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Abstract

This thesis addresses the study of motion integration in the primate. Based on
anatomical and functional knowledge of two cortical areas involved in motion
perception, namely vi and MT, we explain various perceptual and oculo-motor
responses found in the literature. First, we build a recurrent model of motion
integration where a minimal number of cortical interactions are assumed. Pro-
posing a simple readout mechanism, we are able to reproduce not only motion
perception but also the dynamics of smooth pursuit eye movements on various
line figures and gratings viewed through different apertures. Second, following
perceptual studies concerning motion integration and physiological studies of re-
ceptive fields, we construct another dynamical model where motion information
is gated by form cues. To this end, we postulate that the visual cortex takes ad-
vantage of luminance smoothness in order to gate motion diffusion. Such an ele-
mentary diffusion mechanism allows to solve various contextual problems where
extrinsic junctions should be eliminated, without relying on complex junction de-
tectors or depth computation. Finally, we rewrite the initial dynamical model into
the neural fields formalism in order to mathematically analyse its properties. We
incorporate the multiplicative feedback term into the formalism, and prove the
existence and uniqueness of the solution. To generalise the comparison against
visual performance, we propose a new evaluation methodology based on human
visual performance and design a database of image sequences taken from biology
and psychophysics literature. Indeed, offering proper evaluation methodology is
essential to continue progress in modelling the neural mechanisms involved in
motion processing. To conclude, we investigate the performances of our neural
fields model by comparison against state of the art computer vision approaches
and sequences. We find that, despite its original objective, this model gives results

comparable to recent computer vision approaches of motion estimation.

KEYWORDS  bio-inspired models - dynamics - luminance gating - modelling - motion

integration - neural fields - perception






Résumé

Dans cette these, nous étudions l'intégration du mouvement chez le primate. En
se basant sur les connaissances actuelles concernant I'anatomie et les fonctions
de deux aires corticales impliquées dans le mouvement, vi et MT, nous expliquons
un certain nombre de réponses perceptuelles et oculo-motrices rapportées dans la
littérature. Tout d'abord, nous construisons un modele récurrent d'intégration du
mouvement se basant sur un nombre minimal d'hypothéses concernant les inter-
actions corticales. En proposant un simple mécanisme de « lecture », nous sommes
capable de reproduire non seulement la perception, mais aussi les dynamiques
oculaires de poursuite sur des stimuli de type ligne ou grille. De la, en se bas-
ant des études psychophysiques sur I'intégration du mouvement et sur des études
physiologique concernant les champs récepteurs, nous construisons un deuxieme
modele dynamique dans lequel I'information concernant le mouvement est di-
rigée par un signal de forme. Pour cela, nous postulons que le cortex visuel utilise la
régularité de la luminance pour diriger la diffusion du mouvement. Un tel mécan-
isme élémentaire de diffusion permet de résoudre des problémes contextuels, dans
lesquels les jonctions extrinséques doivent étre ignorées, sans avoir besoin d'util-
iser des mécanismes plus complexes tels que les détecteurs de jonctions ou le calcul
de profondeur. Enfin, nous reformulons le mode¢le initial dans le cadre du form-
alisme des champs neuronaux afin d'analyser mathématiquement ses propriétés.
Nous incorporons la rétroaction multiplicative dans le formalisme et prouvons
l'existence et l'unicité de la solution. Afin de généraliser les comparaisons aux per-
formances du systéme visuel, nous proposons une nouvelle méthodologie d'évalu-
ation basée sur les performances du systeme visuel humain, accompagnée d'une
série de vidéos issues de la littérature biologique et psychophysique. En effet, une
méthodologie d'évaluation adaptée nous semble essentielle afin de continuer les
progres en modélisation des mécanismes neuraux impliqués dans le traitement
du mouvement. Pour conclure, nous analysons les performances de notre modele
d'intégration du mouvement en l'appliquant a des problemes classiques et récents
issus de la vision par ordinateur. En dépit de son objectif initial, notre modele est
capable de donner des résultats comparables aux récentes approches proposées en

vision par ordinateur au niveau de l'estimation du mouvement.

MOTS-CLES champs neuronaux - dynamiques - luminance - modeles bio-inspirés -

modélisation - intégration du mouvement - perception






Introduction

MOTION AND THE BRAIN

Perception

Perceiving motion is being able to see that an object moves and
to know in which direction and at which speed.

The famous case of M.P. described by Zihl, von Cramon and
Mai**® allowed a better understanding of motion perception.
Indeed a cardiovascular accident damaged the cortical areas in-
volved with motion perception in this patient. From that point
in time M.P. has been unable to achieve simple acts such as
filling a cup of tea or crossing a street. While still perceiving the
level of the liquid or the position of cars, M.P. cannot estimate
the overflowing time or distinguish between stopped and mov-
ing cars.

The state of M.P., known as akinetopsia, did not decrease
her abilities to recognise shapes or faces, and her colour percep-
tion remained intact. Such a disability suggests that motion in-
formation flows through a specific pathway in the brain.” This
division between different visual pathways is confirmed by the
existence of other similar conditions such as cerebral achromatop-
sia, colour blindness originating from brain malfunction.>%

Yet divisions between visual pathways, as well as between
visual and non-visual pathways, are porous. For instance colour
and luminance information'"'77 as well as auditory motion®"
can improve motion perception. An extreme case of this poros-
ity is synesthesia in which two more senses are coupled.®’

Understanding the mechanisms involved in motion percep-
tion is the first step towards a hope for cure in patients with

damages to motion areas.

* At least a part of motion information.
Recognition of biological motion or
structure from motion seem not
affected by those damages.?35



Perception Eye movements

Partly due to the peculiar nature of our retina, in which the
/ central part—the fovea—is the only precise and colour-aware
region, our eyes are constantly in motion. Various type of eye
movements exist, such as saccades to centre the projection of
Areas an object on the retina, the vestibulo-ocular reflex to compensate
n @ head movements, or smooth pursuit to follow moving objects.
Smooth pursuit movements are tightly linked to motion
perception. As it is the case in perception, following an object

Vi

Grossberg & Mingolla

requires to know in which direction and at which speed it is
moving. It has been shown that both pursuit and perception

Columns . o o
share common mechanism of motion integration. Since eye move-
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ments are fundamentally dynamical, they give us essential in-

f
f

=INMM /| i formation on the involved mechanisms.
b

Bresslof & Cowan

Physiology

Neurons
In the case of patient M.P., damages occurred in the cortical

Hubel & Wiesel

area MT—also named vs. This cortical area happen to be spe-

cialised in motion integration,®>>?% and is involved both in
motion perception*4 and smooth pursuit.'4>""® The area mT is
only one of the numerous cortical areas of the visual system.
Synapses Each cortical area is tuned for specific features—colour, mo-
tion, disparity, etc.—and is composed of large number of inter-

connected neurons. Various techniques were developed to ex-

Hodgkin & Huxley

plore the function and anatomy of the visual cortex, and those

techniques allow us to understand how the processing of visual
Molecules information works.

Modelling

Dayan and Abbott® classify models in three categories depend-
ing on which of the what, how or why questions they answer.
Descriptive models (or phenomenological models) aim at accur-
Fig.1  Some possible modelling ately describing large amount of experimental data. Mechan-
levels in visual neuroscience. istic models address the question of how systems operates in
a bottom-up approach. Interpretive models (or optimal models)
try to understand the behaviour of a system with a top-down

approach focusing on the functional role of a phenomenon.
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Mechanistic models link experimental recordings across differ-
ent levels to form a single system (see Fig. 1). For instance the
model of Hodgkin and Huxley,*9 describes the ionic interac-
tions inside the giant axon of the squid to explain the emission
and propagation of action potentials, also called spikes.

In this thesis we propose mechanistic models linking the
neural activity inside the cortical areas processing motion, and
perception. Several models were proposed to explain motion
perception based on the anatomy of the cortical areas vi and
mT.2°82432 With various granularity of details, they manage to
explain some important experiments recorded in psychophys-

ics.

THESIS ORGANISATION

The manuscript is divided in three parts. In Part | we review
the experimental data concerning motion at perceptual, beha-
vioural and physiological levels. In Part || we propose different
versions of a recurrent dynamical architecture reproducing the
dynamics of motion integration. In Part I/l we describe an eval-
uation methodology for motion estimation based on human
visual performance, and we evaluate our neural fields model

against computer vision performance.

SEEING MOTION Part |

Perception Chapter 1

We begin by presenting the fundamental problems of motion
integration in the case of motion perception. In particular we
put the aperture problem as the centre of our study in various
line-segments and gratings configurations.

Tracking Chapter 2

Smooth pursuit and motion perception are two intertwined pro-
cesses of the visual system. We discuss the similarities between
pursuit and perception in the case of the aperture problem and
show how the dynamics of eye movements can reveal the mech-

anisms underlying motion integration.

Thesis organisation 7



Physiology Chapter 3

To understand how motion perception and smooth pursuit are
controlled, we detail the physiology of the visual cortex focus-
ing on two areas, vi and MT. Indeed, v1 is the major entry point
of the visual cortex, and MT is a cortical area shown to be in-
volved with both perception and pursuit.

Models Chapter 4

Several models of motion perception and smooth pursuit are
described in the literature. We selected three models of mo-
tion perception describing the connectivity between vi and mMT.

Those models served as inspiration for our work.

MODELLING MOTION Part Il

Model architecture Chapter s

Based on current knowledge on visual system interactions, we
define a two-layer model architecture for motion integration.
Each layer corresponds to the activity of neuronal populations
in cortical areas vi and mT. Lateral, feed-forward and feedback
connections are proposed to mimic cortical interactions. We
also propose a simple readout mechanism able to control dir-
ection and speed of smooth pursuit.

Dynamics of integration Chapter 6

We propose a model able to explain not only motion perception
on a large range of stimuli, but also to reproduce the ocular dy-
namics of smooth pursuit. The model postulates the existence
of a small number of neural mechanisms and we justify them
with anatomical data and neural recordings of the two cortical

areas vi and MT.

Luminance gating Chapter 7

Then we introduce a novel mechanism of motion integration
gated by luminance information coming from another cortical
area, v2. This contextual information allows the visual system
to better analyse the visual scene by considering that different

8 INTRODUCTION



objects have different luminance. It also explains how contex-

tual information can influence motion integration.

Neural fields Chapter 8

Finally we study the mathematical and computational proper-
ties of the proposed mechanism. To this end we fit our model
into the neural fields formalism.?>*7 This rewriting allows us to
prove the existence and uniqueness of the solution given by our
model. We also study the computational implications of the se-
lection mechanism and of lateral diffusion.

EVALUATING MODELS Part 111

Comparison to the visual system Chapter 9

Generalising our comparisons, we design a benchmark for mod-
els of motion perception and motion integration. We consider
several stimuli and suggest evaluation criteria to compare the
output of motion integration models with behavioural and per-
ceptual results.

We divided our benchmark into two kinds of evaluations.

The static evaluation only considers the final percept in-
duced by a stimulus. This evaluation mostly use psychophys-
ical results and can be applied not only to the output of mo-
tion models but also to computer vision approaches. Indeed the
wide range of spatial scales or frequencies used in psychophys-
ics is able to challenge several single-scale computer vision ap-
proaches.

The dynamic evaluation considers the time course of mo-
tion integration, and is thus linked to smooth pursuit or per-
ception dynamics.

Comparison to computer vision Chapter 10

In another field of study, understanding motion perception can
improve the design of efficient robotic applications. Indeed the
human visual system outperforms computer vision methods
in a wide range of applications, despite the rapidly increasing

hardware capabilities. We show that even our model of motion

Thesis organisation 9



perception give results in the range of current computer vision

algorithms.
APPENDICES Part IV
European project SEARISE Chapter A

In the first appendix we describe our work in the context of the
European project SEARISE. The goal of SEARISE was to developed
a trinocular active cognitive visual system, Smart-Eyes, for de-
tection, tracking and categorisation of salient events and be-
haviours. In this context our main contribution was to design
motion integration algorithms and implement them using Gp-
Gru technologies.

Reading with low-vision Chapter B

In this appendix we propose a reading aid software for low vision
patients. This work started as a postgraduate fellowship in a collab-
oration with Eric Castet and Jean-Baptiste Bernard from the CNRs.
It was extended during the Php thesis, although not being its main

objective.

Million of people suffer from low-vision, a disability tightly
linked to age. In cases such as age-related macular degenera-
tion (AMD), the visual acuity decreases, and patients read more
easily with uncluttered large characters. In cases such as glauc-
oma, the periphery of the visual field is impaired, decreasing
the ability to navigate in complex documents.

In this appendix we propose a system facilitating reading
for low-vision patients by analysing complex documents in or-
der to ease navigation and allow custom text display. To valid-
ate our approach, 26 subjects compared our software to exist-
ing reading aid under the supervision of orthoptists. Promising
results validate our approach which allows patients to continue
reading, in comparison with more autonomous systems such as

voice synthesisers.
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Part1  Motion integration in the primate

1 Perceiving motion 15
2 Tracking objects 23
3 Neural architecture 27
4 Existing models 35

Sharing common neural substrate, motion perception and eye
movements are two intertwined processes of the primate visual
system. We start by presenting the fundamental problems of
motion integration and their relation to human perception in
Chapter 1. We investigate the solution of the aperture problem
and the discrimination between intrinsic and extrinsic junc-
tions and conclude the chapter with temporal dynamics in per-
ception.

This transition to dynamics allows comparison between per-
ception and one class of eye movements, smooth pursuit, and
we investigate the links between the two in Chapter 2. As the
objective of smooth pursuit is to track moving objects, a direc-
tion need to be computed and the initial direction error reveals
the inner mechanisms underlying the tracking.

Deeper into the brain, anatomical data and physiological
recordings divulges the machinery behind motion integration,
providing the chemical and cellular substrate of the various com-
putations hinted by perception and behaviour. In Chapter 3 we
discuss the visual information stream in the primate visual sys-
tem and its relation with motion perception and smooth pur-
suit.

We conclude our motion integration panorama in Chapter 4
with the description of several models of motion computation.
The architecture of the described models follows the observa-
tions made on the visual cortex and focus on motion percep-
tion. The models we propose in the second part of this thesis
are inspired by those work.

3






Chapter 1 Perceiving motion

In this chapter we introduce motion integration from a perceptual
perspective. We start by describing the fundamental aperture prob-
lem in Section 1.1. Then we review some classical mechanisms and
terminology in Section 1.2. In Section 1.3 we discuss contextual in-
fluences and cross-modality. We end the chapter in Section 1.4 by
showing that perception is not stable but changes in time.

1.1 THE APERTURE PROBLEM

Natural scenes present many sources of ambiguities, that are to
be solved in order to extract reliable information to control be-
haviour. One example of such ambiguity is the aperture problem
in motion perception, described by Wallach.*43

When a translating bar is viewed behind an occluder mask-

ingits extremities, its translation direction cannot be recovered.

Indeed an infinite number of constrained translations are pos-
sible. In Fig. 1.1 we show such a translating bar in the first row,
at three different times. The second and last rows show two
different translations coherent with the stimulus.

@ | % | @ BN
O || D || |~
O D[ 2

Interestingly when only the central part of the bar is visible,

15

Fig. 1.1 Aperture problem in mo-
tion detection. When an edge is seen
through an aperture masking its
extremities, its motion direction is
perceived as orthogonal to its orient-
ation, a choice between the infinity of
possible motion directions.
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Fig.1.2 Velocity space repres-
entation. Left: some of the possible
velocities in the aperture problem.
Right: All the possible velocities are
aligned when represented in a velocity

space.

the perceived motion is the translation orthogonal to the bar
orientation.

The aperture problem is fundamental in the visual cortex.
Indeed it appears at several levels of the visual system, including
at the oculo-motor (see Chapter 2) and at the neuronal levels
(see Chapter 3). More generally the aperture problem can be

found in non-motion visual processing such as stereopsis.’®

1.2 MOTION INTEGRATION

In order to compute the global motion of an object embedded
in a complex surrounding, the visual system takes local motion
estimates as input. As a consequence, it must deal with numer-
ous ID features, corresponding to edges and, generally fewer,
2D features such as corners or line-endings. Indeed the 1D fea-
tures—also called 1D cues—only allow to recover the motion
orthogonally to the bar, whereas 2D features—or 2D cues—al-
low to recover the complete 2D motion.

After several decades of intensive research on 2D motion
perception and its neural substrates,”* it is still highly contro-
versial whether or not, and how, the brain uses these different
types of local motion cues to recover the global motion of the
surface of interest.* We review some classical explanations of

motion integration in the next sections.

1.2.I ID motion integration

In order to describe visually the computation rules suggested
in the literature, the set of possible velocities can be shown in
their velocity space. In Fig. 1.2 we show some of the possible
velocities occurring at the centre of a bar and represent them
in the associated velocity space. To explain that perception and
ocular responses output the motion orthogonal to the bar ori-
entation, one can postulate the existence of a prior on small
velocities.?#®

To unravel the computational rules involved in motion per-
ception more complex stimuli were proposed. By increasing the
number of translating bars a grating is generated. The super-
position of two gratings with different orientations is called a

16 PERCEIVING MOTION



plaid (see Fig. 1.3). Each of the gratings is represented by a line
in the velocity space and perceived as moving in a direction or-
thogonal to its orientation. When both gratings are presented
simultaneously as a plaid pattern, the perceived motion direc-
tion corresponds to the intersection of the lines in the velo-
city space—purely horizontal in the example. This geometrical
solution is named the intersection of constraints (10c)’® and sev-
eral studies have proposed that the primate visual system uses

a similar computation.”

.V Fig. 1.3 Plaid pattern. Left: The
’ superposition of two translating
/ gratings with different orientations is
called a plaid. Right: Superposition of
the associated velocity spaces.

It remains however unclear how the visual system can imple-
ment the 10c¢ rule. Moreover, the fact that perceived direction
does not always correspond to the 10c solution, at least for short
stimulus durations,>°° has supported alternative models. Among
them, the vector average (vA) is defined by averaging the gratings
motions. In the plaid presented in Fig. 1.3 the vector average has
the same direction as the 10c, but a slower velocity. By chan-
ging the properties of the gratings separately, one can create
type 11 plaids where the motion direction of the 10c and the va
are different.

1.2.2 2D motion integration

As pointed out by Wallach*® a spatial integration of 1D fea-
tures can be used to reconstruct the translation of a moving ob-
ject. But 2D features can also be extracted as their motion seen
through the same aperture size is not ambiguous. In the stim-
uli presented in the previous section, we only considered and \
plotted the 1D motion, and ignored 2D features coming from \_>
the edges of the aperture or the gratings intersections.
To investigate the effect of the number of 2D cues on mo- \

Fig. 1.4 Cut translating bar.

Motion integration 17
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Fig. 15 Barber pole illusion. In both
stimuli an identical grating translating
in a diagonal direction (light arrow) is
viewed through a rectangular aperture.
Yet the perceived direction (dark arrow)
depends on the aperture orientation.

N
I

Fig. 1.6 When two squares are

L/

crossing extrinsic junctions appear
at the occlusions (circles) leading to
erroneous 2D signals (small arrows)

tion one can cut a translating bar into smaller ones increases
the number of 2D cues (see Fig. 1.4). Lorenceau and colleagues'+
investigated the effect of increased 2D cues by displaying trans-
lating bars of different length for a short period of time and ask-
ing the subject to choose a motion direction. Their results show
that increasing the numbers of 2D cues decreases the perceived
direction error.

For certain stimuli such as the barber pole illusion where a
grating is viewed through a rectangular aperture, considering
2D features is fundamental. In Fig. 1.5 we show two identical
gratings behind rectangular apertures with different orienta-
tions. With such configurations, the perceived motion direc-
tion is biased towards the elongated border of the aperture. Yet
apure ID motion integration analysis would consider both con-
figurations as equivalent since the grating motion direction is
the same in both cases.

From the configurations of the barber pole illusions two
sets of 2D cues arise with directions collinear to the short and
long edges of the aperture. Wallach*4* proposed that the greater
number of terminators on the longer borders explains the per-
ceived motion. This corresponds to a higher peak in the velo-
city space representation of Bayesian models.?4® Other models
propose the unambiguous information to propagate on the am-

biguous line.”*®

1.3 CONTEXTUAL INTEGRATION

1.3.1 Intrinsic versus extrinsic junctions

Moving objects constantly mask and unmask other objects, cre-
ating occlusions. For instance when two squares are translat-
ing, 1D motion cues can be extracted from their edges, and 2D
motion cues can be extracted from their angles. If the two squares
are overlapping, new 2D motion cues appears as shown in Fig. 1.6.
In such cases the visual system makes certain assumptions
to eliminate 2D features created by the occlusions, and to keep
the veridical 2D features.?°® The 2D features to be ignored are
called extrinsic junctions, whereas the true 2D features are called

intrinsic junctions.

18 PERCEIVING MOTION



In the chopstick illusion presented in Fig. 1.7 two translat-
ing bars are presented. Despite one configuration having oc-
cluders masking the extremities of the bars, both stimuli have
the same set of 1D and 2D features. However the perceived mo-
tion is each case is very different. As such the chopstick illusion
provides an example where pure motion processing is not suffi-
cient to explain the percept. Similarly, adding occluders to the
borders of barber pole stimuli changes the motion percept.

e e

To account for perception several proposals model an ex-
plicit junction segregation through features detectors. In their
seminal work Shimojo and colleagues?°® suggested T-junctions
to act as monocular depth cues and should thus be classified as
extrinsic. Indeed looking at the content of the circles—the ex-
trinsic junctions—in Fig. 1.6 one can see rotated T created by
the squares borders. Inhibition of T-junctions was confirmed
by Lorenceau and Zago,'#> at least for low spatial frequencies
and small stimuli sizes. Several models implement this idea:
Weiss and Adelson mark three-labelled regions as extrinsic;*4?
Grossberg and Mingolla399® implement a T-junction detector
in their FAcADE model; Bayerl and Neumann® perform a sim-
ilar feature detection but use it in an excitatory way.

1.3.2 Multi-aperture stimuli

The diamond stimuli proposed by Lorenceau and colleagues'+
provide an interesting set of experiments to understand the
mechanisms of contextual motion perception. Their basic stim-
ulus is a diamond viewed behind four apertures that only show
the edges. Depending on the orientation of the apertures, the
10c and the va solutions are not always compatible with the
true diamond motion (see Fig. 1.8)

Contextual integration 19

Fig. 1.7 In both stimuli two trans-
lating bars are crossing leading to the
same set of 1D and 2D features. Yet the
two translating bars are perceived as
a single upward moving object when
their extremities are occluded.



Fig. 1.8 If a translating diamond
is viewed behind four rectangular
apertures showing only its edges,
10C and vA solutions are not always
compatible with the true translation
(big arrow).143

Fig. 1.9 Diamonds and arrows from
Lorenceau and Alais.'#2. All geometric
figures are derived from a diamond but
have the edges shifted differently.

In the experiments of Lorenceau and Shiffrar'#3, a diamond
is translating along a circular path. Perception of a moving rigid
object is stronger when the aperture is clearly delimited (as in
Fig. 1.8), for configurations for which the 10c solution is valid,
when the stimulus is presented in the periphery of the visual
field, or when the terminators noise is increased.

A later set of stimuli by Lorenceau and Alais'** provided
clues on how geometry influences motion integration. By shift-
ing the edges of the diamond, the authors create an extensive
set of geometric objects to study perception (see Fig. 1.9). Res-
ults show that form has a critical role in motion integration. In
particular global motion is perceived more easily if the object is

a diamond than if the object is an arrow or a cross.

L N\ \\ |
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1.3.3 Cross-modal influences

The hypothesis underlying the classification of T-junctions as
extrinsic comes from the statistical observation of occluded ob-
jects. It relies—at least in models—on a non-motion informa-
tion originating from the junction detectors in the form path-
way. Yet several other multi-features influences are reported in
the literature.

For instance varying the luminance at the intersection of
superposed gratings, Ramachandran and colleagues*®%5 found
that luminance compatible with transparency elicit the percept
of two gratings, and not one single plaid (see Fig. 1.10). Thus

20 PERCEIVING MOTION



perception can switch between one single plaid—pattern mo-
tion—or two gratings moving in different directions—component
motion.>'8117

Several other examples of influence between features exist.
Obviously, disparity information from binocular stimuli greatly
improves motion perception. For monocular stimuli, lumin-
ance or colour information'"'77 as well as auditory motion*"3

were shown to influence motion perception.

1.4 DYNAMICS

1.4.1 Multi-stability

Most, if not all, the stimuli used in psychophysics are multi-
stable, as they can be perceived differently from trial to trial, or
in time within a single experiment. For most of the stimuli the
alternative perception are marginal and only the predominant
percept is studied in the literature. However some stimuli have
been designed to study those changes in percept.

A crossed barber pole can be obtained by combining the
two barber poles of Fig. 1.5, i.e. by viewing a drifting grating
through a cross-shaped aperture (see Fig. 1.11). In this case, the
percept is strongly multi-stable and observers perceive either
the grating translation or two orthogonal motion.>

1.4.2 Presentation time

Perception changes over time in multi-stable stimuli, but per-
ception also changes depending on the presentation time of a
given stimulus. For instance, when a simple translating object
such as a slanted bar is presented to an observer, his visual sys-
tem is fooled by local ambiguous cues for several hundreds of
milliseconds.

For short durations the subject perceives a motion direc-
tion orthogonal to the bar orientation instead of the true mo-
tion direction>""442° (see Fig. 1.12). Such a perceptual bias is
corrected for longer durations.

Therefore the visual perception system seemed to be fooled
by the aperture problem for short durations, as if 2D features

from bar extremities are delayed in comparison with 1D fea-
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Fig. 1.10 Transparent motion

perception. Left: When the luminance
at the intersection of the gratings is
compatible with transparency, two
motion are perceived. Right: When
the luminance is incompatible with
transparency, a single plaid motion is

perceived.

Fig. 1.11 Crossed barber pole.
Observer perception shifts between
grating motion (blue) and barber poles

(red).

Fig. 1.12 Translating bar stimulus.
A slanted bar is translating horizont-
ally (darker arrow), but its perceived
direction is initially biased towards the
direction orthogonal to its orientation
(lighter arrow).



Fig. 1.13 Perception dynamics of
the translating bar. The angular error
of perceive direction versus true bar
direction is plotted as a function of
stimulus duration (from Lorenceau and
colleagues'44).

tures from the middle region. Varying the presentation time of
the stimulus, one can plot the temporal evolution of the direc-
tion error. In Fig. 1.13 we show such a time course for a translat-
ing bar stimulus as recorded by Lorenceau and colleagues."#
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In the next chapter, we introduce a more natural approach
to explore motion integration dynamics, recording smooth pur-

suit eye movements.
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Chapter 2

Tracking objects

In this chapter we introduce smooth pursuit eye movements as a
tool to understand the mechanisms underlying motion integration.
We start in Section 2.1 by describing what is smooth pursuit and
how it is recorded. In Section 2.2 we show that pursuit is also influ-
enced by the aperture problem for short duration. In Section 2.3 we
discuss the spatial integration leading to smooth pursuit.

2.I SMOOTH PURSUIT

2.1.1 Eye movements

In the previous chapter we described 2p motion integration
from a psychophysics point of view. As such we considered per-
ception of the subjects at the end of an experiment and building
up a time analysis required stacking experiments of different
durations (see Section 1.4.2). In order to consider more dynam-
ical data this chapter describes an alternative view on motion
integration: the oculo-motor level.

Each of the primate eye is controlled by three pairs of ant-
agonistic muscles (see Fig. 2.1) which are able to produce sev-
eral types of movement to shift of stabilise gaze (see Krauzlis,
2008,"2° for a review).

The vestibulo-ocular reflex (vor) and the optokinetic response
(okR) both stabilise gaze to compensate for head movements,
although they operate at different time scales and use differ-
ent sensors. Among the gaze shifting movements, saccades rap-
idly—hundreds of degrees per second—shift gaze to specific loc-
ations in the visual field, whereas smooth pursuit slowly—tens
of degrees per second—follows moving objects to minimise the
blurring of the target. Vergence adjusts the eye to the depth of
an object. Finally microsaccades, intersperced among drifts, con-
tribute to fixation and high visual acuity tasks."*

In this study we only consider pursuit movements as it is
closely related to 2p motion integration. Indeed smooth pur-
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Fig. 2.2 Tracking error and percep-
tion on a translating bar. The angular
error tracking error is plotted for hu-
man subjects (squares) and macaques
(stars). We re-plotted results for percep-
tion (disks).

suit eye movements are used to follow moving objects and are
less consciously influenced than saccades for instance—it is really
difficult to start a smooth pursuit without a moving object. Yet
saccades and smooth pursuit appear to share a common func-
tional architecture’’, and studying one can help understand-
ing the other.

2.2 FOLLOWING LINE DRAWINGS

2.2.1  Tracking bars

Smooth pursuit movements were recorded using stimuli sim-
ilars to the one described in the previous section. In the motor
experiment associated to the translating bar, subjects are asked
to follow the centre of the bar, while macaques are trained to
do so.
The dynamics of the eye movements are now recorded within

a single experiment and they show striking similarities, both
in term of time scale and angular tracking error, with percep-
tual results.”*' In Fig. 2.2 we show angular tracking error for the
translating bar in both human®#' and macaques,*> and redraw
the results of Fig. 1.13 for perception.

Error [°]
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Again the oculo-motor system is initially biased in a direc-
tion orthogonal to the bar, and we can assume that it is subject
to the aperture problem which is solved in a few hundred mil-

liseconds.
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One can assume a common mechanism at both perceptual
and motor level that takes local motion cues as input. Interest-
ingly this initial bias does not decrease if the subject knows the
true direction of the moving bar before the experiment. Thus
smooth pursuit eye movements provide us an easier reprodu-
cible mechanism to unravel the computations underlying mo-

tion integration.

2.2.2  Diamonds

In another line drawings experiments, Masson and Stone con-
sidered diamonds translating’>* diamond stimuli translating either
vertically or horizontally (see Fig. 2.3). Due to the local orient-
ations of the diamonds edges with respect to the translating
direction, these stimuli mimic type 11 plaids. Indeed the vector
average of the edge motions is biased 44° away from the object's
direction. The stimuli thus provide an interesting example to
study the influence of 1D and 2D cues on motion integration.

Changing the configuration of the stimulus, by using clock-

) ] Fig. 2.3 In the translating diamonds
wise (cw) or counter-clockwise (ccw) stimuli, or by varying the stimulus, 5+ the motion cues given by
direction of the translation, does not influence the ability to the edges of the diamonds (blue arrows)
pursuit the translating diamonds. In all the cases, the initial do not average to the real translating

pursuit direction as well as the fastest perceptual estimates are direction (red arrow), as in the type 1

. . . plaids.
biased towards the vector average of the edge motions. It is only
after a few hundred milliseconds of exponential direction er-
ror decay that the eyes correctly track the object or that human

subjects report the correct direction of motion.

2.3 SPATIAL INTEGRATION

Several clues indicates that smooth pursuit involves a spatial in-
tegration of motion cues, as it is the case for motion perception
(see Section 1.2.2).
Barthélemy and colleagues®® used a drifting grating viewed
through circular aperture with different sizes to investigate spa-
tial integration. The orientation of the grating is constant and
orthogonal to its drifting direction, but the diameter of the cir- e
cular aperture varies among the stimuli (see Fig. 2.4).
The authors quantify the change in eye direction during

Spatial integration 25 Fig. 2.4 Drifting grating viewed

through different aperture sizes.



several time windows with respect to the diameter of the aper-
ture. Their goal is to provide a quantitative measure of the spa-
tial summation area, i.e. the smallest diameter leading to the
strongest change in eye position. Such spatial summation func-
tions can be seen as a global readout of the motion integration
performed in cortical area MT.

It is however also possible to look at the perceptual effects
of such stimuli: varying sizes of grating patches affect motion
detection as well as motion after effect. Many psychophysical
studies have been conducted on the perceptual consequences
of the centre-surround interactions in early visual areas.>°* and
it becomes possible to compare these results for the properties

of neuronal receptive fields in various cortical areas.

In the following chapter we will study the biological sub-
strate for the various phenomena reported in the literature.
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Neural architecture

Chapter 3

In this chapter we discuss the anatomical and physiogical substrate
of motion integration. Section 3.1 briefly review the neural architec-
ture of the visual system, in particular its organisation in areas. Sec-
tion 3.2 describe the functional properties of neurons in the visual

cortex. Section 3.3 provides some hints on how motion is processed.

3.I BRAIN ANATOMY

3.1.1 Retinal input

At the entrance of the visual system is the retina which trans-
duces the received light into electrical impulses. The retina it-
selfis made up several layers of neurons, from the photorecept-
ors catching the photons to the ganglion cells sending the sig-
nal to the rest of the visual system. Measuring and interpreting
both retinal responses and the retinal computations are cur-
rently very active fields of research.950:8"

The visual signals can take various paths starting from the
retina. In this study we consider the retino-geniculo-cortical
pathway, since we are interested in the cortical interactions and
their relation to perception and dynamics. In this pathway, the
signal emitted by the retinal ganglion cells is passed through
the lateral geniculate nucleus (LGN), a thalamic region of the
brain, and forwarded to the primary visual cortex (v1) (see Fig. 3.1).
v1 is the cortical area at the entrance of the visual cortex.

Despite not being the focus of this study, other visual path-
ways can also provide useful information leading to changes
in perception or oculo-motor dynamics. For instance inform-
ation from the retina also flows into the superior colliculus, a re-
gion of the midbrain closely involved with eye movements (also
called tectum in other species). Connections between the su-
perior colliculus and other regions of the brain which are sup-
posed to be beyond the primary visual cortex explain why some
those other regions can still be activated even if the primary
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Fig. 3.1 Pathway to the visual

cortex. Light received by the retina is
transformed into an electrical impulse
passed through the LGN and forwarded
to VL.



Motion

Fig. 3.2 Major areas involved with
motion in the primate visual system
(adapted from Felleman and van Essen,
199177). Dotted region denotes the
cortical areas.

visual cortex is disabled.’9>9°

3.1.2  Cortical areas

The cerebral cortex of primates can be divided in anatomically
and functionally distinct areas called the cortical areas. Focus-
ing on the visual cortex, one can find cortical areas dedicated
to colour, motion perception, object recognition, or eye move-
ments.

Although the separation is not so strict, a classical view is
to consider Cortical areas in the visual system to be grouped
in two main pathways. Areas in the form pathway mostly pro-
cess static information such as colour or shape, and included
areas dedicated to shape recognition. Areas in the motion path-
way analyse changes in the image, integrate motion, and initi-
ate eye movements. Both pathways have anatomically distinct
cells, called parvocellular in the form pathway, and magnocellu-
lar in the motion pathway. The neurons not classified in one of

those groups are known as koniocellular.

3.1.3 Connections

Long range connections such as the one coming from the LGN
to the v1 help us understand the visual information pathways.
Inside a single cortical area, short range connections exists, the
lateral connections (or horizontal connections) used by neurons
in a single area to process information. Despite their shorter
travelling distance, lateral connections are slower than connec-
tions between areas since they are not myelinated (0.1-0.2 m/s
versus 2—-6 m/s in the macaque?3).

The information emitted by the retina is not directly trans-
mitted to all the cortical areas in the visual cortex, and a hier-
archical structure is constructed, where higher areas are less dir-
ectly connected to the retina since information passes through
a lot of lower areas. For instance, most of the visual input con-
cerning motion will go from the retina to the LGN from where
its projected to vi, then passed through mT, and later to mMsT
and other higher cortical areas (see Fig. 3.2).

In addition to the forward stream carrying information from

the retina to the higher level areas, abackward stream transmits
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back information to areas closer to the retina. Those feedbacks
transmit information across large regions of the visual field®
and are proposed to play a major role in contextual informa-

tion processing.

3.2 PROPERTIES OF NEURONS

3.2.1 Retinotopy

The first areas of the visual cortex preserve neighbourhood prop-
erties: two neighbouring neurons in the retina are connected to
two neighbouring neurons in the cortical area v1. This preser-
vation of topology is called retinotopy and is partially guided by
chemical markers during the development phase, as first hy-
pothesised by Sperry.”>*'4"° Those chemical markers are as-
sumed to encode the position of neurons in the receptive field.

Yet such a chemical mechanism, also called chemospecificity,
is likely to be complemented by other processes, in particular
due to the numerous cells in the visual system areas. Among the
various principles proposed to guide retinotopy, Hebbian ap-
proaches are the most popular and biologically plausible. Among
them, the Lissom model by Miikkulainen, Bednar, Choe and
Sirosh's® provides the most extensive implementation and ex-
plains the emergence of receptive fields.

3.2.2  Receptive fields

Because the connections from the retina to the visual cortex
tend to maintain a neighbourhood, neurons in v1 receive in-
put from a small region of the retina, corresponding to a small
portion of the visual field. The region in the visual field that a
neuron sees is called its receptive field and is assumed to be at
the origin of the aperture problem described in Section 1.1. In-
deed only a few neurons in v1 see the 2D cues such as the one
at the extremities of a translating bar, and much more neurons
are activated by the 1D cues.

The higher areas of the visual cortex, the larger the recept-
ive fields are. Indeed each neuron in a cortical area receives in-
put from multiple neurons of a lower cortical area, and its re-

ceptive field is thus a combination of the lower ones. Typical
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values for the receptive fields are 1° for vi cells or 6-10° for MT
cells. Those values are however variable inside a single cortical
area as they depend on the position of the receptive field of the
cell. The distance of the receptive field of a cell from the centre
of the visual field is called the eccentricity. The further the ec-
centricity, the larger the receptive field is, following a log-polar
scheme.

3.2.3 Motion tuning

In each cortical area, neurons are tuned for specific features.
Yet not all the neurons in an area are tuned for the same feature.
For instance only 30% of the neurons in area vr are selective
to the direction of motion, but this percentage raises to 92%
in area MT.*"* Indeed area v1 is not specific not motion, since
it is the entry point of the visual cortex (see Section 3.1.1) and
includes all kind of visual information.

Neurons in vi and MT are also selective to speed, but with
different tuning. v1 cells prefers small speeds (around 2°/s) but
MT cells are tuned to higher speeds (10-20°/s) despite taking
their input from v1.>°

Several cells in the visual system are tuned for multiple fea-

tures and may thus provide the substrate for cross-modality in-

Fig. 3. Disparity columns in MT. . .
833 party 65 teractions. In MT, DeAngelis and Newsome® found patches of

From DeAngelis and Newsome.
direction selective cells which are also part of binocular dis-

parity columns (see Fig. 3.3). Based on recordings from Basole
and colleagues® in the ferret, Mante and Carandini'4® postu-
late that the tuning of v1 cells for motion direction is multi-
plexed with orientation preference, viewed a blob in the spatio-
temporal frequency domain.

3.2.4 Receptive field structure

The receptive field is often structured, in that different regions
have different contributions to the neuron response. Moreover
some regions of the receptive field can be inhibitory, meaning
that neuron response will be lower if this part of the recept-
ive field is also stimulated, rather than the excitatory part only.
Furthermore receptive fields can be divided into two parts: its
centre, also called classical receptive field (CRF), and the surround.

30 NEURAL ARCHITECTURE



An activation of the centre is required to elicit a response of the

neuron, but action in the surround can modulate this response.

Activation in the surround alone, even if it is excitatory, cannot % % %
elicitaresponse. In Fig. 3.4 we show the three types of inhibitive
surround found by Xiao and colleagues in mT.?® 20%  50% 25%
In addition to spatial receptive fields, neurons in the visual Fig.3.4  Three main types
. . . . . . of surrounds found by Xiao and
cortex are tuned for certain properties, like orientation or spatio- 3. ‘
colleagues?>® in the cortical area

temporal frequencies. Those properties are sometimes combined M.
together in the more general concept of spatio-temporal re-

ceptive fields often defined in the frequency domain. Indeed

it is not sufficient to consider the tuning of neurons separately

of its other spatial properties. For instance the preferred ori-

entation tuning of vi cells changes with direction or speed,”’ a

change easily understandable if we consider the spatio-temporal

tuning of the neurons.®

3.2.5 Receptive field dynamics

Most models explaining the visual processing at work during
the early stages of the brain assume that the tuning of the neur-
ons, i.e. their receptive fields, does not change during the ex-
periments. However various experiments in the literature show
that the receptive fields are reshaped according to various factors:
the time of the experiment, the contrast in the stimulus, the
locus of attentions, etc. Receptive fields reshaping is also a mech-

anism found at all the levels of the visual cortex, e.g. in the
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retina,” in the LGN, in v1,’#" in v4," in MT,”*® or in LIP.
In this section we focus on motion processing cortical areas,

namely vi and MT.

Spatial changes

Pack and colleagues'’# recorded changes in the receptive field
size varying the contrast. For high contrast data, the recorded
cells show a suppression of their activity as the stimuli size in-
crease. On the contrary low contrast data, the recorded cell show
only an increased activity while the stimuli size increase. These
results are consistent with segmentation at high contrast, and
diffusion at low contrast, as observed in the literature.

Experimentalists proved that the classical centre-surround
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Fig.35 MT neuron response to a
plaid stimulus (from Pack, Berezovskii
and Born'©9). Left: Direction tuning for
the first 20 ms. Right: Direction tuning
averaged over the last 1500 ms. Outer
circle correspond to 9o spikes/s.

receptive fields of MT neurons is not fixed spatially but can be
modified by attention.*>”'® Having the attention fixed at a cer-
tain point moves the spatial receptive field structure towards
the attended point. Moreover the spatial structure is changed
depending on whether the fixated point is inside or outside the
classical receptive field. If the attended point is inside, the re-
ceptive field is shrunk, while it is expanded if the point is out-

side.

Tuning changes

Probing the response of MT monkeys cells with plaids, Pack,
Berezovskii and Born'® shown that their preferred direction
changes over time. As shown in Fig. 3.5 the direction tuning
of an MT neuron evolves over time. Initially neurons respond
to the two 1D gratings motion, and later converge towards the
average 2D plaid motion. The convergence does not appear in
anaesthetised monkeys.
00 90
120 6o 120 60

150 30 150 30

180 0 180 9 0

210 330 210 330

Similar dynamics can be found by probing the firing-rate
of MT neurons with barber pole stimuli:'7> Although during the
early stage, MT neurons have their preferred direction similar
to when gratings are used, after a time the preferred direction
moves towards the orientation of the barber pole.

As in the aperture problem, the shift of the preferred direc-
tion can be explained thanks to delayed inhibitive mechanisms,
as shown by Escobar and colleagues in v1.74

Attention can also modulate the gain in neuron responses,
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in particular it can increase or decrease the responses in MT

neurons for a specific direction.'”®

Pattern versus component cells

Pack and colleagues shown that the response of an Mt cells to
plaids can vary over time to shift from the two component mo-
tions, to the pattern motion. Movshon and colleagues qualified
neurons having this property pattern direction selective (pDs).'*"
But other MT neurons, the component direction selective (CDs),

are shown to enhance their component motion preference.
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Using pattern and component correlations, Smith, Majaj
and Movshon shown that the pattern versus component cell
classification evolves over time.*"" During the first milliseconds,
all neurons are unclassified, and their correlations changes dur-
ing the first 300 ms (see Fig. 3.6). Note that component cells are

classified sooner than pattern cells.

3.3 NEURAL COMPUTATION

3.3.1 Pooling of v1 responses

While the computational rules actually used by the brain are
still highly disputed, there are numerous physiological evidences
that cortical area vi implements local motion computation and
feeds an integrative stage such as area MT.>4 In macaque area
MT, neurons solving the aperture problem have been found by

various studies, using different 20 motion stimuli,"0217172211
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Fig. 3.6 Evolution of cell classific-
ation as pattern or component in MT
(from Smith, Majaj and Movshon?'!).



This property contrasts with the findings that vi neurons
mostly respond to the direction orthogonal to the orientation

162 glbeit some

of the edge drifting across their receptive field,
neurons seems to act as local features detectors such as end-
stopped cells."®'7® Thus, there seems to be a good intuition
that 2p motion computation is a two-stage mechanism with

local extraction feeding global integration.

3.3.2 Aperture problem

Interestingly, when presented with a set of small oriented bars,
direction selectivity of MT neurons exhibit dynamics similar to
the one observed at the tracking (see Section 2.2) and percep-
tion (see Section 1.1) levels: their optimal direction slowly rotat-
ing from the component orthogonal to the bars orientation to

the 2D motion direction over a 150 ms response period.'”"
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Chapter 4 Existing motion models

This chapter reviews three models of motion integration among the
numerous propositions in the literature. The selected models share
common mechanisms that we believe to be fundamental to under-
stand the links between cortical activity and the dynamics of mo-
tion perception and smooth pursuit. The model of Simoncelli and
Heeger presented in Section 4.1 combines half-squared divisive in-
hibition and the doughnut mechanism to account for responses in
individual Mt cells. The detailed models of Grossberg, Mingolla and
colleagues, presented in Section 4.2, explain a wide range of percep-
tual results based on neurons interactions. The model of Bayerl and
Neumann presented in Section 4.3 investigates the role of simple
biological mechanisms and apply them to computer vision prob-

lems.

4.1 SIMONCELLI AND HEEGER (1998)

Heeger and Simoncelli proposed a linear/non-linear model of
motion integration mapping the cortical areas vi and mT.28
Their model successfully reproduces responses of vi and M1
neurons for several experiments with gratings, plaids and ran-

dom dots.

4.1.1 Model description

Computations in the model are mapped to three populations
of the visual cortex.

The model considers a greyscale video I(t,x) : Rt x Q €
R™ as input, where t denotes time, and Q € R? is the con-
sidered spatial domain. Response of v simple cells is denoted by
L(t,n): RT x O, where O is the set of orientations along which
the input image is filtered. 28 different orientations are sampled
to filter the input with third-derivative Gaussian filters. Then,
the vi complex cells response is computed by averaging simple

cells responses having similar orientation and phase. Finally,
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Fig. 4.1 Inhibition in the model

of Simoncelli and Heeger.2°8 First

the input signal is half-squared, then
divided by the sum of the half-rectified
signals, thus implementing a selection

mechanism.

the computation of MT cells responses combines the complex
cells output using a divisive inhibition.

The divisive inhibition is applied at two stage in the model:
at the output of the filters, and at the output of MT. It modulates
a single cell activity p(t, i) tuned for any given feature i by the
population average (see Fig. 4.1):

Pt DR
> p(HE + A

where |x|+ = max(0, x) denotes a positive rectification to ac-

q(ta 1) - A1

(4.1)

count for the firing rate activity, and A; » are constants.

4.1.2  Discussion

The authors propose a doughnut mechanism to combine the re-
sponses of the cortical area vi which act more like filters, into
direction selective cells in MT. Indeed, the receptive field of v1
cells can be characterised by blobs in the spatio-temporal fre-
quency domain.”** Moreover, the frequency response of various
stimuli, moving with the same velocity but with different fre-
quencies, all lies on a plane. Hence, Simoncelli and Heeger pro-
pose that Mt cells tuned for a given velocity pool the responses
of v1 cells lying on the plane corresponding to their tuning.

One should note that the filters used in this model are not
causal.

4.2 GROSSBERG AND MINGOLLA (1997, 2001, 2007)

Grossberg, Mingolla and colleagues proposed several incarna-
tions of their model incorporating form and motion processing
to reproduce perception on a wide range of stimuli. The au-
thors map their model to various cell populations in cortical

areas vI, MT and MST.

4.2.1 Model description

Chey, Grossberg and Mingolla model the initial stages of mo-
tion detection in details using transient and directional cells to
compute motion direction.5® The three other cell populations
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model lateral interactions (spatial integration and centre/sur-
round mechanisms).

Each population of the various incarnations of the models
defines the activity p of its cells as a membrane equation :

Cm% =—(p—Ee)ge = (P —EiJgi — (P —EJar  (4.2)
where g, and g; represent the total inputs from excitatory and
inhibitory neurons synapsing on the cell, i.e. their receptive fields,
g1 is a leak conductance, and the E. are reversal potentials.

One of the interesting features of the model is the detection
of motion. Whereas other approaches take spatio-temporal fil-
ters or correlation detectors responses as input, the author model
the mechanisms leading for detecting motion in their first cell
populations. Moreover they investigate the role of oN and OFF
streams as found in the LGN and vI.

Motion detection is handled by the following populations:

e Transient cells detect changes in the input and are di-
vided into oN and OFF channels.

e Directional interneurons integrate transient cells response
by receiving excitatory input from activity at the same
position and inhibitory input from directional interneur-

ons sensitive to opposite direction.

e Directional transient cells received their input from tran-

sient cells and directional interneurons.

e Short-range motion filters accumulate motion in each dir-

ection at two different spatial scales.

Cells are classified as either belonging to the oN or the OFF
channels (for the first populations), or one of the two spatial
scales (for highest populations). Height possible motion direc-
tions are considered in the model and speed (motion magnitude)
is not handled.

In a subsequent version of the model,?° the authors included
recurrent connectivity between higher and lower cortical areas,
as well as form modulation using their FORMOTION model.%4 In
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particular the peculiar centre-surround organisation of bipole
cells (see Fig. 4.2) allows the detection of some extrinsic junc-

tions, in particular in the chopstick illusion.

4.2.2 Discussion

In comparison to the model of Heeger and Simoncelli, the au-
thors proposed recurrent model incorporating spatial interac-
tions. They extensively studied the stimuli proposed by the psy-
chophysics literature and successfully reproduced the percep-
tual results. In addition, Grossberg and Mingolla implement a
dynamical model in which the output of a cell is not fixed but
varies in time. This dynamics allows to see the resolution of the
aperture problem in time and can also serve as input to other

mechanism such as smooth pursuit.'”3

4.3 BAYERL AND NEUMANN (2004)

The model of Bayerl and Neumann provides an interesting small
framework to study motion perception. They propose a recur-
rently connected system mapping vi and mMT, and apply it to a
several simple synthetic stimuli to understand resolution of the
aperture problem. An important contribution of their model is
that it is also able to process large video sequences such as the
one used in computer vision and provide good results. The au-

thors also investigated several extensions of this model.

43.1 Local motion estimation

Starting from the input image sequence I : (t,x) € RT x Q —
I(t,x), Bayerl and Neumann estimate the local motion k; us-
ing modified Reichardt detectors. Two filtered images are cor-
related to estimate population activity: Directional derivatives

are used to filter the input:

I(t,x) % 02G¢

Cl(t,X,(X): X Ao X )
e+ peo I(t,x)*aBGg *Gg

where ¢ avoids division by zero, G, denotes a Gaussian kernel,
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o's are scaling constants, x denotes the convolution operator in
space and 0% denotes the second order directional derivative in
the direction « € O.

From these filtered outputs, the Bayerl and Neumann defined
the half detectors by correlation with another frame:

C;(t,X,V) = (Z Cl(t,X, O() Cl(t+ Lix+wv, “)) :GG’

xeO

C;(t,X,V) = (Z Cl(t+ ]-axa (X) Cl(t,X+V, “)) :GG’

xeO

where o's are scaling constants. The half detectors are then com-

bined by:

|C3_(t,X,V)|+ - %|c2_(t,x,v)\+
L+ ey (t,x,v)l+

k—l (ta X, V) =

)

where [x|; = max(0, x) is a positive rectification, for the activ-
ity of neurons is always positive.

Due to its simple two-frame correlation, this local motion
estimation is limited in its frequency support, and is not equi-
valent to the elaborated Reichardt detectors®3® and thus not to
the energy models.

4.3.2 Model description

The two cortical areas implemented by Bayerl and Neumann
can be described by their activity:

pi:(t,x,Vv) €ERTx Q xV —=pilt,x,v) €[0,1], ie{1,2},
(4.3)

where V represents the space of possible velocities. Each func-
tion p; can be interpreted as the state of a cortical area retino-
topically organised which describes at each position x the in-
stantaneous activity of a neuron tuned for the velocity v.

Processing in each cortical areas follows the following stages:
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ml(t,X,V) = kl(t7X7V) (1 + 100p2(t7X7V))7

nl(t,X,V) - m%(taxa\)) ¥ GO‘;

n (tvxvv) - (1/2‘\7” ZWEV ni (t,X,W)
0.01+ ) ey mult,x,w) ’

pl(ta X,V) =

ng(t,X,V) - p%(t)x)v) Xiv GO‘?

n2(t7X7V) - (1/2‘\7') ZWEV nQ(t,X,W)
001 +ZW€V nQ(t,X,W) ’

pQ(tv X, \)) =

where m; and n; are intermediate stages to compute pj, k; is

. . . . . v
the local motion input described in Section 4.3.1, * denotes con-
volution with respect to the spatial domain with a Gaussian
. . . X,V .
whose standard deviation is 0.75 and * denotes convolution
with respect to the spatial and velocity domains with a Gaus-
sian whose standard deviations are 0.75 (velocity) and 7 (spa-
tial).

4.3.3 Discussion

The model of Bayerl and Neumann?*4 was successfully applied
to moving squares with fixed velocities. In addition it proves
that a simple model can achieve good performances with com-
puter vision videos. In this respect it can be linked to the model
of Castellanos Sanchez, Giraud and Alexandre*9 in which com-
puter vision sequences are used as input, and later implemen-
ted on FPGA.?33 Bayerl and Neumann also extended it to support
transparent motion and incorporate form cues. Those exten-
sions allow the model to report correct results on random dots
stimuli and overlapping squares.

The model uses a divisive inhibition similar to the one pro-
posed by Simoncelli and Heeger>°® (see Section 4.1) but extend
it with spatial interactions.

Compared to Grossberg and Mingolla, there are no dynam-
ics and the modelling is less detailled, allowing comparison with
perceptual recordings to a lesser extent. As with the models of
Grossberg and Mingolla, the model incorporates spatial inter-

actions and recurrent connectivity. The main difference is the
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small set of equations linking in a fashion similar to Heeger and
Simoncelli, and the focus on computer vision stimuli, at the ex-

pense of more perceptual experiments.
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In Chapter 5 we describe the common architecture of our mod-
els and discuss its biological plausibility. Our models consider
the dynamical activity in two cortical areas involved with mo-
tion integration, vi and MT. We also describe the input of the
models and give a readout to compare the results to motion dy-
namics such as smooth pursuit.

The first incarnation of our model is given in Chapter 6. We
show that a small set of key characteristics is sufficient to ex-
plain a wide variety of motion percepts. Moreover the dynam-
ics of our model allow us to compare its output to perceptual
and behavioural recordings and link them to the computation
of motion in the visual cortex.

Yet some stimuli require more complex mechanism to solve
motion ambiguities. In Chapter 7 we propose an extension of
our initial model in which motion cues are gated by luminance
information from a cortical area in processing form. Such a lu-
minance modulated diffusion is an alternative to more com-
plex models relying on features detectors and proposes biolo-
gical foundations to the motion segmentation problem.

Finally, we transpose our initial model into the neural field
formalism in Chapter 8. We show that this change of frame-
work does not impact the results obtained using our initial model,
and allows us to prove several properties of our model. We prove
the existence and uniqueness of the solution and experiment

properties of the selection mechanism.
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Chapter 5 Models architecture

In this chapter we describe the common architecture of our mod-
els and briefly discuss its plausibility. In Section 5.1 we introduce
the rationale of our models focusing on its spatial and dynamical
properties. The general description of our models is given in Sec-
tion 5.2. We define an input to our models and a readout to com-
pare to smooth pursuit dynamics in Section 5.3. Section 5.4 gives
some implementation details.

MAIN CONTRIBUTIONS

& A dynamical cortical architecture to study motion integra-

tion.

2 A model of readout to compare output to smooth pursuit.

5.I INTRODUCTION

Our goal is to demonstrate how a minimal model can qualitat-
ively reproduce a wide set of motion integration and segment-
ation phenomena as observed at different levels: neuronal, psy-
chophysical and oculomotor behaviour. This multi-level extent
is important because the different dynamics are inter-related
and give complementary insights about the neuronal solution
of the aperture problem and the selective integration process.’>

There are two aspects that have been largely ignored by
most of the two-stage feedforward models. 62255208199

First, motion integration is intrinsically a spatial process.
Since most of the natural objects are rigid, propagating non-
ambiguous motion information is an essential aspect of mo-
tion integration.'°®1%498248 The role of such diffusion process
has only been investigated in a small number of biologically in-
spired models. Grossberg and colleagues®43* investigated how
local form and motion cues can be integrated through recur-

rent diffusion (see Section 4.2). A similar solution was also de-
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Fig. 5.1 Schematic view of the
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model. Recurrently connected areas p;
and p» implement motion integration
and take local motion cues k; as input.

veloped by Bayerl and Neumann,***3 albeit with a more simple
and realistic motion computation algorithm (see Section 4.3).

Second, biological computation of global motion is highly
dynamical. When presented with simple lines, plaids or barber
poles, the perceived direction reported by human observers will
shift over time (see Section 1.1). And similar dynamics have been
found with smooth pursuit eye movements (see Section 2.2).
Such temporal courses can reflect the dynamical neural solu-
tion to the aperture problem. Indeed, over a time course of sev-
eral tens of milliseconds, neurons in the area MmT solve the aper-
ture problem, so that late but not early preferred direction cor-
responds to pattern motion direction.””""7*2!

Here, we propose a dynamical model providing a simple
solution for 2D motion integration by using a minimalist set
of biological properties such as recurrent connectivity between
layers working at different scales. Moreover, our models sug-
gests that the dynamics of spatial integration and the time course
of motion perception can be intrinsically linked.

5.2 DESCRIPTION OF THE MODELS

5.2.1 Global structure

Our goal was to test how several basic mechanisms of cortical
processing can be implemented in a dynamical model to solve
several aspects of 2D motion integration. Motion information
is extracted and processed at different spatial scales within lay-
ers that are recurrently interconnected. As illustrated in Fig. 5.1,
the common basis of our models is described by three layers of
motion processing.

The first layer extracts local motion energy through spatio-
temporal filtering, corresponding to simple and complex cells
of the primary visual cortex.>°%

They form the input to a second layer which computes local
direction and speed of motion. Some complex cells in primary
visual cortex have been shown to perform such local velocity
computation.'°

The third layer implements MT neurons, which integrate

motion over larger portions of the image through the conver-
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gence of cortical layer 2 cells. Our mt-like layer 3neurons have
larger receptive fields and are tuned for lower spatial frequen-
cies and higher speed than striate-like layer 2 cells. This fact
is consistent with the view that vi and MT operate at different
scales.3* Feed-forward models of motion integration are heav-
ily rooted on such evidence?°%199255147 and we will compare
our results to one of them. However, vi and MT areas are re-
currently interconnected.>°” Existing models have shown that
such recurrent connectivity can play a role in solving the aper-
ture problem in synthetic and natural sequences>®?4?2 as well
asimplementing contextual effects observed in vi and MmT neurons.®
Dynamics are the major innovation of our model. Indeed,

we do not consider

5.2.2  Models overview

Our model implements interactions between several layers pro-
cessing motion information. The model estimates dynamically
the velocity information given an input grey level image sequence
denoted by:

I:(t,x) eRT x Q — I(t,x) € [0,1],

where t is the time, and x = (x1, x2) denotes the spatial posi-
tion within the 2D spatial domain Q € R2.

The state of each layer is described by a scalar-valued func-
tion corresponding to a level of activity at each spatial position

and for each velocity.

Pi:(t,x,Vv) ERTx Q xV —pi(t,x,v) €[0,1], ie€{1,2},
(5.1)

where V represents the space of possible velocities. Each func-
tion p; can be interpreted as the state of a cortical area ret-
inotopically organised which describes at each position x the
instantaneous activity of a neuron tuned for the velocity v. In
brief, layer k; implements a local motion estimation through
spatio-temporal filtering. These local measurements are integ-
rated to compute local velocity at two different spatial scales

in layers p; and p2. The two layers can be seen as an imple-
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mentation of detection and integration stages that correspond
to cortical areas vi and MT.

The coupling between layers defines the connectivity rules
using a set of coupled differential equations. With that respect,
our model follows some previous contributions.>®432 Forward
connections transmit information from layers closer to the eye
to layers deeper in the system while backward connections pro-
jectback to the areas closer to the eye as discussed in Section 3.1.3.
Lateral connections are inhibitory and provide each neuron with
an input from its neighbourhood. The following paragraphs give
more details on the different layers and their connections.

53 INPUT AND OUTPUT

5.3.1 Local motion estimation

The initial stage of every motion processing system is to com-
pute local motions cues as input to the system. Various models
of motion detection have been proposed in the literature, with
different degrees of biological plausibility.'9330245 Here, we
define the input motion detectors, pg, using a motion energy
model which is an efficient way to extract local motion with
spatio-temporal filtering kernels corresponding to neuronal re-
ceptive fields.'°>2°8199 The choice of filtering has two main ad-
* See for example Section 4.3.1 where vantages over simpler correlations techniques”: First, spatio-
we describe an alternative local motion temporal filters can handle a larger class of input stimuli due
detection based on correlation of two
frames. to their wider frequency tuning. Second, fast techniques can be
used to estimate local motion due to the properties of steerab-
ility and separability properties of certain energy filters.?2°868
In addition, mechanisms to combine the output of such filters
have been largely studied. For instance, the doughnut mechan-
ism is described and studied by Simoncelli and Heeger.?°®
Our local motion input is based on an energy model com-
puted from the filters of Derparnis and Gryn,°® namely the second
derivative of a Gaussian and its quadrature pair—its Hilbert
transform. Thanks to the property of those filters it is easy to
steer them to any other orientation using an interpolation mech-
anism. We combined the output of those filters using the ap-

proach proposed by Alexiadis and Sergiadis.* This choice is mo-
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tivated by the well-defined theoretical framework that the au-
thors developed for basis filter combination, as well as the eas-
iness to apply these filters. Briefly, the expression of the filter
response is given by:

N M 2
fr(t,x,v) = Z (Z th (st (V) (YT, * U(t,X,V)> , (5.2)

n=0 \m=1

where re{o,e}, f° and f€ are the odd and even responses of the
filters, N is the order of the chosen filters, M = (N + 1)(N +
2)/2,y7, are a set of pre-calculated filters, independent of the
chosen velocity, and s}, are vectors on frequency plane corres-
ponding to the velocity v combined with the weights given by
the function t},,, and % denotes convolution with respect to the
spatial domain.

Then, based on the expression (5.2), we defined the activity
(energy) of our first layer k; by:

ki (t,x,v) = £(t,x,v) + F(t, x, v). (53)

5.3.2 Defining readouts

Our model estimates a distributed activity response: each func-
tion p; can be interpreted as the state of a cortical area that
is retinotopically organised to provide at each position x the
instantaneous activity of a neuron tuned for the velocity v, as
shown in Fig. 5.2.

Since such a distributed representation is hard to interpret
and analyse, we first define an optical flow like representation.
To do so, we average at each position the population response
across all velocities, thus obtaining a single vector. Thus, a ve-
locity field m; can be extracted from any layer p; by:

ZVEV pi(ta X, V) v
ZVEV pi(ta X, V)

This velocity field can be represented either by arrows or by a

mi(t,X) = ) ie {L 2} (54)

colour coded image indicating speed and direction (see Fig. 5.3).

Here, we use the Middlebury colour code® asillustrated in Fig. 5.4.

This colour code emerged as the de facto standard in the optical

flow computer vision community and it is motivated by colour
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Fig.5.2 Distributed activity re-
sponse for a translating bar.

Fig. 5.3 Optical flow representation
by sampled velocities or colour code.



Fig. 5.4 Middlebury colour code.
For each velocity, direction is repres-
ented by the hue, and speed by the
saturation.

perception experiments. It associates a single colour to each ve-
locity. The direction of the velocity corresponds to the hue of
the velocity, for instance yellow for downward velocities, while
the speed of the velocity is encoded in the saturation of the col-
our, whiter for slower speeds.

Based on this velocity field, another way of interpreting the
model output and its dynamic is to define a readout such as
the eye movement direction w(t) € R2. Given w(t), one can
compare the model performances with the dynamics of biolo-
gical motion processing gathered at different levels: physiolo-
gical, psychophysical and behavioural. To do so, we defined a
simple readout from the activity in layer po, by averaging the
velocity field over space and at a given time, with a temporal
smoothing defined by the following dynamical equation:

(?j:(t) = A (Z ma(t, x) —w(t)) , (5:5)

xeQ
where my is defined by (5.4). Thanks to the definition of this
readout, we will define in Section 6.2.1 an estimated direction
errors, so that direct comparisons with biological data will be
possible.

5.4 IMPLEMENTATION DETAILS

In this thesis we document the performance of our models for a
wide range of synthetic motion stimuli already used for invest-
igating brain dynamics of 2p motion integration and segmenta-
tion. We qualitatively reproduced the neural dynamics of these
phenomena, in particular their time courses. Results were ob-
tained for full-contrast motion stimuli but several simple changes
in image geometry were tested, based on previous psychophys-
ical work.

As far as implementation is concerned, time is discrete so
that the input grey level sequence is given by a set of images at
different times. Here we assume that the images are sampled
every 100 ms. The set of possible velocities V also needs to be
sampled. We chose V = [3,3]2 € Z? so that the velocities are
sampled in a 7 x 7 pixels grid.
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Simulations were written in the Python programming lan-
guage and used the SciPy scientific library.”>° Integration was
performed using a fourth-order Runge-Kutta (Rk4) method with
at most 10 iterations between two successive input frames. Luminance-
gating described in Chapter 7 was implemented on GPU using
the cupa library.

A notable exception is the work for the seariSE European
project which mostly uses c++ source code, GpGrPu technolo-
gies, and relies on frame-by-frame approaches (see Chapter A).
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Chapter 6

integration

Dynamics of motion

In this chapter we propose a dynamical model of motion integra-
tion accounting for perception and smooth pursuit eye movements
and based on our common architecture. The model is described in
Section 6.1 by the activity in two cortical areas, vi and MT. In Sec-
tion 6.2 we show that a variety of motion percept and dynamics are
taken into account. Results are given for line drawings and grat-
ings stimuli. We conclude in Section 6.3 by discussing the dynamics
of the model, its relation with existing approaches, and its limita-

tions.

MAIN CONTRIBUTIONS

¥ A model explaining a wide range of motion percept

@ And accounting for smooth pursuit dynamics

6.1 MODEL

6.1.1 General connectivity

Given the activity ki, the core of our model is defined by the
interactions between the two layers p; and ps, which are mod-
elled by two coupled differential equations:

0
% =—Mp1+(1—p1) }\{kl —I—)\bklpg _}\ll'Gok )ﬂiJ’ p1(t,x,w)dw
A%
(6.1)
apg — £ x 1 X d
ot 2p2 + (1 —p2) }\QGGS *P1 _}\QGgé * VPQ(t;X7W) wi o,
+

(6.2)

where G is a Gaussian function of variance o, A's and ¢'s are

constants, and |x|+ = max(0,x) denotes a positive rectifica-

55

+

)



tion.

The two main characteristics of our model (6.1)-(6.2) are

summarised as follows:

fg,

FEEDBACK, from p3 to p1, which is modulated by A, k; in a mul-
tiplicative way.** Therefore we used a modulating rather than
driving feedback, similar to that found in studies of the motion

processing system in primates.*®”

< LATERAL INHIBITION, modelled by the terms —AG g * [ p(t, x, w)
for both layers p; and ps. All neurons at a given local neigh-
bourhood and for all possible velocities inhibit each other. Such
short-range lateral inhibition, usually called recurrent inhib-
ition, leads to a selection or winner-take-all mechanism.%42¢2

Instead of the divisive inhibition as found in some models, %724

we implemented a subtractive inhibition.

6.1.2 Parametrisation

The model is fully specified by a set of 12 parameters. These
parameters, whose values are given in Table 6.1, were found
by matching the time scale dynamics of psychophysical exper-
iments. The simple line drawing stimulus was used to fit the
parameters that were then kept constant for all other motion
stimuli.

In addition to the time scale matching procedure, we also
investigated the role of the parameters. For instance, the A} and
AL parameters representing the weight of the inhibition are ne-
cessary to achieve a selection like mechanism.?*>% We evalu-
ated the acceptable range for those inhibition parameters to be
between 1.8 and 8.0.

Table 6.0~ Chosen parameters 6) A =20 A =10 AP=240 Al=40 o0;=20
setting for our dynamical system. 6.2) Ay =2.0 )\5 —16.0 (75 —30 )\5 — 40 0y,=20

6.2 EXPERIMENTAL RESULTS

The results are organised as follows. First we present results

on the dynamics of motion integration obtained with classical
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simple stimuli made of line drawings. Second we continue our
exploration by using different plaid patterns. Finally we describe
the effect of the aperture shape on 2D information and its con-

sequence for motion perception.

6.2.1 Dynamics on line-drawing objects
The translating bar stimulus

The dynamics of motion integration and the role of form-based
disambiguation mechanisms can be illustrated with the simplest
example of the aperture problem in motion perception: the trans-
lating bar stimulus detailed. For short durations, its perceived
direction is biased towards the direction orthogonal to its ori-
entation (see Section 1.1). Consistently, it has been demonstrated
that initial tracking direction exhibits the same bias (see Sec-
tion 2.2).

Fig. 6.1 Temporal evolution of our
model estimated direction error w(t)
on a 45° tilted bar, moving rightward
(diamonds). For comparison, we replot-
ted human and macaque tracking error,
as well as perception error from Fig. 2.2
(squares, stars, disks). The optical flow
mo(t, x) is shown at 200 and 600 ms.

Direction error [°]

o) 200 400 600 800 1000

Time [ms]

We define the observed direction error as the difference between
the true translation direction of the object and the observed
motion direction. Such velocity error has often been used to
describe the dynamics of motion integration at these differ-
ent levels: a population of MT neurons,>*'7"'7> the perceived

direction™#+5"2% or the tracking direction of smooth pursuit
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eye movements>+35158 (see Fig. 2.2).

It should be noted that since the observed direction error is
an angular error computed from motion, it is highly imprecise
during the first hundred milliseconds. At that period of time,
responses are slow, noisy and rapidly varying so that computa-
tion of the effective angles becomes unstable.

In order to compare our results with experimental data, we
define the estimated direction error as the difference between the
angles of the true translation direction and our global readout
w(t). As illustrated in Fig. 6.1, applying our model to the trans-
lating bar stimulus reproduced several of the phenomena de-
scribed above. Initial estimation was dominated by local am-
biguous (1p) motion measurements. We found a smooth 2p mo-
tion diffusion inside the bar as shown by the gradual evolution
of the velocity fields. Thus our model can solve the aperture
problem at both local and global scales. After a short period
of time where the direction error stays constant at about 40°,
the estimate of the global motion converged to the true dir-
ection—a null direction error—with an exponential decay. It
should be noted that the dynamics observed at output stage of
our model closely mimics the experimental data measured for
both pursuit and perception.

Motion anticipation

In the motion anticipation experiment, we record the response
of a vi neuron in our model to the translating bar stimulus with
different initial spatial position (see Fig. 6.2). The further the
initial position is from the vi1 receptive field, the sooner the v1
response starts. Thus, a motion anticipation mechanism seems
to enlarge the receptive field of the neuron in direction of the
initial bar position. Yet such a mechanism is highly limited by
our purely multiplicative feedback.

Variations of the translating bar

Next, we introduce two variations to test the model behaviour.
First, we show in Fig. 6.3 (a) the changes in direction error

when the bar is cut into an increasing number of line segments.
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Introducing more line-endings both reduced the initial bias in
the global motion estimation (from 44 to 32°) and produced a
faster exponential decay of the direction error, a results found
in the psychophysical literature.'#4 Similar changes were repor-
ted when filling a moving diamond with 2D texture elements.*#'
On the contrary, smoothing the luminance profile by applying
a Gaussian filter along the bar orientation reduced the contrast
of line-endings (see Fig. 6.3 (b)) and thus resulted in a larger ini-
tial bias, reaching the asymptotic error of 45° and a somewhat
longer time constant for error reduction. Similar results were

reported with smooth pursuit eye movement in humans.*4°

50 T T T T 50

Fig. 6.2 Anticipation in our vI
model cells. (a) Translating bars are
presented from different distance to
the recorded cell. (b) The farther the
distance, the sooner the vI response
starts.

Direction error [°]
Direction error [°]
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Second, we show in Fig. 6.4 (a) how the early direction er-
ror depends on the level of noise added to the input stimu-
lus. We considered additive Gaussian noise with different vari-
ances. The early direction error was estimated at a fixed time
t = 250 ms, around the steepest decrease.

Similar to the effects of contrast which have been observed

in both psychophysical studies>' and behavioural studies,**" higher
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Fig. 6.3 Varying strength of 2D
motion cues. (a) A tilted line is cut
into small segments, introducing
more line-endings. Direction error

is plotted against time for different
numbers of segments in the tilted
line. (b) A tilted line is filtered with an
elongated Gaussian window, which
reduces contrast of the line-endings.
The smoothed bar elicits larger initial
direction error - larger bias - and a
slower time course for computing the
exact translation of the bar.
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levels of noise resulted in larger initial biases. Moreover, the
neural solution of the aperture problem was slower. Similar effects

can be observed by changing the input gain of the model.

Direction error [°]

50 T T T T T

——  Model with form
——  Model without form
Simoncelli & Heeger

Direction error [°]

[ X4

L L L L L
7 6 5 4 3
Input noise [10'2]

@

Fig. 6.4 (a) Early direction error

as a function of the variance of the
Gaussian noise added to the input.
Similar to the effects of contrast which
have been observed in both psycho-
physical studies>' and behavioural
studies®#!, higher levels of noise resul-
ted in larger initial biases. (b) Direction
error dynamics on the translating bar:
Comparisons between Simoncelli and
Heeger's model2°8 and ours.

. .
1 0 0 200 400 600 800 1000 1200
Time [msec]

(b)

Still our model performs much better than the static model
of Simoncelli and Heeger 2°8

that we use for comparison. Output of their model is plot-
ted as continuous dotted line in Fig. 6.4 (b). First, our model
predicted a larger initial bias, which is more consistent with
psychophysical and behavioural data. Second, thanks to its dy-
namics, our model can to solve the aperture problem despite
the fact that only one 1D edge was present in this simple stim-

ulus, contrarily to the model of Simoncelli and Heeger.

Rotating ellipses

To conclude this line-drawing section, we briefly mention that
similar psychophysical observations with other types of line-

drawing objects.'#>*°%

54 Our output was always consistent with
experimental data, for both initial bias estimate and time course.
One interesting example is given by rotating ellipses.*44 Weiss
and Adelson?#® investigated motion perception with this type
of motion stimuli to probe non-local constraints on models of
human motion analysis. The authors showed that narrow and
fat ellipses are perceived differently at slow speeds. With nar-

row ellipses are correctly perceived as rigidly rotating, fat ones
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are perceived as deforming non-rigidly with a strong bias to-
wards the directions orthogonal to the long axis of the ellipse.
Asillustrated in Fig. 6.5, our model reproduces this behaviour as
shown by the crude illustration of the velocity flow field. Global
motion estimation changed from rotation to expansion with
respect to the aspect ratio of the ellipse. With fat ellipse, ex-
pansion was found along the long axis of the object. These dy-
namics were found in absence of the form layer as well.

- - -

- - - - - -

6.2.2 Dynamics of pattern motion using plaids

Plaid patterns have been largely studied to elucidate 2D motion
integration both at psychophysical level>79:922¢° and physiolo-
gical level.'®>'94 One interesting aspect of plaid motion is that,
depending on the relative direction of the two components,
different perceived directions can be predicted from the differ-
ent computational solutions proposed so far: vector averaging
(va), intersection-of-constraints (10c) or 2D feature tracking. Moreover,
recent studies showed that direction tuning of pattern-selective
cells in area Mt shift from components to patterns motion dir-
ection over several dozens of milliseconds, further illustrating
the fact that solving the aperture problem is a dynamical process.'”"*"
Such neuronal dynamics could explain why perceived direction>®°
as well as eye tracking direction™’ shift over time from the vec-
tor average prediction to the true pattern motion direction.
Therefore, our model shows a similar dynamics when tested
with type 1, type 1179 as well as unikinetic plaid patterns.®* Fig. 6.6 (a)
illustrates the model output in response to a type 11 plaid such
as used in 4°. These plaid patterns have been used to separ-
ate the predictions made by either the vector average or the
10c models. Initial global estimate of the model output was
nearly aligned with the va prediction. Over time, this estim-
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Fig. 65 Model response to the
gelatinous ellipses. (a) We first process
a thin ellipse of ratio 9:20 and the res-
ulting motion (b) is compatible with
rotation. (c) We then process a thick
ellipse of ration 3:4 and the resulting
motion (d) is a deformation incompat-
ible with rotation left downward yellow
patch and violet upward right patch
should be inverted, and not pointing
towards the diagonal line.



ate gradually shifts toward the 10c prediction, so that at the
end of the simulation, the true direction of the plaid pattern
is decoded, independently of the component motion direction.
Fig. 6.6 (b) illustrates the model performance for another type
of plaid. With unikinetic plaids, the 10c solution cannot be ap-
plied since only one component is drifting. The va solution col-
lapses to the 1D direction of the drifting component. However,
reliable motion information can be extracted by tracking the 2p
features (blobs) created at the intersections between the static
and drifting gratings. Again, the model output dynamically evolved
from the va solution (i.e. the 1D motion direction) to the ac-
tual pattern motion direction as predicted by the 2D features
tracking model. Interestingly, we found that 2p motion direc-
tion was not seen from earliest model output. The influence of
motion signals biasing the global estimate towards the global
2D pattern motion was seen only after a fixed delay (indicated
by 6 in Fig. 6.6 (b)), similar to that observed in humans™" and

monkeys.'®
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Fig. 6.6 Model responses to plaid
pattern motion. (a) Model output ob-
tained with a type 11 plaids where the
two component directions are separ-
ated by 25°.4° The temporal dynamics
is illustrated by the instantaneous out-
put direction at three different points
in time (triangles). In the same plot, the
predictions made by the vector average
(vA) and intersection-of-constraints
(10c) models are illustrated. Note that
10C response is similar to 2D features
tracking response in this case. (b) Re-
sponse to an unikinetic plaid.’>' The
initial response following the moving
plaid switches with time. Note that we
observe a delay 6 between the vertical
and horizontal responses as described
for eye movements.'>!

Time [images]

(b)

6.2.3 Motion integration on gratings with different apertures

Other aspects of 2D motion signals integration can be investig-
ated with gratings drifting through different kinds of apertures.
For instance, when a moving grating is seen through a rectan-
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gular aperture, human observers report a perceived global mo-
tion direction that is tilted towards the longer axis of the aper-
ture. This phenomenon is known as the barber pole illusion.*#3
The bias depend of the aspect ratio, defined by ratio between
the long and short axes of the aperture, and increases with it.

Moreover, human ocular tracking’>? as well as neuronal responses,

gradually evolved from local motion direction (i.e. orthogonal
to grating orientation) to global motion direction (i.e. along the
aperture long axis).'”?
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Our model reproduces these different aspects of motion in-
tegration for barber poles (see Fig. 6.7). In all the tested stimuli,
a horizontal grating was drifted in the upward direction. Only
the shape of the aperture through which the grating was viewed
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Fig. 6.7 Model response to upward
moving gratings presented behind
various aperture shapes. For a given
row each column shows respectively
one image of the stimulus, and three
representation of the motion field

for the initial response, intermediate
response, and steady state. We tested
the following apertures: (a) Tilted
rectangular aperture with an aspect
ratio of 3:1. (b) The aperture edges

are indented to locally change the
direction of terminator motions. (c)
Circular aperture. (d) Square aperture.
(e) Slightly smaller square aperture.



was changed. As illustrated by velocity flow fields obtained at
different times, motion flow was first dominated by 1p motion
information, but later all local measurements became coherent
with the 2D perceived direction. This dynamics can be further
illustrated by plotting the time course of the direction error:
the estimated global motion was first driven by grating motion
direction but then slowly rotated until being aligned with the
long axis of the aperture.

This role of local 2D motion cues in driving the final per-
ceived motion was nicely demonstrated by indenting the longer
axis of a barber pole.'8%125153143 Perceived direction changes to-
wards the grating motion direction as the size of the indenta-
tion increases. Our model simulated such behaviour. As illus-
trated in Fig. 6.7 (b), changing the aperture local geometry in-
troduced new local motion signals, which dominated the global
motion direction. As a consequence, global motion remained
coherent with the grating motion direction. Note that similar
results were also obtained with gratings presented behind a cir-
cular aperture (see Fig. 6.7 (c)).

Barber pole motion stimuli with an aspect ratio of 1:1—a
square aperture—unveil two interesting phenomena. First, short
stimulus duration results in a perceived motion direction, as
well as a tracking direction that are consistently aligned with
grating motion direction across trials.>*'>* Second, with long
motion durations, perceived direction becomes multi-stable, al-
ternating between grating motion direction and motion along
one or the other axis of the aperture. Castet and colleagues>®
reported stochastic fluctuations in the perceived direction of
barber poles with aspect ratio 1:1, yielding to a broad distribu-
tion in performance when computed over a large set of trials.
Then, perceived direction spanned between the three possible
solutions aforementioned. We ran successive simulations with
a barber pole of constant aspect ratio 1:1 but introducing small
fluctuations in either the input image sequence I or the input
local motion k;. For instance, slightly changing the size of the
square aperture resulted in a dramatic change in global motion
estimation, switching from left- to right-upward direction (see
Fig. 6.7 (d-e)). Introducing a small additive Gaussian noise (av-
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erage: 0.5, variance: 0.02) into k; resulted in similar switches.
Thus, small changes in stimulus characteristics can lead to totally
different estimates of global motion in our dynamical model.

6.3 DISCUSSION

In the present study, we proposed a motion integration model
to solve 2D motion integration and segmentation. We imple-
mented and applied our two layers dynamical system to syn-
thetic motion stimuli with the goal to reproduce several key
phenomena of 2D motion integration that have been documented
by psychophysical, behavioural and neurophysiological studies.
In particular, we reproduced the temporal dynamics of motion
integration and its dependency upon stimulus characteristics.

6.3.1 Dynamics of motion integration

Our model successfully reproduced the temporal dynamics of
2D motion integration for a large set of motion stimuli used in
investigating visual motion perception and its neuronal basis.
First, for lines, line-drawing objects and barber poles, we found
that during the first iterations almost no contribution of 2D
motion signals as generated by line-endings or terminators can
be seen. This is consistent with the observations made in area
MT that early direction tuning of cells is driven by component
motions.”7"*'"172 At behavioural level, Masson and colleagues
found similarly that the earliest phase of ocular following re-
sponses to either unikinetic plaids or barber poles is only driven
in the direction of grating motion.">>">"' The origin of such
delay between 1D and 2D driven responses has been highly con-
troversial. Some authors attributed it to the delay seen in the
emergence of end-stopping properties of vi neurons. This tem-
poral dynamics might be related to the timing of the underly-
ing centre-surround interactions.”* However, the relative con-
tribution of both lateral and feedback recurrent connectivity to
the temporal dynamics of centre-surround interactions is still
unclear.®

Next, our model can reproduce the time course of 2b mo-

tion integration as evidenced by a large number of studies at
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psychophysical,?°*544 behavioural'>4435 and neurophysiological 727>
levels. In brief, the estimate of global motion, as computed by
our simple readout mechanism, gradually shifts over time. Fol-
lowing an exponential decay, direction error decreases from the
initial bias towards 1D motion (or its vector average for mul-
tiple edges/components pattern) to the actual 2D translation of
the object. Both the initial bias and time constant of the decay
vary with contrast of local non-ambiguous features, line length,
barber pole aspect ratio and so on. All these scaling factors affect
the dynamics of lateral diffusion. Hence, the recurrent dynam-
ics, which is needed for the diffusion of motion information,
can largely explain the observed dynamics of motion integra-
tion. Our dynamical model provides a platform to further in-
vestigate which biologically realistic neuronal architectures can

underlie such computation.

6.3.2 Relations to other approaches

Several other models have been designed to simulate the tem-
poral dynamics of 2D motion integration. A first attempt was
made by Wilson and colleagues to explain the transition of per-
ceived direction between vector average and 10c solutions for
type 11 plaids in human observers.?>> This model was further ex-
panded to account for barber pole and line motion perception.’+”
As in any two-motion pathway model, they postulate that 1p
and 2D motion features are extracted through parallel path-
ways, the later being delayed. Such delay, and the winner-take-
all competition performed at the integration stage as thought
to be sufficient to explain the temporal dynamics of 2p motion
integration. These models do not implement any diffusion pro-
cess and therefore global motion does not correspond to homo-
geneous velocity flow fields. They clearly miss the spatial prop-
erties of motion integration and therefore cannot account to
geometrical changes such as line lengths or barber pole aspect
ratios.

Pack, Grossberg and Mingolla’”> modelled various popula-
tions inside the cortical areas MT and MST to account for the
second phase of smooth pursuit: the maintenance of ongoing

pursuit movements while the image is fixed on the retina. In
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our model we focus on the first stage of the pursuit focusing on

motion direction and velocity estimation.

6.3.3 Limitations of the model

We have shown that our model can qualitatively reproduce the
dynamics of several key phenomenon of 2D selective motion
integration. We successfully applied it on a larger set of mo-
tion stimuli than competing recurrent models.>#*> However,
the current version of model suffers from two limitations.
First, we cannot model the well-known effects of contrast
upon 2D motion integration. Other models had also difficulties
inimplementing the effects of contrast since almost none neuro-
physiological experiments have been conducted to investigate
the effect of global contrast upon 2D motion integration. Weiss

259 showed that a Bayesian model of motion in-

and colleagues
tegration can mimic the effect of lowering contrast upon the
perceived direction. However, their model was not intended to
process moving images and therefore lower contrast was dir-
ectly modelled by a higher variance of the Gaussian distribu-
tions forming the velocity likelihoods. Motion energy filters in
our model were made insensitive to contrast and, as a consequence,
we cannot account for these effects. Moreover, the spatial sum-
mation properties of vi and MT units were not defined as being
sensitive to contrast, a factor that could change the dynamical
properties of motion diffusion. We attempted to simulate the
effect of contrast by adding white noise to the input frames. We
found that large additive noise both increased the initial bias
towards the vector average prediction and slightly slowed down
the time course of direction errors. Both results are consistent
with behavioural results.’5424:35 However, a full model should
incorporate contrast-dependant local motion filters (such as the
one described by Escobar”?) as well as contrast-dependent spa-

tial integration mechanisms as found in areas vi*°' and mT."7>

A second limitation of the model is its disregard for the role
of other segmentation cues such as luminance, texture or dis-
parity. In the next chapter we investigate the role of luminance

smoothness as a segmentation cue for motion integration.
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Chapter /] Luminance-gated diffusion

In this chapter we propose that motion integration is gated by lu-
minance information. In Section 7.1 we present previous proposals
in cross-modal interactions which are based on junction detectors.
The model is described in Section 7.2 as an extension of the ap-
proach presented in the previous chapter. The implementation de-
tails follow in Section 7.3. Section 7.4 presents the new results ob-
tained with this model. We conclude in Section 7.5 by linking our
approach to computer vision algorithms as well as other biological

models, and end by discussing its biological interpretation.

MAIN CONTRIBUTION

@ A luminance-gated mechanism segregating objects

7.1 INTRODUCTION

Motion integration is intrinsically a spatial process. Since most
of the natural objects are rigid, propagating non-ambiguous mo-
tion information along edges as well as inside surfaces is an es-
sential aspect of motion integration,'010498.248

Considering the form information for motion integration
is also a necessary condition to explain some experimental res-
ults, as we discussed in Section 1.3.

The role of motion diffusion process has only been invest-
igated in a small number of models such as the one of Grossberg
and colleagues where local form and motion cues are integrated
through recurrent diffusion.9*3* The various versions of their
model succeed to solve the aperture problem in many different
instances of motion stimuli investigated psychophysically."#>5!
However, they heavily rely on many different sub-types of local
feature detectors and a huge number of cortical areas.

Asimilar solution was developed by Bayerl and Neumann,?**?3

albeit with a more simple and realistic motion computation al-
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gorithm. Still, the strategy used for more complex stimuli relies
on findinglocal 2D features and excluding some of them (for in-
stance T-junctions) from the integration process (the extrinsic
junctions, see Section 1.3.1). Yet, such computational rules have
notyet been demonstrated in the cortical processing of 2D mov-
ing patterns.

Here, we propose an extension of our dynamical model provid-
ing a simple solution for 2D motion integration combining low-
level cues about visual surfaces properties such as luminance
smoothness and local features motion. Instead of implement-
ing a set of highly selective feature/shape analysers, our approach
favours an abstract representation of form information, based
on luminance smoothness in the image.

Such an abstract description fuses both contour and sur-
face representations, which have been found in cortical areas
vi and v2.19%122221 ]t also offers a simple solution for the edge
versus surface (or global) smoothness constraints used by differ-
ent models of motion integration.?4® We propose that both rep-
resentations contribute in the gating of motion information
diffusion in order to solve the aperture problem both within
and across apertures.

7.2 MODEL

We extend the dynamical model developed in Chapter 6 by pos-
tulating that the brain takes advantage of another low level cue,
luminance smoothness along edges or surfaces, to gate recur-
rent motion diffusion. Thus, contrary to previous recurrent mod-
els of motion integration using isotropic diffusion, our model
dynamically constrains the diffusion of motion information along
some specific orientation in the image. Indeed, perceptual stud-
ies of contour integration and physiological studies of receptive
field surround effect in cortical layer 2/3 neurons provide evid-
ence for facilitatory effects that are much stronger in regions of
visual space that lie along the axis of preferred orientation than
in region off axis. 0580186121

There are evidence for involving both lateral connections3®>'
and recurrent input®*"' from higher computational stages in

these non-isotropic interactions. Our goal herein was not to
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model the detailed connectivity (albeit this might have a pro-
found impact of the exact temporal dynamics) but rather to ex-
plore how such luminance-gated motion diffusion can be use-
ful in a large class of object motion integration and segmenta-
tion.

Our model is represented in Fig. 7.1. The motion integra-
tion between p; and p2 which was a simple Gaussian in Chapter 6
is now gated by luminance information from a new cortical
layer processing form information, ¢. Its activity is defined by

a function

d(t,x,0) e Rt x Q x [0,2n) — R, (7.1)

and represents the local orientation of the luminance profile
from position x in the direction 6. Note that function ¢ is an
abstract way to encode form information. Such function can be
seen as a description of v2 neuron properties which can repres-
ent local orientation of edges from changes in luminance™® but
also can encode surface brightness.””® In future development of
the model, such function can also be extended to form inform-

ation extracted from other cues such as colour or texture.

The integration from p; to p2 is now defined by:

0
% = —Ap1+ (1 —p1) MKy + APKkypo — A}ng Zijvpl(t,x,w) dw
(7.2)
op2 f 1~ X
W - _)\2p2 + (1 _pQ) }\2 K(t7X7U) pl(tay7v) dy - 7\2G0‘5 * VPQ(t7X7W) dW
Q
(73)
where K is defined by:
K(t,x,y) = Ggg(x —y) (t,x, xy), (7.4)

where X1 denotes the angle between the vector xy and the ho-
rizontal axis.

This luminance-gated diffusion, is the main novelty of our
model. Rather than diffusing motion information isotropically
from p; to po, we defined an anisotropic diffusion where p; is
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Fig. 7.2 Oriented spatial neigh-
bourhood around x in the direction 6
used to compute ¢. Luminance in this
oriented neighbourhood is compared
with the luminance at the origin x.

Fig. 7.3 Diffusion of information
for different spatial structures. Upper
row gives a set of input images with
different luminance distribution.
Lower row shows a representation of
K indicating for a given set of sampled
position, the weight by which their
neighbourhood is integrated.

integrated in a spatial neighbourhood using the weight K(t, x,y),
defined in (7.4). This weight is composed of two terms.

The first term, Gos (x — y), weights the connectivity de-
pending on the distance between x and y. The second term,
b(t, x, xy), is related to the form information. In this chapter,
we propose that the integration depends on the form so that
the layer ¢ is defined by:

O(t,x,0) = JQ Go. (x—2) Gog(0—%2) G (1(t, x)—I(t, 2)) dz.

(7:5)
The layer ¢ describes the luminance smoothness at position x
and along the direction 6. In (7.5), the term G4, (x —z) G, (0 —
xz) defines an oriented spatial neighbourhood around x (see
Fig. 7.2). The last term, namely G, (I(t,x) — I(t, z)), corres-
ponds to a brightness similarity measure describing form in-
formation using luminance as a criterion.

Arepresentation of the layer ¢ for all the directions and for
a given set of sampled positions is shown in Fig. 7.3. The main
property of ¢ is to facilitate integration inside similar spatial
structures of the image, a property shared by neurons as ob-
served in both psychophysics*°4'4* and cell recordings in macaque

area MT.'3

Another interesting property is that the extension of the
integration also depends on the local contrast: The neighbour-
hood becomes wider at low contrast than at high contrast sim-

ilar to the changes in receptive field size with contrast, as ob-
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served for instance in macaque area MT."7> Such abstract repres-
entation of form information presents several key advantages
in the context of 2D motion integration. Motion integration in-
side spatial structures is not only performed along borders (see
Fig. 7.3), but also propagates inside iso luminance regions.

73 IMPLEMENTATION
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To speed up the simulations we used the GpGpru technology.
Since the anisotropic diffusion process depends on input stim-
ulus, our model requires high computational cost. Thus con-
ventional cpu implementation is too slow for performing ex-
tensive model testing. We were able to take advantage of the
parallel nature of our model, where the same kind of computa-
tion is done at every spatial position. In other words, this method
and the way it was implemented, allows to process arbitrarily
large stimuli, in pixel resolution, which is not the case in re-
cent proposed approaches sometimes limited to 60 x 60 binary

images.?*

7.4 RESULTS

Previous models of form-motion integration have shown that
form information is important for integrating motion across
apertures. Here, we investigated how luminance-gated motion
diffusion can be used in integrating local motion signals that
belong to a given object. Our model can reproduce some key
aspects of motion integration versus segmentation by testing
its response to a large class of motion stimuli used in both psy-
chophysics and neurophysiology.

In this chapter, we focus on two aspects of motion integra-
tion and segmentation. First, motion signals are integrated only
along rigid structure and are not captured by motion from the
surrounding."??°> Second, a large bulk of psychophysical data
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Fig. 7.4 Model response to the
motion stimulus proposed byin area
MT. (a) A square moving diagonally
downward and to the right is presented
together with a patch of moving dots
instead of the upper segment of the
square (see text for more details). (b)
Initial model response illustrated by
velocity field, mo, computed over the
first few images showing that edge
motion estimates are biased by the
aperture problem. (c) Result obtained
with luminance-gated diffusion. (d)
Result with isotropic diffusion. (e)
Perceived direction w(t) computed
inside the dotted region.

suggests that motion features are discarded when they do not
belong to the moving surface (i.e. when they are extrinsic)
Our model must then be able to selectively integrate motion
signals that belong to the moving surface of interest and avoid
propagation of local 2D motion signals that are not intrinsic to

it.
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7.4.1 Preventing capture: the dotted square stimulus

In Fig. 7.4, we considered the stimulus proposed by Huang and
colleagues'> and we tested how selective is motion integration
performed by area MT neurons. The stimulus is described as fol-
lows: a square moving in the lower right direction has its upper
edge removed and replaced by a set of points moving randomly
downward; the velocity of the moving points spans the velocity
distribution existing at the centre of an edge due to the aper-
ture problem. Our model gives results similar to those observed
with MT neurons recordings: the ambiguity is not solved at the
location of the missing edge and the velocity field is thus aver-
aged as a downward motion. Furthermore, the aperture prob-
lem biased the initial motion direction at the centre of the three
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edges (see Fig. 7.4 (b)). As illustrated in Fig. 7.4 (c), the aperture
problem was correctly solved so that at the end of the simu-
lation, all three edges moved coherently along the 2D transla-
tion axis, i.e. diagonally downward and to the right. Notice that
motion direction of the patch remained unaffected at all itera-
tions. In brief, two sets of object motion coexists without cap-
ture. However, in the isotropic diffusion experiment, random
dot patch motion was captured by downward drift of the edges
(compare Fig. 7.4 (c) and Fig. 7.4 (d)).

7.4.2  Influence of context: the chopsticks

In the next example, we considered the chopstick illusion in
order to illustrate the influence of form information onto the
selective integration of motion information.® The first stimu-
lus consists in two horizontally translating bars, as shown in
Fig. 7.5 (a). Thus we introduce two sets of non ambiguous mo-
tions arising from the end of lines (i.e. horizontal motion), and
from the bars intersection (i.e. vertical motion). In Fig. 7.5 (a),
we illustrate the velocity field m; estimated at different times.
Our results are coherent with the phenomena reported by psy-
chophysical experiments: under these conditions, two bars are
perceived as moving in opposite directions.® We also show that
velocity flow fields are coherent at the two different spatial scales
m; and my showing that feedback allows the model to compute
coherent motion representation at different stages along the
motion pathway. Removing the ¢ layer, results in the opposite
motion perception: the computed velocity field corresponded
to two bars moving coherently upward, forming a single cross
being translated vertically.

In the second stimulus, line-endings were made extrinsic
by placing two horizontal occluders at the ends of the chop-
stick (see Fig. 7.5 (b)). In this case the motion percept consists of
a single upward translation. Applying the proposed luminance-
gated motion diffusion was enough to reproduce this phenomenon.
Fig. 7.5 (b) illustrates the temporal dynamics of motion integra-
tion for the occluded chopstick motion stimulus. Horizontal
motion features arising at the intersections between lines and

occluders are normally extracted (see my flow fields) but are not
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Fig.75  Model response to chop- (a)
sticks motion. (a) Two tilted and . S - ‘xw
crossing bars are translating in oppos- @ b

ite motion direction resulting in two S
horizontal perceived motions.9 We S
display the velocity fields m; and m,

to illustrate the time course of motion
computation at two different spatial
scales. (b) Model response to occluded
chopsticks where two horizontal
occluders of different luminance dra-
matically change the motion percept,
leading to a vertical perceived motion.
We illustrate model performance as
the velocity field m; computed at three
different times. Upper and lower rows
illustrate the results obtained with
luminance-gated motion diffusion, or
isotropic diffusion respectively.
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propagated inside the line-drawing figures. On the contrary, 2D
motion signals arising the intersection between the two lines
were propagated along the edges so that after 20 frames, the
two bars are perceived as moving coherently in the upward dir-
ection.

Applying an isotropic diffusion resulted in a dramatic change
in the output velocity fields: 2p motion signals arising at the in-
tersections between edges and occluders were now propagated
both along the chopsticks and the edges of the aperture. Such a
solution would correspond to the perception of two sticks slid-
ing over each other. Moreover, bars motion captured the oc-
cluding edges. This result demonstrates the role of the layer ¢
to implement contextual modulation of motion diffusion, sim-
ulating different percepts such as coherent (i.e. one single ob-
ject) or incoherent (i.e. overlapping objects) motion of the two
bars.

7.4.3 Geometry controlled diffusion: diamonds

Another challenging set of experiments was provided by the
study of Lorenceau and Alais'* as illustrated in Fig. 7.6. In the
original psychophysical study, rotating diamonds like stimuli
were displayed to the subjects for long durations. For each stim-
ulus, the subject were asked if the rotation was perceived as
clockwise or counter-clockwise. The percentage of correct re-
sponses have been replotted in Fig. 7.6 (light grey bars) for the
10 different shapes used in this study. The authors found two
groups of objects, with performance above and below 80% (ho-
rizontal dotted line).

To obtain a result comparable to the rotation coherence de-
scribed in the original paper,’+* we defined a rotation coher-
ence readout as follows. First, we decomposed local motion as
given by the activity measurements of our model into a radial-
rotational space. The biological plausibility of such a decom-
position, as well as its links to human motion percept, have
already been described by Barraza and Grzywacz.'® This decom-
position corresponds to a simple change of coordinates. Then,
we computed, via a spatio-temporal average, the global ratio of
the rotation over radial motion. Fig. 7.6 plots this ratio for the
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Fig. 7.6 Results on the whole set
of stimuli presented by Lorenceau
and Alais."#* All the stimuli are made
of four edges varying a diamond
shape and are numbered according

to the original paper. The light grey
bars represents the correct rotation
response from the psychophysical
experiments (see rightward). The dark
grey bars corresponds to the responses
of our model (see leftward axis).

same 10 shapes (dark grey bars). Overall, the different shapes can
be grouped similarly into two different sets of stimuli, which
are consistent with those obtained from psychophysical exper-
iments. Thus, the model performed better for stimuli that we
perceived as being coherent, suggesting a similar solution for
motion integration across apertures. However, we found an in-
triguing mismatch between two stimuli out of ten (as indicated
by the two symbols * in Fig. 7.6), most probably because of the
distance between the corresponding line-endings.
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7.5 DISCUSSION

7.5.1 Links to computer vision approaches

The role of diffusion for motion estimation has been investig-
ated thoroughly in the computer vision community. There ex-
ists a huge literature concerning the estimation of the so-called
optical flow, which is how to estimate accurately the appar-
ent velocity field from videos.>'7"%%173 Almost all of these ap-
proaches rely on the brightness consistency assumption lead-
ing to the classical optical flow constraint (orc)that relates the
gradient of brightness to the components of the local flow to
estimate the optical flow. Because this problem is ill-posed, ad-
ditional constraints are usually required.

For example, on can constrain the smoothness of the solu-
tion: the goal is thus to find a compromise between respecting
the orc and having the required degree of smoothness. To do

so, one possibility is to define a variational formulation: In this
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direction, let us mention for example the pioneering work by
Horn and Schunck" where smoothness was defined by min-
imising a quadratic term of the velocity components gradient.
The key point here is that choosing a degree of smoothness is
equivalent to define the penalty term which will then determ-
ine how information is diffused. Interestingly, diffusion is very
related to the integration processes discussed in this chapter
and one can see some analogies. For optical flow, many nonlin-
ear diffusion operators were proposed to prevent models from
smoothing the solution across the flow discontinuities.%259:12:24%

But there is yet another set of approaches using also form/lu-
minance modulation for the diffusion process. For example, Hildreth'®”
presented a model that calculates the velocity field of least vari-
ation along a contour in the scene, corresponding a contour
smoothness constraint. Similarly, Nagel and Enkelmann'® pro-
posed an oriented smoothness constraint in which smoothness
is not imposed across steep intensity gradients (edges) in an at-
tempt to handle occlusions. However, as a general observation,
models proposed in computer vision ignore the temporal dy-
namics of motion integration and never try to reproduce visual

system properties and behaviour.

7.5.2  Form modulation in biological models

Several biologically-inspired models were designed to investig-
ate the role of motion diffusion in the context of motion integration.>*3*23
These models are able to capture several aspects of motion in-
tegration such as the propagation of feature tracking estimates.5%%°
Some of these models implement isotropic motion diffusion by
using Gaussian distributions of activity both within layers and
between layers through recurrent connectivity.*#* They can
simulate the final results of motion integration for simple mo-
tion stimuli but cannot render more complex selective motion
integration without the need of implementing complex rules
such as T-junctions motion cancellation or using distributing
motion signal across different depth layers.

Lastly isotropic diffusion model also fails to account for mo-
tion grouping across occluders. To solve this latter aspect, Gross-

berg and colleagues introduced the idea of non-isotropic mo-
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tion integration that can be biased either by local form inform-
ation as well as by depth cues.3* A similar approach using depth
cues was proposed recently by.*> By doing so, the various ver-
sion of the model designed by Grossberg and colleagues, also
called FORMOTION model, can solve some aspects of motion group-
ing within and across apertures and therefore reproduce the
perceived global motion direction observed with motion stim-
uli such as the occluded diamonds.>*+'#* or the chopsticks.?
Notice that form-motion interaction was used in their model
only to disambiguate motion information at the stage of area
MT. No feedback was implemented between areas MT and v1
within the motion pathway, so that local motion information
remains constant at the earliest stage of motion processing. Re-
current interactions between motion processing layers are im-
plemented between areas MT and MsT to perform motion group-
ing at the highest spatial scale. Notice also feedback connectiv-
ity does exist but only between area mT and the vi form mod-
ule to solved local ambiguities in the static distribution of lu-
minance and thus uses motion information for improving 3p
figure-ground separation.

Moreover, the FORMOTION model relies heavily on the as-
signment of each object to a given depth layer. To do so, the au-
thors implemented a complex architecture with six processing
stages in the form pathway and seven stages in the motion path-
way. Multiple feed-forward and feedback interactions are im-
plemented at different levels®* and the model postulates the
existence of several types of highly specific form and motion
detectors. In contrast, in this chapter we proposed a minimal
model to understand how diffusion of motion information can
be constrained using some low-level form information such as
smoothness in luminance distribution. With only four layers,
our model can reproduce as man