this larger and intrinsic freedom to

obtain more complete results than with the restricted gauge-dependent framework, whose freedom
corresponds only to the 1-dimensional gauge function of position space ψ(q) in Eq. (3.9).

The last three rows in Eq. (3.25) imply that a solution (Rg,Rϕ) must not depend on ϕ, nor p,
nor c, hence it must be purely position-dependent. In addition, the third row of Eq. (3.25) implies
that Rϕ must be curl-free, and as it is useless, it can be set to zero. As for the first two rows, they

3 More precisely, making all derivative operators commute only guaranties local existence for the desired scalar
coordinates. For a global existence, obstructions could come from non-contractible loops, which could generate a
discontinuity or a multi-valuation for the desired coordinate. However, here the base space is simply connected (i.e.
it has no non-contractible loops), so that the local criterion is enough to provide global existence.
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imply that Rg must cancel the anholonomy term, which is purely position-dependent. Thus, the
equation for the desired connection is

0 = ∇ib·b×∇jb−∇i(Rg)j +∇j(Rg)i ,

which can be rewritten
∇×Rg = N . (3.26)

This equation is reminiscent of the usual relation (3.10) in the gauge-dependent approach,
but they are different both in their origin and in their meaning. On the one hand, Eq. (3.26) is
obtained without appealing to the idea of a gyro-gauge nor its associated gyro-angle θ. Starting
from the structure of the manifold defined by the physical coordinates (q, p, ϕ, c), we are looking
for an arbitrary scalar gyro-angle coordinate, which might not be related to a choice of gauge;
more precisely we are looking for a connection corresponding to this coordinate. On the other
hand, relation (3.26) is a necessary and sufficient condition for the existence of a scalar gyro-angle,
whereas in previous works, the analogous relation (3.10) only appeared as a consequence of the
existence of a gauge.

When a solution Rs of Eq. (3.26) exists, the scalar gyro-angle coordinate is defined from parallel
transportation with the derivative operators defined by the associated connection Rs. This parallel
transportation results in a (trivializing) global section of the circle bundle, which in turn provides
a zero for measuring the gyro-angle. Although analogous to a traditional gyro-gauge fixing, this
is more general, because it implies a section of the whole bundle (q, p, ϕ, c), not a section of the
restricted bundle (q, c) over the position space. Now, the important point in the analysis above is
that Rs depends only on the position; so, the parallel transportation actually results in a section
of the restricted circle bundle over the position space. This means that a scalar coordinate always
defines a gyro-gauge, which is the reciprocal of the well-known property, saying that a gyro-gauge
provides a scalar gyro-angle, which was considered in previous works and in the previous section.

As a consequence, condition (3.26) is also a necessary and sufficient condition for a global
gauge to exist. Here, it is obtained in a direct argument on commuting derivatives (but under the
assumption an contractible loops). This is very different from the work [25], where the existence
of a global gauge was studied, but the proof for the necessary condition used an auxiliary property
and the proof for sufficiency required "a lengthy digression into the theory of principal bundles
and characteristic classes". Finally, their condition for the existence of a gauge is slightly different
from ours, but they are equivalent. Their condition states that through the boundary S of any hole
inside the spatial domain, the vector field N has no net flux:

∮

S
N·dS = 0 ,

and this is the boundary condition for the solvability of Eq. (3.26), since ∇·N = 0.
Notice that our derivation assumed contractible loops. It does not apply when the base space

contains non-contractible loops, e.g. in a tokamak geometry. In this case, the work [25] is needed
to conclude about the existence of a gauge. In turn, the existence of a scalar angle is implied
by the presence of a gauge. Since the existence condition is the same in any case and regards
only non-contractible spheres, the assumption on non-contractible loops plays no essential role and
can be released. A complete understanding of the origin of this fact requires a more detailed and
probably more technical study, which is outside the scope of the present document and is let for a
future work.

3.5 An intrinsic formalism with no covariant derivative

We now turn to the last aspect of the second goal of the chapter, which is to remove from the intrinsic
coordinate system the presence of covariant derivatives, in order to simplify the formalism.

Indeed, Sects. 3.1-3.3 showed that the troubles of the traditional coordinate θ could be related to
properties of the basic derivative operators involved in guiding-center theory, which do not fit with
the intrinsic coordinate system. In this sense, the philosophy of the gauge-independent approach is
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to consider separately the coordinate system and the elementary derivative operators, and to avoid
putting in the coordinate system some properties which actually concern the derivative operators.

However, the resulting formalism may seem more complicated than expected, because of the
constrained coordinate system, with the associated subtleties about covariant derivatives, non-zero
commutators, non-closed basis of 1-forms, etc. One can consider going one step further in the
development of this intrinsic approach, and removing these subtleties from the coordinate system.
In one way or another, they are unavoidable in the theory, since they result from properties of
the non-trivial circle bundle implied by the fast guiding-center coordinate. But they concern the
derivative operators, not the coordinate system, so that this last can perhaps be made both gauge-
independent and unconstrained.

In this goal, a natural idea is to try to identify a scalar gyro-angle coordinate, as in the previous
section, because in this coordinate system covariant derivatives would automatically disappear.
However, Sect. 3.4 showed that anholonomy effects could not be avoided in general, which pre-
cluded the use of a scalar coordinate for the gyro-angle. Thus, the removal of covariant derivatives
must be looked for by other means.

Since the constrained coordinate system comes from the gyro-angle coordinate, with its S1 fiber-
bundle, in order to get rid of the associated formalism, a possible idea is again to come back to more
primitive coordinates, namely by avoiding the splitting of the momentum into the pitch-angle and
the gyro-angle. Then, the unit vector of the momentum v̂ := p

p is kept as a single two-dimensional
coordinate, as was approached by the results of the previous section.

Segregating the two coordinates is needed at the end of the guiding-center reduction, when the
gyro-angle is removed from the dynamics, to obtain the slow reduced dynamics. But at that point,
the fiber-bundle and the constrained coordinate c are also removed. In the course of the reduction
process, the splitting is not needed. What is needed is a basis of 1-forms and derivative operators
that fits with the separation of scales, for instance to decompose the transformation of the vector
v̂ between the fast gyro-angle and the slow pitch-angle, or to decompose the change of spatial
coordinate into its components transverse and parallel to the magnetic field.

So, the method of using intrinsic coordinates and defining derivative operators adapted to the
purpose can be applied. The essential novelty is that the definition space for the coordinate v̂ is the
sphere S2, whose immersion in R3 is independent of the spatial position. So, a trivial connection
is available, and it corresponds both to the minimal and to the physical connection, since the
definition (3.24) of v̂ does not depend on the position.

Notice that since this coordinate is a two-dimensional vector immersed in R3, its variations are
constrained and the operator ∂v̂ as well as the 1-form dv̂ are purely transverse: v̂·∂v̂ = v̂·dv̂ = 0.
But the coordinate system is not constrained any more: the coordinates are independent of each
other and the basic differential operators and 1-forms ∂q, ∂p, ∂v̂, dq, dp, dv̂, behave trivially, which
makes the practical treatment similar to standard coordinate systems.

For the purpose of the guiding-center reduction, the splitting between the pitch-angle and the
gyro-angle is implemented in the basis of vector fields and 1-forms: ∂v̂ and dv̂ are decomposed
to distinguish their contributions in the azimuthal direction a (corresponding to the variable θ),
and in the elevation direction a × v̂ (corresponding to the variable ϕ). For instance, the operator

∂v̂ can be decomposed as
(
v̂ × b·∂v̂, (b×v̂)×v̂

sinϕ ·∂v̂
)
, in order to agree with the traditional operators

(∂θ, ∂ϕ). Alternatively, the second operator can be chosen − sinϕ (b× v̂)× v̂·∂v̂ = ∂φ, in order to
fit with the variable φ := cotϕ which made formulae polynomials in Chapters 1, 2, and 10. In a
simpler way, it can be chosen just (b × v̂) × v̂·∂v̂. This arbitrariness in the choice of a basis for
vector fields is similar to the connection freedom in previous sections, but it is not the same, since
it concerns the splitting of the operator ∂v̂ rather than the definition of the gradient operator.

This splitting procedure is only a generalization of what was already done for the position
space in previous works, where the three-dimensional quantity q was kept as a coordinate but the
gradient ∇ and the differential form dq were split into scalar components suited to the derivation,
namely their components parallel to a, b, and c.

It is straightforward to verify that guiding-center reductions work as usual with this formalism.
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In a similar way as what was observed when going from the coordinate θ to the coordinate c, the
introduction of the coordinate v̂ removes all the intricacies from the coordinate system and con-
fines them to the basis of vector fields of the theory. The only difference is that here, the basis is
not induced by the coordinate system, whose associated basic derivative operators are now trivial,
but it is induced by the purposes of the guiding-center reduction, such as the separation of scales.
All the subtleties mentioned in the previous sections remain present, but they are encoded in the

properties of the chosen basis. For instance, when the basis is chosen
(
v̂ × b·∂v̂, (b×v̂)×v̂

sinϕ ·∂v̂
)
, the

elementary differential operators are equal to their counterparts (∂θ, ∂ϕ) in the formalism of the
previous section, with the "full physical connection" (3.5) and (3.22).

One could consider going one step further and keeping all the momentum coordinates (p, v̂) as
a single coordinate p. This is unsure to be relevant, since the coordinate p actually plays no role
in the introduction of the gyro-angle, as we mentioned previously.

In addition, keeping the coordinate p does not seem convenient for practical computations.
When the norm of the momentum is kept in the reduced coordinates, as in Chapter 1, then p
is unchanged by the guiding-center transformation and it is useless to group it with v̂ into one
single coordinate p. Most often, the coordinate p is replaced by the constant of motion conjugated
to the gyro-angle, the magnetic moment µ̄, then the coordinate p is usually changed to µ in a
preliminary step, for the remaining transformation to be near-identity. In this case, the splitting
of the coordinate p into p and v̂ is essential.

Last, separating the variables p and v̂ is interesting for dimensional reasons, because v̂ is
dimensionless and then only one of the momentum coordinates, p, is dimensional (see Chapter 2
for an analysis of the practical consequences of such a dimensional argument).

These considerations do not mean that using the coordinate p is to be excluded. For instance,
a recent work [26] proposed an algorithm for guiding-center reductions where the coordinate p was
kept in a first near-identity transformation. Then the magnetic moment was identified and could
be adopted as a coordinate in a second transformation, not near-identity.

Conclusion

The gauge-independent approach of guiding-center theory actually resolves the difficulties and clari-
fies the troubles associated with the usual gyro-angle coordinate. The use of the physical gyro-angle
as a coordinate removes the non-global existence, the gauge dependence and the anholonomy from
the coordinate system, which then agrees both with the physical state and with the mathematical
structure of the system, a non-trivial circle bundle.

This physical gyro-angle is constrained and position-dependent, which implies the presence of a
covariant derivative, encoding the geometry of the bundle. The corresponding connection involves
a freedom, which is the intrinsic counterpart of the gauge arbitrariness but is much larger than it
and very different; especially, it does not affect the coordinate system and is just a choice in the
basis of vector fields of the theory.

Because of the larger freedom, relevant choices become available. For instance, the connection
can be chosen so as to fit with the physical definition of the gyro-angle. Alternatively, it can be
set to zero; this minimal connection simplifies computations and removes the arbitrary terms from
the theory; it was found to be underlying in previous results and can be considered as the natural
geometrical connection. Both choices do not correspond to a gauge fixing, but to a connection fixing,
which shows that the intrinsic formulation is needed to capture the physics and the mathematics
of the guiding-center system. This is also emphasized by the fact that the issue about non-global
existence not only disappears, but has no counterparts in the intrinsic formulation.

Both the physical and the minimal covariant covariant derivative ∇ have non-zero commutators,
which are the counterparts of the anholonomy of the gauge-dependent approach. Again, they do not
concern the coordinate system but the basic derivative operators. A third choice of connection was
identified, by giving to the pitch-angle the connection induced by its definition from the physical
momentum. Then, covariant derivatives ∇ do commute, but other non-zero commutators appear
in phase space, which traduce the non-triviality of the circle bundle defined by the gyro-angle.
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In this framework, existence conditions for a splitting of the momentum into scalar coordinates
for the pitch-angle and for the gyro-angle can be studied. The point of view is simplified and more
general compared to the study of the existence of a gyro-gauge. The resulting condition is just the
invertibility of a curl on a divergenceless vector field, which corresponds to boundary conditions on
this vector field, in agreement with previous results.

As a result, the gauge-independent formulation exhibits the intrinsic properties underlying the
troubles about the traditional gyro-angle. It mainly replaces the awkward features about the
coordinate system by regular, although non-trivial, properties of the basic derivative operators.

The troubles originated from the requirement for the coordinates and the basic derivative op-
erators to behave trivially. This is possible only when the circle bundle is trivial, which can be
obtained only locally for a general magnetic geometry and keeps the anholonomy question. To
agree with the physical system, the basic derivative operators must have non commuting proper-
ties, which in turn means that there do not exist trivializing coordinates and that a constrained
coordinate has to be used for the gyro-angle.

An idea underlying the intrinsic approach is that perturbation theory needs adapted derivative
operators, but not necessarily adapted coordinates, so that the coordinate system can be chosen
as it is intrinsically, i.e. as it comes primitively. This idea can be generalized to avoid introduc-
ing the gyro-angle coordinate, with the associated intricacies of a constrained coordinate system.
Keeping the gyro-angle and the pitch-angle as the single initial coordinate, which is the unit vec-
tor of the momentum, the S1-bundle is replaced by an S2-bundle, whose structure is trivial, and
whose formalism can be made (and is naturally) trivial, i.e. with no covariant derivatives (trivial
connection) nor any non-zero commutator. The resulting coordinate system is both intrinsic and
unconstrained. For guiding-center perturbation theory, an adapted basis of derivative operators
is defined, which encodes all the intrinsic properties of the circle bundle associated to the gyro-angle.

About possible future works, let us remind that our analysis about the existence condition for
a scalar gyro-angle used contractible loops, whereas the existence condition for a gyro-gauge only
concerns the holes (non-contractible spheres) in the magnetic domain. Thus, contractible loops are
only optional. A detailed investigation of this point will be interesting, and could bring additional
information on the structure of the guiding-center coordinate system.



Conclusion of the episode

The intrinsic formulation clarified the troubles involved by the standard gyro-angle, showed how
the difficulties can be made to disappear completely, and thus enhanced somehow the validity of
the theory. It had practical consequences on the derivation and in the theory, but for numerical
simulations, it seems it should not have strong impacts.

Indeed using a vector instead of a scalar gyro-angle coordinate would complicate simulations,
and it may be preferable to decompose the physical domain in several areas in each of which a
global choice of gauge exists. In the case of magnetic fusion, for most magnetic geometries (e.g. no
hole in the spatial domain, such as for tokamaks) a global choice of gauge is possible, so that the
local description corresponding to the traditional gyro-angle is actually a global one.

It is not the case of all magnetic geometries, and the intrinsic formulation keeps its relevance
for general or non-trivial magnetic geometries, where it offers a global description, and hence
intrinsically insures the consistency of the local descriptions.

Another possible application can be found in the investigation of the collision operator for gy-
rokinetics in this intrinsic framework, because replacing the trivial gauge-dependent gyro-angle by
a non-trivial intrinsic variable could impact the description of collisions occurring in the gyro-angle
dimension. More technical, although not less interesting, questions can also be considered: for in-
stance the quantification of the flux of the vector field N := ∇×R and its meaning in the intrinsic
formulation; or the condition about contractible loops for the existence of a scalar gyro-angle, which
should be optional since it is not needed for the gyro-gauge; or the use of the gauge-independent
vectorial gyro-angle in the Vlasov-Maxwell field theory, with especially the definition of the measure
for functionals.

In the previous chapters, various methods were used, each with its own purpose. Perhaps their
role can usefully be reviewed here. In order to identify a constant of motion, Chapter 10 used
expansions of differential operators, with the common issue about secular terms. For a minimal av-
eraging reduction, Chapter 1 showed the efficiency of Lie-transforming the equations of motion. In
order to clarify questions about the coordinate system, Chapter 3 was interested in more geometric
structures, especially with connections, commutators of vector fields or non-closures of differential
forms. Last, for a more complete reduction, Chapter 2 used a Lie transform of the phase-space
Lagrangian. It is the only chapter that was directly concerned with Hamiltonian methods. We
want to point out how its Hamiltonian approach increased the efficiency of guiding-center reduc-
tions. Also, it emphasized how Hamiltonian systems encode the dynamics in the structure, and
replace the differential framework by an algebraic one, where structures in the dynamics are more
easily identified. This suggests that Hamiltonian approaches could also increase the efficiency of
the gyrokinetic reduction, which will be the topic of Chapters 6 and 8.

In order to address higher-order reductions, we obtained explicit induction formulae for the per-
turbative procedure at higher orders, both for the minimal and for the full guiding-center reduction.
Although they involve few basic operations, the Leibniz rule applied at each order implies lengthy
expressions and the derivation would be more relevantly addressed by introducing computer-assisted
symbolic calculus.

Such a method is applied by [26] to a different reduction procedure. They use Cartesian position-
velocity coordinates and include the magnetic moment in the coordinates only as a second step.
Also, compared to our approach, the symplectic representation is handled in a different way. It can
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be interesting to investigate the efficiency and results of our procedure compared to theirs.
Especially, higher-order results offer many possible representations. It will be interesting to

explore them further, to identify or confirm how they can be used for a suitable purpose, and
possibly to identify optimal choices for some relevant criteria. For instance, as was suggested
by [26], various representations could have a difference in the simplicity of the results, or in the
time validity of the transformation truncated at some order. here, we rather focused on the idea
of a maximal reduction, related to the simplicity of the reduced dynamics, but the time validity
would be interesting to explore as well.

Answering such questions would involve numerical simulations for several test representations,
as is suggested in [26]. At the same time, optimal choices can be looked for by analytical studies,
as is rather pursued in the present document. Both kinds of works should be developed since they
are complementary. Notice that the numerical simulations considered here are easy ones, because
they concern six-dimensional particle dynamics (or guiding-center dynamics), not gyrokinetic field
dynamics.

The role of the electric field was mentioned in several places, but it can be considered with more
details. Explicit formulae for non-zero electric field are interesting to compute and study.

In addition, this first episode was developed in a similar way as what is typically done in the
literature, with especially a static magnetic and electric fields. A possible extension would be to
consider dynamical electrostatic or electromagnetic field (slowly varying in time, for this effect
to be only perturbative). This should not pose a problem, since it would not affect the pivotal
coefficients of the reduction procedure. It only implies additional terms in the right-hand side of
the equations at each order, which complicates the formulae, but does not affect the procedure at
all. This extension will be necessary for gyrokinetics as is emphasized in the next episode, and
especially in Chapter 5.

So, at this point, the intrinsic formulation of guiding-center theory, as well as the higher-order
reduction, are well established in their foundations, but much more remains to be done in order
to exploit the results. In some way, this episode was only the beginning of many extensions to be
explored and developed, all the more as we only mentioned the immediate extensions, but many
other ones can be considered, such as including the bounce-angle reduction [16,29].

Perhaps the most important continuation concerns the conservation of angular momentum, since
this important question was a motivation for developing the higher-order reduction [26,127]. Again,
this work will probably imply analytical studies, together with numerical analyses, verifications or
explorations.

With regard to the numerical studies, they could be somehow complicated, since they imply
plasma simulations (gyrokinetic field dynamics). Present-day simulations are already very heavy
for High Perfomance Computers [42,56], and including additional (second-order) terms would sig-
nificantly complexify the simulation.

As a first exploration, a possible process is to evaluate a posteriori in present-day numerical
simulations whether the second-order neglected terms are indeed much smaller (or at least induce
smaller effects) than the first-order terms, and also than the second-order terms that are kept. If
this is not clearly verified, it can be useful to study the regions in phase space (or in tokamaks)
where it is verified or not, in order to identify the possible domains of relevance or limitation
of present-day simulations and models. This should not be heavy task, since it only means to
post-process the data coming from standard simulations.

As for the analytical studies, they will be best addressed with the Hamiltonian formulation of
gyrokinetics, which is the topic of the next episodes of this dissertation.
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Part II

From particle guiding-center to

Vlasov-Maxwell gyro-center
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Introduction of the episode

After its preliminary stage, with the guiding-center reduction of particle dynamics in a strong
external electromagnetic field, gyrokinetics proceeds in its main stage, which is the reduction of
plasma dynamics coupled with Maxwell’s equations (or with Poisson equation) [17, 49, 65]. It can
be viewed as the transfer (lifting) of guiding-center reduction from particle dynamics to plasma
dynamics, together with inclusion of the coupling between the plasma and the electromagnetic field.

Let us remind that it proceeds in four steps.
The first one (denoted as Step 2a on page 16) keeps the magnetic field external (and the electric

field zero in principle, as in the first stage). It just consists in transferring ("lifting" [115]) the change
of coordinates from the particle level to the field level, by performing the guiding-center change of
coordinates for the Vlasov density. This gives the reduction for the Vlasov equation in the case of
a strong external magnetic field.

The second step (Step 2b) is to restore self-consistency in the dynamics, i.e. the coupling
between the plasma and the electromagnetic field. In the electrostatic case, it consists in "plugging"
besides the Vlasov equation the Poisson equation, where the source term is expressed in guiding-
center coordinates, which generates an additional polarization term.

In principle, as the electric field was not accounted for in the guiding-center reduction, the
presence of a non-zero electric field spoils the reduction of the Vlasov equation, as can be viewed
directly in particle dynamics. So, the third step (Step 2c) is to perform a second transformation
(gyro-center transformation) on particle dynamics and to lift it to the Vlasov density, in order
to restore the reduction by taking into account the presence of an electric field. For the reduced
dynamics, this generates additional terms in the reduced Vlasov equation and in the polarization.

Here, the presence of an electric field was already taken into account in the guiding-center
reduction, so that Step 2c disappears. More precisely, it is done at the same time as Steps 1 and
2a. For the second stage, only the first two steps 2a and 2b are left: the plasma reduction is
obtained by lifting the particle change of coordinates to the Vlasov density and then the coupling
between the plasma and the electric field is obtained just by restoring the Poisson equation, with
the source term expressed in gyro-center coordinates.

After Step 2c, the characteristics of the reduced Vlasov density occur in subspaces of constant
magnetic moment, and their fast gyro-angle dimension does not influence their other dimensions.
The last step of the reduction (Step 2d) is then to drop this superfluous dimension, by averaging
it out.

This is how the usual derivation of gyrokinetic equations works [17]. The issue is that it proceeds
at the level of the equations of motion, and this gives no information on what the Hamiltonian
structure becomes in the process.

As a result, the Hamiltonian structure of gyrokinetics is not identified yet, whereas it would have
various advantages (see e.g. [38,70,92,99,107,108,159]), for instance in making available Hamiltonian
perturbation methods, or energy-Casimir methods for equilibria and their stability, or in making
the Hamiltonian structure usable in numerical simulations and schemes. More importantly, it
would provide an efficient framework for conservation laws and especially for the question about
the conservation of angular momentum [21,127,133].

On another hand, in the present situation, one can not completely exclude that the present-day
reduced dynamics may not be Hamiltonian. Identifying the Hamiltonian structure is a way to check
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that no fake dissipation has been introduced in the derivation [108], and to validate the equations
or to identify the changes to be done in order to make them Hamiltonian, in a similar way as what
occurred around 1980 for the guiding-center reduction, for instance with Littlejohn’s works [86,88].

More precisely, our goal is twofold: to obtain the Hamiltonian structure of gyrokinetics and
to identify how it is induced by the derivation, which is mainly a lifting of a change of particle
coordinates to the Vlasov-Maxwell field dynamics. Indeed, we will avoid trying to directly guess
the Hamiltonian structure of gyrokinetics, especially because previous attempts showed that it
can be difficult to find the answer, and especially to prove the Jacobi identity with an expectedly
complicated bracket.

Instead, we will study how the Vlasov-Maxwell Poisson bracket is affected by the reduction
process. This will automatically guarantee that the Jacobi identity is verified by the reduced
bracket. So, we will follow the standard procedure, but instead of working on the equations of
motion, we will work at the level of the Hamiltonian structure.

In this context, the coupling is automatically included in the structure, and more precisely in
the Vlasov-Maxwell non-canonical Poisson bracket. So, nothing has to be done for Step 2b, already
taken into account by the Hamiltonian framework. Only Steps 2a (the lifting) and 2d (the removal
of the gyro-angle) remain to be done. In this episode, we focus on the lifting method (Step 2a),
since it is the main ingredient in the Stage 2 of the gyrokinetic reduction. The subtleties involved
in a Hamiltonian approach of the averaging reduction (Step 2d) are quite different and will be
addressed in the next episode.

In principle, the lifting is expected to correspond to a change of field coordinates, and hence
to a chain rule for functional derivatives in the Poisson bracket, which should naturally provide
the transformed Hamiltonian structure, associated with the correct equations of motion. However,
practically, the "chain rule" is not just a usual chain rule.

First the change of phase-space coordinates is not implemented in functions defined over the
phase space, as it should be for a chain rule, but on functionals defined over a set of functions
defined over the phase space.

Second, when the spatial point is changed, additional complications and possible obstructions
can take place. The definition of the transformed fields depends not only on the initial fields, but
also on the transformed field. This is because the point where the field is evaluated is changed
as well, and it hence depends on the transformed field. This could imply an inconsistency in
the theory, and a possible obstruction to define properly the transformation for fields, even if the
transformation for particle coordinates is well defined.

Third, other subtleties come from specificities of the base space of the Vlasov-Maxwell fields:
the Vlasov density is defined over the phase space, which undergoes a coordinate transformation
both in configuration space and in momentum space, whereas the electromagnetic field is defined
over a configuration space which does not undergo any change of coordinates. This implies to deal
with several spaces, and to distinguish between the particle configuration space and the electro-
magnetic configuration space.

Because of all these features, in order to address the Hamiltonian lifting procedure for gyroki-
netics, we will proceed with successive deepenings, by studying first a simplified case, and then
more and more complete cases, which should clarify successively the above mentioned possible
complications.

- First, in Chapter 4, we consider a simplified transformation where the last two difficulties are
removed, and especially the possible obstruction. This is done by considering a transformation that
does not affect the spatial position, with the example of the magnetic moment reduction (introduced
in Chapter 10). This removes the above mentioned second and third difficulties, because the
transformation depends only on the electromagnetic field, which is defined over the configuration
space. Thus, only the first difficulty is addressed, i.e. we can focus on the lifting mechanism and
phenomena.

- Second, we use the resulting lifting mechanism to address the second difficulty (possible
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obstruction), while discarding the last difficulty. This is done by considering a system where all
the fields are defined over the same space, i.e. by departing from the Vlasov-Maxwell system. For
instance, this could apply to a fluid dynamics where magnetic coordinates are adopted for the
configuration space. This work is reported in the appendix chapter 11.

- Third, in Chapter 5, we will use the conclusions about the first two difficulties and will
address the last difficulty, by coming back to the Vlasov-Maxwell system. This should provide the
mechanism and the results of the guiding-center and gyro-center transformations from the point of
view of the Hamiltonian structure.

- Last, in Chapter 6, the Hamiltonian structure of Vlasov-Maxwell is investigated, and it is
shown to be exactly suited to the two-stage gyrokinetic reduction. More precisely, its second stage
(gyro-center reduction) is given by a Hamiltonian perturbation of the first one. This Hamiltonian
perturbation is explored and compared to the traditional reduction relying on a lift of a reduction
of particle dynamics.

It is important to notice that the work of this episode relates particle Hamiltonian perturba-
tion theory and field Hamiltonian perturbation theory. Indeed, perturbation theory in the context
of Hamiltonian dynamics has proven to be unquestionably useful in many contexts, ranging from
celestial mechanics (e.g. [142]), to atomic physics (e.g. [11]), to plasma physics (e.g. [81]). The
superconvergent expansions of Kolmogorov-Arnold-Moser theorem (e.g. [1, 78, 92]) and the tech-
niques of adiabatic invariance (e.g. [28, 52, 68, 150]) all are aspects of perturbation theory in the
Hamiltonian context.

Although such techniques are well-developed and well-known for finite-dimensional systems, this
is not the case for such perturbation theories for partial differential equations. This is particularly
true for Hamiltonian systems with noncanonical Poisson brackets of the form of those given in
[102,104,107] for plasma systems. A main effect of the present episode is to provide tools for such
perturbation theory using the Poisson bracket for Vlasov-Maxwell equations [95,101,104,114,156]
in situations with a short time scale introduced by the presence of a strong magnetic field.

Derivations of gyrokinetic theories have proceeded directly from the Vlasov-Maxwell equations
of motion as in the nonlinear development of [49], they have been based on Hamiltonian particle
orbit perturbation theory that is lifted up to the kinetic level as in the linear development of [89],
or they have incorporated both particle orbit and kinetic perturbations to arrive at a nonlinear
theory [19]. (See [17,29] for review.) None of these procedures parallels that for finite-dimensional
Hamiltonian systems that has historically achieved such great success. It is why none of these
theories obtain an infinite-dimensional Hamiltonian form as a consequence of their method of
derivation, and at present it is not known if nonlinear gyrokinetics has Hamiltonian form, the form
possessed by all of the important systems of plasma physics when dissipative terms are neglected.
An alternative approach was recently introduced in [144], one which uses a kind of kinetic action
principle (see, e.g., [158]), rather than the Hamiltonian structure of the Vlasov-Maxwell dynamics,
and one that incorporates an approximately self-consistent electromagnetic field.

This is where the lifting appears. To effect an infinite-dimensional Hamiltonian gyrokinetic-
like perturbation theory requires changes of particle coordinates, motivated by the guiding-center
reduction, that induce changes in the field Hamiltonian dynamics. Thus, this perturbation the-
ory involves a sequence of particle coordinate changes that depends both on the dependent (field)
variables and on their arguments, which are independent variables from the point of view of the
Hamiltonian structure. This complicates matters significantly and care must be taken when per-
forming transformations, most notably with the chain rule. It is why we will be very careful in
establishing the lifting method, especially in Chapters 4 and 11.

In order to emphasize the positioning of the work reported in this episode, notice also that the
lifting in this context appears as the process of determining the form of field dynamics, induced by
particle orbit dynamics. It is a natural relative of the lifting treated in Ref. [114], which treats the
lifting of microscopic particle dynamics up to the field level: the purpose of the present episode
is distinct from that of Ref. [114], but the framework is closely related. Indeed, on the one hand,
the paper [114] is about a general prescription for the Hamiltonian structure of Vlasov-Maxwell
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theories with polarization and magnetization, but often such effects come from a transformation of
the particle phase space. On the other hand, in the present episode, we study how to lift a change
of particle coordinates to the Hamiltonian structure of Vlasov-Maxwell dynamics; as a side effect,
this can generate polarization and magnetization. Thus, these are two complementary aspects of
one and the same question.



Chapter 4

Lifting particle coordinate changes

of magnetic-moment type to

Vlasov-Maxwell Hamiltonian dynamics
in collaboration with Phil J. Morrison and Michel Vittot
Paper published in Phys. Plasmas 20, 032109 (2013)

Abstract: Techniques for coordinate changes that depend on both dependent
and independent variables are developed and applied to the Vlasov-Maxwell
Hamiltonian theory. Particle coordinate changes with a new velocity variable
dependent on the magnetic field, with spatial coordinates unchanged, are lifted
to the field theoretic level, by transforming the noncanonical Poisson bracket
and Hamiltonian structure of the Vlasov-Maxwell dynamics.
Several examples are given including magnetic coordinates, where the velocity
is decomposed into components parallel and perpendicular to the local magnetic
field, and the case of spherical velocity coordinates. An example of the lifting
procedure is performed to obtain a simplified version of gyrokinetics, where
the magnetic moment is used as a coordinate and the dynamics is reduced by
elimination of the electric field energy in the Hamiltonian.

Introduction

The goal of this chapter is to start addressing the Hamiltonian structure of gyrokinetics, and
more precisely the lifting of the guiding-center reduction to the Hamiltonian structure of Vlasov-
Maxwell field dynamics, by dealing with a very simplified case, in which the position coordinate is
not changed. Thus, we consider in this chapter just the lifting of the magnetic-moment reduction,
whose transformation was studied in Chapter 10. This simplifies matters significantly because the
transformation depends only on the fields E and B, which are not affected at all by the transfor-
mation, since they are defined only over the configuration space. It is a way to focus just on the
phenomena at work in the lifting procedure, while avoiding any additional intricacy.

The organization of the chapter is the following. In Sec. 4.1 the framework of the subsequent
development is made precise, with especially the class of transformation considered and the Hamil-
tonian structure of Vlasov-Maxwell dynamics to be transformed. It is followed by four sections.
Each of them considers a specific transformation, and it is shown how to lift these coordinate trans-
formations, which are tailored to particle orbit dynamics, up to the level of fields, by detailing how
to transform the Vlasov-Maxwell Poisson bracket into the new coordinates. In the process, four fea-
tures associated with steps of lifting must be considered; these are progressively taken into account
to reach the final complete transformation for the magnetic moment µ̄. The four features/steps are

Step A A chain rule for functions in the particle bracket [·, ·], because the transformation affects
particle coordinates.

Step B The presence of the Jacobian both in functionals and in functional derivatives.
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Step C A chain rule for functionals in the field bracket {·, ·}, because the transformation depends
of the magnetic field, which is a dynamical field.

Step D The possible presence of gradients of the magnetic field in the transformation, which implies
the presence of differential operators in the chain rule.

Section 4.2 considers magnetic coordinates, where the particle velocity coordinate is projected
parallel and perpendicular to a space-dependent dynamic magnetic field; this introduces the features
A and B mentioned above. Next, in Sec. 4.3, spherical velocity coordinates are considered. Here
the velocity coordinates are chosen as the unit vector of the velocity (independent of the spatial
coordinates) and a coordinate in one-to-one correspondence with the norm of the velocity. This
transformation introduces a new feature in that the Jacobian determinant of the transformation
is no longer unity, but the transformation does not depend of the magnetic field. This provides a
simple example for the features A and C. In Sec. 4.4, we turn to a case that is both more complete
and closer to that needed for gyrokinetics with the magnetic moment coordinate: the change of
coordinates depends on the local value of the magnetic field, which implies the presence of the
features A, B and C. Next, Sec. 4.5 considers the physically important situation, where the change
of coordinates involves spatial derivatives of the magnetic field to arbitrary order, i.e., as given by
Eq. (4.1) below; this involves all of the four features A, B, C, and D. Finally, with the techniques of
the previous four sections in hand, in Sec. 4.6 we treat an example where the reduced coordinate is
indeed the magnetic moment and explicitly transform the Hamiltonian form of the Vlasov-Maxwell
equation into the new coordinates.

Notice that the first example differs from the others in that the last four sections 4.3-4.6 are
about the same ultimate transformation, with each section bringing us closer to the magnetic
moment transformation: the velocity coordinates are first chosen as spherical coordinates; then the
norm of the velocity is taken as a general local function of the magnetic field; next, it is taken as
a general non-local function of the magnetic field; last, it is chosen as the magnetic moment. Also,
for the sake of conciseness, the equations of motion of the transformed Vlasov-Maxwell system will
be studied only in the example of Sec. 4.6, but it is clear that the conclusions are general and hold
for other examples of lifting.

4.1 Framework of the present lifting

From a general point of view, a main purpose of this chapter is to transform the Vlasov-Maxwell
Hamiltonian structure when the phase-space variables (q,v) are changed to the following new
coordinates that depend on the magnetic field and all of its derivatives:

q̄ = q , v̄ = v̄(q,v;B,∇B, . . . ) . (4.1)

This process is called a "lifting" of the transformation (4.1) from the particle phase space (and
dynamics) to the Vlasov-Maxwell Hamiltonian structure (and dynamics).

For the noncanonical Hamiltonian structure of Vlasov-Maxwell dynamics, the observables are
the set of all functionals of the magnetic field B(q), the electric field E(q), and the phase-space
density f(q,v), where the time variable has been suppressed. The Poisson bracket is [95,101,104,
156]:

{F,G}=
∫
d3qd3v f [Ff , Gf ] (4.2)

+e

∫
d3qd3v f (GE · ∂vFf − FE · ∂vGf )

+

∫
d3q

(
FE · ∇ ×GB −GE · ∇ × FB

)
,

where subscripts are used for functional derivatives, Ff := δF/δf , FE := δF/δE, etc., and the
particle bracket is [g, h] = ∇g ·∂vh−∇h ·∂vg+eB ·∂vg×∂vh, with ∇g = ∂g/∂q and ∂vh = ∂h/∂v,
for any functions of the phase space g(q,v) and h(q,v). For the sake of simplicity physical constants
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have been scaled away as usual, but a dimensionless charge variable e that indicates the coupling
term has been retained (see [114] for a dimensional form of this bracket). The variable e becomes
the charge ratios when (4.2) is generalized by summing over multiple species.

The Hamiltonian functional is

H[E,B, f ] = 1
2

∫
d3qd3v ‖v‖2f + 1

2

∫
d3q

(
‖E‖2 + |B‖2

)
, (4.3)

which is the sum of the kinetic energy of the plasma and the energy of the electromagnetic field. The
relativistic model is obtained by replacing ‖v‖2 in the kinetic energy term with

√
1 + ‖v‖2, where

in the latter case v is the scaled relativistic momentum. The coupling between the plasma and
electromagnetic field is included in the noncanonical Poisson bracket (4.2). The Hamiltonian (4.3)
together with the Poisson bracket generates the motion through Hamilton’s equations expressed as

Ḟ={F,H} ,

for any observable F . In particular, if F denotes the field variables the bracket induces Vlasov-
Maxwell equations as follows:

Ḃ={B, H} = −∇×E ,

Ė={E, H} = ∇×B− e

∫
d3v fv ,

ḟ={f,H} = −v · ∇f − e (E+ v ×B) · ∂vf . (4.4)

As noted in the introduction of this chapter, in order to transform the Hamiltonian structure
to facilitate the separation or removal of fast time scales (as in oscillating-center, guiding-center,
and gyrokinetic theories) care must be taken because such a change of coordinates involves both
the dependent and independent variables, i.e., the spatial observation points of the field. A simple
case of this is treated in the next section.

4.2 Lifting magnetic velocity coordinates

As a first case of lifting, consider velocity coordinates based on a decomposition of the velocity using
the magnetic field. This transformation of the spatial coordinate is unchanged, but the velocity v
is transformed as follows:

v = v(v̄;B) = v(v||,v⊥;B) = bv|| + v⊥ ,

where b = B/‖B‖ is the unit vector the direction of the magnetic field,

v|| = b · v

is the (scalar) component of the velocity parallel to the magnetic field, and

v⊥ = v − bb · v = ¯̄I⊥ · v

is the (vectorial) component of the velocity perpendicular to the magnetic field, with

¯̄I⊥ := ¯̄I − bb (4.5)

being the orthogonal projector onto the plane perpendicular to the magnetic field.
As a side comment, notice that the coordinate v⊥ is constrained. It is not completely indepen-

dent of the spatial position, since moving the position q implies a change in B(q), and then v⊥
may have to be changed in order to remain orthogonal to the magnetic field, as it should (see e.g.
Eq. (3.7)).

There are two chain rules to consider: that for functions, considered next, and that for func-
tionals, such as the energy expression of (4.3), which will follow.
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4.2.1 Function chain rule

The transformation of the field Poisson bracket of (4.2) requires the transformation of the particle
bracket,

[g, h] =
∂g

∂q
· ∂h
∂v

− ∂h

∂q
· ∂g
∂v

+ eB ·
(
∂g

∂v
× ∂h

∂v

)
, (4.6)

into the new coordinates, (q,v) → (q, v||,v⊥). The following abbreviations are convenient:

∇ :=
∂

∂q
, ∂i :=

∂

∂qi
, ∂|| :=

∂

∂v||
, ∂⊥ :=

∂

∂v⊥
.

Note the last operator acts only in the plane perpendicular to B, which implies the following
properties:

∂⊥ḡ · ¯̄I⊥ = ∂⊥ḡ and b · ∂⊥ḡ = 0 .

Here and everywhere in the chapter, the overbar over a function will indicate a function of the
phase space expressed in new coordinates ḡ(q, v̄).

Total variations of g(q,v) = ḡ(q, v||,v⊥) are given by

δg =
∂g

∂q
· δq+

∂g

∂v
· δv = ∇ḡ · δq+ ∂||ḡ.δv|| + ∂⊥ḡ · δv⊥ , (4.7)

while variations of the initial and final coordinates are related by

δv||=b · δv + (δq · ∇b) · v ,
δv⊥=

¯̄I⊥ · δv + δ ¯̄I⊥ · v
=¯̄I⊥ · δv − (δq · ∇b) (b · v)

−b (δq · ∇b) · v . (4.8)

For the function chain rule the field B is assumed to be a fixed function with the coordinates (q,v)
changing.

Inserting (4.8) into (4.7) implies the chain rule relations

∂g

∂v
=b ∂||ḡ + ∂⊥ḡ · ¯̄I⊥ = b ∂||ḡ + ∂⊥ḡ , (4.9)

∂g

∂qi
=∂iḡ + (v · ∂ib) ∂||ḡ − (b · v) ∂⊥ḡ · ∂ib , (4.10)

and using (4.9) and (4.10) in (4.6) gives the particle bracket in the magnetic coordinates

[ḡ, h̄]=b ·
(
∇ḡ ∂||h̄−∇h̄ ∂||ḡ

)
(4.11)

+
(
∇ḡ · ∂⊥h̄−∇h̄ · ∂⊥ḡ

)

+a ·
(
∂⊥h̄ ∂||ḡ − ∂⊥ḡ ∂||h̄

)

+∂⊥ḡ · ¯̄b · ∂⊥h̄+ eB ·
(
∂⊥ḡ × ∂⊥h̄

)
,

with
ai = v · ∂ib+ (b · v) b · ∇bi and ¯̄bij = (b · v) (∂ibj − ∂jbi) .

In all these relations, recall that ∂⊥ḡ = ∂⊥ḡ · ¯̄I⊥. This is important because, for instance, the
component of ∇ḡ, a or ¯̄b parallel to b are non-zero, but vanish when contracted with ∂⊥ḡ.

4.2.2 Jacobian

In general care must be taken with the Jacobian determinant J when defining functional derivatives,
but here Step B is trivial, since the Jacobian is unity

J :=
∂(q, v||,v⊥)

∂(q,v)
= 1 .
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This follows because rotations have unit Jacobians and at any time there exists a rotation to a
cartesian coordinate system with one of the v axes aligned with b. Thus

dz := d3qd3v = d3qdv||d
2v⊥ =: dqdv .

Because the volume integral is ultimately independent of how it is calculated, dz can be assumed
to be independent of B, e.g. when calculating functional derivatives with respect to B, the topic
considered next.

4.2.3 Functional chain rule

For the functional chain rule, the transformation of the fields must be made definite, Here,

E(q)=Ē(q) , B(q) = B̄(q) ,

f(q,v)=f̄(q, v||,v⊥) = f̄(q, b · v, ¯̄I⊥ · v)
=f(q, bv|| + v⊥) ,

where now the coordinates (q,v) are fixed and the field b varies.
Variation of a transformed functional, F [f,B,E] = F̄ [f̄ , B̄, Ē], gives

δF=

∫
dz Ffδf +

∫
dq (FB · δB+ FE · δE)

=

∫
dz F̄f̄δf̄ +

∫
dq
(
F̄B̄ · δB̄+ F̄Ē · δĒ

)
. (4.12)

With the variations of the initial and final fields related by

δE = δĒ , δB = δB̄ , and δf = δf̄ + ∂||f̄ (v · δb) + ∂⊥f̄ · δ ¯̄I⊥ · v , (4.13)

expressions relating functional derivatives of new and old variables can be obtained. Using

δ ¯̄I⊥ = − 1

‖B‖
(
b ¯̄I⊥ · δB+ ¯̄I⊥ · δB b

)
,

and after some work the last equation of (4.13) becomes

δf = δf̄ +
(v⊥ · δB)

‖B‖ ∂||f̄ −
v||
‖B‖ δB · ∂⊥f̄ .

Inserting this and the other two equations of (4.13) into (4.12), and then equating coefficients, gives
the functional chain rule relations

δF

δf
=
δF̄

δf̄
,

δF

δE
=
δF̄

δĒ
,

δF

δB
=
δF̄

δB̄
+

1

‖B‖

∫
dv

δF

δf̄
∂∗vf̄ , (4.14)

where
∂∗v := v⊥∂|| − v||∂⊥ . (4.15)

Finally, the Vlasov-Maxwell bracket expressed in these magnetic coordinates is

{F,G}=
∫
dz f [Ff , Gf ]

+e

∫
dz f (GE · ∂vFf − FE · ∂vGf ) (4.16)

+

∫
d3q

(
FE · ∇ ×

[
GB +

1

‖B‖

∫
dv Gf ∂

∗
vf

]

−GE · ∇ ×
[
FB +

1

‖B‖

∫
dv Ff ∂

∗
vf

])
,

where the ‘bars’ have been dropped, [ , ] means the bracket of (4.6) rewritten in the new coordinates
as (4.11), and ∂v = b ∂|| + ∂⊥ is a shorthand as in (4.9). Note, ∂∗vv

2 = 0.
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4.3 Lifting spherical velocity coordinates v = V v̂

Now turn to the new coordinates considered for intrinsic gyrokinetics (used in Chapter 10), which
changes only one of the velocity coordinates to get the magnetic moment µ̄. The two other ve-
locity coordinates are usually chosen as the unit vector of the velocity. So, a preliminary change
of coordinates consists in adopting spherical coordinates for the velocity space: v = V v̂ where
V := ‖v‖ ∈ R+ is the norm of the velocity and v̂ := v/‖v‖ ∈ S2 is the unit vector of the veloc-
ity. This transformation is considered in this section, but later the change V → µ̄ will be considered.

Step A: The transformation v ↔ (v̂, V ) is clearly invertible. For the chain rule the following
are needed:

δV = v̂ · δv and δv̂ = ¯̄I⊥ · δv
V
,

where
¯̄I⊥ = ¯̄I − v̂v̂

is the orthogonal projector onto the plane perpendicular to the velocity. Note ¯̄I⊥ is different from
the magnetic projector ¯̄I⊥ of (4.5) used in Sec. 4.2.

As in Sec. 4.2 the above are used to calculate the function chain rule, giving

∂g

∂v
=

1

V

∂ḡ

∂v̂
· ¯̄I⊥ +

∂ḡ

∂V
v̂ , (4.17)

∇g=∂g
∂q

=
∂ḡ

∂q
= ∇ḡ . (4.18)

Inserting (4.17) and (4.18) into (4.6) and, after some manipulations, the particle bracket ex-
pressed in spherical coordinates is obtained

[g, h]=
1

V

(
∇g · ¯̄I⊥ · ∂v̂h−∇h · ¯̄I⊥ · ∂v̂g

)

+v̂ · (∇g ∂V h−∇h ∂V g)

+
eB

V 2
·
(
∂v̂g · ¯̄I⊥

)
×
(
∂v̂h · ¯̄I⊥

)

+
eB× v̂

V
· (∂V g ∂v̂h− ∂v̂g ∂V h) , (4.19)

where, for convenience, the ‘bars’ have been dropped and the abbreviations

∂g

∂v̂
=: ∂v̂g and

∂g

∂V
=: ∂V g ,

have been employed.

Step B: This step is not trivial here, since the Jacobian for this special case is not unity

dz = V 2dV dΩd3q = J dV dΩd3q =: J dηd3q =: J dw , (4.20)

because the integration measures are changed from d3v and dz to dη and dw, which are defined by
Eq. (4.20).

Step C: Turning to the functional chain rule, notice that the change of coordinates does not
depend on the fields, and the Step C is simplified here, but it is not completely trivial, because the
Jacobian has to be taken into account

δF=

∫
dz Ffδf +

∫
d3q (FB · δB+ FE · δE) (4.21)

=

∫
dw F̄f̄δf̄ +

∫
d3q

(
F̄B̄ · δB̄+ F̄Ē · δĒ

)
.



4.4. INCLUSION OF A LOCAL DEPENDENCE ON B 129

Inserting (4.20) into (4.21) gives

Ff = J −1F̄f̄ , FB = F̄B̄ , and FE = F̄Ē . (4.22)

Note, in (4.22) the new functional derivative is defined with respect to the bare measure dw.
So, the first term of the Vlasov-Maxwell bracket transforms as

{F,G}1 :=
∫
dz f [Ff , Gf ] =

∫
dw J f̄

[
J −1F̄f̄ ,J −1Ḡf̄

]
= {F̄ , Ḡ}1 , (4.23)

with the bracket of the second equality above given by (4.19).
In practical computations with Vlasov-like Poisson brackets (especially when computing the

equations of motion), a very useful property is the usual ‘f -g-h’ identity, viz.
∫
dz f [g, h] = −

∫
dz g[f, h],

for canonical brackets. Here, because of the Jacobian, this identity is changed and replaced by:
∫
dw J f

[
J −1g, h

]
= −

∫
dw g [f, h] , (4.24)

and in terms of the bare measure
δf(w)

δf(w′)
= δ(w − w′) . (4.25)

With this identity (4.24), it is straightforward to verify that the bracket of (4.23) produces the
correct current for the Vlasov-Maxwell (and also Vlasov-Poisson) equations of motion.

Now consider the coupling terms of the bracket

{F,G}2:=e
∫
dz f (GE · ∂vFf − FE · ∂vGf )

= e

∫
dw J f̄

(
GĒ · ∂vJ −1F̄f̄ − FĒ · ∂vJ −1Ḡf̄

)
,

where ∂v is a shorthand for the expression of (4.17). When generating Maxwell’s equations, the
Hamiltonian gives

H̄f̄ = J ‖v‖2/2 ,
which gives the correct expression for the current density J =

∫
dηJ fv.

Finally, the pure field terms of the Vlasov-Maxwell bracket are unchanged and, thus, the Vlasov-
Maxwell bracket in these spherical coordinates becomes

{F,G}=
∫
dw J f

[
J −1Ff ,J −1Gf

]

+e

∫
dw J f

(
GE · ∂vJ −1Ff − FE · ∂vJ −1Gf

)

+

∫
d3q

(
FE · ∇ ×GB −GE · ∇ × FB

)
,

where the ‘bars’ have been dropped, and [ , ] means the bracket of (4.6) rewritten in the new
coordinates as (4.19).

4.4 Inclusion of a local dependence on B

To include the magnetic moment in the coordinates, the next step is to investigate the coordinate
transformation V ↔ A, where A is a coordinate in one-to-one correspondence with the coordinate
V of Sec. 4.3, but in this section it is assumed to have local dependence on the magnetic field, i.e, it
depends on B but not its derivatives. Explicitly, the transformation is (q, V, v̂) ↔ (q̄, A, v) where

q = q̄ , v̂ = v , and V = V (A, v,B) .

For an example of an allowable function V , see Sec. 4.6. Clearly, invertibility requires VA :=
∂V/∂A 6= 0, which is the only assumption on this function, beside the absence of gradients of the
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magnetic field B. Since the first two equations above are identities, eventually v̂ will be used for v
and q for q̄.

Step A: Now the chain rule is effected on functions analogous to (4.9)-(4.10) and (4.17)-(4.18)
and on functionals analogous to (4.14) and (4.22). Varying g(q, V, v̂) = ḡ(q̄, A, v) in the label
(coordinates) dependence, and then equating as above, gives

∂g

∂q
=
∂ḡ

∂q̄
− VBi

VA

∂Bi
∂q

∂ḡ

∂A
, (4.26)

∂g

∂V
=

1

VA

∂ḡ

∂A
, (4.27)

∂g

∂v̂
=
∂ḡ

∂v
− 1

VA

∂V

∂v̂

∂ḡ

∂A
. (4.28)

Inserting (4.27) and (4.28) into (4.17) gives the chain rule on functions

D∗ḡ=
∂g

∂v
=

1

V

(
∂ḡ

∂v
− 1

VA

∂ḡ

∂A

∂V

∂v

)
· ¯̄I⊥ +

v

VA

∂ḡ

∂A

=
1

V
∂vḡ · ¯̄I⊥ +

∂Aḡ

VA
v − ∂Aḡ

V VA
∂vV · ¯̄I⊥ , (4.29)

while (4.26) gives

∇∗ḡ =
∂g

∂q
=
∂ḡ

∂q̄
− VBi

VA

∂Bi
∂q̄

∂ḡ

∂A
= ∇̄ḡ − VBi

VA
∇̄Bi ∂Aḡ . (4.30)

Then, inserting (4.29) and (4.30) into (4.19) gives the following complicated expression for the
particle bracket [ , ] in the new coordinates:

[ḡ, h̄]=∇∗ḡ ·D∗h̄−∇∗h̄ ·D∗ḡ + eB ·
(
D∗ḡ ×D∗h̄

)

=
1

V

(
∇̄ḡ · ¯̄I⊥ · ∂vh̄− ∇̄h̄ · ¯̄I⊥ · ∂vḡ

)

+
v

VA
·
(
∇̄ḡ ∂Ah̄− ∇̄h̄ ∂Aḡ

)

+
∂vV · ¯̄I⊥
V VA

·
(
∇̄h̄ ∂Aḡ − ∇̄ḡ ∂Ah̄

)

+
VBi

V VA
∇̄Bi · ¯̄I⊥ ·

(
∂vḡ ∂Ah̄− ∂vh̄ ∂Aḡ

)

+
eB

V 2
·
(
∂vḡ · ¯̄I⊥

)
×
(
∂vh̄ · ¯̄I⊥

)

+
eB× v

V VA
·
(
∂vh̄ ∂Aḡ − ∂vḡ ∂Ah̄

)

− eB

V 2VA
×
(
¯̄I⊥ · ∂vV

)

· ¯̄I⊥ ·
(
∂vh̄ ∂Aḡ − ∂vḡ ∂Ah̄

)
. (4.31)

Step B: The Jacobian for this transformation is now

dz=V 2dV dΩd3q = V 2VAdAdΩd
3q

=J dAdΩd3q =: J dηd3q =: J dw ,

which define the Jacobian J and the integration measures dη and dw. Note that these are not the
same as those of Sec. 4.3, even though the same symbols are used. Furthermore, J now depends
on B and, hence, q. Also, dΩ contains a portion of the Jacobian from cartesian coordinates, but
one that is independent of q.
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Step C: Now consider the functional chain rule as above,

δF=

∫
dz Ffδf +

∫
d3q (FB · δB+ FE · δE)

=

∫
dw F̄f̄δf̄ +

∫
d3q

(
F̄B̄ · δB̄+ F̄Ē · δĒ

)
, (4.32)

Functionally varying f(q, V, v̂) = f̄(q̄, A, v) gives

δf = δf̄ +
∂f̄

∂A

∂A

∂B
· δB , (4.33)

while δB = δB̄ and δE = δĒ. Whence, upon substitution of (4.33) into (4.32), the chain rule on
functionals is obtained,

δF

δf
=

1

J
δF̄

δf̄
,

δF

δE
=
δF̄

δĒ
,

δF

δB
=
δF̄

δB̄
−
∫
dη

∂A

∂B

∂f̄

∂A

δF̄

δf̄
, (4.34)

where the last expression of (4.34) can be written in a more convenient way as

δF

δB
=
δF̄

δB̄
+

∫
dη

VB̄
VA

∂f̄

∂A

δF̄

δf̄
.

This follows from
∂A

∂B
= −VB̄

VA
,

which comes about because the change in A induced by a change in B at fixed V and v, satisfies
0 = δV = VAδA+ VB̄i

δB̄i.
Finally, the Vlasov-Maxwell bracket in the coordinates (q, A, v̂) is given by

{F,G} =

∫
dηd3q J f

[
J −1Ff ,J −1Gf

]
(4.35)

+ e

∫
dηd3q J f

(
GE ·D∗J −1Ff − FE ·D∗J −1Gf

)

+

∫
d3q

(
FE · ∇ ×

[
GB +

∫
dη

VB
VA

∂f

∂A

δG

δf

]

−GE · ∇ ×
[
FB +

∫
dη

VB
VA

∂f

∂A

δF

δf

])
,

where the particle bracket [ , ] is given by (4.31), D∗ is the operator defined by (4.29), and the
bars have been dropped.

4.5 Inclusion of a nonlocal dependence on B

In order to include the physical coordinates where A is the magnetic moment µ̄, the last step is to
consider the case where the coordinate transformation involves derivatives of the magnetic field.
This is important because perturbative reductions, such as those based on Lie-transforms [27,60,87]
or mixed variable generating functions [40], often involve derivatives to arbitrary high order in the
fields.

So, a more general transformation to new coordinates (q, V, v̂) ↔ (q̄, A, v) is considered:

q = q̄, v̂ = v , and V = V [A, v,B] , (4.36)
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where now V [A, v,B] means a transformation that depends on B and, possibly, all its deriva-
tives. For an example of an allowable function V , see Sec. 4.6. Clearly, invertibility requires
VA := ∂V/∂A 6= 0, which is the only assumption on this function. Since the first two equations
above are identities, as before eventually v̂ will be used for v and q for q̄.

Step B: The Jacobian for this transformation is again

dz = V 2VAdAdΩd
3q = J dAdΩd3q =: J dηd3q =: J dw .

but now J depends on q through B and its derivatives.

Steps A and C: For the chain rule on functions or functionals, g(q, V, v̂) = ḡ(q̄, A, v) and
h(q, V, v̂) = h̄(q̄, A, v) are varied as in Sec. 4.4, and all terms are the same as before, except some
slight changes in the relations involving derivatives with respect to the magnetic field (Step D),
which we study in the next paragraph.

Step D: Indeed, the Fréchet derivative with respect to B is now a differential operator, and
care must be taken with the order of terms. For instance, Eq. (4.26) becomes

∂g

∂q
=
∂ḡ

∂q̄
− ∂ḡ

∂A

1

VA
VBi

∂Bi
∂q

, (4.37)

where VBi
is now a differential operator acting on ∂Bi/∂q. Eqs. (4.30)-(4.31) must be changed

accordingly.
As for Eqs. (4.33)-(4.34), variation is performed slightly differently this time as follows:

δf̄ = δf + fV VB̄ · δB̄ ,

where VB̄ is the Fréchet derivative operating on δB̄. Thus the chain rule for functional derivatives
gives

δF

δB
=
δF̄

δB̄
+

∫
dη V †

B

(
∂f

∂V

δF̄

δf̄

)
=
δF̄

δB̄
+

∫
dη V †

B

(
F̄f̄
VA

∂f̄

∂A

)
,

where the adjoint † is done with respect to dw.
Finally, the Vlasov-Maxwell bracket (4.35) in these coordinates becomes

{F,G} =

∫
dηd3q J f

[
J −1Ff ,J −1Gf

]
(4.38)

+ e

∫
dηd3q J f

(
GE ·D∗J −1Ff − FE ·D∗J −1Gf

)

+

∫
d3q

(
FE · ∇ ×

[
GB +

∫
dη V †

B

(
Gf
VA

∂f

∂A

)]

−GE · ∇ ×
[
FB +

∫
dη V †

B

(
Ff
VA

∂f

∂A

)])
.

4.6 Application to the magnetic moment

With the transformed bracket (4.38), the first thing to be checked is whether the dynamics agrees
with the conservation of the magnetic moment, when appropriate, since this is what suggested
the reduction in the first place. To this end, suppose the coordinate A is the magnetic moment,
A := µ̄(q,v), which to lowest order is given by A = µ = ‖v⊥‖2/‖B‖. To get a true conserved
quantity, small corrections must be added to all orders in the Larmor radius, including derivatives
of all orders in the magnetic field [29,62], as is clear in Chapters 10 and 2.

This illustrates an example of an allowable function V . For the case studied in Sec. 4.4, one
can choose the coordinate V (A) to be the inverse of the zeroth-order magnetic moment relation
A = µ = ‖v⊥‖2/‖B‖ = V 2‖v̂ × b‖2/‖B‖:

V0 :=

√
A‖B‖

‖v̂ × b‖ =

√
A(B2)3/4√
(v̂ ×B)2

,
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which implies for the function VB of Eq. (4.35)

(V0)B =
3

4

V

B2
(B2)B − 1

2

V

(v̂ ×B)2
((v̂ ×B)2)B =

V

2B

(
3b− 2

¯̄I⊥ · b
(v̂ × b)2

)
.

For the case studied in Sec. 4.5, one can choose the coordinate V (A) to be the inverse of the
following expression for the magnetic moment to first order [29,62] (see Chapter 10):

A =
‖v⊥‖2
‖B‖ − 2

‖v⊥‖3
‖B‖2

[
a · ∇B
2B

+ φ
3a · ∇b · c− c · ∇b · a

4
+ φ2b · ∇b · a

]
, (4.39)

where φ := (b · v̂)/(
√
(b · v̂)2), and the vectors a := (b × v̂)/‖v̂ × v̂‖ and c := a × b are the unit

vectors of the perpendicular velocity and of the Larmor radius, respectively. In Eq. (4.39), the
second term is assumed to be small compared to the first. Then, the inverse function V (A) is given
by

V1 :=
1

‖v⊥‖

{√
AB +A

[
a · ∇B
2B

+ φ
3a · ∇b · c− c · ∇b · a

4
+ φ2b · ∇b · a

]}
. (4.40)

Here, we are not interested in computing the complete quantity VB, but only in showing how it can
be an operator when the coordinate V involves derivatives of the magnetic field. As an example,
consider the term A

‖v⊥‖
a·∇B
2B in (4.40). When computing VB, the contribution coming from B, which

is acted upon by the gradient, is given by the first variation in δB of

Aa · ∇
2B‖v⊥‖

√
(B+ δB)2 − Aa · ∇

2B‖v⊥‖
√
B2 ,

which is just
Aa · ∇
2B‖v⊥‖

(b · δB) =
A

2B‖v⊥‖
(a · ∇b ·+b · (a · ∇)) δB .

The corresponding contribution to VBi
is

A

2B‖v⊥‖
(a · ∇bi + bi a · ∇) .

As expected, it is a first-order differential operator.
For a more precise expression of the magnetic moment, higher order corrections could be added,

and VB would be a differential operator of higher order.
Let us now check the conservation of the magnetic moment A := µ̄ = ‖v⊥‖2/‖B‖+O(ǫ), which

is exactly defined as solution of the following equation

0 = ˙̄µ = v · ∇µ̄+ ev ×B · ∂vµ̄ .

At the field level, the conservation of the magnetic moment corresponds to the conservation of
the functional

M :=

∫
dz fµ̄

for any particle distribution f . In the transformed coordinates, this is

M̄ :=

∫
dw J f̄ µ̄ .

To investigate the conservation of M̄ , note that a static magnetic field corresponds to elimination
of the electric field term in the Hamiltonian functional, since this eliminates the ∇×E term in the
Maxwell-Faraday equation (see Chapter 6). In this case

˙̄M={M̄, H̄} =

∫
dηd3q J f̄

[
µ̄,J −1H̄f̄

]

=1
2

∫
dηd3q J f̄

(
∇∗µ̄ ·D∗V

2 + eB ·D∗µ̄×D∗V
2
)

=

∫
d3vd3q f (v · ∇µ̄+ v × eB · ∂vµ̄) = 0 ,
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as was expected.
Accordingly, the transformed bracket (4.38) is expressed in coordinates adapted to the conserved

magnetic moment. As is ususal in gyrokinetics, the electromagnetic field dynamics spoils the
conservation of the magnetic moment. This is why the feed-back of the plasma dynamics onto the
electromagnetic field dynamics needs to be restored as a perturbation, i.e., a perturbed magnetic
moment must be defined that is conserved [17].

Consider now the transformed Vlasov-Maxwell equations of motion generated by the bracket
(4.38). In this bracket, most of the terms are actually identical to those of the initial bracket
(4.2), even though their formal expressions look different because they are expressed in the reduced
coordinates (q̄, A, v), e.g. through Eqs. (4.29) and (4.31). The only new terms are

∫
d3q F̄Ē · ∇ ×

∫
dη V †

B̄

(
Ḡf
VA

∂f̄

∂A

)
,

and one obtained by permuting F̄ and Ḡ (and with a minus sign for bracket antisymmetry).
In the equations of motion, this new bracket term generates an additional term in Maxwell-

Ampere equation, viz.

˙̄E=∇× H̄B̄ − e

∫
dη J f̄ D∗

(
J −1H̄f̄

)

+∇×
∫
dη V †

B̄

(
H̄f

VA

∂f̄

∂A

)
. (4.41)

At first glance this additional term looks like a new magnetization current. But, one must remember
that the usual ∇×B term has itself another additional contribution ∇× δH̄kin/δB̄, because in the
reduced variables, the plasma kinetic energy depends on the magnetic field H̄kin :=

∫
dwJ f̄V 2/2

that is not constant in B̄ (both because of J and V ). And, it turns out that this last additional
contribution exactly cancels the “magnetization" term in (4.41):

δH̄kin

δB̄(x)
=1

2

∫
dw f̄

(
J V 2

)
B̄
δ(q− x) (4.42)

=1
2

∫
dw f̄

(
∂AV · V 4

)
B̄
δ(q− x)

=− 1
10

∫
dw ∂Af̄

(
V 5
)
B̄
δ(q− x)

=− 1
10

∫
dw ∂Af̄

(
V 5
)
V
VB̄δ(q− x)

=−1
2

∫
dw ∂Af̄ J V 2VA VB̄δ(q− x)

=−
∫
dw ∂Af̄

H̄f̄

VA
VB̄δ(q− x)

=−
∫
dη V †

B̄

(
H̄f̄

VA
∂Af̄

)
.

This cancellation was to be expected, since the electric field E = Ē is not affected by the change
of velocity coordinates, and the current term has not been changed either, but only expressed in
the new variables:

−e
∫
dη J f̄ D∗

(
J −1H̄f̄

)
= −e

2

∫
d3v f ∂v

(
J −1J ‖v‖2

)
= −J .

Finally, the additional term in the transformed bracket (4.38) generates another additional term
in the equation of motion: the dynamics of the Vlasov phase-space density ḟ has an additional
force term

− 1

VA

∂f̄

∂A
VB̄ · ∇ × Ē .
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This term is not cancelled by any other term. It can be rewritten as

− ∂f

∂V
VB · ∇ ×E =

∂f

∂V
VB · Ḃ ,

which is exactly the expected contribution when applying the chain rule for the time derivative of
the transformed fields. It comes about because the change of coordinates is time-dependent when
the magnetic field is not static.

Conclusion

In this chapter techniques for transforming the Vlasov-Maxwell Poisson bracket to new coordinates,
when the transformation law mixes dependent and independent variables, have been developed.
Four transformations were considered, each of which considered a new feature needed for under-
standing the more general transformation of (4.36). In Sec. 4.2 a transformation that mixed the
independent velocity variable with the magnetic field was considered and the associated function
and functional chain rules were described. In Sec. 4.3, spherical velocity coordinates were treated
and here it was seen how a nontrivial Jacobian determinant influences a transformation. In Sec. 4.4
a class of transformations that mixes the dependent and independent variables by having depen-
dence on B and in addition possesses a nontrivial Jacobian was considered. Finally, in Sec. 4.5, the
nonlocal transformation of (4.36) was effected, the most general transformation of this chapter that
results in the transformed noncanonical Poisson bracket of (4.38). This final form of the Poisson
bracket was seen to contain additional terms that appear to be magnetization-like contributions.
However, these bracket terms were shown to produce no magnetization term in the equations of
motion, since the electromagnetic fields are not affected by the change of field coordinates. Only the
dynamics of the Vlasov density obtained an additional term, a term that results from the change
of field coordinates being time-dependent through B.

The transformations of Secs. 4.2–4.5 paved the way for the simple example of Sec. 4.6. Here
the dynamics was reduced by dropping the electric field energy from the Hamiltonian, resulting in
the magnetic moment being conserved by a reduced dynamics that must have a static magnetic
field. However, when restoring the feed-back of the plasma dynamics onto the electromagnetic field
dynamics, the magnetic moment was seen to be no longer conserved and must be perturbatively
changed to be conserved. This will be considered with more details in Chapter 6.

In all the cases considered, the lifting was eased because the change of coordinates only con-
cerned a new particle velocity that depends on the magnetic field, but no change was made in the
spatial coordinate. If Eq. (4.1) is generalized by adding dependence on the electric field and all
its derivatives, then results similar to those presented are immediate. However, if the new spatial
variable has velocity and field dependence, then the situation becomes considerably more complex.
Such transformations are of interest for some oscillation-center, guiding-center, and gyrokinetic
theory development, and the same methods of function and functional chain rule can be used, but
some additional effects will show up, e.g., non-zero polarization and magnetization terms like those
of [114]. This more general lifting will be considered in Chapter 5.

However, as mentioned in the introduction of the episode, the lifting for the Vlasov-Maxwell
system will involve two additional difficulties: a transformation depending on fields defined over
a space affected by the transformation, and the presence of two different spaces over which some
fields are defined. Before tackling a lifting with those two difficulties, it is more convenient to
study the first difficulty alone, which is the next step of the work and is reported in the appendix
chapter 11.

−→ See the appendix chapter 11
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Chapter 5

Lifting guiding-center

particle coordinate changes to

Vlasov-Maxwell Hamiltonian dynamics
in collaboration with Alain J. Brizard, Phil J. Morrison and Michel Vittot

Abstract: General changes of particle coordinates depending on the electromag-
netic field are lifted to the Vlasov-Maxwell Hamiltonian dynamics. Compared
to previous works, in addition to a change of all the particle coordinates, the
presence of two different spaces over which fields are defined is taken into ac-
count. This implies to distinguish between particle position and field position,
and generates polarization and magnetization terms, whereas they were absent
from previous examples of lifting.
The results are applied to the guiding-center and gyro-center reductions. It
is shown that they indeed give rise to a Hamiltonian reduced field dynamics,
which includes the effects of the plasma-field coupling and the time dependence
of the transformation in a more complete way than standard approaches, with
striking consequences on gyrokinetic theory. Correction terms are identified
in the reduced Vlasov equation. For the magnetic moment to be conserved,
the gyro-center transformation has to depend not only on the magnetic and
electric fields, but also on all the moments of the Vlasov density. Also, the
removal of the gyro-angle from the theory is not trivial, because it may spoil
the Hamiltonian structure.
Last, in order to agree with the possible presence of several species in gyroki-
netic theory, or to include electron spin effects, extensions of the method are
considered towards a general field theory where there are several fields, each
defined over its own space.

Introduction

Chapters 4 and 11 studied the basic phenomena at work when lifting a field-dependent coordinate
transformation to the corresponding Hamiltonian field dynamics. We now turn to the application
that motivated the study, by lifting the guiding-center transformation to the Vlasov-Maxwell sys-
tem.

Indeed, as a first step towards Hamiltonian gyrokinetics and more precisely towards the lifting
of the guiding-center reduction to the Vlasov-Maxwell Hamiltonian structure, Chapter 4 focused
on the introductory case where the coordinate q was not affected by the transformation. It aimed
at identifying the essential mechanisms involved in the lifting, while avoiding questions caused by
a transformation depending on fields that are defined over a space which is itself affected by the
transformation.

For gyrokinetics, this phenomenon must be taken into account, since transformations affect all

137
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the coordinates z = (q,p), even the one over which the electromagnetic field is defined. In order
to focus on the main mechanisms at work in such a case, the appendix chapter 11 studied a frame-
work simpler than the Vlasov-Maxwell system. It avoided additional and non-essential difficulties
coming because all the Vlasov-Maxwell fields are not defined over the same space, since the Vlasov
density is defined over the particle phase space, whereas the electromagnetic field is defined over
the configuration space, and those fields do not transform the same way. Thus Chapter 11 studied
coordinate transformations for a general fluid-like theory, where all the fields are defined over the
same space.

Equipped with these results, we can now turn to the physical problem that initially motivated
the study: lifting a transformation of particle dynamics, such as the guiding-center transformation,
to the Hamiltonian structure of the Vlasov-Maxwell dynamics. The results of Chapters 4 or 11
cannot be used directly, because the particle position is affected by the transformation and all the
fields are not defined on the same space. But the principles and methods can be applied or adapted
to get similar results. All the same, the outcomes are expected to have original features, because the
liftings considered up to now could not generate non-zero polarization and magnetization, which
should be present in the gyrokinetic equations of motion.

The organization of the chapter is the following. In Sect. 5.1, we will make more precise the
specificities of the lifting we are interested in, compared to the examples previously considered.
In Sect. 5.2, the lifting will be performed for a general transformation on particle phase space,
depending on the electromagnetic field. In Sect. 5.3, the results will be analysed and compared
with a related work in the literature. Last, in Sect. 5.4, we will specify to the guiding-center and
gyro-center transformations. In an appendix, the results obtained for the Vlasov-Maxwell system
will be extended to a generic system with several sets of fields, each one defined over its own space.

5.1 Specificities of the Vlasov-Maxwell system

Compared to the lifting of Chapter 4, we consider now a transformation for all the phase-space
coordinates

z −→ z̄[z;E,B] = z̄
(
z,E(z),B(z),∇E(z),∇B(z),∇∇E(z), ...

)
,

where, as usual, the square parentheses (brackets) indicate a non-local dependence in the fields,
because the transformation depends not only of the value of the electromagnetic field, but possibly
on all their derivatives, as occurs for theories like guiding-center or gyrokinetics.

Compared to Chapter 11, changes come because the fields are the Vlasov density f(q,p), defined

over the particle phase space z := (q,p), and the electromagnetic field
(
E(q),B(q)

)
, defined over

the particle configuration space. The presence of those two different spaces is already a new feature
of this system.

In addition, the transformed fields are defined by:

f̄(z̄) = f(z) , Ē(q̄) = E(q̄) , B̄(q̄) = B(q̄) , (5.1)

where the transformed Vlasov density is defined by the scalar invariance property, whereas the
electromagnetic field is not changed. This choice intends to avoid introducing the velocity in the
argument of the electromagnetic field: otherwise the scalar invariance property would have implied
Ē(q̄) = E(q) = E(q[z̄, Ē, B̄]).

This defines a change of field coordinates, which can be studied in a way analogous to Chapters 4
and 11, but it does not correspond to a lifting, where the change of field coordinates is induced by the
change of particle coordinates through the scalar invariance property. To treat this transformation

as a lifting, one should consider the definition space x for the electromagnetic field
(
E(x),B(x)

)

as different from the configuration space q.
Physically, the spaces x and q are identical; it is traduced by a Dirac delta functions δ(q− x)

everywhere in the theory in the initial system, but not in the final system, since the transformation
does not verify this property, as is clear in Eq. (5.11) for instance.
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The specific case treated in Chapter 4 corresponded to the case where this issue was avoided:
when the coordinate transformation does not change the position q̄ = q, then the transformation
for fields (5.1) agrees with the scalar invariance property. Thus, the lifting can be done without
distinguishing the electromagnetic field space x from the particle space q.

5.2 Lifting for a general transformation

The coordinate space is
(
z,x
)
, the Vlasov density is defined over z and the electromagnetic field

is defined over x. The particle transformation τ is
(
z,x
)
−→

(
z̄, x̄
)
= τ

(
z,x
)
=
(
z̄[z,E,B],x

)
. (5.2)

The space x is unchanged, which implies that the transformation for fields is just given by the
scalar invariance

f̄(z̄) = f(z) , Ē(x̄) = E(x) , B̄(x̄) = B(x) , (5.3)

so that now the transformation is a lifting and the same method as in Chapters 4 and 11 can
be applied. A chain-rule formula is obtained by computing the total derivative of the defining
equations (5.3); transformed functional derivatives give the same chain-rule formula, provided a
lemma analogous to (11.25) is used. We do not give the details of the derivation, but just write
the results. The main difference is that now there are two coordinate spaces over which fields are
defined, so care must be taken over which variable the operators act and over which spaces integrals
are taken or not. This makes the derivation slightly more elaborate. Notice that from a conceptual
point of view the transformation (5.3) simplifies the framework compared to the general lifting of
Chapter 11, because the fields E and B involved in the coordinate transformation are not changed.
This is an effect of the distinction in Eq. (5.2) between the Vlasov position q, which is changed,
and the Maxwell position x, which remains unchanged.

The Hamiltonian of the initial system is just the sum of the kinetic energy of the plasma and
of the energy of the electromagnetic field

H =

∫
dz f p2

2 +

∫
dx E2+B2

2 , (5.4)

where the physical coefficient m, c and µ0 have been scaled out. Even the charge e will be scaled
out in this chapter, for simplicity. The Hamiltonian has a specific form (separate contributions
from Vlasov density and from the electromagnetic field). More generally functionals have the form

G =

∫
dzdx g[z,x; f,E,B] . (5.5)

Physically x = q, so that physical functionals have the form

Gphys =

∫
dzdx δ(x− q) gphys[z,x; f,E,B]

=

∫
dz gphys[z,q; f,E,B] , (5.6)

and gphys[z,q; f,E,B] can be considered as just gphys[z; f,E,B]. The special functionals that
depend only on the electromagnetic field and on the position x = q can be considered as included
in the forms (5.5) and (5.6) by using a Dirac delta functon δ(p− 0), or any positive L1-normalized
function in the variable p, which eliminates the

∫
dp from (5.5)-(5.6) in a regular way; this trick is

rather artificial, and hence not very elegant, but it provides a unified treatment of functionals.
The Poisson bracket is non-canonical, it contains the coupling between the plasma and the

electromagnetic field

{F,G} =

∫
dz

∫
dx δ(x− q)f

{
[Ff , Gf ] +

(
∂pFf ·GE − ∂pGf · FE

)}

+

∫
dx
(
FE · ∇ ×GB −GE · ∇ × FB

)
, (5.7)
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where [ , ] is the Poisson bracket of particle dynamics

[g, h] := ∇f · ∂pg − ∂pf · ∇g +B · ∂pf × ∂pg (5.8)

for any functions f(z), g(z).

The transformation for particle coordinates (5.2) induces a transformation for functions and
fields

f(z) −→ T−1[f ](z̄) := f̄(z̄) := f(τ−1(z̄)) = f(z) , (5.9)

E(x) −→ T−1[E](x̄) := Ē(x̄) := E(τ−1(x̄)) = E(x) ,

B(x) −→ T−1[B](x̄) := B̄(x̄) := B(τ−1(x̄)) = B(x) .

In turn, it induces a transformation for functionals

F [f,E,B] −→
(
TF
)
[f̄ , Ē, B̄] := F̄ [f̄ , Ē, B̄] (5.10)

:= F [T (f̄ , Ē, B̄)] = F [f,E,B] .

To obtain the transformed Hamiltonian structure, first the Hamiltonian functional (5.4) just
transforms as any functional

H̄[f̄ , Ē, B̄] = H[f,E,B] =

∫
dz f p2

2 +

∫
dx E2+B2

2

=

∫
dz̄ J f̄ p2[z̄;Ē,B̄]

2 +

∫
dx̄ Ē2+B̄2

2 , (5.11)

where J is the Jacobian determinant of the transformation z −→ z̄, and we used that the Jacobian
of x −→ x̄ is 1.

For a more general functional (5.5), the transformation would be

Ḡ[ψ̄] = G[ψ] =

∫
dzdx g[z,x; f,E,B]

=

∫
dz̄dx̄J g[z[z̄; Ē, B̄], x̄; f̄ , Ē, B̄] ,

where ψ := (f,E,B) is a vectorial shorthand for all the fields. And physical functionals (5.6)
transform as

Ḡ[ψ̄] = Gphys[ψ] =

∫
dz gphys[z; f,E,B]

=

∫
dz̄J gphys[z[z̄; Ē, B̄]; f̄ , Ē, B̄] .

The Poisson bracket (5.7) transforms as a functional, but functional derivatives have to be
transformed as well

{̄F̄ , Ḡ}̄ = T{T−1F̄ ,T−1Ḡ} =

∫
dx̄

∫
dz̄ J δ(x̄− q[z̄; Ē, B̄]) f̄ (5.12)

{[̄
T−1 δ

δfT
−1F̄ , T−1 δ

δfT
−1Ḡ

]̄

+
(
T−1 ∂p T

) (
T−1 δ

δfT
−1F̄

)
· T−1 δ

δET
−1Ḡ

−
(
T−1 ∂p T

) (
T−1 δ

δfT
−1Ḡ

)
· T−1 δ

δET
−1F̄

}

+

∫
dx̄
{(
T−1 δ

δET
−1F̄

)
· ∇̄ ×

(
T−1 δ

δET
−1Ḡ

)

−
(
T−1 δ

δET
−1Ḡ

)
· ∇̄ ×

(
T−1 δ

δET
−1F̄

)}
,
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where [̄ , ]̄ is the transformed Poisson bracket of particle dynamics:

[̄ḡ, h̄̄] :=
(
T−1∇T ḡ

)
·
(
T−1 ∂p T h̄

)
(5.13)

−
(
T−1 ∂p T ḡ

)
·
(
T−1∇T h̄

)

+B ·
(
T−1 ∂p T ḡ

)
×
(
T−1 ∂p T h̄

)

for any functions ḡ(z̄) and h̄(z̄).
Transformed function derivatives are obtained through the usual chain rule:

T−1 ∂p T = ∂pz̄ · ∂z̄ (5.14)

T−1∇T = ∇z̄ · ∂z̄

Functional derivatives are transformed using the method of Chapter 11, and using a lemma
analogous to (11.25), which here gives the formula

0 =

∫
dz
[
ḡJ −1

E + J −1ḡz̄ · z̄E + J −1ḡf̄ f̄z̄ · z̄E
]
δ(q− x)

=

∫
dp

[
ḡJ −1

E + J −1ḡz̄ · z̄E + J −1ḡf̄ f̄z̄ · z̄E
]†
,

for any function ḡ(z̄), and the same formula but replacing the electric field E by the magnetic field
B.

Then transformed functional derivatives are found equal to the chain-rule formula obtained by
studying total derivation of the defining equation (5.10) for the transformed fields

Ff = T−1 δ
δfT

−1F̄ = J −1F̄f̄ , (5.15)

FE = T−1 δ
δET

−1F̄ = F̄Ē −
∫
dzJ −1F̄f̄

(
f̄z̄ · z̄E

)
δ
(
q− x

)

= F̄Ē −
∫
dp

(
f̄z̄ · z̄E

)† (J −1F̄f̄

)
,

FB = T−1 δ
δBT−1F̄ = F̄B̄ −

∫
dzJ −1F̄f̄

(
f̄z̄ · z̄B

)
δ
(
q− x

)

= F̄B̄ −
∫
dp

(
f̄z̄ · z̄B

)† (J −1F̄f̄

)
,

where we insist that z̄E and z̄B are operators in general, and the adjoint † is with respect to dz,
which is equivalent to dq in these formulae.

Compared to the initial Hamiltonian structure, the transformed Poisson bracket retains all the
terms of the initial bracket, as shown by the first term in each of the formulae (5.15). However,
they are written in the transformed coordinates, as in Eqs. (5.12)and (5.14). In addition, the
transformed Poisson bracket has a few (exactly eight) additional terms, coming from the last term
in the third and fifth lines of (5.15). More precisely, it involves two additional self-couplings for
the Vlasov density f̄ , an additional coupling between the Vlasov density f̄ and the electric field Ē,
and more importantly it shows up a coupling between the Vlasov density f̄ and the magnetic field
B̄ (each of these four couplings appears twice, as a result of the antisymmetry of the bracket).

Notice that in the transformed dynamics, not all of these additional terms will contribute.
For instance, at first glance, it could seem that the second term in the fifth line will generate a
magnetization term for the transformed Maxwell-Ampère equation of motion, but it is not the case.
This magnetization-like term will be cancelled by terms coming from additional dependences on the
fields in the Hamiltonian functional, which appear in Eq. (5.11). This is shown by a computation
similar to Eq; (4.42) in Chapter 4. It is a general feature, evidenced in the derivation leading to
Eq. (11.28) in Chapter 11, which implies that at least half of the additional terms in the Poisson
bracket will cancel as a result of property (11.27).

This phenomenon explains why the transformed Poisson bracket, given by Eqs. (5.12) and
(5.15), was very difficult (and probably impossible) to guess just by considering the gyrokinetic
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equations of motion, since all the induced cancellations could hardly be predicted from the equa-
tions of motions.

Indeed, together, the transformed Hamiltonian functional (5.11) and Poisson bracket (5.12)
with Eq. (5.15) for the transformed functional derivatives give the following transformed dynamics

˙̄f = − ˙̄z · ∂z̄f̄ + f̄z̄ · z̄B · ∇̄ × Ē

+ f̄z̄ · z̄E ·
(
− ∇̄ × B̄+

∫
dz̄ J f̄ p[z̄;Ē,B̄]

m δ
(
q[z̄; Ē, B̄]− x̄

))
,

˙̄E = ∇̄ × B̄−
∫
dz̄ J f̄ p[z̄;Ē,B̄]

m δ
(
q[z̄; Ē, B̄]− x̄

)
, (5.16)

˙̄B = −∇̄ × Ē ,

where we remind that the phase space z̄ is considered as fixed (as usual in field theory). The symbol
˙̄z is a shorthand for the usual particle dynamics, corresponding to the Lorentz force, but expressed
in the reduced coordinates ˙̄z = ż · dzz̄.

The transformed dynamics (5.16) confirms that no magnetization is induced by the lifting itself,
as is clear by the case q̄ = x̄, i.e. when the transformation does not change the particle position
q̄ = q. This was expected from the results of Chapter 4. Thus, the magnetization-like term in
the Poisson bracket mentioned above was indeed cancelled. From the eight additional terms in
the transformed Poisson bracket, only three terms were generated in the transformed equations of
motion, and all of them concern the dynamics of the Vlasov density.

5.3 Interpretation of the results

To interpret this dynamics in the light of (11.28), we use the property

f̄z̄ · z̄E = −fz · zĒ , (5.17)

which comes because when transforming z forwards and then backwards, the result z[z̄[z;E,B]; Ē, B̄] =
z (or equivalently τ−1 ◦ τ = 1) is independent of E = Ē. The same property as (5.17) holds when
replacing E by B.

With the property (5.17), Eq. (5.16) can be rewritten

˙̄f = ḟ + fz · zĒ · ˙̄E+ fz · zB̄ · ˙̄B ,

˙̄E = Ė , (5.18)

˙̄B = Ḃ .

So, the transformed dynamics just results from the initial dynamics through a chain-rule formula,
which expresses that the electromagnetic field is unchanged by the transformation, whereas the
Vlasov density f is changed by the coordinate transformation (5.2) on z, which is implicitly time-
dependent when the electro-magnetic field is evolving in time. A posteriori it is obvious that no
magnetization was to appear in Eq. (5.16) because the coordinate transformation does not change
the dynamics of the electric field nor the current term in Maxwell-Ampère equation.

All the same, the presence of the Dirac delta term in Eq. (5.16) has consequences on how the
current is computed. In order to express the current in a way well suited to the transformed system,
it is convenient to extract from the current contribution the "reduced" current

∫
dz̄ J f̄ p

m evaluated
at q̄ = x̄, then the remaining contribution introduces magnetization. This completely agrees with
the example of the gyrokinetic dynamics.

Thus, a non-zero magnetization originates from the difference between the transformed particle
point q̄ and the transformed field point x̄, which means from the presence of two points physically
identical x = q but transformed in different ways x̄ 6= q̄, and which perfectly agrees with the usual
picture of the Maxwell dynamics in non-vacuum media [77]. Also, it evidences that the appearance
of two different coordinate spaces, as considered in Eq. (5.2), is needed to obtain such magnetization
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terms when lifting a change of particle coordinates to the field dynamics. It is why the work of
Chapters 4 and 11 could not yield a non-zero magnetization.

Notice that even when the magnetization is zero, the transformed dynamics does not have the
same expression as the initial dynamics, because additional terms come from the (implicit) time
dependence in the transformation.

Before the transformation, the Jacobi identity for the Vlasov-Maxwell bracket is induced by
the Jacobi identity for the particle bracket (5.8), and is thus submitted to the condition ∇ ·B = 0
[104, 114]. The transformed bracket shares this property, since it is just given by a change of
coordinates for the Vlasov-Maxwell bracket. This can also be shown directly:

∑

cycl

{̄F̄ , {̄Ḡ, H̄ }̄}̄ =
∑

cycl

T{T−1F̄ ,T−1T{T−1Ḡ,T−1H̄}}

= T
[∑

cycl

{F, {G,H}V + {G,H}O}V

+
∑

cycl

{F, {G,H}V + {G,H}O}O
]

= T
∑

cycl

{F, {G,H}V }V = T

∫
dz f

∑

cycl

[Ff , [Gf , Hf ]]

= T

∫
dz f ∇ ·B ∂pFf × ∂pGf · ∂pHf = 0 ,

where the symbol F is a shorthand for T−1F̄ , and the same for G and H. The index V (resp. O)
indicates the Vlasov part (resp. all other terms) of the Vlasov-Maxwell bracket.

The transformed Poisson bracket completely agrees with the results of [114]. This paper ob-
tained the Hamiltonian structure of a class of transformed Vlasov-Maxwell dynamics by studying
the expected motion (and especially Maxwell’s equations in non-vacuum media), guessing a suitable
form for the Hamiltonian functional and for the Poisson bracket, and then adding a closure assump-
tion, which provided the final bracket through a functional chain rule. Especially, polarization and
magnetization were induced by the chosen closure assumption.

On the other hand, in the present chapter, the transformed Hamiltonian functional and Poisson
bracket are obtained just from the ones of the Vlasov-Maxwell system by a change of coordinates
on the particle phase space. So, polarization and magnetization are just induced by the coordinate
transformation, they do not come from a closure assumption.

The difference between these approaches is illustrated by the Hamiltonian functional: it is
taken as arbitrary even in the initial field coordinates (f,E,B) and particle coordinates (q,v) in
Eqs. (10) and (20) of [114]. On the contrary, in our approach, it is exactly given by the initial
Hamiltonian functional of the Vlasov-Maxwell dynamics. Only when the coordinates z̄ and fields
(f̄ , Ē, B̄) are changed, the Hamiltonian functional is changed and its change is exactly induced by
the transformation. A similar difference in point of view can be observed in the Poisson bracket.

So, the work [114] rather performed a phenomenological study of Hamiltonian transformed
Vlasov-Maxwell systems, whereas here we rather develop an ab-initio study of how a transformation
of particle coordinates induces a transformed Hamiltonian Vlasov-Maxwell dynamics. These are
the two complementary approaches of the electromagnetism in non-vacuum media, respectively
bottom-up and top-down, and the coherence of the results is a mutual confirmation.
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5.4 Case of the guiding-center transformation

TO BE COMPLETED
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Conclusion

For a lifting of a coordinate transformation to the Hamiltonian structure of the Vlasov-Maxwell
dynamics, we have applied the method introduced in Chapters 4 and 11.

The presence of two different coordinate spaces changed the framework, but the general method
could be applied. One of the spaces was physically embedded in the other whereas the two spaces do
not undergo the same transformation. It implied to distinguish the electromagnetic field point from
the particle position point. This appeared as essential to generate polarization and magnetization
terms in the transformed motion, whereas the lifting itself did not generate any magnetization.

The results were first obtained for a general transformation, then applied to lift the guiding-
center and gyro-center transformations to the Vlasov-Maxwell field dynamics. They confirmed that
both transformations naturally induces a Hamiltonian structure for the resulting field dynamics.

However, this did not provide the expected reduction, and the failure was shown to come from
the time evolution of the electromagnetic field. Actually, previous procedures had not implemented
the coupling in a completely proper way. They had taken into account the action of the electromag-
netic field over the plasma, but not completely the feed-back of the plasma on the electromagnetic
field. This meant that additional terms were present in the resulting dynamics, which spoilt the
expected reduction.

In order to restore the expected reduction, the dynamics of the electromagnetic field had to be
taken into account in the gyro-center transformation, which deeply changed the framework of this
reduction. Especially, the Hamiltonian structure of particle dynamics becomes time-dependent,
and the Lie-transform of the phase-space Lagrangian must be time-dependent. A striking effect
is that the characteristics of the transformed Vlasov equation are not given any more by just the
Hamiltonian dynamics of the transformed particle Poisson bracket. In addition, the transformation
must depend not only on the electromagnetic field, but also on the moments of the Vlasov density.
This is not an artefact of our method, but it is needed for a proper account of the coupling between
the plasma and the electromagnetic field. It will be further investigated in the next chapter.

For completeness of the theory, a necessary extension of the lifting considered in the present
chapter will include in the coordinate transformation not only a dependence on the electromagnetic
field, but also a dependence on the moments of the Vlasov density. This will change somehow the
framework, but the extension should be straightforward, and it will make the scheme closer to the
one of Chapter 11, where the transformation on a space depended on fields defined over this space.

On another hand, the Hamiltonian structure of the transformed dynamics did not completely
answer the question of the Hamiltonian structure of gyrokinetics. Indeed, gyrokinetics is not just
the transformed system (5.16), because in addition, it drops the dependence in the gyro-angle,
which could spoil the Hamiltonian character. This will be the topic of the next episode, and espe-
cially of Chapter 8.

In the case of gyrokinetic with several species, or in case electron spin effects are taken into ac-
count [41,83,93], the method has to be extended to include the presence of several sets of fields, each
one defined over its own coordinate space. This is considered in the appendix. This extension also
makes the framework closer to transformations considered by particle-physics field theory [66,152].
Magnetization-like terms appear to be quite a general feature, even when no spaces are embedded
in one another, because the transformation of one space generally depends on the fields defined
over other spaces, which implies that integrals and Dirac delta functions remain in the transformed
dynamics, Poisson brackets, and functional derivatives.

From a more general point of view, the results of this chapter interestingly explain why previous
approaches and attempts at guessing the Hamiltonian structure of gyrokinetics by starting from
the equations of motion had failed. On the one hand, in the relation between the transformed
Poisson bracket and the associated equations of motions, many cancellations occur, which makes
it very difficult to guess the Hamiltonian structure just by observing the equations of motion. On
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the other hand, since the equations of motion used in the literature missed some terms, the result
was definitely impossible to obtain with such an approach.

So, the lifting method was crucial in order to derive the transformed Hamiltonian structure, to
better understand the reduction process, and especially to identify the corrections needed for the
transformed dynamics. Also, it confirms the relevance of the idea to revisit dynamical reductions in
the framework of Hamiltonian reductions: instead of deriving models at the level of the equations
of motion and then guessing the Hamiltonian structure (when feasible) or the corrections needed
to recover the Hamiltonian character (hardly feasible), it is much more enlightening to work at the
level of the Hamiltonian structure, to derive the reduced structure, and then to deduce (i.e. recover
and confirm, or invalidate and rectify) the reduced equations of motion. This idea will be at the
core of Episode 3.

Appendix: Generalization to multiple coordinate spaces

In the previous sections, two sets of fields were involved, each one defined over its own "coordinate
space", or "particle space"; a specific feature was that one of the spaces, x, was naturally embedded
in the other one through the relation x = q. In this section, we generalize the results to a general
field theory, where the "particle coordinate space" involves several spaces, each field is defined over
one of these spaces, and there is no specific embedding of one space into another one.

For instance, if the gyrokinetic approximation holds for electrons but not for ions, a con-
venient description of the corresponding plasma dynamics can rely on the electromagnetic field
(E(q),B(q)), the ion density in phase space fi(q,p), and the electron density in the guiding-center
transformed space f̄e(q̄, ϕ̄), where ϕ̄ is the transformed pitch-angle.

More importantly, if the gyrokinetic approximation holds for ions and electrons, the trans-
formed space for electrons is not the same as for ions, because the guiding-center or gyro-center
transformation depends on the particle charge, for instance, which is species-dependent:

z̄[z, qj ;E,B] .

Another example is when the spin effects of electrons are important, then the particle space
can be chosen as the product of the position space q, the momentum space p and the electron spin
space s [114]. The fields can be the Vlasov density for ions fi(q,p), the Vlasov density for electrons
fe(q,p, s), and the electromagnetic field (E(q),B(q)). If the field-dependent particle-coordinate
transformation concerns also the spin coordinate, then the results of this section apply.

Compared to previous sections, the presence of several coordinate spaces changes the frame-
work, but the lifting can be derived in a similar way as in previous sections. A chain-rule formula
is obtained by a total derivative of the defining equations (5.3), and transformed functional deriva-
tives give the same chain-rule formula, provided a lemma analogous to (11.25) is used. Again, we
do not give the details of the derivation, but just write the results. The only differences are that
the setting is more abstract and that since there are several "particle spaces" over which fields are
defined, care must be taken over which variable the operators act, and over which spaces integrals
are taken or not; in addition, the lack of embedding between spaces implies to be careful both in
the definitions to be chosen and in computations.

We consider a general field-theoretic Hamiltonian dynamical system, with a set of fields ψα(zα),
where each field ψα is defined over its own space zα and can be vectorial (i.e. composed of several
scalar fields). This does not exclude a possible identification of several of these spaces by Dirac
delta function δ(zα− zα

′
) everywhere in the initial (non-transformed) theory, and especially in the

Hamiltonian and in the Poisson bracket. This can be needed if several fields defined over the same
space do not transform the same way, as it was the case for the Vlasov-Maxwell system. We will
denote by y := ({zα}α) a vector grouping together all the coordinate spaces, and φ := ({ψα}α) a
vector grouping together all the fields.

The Hamiltonian is given by

H =

∫
dy h[y;φ] .
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In a similar way as for the Vlasov-Maxwell system, the Hamiltonian may involve some terms
involving no zα nor

∫
dzα for some value of α. As in the previous section, such terms are included

by using an artificial delta function δ(zα − 0) or any positive L1-normalized function f(zα), which
absorbs the

∫
dzα in a regular way.

The Poisson bracket writes

{F,G} =

∫
dy FψαJα,β [y;φ] Gψβ .

The coordinate transformation in the "particle" spaces zα is given by:

zα −→ τα(z
α) := z̄α := z̄α[zα;φ] , (5.19)

where the change of each coordinate zα can depend on all the fields, ψ{γ}, even for γ 6= α, as was
the case for the Vlasov-Maxwell system. All the same, we assume each of the transformation τα
to be a change of coordinates for zα, hence to be one-to-one, as is needed for a lifting, i.e. for the
fields to transform through the scalar invariance property.

In addition, if τα depended on zγ with γ 6= α, then generically a functional F =
∫
dzαf [zα;φ]

would transform as ∫
dzα f [zα;φ] =

∫
dz̄αJα f [z[z̄α,γ ; φ̄], φ̄] ,

which would make the transformed functional position-dependent. It is why we assumed in
Eq. (5.19) that the transformation τα is independent of zγ for γ 6= α. In specific cases, this
requirement can be made less strong, because what is needed is only to introduce no position
dependence for transformed functionals.

Last, for γ 6= α, the presence of ψγ but no zγ may imply1 the presence of a map πγα(zα) =
zγ [zα;φ] between the spaces zα and zγ . For πγα, the α is just an index, which reminds that the
map is different for different values of α. Actually, for each value of γ and α, several different such
functions πγα could be involved. The maps π explain and generalize the embedding x = q used
in the coordinate transformation of the Vlasov-Maxwell system, but there is no need for the π to
correspond to embeddings, nor to be related to the structure of the initial system, as was the case
for the Vlasov-Maxwell system.

The coordinate transformation (5.19) induces a transformation for functions of zα and for the
fields ψα:

ψα(zα) −→ T−1
α [ψα](z̄α) := ψ̄α(z̄α) := ψα(τ−1

α (z̄α)) = ψα(zα) . (5.20)

Last, it induces a transformation for functionals of ψ:

F [{ψα}α] −→
(
TF
)
[{ψ̄α}α] := F̄ [{ψ̄α}α] := F [{Tαψ̄α}α] = F [{ψα}α] .

To obtain the transformed Hamiltonian structure, first the Hamiltonian functional just trans-
forms as any functional

H̄[φ̄] = H[φ] =

∫
dy h[y;φ] =

∫
dȳJ h

[{
zα[z̄α; φ̄]

}
α
; φ̄
]
, (5.21)

where J := ΠαJα is the Jacobian of the overall transformation for y, with Jα the Jacobian
determinant of the transformation τα.

The Poisson bracket also transforms as a functional, but functional derivatives have to be
transformed as well

{̄F̄ , Ḡ}̄ =

∫
dȳJ

(
T−1 δ

δψαT
−1F̄

)
Jα,β

[
{zγ [[z̄γ ; φ̄]]}γ ; φ̄

] (
T−1 δ

δψβT
−1Ḡ

)
. (5.22)

1More precisely it has to imply the presence of a map πγ
α unless there is an integral acting on the ψγ (functional

dependence). Notice that the map πγ
α can anyway be considered as a functional dependence and be absorbed in an

integral, viz. φγ
(
πγ
α(z

α)
)
=

∫
dzγφγ(zγ)δ(zγ − πγ

α(z
α)).
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Using the method of the previous sections, transformed functional derivatives are obtained as

T−1 δ
δψα(zα)T

−1F̄ =
∑

γ

∫
dzγ
(
J −1
γ F̄ψ̄γ

)[
1γαδ(z

α − zγ)− ψ̄γz̄γ
(
z̄γψα

)†α
δ(zα − παγ )

]
, (5.23)

where the adjoint †α is with respect to the measure dzα. Eq. (5.23) agrees with the chain-rule for-
mula obtained by computing the total derivative of the defining formula (5.20) for the transformed
fields

δψγ(zγ) =δψ̄γ(z̄γ [zγ ;φ]) +
∑

α

ψ̄γz̄γ · z̄γψαδψ
α(zα[zγ ;φ]) . (5.24)

This means that

δψ̄γ(z̄γ)
δψα(z′α) =1γαδ(z

′α − zγ [z̄γ ; φ̄])− ψ̄γz̄γ ·
(
z̄γψα

)†α
δ(z′α − zα[zγ ;φ]) ,

where the adjoint †α is with respect to dz′α, and in the last term zγ is actually zγ [z̄γ ; φ̄].
Notice that zγ [z̄γ ; φ̄] is the transformation (τγ)

−1, whereas zα[zγ ;φ] is the function παγ , so they
look similar but they are completely different objects. Furthermore, the function π implies the
presence of a Dirac delta function δ(zα− παγ ), which can not be integrated (as is clear in (5.23) for
instance), unlike in previous examples of lifting, where π did not exist, or was trivial. In the case
of the Vlasov-Maxwell system, the natural embedding of x into z avoided its explicit appearance
in the final formulae for the transformed functional derivatives (see (5.15), for instance).

Together, the transformed Hamiltonian functional (5.21) and Poisson bracket (5.22) with the
transformed functional derivative (5.23) give the transformed dynamics, which is found to be related
with the time evolution of the initial dynamics through a chain rule

˙̄F = {̄F̄ , H̄ }̄ =

∫
dy

∫
dz′λ

(
J −1
λ F̄ψ̄λ

)[
1λαδ(z

α − z′λ)− ψ̄λ
z̄λ

·
(
z̄λψα

)†α
δ(zα − zα[z′λ;φ])

]
Jα,β Hψβ

=

∫
dy

∫
dz′λ

(
J −1
λ F̄ψ̄λ

)
δψ̄λ(z̄′λ)
δψα(zα) J

α,β Hψβ =

∫
dz̄′λF̄ψ̄λ{ψ̄λ(z̄′λ), H} =

∫
dz̄′λF̄ψ̄λ

˙̄ψλ(z̄′λ) , (5.25)

as expected for a change of field variables. In this computation, the cancellation mentioned about
(11.27) was useful again.

The same comments as in previous sections hold: the two terms involved in transformed func-
tional derivatives (5.23) transfer to the transformed Poisson bracket and dynamics: the first term
just gives to the transformed Poisson bracket and dynamics the same expression as the initial ones.
It corresponds to considering that the scalar invariance (5.20) implies that the transformed fields
evolve in a similar way as the initial one. As for the second and third terms, they traduce the field
dependence in the coordinate transformation. They imply additional terms in the transformed dy-
namics and Poisson bracket compared to the corresponding expressions in the initial system. For
the dynamics, they traduce the effects of the time dependence in the coordinate transformation.

More precisely, the term with παα (i.e. γ = α) corresponds to the direct time dependence
in the coordinate transformation τα and was already present previously, whereas the terms with
γ 6= α correspond to the time dependence in the map πγα involved in the transformation needed
to evaluate a field ψγ in a point zγ depending only on another space zα, in an analogous way as
what is done for the Vlasov-Maxwell system, when evaluating the electromagnetic field at a field
position x parametrized by the particle position q; this term was not present in previous cases of
lifting, where the map πγα was absent or trivial.

In a similar way as the previous section, it is clear that magnetization-like terms are present
when two of the particle spaces are physically identical, hence coupled in all physical functionals
by Dirac delta functions δ(zα − zγ), and these spaces do not undergo the same transformation
z̄α 6= z̄γ . But now the presence of the map πγα also introduces a kind of coupling between spaces
zα and zγ . So, one can expect magnetization-like terms when these spaces undergo a change of
coordinates that does not preserve the map πγα. This is confirmed by the result (5.25).



Chapter 6

Gyrokinetics as a

Hamiltonian perturbation theory
in collaboration with Michel Vittot

Abstract: TO BE COMPLETED

Introduction

TO BE COMPLETED

149



150 CHAPTER 6. GYROKINETICS AS A HAMILTONIAN PERTURBATION THEORY

6.1 Hamiltonian perturbation framework

TO BE COMPLETED



6.1. HAMILTONIAN PERTURBATION FRAMEWORK 151

TO BE COMPLETED



152 CHAPTER 6. GYROKINETICS AS A HAMILTONIAN PERTURBATION THEORY

6.2 The gyro-center transformation

TO BE COMPLETED



6.2. THE GYRO-CENTER TRANSFORMATION 153

TO BE COMPLETED



154 CHAPTER 6. GYROKINETICS AS A HAMILTONIAN PERTURBATION THEORY

Conclusion

TO BE COMPLETED



Conclusion of the episode

This second episode clarified the three difficulties mentioned in its introduction about the lifting
procedure, by obtaining a functional chain rule for the lifting transformation, by dealing with an
implicit definition of the transformed fields, and by the presence of a Dirac delta function relating
the particle position and the electromagnetic field position, considered as pertaining different spaces,
which is crucial to generate polarization and magnetization terms through a lifting process.

This answered an important question for gyrokinetic theory, by providing a Hamiltonian struc-
ture for the transformed Vlasov-Maxwell system after the guiding- and gyro-center changes of
particle coordinates. It emphasized that the time dependence in the transformation is crucial for
a proper coupling between the plasma and the electromagnetic field. As a consequence, the trans-
formation of particle dynamics depends not only on the electromagnetic field, but also on all the
moments of the Vlasov density. In addition, the reduced Vlasov characteristics are not Hamiltonian
by themselves.

Although overlooked in previous works, this result is actually just a consequence of the self-
consistency of the field dynamics, since the electromagnetic field is generated by the plasma. It
enhances how the Hamiltonian structure, although formal, perfectly encodes physical effects, such
as time effects or coupling effects.

It has to be taken into account, otherwise the equations would be truncated. This would
introduce a new phenomenon in the gyrokinetic reduction, which would depart from its clean
setting of being just a change of coordinates with an ignorable fast gyro-angle. In addition, such
a truncation would be legitimate only when the removed term is small, which would generate
additional assumptions in the theory.

For the future, a first point to be clarified is the smallness of the removed term in physically
relevant situations, especially because they could be comparable to other terms that are kept in
some applications of gyrokinetics. In a similar way as in the previous episode, a first answer about
this question could come from a post-processing of the out-coming data in present-day numerical
simulations.

However, even when the assumptions for the truncation are verified, the Hamiltonian character
is not guaranteed for the truncated system, because it is generally suppressed by truncations in the
equations of motion.

This joins a more general question, which constitutes a natural extension of the work. In
practical applications of gyrokinetics, and especially in numerical simulations [42, 56], not the full
series is taken into account for the gyrokinetic equations or transformation. Only a few terms are
kept, for instance all first-order terms and a part of the second-order terms.

From abstract arguments, one can guess that most of such truncations spoil the Hamiltonian
structure, whereas only few ones respect it and do generate a Hamiltonian dynamics. This structure
is important for gyrokinetic codes, which are interested in the long-term behaviour of plasma
turbulence, and for which an important role is played by conservative structures, included in the
Hamiltonian character.

The results of this episode can be pursued to answer such questions. They provide an interest-
ing framework to identify good truncations, suited to the Hamiltonian structure of gyrokinetics.

A most important extension concerns the conservation laws for gyrokinetics, and especially the
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conservation of angular momentum, since it was one of the motivations for the work [21,127,133].
Previous results already studied the question, but it is interesting to come back to it, because it
should be enlightened by the results of this episode, since the Noether theorem makes conservation
laws easy to study in Hamiltonian systems. Again, this extension should consider first the general
results for gyrokinetic theory, together with a comparison with previous results on the subject, and
then the consequences on practical applications, for instance on numerical codes.

From another point of view, this work was a good opportunity to develop reduction tools, with
the exploration of both a lifting method and a Hamiltonian perturbation theory in field dynamics.

Concerning the lifting, it should be extended in order to include in the coordinate transformation
also a dependence on the moments of the Vlasov density. On another hand, it would be interesting
to apply it to other systems. We had in mind the adoption of magnetic coordinates for fluid models,
but we were not sure it would be so interesting. Perhaps other kinds of Vlasov-like systems should
be considered first, e.g. the case of the oscillating-center, or gyrokinetics with several species or
with spin effects, as was initiated in Chapter 5.

As for field Hamiltonian perturbation theory, it provided new insights on the links between
plasma dynamics and particle dynamics, which both legitimated from a Hamiltonian point of view
the two-stage gyrokinetic reduction, and opened an interesting domain for KAM-like theories in
infinite dimensional systems. However, first studies about this last application did not induce in-
teresting effects compared to particle perturbation theory, and further explorations are needed.

More generally, this episode perfectly exemplifies the interest of reformulating dynamical re-
ductions in the framework of Hamiltonian reductions, in order to better understand the reduced
Hamiltonian structure and to validate or rectify the reduced dynamics. This will be the main idea
of the next episode of the dissertation.

This episode will also be necessary to definitely conclude about the Hamiltonian structure of
gyrokinetics, because a subtle question presently remains open. The lifting process used in the
standard derivation of gyrokinetics was developed in this episode to show how the guiding-center
and gyro-center transformations of particle dynamics indeed induce a Hamiltonian transformed
structure for Vlasov-Maxwell, which verifies the requirements of the gyrokinetic reduction, both
the averaging and the magnetic moment requirement (provided the time-dependence of the trans-
formation is taken into account, for instance in the Lie-transform of the phase-space Lagrangian).
This achieves Steps 2a-2c announced in the general introduction on page 16. As a result, the char-
acteristics of the Vlasov equation occur in leaves of constant magnetic moment, and their fast time
scale is isolated into the gyro-angle dimension, which does not influence the last four dimensions.

However, this is not exactly gyrokinetics. In order to completely remove the fast time scale
and to benefit from the dimensional reduction, one needs to drop the gyro-angle dimension, and
to consider the magnetic moment as just an index, not a dimension of the base space. It is why
Step 2d announced on page 16 is needed in order to really obtain the gyrokinetic equations, which
occur over the slow four-dimensional base-space of guiding-center dynamics (q, φ).

In usual derivations working at the level of the equations of motion, this step is trivial. From
the point of view of Hamiltonian reductions (i.e. in order for the resulting dynamics to be Hamilto-
nian), it is not so obvious, especially because bracket truncations do not preserve the Hamiltonian
structure in general [58]. It is why in the present document, it is treated as a definite step of the
gyrokinetic reduction.

So, in order to conclude about the Hamiltonian structure of gyrokinetics, the removal of the two
superfluous dimensions (gyro-angle and magnetic moment) from the base space has to be studied
in details in the framework of Hamiltonian reductions. This is very similar to what occurred in
guiding-center theory in Chapter 2, when going from the transformed six-dimensional dynamics to
the slow four-dimensional dynamics, where the method of Dirac’s constraints [44] was noticed as
essential to preserve the Hamiltonian character. Accordingly, this method could play a role in the
quest for the Hamiltonian structure of gyrokinetics. Its applications in plasma physics will be the
topic of the next episode.
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Introduction of the episode

This last episode can be seen from two complementary points of view.

First, it is a natural extension of the previous episode, which showed that the Hamiltonian
structure of gyrokinetics can be addressed by lifting the reduction of particle dynamics, but which
also suggested that one can consider obtaining it directly from the Vlasov-Maxwell system with
purely Hamiltonian reduction tools. The relevance of such an idea is enhanced by the fact that
the lift did not exactly provide the gyrokinetic equations since its Vlasov density remained defined
over a six-dimensional space; a Hamiltonian method is called for in the last step of this reduction
(denoted as Step 2d on page 16), in order to actually remove the two superfluous dimensions (gyro-
angle and magnetic moment) from the transformed Vlasov-Maxwell dynamics while preserving the
Hamiltonian character.

Chapter 6 started to develop a Hamiltonian perturbation method for the gyrokinetic reduction,
but it did not give straightforward results, and other methods can be considered at the same
time. A particular attention must be drawn on Dirac’s theory of constraints [44], since in some
cases it produced just a bracket truncation, i.e. a removal of some contributions from the Poisson
bracket. In addition, it plays an essential role in guiding-center theory (see Chapter 2), which is
closely related to gyrokinetics. The idea is also supported by a recent work [144], which derives a
simplified version of gyrokinetics using Dirac’s constraints.

Now, the gyrokinetic reduction does not fit in with a direct application of Dirac’s theory as it
was previously involved in plasma physics, especially because no field coordinate is constrained.
So, the idea is to look for extensions or variations of Dirac’s reduction that could be applied to the
gyrokinetic reduction, in particular by making the method closer to a bracket truncation. In order
to identify such extensions, good ideas can be suggested by studying other instances of reduction.
These last are easy to find in plasma physics, which is characterized by a wide variety of models
and hence of dynamical reductions.

This leads us to the second point of view on this third episode, which departs from the mere
gyrokinetic reduction, and rather takes place in the general framework of plasma models. Indeed,
most derivations of plasma models work at the level of the equations of motion, which can generate
fake dissipation in the derivation [108]. Usually, the Hamiltonian structure is verified to be preserved
or not only after the derivation. As we mentioned in the general introduction and as was fully
confirmed in the previous episode, it may be difficult to answer this question and to identify the
corrections needed to make the model Hamiltonian. It is often more enlightening to derive the
reduction using purely Hamiltonian reduction methods. In addition, even when the reduced model
is known to be Hamiltonian, it is interesting to investigate the corresponding Hamiltonian reduction,
because it provides a better understanding on the links between the models and their Hamiltonian
structures, and it is a way to apply and develop Hamiltonian reduction methods, which will help
derive new models whose Hamiltonian character will be guaranteed.

Here again, our work primarily focuses on Dirac’s theory of constrained systems, because previ-
ous works [31–33,118,119] showed that they play a role in several Hamiltonian derivations of plasma
models. Starting from a (Hamiltonian) physical system and imposing constraints suggested by the
physics, a straightforward application of Dirac’s theory provided exactly the expected physical
reduced model.

Extensions or developments on the method are expected because this straightforward applica-
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tion proceeded by a sequence of computations but it obtained a simple and intuitive result, just
corresponding to removing the constrained variables from the dynamical field coordinates. It is
interesting to study these examples of reduction, in order to identify the mechanism at work in this
simplification, especially because it could generate an extension of the method, or at least make it
softer to use.

After clarifying the simplifying/softening phenomena for some Hamiltonian reductions already
identified in the literature, it will be interesting to consider other examples of reductions, and to see
how they can be derived using Hamiltonian methods, and whether they fit with Dirac’s reduction,
or with its "softened" version.

As primary candidates, we will turn to the main models of plasma dynamics mentioned in
the general introduction, Vlasov-Maxwell, Euler-Maxwell, magnetohydrodynamics, together with
variations of these models. Especially, the reduction to Euler-Maxwell, which is called the fluid
reduction, is interesting to consider because it relies on a closure assumption and to our knowledge,
no Hamiltonian closure including second or higher moments of the Vlasov density as dynamical
field variables exists in the literature

There does not seem to be an obstruction for such a Hamiltonian model, which would include
the pressure tensor as a dynamical variable. The relevance of such a purpose is confirmed by the
papers [136,138]. More generally, it is enhanced in warm or hot plasmas, where kinetic effects mean
that some moments higher than one have to be taken into account. Including the second moment
is especially attractive since in this case the Hamiltonian functional would not be affected by the
reduction process.

The work will proceed in four steps:
- First, in Chapter 7, the simplifying/softening phenomenon will be made more precise. When

viewing Dirac’s reduction as a projection of derivatives, then it will be shown that in some cases
Dirac’s projector can be strongly simplified and become just the trivial projector expected from
intuition. Instances will be studied in the reduction to incompressible magnetohydrodynamics and
to Vlasov-Poisson. By the way, this chapter will be concerned with a circumstantial question about
Poisson brackets that satisfy the Jacobi identity only conditionally, because the use of projectors
can remedy their difficulty.

- Second, the presence of the simplified projector will be explained by a quarter-canonical struc-
ture in the Poisson bracket, and then formulated as a bracket truncation, related to a subalgebra
reduction. In addition to softening the method, this will impact and clarify some aspects of Dirac’s
procedure. Various examples will be considered about Vlasov-Maxwell or Euler-Maxwell. Finally,
we will come back to the gyrokinetic reduction, whose step 2d will appear as a fine application of
the developed methods.

This part of the work will be mainly reported in Chapter 8, but some of the results will be
reported in the appendix chapters 12 and 13.

- Third, in Chapter 9, an application to the fluid reduction will be considered. The standard
closure at order one for the Euler-Maxwell system turns out to be just given by a subalgebra,
and closures including moments of order two or higher will be considered. Obstructions for such
Hamiltonian closures will be identified, and a model from the literature, which was believed to be
Hamiltonian, will turn out to be non-Hamiltonian.

- As an additional application, the reduction from Euler-Maxwell to magnetohydrodynamics
will be studied in the appendix chapter 14. It will turn out to be a subalgebra reduction as well.
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Abstract: The role of projectors associated with Poisson brackets of constrained
Hamiltonian systems is analysed. Projectors act in two instances in the bracket:
in the explicit dependence on the variables and in the computation of the func-
tional derivatives. They are shown to play a role both in order to make the
Poisson bracket satisfy the Jacobi identity unconditionally and in bracket re-
ductions or extensions.
The projectors are investigated by using Dirac’s theory of constrained Hamil-
tonian systems, whose reduction procedure can be formulated as a projection
of functional derivatives. It is observed that the Dirac projector can often be
replaced by a simplified projector, which just corresponds to extracting from
the Poisson bracket the part that concerns the reduced variables.
The results are illustrated by examples taken from plasma physics in magneto-
hydrodynamics and in the Vlasov-Maxwell system.

Introduction

As a first study about Dirac’s reduction in plasma physics, we focus on previously identified exam-
ples of such reductions, related to the inclusion of incompressibility in magnetohydrodynamics and
fluid dynamics. The interest is that these examples seem to involve additional subtleties, which
could usefully be understood with more details. Indeed, after computing Dirac’s bracket, what
comes out is just an intuitive result, which corresponds to extracting the incompressible part of the
Poisson bracket.

In this chapter, we characterize this phenomenon with a formulation of Dirac’s constraints rely-
ing on a projection of functional derivatives. This is a first step towards identifying the properties
justifying the phenomenon, which will be considered in the next chapter. In addition, this formu-
lation already has interesting applications on other plasma models, for instance in the reduction to
Vlasov-Poisson and in an extension of the Vlasov-Maxwell system.

On another hand, this formulation helps improve some Hamiltonian plasma models suffering
from a conditional Jacobi identity. Actually, this can be viewed as another independent motivation
for this chapter, and will be explained with more details in the next section.

The organization of the chapter is the following. In Sect. 7.1, the concept of conditional Jacobi
identity for constrained Hamiltonian systems will be introduced. In Sect. 7.2, the Dirac method
will be reminded and formulated as a projection of functional derivatives; semi-local constraints will
be considered, which will be useful for the gyrokinetic reduction in the next chapter, for instance.
In Sect. 7.3, an application of the method will be done for magnetohydrodynamics, in order to
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untaint its bracket and to make the dynamics incompressible. In Sect. 7.4, we will turn to the
Vlasov-Maxwell system, in order to untaint its bracket, derive the Vlasov-Poisson reduced model,
and derive an extended model where two Casimir invariants of Vlasov-Maxwell system become
dynamical.

7.1 Constrained and tainted brackets

We consider an arbitrary Poisson bracket of a Poisson algebra of functionals of field variables χ(x)
given by

{F,G} =

∫
dnxFχ · J(χ) ·Gχ , (7.1)

where x ∈ Rn, χ : Rn → Rd, and Fχ · J · Gχ = Fχi Jij Gχj with repeated indices summed. By
Poisson algebra we mean a Lie algebra realization on functionals with an associative product of
functionals that satisfies the Leibniz law. Also, we assume that the resulting equations of motion
given by χ̇ = {χ, H}, for some Hamiltonian functional H[χ], possess a conservation law Q[χ] = 0,
where Q is a functional of the field variables and their derivatives. Here we address the specific case
where these conservation laws are obtained regardless of the choice of Hamiltonian H, so Q = 0 is
an intrinsic property of the bracket of the Poisson algebra.

There are two ways to define such a constrained Poisson algebra. The usual way is to place a
restriction on the set of field variables χ in the Poisson algebra. However, this definition raises the
question of how to appropriately compute the constrained functional derivatives Fχ. The second
way is to define a Poisson algebra that does not include any constraint on the field variables and,
consequently, there is no ambiguity in defining the functional derivatives – conservation laws such
as Q = 0 take the form of Casimir invariants.

In this chapter we investigate the links between these two ways of defining constrained Hamil-
tonian structures, and we propose a way to lift Poisson structures defined via the constrained field
variables approach to ones that have the constraints as Casimir invariants. As can be expected, the
difficulty resides in assuring the validity of the Jacobi identity. If we keep the same Poisson bracket
but extended to the bigger algebra (the one without any constraint on the field variables), then
in general, the Poisson structure is only obtained when the constraint is satisfied, i.e., the Jacobi
identity is satisfied conditionally when Q[χ] = 0. It turns out that one can remedy this limitation
by modifying the bracket with the inclusion of suitable projectors that leave the functional deriva-
tives unconstrained and guarantee the Jacobi identity unconditionally. We identify such projectors
acting on the functional derivatives and on the explicit dependence of the bracket on χ. We discuss
the various choices of projectors and highlight a particularly relevant one obtained from Dirac’s
theory of constrained Hamiltonian systems.

In order to illustrate our purpose, consider the relatively simple and common example, the
vorticity equation of a compressible or incompressible fluid in R3. The vorticity ω = ∇× u, with
u the velocity field, satisfies

∂ω

∂t
= ∇× (u× ω). (7.2)

In terms of a commonly used Poisson bracket (see, e.g., Ref. [159]),

{F,G}0 =
∫
d3xω · (∇× Fω)× (∇×Gω) , (7.3)

Eq. (7.2) has the from Ḟ = {F,H}0 with the Hamiltonian H =
∫
d3x v2/2. Here and in what

follows, we suppose boundary conditions are such that no surface terms appear in subsequent
calculations which, e.g., would be the case on a periodic box or all space. If one forgets about the
constraint on the vector fields ω or if one wants to lift the algebra of functionals of divergence-free
ω to the algebra of functionals of any vector field ω, then the bracket (7.3) does not satisfy the
Jacobi identity. This is easily seen by the following counterexample:

F1 =
1

2

∫
d3xω · x̂ y2 , F2 =

1

2

∫
d3xω · ŷ z2 , F3 =

∫
d3xω · ẑx ,
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which yields,

{F1, {F2, F3}0}0+ 	= −
∫
d3xω · ∇(yz) 6= 0 .

Evidently, the bracket (7.3) satisfies the Jacobi identity only if ∇·ω = 0. We refer to such Poisson
brackets that only satisfy the Jacobi identity conditionally as tainted brackets. One of the questions
we address in this chapter is how to correct a tainted bracket so that it satisfies the Jacobi identity
unconditionally. For this particular example, the correction is obtained by inserting a projection
operator, following Ref. [33], given by P⊥ = 1−∇∆−1∇·, so that it defines a new bracket

{F,G} =

∫
d3x (P⊥ω) · (∇× Fω)× (∇×Gω).

It is rather straightforward (see Ref. [33]) to show that this bracket satisfies the Jacobi identity
unconditionally. We notice that ∇·ω is a Casimir invariant of the modified bracket, i.e. {∇·ω, G} =
0 for any functional G. Here ∇ · ω is viewed as a functional using the formula ∇ · ω(x) =∫
d3x′∇ · ω(x′)δ(x′ − x).

As mentioned above, projectors are not only useful to lift algebras so as to satisfy the Jacobi
identity, they are also involved in the way functional derivatives are computed when the field
variables are constrained. As an illustration, we consider the incompressible Euler equation for the
velocity field u(x, t),

u̇ = −u · ∇u−∇P,

where P is determined by the constraint ∇ · u = 0. This equation has a Hamiltonian structure [2,
70,73,98] given by the Hamiltonian H[u] =

∫
d3x v2/2 and the Poisson bracket

{F,G} =

∫
d3xu · [Fu, Gu]L,

where Fu are the functional derivatives of an observable F with respect to the field variable u and
the Lie bracket [V,W]L is given by

[V,W]L = (W · ∇)V − (V · ∇)W.

It should be noted that the incompressible Euler equation cannot be directly obtained from Ḟ =
{F,H} using unconstrained functional derivatives Fu since ∇·u = 0 would not be conserved by the
flow. One way of correcting the bracket is to use an orthogonal projector [70]. For divergence-free
fields, this orthogonal projector is again given by P⊥ = 1 − ∇∆−1∇· (see also Refs. [33, 159]).
In other words, the constrained functional derivative Fu must be computed such that it satisfies
∇ · Fu = 0. However, the fundamental reason for this constraint on the functional derivative
is unclear, even though it yields the correct equation of motion. For a more general constraint
Q[χ] = 0, is it still the orthogonal projector that has to be used for the constrained functional
derivatives? In addition, this projector is in general not unique. It therefore raises natural questions
such as which is the most relevant projector and how is it obtained in a systematic way?

In this chapter, we investigate two possible placements of a projectors: one is on the explicit
dependence on the field variables, while the other is on the computation of the functional derivatives.
We clarify the choice of the relevant projector by using Dirac’s theory of constrained Hamiltonian
systems. In order to prove the relevance of these projectors, we consider two examples taken
from plasma physics. The first one is magnetohydrodynamics (MHD), both compressible and
incompressible, the second one is about the Vlasov-Maxwell system.

The goal of this chapter is to present a general method which highlights the role of appropriate
projectors, and identifies a particular projector using a reformulation of Dirac’s theory. From this
general method, we show that the tainted brackets can be corrected such that the new brackets
satisfy the Jacobi identity unconditionally. In addition, we connect these corrected brackets to the
ones obtained from Dirac’s theory of constrained Hamiltonian systems.
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7.2 Formulation of the general method

7.2.1 Projected functional derivatives

At the outset we assume that the bracket (7.1) is a Poisson bracket on the algebra of functionals
of χ, where χ denotes a d-tuple of fields such that Q[χ](x) = 0 and Q[χ] is function of χ and
its derivatives. These fields will be referred to as Q-free fields. In this section, our aim is to get
a corresponding Poisson bracket on the algebra of any functionals of χ, satisfying Q[χ](x) = 0 or
not. The functional derivatives F̄χ are defined in the following way:

δF =

∫
dnx F̄χ · δχ, (7.4)

for all Q-free δχ, which here means that Qδχ = 0 where Q is the Fréchet derivative of Q defined
by

Q[χ+ δχ](x)−Q[χ](x) = Qδχ+O(‖δχ‖2).
This means that F̄χ is not uniquely defined: it is arbitrary up to an element of Rg Q†, since∫
dnx F̄χ · δχ =

∫
dnx (F̄χ + Q†g) · δχ where g is arbitrary. We define the constrained functional

derivative F̄χ from the unconstrained one Fχ by the following equation:
∫
dnx F̄χ · δχ =

∫
dnxFχ · δχ̄, (7.5)

where now δχ̄ is the constrained (Q-free) variation and δχ the unconstrained one. For the un-
constrained variation δχ, we use a linear operator P acting as δχ̄ = P†δχ such that QP† = 0.
Moreover, the range of this operator P† should be Ker Q and, in addition, P† should act as the
identity on Ker Q. This is equivalent to requiring that P be a projector. Consequently, this leads
to a condition on the possible projectors P such that F̄χ = PFχ, viz.

Ker P = Rg Q†. (7.6)

Note that given this condition, Q[χ](x) is a Casimir invariant that is naturally preserved by the flow.
Still this projector is not unique. In the literature (see, e.g., Ref. [70]), the functional derivative
is chosen such that QFχ = 0, so that the projector satisfies QP = 0. This corresponds to the
orthogonal projector

P⊥ = 1−Q†(QQ†)−1Q, (7.7)

provided QQ† is invertible on Rg Q. However it is not clear if it is the best choice for the projection.
Other solutions satisfy

P⊥P = P⊥,

PP⊥ = P,
which are needed in order to satisfy Eq. (7.6). Given a particular projector P the bracket (7.1)
becomes

{F,G}t =
∫
dnx (PFχ) · J(χ) · (PGχ), (7.8)

where now the functional derivatives are the unconstrained ones. We have released the constraint
on the functional derivatives but, in general the Poisson bracket (7.8) does not satisfy the Jacobi
identity for functionals of arbitrary χ, i.e., ones no longer restricted to Q-free fields. This is because
J(χ) may give contributions that do not satisfy the Jacobi identify when Q[χ] 6= 0. However, if the
projector P does not depend on the field variables χ, as is the case for the examples we deal with
in this chapter, then a bracket that satisfies the Jacobi identity for all functionals of χ, satisfying
Q[χ] = 0 or not, is given by

{F,G} =

∫
dnx (PFχ) · J(Pχ) · (PGχ). (7.9)

In order to verify the Jacobi identity, we perform the change of variables χP = Pχ and χQ = χ−Pχ
so that bracket (7.9) formally becomes bracket (7.8) with χP instead of χ. Since χP is by definition
Q-free, the Jacobi identity is satisfied. For the Poisson bracket (7.9), we notice that Q[χ](x) is a
Casimir invariant, and that the equations of motion for χP are identical to the ones given by the
Poisson bracket (7.1) or (7.8).
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7.2.2 Dirac brackets

Local constraints

In order to identify the most appropriate projector, we use Dirac’s theory of constrained Hamilto-
nian systems [44,112]. We begin with the following good Poisson bracket:

{F,G} =

∫
dnxFχ · J(χ) ·Gχ (7.10)

and then impose the local constraint Φ(x) := Q[χ](x) = 0, where as before Q[χ](x) is a function
of χ(x) and its derivatives. The Dirac procedure begins with the computation of the matrix of
Poisson brackets between the local constraints,

C(x,x′) ≡ {Φ(x),Φ(x′)} = QJQ†δ(x− x′).

We set C := QJQ† and we assume that this quantity is invertible. Then, the Dirac correction to
the bracket (7.10) is given by

−
∫ ∫

dnx dnx′ {F,Φ(x)}D(x,x′){Φ(x′), G},

where D(x,x′) = C−1(χ(x))δ(x− x′). Since {F,Φ(x)} = −QJ · Fχ, this contribution is equal to

−
∫
dnxFχ · JQ†C−1QJ ·Gχ.

Therefore, the Dirac bracket is given by

{F,G}∗ =
∫
dnxFχ · J∗(χ) ·Gχ, (7.11)

where
J∗ = J− JQ†C−1QJ. (7.12)

It is straightforward to verify that J∗ given by Eq. (7.12) is antisymmetric because C is antisym-
metric. We notice that QJ∗ = 0 (and therefore J∗Q† = 0). As a consequence, the constraint Φ
is a Casimir invariant. We notice that a sufficient but not necessary condition to define the Dirac
bracket (7.11) is that C is invertible on the range of Q. If C is not invertible (neither globally nor
in the range of Q, the matrix C−1 has to be chosen according to the condition

JQ†(C−1C− 1) = 0, (7.13)

in order to obtain the constraints as Casimir invariants.
The Poisson brackets obtained by the Dirac procedure are Poisson brackets of the form (7.8)

but untainted, i.e., they satisfy the Jacobi identity unconditionally even though they are not of
the form (7.9) in general. This can be seen by considering a projector P as discussed in the
previous section. Under the assumption that Ker P = Rg Q†, we deduce that J∗(1− P) = 0, and
consequently:

J∗ = P†J∗P.
With this equality, the Poisson bracket becomes

{F,G}∗ =
∫
dnx (PFχ) · J∗(χ) · (PGχ).

The additional feature is that, a priori, the Poisson matrix J∗ is a function of both Pχ and (1−P)χ.
However, it is straightforward to check that (1− P)χ is a Casimir invariant.

The Dirac procedure shows that among the possible projectors P satisfying Eq. (7.6), one turns
out to be most convenient. The matrix J∗ can be rewritten using the Dirac projector

P∗ = 1−Q†C−1QJ, (7.14)
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as
J∗ = P†

∗JP∗,

so that the Dirac bracket becomes the same as the original one (7.10) with the exception that the
functional derivatives are projected using the Dirac projector,

{F,G}∗ =
∫
dnx (P∗Fχ) · J(χ) · (P∗Gχ), (7.15)

where we notice that the Poisson matrix is J and not J∗. The main difference between the the
orthogonal projector P⊥ and the Dirac projector P∗ is that P⊥ is a purely geometric object since it
only depends on the constraints, and P∗ is a dynamical object since it involves the Poisson matrix.

Remark: We observe that the matrix corresponding to the Dirac bracket has the following
property:

J∗ = P†
∗JP∗ = JP∗ = P†

∗J,

i.e., the Dirac bracket can be rewritten from Eq. (7.15) using only one Dirac projector, e.g.,

{F,G}∗ =
∫
dnxFχ · J(χ) · P∗Gχ.

As a result, the computation of the Dirac bracket is made easier.

Semi-local constraints

The calculation of Sec. 7.2.2 can be generalized to allow semi-local constraints in phase space. To
this end we split the set of coordinates into two pieces, i.e., x = (x1,x2) where x1 ∈ Rn−m and
x2 ∈ Rm. The semi-local constraints are given by

Φ(x1) = Q̄[χ](x1) =

∫
dmx2Q[χ](x),

where Q[χ](x) is a function of χ(x) and its derivatives. The linear operator Q̄ is defined by the
linear operator associated with the function Q by

Q̄ =

∫
dmx2Q.

Since Q̄ acting on a function of x is only a function of x1, the linear operator Q̄† is defined by the
equation ∫

dn−mx1 Q̄χ ·w(x1) =

∫
dnxχ(x) · Q̄†w.

Consequently, Q̄† is a linear operator acting on functions of x1 as Q†, i.e., Q̄†w(x1) = Q†w(x1).
In a manner similar to that of Sec. 7.2.2, the computation of the Dirac bracket shows that the
operator

C = Q̄JQ̄†,

must be invertible. More explicitly, the linear operator C acts on functions of x1 as

Cw(x1) =

∫
dmx2QJQ†w(x1).

The expression of the Dirac projector is given by

P∗ = 1− Q̄†C−1Q̄J,

in a very similar way as the case of the local constraints. We notice that the linear operator C only
needs to be invertible on Rg Q̄. Another important projector is the orthogonal projector given by

P⊥ = 1− Q̄†(Q̄Q̄†)−1Q̄.

As in the case of local constraints, these two projectors satisfy J∗ = P†J∗P , along with the two
properties P⊥P∗ = P⊥ and P∗P⊥ = P∗. In addition, the Dirac projector satisfies J∗ = P†

∗JP∗ =
P†
∗J = JP∗.
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7.3 Example 1: magnetohydrodynamics

7.3.1 Compressible magnetohydrodynamics

A particularly interesting example is afforded by the Hamiltonian structure of magnetohydrody-
namics. The equations for the velocity field u(x, t), the density ρ(x, t), the magnetic field B(x, t),
and the entropy s(x, t) are given by

ρ̇ = −∇ · (ρu),
u̇ = −u · ∇u− ρ−1∇(ρ2Uρ) + ρ−1(∇×B)×B,

Ḃ = ∇× (u×B),

ṡ = −u · ∇s,

where U is the internal energy and Uρ here denotes the partial derivative of U with respect to ρ.
The dynamical variables are ρ(x), u(x), B(x) and s(x) where x belongs to R3. The observables
of the system are functionals of these vector fields, denoted generically by F (ρ,u,B, s). In these
coordinates, this system has the following Hamiltonian

H(ρ,u,B, s) =

∫
d3x

(
1

2
ρu2 + ρU(ρ, s) +

B2

2

)
.

There are two slightly different Poisson brackets that have been proposed in Refs. [102–104]. A
first one was given in Ref. [102],

{F,G}=−
∫
d3x

[
Fρ∇ ·Gu + Fu · ∇Gρ − ρ−1(∇× u) · (Fu ×Gu)

+ρ−1∇s · (FsGu − FuGs)
]
+ {F,G}B, (7.16)

where the magnetic part {F,G}B of the Poisson bracket is chosen as {F,G}B = {F,G}B,t

{F,G}B,t = −
∫
d3x ρ−1 (Fu ·B× (∇×GB)−Gu ·B× (∇× FB)) . (7.17)

It was pointed out in Ref. [104] that this bracket satisfies the Jacobi identity only when ∇ ·B = 0,
and also that ∇ · B commutes with any other functionals, i.e., {F,∇ · B} = 0 for all F (it is a
Casimir-like property, even though we cannot call it a Casimir invariant since the Jacobi identity
is only satisfied when ∇ ·B = 0). As was the case for the vorticity equation (7.2), the functional
derivatives with respect to B must be divergence-free for coherence. However, we notice that here,
since only ∇×FB are involved in the expression of the magnetic part (7.16) of the Poisson bracket,
it does not make any difference whether FB is divergence-free or not.

In order to extend the definition of the Poisson bracket to functionals of any B, ones not
necessarily divergence-free, a second Poisson bracket was proposed in Refs. [103, 104]. There the
magnetic part of the Poisson bracket (7.16) was replaced by

{F,G}B,1=−
∫
d3x

[(
ρ−1Fu · [∇GB]− ρ−1Gu · [∇FB]

)
·B

+B ·
(
[∇
(
ρ−1Fu

)
] ·GB − [∇

(
ρ−1Gu

)
] · FB

)]
.

Here the notation a · [M ] · b is a scalar explicitly given by
∑

ij aiMijbj for any vectors a and b
and any matrix [M ]. It was shown that this bracket satisfies the Jacobi identity for all functionals
of (ρ,u, s,B) regardless of the condition ∇ ·B = 0. The magnetic part of this Poisson bracket is
rewritten as

{F,G}B,1=−
∫
d3x ρ−1 [Fu ·B× (∇×GB)−Gu ·B× (∇× FB)]

+

∫
d3x ρ−1∇ ·B (Fu ·GB − FB ·Gu) . (7.18)
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The first line of the above bracket corresponds to the Poisson bracket introduced in Ref. [102] [see
Eq. (7.17)]. With the additional terms (proportional to ∇·B) the Jacobi identity is unconditionally
satisfied for any functionals of (ρ,u, s,B). However, a property of the bracket (7.16) with the
magnetic part (7.17) has been lost, ∇ ·B does not Poisson-commute with any functional, so it is
not a Casimir invariant.

In order to have both the Jacobi identity unconditionally satisfied and ∇·B a Casimir invariant,
we apply the prescription (7.9) on the magnetic part (7.17). At every instance in the Poisson
bracket where B is explicitly mentioned, we replace B with B̄ = B −∇∆−1∇ ·B. The magnetic
part becomes

{F,G}B = −
∫
d3x ρ−1

(
Fu · (B̄× (∇×GB)−Gu · (B̄× (∇× FB))

)
,

and it is rewritten as

{F,G}B = −
∫
d3x ρ−1 (Fu · (B× (∇×GB)−Gu · (B× (∇× FB)))

+

∫
d3x∇ ·B∆−1∇ ·

(
ρ−1Fu × (∇×GB)− ρ−1Gu × (∇× FB)

)
. (7.19)

Here we notice that the correction term still contains terms proportional to ∇ ·B but is different
from the one in Eq. (7.18). The main difference is that ∇ · B is not a Casimir invariant for the
Poisson bracket (7.18) whereas it is one for the Poisson bracket (7.19) since it only involves terms
like ∇×GB.

7.3.2 Incompressible magnetohydrodynamics

For incompressible MHD we begin with the equations for compressible magnetohydrodynamics
from Sec. 7.3.1 and apply constraints. The Poisson bracket given by Eqs. (7.16)-(7.19) is of the
form (7.10) with

J =




0 −∇· 0 0
−∇−ρ−1(∇× u)×−ρ−1B̄× (∇×)ρ−1∇s
0 −∇× (ρ−1B̄×) 0 0
0 −ρ−1∇s 0 0


 .

We impose the following local constraints on the field variables χ = (ρ,u,B, s),

Q[χ](x) = (ρ,∇ · u).

The reduction to incompressible MHD using Dirac’s theory has already been done in Ref. [33]
and the reduction to incompressible Euler equation in Refs. [118, 119]. Here we propose a more
compact way to present this reduction using the operators introduced in the previous sections. The
expressions of the intermediate operators are

Q =

(
1 0 00
0∇·00

)
,

Q† =




1 0
0−∇
0 0
0 0


 ,

C =

(
0 ∆

−∆∇ · (ρ−1(∇× u)×∇)

)
,

C−1 =

(
∆−1∇ · (ρ−1(∇× u)×∇)−∆−1

∆−1 0

)
.

The orthogonal projector is given by Eq. (7.7) and its expression is

P⊥Fχ = (0, F̄u, FB, Fs),



7.4. EXAMPLE 2: VLASOV-MAXWELL EQUATIONS 171

where F̄u = Fu − ∇∆−1∇ · Fu. The Dirac projector, computed from the Poisson bracket (7.16)
where B has been replaced by B̄ = B−∇∆−1∇ ·B, is given by

P∗Fχ = (F∗, F̄u, FB, Fs),

where
F∗ = ∆−1∇ ·

(
ρ−1

(
(∇× u)× F̄u − B̄× (∇× FB)− Fs∇s

))
.

We notice that the two projectors differ in the first component. Even though the two projectors
P⊥ and P∗ are different, both of these projectors satisfy the equation J∗ = P†JP, which is always
the case for the Dirac projector but not true in general for the orthogonal projector. Actually any
projector PFχ = (F∗(F̄u, FB, Fs), F̄u, FB, Fs) satisfies J∗ = P†JP for any function F∗. The first
component is thus irrelevant, and consequently the orthogonal projector is the simplest projector to
be used for constrained functional derivatives. From this projector, we compute the Dirac bracket
from Eq. (7.15), and it gives the same bracket as that produced in Ref. [33]:

{F,G}∗=
∫
d3x ρ−1

(
(∇× u) · (F̄u × Ḡu)−∇s · (FsḠu − F̄uGs)

+B̄ · (F̄u × (∇×GB) + (∇× FB)× Ḡu)
)
,

where F̄u = Fu −∇∆−1∇ · Fu.

7.4 Example 2: Vlasov-Maxwell equations

7.4.1 Vlasov-Maxwell modified bracket as a Dirac bracket

As a second example, we consider the Vlasov-Maxwell equations for the distribution of charged
particles in phase space f(x,v, t) and the electromagnetic fields E(x, t) and B(x, t) given by

ḟ = −v · ∇f − (E+ v ×B) · ∂vf,
Ė = ∇×B− J,

Ḃ = −∇×E,

where J =
∫
d3v vf . The Hamiltonian of this system is given by

H =

∫
d6z f

v2

2
+

∫
d3x

E2 +B2

2
,

where we denote z = (x,v). The Poisson bracket between two functionals of f(x,v), E(x) and
B(x) is given by

{F,G}t=
∫
d6z f ([Ff , Gf ]c + [Ff , Gf ]B +GE · ∂vFf − FE · ∂vGf )

+

∫
d3x (FE · ∇ ×GB −∇× FB ·GE) , (7.20)

where the two brackets [·, ·]c and [·, ·]B are defined by

[f, g]c = ∇f · ∂vg − ∂vf · ∇g, (7.21)

[f, g]B = B · (∂vf × ∂vg). (7.22)

The Poisson bracket (7.20) was proposed in Ref. [101], except the second term given in Ref. [95]
(see also Ref. [5]) which removed an obstruction to the Jacobi identity. However, it was pointed
out in Ref. [104] that the Poisson bracket (7.20) only satisfies the Jacobi identity when ∇ ·B = 0,
which is to say that it does not satisfy the Jacobi identity for arbitrary functionals of (f,E,B)
(see Ref. [114] for the details of the direct proof of the Jacobi identity up to this condition). This
problem is actually already present in the Lagrangian description (for the dynamics of charged
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particles) since [·, ·]c + [·, ·]B only satisfies the Jacobi identity for functions B such that ∇ ·B = 0,
whereas, individually, [·, ·]c and [·, ·]B satisfy the Jacobi identity for an arbitrary function B.

In order to remedy this problem, we modify the bracket [·, ·]B to take the form of (7.9),

[f, g]BP
= (B−∇∆−1∇ ·B) · (∂vf × ∂vg).

With this modified gyro-magnetic bracket, we readily check that [·, ·]c + [·, ·]BP
satisfies the Jacobi

identity. Next, we consider the modified Poisson bracket (7.20) obtained by replacing [·, ·]B by
[·, ·]BP

, i.e., we consider the Poisson bracket

{F,G}VM=

∫
d6z f ([Ff , Gf ]c + [Ff , Gf ]BP

+GE · ∂vFf − FE · ∂vGf )

+

∫
d3x (FE · ∇ ×GB −∇× FB ·GE) , (7.23)

which satisfies the Jacobi identity unconditionally. This follows from the change of variable BP =
B−∇∆−1∇ ·B and BQ = ∇∆−1∇ ·B where it should be noted that

∇×GB = ∇×GBP
,

since the operator P = 1−∇∆−1∇· satisfies P∇× = ∇×.
Here it should be noticed that ∇ · B is a Casimir invariant for the Poisson bracket (7.23).

The untainted form of the Vlasov-Maxwell bracket (7.23) gives the Hamiltonian structure of the
Vlasov-Maxwell equations in terms of physical fields without introducing the vector potential, i.e.,
without the restriction of ∇ ·B = 0.

In order to realize the link between brackets defined using projectors and Dirac brackets, we
show below that the Poisson bracket (7.23) is a Dirac bracket of some parent bracket obtained
using two constraints which, by definition, are Casimir invariants of the bracket (7.23)

Q[f,E,B](x) = (∇ ·E− ρ,∇ ·B),

where ρ =
∫
d3v f . As expected there is an infinite number of solutions for the parent bracket. A

family of solutions is given by

{F,G} = {F,G}VM +

∫
d3x

(
∇ · FBD∇ ·GE −∇ · FED†∇ ·GB

)
, (7.24)

where D is a linear operator independent of the field variables, so that the Jacobi identity is
guaranteed by Morrison’s lemma of Ref. [104]. This statement uses the fact that the Vlasov-
Maxwell bracket has been made untainted; it would not be true if the original tainted Vlasov-
Maxwell bracket (7.20) was considered instead of the Poisson bracket (7.23).

Now, if we apply the Dirac procedure on the extended Poisson bracket (7.24) with the primary
constraint ∇ · E − ρ, we get the secondary constraint ∇ · B, and the reduced Dirac bracket is
obtained from J∗ = P†

∗JP∗ where P∗ is the Dirac projector (7.14). The Dirac projector can be
explicitly computed. However, in order to further simplify the computation of the Dirac bracket,
we use the orthogonal projector since, as in the case of incompressible MHD (see Sec. 7.3.2), it
satisfies the same relation as the Dirac projector, i.e., J∗ = P†

∗JP∗ = P†
⊥JP⊥, where

P⊥Fχ = (FB −∇∆−1∇ · FB, FE, Ff ).

This implies the expected result that the Vlasov-Maxwell bracket (7.23) is the Dirac bracket of the
bracket (7.24) with Dirac constraints (∇ ·E− ρ,∇ ·B).

With the extended bracket (7.24), the Casimir invariants (∇·E−ρ,∇·B) of the Vlasov-Maxwell
system now have dynamics given by

∂

∂t
(∇ ·E− ρ)=∆D†∇ ·B,

∂

∂t
∇ ·B=−∆D∇ ·E.
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We notice that here ∇ ·B and ∇ · E − ρ are no longer constant since they are no longer Casimir
invariants of the extended bracket (7.24). However even though ∇ · E − ρ is not zero, the total
charge remains conserved (i.e.,

∫
d6zf is still a Casimir invariant). The above equations suggest

two particularly interesting choices for our still undetermined operator D. Defining D = ∆−1

gives to ∇ · E − ρ and ∇ · B the dynamics of stationary waves when ρ = 0, whereas defining
D = (−∆)−1/2 gives them the dynamics of propagating waves. We note that these operators
always act on divergences of vector fields.

Remark: As a side note, we point out that the choice of D = (−∆)−1/2 naturally exhibits the
operator ∇∗ := ∇(−∆)−1/2∇· which corresponds to ∇× for the compressible part of a vector field.
Indeed, the operator

−∇ ∗∆−1∇∗ = ∇∆−1∇·,
is the orthogonal projector onto the kernel of ∇×, just as −∇ × ∆−1∇× = 1 − ∇∆−1∇· is the
complementary projector onto the kernel of ∇∗. With this choice, the resulting dynamical equations
associated with the Poisson bracket (7.24) for the solenoidal and the compressible parts of the
electromagnetic fields become independent and similar:

�ES = −J̇S , �EC = −J̇C ,

�BS = ∇× JS , �BC = ∇ ∗ JC ,

where � is the d’Alembert operator � = ∂2/∂t2 −∆ and ψS is the solenoidal part of the vector
field ψ, i.e., ψS = −∇×∆−1∇×ψ = (1−∇∆−1∇) ·ψ and ψC is its compressible part, which is
ψC = −∇ ∗∆−1∇ ∗ ψ = ∇∆−1∇ · ψ. In the absence of matter, the fields ψS and ψC propagate
as independent free waves.

7.4.2 From Vlasov-Maxwell to Vlasov-Poisson equations

In order to obtain Vlasov-Poisson equations from the Vlasov-Maxwell equations we impose two
constraints:

Q[f,E,B](x) = (B−B0(x),∇×E),

where B0 is a non-uniform background magnetic field. The operators Q and Q† are given by

Q =

(
0∇×0
0 0 1

)
,

and

Q† =




0 0
∇×0
0 1


 .

The orthogonal projector P⊥ given by Eq. (7.7) is given by

P⊥ =



1 0 0
0∇∆−1∇·0
0 0 0


 .

Contrary to the orthogonal projector, the expression of the Dirac projector depends on the dynam-
ics, and in particular on the Poisson matrix J which is given by

J =



−[f, ·]−∂vf 0
−f∂v 0 ∇×
0 −∇× 0


 ,

where the small bracket [·, ·] is given by [·, ·] = [·, ·]c + [·, ·]BP
with these two brackets given by

Eqs. (7.21)-(7.22). The operator C is given by

C =

(
0 (∇×)2

−(∇×)2 0

)
.
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The operator C is not invertible; however, the Dirac procedure still applies as explained in Sec. 7.2.2
with a choice for C−1 given by

C−1 =

(
0 ∆−1

−∆−1 0

)
,

so that Eq. (7.13) is satisfied. As a result, the Dirac projector is computed,

P∗ =




1 0 0
0 ∇∆−1∇· 0

−∆−1∇× f∂v 0 ∇∆−1∇·


 .

We notice that both projectors P⊥ and P∗ satisfy the equation J∗ = P†JP and the Poisson matrix
of the Vlasov-Poisson equations is given by

J∗ =




−[f, ·] −∇∆−1∇ · ∂vf0
−∇∆−1∇ · (f∂v) 0 0

0 0 0


 .

It leads to the expression of the Poisson bracket,

{F,G}∗ =
∫
d6z f [Ff −∆−1∇ · FE, Gf −∆−1∇ ·GE].

Like for the incompressible MHD equations, even if the Dirac and orthogonal projectors are dif-
ferent, both of them can be used to compute the Dirac bracket from the Poisson matrix J, the
orthogonal projector being slightly simpler and more straightforward to compute.

Let us mention that the orthogonal projector is not always available, as is emphasized by the
example of linear Vlasov with quasi-neutrality in [34], which also constitutes an interesting example
of semi-local constraints. In this case, since the orthogonal projector does not exist, it cannot be a
solution for the computation of constrained functional derivatives. A convenient choice is afforded
by the Dirac projector.

Conclusion

In this chapter, the Dirac reduction, viewed as a projection of derivatives, appeared as useful in
order to correct tainted brackets and to make them satisfy the Jacobi identity unconditionally.
This proceeded through an extension of the phase space and a projection of functional derivatives.

In addition to making the Vlasov-Maxwell bracket and the MHD bracket untainted, it found
applications in Dirac reductions, such as the reduction for incompressible MHD and for Vlasov-
Poisson. In addition, it suggested an extension of the Vlasov-Maxwell system that includes a
dynamical ∇ ·B and ∇ ·E− ρ.

More important for the purpose of this episode, this formulation made more definite the phe-
nomenon that affects the Dirac reduction for incompressibility in fluid-like models, which consists
in replacing the Dirac projector by a simplified (orthogonal) projector.

This observation is interesting both in order to avoid unnecessary computations in the deriva-
tion, and in our quest for extensions or variations of Dirac reductions. It is not specific to the
reduction for incompressibility, since it was involved in other plasma models, for instance the
Vlasov-Poisson reduction mentioned here. On the other hand, it is not completely general, as
shown by the reduction including quasi-neutrality in a linear Vlasov system in [34], where the
orthogonal projector can not be used.

Here, the phenomenon was observed only a posteriori; in order to use it a priori in derivations
of models and avoid useless computations, its origin, as well as its extent and meaning, should be
identified in a clearer way. This will be the topic of the next chapter.
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On the role

of quarter-canonical Poisson brackets

in Dirac reductions and gyrokinetics
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Abstract: Reduced Poisson brackets derived by Dirac’s theory of constraints
are related to a projection of derivatives, but they can also often be obtained
by another simplified projector, which makes the reduction equivalent to a mere
bracket truncation. We show that this phenomenon is connected to a special
structure of the initial bracket, which is quarter-canonical.
This structure is close to the canonical one, and also related to the Darboux
theorem, but it is less stiff. It is frequent even in continuous Hamiltonian
systems and is involved as soon as half of the constraints is not coupled with
itself. It makes Dirac reductions more efficient by removing the need to compute
the inverse of the matrix of constraints, and by enclosing the reduction in the
simplified truncation projector. Consequences on the Dirac procedure and links
with a subalgebra reduction are mentioned, as well as the role of the coordinates
in the phenomenon.
Various applications are considered for reductions or extensions of Poisson
brackets in plasma models. Especially, an important step of the gyrokinetic
reduction, namely the removal of the gyro-angle dimension, is shown to fit with
a quarter-canonical Dirac reduction, which plays a crucial role to guarantee a
Hamiltonian structure for gyrokinetics.

Introduction

In this chapter, we investigate the mechanism and the structures at work in the simplification
observed in some Dirac reductions in the previous chapter. Then, we will come back to our initial
purpose, the gyrokinetic reduction, and relate the removal of its superfluous dimensions (gyro-angle
and magnetic moment) to a Hamiltonian reduction, and especially to a Dirac reduction.

Indeed, the previous chapter showed that when deriving Hamiltonian reduced models by using
Dirac’s theory of constraints [44,66], the reduced bracket is obtained by a projector on derivatives
given by the inverse of the matrix of constraints, but that afterwards, it often appears that some
terms involved in the Dirac projector are irrelevant. Removing them induces the resulting projector
to become greatly simplified and seemingly very intuitive, but the reduced bracket to be unchanged.
This suggests to look for a reduction method based on this simplified projector instead of the Dirac
projector.

With the simplified projector, one does not need to invert the matrix of constraints, which not
only makes the computations easier but also could make the method more general by removing
the condition about the invertibility of the matrix of constraints. However, this projector might
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not exist, or its definition might not be so obvious. The question is to identify in what conditions
it is available, and why it is so often available in Dirac reductions in plasmas. In this chapter, as
well as in the complementary appendix chapters 12 and 13, we relate its existence to the presence
of a quarter-canonical structure in the Poisson bracket, and we explore the simplified reduction
methods induced by its existence.

The organization of this part of the thesis work is the following. Sect. 8.1 is devoted to an
introductory example. In Sect. 8.2, the answer to the initial question is shown to be related to
a quarter-canonical structure in the initial bracket. This structure is connected to the canonical
and semi-canonical structures, but it has much weaker requirements. Sect. 8.3 will summarize
some complementary results reported in the appendix chapters 12 and 13. The first of them will
investigate the incidence of quarter-canonical coordinates. They will appear as frequent, and oth-
erwise most often constructible. On another hand, they can be avoided by obtaining explicitly the
simplified projector even in non-quarter-canonical coordinates. As for Chapter 13, it will study
consequences of the quarter-canonical structure on the Dirac procedure, and will make links with
another reduction method, based on a projection onto a Lie-subalgebra. Last, in the light of the
previous results, we will come back to the gyrokinetic reduction in Sect. 8.4.

In this chapter, we will often consider Poisson brackets for continuous Hamiltonian systems.
They will always be assumed to involve only local couplings as is usual in fluids and plasma models:

{F,G} =

∫
dx

∫
dy δ(x−y)Fψi(x) J

′ij(x,y,ψ(x),ψ(y))Gψj(y) =

∫
dx Fψi(x) J

ij(x,ψ(x))Gψj(x) ,

where all the symbols are generic: ψ is a set of fields, defined over a space with coordinates x (or
also y). The symbol J denotes a matrix whose coefficients can depend on both the coordinates and
the fields, it can be an operator, i.e. involve derivatives of the fields to any order. In addition, we
identify the Poisson bracket { , } and the local-interaction matrix J.

On another hand, the constraints, denoted by φ will always be local or semi-local, i.e. they
involve the fields at each point of the space:

f(x,ψ(x),∇ψ(x), ...) = 0 ,

for some function f . For an example, see Eqs. (8.3)-(8.4), or Subsect. 8.2.4). For our purpose, it
is the natural analogue in continuous media of the usual constraints in finite-dimensional systems.

8.1 Introductory example

Throughout the chapter, the purpose will be illustrated with various Hamiltonian reductions. The
warm fluid model for plasmas will be used as a framework for most of the examples. The dynamical
fields are the plasma mass density ρ, the plasma fluid velocity u, the plasma entropy per unit mass
s, the electric field E and the magnetic field B; the Hamiltonian function is simply the total energy

H[ρ,u,E,B] =

∫
d3x

(
ρu2

2
+ ρU(ρ, s) +

E2 +B2

2

)
, (8.1)

where U(ρ, s) is the internal energy per unit mass of the plasma. The Poisson bracket is given by
(see Ref. [104])

{F,G} =

∫
d3x

[
Gu · ∇Fρ − Fu · ∇Gρ + ∇×u

ρ · (Fu ×Gu)

+Gs Fu · ∇s
ρ − Fs Gu · ∇s

ρ + B
ρ · Fu ×Gu (8.2)

+ Fu ·GE −Gu · FE + FE · ∇ ×GB −GE · ∇ × FB

]
,

where the index notation is used for functional derivatives, e.g. Fu := δF/δu. The particle
charge/mass ratio, the velocity of light and the vacuum permeability have been set to 1 for con-
venience: e/m = c = µ0 = 1. For the present work, the entropy s plays a minor role, almost
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similar to ρ, and even simpler. For simplicity, we will drop the entropy terms from the bracket
and the term corresponding to the internal energy from the Hamiltonian. This corresponds to a
pressureless (cold) plasma. Actually, the Hamiltonian will not really be needed in our investigation
(except for the choice of a secondary constraint, see e.g. Eq. (8.4)). We will focus on the essential
part of the Dirac reduction, which concerns the Poisson bracket.

For the consistency of this chapter, let us remind the usual procedure to get a reduced Poisson
bracket using Dirac constraints, and illustrate it with the standard example of the reduction to
incompressible-fluid dynamics [33]. In this chapter (and in the associated appendix chapters 12 and
13), we will come back several times to this reduction or to some of its variants. It will constitute
a kind of common thread. For clarity here, we take the simplest fluid, without the electromagnetic
field (nor any pressure), removing E and B from the variables. Then the bracket writes

{F,G} =

∫
d3x Gu · ∇Fρ − Fu · ∇Gρ + ∇×u

ρ · (Fu ×Gu) .

Starting from this Poisson bracket, the primary local constraint is chosen as

φ1(x) := ρ(x)− ρ0 , (8.3)

where ρ0 is a homogeneous density. Since the matrix of constraint {φ1(x), φ1(x′)} = 0 is not
invertible, the Dirac procedure induces a (local) secondary constraint, given by the time evolution
of φ1(x):

φ2(x) := φ̇1(x) = {H,φ1(x)} = ∇ · (ρ0u)(x) , (8.4)

and as in most cases where the Dirac procedure works, it is enough for the matrix of constraints
Cαβ(x,x

′) := {φα(x), φβ(x′)} to be invertible. The reduced bracket is given by

{F,G}∗ :=
∫
d3x

∫
d3x′ {F, φα(x)} C−1

αβ (x,x
′) {φβ(x′), G} =

∫
d3x ∇×u

ρ · (F̄u × Ḡu) , (8.5)

where F̄u = (1−∇∆−1∇) · Fu, and summation over repeated indices is implied.
It can be written as in Chapter 7

J∗ = P†
∗JP∗ ,

by defining the projector
P∗Fψ = (F∗, F̄u) ,

where
F∗ = ∆−1∇ ·

(
∇×u
ρ × F̄u

)
,

and ψ = (ρ,u) is a vector grouping together all the field variables.
Accordingly, the reduced bracket is just the initial one, but using constrained functional deriva-

tives through the Dirac projector P∗. As observed in Chapter 7, this projector involves terms that
are irrelevant, because the reduced bracket is independent of the first component of the projector,
which can be removed. This provides a simplified orthogonal projector

PFψ = (0, F̄u) .

This last projector is very interesting because the Dirac projector was not entirely satisfactory:
it depended on the field variables and it had a complicated action on functional derivatives. The
simplified projector is much more convenient; it is the most natural operator that keeps functional
derivatives in the reduced space. The relation J∗ = PJP means that the reduced bracket is exactly
the initial one with orthogonal projection of the functional derivatives onto the reduced space.

Another way to show the effect of the simplified projector is to change the field variables and to
adopt coordinates adapted to the constraints, choosing for field coordinates

(
φ,∇× (ρ0u)

)
, with

φ := (φ1, φ2) =
(
ρ− ρ0,∇ · (ρ0u)

)
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the vector of constraints. Then, the projector P simply writes

P = ( 0 0
0 1 ) , (8.6)

which shows that the reduced bracket is just a truncation of the initial bracket, obtained by re-
moving derivatives along the constrained fields φ1 and φ2.

In this situation, to get the reduced bracket, all the computations involved in the Dirac pro-
cedure can be replaced by a much simpler method: just take the initial bracket and truncate it.
The question is to know when this simplification of the Dirac procedure is available, i.e. when
the Dirac reduction results in a bracket truncation, and how to identify the simplified projector
without inverting the matrix of constraints.

8.2 The quarter-canonical structure in Dirac reductions

In this section, the presence of the simplified truncation projector is connected to a special structure
in the Poisson bracket, which is quarter-canonical. In Subsec. 8.2.1, the condition for the truncation
is identified. In Subsec. 8.2.2, the quarter canonical structure is introduced and shown to be
involved in the truncation reduction. Subsecs. 8.2.3 and 8.2.4 will be devoted to an example of
bracket extension and to an example of bracket reduction. Last, Subsec. 8.2.5 will be concerned
with the case where the coordinates are not suited to the quarter-canonical structure.

8.2.1 Condition for a Dirac truncation

First of all, in order to study the mechanism at work in the presence of a simplified projector in
Dirac reductions, we consider a general Hamiltonian system, with field variables ψ, on which the
(local) Dirac constraints φ is imposed. The general form of Dirac’s reduced bracket was given in
(8.5). It can be put into matrix form

J∗ = J− JQ†C−1QJ , (8.7)

where Q and C are defined by

δφ(x)
δψ(q)=Q(x) δ(x− q) = Q†(q) δ(q− x) ,

C :=QJQ† ,

and C is assumed to be invertible, in order to fit with the situation where the Dirac procedure is
applicable. The link with a bracket truncation is clearer when adapted coordinates are chosen: ψ =
(φ,χ), where φ are the constraints and χ are complementary coordinates. In these coordinates,
we have

Q :=( 1 0
0 0 ) .

The matrix of constraints C is one of the coefficients of the Poisson matrix

J=
(

C −B†
B A

)
,

and the Dirac correction for the bracket is

JQ†C−1QJ =
(

C −B†

B −BC−1B†

)
. (8.8)

The constraints φ have become Casimir invariants of the reduced bracket J∗, since the correction
is such as to put to zero the first three coefficents of the Poisson bracket:

J∗ = J− JQ†C−1QJ =
(
0 0
0 A+BC−1B†

)
. (8.9)

The remaining coefficient of the reduced bracket can now be compared with the one of the truncated
bracket, which is

Jt = P†JP =
(
0 0
0 A

)
.
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Thus, the result of the Dirac procedure is in general different from a simple bracket truncation.
They are equal if and only if BC−1B† = 0.

It must be noticed that even in this case, the Dirac projector is not the simplified projector P
of (8.6):

P∗ = 1−Q†C−1QJ =
(
0 C−1B†
0 1

)
, (8.10)

which is not equal to P (except if C−1B† = 0, i.e.if 1 B = 0). But Eq. (8.9) shows that the Dirac
projector can be replaced by the simplified projector P even when they are not equal.

8.2.2 The quarter-canonical structure

There is a special case where BC−1B† = 0 is automatically zero, namely when the Poisson matrix
is quarter-canonical. Let us remind that a canonical bracket writes

Jc =




Mc 0 0
0 Mc 0

. . .
0 0 Mc


 ,

with Mc =
(
0 −1
1 0

)
; all the coordinates are pairs of canonically conjugated variables. A semi-

canonical bracket [85] is less demanding, it has only one pair of canonically conjugated coordinates:

Js =
(

0 −1 0
1 0 0
0 0 A

)
. (8.11)

A quarter-canonical bracket is still half less demanding

Jq =

(
0 −b† 0
b a −d†
0 d A

)
. (8.12)

The first coordinate is “conjugated” to the second one in the sense that it is coupled only with
it, but the second coordinate is not coupled only with the first one. This dissymmetry is an
important feature, which will impact the following. So, a quarter-canonical structure is defined by
the existence of coordinates (ψ1, ψ2, ψj>3), with dimψ1 = dimψ2, such that

{ψ1, ψ1}=0 , (8.13)

{ψ1, ψj>3}=0 . (8.14)

It must be pointed out that all the forms of Poisson bracket introduced above are observed only
when they are expressed in a suitable set of coordinates, which are qualified as “canonical”, “semi-
canonical”, or “quarter-canonical”. Changing coordinates generally breaks the form of the bracket
(except if the change of coordinates is canonical). For finite-dimensional systems, the Darboux
theorem [84, 98] guarantees the existence of (local) coordinates such that the bracket is canonical.
It also gives a constructive algorithm to isolate successively each pair of conjugated variables in a
semi-canonical bracket (8.11), where A depends only on the remaining coordinates φi > 3. The
semi-canonical bracket is the result of the first iteration of the Darboux algorithm. The quarter-
canonical bracket can be seen as the first step to get a semi-canonical bracket. Alternatively,
given a first coordinate ψ1, it can be considered as resulting from the semi-canonical bracket, and
authorizing an arbitrary change of variables for ψ2, and a partially free change of variables for ψj ,
j > 3: (

ψ1

ψ2

ψj

)
−→

(
ψ1

ψ2
′(ψ1,ψ2,ψj)

ψj
′(ψ1,ψj)

)
. (8.15)

This is easily seen by writing that through a coordinate transformation the Poisson bracket is
transformed by the chain rule.

Notice that in this chapter, as well as in the companion chapters 12 and 13, parentheses are
used for changes of field coordinates ψ2

′(ψ1, ψ2, ψj) or for constraints φ(ψ), but the dependence is

1In the language of the next subsections, this corresponds to a semi-canonical Poisson bracket. More precisely,
the coefficient C is not Mc in general, but the bracket benefits from many properties of the semi-canonical structure.
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nonlocal in general, i.e. the "function" actually involves derivatives of arbitrary order. For instance,
φ(ψ) actually means

φ(x) := f
(
ψ(x),∇ψ(x),∇∇ψ(x), ...

)

for some function f . Accordingly, square parentheses φ[ψ] should be used, in a similar way as in
Chapters 4-5. However, this point will not be crucial here. For simplicity, we follow the common
notation with parentheses.

When the bracket is quarter-canonical, and the constraints are φ1 = ψ1, φ2 = ψ2, then, the
inverse of the matrix of constraints is

C−1 =
(

0 −b†
b a

)−1
=
(
b−1ab−1† b−1

−b−1† 0

)−1
. (8.16)

The coefficient b has to be invertible for C to be so. The (complementary) Dirac projector is

Q†C−1QJ =
(

1 0 −b−1d†
0 1 0
0 0 0

)
, (8.17)

which is not the projector for the truncated bracket, as in (8.10). But the correction to the initial
braket is

JQ†C−1QJ =
(

C −B†

B −BC−1B†

)
=

(
0 −b† 0
b a −d†
0 d 0

)
,

which shows that BC−1B† = 0, and the Dirac procedure results in a truncation of the initial bracket.

As for the reciprocal, the Dirac bracket is identical to the truncated bracket only if BC−1B† = 0.
If one chooses on the space of constraints φ the coordinates (φA, φB) with2 φA = kerB and φB
supplementary coordinates, then the matrix B writes

B = ( 0 Br ) ,

with Br injective. Then BC−1B† = BrC
−1
BBB

†
r, which is zero only if 0 = C−1

BB. This implies
dimφB 6 dimφA. This basically means that the quarter-canonical structure is involved: Eq. (8.14)
holds. In addition, if dimφB =, the bracket is semi-canonical (more precisely it has the main
property of the semi-canonical bracket, which is to split the Poisson bracket in two independent
sub-algebras). On another hand, if dimφB = dimφA, then the Poisson bracket is exactly quarter-
canonical. Between this extremal cases, the criterion dimψ1 = dimψ2 can most often be obtained
by transferring a part of the φA to φB in such a way as C−1

BB remains zero, for instance by using
ker{φ2, ·} in φA. Then, 0 = C−1

BB means {φA, φA} = 0, and the coordinates (φA, φB,χ) are quarter-
canonical.

If one starts with a quarter-canonical Poisson bracket and changes coordinates ψ −→ ψ′, the
bracket generally loses its quarter-canonical structure, and the Dirac reduced bracket is no more a
truncation of the initial bracket. The same happens if one chooses other constraints than the first
two coordinates. It is the reason why, in the following, when we speak about a “quarter-canonical
bracket”, it will mean that there exist (and we have adopted) coordinates (φ,χ), where φ = (φ1, φ2)
are the Dirac constraints, and χ are complementary coordinates (that remain dynamical in the
reduced bracket) such that the Poisson bracket writes (8.12).

From the point of view of the Dirac reduction, the choice of coordinates χ is allowed because
Dirac’s reduced bracket is independent of the coordinates χ used, as is clear by Eq. (8.5).

The case of a quarter-canonical structure expressed in coordinates that are not quarter-canonical
is considered in the appendix chapter 12. Then the Dirac reduction is not a truncation of the initial
bracket any more, but it is still obtainable by a projection of the functional derivatives, where the
projector is just the equivalent of (8.6) but expressed in other coordinates: J = P†JP , with P given
by formulas such as (12.13) or (12.11).

2This is an elliptic expression. More precisely, ∂φA
generates kerB.
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8.2.3 Application to bracket extensions

The Dirac reduced bracket being always a truncated bracket for a quarter-canonical reduction is a
powerful property because it can simplify many works on the link between Hamiltonian structures.
We will speak much about Hamiltonian reductions, which are the most natural applications, but
let us begin by a more original application, concerning bracket extensions.

Starting from a Poisson bracket J that has Casimir invariants φ = (φ1, φ2), one can wonder if it
comes from an extended bracket Je, in which φ are dynamical, and from which the initial bracket
J is obtained by imposing the Dirac constraints φ. A typical pattern is the Euler-Maxwell bracket
(8.2) which has two (local) Casimir invariants φ = (∇ ·E− ρ,∇ ·B).

A simple answer to the problem is to write Je as a quarter-canonical bracket in coordinates
(φ,χ), with A = J, and the remaining coefficients in (8.12) are chosen freely in such a way that
both b is invertible and Je satisfies the Jacobi identity. For instance when J does not depend
on φ, the Jacobi identity is guaranteed provided the coefficients are all chosen constant in the
field variables. Then, the matrix of constraints is invertible, and the quarter-canonical structure
guarantees that imposing the Dirac constraints φ will induce the reduced bracket to be exactly
the initial bracket J. This procedure was applied to an extension of the Vlasov-Maxwell bracket in
Chapter 7, and it can be applied the same way to the Euler-Maxwell bracket.

8.2.4 Application to fluid and kinetic incompressibility

As a second application of the quarter-canonical structure, incompressibility can be applied to
arbitrary order in fluid models, and even to the kinetic Vlasov-Maxwell model [95, 101].

The reason is that the kinetic Vlasov-Maxwell dynamics can be expressed using the fluid mo-
ments instead of the distribution function f(x,v). In the computations involved for Chapter 9 (but
not reported in the present manuscript), we noticed that formula

∫
d3vf∂v(P̃n)f = 0 (8.18)

holds at arbitrary order in the fluid moments, where

P̃j :=

∫
d3vf(v − u)⊗j

is the j-th pressure-like moment of the distribution function f . This suggests to adopt the coordi-
nates ψ = (φ,χ) with

φ = (ρ,∇ · u) and χ = (∇× u, {P̃j}j>2) .

Then the particle density ρ is coupled only with ∇ · u, just as in the usual fluid bracket:

{F,G} =

∫
d3x

[
Gu · ∇Fρ − Fu · ∇Gρ + Fφ2 Jφ2j Gχj

− Fχj
Jjφ2 Gφ2 + Fχi

Jij Gχj

]
.

The detailed expression of Jij is not given here, because it is quite complicated, and completely
useless for our purpose. The important feature is that the bracket is quarter-canonical and the
constraints

(
ρ− ρ0,∇ · (ρ0u)

)
can be imposed exactly as in the usual reduction to incompressible

fluid. The reduced structure is just the truncated bracket, which means that all terms involving
couplings with ρ or ∇ · u are put to zero, and all other terms are unchanged:

{F,G}∗ =
∫
d3x Fχi

Jij Gχj
. (8.19)

If the reduction is performed while keeping the coordinates (ρ,u), instead of (ρ,∇ · u,∇× u), the
results of Chapter 12 can be used.

This example shows the efficiency of the quarter-canonical structure and the requirement to
choose good coordinates. If we had used the usual fluid moments Pj :=

∫
d3vfv⊗j , the bracket

would not have been quarter-canonical any more, and the result would not have been so obvious
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to get.

The incompressibility to arbitrary order in the fluid moments suggests to perform the reduction
directly in the kinetic model, by using the kinetic variable f instead of the fluid moments. Then,
the bracket is not quarter-canonical any more, and the reduction is not a truncation of the initial
bracket. Besides, the constraints are not local but semi-local [34]. All the same, they are equivalent
to local quarter-canonical constraints on the bracket expressed in moments of the distribution
function. The Dirac reduction is independent of the chosen coordinates χ complementary to the
constraints and it is interesting to work with the coordinate f rather than with the moments P̃n
because the kinetic bracket is much simpler than the corresponding fluid bracket.

The phase space is the set of (f,E,B), where f(q,v) is the distribution function, E(q) is the
electric field and B(q) is the magnetic field. The Hamiltonian is the total energy

H =

∫

q,v
f v2

2 +

∫

q

E2+B2

2 .

The initial Poisson bracket is the Vlasov-Maxwell bracket [95, 101,104,156]

{F,G}V=
∫
d3xd3v f [∇Ff · ∂vGf − ∂vFf · ∇Gf + eB · ∂vFf × ∂vGf ]

+e

∫
d3xd3v f (∂vFf ·GE − FE · ∂vGf )

+

∫
d3x (FE · ∇ ×GB − FB · ∇ ×GE) . (8.20)

The constraints are ρ − ρ0 and ∇ · (ρ0u), where ρ0 is a fixed homogeneous mass density. The
variables

ρ =

∫
d3vf and u = 1

ρ

∫
d3vfv

are respectively the fluid mass density and the fluid velocity. The matrix of constraints is the same
as in the case of the fluid incompressibility, because the fluid Poisson bracket for (ρ,u,E,B) is
given by a subalgebra of the kinetic system (see Chapter 9) and thus {φα, φβ} is the same when
computed with the fluid and with the kinetic bracket. After some algebra, the reduced bracket is
found to be

{F,G}∗ = {F,G}+
∫

q

[

∫

v

PGf ]·
∫

v

ξ(F )−
∫

q

[

∫

v

PFf ]·
∫

v

ξ(G)−
∫

q

[

∫

v

PFf ]·
∫

v

λ·[
∫

v

PGf ] , (8.21)

where

P = ∇∆−1∇ · f∂q ,
ξ(F ) = u−v

ρ ∇ · (f∂vFf )− f
ρ∇Ff −

f
ρeB× ∂vFf +

ef
ρ GE ,

λ = v−u
ρ ∇f

ρ + f
ρ∇v−u

ρ + efB×
ρ2

.

In these expressions, the derivatives act on all that is on their right-hand side.
The reduced bracket may seem complicated, and the computations to obtain it are not elemen-

tary, but the existence of a quarter-canonical structure implies the reduced bracket to be simply
given by the initial bracket with projected functional derivatives. The projector is the one involved
in the truncation (8.19), but expressed in coordinates that are not suited to the truncation. Its
expression can be obtained using Eqs. (12.10), (12.11) or (12.13) from Chapter 12. The last one is
especially simple and computed in a few lines

φ1ψ = (1, 0, 0) ,

φ2
†
ψ = (−v−u

ρ · ρ0∇, 0, 0) ,
φ1ψJφ2

†
ψ = ∇ · ρ0∇ ,

φ2
†
ψ(φ1ψJφ2

†
ψ)

−1φ1ψJ =

( v−u
ρ ·∇∆−1∇·

∫
v
f∂v 0 0

0 0 0
0 0 0

)
.
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Thus, the reduced bracket is simply

{F,G}∗ =
∫
∂ψF · J∗∂ψG =

∫
∂ψF · P†JP∂ψG ,

where
PFψ = P(Ff , FE, FB) = (F̄f , FE, FB) ,

with

F̄f =

(
1− v−u

ρ · ∇∆−1∇ ·
∫

v

f∂v

)
Ff .

Thus Eq. (12.13) gives an efficient way to compute in a few lines the reduced bracket (8.21), whose
derivation by applying Dirac’s theory had been rather heavy.

8.2.5 Incidence, constructibility, and dispensability of quarter-canonical coor-

dinates

The previous subsections showed the advantages of quarter-canonical Poisson brackets in Dirac re-
ductions, especially by replacing the Dirac projector by a simplified truncation projector. However,
they did not explain why this phenomenon often occurs when applying Dirac reductions in plasmas.
This suggests that quarter-canonical coordinates are frequent, which calls for a closer analysis.

On another hand, the quarter-canonical structure is explicitly present only when suitable co-
ordinates are adopted. Often, the natural coordinates are not quarter-canonical. Then, instead of
applying Dirac’s method, it can be convenient to adopt suited coordinates, in order to make the
reduction become just a bracket truncation. This asks the question about the constructibility of
such coordinates.

Last, instead of changing coordinates to make them suited to the quarter-canonical struc-
ture, one can wonder whether the simplified projector can not be obtained directly in the initial
coordinates, even when they are not quarter-canonical. This would imply an extension of the
simplified-projector reduction to non-quarter-canonical cases.

This threefold question about quarter-canonical coordinates is addressed in the appendix chap-
ter 12.

−→ See the appendix chapter 12

This chapter shows that these coordinates are much more frequent than semi-canonical coordi-
nates, they always exist for finite-dimensional systems when {φ1, φ1} = 0, and as soon as they exist,
they are the only possible structure for Dirac reductions. This explains the frequent occurrence of
simplified projectors in these reductions. In field theory, it is a common structure, especially in
Dirac reductions. It must be thought of as soon as one half of the constraints has no coupling with
itself Jφ1φ1 = 0. When quarter-canonical coordinates are not already present, they can most often
be build by hand, at least when the Poisson bracket and the constraints contain linear dependences
in the fields, which is fairly common. Many examples are shown in the ideal-fluid model. Finally,
quarter-canonical coordinates are not indispensable in order to benefit from the existence of the
simplified projector. This last can be explicitly identified even when the coordinates are not suited
to the quarter-canonical structure, and even when such coordinates do not exist.

8.3 Consequences for Dirac procedure and truncation methods

The previous section focused on the use of the quarter-canonical structure in order to make the Dirac
procedure become a bracket truncation. It did not investigate the meaning and the consequences
of this fact for Hamiltonian reduction methods. Indeed, a bracket truncation is in principle a
specific reduction method, which involves completely different structures and conditions than a
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Dirac reduction. The coexistence of these two methods can impact the Dirac procedure and the
bracket truncation method.

More precisely, truncations usually do not preserve the Hamiltonian character, and Dirac re-
ductions usually require the matrix of constraints to be invertible, whereas in the quarter-canonical
case, these difficulties seem to have disappeared. Clearly further investigation is needed. It will be
the topic of the appendix chapter 13, where the methods will also be applied to several reductions
in the ideal-fluid model.

−→ See the appendix chapter 13

This chapter confirms that the quarter-canonical structure has strong impacts on reduction
methods. For the Dirac procedure, it automatically implies that the matrix of constraints is invert-
ible, which in turn means that the secondary constraints are determined by this structure. This
gives a way to identify all the available secondary constraints. These J-secondary constraints are di-
rectly induced by the structure of the Poisson bracket, in contrast with the traditional H-secondary
constraints, which are related to the Hamiltonian function. When taking into account both of them,
the procedure to choose secondary constraints becomes more complete, more transparent, and more
efficient.

As for the bracket truncation induced by the quarter-canonical structure, it is associated to
the presence of a Lie-subalgebra naturally induced by the structure. This establishes a link with
another Hamiltonian reduction method, based on a projection onto a subalgebra. In the case of
a quarter-canonical structure, its applicability conditions are automatically satisfied, and it gives
the same result as the Dirac method provided the direction of the projection is chosen accordingly.
In other cases, the subalgebra reduction appears as less stiff, faster, and more often available than
the Dirac method. It is not so often marked by traces of the canonical structure.

8.4 Application to the gyrokinetic reduction

TO BE COMPLETED
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TO BE COMPLETED
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Conclusion

To conclude this chapter, together with its associated appendix chapters 12 and 13, the quarter-
canonical structure appears as fairly common in Poisson brackets, even for field theory. For Dirac
reductions in finite-dimensional systems, it is the only available structure when {φ1, φ1} = 0, e.g.
when starting with a scalar constraint.

It is related to the canonical and semi-canonical structures, but the requirements are a lot less
strong, which often allows to identify explicitly quarter-canonical coordinates when they are not
already present. Those variables are conjugated in a weakened sense, because the first coordinate
is conjugated to the second one, but the converse is not verified.

This structure is strongly involved in the invertibility of the matrix of constraints, which is the
condition for the Dirac procedure to work. When quarter-canonical coordinates exist, then the
matrix of constraint is invertible if and only if the constraints are such coordinates. It is why the
relevant secondary constraints are determined by quarter-canonical coordinates. These J-secondary
constraints make much clearer the role of secondary constraints, and they constitute an interesting
complement to the usual procedure relying on H-secondary constraints.

In most of Dirac reductions for fluids and plasmas, the quarter-canonical structure plays an
underlying role. It is a generic case where the Dirac projector can be replaced by a simplified
projector, corresponding to a bracket truncation, which simplifies the Dirac method. Even when
quarter-canonical coordinates are not adopted or not identified, and even when they do not ex-
ist, the benefits of the structure associated to the condition {φ1, φ1} = 0 can be used in Dirac
reductions, with especially the existence of an explicit simplified projector, although it can not be
completely interpreted as a truncation projector in this case.

The justification of the truncation method automatically associated to quarter-canonical brack-
ets relies on the presence of a subalgebra, underlying this structure. It is a consequence of the Jacobi
identity, and a property shared with semi-canonical brackets, but in a weakened form, since the
subalgebra involves only one of the two constraints. For quarter-canonical structures, the existence
conditions both for a Dirac reduction and for a subalgebra reduction are automatically satisfied,
and the two methods are equivalent in their result, because the matrix of constraints is always
invertible, the reduced bracket is always independent of φ2, and BC−1B† in (8.8) is always zero.

Even for quarter-canonical brackets, the flexibility of subalgebra reductions often offer comple-
mentary possibilities, for instance to impose one single constraint, or to get several possible reduced
structures. This is because subalgebra reductions are less marked by traces of the canonical struc-
ture than Dirac reductions, even if they are still influenced by them.

Practically, the method of Dirac’s constraints and the reduction by a subalgebra, although very
different, are often related and the quarter-canonical structure is a key ingredient in this relation.
This implies a softening of the Dirac reduction, but also, and above all, a link with other reduction
methods. Many applications were observed, mainly taken from the ideal-fluid model. In particular,
subalgebra reductions appeared to be very soft and pliable. A natural extension of the work is to
investigate other examples of Hamiltonian reductions in plasmas in the light of these results. It is
the topic of chapters 9 and 14.

An important application was identified in the removal of the two superfluous dimensions (gyro-
angle and magnetic moment) in the Hamiltonian approach of the gyrokinetic reduction. This re-
moval was shown to fit with the quarter-canonical framework. Its essential mechanism can be
viewed as a bracket truncation induced by a Dirac projector, whose constraints are functionals re-
lated to the magnetic moment and the gyro-angle. Alternatively, it can be justified by a subalgebra
argument, not exactly at the level of the field bracket, but at the level of the Vlasov density, or
of the particle bracket. The complete implementation to the gyrokinetic reduction will require a
more detailed study, especially in order to better understand the impact of the field dependence of
the particle transformation in the process.
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Hamiltonian structure

of reduced fluid models for plasmas

obtained from a kinetic description
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Abstract: We consider the Hamiltonian structure of reduced fluid models ob-
tained from the kinetic description of collisionless plasmas by Vlasov-Maxwell
equations. This is done by investigating the possibility of finding Poisson sub-
algebras associated with fluid models starting from the Vlasov-Maxwell Poisson
algebra. In this way, we show that the only possible Poisson subalgebra involves
the moments of zeroth and first order of the Vlasov distribution, meaning the
fluid density and the fluid velocity, which corresponds to the standard ideal-fluid
dynamics.
As with concerns possible closures for a Hamiltonian fluid model including
moments of order two and higher, obstructions are identified, and the bracket
derived in [Phys. Rev. Lett. 93, 175002 (2004)], which involves moments of
order two, is shown not to be a Poisson bracket since it does not satisfy the
Jacobi identity.

Introduction

As an application of the Hamiltonian reduction methods considered in previous chapters, this chap-
ter is concerned with the Hamiltonian reduction from the Vlasov-Maxwell model to fluid models,
and especially with including in the ideal-fluid model some moments of the Vlasov density of order
2 and higher.

This choice of application is justified because improvements are expected about this reduction.
Indeed, for Hamiltonian systems, the fluid closure is usually implemented at the first moment of the
distribution function, with the closure assumption relying on a local thermodynamical equilibrium.
This corresponds to the standard fluid model, with the plasma field variables being the plasma
density, velocity (or momentum) and entropy.

When the system is not collisional enough, the closure assumption may not hold, and higher-
order moments can have important contributions. There does not seem to be a special reason
why only a first-order model would be Hamiltonian, and one can look for a Hamiltonian model at
each order in the moment expansion. Especially, as the temperature increases, the collisionality
diminishes, and including moments of order two or higher may be needed for a physically relevant
description of the plasma.

This is corroborated by a recently proposed model including moments of order two [136]. So,
the idea here is to examine the mechanism at work in the derivation of this model compared to the
standard fluid model, and to try to generalize the result by including higher-order moments.

187
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The chapter is organized as follows. After reminding the principles of the fluid reduction in
Sect. 9.1, we consider in Sect. 9.2 the reduction to the standard fluid model, which will appear as
a truncation of the initial kinetic Poisson bracket. Bracket truncations usually do not produce a
proper Poisson bracket, but the presence of a subalgebra remedies this issue, which offers a very
practical and useful method for deriving reduced fluid models by using subalgebras. Applying it
to the Vlasov-Maxwell Hamiltonian system provides the dynamics of the usual ideal-fluid model
composed by the continuity equation for the fluid density and the momentum equation for the fluid
velocity.

Then, in Sect. 9.3, we consider applying the method for Hamiltonian fluid closures including
moments of order two and higher. However it will appear that when the closure occurs at those
orders, the reduced structure is no longer a Poisson subalgebra associated with the parent structure.
As a consequence it is not possible to obtain reduced fluid models containing higher order moments
by just applying a Poisson subalgebra argument.

Last, in Sect. 9.4, we will turn to pressure-like variables, instead of moments of the Vlasov
density, in order to better agree with the physics. This also aims at better understanding the
reduction method involved in the results of Refs. [136, 138]. They introduce a fluid model for
low-temperature relativistic plasmas, called the warm fluid model, which involves second-order
moments of the Vlasov distribution. This model was suggested by the interaction between a strong
laser pulse and a low-density plasma. In Ref. [136] a conserved quantity has been constructed
based on the Vlasov-Maxwell Hamiltonian, and a bracket was proposed. It has been shown that
this model conserves energy and entropy. However, based on the results explained in Sec. 9.3, the
Hamiltonian property of this model has to be scrutinized since it involves higher-order moments
of the Vlasov distribution. In Sec. 9.4 we exhibit a counterexample for the Jacobi identity for the
bracket proposed in Ref. [136]. Therefore, this warm fluid model is not a Hamiltonian system.

9.1 Principles of the reduction

Let us begin by reminding the principle of fluid reductions, and the interest of Hamiltonian fluid
reductions.

In the kinetic framework, the dynamics of collisionless plasmas is provided by the Vlasov-
Maxwell equations which are dynamical equations for the phase-space density f(x,v) of the charged
particles (also called Vlasov density) and the electromagnetic fields E(x) and B(x) where x and
v belong to R3. Here, we work with only one species of charged particles of unit mass and charge
e for the sake of simplicity, but the generalization to several species is straightforward (see, e.g.,
Ref. [143]). The dynamical equations are

ḟ = −v · ∇f − e(E+ v ×B) · ∂vf, (9.1)

Ė = ∇×B− e

∫
d3vfv, (9.2)

Ḃ = −∇×E, (9.3)

where the dot designates the time derivative. Given nowadays computer capability, integrating
numerically this kinetic model is too demanding for realistic laboratory plasmas. Moreover the
dynamics is not easily analysed in such a kinetic framework since it provides dynamical information
at temporal and spatial scales which might be irrelevant. In addition, the plasma dynamics is more
conveniently analysed in configuration space rather than in particle phase space. As a consequence,
there is a need for reduction in order to eliminate the irrelevant parts of these equations so as to
obtain a much more tractable model. One way of doing this is to consider a fluid reduction which
is obtained by considering the moments of the Vlasov distribution, e.g., the fluid density, the fluid
momentum, the pressure tensor, etc...

Starting from the dynamics of the zeroth order moment, a series of dynamical equations for the
higher order moments is built. This is a priori an infinite set of differential equations. The reduction
is obtained by truncating this set and closing the system of equations through a closure assumption,
often based on a collisional argument or on a local thermodynamical equilibrium. According to
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the physical situation of interest, the choice of an order of truncation and of a closure assumption
brings us a corresponding fluid model. For instance, starting from the parent model, i.e., the Vlasov-
Maxwell equations, many physically interesting fluid models have been derived (see, e.g., Refs. [7,
55, 107, 120, 138]). A particularly important property of the parent model is that it possesses a
Hamiltonian structure, i.e., the equations of motion can be rewritten using a Hamiltonian functional
H and a Poisson bracket {·, ·} as Ḟ = {F,H}. Truncating and closing the set of equations might
not conserve this property. This introduces dissipative or non-Hamiltonian terms in the equations
of motion whether they have a physical origin (as described by phenomenological constants like
diffusion constant, magnetic diffusivity or kinematic viscosity) or not. If these terms do not have
a physical origin, they have been coined mutilations (Ref. [108]). If one considers only the ideal
part of the equations which is the part where the phenomenological constants characterizing the
dissipative terms are set to zero, one should recover a Hamiltonian system as an inheritance of the
Hamiltonian parent model [3, 32,33,107–109].

There are two ways to proceed. The first one is to work with the equations of motion and
check a posteriori that the resulting set of reduced equations possesses a Hamiltonian structure
(by finding an appropriate conserved quantity and a Poisson bracket). This can be tedious as one
needs to check that the bracket which has been guessed satisfies all the properties of a Poisson
bracket, and in particular the Jacobi identity. The second method is to work directly on the
Hamiltonian structure of the parent model by performing the reduction on the Hamiltonian and on
the bracket; it is our goal here. Of course the main difficulty resides in verifying that the reduced
bracket still satisfies the Jacobi identity. This puts some restrictions on what is allowed to do on a
Poisson bracket in the course of the reduction. The gain is significant since the preservation of the
Hamiltonian structure is ensured, i.e., there is no fake dissipation or mutilation, and it allows one
to keep track of the conserved quantities throughout the derivation and apply all the techniques
already available for Hamiltonian systems (like perturbation theory, energy-Casimir methods for
equilibria, Lie transforms, etc...).

9.2 Reduction to the ideal-fluid model

The starting point is the Hamiltonian structure of the Vlasov-Maxwell equations [95,101,104,156].
The Hamiltonian functional is the total energy :

H(f,E,B) =

∫
d3vd3x f

v2

2
+

∫
d3x

E2 +B2

2
.

The Poisson bracket acts on the Poisson algebra of observables, that is the set of functionals of the
field variables f(x,v), E(x) and B(x) :

{F,G}V=
∫
d3xd3v f [Ff , Gf ] + e

∫
d3xd3v f (∂vFf ·GE − FE · ∂vGf )

+

∫
d3x (FE · ∇ ×GB − FB · ∇ ×GE) , (9.4)

where Fψ indicates the functional derivative with respect to the field variable ψ and the bracket
[·, ·] is given by

[f, g] = ∇f · ∂vg − ∂vf · ∇g + eB · ∂vf × ∂vg,

and ∂v designates the partial derivatives with respect to v. The dynamics of a functional F of
the Poisson algebra is given by Ḟ = {F,H}. In particular we recover Eqs. (9.1)-(9.3) if we choose
F = f , F = E or F = B. We notice that we have considered here a non-relativistic plasma.
However the discussion which follows is unchanged in the case of a relativistic plasma since the
changes only occur in the Hamiltonian, not in the Poisson bracket [5].

Fluid models rely on the idea of replacing the Vlasov density f by the series of its moments [159]

P i1...inn =

∫
d3vfvi1 · · · vin , (9.5)
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for n ∈ N. The chain rule yields

Ff =
∞∑

n=0

FPn
i1i2...in vi1vi2 · · · vin ,

where we have used Einstein’s convention of implicit summation over repeated indices ik. The
expression of the Poisson bracket in these new variables involves the derivatives with respect to v
given by

∂vlFf =

∞∑

n=0

n∑

k=1

F
P

i1...in
n

vi1 · · · vik−1
δlikvik+1

· · · vin .

We use the following symmetrization of the tensor Pn

F
P

(i1...in)
n

=
1

n

n−1∑

k=0

F
P

in−k+1...ini1...in−k
n

.

In such a way, the derivative with respect to v becomes

∂vlFf =

∞∑

n=0

nF
P

(i1...in)
n

vi1 · · · vin−1δ
l
in .

In these variables, the Hamiltonian becomes

H({Pn},E,B) =

∫
d3x

P ii2
2

+

∫
d3x

E2 +B2

2
, (9.6)

and the expression of the bracket becomes

{F,G}V=
∑

m,n

∫
d3x mPαβn+m−1∂kFPα

n
G
P

(βk)
m

+
∑

m,n

∫
d3x nmPαβn+m−2

eBij
2

F
P

(αi)
n

G
P

(βj)
m

+
∑

n

∫
d3x enPαn−1FP (αi)

n
GEi

+

∫
d3x FE · ∇ ×GB − (F ↔ G), (9.7)

where Bij = εijkB
k with εijk the Levi-Civita tensor, and (F ↔ G) indicates that the terms obtained

by inverting F and G in the summation have to be subtracted (in order to fulfill the antisymmetry
property of the Poisson bracket). Here and in what follows, ∂k designates the partial derivative
with respect to xk; it acts on the next term, e.g. ∂kfg = (∂kf)g. The greek indices α and β

in Eq. (9.7) denote a set of indices so as to complete the summation. For instance, in P
(αi)
n , the

indices α is a set of n− 1 indices α = (i1, . . . , in−1) so that P (αi)
n = P

(i1...in−1i)
n .

The commonly used fluid model corresponds to a truncation of the moments at order one,
keeping as field variables only the fluid density ρ = P0 and the momentum density M = P1 (or
equivalently the fluid velocity defined as M/ρ). The bracket (9.7) has the particular property that
the set of all functionals of the reduced field variables (ρ,M,E,B) is a subalgebra, i.e. it is invariant,
in the sense that the Poisson bracket (9.7) of two functionals F (ρ,M,E,B) and G(ρ,M,E,B) is
again a functional of (ρ,M,E,B). For this subset of functionals, the bracket reduces to

{F,G}1=
∫
d3x

(
(P0∂kFP0 + P j1∂kFP j

1
)GPk

1
+ eP0

(
BijFP i

1
G
P j
1
/2 + FP i

1
GEi

)
+ FE · ∇ ×GB

)

−(F ↔ G), (9.8)

which is indeed again a functional of (ρ,M,E,B). At this stage, the reduction of the dynamics
has not yet been performed because the Hamiltonian H given by Eq. (9.6) depends on P2 so it
does not belong to the subalgebra of functionals of (ρ,M,E,B). In order to perform the reduction,
one needs to make an assumption on the Hamiltonian. For example, in the so-called cold plasma
model [7], the reduced Hamiltonian is H∗ =

∫
d3x (M2/(2ρ)+(E2+B2)/2), i.e., the original kinetic

part of the Hamiltonian
∫
d3x P ii2 /2 has been replaced by

∫
d3x M2/(2ρ). Practically, the choice
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is inspired by the physics of the system under consideration. In the presence of scalar pressure
terms and in the absence of heat flux (adiabatic closure), the entropy s has to be included following
Ref. [7]. To account for this, s has to be considered as an independent scalar field advected by the
fluid. This is achieved by including the advection term given by

∫
d3x GsFM · ∇s− (F ↔ G),

into the bracket. The addition of these terms preserves the Jacobi identity, since it only corresponds
to a passive scalar advected by the Hamiltonian fluid. The last step is to include the pressure
term in the Hamiltonian which may be any function ρU(ρ, s). Accordingly, U(ρ, s) stands for the
thermodynamical internal energy per unit mass, and the pressure is ρ2∂ρU . The model we get is
the most common Hamiltonian fluid model (see Ref. [104]) with the Hamiltonian

H[ρ,M,E,B] =

∫
d3x

(
M2

2ρ
+ ρU(ρ, s) +

E2 +B2

2

)
,

and the bracket

{F,G}=
∫
d3x

[
ρ GM · ∇Fρ +M · (GM · ∇)FM +Gs FM · ∇ s+ eρB · FM ×GM/2

+eρFM ·GE + FE · ∇ ×GB

]
− (F ↔ G).

The introduction of U in the Hamiltonian is a way of keeping some information that is enclosed in
the pressure tensor. As a result, this model is almost a reduction at order 1 in the moment series,
but it is related to a closure at order 2 as well.

9.3 Fluid reduction at orders higher than 1

As it was shown above, the Hamiltonian fluid reduction at order 1 is given by a Poisson subalgebra
of the parent Hamiltonian structure. This results in a reduced bracket that is just a truncation of
the initial bracket (9.7). However, in many cases such a fluid model with only the first two moments
is not rich enough to account for all the physics of interest, and one has to include kinetic effects
and retain higher order moments in the fluid model. In this section we consider the Hamiltonian
derivation of such higher order models. It should be pointed out that including the second order
moments would be particularly interesting since the Hamiltonian belongs to the reduced algebra,
and the closure does not affect the Hamiltonian.

The goal is to consider generalizing the results of the previous section to get fluid models of
order higher than 1 by truncating the initial bracket. This method seems natural in the case of
the fluid reduction, which relies on the idea that all the physical information is contained in the
set {Pn}n6N of the N first moments of f . The remaining moments will have to be expressed
as functionals of them, Pi>N = Φi({Pn}n6N ). Here we consider the simplest closure assumption
Pn = 0 for n > N .

It should be noticed that it would actually be best suited to consider moments defined by quan-
tities like Πn =

∫
d3 f(v−M/ρ)⊗n/ρ. However it makes the discussion slightly more complicated,

so for the sake of clarity, we have kept the moments as defined by Eq. (9.5) in this section. We
consider reduced brackets defined from the moments Πn in Sec. 9.4.

We look for the reduced bracket by removing the undesired moments from the initial Poisson
bracket (9.7), i.e., we consider the subset of functionals F (f,E,B) = F̄ ({Pn}n≤N ,E,B) and we
truncate the Poisson bracket (9.7) acting on two functionals of this subset by removing all terms
proportional to Pn for n > N . This bracket does not involve functional derivatives FPn for n > N
since these terms vanish when acting of an element of the subset. We denote this truncated bracket
{F,G}N . Since {F,G}N = {F,G}V for all functionals F and G of this subset by enforcing Pn = 0
for n > N , the reduced bracket is automatically algebraically closed and it retains from the initial
bracket {·, ·}V the bilinearity, the antisymmetry and the Leibniz rule. The only property one



192 CHAPTER 9. ON HAMILTONIAN FLUID REDUCTIONS FROM VLASOV-MAXWELL

has to check to have a Hamiltonian structure is the Jacobi identity, since this property does not
automatically transfer to truncated brackets.

In order to be more specific, we inspect more closely the case N = 2. The reduced bracket is
given by

{F,G}2 = {F,G}1 + {F,G}′2,

where the bracket {F,G}1 is given by Eq. (9.8) and {F,G}′2 is a bracket which only involves FP2

or GP2 . This bracket is given by

{F,G}′2=
∫
d3x

(
2(P j1∂kFP0 + P ij2 ∂kFP i

1
)G

P
(jk)
2

+ P ij2 ∂kFP ij
2
GPk

1
+ 2eP i1FP (ij)

2

GEj

+2eBij(P
k
1 FP (ik)

2

G
P j
1
+ P kl2 FP (ik)

2

G
P

(jl)
2

)
)
− (F ↔ G).

The bracket given by Eq. (9.7) between functionals of (ρ,M, P2,E,B) involves only one term that
is not a functional of (ρ,M, P2,E,B), and which is proportional to P3, and it is given by

{F,G}′′2 = 2

∫
d3x P ijk3 ∂lFP ij

2
G
P

(kl)
2

− (F ↔ G).

The reduction involves P3 = 0, it is why this term has been dropped from the reduced bracket
{·, ·}2. However we can not conclude that the truncated bracket {·, ·}2 is Hamiltonian since the
Jacobi identity has to be checked a posteriori. We show that in fact some terms not proportional
to P3 are generated in the Jacobi identity by the contribution {·, ·}′′2. These contributions originate
from the terms in the bracket (9.7) that are proportional to Pn for n ≤ 2 and which involve FP3 or
GP3 . These terms are

{F,G}c3 = 3

∫
d3x

(
P ij2 ∂kFP0GP (ijk)

3

+ eBijP
kl
2 FP i

1
G
P

(jkl)
3

+ eP ij2 FP (ijk)
3

GEk

)
− (F ↔ G)

If we restrict this additional contributions to the first term, i.e., in absence of magnetic and electric
field, the non-trivial contribution in the Jacobi identity comes from the bracket {{F,G}′′2, H}c3
which includes terms of the form

−2

∫
d3x P ij2 ∂lFP ij

2
G
P

(kl)
2

∂kHP0 ,

and as well two other terms, that have the same expression, but with circular permutation of (ijk).
This contribution to the Jacobi identity of the bracket (9.7) suggests a counterexample for the
failure of the Jacobi identity for the truncated bracket {·, ·}2. We select F as a functional of P2,
G as a functional of P2 and H as a functional of P0. For instance, we choose F =

∫
d3x (P 11

2 )2/2,
G =

∫
d3x P 22

2 and H = P0 as a counterexample of the Jacobi identity. It leads to

{{F,G}2, H}2+ 	= −∂22
(
(P 11

2 )2
)
− 4∂1

(
P 12
2 ∂2P

11
2

)
.

The same reasoning can be performed at order N . The number of families of possible counterex-
amples to the Jacobi identity increases as N increases. However a convenient one is inspired from
the case N = 2 and involves a functional of PN , a functional of P2 and a functional of P0. It
follows that the truncated bracket {·, ·}N neglects terms proportional to PN+1 which provides a
non-vanishing contribution to the Jacobi identity for {·, ·}N even in the subset of functionals of
{Pn}n≤N , E and B.

Therefore, starting from N = 2, the truncated brackets {·, ·}N do not satisfy the Jacobi identity.
We notice that the reduced bracket {·, ·}N contains most of the terms of the initial bracket

{·, ·}V when acting on functionals of the reduced variables {Pn}n≤N , E and B. It is then more
efficient to study the few removed terms than the many kept ones. This suggests a simpler way
of verifying the Jacobi identity by only considering the truncated terms. It is explained in the
Appendix.
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9.4 Fluid brackets expressed with pressure-like moments

In Refs. [136–138], a warm fluid model for a collisionless low temperature relativistic plasma has
been introduced. It gives dynamical equations for moments of the kinetic (Vlasov) distribution up
to order two, i.e., it involves P0 (fluid density), Π1 = P1/P0 (fluid velocity) and

Πij2 =
1

P0

∫
d3v (vi −Πi1)(vj −Πj1)f.

It is argued in Refs. [136,138] that this model is Hamiltonian and the bracket is given by

{F,G}2 = {F,G}1 + {F,G}′2, (9.9)

where

{F,G}1 =
∫
d3x

(
∂kFP0GΠk

1
+

1

2P0
(∂kΠ

l
1 − ∂lΠ

k
1 + eBkl)FΠk

1
GΠl

1
+ eFΠk

1
GEk

+ FE · ∇ ×GB

)
−(F ↔ G).

and

{F,G}′2=
∫
d3x

(
∂kΠ

rs
2

P0
FΠk

1
G

Π
(rs)
2

+ 2Πrs2 ∂k

(
FΠs

1

P0

)
G

Π
(rk)
2

+
2Πrs2
P0

(∂kΠ
l
1 − ∂lΠ

k
1 + eBkl)FΠ

(kr)
2

G
Π

(ls)
2

)
− (F ↔ G).

This model is derived in a very similar way as in the previous section, except that, instead of
going from f to Pn, the change of variables is from f to Πn where Π0 = P0, Π1 = P1/P0, and for
n > 2, Πn =

∫
d3v (v − Π1)

⊗n/P0. The reduction at order N corresponds to setting Πn = 0 for
n > N . In particular, in the derivation of the model given in Ref. [136], the contributions in the
bracket which are proportional to Π3 have been neglected given a specific assumption on the Vlasov
distribution. However, as in the previous section, these neglected terms contribute to satisfying the
Jacobi identity. Given the counterexample

F = P0Π
11
2 ,

G =

∫
d3x P0Π

22
2 ,

H =

∫
d3x P0Π

33
2 ,

the bracket(9.9) fails to satisfy the Jacobi identity since

{{F,G}, H}+ 	= 8P0Π
12
2 ∂2

(
1

P0
∂3(P0Π

13
2 )

)
+ 4∂2Π

11
2 ∂3(P0Π

23
2 )− (2 ↔ 3),

where (2 ↔ 3) indicates the same two terms where Π12
2 has been exchanged with Π13

2 , and ∂2 with
∂3.

Conclusion

The derivation of reduced fluid models from parent kinetic models (like Vlasov-Maxwell equations)
is a delicate task since most often the Hamiltonian structure is lost by truncating the hierarchy
of dynamical equations. The truncation at order one, thus consisting of dynamical equations for
the density and the fluid velocity, does not pose any problem since the resulting model has a valid
Hamiltonian structure. However starting at order two, and thus involving dynamical equations
for the pressure tensor, the truncation might not lead to a Hamiltonian structure since in general
the Jacobi identity is not satisfied. We have shown this statement by considering a fluid example
taken from Ref. [136]. The rationale goes as follows : In Ref. [136], it is mentioned that the
reduction “is exact: for any functionals F [n,P,Π] and G[n,P,Π] we have {F,G}M = {F,G}V .
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As a consequence we see that the moment bracket inherits the Jacobi identity (as well as all other
properties) from the full bracket.” Here the bracket {·, ·}M refers to the reduced bracket {·, ·}2 given
by Eq. (9.9) and {·, ·}V refers to the Vlasov-Maxwell bracket (9.4). The first part of the sentence is
correct. This is why the reduced bracket inherits all the properties of the Vlasov-Maxwell bracket
that are linked to the values of the bracket1: bilinearity, antisymmetry and Leibnitz rule. However
the Jacobi identity involves not only the values of the bracket but also their gradients, and in
general,

{{F,G}M , H}M 6= {{F,G}V , H}V ,

even if {F,G}M = {F,G}V (after some assumption on the Vlasov distribution which is not pre-
served by the flow, or after neglecting higher order terms), so the reduced bracket can fail the
Jacobi identity. We have shown that the model introduced in Ref. [136] involving moments up to
order two does not satisfy the Jacobi identity, by exhibiting a counterexample.

To our knowledge, there is no Hamiltonian fluid models involving the pressure tensor as a
dynamical field variable independent from the fluid density and fluid velocity. One of the few at-
tempts was precisely Ref. [136]. In order to derive Hamiltonian fluid models involving higher order
moments, like the pressure tensor, instead of truncating the Poisson bracket, it would be worth con-
sidering reduction methods which preserve the Hamiltonian character. In this chapter, we rather
focused on subalgebra methods, but perhaps other methods would be more suited, for example
other kinds of Hamiltonian truncations, such as the ones associated to the lowest order of an ex-
pansion in a small parameter. We have already started to explore this direction, but the results are
not conclusive yet, and we have not had the time to report them here. Alternatively, Dirac’s theory
of constrained Hamiltonian systems constitutes a good candidate, even if we have not considered
it as a first line and it does not come as the most natural method, since instead of dealing with
a finite number of fluid field variables, it would deal with an infinite number of constrained variables.

On another hand, this chapter mainly aimed at investigating Hamiltonian reductions in plasma
physics by applying the methods developed in previous chapters to specific instances of reductions.
A natural prolongation is to consider other instances as well. One of them is the reduction from the
fluid model to the MHD model, which will be investigated in the next (and last) part of the work.
To avoid excessive length for the main text of this manuscript, we have put it in the appendix, in
Chapter 14.

−→ See the appendix chapter 14

Appendix: Verifying the Jacobi identity for truncated brackets

In this appendix, we derive a criterion for a truncated bracket to satisfy the Jacobi identity. For the
sake of clarity, we only consider systems with a finite number of variables. The extension to field
variables is straightforward. First, we consider a Poisson bracket written as {F,G} = FziJ

ijGzj
where Fzi is the derivative of F (z) with respect to zj . The Poisson matrix J satisfies the Jacobi
identity rewritten as ∑

(ijk)

Jil∂zlJ
jk = 0 , (9.10)

where
∑

(ijk) means summation over circular permutations of the indices i, j, k. For the reduction
we split the set of dynamical variables in two subsets z = (Z, ζ), where Z are the reduced variables
and ζ are the constrained variables we would like to get rid of. With this splitting of variables, we

1 Notice that the corresponding reduction method has the strong advantage of guaranteeing a conserved energy,
as well as conservations laws and symmetries associated to Casimir invariants, in relation to the initial structure,
and also a consistent ordering in the reduction process. The only thing it loses is the Jacobi identity, and hence
the Hamiltonian character, with the associated conservative structures (Liouville theorem, Poincaré invariants, etc.)
and tools (Darboux theorem, Birkhoff theorem, KAM theory, etc. ).
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rewrite the Poisson matrix in block form :

J =

(
A B

−BTC

)
,

where, e.g., the matrix A brings contributions of the form FZi
AijGZj

in the Poisson bracket.
Between two reduced functions F (Z) and G(Z), the reduced bracket is defined as the truncated
one

{F,G}∗ := lim
ζ→0

{F,G} , (9.11)

which means that the reduced Poisson matrix is simply the truncation of J obtained by removing
terms involving ∂ζ and taking the limit ζ → 0, i.e.,

J∗ = lim
ζ→0

A .

By its definition, it is bilinear, antisymmetric and satisfies the Leibniz rule, because these properties
involve only the value of the bracket. As for the Jacobi identity, it involves derivatives in the bracket
as well, and is therefore not guaranteed. In order to get a criterion for its validity, we use the fact
that J satisfies the Jacobi identity. First, we Taylor expand its components in ζ :

A = A0 + A1 + A≥2,

B = B0 + B≥1,

C = C0 + C≥1,

where the subscript denotes the order in the ζ variables. Between two reduced functions F (Z) and
G(Z), the Jacobi identity (9.10) then writes

∑

(ijk)

Ail∂Zl
Ajk +

∑

(ijk)

Bil∂ζlA
jk = 0. (9.12)

This relation is verified at each order in ζ. As a result of Eq. (9.11), the Jacobi identity for the
reduced Poisson matrix J∗ is involved in the zeroth order of Eq. (9.12) which writes

∑

(ijk)

Ail0 ∂Zl
A
jk
0 +

∑

(ijk)

Bil0 ∂ζlA
jk
1 = 0.

The first term corresponds to the Jacobi identity for J∗ = A0. So, a necessary and sufficient
condition for J∗ to satisfy the Jacobi identity is

∑

(ijk)

Bil0 ∂ζlA
jk
1 = 0 .

In the example of Sec. 9.3, B0 corresponds to {·, ·}c3, and A1 to {·, ·}′′2.
There are cases where this criterion is automatically satisfied, e.g., because of an ordering argument
or a Lie subalgebra. This last case, for instance, corresponds to the trivial condition A≥1 = 0. For
the validity of the reduction, this condition can be generalized to the case A1 = 0 which is sufficient
to verify the Jacobi identity. However this assumption is not often verified since brackets generally
contain linear terms in all the variables [159].
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Conclusion of the episode

This third episode was interested in Hamiltonian reductions for plasma physics, and especially in
variations of Dirac reductions. It explained why several instances of Dirac’s theory of constraints
ended up with a reduced Poisson bracket much simpler than the computation required by the
procedure in order to obtain it. A formulation of the Dirac reduction as a projection of derivatives
showed that the phenomenon was related to the presence of a simplified projector, originating from
a special structure in the initial Poisson bracket, which was quarter-canonical.

This structure was seen to be fairly common in previous Dirac reductions. It clarified some
aspects of the procedure, especially about the choice of secondary constraints, which both explained
several features in previously identified reductions and made the method more efficient for future
applications.

Variations from the Dirac reduction were obtained because in the presence of a quarter-canonical
bracket, the Dirac reduction can be equivalently considered as a bracket truncation, justified by
a subalgebra, whose computations are elementary and whose procedure replaces the invertibility
condition of the Dirac reduction by a subalgebra criterion, often readily checked.

This opened a wide scope in the sense that the applicability condition is much softer. In ad-
dition, given a set of constraints, several reduced structures can be generated, which was not the
case for the Dirac method.

Various applications in plasma physics were considered, beginning with the quarter-canonical
examples of an extension from the Vlasov-Maxwell system and of the reductions to the Vlasov-
Poisson system and to incompressible models, fluid or kinetic. On another hand, the reduction
from the kinetic to the fluid model was found to be given by a subalgebra projection, as well as
the reduction from the fluid model to magnetohydrodynamics.

Extensions are available, if not needed, because the MHD model has several variations, whose
Hamiltonian structure could be significantly different from standard MHD. As for the fluid model,
we were interested in Hamiltonian closures including moments of order two or higher. Obstructions
and counterexamples were found, but no example solution. So, further explorations are desirable
in order to identify suitable closures and to better understand the mechanisms at work.

More importantly for our purpose, the developed tools could be applied to the last step of the
gyrokinetic reduction, with the removal of the fast gyro-angle (and also the magnetic moment)
from the base space of the theory. This should provide the Hamiltonian structure of gyrokinet-
ics, although additional investigations will be needed for a more complete understanding of this
Hamiltonian averaging process, especially when taking into account also the time dependence of
the guiding-center coordinate transformation. Contrary to the work in the previous episode, it
does not seem to have effects on the gyrokinetic equations of motion, but rather on admissible
transformations, with conclusions agreeing with guiding-center results.

This is because a Dirac reduction together with a quarter-canonical structure in the Poisson
bracket made the reduction of particle dynamics available at the field level. So, in a similar way
as in the previous episode, the process mixed up field reductions and particle reductions; here the
origin relied on the Lie-Poisson structure of the Vlasov bracket. A subalgebra reduction is not so
efficient in this case, because it can be performed in a more restricted case where the electric field
is removed from the Poisson bracket, and it does not proceed at the field level but rather at the
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particle level, artificially lifted afterwards thanks to the Lie-Poisson bracket.

In this reduction, the role of the quarter-canonical structure in the guiding-center Poisson
bracket is important not only to confirm that the gyrokinetic equations of motion are indeed
Hamiltonian, but also to make future variations in the model possible by emphasizing the conditions
that ensure the Hamiltonian character for the reduced dynamics.

For instance, it will be useful when studying truncation questions for numerical simulations, as
was mentioned in the conclusion of the previous episode. In addition, it will be crucial in order to
identify how the conservation laws for the Vlasov-Maxwell system transfer into the conservation
laws for gyrokinetics [21, 133]. These are two natural extensions of the analysis, since they con-
stituted practical motivations for the work, and more generally for a better understanding of the
Hamiltonian aspects of the gyrokinetic reduction.

As a result, this episode succeeded in developing variations of the Dirac reduction method and
in applying them to the step 2d of the gyrokinetic reduction. In addition, it made links with other
Hamiltonian reduction methods, enlightened several reductions in plasma physics, and opened
prospects about these reductions. So, an obvious extension is to investigate other examples of
Hamiltonian reductions in plasmas, since also they could be clarified or improved by a Hamiltonian
approach.

In this episode, the work was mainly interested in studying examples where both the initial
and the final model were known to be Hamiltonian, in order to get a better understanding of the
reduction methods. In this direction, there is still much to be done, since the work only focused on
a few reductions about the four main models for plasmas.

However, a more attractive work will be to apply the developed tools to reductions where only
the initial model is known to be Hamiltonian, and the reduced model is either identified but unsure
to be Hamiltonian, or even not definitely identified yet. In such works, in the same way as in the
case of guiding-center or gyrokinetic theory, the efficiency of Hamiltonian reduction tools will be still
more useful and better emphasized. For instance, it might be interesting to consider Hamiltonian
closures starting from the gyrokinetic model, in order to identify Hamiltonian fluid models including
FLR effects, and to compare them with present-day gyro-fluid models, e.g. [14,55,75,147,154,155].

On another hand, from the point of view of Hamiltonian reduction theory, an obvious extension
is to investigate other reduction methods than the ones used here, which mainly concerned Dirac,
subalgebra, or ordering reductions. Perhaps the most natural one would regard the moment map
[94,99,124], which can be viewed as a generalization of the Dirac reduction and has already proven
efficient in plasma physics, since it was involved in the foundations of the Hamiltonian structure of
Vlasov-Maxwell [95] and of the BBGKY hierarchy equations [96], for instance.

The relabelling symmetry [125, 126] could provide an adequate example of application, and it
should bring additional light on an important step when going from particle descriptions to kinetic
models. It would be all the more attractive as among the sequence of the four main models of
plasma dynamics, it is the only Hamiltonian reduction which has not been investigated in the
present work. This reduction is roughly related to a duality relation between the particle phase
space and the set of functions defined over this phase space [5], but much more is hidden behind
this duality, and above all a quotient reduction by particles’ indiscernibility, with the associated
relabelling symmetry.
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General conclusion

At the end of this dissertation, it is time to take a step back, and to have a more general point of
view both on the road travelled and on the horizon. This will avoid redundancy with the conclusions
of the episodes, where more detailed results and prospects were summarized and considered.

Positioning of the matter

From a general point of view, the works reported in the present document emphasize and develop the
strong mutual interests between plasma physics and dynamical systems, especially between plasma
models and Hamiltonian reductions. On the one hand, they remind that plasma physics involves
many models and especially many Hamiltonian models, and that it is interested in reduction tools
in order to improve its models or derive new models. On the other hand, they show that dynamical
systems and reduction methods are interested in disposing of a wide set of models closely related
to each other, such as plasma models, because it constitutes a rich domain for applying reduction
tools, and applications often generate new developments in the methods.

The subject mainly focused on the gyrokinetic reduction, because of its role in present-day
plasma physics, and because it constitutes by itself a rich example of reduction for dynamical
systems. It involves reductions by a constant of motion and by an averaging procedure, both in
finite and infinite dimensional systems, together with exchanges between the two through the lifting
and the plasma-field coupling. It took time to become well-established and several foundational
questions are only in the process of being clarified.

In order to answer such questions, and also to better understand gyrokinetics as well as other
plasma models, various reduction tools have proven useful, applied either just to the equations of
motion, or to the Hamiltonian or variational structure: averaging methods, Lie-transforms, expan-
sions of differential equations, lifting procedure, Hamiltonian perturbation, constrained systems,
Dirac and subalgebra reductions, etc. Especially, in several places Hamiltonian reduction tools
appeared as very convenient in order to make a reduction more efficient, or to elucidate subtleties
or issues about it, or even to identify necessary corrections.

Main points of the work

The previous chapters bring contributions to clarify the initial four questions, but, at the same
time, there is still much to be done for a more complete exploitation of the results.

The higher-order reduction was addressed by obtaining explicit induction relations to compute
the reduction to arbitrary order, which gave a better understanding of the reduction mechanism
and of possible representations for a maximal reduction. However, practical implementations for
higher orders (up to full second order for instance) have not been done yet, both because other
collaborators were interested in deriving them and because we feel it will be best done by introducing
computer-assisted symbolic calculus, which was not our priority and has been delayed up to now.

The troubles associated to the traditional gyro-angle were clarified by introducing a gauge-
independent but constrained coordinate system directly induced by the physics. Especially, the
traditional questions about guiding-center anholonomy and gauge arbitrariness were shown to be
related to intrinsic, yet regular properties of the physical system, and that the difficulties can be
made to disappear completely. However, we did not address complementary questions, such as the
role of contractible loops in the existence condition for a scalar gyro-angle, which should be only
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optional, or the quantification of the flux of the vector field N := ∇×R [90, 91], which seems to
have deep, yet abstract foundations and wide perspectives.

The Hamiltonian approach of the gyrokinetic reduction was addressed with a lifting of the
particle reduction to the Hamiltonian structure of the Vlasov-Maxwell field dynamics, together
with an application of Dirac’s theory of constraints. This developed each of the steps involved in
the reduction process by providing it with a Hamiltonian approach. Especially, it implemented
the coupling between the plasma and the electromagnetic field in a more consistent way, and
the moments of the Vlasov density were shown to be involved in the gyro-center transformation.
However, the Hamiltonian removal of the gyro-angle has not been completely elucidated yet and
consequences on the conservation laws of gyrokinetics have not been addressed yet.

Variations of Dirac’s theory and their application to plasma models were developed, with es-
pecially the role of projections, bracket truncations, quarter-canonical structures, or subalgebras
reductions, and with an investigation of fluid closures and of the MHD reduction. However, a fluid
closure including moments of order two or higher has not been obtained yet.

For the future

In addition to these fundamental extensions of the thesis work, other possible continuations natu-
rally appeared in the process, such as implementing also the bounce-angle reduction, or exploring
Hamiltonian fluid closures from the gyrokinetic model. So, even if the thesis provided many results
about the four initial questions and contributed to a better understanding of the underlying theory,
it also lead to wide perspectives to be explored in the future, with many possible complementary
questions, extensions or research directions. In some way, it may be considered as providing more
questions than answers, since each of the results typically opened several possible continuations,
both about theoretical and about more applied concerns.

Perhaps the most important points concern the higher-order computations and the Hamiltonian
structure of gyrokinetics, with their possible impact on gyrokinetic theory. The primary extension is
to more completely understand the Hamiltonian removal of the gyro-angle and thus the Hamiltonian
structure of the gyrokinetic equations. Then the consequences of the results will be worth studying,
especially for conservation laws [21, 127, 133] and for the Hamiltonian structure of the equations
implemented in gyrokinetic codes [42,56].

This would be all the more interesting as the work focused on foundational questions in the
theory. Hence it naturally calls for a complementary part, concerned with more practical aspects,
and especially with applications of the results.

On another hand, a wide domain to be explored comes because the methods worked on are not
specific to gyrokinetics. They can be applied to various models, and clarify issues in other fields of
physics. To mention only a few examples, Hamiltonian systems play an important role in particle,
quantum, atomic, and statistical physics, algebraic and geometrical structures are often crucial for
dynamical systems, and structure-preserving numerical methods are an active research, as is again
emphasized in [13], [50] and [134], for instance.

Last, more theoretical extensions are far from being uninteresting as well, either for them-
selves or for the many practical applications they carry along in germ since they develop tools
with fairly broad range. From this point of view, the thesis touched only a very restricted do-
main, many related fields were left aside and would constitute interesting complements, such as
other Hamiltonian reduction methods [99], KAM theory [92], control theory [38, 39, 153], sta-
bility analysis [70, 116, 148, 149], nonlinear waves [159], variational formulations of plasma mod-
els [18,110,113,129,130,158,159], metriplectic dissipation [100,105,106,111], etc. just to randomly
mention a few of them incidentally met during the thesis, some of which are directly or possibly
related to gyrokinetics. For example, variational formulations have proven very efficient in the re-
duction of particle dynamics, as was well exemplified by Chapter 2, and they have already obtained
interesting results for gyrokinetics [18,129,130]. As for the metriplectic dissipation, it could provide
an algebraic structure for collisional Vlasov-Maxwell and gyrokinetics.
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As a result, this thesis work fulfils its role as a piece of research in theoretical physics: "theoret-
ical physics", because it is closely related both to applied physical questions and to more abstract
mathematical concerns; "piece of research", because it clarifies many issues, but calls for many
other questions or complementary investigations.
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Chapter 10

Magnetic-moment reduction without

a guiding center nor a gyro-gauge
in collaboration with Natalia Tronko, Michel Vittot, and Philippe Ghendrih

Abstract: We perform the dynamical reduction for charged particles in a strong
external magnetic field using the adiabatic invariant of gyrokinetics or guiding-
center theory, namely the magnetic moment, but without introducing a gyro-
gauge nor involving a guiding center.
For the gyro-angle, our approach does not require to choose an axis orthogonal
to the magnetic field to define the zero of the angle, with its questions about
gyro-gauge and non-global existence. Intrinsic (gauge-independent and global)
definitions are obtained for the operators of gyrokinetics, such as gyro-averaging
and gyro-integral.
We build the normal form and compute the Poisson bracket for this Hamilto-
nian system (with a non-canonical structure). The results are well suited to
the Vlasov-Maxwell dynamics, where they can be lifted directly thanks to the
absence of a virtual guiding center in the reduction.

Introduction

As announced in the general introduction (and in the introduction of the first episode as well), this
appendix chapter takes place before Chapter 1, as the starting point when addressing the issues
about the gyro-gauge by developing an intrinsic (i.e. gyro-gauge independent) formulation of the
guiding-center reduction. The idea is to begin by studying a simplified reduction that initially
avoids introducing a gyro-angle, with its associated gyro-gauge.

In addition, we are interested in a reduction that does not change the spatial position, because
this avoids many difficulties when lifting the transformation from particle dynamics to field dynam-
ics (see Chapters 4 and 5). This will be needed in order to take into account the coupling between
the plasma and the fields in a Hamiltonian way, in the long run of achieving the Hamiltonian
structure of gyrokinetic (or guiding-center) Vlasov-Maxwell equations.

Thus, in the present chapter, we focus on the reduction of particle dynamics in a strong mag-
netic field, but we exclude the introduction of the guiding center, and hence the averaging reduction
(removal of the fast time scale from the dynamics). Only the reduction associated with the mag-
netic moment µ̄ is considered.

Indeed, including this constant of motion in the coordinates implies to change only one coordi-
nate, for instance the norm of the momentum, whereas the five other coordinates (the position and
the unit vector of the momentum, for instance) can be kept unchanged. Especially, no gyro-angle
needs to be defined a priori.

Notice that the norm of the momentum also is a constant of motion, but it is usually replaced
by the magnetic moment because it does not remain an adiabatic invariant in the presence of a
weak electric field [122].
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As for the magnetic moment, it is associated with Larmor gyration, since it is conjugated to
the gyro-angle [86, 88]. A consequence, most important for gyrokinetic theory [56, 67], is that it
remains an adiabatic invariant even in the presence of a weak electric field. Another consequence,
more important for our purpose, is that its derivation is bound to be related to Larmor gyration,
and hence to introduce a gauge-independent formulation of the basic elements of gyrokinetics: a
coordinate for the gyro-angle, a generator of Larmor gyration, a gyro-integral operator, etc.

Particle dynamics is Hamiltonian, which means it is given by a Hamiltonian function and a
Poisson bracket. So, the reduced dynamics is obtained not by computing the magnetic moment
itself, but rather by computing the expression of the Poisson bracket and of the Hamiltonian func-
tion when the magnetic moment is used as a coordinate. This is also what will be needed for the
Vlasov-Maxwell dynamics in Chapter 4.

Accordingly, the work proceeds in two sections.

In Sec. 10.1, we study how to derive the normal form, i.e. the Hamiltonian written as a function
of the magnetic moment. We compute the solution to second order in the magnetic moment (or
rather its square root); this is an expansion in strong magnetic field because it can be considered
as an expansion in B−1/2, or as the inverse of the particle charge e−1, which is commonly used as
an expansion parameter in strong magnetic field [29, 122]. Our results are shown to be consistent
with the standard results concerning the magnetic moment [29,86,88,123].

In Sec. 10.2, in order to completely define the reduced dynamics, we derive the Poisson bracket.

These results are obtained without using Lie transforms to average the Lagrangian 1-form, as
is usually done, but by solving directly the equation for the normal form.

Notice that, contrary to all other chapters of the present dissertation, this chapter was first
written in the relativistic framework and distinction was made between vectors and covectors, these
last being denoted by an overbar (see e.g. Eq. (10.2)). We have chosen to keep these specificities
because the relativistic framework does not make the derivation more complicated at all. As for the
use of overbars, it is different from the notational convention used in all other chapters, where the
overbar rather indicates transformed coordinates or fields (see e.g. Eqs. (5.2) and (5.3)). But this
does not cause any ambiguity since here only one coordinate is changed, related to the magnetic
moment µ̄, which is the only symbol in this chapter where the overbar will not indicate matrix
transpose. Incidentally, let us announce that the changed coordinate will rather be denoted by the
symbol A in order to emphasize that it is an arbitrary constant of motion (preferably independent
of the Hamiltonian), not a priori restricted to the magnetic moment (see Eq. (2.22)).

10.1 Building the normal form

In this section, we study the normal form for particle dynamics in an external magnetic field. This
will be done in four steps. In Subsec. 10.1.1, we establish the defining equation for the normal
form and transform it into an induction relation. In Subsec. 10.1.2, we study the initialization
of the induction, from which the expression for the lowest-order constant of motion (the adiabatic
invariant) is derived. In Subsec. 10.1.3, we compute the normal form to second order in the constant
of the motion. Last, in Subsec. 10.1.4, we study the structure of the general term and show that
the small parameter of the normal form expansion is related to the small parameter of gyrokinetics.

10.1.1 Equation for the normal form

The system under consideration is just a charged particle with position q, momentum p, mass m,
and charge e, submitted to an external, static but inhomogeneous, magnetic field B. The presence
of an electric field is excluded here in order to make the scheme simpler for this introductory work
about an intrinsic formulation of the guiding-center reduction; it will be taken into account in
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Chapter 2. The motion is induced by the Lorentz force

q̇ =
p

mγ
= {H,q} ,

ṗ = −eB× p

mγ
= {H,p} . (10.1)

It is a Hamiltonian system, where the Hamiltonian is the particle’s relativistic energy

H = mγ =
√
p2 +m2 .

Among the phase-space coordinates, it depends only on the norm of the momentum

h := ‖p‖ .

So, h can be viewed as a Hamiltonian, after a scaling on the time coordinate or on the Poisson
bracket. For simplicity, we choose units such that the speed of light c is equal to 1.

The Poisson bracket (suited to the Hamiltonian H) is given by1 [29]

{f, g} = ∂pf.∂qg − ∂qf.∂pg + ∂pf.eB× ∂pg , (10.2)

for two arbitrary functions f and g.

Our goal is to reduce the dynamics of Eqs. (10.1), which means to adopt a constant of motion
A as one of the coordinates in phase space. So, among the six coordinates, only five will remain
dynamical. A constant of motion is linked to a continuous symmetry according to Noether theorem,
but the existence of such a constant (independent of the Hamiltonian mγ) has not been proven yet.
It is believed to exist for strong magnetic fields. So, rather than an exact constant, we are looking
for an asymptotic series, which comes from the adiabatic invariance of the lowest-order magnetic
moment, denoted by µ in order to distinguish it from the full series for the magnetic moment,
denoted by µ̄.

The Hamiltonian expressed as a function of the constant of motion is called the "normal form";
in fact, the normal form will be only partial here, since we will have only one constant of motion
for three degrees of freedom. The change of coordinates is performed in two steps, by expressing
first the momentum p in polar coordinates (h, v), and then introducing a coordinate A defined as
constant of motion:

(p,q) −→ (h, v,q) −→ (A, v,q) (10.3)

where A is constant of motion in bijection with h, and

v := p
‖p‖ ∈ S2

is the unit vector of the momentum. In these new variables, the equation of motion becomes

q̇ =
p

mγ
=

hv

mγ
,

v̇ =
d

dt

p

h
=

ṗ

h
= −eB× p

hmγ
= −eB× v

mγ
, (10.4)

Ȧ = 0 ,

because p = hv, and h is a constant of motion as well as A.

Let us notice that A is defined only through two of its properties: it must allow for a change
of coordinates (which implies bijectivity with h) and it must be a constant of motion. In fact,
it can be different from the usual magnetic moment µ̄ (see Chapter 2) and it is the reason why

1The overbar denotes the transpose of a vector into a linear form; thus, ∂p is a covector and ∂p is a vector.
Be careful, this notational convention for the overbar is different from all other chapters, where the overbar usually
indicates transformed coordinates. In this chapter, only µ̄ contains an overbar which does not mean matrix transpose.
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we did not use the symbol µ̄. Nonetheless, in the absence of any symmetry in the magnetic-field
geometry [15, 45], this Hamiltonian system is generically non integrable, which means that there
exist only two independent constants of motion: µ̄ and h. Hence, if A is not a pure function of h,
it is expected to be linked to the magnetic moment µ̄.

Furthermore, a consequence of the non-canonical structure should be noted. Even if A is
a constant of motion, the Hamiltonian will not be independent of the fast part of the dynamics,
corresponding to the gyro-angle θ in the guiding-center approach. Indeed, we do not have the action-
angle correspondence, because this last exists only in a canonical (or at least quarter-canonical)
structure:

0 = Ȧ = {H,A} 6= −∂θH . (10.5)

Now, we can get the equation for the normal form, using that h and A are constants of motion
:

0 = ḣ(A, v,q) = (∂Ah).Ȧ+ (∂vh).v̇ + (∂qh).q̇ = −(∂vh).eB× v

mγ
+ (∂qh).

hv

mγ
.

Hence − (∂vh).eB× v + (∂qh)hv = 0 . (10.6)

where the derivatives are understood on functions of (A, v,q). It is the equation we must solve
for the normal form h(A), in an analogous way to the "diagonalization" of the Hamiltonian in the
Hamilton-Jacobi method, or in Hamiltonian perturbation methods [27,53].

Grouping the magnetic field with the particle charge, and decomposing it into its norm B :=
‖eB‖ and its unit vector b := eB

‖eB‖ , Eq. (10.6) becomes

−BDh = hv∇h ,

where the gradient is just ∇ := ∂q̄, and the linear operator D is defined by

D := v.b× ∂v . (10.7)

The operator D is the generator of rotations of the momentum around the magnetic field and
induces the cyclotronic gyration. Some of its properties are presented in App. A at the end of
the chapter on page 223. In particular, it has a left-inverse G, that is an operator which is zero
on ker(D) and D−1 on Rg (D). The projectors associated with these last subspaces are precisely
the gyro-fluctuating and the gyro-averaging operators. All these operators are involved in the
computation of the normal form. Their definition is the following

G :=
πD − sinh(πD)

πD2
=

∮
dθ(θ − π sign θ) eθD is the left-inverse of D,

osc := GD = DG is the gyro-fluctuating operator,

avg := 1− osc =

∮
dθeθD =

sinh(πD)

πD is the gyro-averaging operator.

The next step is to isolate the unknown function h in the left-hand side of Eq. (10.6). For this
purpose, let us multiply by G on the left

B osc (h) = −Ghv∇h . (10.8)

Thus, the fluctuating part of h is easily isolated in the left-hand side. As for the information about
its averaged part, it is obtained by multiplying Eq. (10.6)by avg on the left. Then avgD = 0
implies

0 = avg (hv∇h) . (10.9)

It is the secular equation for this constant of motion, which is more technical to deal with, as is
standard in perturbation theory.

Notice that, in order to avoid extensive use of parentheses, we adopt the convention that the
operators D, G, avg and osc act on the whole expression on their right-hand side. Together, Eqs.
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(10.8) and (10.9) are equivalent to the initial equation (10.6). So, the inversion of D in Eq. (10.6)
produces two equations. This is due to D being only left-invertible, so that in order to invert it,
we must keep the condition that the right-hand side of (10.6) has to be in the range of D, which is
the information contained in Eq. (10.9).

The inversion of D gives a different role to the average and fluctuating parts of h. It suggests
to define

α := avg (h) and η := h
α .

The function α is the averaged energy of the particle, the average being taken over the direction
of the perpendicular momentum p⊥. It is important to notice that it is not constant in the motion,
even if it results from an average of the constant of motion h. The reason is that the average is not
taken along a trajectory.

As for η := h
α , it is the fluctuating part of h, in a multiplicative sense, and without dimension.

By construction, we have avg (α) = α, osc (α) = 0 and avg (η) = 1. Expressing Eqs. (10.8) and
(10.9) with α and η and dividing them by α gives

0 = avg
(
ηv∇(αη)

)
, (10.10)

η = 1−B−1Gηv∇(αη) . (10.11)

The last step is to transform these equations into induction relations, since the solution is
expected as a formal series (related to an expansion in strong magnetic field). We expand α and η
in series in A1/2:

α =

∞∑

1

αnA
n/2 and η =

∞∑

0

ηnA
n/2 . (10.12)

It is only for practical reasons that we choose to expand in A1/2 instead of A; it makes clearer
that our result agrees with the usual case A := µ̄. In another hand, it is convenient for the following
to choose α0 := 0, i.e. to begin the series for α at order 1. This hypothesis seems reasonable for
physical cases, in which A := µ̄ ≈ µ = (h sinϕ)2

2mB , so that h ≈
√
2mAB
sinϕ , where ϕ is defined by

ϕ := arccos
(

p·B
‖p‖‖B‖

)
, (10.13)

i.e. it is the angle (̂b,p) ∈ [0;π] between the particle momentum and the magnetic field, commonly
called pitch-angle.

In a more fundamental way, this hypothesis comes from a symmetry in the defining equation for
the normal form, which is left unchanged through the simultaneous change h → kh and B → kB
for any k independent of q and v, hence for any k = k(A). This allows for the special choice
k := A1/2, which means α0 = 0.

With formulas (10.12), Eqs. (10.10)-(10.11) become induction equations. Isolating the highest-
order term into the left-hand side, we get

avg
(
v∇(αNη0)η0

)
= −avg

N−1∑

i=0

N−i∑

j=0

v∇(αiηj)ηN−i−j , (10.14)

ηN = δN0 −B−1G
N∑

i=0

N−i∑

j=0

v∇(αiηj)ηN−i−j , (10.15)

where δN0 is the Kronecker delta symbol.
Now, we will be able to solve Eqs. (10.14)-(10.15) by induction after the initialization condition

is verified : if αm and ηm are known up to m = N−1, Eq. (10.14) will give αN and, next, Eq. (10.15)
will give ηN .
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10.1.2 The adiabatic invariant

In this subsection, we perform the initialization of the induction for the normal form. First, we
obtain the equation for the lowest-order term. Next, we study the general solution of this equa-
tion. Lastly, we explore some interesting solutions, before choosing one of them as our lowest-order
normal form.

Let us begin by identifying the initializing condition. From α0 = 0, Eq. (10.15) trivially gives
η0 = 1. So, the initializing condition relies on the lowest-order term of h = α1η0A

1/2 = α1A
1/2,

whose equation is given by (10.14) as

avg
(
v∇α1

)
= 0 . (10.16)

This means that the lowest-order term can be chosen as any function in the intersection of the
kernels of avg v∇ and of D (because α1 has to be a gyro-averaged quantity). To characterize α1,
we need to study the operator avg v∇. This is done in App. B at the end of the chapter on page
226, where we show that Eq. (10.16) writes

cosϕ ∂∗α1 = 0 , (10.17)

with ∂∗ := b∇⋆ +
∇b

2

1 + φ2

φ
∂φ , (10.18)

where the operator ∇⋆ was defined in Eq. (10.59), and the variable v is decomposed into two
components. The component parallel to the magnetic field is the cotangent of the pitch-angle:

φ :=
bv

c̄v
= cotϕ ∈ R .

The component perpendicular to B is the unit vector of the perpendicular momentum:

c := (1−bb)v

‖1−bb)v‖ ∈ S1 .

In this chapter, the components φ and c are considered as intermediate quantities for the compu-
tations, not as true coordinates. The corresponding coordinate remains v, as indicated in Eq. (10.3).

The second step is to solve Eq. (10.17) for the lowest-order term α1 of the normal form. A
formal constraint on the elements of the kernel of the operator ∂∗ is obtained by expanding α1 in
φ. Here, we are going to use a simpler but more qualitative method, which gives the same results.
Separating the terms depending on φ from those depending on q, Eq. (10.17) writes:

1 + φ2

2φ
∂φα1 = − 1

∇b
b∇⋆α1 . (10.19)

In this equation, the operator 1+φ2

2φ ∂φ must generate no φ, but only a purely spatial operator

− 1
∇b

b∇⋆. This suggests the following structure for Eq. (10.19)

f

∂φf
∂φf

n = nfn , (10.20)

valid for any function f(φ), with the correspondence fn := α1, 2n := − 2
∇b

b∇⋆, and f := 1 + φ2.
Therefore, for any function g(q) we can expect to have

1 + φ2

2φ
∂φ

{
(1 + φ2)

− 1
∇b

b∇⋆g

}
= − 1

∇b
b∇⋆

{
(1 + φ2)

− 1
∇b

b∇⋆g

}
. (10.21)

Let us notice that, when acting on functions depending only on q, the operators ∇⋆ and ∇ are the
same.
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In order to verify that Eq. (10.21) indeed holds, let us define the following differential operator
acting on functions of q:

T := (1 + φ2)
− 1
∇b

b∇⋆ .

Then, for any g(q), the function T g is expected to be a formal solution of Eq. (10.19), i.e. T takes
values in ker ∂∗:

∀g(q), ∂∗T g = 0 . (10.22)

To verify it with more details, we express T as the exponential of something e
− ln(1+φ2).

1
∇b

b∇⋆ ,
which can be developed in series. The commutation of ∂φ with 1

∇b
b∇⋆ implies that we indeed have

a relation analogous to Eq. (10.20), which in turn indeed provide the expected relation (10.19).

Thus, ker ∂⋆ formally contains the functions T g(q), with g(q) arbitrary, which is a considerable
freedom for the choice of α1. It is related with the freedom in the choice of a second constant
of motion: if h and A are independent constants of motion, then F (h,A) is again a constant
of motion, for any function F . Actually, the freedom contained in the function g may seem too
large, but it is going to be reduced by the requirement for T g to be meaningful and not only formal.

Now, the last step is to investigate the interesting solutions and to choose one of them for our
lowest-order normal form. First, we are going to consider three particular families of solutions.
Next, we will show that they are the only available choices in the absence of any symmetry in the
magnetic field. Last, we will fix our choice for the lowest-order normal form.

First, the trivial choice g(q) := k, with k ∈ R constant is not entirely useless to consider; in
that case, α1 is

α1 = T g(q) =
∞∑

i=0

(
− ln(1 + φ2). 1

∇b
b∇⋆

)i

i!
k = k .

So, h = αη = (kA1/2 + ...)(1 + ...) = kA1/2 + .... This means choosing A1 := h2

k2
, where the index

means that A1 is the lowest-order constant of motion. It is functionally equivalent to choosing
A1 := h. This corresponds to adopting A := h as the constant of motion, which is actually a
possible choice, but not very attractive.

The second simplest choice is g := Bn monomial in B, then:

α1 = T g =
∞∑

0

(
− ln(1 + φ2). 1

∇b
b∇⋆

)k

k!
Bn =

∞∑

0

(
ln(1 + φ2).n

)k

k!
Bn = en ln(1+φ2)Bn =

(
B

sin2 ϕ

)n
,

where we used b∇⋆B
∇b

= −B, which comes from ∇B = 0. To lowest order

h ≈ α1A
1/2 =

(
B

sin2 ϕ

)n
A1/2 i.e. A1 = h2

(
sin2 ϕ

B

)2n

.

And we recover the usual choice for th emagnetic moment A1 = µ, which corresponds to the case
n := 1

2 (within a multiplication factor 2m).

Third, a more general choice is g := f(B) for any function f . Then, using the second case, we

get α1 = f
(

B
sin2 ϕ

)
, and

A
1/2
1 =

h

f
(

B
sin2 ϕ

) =
h

f
(

h2

(2mµ)2

) ,

which is a function of h and µ, as expected.

Other choices can be explored for the function g, but one can argue that they are of less interest.
Indeed, the formal operator 1

∇b
b∇ is meaningful only when the denominator is compensated by the
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numerator. The only natural relation concerning the geometry comes from the magnetic constraint
∇B = 0, which writes b∇B = −B∇b. So, B is the quantity to be used in order to make sure that
1
∇b

b∇ has a meaning.
As a result, the usual adiabatic invariant µ for the motion of a charged particle in a strong

magnetic field results from the presence of the operators D and v∇ in the defining equation (10.6)
for the normal form of this Hamiltonian system, which implies for the lowest-order term to be in
the kernels of both D and avg v∇; with this requirement (together with a functional independence
of h), all the choices for the lowest order are functionnally equivalent, and one of the simplest is µ,
which has the physical meaning of the (lowest-order) magnetic moment.

Two remarks must be added here. First, we have not yet proven that A1, the lowest-order
constant of motion, is an adiabatic invariant, because our formal series h(A) might not be a
perturbative series, in which the lowest-order term dominates and the following ones are only
corrections (see e.g. [74]). The answer about this point will appear later in our analysis: the ratio
hi
hi−1

is small under the condition of "strong magnetic field", i.e. when the variations of B are small
at the scale of the Larmor radius. Under this assumption, the first term of the series dominates,
and the usual lowest-order magnetic moment is an adiabatic invariant, which, in turn causes the
relation between h and A to be bijective, since the lowest-order term dominates and is bijective.

Second, we remain with a large choice for α1. Nevertheless, if we want g to be a monomial in B
and to have the dimension of a magnetic moment, then we must make exactly the physical choice

A1 := Cµ = C (h sinϕ)2

2mB , with C a free coefficent, i.e. h =
√

2mAB
C sin2 ϕ

at first order. We adopt, from

now on, this physical choice, with C = 2m for simplicity. So, the lowest-order term for the normal
form is defined as

α1 :=

√
B

sinϕ
. (10.23)

10.1.3 The normal form to second order

The induction has been initialized, we can compute the normal form in an iterative way. In this
subsection, we compute it to second order in A. This is done in three steps. First, we factorize the
sinϕ coming from the choice we have made for α1. Second, we compute η1, the first correction to
the fluctuation of the normal form. Third, we turn to the first correction to the average part of the
normal form, α2. We will then have the normal form h(A, v,q) to second order

h = αη = (α1 + α2...)(η0 + η1 + ...) = α1 + α2 + α1η1 +O(A3/2) . (10.24)

First of all, to simplify computations, it is useful to factorize the sinϕ coming from α1 :=
√
B

sinϕ .
In this way, all the sinϕ and cosϕ will disappear from the equations, and our expressions will be
purely polynomial in φ. So, let us define ai so that

αi =
ai

sinϕ
.

For α1 given by Eq. (10.23), the initializing condition is a1 =
√
B. As for the induction relations,

replacing αi in favor of ai
sinϕ , the right-hand side of Eq. (10.14) becomes

avg v∇
(
aN
sinϕ

)
= φ

(
b∇⋆ +

∇b

2
(1 +

1 + φ2

φ
∂φ)− b(∇b)c b∂c̄

)
aN =: φ∂aaN , (10.25)

in which the operator ∂a plays for ai the same role as did ∂∗ for αi. Here we have kept the operator
with its complete form (10.66), rather than its simplified form (10.67), because it will be more
convenient to work with formulae as they come out, i.e. containing some a and c, rather than to
reexpress them in such a way as to remove the a and c. Its kernel is simply the set of functions

that write sinϕ T g(q) = (1 + φ2)
−1
2
− 1

∇b
b∇g(q).
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Let us turn to the right-hand side of Eqs. (10.14) and (10.15). Their main term is

v∇(αiηj)ηk = v∇
(
aiηj
sinϕ

)
ηk = v∇(aiηj)ηk + (aiηj)ηkφv(∇b)c , (10.26)

where we have defined the vector
v := v

sinϕ = φb+ c .

In addition, in order to avoid extensive use of parentheses, we adopt the convention that ∇ acts
only on the following term, i.e. for any functions a, b and c we have ∇abc = (∇a)bc.

Combining Eqs. (10.25)-(10.26), we get the induction relations for aN and ηN

φ∂aaN = −avg

N−1∑

i=1

N−i∑

j=0

{
v∇(aiηj)ηN−i−j + (aiηj)ηN−i−jφv∇bc

}
, (10.27)

ηN = δN0 −B−1G
N∑

i=1

N−i∑

j=0

{
v∇(aiηj)ηN−i−j + (aiηj)ηN−i−jφv∇bc

}
. (10.28)

Eqs. (10.25)-(10.28) show that the cosϕ and sinϕ have indeed been replaced by polynomials in φ,
as announced.

Now, the second step is to compute η1, the first fluctuating correction to the lowest-order normal
form. Indeed, by hypotheses α0 := 0 and η0 = 1. We have chosen a1 :=

√
B. It remains to compute

η1 and α2.
For η1, the computation is straightforward, using Eqs. (10.56)-(10.57) from Appendix A,

η1 = −B−1G
{
η0(a1η0)

′v+ (a1η0)η0φc̄b
′v
}

= −B−1/2

{
1

2B
B′G(φb+ c) + φGc̄b′c+ φ2Gc̄b′b

}
= −B−1/2

{
B′a
2B

+ φ
c̄b′a+ āb′c

4
+ φ2āb′b

}
,

(10.29)

where we remind that a := b× c. For convenience in the computations to come, we use the primed
notation for the spatial derivative acting on its left and contracted to its right: for any vector w,

f ′w := w̄∇f . (10.30)

Now, the third step is to computed α2, the average first correction to the lowest-order normal
form. It is computed from Eq. (10.27) as

φ∂aa2 = −avg

{
2η1

√
B

′
v+

√
B(η1)

′v+ 2(
√
Bη1)φc̄b

′v
}
. (10.31)

The right-hand side is computed in App. C at the end of the chapter on page 228, and it writes

−B
′b

2B

(
āb′c− c̄b′a

2

)
+ φ2

(
āb′′bc− c̄b′′ba

2

)
+ φ2

(
āb′b′c− c̄b′b′a

2

)
.

To solve Eq. (10.31), we expand φ∂aa2 in φ

−B
′b

2B

(
āb′c− c̄b′a

2

)
+ φ2

(
āb′′bc− c̄b′′ba

2

)
+ φ2

(
āb′b′c− c̄b′b′a

2

)

=

∞∑

k=0

φ

(
b∇⋆ +

∇b

2
(1 +

1 + φ2

φ
∂φ)− c̄b′b b∂c̄

)
a2,kφ

k

=

∞∑

j=−1

φj
{

∇b

2 (j + 1)a2,j+1χj+1∈N +
[
∇b

2 j + b∇⋆ − c̄b′b b∂c̄

]
a2,j−1χj−1∈N

}
, (10.32)
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where χ is the characteristic function. It is again an induction equation, and it can be solved
directly.

The initializing condition for a2,0 concerns j = −1. It is obviously satisfied for any a2,0. We
make the simplest choice a2,0 = 0, which induces a2,k to vanish for all even orders in k. This is
because in Eq. (10.32), the left-hand side contains only even orders in φk, and the right-hand side
contains a2,j+1 and a2,j−1, which have inverted parity compared to j. Thus

a2,k := 0 for any even k. (10.33)

The following order j = 0 gives the initializing condition for the odd orders in k:

−B′b
2B

āb′c−c̄b′a
2 φ0 = φ0

{
∇b

2 (1)a2,1 +
[
∇b

2 0 + b∇⋆ − c̄b′b b∂c̄

]
a2,0−1

}
= φ0∇b

2 a2,1 , (10.34)

where we used a2,−1 = 0, which comes because a2 must not be singular in φ = 0, since this condition
corresponds to the so-called bounce points in the particle trajectory. Eq. (10.34) can be simplified
because of Eq. (10.53), which implies

a2,1 =
āb′c−c̄b′a

2 . (10.35)

For the next order j = 2, Eq. (10.32) writes

φ2
(
āb′′bc− c̄b′′ba

2

)
+ φ2

(
āb′b′c− c̄b′b′a

2

)
= φ2

{
∇b

2 (3)a2,3 +
[
∇b

2 2 + b∇⋆ − c̄b′b b∂c̄

]
a2,1

}
,

wence ∇b

2 3a2,3 = −
[
∇b+ b∇⋆ − c̄b′b b∂c̄

]
a2,1 +

āb′′bc− c̄b′′ba
2

+
āb′b′c− c̄b′b′a

2
.

(10.36)

Evaluating each term, we get

c̄b′b b∂c̄a2,1 = −c̄b′bbb′a−āb′b
2 = c̄b′b āb′b

2 , (10.37)

−b∇⋆a2,1 = + c̄b′′ba−āb′′bc
2 − c̄b′b

2 āb′b . (10.38)

The two terms from Eq. (10.38) cancel exactly both the term from (10.37) and the third term in
the right-hand side of Eq. (10.36). Finally, Eq. (10.36) writes

∇b

2 3a2,3 = −∇b.a2,1 +
āb′b′c− c̄b′b′a

2
(10.39)

⇒ a2,3 = 0 ,

where the last equality follows from

āb′b′c− c̄b′b′a = āb′(bb + cc̄+ aā)b′c− c̄b′(bb + cc̄+ aā)b′a

= (āb′c− c̄b′a)(c̄b′c+ āb′a) = ∇b.2a2,1 .

This puts an end to the induction for a2: For all the higher odd orders, we get a2,k = 0 because
the left-hand side of Eq. (10.32) is zero and the right-hand side depends only on a2,k−2, which is
zero, by induction. Together, Eqs. (10.33), (10.35), and (10.39) show that the solution for a2 writes
exactly

a2 = −φ c̄b′a−āb′c
2 = φb.∇×b

2 . (10.40)

As expected, a2 does not depend on the fast variables c, a and can be written without using them.
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Now, Eqs. (10.24), (10.29), and (10.32) give the desired result, the normal form up to second
order in A:

h = αη = α1A
1/2 + (α1η1 + α2)A

2/2 +O(A3/2)

=
1

sinϕ

{√
BA1/2 −

[
B′a
2B

+ φ
c̄b′a+ āb′c

4
+ φ2āb′b+ φ

c̄b′a− āb′c
2

]
A2/2

}
+O(A3/2) .

(10.41)

Let us verify the consistency with the literature, which was more interested in the magnetic
moment than in the normal form. But Eq. (10.41) implies, as a corollary, an expression for the
magnetic moment by inverting the series:

A =
(h sinϕ)2

B
+ 2

(h sinϕ)3

B2

[
B′a
2B

+ φ
c̄b′a+ āb′c

4
+ φ2āb′b+ φ

c̄b′a− āb′c
2

]
+O(h4) . (10.42)

This expression is written with the convenient variables to solve the equation for the normal form.
But the literature rather uses other variables, related with physical quantities (restoring physical
units):

h sinϕ is expressed with µ :=
p2
⊥

2mB = h2 sin2 ϕ
2mB , the lowest-order magnetic moment;

φ is expressed with p‖ := h cosϕ = φh sinϕ, the parallel momentum;

a is expressed with rL := ‖p⊥‖
eB a = h sinϕ

eB a, the Larmor radius;
b is expressed with b̂ := eb

|e| , the unit vector of B;

c̄b′a− āb′c is expressed with τ := b∇× b, the torsion coefficient of b;
c̄b′a+ āb′c is expressed with a1 := ac+ ca, a dyad often used in gyrokinetics.

With these quantities, Eq. (10.42) becomes

A = mµ
[
2 +

p‖
eB

(
a1 : ∇b̂− 2τ

)]
+ 2rL ·

[
µ∇ lnB +

p2‖
mB

b̂ · ∇b̂

]
+ ... (10.43)

in which the double dot ":" denotes the double contraction of the dyad a1. Eq. (10.43) agrees with
the previous results in the literature [29,86].

The variables used in Eq. (10.43) are more expressive to identify the physical meaning of the
terms involved in the magnetic moment, because they are linked to various drifts of the guiding-
center dynamics. On the contrary, our coordinates φ, c were naturally provided by the derivation,
and have proven to be especially suited to the action of the operators involved in the process. As
a consequence, they make the derivation easier to compute, and make more obvious structures in
the results, e.g. the polynomiality in B and φ, and the systematic dependence in h through h sinϕ.
This will be developed in the next subsection.

10.1.4 The normal form to higher order

In this subsection, we study the structure of the general term of the normal form. It will exhibit
the small parameter of the normal form’s expansion, and it will emphasize the symmetry of the
equation for the normal form linked to the existence of the constant of motion A.

To compute the third-order term of the normal form, one should iterate the method. However,
it is outside the scope of the present document and will be investigated later. In most cases, the
explicit expressions of the terms are not essential. What is more important is the structure of the
formulae involved: the orders in B, the number of fast variables c and a, etc.

The structure of the induction relations shows that aN and ηN are monomials in B and ∇, with

aN ∝ B1−N2 ∇N−1 and ηN ∝ B−N2 ∇N ,



218 CHAPTER 10. INTRINSIC MAGNETIC-MOMENT REDUCTION

where products are understood in a tensorial sense: for instance B2∇2 may represent ∇B∇B, or
B2∇2B/B, or even B2∇2f with f some function involving no B and no ∇.

Furthermore, the operators involved in the computations are polynomials in the variables we
have chosen. So, the resulting expressions will be polynomials in φ, c and b, and the orders of
the polynomials will be linear in N . A rough estimate of the upper bound leads to the following
structure for hN

hN = 1
sinϕ

N∑

n=1

AN/2anηN−n = 1
sinϕ

2(N−1)∑

i=0

3(N−1)∑

j=0

2(N−1)∑

k=0

AN/2CNijkφ
ibjukB1−N2 ∇N−1 , (10.44)

with CNijk a pure (tensorial) coefficient depending on none of the variables B, b, u, φ, and A. In
these tensorial expressions, u stands for the fast variable, hence for either c or a; this is because
these variables are mixed by G and avg and it is uneasy to follow each of them. Of course, many
terms are zero in the sum, as can already be seen in h1; for instance, there is a symmetry in the
defining equation which guarantees that CNijk is zero when N + i+ k is even.

From the general term, we can deduce some properties of the normal form. First, it has the
physical dimension B1∇1 of energy, as expected. More interesting, the dimensionless increment

term is just
(
A
B

)N
2 ∇N ∼ rNL∇N , where rL :=

√
A
B is the Larmor radius, and ∇ acts only on B and

b, because they contain all the geometry of the configuration space. So, the increment term in the
series for the normal form corresponds to the variations of the magnetic field b and B at the scale
of the Larmor radius. It corresponds to the usual parameter of gyrokinetics εL = rL/LB, defined
as the ratio of the Larmor radius over the characteristic length scale for the non-uniformity of B.
This explains why our result to second order in A corresponds to an expansion at first order in the
Larmor radius.

At first order, it implies the small parameter εB := rL∇ lnB for the norm of B, but also
terms with ∇b (such as the torsion coefficient of b, for instance), and the related parameter is
εb := rL‖∇b‖. Of course, these terms are small when the direction and the norm of the magnetic
field change little at the scale of the Larmor radius rL.

For higher-order terms, things are a little bit more subtle, the "small parameter" involves nth-
order derivatives, which are not exactly equivalent to εnB or εn

b
.

Another interesting property of Eq. (10.44) is that the constant of motion A only makes a
scaling on both h and B. It may be absorbed in these quantity through the scaling 1

B → A
B = r2L

and h → h
A . This is related to the symmetry of the defining equation for the normal form (10.6):

h → kh and B → kB for any k independent of q and v, hence for any k = k(A), which allows for
the special choice k := 1/A.

So, from one particular solution in strong field h(1/B), this symmetry in the equation generates
the family of solutions h(A/B)/A. The result (10.44) shows that this symmetry is enough to get
all the possible normal forms. This agrees with the existence of only one independent constant of
the motion besides h.

Last, the role of A in 1
B → A

B shows that A acts as a scaling of the magnetic field exactly as
a small parameter in an expansion in strong magnetic field, it is why the normal form as a formal
series in A was to be a perturbative series in strong B.

10.2 The reduced Poisson bracket

In the previous section, we computed the Hamiltonian h(q, v, A) for the reduced dynamics of a
charged particle in a strong magnetic field. Now, we turn to the corresponding reduced Poisson
bracket, which induces the dynamics together with the Hamiltonian. This will be performed in
three steps. First, we establish a lemma we need to go back and forth between our Poisson brackets
and our symplectic 2-forms. Second, we use the lemma to get the symplectic 2-form for the initial
dynamics and we compute the 2-form for the reduced dynamics. Last, using the lemma again,
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we invert the 2-form to get the Poisson bracket for the reduced dynamics. This strategy is used
because it is simpler to change coordinates for the 2-form than for the Poisson bracket (a similar
method is used in [86]). The first two steps are done in the first subsection, whereas the last step
is done in the second subsection.

10.2.1 Change of variables for the symplectic 2-form

Let us begin by proving the following lemma to connect our Poisson brackets and our symplectic
2-forms:

If M is an antisymmetric endomorphism in RN and, on a 2N -dimensional manifold, D and ∂ are
two N -dimensional vectors of vectors fields, and P and Q two N -dimensional vectors of linear-form
fields, and if we have the following orthogonality-completeness relations:

P ·D = IdRN

Q ·D = 0 (10.45)

P · ∂ = 0

Q · ∂ = IdRN

D.P+ ∂.Q = Id

then the 2-form σ := P.Q−Q.P−Q.MQ
and the bivector π := D.∂ − ∂.D+D.MD are inverse of each other.

To illustrate our definitions, let us notice that D and ∂ play the role of ∂p and ∂q, whereas P and
Q play the role of dp and dq, but here we do not assume our forms to be exact. On another hand, in
the completeness relation D.P+∂.Q = Id, the operator Id is the identity on both the space of vec-
tor fields and the space of linear form fields, in a similar way as in the relation ∂p⊗dp+∂q⊗dq = Id.

Proof of the lemma: The proof just consists in expanding the contraction σαBπ
Bγ and using Eqs.

(10.45). A first simplification occurs:

σ · π =
(
P.Q−Q.P−Q.MQ

)
·
(
D.∂ − ∂.D+D.MD

)

= P.(Q · ∂).D+Q.(P ·D).∂ +Q.(P ·D).MD−Q.M(Q · ∂).D ,

because Q ·D = 0 and P · ∂ = 0. To avoid ambiguities, we write the overbars for the contraction
between the N -dimensional vectors, whereas we write · for the contraction between a form field
and a vector field on the 2N -dimensional manifold.

Last, using P ·D = IdRN and Q · ∂ = IdRN for a first step, and then D.P+ ∂.Q = IdR2N for a
second step, we get

σ · π = P.D+Q.∂ +Q.MD−Q.MD = D.P+ ∂.Q = Id ,

which completes the proof of the lemma. The antisymmetry of M is not used in the proof, it is
required only for the 2-form to be antisymmetric.

Now, we can apply the lemma to obtain the 2-form "inverse" to our bivector (10.2), since it is
just of the form concerned by the lemma, with N = 3 and

D := ∂p|q P := dp

∂ := ∂q|p Q := dq

M := eB×

Thus, in the original variables (p,q), the inverse of the Poisson bi-vector is

σ := dp.dq− dq.dp− dq.eB× dq .
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It is called the Lagrange 2-form. Let us remind incidentally that the Jacobi identity for the Pois-
son bracket is directly related to the closure of the Lagrange 2-form σ, which writes 0 = dσ =
−e dq.dB × dq = −e div B dq ∧ dq ∧ dq. This emphasizes that the Jacobi identity is equivalent
to div B = 0.

Next, it is straightforward to change this 2-form through the change of variables (10.3), which
we remind for the reader’s convenience

(p,q) −→ (h, v,q) −→ (A, v,q) .

The vector v = p
‖p‖ is the unit vector of the momentum, while the norm of the momentum is given

by h = ‖p‖ = h(q, v, A), where h(q, v, A) is any function in bijection with A. It is important to
point out that in this section, we will not use the fact that A is a constant of motion.

Our task is simplified because only p is concerned by the change

dp =
∂hv

∂A
dA+

∂(hv)

∂v
dv +

∂hv

∂q
dq = P◦ + v∇h.dq ,

with P◦ := v∂AhdA+ (h+ v∂vh)dv . (10.46)

Let us insert this result2 in σ

σ := P◦ ∧ dq+ (v∇h.dq) ∧ dq− dq.eB× dq . (10.47)

Now, (v∇h.dq) ∧ dq = (v∇h.dq).dq− dq.(v∇h.dq) = dq.M◦dq ,

where M◦ := ∇hv − v∇h = (v ×∇h)× is an antisymmetric matrix.

So, we can add this term to the magnetic part and define eB◦ := eB − v × ∇h. Finally, for the
reduced dynamics, the symplectic 2-form writes

σ := P◦ ∧ dq− dq.eB◦ × dq .

10.2.2 Change of variables for the Poisson bracket

Transforming the 2-form was the first step. Now, we can get the transformed Poisson bracket by
inversion of the symplectic 2-form, by using the lemma again, this time in order to go from the
2-form to the bivector. We first have to find D and ∂ verifying the Eqs. (10.45) with respect to
the forms P◦ and dq. Next, we will apply the lemma to reach the Poisson bracket. In a last stage,
the bracket will be rewritten in a more convenient way.

Let us begin by identifying D and ∂. Since dq remains unchanged in the new variables and
does not enter in P◦, then ∂ := ∂q|v,A is "unchanged"3. It only remains to identify the vector field
corresponding for this particular case to the generic operator D of the lemma; we will write it D◦.
We expect to have

D◦ := w∂A +N∂v where w is a vector and N is a matrix. (10.48)

The matrix N is simply

N = ∂pv = ∂p
p

h
=

1

h
− ∂ph

p

h2
=

1− v.v

h
= −W2

h
,

in which we used W2 := v × (v × ·) = vv − vv = vv − 1, according to the vectorial triple product
formula a× (b× c) = (ac)b− (ab)c = (ba− ab)c.

2We use the notation u ∧ v for u.v − v.u.
3To be more precise, ∂q is slightly changed: initially we had ∂q|v,h, whereas finally we have ∂q|v,A. To avoid

confusion, the symbol ∇ is used only for ∂q|v,A.
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To identify w, the equation to be solved is

Id = P◦ ·D◦ = (v∂Ah).w̄ + (h+ v∂vh).
1− vv

h
. (10.49)

Thus (v∂Ah).w̄ = 1− (h+ v∂vh).
1− vv

h
= v

{
v − 1

h
∂vh(1− vv)

}
,

so that w : =
v − 1

h(1− vv)∂vh

∂Ah
=

v + 1
hW2∂vh

∂Ah
.

We assumed the change of variable to be bijective, which agrees with ∂Ah 6= 0.

Now, we have identified the operators D and ∂. The second step is to invoke the lemma to
obtain the Poisson bracket for the reduced dynamics. The assumptions of the lemma are verified4

with

D := D◦ P := P◦
∂ := ∇ Q := dq

M := eB◦×

Indeed, the only assumptions which are not trivial are the one proven by Eq. (10.49), and the
momentum part of the completeness relation, which is proven in the same way as the calculus for
Eq. (10.49):

D◦.P◦ =

(
v + 1

h∂vhW2

∂Ah
∂A − (∂v)

W2

h

)
. (v∂AhdA+ (h+ v∂vh)dv) = (∂A)dA+ (∂v)dv .

Thus, we can apply the lemma, and the Poisson bivector for the reduced dynamics writes

π := D◦ ∧∇+D◦.eB◦ ×D◦ . (10.50)

This Poisson bracket strongly resembles the initial bracket: the operator D was only replaced by
D◦, and the magnetic field B replaced by B◦ (and ∂q replaced by the corresponding ∇).

Our last task is to rewrite the Poisson bracket in a more convenient way. Indeed, instead of
modifying B, we can merge with ∇ the correction due to the presence of dq.M◦dq in Eq. (10.47).
Indeed

D◦.e(B◦ −B)×D◦ = −D◦.M◦D◦ = −D◦ ∧ (∇hv)D◦ ,

and this term can be merged with D◦ ∧∇, defining ∇◦

D◦ ∧ (∇− (∇hv)D◦) = D◦ ∧∇◦ with ∇◦ := ∇− ∇h
∂Ah

∂A .

We end up with the bivector

π := D◦ ∧∇◦ +D◦.eB×D◦ , (10.51)

which has the same structure as the initial Poisson bracket, but ∇ has been redefined, instead of
B. The advantage of this choice is that ∇◦ and D◦ become "conjugated"

D◦h =
v + 1

hW2∂vh

∂Ah
∂Ah− W2

h
∂vh = v and ∇◦h = ∇h− ∇h

∂Ah
∂Ah = 0 ,

just as ∂p and ∂q were in the initial variables

∂ph = ∂p
√

pp = v and ∂qh = ∂q|p
√
pp = 0 .

4The 1-form P◦ is not closed, and it is why we pointed out that this assumption was unnecessary for the lemma.
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With this choice, we reach our final result, the Poisson bracket for the reduced dynamics, acting
on two functions f and g with variables q, A and v:

{f, g} = D◦f · ∇◦g −D◦g · ∇◦f +D◦f · eB×D◦g , (10.52)

with ∇◦ : = ∇− ∇h
∂Ah

∂A

and D◦ : =
v − P⊥

h ∂vh

∂Ah
∂A +

P⊥
h
∂v .

where P⊥ := 1− vv is the orthogonal projector onto the plane perpendicular to p.
It is important to notice that the bracket we obtained is valid for any change of coordinates

(q,p) → (q, v, h) → (q, v, A), the only requirement is for A to be in bijection with h and ∂Ah 6= 0.
For instance, we could choose the change of coordinates given by the normal form truncated to
second order h = h1A

1/2 + h2A
2/2. Indeed, even if the normal form h(q, v, A) can be explicitly

computed only to some orders in A, the result (10.52) is exact to any order.

Conclusion

For the dynamics of a charged particle in a strong magnetic field, this intrinsic approach provides
an iterative computation for the normal form and an exact formula for the corresponding Poisson
bracket as functions of the constant of motion A, without using any gyro-gauge, and lying at the
particle position. The result is obtained directly from the definition of A as a constant of motion
through Eq. (10.6) and looking only for the normal form as a formal series in A. It turned out to
be a series in rNL∇N , which implies that the resulting expansion is perturbative when the magnetic
field is strong, i.e. when its variations at the scale of the Larmor radius are small. We have shown
that for the lowest orders this agrees with the previous results.

As expected by the magnetic moment being conjugated to the gyro-angle, the usual operators
of gyrokinetics, such as gyro-average and gyro-fluctuation, appear in the process, but the initial
absence of a gyro-gauge make them naturally defined in an intrinsic way.

By the way, the arbitrariness involved in the choice of the usual lowest-order adiabatic invariant
was clarified: it corresponds to the choice of an element in the intersection of the kernel of two
operators, which have to be inverted to get the normal form.

The convergence of the series was not considered, but it clearly implies a condition of strong
B, and it involves a domain in (AB , ϕ, b) with conditions not only on B, but on all its derivatives
as well, and also on the initial momentum.

This intrinsic reduction of particle dynamics in a strong magnetic field offers several possible
follow-ups. Two most natural extensions are to compute the normal form at the next order, as
was done in the literature [26, 157], and to take into account the presence of an electric field,
which would make the secular equation more involved. However, such extensions would deviate
from our purpose. Here we have considered the magnetic moment only because it provided a
simplified version of the guiding-center reduction. The goal was to identify an intrinsic formulation
for the gyro-angle in guiding-center theory. The most important continuation is to use this gauge-
independent approach also in the other (and the main) part of the guiding-center reduction, i.e.
when averaging the motion on the fast time scale. It is the next step of the work and is reported
in Chapter 1.

On another hand, one of the main features of the present chapter is that it did not change the
position coordinate. This will fit with a simplified framework for the lifting procedure, which will be
used to transfer the reduction of particle dynamics to the Vlasov-Maxwell dynamics, whose space
of indices will benefit from the reduction given by the constant of motion. This will be studied in
Chapter 4.

In the presence of a dynamical electromagnetic field, the reduction for the magnetic moment
has to be extended in order to take into account the coupling between the plasma and the electro-
magnetic field. This will be the topic of Chapters 5 and 6.
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As a complementary comment about the work reported in the present chapter, we want to
emphasize that the presentation follows our initial exploration about the magnetic moment, because
the chapter was written in a specific context. Later on, several aspects could be simplified, but we
could never take the time to write the upgraded derivation. We just indicate here the three main
simplifying aspects.

First and main point, it is much more convenient to look first for the magnetic moment
A(q, v, h), instead of the normal form h(q, v, A); then the normal form is obtained afterwards by
inverting the series. In doing so, the equations to be solved become linear (instead of quadratic),
which makes computations easier and the derivation more transparent. Especially, the induction
relation depends only on terms of the previous order. It allows one to get an explicit formula for
the secular equation as a function of only lowest-order average terms, whereas Eqs. (10.27) and
(10.28) for instance are obfuscated by sums and convolutions, as well as by the presence of lowest-
order fluctuating terms. Especially, this opens the way to solve the secular equation explicitly, in
a similar way as the non-secular equation (10.15) or (10.28).

Second, the secular equation (10.14) relies on the inversion of the operator ∂∗, defined in

Eqs.(10.66)-(10.67). It can be rewritten B−γ(b · ∇⋆)B
γ , with γ = −1+φ2

2φ ∂φ. This fact makes
the algorithm to solve the secular equation more transparent and more straightforward. It also
explains the origin of the adiabatic invariant in a simpler way.

Third, the reduced Poisson bracket can actually be obtained by applying directly a chain rule,
which is much faster than the method used in the present version.

In a word, this chapter is interesting for the methods used and for the results, but it is far from
its optimized version.

App. A: Gyro-rotations and related operators

In this appendix, we study four operators involved in our derivation. They are defined in a first
subsection, and some of their properties useful for our computations are presented in a second
subsection.

The operators D, G, avg and osc

In this subsection, we first show that D is the generator of gyro-rotations. Next, we define its
left-inverse G. Then, the projectors onto the range and onto the kernel of D will turn out to be
the gyro-fluctuating and the gyro-averaging operator. These four operators are involved in our
procedure, which is not surprising since they are the most common operators of gyrokinetics.

First, in order to make D explicit, let us define a local right-handed orthonormal basis suited
to the action of D:

• b := eB
‖eB‖ , unit vector of the magnetic field (grouped with the particle charge e), whose norm

is designated by B := ‖eB‖, so that eB = Bb. With this notation, condition divB = 0 becomes
0 = ∇(Bb) = (∇B)b+B∇b, which is most often used in the form

∇b = −B′b
B . (10.53)

• c := p⊥
‖p⊥‖ = (1−bb)v

‖(1−bb)v‖ , unit vector of p⊥, the part of the momentum perpendicular to B(q).

We remind that ‖p⊥‖ = sinϕ, where ϕ is the pitch-angle (̂b,p) ∈ [0;π];
• a := b × c = b × p⊥

‖p⊥‖ , unit vector of the Larmor radius, completing the direct orthonormal
triad (b, c, a).

With these notations, we can write v.eB × ∂v = Bv.b × ∂v =: BD, using the adimensional,
scalar differential operator

D := v.b× ∂v = −ā∂c̄ .
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It is the generator of the rotations around eB in the momentum space, because for any function
of v,

(
eΘDf

)
(v) = f(e−ΘBv) , (10.54)

with B : = b× ,

where eΘB is the rotation around the axis b through an angle Θ, since B3 = −B implies

eΘD =

∞∑

k=1

Bk
k!

= 1 + cosΘ B2 + sinΘ B .

Eq. (10.54) is proven by expanding the function in v: f(v) =
∑
fnv

n. The linearity of D leads
to consider only monomials, for which the proof can be obtained by induction, or simply from the
fact that D is a derivative, hence its exponential is a ring homomorphism: eD(fg) = (eDf)(eDg),
which leads us to consider only the elementary monomial v, for which the property is obvious:

Dv = vB, ⇒ Dv = −Bv = −b× v .

Since D is the generator of rotations around b, it plays exactly the role of ∂Θ, where Θ
would correspond the gyro-angle of the guiding-center approach. On a Fourier series f(Θ) =
f0 +

∑
n 6=0 fn cos(nΘ+ ψn), the action of D is Df(Θ) = −∑n 6=0 nfn sin(nΘ+ ψn).

Let us remind that the traditional gyro-angle θ is the angle indicating the direction of c (or
a) in B⊥ (the plane perpendicular to B) with respect to some direction (more precisely a unit
vector e1, called the "gyro-gauge", see Eq. (1.2)) chosen arbitrarily as a reference axis in B⊥. In
our derivation, an important point to be noted is that we use the variable c and we do not define
the gyro-angle θ. This avoids the need for a gyro-gauge. We write θ only for a dummy variable in
the gyro-averaging operator, and Θ for analogy, to identify the fast part of the dynamics, which
explains why we have chosen not to write it θ.

The kernel of D consists of all functions that do not depend on Θ, i.e. on the direction of the
vector c (or a); D takes values in the functions with zero average in Θ, which is a supplementary
space to kerD.

This allows to define a left-inverse G = ”D−1”, i.e. a function with value D−1 on Rg (D), and
with value zero on the complementary space ker(D). The operator G is such that

osc : = DG = GD is the (non-resonant) projector onto (Rg (D)) parallel to ker(D),

avg : = 1− osc is the complementary gyro-averaging (resonant) operator.

On the previous Fourier series, the effect of G cancels almost the effect of D:

GDf = G


−

∑

n 6=0

nfn sin(nΘ+ ψ)


 =

∑

n 6=0

fn cos(nΘ+ ψ) = f − f0 = osc (f) .

It is the operator of gyro-fluctuation, whose effect is to remove the gyro-average. The operator
G can be seen as a kind of

∫ θ
dθ′, but which vanishes on the functions that do not depend on θ, and

which implies no gyro-gauge in its definition. As for avg , on the contrary, it gives the gyro-averaged
part of a function: avg f = f0, so that avg =

∮
dθeθD, where

∮
dθ := 1

2π

∫ π
−π dθ is the loop integral

in S1. Thus

avg =

∮
dθeθD =

sinh(πD)

πD ,

osc = 1− avg =
πD − sinh(πD)

πD ,

G =
osc

D =
πD − sinh(πD)

πD2
=

∮
dθ(θ − π sign θ) eθD .
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One can check that the effect of these operators is as expected. For instance, avg = 1 when D
is 0, which corresponds to the gyro-averaged functions, whereas for functions with zero average we
have avg = 0, because D 6= 0 and sinhπD = 0 since

2 sinh(πD)f(p) = (eπD − e−πD)f = f(e−πBp)− f(eπBp) = 0 .

Thus, in the present intrinsic approach, the gyro-averaging avg and gyro-fluctuating osc op-
erators, as well as the gyroderivative D and gyrointegral G operators appear naturally from the
presence of v.B× ∂v in the equation for the normal form (10.6).

Computational properties of D, G, avg and osc

In this subsection, we summarize a few properties we need for our computations. The first ones
come from the range and the kernel of the operators. The second ones are some kinds of integration
by parts formulas. The third ones make explicit the action of the four operators for the cases we
meet in our calculations.

First of all, the definitions of the four operators immediately imply

avgD = avgG = avg osc = 0 = Davg = Gavg = osc avg .

This property is to be remembered, because it simplifies many computations. For instance in
Eq. (10.69), the second term avg

(
c̄b′a+āb′c

4

)
is zero because it is avgG

(
c̄b′c

)
. We remind that the

operators D, G, avg and osc act on the whole expression on their right-hand side.
Next, the previous property, together with Leibniz formula for D, induces several useful prop-

erties. For instance, some kinds of integration by parts formulas can be obtained:

avg
(
gDf

)
= −avg

(
fDg) ,

avg
(
fDf

)
= 0 ,

avg
(
fGg

)
= −avg

(
gGf

)
,

avg
(
fGf) = 0 . (10.55)

These results simplify many formulas in the computation of a2. Especially, they allow us not to
deal with harmonics of order 4, because all those we get can be written avg

(
fGf

)
for some function

f ; for instance, the second term in Eq. (10.71) contains c̄b′a+āb′c
4 c̄b′c, and it writes avg

(
fGf

)
with

f = c̄b′c.

Now, let us now compute explicitly the action of D. As a preliminary matter, an important
point to notice is that, when acting on a (tensorial) product of order k in the fast variables5, D
takes values in the same space: the set Dk of harmonics k in the fast variables. Hence, we split
the set of all functions on the phase space into the direct sum of the spaces Dk of all functions of
equal order k in the fast variables, and we study the action of D inside each of these spaces. We
will denote by Dk, avgk, Gk and osck the restriction of the corresponding operators onto the space
of harmonics k in the fast variables.

For harmonics of order zero k = 0, the results are trivial: D0 = 0 because all functions are
constant in c. Thus kerD0 = D0, G0 = 0, osc0 = 0, avg0 = 1.

For harmonics of order k = 1, we have Dc = −ā∂c̄c = −a and Da = −ā∂c̄(b×c) = −(b×a) = c.
Thus, in the basis (c, a), the matrix of the endomorphism D1 is M :=

(
0 1
−1 0

)

kerD1 = 0, avg1 = 0, osc1 = 1 and G1 = D−1
1 = −D1 . (10.56)

5That means that there are k factors c and/or a; such a product is called a "harmonic of order k", or more simply
"harmonics k".
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For harmonics of order k = 2, a natural basis of D2 is (cc, aa, ca, ac). The meaning of this basis
is the following: ca stands for any function that depends tensorially on the fast variables through
an ordered product ca, for instance c̄b′a, or B′cB′a.

Now, Dcc = (Dc)c+ cDc = −(ac+ ca) ,

Daa = (Da)a+ aDa = (ca+ ac) ,

Dca = (Dc)a+ cDa = −aa+ cc ,

Dac = (Da)c+ aDc = cc− aa .

In this basis, the matrix of the endomorphism D2 is M :=

( 0 0 1 1
0 0 −1 −1
−1 1 0 0
−1 1 0 0

)
.

So, RgD2 is the space generated by (u1,u2) := (cc − aa, ca + ac). And kerD2 is the space
generated by (u3,u4) := (cc+ aa, ca− ac). Using this basis, and coming back to the natural basis,
it is straightforward to get

avg2 =
1

2

(
1 1 0 0
1 1 0 0
0 0 1 −1
0 0 −1 1

)
osc2 =

1

2

(
1 −1 0 0
−1 1 0 0
0 0 1 1
0 0 1 1

)
G2 =

1

4

( 0 0 −1 −1
0 0 1 1
1 −1 0 0
1 −1 0 0

)
. (10.57)

With these formulas, one can compute directly the action of any of the four operators on any
function of harmonic k 6 2 in the fast variables. For instance, Gc = a and Gc̄b′c = c̄b′a+āb′c

4 (which
was used to simplify Eq. (10.29)) can be read in the previous formulas. And the term avg

(
c̄b′c

)
,

which appears in Eq. (10.65), reads as avg
(
c̄b′c

)
= ∇b avg

(
cc
)
= 1

2∇b(cc+ aa) = c̄b′c+āb′a
2 = ∇b

2 ,
where the last equality follows from bb′ = 0.

We could compute the action of Dk, avgk, osck and Gk for the following harmonics k > 3, but
they are not needed here. The only property we need is the action of avg on harmonics 3, but
the result is zero because every odd harmonic is a pure fluctuation, as is obvious using a Fourier
decomposition in the angle Θ.

Thus, on the space of odd harmonic functions

avgodd = 0, oscodd = 1, Dodd is invertible, and Godd = D−1
odd . (10.58)

The property avgodd = 0 is especially useful in our derivation because it cancels many terms in
the computations for a2, for instance in the calculations leading to Eq. (10.69).

App. B: Explicit expression for the operator avg
(
v∇α1

)

In this appendix, we obtain an explicit expression for avg
(
v∇α1

)
, which is involved in the equation

for the lowest-order term of the normal form avg
(
v∇α1

)
= 0. Since α1 is an average, the operator

avg acts only on v∇; our aim is to perform the result of this action. First, we will express the
operator ∇ in coordinates suited to the action of avg , then we will be able to reach an explicit
expression for avg

(
v∇α1

)
, i.e. an expression where the operator avg is absent.

The operator avg performs an average over the direction of the perpendicular momentum, and
it is convenient to decompose the variable v −→ (φ, c), into two components: its perpendicular
(non-averaged) part, and its parallel (averaged) part. As parallel component, we choose the pitch-
angle ϕ ∈ [0;π] defined in Eq. (10.13), or rather its cotangent

φ :=
bv

c̄v
∈ R ,

which is in bijection with ϕ and will exhibit a polynomial structure in the normal form expan-
sion. As for the perpendicular part, the simplest choice is the unit vector of the component of v
perpendicular to B:

c := (1−bb)v

‖1−bb)v‖ ∈ S1 .
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This avoids a gyro-angle which would imply to introduce a gyro-gauge. In App. A, more details
are given about the local frame (b, c, a).

In the variables (q, c, φ, A), the operator D writes c̄B∂c̄ = −ā∂c̄; so, it does not affect the vari-
ables φ, A, and q. Its effect is only to replace c by −a, and therefore a = b× c by −b× a = c.

As for the operator ∇, it writes

∇ : = ∇|A,v = ∇|A,φ,c + (∇|A,vA)∂A|φ,c,q + (∇|A,vφ)∂φ|A,c,q + (∇|A,vc̄)∂c̄|A,φ,q
= ∇⋆ +∇φ∂φ +∇c̄∂c̄ , (10.59)

which is a definition for the operators ∇⋆, ∂φ, and ∂c̄.

To compute ∇φ and ∇c̄, we obtain successively

∇(cosϕ) = ∇(bv) = ∇(b)v = ∇b(cosϕ b+ sinϕ c) = ∇b sinϕc ,

∇(sinϕ) = ∇(
√

1− cos2 ϕ) = −cosϕ

sinϕ
∇(cosϕ) = −φ sinϕ∇bc = − cosϕ∇bc ,

∇φ = ∇
(
cosϕ

sinϕ

)
=

∇bc

sin2 ϕ
= ∇bc(1 + φ2) ,

∇c̄ = −∇b(sinϕcb + cosϕaā)

sinϕ
= −∇b(cb + φaā) . (10.60)

The last line comes from 0 = ∇v = ∇(cosϕ b+sinϕ c̄). We finally get the expected expression for
∇ in variables (q, c, φ, A)

∇ = ∇⋆ +∇φ∂φ +∇c̄∂c̄ = ∇⋆ +∇bc(1 + φ2)∂φ −∇b(cb + φaā)∂c̄ . (10.61)

Now, from this expression for ∇, we can compute avg
(
v∇α1

)
explicitly. As α1 is gyro-averaged,

0 = Dα1 = −ā∂c̄α1, and the last term in equation(10.61) does not contribute on α1:

avg
(
v∇α1

)
=avg

(
v∇⋆α1

)
+ avg

(
v∇bc(1 + φ2)∂φα1

)
− avg

(
v∇bc

)
b∂c̄α1 . (10.62)

Notice that ∇ acts only on the following term, whereas avg acts on the whole expression on its
right-hand side. The first and third terms in Eq. (10.62) write

avg (cosϕ b + sinϕ c̄)∇⋆α1 = cosϕ b avg
(
∇⋆α1

)
, (10.63)

and −avg (cosϕ b + sinϕ c̄)∇bc b∂c̄α1 = − cosϕ avg
(
b∇bc b∂c̄α1

)
. (10.64)

Now, −b∇bc b∂c̄α1 is not gyro-averaged, nor is b∇⋆α1, because of the action of b∇⋆ on a := b× c:

b∇⋆a = (b∇⋆b)× c = b∇b(ba− ab) = −b∇bab .

However, the last formula shows that b∇⋆α1 generates such a fluctuating part on the a present
in α1 as to correspond exactly to the fluctuating part coming from the action of −b∇bc b∂c̄α1 on
the c present in α1. Thus, the sum of these terms is a gyro-average. Hence, together the first and
third terms in Eq. (10.62) give cosϕ (b∇⋆ − b∇bc b∂c̄)α1.

As for the second term in Eq. (10.62), using formulas (10.56) and (10.57) from App. A, it writes

avg (v∇bc)(1 + φ2)∂φα1 = avg
(
(cosϕ b + sinϕ c̄)∇bc

)
(1 + φ2)∂φα1 = sinϕ

∇b

2
(1 + φ2)∂φα1 .

(10.65)
Finally, Eqs. (10.63) and (10.65) allow us to write avg

(
v∇α1

)
as

avg
(
v∇α1

)
= cosϕ b∇⋆α1 + sinϕ

∇b

2
(1 + φ2)∂φα1 − cosϕb∇bc b∂c̄α1 . (10.66)
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This expression for avg
(
v∇α1

)
is explicit, but it can be simplified. As was previously mentioned,

the exact role of −b∇bc b∂c̄ is to compensate the non-averaged effect of b∇⋆; these terms are
necessary only when α1 is expressed as a function of c and a. Nevertheless, as α1 is gyro-averaged,
it is always possible to write it without using c and a: For instance, c̄∇bc+ ā∇ba is gyro-averaged,
and it can be written ∇b. In that case6, the last term does not contribute in Eq. (10.66) and we
get our final expression for avg

(
v∇α1

)

avg
(
v∇α1

)
= cosϕ

(
b∇⋆ +

∇b

2

1 + φ2

φ
∂φ

)
α1 . (10.67)

It is important to notice that the derivation leading to Eq. (10.67) relied on the hypothesis
that α1 is a pure average. It is valid for αi to any order i, but it is not valid for ηi: the action of
avg v∇ on fluctuating functions such as ηi is not easy to obtain, because the action of avg on v∇
can hardly be distinguished from its action on the function ηi.

App. C: Computation of the right-hand side of Equation (10.31)

In this appendix, we compute the right-hand side of Eq. (10.31), which we remind here

φ∂aa2 = −avg

{
2η1

√
B

′
v+

√
B(η1)

′v+ 2(
√
Bη1)φc̄b

′v
}
. (10.68)

Its first term writes

−2avg

(
η1

1

2
√
B
B′v

)
=

1

B

{
1

2B
B′B′

avg (ca) + φ2B′bavg

(
c̄b′a+ āb′c

4

)
+ φ2B′

avg (cā)b′b

}
,

(10.69)

because every term with odd number of c and/or a is a pure fluctuation and cancels under the
action of avg (see Eq. (10.58) in the appendix).
Now, the first term in Eq. (10.69) gives avg

(
c̄b′a+āb′c

4

)
= avgG

(
c̄b′c

)
, which is zero because avgG =

0. The second term contains B′B′
avg (ca) = B′B′( ca−ac

2 ) (see Eq. (10.57) in the appendix); but
this is zero because B′B′ is symmetric whereas ca− ac is antisymmetric. Last, for the third term
avg (cā) = cā−ac̄

2 . Finally,

−avg

(
η1

1√
B
B′v

)
= φ2

B′

B

cā− ac̄

2
b′b . (10.70)

The third term in the right-hand side of Eq. (10.68) writes

−avg
(
2
√
Bη1φc̄b

′(φb+ c)
)
= 2φavg

{
φ
B′a
2B

c̄b′b+ φ
c̄b′a+ āb′c

4
c̄b′c+ φ3āb′b c̄b′b

}
, (10.71)

where again, in the first equality, we discarded all the odd terms in c and/or a, because their gyro-
average is zero. The last term in Eq. (10.71) gives zero because avg

(
c̄ā
)
= c̄ā−āc̄

2 is antisymmetric
and it is multiplied by a symmetric factor. The second term is also zero, because, with f = c̄b′c,
it writes avg (fGf), which is zero by Eq. (10.55). Finally, we get

−avg
(
2
√
Bη1φc̄b

′(φb+ c)
)
= 2φ2

B′

2B
avg (a c̄)b′b = φ2

B′

B

ac̄− cā

2
b′b , (10.72)

so that in the right-hand side of Eq. (10.68), the third term, which is (10.72), cancels exactly the
first term, which is (10.70).

6In the general case, the term can also be removed, by using a redefinition of ∇⋆. The resulting operator is
precisely the reference covariant derivative ∇∗ of Chapters 2-3.
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Eq. (10.68) for a2 then becomes

φ∂aa2 = −avg
(√
Bη′1v

)
. (10.73)

Our last task is to compute η′1v. The derivation is straightforward, but it is too long a task for all
the details to be given here. We only sketch the method, which has already been illustrated on the
derivation of Eqs. (10.69)–(10.72). First, one computes the derivative of η1, using Eq. (10.60) for
φ′ and c′, so that they both give terms in which the only derivative is in b′. The derivative of a are
expressed in the same way as

a′ = (b× c)′ = b× c′ − c× b′ = (φcā− bā)b′ . (10.74)

So, only the derivatives of B and of b are kept, there is no general way to simplify them. Second,
one uses v = φb+c and expands the products, discarding all terms with odd number of c and/or a;
some simplifications occur because of the orthonormality relations between b, c and a and because
bb′ = 0 since b is a unit vector. Then, one computes the action of avg on each term, using formulas
from the appendix, and especially Eq. (10.57). Many simplifications occur because many terms
are products between a symmetric and an antisymmetric factor, or they can be written avgGf or
avg

(
fGf

)
for some function f . Finally, one gets only three terms

φ∂aa2 = avg

{
−B

′b
2B

āb′c+ φ2(āb′′bc+ āb′b′c)

}
,

in which the double prime means double spatial derivative: āb′′bc is (bc : ∇∇b) · a, where ":"
denotes double contraction.
The first term comes from the action of v∇ upon the a in B′a

2B , the last two ones come from its
action upon the b′ and b in φ2āb′b. All other terms have cancelled. After computing the action of
avg with Eq. (10.57), the right-hand side of Eq. (10.73) becomes

−B
′b

2B

(
āb′c− c̄b′a

2

)
+ φ2

(
āb′′bc− c̄b′′ba

2

)
+ φ2

(
āb′b′c− c̄b′b′a

2

)
.

Finally, Eq. (10.31) writes

φ∂aa2 = −B
′b

2B

(
āb′c− c̄b′a

2

)
+ φ2

(
āb′′bc− c̄b′′ba

2

)
+ φ2

(
āb′b′c− c̄b′b′a

2

)
.
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Chapter 11

Lifting coordinate changes to a

fluid-like field Hamiltonian dynamics
in collaboration with Phil J. Morrison, Alain J. Brizard, and Michel Vittot

Abstract: The lifting of a general coordinate transformation to the Hamiltonian
structure of the corresponding field dynamics is studied, with its effects on the
Hamiltonian functional, the Poisson bracket, the functional derivatives, and the
dynamics. It applies to any Hamiltonian field dynamics where all the fields are
defined over the same space, which undergoes a coordinate transformation that
depends on the fields. A concrete example is an ideal-fluid dynamics (e.g. ideal
MHD) when studied in magnetic coordinates. An essential motivation (but less
immediate application) can be found in gyrokinetic theory.
The effects for the functional chain rule expected from the simplified magnetic-
moment-like lifting are recovered, but additional subtleties are introduced by
releasing the simplifying assumptions previously considered, because the trans-
formation now depends on fields defined over a space which is affected by the
transformation. For instance, this implies the field point to be moved by the
transformation, which precludes a trivial composition of derivative operators.
This also makes clearer that the transformation affects functional derivatives,
although it is mute for functionals.

Introduction

This appendix chapter takes place between Chapters 4 and 5. It is interested in the lifting method
in a case more involved than for the magnetic-moment reduction, since all the coordinates can now
be affected by the transformation, but not as involved as for the guiding-center reduction, since it
will be restricted to the case where all the fields are defined over the same coordinate space.

Indeed, as a first step towards the lifting of the guiding-center and gyro-center reductions of
particle dynamics to the Hamiltonian structure of the Vlasov-Maxwell field theory, Chapter 4
treated the introductory case where the transformation affected only the velocity coordinate; the
particle position was not changed. This restriction was useful to simplify the scheme because the
transformation depends only on the magnetic (and possibly electric) field, which is defined over
the position space. It aimed at identifying the essential mechanism involved in the lifting, while
avoiding questions caused by a transformation that would depend on fields that are themselves
affected by the transformation.

For the full guiding-center transformation, the previous restriction must be dropped. So we now
turn to a general lifting where all of the coordinates can be changed, even those of the definition
space for the fields involved in the transformation. This quite general lifting will apply to many
other field dynamics than the Vlasov-Maxwell system.

This last system is more involved than many other field theories, for instance fluid dynamics,
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because different coordinate spaces are involved: the Vlasov density f is defined over the phase
space (q,p), whereas the electromagnetic field (E,B) is defined over the configuration space q. For
the sake of simplicity, we first study the lifting mechanism in details for a general fluid-like system,
i.e. in the special case where all the fields are defined over the same coordinate space (denoted by
z).

This applies to any Hamiltonian fluid theory, when the coordinate space (which is the usual
configuration space z := q) undergoes a field-dependent coordinate transformation. For instance,
in ideal-fluid dynamics or in ideal magnetohydrodynamics, when magnetic coordinates are adopted
while the magnetic field is dynamical, then the Hamiltonian structure of the corresponding field
dynamics is affected by the coordinate change and the treatment below applies. Adaptation of the
lifting to the Vlasov-Maxwell system will be investigated as the next part of the work, in Chapter 5.

The organization of the chapter is the following. After introducing the framework and transfor-
mation operators in Sect. 11.1, we will turn to the transformed Hamiltonian functional and Poisson
bracket in Sect. 11.2. In order to transform functional derivatives, the chain rule will be applied in
Sect. 11.3. The explicit computation of the transformed functional derivatives will provide different
results, which will be investigated with more details in Sect. 11.4. Last, the transformed dynamics
will be obtained in Sect. 11.5.

Several aspects of the full lifting considered here may be quite confusing and counterintuitive
at the beginning. In order to give a clear understanding of the mechanisms at work and to verify
the substance of the method, we scrutinize the subtleties involved throughout the chapter, e.g.
the ones caused by releasing the simplifying assumption of the magnetic-moment-like lifting or the
differences compared to a coordinate change for functions. This results in a rather detailed analysis.
Perhaps some readers might think we insist too much on some points, but we feel it is useful to
make things clear for other readers less familiar with the formalism and its associated subtleties.

11.1 Framework, operators and meta-operators

The framework is a generic Hamiltonian field dynamics. The field coordinate system ψ may be
vectorial with components ψα. It is defined over a coordinate space z, which we will sometimes
call the "particle space", by analogy with the particle phase space over which the Vlasov density
is defined. Note that actually this space does not need to correspond to a particle space, i.e.
there is no need to exist a dynamics over this space, whereas in the case of the Vlasov density,
the coordinate space z really corresponds to a particle coordinate, it has a Hamiltonian dynamics,
whose Lie-Poisson bracket is just the Vlasov part of the Vlasov-Maxwell Poisson bracket, and whose
trajectories just correspond to the characteristics of the Vlasov density.

The phase space is the set of functionals of the fields ψ. For any functional F [ψ], the dynamics
is given by Hamilton’s equations

Ḟ := {F,H} ,
where the functional H[ψ] =

∫
dz h[z;ψ] is given, it is the Hamiltonian functional.

The Poisson bracket {F,G} acts on two arbitrary functionals F [ψ] and G[ψ] through formula

{F,G} :=

∫
dz FψαJαβGψβ ,

where the operator-valued matrix Jαβ is given and we use the index notation for functional deriva-
tives: Fψ := δF

δψ . By definition, the Poisson bracket is bilinear, antisymmetric, verifies the Leibniz
rule, and satisfies the Jacobi identity.

For the sake of generality, we consider an arbitrary Poisson bracket. Readers interested in
examples of such Hamiltonian systems can see [104,107,159] for instance (or other chapters in this
document, e.g. Chapters 4, 7, or 14). For simplicity, we assume local interactions (i.e. Jαβ is an
operator-valued matrix evaluated at the very point z implied in Fψα and Gψβ ), as is most common
in field theory and especially in fluid dynamics. It makes the scheme simpler, but it is not essential,
and the generalization of the results to non-local interactions is straightforward.
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In addition, we study here the lifting mechanism in details assuming that all the fields ψα are
defined over the same space z, but the generalization to the case where this assumption does not
hold is rather straightforward, although it makes formulae somehow more involved, as will appear
in the Chapter 5.

The lifting starts from a coordinate transformation in the particle space z:

z −→ τ(z) := z̄ := z̄[z;ψ] = z̄
(
z;ψ(z),∇ψ(z),∇∇ψ(z), ...

)
,

where the notation z̄[z;ψ] means that z̄ is not just a function, because on ψ it acts as an operator,
with possibly derivatives at all orders, and the operator is evaluated at the position z.

By duality, this induces the transformation for functions and for the fields (scalar invariance
property):

ψ(z) −→ T−1[ψ](z̄) := ψ̄(z̄) := ψ(τ−1(z̄)) = ψ(z) . (11.1)

The operator T−1 is called pull-back of τ−1, or sometimes push-forward of τ .
Following the common convention for guiding-center and gyrokinetic theories, our operator T

is defined by T f̄ = f̄ ◦ τ , whereas another convention can be found Tf = f ◦ τ−1, which would
have the advantage that T would be forwards and T−1 would be backwards, as the intuition would
expect, and the composition law would also be more intuitive.

Last, the coordinate change induces a transformation for functionals of ψ by duality:

F [ψ] −→
(
TF
)
[ψ̄] := F̄ [ψ̄] := F [T ψ̄] = F [ψ] . (11.2)

The goal is to identify the transformed Hamiltonian structure, i.e. the transformed Hamiltonian
functional H̄[ψ̄] and the transformed Poisson bracket {̄·, ·}̄, such that the transformed dynamics
writes

˙̄F := {̄F̄ , H̄ }̄ ,

where the transformed bracket acts on two transformed functionals F̄ and Ḡ.

11.2 Transformed Hamiltonian functional and Poisson bracket

The Hamiltonian functional transforms just as other functionals, so that it is given by

H̄[ψ̄] := H[ψ] =

∫
dz h[z;ψ] =

∫
J dz̄ h[z[z̄; ψ̄]); ψ̄] , (11.3)

where the inverse transformation z = z[z̄; ψ̄] is used, as well as the scalar invariance property, and
J is the Jacobian determinant of the transformation z −→ z̄.

The Poisson bracket is functional-valued, and also transforms as a functional. However, it
involves functional derivatives, so that each of its parts must be transformed separately.

{F,G}[ψ] = {F,G}[T ψ̄] = T
(
{F,G}

)
[ψ̄] = T

(
{T−1F̄ ,T−1Ḡ}

)
[ψ̄]

= T

∫
dz

(
δ

δψαT
−1(F̄ )

)
Jαβ

(
δ
δψβT

−1Ḡ
)

=

∫
J dz̄

(
T−1 δ

δψαT
−1(F̄ )

) (
T−1Jαβ

) (
T−1 δ

δψβ (T
−1Ḡ)

)
, (11.4)

where T−1
(
Jαβ [z̄; ψ̄]

)
= Jαβ [z[z̄; ψ̄]; ψ̄] just undergoes a change of coordinates, using the transfor-

mation and the scalar invariance property.
The transformed bracket is Hamiltonian, since it is just given by an invertible transformation

from the initial Poisson bracket. Especially, it is bilinear, antisymmetric verifies the Leibniz rule
and satisfies the Jacobi identity. The first three properties are obvious to see, the last one is easily
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verified using that the initial bracket is known to satisfy the Jacobi identity: for three arbitrary
functionals F̄ , Ḡ, and H̄ (of ψ̄), we have

∑

cycl

{̄F̄ , {̄Ḡ, H̄ }̄}̄ =
∑

cycl

T
{
T−1F̄ ,T−1T{T−1Ḡ,T−1H̄}

}

= T
∑

cycl

{F, {G,H}} = 0 ,

where
∑

cycl means sum over cyclic permutations of the arguments, e.g. F̄ , Ḡ and H̄. In this
computation, the symbol F is considered as just a shorthand for T−1F̄ , and the same for G and
H.

11.3 Functional chain-rule formula

It should be noticed that Jαβ generically involves operators ∂z, and the functional density h may
involve derivatives ∂z as well; in the transformed formulae, those operators are to be transformed
according to the usual chain rule on functions (see Chapter 4):

T−1
(
∂zf
)
= T−1∂z

(
TT−1f

)
= T−1∂z

(
T f̄
)
= T−1∂z

[
f̄(τz)

]

= T−1∂z
[
f̄(z̄(z))

]
= T−1

(
∂zz̄
)
· ∂z̄f̄ , (11.5)

for any function f(z). The operator T−1 remaining in the last line just means that ∂zz̄ must be
expressed in the transformed coordinates z̄, whereas initially it comes as a function of the initial
coordinate z. It is often considered as implicit.

Now, all that remains is to transform the functional derivatives, i.e. to write T−1 δ
δψαT

−1(F̄ )

as a function of F̄ψ̄. In this way, the transformed Poisson bracket will have the same form as the
initial Poisson bracket:

{̄F̄ , Ḡ}̄[ψ̄] =
∫
dz̄ F̄ψ̄α J̄αβ Ḡψ̄β , (11.6)

for some matrix J̄αβ , so that the Hamiltonian structure will have been transformed properly.
This is obtained by a functional chain-rule formula relating Fψ and Fψ̄. The presence of the

two chain rules, the first one for functions and the second one for functionals is well emphasized
in Chapter 4; in this work, the function chain rule was all the more important as the particle
coordinates defined a Hamiltonian system involved in the definition of the Vlasov bracket, and the
function chain rule was needed to transform the particle Poisson bracket.

It turns out that the chain rule for functionals involves some subtleties. It is the reason why
Chapter 4 studied a restricted class of transformations. In this section, we show that using a method
similar to Chapter 4, a general chain-rule formula can be obtained without restricting the class of
transformation. In the next section, we will come back to the transformed functional derivative
T−1 δ

δψαT
−1(F̄ ) and show that it agrees with this chain-rule formula.

This section is organized in three subsections. In the first subsection, for the sake of clarity and
consistency with previous works, we show that when the restriction of Chapter 4 is released, a bare
chain rule (composition of derivative operators) can not be used directly. In the second subsection,
we show that the definition of the transformed fields all the same allows for a chain-rule formula, in
the same way as in Chapter 4. Last, in the third subsection, we come back to the initial difficulties
in the light of the results obtained.

11.3.1 Difficulty for a bare chain rule

At first, because the transformation is just a change of variable also in the field coordinates, one
can consider applying directly the standard functional chain rule

Fψα =
(
ψ̄βψα

)†
J −1F̄ψ̄β . (11.7)
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One could think that the definition (11.2) for ψ̄ implies that ψ̄βψα = 1βα, but this is not correct,

because
(
ψ̄βψα

)†
is actually δψ̄β(z̄)

δψα(z) , i.e. the variation of ψ̄ keeping z̄ constant as a function of the

variation of ψ keeping z constant. The issue is that the definition (11.2) for ψ̄ can be written in a
more explicit way

ψ(z) = ψ̄(z̄) = ψ̄(z̄[z, ψ]) , (11.8)

which shows that if ψ is varied with z constant, then z̄ is not constant.

From another point of view, one can consider the reciprocal relation

ψ̄(z̄) = ψ(z) = ψ(z[z̄, ψ̄]) , (11.9)

but then the issue is that Eq. (11.9) is not explicit for ψ̄, since it is still present in the right-hand
side. So, an implicit function is involved in this relation.

All these troubles were avoided in the work of Chapter 4 because only the velocity coordinate
was transformed, and the transformation depended only on the electromagnetic field, which is
independent of the velocity. Thus, the definition of the transformed fields implied that

f̄(q, p̄) = f(q,p) = f
(
q,p[q, p̄; Ē, B̄]

)
= f

(
q,p[q, p̄;E,B]

)
, (11.10)

Ē(q) = E(q) ,

B̄(q) = B(q) ,

and no transformed field was left in the right-hand side. Then the chain-rule formula ψ̄ψ could be
used directly, which made the setting simpler for the lifting.

Let us add some comments about Eq. (11.8). When the transformation is just a coordinate
change for z (it could alternatively be viewed as a transformation between different spaces), then
from the point of view of the coordinate space, the inverse of the transformation z̄[z;ψ] = z̄(z)[ψ]
is given by the inverse function z(z̄)[ψ] = z[z̄;ψ], where the field is ψ, not ψ̄. Then the field ψ̄
can be defined explicitly as ψ̄(z̄) = ψ(z) = ψ(z[z̄;ψ]).

However, this is not satisfactory because in z[z̄;ψ], the function ψ is evaluated at z̄ whereas
the operators acting on it are still the initial ones ∂z. In addition, in order for the transformation
to be completely consistent (reversible) even at the level of the fields, the reverse transformation
should be defined reciprocally compared to the direct one, i.e. the field should be the transformed
one ψ̄. So, one should express everything with the transformed quantities: the operator ∂z must
become a function of ∂z̄, and the field ψ a function of ψ̄.

For the operator, the answer is easily provided by the chain rule ∂z = ∂zz̄ · ∂z̄. For the fields,
things are more subtle and it is here that obstructions can come. As an illustrative example, let us
consider the transformation

z̄ := f(z+ εψ(z)) ,

with f some invertible function (independent of ψ) and ε some small parameter; note that the
formula z + εψ(z) assumes that in the example the field dimension is the same as the dimension
of the coordinate space. The transformation can be written z̄ = (f ◦ f2)(z), with f2 := 1 + εψ,
which is invertible, since it is a small perturbation of an invertible function. Then the reverse
transformation is given by

z := (f−1
2 ◦ f−1)(z̄) =

(
(1 + εψ)−1 ◦ f−1

)
(z̄) =

([∑

n

(−εψ)n
]
◦ f−1

)
(z̄) .

Thus, the initial field ψ is evaluated at a point related to the transformed position z̄ (e.g. take
f = 1). This mixes up initial and transformed objects.

For completeness, one needs the transformation to be revertible also for fields, so that ψ can
be replaced by ψ̄. The point is that there is no guarantee in general for such a relation to exist,
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and this can induce an obstruction to the lifting. It can happen that the transformation is proper
(reversible) for coordinates but not for fields.

For instance, in order to establish a relation between ψ and ψ̄, one could take Eq. (11.8) and
relate z̄ to z, by replacing z̄ by z+ x, with x := z̄− z. Then Taylor expanding ψ̄ in series in x at
the position z would provide a relation such as

ψ(z) = ψ̄(z) + g1(x)[ψ̄] = ψ̄(z) + g1(z̄− z)[ψ̄] ,

where g1 is some function given by the expansion. In order to get rid of z̄, one could iterate the
process to infinity, which would provide a relation such as

ψ(z) = ψ̄(z) + g∞(z)[ψ̄] .

This would provide an explicit relation for ψ as a function of ψ̄. However, such a procedure is
not valid in general, because it implicitly assumes that the contribution of z̄ diminishes at each
iteration, which is not guaranteed. In addition, the Taylor expansion assumes that z̄ is close enough
to z. From a more abstract point of view, a kind of self-consistency is assumed for the fields between
the position z and the position z̄.

All the same, for a formal near-identity transformation (such as the example above), which are
most common in perturbation theory, and especially in guiding-center theory and gyrokinetics, the
procedure proposed above works, and there is no obstruction to the lifting.

11.3.2 Derivation of a chain-rule formula

To circumvent the issue mentioned in the previous subsection, the idea is to start from the defining
relation (11.8), and to study how it relates the variations of ψ(z) and ψ̄(z̄), in a similar way as
what was done in Chapter 4. In the variations, one has to choose which space is considered as
fixed, since z and z̄ can not be kept fixed simultaneously. Here, we choose the initial coordinate
space z as fixed, which implies a displacement of z̄ in the process.

Performing total variation of Eq. (11.8) results in

δψα(z) = δψ̄α(z̄) + ψ̄αz̄ · z̄ψβδψβ(z) , (11.11)

where we remind that the index notation is used for any kind of derivatives, i.e. first-order vari-
ations, and especially for derivatives of function(e.g. ψ̄z̄), for derivatives of functionals (e.g. Hψ),
and for derivatives of operator-function (e.g. z̄ψ). In this third case, the result is an operator in
general; for an explicit example, see page 133.

Now, Eq. (11.11) implies

(
1αβ − ψ̄αz̄ · z̄ψβ

)
δψβ(z) = δψ̄α(z̄) , (11.12)

which in turn gives the chain-rule formula

δψ̄α(z̄)
δψβ(z′) =

(
1αβ − ψ̄αz̄ · z̄ψβ

)†
δ(z′ − z[z̄; ψ̄]) , (11.13)

where we wrote z′ to emphasize that z′ is an independent variable, whereas z[z̄; ψ̄] is not: it is a
function of the independent variable z̄. The adjoint † is with respect to dz. In all these formulae
notice that z̄ψβ is generically a differential operator. For instance this implies that the order of the
factors can not be changed in the expressions with ψ̄αz̄ · z̄ψβ in Eqs. (11.11)-(11.13).

Using the language of transformation operators gives a more abstract point of view on the
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mechanism at work:

δψα(z) = δ
(
T ψ̄α

)
(z)

= Tδψ̄α(z) +
(
[δT ]ψ̄α

)
(z)

= Tδψ̄α(z) +
((
T [ψ + δψ]− T [ψ]

)
ψ̄α
)
(z)

= δψ̄α(τz) + ψ̄α(τ [z;ψ + δψ])− ψ̄α(τ [z;ψ])

= δψ̄α(z̄) + ψ̄α(z̄[z;ψ + δψ])− ψ̄α(z̄[z;ψ])

= δψ̄α(z̄) + ψ̄α(z̄+ z̄ψβδψβ)− ψ̄α(z̄)

= δψ̄α(z̄) + ψ̄αz̄ · z̄ψβδψβ(z) , (11.14)

where the equalities are only up to first order. In the first and second equalities, we used the
definition (11.2) and the linearity of the operator T . In the fourth equality, we used the property
(11.17) between the operators T and τ . In the fifth equality, the definition (11.1) of the operator τ
was used. Finally, in the third and last two equalities, infinitesimal variations were made explicit
and a first order expansion was performed.

The result (11.14) exactly agrees with Eq. (11.11). In these formulae, the right-hand side
involves both δψ and δψ̄. But the use of operators provides an efficient way to remedy this by
using the inverse operator, whose variations obey the property

0 = δ(TT−1) = δTT−1 + TδT−1 ⇒ δT = −TδT−1T .

Applying this property to the second line of Eq. (11.14) gives

δψα(z) = Tδψ̄α(z)−
(
TδT−1T ψ̄α

)
(z)

= δψ̄α(τz)−
(
δT−1ψα

)
(τz)

= δψ̄α(z̄)−
((
T−1[ψ̄ + δψ̄]− T−1[ψ̄]

)
ψα
)
(z̄)

= δψ̄α(z̄)− ψα(τ−1[z̄; ψ̄ + δψ̄]) + ψα(τ−1[z̄; ψ̄])

= δψ̄α(z̄)− ψα(z[z̄; ψ̄ + δψ̄]) + ψα(z[z̄; ψ̄])

= δψ̄α(z̄)− ψα(z+ zψ̄βδψ̄β ]) + ψα(z)

= δψ̄α(z̄)− ψαz · zψ̄βδψ̄β(z̄) , (11.15)

where the derivation followed the development of Eq. (11.14). The result exactly agrees with (the
reciprocal of) Eq. (11.12).

With Eqs. (11.12)-(11.13), the chain-rule formula follows from Eq. (11.7). Alternatively, it can
be obtained by using the standard method of total variation of an arbitrary functional, in a similar
way as in Chapter 4:

δF =

∫
dz Fψαδψα =

∫
dz Fψα

(
1αβ − ψαz · zψ̄β

)
δψ̄β(z̄)

=

∫
J dz̄ Fψα

(
1αβ − ψαz · zψ̄β

)
δψ̄β(z̄)

=

∫
dz̄ δψ̄β(z̄)

(
1αβ − ψαz · zψ̄β

)†̄ JFψα

=

∫
dz̄ F̄ψ̄αδψ̄α = δF̄ ,

where the reciprocal of Eq. (11.12) was used in the second equality, the change of integration
variable was performed in the third equality, and in the fourth equality the adjoint †̄ is computed
with respect to dz̄. So, the chain-rule formula writes

F̄ψ̄α =
(
1βα − ψβz · zψ̄α

)†̄
JFψβ ,
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which agrees with (11.7). Notice that in this relation Fψα is actually T−1Fψα , in a similar way as
for the function chain rule: when expressing f̄z̄ as a function of fz, the traditional formula is fz ·zz̄,
but it actually means T−1

(
fz
)
· zz̄ (as also appears in Eq. (11.5)). The reciprocal relation writes

Fψα =
(
1βα − ψ̄βz̄ · z̄ψα

)†
J −1F̄ψ̄β (11.16)

and it is the one that gives the transformed Poisson bracket, as we will see in the next section.

11.3.3 Interpretation: implicit function and moving point

In the light of the chain-rule formula obtained above, the initial issue about the bare chain rule
can be interpreted in two directions.

First, the implicit function involved in Eq. (11.8) prevented a straightforward evaluation of
δψ̄(z̄)
δψ(z) ; in the derivation, it is traduced by the presence of both δψ̄(z̄) and δψ(z) in the right-hand
side of the total variation (11.11) of the defining formula (11.2), which does not happen when a
definition is explicit. In the final chain rule, it is traduced by the minus sign in the right-hand side
of (11.13), which means that in the total variations (11.11), one term appeared in the wrong side
of the equation, or rather that the inverse transformation was involved in the derivation (11.15),
as expected for an implicit function.

Another way of tackling the definition (11.1) (or rather its detailed meaning (11.9)) is to make
it explicit by a perturbative procedure. When the transformation is near-identity (and the fields
regular enough), then at lowest order z ≈ z̄ and ψ(z) ≈ ψ(z̄), which implies that ψ(z) = ψ̄(z̄) is
close to ψ(z̄). Then, to lowest order, one can consider that ψ̄(z̄) := ψ(z[z̄; ψ̄]) ≈ ψ(z[z̄;ψ]), i.e.
ψ̄ := ψ ◦ τ−1

[ψ̄]
≈ ψ ◦ τ−1

[ψ] , which makes the definition explicit. Then, the bare chain rule can be
applied, and gives

δψ̄α(z̄) ≈ δψα(z[z̄;ψ) + ψαz · zψ̄βδψβ(z̄) .

Now, this identity is valid only at lowest order. To first order, the lowest order approximation must
be inserted in the place of the index ψ̄, which means that ψ̄ := ψ ◦ τ−1

[ψ̄]
≈ ψ ◦ τ−1[

ψ◦τ−1
[ψ]

]. Iterating

the process to infinity yields

δψ̄α(z̄) =
∞∑

n=0

(
ψαz · zψ̄β

)n
δψβ(z) =

(
1− ψαz · zψ̄β

)−1
δψβ(z) ,

where we assumed the transformation is close enough to identity so that both the procedure and the
series converge. Especially, we assumed ψαz · zψ̄β << 1. The previous relation is more conveniently
written

δψβ(z) =
(
1− ψβz · zψ̄α

)
δψ̄β(z̄) .

This gives exactly the general formula (11.12), valid even when the transformation is not near-
identity, although the intermediate step of the argument above may not be meaningful if the series
does not converge. This development clearly shows that the definition (11.9) for ψ̄ is not explicit,
it defines ψ̄(z̄) as a function of ψ and z̄ as expected, but ψ̄ itself is involved in the relation, as is
needed for a relation where the coordinate is z̄.

Second, since the transformation starts from the initial field theory, where the space z is fixed,
another point of view is not the implicit function, but rather the displacement of z̄ when varying ψ
with z constant. In the derivation, it is obvious that the additional term in (11.11) corresponds to
a displacement of the observation point z̄. In the resulting chain rule (11.12) or (11.13), the ratio
δψ̄(z̄)
δψ(z) is not 1, and the correction term is such that it just cancels the displacement of z̄.

Indeed, when field-varying ψ̄(z̄[z;ψ]), two effects are present: the variation of ψ̄(z̄) at constant
z, which is equal to the variation of ψ(z) as a result of (11.2), but in addition, the point z̄ is moved,
the induced variation of ψ̄(z̄) is just given by ψ̄z̄ · z̄ψ. As a consequence, the variation of ψ̄(z̄))
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at constant z̄ is just obtained by removing this excess contribution. This is a common feature in
transformations for field theory, see e.g. [66, 152] among many others.

This phenomenon is analogous to what happens when computing the term ∂tf for the dynamics
of the Vlasov density: f is advected by particle dynamics ż, hence during the time evolution, the
variation δf(z) is zero provided the point z is advected with particle dynamics. To obtain the
dynamics of f at constant z, one has to remove the contribution corresponding to the displacement
of the advected z, which is given by dt(q̇ · ∂qf + ṗ · ∂pf). And minus this last quantity just gives
the expected Vlasov equation, according to formula

∂
∂tf = d

dtf − ż · ∂zf = −ż · ∂zf .

Another way of stating it is to say that when z is a fixed point, then ψ(z) is an Eulerian field,
whereas ψ̄(z̄) is a Lagrangian field, since the point z̄ is advected by the transformation.

The specific case treated in Chapter 4 corresponded to the case where all these subtleties were
avoided: when the coordinate transformation does not change the position q̄ = q, and depends
only of the electromagnetic field E(q),B(q), then the transformation for fields is just given by
Eq. (11.10), which can equivalently be considered as:

f̄(z̄) = f(z) = f(z[z̄; Ē, B̄]) = f(z[z̄;E,B]) ,

Ē(q̄) = E(q) = E(q̄) ,

B̄(q̄) = B(q) = B(q̄) ,

where all the definitions are explicit, and there is no issue about the moving (Lagrangian) point,
because definitions involve the transformed point z̄, but the initial fields E,B. Because of this, the
bare chain rule (11.7) could be used directly.

11.4 Transformed functional derivatives

To have the transformed bracket (11.6) at our disposal, it remains to compute T−1 δ
δψαT

−1(F̄ )
involved in the transformed bracket (11.4). In this section, we show that it is just given by the
chain-rule formula (11.16).

From an abstract point of view, this equality is trivial, but in practical computations, it is not
so obvious. In a similar way as in the previous section, some subtleties are involved and have to
be clarified, because this is a not a chain rule for functions but for functionals. The integration
variable plays a role, unlike indices when a chain rule is applied to a function defined as the scalar
product of two vectorial quantities.

Interestingly, the difference between the two chain rules is already evidenced by the expression
for the transformed functional derivative T−1 δ

δψαT
−1(F̄ ), because the transformation operators T−1

and T−1 are not defined between the same spaces, whereas for a transformed function derivative
the expression would be T−1∂zT f̄ (see Eq. (11.5)), and the two operators T−1 and T are defined
between the same spaces.

The difference can also be viewed in the definition of the transformation operators: the trans-
formation for functions is just a composition with the particle transformation:

(T−1f)(z̄) = f(τ−1(z̄)) whence T−1f = f ◦ τ−1 , (11.17)

whereas rigorously there is no analogous definition for the transformation operator T, because what
is to be transformed is not a function, but a functional, i.e. an integral; so, two operations are
contained in the operator T: not only a change in the fields, but also a change of the integration
variable; the point is that these two operations can not be done separately, because the transformed
fields are defined over the transformed space. More precisely, writing F [ψ] = F̄ [ψ̄] does not mean
just TF = F ◦ T , because it also implies that the first functional F is written as an integral over
dz whereas the second one F̄ is written as an integral over dz̄. This can be expressed by writing

T

∫
dz g[z;ψ] =

∫
T−1dz T−1g[z;ψ] =

∫
dz̄J g[z[z̄; ψ̄]; ψ̄] ,
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where the operator T−1 is used also to transform the measure dz and the density g.

This section is organized as follows. In the first subsection, the transformed functional derivative
T−1 δ

δψαT
−1(F̄ ) is computed, but it comes out in an unsatisfactory form. In the second subsection,

the origin of the difficulty is explored and an intermediate lemma is established. In the third sub-
section, the lemma is used to re-express the result of T−1 δ

δψαT
−1(F̄ ) and obtain it in a satisfactory

form.

11.4.1 Transformed functional derivatives: unexpected form

In the case of function derivatives, the expression T−1∂zT f̄ just gives the chain rule for functions
(11.5), i.e. the same result as when computing the total derivative of the defining formula (11.1).
On the contrary, computing the expression T−1 δ

δψαT
−1(F̄ ) gives a very different result from the

one expected from the chain rule for functionals (11.16), obtained from the total derivative of the
defining formula (11.2). This is what we are going to see in this subsection.

Indeed, changing the integration variable and then functionally differentiating the result implies
a field derivative of the coordinate transformation and of the Jacobian:

T−1 δ
δψα(y)T

−1(F̄ ) = T−1 δ
δψα(y)T

−1

(∫
dz̄ f̄ [z̄; ψ̄]

)

= T−1 δ
δψα(y)

(∫
J −1dz f̄ [z̄[z;ψ];ψ]

)

= T−1

∫
dz
(
J −1f̄ψα + J −1f̄z̄ · z̄ψα + f̄J −1

ψα

)
δ(z− y)

= T−1
(
J −1f̄ψα + J −1f̄z̄ · z̄ψα + f̄J −1

ψα

)†
[y;ψ]

=
(
J −1f̄ψα + J −1f̄z̄ · z̄ψα + f̄J −1

ψα

)†
[y[z̄; ψ̄]; ψ̄] . (11.18)

In the first equality, the functional was made explicit by introducing f̄ [z̄; ψ̄] as the density of the
functional F̄ , which may involve derivatives of the fields ψ̄. In the second equality, the action of
the operator T−1 was performed. In the third equality, the action of the functional derivative δ

δψα

was computed. In the fourth equality, the Dirac delta was integrated; the adjoint † is related to
dz and the symbol [y;ψ] was written to remind that the function is evaluated at z = y, and that
it depends of ψ and possibly its derivatives. In the fifth equality, the action of the operator T−1

was performed. Note that here the overall expression is a function, not an operator: the adjoint
function involved in the last line is actually

(
J −1f̄ψα + J −1f̄z̄ · z̄ψα + f̄J −1

ψα

)†
1 , (11.19)

i.e. the adjoint operator
(
J −1f̄ψα + J −1f̄z̄ · z̄ψα + f̄J −1

ψα

)†
acting on the constant function 1.

The result (11.18) is very different from what would be obtained using Eq. (11.16):

T−1 δ
δψαT

−1(F̄ )
?
= Fψα(y) =

(
1βα − ψ̄βz̄ · z̄ψα

)†
J −1F̄ψ̄β(z̄[y;ψ])

=
(
1βα − ψ̄βz̄ · z̄ψα

)†
J −1 δ

δψ̄β(z̄[y;ψ])

∫
dz̄ f̄ [z̄; ψ̄]

=
(
1βα − ψ̄βz̄ · z̄ψα

)†
J −1f̄ψ̄β [z̄[y;ψ]];ψ] . (11.20)

The first term of Eqs. (11.18) and (11.20) agree, but the remaining terms are different. On
another hand, Eq. (11.18) is not satisfactory, because it is not clear at all whether it is a functional
derivative, i.e. whether it verifies the Leibniz rule, whereas it should, since it is just the transformed
object from a functional derivative. A property must exist that justifies the Leibniz rule, i.e. that
allows one to rewrite Eq. (11.18) under the form F̄ψ̄α = Mβ

αFψβ , with M some matrix to be



11.4. TRANSFORMED FUNCTIONAL DERIVATIVES 241

identified. Note that it is a matrix in the infinite dimensional phase space of this field theory,
which means it can involve integrals and differential operators. The desired property is established
in the following subsections; it will clarify some differences between functional chain rule and
function chain rule, and at the same time, it will show that actually (11.18) and (11.20) are equal.

11.4.2 Intermediate lemma

The failure for (11.18) to give an obvious derivative over the functional F̄ comes from its terms
where the functional derivative acts on the coordinate transformation z̄ψ and on the Jacobian J −1

ψ .
Precisely, those terms are surprising because the integration variable is mute for functionals: it is
analogous to the mute index i in the function

∑
iV

i(z)Wi(z), where V i(z) and W i(z) are vectors.
Indeed, the change of variable under the integral does not affect the value of the functional, and
therefore should not have an effect on variations or derivations of the functional.

This is a special feature of the functional chain rule for a lifting: contrary to chain rules for
functions, where the index i is not affected by the transformation, here the integration variable,
which is a kind of mute index for the fields, is affected by the transformation and it is involved in
the computation of functional derivatives.

In order to avoid this trouble, one would need to keep the variable z, but this is not possible
when using the field ψ̄, since this field is defined over the transformed space z̄. Thus, the two
effects of the transformation (on ψ and on z) can not be separated, as we announced above. This
is reminiscent of the issues in the previous section. So, in a similar way, we aim here at isolating
the effect of the change ψ −→ ψ̄ from the change z −→ z̄. The goal is to identify one of these
effect, since afterwards the other one can be deduced by substraction from the total effect given by
(11.18). This task is not so easy, because it means for instance studying the field ψ̄ while remaining
in the space z without introducing the field ψ.

A trick to get the resulting formula relies on functionals that are constant in the fields. This is
a restricted class of functionals (indeed!) but a general formula can be obtained by keeping track
of all the arbitrariness involved in the process.

Let us consider a functional constant in the field, which we denote by Ḡ, in order to avoid
confusion with the general functional F̄ considered in the previous subsection:

Ḡ =

∫
dz̄ ḡ(z̄) .

Its value is completely determined, it does not depend on ψ̄, nor of ψ. Now, after changing to
coordinates z, a dependence in the field ψ seems to appear, but this overall contribution must be
zero:

δḠ = 0 = δG =

∫
dyGψα(y)δψ

α(y)

=

∫
dy δ

δψα(y)

(∫
J −1dz ḡ(z̄[z;ψ])

)
δψα(y)

=

∫
dy

∫
dz
(
J −1ḡz̄ · z̄ψα + ḡJ −1

ψα

)
δ(z− y)δψα(y)

=

∫
dz
(
J −1ḡz̄ · z̄ψα + ḡJ −1

ψα

)
δψα(z)

=

∫
dz ḡ

(
− J −1dz̄ ·

(
z̄ψαδψα(z)

)
+ J −1

ψα δψ
α(z)

)
, (11.21)

where in the first four lines, we applied the same calculation as for Eq. (11.18), and in the last line,
an integration by parts was performed to have ḡ factorized.

In Eq. (11.21), we use the symbol dz̄ to indicate the total derivative with respect to z̄, in
order to emphasize that every occurrence of z̄ is to be differentiated. The distinction with the
partial derivative ∂z̄ appears in some notations. For instance when using the notation ḡ[z̄, ψ̄] =
ḡ(z̄)[ψ̄], then the operators are the same dz̄ = ∂z̄. However, in some cases, a notation such
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as ḡ(z̄, ψ̄(z̄), ∂z̄ψ̄(z̄), ...) is used; for instance, it is natural in the case of a local dependence in
ψ̄(z̄). Then the operators are different, the operator ∂z̄ is a kind of partial derivative, and the
corresponding total derivative is dz̄; they are related by dz̄ḡ = ∂z̄ḡ + ∂ψ̄α ḡ ∂z̄ψ̄

α. The distinction
is important for commutation properties for instance: ∂z̄ commutes with ∂ψ̄, whereas dz̄ does not.
Notice that a definition of ∂z̄ relying on first-order variations may not be most convenient, because
ḡ[z̄, ψ̄] is actually ḡ(z̄)[ψ̄], i.e. a function in the variable z̄ and a functional (yet often just an
operator) in the field ψ̄. First-order variations of ḡ with respect to z̄ gives dz̄, then ∂z̄ is defined
by ∂z̄ḡ = dz̄ḡ − ∂ψ̄α ḡ ∂z̄ψ̄

α.
Now, Eq. (11.21) holds for any ḡ and any δψ. This implies that

0 = −J −1dz̄ ·
(
z̄ψαδψα(z)

)
+ J −1

ψα δψ
α(z) (11.22)

holds for any δψ.

Formula (11.22) can be confirmed by proving it directly with usual properties of derivatives of
determinants. Indeed, it can be written

dz̄jz · dz
(
z̄jψαδψ

α(z)
)
= JJ −1

ψα δψ
α(z) . (11.23)

Now, the right-hand side can be rewritten using the usual property of variations of a determinant

JJ −1
ψα δψ

α(z) = Det−1(M)δDet(M) = Trace(M · δM)

= dz̄jz
kδ
(
dzk z̄

j
)

= dz̄jz
k∂ψα

(
dzk z̄

j
)
δψα

= dz̄jz
k∂ψα

(
∂zk z̄

j + ∂ψβ z̄j∂zkψ
β
)
δψα

= dz̄jz
k
(
∂ψα∂zk z̄

j + ∂ψα

(
∂ψβ z̄j

)
∂zkψ

β

+ ∂ψβ z̄j∂ψα

(
∂zkψ

β
))
δψα

= dz̄jz
k
(
∂zk∂ψα z̄j + ∂ψβ

(
∂ψα z̄j

)
∂zkψ

β + ∂ψα z̄j∂zk
)
δψα

= dz̄jz
k
(
dzk∂ψα z̄j + ∂ψα z̄j∂zk

)
δψα

= dz̄jz
kdzk

(
∂ψα z̄jδψα

)
,

which is exactly the left-hand side of Eq. (11.23). Here, we used Det(M) = J −1, and M = dzz̄.
In the first and second lines, we used the property of variations of a determinant, in the third and
fourth lines, variations were made explicit, as well as the total derivative. In the fifth and sixth
lines, derivatives were commutated. In the last lines, all terms were recombined into a single term.

Let us turn back to the case of a general functional (not constant in ψ̄), which we denote by

F̄ [ψ̄] =

∫
dz̄ f̄ [z̄; ψ̄] = F [ψ] =

∫
dz f̄ [z̄[z;ψ];ψ]

as in the previous subsection, in order to avoid confusion with the previous functional Ḡ that was
constant in ψ̄. Eq. (11.22) implies

0 =

∫
dz f̄ [z̄[z;ψ];ψ]

(
−J −1dz̄ ·

(
z̄ψαδψ(z)

)
+ J −1

ψα δψ
α(z)

)

=

∫
dz
(
J −1f̄ψ̄β ψ̄

β
z̄ · z̄ψα + J −1f̄z̄ · z̄ψα + f̄J −1

ψα

)
δψα(z)

=

∫
dz δψα(z)

(
J −1f̄ψ̄β ψ̄

β
z̄ · z̄ψα + J −1f̄z̄ · z̄ψα + f̄J −1

ψα

)†
, (11.24)
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where in the second line, an integration by part was performed in the reverse direction compared to
Eq. (11.21), and in the last line, another integration by parts was performed to have the function
δψ factorized. The adjoint † is related to the measure dz, and here it is the adjoint function, i.e.
the adjoint operator acting on the constant function 1, in the same way as in Eq. (11.19).

Eq. (11.24) holds for any δψ, which implies

0 =
(
J −1f̄ψ̄β ψ̄

β
z̄ · z̄ψα + J −1f̄z̄ · z̄ψα + f̄J −1

ψα

)†
. (11.25)

This is the lemma we were seeking for, since it relates the field derivative of the Jacobian J −1
ψ̄

and

of the coordinate transformation z̄ψ with the field derivative of the functional density f̄ψ̄, which is
related with the functional derivative F̄ψ̄.

11.4.3 Transformed functional derivatives in the good form

Using the previous lemma (11.25), Eq. (11.18) can be rewritten in a convenient way, where deriva-
tives of the Jacobian and of the coordinate transformation do not appear any more:

T−1 δ
δψα(y)T

−1(F̄ ) =
(
J −1f̄ψα + J −1f̄z̄ · z̄ψα + f̄J −1

ψα

)†

=
(
J −1f̄ψα − J −1f̄ψ̄β ψ̄

β
z̄ · z̄ψα

)†

=
(
1βα − ψ̄βz̄ · z̄ψα

)†
J −1F̄ψ̄β . (11.26)

This formula for the transformed functional derivative is now in a convenient form F̄ψ̄α = Mβ
αFψβ .

As expected, the result agrees with the chain-rule formula (11.16), as is confirmed by (11.20).

11.5 Transformed dynamics

Now, all the Hamiltonian structure has been expressed in the transformed system: the transformed
Hamiltonian functional in (11.3), and the transformed Poisson bracket in (11.4), with the trans-
formed functional derivative in (11.26). So, the transformed dynamics can be computed:

˙̄F = {̄F̄ , H̄ }̄

=

∫
J dz̄

(
1γα − ψ̄γz̄ · z̄ψα

)† (J −1F̄ψ̄γ

)

T−1Jαβ
(
1δβ − ψ̄δz̄ · z̄ψβ

)† (
J −1H̄ψ̄δ

)
.

To interpret this dynamics and compare with the expected formula, let us come back to the initial
variable z

˙̄F =

∫
dz T

(
1γα − ψ̄γz̄ · z̄ψα

)† (J −1F̄ψ̄γ

)

Jαβ T
(
1δβ − ψ̄δz̄ · z̄ψβ

)† (
J −1H̄ψ̄δ

)
.

The contribution of H̄ can be rewritten

TT−1 δ
δψβT

−1(H̄) = δ
δψβH . (11.27)

This abstract property is obvious but important to keep in mind, because it explains some cancel-
lations, such as the magnetization term in Chapter 4, which can be highly non-trivial in practical
computations when the change of coordinates is more involved than the one considered in Chapter 4.

The contribution of F̄ can also be rewritten

TT−1 δ
δψαT

−1(F̄ ) = δ
δψαF .
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Inserting the previous two relations, the dynamics becomes

˙̄F =

∫
dz FψαJαβHψβ = Ḟ .

This only confirms the consistency of the definitions we adopted, but it does not show what
explains the form of the transformed dynamics. It is more interesting to keep the transformed field
variable ψ̄ in the functional F̄ :

˙̄F =

∫
dz J −1F̄ψ̄γ

(
1γα − ψ̄γz̄ · z̄ψα

)
JαβHψβ

=

∫
dz̄ F̄ψ̄γ

∫
dz δψ̄γ(z̄)

δψα(z)J
αβHψβ =

∫
dz̄ F̄ψ̄γ{ψ̄γ(z̄), H} =

∫
dz̄ F̄ψ̄γ

˙̄ψγ(z̄) , (11.28)

using Eq. (11.13) to get the second equality. This shows that the transformation completely agrees
with a change of field coordinates, and the transformed dynamics both agrees with the initial
dynamics and is just given by a chain rule at the field level.

An additional remark is that the two terms involved in transformed functional derivatives, e.g.
(11.13) and (11.16), transfer to the transformed Poisson bracket and dynamics.

The first term just gives to the transformed Poisson bracket and dynamics the same expression
as the initial ones. It corresponds to considering that the scalar invariance (11.2) implies that the
transformed fields evolve in a similar way as the initial one.

As for the second term, it traduces the field dependence in the coordinate transformation.
For a near-identity transformation, it is of higher order compared to the first term. It implies
additional terms in the transformed dynamics and Poisson bracket compared to the corresponding
expressions in the initial system. For the dynamics, it traduces the effects of the time dependence
in the coordinate transformation:

˙̄ψγ(z̄) = ψ̇γ(z)− ψ̄γz̄ · z̄ψαψ̇α(z) ,

which is just a particular way to write the time evolution of Eq. (11.8). These remarks were clearly
illustrated in the simplified lifting considered in Chapter 4, and here they are confirmed for a
general lifting.

Conclusion

For a lifting of a coordinate transformation to the Hamiltonian structure of the corresponding
fluid-like field dynamics, we have generalized the method used in Chapter 4 to an arbitrary trans-
formation, even when the transformation depends on fields defined over a space that is changed
by the transformation. For the Hamiltonian structure, as expected, it mainly corresponds to a
chain rule, but interesting features are involved about this chain rule because transformed fields
are defined through an implicit function and at a moving point. This is because either the initial
point or the transformed one can be kept fixed, but not both, and when the coordinate used is the
transformed one, the field used has to be the transformed one.

In addition, we have shown how the chain rule can be obtained from the transformed functional
derivatives. This emphasized the deep difference between function chain rule and functional chain
rule, because the integration variable is mute for functionals but sensitive to computations of
functional derivatives, which is not the case of mute indices for functions (e.g. for scalar functions
defined as the scalar product of two vectorial coordinates).

After deriving the transformed Hamiltonian structure, the transformed dynamics was obtained
as agreeing with a change of field coordinate, with a transformation that implicitly depends on
time.

Here, the purpose was to study the lifting of transformations that affect all the coordinates. For
simplicity, and in order to better focus on the essential mechanisms at work, the case was limited
to a fluid-like theory, where all the fields are defined over the same space. For the Vlasov-Maxwell
system, an additional feature has to be taken into account: all the fields are not defined over the
same space. The lifting in such a framework is the next step of the work, and will be reported in
Chapter 5.



Chapter 12

Incidence, constructibility, and

dispensability of quarter-canonical

coordinates for Dirac truncations
in collaboration with Cristel Chandre

Abstract: In the presence of a quarter-canonical Poisson bracket, Hamilto-
nian reductions by Dirac’s theory of constraints, formulated as a projection of
derivatives, can be simplified by using a projector related to a mere bracket
truncation. The stiffness of the condition on the coordinates is investigated.
Quarter-canonical coordinates are observed to be fairly common, and espe-
cially in Dirac reductions. In addition, they can often be identified by hand
when they are not already present.
On another hand, such coordinates are not necessary to benefit from the sim-
plified projector, which can be investigated even in case the coordinates used
are not quarter-canonical ones. The formula for the projector is obtained first
for an explicit generic bracket suggested by examples from the ideal-fluid model
for plasmas, and then in a more abstract setting.
This brings about a generalization of the simplified projector to non-quarter-
canonical cases by providing it with a coordinate-independent expression even
when quarter-canonical coordinates and their associated truncation projector
do not exist. The results emphasize that the simplified projector only requires
half of the constraints not to be coupled with itself. Relations with the quarter-
canonical case and with orthogonal projectors are observed.

Introduction

This appendix chapter takes place just before Sect. 8.4 in Chapter 8. Indeed, the first few sections
of Chapter 8 showed the importance of the quarter-canonical structure for Dirac’s theory of con-
straints, formulated as a projection of derivatives. It induces the presence of a simplified projector
and makes the reduction closer to bracket truncations. But this structure is explicitly present only
when adapted coordinates are used. This asks a question about the incidence of such coordinates,
because they are interesting only if they are common enough.

On another hand, it often occurs that the natural variables are different. One can wonder
whether in such cases, the corresponding quarter-canonical coordinates can be identified, in order to
adopt them and make the Dirac reduction become just given by the simplified truncation projector.
Alternatively, it can be more interesting to identify the simplified projector directly in the natural,
non-quarter-canonical coordinates.

The present chapter addresses these questions. The first two sections are interested in the
incidence and constructibility of quarter-canonical coordinates. Sect. 12.1 shows that the quarter-
canonical structure is indeed fairly frequent in Dirac reductions, even in infinite-dimensional sys-
tems. Sect. 12.2 studies how quarter-canonical coordinates can be constructed when they are not
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present. Then, for the rest of the chapter, we will come to the second aspect of the problem, i.e. how
the corresponding bracket truncation and simplified projector appear when non-quarter-canonical
coordinates are kept, in a similar way as when the reduction to an incompressible fluid is performed
while keeping the natural field coordinates ρ and u. The quarter-canonical structure exists, but it
is not explicit in the Poisson bracket. Sect. 12.3 investigates its effects by considering the explicit
form of the Poisson bracket. Sect. 12.4 adopts a more abstract point of view and goes beyond the
quarter-canonical framework.

After clarifying those points about simplified projectors in non-quarter-canonical coordinates,
we will turn to the consequences of the quarter-canonical structure on Hamiltonian reduction
methods in the next Chapter. Then, in the light of the results, we will come back to the gyrokinetic
reduction and study how to use the Dirac truncation method in order to remove the gyro-angle
dimension from the base space of the Vlasov density. This will be the topic of Sect. 8.4 in Chapter 8.

For the notations, the present chapter behaves as a section of Chapter 8, where the common
notations are introduced once for the three companion chapters Chapter 8, 12, and 13.

12.1 Incidence of the quarter-canonical structure

In this section, the commonness of quarter-canonical coordinates is investigated. In Subsec. 12.1.1,
it is shown that they are always involved in Dirac reductions for finite dimensional systems when
half of the constraints is not coupled with itself, i.e. {φ1, φ1} = 0. Then, in Subsec. 12.1.2, more
qualitative reasons are given for their frequency in continuous media, where a general proof is not
available, and examples are given in the ideal-fluid model.

12.1.1 Fundamental case of existence

First, let us consider the case where the Dirac reduction starts from a scalar primary coordinate φ1.
Then the Darboux algorithm implies the existence of (local) semi-canonical coordinates (φ1,Φ2,χ),
i.e. coordinates such that the Poisson matrix becomes semi-canonical (8.11). Thus, the semi-
canonical structure (which is quarter-canonical as well) always exists in this case.

There are more complicated situations where the first constraint φ1 is a vectorial quantity,
and then the coefficients in (8.16) are actually matrices. Then, there is no Darboux theorem to
guarantee the existence of a semi-canonical structure, and there are explicit counterexamples, as
will be illustrated in Sect. 13.4.1. Nonetheless, it is still guaranteed when {φ1, φ1} = 0. The
Darboux algorithm allows to iteratively construct variables Φi2 canonically conjugated to φi1, for
each value of i. The condition {φ1, φ1} = 0 implies the independence of the variables φi1 and Φj2.
One ends up with the variables (φ1,Φ2, χ) that are semi-canonical even if φ1 is a vector.

To be more precise, the Darboux theorem gives only local coordinates, but in most of our exam-
ples, the coordinates happen to be global ones. More generally, we avoid to consider here technical
points which can generate obstructions to the argument in general but do not in many applications.
For instance, when inverting the Laplacian, we implicitly assume that proper boundary conditions
have been chosen. When going from vector fields to coordinates (e.g. when defining the Casimir
invariant coordinates ψC by ker(J)), we assume no obstruction occurs. The examples we mention
emphasize that such assumptions are often verified. They simplify much the framework, and imply
to work with the coordinate changes for the Poisson bracket (even for plasmas, i.e. continuous
media) in a similar way as in the case of matrices in a finite dimensional vector space. Also, a
property that helps much is that the Poisson bracket is linear in the field variables, but this is fairly
common in fluid and plasma dynamics [159].

Thus, the semi-canonical structure (and therefore the quarter-canonical) always exists when
{φ1, φ1} = 0. Because of this conclusion, the requirements for the semi canonical structures can
be shrunk to the only condition {φ1, φ1} = 0. This condition is not very stringent, since it often
appears in Dirac reductions.

Now, we come to the point where semi-canonical coordinates lose their relevance, and the role of
the quarter-canonical arises. Indeed, even if the semi-canonical structure exists, it is not necessarily
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implied in the reduction, because the second constraint does not have to be Φ2. The semi-canonical
form for the Poisson bracket is preserved with only a restricted number of constraints: Φ′

2(φ1,Φ2).
It is why it is seldom involved in Dirac reductions. On the contrary, the quarter-canonical bracket
is obtained with much more of them: φ′2(φ1,Φ2,χ), i.e. the second coordinate1 can be any function
in bijection with Φ2 (because it has to define a good change of coordinates). It is exactly the same
criterion that the second Dirac constraint has to satisfy: it has to be a function in bijection with
Φ2, otherwise the matrix of constraints is not invertible, because of (8.16), with b = −(φ′2)Φ2 . So,
not only quarter-canonical reductions are much more frequent than semi-canonical ones, but they
are actually the only possible Poisson bracket for Dirac reductions when {φ1, φ1} = 0.

12.1.2 Reasons for the occurrence

The argument of the previous subsection do not apply to continuous Hamiltonian systems, because
of the absence of a Darboux theorem for instance. In addition, for finite dimensional systems,
the argument can fail because of the possible non-global existence of the coordinates defined by
the Darboux theorem. So, in the present subsection, more qualitative reasons are given for the
incidence of quarter-canonical coordinates in Dirac reductions.

From an abstract point of view, the occurrence of quarter-canonical coordinates compared to
semi-canonical ones is as follows. Starting from a coordinate φ1, semi-canonical coordinates imply
for Φ2 and χ to satisfy conditions

{φ1,Φ2} = 1 , {φ1,χ} = 0 , {Φ2,χ} = 0 . (12.1)

It means integrating those equations "along the characteristics", which is guaranteed only locally for
finite-dimensional systems, as in the Darboux algorithm. Quarter-canonical coordinates drop the
requirements on Φ2. As a result, instead of relying on the Darboux theorem, the quarter-canonical
structure only relies on the Frobenius theorem [84,98].

Indeed, this structure is defined by the two conditions (8.13)-(8.14). The second one means the
existence of dim(ψ)−2. dim(ψ1) solutions to equation {φ1, F} = 0. By the first condition, one only
needs to find dim(ψ)−dim(ψ1) of them. Now, the Frobenius theorem states that such coordinates
exist (at least locally) if and only if the operator {φα1 , {φβ1 , ·}} − {φβ1 , {φα1 , ·}} is inside the linear
space generated by the operators {φα1 , ·}. But the Jacobi identity implies

{φα1 , {φβ1 , ·}} − {φβ1 , {φα1 , ·}} = {{φα1 , φβ1}, ·} , (12.2)

and the first condition {φ1, φ1} = 0 is enough for the Frobenius condition to be satisfied under its
most trivial form.

Like the Darboux theorem, the Frobenius theorem gives only local existence, but it is already
more general. So, obstructions to global existence are less frequent. For continuous media, such as
fluid models, these theorems do not apply but the absence of canonical coordinates can all the same
be linked to topological obstructions in the change of coordinates to Clebsch potentials [159], and
the topological requirements for the existence of quarter-canonical coordinates is much less strong.

A practical reason for the frequent occurrence of the quarter-canonical structure is that Hamil-
tonian reduction methods often rely on special properties of the semi-canonical structure, but the
quarter-canonical structure is most often enough to get them, while it is much less stringent. For
instance, we saw that it was enough for the Dirac reduced bracket to be a truncation of the initial
bracket. In Hamiltonian perturbation theory, it is enough to guarantee the existence of a conserved
quantity φ1 (the "action") when the Hamiltonian does not depend on the coordinate φ2 (the "con-
jugated" angle).

In order to illustrate the arguments above, a well-known example is the work of [85, 86] about
the guiding-center reduction. It is the reduction of particle dynamics in a strong magnetic field,

1Notice that also for the coordinates χ, the quarter-canonical structure is much more frequent than semi-canonical
one: instead of allowing only the coordinate change χ

′(χ), it allows for any transformation χ
′(φ1,χ).
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which was also the topic of Chapters 1 and 2. The phase space is given by (q,v), where q and v
are the particle’s position and velocity. The Hamiltonian is the particle kinetic energy

H = v2

2 ,

with the particle mass chosen unity m = 1 for simplicity. The Poisson bracket is

{F,G} = ∂vF · ∂qG− ∂qF · ∂vG+ ∂vF.eB× ∂vG .

The principle of the reduction is to get a conserved quantity µ̄, the magnetic moment, and to
isolate the fast dynamics into the conjugated coordinate, the so-called gyro-angle θ̄. The Darboux
algorithm was used in [85, 86] to build semi-canonical coordinates (µ̄, θ̄, χ̄) and get the desired
Hamiltonian reduction. The definition of the gyro-angle involved a local gauge, which could be
removed from the dynamics of the slow variables only by adopting new coordinates (µ̄, θ̄, χ̄′), and
by removing the requirement of the Poisson matrix being semi-canonical. Thus in this case, the
quarter-canonical structure is necessary and sufficient to get the desired Hamiltonian reduction
with a gauge-independent slow reduced dynamics.

This example has other interesting aspects than the requirements on µ̄ and θ̄. A third re-
quirement was desirable, that is to have a Hamiltonian sub-dynamics for χ̄′. This corresponds to a
Hamiltonian truncation. As shown in Chapter 8, this truncation is provided by the Dirac reduction,
but only if the structure is quarter canonical. Actually, in this case, the need for quarter-canonical
constraints is still more fundamental: if it is not obtained, not only the Dirac reduction is not a
truncation any more, but in addition the Dirac reduction can not be applied at all. Indeed, start-
ing from the constraint on the magnetic moment, a secondary constraint is needed, and φ2 must
correspond to the gyro-angle, otherwise the matrix of constraint is not invertible. This situation is
standard for Dirac reductions starting from a primary scalar constraint, as appeared in the previous
subsections. This point will be further developed in Chapter 13.

Let us turn to examples of quarter-canonical brackets in continuous Hamiltonian systems. In the
fluid model for plasmas (8.2) for instance, the mass density is coupled only with the compressible
part of the velocity, the magnetic field is coupled only with the (solenoidal part of the) electric
field, the compressible part of the electric field is coupled only with the compressible part of the
velocity, etc. but each of these pairing is non symmetric. Actually, only the velocity is not the
coordinate φ1 of a quarter-canonical bracket.

This observation is not a surprise, because most Poisson brackets are often built from canonical
brackets, and adding interaction terms with one of the initially conjugated variables, which spoil
both the canonical and the semi-canonical structure, but not the quarter-canonical structure. Also,
most Hamiltonian systems for continuous media are Lie algebras of semidirect product type [69,95].

As with concerns Dirac reductions for fluids and plasmas, most of them reveal a quarter-
canonical structure, e.g. the reduction to incompressible fluid, the reduction to electrostatic field,
the reduction to the dipolar approximation (uniform electric field), etc.

The quarter-canonical structure is not the only available structure for Dirac reductions in con-
tinuous media even for scalar constraints. It is easily seen by the cases where both φ1 and φ2 are
coupled with themselves. For scalar constraints, it is a specificity of infinite-dimensional systems:
the coefficients of the Poisson bracket are differential operators, and the diagonal components can
be non zero. For finite-dimensional systems, it can happen when the constraints φ1 and φ2 are vec-
torial. Two examples of such cases are the reduction to the Charney-Hasegawa-Mima model [32],
in which the constraints are related to ∇ · u and ρ− f(∇× u), with f some given function, and a
reduction related to the ideal-MHD model, in which the constraints are E+u×B and J−∇×B.

In practice, this is not typical. On the contrary, Dirac reductions in fluids and plasmas are most
often associated with a quarter-canonical structure, especially when {φ1, φ1} = 0, as is emphasized
by the various examples mentioned throughout this chapter, as well as Chapter 13. Probably one
of the reasons is that the invertibility condition is easy to control in quarter-canonical structures, as
will be emphasized in the next chapter, whereas it is much more involved to find invertible matrices
of constraints in other situations, and especially invertible matrices that give a reduced bracket not
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too complicated to deal with. For instance, one way to invert the matrix
(
c −b†
b a

)
is to invert not

only b, but b + ab−1†c as well. On the contrary, the matrix
(

0 −b†
b a

)
is straightforwardly inverted

as soon as b−1 is known.

12.2 On the identification of suited coordinates

The previous section showed that the quarter-canonical structure is very common in Dirac reduc-
tions. This is most convenient since Chapter 8 showed that in this case Dirac’s reduction procedure
can be strongly simplified, by becoming just a trivial projection of derivatives in the Poisson bracket,
which results in a mere bracket truncation. Now, this works only when the coordinates are suited
to the quarter-canonical structure. Most often, it is not the case in the initial coordinates. In such
cases, in order to benefit from the simplified truncation procedure, quarter-canonical coordinates
should be adopted, which essentially implies to identify them. This section investigates how this
can be done. More precisely, it is the topic of Subsect. 12.2.1. Then, the case of semi-canonical coor-
dinates together with a few examples will be considered in Subsect. 12.2.2. Last, in Subsect. 12.2.3
we will mention weakenings of the quarter-canonical requirements which could be interesting to
explore.

12.2.1 Case of quarter-canonical coordinates

In order to obtain quarter-canonical coordinates, one should solve equations (8.13)-(8.14). As a
first illustration from the warm fluid model, the first constraint can be taken as φ1 = ∇ × E.
Then the bracket is not quarter-canonical in the initial coordinates, since the solenoidal part of the
electric field is not coupled with only one field variable, but with two of them, the magnetic field
and the solenoidal part of the velocity, through

GE · (Fu −∇× FB)− FE · (Gu −∇×GB) .

But these can be combined in one variable φ2 by a change of variable from B (or u) to ∇×u+B.
Then a quarter-canonical structure is obtained with

φ1 = ∇×E , χ = (∇ · u,∇× u+B,∇ ·E, ρ) ,

and φ2 is taken as a supplementary coordinate, e.g. the simple variable ∇ × u, or the variable
∇× u−B orthogonal to χ.

This idea can be developed to fit in with the frequent situations where there are coordinates
(ψ1, ψ2) on ψ such that

{φ1, ·} = f(ψ1) · ∂ψ2 , (12.3)

and ψ1 contains φ1, which insures Jφ1φ1 = 0. This situation concerns most of the examples in this
chapter. Then the desired quarter-canonical coordinates can be obtained explicitly. First, restrict
the space on which Jφ1ψ acts so as to make it injective. Then for each of the derivatives ∂ψ2i

, iden-
tify its range Ri = Rg fi, and define the coordinates φ1i as the minimal non-zero intersections2 of
these Ri. Then, define Kj as the kernels of the transpose of the restriction of Jψφ1 to Ri. Finally,
set χ = ∩jKj , and φ2 as complementary coordinates to (φ1,χ) in ψ. The procedure allows to
compute the corresponding quarter-coordinates.

More generally, starting from a given coordinate φ1, quarter-canonical coordinates are obtained
by choosing χ as free coordinates complementary to φ1 in ker{φ1, ·} = ker b† 3 , and φ2 a free
coordinate complementary to (φ1,χ) in ψ. For instance one standard way to define φ2 is to take
it as Rg b, which corresponds to the coordinates orthogonal to (φ1,χ). Even if this method works
in some cases, the point is that ker{φ1, ·} is not sure to define good coordinates. The Frobenius

2For an illustration, see the example with φ1 = E in the next subsection.
3The operator b is {φ2, φ1}, as in Eq. (12.7) for instance.
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condition is needed in finite-dimensional systems to conclude locally when Jφ1φ1 = 0, and it does
not apply to infinite-dimensional systems.

As an example where it is difficult to identify the corresponding coordinates, the first constraint
can be taken as φ1 = ∇·u. Then the bracket is not quarter-canonical in the initial coordinates. For
a first step, let us make the bracket constant in the field variables4, excluding the gyro-magnetic
term (proportional to B/ρ and the self-coupling of the velocity (proportional to ∇× u/ρ). Then
the compressible part of the velocity is coupled with the mass density and the compressible part of
the electric field, through the terms

∇ · Fu(Gρ +∆−1∇ ·GE) , (12.4)

and these can be combined in ρ − ∇ · E. Then a quarter-canonical structure is obtained for this
part of the bracket, with

φ1 = ∇ · u , χ = (ρ−∇ ·E,B,∇×E) ,

and φ2 is taken as a supplementary coordinate, e.g. ρ, or ∇·u, or rather ρ+∇·E for an orthogonal
change of variables. In this example, there is an additional feature, because (12.4) are the only
terms involving derivatives with respect to the variables ρ or ∇ · E, so that after the change of
variable, χ1 = ρ − ∇ · E is a Casimir invariant, but this is only due to the special form of the
bracket.

Now, if we come back to the true fluid bracket, restoring the terms depending on the field
variables, the bracket previously obtained is not quarter-canonical. The system of equations for
ker{φ1, ·} trivially satisfies the Frobenius condition, but quarter-canonical coordinates are not easy
to find. They imply to identify the kernel of J∇·uψ · ∂ψF including the terms ∇ · (∇×u+B

ρ × Fu)
involving ∇× u+B. It implies a nonlinear differential equation, which may not be easy to solve,
even if it defines good global coordinates (which is not sure a priori).

In physically interesting situations, such difficulties are often avoided. This is confirmed by
the fact that Casimir invariants are generically easily identified as good coordinates, whereas they
should be concerned with the same kind of difficulties [159].

12.2.2 Case of semi-canonical coordinates

Let us turn to the case of semi-canonical coordinates. They are still more involved to define, because
the coordinates Φ2 are more restricted. First, they must satisfy JΦ2Φ2 = 0. This is guaranteed
for finite-dimensional systems when Φ2 is a scalar, and then by induction it carries over to the
case where φ1 and Φ2 are vectors. In infinite-dimensional systems, the diagonal coefficients can
be non-zero, the argument can not be applied, and the semi-canonical structure often does not
exist [159], even when the structure is quarter-canonical. Second, after a convenient coordinate Φ2

can be identified, then semi-canonical coordinates are obtained only after identifying in addition
coordinates χ′ on ker{φ1, ·} ∩ ker{Φ2, ·}. One way to proceed is to look for coordinates χ′′ on
ker{Φ2, ·}, and then to define the expected coordinates χ′ by (φ1,χ

′′) ∩ (Φ2,χ).
On another hand, the condition {Φ2,Φ2} is not essential. If it is removed, then χ′ are defined

as coordinates on ker{φ1, ·} ∩ ker{Φ2, ·}, with the condition that this space has dimension equal to
dimχ. For instance, if ker{Φ2, ·} has codimension dimφ1, (i.e. the operator satisfies the Frobenius
condition), then ker{φ1, ·} ∩ ker{Φ2, ·} verifies all the requirements: it has codimension 2 dimφ1,
it is a supplementary to φ1 and to Φ2. When the condition is not satisfied, one can look for
χ′ = ker{φ2, ·} in (φ1,χ), and the Frobenius condition involves the operator only on this subspace.
In any case, this condition restricts the available choices for Φ2.

In coordinates (φ1, φ2,χ
′), the bracket writes

Js =

(
0 −b† 0
b d 0
0 0 A

)
. (12.5)

This loose semi-canonical bracket is more general because from a true semi-canonical bracket, it
authorizes a change of coordinates Φ2 −→ Φ′

2(φ1,Φ2), where Φ′
2 can depend on φ1. It retains the

4This guarantees that it satisfies the Jacobi identity.
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important features of the semi-canonical coordinates because there is no coupling between (φ1,Φ2)
and χ′, and because φ1 is coupled only with φ2. The loose semi-canonical bracket is a way to
isolate the couplings of (φ1,Φ2) from χ′, but not requiring to identify coordinates Φ2 such that
JΦ2,Φ2 = 0, which may be pointless, and also impossible to get. In a similar way as for semi-
canonical brackets, the Jacobi identity implies that both (φ1, φ2) and χ′ are subalgebras, which
agrees with the presence of the Frobenius condition in the definition of Φ2 (see Sec. 12.2.3).

It practice, this additional information about subalgebras is quite helpful in order to identify
suitable coordinates. In some cases, it suggests the desired coordinates. For instance, for a quarter-
canonical Poisson bracket, the coefficients of Jφφ generally depend on χ, and the coefficients of
Jχχ depend on φ; the change to semi-canonical coordinates has to absorb these dependencies in
the change of variables, which can be a precise indication.

Let us consider a few examples now, and begin by the example φ1 = B, which is already
quarter-canonical in initial variables with Φ2 = ∇×E. It is not semi-canonical, because the terms
involving ∇×E and the magnetic field are

∇×u+B
2ρ · Fu ×Gu − FE ·Gu + FE · ∇ ×GB − (F ↔ G) , (12.6)

where the symbol −(F ↔ G) indicates antisymmetry, i.e. all the previous terms are written again,
with permutation of F and G and with inversion of the signs.

To get a semi-canonical bracket, the condition {Φ2,Φ2} = 0 is already verified, and

ker{Φ2, ·} = (∇× u+B,E, ρ,∇ · u) .

Then, the complementary coordinates are defined by

χ = ker{φ1, ·} ∩ ker{Φ2, ·} = (∇× u+B, ρ,∇ · u) .

The resulting structure is semi-canonical. It is simply the well-known structure obtained using the
potential vector, and the canonical momentum instead of the kinetic momentum. Another way to
identify this structure could have been to try to combine all the terms (12.6) of J∇×Eψ∂ψ in only
one term ∇× ∂B, which indicates the change of coordinates

u −→ (∇ · u,∇× u) , and then ∇× u −→ χ1 = ∇× u+B .

Last, a third method was available. It relies on the comment above about subalgebras: the semi-
canonical bracket has to induce a subalgebra for χ. Eq. (12.6) shows that the variables (u,B) must
be combined χ1 = ∇×u+B, and this is enough to get the semi-canonical coordinates in this case.

Next, one can start from the other constraint φ1 = ∇×E, as in the example in Sec. 12.2.1. It
is more involved because the initial bracket is not quarter-canonical. From

ker{φ1, ·} = (ρ,E,∇× u+B) ,

intermediate quarter-canonical coordinates

χ′ = (∇× u+B, ρ,∇ ·E)

are defined. The secondary constraint φ2 can be chosen freely as a supplementary coordinate. It
is natural to choose it as a supplementary to ∇× u+B in (∇× u,B), e.g. φ2 = ∇× u, and one
gets a quarter-canonical bracket, where the terms involving φ1 or φ2 are

χ′1

2ρ · (∇× Fφ2 +∇× Fχ′1)× (∇×Gφ2 +∇×Gχ′1) + FE · ∇ ×Gφ2 − (F ↔ G) .

The freedom can be used to look for semi-canonical coordinates (Φ2,χ). A first way is to use the

condition {Φ2,Φ2} = 0. With Φ2 = Φ2(∇×u,B), the condition writes χ
′1

ρ ·Φ2u ×Φ2u = 0, which
indicates Φ2 = B as the simplest choice. Then the standard procedure can be used to get semi-
canonical coordinates χ, but in this case, this is useless, because the coordinates χ′ already convene.
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A second way is to use the subalgebra condition; it indicates that ∇× ∂φ2 +∇× ∂χ′1 must be ab-

sorbed in ∂χ′1 , which means Φ2 = φ2−χ′1, and this is again enough to get a semi-canonical bracket.

As a third example, the primary constraint is chosen as φ1 = E. It illustrates the procedure
when the matrix Jφ1χ involves several independent quarter-canonical sub-structures. Then {φ1, ·} =
−∂u +∇× ∂B and ker JEψ evidently includes (ρ,E,∇ ·B). It remains to study the action of the
matrix JEψ on the subspace (u,∇ × B). The term ∂u is a bijection between E and u. And the
term ∇ × ∂B is a bijection between ∇ × E and ∇ × B. Thus, the space E is divided into two:
R1 = ∇×E and R2 = ∇ ·E. On the first space, JEψ

†
is a bijection onto ∇× (∂u −∇× ∂B), and

the kernel of JEψ is K1 = ∇× (∂u+∇×∂B). On the second space, JEψ
†

is a bijection onto ∇·∂u,
and the kernel K2 of JEψ is zero. Thus, adopting coordinates

(φ1a, φ1b) = (∇ ·E,∇×E) , (φ2a, φ2b) = (∇ · u,∇× u) and χ = (∇× (u+∇×B), ρ,∇ ·B) ,

one gets a quarter-canonical structure both for (φ1a, φ2a) and for (φ1b, φ2b).
As for the semi-canonical structure, the one corresponding to (φ1b, φ2b) was already presented

in the previous paragraphs. The one corresponding to (φ1a, φ2a) is not easy to get, nor sure to exist.
Neither the condition {Φ2,Φ2} = 0, nor the condition {Φ2,χ} = 0, nor the subalgebra argument
give a straightforward result.

This reminds that quarter-canonical coordinates are much easier to find than semi-canonical
ones. Actually, in this chapter, quarter-canonical coordinates are presented starting from any of
the initial coordinates, except φ1 = u (because it is self-coupled, and in addition, the self-coupling
coefficient involves u itself). On the contrary, the semi-canonical structure is obtained only for the
couple (∇×E,∇×B), but the result was already known in the literature.

12.2.3 Towards weakened requirements for the quarter-canonical structure

Among the two defining properties (8.13)-(8.14) of the quarter-canonical structure, the second one
turned out to be only optional. The hypothesis {φ1, φ1} = 0 was enough to guarantee quarter-
canonical coordinates, for instance by applying the Darboux theorem. Now, one can consider
releasing also this hypothesis by replacing it by a less stringent property, which would be enough
to obtain it. The reason is that for the quarter-canonical structure, it is more efficient to work with
the Frobenius theorem, and the role of the condition {φ1, φ1} = 0 was only to make the Frobenius
condition trivial. So strong a requirement is not needed. It is enough to have the Frobenius
condition, there is no need for it to be trivial.

So, it would be interesting to identify an hypothesis allowing a self-coupling for φ1, but at the
same time maintaining the Frobenius theorem available to identify quarter-canonical coordinates.
In this case, the Frobenius condition would recover its full form, which, for Hamiltonian systems is
related to the operator (12.2). This would mean that the matrix Jφ1φ1 corresponds to a subalgebra
(to within a free presence of the Casimir invariants, and free diagonal components). This subalgebra
criterion may not be satisfied and a simple illustration from the fluid model is given by φ1 = ∇×u.
Then, the operator involved in {φ1, φ1} is ∇× (∇×u+B

ρ ×∇×), and the Frobenius condition is not
verified.

With this subalgebra hypothesis for φ1 (which is much less stringent than the condition {φ1, φ1} =
0), the self-coupling can be isolated to get the corresponding quarter-canonical structure, provided
it also satisfies the subalgebra criterion. The principle is to adopt the coordinates (φ1a, φ1b) on
φ1, where φ1b = ker{φ1, ·} ∩ φ1, and φ1a are complementary coordinates. Then, χ are chosen as
complementary coordinates to φ1b in ker{φ1, ·}. Next, φ2 is chosen as a complementary coordinate
to (φ1b,χ) in ker{φ1a, ·}. Finally, in coordinates (φ1a, φ1b, φ2,χ), the bracket writes

J =

(
M 0 0 0
0 0 −b′′† 0
0 b′′ a −d†
0 0 d A

)
.

It is quarter-canonical in (φ1b, φ2,χ
′) with χ′ = (χ, φ1a), and weakened-semi-canonical in coordi-

nates (φ1a,χ
′′) with χ′′ = (φ1b, φ2,χ).
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Notice however that with the subalgebra hypothesis, the equations to identify the coordinates
might be difficult to solve in practice. Indeed, in the examples, the difficulties to identify ker{φ1, ·}
often arose because of the presence of variables φi factorized with the corresponding derivative ∂φi ,
i.e. when one departs from the setting of (12.3).

12.3 Investigation of an explicit generic bracket

The two previous sections were interested in obtaining quarter-canonical coordinates, in order to
benefit from the simplified truncation projector for Dirac reduction. One can think the other way
round. Instead of transforming the system to fit with the action of the projector, one can try to
identify the projector in the initial coordinate system. It is the topic of this section and the next
one. More precisely, this section investigates the question by working on the explicit form of the
Poisson bracket, whereas the next one will be interested in a more abstract, coordinate indepen-
dent setting. Both sections proceed by first identifying the simplified projector, and then turn to
examples, consequences, or interpretations of the results.

As an illustration and a motivation for the following, one can want to perform the reduction to
an incompressible fluid, but keeping ρ, u as the field coordinates. The quarter-canonical structure
exists, as was shown in Chapter 8, but it is not explicit in the Poisson bracket.

In order to describe this kind of situations, we consider a general setting where both constraints

involve operators. The field variables are ψ. The constraints are φ :=
(
ĝ(ψ1), ĥ(ψ2)

)
, where ĝ and

ĥ are functions of the field and their derivatives. The field derivative of the constraints are

(g, h) := (φ1ψ, φ2ψ) ,

where the operators φiψ are defined by

δφi(x)
δψ(y) = φiψ(x)δ(x− y) = φi

†
ψ(y)δ(y − x) ,

for i ∈ {1, 2}. The particular case of an incompressible fluid will corresponds to

ĝ(ψ1) = ρ , ĥ(ψ2) = ∇ · u , ψ1 = ρ− ρ0 , ψ2 = u .

The existence of a quarter-canonical structure corresponds to two conditions: the first one is
{ĝ(ψ1), ĝ(ψ1)} = 0, and the second one is the existence of coordinates χ complementary to
ĝ(ψ1), ĥ(ψ2) such that {ĝ(ψ1),χ} = 0. Those are not simple to explicit in the initial coordi-
nates, and we simplify the requirements: we rather assume that {ψ1, ψ1} = 0. So, in coordinates
ψ, the Poisson bracket writes

J =

(
0 −b† −v†
b a −d†
v d A

)
. (12.7)

This is more general than the quarter-canonical structure, in the sense that it does not imply
{φ1,χ} = 0, but it is more restrictive than the quarter-canonical structure in the sense that
requiring {ψ1, ψ1} = 0 is stronger than requiring {φ1, φ1} = 0.

These assumptions agree with most of the examples considered in Chapters 8 and 13, when they
are studied in the natural coordinates (ρ,u,E,B). For instance, when the initial (natural) variables
are kept for the incompressible reduction, the electrostatic reduction, or the dipolar approximation
(uniform electric field), then operators are involved in the constraints. The quarter-canonical
structure is not exactly present in the initial coordinates ψ1, φ2, but there is no self-coupling for
ψ1.

12.3.1 Simplified projector

In order to perform the Dirac reduction on this system, the matrix of constraints

C =
(

0 −gb†h†
hbg† hah†

)
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must be invertible, i.e. hbg† must be invertible. The invertibility is only modulo the kernel of the
operator g†, since it is the effective space for the constraint φ1. This corresponds to the standard
(strong) invertibility condition. Actually, for the Dirac bracket to provide the expected reduction,
what is needed is just that the constraints become Casimir invariants [35]. For instance for φ1, it
writes bg†(hbg†)−1(hbg†) = bg†. For this weak invertibility, the condition is just ker(h)∩Rg (bg†) =
0, and it is also the condition for the projector g†(hbg†)−1hb to be unique.

Then the inverse of the matrix of constraints is

D = C−1 =
( γ α

−α† 0

)
,

with α = (hbg†)−1 and γ = αhah†α†. The Dirac projector is given by

1− P∗ = φ
†
ψDφψJ =

(
αhb αha(1−h†α†gb†) αh(d†+ah†α†gv†)
0 α†gb† α†gv†
0 0 0

)
. (12.8)

The Dirac bracket J∗ = P†
∗JP∗ is complicated to write. Instead, it can be written with a

simplified projector, which makes its meaning clearer:

J∗ = P†J′∗P , (12.9)

with P =

(
1−g†αhb 0 0

0 1−h†α†gb† 0
0 0 1

)
, and J′∗ = J+

(
0 0 0
0 0 −d†−ah†α†gv†

0 d+vg†αha† vg†αhd†−dh†α†gv†+vg†γgv†

)
. (12.10)

Notice that P is the simplified projector corresponding to a bracket truncation. The reduced
bracket is not given by a truncation of the initial bracket, because J′∗ 6= J. But the presence of the
projector P guarantees that the constraints are Casimir invariants of the reduced bracket, since
(1− g†αhb)g† = 0 and (1− h†α†gb†)h† = 0.

When v = 0 (or when d = a = 0, but it is more strictly restrictive), then J′∗ = J and P is
a truncation projector. It precisely corresponds to the case where the initial bracket writes as a
quarter-canonical matrix5. For the following, we will suppose it is the case: v = 0.

In the incompressible reduction, for instance, this condition is fulfilled and the simplified pro-
jector in the initial coordinates is

P∗ =

(
1−g†αhb 0 0

0 1−h†α†gb† 0
0 0 1

)
=
(

0 0 0
0 1−∇∆−1∇· 0
0 0 1

)
.

12.3.2 Relation with the quarter-canonical structure

In the previous subsection, the presence of the operators ĝ and ĥ in the definition of the constraints
means that the reduced bracket is not exactly quarter-canonical. All the same, in Eqs. (12.8)-
(12.10), the vicinity of a quarter-canonical structure in initial coordinates is traduced by the reduced
bracket being given by the simplified projector P. The reduced bracket is a projection of the
initial bracket for the parts of the bracket that are already put into quarter-canonical form. This
generalizes the result about simplified projectors for Dirac brackets.

Notice that because of the absence of quarter-canonical coordinates, the projector involves
terms (namely caused by g and h) on the left of the bracket coefficient b. It does not corresponds
exactly to a bracket truncation. Thus, the generalization only concerns Dirac brackets being given
by simplified projectors, but not Dirac brackets being given by bracket truncation.

Even when the reduction is quarter-canonical, i.e. there exist coordinates χ such that {φ1,χ} =
0, the use of non quarter-canonical coordinates is traduced by some coefficients being not 1 but a
projector, e.g. 1 − h†α†gb†. This projector is just the projector onto truncated quarter-canonical
coordinates, but it is obtained remaining in natural variables. This is an advantage of the Dirac
reduction over the subalgebra reduction (see Chapter 13): it provides a projector when adapted
coordinates can not be guessed. As usual, let us illustrate it by the incompressible reduction: the
variable complementary to the constraint φ2 is provided by the procedure:

uS = (1− h†α†gb†)u = (1−∇∆−1∇·)u ,
5Notice that this does not mean that the bracket is quarter-canonical, since dimψ1 6= dimψ2 in general. In

addition, the coordinates are (ψ1, ψ2), i.e. they are different from the constraints (φ1, φ2)).
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it is not chosen as an a priori coordinate.
As a result, quarter-canonical coordinates can be defined a posteriori by the projectors P2 =

h†α†gb† and 1−P2. Then the bracket becomes quarter-canonical on the surface ψ2 = 0, and in the
whole space when P2 does not depend of ψ2 or at least {φ1,P2} = 0. Indeed the field coordinates
can be taken as (ψ1a, ψ1b, ψ2a, ψ2b, ψi>3), with ψ1a = φ1, ψ1b any supplementary coordinate on
ψ1, ψ2a = P2ψ2 and ψ2b = (1 − P2)ψ2. Then, {ψ1a, ψ1} = 0 and {ψ1a, ψi>3} = 0 were already
guaranteed, and now one has (at least on the surface ψ2 = 0) {ψ1a, ψ2a} = −gb†P2 = −gb†, and thus
{ψ1a, ψ2b} = −gb†(1 − P2) = 0. As the matrix of constraints is invertible, one has dimψ1a = ψ1b,
and the matrix is indeed quarter-canonical.

12.3.3 A projection by changing coordinates twice

In the results of the previous subsections, expressions such as h†α†gb† show up in the projector.
They can be interpreted as traducing a projection (or a truncation) by changing coordinates for-
wards and then backwards. In adapted coordinates (φ1, φ2,χ), the simplified projector P is given
by the matrix (8.6). In other coordinates ψ, the projector P is given by the same matrix expressed
in a different coordinate system. Its expression is exactly

1− P = (∂ψφi)
†(∂φiψ)

† . (12.11)

When the projector h†α†gb† is studied from this point of view, the factor α†gb† can be viewed as
a change (and a choice) of coordinates adapted to the constraint φ2, and the factor h† corresponds
to the change of coordinates back to ψ2. Other interpretations are possible, although less natural.
For instance, gb† can be considered as the transformation forwards, then h†α† corresponds to the
transformation backwards. There is an arbitrariness in the choice of the second space (the range
of the transformation forwards). An intrinsic choice is to take it as identical to the initial space (or
rather a subspace immersed in the initial space). In this case, h†α†gb† is interpreted as the factor
for the transformation forwards, i.e. as a coordinate for the constraint φ2, that lies in the same
space as ψ2. Then the factor corresponding to the change of coordinate back to ψ2 is just a factor
1 (it is an immersion).

12.3.4 Orthogonal projector

Another interesting feature of this example is that it explains why the Dirac projector is often an
orthogonal projector, but it confirms that it may not be so. An orthogonal projector is obtained
when the constraints are such that h†α†gb† and g†αhb are self-adjoint, e.g. for the incompressible
reduction, where α is self-adjoint, h = gb† and g = hb.

More generally, this case just corresponds to the natural situation for quarter-canonical struc-
tures, i.e. the natural J-secondary constraint. Indeed, starting from a constraint φ1 = ĝ(ψ1),
J-secondary constraints are defined by the condition that {φ1, F} = −gb†φ2†ψ2

is an invertible

operator in the weak sense, i.e. Rgφ2
†
ψ2

∩ ker gb† = 0. A natural choice is φ2ψ2
= gb†. If gb† is

independent of ψ2, it corresponds to φ2 = gb†ψ2. In any case, it means that {φ1, φ2} = (gb†)(gb†)†

is self-adjoint, and the projectors (e.g. (gb†)†α†(gb†)) are orthogonal. Another point of view is that
(gb†)†α†(gb†) is 1 on Rg (gb†)†, which means that φ2 is defined such that Jφ1φ2 = 1 on the space of
constraints. This is indeed the most natural J-secondary constraint.

It is obvious but useful to remind that this natural case is not the only available choice, and
the simplified projector is not forced to be orthogonal. For instance, in the reduction to an incom-
pressible fluid, the choice φ2 = ∇·u corresponds to the orthogonal projector ∇∆−1∇·, whereas the
choice φ2 = ∇ · (ρu) corresponds to the projector ∇(∇ · ρ∇)−1∇ · ρ [33], that is not orthogonal.

12.4 Coordinate-independent formulation

In the last section, the explicit form of the Poisson bracket was used to study how quarter-canonical
effects can indeed be observed in coordinates that are not quite quarter-canonical. The drawback of
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the method is that it did not deal exactly with a quarter-canonical structure, and it was restricted,
because its results can be applied only to situations that fit with its form of Poisson bracket.

On the other hand, the results emphasized the distinction between the truncation projector,
which exists only for a quarter-canonical structure, and the simplified projector, which exists in a
more general context. This suggests to identify in a more abstract perspective the conditions and
effects of the simplified projector in contrast with the truncation projector.

So, we get rid of both the coordinate system and the explicit form of the Poisson bracket. In
Subsec. 12.4.1, the expression of the simplified projector is obtained, and the following subsections
will study examples or consequences of the result.

Arbitrary coordinates are used, and the condition {φ1,χ} = 0 (which is coordinate dependent)
is released. We only assume that {φ1, φ1} = 0. This condition is coordinate independent, since it
depends only on the constraints themselves, and more precisely on the primary constraint, which
is fixed at the beginning of the Dirac reduction. As usual, the Dirac projector is defined by

1− P∗=(∂ψφα)
†Dαβ∂ψφβJ

=(∂ψφ1)
†D11∂ψφ1J+ (∂ψφ1)

†D12∂ψφ2J (12.12)

+(∂ψφ2)
†D21∂ψφ1J+ (∂ψφ2)

†D22∂ψφ2J ,

where Dαβ = (C−1)αβ is the inverse of the matrix of constraints.

12.4.1 Simplified projector

The role of P∗ is to give the Dirac reduced bracket through J∗ = P†
∗J = JP∗ = P†

∗JP∗. On another
hand, in the specific case where the condition {φ1, φ1} = 0 is verified, the following relations hold:

D22 = 0 , D12 = −D21† = C−1
21 , D11 = −D12C22D21 = −D12∂ψφ2J(∂ψφ2)

†D21 .

They emphasize that the matrix of constraints is invertible if and only if {φ1, φ2} is invertible.
Inserting these relation in Eq. (12.12), the Dirac bracket JP∗ can be rewritten as

P†
∗JP∗ = JP∗ =J− J(∂ψφ1)

†(D21)†∂ψφ2J(∂ψφ2)
†D21∂ψφ1J

+ J(∂ψφ1)
†(D21)†∂ψφ2J− J(∂ψφ2)

†D21∂ψφ1J

=
(
1− (∂ψφ2)

†D21∂ψφ1J
)†

J
(
1− (∂ψφ2)

†D21∂ψφ1J
)
= P†JP ,

where P is the simplified projector, defined by

1− P = (∂ψφ2)
†D21∂ψφ1J . (12.13)

Thus the condition {φ1, φ1} = 0 is enough for the existence of a simplified projector, and in this case
a coordinate-independent expression for this projector is provided by Eq. (12.13). This is much
less restrictive than in Sect. (12.7), and also than the quarter-canonical case. Notice that this
simplified projector does not involve the inverse of the matrix of constraint, but only the inverse of
the operator {ψ1, ψ2}, as expected. In the case of the reduction for incompressibility, the operator
{ψ1, ψ2} is the Laplacian, involved in the projector ∇∆−1∇·.

12.4.2 Example of application

To illustrate the interest of this formula for the simplified projector, a generic Poisson bracket with
{φ1, φ1} = 0 is written in coordinates (φ1, φ2,χ), with χ arbitrary

J =

(
0 −b† −v†
b a −d†
v d A

)
. (12.14)

Be careful that the same symbols as in Eq.(12.7) are used for the coefficients of the matrix, but
now the coordinates are suited to the constraints. The Dirac projector is easily obtained as

1− P∗ =

(
1 0 b−1(vb−1a−d)†
0 1 b−1†v†
0 0 0

)
.
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The Dirac bracket writes

J∗ =
( 0 0 0

0 0 0
0 0 A+vb−1ab−1†v†+vb−1d†−db−1†v†

)
.

As for the projector given by (12.13), it is quite simplified compared to P∗ :

1− P =
(

0 0 0
0 1 b−1†v†
0 0 0

)
.

But it is easy to check that it actually gives the same reduced Poisson bracket. The use of non-
quarter-canonical coordinates is traduced by the simplified projector being different from a mere
truncation projection. So, the projector (12.13) can be used to simplify the computations even
when the bracket is not quarter-canonical.

12.4.3 Case of quarter-canonical coordinates

In the specific case where the bracket is quarter-canonical (i.e. v = 0 in Eq. (12.14)), all the results
are simplified, but the simplified bracket (12.13) still keeps its interest. The Dirac projector P∗ is
easily obtained with Eq. (8.17), and it provides the Dirac bracket J∗, which results in a bracket
truncation in this case:

1− P∗ =
(

1 0 −b−1d†
0 1 0
0 0 0

)
, J∗ =

(
0 0 0
0 0 0
0 0 A

)
.

So, the Dirac projector can be replaced by the truncation projector Pt. Now, the projector P given
by (12.13) is still simpler, since they are given by

1− Pt =
(

1 0 0
0 1 0
0 0 0

)
, and 1− P =

(
0 0 0
0 1 0
0 0 0

)
. (12.15)

Thus, the projector P from formula (12.13) is the most interesting, because of the simplicity of its
result, because it is available in arbitrary coordinates, and because it relies on the structure of the
bracket itself: it corresponds to taking the subalgebra without φ2 (see Chapter 13).

12.4.4 When some coefficients are operators

We now come back to the case considered in the previous section. Notice that in the general case
(where v 6= 0), we had not identified a simplified projector to replace the Dirac bracket. The result
of the previous subsections show that actually the simplified projector (12.13) exists. It writes

1− P =

(
0 0 0
0 h†α†gb† h†α†gv†
0 0 0

)
.

It is indeed much simpler than the Dirac projector (12.8). When the bracket is quarter-canonical,
it becomes trivial

1− P =

(
0 0 0
0 h†α†gb† 0
0 0 0

)
.

It is simplier both than the Dirac projector (given by (12.8) with v = 0), and than the truncation
projector obtained in (12.10). Its action is just to project the component ψ2 in such a way as to make
φ2 become a Casimir invariant. For example, for the incompressible reduction, it straightforwardly
gives the projector ∇∆−1∇· whether the coordinates used are adapted ones or not.

12.4.5 A few consequences

Another interest of formula (12.13) is that it shows that the range of the simplified projector
is Rg (φ2

†
ψ) and its kernel is ker(φ1ψJ). The projector is orthogonal exactly when those spaces

are orthogonal. The (strong) invertibility condition implies the inverse of φ1ψJφ2
†
ψ to be unique

between Rg (φ1ψJ) and a complementary set to ker(φ2
†
ψ). This means that Rg (φ2

†
ψ) and ker(φ1ψJ)

are complementary, i.e. Rg (φ1ψJφ2
†
ψ) = Rg (φ1ψJ). The weak invertibility condition means that
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the inverse does not have to be unique, but only unique modulo ker(Jφ2
†
ψ), which corresponds to

Rg (Jφ2
†
ψ) ∩ ker(φ1ψ) = {0}.

In a similar way as in Subsect. 12.3.2, in case {φ1,P} = 0, e.g. when P does not depend
on the field variables, then this projector can be used to identify φ2 and build quarter-canonical
coordinates (φ1, φ2,χ), with φ2 = (1− P̂)ψ, and (φ1,χ) = P̂ψ. Indeed, in these coordinates, the
Poisson bracket is quarter-canonical since

{φ1, P̂ψ} = φ1ψJ
(
1− φ2

†
ψ(φ1ψJφ2

†
ψ)

−1φ1ψJ
)
= 0 ,

and {φ1, (1− P̂)ψ} = φ1ψJφ2
†
ψ(φ1ψJφ2

†
ψ)

−1φ1ψJ = φ1ψJ

is (weakly) invertible. This is another way to see that the quarter-canonical structure is implied as
soon as {φ1, φ1} = 0, even if computations can be done with other coordinates, as was the goal of
this section.

Conclusion

This chapter investigated the stiffness of the condition on the coordinates to benefit from the
simplified truncation projector for Dirac reductions in the presence of a quarter-canonical structure.
The condition appeared as easily satisfied as soon as {φ1, φ1} = 0. Quarter-canonical coordinates
are then very common, and especially in Dirac reductions. In finite dimensional systems, it is
even the only possible structure, as a result of the Darboux theorem, or rather of the Frobenius
theorem. More generally, the same conclusions are most often observed also in field theory. A
practical motivation for the high incidence of the quarter-canonical structure is that it is much less
stringent than the semi-canonical one, while it retains its main advantages.

On another hand, when they are not already present in the Poisson bracket, quarter-canonical
coordinates can most often be identified by hand. This is because linearity is most common in
Poisson brackets for fluids and plasmas, and also in the definition of constraints. Many sources of
obstructions can appear: algebraic, topological, computational, related to operator invertibility, to
integrability, etc. But in most practical cases, such pathological effects are absent and the deriva-
tion works in a similar way as for matrix calculus.

Changing to quarter-canonical coordinates is not necessary. The effects of the quarter-canonical
structure can be identified in Dirac reductions while keeping non-quarter-canonical coordinates. In
this chapter, the formula for the simplified projector was obtained for a specific case where the
functional derivatives involved in the quarter-canonical structure are acted upon by operators, as
is suggested by frequent examples of Dirac reductions in plasmas.

More, even the existence of quarter-canonical coordinates is not needed for a simplified pro-
jector to be available, even if in this case it can not be completely interpreted as a truncation
projector. Using only the requirement that half of the constraints is not coupled with itself, an
explicit coordinate-independent expression was obtained for the Dirac simplified projector, which is
thus formulated in a quite general setting. This extends its domain and standardizes its application.

As the next exploration about the quarter-canonical structure, we will turn to its impacts on
the Dirac procedure and its relations with the reduction method based on bracket truncations.
This is the topic of the following chapter 13.

Then, we will come back to the gyrokinetic reduction and will consider the removal of its
two superfluous dimensions (gyro-angle and magnetic moment) in the light of quarter-canonical
reductions. This will be the topic of Sect. 8.4 in Chapter 8.



Chapter 13

Impacts of quarter-canonical structures

on Dirac and subalgebra

reduction methods
in collaboration with Cristel Chandre

Abstract: Consequences of the presence of a quarter-canonical structure in a
Poisson bracket on Hamiltonian reduction methods are investigated. For Dirac’s
theory of constraints, this structure is shown to have an crucial impact on the
reduction procedure, because it guarantees the inversion of the matrix of con-
straints and it is determinant for the available choices for secondary constraints.
This induces a more complete method for identifying suitable secondary con-
straints.
In addition, the quarter-canonical structure gives rise to an alternative proce-
dure based on a mere bracket truncation. It is legitimated by the presence of
a Lie-subalgebra, and is best viewed in the framework of another Hamiltonian
reduction method, corresponding to a projection onto a subalgebra, which of-
fers complementary possibilities compared to the Dirac method, since it is often
computationally little involved and offers much pliancy.
The results are illustrated with several examples, mainly taken from the ideal-
fluid model for plasmas, for instance the reduction for an incompressible or for
an electrostatic dynamics.

Introduction

Similarly as Chapter 12, the present appendix chapter takes place just before Sect. 8.4 in Chapter 8.
Indeed, the first few sections of Chapter 8 showed that the quarter-canonical structure replaced the
Dirac projector by a simplified projector, related to a mere bracket truncation. We now analyse
the impacts of these facts on Hamiltonian reduction methods.

Indeed, truncations usually do not preserve the Hamiltonian character, and Dirac reductions
usually require the matrix of constraints to be invertible, whereas such difficulties seem to have
disappeared in this case. This clearly requires further investigation. Especially, it suggests that
for Dirac reductions, the quarter-canonical structure impacts the invertibility of the matrix of
constraints, and therefore the choice of a secondary constraint. On the other hand, for reductions
based on bracket truncations, it suggests that some structure (which will appear to be a subalgebra)
is underlying in order to legitimate the truncation method from a Hamiltonian point of view; its
relations with the quarter-canonical structure and with the Dirac method will be worth considering.

After clarifying those points about quarter-canonical structures in Hamiltonian reductions, we
will come back to the gyrokinetic reduction and consider the removal of its two superfluous dimen-
sions from this point of view. This will be the topic of Sect. 8.4 in Chapter 8.

The organization of this chapter is the following. In Sect. 13.1, the invertibility of the matrix

259
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of Dirac’s constraints is considered in the case of a quarter-canonical bracket. In Sect. 13.2, the
effects of this structure on the available choices for the secondary constraints are investigated. A
procedure shows up, linked to the structure of the bracket and of the Dirac reduction. Especially, it
allows to study all the possible secondary constraints in a way that is complementary to the usual
procedure involving the Hamiltonian function. In Sect. 13.3, we turn to the simplified reduction
method based on the use of the truncation projector instead of the Dirac projector. It is shown to
consist in a projection onto a subalgebra, which is equivalent to the Dirac method in the case of
quarter-canonical reductions. In Sect. 13.4, a few aspects of the pliancy of the subalgebra method
are presented, and the traces of the canonical structure in subalgebra reductions are analysed.

With regard to notational conventions, the present chapter behaves as a section of Chapter 8,
where the common notations are introduced once for the three companion chapters Chapter 8, 12,
and 13.

13.1 On the invertibility of the matrix of constraints

For quarter-canonical brackets, the Dirac procedure can give only one very simple reduced bracket:
the truncated bracket, which can be identified without inverting the matrix of constraints. But
in principle, the procedure needs the matrix of constraints to be invertible. In this section, we
investigate this point, especially in order to clarify what would happen with the truncated bracket
if the matrix was not invertible. In Subsec. 13.1.1, it is shown that for quarter-canonical brackets,
the invertibility condition is automatically satisfied. This will have effects on the choice of a
secondary constraint, for which strong requirements arise from the quarter-canonical structure.
This will be the topic of Subsec. 13.1.3. In Subsecs. 13.1.2 and 13.1.4, a few examples will be
considered.

13.1.1 Quarter-canonical matrices of constraints are invertible

Let us begin as usual by considering a finite-dimensional system with scalar primary constraint φ1.
Then, the antisymmetry of J implies {φ1, φ1} = 0, hence the matrix of constraints is not invertible
and a secondary constraint φ2 is needed.

The Darboux algorithm provides semi-canonical coordinates (φ1,Φ2,χ) (at least locally...).
Then, the matrix of constraints is exactly given by

C =
(
0 −b
b 0

)
,

with b = −∂φ2/∂Φ2. The matrix C is invertible if and only if b is non-zero. It means that the
constraint φ2 is in bijection with Φ2. So, Φ2 −→ φ2 is a change of coordinates. With this coordinate,
the Poisson bracket writes exactly (8.12), with suitable coefficents. Thus, the quarter-canonical
structure is the only available structure for the Dirac reduction with two scalar constraints.

A remark about terminology is in place. The necessary and sufficient condition above concerns
only the constraints (φ1, φ2). The remaining coordinates χ can be chosen arbitrarily, since they
do not affect Dirac reductions. So, the expression of the bracket is not quarter-canonical in gen-
eral, and quarter-canonical Poisson brackets are not the only brackets available for the reduction.
Nevertheless, the quarter-canonical structure is present, as shown in Chapter 12. This emphasizes
that the quarter-canonical structure, which is coordinate independent, must be distinguished from
the quarter-canonical Poisson bracket, which is coordinate dependent. Sometimes, by abuse of
language, we do not distinguish between them in our phrasing, but with regard to the concepts it is
important to keep the distinction in mind. For the sake of completeness, let us mention that we call
quarter-canonical reduction a reduction associated to a quarter-canonical structure, i.e. a reduction
with constraints (φ1, φ2) such that there exist quarter-canonical coordinates (φ1, φ2,χ). Last, the
constraints associated to some quarter-canonical reduction are called quarter-canonical constraints.

Let us turn now to the case where φ1 is vectorial. Then the quarter-canonical structure is no
more guaranteed, since {φ1, φ1} can be non zero, and any antisymmetric matrix. However, when
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quarter-canonical coordinates exist (e.g. when {φ1, φ1} = 0), the criterion for invertibility remains
simple, since it corresponds to the invertibility of the matrix b.

One can go beyond: even when b is not invertible, the effective matrix of constraints can always
be inverted. Indeed, when b is not invertible, it means that a part of the constraint φ1 is a Casimir
invariant, which should not be considered as a constraint (since is is already constrained).
More precisely, the coordinate φ1 can be decomposed in (φ1a, φ1b), where φ1a = ker{φ2, ·} ∩ φ1 is
the Casimir invariant and φ1b is a complementary coordinate with φ1b ∩ ker{φ2, ·} = 0. The fact
that φ1a is a Casimir invariant appears because the assumed quarter-canonical structure implies
{φ1a, φ1} = 0, and {φ1a,χ} = 0, so that {φ1a,ψ} = 0. In coordinates (φ1a, φ1b, φ2,χ), the bracket
writes

J =

(
0 0 0 0
0 0 −b′† 0
0 b′ a −d†
0 0 d A

)
.

From the point of view of the Dirac reduction, the matrix b being not invertible is no trouble, because
φ1a is already a Casimir invariant, and one has to impose as a constraint only the dynamical part of
φ1, that is φ1b. For the corresponding reduction, the bracket is not quarter-canonical yet, because
dimφ2 6= dimφ1b. The reason is that φ2 has been taken too large, not so many secondary constraints
are needed for φ1, and the superfluous part of φ2 should be dropped from the constraints. More
precisely, the method of the previous chapter can be used to decompose φ2 in (φ2a, φ2b) such that
the bracket is quarter-canonical in coordinates (φ1b, φ2a),χ

′, with χ′ = (φ2b,χ, χ1a). Finally, the
bracket writes

J =




0 −b′′† 0 0 0

b′′ a11 a12 −d†a 0

0 a21 a22 −d†
b
0

0 da db A 0
0 0 0 0 0


 ,

where b′′ is bijective by construction. The constraints (φ1b, φ2a) gives an invertible matrix of
constraints, together with a reduced bracket where φ1 is a Casimir invariant, as was desired.

This development evidences a subtlety about quarter-canonical structures. Through the above
procedure, the quarter-canonical structure has been reduced to its minimal size, in the sense that the
dimension of the constraint φ1 has been removed its component that is already a Casimir invariant.
The corresponding structure will be called minimal quarter-canonical. We will ordinarily assume
that the quarter-canonical structures have been made minimal. This, in case the quarter-canonical
structure exists, its matrix of constraints is always invertible, i.e. the Dirac procedure always works.

Reciprocally, it is straightforward to show that in this case, the matrix is invertible only if the
reduction is quarter-canonical. The argument follows exactly the same line as in the case of two
scalar constraints.

In conclusion, even for vectorial constraints φ1 and φ2, when the quarter-canonical structure
exists (i.e. at least locally provided {φ1, φ1} = 0), the matrix of constraint is invertible if and only
if the constraints are quarter-canonical.

In the case of continuous media, the same argument can be considered. As usual, the difficulty
is that there is no general proof. So, ker{φ1b, ·} is not sure to define good coordinates φ2b. All the
same, in practical examples, it is often the case.

13.1.2 Examples: guiding-center and Euler-Poisson

As an illustration from finite-dimensional systems, we already mentioned in Sec. 12.1.2 the guiding-
center reduction, for which the Dirac constraint φ1 = µ can be imposed only with the second
constraint φ2 = θ (or a function in bijection with θ), so as to make the matrix of constraints
invertible. Then the reduction is quarter-canonical, and the reduced bracket is just the truncated
one, as expected for guiding-center dynamics.

As for an example concerning the fluid model, if the Dirac constraint are (φ1, φ2) = (B,E),
the matrix b (in the natural coordinates) is b = ∇×. It is not invertible whereas the Poisson
bracket is quarter-canonical. This is because B is not the true dynamical variable: φ1a = ∇·B is a
Casimir invariant, the dynamical part of B corresponds to φ1b = ∇×B, and it is exactly coupled
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with φ2a = ∇ × E, i.e. the coupling is bijective between these variables. With the coordinates
(∇×B,∇×E), the bracket is minimal quarter-canonical and the matrix of constraints is invertible.
Then the Dirac method gives exactly the reduction to the electrostatic field (with external magnetic
field) (see Chapter 7). In this example, none of the choices ρ, ∇·E, ∇·u, ∇×u, s nor any function
of them would give an invertible matrix of constraints: the matrix of constraint is invertible if and
only if φ2 is in bijection with ∇×E, which is the variable quarter-conjugated with the (solenoidal
part of the) magnetic field.

13.1.3 Consequence on the choice of secondary constraints

The previous subsections showed that when the quarter-canonical structure exists, the invertibility
of the matrix of constraints was equivalent to choosing for the secondary constraint a quantity
quarter-conjugated to φ1. An immediate consequence is that the available secondary constraints
are dictated by the quarter-canonical structure.

Once the primary constraint is chosen and an arbitrary “conjugated” variable φ′2 is identified,
then the available secondary constraints are exactly known: they are all the variables φ2(φ1, φ′2,χ)
in bijection with φ′2, i.e. all the variables that preserve the quarter-canonical structure.

Notice that the procedure does not imply to build quarter-canonical coordinates for χ. In
addition, even the need to first identify a “conjugated” variable φ′2 can be removed. Indeed, once
the primary constraint φ1 is chosen (such that {φ1, φ1} = 0, in order to ensure the presence of a
quarter-canonical structure), the condition for the matrix of constraints to be invertibility exactly
shrinks to the condition that {φ1, φ2} be invertible. Thus, the possible solutions for φ2 can be read
directly in the functional formula {φ1, F}, considered as an operator acting on F which is to be
made invertible by a suitable choice for F .

These possible solutions for φ2 will be called J-secondary constraints, because they are defined
only from the Poisson bracket J, they have nothing to do with the Hamiltonian. They are different
from the traditional secondary constraints, since the usual procedure consists in adopting as the
secondary constraints just the time evolution of the primary constraint φ2 = φ̇2 = {φ1, H}. This
(unique) last choice will be called H-secondary constraint, because its definition depends on the
Hamiltonian function. The links between the two kinds of secondary constraints will be explored
with more details in the next section.

13.1.4 The Euler-Poisson by constraining the electric field

As an illustration taken from the fluid model, let us come back to the previous example, but
inverting the roles of the constraints. If the first Dirac constraint is the solenoidal part of the

electric field φ1 := ∇× E, then the matrix of constraints writes
(

0 {φ1,φ2}
{φ2,φ1} {φ2,φ2}

)
, its invertibility

relies on the condition that the operator {φ1, φ2} = ∇ × ∇ × φ2B + ∇ × φ2u be invertible. For
instance, it is not invertible if φ2 is chosen to be u, or ρu, or ∇×(ρu) for instance. On the contrary,
it is invertible if φ2 = ∇ × B, which gives the electrostatic reduction, or if φ2 = ∇ × u, or any
variable in bijection with any combination of them. This example evidences that the bracket does
not need to be quarter-canonical in the used coordinates χ: here both ∇×E and ∇×u are coupled
with several fields, not just with each other. Only the condition {φ1, φ1} = 0 is needed. But when
the coordinates are not quarter-canonical, the reduction is not just a bracket truncation. The Dirac
bracket must be computed, unless the simplified projector (12.13) derived in Chapter 12 is used.

All these J-secondary constraints were obtained without the Hamiltonian (8.1). Now, the H-
secondary constraint is φ2 = ∇× (−ρu+∇×B). It is only one of the possible solutions (since it is
in bijection with ∇×B), but it is not one of the simplest ones, and it is not the one corresponding
to the electrostatic reduction.

13.2 On the procedure for secondary constraints

The previous section showed that the quarter-canonical canonical structure dictates the available
choices of secondary constraints. It provided a procedure to identify the possible secondary con-
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straints, called J-secondary constraints, in contrast with the traditional method, which provided
one single constraint, called H-secondary constraints. Let us study a bit more the links between J-
and H-secondary constraints. In Subsect. 13.2.1 the differences between them will be emphasized.
In Subsect. 13.2.2, it is shown why they sometimes give the same result, but why they often do
not. Last, Subsect. 13.2.3 will illustrate these concepts and conclusions through a detailed study
of the reduction for incompressibility.

13.2.1 Natural H-constraints, but structural J-constraints

The procedure identified above for J-secondary constraints exactly indicates what secondary con-
straints make the Dirac reduction work or not. It relies on the structure of the Poisson bracket,
and has nothing to do with the Hamiltonian function H. This is comfortable since the invertibility
of the matrix of constraints is purely related to the Poisson bracket.

On the contrary, the usual procedure is to compute the secondary constraint, using the Hamil-
tonian according to the formula φ2 := φ̇1 = {φ1, H}. It seems quite trustful, because it evokes
some consistency in the model: in order for φ1 to be constant, it seems obviously needed to make
constant its time variation as well.

This is but an appearance, this kind of consistency is neither necessary nor sufficient for the
Dirac reduction. It is not sufficient because often it gives a set of constraints (φ1, φ2) that does
not make the matrix of constraints invertible, even when there exist some choices that are both
physically relevant and would make the matrix invertible. And the consistency is not necessary
either because most often there is no need to impose a third constraint, whereas a true consistency
should require to impose {φ2, H} as a constraint as well. This idea of consistency does not tell
why most often the consistency implies only the second constraint. An additional awkward feature
confirms that the procedure is not so consistent at all: it is most often not reversible. If φ2 = {φ1, H}
is taken as the first constraint, the associated H-secondary constraint φ′1 := {φ2, H} is completely
different from φ1 in general, as will be illustrated in Subsec. 13.2.3. Nothing in the process tells
which constraint is to be used as the primary one.

On the contrary, the procedure relying on J-secondary constraints gives both necessary and
sufficient conditions1 on φ2 for the set (φ1, φ2) to make the matrix of constraints invertible. In
addition, it often indicates several elementary possible choices. It explains why the consistency
most often involves exactly two constraints and relates it with the canonical structure or with its
traces, which are not really absent, even in continuous media [159]. Last, it is reversible: if φ2 is a
J-secondary constraint associated to the primary constraint φ1, then φ1 is a J-secondary constraint
associated to the primary constraint φ2.

All the same, most often the method for J-secondary constraints misses some information.
Contrary to the method for H-constraints, it offers several possible solutions, but can not indicate
which of them have physical relevance. This choice should be guided by the physics of the problem.
It is at this point that the H-secondary constraint may be useful. But this H-secondary constraint
gives only an indication, not a necessary condition, even with respect to the physical relevance of
the constraint φ2 (see the electrostatic reduction in Sect. 13.1.4, and the local incompressibility in
Sec. 13.2.3).

13.2.2 Frequent equivalence

There is an additional point to be explained: the reason why H-secondary constraint are often
acceptable, and why they also often give absurd results as well. The answer comes from the special
form of the Hamiltonian function, which is often quadratic in variables that are quarter-canonical.
This special case implies {φ1, H} ∝ (δ/δφ2)(φ2)

2 ∝ φ2, and the H-secondary constraint is just
the most natural J-secondary constraint. On another hand, when the Hamiltonian is not exactly
quadratic in φ2, it is often close to it. For instance, ρu2 is almost quadratic in u (but not in ρ...).

The example of Sec. 13.1.4 is a perfect illustration: in the H-constraint, the term with B suc-
ceeds in giving an invertible matrix of constraints, and it corresponds to a quadratic term in the
Hamiltonian. On the contrary, the term with ρu has an undesirable factor ρ, which comes from

1Remind that for this statement, the assumption {φ1, φ1} = 0 is important.
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this excess factor in the Hamiltonian. The inadequateness of this factor is confirmed by Sec. 13.2.3.

To conclude with a more general result, in general theH-secondary constraint is exactly δH/δφ2,
which can be any variable. For instance, if the Hamiltonian function is

∫
φ2ω, with ω independent

of φ2, then the H-secondary constraint is ω, which can be anything but has no link with φ2.
Accordingly, contrary to the J-secondary constraints, the H-secondary constraint has no link with
the structure of Dirac reductions.

13.2.3 Application to fluid incompressibility

As an illustration, one could come back to a few of the previous examples (φ1 = ∇×B, φ1 = ∇×E,
φ1 = ∇ · E, etc.). They confirm that each time, the H-constraint is not adequate unless the
Hamiltonian function is quadratic in a variable conjugated to φ1. This also explains both why the
procedure of H-secondary constraints is not reversible, and which of the two constraints has to be
chosen as the primary one. Instead of coming back to these examples with details, let us study a
bit more carefully the reduction to an incompressible fluid.

Starting from the natural constraint for incompressibility φ1 = ∇·(ρu), the matrix of constraints
{φ1, φ1} involves the operator

F = ∇ · ρ∇u · ∇+∇ · u∇ · ρ∇+∇ · ρ(∇× u+B)×∇ ,

which is not invertible, and a secondary constraint is needed. The natural H-constraint is

φ2 = {φ1, H} = −∇ ·
(
ρ∇(u

2

2 )
)
−∇ ·

(
u
(
∇ · (ρu)

))
−∇ · ((∇× u+B)× ρu) +∇ · ρE ,

that does not improve the situation, and fails to give the reduction to incompressible fluid. This is
because the important term in the Hamiltonian is ρu2, which is almost quadratic in u, and hence
far from quadratic in the desired secondary constraint ρ.

So, the trick used in [33] is to start from another constraint. In the reduction for incompress-
ibility, a second variable is removed from the independent dynamical variables, the density2. It can
be used as the primary constraint φ1 = ρ− ρ0, then again the matrix of constraint {φ1, φ1} = 0 is
not invertible, and a secondary constraint is again needed. The H-secondary constraint is

φ2 = {φ1, H} = −∇ · (ρ0u) .

Then the matrix of constraints is the matrix

C =
(

0 ∇·ρ0∇
−∇·ρ0∇ F

)
,

with the convention that here, the derivatives act on all that is on their right hand side. The pro-
cedure works almost perfectly, because it is invertible when ∇ρ0 = 0 (remind that the invertibility
is required only in the reduced space, where ρ = ρ0). As a side comment, let us notice that if the
field ρ0 is arbitrary, then the operator ∇ · ρ0∇ is not invertible, which means the Dirac reduction
can not be applied. When ρ0 is a physical density, it is positive and then the operator is invertible
(since it has only positive eigenvalues3), but the reduction is not quarter-canonical, and it does not
seem to have a physical relevance [33].

This exemplifies the above conclusions on the defects of the H-secondary constraint. Especially,
it may give a set of constraints that does not give the desired Dirac reduction, even if such a set
exists. The reason why the H-constraints are not good in this case appears as coming from two
things: for φ1 = ∇ · (ρu), the bracket is not quarter-canonical; for φ1 = ρ − ρ0, it is quarter-
canonical, but the Hamiltonian is not quadratic in the variable conjugated to ρ, there is an excess

2Notice that the natural constraint for incompressibility concerns the compressible part of the velocity. The trick
to start from the variable ρ is awkward because it assumes that one already has some information on the reduced
model, and also because it does not take as primary constraint the essential one. This awkward feature disappears
in the method working with J-secondary constraints, except that the specific choice of secondary constraint must
be guided by some physical reason or intuition.

3Emanuele Tassi, private communication. But this fact is obvious to see actually.
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factor of ρ in H, which is present in the H-secondary constraint. Thus, the resulting reduction is
almost quarter-canonical, and it becomes exactly quarter-canonical when ∇ρ0 = 0, since then φ1
becomes conjugated to the H-secondary constraint.

Let us turn now to the procedure using J-secondary constraints. Starting from the constraint
∇ · (ρu), it gives the condition that

−∇ · (ρ∇Gρ)−∇ · (u∇ ·Gu)−∇ · ((∇× u+B)×Gu) +∇ · (ρGE)

must be an invertible operator. One possible choice is ρ− ρ0 with the condition ∇ρ0 = 0, and the
usual reduction is recovered. On another hand, starting from the constraint ρ − ρ0, one gets the
condition that ∇·Gu must be invertible, which again indicates ∇·(ρ0u) as an acceptable secondary
constraint when ∇ρ0 = 0. So, contrary to the case of H-secondary constraint, starting from any
of the constraints, the desired reduction is obtained as one of the natural choices of J-secondary
constraints.

One can get more, because the J-secondary constraints for φ1 = ρ − ρ0 include a secondary
constraint that is acceptable whatever ρ0 may be. This because a variable conjugated to ρ is
indicated by the formula ∇·Gu. So, the set of constraints (ρ− ρ0,∇·u) gives an invertible matrix
of constraints and therefore a good Dirac reduction, under no condition on ∇ρ0.

With regard to the physical relevance of these reductions, the H-secondary constraint φ2 =
∇ · (ρ0u), which works when ∇ρ0 = 0, corresponds to an Eulerian incompressibility. But it is
not the only physically interesting secondary constraint. The J-secondary constraint ∇ · u, which
is valid for arbitrary ρ0, corresponds to a local Lagrangian incompressibility [159]. In some way,
this is not a surprise because Lagrangian descriptions are closer to the canonical structure than
Eulerian descriptions.

This example enhances the conclusion of the previous subsection: the procedure to fix the
secondary constraint is clearer and more efficient when it relies first on J-secondary constraints,
purely related to the structure of the bracket. The usual H-secondary constraint is interesting as
an additional information suggesting a typical choice that is bound to have some physical relevance.

13.3 A simplified subalgebra reduction

The two previous sections focused on the consequences of the quarter-canonical structure on the
Dirac procedure, more precisely on the invertibility of the matrix of constraints and on the choice
of a secondary constraint. Now, we turn to the link of the quarter-canonical structure with another
reduction method, the truncation method. Chapter 8 showed that for quarter-canonical reductions,
the Dirac method may be simplified because it results in a mere bracket truncation. This opens
the door to a much simpler procedure, but at the same time quite a different reduction method. A
natural question is what kind of Hamiltonian reduction is involved, and whether it is justified only
by the Dirac procedure or if it may be related to other Hamiltonian reduction methods, closer to
truncations.

It is useful to clarify this point in order to identify the conditions for the truncation method to
be applicable. This could make it possible to use it even when the Dirac method does not work,
e.g. when the structure is not quarter-canonical and the matrix of constraints is not invertible.
The question is twofold: What are the conditions for the truncation method to give a valid Poisson
bracket? Why is the truncated bracket always a valid bracket for quarter-canonical reductions?

This section is organized as follows. Subsec. 13.3.1 will be devoted to some reminders about
bracket truncations. This will suggest that the bracket truncation for quarter-canonical Dirac
reductions is related to a projection onto a subalgebra. Subsec. 13.3.2 will show that the subalgebra
is not the one generated by the reduced variables χ, but the one generated by (φ1,χ). Last,
Subsec. 13.3.3 will give e few examples.
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13.3.1 Bracket truncations and subalgebras

First of all, let us remind that a bracket truncation generally does not yield a Hamiltonian bracket.
The Jacobi identity is not preserved by such a method in general. More precisely, consider a
Hamiltonian system, with field variables ψ, as usual. Then choose a set of fields χ, considered
as the reduced coordinates. Define the reduced (truncated) bracket between two functional F [χ],
G[χ] by

{F,G}t := {F,G} ,
which means that Jt := Jχχ. Here we call "bracket truncation" only the bracket truncations that
corresponds to removing functional derivatives with respect to the constrained variables. Other
kinds of brackets truncations exist [58, 136,138], but they will not be considered in this chapter.

The reduction procedure above seems reasonable from a non-Hamiltonian point of view. But
the point is that the truncated Poisson bracket loses the Jacobi identity in general, i.e. it is not
Hamiltonian any more. The reason is that between three functionals of the reduced fields F [χ],
G[χ], and H[χ], the following relation does not hold

{K, {F,G}} 6= {K, {F,G}t}t . (13.1)

The reason is the following: {F,G} = {F,G}t =: K ′, but this quantity generally depends not only
on χ, but also on the complementary coordinates φ (the constraints). Then {K,K ′} contains the
terms Jχχ, but also the terms Jχφ, whereas these last terms are not taken into account in {K,K ′}t.

In fact, all other properties of a Poisson bracket but the Jacobi identity are preserved by bracket
truncation. Thus, a truncated bracket is Hamiltonian if and only if it verifies the Jacobi identity,
which can be written

∑
(ijk) J

χiχm∂χmJ
χjχk = 0, where

∑
(ijk) means circular permutation of i ,j,

k.
So, the truncated bracket is exactly Jt = Jχχ, and the previous relation writes

∑

(ijk)

Jχiχm∂χmJ
χjχk = 0 .

Using that the initial bracket is Hamiltonian, the relation can be written
∑

(ijk)

Jχiφm∂φmJ
χjχk = 0 .

This condition for such a truncated bracket to be Hamiltonian is not automatically guaranteed and
must be checked case by case. All the same, there are situations where it is automatically fulfilled.

The most trivial case is when Jχχ is constant in φ. In the argument following Eq. (13.1), it
corresponds to the case where K ′ is only a functional of the reduced fields. Also, it means that the
reduced set of variables is closed for the Poisson bracket: the initial bracket between two functionals
F [χ] and G[χ] of the fields χ is again a functional of χ. The set of functionals F [χ] defines a proper
Poisson algebra, which is a subalgebra of the initial structure.

Another frequent case is when an ordering parameter is present and Jχiχm∂χmJ
χjχk is not of

the same order as Jχiφm∂φmJ
χjχk , e.g. Jχφ ∝ (φ)α and Jχχ ∝ (φ)β with β 6= α− 1.

In the special case where a Dirac reduction is applied to a quarter-canonical bracket, then the
Dirac bracket is just the truncated bracket. This last is Hamiltonian. So, there should be a general
reason justifying the preservation of the Hamiltonian structure through these bracket truncations.
The quarter-canonical structure has no ordering limitation, but it has a structure adapted to the
bracket operation. So, it might be linked to a subalgebra method, which is the truncation method
that is related to the structure of the Hamiltonian system.

13.3.2 Counterexample but proper justification

This suspicion is not correct in general. It is shown by a counterexample in the quarter-canonical
reduction to an electrostatic field, given in Secs. 13.1.2 and 13.1.4. In the initial fluid bracket if one
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takes two functionals F [χ] and G[χ] that do not depend on B and ∇×E, then the initial bracket
between them is not a functional of χ, since it will depend on the magnetic field as well, because
of the presence of the gyro-magnetic term B

ρ · Fu ×Gu.
All the same, some link between subalgebras and the structure of the Poisson bracket was

evidenced in Chapter 8. For instance, in finite-dimensional systems, a subalgebra is indeed involved
in semi-canonical reductions. This is confirmed by the Darboux theorem, which states, as mentioned
in Sec. 8.2.2, that the matrix Jχχ = A in (8.11) is constant in φ (but this is actually just a
consequence of the Jacobi identity).

As a result, for the quarter-canonical reduction, the departure from a subalgebra reduction is
exactly achieved by the departure from semi-canonical coordinates. This departure was identified
in the coordinate change (8.15). The change Φ2 −→ φ2

′(φ1,Φ2,χ) does not affect the reduced
bracket, but the change of coordinates χ −→ χ′(φ1,χ) modifies the bracket and makes it depend
on φ1. This prevents the reduced bracket Jχχ from being given just by a subalgebra of the initial
bracket, which explains the counterexample observed above. Nevertheless, the reduced bracket
remains independent of φ2.

So, instead of considering a subalgebra without (φ1, φ2) as was the case for semi-canonical
coordinates, one should consider a subalgebra without φ2 only. Then the subalgebra suspicion
becomes confirmed. Indeed the independence of the reduced bracket Jχχ with respect to φ2 is
a consequence of the Jacobi identity. If F and G do not depend on φ2 then {G,φ1} = 0 and
{φ1, F} = 0, which implies

{φ1, {F,G}} = −{F, {G,φ1}} − {G, {φ1, F}} = 0 . (13.2)

Thus the bracket Jt = A = {χ,χ} can not depend on the variable φ2 that is (minimal) conjugated
to φ1, and the set of functionals F (φ1,χ) is a subalgebra. This conclusion relies just on the Jacobi
identity. Thus it is general and applies both in finite dimensions and in field theory, both locally
and globally. Compared to the semi-canonical case, quarter-canonical brackets retains only half
of the requirements, which induces that only one of (φ1φ2) remains concerned by the subalgebra
property.

Notice that the conjugation must be minimal, i.e. bijection is needed in Jφ1φ2 , in order to avoid
Casimir invariants in the components of φ1, which would let φ2 have the dimension of φ1 but have
some components φ2b such that {φ1, φ2b} = 0. In such a case, Eq. (13.2) would not mean that Jχχ

is independent of φ2.

Last step, it remains to verify that the subalgebra reduced bracket is the same as the truncated
bracket obtained by the quarter-canonical Dirac reduction. Actually, the subalgebra (φ1,χ) does
not correspond to the Poisson bracket Jχχ, since also φ1 is retained. But the point is that φ1
is conjugated only with φ2. When φ2 is absent, then φ1 becomes a Casimir invariant. Thus the
subalgebra bracket is exactly the truncated bracket Jχχ, which the same as the quarter-canonical
Dirac bracket.

13.3.3 Examples

The presence of a subalgebra reduction can be verified and illustrated by any of the quarter-
canonical examples previously mentioned. For instance, in the electrostatic reduction from the
warm fluid model, the constraints are φ = (∇ × E,∇ × B), and the set of reduced observables
F (∇ ·E, ρ,u) is not a subalgebra, but the set of F (∇ ·E,B, ρ,u) is a subalgebra, and its reduced
bracket is exactly Dirac’s truncated bracket.

As a consequence, when the bracket is (minimal) quarter-canonical the Dirac reduction gives
exactly the same result as the reduction to a subalgebra F (φ1,χ). It is the reason why it results
in a truncated bracket and why the Hamiltonian character is preserved by such a bracket trunca-
tion. Accordingly, quarter-canonical Dirac reductions can always be shortened and replaced by a
truncation method. This makes the procedure quite elementary: one only has to write the bracket



268CHAPTER 13. QUARTER-CANONICAL EFFECTS ON DIRAC AND SUBALGEBRA METHODS

in adapted coordinates (φ,χ) and remove all the terms involving derivatives with respect to the
constraint φ2.

Of course, the reduction can be performed in arbitrary coordinates. Then the reduced bracket
is no more a truncation of the initial bracket, but the simplified projector still exists, as was
emphasized in the previous chapter. Especially, in the light of the present section, the coordinate-
independent projector (12.13), which is equivalent to (12.15), appears with its complete meaning:
it is exactly the projector onto the subalgebra without φ2. This confirms that it corresponds to
the simplest possible projector, and that it is adapted to the structure of the Poisson bracket.

13.4 Flexibility and quarter-canonical effects in subalgebra reduc-
tions

To summarize the result of the previous section, together with Chapters 8 and 12, it came out that
Dirac reductions are often related to a quarter-canonical structure, which is automatically related
to a subalgebra reduction, which can then equivalently replace the Dirac reduction. Now, we can
reverse the viewpoint, and wonder how much subalgebra reductions are linked to quarter-canonical
structures, and whether they can be replaced by Dirac reductions, or if they are concerned by
reductions for which the Dirac method is not available. The first question will be addressed in
Subsect. 13.4.4, but beforehand Subsects. 13.4.1-13.4.3 will investigate the second question, based
on three kinds of examples.

13.4.1 Example with a single constraint

For quarter-canonical reductions, the two methods are equivalent, but even in this case the sub-
algebra method shows up greater flexibility. With the primary constraint φ1, it is able to give a
reduced dynamics without φ2 becoming constrained.

An example can again be found in the reduction to incompressible fluid. With the Dirac primary
constraint φ1 = ρ − ρ0, the matrix of constraints is {φ1, φ1} = 0 is not invertible, the secondary
constraint is needed, and it may only be chosen as a "conjugated" variable, which induces that the
reduction must be quarter-canonical, as shown in the previous sections.

Using subalgebra reductions, the same quarter-canonical reduction can be obtained by taking
the subalgebra defined by (ρ,∇× (ρ0u),E,B), but the reduction with one single constraint φ1 is
possible as well. The set of observables depending only on (ρu,E,B) is a subalgebra, making ρ−ρ0
become a Casimir invariant, but letting ∇ · (ρu) dynamical.

As a side comment, this example is a counterexample to the Darboux theorem for the local-
interaction matrix for Hamiltonian systems in continuous media: if it was verified, there would
exist field coordinates (ρ,Φ2,χ) making the bracket semi-canonical. Then the subalgebra without
ρ would have an additional Casimir invariant Φ2, which is not the case actually.

13.4.2 Presence of multiple subalgebras

Let us go on with the quarter-canonical case. Even when both constraints (φ1, φ2) are applied, the
subalgebra reduction opens interesting possibilities. Indeed, in this case, there is only one Dirac
reduction available, because the Dirac reduction does not depend on the chosen complementary
coordinates χ. On the contrary, the subalgebra method depends on χ. With given constraints
(φ1, φ2), several reduced structures can be obtained, one of which is the Dirac one, and it corre-
sponds to choosing χ as any coordinates that keep the bracket quarter-canonical. But by taking a
subalgebra defined by some other coordinates χ′, one can get other reduced structures.

As an example, if
(φ1, φ2) = (∇ ·E,∇ · u) ,

the structure is quarter-canonical, and the Dirac reduction can be performed. It is independent of
the chosen complementary coordinates

χ = (ρ,∇× u,∇×E,B) .
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It gives the reduced dynamics corresponding to the subalgebra without φ2 = ∇ ·u in these coordi-
nates, or, equivalently, to the subalgebra without φ = (∇ ·E,∇ ·u). Now, let us perform on χ the
change of variables

(∇× u,B) −→ (∇× u+ f,B− f) ,

where f = ∇× (
−→
k ∇ · u+ g) is a divergence free vector linearly depending on φ2, with

g(ρ,∇×E,∇ ·E− ρ,∇× u+B)

an arbitrary vectorial function, and
−→
k a vector field independent of the field variables. In the

new coordinates, the initial bracket is no more quarter-canonical, but the Dirac reduction gives
the same reduced bracket as before the change of variables (even if it is not given by a truncation
of the bracket in these coordinates). On the contrary, the set of observables without φ remains a
subalgebra, whose reduced bracket is as always given by a truncation of the initial bracket. So,
it is different from the reduced bracket before the change of variable, and especially it is different
from the Dirac bracket.

A generic example is easier found starting from canonical coordinates z = (v,q). Then a sub
algebra is obtained if

Jχχ = χvi · χqi − χqi · χvi

depends only on χ. It means that

∂zj (χvi · χqi − χqi · χvi) = 0

is orthogonal to ∂φzj . Especially, any set of variables linear in the canonical coordinates z induce
a subalgebra reduction.

Semi-canonical coordinates (φ1,Φ2,χ) can be considered as well. In the same way as for canon-
ical coordinates, the corresponding reduction is sure to be a subalgebra without φ. Then, perform
a change of coordinates

χ −→ χ′ = F̂ (χ) +M · φ ,
where M is a linear operators independent of the fields and F̂ (χ) is independent of φ (and bijective,
in order to define a proper change of coordinates). Then the bracket becomes

J =
(

Mc Mc·M†

M ·Mc M ′

)
, (13.3)

where Mc is the canonical matrix and

M ′ = F · Jχχ · F † +M ·Mc ·M † ,

with F := F̂ψ. Now, M ′ is independent of φ, and the situation is the same as in the previous
paragraph. The subalgebra after change of coordinates gives a reduced dynamics that is different
from the one obtained before the change of variables (which is the Dirac truncated bracket).

The reduction to incompressible fluid again provides an interesting illustration. With the pri-
mary constraint ρ− ρ0, we already saw that the H-secondary constraint ∇ · (ρu) induced troubles
for the Dirac method when ∇ρ0 6= 0, because the structure is not exactly quarter-canonical. Now, a
subalgebra reduction can be performed all the same: take the set of observables F [∇× (ρu),E,B].
It is a Lie subalgebra and induces the constraints ρ − ρ0 and ∇ · (ρu) to become Casimir invari-
ants. For the purely kinetic part (i.e. when dropping the electric and magnetic fields), the reduced
dynamics corresponds to the Lie-Poisson structure for a solenoidal vector field

{F,G} =

∫
d3x M′ · (∇× FM′ ×∇×GM′) ,

where M′ = ∇× (ρu) is the solenoidal part of the fluid momentum density. This reduced bracket
is meaningful whatever ∇ρ0 is.
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All these examples emphasize that subalgebra reductions indeed open new reduction possibili-
ties, which can include physically relevant reductions. Two noteworthy examples are the reduction
from the kinetic dynamics to the fluid model, and the reduction from the (multi) fluid model to
magnetohydrodynamics. They will be the topic of Chapters 9 and 14.

The key point about subalgebra reductions is that the applicability condition refers to the
coordinates χ, it is independent of the constraints φ. Especially, the matrix of constraints does not
have to be invertible, as is the case for Dirac reductions. So, given acceptable χ, the constraints are
completely free. They must only be complementary to χ, in order to define proper coordinates. In
the reverse direction, given a set of constraints φ, the freedom in the coordinates χ can be adjusted
to satisfy the applicability condition. It is why the subalgebra method opens much more possible
reductions.

13.4.3 Application to bracket extensions

The question of bracket extensions also constitutes an expressive instance. Just as in Sect. 8.1
of Chapter 8, starting from a Poisson bracket that has Casimir invariants φ = (φ1, φ2), one can
wonder if it comes from an extended bracket where the constraints φ are dynamical. We saw in
Chapter 8 that the Dirac reduction method together with the quarter-canonical structure provided
a powerful tool to achieve the result.

If the reduced bracket is independent of φ, just as the Euler-Maxwell bracket is independent of

φ = (∇ ·E− ρ,∇ ·B) .

A subalgebra method is still more powerful: it allows one to choose Je as

Je =

(
e −b† −f†
b a −d†
f d A

)
, (13.4)

with A = J, and the remaining coefficients are freely chosen so that Je satisfies the Jacobi identity,
e.g. they are all chosen constant in the field variables. Then starting from the extended bracket Je,
the initial bracket J is just given by a sub-algebra reduction, with the subalgebra being defined by

χ = (ρ,u,∇×E,∇×B) .

A comparison between formulae (8.12) and (13.4) clearly shows that the subalgebra method
gives much more possibilities than the Dirac method: the quarter-canonical structure is no more
mandatory and all the extension coefficients can now be non-zero. This example also emphasizes
the difference between the methods. The extension in the Dirac approach by formula (8.12) implies
an even number of initial Casimir invariants, whereas the extension in the subalgebra approach by
formula (13.4) has no such requirement, but it implies the reduced bracket to be independent of
the initial Casimir invariants φ.

13.4.4 Quarter-canonical effects on subalgebras

This section was interested in two questions: how often subalgebra reductions can be replaced
by a Dirac reduction, and whether subalgebra reductions are often related to a quarter-canonical
structure. The three previous subsections showed that subalgebra reductions generally offer much
more possibilities than Dirac reductions. This answered the first question. We now turn to the
second question.

If quarter-canonical structures automatically come with a subalgebra, the contrary is not so true.
The closure criterion for a subalgebra Jχχ = constant(φ) concerns the functional dependence of
the coefficients in the Poisson bracket. It is independent of the quarter-canonical criterion, which
regards the presence or absence of the coupling between fields. The last two examples of subalgebra
reductions are expressive from that point of view, since they are not quarter-canonical at all. Thus,
subalgebra reductions are not so often related to quarter-canonical structures as Dirac reductions.

Still, the traces of the canonical structure have an influence on subalgebra reductions. For
instance, in order to impose a scalar constraint in a finite-dimensional system, if one takes a
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subalgebra without φA, then, the reduced bracket is defined on an odd dimensional space, and
must have an additional Casimir invariant φB. In coordinates (φA, φB,χ), the initial bracket
writes

J =

(
a −b† −d†
b 0 0
d 0 A

)
,

which is just quarter-canonical with (φ1, φ2,χ) = (φB, φA,χ).
For a reduction with two constraints φ1, φ2, if one takes a subalgebra F (χ) where χ are

coordinates complementary to φ, the conclusion is not so simple. All the same, the Darboux
theorem allows one to find coordinates ψ = (φ1,Φ2,χ

′), such that J is semi-canonical (8.11), and
Jχ

′χ′
does not depend on (φ1, φ2). Then, adopting coordinates suited to the reduction

(φ1,Φ2,χ
′) −→ (φ1,Φ2,χ) ,

the reduced bracket obtained is

Jχχ = Jij∂ψi
χ∂ψj

χ = ∂φ1χ∂Φ2χ− ∂φ2χ∂Φ1χ+ Jχ
′
iχ

′
j∂χ′

i
χ∂χ′

j
χ . (13.5)

If the change of coordinates is arbitrary, the coefficients of Jχχ will most often depend on (φ1, φ2),
and χ will not be a Lie subalgebra. So, the possible subalgebra reductions are limited by the traces
of the canonical structure of the Hamiltonian system. This fact already appeared in the examples
about formula (13.3): as soon as one departs from a linear change of coordinates and from a
bracket constant in the field variables, the conditions for a subalgebra are not so easily obtained.
For instance, if only one of the coordinates is involved in the change from canonical coordinates,
then the only allowed change of variable is linear in φ. If several coordinates are involved in the
change from canonical coordinates, then the coordinates given by a non-linear relation must be
such that in Jχχ all their contributions proportional to φα exactly cancel for each α 6= 0.

For continuous systems, the canonical structure may not exist and the argument can not be
applied exactly. However, in Poisson brackets for fluids and plasmas, the canonical structure is not
completely absent [159]. We saw that quarter-canonical coordinates can often be identified even in
natural variables. Then the argument can be applied. Once φ1 is chosen, the available subalgebras
do not so easily depart from the quarter-canonical structure.

By the way, notice that even the quarter-canonical structure does not correspond exactly to a
subalgebra reduction, since Jχχ is independent on φ2, but not on φ1. It is why the generic examples
about Eq. (13.5) and in Sec. 13.4.2 involved semi-canonical coordinates; and the example

(∇× u,B) −→ (∇× u+ f(φ),B− f(φ))

based on true quarter-canonical coordinates was not very natural. Actually, when coming back
to all of the previous examples of quarter-canonical structures, true subalgebra reductions can be
verified to be not so common, especially if the coordinates linear in semi- or quarter- canonical
coordinates are excluded. This is also confirmed by the fact that when looking for semi-canonical
coordinates, the condition of Jχχ being subalgebra is a good indication, which means it is rather
seldom. In the case of φ1 = ∇× E for instance, it is enough to catch such coordinates. All these
observations show that subalgebra reductions remain influenced by traces of the canonical struc-
ture, whether they be semi-canonical or quarter-canonical.

As a result, Dirac reductions are often linked with the quarter-canonical structure and with a
subalgebra reduction, but the reciprocal is not so often verified. subalgebra reductions are much
more independent of the traces of the canonical structure, such as quarter-canonical structures,
even though they remain influenced by them all the same.

In the particular case of a quarter-canonical structure, the two methods are equivalent provided
the reduction is adapted to the quarter-canonical structure, but otherwise the subalgebra method
opens up many interesting possibilities.
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Conclusion

The quarter-canonical structure is strongly involved in the invertibility of the matrix of constraints,
which is the condition for the Dirac procedure to work. When minimal quarter-canonical coordi-
nates exist, then the matrix of constraint is invertible if and only if the constraints are such
coordinates. It is why the relevant secondary constraints are determined by quarter-canonical co-
ordinates. These J-secondary constraints make much clearer the role of secondary constraints,
and they constitute an interesting complement of the usual procedure relying on H-secondary
constraints.

The justification of the truncation method in the case of quarter-canonical brackets relies on
the presence of a subalgebra, automatically associated with the quarter-canonical structure. It is
a consequence of the Jacobi identity, and a property shared with semi-canonical brackets, but in a
weakened form, where the subalgebra involves only one of the two constraints. For quarter-canonical
structures, the existence conditions both for a Dirac reduction and for a subalgebra reduction are
automatically satisfied, and the two methods are equivalent in their result, because the matrix of
constraints is always invertible, the reduced bracket is always independent of φ2, and BC−1B† in
(8.8) is always zero.

Even for quarter-canonical brackets, the flexibility of subalgebra reductions often offers comple-
mentary possibilities, for instance to impose one single constraint, or to get several possible reduced
structures. This is because subalgebra reductions are less marked by traces of the canonical struc-
ture than Dirac reductions, even if they are still influenced by them.

Practically, the method of Dirac’s constraints and the reduction by a subalgebra, although very
different, are often related and the quarter-canonical structure is a key ingredient in this relation.

Equipped with these results about Dirac and subalgebra reductions, it is interesting to come
back to the gyrokinetic reduction, where the removal of the superfluous dimensions evokes a bracket
truncation. It is the next step of the work, which is reported in Sect. 8.4 in Chapter 8.

Another extension of the work will be to investigate more involved Hamiltonian reductions in
plasmas than the ones considered in the present chapter. It will especially be interesting to observe
the possible role of Dirac, subalgebras, and quarter-canonical reductions. This will be the topic of
Chapters 9 and 14, where the subalgebra method will prove very efficient for the reduction from
Vlasov-Maxwell to Euler-Maxwell, and then from Euler-Maxwell to magnetohydrodynamics.



Chapter 14

Hamiltonian derivation

of magnetohydrodynamics

from multi-fluid dynamics
in collaboration with Cristel Chandre and Emanuele Tassi

Abstract: The Hamiltonian structure of ideal magnetohydrodynamics is derived
from the ideal two-fluid dynamics, using Hamiltonian reduction methods. The
reduced Poisson bracket is obtained from the two-fluid Euler-Maxwell bracket
by imposing constraints on the current, the electric field and the charge den-
sity, through a projection onto a Lie-subalgebra. The reduced Hamiltonian
functional results from the limit of a non-relativistic, low-density, large-scale
regime. The preservation of total momentum is found to be determinant in
the coupling between the plasma and the electric field. The case of relativistic
magnetohydrodynamics is considered, as well as the presence of more than two
fluids. A key role is played by the Poincaré subalgebra, and by the E × B
plasma velocity.

Introduction

This appendix chapter takes place after Chapter 9. Indeed, the Hamiltonian methods developed in
Chapters 8, 12 and 13 called for applications. As a first example, Chapter 9 investigated Hamilto-
nian fluid closures. We now turn to another application, the Hamiltonian reduction from ideal-fluid
dynamics to the ideal-MHD dynamics, which relates the structures of two most used models for
plasmas.

Indeed, as was mentioned in the general introduction, in many cases, even the fluid model for
plasmas is more precise than needed. Much physical information already relies in the behaviour
of the plasma as a whole, considered as a single charged fluid coupled with the electromagnetic
field [6,46]. This motivated the magnetohydrodynamics (MHD) description. Combining the motion
of the fluids, and adding some assumptions on the regime involved (essentially non-relativistic and
electroneutral), the dynamical variables are reduced to four1: the magnetic field B, the total plasma
(mass) density ρ, entropy density σ, and momentum density M. The dynamics is given by

ρ̇ = −∇ ·M , Ḃ = ∇× (M×B
ρ ) ,

σ̇ = −∇ · (σM
ρ ) , Ṁ = −∇ · (MM

ρ ) + (∇×B)×B−∇P , (14.1)

with P (ρ, σ) the pressure.
In a similar way as for the fluid reduction, the derivation of the MHD model was initially done

by working at the level of the equations of motion, and only later on, the MHD model revealed as
Hamiltonian [101,102,104,107,143,156] provided the dissipation coefficients are put to zero, which

1Among the four fields, two are three-dimensional vectors, so there are actually eight scalar fields.
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corresponds to the so-called ideal-MHD model. This is a remarkable property, because the Hamil-
tonian character is very specific and involves strong requirements on the structure of the dynamics.
As the parent model is Hamiltonian, it is true that the reduced model has to be Hamiltonian if no
dissipation is added in the reduction process. But the point is that an arbitrary reduction process
generally breaks the Hamiltonian character of the model [58,136,138,156].

When the reduced model is Hamiltonian, it usually means that its Hamiltonian structure comes
from the structure of the parent model through a Hamiltonian reduction process [3,31–34,58]. For
instance, the ideal-fluid dynamics is essentially induced by a Lie subalgebra from the Hamiltonian
structure of the kinetic dynamics, as shown in Chapter 9; and the (collisionless) Vlasov-Maxwell
dynamics [101, 156] may be obtained using Hamiltonian methods associated to gauge groups [95],
or it may be viewed as coming from a lift of the Hamiltonian structure of particle dynamics [5].

Accordingly, we are interested here in identifying the Hamiltonian reduction that generates the
ideal-MHD model from the two-fluid system, in order to improve our understanding of this reduction
and to clarify the links between the Hamiltonian structures of the two models. In addition, it
permits to keep track of all the conserved quantities in the whole process, and shows how the
model has to be modified if one wants to include additional effects, e.g. to retain higher order
effects or to drop one of the assumptions of the model. Last, it develops Hamiltonian reduction
methods, which can be useful to derive other models.

Because of the previous chapters, here we are especially interested in identifying whether the
reduction fits with a Dirac or a subalgebra reduction, or with variations of them. Alternatively,
it could rely on an another Hamiltonian reduction method, which would be as interesting to explore.

The chapter is organized as follows. In Sect. 14.1, we change the field coordinates in order to
describe the total plasma rather than each fluid separately. In Sect. 14.2, we reduce the Poisson
bracket to describe the plasma only as a single-fluid. We show that it provides the Poisson bracket
of (ideal) MHD. It is given by a Poisson subalgebra of the two-fluid dynamics, and by imposing
the usual relations of MHD as constraints. The momentum can not be the plasma momentum, it
has to be the total momentum; the coupling between the plasma and the magnetic field appears
to be essentially linked to the preservation of total momentum by the constraint on the electric
field. In Sect. 14.3, we show that, with the constraints, the reduced Hamiltonian functional and the
corresponding motion are not exactly the ones of MHD, but they are a Hamiltonian perturbation
of them. The two ordering parameters are consistent with the physical framework. In Sect. 14.4,
the generalization to the multi-fluid, relativistic case with anisotropic pressure is considered, and
the structure of MHD is related to the subalgebra of Poincaré generators. Notice that here we
always consider ideal MHD and ideal fluids, even if for brevity, we often drop the word "ideal".

14.1 Field coordinates for the total plasma

The starting point of our derivation is the Hamiltonian structure of multi-fluid dynamics [143]. Each
fluid is described by the following field variables : its mass density ρs(x), its momentum density
Ms(x) and its entropy density σs(x), where the index s indicates the species. Here we consider two
species, e.g., electrons and ions: s ∈ {1; 2}. The two fluids are interacting self-consistently with
the electromagnetic fields E(x) and B(x). The observables are functionals of the field variables
ψ = (ρ1, ρ2,M1,M2, σ1, σ2,E,B). The Poisson bracket acts on two observables F and G as

{F,G} =

∫
d3x

[
∑

s

[
ρs GMs · ∇Fρs +Ms · (GMs · ∇)FMs +

αsρsB

2
· FMs ×GMs

+σs GMs · ∇ Fσs + αsρsFMs ·GE

]
+ FE · ∇ ×GB

]
− (F ↔ G) ,(14.2)

where we use the index notation for functional derivatives, e.g., FE = δF/δE, the coefficient
αs = qs/ms is the ratio of the charge and mass for the species s, and the symbol (F ↔ G) indicates
that the previous terms are repeated, but with permutation of F and G and inverting the signs (in
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order to fulfil the antisymmetry property of the Poisson bracket). The Hamiltonian functional is
the total energy

H =

∫
d3x

[
∑

s

(
M2

s

2ρs
+ Us(ρs, σs)

)
+

E2 +B2

2

]
, (14.3)

where Us is the internal energy density of the fluid s. The dynamics of an observable F is obtained
from the Hamiltonian and the Poisson bracket as Ḟ = {F,H}, and in particular the equations of
motion for the field variables are obtained by taking F = ψi. It should be noted that the two-fluid
model can be derived in a Hamiltonian way from Vlasov-Maxwell equations using a subalgebra
argument, as shown in Chapter 9. The local observables ∇ ·E−∑s αsρs and ∇ ·B are conserved
quantity, since they are Casimir invariants of the bracket (14.2), and physically, they have to be
chosen equal to zero in the initial conditions for the field variables. Rigorously speaking , ∇ ·B is
a Casimir only when the B in the bracket is replaced by (1−∇∆−1∇·)B (see Chapter 7).

The basic idea of the MHD reduction is to describe the plasma as a single charged fluid.
Accordingly, we adopt as new plasma field variables

ρ = ρ1 + ρ2 , (14.4)

ρe = α1ρ1 + α2ρ2 , (14.5)

σ = σ1 + σ2 , (14.6)

σe = α1σ1 + α2σ2 , (14.7)

J = α1M1 + α2M2 , (14.8)

M = M1 +M2 . (14.9)

The new variable ρ is the total mass density, ρe is the total charge density, M is the total momentum
density, J is the total current density, σ is the total entropy density, and σe is the analogue of ρe
for the entropy, i.e. it is the total "charge-weighted" entropy density.

In these variables, the Hamiltonian functional (14.3) becomes

H =

∫
d3x

[
1

2(α1ρ−ρe)(α2ρ−ρe)
(
2ρeM · J− ραM

2 − ρJ2
)
+ U +

E2 +B2

2

]
, (14.10)

where the coefficient ρα is defined in Eq. (14.12). The total internal energy density is given by
U = U1(ρ1, σ1) +U2(ρ2, σ2), where the initial variables must be considered as functions of the new
variables, e.g. ρ1 =

α2ρ−ρe
α2−α1

.

As for the Poisson bracket, it is obtained by computing the functional derivatives in the new
field variables from the scalar invariance F [ρ1, ρ2,M1,M2, σ1, σ2,E,B] = F̄ [ρ, ρe,M,J, σ, σe,E,B].
The functional derivatives are given by

Fρs = F̄ρ + αsF̄ρe ,

FMs = F̄M + αsF̄J ,

Fσs = F̄σ + αsF̄σe ,

and the functional derivatives with respect to E and B are unchanged. By inserting these functional
derivatives in the bracket (14.2), it becomes

{F,G} =

∫
d3x

[
ρGM · ∇Fρ + ρe(GM · ∇Fρe +GJ · ∇Fρ) + ραGJ · ∇Fρe

+M · (GM · ∇)FM + J · [(GM · ∇)FJ + (GJ · ∇)FM ) +Mα · (GJ · ∇)FJ

+
ρeB

2
· FM ×GM + ραB · FM ×GJ +

ρβB

2
· FJ ×GJ

+σGM · ∇Fσ + σe(GM · ∇Fσe +GJ · ∇Fσ) + σαGJ · ∇Fσe
+ρeFM ·GE + ραFJ ·GE + FE · ∇ ×GB

]
− (F ↔ G) , (14.11)
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where we have dropped the bars on the functionals. The quantities ρα, ρβ , Mα, and σα are defined
by

ρα = (α1 + α2)ρe − α1α2ρ , (14.12)

ρβ = (α2
1 + α1α2 + α2

2)ρe − α1α2(α1 + α2)ρ ,

Mα = (α1 + α2)J− α1α2M ,

σα = (α1 + α2)σe − α1α2σ .

Notice that they are not new variables but only shorthands.

We notice that M is the total momentum density of the plasma. However the invariant asso-
ciated to spatial translation symmetry is the total momentum density of both the plasma and the
field, i.e. M+E×B. This suggests a new change of variables

M′ = M+E×B , (14.13)

following Ref. [72]. Then, the total fluid variables are just the densities involved in the conservation
laws for mass, entropy and momentum.

In the new coordinate system, the expression of the Hamiltonian is obtained by replacing M
by M′ −E×B in Eq. (14.10). As for the Poisson bracket, it is obtained by replacing FM by FM′ ,
FE by FE − FM′ ×B and FB by FB + FM′ ×E in Eq. (14.11). The bracket becomes

{F,G} = {F,G}1 + {F,G}2 , (14.14)

where the first term {F,G}1 has the same expression as in Eq. (14.11), but with M′ replacing M
and {F,G}2 is given by

{F,G}2 =
∫
d3x

[
−(E×B) · (GM′ · ∇)FM′ + α1α2(E×B) · (GJ · ∇)FJ

+ρeFM′ ·B×GM′ + ραFJ ·B×GM′ + (B× FM′) · ∇ ×GB

−FE · ∇ × (E×GM′)− (B× FM′) · ∇ × (E×GM′)
]
− (F ↔ G) . (14.15)

We rewrite the last term of Eq. (14.15) together with the corresponding antisymmetric term as

−
∫
d3x (B× FM′) · ∇ × (E×GM′)− (F ↔ G)

=

∫
d3x

[
(E×B) · (GM′ · ∇)FM′ − (E×B) · (FM′ · ∇)GM′

− (∇ ·B) E · FM′ ×GM′ + (∇ ·E) B · FM′ ×GM′

]
. (14.16)

The first two terms in Eq. (14.16) compensate exactly the first term in the bracket (14.15). The
third term in Eq. (14.16) is proportional to ∇ · B which vanishes on the physical shell. The last
term in Eq. (14.16) is combined with the gyro-magnetic term ρeFM′ ·B×GM′ (repeated twice with
the corresponding antisymmetric term) in the bracket (14.15) to give a contribution proportional
to ∇ ·E− ρe which is a Casimir invariant and vanishes on the physical shell. So, the contribution
of Eq. (14.15) to the Poisson bracket (14.14) is

{F,G}2 =
∫
d3x

[
α1α2(E×B) · (GJ · ∇)FJ − ρeB

2
· FM′ ×GM′

+ραFJ ·B×GM′ + (B× FM′) · ∇ ×GB

−FE · ∇ × (E×GM′)
]
− (F ↔ G) . (14.17)

We notice that the gyro-magnetic term ρeB·FM′×GM′ automatically vanishes in the bracket (14.14)
due to opposite contributions in {·, ·}1 and {·, ·}2. Up to now, no approximations were made.
The bracket (14.14) given by Eqs. (14.11) and (14.17) is equivalent to the initial bracket (14.2)
expressed in the relevant field variables (ρ, ρe,M

′,J, σ, σe,E,B) on the physical shell (∇ · B = 0
and ∇ ·E = ρe).
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14.2 Reduction to a single-fluid Poisson bracket

Now, we consider reducing the dynamics to the MHD model, which excludes from the independent
dynamical variables the fields (ρe, σe,J,E), as a result of Eqs. (14.19)-(14.20). There remain only
the variables (ρ, σ,M′,B). Interestingly, in the Poisson bracket (14.14), this exactly corresponds
to a subalgebra . Indeed, if we consider two functionals F and G of the field variables (ρ, σ,M′,B).
The expression of the bracket (14.14) for these two functionals is given by

{F,G} =

∫
d3x

[
ρ GM′ · ∇Fρ +M′ · (GM′ · ∇)FM′

+σ GM′ · ∇Fσ + (B× FM′) · ∇ ×GB

]
− (F ↔ G) . (14.18)

The important point is that this bracket is only a functional of (ρ,M′, σ,B). Therefore the subset
of functionals of (ρ,M′, σ,B) constitutes a Poisson subalgebra of the full algebra for the two-fluid
dynamics.

This provides a reduction of the original Poisson bracket, which should correspond to the motion
of a single-fluid description. This is confirmed by the literature, since this bracket is actually just
the Poisson bracket of ideal magnetohydrodynamics [102]. Thus, MHD is given by a subalgebra of
the two-fluid system.

For a more detailed understanding of the reduction mechanism, the subalgebra is best viewed
as a projection of functional derivatives in order to fulfil the physical constraints, in a very similar
way as the reduction method by Dirac’s constraints.

For MHD, the constraints fix the charge density, the current density and the electric field,
because in the MHD limit, they are given by [7]

ρe = 0 , J = ∇×B , E =
B×M

ρ
. (14.19)

The constraint on ρe translates into the global electroneutrality at scales larger than the Debye
length. The constraint on the charge current J is a non-relativistic regime in the Maxwell-Ampère
equation. The constraint on the electric field E relies on the assumption that the temporal and
spatial scales of interest are much larger than the Larmor time and radius, and that the Hall term
can be neglected.

The last constraint to be applied involves the pressure tensor, because in the equations of
motion, even if each of the two fluids has scalar pressure, the total pressure tensor is not scalar.
This constraint can also be related to the charge-weighted entropy density σe, which is the last
field eliminated in the reduction. In the case of a subalgebra reduction, it corresponds to imposing
σe as a prescribed function of the reduced variables:

σe = f(ρ, σ,M,B) , (14.20)

but more specifically f usually depends only on (ρ, σ).

In order to apply the subalgebra projection, let us decompose our field variables into two subsets

ψ′ := (φ,χ) , (14.21)

where the first one corresponds to the reduced fields and the second subset gathers the constraints

χ := (ρ, σ,M′,B) , φ := (ρe, σe − f,J−∇×B,E− B×M
ρ ) .

The principle of a projection reduction is to consider that the dynamics occurs in a space of con-
stant φ. Then, in the Poisson bracket the functional derivatives δ

δφ should be projected in order
to become tangent to this space. Physically, it means that the variations of the quantities φ have
negligible influence on the observables. This lets free the direction of the projection. For instance
the Dirac reduction computes the projector by using the inverse of the matrix of constraints. The
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principle of a subalgebra reduction is precisely to project the derivatives parallel to the spaces of
constant χ. So, in the coordinates (φ,χ), the projector is trivially ( 0 0

0 1 ) , i.e. all derivatives δ
δφ are

set to zero. This projection just results in a bracket truncation: from the initial Poisson bracket,
only the Jχχ part remains, and the constraints have become Casimir invariants.

In order to get the reduced Poisson bracket, we should change variables according to (14.21)
before truncating the bracket. But this is actually useless because such a coordinate change does
not affect the functional expression of the Jχχ. So, the reduced bracket is indeed given by (14.18),
which exaclty agrees with the Poisson bracket of ideal magnetohydrodynamics.

It could seem that the argument on projectors is useless, since the reduced bracket was already
identified in Eq. (14.18)). However, it is important by showing how the reduction works in the
global space ψ (or equivalently ψ′), not just in the reduced space χ. Especially, it emphasizes
that the derivative operators involved in the reduced bracket are not at constant (ρe, σe,J,E) (as
suggested by formula (14.18)), but rather at constant φ = (ρe, σe − f,J−∇×B,E− B×M

ρ ). This
justifies the way the Hamiltonian is reduced in the next section.

In addition, it explains the importance of a subtle point in the derivation. In principle, MHD
corresponds to the description of the plasma as a single fluid. The natural variables would be the
total fluid mass, entropy, and momentum densities (ρ, σ,M); for instance it is the notation used in
the introduction. But using these variables in the procedure above does not provide an interesting
Poisson bracket, for instance because it results in a static magnetic field2. The reason is clear in
the projection mechanism described above: practically, the reduced dynamics is projected onto the
surface of the constraints, but the projection has a direction, i.e. it changes the value of some
variables. If the direction is not properly chosen, then the structure of the dynamics may be spoilt.
In the derivation, when taking the constraints, it is important to preserve the total (fluid+field)
momentum M′, not just the total plasma momentum M. Accordingly, the momentum density in
the introduction should be M′, not M. The reason why they are often not distinguished is that
they are almost equal in the MHD regime, as will appear in the next section.

Actually, the coupling between the MHD momentum and the magnetic field comes in an essential
way from this choice of momentum, together with the constraint on the electric field. Indeed, the
MHD bracket can be obtained from the Poisson bracket of a single non-charged fluid. Then ρe = 0
and J = 0, and the dynamics corresponds to a free fluid and a free electromagnetic field

{F,G} =

∫
d3x

[
ρ GM · ∇Fρ +M · (GM · ∇)FM + σ GM · ∇ Fσ + FE · ∇ ×GB

]
− F ↔ G .

At this stage there is no coupling between the electromagnetic field (E,B) and the fluid (ρ,M, σ).
Then changing variable M → M′ and imposing a constraint on the electric field gives exactly the
MHD bracket (14.18). So, the coupling field-plasma in MHD results because we impose a constraint
on E in such a way that it preserves the total momentum.

14.3 Reduction of the Hamiltonian functional

The reduced Hamiltonian functional is obtained from the initial one (14.10) by changing to the
variables (14.21) and then setting φ = 0. Alternatively, in a similar way as for the Poisson bracket,
one can just adopt the coordinates3 (14.4)-(14.9) and take the constraints (14.19)-(14.20) into
account. Then the Hamiltonian (14.10) becomes

H =

∫
d3x

[
1

2α1α2ρ

(
α1α2M

2 − J2
)
+ E2+B2

2 + U
]
=

∫
d3x

[
M2

2ρ − (∇×B)2

2α1α2ρ
+ (B×M)2

2ρ2
+ B2

2 + U
]
.

(14.22)

2In addition, it does not provides a subalgebra, unless an additional ordering argument on the electric charge ρe
is applied.

3In principle, the coordinate change (14.13) should also be taken into account, but for pedagogical purpose, we
will do it later. See Eq. (14.29).
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The total internal energy density is given by U = U1+U2, with for each fluid Ui(ρi, σi) expressed
as a function of the final variables ψ′, e.g. ρ1 = α2ρ−ρe

α2−α1
. Using the constraints ρe = 0 and σe =

f(ρ, σ), it writes as a functional of the variables (ρ, σ), i.e. belonging to the reduced subalgebra,
and acts as the internal energy of a single fluid, as expected. For this term of the Hamiltonian, the
reduction is just a consequence of the constraints.

This is not the case for the whole Hamiltonian, which has two additional terms compared to
the Hamiltonian of MHD

HMHD =

∫
d3x

[
M2

2ρ + B2

2 + U
]
.

One can check that these terms induce a motion different from the MHD one

ρ̇ = −∇ ·M+∇ ·
(
M×B
ρ ×B

)
, (14.23)

σ̇ = −∇ · (σM
ρ ) +∇ ·

(
σM×B

ρ2
×B

)
, (14.24)

Ḃ = ∇× (M×B
ρ )−∇× (B×B× M×B

ρ2
) , (14.25)

Ṁ = −∇ · (MM
ρ ) + (∇×B)×B−∇×

(
M×(M×B)

ρ2

)
×B−∇P (14.26)

−∇ ·
(
B× M×B

ρ2
M
)
+∇

(
(M×B)2

ρ3

)
ρ+∇

(
(M×B)×B

ρ2

)
·M (14.27)

−∇×
(
∇× ∇×B

α1α2ρ

)
×B−∇

(
(∇×B)2

2α1α2ρ2

)
ρ , (14.28)

where the pressure is given by the usual formula P =
(
ρ∂U∂ρ + σ ∂U∂σ − U

)
. In each equation, the

terms of the MHD dynamics (14.1) are present, but there are additional terms, whose contribution
can be evaluated by two ordering parameters, which are small in the range of application of MHD.

Indeed, in equations (14.23), (14.24), and (14.25), the additional terms are of order (the units
are restored here) ǫ1 = B2

ρµ0c2
. The same is obtained when the additional terms in (14.26) and

(14.27) are compared to the MHD term −∇ · (MM
ρ ). All these additional terms result from the

presence of (B×M)2

2ρ2
in the Hamiltonian (14.22), which is of order ǫ1 compared to the MHD kinetic

energy M2

2ρ .
On the other hand, the additional term in Eq. (14.26) can be compared to the MHD term

(∇×B) ×B, and then it is of order ǫ1b = u2

c2
, where u = M

ρ is the fluid velocity. So, ǫ1b is small
in the non-relativistic regime, which is an assumption of standard MHD; for instance, it is invoked
to get the constraint J = ∇×B, by excluding the term ∂tE from Maxwell-Ampère’s equation.

The parameter ǫ1 is small when the mass energy of the plasma is much larger than the magnetic
energy, which means when the plasma is dense enough, or the magnetic field strength is not too
high. The parameters ǫ1 and ǫ1b are related to the parameter β = B2

µ0ρu2 = ǫ1
ǫ1b

. It is the ratio of
the magnetic over kinetic energy (or pressure), and is of order 1 in usual MHD, since otherwise one
of the terms in HMHD can be dropped.

Another parameter is present, because of the additional terms (14.28), which are of order
ǫ2 =

∇2

α1α2ρµ0
, where ∇ corresponds to the (inverse of the) spatial scale of variations of the magnetic

field. This is a result of the contribution − (∇×B)2

2α1α2ρ
in the Hamiltonian (14.22), which is of order ǫ2

compared to the magnetic energy B2

2 .
The ordering parameter ǫ2 induces a large-scale criterion. It is small for large enough magnetic

scales LB :=
(
‖∇B‖
‖B‖

)−1
, since ǫ2 << 1 means that LB >> Lc, with the critical scale given, by

Lc = (α1α2µ0ρ)
−1/2. Using that the Larmor frequency for the fluid s is fLs = ‖αsB‖, the param-

eter Lc can be related to ǫ1 through the relation Lc =
c
√
ǫ1

fL
, defining the mean Larmor frequency

fL :=
√
fL1fL2. Last, defining a typical Larmor radius by rL := ‖u‖/fL, we get the relation

Lc = rL.
√
β. So, the critical scale is of the order of the typical Larmor radius, and this scale is

excluded from the MHD description, because at this scale, even the multi-fluid description is no
more convenient since kinetic effects are important.
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For simplicity, the argument above was made using the coordinate M. Actually, as a result of
the variables defining the reduced subalgebra, the reduced Hamiltonian (14.22) must be taken as
a function of M′, instead of M. But those variables are linked by the relation

M′ = M+E×B = M− M×B
ρ ×B = M‖ + (1 + ǫ1)M⊥ , (14.29)

where M‖ :=
BB·M
‖B‖2 is the component of the momentum parallel to the magnetic field, and M⊥ :=

1−BB

‖B‖2 ·M is its component perpendicular to B. Computationally, it complicates much the equations

of motion (14.23)-(14.28), but the ordering parameter involved is again ǫ1, and all the conclusions
above still apply.

Interestingly, formula (14.29) shows that when ǫ1 is small, the variables M and M′ are close to
each other. Then the momentum used in MHD can be considered to be the plasma momentum,
since the momentum density of the electromagnetic field is much smaller than the plasma momen-
tum density.

As a result, the reduced motion is a Hamiltonian perturbation from the MHD dynamics. It is
ordered by small parameters, which all come from the Hamiltonian functional:

H = HMHD + ǫ1H1 + ǫ2H2 ,

with H1 = (B×M)2

2ρ2
and H2 = − (∇×B)2

2α1α2ρ
. A consequence is that the specific form of the constraints

on J and E are not essential in the derivation. The only requirement is that their associated
contributions in the Hamiltonian must be small.

In this framework, the parameters ǫ1 and ǫ2 define the range of validity of MHD. They corre-
spond to the size of the terms that the MHD dynamics neglects compared to the complete reduced
Hamiltonian (14.22). The MHD motion is valid only when they are small. In the limit where
they are not negligible, the Hamiltonian (14.22) can not be simplified. However, in this case, care
should be taken to the consistency of the approximations made, because the reduction of the Pois-
son bracket implicitly used the non-relativistic regime when imposing the constraint J − ∇ × B,
and the large-scale regime when excluding kinetic effects. These hypotheses are not compatible
with large values of the parameters ǫ1 and ǫ2.

A last point can be considered. We saw that the subalgebra reduction, which concerns the
bracket is exact, whereas the reduction of the Hamiltonian functional involved an ordering approx-
imation. So, the reduction we performed lead us from the two-fluid dynamics to a dynamics that
is close to the MHD system, but not exactly identical. One can wonder if the link can not be made
exact. This question relies on the observation that in the subalgebra reduction, the constraints can
be arbitrary functions of the reduced variables, whence the idea to look for other constraints which
would give exactly H = HMHD.

The corresponding constraints should make the two excess terms in formula (14.22) disappear.
The order in the parameters αi already shows that the constraint involving J must be J = 0. With
ρe = 0, these constraints means that we are dealing with the non charged fluid, mentioned at the
end of the previous section. Now, the constraint on the electric field must be chosen so that

M2

2ρ + E2

2 = M′2
2ρ . (14.30)

Using (14.29), we straightforwardly get

E = 2
1−ǫ1

B×M
ρ . (14.31)

Thus, the Hamiltonian structure of MHD is exactly given by the dynamics of a non charged
fluid (ρe = 0 and J = 0) coupled with the electromagnetic field by imposing the constraint (14.31)
while keeping the total momentum conserved. This gives an exact link between the Hamiltonian
structures of MHD and of fluid dynamics. Notice that in the limit ǫ1 = 0, the constraint (14.31)
does not converge towards the physical constraint E = B×M

ρ , between them there is a ratio of 2.
This has no effect on the reduced dynamics, but it impacts the electric field, which is a dynamical
variable (although not independent).
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14.4 Extension to multi-fluid, relativistic and anisotropic-pressure
cases

If the system has more than two fluids, the reduction to the MHD Poisson bracket can be performed
in a similar way as well, but the role of the single-fluid description is clearer. Indeed, starting from
a multi-fluid description, let us include the total-fluid densities into the fluid coordinates ξ1 → ξT ,
with ξ = (ρ,M, σ), and ξT =

∑
i ξi. Then, the constraints on σe and J can be imposed, because

the set of variables (ρ,M, σ, ρe,E,B) define a subalgebra, as a result of the linearity of the Poisson
bracket (14.2). This brings to a sub-system of Sect. 14.1, and the last two constraints can be
imposed just the same way as previously.

Since there are more initial variables, additional constraints must be imposed. From a formal
point of view, they makes the reduction softer. One of them can compensate the excess "pressure"
term

∑
i ρiδu

2
i in the kinetic part of the Hamiltonian:

∑

i

M2
i

2ρi
= M2

2ρ +
∑

i ρiδu
2
i

2 ,

with δui = ui − u, and u = M
ρ . Then the reduction of the Hamiltonian is the same as in the

previous section. Another additional constraint can compensate the ordering terms coming from
the change of variable M → M′, to get the same result as in (14.30), but without constraining the
electric field as was done in (14.31).

In a deeper way, the Hamiltonian structure of MHD even in the multi-fluid context can be
viewed as a consequence of the presence of the Poincaré group of transformations. As the Galilean
group does not let Maxwell’s equations invariant, we consider a relativistic framework, whose
bracket is the same as in the non-relativistic case, but with the variables defined in the laboratory
frame [69, 71, 72]. Indeed, in the relativistic Vlasov-Maxwell system, the Poincaré group is a sub-
group of the canonical transformations [5,43]. The corresponding subalgebra spreads to the multi-
fluid dynamics, because this last is just a subalgebra of the parent kinetic model and includes the
densities of the generators of the Poincaré group. Besides the energy H, these generators are the
total momentum

−→
M and angular momentum

−→
L , as well as the generator of Lorentz transformations−→

N . They are defined by

H =

∫
d3x H ,

−→
M =

∫
d3x M′ ,

−→
L =

∫
d3x x×M′ ,

−→
N =

∫
d3x

(
xH− tM′) ,

where H is the relativistic expression for the plasma kinetic and internal energy density [69,72]

H = (γ2 − 1)(ρ+ P ) + γ2U + E2+B2

2 , with γ = (1− u2)−1/2 the relativistic factor.

When there is only one species, the fluid model is given exactly by the subalgebra corresponding
to the densities ρ, σ, M′, E, and B, that define these generators (σ is involved in the definition of
the Hamiltonian through the internal energy U). When there are several species, the multi-fluid
model is larger than this subalgebra, but contains it in an own subalgebra, which generates the
corresponding single-fluid description. Especially, this enlightens the role of the total momentum
instead of the fluid momentum, and explains why we noticed that the reduction to a single-fluid
model is such a cornerstone of the reduction to MHD.

More precisely, the subalgebra generated by the densities of the Poincaré generators contains
also the charge density ρe, as shown by the first term in the last line of Eq. (14.11). The reason is
that even if ρe is not involved in the global conservation laws (since it only implies exchanges between
the plasma momentum and the electromagnetic-field momentum), all the same it is involved in the
local conservation laws. So, in order to consider not the Poincaré subalgebra but the associated
densities, ρe must be kept as a dynamical variable. Now, in the single-fluid model defined by
(ρ, ρe, σ,M

′,E,B), the only effect of the charge density is to generate a coupling between the
dynamics of the electric field and the one of the momentum density. The MHD model is obtained
by considering that at large scale, the plasma is neutral, and the coupling just makes the electric field
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a dependent variable, e.g. E = −u×B, while preserving the conservation of the total momentum.
So, the constraint on E plays a more important role than the constraint on the current.

This agrees with the role of the constraint for J, which is also related to the question of rel-
ativistic regime or not. In previous sections, the derivation of MHD relied on a non-relativistic
assumption, and especially for the constraint J = ∇×B. On the other hand, the above argument
takes place in the relativistic framework, and it does not rely explicitly on this constraint for J. The
common point is that the Poisson bracket is the same between the relativistic and non-relativistic
dynamics, and a subalgebra reduction relies more essentially on the choice of the reduced variables
than on the choice of constraints.

For the sake of simplicity, we considered standard isotropic-pressure MHD. When the pressure
tensor is considered anisotropic, e.g. as a result of the Chew-Goldberger-Low equations [37,72,104],
the Poisson bracket can be reduced the same way as above since the changes only concern the
Hamiltonian. Its internal energy term acquires a dependence in the magnetic field B, and in the
relativistic case, it has an additional term involving the pressure tensor and the electric field [72].
This generates additional terms in the reduced Hamiltonian (14.22), and an analysis similar to
Sect. 14.3 must be performed to verify under what conditions they can be neglected.

Conclusion

The Poisson bracket of magnetohydrodynamics is given by a Lie subalgebra of the Hamiltonian
structure of the two-fluid dynamics, imposing as constraints the MHD relations for the electric
field, the current density, and the charge density. It can be obtained from a single non-charged
fluid coupled with the fields only through the constraint on the electric field. In the reduction
process, the constraints must be applied keeping constant not the plasma momentum density but
the total momentum density.

The reduced Hamiltonian functional is a perturbation of the Hamiltonian for MHD. Two pa-
rameters are involved, the first one can be viewed as a non-relativistic or as a low magnetic field
condition, and the second one as a large-scale regime. When they are small, the Hamiltonian
and the dynamics become the one of MHD. Then, the plasma momentum density and the total
momentum density become equal.

The two ordering parameters of the Hamiltonian perturbation are consistent with the usual
framework of MHD, but they are not additional requirements. They were already considered small
as a result of the fluid framework and of the imposed constraints.

The reduction also applies to the multi-fluid, relativistic case with anisotropic pressure tensor.
Then, the reduction to the MHD bracket more clearly appears to be linked to the subalgebra of
Poincaré generators, with a constraint on the electric field, while keeping the total momentum
conserved. The reduction to the MHD Hamiltonian functional involves more precise requirements,
but more constraints are available to get them.

An interesting extension of the work will be to consider variations of the MHD model, and
especially Hall-MHD, whose Hamiltonian structure seems to involve significant differences with the
Hamiltonian structure of MHD. Whether it is given by a subalgebra reduction or not, it should be
an interesting application and could suggest developments for Hamiltonian reduction methods.

As a complementary investigation, we have studied whether the Hamiltonian reduction derived
in this chapter (starting from the two-fluid dynamics) could be addressed also by using Dirac’s the-
ory of constraints, with the natural MHD constraints (14.19)-(14.20). The corresponding reduction
is much more intricate than the natural subalgebra method presented above. Obtaining the matrix
of constraints already requires some computations, and trying to invert it is still heavier. Especially,
it is an 8× 8 matrix, whose coefficients are operators. In addition to the algebraic manipulations,
much care must be taken to all the arbitrariness involved when inverting operators. Unfortunately,
this finally drove us to the conclusion that the matrix was not invertible, which confirms that the
Dirac method is not relevant for the MHD reduction.
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Appendix B: Complementary paper

Comment on “Geometric phase of the gyromotion for charged particles in a
time-dependent magnetic field” [Phys. Plasmas 18, 072505 (2011)]

Alain J. Brizard1 and Löıc de Guillebon2
1Department of Physics, Saint Michael’s College, Colchester, VT 05439, USA

2Centre de Physique Théorique Aix-Marseille Université,
CNRS (UMR 7332), 13288 Marseille cedex 09 France

The geometric analysis of the gyromotion for charged particles in a time-dependent magnetic field
by J. Liu and H. Qin [Phys. Plasmas 18, 072505 (2011)] is reformulated in terms of the spatial angles
that represent the instantaneous orientation of the magnetic field. This new formulation, which
includes the equation of motion for the pitch angle, clarifies the decomposition of the gyroangle-
averaged equation of motion for the gyrophase into its dynamic and geometric contributions.

In a recent paper [1], Liu and Qin studied the dy-
namics of the gyrophase of a charged particle moving
in a time-dependent (but uniform) magnetic field B(t) ≡
Bx(t) x̂+By(t) ŷ+Bz(t) ẑ. Liu and Qin then obtained an
expression for the equation of motion for the gyrophase
in terms of the Cartesian components (Bx, By, Bz) and
their time derivatives. By using this Cartesian formula-
tion, Liu and Qin demonstrated the existence of an an-
holonomic (i.e., path-dependent) geometric contribution
to the gyrophase shift that depends on the evolution his-
tory of the magnetic field during a gyro-period.

In related previous work, Littlejohn [2, 3] showed that
the Hamiltonian theory associated with guiding-center
motion in an inhomogeneous magnetic field [4] displays
an anholonomic geometric phase associated with the gy-
rogauge vector R ≡ ∇ê1 · ê2 constructed from two basis

unit vectors ê1 and ê2 ≡ b̂× ê1 that span the plane that
is locally perpendicular to the local magnetic unit vector

b̂(t) ≡ B(t)/B(t). Liu and Qin [1], on the other hand,
showed that anholonomic geometric phases also exist in
the problem of the gyromotion of charged particles (i.e.,
not guiding-centers) in a time-dependent magnetic field.

In the present Comment, we show how the analysis of
Liu and Qin can be greatly simplified by using the polar
angle θ and the azimuthal angle ϕ describing the orien-
tation of the spatially-uniform magnetic field [3], where
cos θ(t) ≡ Bz(t)/B(t) and tanϕ(t) ≡ By(t)/Bx(t). We
also clarify the role played by the pitch angle in the evo-
lution of the gyrophase. We now reformulate the analysis
of Liu and Qin [1] concerning the case of time-dependent
(but uniform) magnetic field B(t).
First, we introduce the decomposition of the parti-

cle velocity v in terms of its pitch angle λ (i.e., v · b̂ =

|v| cosλ) and gyroangle ζ (i.e., ∂v/∂ζ = v× b̂):

v ≡ v
(
cosλ b̂ + sinλ ĉ

)
, (1)

where the unit vector ĉ ≡ â× b̂ ≡ ∂â/∂ζ depends ex-
plicitly on ζ and the speed v = |v| is a constant of the
motion.
Next, we obtain the equations of motion for λ and ζ

by introducing the magnetic unit vectors [3]

b̂ = cos θ ẑ + sin θ ρ̂

θ̂ = − sin θ ẑ + cos θ ρ̂ = ∂b̂/∂θ
ϕ̂ = − sinϕ x̂ + cosϕ ŷ = ∂ρ̂/∂ϕ



 . (2)

Here, the “radial” vector b̂ points in the direction of
the magnetic field at each point in space (for a time-
dependent uniform field, this direction is only a function

of time). Since the unit vectors (2) satisfy b̂ ≡ θ̂× ϕ̂, the

unit vectors θ̂ ≡ ê1 and ϕ̂ ≡ ê2 provide a possible choice
of unit vectors (ê1, ê2) in the plane perpendicular to the

unit magnetic vector b̂ (i.e., tangent to the unit sphere).

I. GYROGAUGE GEOMETRY

With the choice (2) for the unit vectors (b̂, ê1, ê2), we
construct the magnetic one-forms

db̂ · ê1 = dθ

db̂ · ê2 = sin θ dϕ
dê1 · ê2 = cos θ dϕ



 , (3)
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where d denotes an exterior derivative [5, 6]. Since the

vectors (b̂, ê1, ê2) are orthogonal, we also have dêi · b̂ =

− db̂ · êi and dêj · êi = − dêi · êj , for i, j = 1, 2. These
definitions are not unique, however, since a rotation of

the perpendicular unit vectors (θ̂, ϕ̂) → (θ̂′, ϕ̂′) about

the b̂-axis generated by the gyrogauge angle ψ:


θ̂′

ϕ̂′


 ≡




cosψ sinψ

− sinψ cosψ


 ·



θ̂

ϕ̂


 (4)

leads to the new one-forms

db̂ · ê′1 = cosψ dθ + sin θ sinψ dϕ ≡ ω2 dt

db̂ · ê′2 = − sinψ dθ + sin θ cosψ dϕ ≡ −ω1 dt
dê′1 · ê

′
2 = cos θ dϕ + dψ ≡ ω3 dt



 .

(5)
Equation (5) shows the deep connection between the
magnetic one-forms and the Eulerian angular frequencies
(ω1, ω2, ω3), which are defined in terms of the Euler an-
gles (ϕ, θ, ψ−π/2). We can thus imagine an infinitesimaly
thin symmetric top spinning about its axis of symmetry

b̂ ≡ ê3 (at constant θ and ϕ with dψ/dt 6= 0), which also
undergoes precession (at constant θ with dϕ/dt 6= 0) and
nutation (at constant ϕ with dθ/dt 6= 0).

If we define the gyrogauge one-form

R ≡ cos θ dϕ, (6)

and we denote its gyrogauge transformation as

R′ ≡ R + dψ, (7)

then the property of gyrogauge invariance

dR′ = dR (8)

is guaranteed by the identity d2 ≡ 0 (corresponding to
the vector identity ∇×∇ ≡ 0). The gyrogauge one-form
(6) has a simple geometrical interpretation in terms of the
solid-angle two-form [5]

Φ ≡ dθ ∧ sin θ dϕ = − d
(
cos θ dϕ

)
= − dR. (9)

Hence, according to Eq. (8), the solid-angle two-form (9)
is a gyrogauge-invariant. In addition, using Stokes’ The-
orem [5], the solid angle Ω ≡

∫
D

Φ defined by the open
surface D on the unit sphere is also expressed as

Ω = −
∫

D

dR ≡ −
∮

∂D

R, (10)

where ∂D denotes the boundary of D.

II. PITCH-ANGLE AND GYROANGLE

DYNAMICS

Next, we introduce the gyration unit vectors b̂ ≡ ĉ× â

in the plane perpendicular to b̂:

â ≡ cos ζ θ̂ − sin ζ ϕ̂, (11)

ĉ ≡ − sin ζ θ̂ − cos ζ ϕ̂. (12)

These definitions are gyrogauge-invariant (i.e., â′ = â and
ĉ′ = ĉ) under the transformation ζ ′ = ζ +ψ and Eq. (4).

Using Eq. (1), the equation of motion dv/dt = ωc v× b̂

becomes

0 = ωc sinλ â + cosλ

(
db̂

dt
+

dλ

dt
ĉ

)

+ sinλ

(
dĉ

dt
− dλ

dt
b̂

)
, (13)

where ωc(t) ≡ qB(t)/m denotes the time-dependent cy-
clotron frequency and, using Eqs. (11)-(12), we find

db̂

dt
=

dθ

dt
θ̂ + sin θ

dϕ

dt
ϕ̂

=

(
cos ζ

dθ

dt
− sin ζ sin θ

dϕ

dt

)
â

−
(
sin ζ

dθ

dt
+ cos ζ sin θ

dϕ

dt

)
ĉ, (14)

dĉ

dt
= −

(
dζ

dt
− cos θ

dϕ

dt

)
â

+

(
sin ζ

dθ

dt
+ cos ζ sin θ

dϕ

dt

)
b̂. (15)

We note that these expressions can also be expressed as

db̂/dt = ω1 â − ω2 ĉ and dĉ/dt = ω3 â + ω2 b̂ in terms
of the Eulerian angular frequencies (ω1, ω2, ω3) defined
in Eq. (5) with the substitution ψ → π/2 − ζ (i.e., gy-

romotion occurs as a counter-rotation about b̂). With
these new definitions for the Eulerian frequencies, we
easily recover the standard relations ∂ω1/∂ζ = −ω2,
∂ω2/∂ζ = ω1, and ∂ω3/∂ζ = 0.

Equation (13) can be divided into two separate equa-
tions of motion:

0 =
dλ

dt
+

db̂

dt
· ĉ, (16)

0 = ωc +
dĉ

dt
· â + cotλ

db̂

dt
· â. (17)

By using Eq. (14), Eq. (16) yields the equation of motion
for the pitch angle λ:

dλ

dt
= sin ζ

dθ

dt
+ cos ζ sin θ

dϕ

dt
≡ ω2. (18)

While this equation is not considered by Liu and Qin
[1], it plays an important role in the evolution of the
gyrophase [see Eq. (20) below]. We note that, since
the angular velocities dθ/dt and dϕ/dt are gyroangle-
independent (i.e., they represent the rate of change of
the orientation of the magnetic field), the pitch-angle
equation (18) satisfies 〈dλ/dt〉 = 0 (which is valid for a
uniform magnetic field), where 〈· · · 〉 denotes a gyroangle-
average.
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By using Eqs. (14)-(15), on the other hand, Eq. (17)
yields the equation of motion for the gyroangle ζ:

dζ

dt
= ωc + cos θ

dϕ

dt

+ cotλ

(
cos ζ

dθ

dt
− sin ζ sin θ

dϕ

dt

)

≡ ωc + cos θ
dϕ

dt
+ ω1 cotλ. (19)

Equation (19) corresponds exactly to Eq. (7) of the paper
[1] by Liu and Qin, with the substitution ζ → − ζ − π/2
and

Bz

B

(
Bx Ḃy −By Ḃx

B2
x +B2

y

)
= cos θ

dϕ

dt
.

In Eq. (19), ωc is described as the dynamical term by Liu
and Qin, while cos θ dϕ/dt, which is clearly related to
the gyrogauge one-form (6), is described as the geometric

term. The last term on the right side of Eq. (19) is de-
scribed by Liu and Qin as an adiabatic term (because it is
shown in the Appendix of Ref. [1] to be one order higher
than the geometric term when the magnetic field evolves
slowly compared to the gyration period). Instead, we use
the pitch-angle equation (18) to write ∂(dλ/dt)/∂ζ = ω1

(once again valid for a uniform magnetic field), so that
Eq. (19) is written as

dζ

dt
= ωc + cos θ

dϕ

dt
+

∂

∂ζ

(
cotλ

dλ

dt

)
. (20)

The third term in Eq. (19) therefore appears as an exact
gyroangle derivative, which disappears when Eq. (19) is
gyroangle-averaged:

〈
dζ

dt

〉
= ωc + cos θ

dϕ

dt
. (21)

We note that Eq. (21) is gyrogauge-invariant since, under
a gyrogauge transformation generated by ψ, we have
(〈

dζ ′

dt

〉
,
dθ̂′

dt
· ϕ̂′

)
=

(〈
dζ

dt

〉
+
dψ

dt
, cos θ

dϕ

dt
+
dψ

dt

)
,

which follows from the gyrogauge transformation (7).
Upon gyroangle-averaging, the equation of motion (21)
for the gyroangle is therefore decomposed in terms of dy-
namical and geometric terms only.

III. GEOMETRICAL CONTRIBUTIONS TO

THE GYROPHASE

We now follow Ref. [1] and use Eq. (21) to calculate the
averaged gyrophase shift, denoted 〈∆ζ〉, in one gyration
period T ≡ 2π/ωc(t):

〈∆ζ〉 ≡
∫ t+T

t

〈
dζ

dt′

〉
dt′ = 〈∆ζd〉+ 〈∆ζg〉[C]. (22)

The first term on the right side of Eq. (22) denotes dy-
namical gyrophase shift

〈∆ζd〉 ≡
∫ t+T

t

ωc(t
′) dt′, (23)

which equals 2π for a time-independent magnetic field.
The second term on the right side of Eq. (22), on the
other hand, denotes the geometrical gyrophase shift

〈∆ζg〉[C] ≡
∫ t+T

t

cos θ(t′)
dϕ

dt′
dt′

=

∫

C

cos θ dϕ =

∫

C

R, (24)

where the path C moves on the unit sphere from the
initial point at θ(t) and ϕ(t), to the final point at θ(t+T )
and ϕ(t + T ). We note that the geometrical gyrophase
shift (24) is path-dependent (i.e., it is anholonomic) since,
by constructing the closed contour ∂D = C1−C2 from two
paths with identical end points, we find

〈∆ζg〉[C1] − 〈∆ζg〉[C2] =

∮

∂D

R =

∫

D

dR

= − Ω 6= 0, (25)

where Ω denotes the solid angle enclosed by the open
surface D on the unit sphere.
Lastly, we introduce the time-scale ordering on the evo-

lution of the magnetic field

ǫ ≡ T

∣∣∣∣
d lnB

dt

∣∣∣∣ ∼ T

∣∣∣∣
dϕ

dt

∣∣∣∣ ∼ T

∣∣∣∣
dθ

dt

∣∣∣∣ ≪ 1, (26)

where the magnitude and direction of the magnetic field
are assumed to change on the same slow time scale com-
pared to the gyro-period T . By inserting this ordering in
Eqs. (23)-(24), we find the dynamical gyrophase shift

〈∆ζd〉 ≃ 2π + π

(
T
d lnB

dt

)
(27)

and the geometrical gyrophase shift

〈∆ζg〉[C] ≃ dϕ

dt

∫ T

0

cos[θ(t+ τ)] dτ

≃ cos θ

(
T
dϕ

dt

)
, (28)

which is just T times the instantaneous value of the ge-
ometric term in Eq. (21), and is of order ǫ. Finally, Liu
and Qin compute the average value of the adiabatic term
in Eq. (20) and show that it is of order ǫ2. In our view,
this contribution disappears upon gyroaveraging.

IV. SUMMARY

The formulation of the gyromotion in terms of the
spatial angles relates the gyroangle dynamics with the
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motion of a spinning rigid body, through a natural
appearance of the Euler frequencies. In addition, it
emphasizes the role of the gyrogauge one-form R in the
geometric interpretation of the gyromotion anholonomy.
Lastly, the inclusion of the pitch-angle dynamics in our
formulation shows that it is related to the adiabatic
contribution to the gyroangle dynamics and it explains
its adiabaticity.

We conclude this Comment with a few remarks con-
cerning a general magnetic field that is space-time-
dependent (details will be presented elsewhere). In this
case, Eq. (21) is replaced with

〈
dζ

dt

〉
= ωc + σ +

(
τ
ds

dt
+

1

2

dχ

dt

)
, (29)

where dê1 · ê2 ≡ σ dt + R · dx [2]. Here, two additional

contributions appear. The first one involves the (Frenet-

Serret) torsion of the magnetic-field line τ ≡ b̂ ·R =
(∂ê1/∂s) · ê2, with v‖ ≡ ds/dt used in Eq. (29). The
second one involves the twist of the magnetic-field lines

τm = b̂ ·∇× b̂ ≡ dχ/ds, defined as the rate of ro-
tation (denoted by the angle χ) of a nearby field line

about the magnetic field line represented by b̂ [7, 8], with
v‖ τm = dχ/dt used in Eq. (29). We note that the tor-
sion and the magnetic twist can be comparable in some
magnetic geometries [9]. The torsion contributes to an
anholonomic (path-dependent) geometric gyrophase shift
〈∆ζτ 〉[C] ≡

∫
C
τ ds while the magnetic twist contributes

an holonomic (path-independent) geometric gyrophase
shift 〈∆ζχ〉[C] ≡ 1

2

∫
C
dχ = 1

2
∆χ.
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List of main symbols

In principle, we have tried to make each chapter self-consistent. In each of them the various symbols
involved are defined. This was all the more adequate as different chapters often have quite different
frameworks and subjects. We summarize here the main symbols used in the document, i.e. the
ones used for at least a few pages.

Perhaps it is useful to mention that the various chapters were initially written in different
contexts, and with different notational conventions. We have tried to homogenize them. We hope
to have avoided omissions and mistakes, but if some were to remain in the present version, we
would be happy to correct them in the next versions. Your remarks and suggestions are welcome.

Notational conventions

As is rather standard, bold-faced characters (e.g. B) usually denote vectorial quantities, while the
associated scalar quantities are indicated by normal-font characters (e.g. B). Sans-serif fonts or
hatted vectors for lower-case characters (e.g. b or v̂) ordinarily mean unit vectors.

As usual also, exponents indicate the power (e.g. B2) or the component of a vector or of a
differential form (e.g. Xi or Γi). A tilde denotes gyro-fluctuation or related quantities, e.g. ω̃0 on
page 2.2.1.

Indices have three possible meanings: they can refer to the component of a vector or of a
differential form (e.g. ∂i), or to the expansion order (e.g. G1), or to a derivative. Be careful
that three distinct kinds of derivatives (i.e. first-order variations) appear, namely for functions
(e.g. fz = ∂f

∂z , with f a function with argument z), for functionals (e.g. HB = δH
δB , with H a

Hamiltonian functional with argument B), and for operator-functions. This last case is exemplified
by the magnetic moment µ̄(p,q) = µ̄[p,B(q)], which depends on all the derivatives of the magnetic
field; it can be viewed as an operator acting on the magnetic field, and µ̄B is an operator (see
page 133 for a detailed example). The indices "parallel" and "perpendicular" fairly often refer to
the magnetic field (e.g. v‖ and v⊥).

Overbars can have two meanings. Most often, they indicate a transformed quantity (e.g. q̄ or
µ̄). However, when they appear over c or a followed by another vector, they indicate the matrix
transpose for vectors. The only possible ambiguity concerns the vector coordinate c, but the
meaning of the overbar should be clear by the context, especially because the overbar to transpose
c is used when it is contracted with another vector. In addition, only Chapter 2 is concerned with
both uses of the overbar over the symbol c, and for safety, we have distinguished the long, thick
overline (c) for the transformed value of c from the shorter, thin overbar (c̄) for the transpose of c.

About the overbars, Chapter 10 uses a specific notational convention: overbars always indicate
matrix transpose, and they can be used over any vector (not just on c and a). Indeed, in this
chapter, there is no transformed quantity, except the constant of motion, which is denoted by A.

The primed notation mainly indicates a twin object, as is standard (e.g. in δ(x−x′)). However,
in order to make some formulae easier to read (see e.g. Eq. (1.23)), we also have used a primed
quantity followed by a vector to indicate a gradient acting on its left: f ′B = B · ∇f . In principle
there should be no confusion, since the meaning is clear by the context.
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List of main symbols

Note: the number appearing just after each symbol indicates a page in the manuscript where a
typical use (or better a definition whenever suited) of the symbol appears.

A : 52 magnetic vector potential

A : 178 matrix, esp. truncated matrix from J

A : 209 constant of motion (Chap. 10 and 4)

a : 253 generic coefficient (possibly operator)

a : 30 unit vector of the Larmor radius

avg : 31 gyro-average operator

B : 29 magnetic field vector

B⊥ : 30 plane perpendicular to B

B∗ : 80 modified magnetic field vector

B : 178 generic matrix, possibly operator

B : 224 matrix operator b×

B : 30 norm of the magnetic field

b : 29 unit vector of B (or rather of eB)

b : 253 generic coefficient (possibly operator)

C : 167 operator for matrix of local constraints

C : 167 matrix of Dirac constraints

c : 29 unit vector of the perpendicular velocity

c : 249 generic coefficient (possibly operator)

D : 172 generic operator
210 esp. intrinsic ∂θ

d : 68 exterior derivative on differential forms
61 esp. total derivative on functions
253 or generic coefficient (possibly operator)

dz : 241 total derivative with respect to z

E : 124 electric field (vector)

E : 81 electric field (norm)

e : 29 particle charge
53 or Euler’s number for exponential

e1 : 30 unit vector for the gyro-gauge

e2 : 30 unit vector for b× e1

F : 143 generic functional

f : 52 generic function
124 esp. Vlasov density

G : 54 generic vector field
53 esp. generator of transformations

G : 143 generic functional

G : 210 left-inverse of D

g : 73 vector combining several quantities

g : 52 generic function
253 or generic coefficient (possibly operator)

H : 143 Hamiltonian function
169 or generic functional
52 esp. Hamiltonian functional

h : 52 generic function
209 esp. function related to the Hamiltonian
253 or generic coefficient (possibly operator)

¯̄I : 125 identity operator

¯̄I⊥ : 125 orthogonal projector onto B⊥

¯̄I⊥ : 128 projector perpendicular to the velocity

iX : 68 interior product with the vector field X

J : 171 Electric current

J : 53 Poisson matrix in finite dimension
167 or matrix of local field interactions

J∗ : 167 the specific J for Dirac brackets

J : 128 Jacobian
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K : 65 function to be fixed

L : 53 shorthand about a Lie derivative

L : 53 Lie derivative

M : 190 fluid momentum density

M : 77 matrix
89 esp. pivotal matrix for Chapt. 2

M∞: 77 pivotal matrix for higher orders

m : 29 particle mass

N : 101 vector field for ∇×R
32 or remaining terms in an equation

nb : 90 order from which Mn is invertible

nc : 90 order from which M∞ is active

osc : 31 gyro-fluctuation operator

P : 279 pressure

P : 166 generic projector

P⊥ : 166 orthogonal projector

P∗ : 167 Dirac projector

Pn : 189 n-th moment of the Vlasov density

p : 29 particle momentum (vector)

p⊥ : 29 perpendicular momentum (perp. to B)

p : 29 particle momentum (scalar)

p‖ : 84 parallel momentum

Q : 166 derivative of Q

Q : 166 constraint

q : 29 particle position

q : 274 particle charge

R : 99 gauge vector

Rg : 100 generalized gauge vector

Rϕ : 108 (scalar) connection coefficient for ϕ

R : 74 remaining terms in an equation

Rg : 166 range of an operator

rL : 31 Larmor radius

S : 54 gauge function for the Lagrangian

s : 169 fluid specific entropy

T : 233 transformation for functionals

T : 233 transformation for functions (pull-back)

U : 169 internal energy density

u : 176 fluid velocity

V : 165 generic vector
107 or specific vectors in several contexts

V : 128 particle velocity (scalar)

v : 169 particle velocity (vector)

v⊥ : 125 perpendicular velocity (vectorial)

v̂ : 128 unit vector of v

v : 129 other symbol for v̂ used for clarity

v : 215 specific vector parallel to v

v : 253 norm of the particle velocity
171 or generic coefficient (possibly operator)

v⊥ : 42 perpendicular velocity (scalar)

v‖ : 125 parallel velocity

W : 165 generic vector or vector field

w : 34 generic vector

X : 54 generic vector field
53 esp. generator of transformations

x : 274 position in configuration space
167 or generic coordinate

y : 52 phase-space-time coordinate (p,q, t)
241 or generic coordinate
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z : 138 phase-space coordinate (p,q)
52 or generic coordinate

α : 211 gyro-average of A(p,q)
274 or charge-to-mass ratio

Γ : 52 Lagrangian 1-form

γ : 68 generic 1-form
102 or generic path (or loop)

∆ : 170 Laplace operator
102 or finite variation

δ : 104 Kronecker delta symbol
165 or Dirac delta distribution
126 or infinitesimal variation
60 esp. for a 1-form (non-closed)
127 or for functional differentiation

ǫ : 279 generic small parameter
31 esp. the one for guiding-center theory

ε : 104 Levi-Cività symbol

η : 211 gyro-fluctuation of A(p,q)

Θ : 103 angle for analogy with θ

θ : 30 gyro-angle

Λ : 69 specific 1-form

λ : 68 specific 1-form

µ : 56 adiabatic invariant (lowest-order) for µ̄

µ̄ : 56 magnetic moment

Πn : 193 pressure-like moment of Vlasov density

παγ : 147 map between coordinate spaces

ρ : 169 fluid mass or charge density

ρe : 275 charge density

σ : 274 fluid entropy density

τ : 233 transformation for coordinates

Φ : 81 electric potential
246 or semi-canonical coordinate

φ : 58 cotangent of ϕ
178 or constrained field

ϕ : 29 pitch-angle

χ : 164 generic field
178 or coordinate complementary to φ

ψ : 232 generic field

ω : 55 Lagrange 2-form
164 or vorticity

ωL : 30 Larmor frequency

ωs : 53 symplectic (phase-space) part of ω

† : 170 adjoint

∂a : 214 specific differential operator

∂a : 63 shorthand for a · ∇

∂b : 63 shorthand for b · ∇

∂c : 63 shorthand for c · ∇

∂θ : 63 shorthand for −a · ∂c

∇∗ : 80 reference choice for the covariant derivative
130 or gradient expressed in other coordinates

∇⋆ : 227 specific gradient-like derivative operator

{·, ·}: 52 Poisson bracket

{·, ·}∗ : 167 Dirac Poisson bracket

[·, ·] : 124 Poisson bracket (esp. for particles)
108 or commutator
131 or similar to [·] but with several dependences

[·] : 234 functional dependence
131 esp. dependence through operators
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