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Introduction

The main developments which led to our understanding of light and of optical phe-

nomena, occurred a long time ago. Before the discovery of laser, it seemed unlikely

that any dramatic changes would occur and in some senses the field became an un-

fashionable one. The arrival of the laser marked a new beginning, the extent of which

can be judged from the enormous effort which was developed to its study. The pub-

lishing of over 5000 papers within the first ten years after its discovery was a proof to

its revolutionary effect on the fundamental science. Apart from their applications in

fundamental research, lasers are nowadays present everywhere in our life and it seems

that the growth of their applications will never stop. What makes the laser source

so unique is its coherence, directionality and monochromacity (or alternatively short

duration).

The short duration (equivalently broad spectral bandwidth) which is the main prop-

erty of femtosecond lasers has opened up very important new frontiers in both basic

research and for applications. For example, due to their ultrashort duration, fem-

tosecond laser is considered as the main candidate to study the electronic dynamics

of the molecules by using of so called pump-probe techniques [1]. Furthermore, the

mentioned short duration property resulted in application of the femtosecond sources

in coherent control experiments [2]. Their broad spectral bandwidth is also highly ap-

plicable in high precision optical frequency metrology which brought the Nobel prize

in physics for J. L. Hall and T.W. Hansch [3–7]. Concentration of modest laser en-

ergy in time (femtosecond) and space (micrometer) delivers extreme peak intensities

that also caused a revolution in light-matter interactions. However, one challenging

task is the characterization of femtosecond pulses. This is because their measurement

requires electronic devices that are considerably faster than their duration while the

existing detectors have at best time response of few picoseconds. Since there is no

shorter event available to measure ultrashort pulses, the shortest possible event that

can be used is the pulse itself. Along with the advances in generation of femtosecond

1



2 Introduction

sources, ultrafast metrology witnessed tremendous improvements in recent years. The

examples include SPIDER [8] and FROG [9] techniques which are now commercially

available in various spectral domains.

Typically, all pulse characterization methods reconstruct the overall temporal elec-

tric field or intensity of the pulses (averaged over spatial profile) without providing

any information about their spatial characteristics. The reconstructed electric field

is valid only in the absence of space-time couplings or in other words, when tempo-

ral properties of the pulse is same for every spatial position along the beam. When

space-time coupling effects are present, each spatial position along the pulse wave-

front will have its own specific temporal properties. These couplings, which are due

to the broad spectral bandwidth of the ultrashort pulses, are introduced from their

propagation in optical elements such as gratings, prisms and air. These couplings

often blur temporal resolution, reduce intensity and cause other problems. Neverthe-

less, space time couplings can be exploited for specific purposes such as increasing

the spectral bandwidth of the nonlinear optical conversions [10]. Therefore, in order

to properly understand and control them, a systematic studying and characteriza-

tion of couplings and their sources is required. This is done either by extension of

conventional temporal characterization techniques to the spatial domain or invention

of novel independent instruments. Among all developed techniques for characteriza-

tion of such couplings e.g. SEA SPIDER and SEA-TADPOLE, we have used Fourier

Transform Spatio-Spectral Interferometry (FTSSI) due to its numerous advantages

that will be detailed in this manuscript [11].

On a femtosecond time scale, many interactions depend on the particular tempo-

ral shape of the waveform being applied. For many applications such as coherent

control of quantum mechanical processes [12–15], pulse compression [16], multidi-

mensional nonlinear microscopy [17], optical communications [18] and factorization of

numbers [19–21] it is desirable and necessary to modify the pulses from the source in

a well-defined manner. While shaping of nanosecond and picosecond pulses can be

achieved by electronically driven pulse shapers, such as electro-optic modulators, all-

optical techniques have to be applied for femtosecond pulse shaping. Pulse shapers are

also main sources of space time couplings. Therefore, studying their relevant couplings

are highly desired. Extensive studies of the pulse shapers based on 4f-line configu-

ration are undertaken [11, 22–26]. However, no complete studying of Acousto-Optic

Programmable Dispersive Filter pulse shapers (AOPDF), which are highly desired in
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the community mainly because of their wide range of tunablity, has been reported.

One direction of our studies is the full spatio-temporal characterization of the UV-

AOPDF pulse shaper by means of FTSSI technique.

As mentioned, it is the ultrashort duration and the spatial shape of the femtosecond

pulses that make them so useful for different applications. Unfortunately, implement-

ing such applications in biomedical samples is elusive due to their inhomogeneous

refractive index. In other words, they strongly distort the spatial and temporal form

of the incident pulse as it propagates through the sample and hence snatch those

properties of the pulses on which their applications are based on. Different techniques

has been developed to correct the spatial distortions of the continuous-wave lasers

both in thin [27,28] and thick [29] scattering media.

In the pulsed regime, the control or in other word the correction of the spatial and

temporal shape is already done in acoustic and MHz regime using time reversal exper-

iments [30–33]. However, because of the difficulty of measuring the complex electric

field at optical frequencies, the task of spatio-temporal distortion correction remained

elusive until our work in which we measured and consequently performed time reversal

experiments in the appropriate optical frequency regime [34, 35]. Since the scatter-

ing medium couples the spatial and temporal domains, we obtained both spatial and

temporal focusing only by shaping the spectral phase of the input pulses. This is the

subject of the third chapter of the manuscript.

This manuscript is organized as follows:

-First chapter (Experimental devices) presents briefly the laser source and the ex-

perimental devices including femtosecond pulse measurement and shaping techniques

that I have frequently used during my PhD period in LCAR.

-Second chapter (space-time coupling) is devoted to complete characterization of

the spacetime coupling effects produced by the UV-AOPDF pulse shaper. First it

starts with a mathematical description of the space-time couplings. Then it reviews

the present state of art in space-time characterization techniques. Finally, it presents

the experimental results concerning the full spatio-temporal characterization of the

UV-AOPDF pulse shaper and the physical origin of the produced space-time cou-

plings.

-Third chapter is about spatio-temporal characterization and controlling of the

femtosecond pulses transmitted through a multiply scattering medium. Therefore,



4 Introduction

first it presents the current state of control of the spatio-temporal speckles. Then, it

presents the analytical and numerical description of such control via spectral shaping

of the input pulses. Then, it describes the experimental setup that we have used to

study and control the transmitted light. Finally, it shows the experimental results

including spatio-temporal characterization of the transmitted pulses and more im-

portantly, spatio-temporal control of such transmitted pulses behind the scattering

medium.



Chapter 1

Experimental devices

This chapter presents briefly the laser source and experimental techniques and tools

that I have regularly used during my PhD period in LCAR. It is organized as fol-

lows: section 1.1 introduces the general characteristics of our laser source. Section 1.2

presents the mathematical description of the optical pulses which is used throughout

this thesis. Section 1.3 gives an overview about the techniques of generation of ul-

trashort pulses in Ultraviolet (UV) region. In addition, it describes our experimental

configuration that we have used for the generation of ultrashort UV pulses. Section

1.4 is an overview of the conventional ultrashort pulse shaping techniques–specifically

those we have used in our lab. Finally, pulse measurement methods that have applied

in our studies are described in section 1.5.

1.1 Laser source

The frequent laser source that has been used during my thesis is a commercial

Ti-Sapphire oscillator (FEMTOLASERS Produktions). It is pumped by a 4.4 W

continuous-wave (CW) laser operating at 579 nm and delivers pulse sequences with

duration of 20 fs at Full Width at Half Maximum (FWHM) with repetition rate of

76 MHz. It is operating at 800 nm with spectral bandwidth of 70 nm at FWHM [see

Fig. 1.1(a)]. The output pulse energy is about 5.2 nJ/pulse.

A Chirped Pulse Amplification system (CPA) that is the most common method of

pulse amplification is added to our oscillator in order to increase the single pulse en-

ergy [36, 37]. Our CPA system which is made by Amplitude technologies consists of

three main parts: pulse stretching, two steps of amplification and finally pulse com-

pression.

5



6 Chapter 1. Experimental devices
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Figure 1.1: Spectral intensities of femtosecond oscillator and laser chain. (a) Solid blue
line is the spectral intensity of the femtosecond laser oscillator measured by a calibrated
spectrometer. Solid red line is the Super-Gaussian fit with central wavelength of 800.3 nm
and bandwidth of 71 nm at FWHM. (b) Solid blue line is the measured spectral intensity
of the laser chain. Solid red line is the Gaussian fit with central wavelength of 800.7 nm
and bandwidth of 24 nm at FWHM.

In the following, I describe briefly the principles of the chirped pulse amplification

and the characteristics of the beam at the output of each mentioned step [see Fig.

1.2 for the laser chain scheme and Tab. 1.1 for the beam characteristics at the out-

put of each step]. The output of the laser oscillator is injected into a pulse stretcher

Pulse
Stretcher

Oscillator
pump

Pulse 
Shaper

M
ultipass

Am
plifier

Pulse
Compressor

Amplifier
pump

Regenerative
AmplifierOscillator

5.2 nJ/pulse

520
µJ/pulse

5 mJ/pulse3 mJ/pulse
50 fs

4.4 W 20 %  22.5 W  

80 %  

Figure 1.2: Scheme of the laser chain with characteristics of the output beam at each
step. The laser chain consists of femtosecond Ti-sapphire oscillator and Chirped Pulse
Amplification (CPA) system. CPA system is made of a pulse stretcher, two sequent
stages of amplifiers and a pulse compressor. Pulse shaper placed after pulse stretcher
compensates the higher order residual phase produced by the laser chain optics.
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where the pulse duration is broadened by factor of 103-104 via adding a positive

quadratic phase [38, 39]. The duration of the stretched pulse is determined by the

need to avoid damage to the optics and to avoid nonlinear distortions of the spatial

and temporal profile of the beam. At the output of the stretcher a pulse shaper

that is called Acousto-Optic Programmable Dispersive Filter (AOPDF) [40] is em-

bedded. It eliminates the higher order residual phases that are produced by optics

of the laser chain. In the next step, pulses are amplified by a low-gain regenerative

amplifier [41] to 520 µJ/pulse where the repetition rate falls to 1 kHz. Since the

regenerative amplifier possesses a cavity, a low-gain configuration is typically used to

prevent the generation of Amplified Spontaneous Emission (ASE). Pulses are then

additionally amplified to 5 mJ/pulse by a high-gain multipass amplifier [42]. Finally,

pulse compression is obtained by a pair of gratings by introducing the opposite phase

of the pulse stretcher [43]. The output beam is therefore a train of almost Fourier

limited pulses with duration of 50 fs and with energy of 3 mJ/pulse [see Fig. 1.3].

Figure 1.1(b) shows the spectral intensity at the output of the pulse compressor that
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Figure 1.3: Typical intensity autocorrelation of femtosecond pulses delivered by laser
chain. Dotted blue line is the temporal intensity autocorrelation of the laser chain. Dashed
red line is the Gaussian fit with bandwidth of 70 fs at FWHM which infers pulse duration
of 50 fs.

has a Gaussian profile centered at 800.7 nm with bandwidth of 24 nm at FWHM.
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Properties Oscillator Regen Multi-pass Output

Average power 400 mW 520 mW 5 W 3 W
Repetition rate 76 MHz 1 kHz 1 kHz 1 kHz
Pulse energy 5.2 nJ 520 µJ 5 mJ 3 mJ

Central wavelength 800 nm 800 ± 10 nm 800 ± 10 nm 800 ± 10 nm
Spectral bandwidth ∼ 70 nm ∼ 25 nm ∼ 25 nm ∼ 25 nm

Table 1.1: Characteristic of the femtosecond laser chain of LCAR

The increased pulse duration compared with the output of the oscillator is due to

the spectrum narrowing during the nonlinear amplification process. Additionally we

have also used a home-made Ti-Sapphire oscillator without amplification system in

our studies [44]. It provides 100 fs pulses centered at 800 nm with spectral bandwidth

of 10 nm at FWHM and repetition rate of 76 MHz.

1.2 Mathematical description of ultrashort optical

pulses

Ultrashort pulses can be characterized by measuring their electric field. In other

words, the information that we can get from an experiment where the ultrashort pulses

are used is directly dependent to the amount of knowledge that we can have over pulse

electric field. This requires a proper mathematical description of the ultrashort pulses

based on their electric field. In the following, I outline the mathematical notations of

the optical pulses which will be used throughout this thesis. Such description would

also provide a more intuitive understanding of the behavior of ultrashort pulses.

The optical pulse is characterized by its real valued electric field E(x, y, t), where x

and y are its spatial dependences along its transverse plane while t is its temporal

dependence. If the temporal characteristics of the pulse are independent of the spatial

ones, the electric field can be written as a product of temporal and spatial factors

E(x, y, t) = E(x, y)E(t) (1.1)

and hence each factor can be derived independently from the wave equations. First,

I present the temporal factor E(t).

Ultrashort pulses in temporal (spectral) domain

It is generally more convenient to use complex (analytic) representation of the electric
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field. The real electric field E(t) is related to analytic electric field Ẽ(t) through

E(t) = Ẽ(t) + Ẽ∗(t) (1.2)

where ∗ is the sign of complex conjugation. The electric field of a typical pulse in the

temporal domain with a linear polarization can be written

Ẽ(t) = |Ẽ(t)|eiφ(t)e−iω0t (1.3)

where |Ẽ(t)| is the temporal amplitude, φ(t) is the temporal phase and ω0 is the

central frequency of the pulse. The intensity of the pulse is given by the temporal

amplitude I(t) ∝ |Ẽ(t)|2. φ(t) can be written as a Taylor expansion at the arrival

time of the pulse peak t0

φ(t) = φ(t0) +
∂φ

∂t
|t0(t− t0) +

1

2

∂2φ

∂t2
|t0(t− t0)

2 + ... (1.4)

where the zeroth order φ(t0) is the carrier envelope offset (constant) manifesting the

phase of the field oscillation at the peak of the pulse. This parameter plays an impor-

tant role in few cycle pulses. However, in our case, since we are dealing with several

cycle pulses, it can be ignored. The first derivative establishes the instantaneous fre-

quency. More precisely, it shows the evolution of the instantaneous frequency as a

function of time (temporal chirp). The second derivative shows the sign and magni-

tude of the temporal chirp.

The optical pulse may be also represented in spectral domain which is obtained from

Fourier transforming of the electric field along temporal domain Ẽ(ω) = FT [E(t)]. We

are interested in spectral counterpart of Ẽ(t) which is calculated by setting to zero

the negative frequencies of the Ẽ(ω). The relation between the complex value and

positive frequency electric field is hence:

Ẽ(ω) = Ẽ(ω) + Ẽ∗(−ω). (1.5)

The analytical spectral electric field of the pulse can be also written in polar notation

Ẽ(ω) = |Ẽ(ω)|eiφ(ω) (1.6)

where |Ẽ(ω)| is the spectral amplitude and φ(ω) is the spectral phase. The spectral

intensity can be calculated from the amplitude I(ω) ∝ |Ẽ(ω)|2 from which the spectral
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bandwidth of the pulse can be extracted. The spectral phase can be also written as

Taylor expansion at the central carrier frequency ω0:

φ(ω) = φ(ω0) +
∂φ

∂ω
|ω0

(ω − ω0) +
1

2

∂2φ

∂ω2
|ω0

(ω − ω0)
2 + ... (1.7)

where the zeroth order phase (absolute phase) φ(ω0) affects the carrier envelope offset

with out modifying the temporal intensity. The first derivative of the spectral phase

φ(1) = ∂φ
∂ω

establishes the arrival time of a particular frequency (spectral chirp or group

delay). The second derivative shows the value and the sign of the spectral chirp. If

φ(2) and the higher order terms are zero, the pulse is called Fourier limited pulse.

It means that for the given spectral bandwidth ∆ω pulse has the shortest possible

duration at FWHM.

Spatial dimension

The spatial dependence of the pulse can be derived from the wave equation when it

is independent of the temporal profile. The simplest solution for the spatial function

is assuming a pulse with a constant intensity across the beam and infinitely large

beam diameter (plane wave). A more general solution yields an optical pulse with

a Gaussian spatial profile which is a solution to Maxwell wave equation under the

paraxial approximation condition and when the beam propagates along the z direction

and has a linear polarization.

Some useful definitions which are going to be used in the manuscript are the pulse

spectrum

S(w) =

∫ ∞

−∞

I(x, y, ω)dxdy (1.8)

and the pulse power in temporal domain

P (t) =

∫ ∞

−∞

I(x, y, t)dxdy (1.9)

and the pulse energy

F (x, y) =

∫ ∞

−∞

I(x, y, t)dt. (1.10)
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1.3 Generation of ultrashort UV pulses

1.3.1 State of the art

The electronic absorption of most of the organic molecules lays in ultraviolet (UV)

spectral region. Therefore, in order to perform ultrafast spectroscopy or coherent

control experiments in such molecules, generation of ultrafast pulses in this spectral

region is strongly desired. Unfortunately, this task is rather challenging because only

a few exotic materials exist that can be used for light amplification in this spectral

range. Moreover, the additional problem is that their bandwidth does not support

pulses shorter than 100 fs [45]. Therefore, the usual approach has been to extend

the operation range of standard near-IR Ti:sapphire laser systems to the UV-DUV

spectral range by applying frequency conversion techniques.

In the earliest approach, Ringling and his colleagues [46] demonstrated 180 fs UV

pulses by utilization of phase matched sequential frequency conversion of high peak

power Ti-Sapphire laser pulses in three β Barium Borate (BBO) crystals (sum fre-

quency mixing of a fundamental and its third harmonic). However, because of severe

group velocity walk-off and phase matching bandwidth limitations inherent to the

nonlinear crystals, the efficiency of the frequency conversions were reduced. Using

gaseous nonlinear optical media can circumvent the pulse width limitations in the

UV. Backus et al. [47] were the first who exploited a gaseous medium (air in their

case) for generation of the then shortest ever UV pulses. They generated 16 fs pulses

at 270 nm through a third harmonic conversion process. Later, other approaches

were performed in hollow fiber [48] and filament [49] by parametric difference fre-

quency mixing between the Fundamental Frequency (FF) and its Second Harmonic

(SH) (2ω + 2ω− ω). In the former case, 8 fs pulses with few microjoules energy were

obtained while in the later, pulses were on the order of 12 fs with 20 µJ energies. More

recently via direct frequency upconversion of sub 4 fs laser pulses at 750 nm focused

into a Ne-filled, quasi-static gas cell, 2.8 fs UV pulses were demonstrated [50,51].

In the direction of producing higher energy UV pulses, Nagy et al. [52] succeeded

in the generation of 24 fs DUV pulses with energies of up to 200 µJ, by using the

hollow fiber compression technique to high-energy pulses at 248 nm. In their work,

110 fs UV pulses were directly obtained from an excimer laser amplifier with 20 mJ

energy. Ghotbi et al. [53] reported the generation of the highest pulse energies 300

µJ in the DUV spectral range with sub 20 fs duration. They took the advantage

of the spectral broadening during filamentation in Argon. The UV pulses, applied
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in their experiment, were generated from the Third Harmonic (TH) of an amplified

Ti:sapphire laser system using BBO crystals.

So far, all mentioned techniques do not provide any wavelength tunability in UV

region. Baum et al. [54] generated tunable sub 10 fs DUV pulses by second har-

monic generation of a Noncollinear Optical Parametric Amplifier (NOPA). They used

achromatic phase matching to circumvent the bandwidth limitations. However, the

pulse energy was limited to 100 nJ, and the experimental setup was very complicated.

Tunable pulses at about 1 µJ but with longer duration were produced by four-wave

mixing in a hollow waveguide by Jailaubekov and Bradforth [55]. Ultrabroadband

DUV pulses are also recently produced as the blue tail of a supercontinuum generated

during filamentation of a few-cycle pulse at 800 nm in the air [56]. However, again

the pulse energy is limited to 250 nJ. Later Beutler et al. reported the generation of

tunable DUV pulses by directly frequency doubling the output of a high energy two

stage visible NOPA without any spectral or angular beam shaping. They obtained

about 10 µJ, sub-20 fs pulses tunable from 250 to 310 nm after pulse compression in

a MgF2 prism pair.

In our lab, ultrashort UV pulses are required for studying the spatio-spectral coupling

effects of a UV pulse shaper. This study does not force the pulse to be at its extremes

along the mentioned parameters (shortness, power and tunablity). Therefore, no com-

plicated setup is required for generation of such pulses. We use the BBO crystals to

convert the 800 nm output of the laser chain to 267 nm through sum frequency of the

fundamental of the laser source and its second harmonic. In the following, I explain

the experimental setup that I have built for generation of such pulses from our laser

chain.

1.3.2 Experimental setup

As mentioned above, I have developed a source of ultrashort UV pulses at 267 nm to

characterize the UV pulse shaper. The ultrashort UV pulses are produced through

two subsequent nonlinear interactions: first second harmonic (SHG) of the laser source

is generated using a BBO crystal and then the laser source and its generated second

harmonic are combined in the second BBO crystal to generate UV pulses through sum

frequency generation process (SFG). The second order nonlinearity χ(2) is responsible

for both SHG and SFG. Figure 1.4 shows the experimental setup. The horizontally

polarized IR pulses from the laser source (chirped-pulse amplified: Tab. 1.1) with

energy of 270 µJ/pulse and diameter of 2 mm are sent to a Type1 BBO crystal of
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800 nm
400 nm
267 nm

BBO
100 µm

BBO
150 µm

TS

HWP
DM

UV

B

IR

Figure 1.4: Experimental setup for generation of ultrashort UV pulses. The ultrashort
UV pulses at 267 nm are generated from sum frequency of the laser source (IR) and its
second harmonic generation (B) in a type1-BBO crystal. The first type1-BBO crystal
with thickness of 100 µm is used to generate second harmonic of the laser source. Second
harmonic pulse and the residual IR pulse are separated from each other by a dichroic
mirror (DM). The polarization of the residual IR pulse is rotated to be vertical by means
of a half waveplate (HWP). The laser source and its second harmonic generation are
then combined collinearly into the second type1-BBO crystal with thickness of 150 µm to
generate UV pulses at 267 nm. The translation stage (TS) is used to insure the perfect
synchronization of both arms into the crystal. The reflection bandwidth of mirrors used
after generation of UV pulses is limited to UV region. This removes the residual IR and
blue (second harmonic of IR) pulses.

100 µm. This generates vertically polarized second harmonic pulses with energy of

70 µJ centered at 400 nm. The energy of the residual fundamental pulse is on the

order of 180 µJ. The phase matching angle of the crystal is 29◦. In the next step,

two beams are separated by a dichroic mirror and the polarization of the residual IR

beam is rotated to be vertical by means of a half-wave plate. Finally, the separated

pulses are collinearly combined and directed to the second type1 BBO crystal of

150 µm (with phase matching angle of 45◦) that yields horizontally polarized UV

pulses through a sum frequency generation process. At the output, there still exists

residual IR and Blue (second harmonic of IR) pulses. They are removed by using three

consequent mirrors with reflection bandwidth centered at UV region. As mentioned,

all beams are collimated. In more detail, no lens is applied to focus the beams on

to the crystals. This may reduce the constraints of the phase matching condition
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with the price of reduced efficiency of the nonlinear interactions. Figure 1.5(a) shows

the spectral intensity of the generated UV pulses that are centered at 267 nm with

bandwidth of 2 nm which supports transform-limited duration of around 50 fs at

FWHM according to τp = 2 ln 2λ2

πc∆λ
where λ is the pulse central wavelength, c is the

speed of light in vacuum and ∆λ is pulse bandwidth at FWHM. Cross-correlation

of UV pulse with laser source in the difference-frequency configuration using a thin

type1 BBO crystal indicates a 150 fs pulse duration [see Fig. 1.5 (b)]. The difference

between measured and transform-limited duration is attributable to dispersive effects

within the nonlinear crystals of the source.
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Figure 1.5: Spectral and temporal intensity of the generated ultrashort UV pulse. (a)
Solid blue line is the spectral intensity of the generated UV pulses measured by a calibrated
spectrometer. Solid red line is the Gaussian fit with central wavelength of 267 nm and
bandwidth of 2 nm at FWHM. (b) Solid blue line is the temporal intensity cross-correlation
of the UV pulse with the IR laser source in difference frequency geometry. Solid red line
is the Gaussian fit to the cross-correlation trace that has 200 fs bandwidth at FWHM
leading to a 150 fs of UV pulse duration.

1.4 Pulse shaping

Ultrashort pulse shaping techniques are complementary to femtosecond pulse genera-

tion and characterization techniques, because they have a wide range of applications

in numerous fields of study. Their applications include coherent control of quan-

tum mechanical processes [12–15], pulse compression [16], multidimensional nonlinear

microscopy [17], optical communications [18] and factorization of numbers [19–21].

There exists wide variety of pulse shaping techniques [57, 58] among which we have

applied two in our lab. The goal of this section is to briefly present their principle

and basic properties. I start with folded 4f-line infrared pulse shaper in which a pair
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of Liquid Crystal Spatial Light Modulators (LC-SLM) are embedded [59]. It is used

for spatio-spectral control of multiply scattered light [see chapter 3]. The next pulse

shaper is an Acousto-Optic Programmable Dispersive Filter (AOPDF) [40] which op-

erates in UV region [60]. A complete space-time characterization of the AOPDF is

presented in chapter 2 [61].

1.4.1 4f-line+LC-SLM

The design of the dispersion line (4f-line) has been pioneered by Froehly and his

coworkers who developed it for picosecond pulses [62]. It consists of a pair of identical

gratings and lenses. Figure 1.6 shows the geometrical configuration of this apparatus

where all optical components are implanted in a straight line and separated from each

other by f which is the focal length of the lenses. The spectral components of the

Input pulse Shaped pulse

ff

Fourier plane

f f

Figure 1.6: Schematic configuration of a 4f-line pulse shaper. The optical elements are
separated from each other by f which is the focal length of the lenses. The first grating
disperses angularly the spectral components of the input pulse. The first lens collimates
and focus them on to the Fourier plane. The second half of the device recombines the
spectral components and reverts them to a single collimated beam. The spatial light mod-
ulators placed at the Fourier plane can modulate the phase, both amplitude and phase and
also the polarization of the spectral components and hence shape the input pulse.

input beam are angularly dispersed by the first grating. Then, they are collimated

by the first lens and focused to the smallest diffraction spots in the Fourier plane.

By applying a spatial filter in the Fourier plane, one can manipulate the optical path

and/or amplitude [57, 63] and also the polarization [64] of each spectral component

and hence shape the pulses as desired. The second half of the device recombines the

spectral components and reverts them to a single collimated beam. Since the lenses in
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the femtosecond regime introduce significant aberrations and dispersions, they maybe

replaced by a pair of curved mirrors. In our case, the shaping in the Fourier plane

occurs only in one spatial direction; therefore, cylindrical mirrors are used instead

of spherical mirrors. Moreover, for the ease of alignment and also application of the

least amount of the optical elements, complete line is converted to a folded line by

removing the second half of the apparatus and embedding a mirror at the rear side

of the spatial light modulators [59] [see Fig. 1.7].

FM

CM
IM

G
Figure 1.7: Schematic demonstration of a folded 4f-line. The second half of the device is
replaced by a mirror that is placed at the rear side of the spatial light modulators (Fourier
plane). This simplifies the alignment and also reduces the amount of the used optical
elements. CM is a cylindrical mirror, G is a grating, IM is an intermediate mirror and
FM is the folded mirror.

Spectral resolution

As it is mentioned above, the spectral components of the femtosecond pulse are dis-

persed spatially in the Fourier plane of the 4f-line. Shaping the pulse with a spatial

mask requires the knowledge of the parameter α (spatial dispersion) that relates each

dispersed spectral component ωk to its corresponding spatial position xk on the Fourier

plane

xk = αωk. (1.11)

From optical properties of the grating and the lens (cylindrical mirror) α is set to

be [23]:

α =
λ2
0f

2πcd cos θd0
(1.12)

where λ0 is the central wavelength of the pulse, c is the speed of the light, d is

the grating period and θd0 is the diffracted angle of the central wavelength from the

grating. From Eq. 1.11, the spectral resolution is set to be δω = δx/α. δx is the
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Parameter Value
λ0 (nm) 800
f (mm) 600

1/d (grooves/mm) 2000
δxin (mm) 2

θi (
◦) 64

Table 1.2: Properties of the optical elements applied in our 4f-line pulse shaper.

spatial focus size of each spectral component in the Fourier plane which is given by [22]

δx = 2 ln 2
cos θi
cos θd0

fλ0

πδxin

. (1.13)

Here, θi is the pulse incident angle to the grating and δxin is the initial pulse diameter

at FWHM which can be adjusted by a diaphragm used in the setup. Our 4f-line

shaper is designed to work with pulses centered at 800 nm with bandwidth of 10

nm (old laser system). Given that the spatial mask has a pixel size of δxp = 97

µm and total length of L=64 mm, optical elements according to Eq. 1.12 and Eq.

1.13, are chosen in a way that the focal points are of one third of the mask pixel

size δxp = 3δx (Nyquist criterion). This is because the bigger spot size reduces the

resolution of the pulse shaper. In contrast, smaller spots give rise to the pixellization

effects. Moreover, the mask is three times larger than the spatial size of the pulse

(corresponding to spectral bandwidth at FWHM) on the Fourier plane in order to

avoid the cutting of the spectrum at the edges of the spatial mask [65]. Table. 1.2

shows the properties of the applied optical elements in our pulse shaper.

Temporal windows

The Fourier transform of spectral resolution yields the temporal windows of the pulse

shaper

T = 4 ln (2)/δω = δxin/ |υ| (1.14)

where |υ| = cd cos θi/λ0 is the space-time coupling speed of the pulse shaper which

will be briefly explained in the following. T is the upper bound of the pulse shaper

and all the shaping in time domain should stay below this value. In our setup, T is

typically on the order of 24 ps depending of the input beam diameter [65]. The lower

bound of the temporal domain is given by Fourier transform of the bandwidth of the

pulse in the spectral domain.
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Spatial mask

Different masks with their own specific properties and applications can be embedded

in the Fourier plane of the 4f-line among which the liquid crystal plates and acousto-

optic modulators are the most popular ones [57, 58]. In our lab, we have applied a

liquid crystal-spatial light modulator (LC-SLM) provided by the Jenoptik company.

It consists of 640 separated programmable wave plates [see Fig. 1.8]. The LC-SLM

consists of a nematic liquid crystal molecules that are sandwiched between two glass

substrates. Nematic liquid crystals are small rod-like molecules whose orientation

depends on the value of launched voltage. When no voltage is launched, they are

parallel to the glass substrate (x-y plane). Depending on the amount of launched

voltage they tend to rotate to the direction of the applied field (y-z plane). This

rotation modifies the birefringence of the medium and results in modification of the

optical path for polarized light along the anchorage direction.

x

SLM
100 µm

3 µm

9 µm

y

Figure 1.8: Schematic demonstration of our Spatial light modulator placed in the Fourier
plane of 4f-line apparatus. Pixel sizes are 97 µm with inter-gap of 3 µm. The crystal
thickness is 9 µm.

The desired voltage is launched to each pixel of the LC-SLM by means of transparent

ITO (Indium tin oxide) electrodes that are coated on the glass substrate. For a
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particular frequency ω the applied voltage U leads to phase change of

φ(ω, U) =
ω∆n(ω, U)eCL

c
(1.15)

where ∆n(ω, U) is the difference of fast and slow refractive index of the crystal and

eCL is the thickness of our crystal. In our case, eCL is 9 µm.

There exists different types of pulse shaping including amplitude, phase (both) and

polarization depending on the initial alignment of the molecules and the number of

the LC-SLM embedded in the 4f-line. The control of both phase and amplitude can

be achieved by two masks where the molecules are initially perpendicular to the z axis

and making 45◦ and -45◦ with respect to the horizontal axis x (x-y plane). Defining

φ1 and φ2 respectively to be the phase of the first and the second mask, the final

transfer function of the particular pixel k of the mask is set to:

Hk = exp (i
φ1(ωk) + φ2(ωk)

2
) cos (

φ1(ωk)− φ2(ωk)

2
) (1.16)

where ωk is the impinging frequency on pixel k.

Calibrations

Two calibrations should be realized before using the pulse shaper apparatus. The first

one is the calibration of the produced phase that is associated to the applied voltage

and the frequency. The next calibration is the dispersion calibration which means the

mapping of ωk to xk. Both of them are completely detailed in the thesis manuscript

of Monmayrant [65].

Limitations

The LC-SLM is a patterned plate with gaps between them that can not be pro-

grammed. These properties of the mask introduce some unwanted effects on shaped

pulse. The unprogrammed gaps in the mask produce a weak zero delay impulse in the

output shaped pulse which has sometimes comparable intensity with strongly shaped

pulse [65]. The second unwanted effect comes from pixellization of the mask in spa-

tial domain. Since the spectral domain is discretized it leads to a periodic impulse

response in temporal domain with period of Trep = 2π/δω.

The other limitation of such pulse shapers is the generation of spatio-temporal cou-

pling effects at the output signal. For example when a pulse delay is programmed by

the pulse shaper, at the output in addition to the temporal shift a spatial shift occurs
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also along the transverse coordinate (along the direction that pulse shaping is per-

formed). The ratio between the spatial and the temporal shift is precisely equal to the

mentioned spatio-temporal coupling speed ν. The origin of this space-time coupling

lies in the fact that in addition to the spectral masking in the Fourier plane of the pulse

shaper, the spatial profile also undergoes a time-varying translational shift. Several

articles [11,23,66,67] have covered spatio-temporal coupling in detail. The space-time

coupling effect leads to a Gaussian temporal windows which attenuates the unwanted

effects of pixellization. For more explicit description of the limitations and their re-

movals I invite the readers to refer again to the thesis of Monmayrant [65]. This pulse

shaper will be used in chapter 3 of this manuscript to control the spatio-temporal

speckles.

1.4.2 Acousto-Optic Programmable Dispersive Filter

There exists an alternative method of pulse shaping different than 4f-line pulse shaper

that is called Acousto-optic programmable dispersive filter (AOPDF) [40]. It has been

invented in late 90th by Pierre Tournois in order to remove the residual phase of the

chirped pulse amplifiers. Its principle finds an analogy with chirped mirrors [68] in

which the various spectral components of the pulse experience different time delays

by reflecting from different layers of the chirped mirror (fixed longitudinal grating).

In the AOPDF that is commercially called the DAZZLER, the grating is transiently

generated by interaction of the acoustic beam and birefringent crystal [69]. It was

initially designed for operating in IR region by using of a TiO2 crystal [70]; but later

its application has been extended to the other optical regions covering mid IR [71] and

UV [60,72] by using alternative crystals. In our lab, the temporal characterization of

UV-AOPDF pulse shaper has been done by Weber [73, 74]. Later, we have extended

the characterization to the spatio-temporal domain [61]. In the following, I detail the

performance concept and theory of the UV-AOPDF pulse shaper while its space-time

characterization is detailed in chapter 2.

The pulse shaping in AOPDF is based on controlling the group arrival time of the

pulse [69]. Using an anisotropic crystal helps to achieve this goal. In more detail, since

the refractive index of the ordinary and extraordinary axis are different in anisotropic

crystals, the spectral components propagating with polarization lying along the slow

or fast axis will arrive at the end of the crystal with different delays. The group ar-

rival time τ(ω) is the derivation of the spectral phase ∂φ(ω)/∂ω. Therefore, one may

control the spectral phase by modifying the group arrival time of the spectral compo-
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nents. Figure 1.9 shows schematically the performance concept of the AOPDF pulse

shaper where the input pulse is polarized along the ordinary axis of the anisotropic

crystal (slow axis). Depending on the form of the desired output pulse, the spectral

components diffract at different places of the crystal z(ω) and hence propagate with

polarization along the extraordinary axis of the crystal. Analogous to nonlinear ef-

z(ω)

Extraordinary (fast axis)

Ordinary (slow axis) 

Figure 1.9: Schematic demonstration of the AOPDF pulse shaper. Depending on the
form of the desired output shaped pulse the spectral components of the incident pulse
(along the ordinary axis) diffract at different positions of the birefringent crystal and
hence propagate along the extra-ordinary axis. The diffraction occurs where the conser-
vation of energy and momentum condition is satisfied between the acoustic and optical
beam. Because of the difference of the refractive index along the two mentioned axes,
spectral components experience different paths (group delay) and hence by controlling the
group delays the output pulse takes the form of the desired shape.

fects, the diffraction occurs when the energy and momentum conservation condition

are verified between the launched acoustic wave and the optical beam:

ωd = ωi + Ω

kd(ωd) = ki(ωi) +K(Ω).
(1.17)

Here, d and i are the indices of diffracted and incident beam respectively. K and Ω are

the wave-vector and the frequency of the launched acoustic wave. The group arrival

time of the different spectral components τ(ω) is

τ(ω) = ∂φ(ω)/∂ω =
z(ω)

vgo(ω)
+

L− z(ω)

vge(ω)
(1.18)
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where L is the length of the crystal and vg is the group velocity along the ordinary (o)

and extraordinary (e) axis. Knowing the form of desired shaped pulse φ(ω) yields τ(ω).

Referring to Eq. 1.18 and knowing the values of vgo and vge sets z(ω). Calculating the

location of the interaction z(ω) reveals the K(Ω) from Eq. 1.17 [69]. The amplitude

of each spectral component is controlled by the amplitude of applied acoustic wave at

the place of diffraction z(ω).

In the frequency domain the output pulse can be written [40]:

Ed(ω) ∝ Ei (ω) · Sac(γω) (1.19)

and equivalently in temporal domain:

Ed(t) ∝ Ei (t)⊗ Sac(t/γ) (1.20)

where γ = Ω
ω
= |∆n|νac

c
is the scaling factor between acoustic and optical frequencies.

νac is the acoustic wave speed and ∆n is the difference of the refractive index of the

fast and slow axis. Working in UV region and hence the choice of KDP crystal, γ

is calculated to be approximately 1.3 ×10−7 [60]. This scaling value lets the direct

transfer of the phase and the amplitude of the acoustic wave to the optical wave.

The orthogonal polarization of diffracted and non diffracted beams makes it easier to

distinguish the shaped pulse from the unshaped one.

Properties of our UV-AOPDF pulse shaper

Figure 1.10 shows the interaction geometry of our pulse shaper. The acoustic and the

optical wave propagate in the plane consisting [100] and [001] axis of the crystal. The

wave-vector of the acoustic waveK makes an angle θa with the [100] axis. θd and θi are

respectively the angles of the diffracted and input optical wave vectors (kd and ki) with

respect to [100] axis. The sound shear wave velocities along the [100] and [001] crystal

axis are V100 =1650 m/s and V001 = 2340 m/s, respectively. The acoustic Poynting

vector is aligned with the optical input optical beam to have optimized acousto-optic

interaction length [70] which is realized when tan θa = (V100

V001

)2 tan θo. This maximizes

the spectral resolution and diffraction efficiency. Since the crystal is a birefringent

medium, the diffracted beam experiences a refractive index nd which depends on the

propagation angle θd through:

1/n2
d = cos2 θd/n

2
o + sin2 θd/n

2
e. (1.21)
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Figure 1.10: Interaction geometry of our UV-AOPDF pulse shaper that consists of
a KDP crystal with a negative anisotropy. The wave-vector of the acoustic wave K
makes an angle θac with the [100] axis. kd and ki are the wave-vectors of the diffracted
and incident beam respectively. no and ne are the ordinary and extraordinary refractive
indices of the crystal. θi is the angle of the input optical wave-vector ki with respect to
[100] axis. The sound shear wave velocities along the [100] and [001] crystal axis are
indicated by V100 and V001 respectively.

In KDP crystal the optical anisotropy ∆n = no − ne is small compared to no which

yields δn = nd−no = ∆n·cos2θi. Now according to the laws of energy and momentum

conservation [Eq.1.17] the angles and the wave-vectors can be written

θd − θi =
∆n

n0

cos2 θi tan (θi − θa)

K = ki
∆n

n0

cos2 θi
cos (θi − θa)

.

(1.22)

The ordinary and extraordinary refractive index of KDP crystal for λ = 300 nm are

1.5451 and 1.4977 respectively. The optimum incident angle of the optical beam θi

for the case of maximum diffraction efficiency is calculated to be 48.5◦ [60]. The other

calculated parameters of the KDP crystal is presented in Tab. 1.3 [60]. The other im-

portant parameters of the UV-AOPDF pulse shaper are spectral resolution, temporal
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Parameter Value
∆n 0.0474
θa (◦) 29.34

θd − θi (
◦) 0.269

nd 1.5237
γ Ω

ω
= 1.35× 10−7

Table 1.3: Optimum parameters of the KDP crystal for a pulse with central wavelength
of 300 nm.

windows and the diffraction efficiency which can be calculated from the acousto-optic

interaction theory that are addressed in reference [70]. For the specific case of KDP

crystal, they are calculated in [60]. I only present the final equations and the calcu-

lated values for the KDP.

Efficiency

The efficiency of the diffraction for particular frequency ν is given by

Id(ν)

Ii(ν)
=

Pπ2

4P0

sinc2

[
π

2

√
P

P0

+∆φ2

]
(1.23)

where P is the acoustic power, P0 = 1
2M2

[
λ

L cos (θi−θa)

]2
where M2 is the merit factor

of the KDP crystal which depends on properties of the crystal and the speed of

the acoustic beam in the crystal. Finally, ∆φ is the phase shift due to the phase

mismatching which gives:

∆φ =
∆KL

π
cos (θi − θa) (1.24)

Since ultrashort pulses contain broad spectral bandwidth, it is not straight-forward

to extract the efficiency of the output shaped beam.

Spectral resolution

The resolution of the KDP crystal δλ for central wavelength of 270 nm and the crystal

length of 75 mm is calculated to be 0.036 from [70]:

δλ =
0.8λ3

∆nL cos2 θi
(1.25)

when ∆φ = 0.8 and P = P0. In this particular case the efficiency is about 50%.
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Temporal windows

Temporal windows of the AOPDF is determined by the crystal thickness and its

anisotropy. It is equal to the maximum difference of the group time of a particular

frequency propagating upon along ordinary or extraordinary axis:

L

(
1

vge
−

1

vgo

)
=

L∆ng

c
cos2 θi. (1.26)

In our case where a KDP crystal with length of L = 75 mm is used, the temporal

window T varies between 6-8 ps depending on the central wavelength of the input

pulse.

1.5 Pulse measurement techniques

There exists a vast variety of ultrashort pulse measurement techniques that may be

classified according to their performance. A basic distinction is based on the amount

of information that they provide about the pulses: incomplete, nonself-referenced and

self-referenced characterization methods. Methods lying in the first category usually

give an estimate of the pulse duration or of the pulse intensity envelope without a full

reconstruction of electric field Ẽ(t). The most widely used methods for incomplete

characterizations are intensity autocorrelation and cross-correlation. The remaining

two categories allow a full reconstruction of the electric field. The difference between

them is that the nonself-referenced methods require a previously well-characterized

pulses, while self-referenced methods do not require this assistance.

In this section, I briefly introduce the techniques I have frequently used in our lab

from the simplest to the most refined one. For more detailed and explicit description

of pulse measurement devices I invite the interested readers to refer to [75].

1.5.1 Incomplete pulse characterization methods

Autocorrelations

Autocorrelation is a simple method to estimate the temporal intensity profile of the

ultrashort pulses. In a conventional autocorrelator, the unknown pulse is divided into

two replicas via a Mickelson interferometer. Then the replicas, with an adjustable

relative delay τ , are focused into a nonlinear material (usually χ(2)) that generates

second or higher order harmonic pulses. Finally, a slow detector records the generated
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pulse as a function of the relative delay which reads

S2(τ) =

∫ ∞

−∞

∣∣[E(t) + E(t− τ)]2
∣∣2 dt

= 2

∫ ∞

−∞

I2(t)dt+ 2Re

{∫ ∞

−∞

[E(t)E∗(t− τ)]2 dt

}

+ 4Re

{∫ ∞

−∞

I(t)E(t) [E(t− τ) + E(t+ τ)]∗ dt

}

+ 4

∫ ∞

−∞

I(t)I(t− τ)dt.

(1.27)

There are two types of autocorrelators depending on their geometry: intensimetric

autocorrelator [76, 77] with noncollinear and interferometric autocorrelator [78, 79]

with collinear geometry. In our lab, I use the intensimetric autocorrelator where two

replicas are focused into the χ(2) crystal with a modest angle [see Fig. 1.11a]. In this

D

B

TS

L
χ(2)

M

D

B
B

TS

L

χ(2)

(a) (b)

Figure 1.11: Typical scheme of Autocorrelator. (a) Noncollinear geometry, (b) collinear
geometry. TS is the translation stage, L is the lens, B is the beam splitter, χ(2) is the
nonlinear crystal, M is the mirror and D is the detector.

configuration only the generated sum frequency replica of the two replicas is recorded,

corresponding to the last term of Eq. 1.27. In other words, the noncollinear geometry

allows only spatial filtering of the last term of the Eq. 1.27. This measurement does

not contain any information about pulse phase and is just used to estimate the pulse

duration; however, it is widely used in the community because of its simplicity. Chang-

ing the configuration from noncollinear to the collinear geometry with interferometric
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stability results in the recording of all terms of the Eq. 1.27, known as interferomet-

ric autocorrelation [see Fig. 1.11 (b)]. The interferometric autocorrelator provides

more information about the pulse than the intensimetric autocorrelator because the

spectral phase can be retrieved via an iterative deconvolution algorithmi [80]. The

general drawback of both arrangements is that they do not allow the evaluation of

the asymmetry of the pulses (time ambiguity) [81].

Cross-correlations

Autocorrelators are not suitable devices to measure the pulses with complex temporal

structures e.g. strongly chirped pulses or pulse sequences. In this case, a cross-

correlator may be applied. It is obvious from Fig. 1.12 that a typical cross-correlator

is analogous to the autocorrelator except that a short reference pulse is used instead

of the replica pulse [82]. The advantage of cross-correlation measurement is its ability

to measure weak signals that becomes possible by applying an intense reference pulse.

Moreover, there is the possibility of applying the reference pulse from different spectral

regions.

The reference pulse should be short enough to resolve the intensity structure of the

test pulse. The limitation is that the intensimetric cross-correlation follows the same

structure of the noncollinear autocorrelator and hence does not give full information

on the pulse complex electric field. In our lab, I have often used intensimetric cross-

correlation to measure the duration of UV pulses. It is realized by mixing the UV

test pulses with the reference IR pulses in a thin Type1-BBO crystal to generate 400

nm pulses through difference frequency generation and recording them as a function

of the relative delay between two arms on a slow photodiode operating in the visible

region. Since a thin crystal is chosen the effect of group velocity walk-off and phase

matching bandwidth limitations on the duration of the measured cross-correlation

signal can be neglected.

1.5.2 Referenced characterization methods

Complete characterization of an ultrashort pulse requires measurement of the com-

plex electric field Ẽ(t). However, it is not possible to measure it directly because of

the limited response time of the detectors which are at best several picoseconds. The

solution to this problem is the indirect measurement of Ẽ(t). This can be achieved by

Fourier transforming the complex spectral electric field Ẽ(ω) which is constructed of

i. Retrieving the spectral phase requires a separate measurement of the pulse spectrum.
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D
L

χ(2)

Figure 1.12: Typical scheme of intensimetric cross-correlation. L is the lens, χ(2) is
the nonlinear crystal and D is the detector.

spectral amplitude |Ẽ(ω)| and phase φ(ω). The spectral amplitude |Ẽ(ω)| is obtained

directly by measuring the spectrum I(ω) = |Ẽ(ω)|2 via a spectrometer. The spectral

phase φ(ω) is obtained either by linear or nonlinear measurement techniques.

The linear measurement techniques are a different variation of conventional inter-

ferometry from which the relative spectral phase of two arms φs(ω) − φr(ω) can be

obtained. The sample phase can be retrieved only in the case of having a well char-

acterized reference arm. The referenced characterization methods can be classified

into spectral and temporal interferometry which are related to each other through a

Fourier transform. In the following, I detail the referenced characterization methods

specifically, the spectral interferometry that is often used in our lab.

Spectral Interferometry

Spectral Interferometry (SI) that was first introduced by Froehly and his coworkers

[83] was used for measuring the dispersion of transparent materials by placing them

in one of the arms of the interferometer. However, it was Joffre and his colleagues [84]

who applied it for the first time as a pulse characterization technique. A conventional

setup of SI is shown Fig. 1.13 where the test and the reference pulses are combined

collinearly with an adjustable relative delay τ and sent to the spectrometer. The

recorded signal exhibits a fringe pattern (Fig. 1.14) due to the interference which

reads:

S(ω) = |Ẽr(ω) + Ẽs(ω) exp(iωτ)|
2

= |Ẽr(ω)|
2 + |Ẽs(ω)|

2 + Ẽ∗
r (ω)Ẽs(ω) exp(iωτ) + c.c.

= |Ẽr(ω)|
2 + |Ẽs(ω)|

2 + 2
∣∣∣Ẽr(ω)

∣∣∣
∣∣∣Ẽs(ω)

∣∣∣ cos [ωτ + φs(ω)− φr(ω)]

(1.28)

where c.c. is the complex conjugate of the third term. The first two terms in this
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τ

Spectro

E(t-τ)

E(t)

Figure 1.13: Typical scheme of a spectral interferometer. The reference and the test
pulse with an adjustable relative time delay τ are sent to the spectrometer. The spectrom-
eter records the interference fringes from which the relative spectral phase of the reference
and the test pulses φs(ω)− φr(ω) is retrievable.

expression are spectral intensity of the reference and sample pulses respectively. The

third term corresponds to the fringes in the power spectrum. The spacing of the

fringes δωfr is determined by the relative delay of the two beams τ . These fringes are

additionally modulated by the relative phase difference of two beams φs(ω)− φr(ω).

One possible method for the relative phase extraction would be

∆φ = cos−1

[
S(ω)− Ir(ω)− Is(ω)

2
√
Ir(ω)Is(ω)

]
. (1.29)

This requires the separate measurement of the reference and the sample arms. How-

ever, the application of this method is impossible because cos−1 is not a single valued

function and hence yields an ambiguity in the sign of the phase. Furthermore, the

raw data should be divided by the square root of the measured intensity which intro-

duces a drastic noise to the calculated phase. There are couple of other indirect phase

determination techniques based on introduction of a relative delay τ . For example

the relative phase can be extracted by pointing the maxima of the fringe pattern [85].

However, the most common method among them is Fourier filtering technique [86].

Figure 1.14 shows the Fourier filtering process where the measured interference pat-

tern is first Fourier transformed along the spectral dimension. The first two slowly

varying terms of Eq. 1.28 correspond to a lobe located at t = 0 in quasi-temporal

domain which is called the dc term. The dc term is the electric field autocorrelation

function of the pulses which corresponds to a duration of a signal and reference pulse

with a flat spectral phase (Fourier limited pulses). The two lobes located at t = ±τ
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Figure 1.14: Fourier filtering process. Combination of a Fourier transform limited
reference and a chirped pulse results in interference fringes with a frequency inversely
proportional to the relative delay τ . They are additionally modulated by the relative
spectral phase of two arms. Fourier transforming the recorded signal along the spectral
dimension yields three lobes separated by τ in quasi-temporal domain. Filtering one of the
ac lobes located at ±τ and Fourier transforming back reveals the relative spectral phase
of the reference and test pulses.

are the Fourier transform of the third term of the Eq. 1.28 and correspond to the

cross-correlation of the temporal electric fields. The duration of the sideband lobes

depends on the duration of the test and reference pulses. Filtering one of the sideband

lobes by a rectangular filter in quasi-temporal domain and Fourier transforming back

yields the third term of the Eq. 1.28 from which the relative phase can be easily

determined. The spectral interferometry is called Fourier Transform Spectral Inter-

ferometry (FTSI) when the Fourier filtering algorithm is applied for the extraction of

the spectral phase.

Applying FTSI has some conditions that should be fulfilled to properly reconstruct

the spectral phase difference. Referring to Eq. 1.28 shows that the reference pulse

spectral intensity should be non-zero where the spectral intensity of the test pulse is

present. Furthermore, the two arms of the interferometer should be coherent. Finally,

there is an upper and lower limit for τ . The spectral resolution of the spectrometer

δω should be a few times finer than the fringe spacing δωfr to resolve it properly

δωfr = 2π/τ > 3δω. (1.30)

This defines the upper limit of τ . The lower limit is originated from application of the

Fourier filtering. In fact, in order to be able to filter the ac term from the dc term in

quasi-temporal domain the lobes should be well separated. This implies that τ > 3T ,

where T is the duration of the longest of both the reference and test pulse.

According to Shannon criterion the spectral resolution of the spectrometer should be
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at least three times finer than the inverse of pulse duration

3δω < 2π/T (1.31)

or in other words the temporal window ∆T should be at least three times larger

than the pulse duration ∆T > 3T . However, in the case of application of Fourier

filtering process, the temporal window should be at least nine times larger than the

pulse duration. This is because three lobes are separated by τ which is at least

three times larger than pulse duration T . This can be considered as a drawback for

the Fourier filtering which implies a higher spectral resolution than it is required,

much of which is lost in the reconstruction process. However, this problem can be

solved by introducing a spatial dimension to the spectral interferometry which I will

present in next chapter as Fourier Transform Spatio-Spectral Interferometry (FTSSI).

Temporal interferometry

Temporal interferometry is the temporal counterpart of the spectral interferometry

and has a same setup as spectral interferometry except that the spectrometer is re-

placed by a slow detector, e.g. photo-diode. It records the energy superposition of

the two fields as a function of the time delay τ [see Fig. 1.15]. The measured signal

reads:

S(τ) =

∫ ∞

−∞

|Er(t− τ) + Es(t)|
2 dt

=

∫ ∞

−∞

|Er(t− τ)|2 dt+

∫ ∞

−∞

|Es(t)|
2 dt+

∫ ∞

−∞

E∗
r (t− τ)Es(t)dt+ c.c.

(1.32)

The first two terms yield a constant background signal while the last two terms cor-

respond to interference fringes whose frequency ω0 is the center frequency of the

measured pulse. These terms correspond directly to the electric field cross-correlation

of two pulses. Fourier-transforming along the temporal axis yields three lobes in

quasi-spectral domain located at ω = 0,±ω0. The lobe at ω0 stands for Ẽ(ω)Ẽ∗(ω)

from which the relative spectral phase can be extracted. The temporal interferometry

accompanied with Fourier filtering process is called Fourier-Transform Spectroscopy

(FTS) [87, 88]. According to Shannon principle the temporal step size δτ should be

at least three times finer than the optical period of the pulse T0

3δτ < T0 = 2π/ω0. (1.33)
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The optical oscillation in visible region is so fast which makes this technique less

practical in the visible than in the infrared. The other drawback of the temporal

interferometry compared to SI is that the delay between two arms should be scanned,

while it is done only by a single measurement in SI. In this technique the number of

steps is determined by the complexity of the test pulse. Dealing with more complex

pulses requires a better spectral resolution δω = 2π/Nδτ which results in increasing

N and therefore longer process.

Detector

E(t-τ)

E(t) τ

Figure 1.15: Typical scheme of a temporal interferometry. It is analogous to the spectral
interferometry with a minor difference which is the replacement of the spectrometer by a
detector. The detector records the signal as a function of two arms’ relative delay.

1.5.3 Self referenced characterization methods

Ultrashort characterization devices implementing stationary linear optics are able to

perform a complete measurement of the ultrashort pulses only when we use a fully

characterized references. In order to circumvent the necessity of applying a well char-

acterized reference and hence having a self-referenced complete characterization, one

ought to apply nonlinear or non-stationary optics [87,89]. There are three main classes

of techniques performing a complete self-referenced characterization: tomographic,

spectrographic and interferometric techniques among which, the spectrographic and

interferometric are more common. Spectrographic techniques are based on measur-

ing the spectrum at different temporal slices of the test pulse. The most established

spectrographic technique is Frequency Resolved Optical Gating (FROG) [9, 90]. It

performs the temporal gating (slicing) by sending the test pulse and its tunable de-

layed replica into a nonlinear crystal. Then a spectrometer records the spectrum of

the gated pulse as a function of the delay between the test pulse and its replica. This
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yields a time frequency signal distribution from which one can extract the spectral

phase and amplitude of the test pulse using an iterative algorithm [91, 92]. Since I

have used the interferometric techniques in our lab, I present them more in detail in

the following.

Interferometric techniques

It has been mentioned that spectral interferometry is a powerful tool for retrieving

the spectral phase of the unknown pulses only under the condition of having a well

characterized reference pulse. In order to have self referenced measurement, there

should be a connection between the reference and the signal arm so that the phase

can be determined from the relative phase difference. Lateral Shearing interferometry

(LSI) [93,94](to be described briefly in next chapter), which is widely used in charac-

terization of the wavefront of monochromatic light, inspired researchers to invent the

Spectral Shearing Interferometry (SSI). It is based on generation of a replica from the

test pulse with a relative delay τ and a frequency shift Ω. Therefore the interference

signal reads

Γ(ω) = φ(ω + Ω)− φ(ω) + ωτ (1.34)

from which φ(ω) can be extracted via either an integration or a concatenation proce-

dure. The next step is the experimental realization of the desired spectral shearing.

There exist several techniques for this purpose among which Spectral Phase Inter-

ferometry for Direct Electric Field Reconstruction (SPIDER) is the most common

one [8]. In a conventional SPIDER the spectral shear is achieved via sum-frequency

generation process. In other words, the test pulse and its delayed replica are upcon-

verted with two different quasi-monochromatic pulses. Since quasi-monochromatic

pulses have different central frequencies the upconverted test pulse and its replica

will be spectrally sheared. Figure 1.16 depicts a standard SPIDER setup where the

test pulse is divided into three arms. Two of them are devoted to generation of two

temporally delayed, τ , replicas of the test pulse and the third one to generation of

a strongly chirped pulse via a pulse stretcher. The chirped pulse is stretched such

that it is quasi-monochromatic over the duration of the test pulse. Next, the replicas

and the chirped pulse are focused into a nonlinear crystal (conventionally the second

order crystal χ(2)). The relative delay τ forces the replicas to experience a different

spectral component of the chirped pulse in the crystal. These two quasi monochro-

matic spectral components are separated from each other by Ω = τ/φ(2) where φ(2)

is the chirp of the dispersed pulse. The sum frequency generated pulses are therefore
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E(t-τ) E(t)

Echirped

ω1ω1+Ω
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E(ω-[ω1+Ω]-ω0) E(ω-ω1-ω0)

Figure 1.16: typical scheme of a SPIDER. The test pulse and its delayed replica in-
teracts with to different spectral components of a strongly chirped pulse in a nonlinear
crystal. The spectrometer records the interference of two generated up converted pulses
from which the spectral phase of the test pulse can be retrieved.

E(ω−ω1−Ω−ω0) and E(ω−ω1−ω0) where ω1 and ω1−Ω are the frequencies of the

chirped pulse which are contemporaneous with the test pulse replicas in the crystal

and ω0 is the central frequency of the test pulse and its replica. The upconverted

signal is sent into the spectrometer that reads

S(ω′) = |E(ω′) + E(ω′ − Ω) exp(iω′τ)|
2

= |E(ω′)|
2
+ |E(ω′ − Ω)|

2
+ 2 |E(ω′)| |E(ω′ − Ω)| cos [φ(ω′ − Ω)− φ(ω′)− ω′τ ]

(1.35)

where ω
′

= ω − ω1 − ω0 sets the upconverted frequency to the origin. Identical to

spectral interferometry, a Fourier Transform Algorithm renders the phase difference

from which the spectral phase of the test pulse can be extracted. Here in the SPIDER

technique, τ follows the same conditions that was defined for FTSI.

The SPIDER setup is now well established and commercially available. In our lab,

we have used a commercial Long Crystal SPIDER (LX-SPIDER) to characterize the

output of our laser chain [95, 96]. It is a compact and user friendly device that per-

forms a reliable measurement for the pulses with duration longer than 20 fs. However,

it requires lots of calibrations and adjustments. Moreover, because of applying dis-

persive elements in its setup, it is not proper device for characterization of ultrabroad

band pulses (few cycle pulses). Different types of SPIDER have been developed in

recent years to overcome these limitations. However, since all SPIDER techniques are

based on nonlinear interactions, they are not sensitive to weak signals. In our lab, to

overcome the challenging issue of calibrations and the insensitivity to the weak sig-

nals, we have used the FTSI technique with an additional spatial dimension (FTSSI

to be explained in chapter 2). It will be used for spatio-temporal characterization of
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the UV-AOPDF pulse shaper (chapter 2) and spatio-temporal speckles (chapter 3).





Chapter 2

Space-time couplings of

UV-AOPDF pulse shaper

When there exists an interdependence between spatial (angular) and spectral (tem-

poral) coordinates of the ultrashort pulses, they are referred to as spatio-temporally

coupled pulses. These couplings, which are due to the broad spectral bandwidth of

the ultrashort pulses, are introduced from their propagation in optical elements such

as gratings, prisms and air. These couplings often erode temporal resolution, reduce

intensity and cause a wide range of other problems. Therefore, in order to properly

understand and control them, an extensive study and characterization of them and

their sources is required.

Pulse shapers [57] are also main sources of space time couplings. Since they have wide

range of applications in the ultrafast community, studying their relevant couplings are

highly desired. Extensive studies of the pulse shapers based on 4f-line configuration

have been already undertaken and it is now well known both experimentally and

theoretically that the output shaped pulses of such devices are spatio-temporally cou-

pled [11,22–26]. Even more, the influence of space time couplings on a focused beam

from SLM based 4f-line pulse shapers has been demonstrated that has significant ef-

fects on the coherent control experiments [66, 67]. By contrast, the AOPDF pulse

shapers which have wide range of applications in CPA systems [97] and control exper-

iments [98], have been less well characterized [26, 99–101]. They are good candidates

for pulse shaping due to their versatility, compactness, ease of alignment, and wide

wavelength range.

This chapter is devoted to complete characterization of the space-time coupling effects

produced by the UV-AOPDF pulse shaper (published in [61]). It consists of mathe-

37
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matical description of coupling effects, their characterization techniques, experimental

results and conclusion. In mathematical description, I will review the general char-

acteristics of space-time couplings, how different couplings are related to each other,

what are the common sources of such couplings and how one can mathematically de-

scribe them. In the second section, I present the current state of space-time coupling

measurement techniques. Later, I will present the experimental results concerning

the spatio-temporal characterization of the UV-pulse shaper and the physical origin

of such couplings. Finally in the conclusion, I will compare our experimental results

with two recently published articles [100,101] and I will conclude.

2.1 Mathematical description of space-time cou-

plings

In the previous chapter, the spatial and temporal dependences of the ultrashort pulse

were assumed to be separable into independent functions and hence the solutions of

the wave equation were derived independently for each of the dependences. However,

this assumption fails when there is a coupling between these dependences and hence

the pulse can not be written anymore in the form of Ẽ(x, y, t) = Ẽ(t)Ẽ(x, y). These

couplings are called spatio-temporal couplings or distortions and one needs to describe

them in a combined space (wavenumber) and time (frequency) picture. For the ease

of calculation, I assume the couplings occur along one of the spatial axes x. These

couplings are common in ultrafast optics and applied frequently in the generation,

amplification and manipulation of the ultrashort pulses. As an example, the space-

time coupling is introduced deliberately by a set of gratings or prisms in a specific

configuration to produce a pulse with a negative chirp to compensate the positive

chirp introduced from propagation of the pulse in the dispersive media [43, 102–104].

An other common example is the shaping of the pulses with a zero dispersion 4f-line

pulse shaper. In such pulse shapers the spectral components of the pulse are spatially

separated to perform a desired pulse shaping by varying the phase of each spectral

component using a spatial light-modulator (SLM) [57]. The spectral components

of the output pulse, after being manipulated, should be recombined again to form a

coupling free pulse. However, a small and almost inevitable misalignments often allow

some residual distortions to remain in the beam. These distortions often deprave the

temporal resolution and hence cause several problems in the experiments in which

such pulses are applied. Even in the case of a perfect alignment the applied SLM
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couples the spatio-temporal dependences of the output shaped pulses.

In the presence of the space-time couplings, four possible representations exist for

the electric field: (x, t), (x, ω), (k, ω) and (k, t) where each domain is the Fourier

transform of the other. Considering only the first order couplings, there exists four

possible couplings for the amplitude of the electric field corresponding to each of four

domains. Apart from amplitude couplings the phases may be also coupled which

results in total of eight first-order space-time couplings. For example E(x)E(ω+ αx)

reveals the coupling of the spectral and the spatial dependencies of the pulse amplitude

where α is the coupling parameter and shows the strength of the coupling between

two dependences. The physical significance of the couplings could be nontrivial in a

specific domain while more intuitive in the others. Table 2.1 shows all the possible

lowest-order space-time phase couplings and their description in the parallel other

domains. Three types of space-time coupling are particularly common: Spatial Chirp

(SC), Angular Dispersion (AD) and Pulse Front Tilt (PFT).

Spatial chirp

Spatial chirp is one of the most common sorts of couplings that occurs when the

central frequency of the pulse varies with the transverse position. A common source

of the spatial chirp is the angularly dispersive optical elements such as gratings or

prisms [see Fig. 2.1(a)]. The propagation of the ultrashort pulse through such ele-

ments causes the angular separation of the spectral components. These components

later become spatially separated after an additional propagation. A tilted substrate

also spatially separates the spectral components [see Fig. 2.1(b)]. Spatial chirp may

be also generated deliberately in the zero dispersion 4f-line pulse shapers where the

spectral components are desired to be spatially separated in the location of the Fourier

plane [see Fig. 2.1(c)]. The use of ultrashort pulses contaminated with the spatial

chirp may yield inappropriate results in the corresponding experiments. For example,

when the temporal resolution of the pulses is the aim of their application, in the pres-

ence of the spatial chirp, each ray of the pulse will contain only a fraction of the full

pulse spectrum and hence will not be as short as the pulse containing all spectrum.

Moreover, the presence of spatial coupling can result in confused interpretations in

the pump probe spectroscopy experiments. In other words, since in such experiments

the optical pulses are focused on to the medium, the presence of the spatial chirp

results in a temporally stretched pulse.

There are two definitions of spatial chirp [105,106]. The first one measures the central
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(x, ω) (x, t) (kx, ω) (kx, t)
Spatial chirp

Ẽ(x+ ξω, ω) — Ẽ(kx, ω) exp(iξkxω) Ẽ(kx, t− ξkx)

Frequency dependent Wavenumber- Wavenumber
beam center position spectral phase dependent arrival time

Pulse front tilt

Ẽ(x, ω) exp(−iαω) Ẽ(x, t+ αx) Ẽ(kx + αω, ω) —

Spatio-spectral Position dependent Frequency dependent
phase pulse arrival time tilt

Angular Dispersion

— Ẽ(x+ ζt, t) Ẽ(kx, ω + ζkx) Ẽ(kx, ω) exp(iζkxt)

Time dependent Wavenumber dependent Wavenumber-
beam center position center frequency temporal phase

Time versus angle

Ẽ(x, ω − βx) Ẽ(x, t) exp(−iβxt) — Ẽ(kx + βt, t)

Position dependent Spatio-temporal Time dependent
frequency phase tilt

Table 2.1: Representation of space–time couplings in different domains including spatial
chirp (first row), pulse front tilt (second row), angular dispersion (third row) and time
versus angle coupling (last row). Each of these couplings can be also represented in other
domains; however, they are more trivial in one specific domain. Empty boxes mean that
there is no clear description in such domain.

frequency of each spatial slice ω0(x). In this case, the coupled complex electric field

can be written as Ẽ(x, ω+ ςx) where ς = ∂ω0(x)/∂x is the coupling parameter called

frequency gradient. The other, includes measurement of the beam center position

for each spectral component x0(ω). In this case, the coupling can be expressed by

Ẽ(ω, x + ξω) where ξ = ∂x0(ω)/∂ω is the alternative parameter of coupling called

spatial dispersion. For experimental considerations it is important to pay attention

to the way the couplings are actually introduced. The use of spatial dispersion will

make the beam larger in size when mapping each frequency to a different position.

On the other hand, a frequency gradient will increase the frequency bandwidth. Since

the spatial chirp is most commonly introduced through linear optical systems, which

rarely alter the bandwidth, spatial dispersion is more fundamental and so is preferred.

In our studies, we have applied the spatial dispersion definition.The general theory of

first-order spatio-temporal distortions including the interdependence of the mentioned
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Figure 2.1: Generation of spatial chirp. (a) The propagation of ultrashort pulses through
a prism causes an angular separation of the spectral components. Propagation of angu-
larly dispersed pulse through a second prism results in spatial chirp. (b) Propagation of
broadband pulse through a tilted substrate also produces spatial chirp. (c) The case of
generation of a deliberate spatial chirp in a 4f-line pulse shaper. The figure is adopted
from [105].

definitions was developed by Akturk et al. [107, 108].

Angular dispersion

Angular dispersion is introduced by angularly dispersive optics such as grating or

prism which refers to a situation in which the spectral components of the ultrashort

pulse propagate in different directions [see Fig. 2.1 (a)]. It is one of the most applied

and useful distortions, because it causes a negative group velocity dispersion (nega-

tive chirp) which is used to compress the pulses that are stretched from propagating

in dispersive media (positive group velocity dispersion). Angular dispersion can be

written in the form of E(kx, ω+ ζkx) where ζ = ∂kx(ω)/∂ω is the coupling parameter
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and kx(ω) is the wave-vector for each spectral component. Similar to the case of

spatial chirp the angular dispersion can be written in the alternative form where the

frequency is wave-vector dependent.

Pulse front tilt

Pulse front tilt occurs when the arrival time of the pulse peak is position dependent

t0(x). The pulse front tilt is always generated in presence of the angular dispersion

but the angular dispersion is not the only source of the pulse front tilt [see Fig. 2.2].

In other words, in the absence of the angular dispersion the combination of the spatial

chirp and temporal chirp also generate a pulse front tilt [109]. PFT can be written in

Figure 2.2: Two sources of pulse-front tilt. Left: The well-known angular dispersion
results in pulse front tilt. Right: The combination of spatial and temporal chirp yields a
pulse front tilt. The figure is adopted from [109].

the form of E(x, t+αx) where α is the coefficient of the pulse front tilt. It should be

noted that the pulse front tilt is different than pulse tilt. In the presence of the pulse

front tilt the group phase (the plane of constant group delay at the center frequency)

is tilted with respect to the phase front (the plane of constant phase at the center

frequency) whereas in the case of pulse tilt both phase front and group front are tilted

with a same amount.

So far, the gratings, prisms, and tilted substrates are mentioned as a source of

space-time couplings. The lenses are other commonly applied optical devices that

introduce the spatio-temporal couplings (combination of first and higher order dis-

tortions) [91, 110–116]. These couplings are mainly due to the combination of the

achromatic aberrations and the radial varying group delay and group velocity disper-

sions. In more detail, the radially varying thickness of the sample introduces radially

varying group delay and group velocity dispersion which increases the pulse duration

at the focal point.



2.2. State of the art of space–time measurements 43

2.2 State of the art of space–time measurements

In the previous chapter, I focused on ultrashort pulse characterization techniques. All

these methods reconstruct the overall temporal electric field or intensity of the pulses

(averaged over spatial profile) without providing any information about their spatial

characteristics. The reconstructed electric field is valid only when we assume that the

pulse’s electric field is separable into a product of spatial and temporal dependencies

or equivalently, the pulse’s temporal properties are same for every spatial position

along the beam. When space-time couplings are present this assumption fails and

therefore each spatial position along the pulse wavefront will have its own specific

temporal properties. Studying the space-time couplings, which is the interest of this

section, thus requires either the extension of the conventional temporal characteriza-

tion techniques to the spatial domain or invention of novel independent instruments.

In this section, I review the state of art of the measurement techniques used for

space-time characterization of the ultrashort pulses. I first start with spatial charac-

terization techniques that can be combined with the temporal measurement methods

to measure the pulse couplings. Then, I move to a presentation of the space-time

characterization techniques which are only able to measure some specific space-time

couplings. Finally, I focus on full spatio-temporal characterization methods among

which I use Fourier Transform Spatio-Spectral Interferometry (FTSSI) for full spatio-

temporal characterization of the UV pulse shaper (AOPDF).

2.2.1 Spatial characterization techniques

Shack-Hartmann wavefront sensor

One of the most common techniques of monochromatic beam wavefront characteri-

zation is Shack-Hartmann wavefront sensor [117, 118]. Figure 2.3 shows its typical

configuration that consists of an array of lenslets of the same focal length and a 2D

detector (CCD) placed at the focal plane of the lenslets. Each lenslet forms a focus

spot at the detector from a particular portion of the test beam. If the test beam is

collimated, the foci at the detector are equally separated from each other. Otherwise,

when there exists an aberration which can be considered as a tilt in each sampled po-

sition of the beam, the foci will be displaced from the nominal position in the detector.

The local tilts can be calculated from their corresponding displaced foci and hence

reconstruct the test wavefront. At first glance Shack-Hartmann sensor seems not to

be a practical device for wavefront measurement of the ultrashort pulses. Primarily
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Figure 2.3: Typical configuration of Shack-Hartmann wavefront sensor. Each lenslet
forms a focus spot at the detector from a particular portion of the test beam. The detector
is placed at the focal plane of the lenslets. In the case of being illuminated by a collimated
beam, the foci are equally separated from each other. Otherwise, in the case of existence
of an aberration, the foci will be displaced from the nominal positions on the detector
from which the degree and type of the distortion can be calculated.

because the focal length of the lenslets are wavelength dependent (chromatic aber-

ration) that blurs the foci. Secondly, when there exists a space-time coupling, each

spectral component has its own particular wavefront that yields multiple foci from a

specific sampled portion of the beam. However, a separate wavefront measurement of

each spectral component of the pulse may overcome the problem. It is accomplished

by placing a sets of spectral filters and repeating the measurement for each of the

spectrally filtered pulse components [119]. It is possibly even much easier by placing

the Shack-Hartmann device in the imaging plane of a 2D spectrometer [120].

Spatial interferometry

Another technique that is widely used for characterization of the spatial phase of the

beam wavefront is spatial interferometry. Analogous to the spectral interferometry,

spatial interferometry is based on interfering the reference and the test beam with a

small angle.i The relative spatial phase can be extracted from recorded interference

pattern by means of different techniques [121] among which, the Fourier filtering [86]

is the most established one. It should be mentioned that the production of the well

characterized reference beam is much easier in spatial than spectral domain because

i. The relative angle between two beams is the counterpart of the relative temporal delay in the
spectral domain that is necessary for filtering the interfering term in the Fourier filtering algorithm.
Furthermore, it removes the spatial phase sign ambiguity which is due to the symmetry of the
interaction of the collinear geometry.
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the reference beam can be easily made from the test pulse itself. As an example, the

reference beam can be achieved by selecting a small section of the wavefront by plac-

ing a pinhole in front of the test beam and forming a well defined spherical wavefront.

In fact this is the base of Point Diffraction Interferometry (PDI) [122] that is one of

the simplest and most applied method among the spatial interferometry techniques.

Although a spatial interferometer is only convenient for wavefront characterization,

its modified version can be used for characterization of the pulse front tilt [123]. In the

modified version, analogous to conventional spatial interferometry, two beams with a

small relative angle are combined and sent to the 2D detector with an exception that

the beams are spatially reversed with respect to each other. In a standard geometry

where two replicas are combined without any modification, the pulse front tilt can

not be detected. This is because the delay between two pulses remains constant at

each position along the beam [see Fig. 2.4 (a)]. However, the situation changes when

one of the beams is spatially reversed with respect to the other one. In this case [Fig.

2.4 (b)], the pulse front tilt forces the delay between two pulses to be spatial position

dependent (position along the beam). Figure 2.4 shows the relevant setup used by

Pretzler and his colleagues for detection of the pulse front tilt [123]. Because of using

of reversed spatial interferometry the spatial position dependent delay resulted in an

inhomogeneous spatial interference. They calculated the value of the pulse front tilt

from the contrast of the interference fringes [see Fig. 2.4 (c)].

An alternative way of space-time couplings characterization is combining the spectral

phase measurement techniques with the spatial interferometers. The spatial inter-

ferometer measures the spatial phase of the each spectral component of the pulse by

spectrally filtering and interfering them with the original pulse. In this case, the phase

function is not measured versus frequency. An additional spectral phase measurement

at a location where all spectral components are present yields the spatio-temporal

phase of the pulse [124]. However, the main drawback of this technique appears in

the case of existence of a strong spatial chirp, because spectral components are spa-

tially chirped and it is impossible to find a location to perform the spectral phase

measurement where the whole spectrum of the pulse is present.

Spatial shearing interferometry

Spatial shearing interferometry, which is the counterpart of spectral shearing interfer-

ometry in spatial domain, consists of interfering the test monochromatic beam with its

slightly spatially displaced replica. In fact, it is the spectral shearing interferometry



46 Chapter 2. Space-time couplings of UV-AOPDF pulse shaper

(a) (b)

Pulse front 1 Pulse front 2 Pulse front 1 Pulse front 2

C
on

tra
st

Pixel number(c)

Figure 2.4: Pulse front tilt measurement using reversal spatial interferometry. Spatial
interferometry is insensitive to the pulse front tilt (a) unless one of the arms is reversed
with respect to the other one (b). In this case, different spatial positions of the pulse
front will experience different delays depending on the strength of the pulse front tilt (c).
This results in detection of an inhomogeneous spatial interference from which the value
of pulse front tilt can be calculated. This figure is adopted from [123].

that is inspired by spatial shearing interferometry. Despite the conventional inter-

ferometry where the recorded interference signal yields the phase difference between

test and reference beam, here, the phase at one position of the test beam wavefront

is referenced to the phase of the other position of the same beam wavefront (similar

to spectral shearing interferometry). Existence of small angle between two sheared

replicas is necessary if one desires to apply the Fourier filtering to the recorded sig-

nal to extract the phase difference. After performing of Fourier filtering process, the

reconstruction of the spatial phase is done by integration or concatenation that was

explained in the previous chapter in spectral shearing interferometry section. The is-

sue of performing the spatial shearing has led to the development of different types of

the spatial shearing interferometers among which the Lateral Shearing Interferometry

(LSI) is the most common one [93,94]. The LSI is based on interfering the test beam

with its replica that is spatially sheared along one of the spatial axis of the beam wave-

front y or x [see Fig. 2.5]. This yields the finite phase difference φ(x+dx, y)−φ(x, y),
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Figure 2.5: Schematic configuration of a lateral shearing interferometer. It is based on
interfering the test beam with its replica that is slightly shifted along the x axis. A small
relative angle between two arms enables the application of the Fourier filtering process to
extract the spatial phase value φ(x).

from which the spatial phase φ(x, y) can be extracted by an integration along x axis.

However, the integration yields an unknown function of f(y) which comes from the

constant of integration of each line. Therefore, in order to completely characterize the

spatial phase, an additional shearing along the orthogonal direction is required [125].

In lateral shearing, the two wavefronts do not overlap completely which means this

technique can not recover the spatial phase of the whole beam wavefront. Therefore

other type of interferometer has been developed called Radial Shearing Interferometer

(RSI) in which, two identical arms of the interferometer are combined with a slightly

different magnifications m [126]. This yields φ(mr, θ) − φ(r, θ) from which one can

extract the full 2D spatial phase of the beam by integrating along the radial lines. r

and θ are the radial and the angular coordinates respectively. This integration does

not yield any ambiguity that is present in one dimensional lateral shearing interfer-

ometry because all the integrations have a common origin that is the central point of

the beam.

Spatial shearing interferometers are proper devices for spatially characterizing the

monochromatic beams; nevertheless, they can be applied to measure the spatial phase

of each spectral component of the ultrashort pulses obviously by spectrally resolving
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the interference pattern [127]. They can be also added to the temporal pulse char-

acterization techniques e.g. SPIDER, and hence construct the space–time metrology

devices that are able to measure the space-time coupling effects of the pulses [128,129].

2.2.2 Incomplete space-time coupling measurement tech-

niques

2D imaging spectrometer (detection of spatial chirp)

The spatial chirp is one of the easiest measurable types of space-time couplings. In

order to measure it, the spatio-spectral intensity profile of the pulse is required. This

can be easily measured by means of a 2D imaging spectrometer. The 2D spectrometer

is an extension of a conventional spectrometer that measures the intensity trace of

I(ω, x) by selecting a slice of the beam wavefront and spectrally resolving different

points of the mentioned slice on to different rows of the 2D-detector. The linear spatial

chirp appears as a tilt in the spatio-spectral intensity profile. Gu and his coworkers

were the first who measured quantitatively the spatial chirp using a 2D imaging spec-

trometer [105]. It should be noted that the aberrations in spectrometers can mimic

the effect of spatial chirp. Therefore, a precise measurement of this coupling requires

a 2D spectrometer free of any aberrations. In our lab, we have used a home-built

aberration free 2D imaging spectrometer in the FTSSI setup. It has been also di-

rectly used to measure the spatial chirp of the shaped pulses. I will detail its design

and properties in the experimental results section.

Single-shot autocorrelator (detection of pulse front tilt)

Single shot autocorrelators can be applied for detection of the pulse front tilt just

under a condition that one of the interferometer arms is spatially reversed [130] with

respect to the other one (basically because of the same reason that was explained in

spatial interferometry). Assuming that the pulse front tilt occurs along the x axis and

the pulses are combined in the y− z plane, imposes each overlapped point along x to

experience a different arrival time gap between the two beams. The interdependency

between the generated second harmonic signals along x and y axis results in rotation

of the detected elliptical trace with respect to the x axis on the detector. Raghura-

maiah et al. [131] demonstrated a quantitative measurement of the pulse front tilt via

measuring the rotation angle of the elliptical trace.
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Single shot FROG variants (detection of spatial chirp and pulse front tilt)

Single shot FROG variants can also measure some specific types of space-time cou-

plings, e.g. spatial chirp and pulse front tilt. Conventional FROG variants can be

transformed to the single shot geometry basically by following the same transforming

procedure that is utilized for designing single shot autocorrelators: delay to transverse

position mapping by crossing two arms at an angle and using a 2D detector. One of

the simplest among the FROG variations is called single shot Second Harmonic Gen-

eration FROG (SHG-FROG) in which two beams are crossed with an angle on the

second order nonlinear crystal [132]. As is the case for single shot autocorrelators,

the cross angle causes that two pulses arrive with different delays with respect to

each other on the crystal along the transverse dimension. In the cases where the

space-time couplings are absent and the test pulse is transform limited, the recorded

trace on the 2D detector will be a symmetrical elliptical trace where its major axes

are parallel with spatial and spectral axes. However, in the presence of the spatial

chirp, where the spectral components of the replicas are separated along the trans-

verse dimension, each position of the cross section area will experience interaction

of the pulses with different delays and different spectral components [see Fig. 2.6].

This results in detection of a tilted elliptical FROG trace from which the value of

spatial chirp can be extracted [133]. Single shot SHG-FROG is not able to measure

the pulse front tilt because any of the interferometer arms are not spatially reversed

with respect to each other. Nonetheless, the simplest variation of FROG devices called

GRENOUILLE (grating-eliminated no-nonsense observation of ultrafast incident laser

light e-fields) [134] is able to detect pulse front tilt as well as spatial chirp [135]. Fig-

ure 2.7 depicts a schematic setup of GRENOUILLE where the detected signal at the

camera is a single-shot SHG FROG trace with delay running horizontally and wave-

length running vertically. It is similar to single shot FROG with some modifications

to make the device more compact and user friendly. Similarly to single shot SHG-

FROG, the presence of spatial chirp results in rotation of the elliptical GRENOUILLE

signal trace on the camera from which its value can be extracted. Unlike single shot

SHG-FROG, GRENOUILLE device can detect and hence measure the pulse front tilt

that represents itself as a shift of the GRENOUILLE trace from the zero delay to a

nonzero delay on the camera. In the absence of the pulse front tilt, two beamlets meet

each other with zero relative delay at the central position of the crystal. However, in

the presence of the pulse front tilt, because the arrival time of the pulse maximum

intensity is position dependent, the position where two beamlets meet each other with
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Figure 2.6: Spatial chirp detection by a single shot SHG-FROG. In the presence of a
spatial chirp (along the transverse dimension), each position of the cross section area
experiences interaction of two pulses with different frequencies and delays. This results
in a tilt in the detected elliptical FROG trace with respect to the major axis from which
the value of the spatial chirp can be extracted. This figure is adopted from [133].

zero delay will be shifted from central position of the crystal that yields the shifted

GRENOUILLE trace. One can calculate the value of pulse front tilt from this dis-

placement from the central position via the GRENOUILLE trace. The drawback of

the single-shot FROG variants appears when the test pulse is contaminated with tem-

poral chirp. The presence of temporal chirp also rotates the detected elliptical FROG

traces in a similar manner to the spatial chirp. This makes it difficult to distinguish

and hence measure them.

2.2.3 Full spatio-temporal characterization techniques

Fourier Transform Spatio-Spectral Interferometry (FTSSI)

Fourier-transform spectral interferometry technique was presented in the previous

chapter (section 1.5.2) as a strong referenced pulse characterization technique. Since

its operation requires one dimensional array, adding the second dimension simply by

implementing a 2D detector (CCD camera) and a 2D imaging configuration, can be

used to measure the spatially resolved spectral phase of the pulses. This is what we
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Figure 2.7: Top and side view of GRENOUILLE. A Cylindrical lens focuses vertically
the input beam on to a biprism. The biprism divides the incident beam into two beamlets
and combines them with an angle in the horizontal plane. A thick SHG crystal resolves
and maps the spectral components to different angles in the vertical plane. An additional
cylindrical lens at the other side of the crystal maps the angularly dispersed components
on to different positions of the camera in the vertical plane. The signal at the camera is
therefore a single-shot SHG FROG trace with delay running horizontally and wavelength
running vertically. This figure is adopted from [134].

have used to spatio–temporally characterize the shaped pulses of the UV-AOPDF

pulse shaper and I will present it in more detail in the following. Figure 2.8 (a)

depicts a typical setup of a spatio-spectral interferometer in which the reference arm

and the test pulse are combined collinearly with a relative delay at the entrance slit

of a 2D imaging spectrometer. The imaging spectrometer selects one spatial slice of

the overlapped beams. In this case, the spectrally resolved interfering electric field of

different points along the beam slice y is recorded on different rows of the 2D camera.

Therefore, the recorded signal reads

S(ω, y) = |Ẽr(ω, y) + Ẽs(ω, y) exp(iωτ)|
2 (2.1)

which corresponds to spatially resolved spectral interference intensity [see Fig. 2.8

(b)]. The relative spatio-spectral phase can be extracted by using the Fourier-transform

filtering algorithm for each point y of the interference pattern [see Fig. 2.8 (c)]. In
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Figure 2.8: Schematic configuration of a collinear spatio-spectral interferometer along
with the detected signal. (a) The test and reference arm are combined collinearly with a
relative delay at the entrance slit of a 2D spectrometer. (b) The 2D spectrometer records
the spatially resolved intensity interference of two arms. (c) The recorded interference
fringes correspond to three lobes separated from each other by the amount of the relative
delay τ in quasi-temporal domain.

order to reconstruct the spatio-spectral phase of the test pulse, the spatial and spec-

tral phase of the reference arm should be already known. However, this task by itself

is challenging because it requires a separate spatio-spectral pulse characterization

technique. Having a reference pulse with spectral phase independent of its spatial

transverse coordinate (space-time coupling free pulse) may ease the problem. In this

case, by measuring the spectral phase at a chosen point y0 that contains all spectral

components φr(ω, y0), one can obtain the spatio-spectral phase φr(ω, y) = φr(ω, y0)

and therefore the spatio-spectrally characterized reference pulse. This consideration,

a spatially independent spectral phase, maybe achieved by putting a pinhole in front

of the test pulse, choosing a specific point y0 from the wavefront of the test pulse and

collimating it by means of a lens. However, there are at least two constraints for this

approach. First, when the test pulse spectrum is ultra broad, it is almost impossible

to make a collimated beam where all spectral components have a plane wavefront.
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Secondly, when the test pulse is strongly spatio-spectrally coupled, it is difficult to

find a position which contains all the spectral components. Nonetheless, spatially

resolved spectral interferometry can be considered as one of the strongest tools that

spatio-spectrally characterize the pulses. Its applications includes studying lens aber-

rations [136,137], self focusing effects of transparent media [138] and spatio-temporal

speckles [34].

Figure 2.9 shows how FTSSI is capable of measuring different types of the space-time

couplings. Figure 2.9(a) shows the effect of the spatial chirp on the spatio-spectral in-

terference pattern. It appears as a tilt of the elliptical spatio-spectral intensity pattern

with respect to the spectral axis. Figure 2.9 (b) shows effect of pulse front tilt on the

recorded interference pattern. The spectral fringe frequency δωfr ∝ 1/τ depends on

the relative delay of two arms τ . In the presence of pulse front tilt along the entrance

slit (vertical plane), the delay between two arms become position dependent. In more

detail, each point along the slit in addition to fixed relative delay τ , also experiences

different arriving times of the beams due to the tilt of the test arm with respect to the

reference arm. The arrival time of this position dependent pulse tilts the interference

fringe pattern, depending on the magnitude of the pulse front tilt, with respect to the

vertical axis.

(a) (b)

Figure 2.9: Spatially resolved interferograms of a spatio-spectral interferometer in the
case of combination of a transform limited reference pulse with a spatio-temporally coupled
test pulse. The presence of spatial chirp (a) tilts the elliptical spatio-spectral intensity
pattern with respect to the spectral axis; while, the presence of the pulse front tilt (b)
results in rotation of the interference fringe pattern. This figure is adopted from [106].

The spatio-spectral phase can be extracted by means of a Fourier filtering algorithm

similar to the one dimensional spectral interferometry. However, as was mentioned in

the presentation of Spectral Interferometry in the first chapter, using Fourier filtering
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algorithms demands a spectrometer with higher resolution than it is normally required

for sampling the finest features of the spectrum signal. A solution to this problem

is crossing the arms on the entrance slit of the spectrometer with a small angle θ.

This results in appearance of the spatial interference pattern where its frequency is

proportional to θ. Figure 2.10 (a) shows the recorded signal on the detector that reads

S(ω, y) = |Ẽr(ω, y) + Ẽs(ω, y) exp(ikyy + iωτ)|2 (2.2)

where, ky is the difference between transverse components of the propagation vectors

k and related to crossing angle θ through

ky = k sin θ. (2.3)

Now, performing a two-dimensional Fourier transform along both the spectral and

spatial axes yields three lobes. Here, in addition to the temporal separation the lobes

are also separated along the quasi-spatial frequency dimension [see Fig. 2.10 (b)].

This means that the interfering term can be easily filtered without necessity of in-

troduction of a relative delay. This approach therefore eases the spectral resolution

requirement of the spectral interferometry. Depending on what the measurement re-
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Figure 2.10: Homemade simulation of detected signal by a 2D spectrometer of a non-
collinear spatio-spectral interferometer . (a) The 2D spectrometer records the spatially
resolved interference of the transform limited reference and the test pulses with a rela-
tive delay and angle. (b) The recorded interference fringes correspond to three lobes that
are separated from each other by the amount of the relative delay τ and angle θ in the
wavenumber-temporal domains.

quests, high spectral resolution or high spatial resolution, one can play with spatial

and spectral resolution of the measurement by modifying the values of the relative
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delay and relative angle. In more detail, the spectral resolution will be lost when

the relative angle is zero and the interfering term is separated from the dc term just

by relative delay or inverse, the spatial resolution is lost when the relative delay is zero.

SEA TADPOLE

To overcome the problem of compromise between spatial and spectral resolution of

the FTSSI, SEA TADPOLE Spatial encoded arrangement for Temporal Analysis by

Dispersing a Pair of Light E-fields, can be used [139,140]. In this method two pulses

are combined by using of two monomode equal-length optical fibers [see Fig. 2.11].

In more detail, the reference arm is coupled into one of the fibers and the second fiber

Figure 2.11: Schematic configuration of the SEA-TADPOLE. A reference pulse and an
unknown pulse are coupled into two single-mode fibers with approximately equal lengths.
At the other end of the fibers, the diverging beams are collimated using a spherical lens (f).
After propagating a distance f, the collimated beams cross and interfere, and a camera
is placed at this point to record the interference. In the other dimension, a grating and
a cylindrical lens map wavelength onto the camera’s horizontal axis x. This figure is
adopted from [106].

selects a specific point from the unknown pulse. Then the emerging beams from the

fibers are crossed in the vertical plane with an angle which results in spatial fringes.

Leading the fringe pattern to the 2D imaging spectrometer results in spectrally re-

solving the spatial fringes. In this case, the delay between two pulses are set to zero.

Since Fourier filtering algorithm filters the trace in the spatial coordinate, the spec-

tral resolution of the measurement is kept untouched. Scanning the fiber transversely

yields the spatially resolved spectral phase of the unknown pulse. Therefore, in this

technique the spatial resolution is defined by the mode size of the fiber. SEA TAD-
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POLE is a strong measurement tool for measurement of the spatio-spectral phase of

the tightly focused pulse giving that the mode size of the fiber is several times smaller

than the size of the focus. However the challenging issue concerning this technique

is the calibration of the relative delay between the two arms, because transversely

scanning the fiber also introduces longitudinal fluctuation.

SEA-SPIDER

All above mentioned devices are referenced measurement techniques. Similar to Spec-

tral interferometry that is extended to measure the additional spatial domain by using

of a 2D imaging spectrometer, spectral shearing interferometry also can be extended

to spatio-spectral phase measurement device. SEA-SPIDER, Spatial Encoded Ar-

rangement SPIDER [141] is the name of the developed device for spatio-spectral

measurement of the pulses. In this technique, a 2D imaging spectrometer is im-

plemented instead of non imaging spectrometer. Moreover, two spectrally sheared

replicas, instead of being temporally delayed, are combined with an angle in to the

imaging spectrometer. In this case, spatial fringes are produced instead of spectral

fringes that relax the spectral resolution of the spectrometer through the Fourier fil-

tering algorithm as explained before. Furthermore, using an imaging spectrometer

gives the possibility of measuring the spectral phase at each point along the unknown

pulse wavefront. However, SEA-SPIDER is a self referenced technique that does not

retrieve the group delay of the unknown pulse. This means that the spatially depen-

dent group delay of the pulse (spatial phase) remains unknown. Nonetheless, it reveals

interesting signatures of spatio-spectral coupling of the pulses. One can encompass

this problem by applying both spatial and spectral shearing simultaneously. This is

called 2D shearing interferometry [129] in which two spectrally sheared replicas of the

pulse are combined by a small angle with additional spatial displacement. Spatial and

spectral phase can be separately extracted via Fourier filtering algorithm and then

stitched together to retrieve a complete spatio-spectral characterization of the pulse.

STRIPED-FISH

So far, because of applying 2D detectors, all mentioned spatio-spectral characteri-

zation techniques are limited at best to measure spatio-spectral phase of the pulses

φ(y, ω) where the information about the other spatial dimension is lost. Fortunately,

in most cases the generated spatio-spectral couplings occur only between one spa-

tial and spectral (temporal) dependence of the pulse electric field. Therefore, the
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loss of one spatial dimension is acceptable. However, some fields require the whole

spatio-spectral characterization of the pulses φ(x, y, ω). 2D SPIDER and SSI tech-

nique can adopt themselves to 3D measurement by scanning the entrance slit of the

spectrometer. This requires a multishot measurement which is not always desired

due to its several constraints. A different approach is STRIPED-FISH [142, 143], a

form of Fourier-transform interferometry with a spatial carrier. In this technique,

the test and reference beams pass through a coarse grating, which produces many

diffracted orders. These diffracted orders then pass through an interference filter.

Since each order has a slightly different wave-vector and the passband of the filter is

angularly dependent, the passband frequency seen by each order is different. Each

order therefore contains a quasi-monochromatic spatially encoded interferogram, and

these are simultaneously recorded on a two-dimensional detector. Combining the in-

terferograms yields a three-dimensional dataset. However the spectral resolution of

the reconstructed electric field is reduced.

2.3 Experimental results

Here, I focus on studying spatio-temporal coupling effects produced by the UV-

AOPDF pulse shaper which has led to a recent publication [61]. I apply the FTSSI

as a measurement technique because it is capable of measuring the spatio-temporal

characteristics of unknown pulses in all spectral regions. Moreover, it is highly sen-

sitive to weak signals due to its linear measurement nature. In the following, before

detailing the experimental setup, some hints are given on designing of our home-built

2D imaging spectrometer which can affect the accuracy and precision of the measure-

ments.

2.3.1 Spectrometer design, calibration and characteristics

I have applied a home-built 2D imaging spectrometer in our FTSSI setup which is

an extension of the conventional Czerny-–Turner imaging spectrometer. Figure 2.12

shows notations and the basis of a conventional Czerny-–Turner spectrometer which

is in fact based on a 4f configuration. In this configuration, the entrance slit S, the

plane grating G and the 2D detector D are located in the focal planes of the spherical

mirrors. The first spherical mirror C collects and collimates the divergent wavefront

from the entrance input slit. The diffraction grating disperses angularly the spectral

components of the collimated beam. The second spherical mirror F focuses the spec-
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tral components on the 2D detector placed at its focal plane. In order to measure
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Figure 2.12: Configuration of Czerny-Turner spectrometer:entrance slit S, slit to col-
limating mirror length LSC , spherical collimating mirror C with angle of incidence in
tangential plane θC and radius RC , collimating mirror to grating distance LCG, grating
G with angles of incidence α and diffraction β, grating to focusing mirror distance LGF ,
spherical focusing mirror F with angle of incidence in tangential plane θF and radius RF ,
focusing mirror to detector distance LFD, and detector D angled θDto beam.

the characteristics of the ultrashort pulses with large spectral bandwidth, imaging

spectrometers ought to have a high quality image over a broad spectrum. However,

since the spherical mirrors have a different focal length for tangential and saggital

planes in the off-axis reflection configuration, the produced image of the entrance slit

along tangential plane occurs before the saggital plane (zeroth order astigmatism).

There also exists first order astigmatism which is due to the wavelength dependence

of the diffraction angle of the grating β(λ). In more detail, β(λ) causes the incident

angle on the focusing mirror F to be also wavelength dependent. Furthermore, the

incident point of the optical ray on the focusing mirror will be also wavelength depen-

dent which results in wavelength dependent tangential and saggital imaging planes.

In order to correct the zeroth and first order astigmatism and hence obtain stigmatic

images two conditions should be fulfilled. First, for a specific wavelength, the dis-

tances of the tangential and saggital images from the focusing mirror should be the

same ST (λ0) = SS(λ0) (correction of the zeroth order astigmatism). Secondly, both

tangential and saggital image distances should change at the same rate as the distance

between the focusing mirror and the detector changes ∂ST

∂λ
= ∂SS

∂λ
= ∂LDF

∂λ
(correction

of the first order astigmatism). The zeroth order astigmatism can be corrected by

reducing the distance between the input entrance slit and the collimating mirror LSC .

Under such conditions, the grating is under a divergent illumination and its diffraction

in the tangential plane introduces an astigmatism that compensates the astigmatism

that is introduced by the spherical mirrors. The first order astigmatisms can be

corrected by different approaches such as implementation of non spherical (toroidal)
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Parameter Value

Central wavelength 270 nm

RC 300 nm

RF 300 nm

θC 5◦

θF 8◦

α -4◦

Γ 600 mm−1

β 24.2◦

Table 2.2: Basic parameters of the 2D imaging spectrometer.

mirrors [144] or aplanar (cylindrical) grating [145]. Austin et al. [146] showed a sim-

pler technique that does not require the replacement of the optical elements. It was

only based on modification of optical elements angles and distances with respect to

each other. In more detail, the angle of the detector in the tangential plane θD, and

the distance from the grating to the focusing mirror of the spectrometer LGF , would

compensate the astigmatism for a broad spectral bandwidth. The design of our home-

made spectrometer which is done in collaboration with Oxford university is based on

divergent illumination and the modifications detailed in [146].

Design

Designing of a 2D imaging spectrometer requires all parameters (e.g. inter-component

distances, incident angles and the properties of each optical components) to be known.

In our case, the given parameters are mirror radii, incident angles on grating and

mirrors [see Tab. 2.2]. The slit image distance along tangential ST and saggital SS

planes from the focusing mirror are calculated from the imaging equations of each

individual optical components. Setting equal ST and SS, zeroth order astigmatism

correction condition, yields the distance between the slit and the collimating mirror

LSC . The detector distance from the focusing mirror LDF is then computed from

setting it equal to the imaging distances. The condition for first order astigmatism
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correction is obtained by setting equal the wavelength dependent variation of both

the saggital and the tangential slit image and the detector distances from the focusing

mirror ∂ST

∂λ
= ∂SS

∂λ
= ∂LDF

∂λ
. It yields the detector angle θD and the distance between

grating and the focusing mirror LGF . Figure 2.13 shows the layout of our astigmatism

free 2D-imaging spectrometer that is built in Oxford considering the parameters of

Tab. 2.2. Two planar mirrors are additionally implemented between the collimating

mirror and the grating and also between the focusing mirror and the detector to

provide enough room for the mounts.

SC

F

M

M

G

2D

Figure 2.13: Layout of home-built 2D imaging spectrometer. entrance slit S, collimating
mirror C, planar mirror M, grating G, focusing mirror F, 2D detector 2D.

Calibration

In order to use the spectrometer, we should know the dispersion relation on the de-

tector (ω = αx) or in other words, find the relationship between each pixel on the

detector and the corresponding spectral component of the input pulse. We make

several narrow bandwidth holes on different spectral regions of the pulse using the

calibrated AOPDF pulse shaper and record the diffracted beam with our imaging

spectrometer. By computing the pixel indexes corresponding to the spectral ampli-

tude holes we work out the variable α. Once α is calculated, we can perform the

pixel to wavelength mapping. However, an important fact that should be mentioned
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is that our spectrometer is only corrected for astigmatism and there still exists a dis-

tortion aberration. In more detail, each recorded spectral component on the detector

is a curved line instead of being a straight line. This effect is more visible using a

mercury—argon calibration lamp as an input beam. In Fig. 2.14(a) we can see the

curvature of the spectral line. In the presence of the distortion, since each column on

the detector xn does not correspond to a specific spectral component ωn, the pixel-to-

wavelength mapping should be reconsidered. This is done by measuring the curvature

of the spectral line and redoing the mapping process by taking it into account.
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Figure 2.14: Specific spectral intensity of a mercury-argon calibration lamp. (a) White
line is the intensity average of each position along the spectrometer slit y and shows the
curvature of the line for a specific wavelength. (b) Intensity distribution of the mercury-
argon lamp is recorded by CCD camera using a 25 µm diameter pinhole in the entrance
of the spectrometer. It reveals the spatial and spectral resolution of the spectrometer.

Resolution

The spatio-spectral resolution of the spectrometer is measured by replacing the en-

trance slit with a 25 µm diameter pinhole and illuminating the spectrometer with a

mercury–argon calibration lamp. Figure 2.14(b) shows the imaged spot on the 2D-

detector. The detector is a CCD camera (EHD Imaging UK-1158UV) with a pixel

size of 6.45 µm. The spatial resolution is 40 µm which is obtained by measuring the

size of spot at FWHM along the y axis. The spectral resolution is 0.08 nm which is

measured by ∆λ
∆x

× δx where, ∆λ is the wavelength separation of two spectral lines of

the calibration lamp, ∆x is their corresponding pixel separation and δx is the width

of specific wavelength along the x axis.
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2.3.2 Experimental Setup

The first step towards space-time characterization of shaped UV pulses is their genera-

tion from our CPA Ti:Sapphire laser source. I have already detailed our experimental

setup for the generation of such pulses in the third section of first chapter [see section

1.3]. For more convenience, I just repeat the main characteristics of the generated

pulses. The generated ultrashort UV pulses are centered at 267 nm with spectral

bandwidth of 2 nm at FWHM and energy of 2 µJ. The repetition rate is 1 kHz and

the beam diameter is around 2 mm. The generated pulse duration is around 150 fs.

The next step, as soon as UV pulses are generated, is performing a FTSSI measure-

ment. Therefore, the UV source is divided into reference and sample arms by means of

a beam splitter with ratio of 30:70 respectively. Figure 2.15 depicts the layout of our

FTSSI setup where the AOPDF is placed in the sample arm of the interferometer.

The KDP crystal of the pulse shaper is cut in such way that requires the incident

beam to be vertically polarized to satisfy the phase matching condition. According to

Fig. 2.16 the pulse shaper output consists of diffracted and nondiffracted beam that

are exiting with different angles. The crystal diffracts the incident beam by approxi-

mately 2.4◦, while the nondiffracted beam leaves the device at around 2◦ with respect

to the direction of the input beam. Since it is only the diffracted beam that delivers

the desired shaped pulses we have isolated them by blocking the nondiffracted beam.

In practice, two important AOPDF adjustments provide an efficient and correct per-

formance:

- The first one is the alignment of the beam within the AOPDF which consists of

input beam height, collimation, incident angle and incident location on the AOPDF

pulse shaper. The input beam collimation yields the best spectral resolution for the

pulse shaper. Moreover it should be horizontal meaning that its height should stay

unchanged within the pulse shaper. This is particularly important because we have a

long crystal with typical length of 75 mm. If the input beam is well centered in the

crystal its efficiency will be improved. The central position is found by mounting the

pulse shaper on a translation stage and laterally displacing it in front of the input

beam until the maximum energy is achieved for the output diffracted beam. The final

step is finding the best incident angle of the input beam on the pulse shaper. In fact,

the phase matching condition of the pulse shaper crystal (KDP) for each spectral

component is strongly dependent on the incident beam angle. The pulse shaper is

designed in such a way that the phase matching condition is fulfilled only when the
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Figure 2.15: Layout of experimental setup. Ultrashort UV pulses (blue line) centered
at 267 nm is generated from sum frequency of the laser source (red line) and its second
harmonic generation (violet line) in a type1-BBO crystal. The UV pulse is divided into
reference and test arms by means of a beam splitter. The emerged beam from the UV-
AOPDF (diffracted shaped) is combined with the reference arm and directed to a 2D
imaging spectrometer. The polarization of the reference arm is rotated to be parallel with
the diffracted sample arm by means of half wave-plate. The wave-front of both beams are
rotated by 90◦ by a twisted periscope to make the spatio-temporal coupling axis along the
entrance slit of the spectrometer.

incident beam is normal to the KDP crystal. In order to be sure about the best angle,

we program a narrow bandwidth hole at a specific wavelength of the shaped pulse

and record it with a spectrometer. This is easily done by programming the acoustic

wave in such way that the diffraction does not occur at those desired wavelengths.

When the input beam is not normal, the hole on the spectrum appears at a different

wavelength than the programmed one. Rotating the crystal, spectrally shifts the lo-

cation of the hole and hence one can find a condition in which the hole appears at the

same wavelength than it is programmed. In this case the phase matching condition

is fulfilled and the pulse shaper is well aligned.

- The second adjustment concerns the time delay between the acoustic wave and the

optical beam in the KDP crystal. The acoustic wave is seen frozen by the optical beam

due to their propagation speed difference in the crystal. However, it is not stationary
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Figure 2.16: Schematic view of our UV-AOPDF pulse shaper. The pulse shaper diffracts
the incident beam by approximately 2.4◦, while the nondiffracted beam leaves the device
at around 2◦ with respect to the direction of the input beam. The reflected beam has an
angle of approximately 1.3 ◦ with respect to the direction of input beam.

and hence its generation rate and propagation in the crystal should be synchronized

with the optical beam. The generation rate should of course posses the same repeti-

tion rate as the optical source (1kHz for our laser source). The arriving time of the

acoustic wave inside the crystal with respect to the optical beam should be synchro-

nized in a way that all its spectral components can be diffracted anywhere inside the

crystal. This condition is fulfilled when the acoustic beam has already propagated to

the middle of the crystal as the optical beam enters it. We use an electronic time

delayer which synchronizes the acoustic wave with the preceding pulse. In order to be

sure of the optimum relative delay, we tune it to find a condition where the incident

pulse can be diffracted in all locations of the crystal with same efficiency.

The reference arm is combined with the output shaped beam of the sample arm with

a small angle θ (in the vertical plane yz) and controllable relative delay τ at the

entrance slit of the home-built imaging spectrometer [147]. The polarization of the

output shaped pulse is orthogonal to the polarization of the reference beam, thus a

half wave-plate is placed in the reference beam to provide a parallel polarization for

both arms before their combination. Since the spectrometer employs a two dimen-

sional detector, it performs a measurement of the spectrum for each spatial position

y of the beam slice. However, there is no interest in performing a measurement along
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this vertical axis, because all interesting spatio-temporal couplings occur in the hor-

izontal plane (the plane on which diffraction occurs). Therefore, both reference and

diffracted beam wave-fronts are rotated 90◦ by means of a twisted periscope. Finally,

in order to increase the signal, a cylindrical mirror is placed before the entrance slit

that focuses the beams on to the entrance slit along the horizontal plane xz (non

imaged axis of the beam or in other words, along the insensitive axis of the beam

to the spatio-temporal couplings). The combination of the reference and the sample
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Figure 2.17: The Fourier filtering process. (a) A raw interferogram measured by the
spectrometer camera. (b) A two-dimensional Fourier transform is performed. An ac
term is filtered out within the Fourier domain. (c) An inverse two-dimensional Fourier
transform of this term isolates the final term of Eq. 2.4. The mapping onto calibrated fre-
quency and position axes is calculated. (d) Extracted phase difference φs(x, ω)−φr(x, ω),
modulo 2π. A subsequent procedure calibrates the camera pixels into physical units of
frequency and position.

arm on the entrance slit results in the formation of a 2D interference pattern on the
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spectrometer detector [see Fig. 2.17(a)] that reads

S(y, ω) = |As(y, ω)e
iφs(y,ω) + Ar(y, ω)e

i[φr(y,ω)+ωτ+kyy]|2

= |As(y, ω)|
2 + |Ar(y, ω)|

2

+ 2 |As(y, ω)| |Ar(y, ω)| cos [ωτ + kyy + φs(ω, y)− φr(ω, y)] .

(2.4)

Here, ky is the difference between the transverse components of the propagation vec-

tors (such that their subtended angle is θ = ky/k). As, Ar, φs and φr denote the

spatio-spectral amplitude and phase of the shaped (s) and reference (r) pulse respec-

tively. The first two terms of the equation are the reference and sample intensities

respectively and the third term shows the coupling of the sample and the reference am-

plitudes with their relative spatio-spectral phase. In order to reconstruct the spatio-

spectral characteristics of the shaped pulse, we need to calculate the spatio-spectral

amplitude and the phase of the shaped pulse. The amplitude is directly obtained

by measuring the sample intensity on the spectrometer when the reference arm is

blocked. The phase can be extracted from the third term of the above equation via

different methods. We use the Fourier filtering algorithm [86] where the interferogram

is Fourier transformed along both spatial and spectral dimensions [see Fig. 2.17(b)].

Then, one of the ac terms is filtered out and inverse Fourier transformed with the

carrier frequency removed [see Fig. 2.17 (c)]. This isolates the final summand of

Eq. 2.4, which contains the phase difference φs(y, ω) − φr(y, ω). Finally, the spatio-

spectral phase of the transmitted light is reconstructed [see Fig. 2.17(d)]. The full

spatio-temporal electric field and intensity may thus be reconstructed by a further

Fourier transform.

The spatial and spectral carriers, ky and τ , are chosen in order to separate the ac and

dc terms in the Fourier transform whilst ensuring that the fringe period is greater

than the spectrometer resolution. In order to be able to handle complex temporal

structure, a predominantly spatial carrier of θ ≈ 3 mrad and τ ≈ 0, giving rise to

predominantly spatial fringes, is employed for these experiments.

Device calibration

The extracted phase ∆φ(ω) is the spectral phase difference between the reference

and sample arm which consists of the added phase of the pulse shaper φAO(ω) plus

the intrinsic second and higher order phases associated with the two arms of the
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interferometer φs(ω)
int, φr(ω)

int:

∆φ(ω) = φs(ω)− φr(ω) = φAO(ω) + [φs(ω)
int − φr(ω)

int]. (2.5)

In order to measure the intrinsic higher order phases of the optical components and

hence calibrate the measurement device, we take a FTSSI measurement with the

AOPDF removed:

∆φrem(ω) = φs(ω)
int − φr(ω)

int. (2.6)

Figure 2.18(a) shows the extracted relative spatio-spectral phase of two arms when

the Dazzler is removed. The added intrinsic relative phase averaged over the spatial

extent of the pulse is 600 fs2 [see Fig. 2.18 (b)]. The error in the measurement of the

second order phase is about 100 fs2 which is estimated by computing the standard

deviation of the inferred sample phase over 10 shots in the regions where the intensity

is greater than 10% of the peak [see Fig. 2.18 (b)]. The significant sources of the

Figure 2.18: Intrinsic dispersion of the delay line as a function of position and fre-
quency. (a) The dispersion of the interferometer as a function of position and frequency
averaged over ten shots. (b) The second order spectral phase at different positions along
the beam wavefront. The added second order dispersion is approximately 600 fs2 which is
estimated from the averaging of the inferred phase along different spatial positions. The
precision of the second order phase measurement is 100 fs2 which is estimated by com-
puting the standard deviation of the inferred sample phase over 10 shots in the regions
where the intensity is greater than 10% of the peak. The variation of the spectral phase
over extent of the pulse wavefront is less than 140 fs 2 that is estimated by computing the
standard deviation of the inferred second order phase along the extent of the pulse.

measured phase error are camera shot noise, shot-to-shot fluctuation of the UV source
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Pulse shaper H(ω)

Pulse delay exp [−2(ω − ω0)
2/∆ω2 + iωτ ]

N-pulse train
∑N

n exp(iωτn)

Chirps exp
[
−2(ω − ω0)

2/∆ω2 + i(ω − ω0)
2φ(2)/2

]

π step exp {i arctan [(λ− λ0/∆λstep]}

Table 2.3: Transfer function, H(ω), for the pulse shapes presented within this section,
where ω0 = 2πc/λ0θ is the central angular frequency. For the pulse delay and chirped-
pulse cases, a narrowed spectral bandwidth of ∆λ = (λ2

0/2πc)∆ω = 1 nm was employed.
All other parameters are defined in the text.

and finally unwrapping and fitting in the phase extraction process. The error in the

measurement of the reference amplitude depends also on the shot-to-shot fluctuation

of the UV source and the camera noise. The signal-to-noise ratio at the peak of the

signal is approximately 10 ii. The variation of the second order phase over the spatial

extent of the pulse is less than 140 fs2 [Fig. 2.18(b)].

2.3.3 Pulse shapes

In order to study the spatio-temporal coupling effects of the AOPDF pulse shape, we

produce various of the most common pulse shapes used in quantum control experi-

ments including pulse trains, chirped pulses and a π phase step. The mathematical

expression of each desired transfer function is presented in Tab. 2.3.

Pulse delays

As a first experiment we produce different pulse delays (first order spectral phase).

This is done by scanning the launched acoustic wave inside the KDP crystal that

results in diffraction of the single pulse at different positions and hence generation of

different pulse delays τ . Since the acoustic wave is tailored to compensate the natural

dispersion induced by the KDP itself, the intensity bandwidth of the pulse is narrowed

to 1 nm to reduce the length of the acoustic wave. This enables us to have a larger

range of delays to be accessed without clipping the acoustic wave on the edge of the

ii. We only estimate the fluctuations of the reference amplitude and apply it for the sample arm.
This is because, in order to have optimum fringe visibility, both arms are chosen in such a way that
have approximately same intensities on the CCD camera.
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crystal. Figure 2.19(a) depicts the measured delays induced by the pulse shaper with

step size of 400 fs that are found to be in good agreement with the programmed delays

within an error of 3% [see Fig. 2.19(b)]. Looking precisely at central position of the
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Figure 2.19: Generation of different pulse delays with step size of 400 fs by scanning
the acoustic wave inside the AOPDF crystal. (a) Reconstructed spatio-temporal intensity
of the induced pulse delays. (b) Temporal arriving moments of the pulses as a function of
programmed delays. It shows a good agreement between the induced and the programmed
pulse delays with an error of 3%. (c) Central position of the diffracted pulses as a function
of programmed delays. The central position of the diffracted pulses varies linearly with a
coupling speed of 0.249 ±0.012 mm/ps.

pulses at different delays shows that they vary linearly with a coupling speed of 0.249

±0.012 mm/ps as a function of programmed delay [see Fig. 2.19(c)]. This behavior is

also confirmed with a direct measurement of the beam position on a CCD camera. We

also calculate the beam pointing angle θ ≈ ky/k as a function of the delays from the

reconstructed wavenumber-temporal intensity I(ky, t). No angle variation is observed.



70 Chapter 2. Space-time couplings of UV-AOPDF pulse shaper

Therefore, as a conclusion there is only a single coupling effect which is the spatial

variation of the central beam position as a function of the pulse delay.

Pulse trains

The second step is generation of pulse trains. According to the mathematical expres-

sion of the pulse trains presented in Tab. 2.3, we program various trains of pulses

with different time gaps and varying numbers of pulses ranging from two to thir-

teen. A typical reconstructed spatio-temporal intensity distribution is shown in Fig.

2.20 for a train of three pulses separated by 1.5 ps. No spectral phase is added to

the individual pulses. Once again, we narrow the bandwidth of the diffracted pulse.

The pulse separation is verified to within 1%. A pronounced linear spatio-temporal
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Figure 2.20: Reconstructed spatio-temporal intensity distribution of train of tree pulses
separated by 1.5 ps. The reconstructed pulse train exhibits a linear spatiotemporal cou-
pling effect that is consistent with the 0.25 mm/ps best-fit gradient observed for the pulse
delay experiments (superimposed dotted line). The spatio-temporal coupling subsequently
resulted in a worsened alignment for the third pulse in the train, concomitantly reducing
the fringe visibility. This accounts for the apparent reduction in intensity for the final
pulse.

coupling is observed in the reconstruction of spatio-temporal intensity. The coupling

speed is estimated by computing the spatial moment of the pulses as a function of



2.3. Experimental results 71

delay. This is a linear function and hence the best-fit results in slope gradient of 0.249

mm/ps which is quantitatively consistent with coupling speed observed during the

delays experiments. We also program pulses trains with different central wavelengths

with different second and higher order phases to test the performance of the pulse

shaper. Figure 2.21 depicts an example of two pulse trains with time gap of 1 ps

with different central wavelengths. The central wavelength difference results in gen-
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Figure 2.21: Spatio-spectral intensity of two pulse trains with different central wave-
lengths. Two intensity slopes are induced because two pulse trains have different central
wavelengths which is programmed to be 1.5 nm. The two pulses are separated from each
other by 1 ps. The orientation of the fringe patterns are different at two lobes because the
reference pulse is combined with different relative delays with each of them. The two lobes
are displaced spatially with respect to each other because of being diffracted at different
locations of the pulse shaper.

eration of two lobes in recorded spatio-spectral intensity pattern. Furthermore, since

the reference arm is combined with these two pulses with different relative delay, the

generated fringes at the lobes have different slopes. Finally, the two lobes are spatially

displaced with respect to each other. This effect, as explained above, is consistent

with the time delay dependent spatial variation of the central position of the pulses

in pulse delay measurements.
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Chirped pulses

This experiment consists of generation of pulses with various second and higher or-

ders to look for the existing spatio-temporal coupling effects and also verifying the

consistency of the measured phases with the programmed ones [see Tab. 2.3 for the

mathematical expression of the pulse chirps]. Our AOPDF pulse shaper allows pro-

gramming of second order phase within the range of -100000 to +100000 fs2 only for

the case of narrowed diffracted pulse bandwidth ∆λ = 1 nm. Figure 2.22 shows the

extracted second order polynomial phase φ(2) coefficients for the programmed disper-

sions from -100000 to +100000 fs2 with step size of 10000 fs2. A linear best-fit shows

that the constructed phase coefficients matched the programmed values within 6%.

Once again the error in the second order phase measurement is estimated from com-

puting the standard deviation of the inferred phases over ten accumulated images.

The estimated value is about 140 fs2 [see the error bars in Fig. 2.22] that is consistant

with the estimated phase error for the case where the pulse shaper is removed from

the interferometer. In order to study the relevant plausible spatio-temporal coupling
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Figure 2.22: Extracted second order polynomial phases φ(2) as a function of programmed
chirps from -100000 to +100000 fs2. The x shaped points is the averaged extracted phase
over ten accumulated images. The error bars shows the error in measurement of the
averaged inferred phase which is estimated by standard deviation of the inferred phase over
ten accumulated images. A linear best-fit shows that the constructed phase coefficients
matched the programmed values within 6%.

effects we reconstruct their spatio-spectral intensities that is shown in Fig. 2.23(a).
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A spatio-spectral tilt (spatial chirp) is observed that varies as a function of chirp

strength [see the dashed lines of Fig. 2.23(a)]. This observation has important conse-

quences for control experiments with regard to spatial alignment with the sample. In
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Figure 2.23: Spatio-spectral coupling effects for a series of chirped pulses [φ(2) parame-
ters as shown]. (a) Reconstructed spatio-spectral intensities of pulses for different chirps.
A spatio-spectral tilt is observed that follows linearly the chirp values. (b) Extracted spatio-
spectral coupling as a function of chirp (data points) together with a calculated best-fit
coupling speed of 0.252 ± 0.004mm/ps (solid line). This value is in close agreement with
the measurement of coupling speed in the pulse train and pulse delay experiments. The
vertical axis shows the change in central position of the beam across the spectral bandwidth
of the pulse.

order to study quantitatively the existing spatio-spectral coupling effect, we extract

numerically the spatio-spectral tilts α = ∆y/∆ω for a range of programmed chirps.

∆y is the spatial displacement of the beam center across the spectral bandwidth,

∆ω = 2πc∆λ/λ2 is the spectral bandwidth at FWHM, c is the speed of light, λ0=267

nm is the central wavelength and ∆λ = 1 nm is the spectral bandwidth at FWHM.
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Next, we extract ∆y from the computed tilt and plot it as a function of programmed

chirps in Fig. 2.23(b). Since spectral chirp is intrinsically a frequency-dependent

group delay, the best-fit gradient of these points can be related to a group-delay-

dependent displacement via the corresponding chirped-pulse temporal duration. This

fit takes into account an intrinsic spatio-spectral tilt present on the reference beam

corresponding to a 0.35 mm shift in beam center across the spectral bandwidth. The

best-fit coupling speed for these experiments is 0.252 ± 0.004 mm/ps, in very close

agreement with observed coupling speed in pulse delay and pulse train experiments.

This demonstrates that one single underlying physical mechanism is responsible for

different spatio-temporal coupling effects.

π phase step

The final experiment is the generation of π phase step at the central frequency ac-

cording to exp [i arctan[(λ− λ0)/∆λstep] (shown in Tab. 2.3). Phases with different

sharpnesses, ∆λstep, are programmed. The reconstructed spectral phases, starting

from lower to higher sharpnesses, across the center of the pulses (crosses) are depicted

in Fig. 2.24 together with their corresponding fit function(solid line). In general,

the retrieved phases match the programmed phases with regard to the parameters

of above equation. The sharpest measured step sizes are in the order of 0.08 nm

which is limited by the resolution of the spectrometer. The location of the π step fre-

quency is measured to be stable in the process of programming different sharpnesses.

Furthermore, neither second nor higher order phase is observed. We reconstruct the

spatio-spectral intensities of the mentioned π step phase with different sharpnesses to

study their plausible coupling effects. Figure 2.25 (a) depicts three of them. A local

spatial displacement occurs in the spectrum at the π-step frequency, manifesting itself

as a “notch” in the reconstructed spatio-spectral intensity [see arrow in Fig. 2.25(a)].

The size of the notches is dependent on the sharpness of the phase step and increases

with them. In fact, this notch effect may be explained by the group velocity dependent

displacement of the beam. The step phase gradient at the location of the π step can

be considered as a local group delay term in the spectral phase. Therefore, a sharper

step is equivalent to a steeper gradient in the spectral phase and hence a larger group

delay. A group-velocity-dependent spatial displacement therefore shifts spectral com-

ponents ∆λstep by an amount dependent on the step sharpness. This argument is

supported by the calculations presented in Fig. 2.25(b) based on these experimental

data. In this figure, the notch sizes for each image within Fig. 2.25(a) are extracted
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Figure 2.24: Reconstructed spectral phase across a slice through the middle of the pulses
with different π step sharpnesses(crosses) together with a fit of the function in Tab. 2.3
(solid line). The limitation in estimation of the spectral phase sharpness is 0.08 nm
equal to the resolution of the spectrometer. The dotted black line reveals the reconstructed
spectral amplitude of programmed φ phase steps.

and plotted as a function of step sharpness (data points). The local group-delay terms

at the phase step are calculated according to φ(1) = ∂φ(ω)
∂ω

≈ π
∆ωstep

. They are then

multiplied by the 0.25 mm/ps coupling speed previously observed (solid line), and

the results shows good agreement with the experiment. Once again, the results are

found to be quantitatively consistent with the same spatio-temporal coupling effect

as above, reinforcing the evidence for a single underlying physical mechanism for all

of these manifestations. This spatio-spectral coupling effect is identical to the same

coupling effect that happens in 4f zero-dispersion line programming π phase steps [25].

In pixelated SLM shaper a complete spectral hole appears for a sharpness equal to

the spectral resolution of the device. As the step sharpness is further increased in

these AOPDF experiments, the π-step group delay will eventually exceed the tem-

poral window of the crystal (which is inversely proportional to the AOPDF spectral

resolution), and a spectral hole, rather than a notch, will be formed as a consequence.

Physical origin of the coupling effects

It is shown that a single spatio-temporal coupling mechanism within the AOPDF,

group-delay-dependent displacement [100], accounts for all the manifestations ob-

served in different pulse shapes. In order to explain the physical nature of this effect,

it is necessary to consider a couple of effects present within the Dazzler: the bire-

fringent and geometrical walk-off effects of the diffracted relative to the undiffracted

beam, and the fact that each optical wavelength within the ultrafast pulse is diffracted
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Figure 2.25: Spatio-spectral coupling effects for π phase steps of varying sharpness.(a)
Reconstructed spatio-spectral intensities of a series of π phase steps with sharpnesses as
indicated. A spatial shift is observed at the step frequency that is more pronounced for
sharper steps. (b) Observed lateral displacement of the notch (data points) together with
a calculation derived from the measured group delay at the phase step and a 0.25 mm/ps
spatio-temporal coupling speed (solid line).

at a given position in the AOPDF. These two effects combine to lead to a natural

spatial chirp, with a coupling speed as quantified above. To recapitulate, the bire-

fringent walk-off concerns the phenomenon that the intensity distribution of a beam

in an anisotropic crystal drifts away from the direction of the wave vector. The angle

between the Poynting vector (which defines the direction of energy transport) and the

k-vector is called the walk-off angle. Spatial walk-off occurs only for a beam with ex-

traordinary polarization, which sees a refractive index ne during its propagation that

depends on the angle between k and the optical axes. This angle depends on the crys-

tal and the parameters of the optical pulse; for the KDP crystal in this experiment,
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at 268 nm, the walk-off angle is α ≃32 mrad. The geometrical walk-off, meanwhile,

concerns the fact that during Bragg diffraction the beam is deviated by an angle cor-

responding to the phase-matching condition. For this experiment, this deviation is θ

= -5.2 mrad. It should be noted that both the geometric and birefringent walk-offs

actually vary as a function of wavelength; however, this effect is negligible for the pulse

bandwidth employed. Thus the spatio-temporal effect can simply be seen as a shift δx

in the position of the diffracted beam that could be expressed as δx = L tan(θ + α),

where L is the distance of propagation along the extraordinary axis. This experiment

employs a crystal of length 75 mm such that the maximum shift is calculated as 2

mm. Considering the fact that the temporal window available at this wavelength is

7.7 ps, this implies an expected group-delay–dependent displacement of 0.260 ± 0.005

mm/ps, which is in very close agreement with our experimental measurements.

Solution

One possible solution to the existing coupling effect is to translate a lens before the

AOPDF in order to bring the geometric plane of overlap of the spatially shifted output

pulses into alignment with the Gaussian focal plane [100]. Another solution might be

to extend the walk-off compensation methods developed in non-linear optics by using

a double-pass setup or a second acousto-optic crystal [26]. It should be noted that the

coupling speed depends on the parameters of the ultrafast pulses as well as the choice

of crystal (indeed, the walk-off effects in TeO2, which is used for AOPDFs in the IR

wavelength range, are significantly less than in KDP); thus the calculation should be

repeated along the lines above in order to make an informed choice of shaper in light

of individual experimental tolerances for coupling effects.

2.4 Discussion and conclusion

In conclusion, using FTSSI technique, we have studied the spatio-spectral and spatio-

temporal characteristics of the pulse shapes: a single transform-limited pulse with a

variable delay, a train of pulses, chirped pulses and pulses with a π phase-step at the

center of their spectrum. These pulse shapes are the most applied pulse shapes in

ultrafast quantum control experiments. Our work represents the first comprehensive

spatio-spectral or spatio-temporal study of the shaped pulses by an AOPDF pulse

shaper. In each case, we have observed spatio-spectral (spatio-temporal) coupling in

the reconstructed intensity. We have shown that the all effects are consistent with a
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single effect that is group delay dependent position of the pulses [100] with coupling

speed of 0.25 mm/ps. The birefringent and geometric walkoff effects are therefore

confirmed as the single physical cause for the spatio-temporal coupling effect reported

in the AOPDF pulse shaper. This coupling has important consequences for the appli-

cation of AOPDF-shaped pulses to control experiments, since the displacement of the

control pulses with a variation of pulse parameters may result in a worsened alignment

with the target. The studies of Borzsonyi and his colleagues [99] showed an angular

dispersion for the AOPDF in IR region. Because of employing a narrow spectral band-

width, we have not observed such coupling. Moreover, it was because we have studied

the coupling effects of a low repetition laser source. In more detail, working with high

repetition source requires a high repetition acoustic wave. This causes thermal effects

inside the crystal that can result in generation of angular dispersion.

As a conclusion, apart from group dependent spatial displacement of pulse no further

spatio-temporal coupling effects were identified, and the AOPDF was otherwise found

to reproduce the programmed pulse shapes faithfully. The results above highlight the

need for experimentalists to pay close attention to these coupling issues during the

design of control experiments based on an AOPDF pulse shaper. Such concerns have

been studied extensively for the more widespread 4f-line shapers (in IR and visible re-

gions), with coupling speed ranging from 0.083 mm/ps [59] through 0.145 mm/ps [24]

to 0.595 mm/ps [11] already reported in the literature. The coupling speed reported

here of 0.25 mm/ps is therefore non-negligible by comparison, albeit by taking into

account the fact that KDF crystal has strong walk off effects in UV spectral region.



Chapter 3

Characterization and control of

ultrashort pulses transmitted

through scattering media

Ultrashort pulses have numerous applications in coherent control of molecular dynam-

ics [2, 15, 148–151], time resolved spectroscopy [152], nonlinear microscopy [153], etc.

Performing such experiments in the complex media such as biological tissues requires

that the light maintains its initial spatio-temporal focused form. However, complex

media strongly distort the initial spatio-temporal profile of the light.

Propagation of a quasi monochromatic laser light through a complex medium results

in ballistic [154, 155] and multiply scattered components [156]. Ballistic photons are

those that travel undeviated through the medium and deplete exponentially according

to Beer’s law [157]. Multiply scattered photons produce spatial speckle, which is due

to the random constructive and destructive interference of light following different tra-

jectories. Because of their random nature, the multiply scattered photons scramble the

optical phase and energy of the transmitted light. Therefore, it is not straightforward

to recover the optical information that is necessary for typical optical experiments,

e.g. imaging, focusing, and transmitting ultrashort pulses. Numerous solutions to

this problem have been proposed by discriminating against the scattered light and

detection of the ballistic photons [158–164]. However, for a scattering medium with

dimensions much larger than its transport mean free path lt (the average distance

traveled by light before it becomes diffuse), these techniques cannot be applied be-

cause the ballistic component is strongly attenuated.

Recently, Vellekoop and colleagues have demonstrated the possibility of spatial fo-

79
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cusing [29, 165, 166] and hence imaging [167] through multiply scattering medium by

controlling the spatial modes of the incident light using a spatial light modulator.

This work, correction of the spatial distortion, has been later carried on by other

groups using alternative techniques [168–172]. However, all these techniques have

only addressed the use of the quasi monochromatic laser and no temporal correction

has been reported.

Propagation of broadband ultrashort pulses through such thick samples results in

additional large temporal spreading and irregular spiky intensity that gives rise to

the spectral (temporal) speckle [173, 174]. As mentioned above, both temporal and

spatial corrections are crucial for the applications. There exist related techniques

for the spatio-temporal concentration in acoustic and GHz-electromagnetic regimes

called time reversal methods [31,175,176]. However, owing in particular to the inabil-

ity to measure electric fields directly in the temporal domain at higher frequencies,

an optical domain time-reversal experiment remains elusive. We have solved this lim-

itation: in a parallel work (different techniques but similar results), we [35] and two

other groups [177,178] have succeeded to spatio-temporally focus the ultrashort pulse

at the rear surface of the scattering medium. For this goal, in our group in LCAR,

we have applied FTSSI technique to measure the spatio-spectral phase of the output

speckle and hence control them. Moreover, this measurement and characterization

has resulted in other interesting results. Since studying the temporal behavior of the

speckle field is one of a wide variety of methods for determination of the diffusion

properties of the sample [179–189], we have demonstrated a simple technique of ex-

traction of diffusion properties by using our well established FTSSI technique [34].

The goal of this chapter is to study the spatio-temporal characteristics of the fem-

tosecond pulses transmitted through multiply scattering medium, extraction of the

diffusion properties of such medium and finally exploiting such measurements to con-

trol the scattered light behind the medium. Therefore, it is organized as follows: Sec-

tion 3.1 is a review of the present state of art in controlling of the transmitted light

from scattering media. Section 3.2 is about the analytical description of the spatio-

temporal focusing of the femtosecond pulses behind the multiply scattering medium

via spectral shaping the input pulses. Moreover, it describes the numerical simula-

tion that I have performed in order to show the possibility of such spatio-temporal

focusing. Section 3.3 details the experimental setup that we have used to study and

control spatio-temporal speckles. Section 3.4 shows the experimental results of char-

acterization and control of the spatio-temporal speckles. Section 3.5 describes two
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other ways of spatio-temporal controlling of the pulses and compares their results

with ours. Finally, Section 3.6 concludes and shows the potential applications and

future directions of our studies.

3.1 State of art and motivation

Studying the transmitted light through a sample (under study) can be the main means

of retrieving its microscopic and macroscopic information. However, numerous me-

dia such as biological samples due to their inhomogeneous refractive index strongly

scatter the incident light (continuous wave laser) and convert it to a high contrast,

fine scale granular pattern which is known as speckle pattern [190]. This scattered

light hinders the extraction of the necessary information (phase and intensity) of the

input light which is highly important for relevant optical studies such as biomedical

imaging [191] or laser therapy [192].

In the case of existence of the ballistic photons that occurs when the thickness of the

sample is relatively small with respect to its transport mean free path (L < lt), the

obscurant issue of imaging through the biological samples may be solved by discrimi-

nating between the ballistic photons which possess the unscrambled optical informa-

tion and the multiply scattered photons which are considered as a background noise

(speckle pattern). Coherence tomography is a famous and widely applied example of

discrimination techniques. In this technique the separation is based on time gating

of the ballistic photons. In other words, it rejects the scattered light by selecting the

signal based on its propagation time [27]. An other innovative technique of imaging

is nonlinear microscopy where, as a result of low intensity of the scattered photons,

they do not participate in the nonlinear optical processes and therefore are separated

from the ballistic photons [28]. The propagation of the ballistic photons through

scattered media is accompanied with some aberrations. The correction of such defor-

mations may increase the imaging quality in the nonlinear microscopy. Rueckel and

his colleagues were the first who applied adaptive optics which are frequently applied

in astronomical observations [193] to correct the aberration of the emerged ballistic

photons [194].

All aforementioned techniques become useless when the sample thickness gets several

times larger than its transport mean free path (L > 5lt). Because in this situa-

tion almost all ballistic photons are extinguished and the multiply scattered photons

dominate the transmitted light. Controlling the light through multiply scattering
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media was considered as a big challenge until the innovative work of Vellekoop and

his colleagues who succeeded to focus the continuous-wave laser behind a thick mul-

tiply scattering medium by manipulating the degrees of freedom of the incident light

wavefront [29]. Multiply scattering is a complex yet linear process and hence the

transmission of light through such media can be treated by a complex transmission

matrix T . The outgoing complex electric field Eout
m at a specific point m at the back

of the sample can be expressed by

Eout
m =

N∑

n

TmnE
in
n (3.1)

where N is total number of input degrees of control (input spatial modes) and n is

the label of input free mode. The complex electric field at the chosen m is the result

of linear combination of the incident modes Ein
n multiplied by their corresponding

elements of the transmission matrix Tmn. It is clear that because of the randomness

of the transmission matrix the contribution of the free input modes are not in phase

[see Fig. 3.1 (a)]. In order to have an enhanced Eout
m , since the matrix elements

are fixed (transmission channels), one should manipulate the phase of the incident

modes and force them to become in phase at the chosen target position. Vellekoop

and his coworkers showed the experimental feasibility of such control by shaping the

free input modes of the incident monochromatic laser wavefront by applying a Spatial

Light Modulator (SLM). Figure 3.1 (d,e) shows the principle of their experiment. The

optimal phase for each free input mode is determined by cycling its phase from 0 to

2π. Once the measurement is performed for all segments, the phase of the segments

are set to their optimal values and thus the contributions from all segments interfered

constructively and the target intensity is at the global maximum [see Fig. 3.1 (b)].

The degree of the brightness enhancement from such optimization algorithm is roughly

equal to the degree of control of input modes:

η ≈
π

4
N. (3.2)

Maximum brightness enhancement of η = 1000 was achieved in their work [see Fig.

3.1 (f,g)]. Higher degrees of enhancement become problematic because sample drifts

over larger time scales that is required for higher degrees of control. In their work, the

focusing took place behind the sample; however, in order to use such technique for

deep tissue imaging and medical laser therapy, the focusing should occur inside the
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sample. In a later work, they also showed the possibility of focusing the light inside

the sample by implementing a fluorescent nanoscale probe in it [167]. Same group also

illustrated the possibility of focusing the light behind the scattering medium (random

photonic materials) by binary amplitude shaping of the input light [195]. In other

words, they identified the input modes which give rise to fields that are out of phase

with the total field at the intended output target and assign these a zero amplitude by

means of the SLM, whereas the remaining segments maintain their original amplitude

[see Fig. 3.1 (c)]. They obtained an intensity enhancement of around 80 at the output

target position by amplitude shaping of approximately 900 input modes.

The optimization algorithm used by Vellekoop is equivalent of measuring the trans-

mission matrix and compensating the phase mismatching introduced by the matrix

elements by shaping the phase of the input transversal modes. A direct measurement

of the full matrix is desirable in order to completely control light transmission and

thus investigate all the statistical properties of the transmission matrix. Popoff and

his colleagues for the first time measured the monochromatic transmission matrix of

a complex medium in optics [169, 170]. In their work they gave four different phase

values 0, π/2, π and 3π/2 for an individual spatial mode n of the input light via SLM

and detected the transmitted field modes by using a CCD camera. They calculated

Tmn using the following equation

(I0m − Iπm)/4 + i(I3π/2m − Iπ/2m )/4 = smTmn (3.3)

where sm is the complex amplitude of the reference optical field in the mth out-

put mode which is used to extract the phase value of the transmitted light. They

calculated the transmission matrix by continuing the same procedure for all input

modes. Using such technique, they achieved to measure the 60,000 elements which

is not the sample’s whole transmission matrix. The measured amount of the matrix

elements depends on the number of the SLM pixels and the detection camera. The

whole number of the channels of the scattering sample (matrix elements) is equal to

Nwhole = Ms × Ns where Ms is the number of existing input modes and Ns is the

number of output modes. For an input monochromatic laser light centered at λ and

with surface area of A, the number of free modes is given by Ns = 2πA/λ2. For sim-

plicity the same value is assumed for Ns; therefore, visible light has around 10 million

transversal modes per square millimeter. Knowledge of the complete transmission

matrix, or even a fraction of it, allows the light transmitted through the sample to

be focused at a desired location without the need for further optimization. Moreover,
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Figure 3.1: Principle, design and result of wavefront shaping to obtain a spatial focusing
behind a multiply scattering medium. Complex plane representation of the electric field at
the target before optimization (a), after phase optimization (b) and after binary amplitude
optimization (c). Small black vectors represent the electric field of each input channel
as modified by traveling through the sample. The red vector is the total electric field at
the target output channel. The phase optimization is done by changing the angle of the
vectors and making them parallel while amplitude optimization is done by omitting the
input channels that do not sum up constructively with the other vectors. (d) A plane
wave is focused on a disordered medium, and a speckle pattern is transmitted. (e) The
phase of the wavefront of the incident light is shaped so that scattering makes the light
focus at a predefined target. (f) Spatial speckle pattern produced from transmission of
continuous wave laser from a multiply scattering medium. (g) Transmission after spatial
phase optimization to focus at a single target. The scattered light is focused to a spot that
is 1000 times brighter than the original speckle pattern. This figure is adopted from [29].

it also allows the statistical properties of the transmission matrix to be examined di-

rectly. Furthermore, Popoff and co-workers demonstrated the ability to image using a

scattering medium with a known transmission matrix as a lens [168]. They projected
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an image on their sample and made a phase-sensitive measurement of the transmitted

light, which appeared totally uncorrelated to the original image. However, using the

information in the transmission matrix, they were able to reconstruct the image.

The multiply scattering is a deterministic and time-reversible process. This means

that if one measures the phase and amplitude of the scattered light and reproduces a

back scattering phase-conjugated field, this field should be able to retrace its trajec-

tory through the scattering medium and return the original input light field. It should

be mentioned that the absorption of the light by the tissue breaks the time direction

symmetry associated with that light component and hence reduce the efficiency of

the optical phase conjugation process. Optical phase conjugation can be achieved

by different techniques such as holography [196,197], four-wave-mixing [198,199] etc.

In early sixties, scientists used this phase conjugation technique to correct the phase

scattering due to the single scattering process induced by a ground glass slide [200].

However its application to suppress the turbidity of the biomedical samples was re-

mained largely unexplored until the pioneering work of Yaqoob and his colleagues [172]

who implemented it for the first time to correct the wavefronts in biological samples.

They succeeded to transmit the phase conjugated beam which was obtained from

photo refractive crystal during the holography process through a slice of chicken tis-

sue and therefore focus the light on the same side of the medium from which the

incident light comes. Phase conjugation technique introduced by Yaqoob does not re-

quire any learning algorithm and hence would be performed over shorter time scales,

as is highly demanded for microscopy of live tissues. However, illuminating the photo

refractive crystal took two minutes which is comparable with the aforementioned

techniques. Later Cui and his colleagues introduced the digital phase conjugation

technique that could work in shorter time scales [201]. To generate phase conjugate

wave digitally, one simply needs a device which can be used both as a sensor and as

an actuator. The piezo transducer employed in acoustic time reversal experiments is

a good example [31]. However, such device does not currently exist for optical pro-

cessing. Therefore, they implemented an equivalent system by combining a wavefront

measurement device (sensor) with a spatial light modulator in an optical arrangement.

In more detail, a reference wave with a flat wavefront interferes with the unknown

scattered wave and form a hologram on the CCD camera. By using phase shifting

holography [202], the phase and amplitude information of the scattered wave is deter-

mined. Then, the measured wavefront is digitally reversed by a computer and passed

to the SLM. The reflection of the reference beam incident on the SLM is modulated
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and counter-propagates with respect to the input wave, which is the phase conjugate

of the input signal. Applying SLMs makes it possible to create phase-conjugate waves

with great flexibility i. Therefore, it became a key technique in relevant imaging tech-

niques [203–207].

All aforementioned studies were focused on quasi-monochromatic light which only

allows spatial control over the scattered light. Because of their high peak power,

femtosecond pulses are highly valuable in the community. The propagation of ultra-

short optical pulses with a broad spectral bandwidth in a scattering medium results

in temporal stretching of the pulse. The temporal stretching can be characterized

by Thouless time τd which reveals the average temporal behavior of the transmitted

pulse. From spectral point of view, the stretched pulse is characterized by two prop-

erties: the incident spectral bandwidth ∆ω and spectral correlation length δω. The

spectral components that stay within δω will follow the same trajectories (channels)

in the scattering media and hence form same spatial speckle while the spectral modes

of the scattered field at two frequencies apart by more than δω form independent

decorrelated spatial patterns. It is shown that the intensity enhancement by opti-

mization algorithm just takes place over the scale of δω and when the frequency of

the laser tuned by more than spectral correlation length the effect of optimization is

lost [208]. The spectral correlation length which is considered as a smallest spectral

feature of the spectral speckle is inversely proportional to the Thouless time of the

sample δω ∝ 1/τd. This is because the spectral characteristics of the speckle patterns

are related to the temporal patterns by Fourier transform. Therefore, in addition to

spatial speckle one will also observe a temporal speckle [173,174].

In the broadband regime one can measure the distorted amplitude and the phase at

a target point behind the sample and control the input wave in a way that all the

uncorrelated speckles add in phase at a specific time at the chosen target point. This

may be done by phase conjugation of the phase of each spectral component of the

measured polychromatic wave field and send it again through the medium. In this

case all the speckles are phase matched and interfere constructively at the desired

location and a spatio-temporally focused wave emerges from the complex medium.

This happens owing to reciprocity. It was in the acoustic regime where for the first

time Derode and his colleagues showed the possibility of such compensation called

time reversal [30, 31]. In their study they sent a wave with initial duration of 1 µs

i. However precise pixel to pixel calibration between the CCD camera and the SLM should be
performed which is not an easy task.
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with a central frequency of 1.5 MHz using a transducer to the scattering medium

which was a forest of steel rods immersed in a water tank. They employed a set of

receivers on the other side of the medium to measure the field of the distorted wave.

The measured signal that lasted 100 times of the duration of the initial wave was time

reversed using the computer and sent back to the medium using the same receivers

that act as emitters. The detected signal by the initial transducer was tightly focused

in space an time. Figure 3.2 shows the principle of such time reversal experiment. In

Figure 3.2: Principle of time reversal in acoustic regime. In the first step a piezo
transducer generates acoustic waves. The scattering medium distorts the emitted wave.
An array of receivers at the back side of the medium record the distorted wave. In the
second step the recorded wave is digitized and time reversed by a computer and sent back
via the same array of receivers who act as a emitter to the scattering medium. The
detected signal by the source is tightly focused in time and space. This figure is adopted
from [209].

such experiments the degree of intensity enhancement is

η = ∆ω/δω ×∆x/δx (3.4)
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where ∆x is the array aperture and δx is the spatial correlation length. This shows

that the extra dimension of control (frequency) drastically increases the possibilities

of the signal enhancement at the chosen point. The other probable conclusion is that

η increases as a function of square of sample thickness because δω ∝ 1/τd and τd ∝ L2.

However, when the sample thickness becomes too large, temporal side lobes appear

in the time reversed signal which may decrease the signal to noise ratio [209]. The

reason is that as the sample gets thicker the probability that different photons follow

the same path at part of their trajectory in the sample increases. This increases the

temporal coherence length δt ∝ 1/∆ω which can be interpreted as a reduction of the

spectral bandwidth. Therefore, there is trade off between the spectral resolution and

spectral bandwidth and always there is an ideal thickness at which one can obtain the

best signal to noise ratio. The other advantage of using the broadband width pulses

is that one can obtain the spatio-temporal focusing only by employing a single signal

receiver on the back of the medium which of course reduces the signal to noise ratio

by only manipulating the first coefficient of the Eq. 3.4 [210].

The spatial resolution of the obtained spatio-temporal focusing occurs on the range

of spatial correlation length of the medium δx which evolves as a function of lt/L.

Therefore for a given sample the focusing gets tighter as the samples thickness in-

creases. Researchers also demonstrated time reversal in the electromagnetic domain

using modulators that conjugate only the signal bandwidth rather than the full carrier

bandwidth [32, 33]. Time reversal remains elusive for higher frequencies and optical

domain because it is not straight forward to measure and apply the time reversal of

the pulse electric field in such domains. Understanding and correcting the spatio-

temporal distortions of ultrashort pulses is crucial to perform a nonlinear microscopy

and coherent control experiments in the scattering biological samples. No work to

date has addressed the simultaneous correction of temporal and spatial distortions of

the femtosecond pulses except our [61] and two other parallel works [177,178]. In the

following, I will first detail our work and then at the end of this chapter, I will briefly

describe their studies and compare their results with ours.
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3.2 Analytical description and numerical simula-

tion of spatio-temporal control

3.2.1 Analytical description

Owing to the linearity of the scattering process, knowledge of the spectral phase fa-

cilitates active temporal focusing of the speckle via the open-loop feedback of the

measured phase to a spectral pulse shaper placed before the sample. Our experiment

relies on a spatially resolved phase measurement, as the lack of large-scale spatial

homogeneity in the speckle field prevents the spatial integration typical of control

experiments.

Multiple scattering is a complex yet linear process, therefore the evolution of the

pulse electric field through the medium may be elucidated by a Green function

formalism. For a given spectral component, and for a distribution of sources

ES(r
′, ω), the resulting field reads E(ω, r) =

∫∫∫
Gscatt(ω, r, r

′)ES(ω, r
′)d3r′, where

Gscatt(ω, r, r
′) is the Fourier component of the Green function between point r and

r′, in the presence of scattering. In our simple case where we enter with a fo-

cused beam commensurate with the correlation distance of the scatterers Ein(ω),

the Green function reduces to Eout(ω, y) = Hscatt(ω, y)Hshaper(ω)Ein(ω), where

Hscatt(ω, y) = Ascatt(ω, y) exp[iφscatt(ω, y)] and Hshaper(ω) = Ashaper(ω) exp[iφshaper(ω)]

are the medium and shaper transfer functions respectively, with both consisting of

phase and amplitude contributions. The FTSSI measurement reveals the relative

phase φscatt(ω, y)−φin(ω) with the pulse shaper set toHshaper(ω) = 1. The coupling be-

tween spatial and spectral modes in the scatterer, and the concomitant inseparability

of Hscatt(ω, y) into a product of spatial and spectral components, is the root of the exi-

gence of a spatially resolved measurement for a spectral phase correction. In general, a

complete reversal of the scattering process would therefore require a spatio-spectrally

resolved shaping element covering all the contributing modes, rather than successive

shapers controlling the spatial and spectral degrees of freedom independently. In our

experiment, such an open-loop compensation of the spectral phase is performed. A

position y0 is selected and the transfer function φshaper(ω) = −φscatt(ω, y0) is applied

to the pulse shaper. A successful phase compensation at y0 is demonstrated by a fur-

ther FTSSI measurement of φout(ω, y0)− φin(ω, y0) = 0. Furthermore, this flat output

phase (and consequent temporal focus) is spatially localized as determined by the spa-

tial phase correlation length. Therefore, a spatially resolved spectral shaper is not a
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prerequisite for a degree of spatial control.

3.2.2 Numerical simulation

Before presenting the experimental results of the spatio-temporal focusing, I show

the numerical simulation of such control which is based on aforementioned analyti-

cal description of the experiment. The difference is that, for simplicity, wavelength

dependent transmission matrix t(ω) is applied instead of transfer function H(ω, y).

Furthermore, one of the spatial dimensions x is neglected for the ease of simulation.

The output electric field E(ω, ym) at specific point ym is given by

E(ω, ym) =
N∑

n

tmn(ω)E(ω, yn). (3.5)

In the numerical simulation I follow the following steps:

1. Ultrashort pulse with spectral bandwidth relevant to the experiment is constructed.

It possesses a Gaussian wavefront [see Fig. 3.3 (a)]. Its spatio-temporal intensity dis-

tribution is shown in Fig. 3.3 (b).

2. Random transmission matrix for each spectral component is constructed which

reveals a 3D array with total elements of Nin × Nout × Nω where Ns are the total

number of input modes, output modes and spectral elements respectively. In this

simulation, the spectral correlation length δω is set to the minimum which means a

single spectral pixel. This means that our simulation is not sensitive to the thickness

of the sample.

3. The transmitted spatio-spectral complex electric field E(ω, y) is obtained from

Eq. 3.5. Figure 3.3 (c) shows |E(ω, y)|2 which reveals the well known spatio-spectral

speckle pattern. Spatio-temporal speckle shown in Fig. 3.3 (d) is reconstructed from

Fourier transforming E(ω, y) along the spectral dimension. Since δω ∝ 1/τd is equal

to size of a pixel in spectral domain it reveals a temporally stretched pulse on the

scale of temporal windows in the temporal domain.

4. In order to force all spectral components to be in phase at a specific time at a

chosen point ym∗ (temporal compression), the spectral phase φ(ω, ym∗) is measured

[see Fig. 3.4 (a)] and its opposite −φ(ω, ym∗) is multiplied with the initial electric

field E(ω, yn)exp[−φ(ω, ym∗)].

5. Shaped input pulse Einshaped(ω, yn) = E(ω, yn)exp[−φ(ω, ym∗)] is sent to the sam-
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Figure 3.3: Simulation of propagation of spatio-spectrally Gaussian pulse through a mul-
tiply scattering medium. Spatio-spectral |E(ω, y)|2 (a) and spatio-temporal |E(t, y)|2 (b)
intensity distribution of input pulse. Spatio-spectral (c) and spatio-temporal (d) speckle
pattern. Spectral correlation length δω is the size of spectral pixel (no spectral correlation
is added to the simulation). Therefore, in temporal domain pulse is stretched to whole
temporal window δω ∝ 1/τd.

ple. The measured complex output electric field at the chosen output mode ym∗ reads

Eoutshaped(ω, ym∗) =
N∑

n

tm∗n(ω)E
inshaped(ω, yn). (3.6)

Figure 3.4 (b) depicts the measured spatio-spectral shaped output phase. The spec-

tral phase is zero at the chosen point of ym∗ which means the pulse is temporally

compressed. Figure 3.4 (c) is the 3D form of Fig. 3.3 (d) and its projections on the

wall shows the existence of the spatial and spectral speckle. Figure 3.4 (d) shows the

spatio-temporal shaped speckle. An intense peak emerges from the background with

a contrast ratio of ∆ω/δω. This is the proof that spatio-temporal focusing can be

experimentally performed by spectrally shaping the input pulse.
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Figure 3.4: Simulation of spatio-temporal focusing of the ultrashort pulses behind a
multiply scattering medium via spectral pulse shaping. (a) Spatio-spectral unshaped speckle
phase φunshaped(ω, y). (b) Spatio-spectral shaped speckle phase φshaped(ω, y). Zero spectral
phase at a chosen position ym∗ is evident showing that spectral phase shaping is able to
correct the temporal distortions of the pulse at a chosen point. Spatio-temporal intensities
|Eout(t, y)|2 (c) before and (d) after compensation of the phase at ym∗. An intense peak
emerges from the background with a contrast ratio of ∆ω/δω. One-dimensional ‘lineouts’
at the location of this peak (projections onto walls) in (c) shows the existence of spatial
and temporal speckle while spatio-temporal focusing is observed in (d).

3.3 Experimental setup

3.3.1 Sample preparation

The investigated scattering samples are a thick layer of ZnO powder, which is de-

posited homogeneously on a microscope slide by sedimentation [211]. The transport

mean free path of the samples lt = 2.1 ± 0.2 µm was measured by Sylvain Gigan,

our collaborator in Institut Langevin. It is determined by measuring the angularly

integrated total transmission TL as a function of sample thickness L and fitting it to

a simple model [187], which relates T to L and lt. All of the applied samples have

thickness of L ≥ 9lt and hence multiply scattering regime applies and virtually no

ballistic light traverses the medium.
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3.3.2 Fourier-Transform Spatio-Spectral Interferometry

As mentioned above we have applied FTSSI for the characterization and control of

the speckle pattern. The experimental setup for the characterization is depicted in

Fig. 3.5. The ultrashort source is a homemade mode-locked Ti:sapphire oscillator

that delivers 5 nJ pulses at 793 nm at 80 MHz. The spectrum of the laser source with

a Gaussian fit is depicted in Fig. 3.6. Its spectral bandwidth is 8.3 nm at full width

at half maximum (FWHM). A SPIDER measurement of the source indicates a 120 fs

pulse duration, which is close to Fourier-transform limit. To make an interferometer

the oscillator beam is divided into sample and reference arms by a beam splitter with

a ratio of 96:4, respectively. The former is focused on to the sample to a waist of 15

µm by means of a lens (L1) with a focal length of 75 mm. The sample transforms

the ultrashort pulse into a complex spatio-temporal speckle. A second lens (L2) with

a numerical aperture of 0.25 collects the scattered, transmitted light and images it

with 14× magnification on to the entrance slit of a homemade spectrometer. The

generated speckle at the rear side of the sample is diffused homogeneously in to 2π

sr. Therefore, it is better to apply an imaging lens with larger numerical aperture to

collect the maximum of diffused light (enhanced signal on the spectrometer). How-

ever, microscope objective lenses who benefit from a larger numerical aperture add an

additional dispersion to the generated speckle field due to their applied thick optics.

In our setup in order to prevent the unwanted dispersion, a thin high diameter lens

with a short focal length is applied. The home-made imaging spectrometer which was

designed by Austin et al., our collaborators in Oxford university [146], consists of a

CCD camera (SMX150) sensitive to visible and IR wavelengths, a grating with 1200

grooves/mm, and an entrance slit of 10 µm. Its spatial and spectral resolutions are

20 µm and 0.04 nm, respectively. Both spatial and spectral resolutions are measured

by replacing the entrance spectrometer slit by a 10 µm pinhole and illuminating the

spectrometer by a calibration lamp. Moreover, it is an aberration free spectrometer

except for distortion which is removed during the space-frequency mapping process.

For more explicit detail of the device I invite the readers to refer to section 2.3 of

chapter 2. The magnification of L2 is chosen such that the grain size of the speckle

pattern is larger than the spatial resolution of the spectrometer. We have taken care

in placing the rear surface of the sample in the imaging plane, which we have lo-

cated using a test image, since this affects the inferred spatial autocorrelation length.

Specifically, the propagation of the speckle field after exiting the scattering sample

causes an enlargement of the speckle grain size. The produced spatio-temporal speck-
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Figure 3.5: Experimental setup. The laser oscillator beam (Osc) is divided into sample
and reference arms by a beam splitter (BS). The sample arm is focused on to the sample
(S) by lens L1. The sample is mounted on a translation stage (TS) moving perpendicular
to the laser beam. Lens L2 images the transmitted-diffracted light on to the spectrometer
slit (2D-SM). The reference arm is combined with the sample arm with an adjustable delay
and angle at the entrance slit of the spectrometer. Upper inset figure demonstrates how
the spectrometer performs a spatially resolved measurement of the spectral intensity along
the entrance slit. In the control part, a pulse shaper (PS) is placed in the sample arm
before the scattering sample. The spectral pulse shaper is a folded 4f line, and comprises a
grating (G), cylindrical mirror (CM), plane mirror (M), folding mirror (FM) and spatial
light modulator (SLM).

les are stationary over the exposure time of the CCD camera, which is approximately

100 ms. The temporal stability of the samples can be calculated by recording the

speckle of a monochromatic laser source as a function of time on a simple webcam

and then measuring the bandwidth of the correlation function of a single speckle grain

along the time axis. The reference arm is recombined with the sample arm with an

adjustable relative angle and delay at the entrance of the spectrometer slit. The SSI
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technique measures the relative spatio-spectral phase between an unknown pulse and

the reference. In fact it directly measures the transfer function of sample plus the

residual phase of the optics in the sample arm. Subtraction of the measured relative

phases obtained from the case where the sample is removed from the interferometer

arm and the case where the sample is in the arm allows the recovery of the sample

phase (transfer function). The power ratio between the reference and the input sig-
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Figure 3.6: Spectral intensity of the laser source. Dotted blue line is the measured
spectral intensity by a calibrated spectrometer. Solid red line is the Gaussian fit with
central wavelength of 792.8 nm and bandwidth of 8.3 nm at FWHM (corresponding to
110 fs Fourier-limited pulses).

nal arm is adjusted in a way that offers approximately the same intensity for both

arms on the spectrometer to obtain the maximum fringe visibility. The reference arm

intensity on the entrance of the spectrometer is measured to be 5.5 W/cm2. The

uncertainty on the reference intensity has been estimated by computing the standard

deviation of the inferred intensity over several accumulated images. These images

are taken directly by blocking the sample arm and measuring the reference intensity

on the spectrometer. Figure 3.7(a) depicts the recorded spatio-spectral distribution

of the reference signal averaged over 5 accumulated images. Figure 3.7(b) shows the

standard deviation of reference intensity obtained from 5 accumulated images. The

camera noise is extracted from off-signal regions (red rectangle) of Fig. 3.7 while

the laser fluctuation is measured from signal region (black rectangle). The signal-

to-noise ratio at the peak of the signal is measured to be approximately 100. The
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spatial intensity distribution of the reference arm is measured by integration along

the spectral axis of the spatio-spectral intensity of Fig. 3.7 (a). It is approximately a

Gaussian distribution. The spectral and spatial interference fringe carrier frequencies
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Figure 3.7: Spatio-spectral intensity of the reference arm and its fluctuations. (a)
Spatio-spectral intensity distribution of the reference arm, which is averaged over 5 ac-
cumulated images, is measured by the home-built spectrometer. Black rectangle shows
the regions with 10% of the peak of the signal. Red rectangle shows the off-signal region.
(b) Standard deviation of the inferred reference arm over 5 accumulated images. The
uncertainty of the reference intensity is estimated by computing the standard deviation of
the inferred intensity over 5 accumulated images. The camera noise is extracted from the
off-signal regions of the figure while the laser fluctuation is measured from signal region.
The signal-to-noise ratio at the peak of the signal is measured to be approximately 100.

are determined by the relative delay τ and angle θ between two pulses, respectively.

The relative spectral phase will additionally modulate the fringes. Hence this fringe

pattern intensity can be expressed by the following equation:

I(ω, y) = |Er(ω, y)|
2+|Es(ω, y)|

2+2|Er(ω, y)||Es(ω, y)| cos[φr(ω, y)−φs(ω, y)−ωτ−kyy].

(3.7)

Here y is the spatial coordinate and ky = |k| sin θ is the difference between the trans-

verse components of the wavenumbers. Er , Es, φr , and φs are the spatio-spectral

amplitude and phase of the reference and sample, respectively. The first and second

terms are the reference and sample intensities, respectively, and the third term shows

a coupling of the sample and reference amplitudes with their relative spatio-spectral

phase. Figure 3.8 shows a typical interference pattern recorded by the spectrometer.
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In order to reconstruct the spatio-temporal characteristics of the unknown pulse, the

spatio-spectral phase of the sample is extracted via Fourier filtering [86], while the

amplitude is directly obtained by measuring the sample intensity on the spectrometer

when the reference arm is blocked. The magnitude of the fluctuations in the intensity

of the sample arm is approximately 1%. The spatio-spectral interference pattern is

first Fourier transformed along both spectral and spatial dimensions [Fig. 3.8 (b)].

Then one of the ac terms, corresponding to the cross-term in the above equation,

is filtered out and inverse transformed [Fig. 3.8 (c)]. Thus, the complex spatio-

spectral electric field of the transmitted light is reconstructed from the calculated

spatio-spectral amplitude and phase [Fig. 3.8 (d)]. The full spatio-temporal electric

field and intensity may thus be reconstructed by a further Fourier transform. Figure

3.8(b) also illustrates the way in which the use of a spatially resolved detector relaxes

the required spectral resolution. Because we chose a predominantly spatial carrier,

the interferometric sidebands were displaced predominantly along the wavenumber

(vertical) axis. If we had used purely spectral interferometry, the sidebands would be

displaced along the temporal (horizontal) axis. For the data shown in Fig. 3.8 (b),

the temporal range would have been insufficient, forcing either an overlap with the

baseband term or clipping of the energy at high time values.

The experimental setup used for the control part is same as the setup used for the

characterization part except that a pulse shaper is implemented on the sample arm.

The laser source is also replaced by an oscillator that provides broader spectral band-

width and hence shorter pulses. It is because according to Eq. 3.4 spectrally broader

pulses ∆ω provide higher degrees of signal enhancement. The ultrafast source used

for this experiment is an 80 MHz oscillator that delivers 4 nJ pulses at 800 nm with a

spectral bandwidth of 80 nm and duration of 20 fs. The applied pulse shaper is able

to shape phase and amplitude of the femtosecond pulses. It comprises a pair of liquid-

crystal spatial light modulators (SLMs) in the Fourier plane of a folded double-pass

4f zero-dispersion line [59]. In the following, I give some brief information about the

characteristics of our pulse shaper. However for more explicit information, I invite

the readers to refer to first chapter of this manuscript or the PhD manuscript of Mon-

mayrant [65]. The optical elements of the pulse shaper are separated by approximately

600 mm (cylindrical mirror with focal length of 600 mm). The gold-coated grating

has 2000 lines/mm. The applied SLMs are 64 mm long consisting of 640 pixels. The

pulse shaper with mentioned characteristics provides resolution of 0.06 nm/pixel at

800 nm. In order to optimize the trade-off between bandwidth and shaping resolution,
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Figure 3.8: Fourier filtering process. (a) Interference pattern of the reference and sam-
ple arm is detected by an imaging spectrometer. (b) A two-dimensional Fourier transform
is performed. An ac term is filtered out within the Fourier domain. (c) An inverse two-
dimensional Fourier transform of this term isolates the interferometric term. (d) The
extracted spectral phase difference recovers the transfer function of the sample plus resid-
ual phase of the optics in the sample arm. The color is set to white where the signal
amplitude is low and the extracted phase becomes meaningless.

the 4f-line grating is chosen so as to overfill the SLMs; thus the output bears a clipped

30 nm hyper Gaussian spectrum and may be shaped within a 23 ps time window fixed

by the set-up. The calibrations of the pulse shaper are done by using a commercial

spectrometer which itself is calibrated by a calibration lamp. The calibration of the

home-built spectrometer is also performed by the calibration lamp and hence there

is no systematic error in our measurements. For typical measurements of the control

part, the recorded signal by CCD camera of the spectrometer is average of 80 × 105

shots (acquisition time of 1 s). Same scattering sample (ZnO) is used with thickness
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of L = 35± 5 µm and with negligible absorption.

3.4 Experimental Measurements and results

3.4.1 Characterization of a multiply scattering sample

The propagation of light through a multiply scattering medium can be treated via the

diffusion approximation in which the measurement of the transport mean free path lt

and diffusion constant D (the rate at which diffuse waves spread over the medium)

are crucial for the characterization of the media. As it was mentioned, the temporal

behavior of the output speckle field can be used for determination of the diffusion

properties. One of the goals of this chapter is the measurement of the diffusion con-

stant from the spatio-temporal speckle pattern.

In this part, I will show the experimental results of spatio-temporal characterization of

the multiply scattered light transmitted through a turbid medium using FTSSI. This

measurement is a prerequisite for controlling (spatio-temporal focusing) the transmit-

ted light which will be detailed in Section 3.4.2. Furthermore in this part, I will show

the simple method of extraction of the diffusion constant D through measurement of

the Thouless time τd ≈ L2/π2D [184] where L is the sample thickness. The charac-

teristic diffusion or Thouless time is the longtime decay rate of the energy density of

diffuse light in the sample [212] which can be extracted from exponential decay of the

measured transmitted intensity pattern.

This part consists of two subparts. In the first subpart, I measure the spatio-spectral

and spatio-temporal behavior of the transmitted light at a single sample position. I

also measure the spatio-spectral autocorrelation function of the reconstructed complex

electric field that contains information about the dynamics of the diffusion process.

In the second subpart, I average the transmitted intensity of the different sample po-

sitions to obtain the averaged transmission. The averaged behavior yields the charac-

teristic diffusion time of the sample, by an exponential fitting to the intensity decay. I

subsequently extract diffusion constant D from measured decay time. I then check the

accuracy of this value by comparing it with D measured by contrast technique [179].

Single sample position measurement

This part is devoted to spatio-spectral and spatio-temporal measurements of the mul-

tiply scattering sample. Figure 3.9 shows the reconstructed intensity (a) and wrapped
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phase (b) of the speckle pattern in the space and frequency domains. The precision of

the phase at the peak of the signal is 0.1 rad. It is estimated by computing the stan-

dard deviation of the inferred sample phase over 5 accumulated images. Figure 3.10

shows the computed standard deviation of the inferred spectral phase of the sample

arm. Furthermore, the precision of the sample amplitude and phase for the case where

the sample is removed is also estimated by computing the standard deviation over 5

accumulated images. The signal to noise ratio of the sample amplitude at its peak

value is approximately 100 and the relative phase error is approximately 0.05 rad.

Figure 3.9(c) shows three sample spectral lineouts of the intensity. For different posi-

tions, the intensity of the transmitted pulse is distorted differently. The blue dashed

line in Fig. 3.9(c) shows the intensity integrated along the spatial axis of the pattern

which resembles the spectrum of the initial source. The spectral phase lineouts from

the indicated positions of the speckle pattern are extracted Fig. 3.9(d). These fig-

ures indicate that each point on the speckle pattern possesses random spectral phase

and intensity due to the multiply scattering phenomena. Furthermore, it shows that

spatially averaging the phase and intensity (i.e. for a non-imaged measurement) will

wash out useful spectral phase and amplitude information relevant for meaningful

diagnosis of the scattering process or the pulse compression experiments.

The scattering process is dispersive. Therefore, different frequencies produce dif-

ferent speckle fields. As the frequency of the scattered laser light is scanned, the

amount of frequency changes over which a new uncorrelated speckle field is produced,

defines the bandwidth of that particular medium. In the temporal domain, this cor-

responds to the temporal intensity distribution of the scattered pulse. Intuitively,

one can consider that some portions of the pulse are scattered into shorter or longer

paths through the sample, producing a range of exit times. This motivates the mea-

surement of the bandwidth via the spectral autocorrelation length. Figure 3.9(e)

shows the calculated spatio-spectral correlation function of the complex electric field

E(Ω, Y ) = | 〈Eout(ω, y)E
∗
out(ω + Ω, y + Y )〉 | for the sample with thickness of 20 µm.

The spatial autocorrelation length on the CCD camera is 57 µm at FWHM, giving an

idea of the averaged grain size of the speckle. The spectral bandwidth of 1.76 mrad/fs

at FWHM is measured from which the diffusion constant D can be extracted [184].

The spatio-temporal transmitted intensity can be reconstructed from the Fourier

transform of the spatio-spectral complex electric field along the frequency axis.

Figure 3.11(a) shows the reconstructed spatially resolved temporal speckle pattern

of the scattering sample. This complex structure rises from the interference of the
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Figure 3.9: Experimental reconstruction of the spatio-spectral electric field of the
scattered-transmitted light from a thick scattering sample consisting of ZnO grains.
(a) Spatio-spectral intensity |E(ω, y)|2 of the speckle. (b) Speckle spatio-spectral phase
φ(ω, y). (c) Solid lines: Spectral intensities at the different indicated positions of
the speckle; blue dashed line: spatially integrated spectral intensity. (d) Spectral
phases at different positions of the speckle. (e) Spatio-spectral correlation function
| 〈Eout(ω, y)E

∗
out(ω +Ω, y + Y )〉 | demonstrating that the speckle is well resolved both spa-

tially and spectrally. The spatial correlation length is related to the speckle grain size,
while the spectral correlation length is the bandwidth of the medium, inversely propor-
tional to the Thouless time.

multiply scattered electric field which bears a resemblance to the complex structure

of the Fig. 3.9(a) in spectral domain. Temporal profiles from different spatial posi-

tions of the speckle are plotted in Fig. 3.11(b). From these results one can measure

the transmitted pulse duration at different positions of the speckle. I will show in

next subsection that by measuring the spectral phase of a chosen point of the speckle

and applying its inverse to the sample, one could observe a temporal focusing of the

light at that point. Spatial resolution of the measurement is a prerequisite for this

measurement, otherwise the real spectral phase information at the selected point will

be washed out. The dashed blue line in Fig. 3.11(b) shows a spatial integration of

the speckle field, which clearly demonstrates the temporal stretching of the pulse via
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Figure 3.10: Standard deviation of the inferred sample spatio-spectral phase. The mag-
nitudes of the random errors is estimated by computing the standard deviation of the
inferred sample phase over 5 accumulated images. The phase error is approximately 0.1
rad obtained from 10% of the peak of the signal (black rectangle).

the multiple scattering events in the sample. In order to carry out a comprehensive

study of speckle properties, such as vortices and singularities [213], a complete 3D

measurement (i.e. both spatial dimensions with spectral resolution) is required. This

can be accomplished by transversely scanning the position of the spectrometer slit

relative to the beams (sample and reference) falling upon it.

Ensemble sample position measurement

Though the scattering process produces complex spatio-temporal intensities that vary

in a complex manner as the details of the experimental alignment are varied, as ex-

plained above, the average temporal behaviour provides an insight into the properties

of the sample. To achieve this, an ensemble-averaged measurement of the temporal

profile is taken: the sample is mounted on a translation stage and the measurement

is repeated over a pre-defined grid of sample positions, comprising 40 points spaced

every 50 µm over a 2 mm range, and in a randomly determined order. The ensemble-

average spatio-temporal intensity for 40 measurements is depicted in Fig. 3.12(a) and

(c) respectively for 17±1 µm and 20±1 µm thick samples. The spatial integration of

the position-averaged intensities yields the averaged transmission intensities, which

are plotted in Fig. 3.12(b,d). This information may be considered as an ensemble

average of the information contained in Fig. 3.11, since displacing the sample in the
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Figure 3.11: Spatio-temporal intensity of the scattered, transmitted light from 19 µm
thick sample. (a) Reconstructed spatio-temporal intensity |E(t, y)|2of the speckle from
Fourier transform of the complex spatio-spectral electric field. (b) Solid lines: tempo-
ral intensities along the differently colored spatial slices of (a); Dashed line: spatially
integrated temporal intensity.

laser beam exposes an independent distribution of scatterers to the light field. Thus

greater precision is obtained for the lifetime measurements, since the ensemble average

washes out the random fluctuations of the speckle field whilst leaving the underlying

statistical properties. By applying a negative exponential fit to the intensity decay,

the characteristic diffuse times τd are extracted to be 1046±10 fs and 1233±10 fs for

the 17 µm and 20 µm thick samples respectively. Inferred from τd ≈ L2/π2D, the

diffusion constant for the thin and thick samples are 28.5±4 m2/s and 32±4 m2/s re-

spectively which shows that the results are self-consistent and also in good agreement

with D=29 m2/s obtained from contrast technique.
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Figure 3.12: Position averaged spatio-temporal intensity I(t, y). (a) Ensemble-average
of spatio-temporal intensity from forty different positions of the sample with thickness of
17 µm. (b) Spatially integrated ensemble-averaged spatio-temporal intensity of figure (a).
An exponential fit of the intensity decay yields a sample decay time of 1046 fs. (c) Position
average of the spatio-temporal intensity from forty different positions of the sample with
thickness of 20 µm. (d) Spatially integrated ensemble-averaged spatio-temporal intensity
of figure (c). The decay time of the sample is 1233 fs.

3.4.2 Spatio-temporal control of the ultrashort pulses behind

multiply scattering medium

As was mentioned in the analytical description, the prerequisite for the spatio-temporal

control is the spatially resolved spectral phase measurement. In the previous part,

I showed the possibility of performing such measurement using FTSSI technique.

Here, in the control part, the difference of the experimental setup compared with the

characterization part is the replacement of the laser source by a source with broader

spectral bandwidth and addition of the pulse shaper on the sample arm. Therefore,

in the measurement of the spatio-spectral electric field one would observe a minor

modification which is due to the application of laser source with broader spectral

bandwidth. Figure 3.13(a) shows the intensity and Fig. 3.13(b) shows the phase of

a typical spatio-spectral speckle field Eout(ω, y) as measured by FTSSI. The spatio-

spectral speckle is clearly demonstrated and the complex structure of Eout(ω, y) is

fully resolved in both phase and intensity. This structure is also visible in the one-
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dimensional spatial [Fig. 3.13 (a), red, solid] and spectral [Fig. 3.13 (a), green, solid]

‘lineout’ slices. The integrated projections of the speckle intensity [Fig. 3.13 (a),

dotted lines], however, show that a spectrally unresolved speckle image, as measured

on a camera, would yield a strongly reduced contrast, while a non-imaging spectral

measurement would only yield the initial source spectrum (Hyper Gaussian profile).

This further motivates the necessity of a spatially resolved phase measurement for the

temporal focusing experiment described before. Meanwhile the spectral phase reveals

a similar complex structure [Fig. 3.13 (b)]; as a consequence, it is clear that a spa-

tially averaged phase measurement offers no utility for pulse recompression. A Fourier

transform of the complex field along the spectral axis gives the spatially resolved tem-

poral behavior of the speckle Eout(t, y) [see Fig. 3.14(a)]. This spatio-temporal field

exhibits the same complex speckle structure as before, as evinced by both the three-

dimensional plot and the spatial (red) and temporal (black) lineouts projected onto

the walls. The spatially (black) and temporally (red) integrated fields are plotted

above; the former reveals the confinement time, which is fitted as approximately 2.5

ps, in good agreement with the spectral bandwidth measured from the autocorrela-

tion function [Fig. 3.13 (c)]. For this function, the spatial and spectral correlation

distances at the spectrometer were 50 µm (corresponding to 3.6 µm in the object

plane) and 2.55 mrad/fs, respectively.

In order to spatio-temporally control the distorted pulses behind the sample, we choose

a spatial slice y0 from the measured complex spatio-spectral electric field. Then we

program the inverse phase of the chosen slice to the pulse shaper. The input shaped

pulse propagates through the sample and results in a new spatio-spectral speckle. A

Fourier transform of the output shaped spatio-spectral electric field along the spectral

axis is shown in Fig. 3.14 (b). Confirming the analytical hypotheses and numerical

simulations, we can observe the emergence of an intense peak at the position of cho-

sen spatial slice y0 (an intense temporally focused and spatially localized pulse). The

shaped pulse is found to have a full width of half-maximum duration of 59 fs (close

to the transform-limited duration of 54 fs). The optimal phase is reached after two

iterations of the feedback procedure. The peak temporal intensity has a contrast ra-

tio of 15 relative to the average background before compensation, and the average

background along y0 is reduced by a factor of 2. As shown by the projected ‘lineout’

intensities, the temporal focus is spatially localized; the localization distance is 30

µm which is commensurate with the correlation distance of Fig. 3.13(c). The spa-

tially integrated temporal field (Fig. 3.14, top, black), exhibits the redistribution of
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Figure 3.13: Experimental reconstruction of the spatio-spectral speckle electric field
Eout(ω, y) after propagation through a multiply scattering medium. (a) Speckle inten-
sity |Eout(ω, y)|

2, with respective projections onto the spatial (red) and spectral (green)
axes-—individual slices (solid lines) and integrated signals (dashed lines) are considered.
(b) Speckle phase φout(ω, y), along with a spectral phase measurement φout(ω, y0) local-
ized along a single spatial slice. (c) Autocorrelation function | 〈Eout(ω, y)E

∗
out(ω

′, y′)〉 |,
demonstrating that the speckle is well resolved both spatially and spectrally. The spatial
correlation length is related to the speckle grain size, while the spectral correlation length
is the bandwidth of the medium, inversely proportional to the Thouless time.

the temporal intensity after shaping that is the signature of a temporal focus. The

temporally integrated field, however, is not altered (Fig. 3.14, top, red): the peak

can be said to be spatially localized rather than focused. Due to the spatially lo-

calized nature of the phase compensation, the peak integrated temporal intensity is

not significantly altered. As shown in time reversal and wavefront shaping experi-

ments, another striking feature is that the more scattering the medium is, the more

efficient the focusing will be. Indeed, the signal-to-noise ratio is governed by the ratio

of the Thouless time of the medium over the initial duration of the pulse, i.e. the

number of independent spectral degrees of freedom. Furthermore, in contrast with

conventional phase compensation techniques, here all shaping imperfections affect the

signal-to-noise ratio; the temporal duration and spatial localization are limited by the

Fourier-limit duration and autocorrelation size of the speckle respectively [166].
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Figure 3.14: Spatio-temporal focusing. Reconstructed spatio-temporal intensities
|Eout(t, y)|

2 (a) before and (b) after compensation of the phase at y0 = 2.66 mm. An
intense peak emerges from the background with a contrast ratio of 15. One-dimensional
‘lineouts’ at the location of this peak (projections onto walls) and integrated signal (top)
show that the peak is focused in time (black) and localized in space (red). The temporal
and spatial widths of the peak are the Fourier-limit pulse duration and the spatial phase
correlation distance, respectively.

3.5 Comparison between spatial shaping and spec-

tral shaping

I have previously described our technique of focusing light pulses in space and time

through a multiply scattering medium that is based on spectral shaping of the in-

put pulses. At the same time Katz et al. [177] and Aulbach et al. [178] showed the

possibility of obtaining similar results (spatio-temporal focusing) by spatially shaping

the input pulses. Before comparing their results with ours, I describe the principle of

their works. Both groups, as in the work of Vellekoop [29], adaptively optimized the

wavefront phase of the input pulse using a two dimensional SLM. The only difference

between both demonstrations is the detection technique of the signature tightened

spatio-temporal signal.

Katz et al. applied a two-photon fluorescent material (2PF) placed behind the scat-

tering medium which was imaged by an electron-multiplying charge-coupled device

(EMCCD). They maximized a nonlinear two photon signal at a selected point of the

out speckle instead of maximizing the optical intensity. Because of the nonlinearity of

2PF process it is sensitive to both the spatial and the temporal form of the exciting

field. Therefore, they used a practical technique of simultaneous measurement of the



108 Chapter 3. Characterization and control of spatio-temporal speckles

pulse focusing along space and time domains.

Detection in the work of Aulbach et al. was done by heterodyne interferometry. In

other words, a pinhole was applied to choose a output speckle grain. The speckle grain

was overlapped with a frequency shifted reference pulse and sent to a photo-detector

enabling heterodyne detection of the transmitted pulses [214]. Figure 3.15 (a),(b)

shows the spatio-temporal speckle pattern before and after compensation. By using

a learning optimization algorithm, distorted pulse in space and time is corrected and

forms a spatio-temporal focus. In both experiments spatial control alone was suffi-

cient for simultaneously correcting both spatial and temporal distortions in scattering

media. This is because the scatterer couples the spatial and temporal degrees of free-

dom. In more detail, the electric field of a specific output mode is a superposition

of the pulse responses from each input mode. The impulse response corresponding

to a pair of input-to-output mode has a random structure shown in Fig. 3.15 (c).

Therefore a superposition of whole random impulses responses results in a temporal

speckle. Using a SLM and shifting the optical phases of corresponding impulse re-

sponses, researchers forced the uncorrelated contributions to become correlated and

reinforced each other at the specified position in space and time. The spatial focusing

was limited to the spatial correlation area which is only dependent to the scatterer.

The ratio between the time integrated intensity of the pulse (energy) at the focusing

position and the energy of non optimized pulse at the same position can be interpreted

as spatial focusing. In more detail, this means that overall more light is transmitted

into the detected channel. Katz obtained two-photon enhancement of 800 or 20-fold

gain of the speckle intensity.

There are two major differences between our results which is based on spectral shap-

ing and those works. Spectral shaping manipulates the arriving time of the different

frequency modes at a single speckle grain without manipulating the transmission chan-

nels. Therefore temporal speckle is temporally recompressed to its Fourier limit and

no energy enhancement occurs (the ratio of temporal integration of optimized pulse

to unoptimized at the location of enhancement). This can be interpreted as temporal

focusing and spatial localization. In spatial shaping both energy enhancement and

temporal recompression happens which can be considered as spatio-temporal focus-

ing. This ability to temporally recompress the pulse without spatial redistribution

of energy may have important applications for the nonlinear imaging of biological

samples, where a rise in fluence may result in the onset of thermally induced damage.

The next major difference is about the duration of the optimization process. Since
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(a) (b)

(c)

Figure 3.15: Principle of spatio-temporal focusing using an optimization algorithm.
(a) and (b) show the spatio-temporal speckle before and after compensation respectively.
Optimization results in a spatial focusing and temporal recompression of the pulse at
intended point behind the sample. (c) For each pair of input and output modes there
exists a channel with specific impulse response. The impulse responses corresponding
to each of input modes are randomized and their linear contribution in a single output
mode results in a temporally randomized pattern. Controlling the phase of each impulse
response yields a temporally and spatially focused pulse at the intended output mode. This
figure is adopted from Ref [177].

spatial shaping is based on learning algorithm and the response time of the SLMs are

currently slow, this process takes longer time than our technique which is based on a

single measurement and optimization (open loop control). This can be considered as

an important advantage for our technique when the optimization should take place in

the dynamic media.

3.6 Conclusion and future directions

In conclusion, we have characterized the speckle spatio-temporal electric field of a

multiply scattered ultrafast pulse. We have also extracted the diffusion properties of

the scattering sample from the inferred electric field. Furthermore, we have imple-

mented an open-loop correction of the spectral phase in order to produce a naturally

Fourier and diffraction-limited pulse after the medium at a chosen position. The re-

sults demonstrate the benefits of a spatially resolved measurement: typical control
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experiments consider a spatial average, but for such systems that lack large-scale cor-

relations such averaged measurements are valueless. Moreover, we have demonstrated

that these correlations permit spatial control without spatial resolution in the spectral

pulse-shaper. Our study branches out previous spatial-speckle shaping techniques to

the temporal domain and bridges the gap with time-reversal experiments in acoustics

and electromagnetism. This capacity to recover a short pulse on a selected spatial

speckle point has important potential applications for quantum control and photonics,

as well as for the fundamental studies of complex media. It suggests that ultrafast

diagnostic techniques including nonlinear microscopy and time-resolved spectroscopy

may be performed deep within or beyond biological tissue, beyond the range of bal-

listic photons. Moreover, our characterization technique can be applied in studying

of the whole speckle properties, such as vortices and singularities [215]. This requires

a complete three-dimensional (3D) measurement (i.e., both spatial dimensions with

spectral resolution) which can be accomplished by transversely scanning the position

of the spectrometer slit relative to the beams (sample and reference) falling upon it.

One of future directions of our studies is studying the effect of scattering media on en-

tangled photons. Specifically one may exploit the spatial and spectral coupling effect

of the scatterer and convert the spectral entanglement to spatial entanglement. The

other major direction is to perform a time reversal at optical frequencies that makes

the control faster, and more simple. There have been several theoretical proposals for

achieving time reversal at optical frequencies. Spectral phase conjugation using four

wave mixing [198] or spectrally resolved holography [216] are good potential candi-

dates for this goal. Recently several theoretical works demonstrated the possibility

of time-reversing optical pulses using various methods such as dynamic modulation

of a zero gap periodic system [217] or manipulating the refractive index of dielectric

photonic crystals [218].



Conclusion

During my thesis in the CAR laboratory, I have studied the full spatio-spectral char-

acterization of pulse shapers and their application in controlling spatio-temporal scat-

tered light.

Shaped femtosecond pulses are in widespread demand among the quantum control

community. During the last two decades, different techniques of pulse shaping have

been developed; however all these techniques suffer from space-time couplings. In

order to apply such pulse shapers in the community, their relevant coupling effects

should be completely characterized. The limitations of the pulse shapers based on 4f

zero-dispersion line have been widely studied and documented; however, the Acousto-

Optic Programmable dispersive filter (AOPDF) pulse shaper, an alternative method

of pulse shaping, is less well characterized.

During my thesis, I have comprehensively studied and characterized the space-time

couplings within the UV-AOPDF pulse shaper using Fourier Transform Spatio-Spectral

Interferometry. FTSSI is a strong referenced interferometric technique which reveals

the full transfer function of the pulse shaper. Using this device, I have found that

the different programmed pulse shapes, which are commonly used in coherent control

experiments, are highly reliable (perfect consistency between the programmed and

measured pulse shapes). Furthermore, I have found that all shaped pulses suffer from

a single spatio-temporal coupling which is group dependent spatial displacement. The

physical mechanism behind this single spatio-spectral coupling was found to be the

combination of geometrical and birefringent walk-off effects.

Our results were the first to demonstrate, quantify and explain a parallel effect in this

alternative device.

From a control perspective, this manuscript shows the ability of spatio-temporal refo-

cusing of a broadband pulse that has been strongly distorted by a random, multiply

scattering medium. The measurement and consequently control of the complex elec-

111
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tric field of the optical frequencies is a challenging task. We have overcome this

challenge and have performed such corrections for the first time.

I have demonstrated this via a spatially resolved measurement of the spectral phase

of the distorted pulse followed by open-loop feedback to a pulse shaper. The measure-

ment was done by the FTSSI technique and as a result of the linearity of the scattering

process, the pre-compensation formed a spatially localized flat output spectral phase

and hence a short pulse. Furthermore, by using FTSSI technique, I have spatio-

spectrally characterized the speckle pattern and extract the diffusion properties of

the medium from this measured speckle.

An extension of our 2D to 3D measurements, which is feasible by scanning the spec-

trometer slit, can be regarded as a strong tool for studying of the whole speckle

properties, such as vortices and singularities. Furthermore, the ability to recover the

ultrashort pulses, temporal shape (the transform limited duration) at a desired posi-

tion can smooth the way for performing coherent control, time resolved spectroscopy

and nonlinear microscopy experiments within or beyond biological samples, beyond

the range of ballistic photons. Since the scattering medium couples the spatial and

spectral modes of the light, an other interesting future direction would be to study the

effect of such a medium on entangled photons. In more detail, due to such couplings,

one would expect to be able to convert the spectral entanglement to a spatial one.



Appendix A

Résumé en français

A.1 Introduction

Les principales évolutions qui ont conduit à notre compréhension de la lumière et

des phénomènes optiques, a eu lieu il y a longtemps. Avant la découverte du laser,

il semblait peu probable que d’importants changements se produiraient. L’arrivée

du laser a marqué un nouveau départ : La publication de plus de 5000 articles dans

les dix premiers ans après sa découverte est une preuve de son effet révolutionnaire

sur la science fondamentale. En dehors de leurs applications dans la recherche

fondamentale, les lasers sont aujourd’hui présents partout dans notre vie et la

croissance de leurs applications ne semble pas s’arrêter. Ce qui rend la source laser

unique, c’est sa cohérence, sa directivité et monochromaticité (ou alternativement

courte durée).

La durée courte (correspondant à une large bande spectrale) est la propriété princi-

pale des lasers femtosecondes. Ce ci a permis d’ouvrir de nouvelles frontières dans

la recherche fondamentale et pour les applications. Par exemple, grâce à leur durée

ultracourte, le laser femtoseconde permet d’avoir accès à la dynamique électronique

des molécules à l’aide de ce qu’on appelle les techniques pompe-sondes [1] et en

modifiant les paramètres du laser de contrôler cette dynamique. C’est le domaine du

contrôle cohérent [2]. Leur grande largeur spectrale a été mis à profit de façon tout

à fait original en métrologie des fréquences ce qui a donné le prix Nobel de physique

à J.L. Hall et T.W. Hansch [3–7]. La seconde propriété des lasers femtosecondes

est la concentration de l’énergie du laser sur des temps courts (femtoseconde)

permettant en focalisant de tel laser d’atteindre des densités de puissance extrêmes.

Cependant, une tâche difficile est la caractérisation d’impulsions femtosecondes

113
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sachant que les détecteurs existants ont au mieux un temps de réponse de quelques

picosecondes. Pour palier à cette question différentes techniques basées sur des

processus non-linéaires ont été mis en œuvre. Les exemples incluent SPIDER [8] et

FROG [9] des techniques qui sont maintenant disponibles dans le commerce dans

divers domaines spectraux.

En générale, toutes les méthodes de caractérisation d’impulsions reconstruisent

l’ensemble du domaine temporel électrique ou de l’intensité des impulsions (en

moyenne sur le profil spatial) sans fournir d’informations sur leurs caractéristiques

spatiales. Le champ électrique reconstruit ne tient pas compte du couplage spatio-

temporel. Lorsque les effets de couplage spatio-temporel sont présents, chaque

position dans l’espace sur le long du front d’onde d’impulsion aura ses propres

propriétés temporelles spécifiques. Ces couplages, qui sont dus à l’importante largeur

spectrale des impulsions, sont généralement introduits pendant la propagation

dans les différents éléments optiques. Ces couplages peuvent brouiller la résolution

temporelle, réduire l’intensité et modifier par exemple les résultats d’une expérience

de contrôle. Cependant le couplage entre l’espace et du temps peut être exploité

à des fins spécifiques par exemple pour élargir la bande spectrale d’impulsions en

utilisant des techniques de conversions optiques non linéaires [10]. Afin de bien

comprendre et de contrôler ces couplages spatio-temporels, une étude systématique

et une caractérisation de ces couplages et leurs sources sont nécessaires. C’est l’objet

d’une partie de ma thèse. Cela peut se faire soit par une extension des techniques

conventionnelles de la caractérisation temporelle dans le domaine spatial ou par

l’invention de nouveaux instruments indépendants. Nous avons choisi d’utiliser la

technique basée sur l’interférométrie spatio-spectrale par transformée de Fourier

[Fourier Transform Spatio-Spectral Interferometry(FTSSI)] en raison de ses nombreux

avantages qui seront détaillés dans ce manuscrit [11]. Il existe d’autres techniques

pour la caractérisation de tels couplages comme par exemple, SEA-SPIDER et

SEA-TADPOLE. Nous dresserons une vue d’ensemble des avantages et inconvénients

de ces techniques.

Sur l’échelle de la femtoseconde, de nombreuses interactions dépendent de la forme

temporelle particulière de l’onde appliquée. Ainsi pour le contrôle cohérent [12–15],

la compression d’impulsion [16], la microscopie non linéaire multidimensionnelle [17],

les communications optiques [18] ou la factorisation des nombres [19–21], il est

souhaitable et nécessaire de modifier les impulsions de la source d’une manière bien
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définie afin d’atteindre le but souhaité. Alors que façonnage des impulsions nanosec-

ondes et picosecondes peut se faire directement dans le domaine temporel à l’aide de

commutateur rapide comme les modulateurs électro-optiques, pour le façonnage des

impulsions femtosecondes, on doit recourir à des techniques indirectes tout optiques

travaillant dans le domaine spectral. De ce fait les dispositifs de façonnages sont des

sources importantes de couplage spatio-temporel. Une étude de ces couplages est donc

nécessaire. Des études approfondies de façonneurs d’impulsions basées sur ligne 4f

configuration ont été effectuées par plusieurs groupes [11,22–26]. Cependant, aucune

étude complète du façonneur d’impulsions basées sur la techniques Acousto-Optic

programmable Dispersive Filter (AOPDF), n’avait été faite et c’est l’objet d’une

partie des résultats de cette thèse. Ces façonneurs présentent l’avantage d’une large

gamme d’accordabilité, très utile dans les expériences de contrôle cohérent. Cette

thèse produit une étude détaillée de la caractérisation spatio-temporelle complète de

l’UV-AOPDF au moyen de la technique FTSSI.

La mise en œuvre de l’utilisation des propriétés formidables des lasers femtosecondes

est mise à mal dans les échantillons biomédicaux en raison de leur index de réfraction

inhomogène. En d’autres termes, le profil spatial et temporel des impulsions

incidentes est fortement perturbé lors de la propagation à travers l’échantillon.

Différentes techniques ont été développées pour corriger les distorsions spatiales des

lasers continus tant dans des échantillons minces [27, 28] que dans des échantillons

épais [29].

En régime pulsé, le contrôle ou en d’autres termes la correction du profil spatial

et temporel a été démontré dans le domaine des ondes acoustiques en utilisant des

expériences de retournement temporel (time reversal) [30–33]. Cependant, en raison

de la difficulté à mesurer le champ électrique complexe dans le domaine des fréquences

optiques, ces techniques sont restées inaccessibles jusqu’à notre travail. Durant cette

thèse, nous avons caractérisé l’amplitude et la phase spectrales des impulsions en sotie

d’échantillon permettant d’effectuer des expériences de retournement temporel dans

le domaine optique [34, 35]. Comme le milieu diffusant couple les domaines spatial

et temporel, nous avons obtenu à la fois une concentration spatiale et temporelle de

l’impulsion par seulement la mise en forme phase spectrale des impulsions d’entrée.

C’est l’objet du troisième chapitre du manuscrit.

Ce manuscrit est organisé comme suit:
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- Le premier chapitre (dispositifs expérimentaux) présente brièvement la source

laser et les appareils expérimentaux, y compris la mesure des impulsions femtosecondes

et techniques de façonnage que j’ai fréquemment utilisé au cours de ma période de

doctorat en LCAR.

- Le deuxième chapitre (couplage spatio-temporel) est consacré à une car-

actérisation complète des effets de couplage espace-temps produit par le façonneur

d’impulsion UV-AOPDF. D’abord, il commence par une description mathématique

des couplages entre espace et temps. Puis il passe en revue l’état actuel de l’art

des techniques de caractérisations spatio-temporelles. Enfin, il présente les résultats

expérimentaux concernant la caractérisation complète de couplage spatio-temporel

d’impulsions UV façonnées par AOPDF et l’origine physique de ces couplages spatio-

temporels.

- Le troisième chapitre porte sur la caractérisation spatio-temporelle et le contrôle

des impulsions femtosecondes transmises par un milieu diffusant. Tout d’abord l’état

actuel des expériences de contrôle de speckle est présenté. Puis, une analyse et une

description numérique du contrôle via une mise en forme spectrale des impulsions

d’entrée est développée. Ensuite, le dispositif expérimental que nous avons utilisé

pour étudier et contrôler la lumière transmis est décrit en détail. Enfin, je présente

les résultats expérimentaux, notamment la caractérisation spatio-temporelle des im-

pulsions transmises et, plus important, le contrôle spatio-temporel des impulsions

transmises par le milieu diffusant.

A.2 Couplage spatio-temporel de UV-AOPDF

Quand il existe une interdépendance entre les coordonnées spatiale (angulaire)

et spectrale (temporelle) des impulsions ultracourtes, elles sont désignées comme

des impulsions spatio-temporellement couplées. Ces couplages, qui sont visibles à

cause de la largeur spectrale des impulsions ultracourtes, sont introduits au cours

de la propagation dans des éléments optiques tels que des réseaux de diffraction,

des prismes et de l’air. Ces couplages diminuent souvent la résolution temporelle,

réduisent l’intensité et provoquent un large éventail d’autres problèmes. Par

conséquent, afin de bien les comprendre et les mâıtriser, nous avons entrepris de les

caractériser et d’identifier leur origine.

Les façonneurs d’impulsions [57] induisent eux aussi un couplage saptio-temporel
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qui peut etre gênant pour certaines expériences de contrôle cohérent. Des études

approfondies des façonneurs d’impulsions basées sur ligne en 4f ont déjà été entrepris

et il est maintenant bien connu à la fois expérimentalement et théoriquement que

les impulsions façonnées de sortie de tels dispositifs sont spatio-temporellement

couplées [11, 22–26]. Et leurs impacts sur les expériences ont été démontrés [66, 67].

En revanche, les façonneurs d’impulsion AOPDF qui ont de nombreuses applications

dans les systèmes de CPA [97] et des expériences de contrôle [98], ont été moins bien

caractérisés [26, 99–101]. Le chapitre 2 de ce manuscript est consacré aux effets de

couplage spatio-temporel dans l’utilisation des façonneurs d’impulsions basés sur un

cristal acousto-optique utilisable dans l’UV (AOPDF).

Un exemple de ces couplages est représenté sur la Fig. A.1 (a), où la position centrale

du faisceau est mesurée en fonction du délai temporel programmé avec le Dazzler

(AOPDF). Le faisceau se déplace de façon linéaire avec une vitesse du couplage de

0.249 mm/ps. La Fig. A.1 (b) est un second exemple qui montre l’effet de programma-

tion d’un saut de phase pi. Celui-ci entraine un décalage spatial local de l’impulsion à

la position correspondant à la fréquence du saut de phase. J’ai montré que ces effets

sont attribuables à un seul mécanisme: un déplacement de l’impulsion mise en forme

du au retard de groupe. Ces effets de ” Walkoff ” biréfringents et géométriques sont

la cause physique de l’effet de couplage spatio-temporel indiqué dans ce façonneur

d’impulsions. Nous avons démontré un excellent accord quantitatif entre les vitesses

de couplage mesurées et calculées.

A.3 Caractérisation et Contrôle spatio-temporel

des speckles

Les impulsions ultracourtes ont de nombreuses applications pour le contrôle

cohérent [2, 15, 148–151], la spectroscopie résolue en temps [152], la microscopie

non linéaire [153], etc. Travailler en milieu complexe nécessite de contrôle le profil

spatio-temporel des impulsions. Or, il est bien connu que les milieux fortement

diffusants déforment le profil spatio-temporel initial de la lumière.

En se propageant au travers d’un milieu diffusant épais, une onde monochromatique

peu s’analyser par une partie balistique [154, 155] et une partie multiplement

diffusée [156]. Les photons balistiques sont ceux qui voyagent à travers le milieu sans

être déviés. Ils suivent une évolution exponentielle selon la loi de Beer [157]. Les



118 Chapter A. Résumé en français
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Figure A.1: Les exemples de couplages spatio-temporels dans un AOPDF. (a) La po-
sition centrale du faisceau est mesurée en fonction du délai programmé avec le Dazzler
(AOPDF). Le faisceau se déplace de façon linéaire avec une vitesse de couplage de 0.249
mm/ps. (b) Effet de programmation d’un saut de phase π. Celui-ci entrâıne un décalage
spatial local de l’impulsion à la position correspondant à la fréquence du saut de phase.

photons multiplement diffusés donnent naissance à des figures de speckle spatial, dû à

l’interférence constructive et destructive aléatoire des photons suivant des trajectoires

différentes. A cause de leur caractère aléatoire, les photons multi-diffusés brouillent

la phase optique de la lumière transmise. On parle de perte de cohérence. Ceci

limite les potentialités d’imagerie, de focalisation, et de transmission des impulsions

ultracourtes. De nombreuses solutions à ce problème ont été proposées en particulier

autour de la détection des photons balistiques [158–164]. Cependant, pour un milieu

diffusant avec des dimensions caractéristiques plus grandes que son libre parcours

moyen lt (la distance moyenne parcourue par la lumière avant d’être diffusée), ces

techniques ne peuvent pas être utilisées parce que la composante balistique est

fortement atténuée.

Récemment, Vellekoop et ses collègues ont démontré la possibilité de focalisation
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spatiale [29, 165, 166] et donc d’imagerie [167] à travers de milieu diffusant en

contrôlant les modes spatiaux de la lumière incidente en utilisant un modulateur

spatial de lumière. La correction de la distorsion spatiale a été ensuite effectuée

par d’autres groupes en utilisant des techniques alternatives [168–172]. Cependant,

toutes ces techniques utilisent un laser quasi monochromatique et aucune correction

temporelle n’a été rapportée.

La propagation des impulsions ultracourtes avec une large bande spectrale à travers

des échantillons épais entrâıne un étalement temporel additionnel et une modification

du profil d’intensité qui donne lieu au speckle spectral (temporel) [173, 174]. Il est

cependant possible de corriger ces effets inhérents à la propagation.

Il existe des techniques liées au contrôle dans le régime acoustique et

électromagnétique GHz appelées méthodes de retournement temporel [31, 175, 176].

Cependant, notamment en raison de l’impossibilité de mesurer directement le profil

temporel du champ dans le domaine optique, le retournement temporel dans le

domaine optique reste difficile. Dans un travail parallèle (techniques différentes, mais

des résultats similaires), notre groupe [35] et deux autres groupes [177,178] ont réussi

à contrôle spatio-temporellement l’impulsion ultracourte à la surface arrière d’un

milieu diffusant. Pour atteindre cet objectif, nous avons appliqué la technique FTSSI

afin de mesurer la phase spatio-spectrale du speckle permettant par une boucle de

rétroaction sur un façonneur d’impulsions dans le domaine spectral de la contrôler.

Cette mesure a permis de plus d’étudier le comportement temporel du champ de

speckle, proposant ainsi une nouvelle technique de caractérisation temporelle de

lumière multi-diffusée et par conséquent une nouvelle méthode pour la détermination

des propriétés de diffusion de l’échantillon [179–189]. En effet nous avons démontré

une technique simple d’extraction des propriétés de diffusion en utilisant notre

technique bien établie FTSSI [34].

L’objectif de ce chapitre est d’étudier les caractéristiques spatio-temporelles des im-

pulsions femtosecondes transmises par le milieu diffusant, l’extraction des propriétés

de diffusion de ce milieu et, enfin, l’exploitation de ces mesures pour contrôler la

lumière diffusée derrière l’échantillon.

Resultats et discussion

Dans l’expérience, une impulsion ultracourte est divisée en deux parties [voir la Fig.

A.2]. Une partie du faisceau passe à travers un façonneur d’impulsion et est fo-

calisée sur un échantillon multi-diffusant. La propagation de l’impulsion laser dans
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l’échantillon (une couche épaisse de poudre de ZnO déposée de manière homogène sur

une lame de microscope) donne lieu à un speckle spatio-temporel. Le speckle spatio-

temporel est imagé sur la fente d’entrée d’un spectromètre d’imagerie en 2D [146].

L’autre partie du faisceau agit comme un référence et est recombinée avec l’impulsion

qui a traversé l’échantillon à la fente d’entrée du spectromètre. L’angle entre les

deux faisceaux ainsi que le delai entre les deux impulsions sont ajustables pour per-

mettre d’optimiser la figure d’interférences ainsi obtenue. La technique SSI effectue

une mesure relative de la phase spectrale entre l’impulsion de référence et l’impulsion

multi-diffusée que l’on souhaite caractériser. L’amplitude et la phase de l’impulsion

Figure A.2: Dispositif expérimental. Le faisceau de l’oscillateur laser (OSC) est divisé
en deux bras pour l’échantillon et pour la référence par une lame séparatrice (BS). Le
bras de l’échantillon passe à travers un façonneur d’impulsion (PS) et est focalisé sur un
échantillon multi-diffusant (s) par la lentille L1. La propagation de l’impulsion laser dans
l’échantillon donne lieu à un speckle spatio-temporel. L’échantillon est monté sur une ta-
ble de translation (TS) se déplaçant perpendiculairement par rapport au faisceau laser.
Le speckle spatio-temporel est imagé sur la fente d’entrée d’un spectromètre d’imagerie
2D par la deuxième lentille (L2). L’autre partie du faisceau agit comme une référence
et est recombinée avec l’impulsion qui a traversé l’échantillon, sur la fente d’entrée du
spectromètre. L’angle entre les deux faisceaux ainsi que le délai entre les deux impul-
sions sont ajustables pour permettre d’optimiser la figure d’interférences ainsi obtenue.
L’encart montre comment le spectromètre effectue une mesure d’intensité spectrale avec
une résolution spatiale le long de la fente d’entrée.

inconnue est extraite de l’interférogramme par filtrage de Fourier [86]. La figure A.3
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montre l’intensité reconstruite (a) et la phase développée (b) du speckle dans les do-

maines spatial et spectral. Ces figures indiquent que chaque point du motif de speckle

possède une phase spectrale et une intensité aléatoire en raison des phénomènes de

diffusion multiple.

L’intensité spatio-temporelle transmise peut être reconstruite à partir de la trans-
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Figure A.3: Reconstruction expérimentale du champ électrique spatio-spectral de la
lumière diffusée pour un échantillon épais. (a) L’intensité spatio-spectrale |E(ω, y)|2 de
speckle. (b) Phase spatio-spectrale de speckle φ(ω, y).

formée de Fourier du champ électrique complexe spatio-spectral le long de l’axe des

fréquences. Le comportement moyen temporel fournit un aperçu des propriétés de

l’échantillon. Pour ce faire, une mesure moyennée de l’ensemble du profil temporel est

prise. La moyenne de l’intensité spatio-temporelle pour 40 mesures est représentée sur

la Fig. A.4 (a). L’intégration spatiale de l’intensité qui moyennée sur la position donne

l’intensité moyenne de transmission, est représentée sur la Fig. A.4 (b). Les moyennes

permettent de s’affranchir des fluctuations aléatoires du champ de speckle laissant ap-

parâıtre les propriétés statistiques de l’échantillon. En appliquant un fit exponentiel

négatif sur l’intensité décroissante, le temps de Thouless est extrait à 1046 fs. La Fig.

A.5 (a) montre le speckle spatio-temporel reconstruit de l’échantillon diffusant. La

correction de la phase en un point choisi du motif à l’aide d’un façonneur d’impulsion

conduit à une impulsion temporellement concentrée et spatialement localisée qui se

dégage de l’arrière-plan du motif de speckle [Voir la Fig. A.5 (b)]. L’intensité du pic

temporel est améliorée d’un facteur 15 par rapport au fond moyenné avant compen-

sation. La durée temporelle de l’impulsion focalisée est de 59 fs, ce qui est proche de

la durée limitéepar transformée de Fourier de 54 fs.
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−3 −2.5 −2 −1.5 −1 −0.5 0 0.5 1 1.5 2 0

0.5

1

Exp. decay constant −1233.31 fs

Time (ps)
Arb

itra
ry v

alu
e Spatial average of (c)

Exponential fit

−3 −2.5 −2 −1.5 −1 −0.5 0 0.5 1 1.5 2 0

0.5

1

Exp. decay constant −1046.03 fs

Time (ps)

Arb
itra

ry v
alu

e Spatial average of (a)
Exponential fit

I (t, y) Log Scale

Time (ps)

y (m
m)

−5 −4 −3 −2 −1 0 1 2 3 4 5 

0
2
4
6

−2.5
−2
−1.5
−1
−0.5

0

I (t, y) Log Scale

Time (ps)

y (m
m)

−5 −4 −3 −2 −1 0 1 2 3 4 5 

0
2
4
6

−2.5
−2
−1.5
−1
−0.5

0

(a) (b)

(c) (d)

Figure A.4: Intensité spatio-temporelle moyennée sur different position de l’échantillon.
(a) Moyenne de l’intensité pour 41 positions de l’échantillon. (b) Intégration de
l’intensité moyennée de Fig (a) sur la coordonnée spatiale. Le temps Thouless est extrait
grâce à un fit exponentiel negatif et vaut 1046 fs.

Figure A.5: Focalisation spatio-temporelle. Intensité spatio-temporelle reconstruite
|Eout(t, y)|

2 avant la compensation de la phase spectrale (a). La correction de la phase
en un point choisi du motif à l’aide d’un façonneur d’impulsion conduit à une impulsion
temporellement concentrée et spatialement localisée qui se dégage de l’arrière-plan du mo-
tif de speckle (b). L’intensité du pic temporel est améliorée d’un facteur 15 par rapport
au fond moyenné avant compensation. La durée temporelle de l’impulsion focalisée est
de 59 fs, ce qui est proche de la durée limitée par transformée de Fourier de 54 fs.
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A.4 Conclusion

Au cours des deux dernières décennies, différentes techniques de façonnages

d’impulsions ont été développées, mais ces techniques souffrent de couplages spatio-

temporels qui doivent être caractérisés afin de pouvoir utiliser toutes les potentialités

des impulsions façonnées. Les limites des façonneurs d’impulsions basées sur le

principe de la ligne à dispersion nulle ont été largement étudiés et documentés, mais

ce n’est pas le cas des couplages induits par les filtres acousto-optiques programmables

(AOPDF), une autre méthode de façonnage d’impulsion.

Au cours de ma thèse, j’ai étudié en détail et caractérisé le couplage spatio-

temporel introduit par le façonneur d’impulsions UV-AOPDF à l’aide des techniques

d’interférométrie spatio-spectrale par transformée de Fourier (FTSSI). FTSSI est

une technique robuste d’interférométrie à référence qui révèle la fonction de transfert

complète du façonneur d’impulsion. En utilisant ce dispositif, j’ai trouvé que les

différentes formes d’impulsions façonnées, qui sont couramment utilisées dans des

expériences de contrôle cohérents, sont parfaitement reproduites (cohérence parfaite

entre les formes d’impulsion programmées et mesurées). Par ailleurs, j’ai constaté

que toutes les impulsions façonnées souffrent d’un couplage spatio-temporel qui

est un simple décalage spatial. Le mécanisme physique induisant ce couplage est

la combinaison de walk-off biréfringent et géométriques. Nos résultats ont été les

premiers à démontrer, quantifier et expliquer cet effet.

La seconde partie de ma thèse reprend l’utilisation de la technique FTSSI mais pour

l’appliquer à la mesure d’impulsion façonnée naturellement par un échantillon multi-

diffusant. En effet la traversée d’un milieu complexe induite le couplage des com-

posantes spectrales et spatiales de manière complexe. J’ai démontré ainsi que par

une mesure spatialement résolue de la phase spectrale de l’impulsion déformée suivie

d’une correction en boucle ouverte à l’aide d’un façonneur d’impulsions, on pouvait

focalisée temporellement et localisée spatialement une impulsion sortant d’un milieu

complexe. Le processus de diffusion étant un processus linéaire, la correction par un

façonneur passif a permis d’obtenir une phase spectrale plate pour un point de speckle

donné donnant lieu à une impulsion courte à cet endroit de l’espace. En outre, en

utilisant la technique FTSSI, j’ai caractérisé le speckle et pu extraire les propriétés de

diffusion du milieu induisant ce speckle.

Une extension de mesure de 2D vers 3D, réalisable par balayage de la fente du spec-
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tromètre, peut être considérée comme un outil puissant pour l’étude de l’ensemble de

propriétés de speckle, telles que des vortex et des singularités. De plus, la capacité à

récupérer des impulsions ultracourtes, en un point de speckle donné est un premier

pas important pour la réalisation d’expérience de contrôle cohérent dans les milieux

complexes comme par exemple au sein d’échantillons biologiques, et ce ci au-delà de

la gamme des photons balistiques. Comme le milieu diffusant couple les modes spa-

tiaux et spectraux de la lumière, une autre orientation possible serait d’étudier l’effet

d’un tel milieu sur les photons intriqués ce ci permettrait de convertir une intrication

spatiale en une intrication spectrale.

L’ensemble de ces voies semble très prometteuse à l’avenir et confirme que mes travaux

de thèse apportent des outils qui pourront être utiles pour des travaux de recherche

sur des milieux complexes ouvrant ainsi tout un champ de recherche.
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Résumé

Cette thèse porte sur une série d’études technologiques et d’applications physiques dans les domaines

de la dynamique ultrarapide et contrôle cohérent. Du point de vue technologique, nous avons effectué

une étude approfondie de couplage spatio-temporel induit par l’interaction de l’onde optique avec une

onde acoustique au sein d’un cristal non linéaire pour le façonnage de l’impulsion laser ultra courte.

Cette étude a été menée en utilisant des techniques interférométriques. Ces effets bien connus dans

les façonneurs d’impulsions utilisant une ligne 4f n’avaient jamais été mesurés dans ce type façonneur.

Nos résultats ont été les premiers à les démontrer, les quantifier et les expliquer. Du point de vue du

contrôle, nous avons mis en évidence des résultats très intéressants concernant la refocalisation tem-

porelle d’une impulsion large bande fortement perturbée par un milieu multi-diffusif (i.e. l’analogue

temporel de speckle spatiale). Pour cela nous avons développé une mesure résolue spatialement de la

phase spectrale de l’impulsion déformée suivie par une rétroaction en boucle ouverte permettant la

correction en temps réelle de la phase grâce à un façonneur d’impulsions: en raison de la linéarité

du processus de diffusion, cette compensation a permis de réaliser la recompression d’une impulsion

laser en sortie de l’échantillon en un point donné (localisation spatiale) . Cela a suscité beaucoup

d’intérêts parmi les collègues pour diverses applications telles que l’imagerie biologique ou pour des

développements utilisant l’optique quantique.

Mots clés: Impulsions femtosecondes, Mise en forme d’impulsions, Ultraviolet, Caractérisation

spatio-temporelle, Impulsions à dérive de fréquence, Speckle spatio-temporel, Echantillon multi-

diffusant, Couplage spatio-temporel, AOPDF, Contrôle spatio-temporel.

Abstract

This PhD thesis concerns a range of technological studies and physical applications within the fields

of ultrafast science and coherent control. From the technological point of view, we have performed

a comprehensive study of space-time coupling within the ‘Dazzler’ AOPDF pulse shaper using

interferometric techniques. For a while such limitations of ‘4f’ zero-dispersion line pulse shapers have

been widely documented; our results were the first to demonstrate, quantify and explain a parallel

effect in this alternative device. From a control perspective, we have demonstrated exciting results

about temporal refocusing of a broadband pulse that has been strongly distorted by a random,

multiply scattering medium (i.e. the temporal analogue of the spatial speckle pattern). For this

purpose a spatially resolved measurement of the spectral phase of the distorted pulse followed by

open-loop feedback to a pulse shaper were implemented: as a result of the linearity of the scattering

process, this pre-compensation has led to a spatially localized flat output spectral phase and hence

a short pulse. This has already stimulated much interest amongst colleagues for diverse applications

such as biological imaging or quantum optics studies.

Key words: Femtosecond pulses, Pulse shaping, Ultraviolet, Spatio-temporal Characterization,

Chirped pulses, Spatio-spectral speckle, Multiply scattering medium, Spatio-temporal coupling,

AOPDF, Spatio-temporal control.
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