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Abstract

The aim of this Thesis is to give a deeper understanding of pattern formation in

neural field equations with symmetry, and to understand the significance of these

symmetries in modeling the visual cortex. Neural field equations are mesoscopic

models that describe the spatio-temporal activity of populations of neurons. They

were introduced in the 1970s and are often called the Wilson-Cowan-Amari equa-

tions in reference to their authors. From a mathematical point of view, neural

field equations are integro-differential equations set on domains particular to the

modeled anatomical / functional properties. The first part of the Thesis is an in-

troduction to mesoscopic modeling of the visual cortex and presents a model of

the processing of image edges and textures. The second part is dedicated to the

study of spatially periodic solutions of neural field equations, in different geome-

tries, with applications to visual hallucination patterns. The results developed are

general enough to be applied to other pattern formation problems. Finally, the last

part is centered on the study of localized solutions of neural field equations set on

unbounded domains.





Résumé

Cette thèse se propose de comprendre la formation de structures dans les équations

de champs neuronaux en présence de symétrie ainsi que la conséquence pour la

modélisation du cortex visuel. Les équations de champs neuronaux sont des modèles

mésoscopiques qui décrivent l’activité spatio-temporelle de populations de neu-

rones. Elles ont été introduites dans les années 1970 et sont souvent appelées

les équations de Wilson-Cowan-Amari en référence à leurs auteurs. D’un point de

vue mathématique, les équations de champs neuronaux sont des équations intégro-

différentielles posées sur des domaines qui dépendent des propriétés anatomiques

et/ou fonctionnelles modélisées. Dans la première partie, nous rappelons quelques

éléments de biologie du cortex visuel, dérivons les équations de champs neuronaux

de manière générale et introduisons ensuite une nouvelle classe de champs neu-

ronaux pour le problème de modélisation de la perception des textures. La seconde

partie de cette thèse est dédiée à l’étude de formation de structures en géométrie

non-euclidienne et s’appuie principalement sur la théorie des systèmes dynamiques

en dimension infinie en présence de symétrie. Cette seconde partie est relativement

indépendante des autres et est écrite de manière suffisamment générale pour pouvoir

être appliquée de façon systématique à tout problème de formation de structures

en géométrie non-euclidienne satisfaisant certaines conditions de généricité. Enfin,

dans la dernière partie, nous étudions l’existence de solutions localisées pour une

certaine classe de champs neuronaux définis sur des domaines non bornés.





Acknowledgments

I would like to thank the members of my committee: Martin Golubitsky, Arnd

Scheel, Stephen Coombes, Yves Frégnac, Reiner Lauterbach and Benôıt Perthame.
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La liste des autres personnes à remercier serait inifinie mais je me dois de com-

mencer par Romain et Mathieu avec qui j’ai passé un nombre incroyable d’heures
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et la bonne humeur. Je voudrais enfin souligner la gentillesse de Marie-Cécile sans

qui bien des choses auraient été plus compliquées.
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éducation et tous les moments que nous avons pu passer ensemble et pour ceux

qui arriveront encore. Je trépigne d’impatience de vous voir venir dans mon nou-
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Introduction

This Thesis is oriented toward the study of mesoscopic models of cortical activity

through the symmetries that these models possess. This work is at the frontier

between mathematical neuroscience and applied mathematics as it provides specific

results for some neuronal models and also general theoretical results that can also

be applied to models in a more general context. Throughout this Thesis, we will use

neural fields equations which model the spatio-temporal activity of populations of

neurons. These equations are a first approximation of the mean membrane potential

of populations of neurons that are distributed in the cortex and should be thought

of has elementary mean field equations. We will be interested in the spontaneous

activity of the cortex and thus will assume that our models work without any

external input. In general, we aim to characterize the different possible solutions

that can emerge from homogeneous state with respect to the symmetries that we

assume in the model. We now give a brief summary of each part of the Thesis.

Part I: Mesoscopic modeling of the visual cortex

This part is an introduction to mesoscopic modeling of the visual cortex. The

first chapter 1 is focused on the biology: it gives an overview of visual processing

and highlights the notion of a cortical column in the primary visual cortex. The

nonlinear dynamics of individual neurons forming these columns are taken into

account in chapter 2 where we present the neural field formalism that will be used

throughout this Thesis. In the last chapter 3, we introduce a model of processing

of image edges and textures together with all the mathematical background related

to this modeling. The study of some particular solutions of this model acts as a

guideline for the results developed in the following parts.

Part II: Symmetry breaking mechanism in neural field equa-

tions

Neural field equations are infinite dimensional dynamical systems that can be de-

fined on various state spaces. In this Thesis we consider unbounded state spaces

that can have either a Euclidean or hyperbolic geometry. Neural field equations

display stationary solutions which are interpreted as time independent cortical ac-

tivity. In these equations, there is a connectivity function which describes the

coupling between different populations of neurons. In particular, we will consider

connectivities which only depend upon the distance between two points in the state

space. This will naturally induce an invariance of the system with respect to the

symmetries of the domain that are transfered in some way to the solutions of the

equations. However, depending on the parameters, the neural field equations can
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have multiple stationary solutions which have less symmetries than the symme-

tries of the original equations. This type of bifurcation with symmetries is known

as spontaneous symmetry-breaking mechanism. This part focuses on the study of

spontaneous symmetry-breaking mechanism for stationary solutions which are as-

sumed to be periodic with respect to a given lattice. More precisely, we apply tool

from equivariant bifurcation theory to classify stationary solutions, with respect to

their symmetries, in the cases where the state space is the Euclidean plane, the

Poincaré disk and the direct product of the Euclidean plane and the Poincaré disk.

The main contribution of this part is a complete analysis of nonlinear pattern for-

mation in the Poincaré disk for a regular octagonal tiling. We have applied our

results to a neural fields model describing a network of interacting hypercolumns of

“structure tensors” (see chapters 3 and 8) which has led to the description of new

visual cortical hallucination planforms.

Part III: Localized states on unbounded neural field equations

In part II, we have studied spatially periodic solutions of unbounded neural field

equations with respect to some given lattices. In this part, we show the existence

of an other type of solution that emerges naturally in systems set on unbounded

domains, namely localized solutions. In the neuroscience community, this class

of solutions are considered to be the analog of short-term memory and thus are

of particular interest. The main results of this part are proof of the existence of

localized states for different state spaces: the real line, the Euclidean plane and

the Poincaré disk. For the one dimensional case, the results rely on the theory of

homoclinic bifurcation with reversible symmetry and are illustrated with “snaking”

bifurcation diagrams. For the two dimensional problems (Euclidean plane and

Poinacré disk), we only deal with radially symmetric solutions and the proofs are

drawn on the methods developed in [Scheel 2003, Lloyd 2009, McCalla 2010] for the

Swift-Hohenberg equation.

Publications

A part of the work in chapter 3 is published in [Faye 2011b]. Chapter 6 on pattern

formation in the Poincaré disk is published in [Chossat 2011]. The study of the

irreducible representations of dimension four is published in [Faye 2011a]. The

spatialized model of interacting hypercolumns of chapter 8 has been submitted to

the journal Networks and Heterogeneous Media [Faye 2012b]. The study of localized

solutions on the real line with smooth firing-rate function is a collaboration with

James Rankin and has been published in the Journal of Mathematical Biology

[Faye 2012c]. The PDE method developed in the Poincaré disk is published in

[Faye 2012a].



Introduction (Version française)

Cette thèse a pour but d’étudier des modèles mésoscopiques de l’activité corti-

cale à travers les symétries que possèdent ces modèles. Ce travail se situe à la

frontière entre les neurosciences mathématiques et les mathématiques appliquées

puisqu’il donne des résultats pour des modèles neuronaux spécifiques et également

des résultats théoriques généraux qui peuvet être appliqués dans d’autres types de

modèles. Tout au long de cette thèse, nous utiliserons le formalisme des équations de

champs neuronaux. Ces équations sont des modèles corticaux décrivant l’activité

spatio-temporelle de populations de neurones. Ces équations sont une première

approximation du potentiel de membrane de populations de neurones distribuées

dans le cortex et doivent être considérées comme des équations de champ moyen

simplifiées. Nous nous intéresserons à l’activité spontanée du cortex et supposerons

donc que nos modèles ne reçoivent aucun signal du monde extérieur. Nous allons

caractériser les différentes solutions possibles qui peuvent émerger à parti d’un état

homogène en fonction des symétries que l’on suppose présentent dans le modèle

considéré. Nous donnons maintenant un rapide résumé de chaque partie.

Partie I: modélisation mésoscopique du cortex visuel

Cette première partie est une introduction à la modélisation mésoscopique du cor-

tex visuel. Le premier chapitre est une introduction à la biologie du cortex où l’on

donne une vue d’ensemble du traitement de l’information dans les aires visuelles.

Nous donnons également des définitions précises sur la notion de colone corticale. La

dynamique nonlinéaire de chaque neurone formant ces colones est prise en compte

dans le chapitre 2 où nous présentons le formalisme des équations de champs neu-

ronaux qui va être utilisé tout au long de cette thèse. Dans le dernier chapitre,

nous introduisons un modèle qui prend en compte le traitement des contours et

des textures pour les images ainsi que tout le matériel mathématique requis pour

aborder cette modélisation. L’étude de certaines solutions de ce modèle constituera

le fil conducteur de cette thèse.

Partie II: brisures de symétries dans quelques équations de

champs neuronaux

Les équations de champs neuronaux sont des systèmes dynamiques de dimension

infinie qui peuvent être définies sur de nombreux espaces d’états. Dans cette thèse,

nous considérons des espaces d’état non bornés qui peuvent avoir soit une géométrie

euclidienne soit une géométrie hyperbolique. Leurs solutions stationnaires sont in-

terpétées comme des activités stationnaires corticales. Dans ces équations, il existe

une fonction de connectivité qui décrit le couplage entre les différentes populations
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de neurones. En particulier, nous considèrerons des connectivitésqui ne dénpent

que de la distance entre deux points de l’espace d’états. Cela induira naturelle-

ment une invariance du système par rapport aux symétries du domaine qui seront

tranférées aux solutions d’une certaine manière. Cepdendant, en fonction de cer-

tains paramètres, les équations de champs neuronaux peuvent avoir de multiples

solutions qui possèdent moins de symétries que l’équation de départ. Ce type de

phénomène est plus communément appelé méchanisme de brisures spontanées de

symétries. Cette partie se concentre sur l’étude de tels méchanismes sur les solutions

stationnaires de certaines équations de champs neuronaux qui sont supposées être

périodiques par rapport à un réseau donné. Plus précisémment, nous appliquons la

théorie des bifurcations équivariantes pour classifier ces solutions stationnaires en

fonction de leurs symétries dans les cas où l’espace des états est le plan euclidiean, le

disque de Poincaré et le produit direct du plan euclidien et du disque de Poincaré.

La contribution principale de cette partie est l’analyse complète du problème de

formation d’états structurés dans le disque de Poincaré pour le cas du réseau octag-

onal. Nous avons également appliqué nos résultats à l’étude d’un modèle de champs

neuronaux décrivant l’activité corticale d’un réseau d’hypercolones de “tenseurs de

structure ” (voir les chapitres 3 et 8) qui a conduit à la description de nouveaux

types d’hallucinations visuelles.

Partie III: solutions localisées dans les équations de champs

neuronaux non bornés

Dans la première partie, nous avons étudié les solutions spatialement périodiques

de certaines équations de champs neuronaux non bornés. Dans cette partie, nous

montrons l’existence d’un autre type de solutions qui apparaissent naturellement

dans les systèmes définis sur des domaines non bornés: ce sont les solutions dites

localisées. Dans la communauté des neurosciences, cette classe de solutions a une

importance toute particulière puisqu’elles sont reliées à certains méchanismes de

mémoire à courts termes. Les résultats principaux de cette partie sont des résultats

d’existence de solutions localisées pour différents espaces d’états: la droite réelle,

le plan euclidien et le disque de Poincaré. Pour le cas unidimensionel, les résultats

reposent sur la théorie des bifurcations homoclines avec symétrie de réversibilité

et sont illustrés avec des diagrames de bifurcation ayant une forme de “serpent“.

Pour les problèmes de dimension deux (plan euclidien et le disque de Poincaé), nous

nous intéressons uniquement à la classe des solutions radialement symétriques et

les preuves sont adaptées des méthodes développées dans [Scheel 2003, Lloyd 2009,

McCalla 2010] pour l’équation de Swift-Hohenberg.

Publications

Une partie du chapitre 3 est publiée dans [Faye 2011b]. Le chapitre 6 concernant la

formation de structures dans le disque de Poincaré est publié dans [Chossat 2011].
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L’étude des représentations irréductibles de dimension quatre est publiée dans

[Faye 2011a]. Le modèle spatialisé d’hypercolones du chapitre 8 est soumis dans

le journal Networks and Heterogeneous Media [Faye 2012b]. L’étude numérique

des solutions localisées sur la droite réelle avec une fonction de taux de décharge

lisse est issue d’une collaboration avec James Rankin et a été publiée dans Journal

of Mathematical Biology [Faye 2012c]. La méthode de type EDP dans le disque de

Poincaré du chapitre 11 est publiée dans [Faye 2012a].
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6.1.1 The Laplace-Beltrami operator on the Poincaré disk . . . . . 78
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Neurons are a particular type of brain cells that process the inputs from sensory

pathways. Their coordinated activity is the basis of brain functions. The aim of

this chapter is to identify some basic structures of the visual cortex and identify a

functional scale to study populations of connected neurons that will be necessary

for the modeling chapters 2 and 3. We first give an overview of visual processing

from the retina to the visual cortex. Then we introduce the notion of a cortical

column from an anatomical to a functional point of view. Finally, we discuss the

different cortical connections within the primary visual cortex.

This chapter does not give a complete and general introduction to the biology

of vision but rather highlights some anatomical and functional principles at a meso-

scopic level. Indeed, we will treat cortical units or blocks composed of at least one

hundred neurons (minicolumn see 1.2.1) and at most one hundred thousand neurons

(hypercolumn see 1.2.3) [Chemla 2010b]. The nonlinear dynamics of individual neu-

rons forming these units will only be taken into account in chapter 2. Our intention

in this Thesis is to model cortical columns and cortical areas composed of such meso-

scopic blocks. The choice of the mesoscopic scale presents the advantages that lots

of biophysical data are available in particular mesoscopic intra-columnar and inter-

columnar connectivity data. Such data are still missing at the level of single neurons.

For a review on cortical circuits see [Kandel 2000, Grimbert 2008, Chemla 2010b].
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Figure 1.1: Main elements of the visual pathway.

1.1 Overview of visual processing

1.1.1 The retina

Visual processing begins in the retina, i.e. the receptive surface inside the back of

the eye. Light enters the eye, passes through the layers of cells in the retina before

reaching the photoreceptors (cone cells for daylight vision and rod cells for twilight

vision) which are located at the back of the retina. Light activates the photorecep-

tors, which modulate the activity of bipolar cells. As a first approximation, bipolar

cells, in turn, connect with ganglion cells located at the front of the retina. The

axons of these output cells form the optic nerve, which carries information to the

brain see figures 1.1 and 1.2.

Definition 1.1.1.The receptive field (RF) of a neuron is defined as the region of

the retina or its equivalence in visual space, within which a stimulus evokes a change

in the discharge of the neuron.

Therefore, a RF characterizes the transformation between the visual image and

neuronal activity. The receptive field of neurons is usually subdivided in subregions

ON (resp. OFF) which are excitatory (resp. inhibitory) in that they increase (resp.

decrease) the stimulus response.

The RFs of most ganglion cells display a characteristic, roughly circular center-

surround architecture where the center is excitatory (resp. inhibitory) and the

surround is inhibitory (resp. excitatory) [Rodieck 1965], see figure 1.3. Moreover,

the ON/OFF subregions are usually associated with particular wavelengths of light.

Hence, the ganglion cells act as local spatial contrast detectors. For primates,

ganglion cells can also be divided into two functional classes according to their size:

M cells and P cells (respectively for magni and parvi), thus providing the magno-

and parvocellular pathways. The magnocellular pathway carries information from

the large retinal ganglion cells to the large cells in the thalamus and from there
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Figure 1.2: Horizontal section of the visual pathway. Redrawn from [Hannula 2005].

to the primary visual cortex (V1). This M-pathway carries all transient, motion

related and low contrast black-and-white visual information and is responsive to

low spatial frequencies and high temporal frequencies. The parvocellular pathway

from the small retinal ganglion cells is color sensitive, has lower contrast sensitivity

and is responsive to higher spatial frequencies and lower temporal frequencies. For

more details on the retina, see [Wohrer 2008].

Hence, we could think of the retina, as a first approximation, as a spatiotemporal

contrast detector. Indeed, transmitting the same information constantly is useless,

it is changes in the information flow that are important.

1.1.2 From the retina to the visual cortex

The thalamus is the entrance portal for all sensory information passed to the cortex

and the lateral geniculate nucleus (LGN) is the part of the thalamus concerned

with vision see figures 1.1 and 1.2. The magno- and parvocellular pathways remain

segregated in the LGN, providing the magno- and parvocellular layers, respectively

forming by projection of the above M and P ganglion cells. More information about

the LGN anatomy can be found in [Sherman 1996]. Note that in these layers, the

RFs of thalamic neurons have the same concentric center-surround organization

(see figure 1.4) as the retinal ganglion cells that feed into them. However, their

sensitivity to stimulus features, e.g. color contrast, luminance contrast, spatial and
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Figure 1.3: Schematic of the receptive field properties of a ganglion cell. Ganglion

cells have circular receptive fields divided into two subregions: a central area and a

surrounding ring. ON-center cells (left) are excited when the center is illuminated

by a spot of light and inhibited when stimulated in the surround, whereas off-

center cells (right) are excited when the surround is illuminated and inhibited when

stimulated in the center [Rodieck 1965]. Redrawn from [Kandel 2000].
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temporal frequency, are quite different. The pathways segregation continues in layer

IV of the primary visual cortex.

Figure 1.4: Spatial arrangement of receptive fields of cat LGN and V1 cells.

Schematic (left) and two-dimensional spatial (x-y) (right) RF profiles A: ON-center

LGN neuron. The RF has a central ON region, surrounded by an antagonist OFF

region B: V1 simple (linear) cell RF exhibits an alternating arrangement of elon-

gated excitatory and inhibitory subregions that are responsive to either bright

(green, +) or dark (red, -) stimuli. C: V1 complex (non-linear) cell RF do not

present net subdivision between excitatory and inhibitory subregions. Redrawn

from [DeAngelis 1995b].

The cortex is a folded sheet of width 2cm known as the grey matter. It contains

the somas of the neurons. The white matter is made of the myelinated axons of the

grey matter. The cortex shares many features of the LGN. It is a layered structure,

6 layers that have been identified by [Brodmann 1909] see figures 1.5 and 1.8, which

is also retinotopically organised (see figure 1.6 where the retinotopy is shown). The

mapping between the visual field and the cortical coordinates is approximatively

log-polar (see [Schwartz 1977]). From the LGN, the information is transmitted to

the visual cortex located at the back of the head (see figures 1.1 and 1.2), mostly

to the primary visual area V1.

Let us consider V1 more precisely. By using extracellular recordings of single

cells in the visual cortex of anesthetized cats and simple set of geometric test stimuli,

Hubel and Wiesel [Hubel 1962] mainly classified them into two groups: simple and

complex. They proposed the following definition. The RF of the simple cells is

more elongated than the RF of the LGN cells which accounts for their selectivity

for the orientation of the stimulus. It is also comprised of ON/OFF subregions (see
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Figure 1.5: Layer organization of the cortex (a) Weigert’s coloration shows myeli-

nated fibers (axons) and so the connections inside and between layers, (b) Nissl’s

coloration only reveals cell bodies (c) Golgi’s coloration shows the whole cells (From

[Nolte 2001]).

figure 1.4). It has been shown that these cells better respond to bars than to spots.

Simple (linear) cells are selective to orientation and position. On the other hand,

the complex cells are not so well characterized by their RF (see figure 1.4) despite

being responsive to which eye is stimulated, the orientation, the spatial frequency

of the stimulus and other properties. Complex (non-linear) cells show some kind

of position invariance and generalize orientation selectivity across receptive field

extent.

Neurons in the primary visual cortex can actually be selective along many stim-

ulus dimensions, such as spatial position, phase, temporal and spatial frequency,

orientation, direction of movement, binocular disparity. Based on the retinotopy

property, it is interesting to compare the preferred stimulus of V1 cells and see

how it is spatially organised in the cortex. Since the 1950s, thanks to the work

of Mountcastle [Mountcastle 1957], we know that the cerebral cortex has also a

columnar organization. Indeed, using a microelectrode in cat primary somatosen-

sory cortex, he found that neurons responding to the same stimulation, i.e. sharing

common receptive field properties, were arranged vertically into columns, cross-

ing the six layers of the cortical tissue. In 1960s and 1970s, Hubel and Wiesel

followed Mountcastle’s discoveries by showing that ocular dominance and orien-

tations are organized in a columnar manner in cat and monkey visual cortex

[Hubel 1962, Hubel 1965, Hubel 1977]. The individual cortical column was then

considered to be the elementary unit of organization in the cerebral cortex. Today,

the term “cortical column” is very confusing and one can find in the literature: mini-

columns, microcolumns, hypercolumns, macrocolumns, orientation columns, ocular

dominance bands, barrels, blobs, stripes... The aim of the next section is to give a
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Figure 1.6: Retinotopic organization of the macaque striate cortex.

precise meaning of what we will call cortical column throughout this Thesis.

1.2 Cortical column

1.2.1 The anatomical column

Many cortical neurons throw their axons and dendrites from the cortex surface to

the white matter thereby forming the anatomical basis of the columnar organization

in the cortex, see figure 1.7. Nervous fibers from the thalamus mostly end in

layer IV where they are connected to stellate neurons. These neurons throw their

axons towards the surface of the cortex, parallel to apical dendrites of neighboring

pyramidal neurons, and establish connections with them. The thalamocortical input

is therefore conducted within a thin column of strongly connected cells so that the

same information is shared throughout the depth of the cortex perpendicular to its

surface [Kandel 2000].

Definition 1.2.1.Minicolumns, sometimes also called microcolumns, are narrow

vertical chains of about one hundred neurons, barely more than one cell diameter

wide, i.e. 20 up to 50 µm, which are formed during brain development, due to radial

migration of neurons [Buxhoeveden 2002, Nolte 2001].

However minicolumns do not solve the problem of defining cortical columns.

They have not been extensively observed among species, nor among cortical areas.

Moreover, at this spatial scale, individual microcolumns have no reason to be con-

sidered as functional entities and classical electrophysiological techniques limit the

research.



10 Chapter 1. Cortical organization of the visual cortex

Figure 1.7: The anatomical column. Left: Nissl-stained tissue reveals vertically

aligned cells, suggesting the existence of minicolumns in the developing cortex.

Right: Myelinated fibre bundles in the same region of human cortex. The corre-

lation between myelin bundles and cell soma aggregates is clear. Redrawn from

[Buxhoeveden 2002].

1.2.2 Cortical column as physiological units

In 1957 Mountcastle [Mountcastle 1957], discovered a columnar organization in the

cortex. However this columnar organization differs from the anatomical column

defined above, especially regarding the diameter of the column. With electrode

recordings, he showed that neurons inside columns of 300 to 500 µm of diameter

displayed similar activities, which is much larger than the diameter of the micro-

column. Those physiological units are usually called macrocolumns and defined as

a continuum of many minicolumns from 0.4 to 1 mm.

1.2.3 From anatomical to functional units

At the spatial scale of the macrocolumn, many experiments investigated the possi-

ble relation between physiological columns and sensory functions [Mountcastle 1957,

Hubel 1962, Hubel 1965, Hubel 1977, Kandel 2000, Lund 2003]. Indeed, a cortical

column can also be defined on the basis of functional features, e.g. columns of cor-

tical cells all responding to the same stimulus property. Besides, columns, barrels,

blobs, and stripes have all been called cortical modules, as any repeated functional

clusters in different areas of the brain.

Visual cortical cells are also sensitive to orientation, meaning that they will se-

lectively respond to stimuli, e.g. bars, edges, at particular orientations. Hubel and

Wiesel [Hubel 1962, Hubel 1965, Hubel 1977] showed that orientation preference of

neurons remains constant in vertical electrode penetrations through the entire thick-

ness of the cortex, while gradually changes when moving the electrode obliquely,

see figure 1.8. It thus led to the definition of cortical column of orientation. The

point-by-point sampling with microelectrodes of cells preferences, performed by

Hubel and Wiesel, has since been supplemented by the optical imaging method of

intrinsic signals (see [Blasdel 1986, Grinvald 1986]) which reveals that the orien-
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Figure 1.8: Top left: orientation preference of neurons remains constant in verti-

cal electrode penetrations. Top right: orientation preference of neurons gradually

changes when moving the electrode obliquely. Bottom left: Morphology of relay

cells from layers III to V. Stellate neurons (layer IV) receive information from the

thalamus and transmit it to neighboring pyramidal cells in superficial layers of the

cortex. Pyramidal cells throw their axons towards deep layers of the cortex and

other cortical or sub-cortical regions. They also establish horizontal connections

with neighboring columns sharing the same physiological properties. Bottom right:

diagram of intra-cortical excitatory circuitry. Redrawn from [Kandel 2000] based

on the original work of Hubel and Wiesel [Hubel 1962, Hubel 1965, Hubel 1977].
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tation preference map is composed of pinwheel-like structures as shown in figure

1.9 for the tree shrew visual cortex. A similar structure has been shown for the

macaque primary visual cortex (see [Blasdel 1986]) and the cat visual cortex (see

[Bonhoeffer 1991]). In figure 1.9 B, the color indicates the preferred orientation

of neurons in the underlying column. This figure was obtained by combining the

cortical responses for different orientation stimulus as shown in figure 1.9 A. The

striking feature, already found by Huber and Wiesel, is the existence of particular

points called pinwheels (see figure 1.9 C Right) where all orientations are repre-

sented, which are singularities in the orientation map. Between these pinwheels (or

singularities), there are smooth and continuous zones with orientation preference

gradient where the local orientation preference does not have radial organization

(see figure 1.9 C Left).

Figure 1.9: Optical imaging of intrinsic signals in tree shrew visual cortex. A,

Difference images obtained for four stimulus angles. Dark signal indicates areas

that were active during presentation of the stimulus. B, Orientation preference

map. Orientation preference of each location is color-coded according to the key

shown below the map. C, Portions of the orientation preference map shown in B

have been enlarged to demonstrate that the orientation preference maps contained

both smooth and continuous zones (left), and pinwheel arrangements (right) that

are functional singularities. Redrawn from [Bosking 1997].
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In addition to the pinwheel structure, there are ocular preference domains, in

effect large bands, that show to which stimulated eye the columns are more re-

sponsive. The two maps of orientation preference and ocular preference can be

superposed as in figure 1.10 from [Hubener 1997] (in the cat). It becomes clear

that both systems are spatially related: many iso-orientation lines cross the bor-

ders between ocular dominance columns close to right angles, and the pinwheel

centers are preferentially located in the middle of the ocular dominance columns.

Figure 1.10: Relationship between ocular dominance and orientation maps. The

colored iso-orientation lines were derived from the orientation preference map. All

points on lines with a given color prefer the same orientation. The contours of

the ocular dominance columns were obtained from the ocular dominance map of

the same cortical region, using an objective automated procedure; grey denotes

contralateral eye dominance. Redrawn from [Hubener 1997] for the cat.

Following the observation that orientation columns did not show discrete bound-

aries, Hubel and Wiesel [Hubel 1977] defined a hypercolumn as the structure which

contains representations of all orientations for both eyes. The idea is that the

module periodicity is usually in the millimeter range. The primary visual cortex

of many mammals species is thus arranged with several superimposed functional

maps that represent the visuotopic position, orientation, ocular dominance, spatial

frequency, spatial disparity or movement direction, of visual stimuli. This colum-

nar organization implies that all feature maps are “superimpose” on the 2D cortical

sheet.

To finish our discussion on functional columns, it is to be noted that these

structures have not been observed in all regions of mammals cortex and show species

dependency. For example, there is no orientation preference columnar structure

in rat primary visual cortex, which means that locally, cells with all orientation

preference are represented [Ohki 2005].
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1.3 Cortical connections in V1

We now focus on the intra-cortical connections within the primary visual cortex.

Let us first mention that the term horizontal or lateral connectivity is used for the

inter-column connections between columns, parallel to the cortical surface, whereas

the vertical or local connectivity is used for intra-column connections.

1.3.1 Vertical intra-columnar connections

In a general manner, over a spatial scale of about 800 µm, neighboring columns

exhibit strong physiological short-range connections (excitatory and inhibitory)

with each other, independently of any visual feature selectivity, and connec-

tion strength (or synaptic weight) decrease with cortical distance [Das 1999].

This particular organization of local connectivity together with the structure of

orientation maps (as in figure 1.9) implies that these connections play a dif-

ferent role depending on the place of the neurons in the pinwheel map (see

[Shelley 2002, Mariño 2005, Nauhaus 2008]). Indeed, the homogeneous connections

provide a uniform sampling of the neighbouring neurons. In the linear zones, the

neurons are mainly connected to neurons sharing the same orientation preference,

whereas near pinwheels the neurons are connected to neurons with different orien-

tations.

1.3.2 Horizontal inter-colmunar connections

Figure 1.11: The patchy nature of horizontal connections in the tree shrew visual

cortex. Axonal bouton distribution (black dots) after biocytin injection in layer

II/III. A: Pyramidal neurons (white crosses) of the injected site have a preferred

orientation of 80 degree. B: The injected site has an orientation preference of 160

degree. For both case, except for the region immediately adjacent to the injection

sites, the labeled boutons are clustered in regions that have orientation preferences

similar to that of the injection site, i.e. orientation columns are connected by long-

range horizontal connections. Redrawn from [Bosking 1997].
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Lateral connections are mainly made by excitatory neurons and long-range pro-

jections can extend to about 3000 µm. The global distribution of excitatory synaptic

boutons with respect to lateral distances from the injection site (see figure 1.11 left),

revealed dense local connections with exponential decline of bouton density with

radial distance from the injection site, surrounded by patches of long-range connec-

tions. Thus, lateral connections are patchy and regular, and thought to be linked to

the regularity of functional domains. The clearest relationship between anatomical

connectivity and functional domains concerns excitatory long-range lateral connec-

tions and orientation columns. Several studies in different mammals (cats, ferrets,

monkeys) have shown long-distance clustered horizontal connections that preferen-

tially link columns with similar orientation preference [Malach 1993, Lund 2003],

see figure 1.11.
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In this chapter, we present the neural field formalism that will be used

throughout this Thesis. The current mathematical approach for understand-

ing coarse-grained activity of large ensembles of neurons in cortex is based

around the work of Wilson and Cowan [Wilson 1972, Wilson 1973] and Amari

[Amari 1975, Amari 1977]. Because the number of neurons and synapses is vast, a

natural first approximation is to take continuum limit and treat cortical space as

continuous, giving rise to the notion of a neural field model. These models typically

take the form of integro-differential equations. Compared to spiking neural net-

works, the neural field model presents the advantages that various techniques from

the analysis of partial differential equations (PDEs) can be adapted to study the

nonlinear dynamic behaviours and that few parameters are needed. The sorts of dy-

namical behaviour that are typically observed in neural field models include spatially

and temporally periodic patterns [Ermentrout 1979, Tass 1995], localized regions of

activity [Laing 2002, Kishimoto 1979] and traveling waves [Pinto 2001a, Laing 2005,

Kilpatrick 2008]. Neural fields have been used to model a wide range of neurobio-

logical phenomena such as visual hallucinations [Ermentrout 1979, Bressloff 2001a],

mechanisms for short term memory [Laing 2002, Laing 2003a] and feature selectiv-

ity in the visual cortex [Ben-Yishai 1995]. For a review on neural field models, see

[Ermentrout 1998, Coombes 2005b, Coombes 2010, Bressloff 2012].

2.1 Synaptically coupled networks of spiking neurons

We start this section by briefly describing the biological components of synaptically

coupled networks of spiking neurons. We only consider conductance-based models

of action potential generation and synaptic processing.
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2.1.1 Conductance based model of a neuron

The structure of a cortical neuron typically consists of three parts: (i) the cell

body (or soma); (ii) a branching output structure known as the axon; (iii) and a

branching input structure known as the dendritic tree, see figure 2.1.

Figure 2.1: Basic structure of a neuron.

Neurons mainly communicate with each other by sending action potentials along

their axons, action potentials are initiated at a specialized region of the soma called

the axon hillock. Axons make contacts on the dendrites of other neurons via mi-

croscopic junctions known as synapses. There are two kind of synapses, the chem-

ical and the electrical (also called gap junctions). We will not consider electrical

synapses in this Thesis. When the somatic potential across the membrane reaches

a threshold, a sequence of action potentials (also called spikes) is produced at the

axon hillock. This sequence is then transmitted, without alteration, to the axon

terminals where the synapses with the targeted neuron are located.

The standard biophysical model describing the dynamics of single neuron with

somatic membrane potential V is based upon the conservation of electric charge:

C
dV

dt
= −Icon + Isyn + Iext, (2.1)

where C is the cell capacitance, Icon is the membrane current, Isyn denotes the

sum of synaptic currents entering the cell and Iext describes any externally injected

currents. The membrane current through a specific channel varies approximately

linearilly with changes in the potential V relative to some reversal potential that

mediates the synaptic current. Summing over all channel types, the total membrane

current leaving the cell through the cell membrane is

Icon =
∑

s

gs(V − Vs), (2.2)

where gs is the conductance due to channels of type s and Vs the corresponding

reversal potential. Three different types of ion channels are taken into account:

Na+, Ca2+ and K+. The conductance gs for ion channels of type s is taken to be
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the product gs = ḡsPs where ḡs is equal to the density of channels in the membrane

multiplied by the conductance of a single channel and Ps is the fraction of open

channels.

2.1.2 Synaptic processing

Figure 2.2: Basic structure of a synapse.

When a spike arrives at a synapse, it triggers the release of neurotransmitter in

the synaptic cleft, see figure 2.2. These neurotransmitters bind to specific receptors

on the postsynaptic neuron. The binding causes ion channels to open (or close), thus

changing the ability of ions to flow through the postsynaptic membrane. Hence, the

binding of neurotransmitters alters the conductance of the postsynaptic membrane.

A single synaptic event due to the arrival of an action potential at time T induces

a synaptic current of the form

Isyn(t) = gsyn(t− T ) (Vsyn − V (t)) , (2.3)

where V is the voltage of the postsynaptic neuron, Vsyn is the synaptic reversal

potential and gsyn(t) is the change in synaptic conductance with gsyn(t) = 0 for

t < 0. A typical form for gsyn(t) is the difference of exponentials

gsyn(t) = ḡ

(
1

τd
− 1

τr

)−1 (
e−t/τd − e−t/τr

)
H(t), (2.4)

where H(t) is the Heaviside function, ḡ a constant conductance and τd,r are time

constants. Two limits are commonly used

gsyn(t) = ḡα2te−αtH(t), in the limit τd → τr = α−1,

gsyn(t) = ḡe−t/τdH(t), in the limit τr ≪ τd.
(2.5)
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2.2 From neural networks to neural fields

Following the lines of Ermentrout and Bressloff [Ermentrout 1998,

Ermentrout 2010a, Bressloff 2012], we highlight a sequence of approximations that

can be made to reduce a network of spiking neurons to an effective rate-based

model. Finally, we derive the neural field equations in the continuum limit.

2.2.1 Rate-based neural network models

Let us now consider a network of synaptically coupled cortical neurons labeled

i = 1, . . . , N . If we denote the sequence of firing times of the jth neuron by

{Tm
j ,m ∈ Z}, then the net synaptic current into postsynaptic neuron i due to

innervation by the spike train from presynaptic neuron j is taken to have the gen-

eral form
∑

m PSPij(t−Tm
j ), where PSPij(t) represents the temporal filtering effects

of synaptic and dendritic processing. Assuming that the spikes’ contributions sum

linearilly, the average membrane potential of the ith neuron, which we denote by

ui(t), is

ui(t) =

N∑

j=1

∑

m

PSPij(t− Tm
j ) =

N∑

j=1

∫ t

−∞
PSPij(t− s)aj(s)ds, (2.6)

where we have set

aj(t) =
∑

m∈Z
δ(t− Tm

j ), (2.7)

δ(t) being the delta Dirac function. In order to obtain a closed set of equations, we

have to determine the firing times Tm
i . This takes the form of a threshold condition

Tm
i = inf{t, t > Tm−1

i | Vi(t) = κ, V̇i(t) > 0}, (2.8)

where κ is the firing threshold and the somatic membrane potential Vi(t) evolves

according to the conductance based model

C
dVi
dt

= −Icon,i(Vi, . . . ) + ui. (2.9)

Under the simplifying assumption that synapses are sufficiently slow, we can carry

out a short term temporal averaging of equation (2.6) in which we approximate the

output spike train aj(t) by the instantaneous firing rate aj(t) = Sj(uj(t)) with Sj
the corresponding firing rate function. Equation (2.6) reduces to

ui(t) =

N∑

j=1

∫ t

−∞
PSPij(t− s)Sj(uj(s))ds. (2.10)

In neural network models, Sj is usually approximated by the sigmoidal function

Sj(x) =
1

1 + e−µi(x−θi)
(2.11)
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where µi is the nonlinear gain and θi is the threshold.

There are two main simplifying assumptions that appear in the literature

[Ermentrout 1998, Pinto 1996] and produce two different models that we describe

below.

The voltage based model The assumption is that the postsynaptic potential has

the same shape no matter which presynaptic population caused it. This leads to

the relation

PSPij(t) = wijPSPi(t).

wij denotes the synaptic strenght of the connection from neuron j to neuron i and

PSPi(t) determines the time course of the input, which is assumed to depend only

on properties of the postsynaptic cell i. The shape of PSPi(t) is often approximated

by a simple exponential decay PSPi(t) = e−t/τiH(t), or equivalently that

τi
dPSPi(t)

dt
+ PSPi(t) = δ(t). (2.12)

Combining equations (2.12) together with (2.10) leads to a system of differential

equations for the current ui(t):

τi
dui(t)

dt
+ ui(t) =

N∑

j=1

wijSj(uj(t)). (2.13)

We introduce the N × N matrix J such that Ji,j = wi,j/τi, and the function

S : RN → RN such that S(U) is the vector of coordinates Si(ui) ifU = (u1, . . . , uN ).

We rewrite (2.13) in vector form and obtain the following system of N differential

equations

U̇(t) = −LU(t) + JS(U(t)) + Iext(t), (2.14)

where L is the diagonal matrix L = diag (1/τ1, . . . , 1/τN ) and Iext(t) is an added

external current such that Iiext(t) models the non-local connections of population i.

The activity based model The assumption is that the shape of the postsynaptic

potential depends only on the nature of the presynaptic cell, that is

PSPij(t) = wijPSPj(t).

As above, we suppose that PSPj(t) satisfies equation (2.12) and define the time-

averaged firing rate to be

Ai(t) =

∫ t

−∞
PSPi(t− s)Si(ui(s))ds. (2.15)

Combining equations (2.12) together with (2.15) leads to a system of differential

equations for Ai(t):

τi
dAi(t)

dt
+Ai(t) = Si




N∑

j=1

wijAj(t)


 . (2.16)
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We can rewrite in vector form and introduce an external current Iext(t)

Ȧ(t) = −LA(t) + S (JA(t) + Iext(t)) . (2.17)

2.2.2 The continuum models

So far we have not made any assumptions about the topology of the underlying

neural network, that is, the structure of the weight matrix J. If one looks at a

region of the primary visual cortex, one finds that it has a characteristic spatial

structure: neurons are distributed according to an approximately two-dimensional

architecture. That is, the physical location of a vertical column of neurons within

the two-dimensional cortical sheet often reflects the specific information processing

role of that population of neurons. This suggests labeling neurons according to

their spatial location in cortex. We now combine the rate-based neural networks to

form a continuum of neural fields, e.g., in the case of a model of significant part Ω

of the cortex. We consider Ω ⊂ Rd, d = 1, 2, 3 which we assume to be connected.

We denote U(r, t) (respectively A(r, t)) the N -dimensional state vector at the

point r of the continuum. We introduce the N ×N matrix function J(r, r′) which
describes how neural mass at point r′ influences that at point r. We call J the

connectivity function. Equation (2.14) can be extended to

d

dt
U(r, t) = −LU(r, t) +

∫

Ω
J(r, r′)S(U(r′, t))dr′ + Iext(r, t), (2.18)

and equation (2.17) to

d

dt
A(r, t) = −LA(r, t) + S

(∫

Ω
J(r, r′)A(r′, t)dr′ + Iext(r, t)

)
. (2.19)

When d = 1 we deal with one-dimensional sets of neural fields. Even though this

appears to be of limited biological interest, this is one of the most widely studied

cases because of its relative mathematical simplicity and because of the insights one

can gain of the more realistic situations.

When d = 2 we discuss properties of two-dimensional sets of neural fields. This

is perhaps more interesting from a biological point of view since Ω can be viewed

as a piece of cortex where the third dimension, its thickness, is neglected. This case

has received by far less attention than the previous one, probably because of the

increased computational difficulty.

Finally d = 3 allows us to discuss properties of volumes of neural fields, e.g. cor-

tical sheets where their thickness is taken into account[Kandel 2000, Chalupa 2004].

Some remarks

(i) Unfortunately, there does not currently exist an analysis that provides a rigor-

ous derivation of neural field equations, although some progress has been made

in this direction [Deco 2008, Bressloff 2009, Faugeras 2009a, Baladron 2011].
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(ii) Moreover, heuristic approaches have been used to incorporate mecha-

nisms such as synaptic depression/facilitation in neural field formalism

[Tsodyks 1998, Kilpatrick 2010a, Kilpatrick 2010b], spike frequency adapta-

tion [Curtu 2004, Coombes 2003, Coombes 2005a, Kilpatrick 2010c] and ax-

onal propagation delays [Venkov 2007, Hutt 2006, Faye 2010, Veltz 2011].

(iii) A significant amount of work has been devoted to the study of equations

(2.18) and (2.19) in the case of unbounded cortical domains Ω = Rd,

d = 1, 2, 3. Recent reviews of this work, and much more, can be found in the

papers of Coombes [Coombes 2005b] and Bressloff [Bressloff 2012]. Amari

[Amari 1977] investigated the problem in the case d = N = 1 when the

sigmoid function is approximated by a Heaviside function and the connec-

tivity function has a “Mexican-hat shape”. He proved the existence of sta-

ble localized stationary solutions in this case. His work has been extended

to different firing-rate and connectivity functions [Gutkin 2000, Laing 2002,

Laing 2003b, Rubin 2004, Guo 2005a, Guo 2005b]. The case N = 2, d = 1

has been considered by several authors including [Pinto 2001a, Pinto 2001b]

for general firing-rate functions and Gaussian-like connectivity functions, and

[Blomquist 2005] when the firing-rate functions are approximated by Heav-

iside functions. Extending these analyses to two- or three-dimensional con-

tinuum is difficult because of the increase in the degrees of freedom in the

choice of the connectivity function. The case N = 1, d = 2 has been studied

in [Werner 2001, Folias 2005, Owen 2007] when the firing-rate functions are

approximated by Heaviside functions and the connectivity function is circu-

larly symmetric. Let us also point out that some work has also been done for

the theoretical study of stationary solutions with bounded compact domain

Ω [Faugeras 2008, Faugeras 2009b, Veltz 2010b].

(iv) Note that equations of the type of (2.18) and (2.19) have been studied in

pure mathematics, see [Hazewinkel 2001]. They are of the Hammerstein type

[Hammerstein 1930, Tricomi 1985]. This type of equations has received some

recent attention, see [Appell 2006], and progress have been made toward a

better understanding of their solutions.

(v) As explained in the introduction of this chapter, neural field equations have

been used to model a wide range of neurobiological phenomena. One of the

major modeling issues is to determine how these phenomena depend on the

connectivity function J. It is usually assumed that J depends on the Eu-

clidean distance between interacting cells within the 2D cortical sheet so that

J(r, r′) = J(‖r − r′‖), but it can also depend on the distance between two

points within a feature space (see chapter 3). The dependence, with respect

to the connectivity function, of the existence of stationary localized solution

of equation (2.18) in the case N = 1 and Ω = R will be discussed in 10.
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2.3 The “Mexican/Wizard-hat” model

In most of the models presented in this Thesis, we use a one-layer model in which

nearby neurons excite each other while more distant pairs have an inhibitory ef-

fect. Then the connectivity function has a “Mexican-hat” or a “Wizard-hat” shape

depending if it is a difference of Gaussian or exponential functions. It is possible

[Ermentrout 1998, Pinto 2001b] to interpret this one-layer model as an approxima-

tion of a two layers system as follows.

Let us consider two populations of excitatory and inhibitory neurons spread

along a single spatial domain Ω = R (see [Pinto 2001b]). We write the neural field

equation (2.18) without any input as

τe
d

dt
ue(x, t) = −ue(x, t) +

∫

R

wee(x− y)Se(ue(y, t))dy −
∫

R

wie(x− y)Si(ui(y, t))dy

τi
d

dt
ui(x, t) = −ui(x, t) +

∫

R

wei(x− y)Se(ue(y, t))dy.

(2.20)

For simplicity we have neglected the term describing recurrent inhibition. We also

assume that time constant of inhibition is smaller than that of excitation. For

instance, with instantaneous inhibition (i.e. , τi = 0) we arrive at a single equation

on the excitation:

τe
d

dt
ue = −ue + wee ∗ Se(ue)− wie ∗ Si (wei ∗ Se(ue)) , (2.21)

where ∗ stands for the convolution over the real line.

This equation can still be further simplified. Supported by experimental data

comparing the firing properties of excitatory versus inhibitory neurons in cortex

[McCormick 1985], we may assume that the firing rate function for the inhibitory

population is linear such that Si(x) = αx for some positive constant α > 0 being

the gain of the sigmoid function Si. We finally obtain the reduced equation

τe
d

dt
ue = −ue + (wee − αwie ∗ wei) ∗ Se(ue)

def
= −ue + w ∗ Se(ue).

(2.22)

For example, if the connectivities wkl(x) = e−x2/2σkl are Gaussian functions then

wie ∗ wei is also a Gaussian function. Hence in effect, w in equation (2.22) is a

difference of Gaussian functions also called the “Mexican-hat” connectivity function

when w(0) > 0. In some models, it is more convenient to work with a difference

of exponential functions as in chapter 10 and in that particular case w is called a

“Wizard-hat” connectivity function.

Finally, we have seen that a one-layer model with “Mexican-hat” or “Wizard-

hat” connectivity function can actually be regarded as a two-layer model in which

the inhibition is linear and very fast.
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The selectivity of the responses of individual neurons to external features are

often the basis of neuronal representations of the external world. For example,

neurons in the primary visual cortex respond preferentially to visual stimuli that

have a specific orientation [Ben-Yishai 1995, Hansel 1997, Bressloff 2000], spatial

frequency [Bressloff 2003b], velocity and direction of motion [Orban 1986], color

[Hubel 1968]. A local network in the primary visual cortex, roughly 1 mm2 of

cortical surface, is assumed to consist of neurons coding for a given position in

the retina for a full functional set of orientations and ocular dominance. These

subgroups are the so-called Hubel and Wiesel hypercolumns of V1 defined in 1.2.3.

Chossat and Faugeras have introduced in [Chossat 2009] a new approach to model

the processing of image edges and textures in the hypercolumns of area V1 that is

based on a nonlinear representation of the image first order derivatives called the

structure tensor [Bigun 1987, Knutsson 1989]. It was suggested that this structure

tensor was represented by neuronal populations in the hypercolumns of V1 and that

the time evolution of this representation was governed by equations similar to those

proposed by Wilson and Cowan [Wilson 1972, Wilson 1973].
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The aim of this chapter is to present in detail the structure tensor model in-

troduced by Chossat and Faugeras in [Chossat 2009] and give all the mathematical

background related to this modeling. The structure of this chapter is as follows. In

the first section 3.1, we expose the structure tensor formalism for edges and tex-

tures detection and introduce the main equations of this Thesis in subsection 3.1.4.

In section 3.2, we present the mathematical structure of the set structure tensors

and show the non-Euclidean geometry of the model. The last section is devoted to

a preliminary theoretical study of the structure tensor neural field equation: exis-

tence, uniqueness of a solution together with some general properties of stationary

solutions.

3.1 Visual edges and textures modeling

3.1.1 Introduction

Visual perception, computational or biological, depends upon the extraction from

the raw flows of images incoming on the retina of a number of image features such

as edges, corners, textures, or direction of motion, at a variety of spatio-temporal

scales. The definition of edges, corners and direction of motion is natural whereas

the notion of texture is less intuitive and needs some explanations. A wood’s slice, a

zebra’s stripes and a field of sand all define a visual structure, that we call a texture,

whose organization into coherent parts is fundamental to many aspects of computer

vision. This class of patterns is common in both natural and man-made objects

(see figure 3.1) and for centuries it has been used by artists as a tool to convey both

the shape and shading of smoothly varying surfaces and their discontinuities.

Figure 3.1: Examples of textures in real images.

All these features (edge, corner, texture and direction of motion) involve com-

paring some functions of the incoming intensity values at nearby spatio-temporal

locations and this points strongly to the notion of derivatives. The idea of con-

structing the image representations from various derivatives of the intensity flow is
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at the heart of the concept of the primal sketch put forward in the seventies by Marr

[Marr 1982] or the concept of k-jets borrowed from mathematics by Koenderink and

his colleagues [Koenderink 1987, Florack 1996] and applied in mathematical neu-

roscience by Petitot [Petitot 2009]. There is also strong evidence that the visual

system of many species is organized in such way that quantities related to image

derivatives are extracted, and hence represented by neuronal activity. Indeed, a

great variety of cells respond to a stimulus on the retinal plane. The receptive field

of a visual neuron is classically defined as the domain of the retina to which it is

connected through the neural connections of the retino-geniculo-cotrical pathways

and whose stimulation elicits a spike response. A receptive field is decomposed into

ON (positive contrast) and OFF ( negative contrast) zones according to the type

of response to light and dark luminance stimulations. There exists therefore a re-

ceptive profile of the visual neuron which is simply its impulse response as a filter

kernel. It is a classical result [DeAngelis 1995a] that the receptive profiles of the

retinal ganglion cells are like Laplacians of Gaussians. On the contrary, simple cells

of V1 are oriented and often interpreted as Gabor patches. These neurophysiological

results emphasize the fact that image derivatives can be extracted.

In their article [Chossat 2009], Chossat and Faugeras began the development

of a mathematical theory of the processing of image edges and textures in the

hypercolumns of area V1 that is based on the assumptions, (i) that image derivatives

are represented in the visual pathway and (ii) in a nonlinear fashion. They proposed

to use a structure tensor formalism, i.e. a nonlinear representation of the image first

order derivatives, to locally describe edges and textures.

Their study was motivated by the work of Bressloff, Cowan, Golubitsky, Thomas

and Wiener [Bressloff 2001b, Bressloff 2002c] on the spontaneous occurrence of hal-

lucinatory patterns under the influence of psychotropic drugs, and its possible ex-

tension to the structure tensor model. A further motivation was the spherical model

of Bressloff and Cowan [Bressloff 2002b, Bressloff 2002a, Bressloff 2003b] which is

an extension of the ring model of orientation of Ben-Yishai [Ben-Yishai 1995] and

Hansel, Sompolinsky [Hansel 1997] as it includes both orientation and spatial fre-

quency.

This modeling has also to be connected to some previous work by Ben-Shahar

et al. [Ben-Shahar 2003a] who discuss the representation and processing in V1 of

a larger set of visual features including edges, textures, shading and stereo. Ben-

Shahar and Zucker [Ben-Shahar 2003b, Ben-Shahar 2004] pursue these ideas for the

texture flow from a viewpoint of differential geometry as described by Petitot in

[Petitot 2003a, Petitot 2009]. These approaches are complementary and should be

brought together as explained in chapter 12.

3.1.2 The structure tensor as a representation of edges and textures

Definition In the computer vision community [Bigun 1987, Knutsson 1989], the

structure tensor is a way of representing the edges and textures of an image. Let

I(x, y) denote the original image intensity function, where x and y are two spa-
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tial coordinates. Let Iσ1 denote the scale-space representation of I obtained by

convolution with the Gaussian kernel gσ(x) =
1

2πσ2 e
−x2+y2

2σ2 where x = (x, y) ∈ R2

and

Iσ1 = I ∗ gσ1
.

The gradient ∇Iσ1 is a two-dimensional vector of coordinates Iσ1
x , Iσ1

y which em-

phasizes image edges. One then forms the 2 × 2 symmetric matrix of rank one

T0 = ∇Iσ1 (∇Iσ1)T, where T indicates the transpose of a vector. The set of 2 × 2

symmetric positive semidefinite matrices of rank one will be noted S+(1, 2) through-

out this Thesis (see [Bonnabel 2009] for a complete study of the set S+(p, n) of n×n
symmetric positive semidefinite matrices of fixed-rank p < n). By convolving T0
componentwise with a Gaussian gσ2

we finally form the tensor structure as the

symmetric matrix:

T (x) = T0 ∗ gσ2
(x) =

( 〈(Iσ1
x )2〉σ2

〈Iσ1
x Iσ1

y 〉σ2

〈Iσ1
x Iσ1

y 〉σ2
〈(Iσ1

y )2〉σ2

)
(x), (3.1)

where we have set for example:

〈(Iσ1

x )2〉σ2
= (Iσ1

x )2 ∗ gσ2
.

Since the computation of derivatives usually involves a stage of scale-space

smoothing, the definition of the structure tensor requires two scale parameters.

The first one, defined by σ1, is a local scale for smoothing prior to the computa-

tion of image derivatives. The structure tensor is insensitive to noise and details at

scales smaller than σ1. The second one, defined by σ2, is an integration scale for

accumulating the nonlinear operations on the derivatives into an integrated image

descriptor. It is related to the characteristic size of the texture to be represented,

and to the size of the receptive fields of the neurons that may represent the structure

tensor.

A local texture descriptor By construction, T is symmetric and non negative

as det(T ) ≥ 0 by the inequality of Cauchy-Schwarz, then it has two orthonor-

mal eigenvectors e1, e2 and two non negative corresponding eigenvalues λ1 and λ2
which we can always assume to be such that λ1 ≥ λ2 ≥ 0. Furthermore the spa-

tial averaging distributes the information of the image over a neighborhood, and

therefore the two eigenvalues are typically positive: λ1 ≥ λ2 > 0. Thus, the set of

the structure tensors lives in the set of 2× 2 symmetric positive definite matrices,

noted SPD(2,R) throughout the Thesis. The distribution of these eigenvalues in

the (λ1, λ2) plane reflects the local organization of the image intensity variations.

Indeed, each structure tensor can be written as the linear combination:

T = λ1e1e
T
1 + λ2e2e

T
2

= (λ1 − λ2)e1e
T
1 + λ2(e1e

T
1 + e2e

T
2 )

= (λ1 − λ2)e1e
T
1 + λ2I2

(3.2)
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where I2 is the identity matrix and e1e
T
1 ∈ S+(1, 2). Some easy interpretations can

be made for simple examples: constant areas are characterized by λ1 = λ2 ≈ 0,

straight edges are such that λ1 ≫ λ2 ≈ 0, their orientation being that of e2, corners

yield λ1 ≥ λ2 ≫ 0. The coherency c of the local image is measured by the ratio

c = λ1−λ2

λ1+λ2
, large coherency reveals anisotropy in the texture.

Visualization by ellipses Since the structure tensor is positive definite matrix, it

follows that equation

(ξ − x)T T (x)(ξ − x) = 1 with ξ,x ∈ R
2 (3.3)

defines an ellipse centered at x. The semi-axes of this ellipse are the square roots

of the inverse of the eigenvalues (λ1, λ2) of T (x), while the orientations of the axes

give the directions of the corresponding eigenvectors e1, e2. In figure 3.2, we plot

on an original image ellipses corresponding to the local structure tensor for some

pixels. We recover the fact that, close to edges, ellipses are thin and aligned with

the local orientations while, in uniform regions, ellipses have a ball shape.

Figure 3.2: Visualization of structure tensor by plain red-colored ellipses for some

pixels of an image.

Discussion The structure tensor offers three advantages. Firstly, the matrix rep-

resentation of the image gradient allows the integration of information from a local

neighbourhood without cancellation effects. Such effects would appear if gradi-

ents with opposite orientation were integrated directly. Secondly, smoothing the

resulting matrix field yields robustness under noise by introducing an integration

scale. This scale determines the local neighbourhood over which an estimation at
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a certain pixel is performed. Thirdly, the integration of local orientations creates

additional information, as it becomes possible to distinguish areas where structures

are oriented uniformly, like in regions with edges, from areas where structures have

different orientations, like in corner regions.

3.1.3 Biological evidence of structure tensors in visual areas?

The question of whether some populations of neurons in such a visual area as V1

can represent the structure tensor cannot be answered at this point in a definite

manner and is still an open question. At the stage of this chapter we can nonethe-

less argue as follows. Cytochrome oxydase (CO) blobs and their neighbourhoods

seem good candidates since their distribution appears to be correlated with a num-

ber of periodically repeating feature maps in which local populations of neurons re-

spond preferentially to stimuli with particular properties such as orientation, spatial

frequency, brightness and contrast [Blasdel 1992, Blasdel 1986, Bonhoeffer 1995,

Issa 2000, Kaplan 2004, Casagrande 2004]. It has thus been suggested that the CO

blobs could be the sites of functionally and anatomically distinct channels of visual

processing [Edwards 1995, Livingstone 1984, Sincich 2002, Tootell 1988]. Bressloff

and Cowan [Bressloff 2003a, Bressloff 2003b] introduced a model of a hypercolumn

in V1 consisting of orientation and spatial frequency preferences organized around

a pair of pinwheels. One pinwheel is centered at a CO blob and encodes coarse to

medium coarse scales, the other is centered at a region that encodes medium coarse

to fine scales. Such a hypercolumn is therefore a good candidate for representing the

structure tensor at several scales as well as the local orientations at various spatial

frequencies. As a consequence of this discussion, we make the following assumption.

Assumtion 3.1.1.We assume that a hypercolumn of V1 can represent the structure

tensor in the receptive field of its neurons as the average membrane potential values

of some of its membrane populations.

3.1.4 Structure tensor neural field equation

Hypercolumnar model Let T be a structure tensor. The time evolution of the

average potential V (T , t) for a given hypercolumn is a scalar function defined from

SPD(2,R) × R+ to R. V (T , t) is governed by the following neural field equation

adapted from equation (2.18):

d

dt
V (T , t) = −V (T , t)+

∫

SPD(2,R)
Wloc(dSPD(2,R)(T , T ′))S(V (T ′, t))dT ′+Iext(T , t).

(3.4)

Equation (3.4) is a rescaled version in time of equation (2.18), such that we have

taken τ = 1. S is a sigmoidal function as defined in equation (2.11). The properties

of the connectivity function Wloc will be explained in section 3.3. We provide in the

next section a precise mathematical definition of the set SPD(2,R). The volume

element dT ′ and the distance dSPD(2,R) will also be defined in the next section.
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Before making precise all these quantities, we now explain how equation (3.4) can

be spatialized in order to provide a cortical field model that could describe the

spatio-temporal activity of V1 related to the representation of edges and textures.

Figure 3.3: The primary visual cortex abstracted as V 1 = R2×SPD(2,R). Adapted

from [Ben-Shahar 2004].

Spatialized model Let us assume the existence of a continuous distribution of

such hypercolumnar systems [Swindale 2000, Das 2000] in a domain Ω modeling

a piece of a flat cortex as it is sketched in figure 3.3. As it has been done in

[Bressloff 2001b], we will further assume that Ω = R2 is the whole Euclidean plane.

The average membrane potential of a population of neurons at a cortical position

r ∈ R2 at time t is characterized by the real valued function V (r, T , t), where r

labels a point in the visual cortex and T is a structure tensor. All possible textures

are represented at every position: r and T are independent variables [Bosking 2002].

The average membrane potential evolves according to a generalization of equation

(3.4):

d

dt
V (r, T , t) = −V (r, T , t) +

∫

R2

∫

SPD(2,R)
W (r, T | r′, T ′)S(V (r′, T ′, t))dT ′dr′

+ Iext(r, T , t),
(3.5)

where dr′ is the usual Euclidean area element.

A crucial point in this model is the choice of the connectivity function

W (r, T | r′, T ′) which reflects the underlying functional structure of V1 through its

cortical circuits. So far, two different types of cortical circuit have been experimen-

tally found: a local and a lateral. The local circuit, operating at sub-hypercolumn

dimensions, consists of a mixture of intra-cortical excitation and inhibition. Such

circuit provides a substrate for the recurrent amplification and sharpening of the
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tuned response of cells to local visual stimuli (for example the ring model of orienta-

tion where the inhibitory connections are more broadly tuned with respect to orien-

tation than the excitatory connections [Ben-Yishai 1995, Hansel 1997]). The lateral

circuit, operating between hypercolumns, anisotropically connects cells with similar

functional properties: cells in different hypercolumns tend to connect in directions

parallel to their common preferred orientation (see figures 1.11 and 3.4). Based on

these anatomical structures, Bressloff et al. [Bressloff 2001b, Bressloff 2002b] took

into account the orientation of cortical neurons and abstracted the visual cortex

as R2 × S1. Their analysis recovered thin line hallucinations such as cobwebs and

honeycombs.

Figure 3.4: Patchy isotropic horizontal connections in layers 2/3 of macaque area

V1. Redrawn from [Lund 2003].

However, the anisotropic nature of cortical long-range connections can be weak

upon species. For macaques (see figure 3.4) anisotropy tends to be weaker than

for tree shrews (see figure 1.11). This remark has been incorporated into numerous

models of cortical map development [Wolf 1998, Kaschube 2008, Kaschube 2010].

Following these ideas we decompose the connectivity function W (r, T | r′, T ′) into
local (within the hypercolumns) and long-range parts according to:

W (r, T | r′, T ′) =Wloc(dSPD(2,R)(T , T ′))δr,r′ +β(1− δr,r′)W ε
lat(r, T | r′, T ′). (3.6)

Microelectrode recordings suggest that β is small and therefore that the lateral

connections modulate rather than drive the cortical activity. The sign of β will

determine whether the lateral connections have a net excitatory or inhibitory ef-

fect. Note that when β = 0, we recover equation (3.4). The rules of long-range

connections are given by:

W ε
lat(r, T | r′, T ′) = J

(√
(r− r′)T(I2 + εT )(r− r′)

)
K
(
d
(
T , T ′)) (3.7)

The first factor J incorporates the observation that the density patches tends

to decrease monotonically with cortical separation and lies along the direction of
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their feature preference. for definiteness, we take J to be a Gaussian J (x) =

N e−x2/2ξ2 . For an illustration purpose, in figure 3.5, we plot the profile of

r → J
(√

rT(I2 + εT )r
)
, for specific values of the parameters and a diagonal

structure tensor T = diag(50, 0.2) which has a preferred orientation at π
2 . Note

that first Bressloff in [Bressloff 2003c] and then Baker and Cowan in [Baker 2009]

use a similar anisotropic function for a continuum model of V1 with long-range

horizontal connections without feature space. The second factor of the horizontal

connectivity ensures that the long-range connections link cells with similar feature

preferences, and is taken to be an even positive, narrowly tuned distribution with

K(x) = 0 for all |x| ≥ kc. In the limit kc → 0, K is taken to be the δ-dirac function.

The parameter ε controls the degree of anisotropy.

These models will be studied in great details in chapter 8. The hypercolumnar

model defined in equation (3.4) is a direct generalization of both the ring model

of orientations [Ben-Yishai 1995, Hansel 1997] and the spherical model of Bressloff

and Cowan [Bressloff 2003a, Bressloff 2003b].

Figure 3.5: Plot of r → J
(√

rT(I2 + εT )r
)
in the definition of long-range connec-

tions. N = ξ = 1, ε = 0.05 and T = diag (50, 0.2).

3.2 The mathematical structure of the set of structure ten-

sors

We present in this section some important properties of the set of structure ten-

sors. These properties are essential to our forthcoming part of pattern formation in

cortical tissue.

The key observation is that the structure tensors naturally live in a hyperbolic

space of dimension 3 that can be peeled into sheets of dimension 2, each sheet

corresponding to a constant value of the determinant of the element inhabiting in

it. We are therefore led to study hyperbolic spaces of dimension 2 which turn out
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to enjoy a very simple representation in the open unit disk D of the complex plane,

the so-called Poincaré disk, with its non-Euclidean geometry that arises from the

Riemannian structure of the set of structure tenors. In the first part of this section,

we introduce the Riemannian framework of the set of structure tensors and present

in a second part its relationships with the Poincaré disk. The last part is devoted

to the study of the group of isometries of the Poincaré disk and their corresponding

action on structure tensors.

3.2.1 A Riemannian framework

The set of structure tensors is isomorphic to SPD(2,R) the set of 2× 2 symmetric

positive definite matrices. This set is a solid open cone in R3 and a Riemannian

manifold with the distance defined as follows [Moakher 2005]. Given T1 and T2
in SPD(2,R), the Riemannian distance dSPD(2,R)(T1, T2) can be expressed as the

Frobenius norm (the Frobenius norm of a real matrix is the square root of the sum

of the square of its elements) of the principal logarithm of T −1
1 T2:

dSPD(2,R)(T1, T2) = ‖ log T −1
1 T2‖F =


∑

i=1,2

log2 λi




1/2

, (3.8)

where the λi’s are the eigenvalues of the matrix T −1
1 T2.

This definition of the distance between two tensors can be motivated from

a biological viewpoint. A tensor is a symmetric 2 × 2 matrix, hence it can be

thought of as a three-dimensional vector (a, b, c). The natural distance between

two such vectors (representing the tensors T1 and T2) is the usual Euclidean dis-

tance
(
(a1 − a2)

2 + (b1 − b2)
2 + (c1 − c2)

2
)1/2

. However, change of coordinate sys-

tem does not leave in general the Euclidean distance invariant whereas it does leave

dSPD(2,R) invariant. This invariance is a very desirable feature since the measure

of similarity between two tensors should not depend on the particular coordinate

system used to evaluate their components.

3.2.2 The Poincaré disk model

Now any T ∈ SPD(2,R) can be written T = ∆T̃ with ∆ > 0 and det T̃ = 1.

Therefore SPD(2,R) = R+
∗ × SSPD(2,R), the two-dimensional submanifold of

symmetric positive definite matrices whose determinant is equal to 1. It can be

shown in [Chossat 2009] (see figure 3.6) that the surface SSPD(2,R) equipped

with the Riemannian structure induced by the metric of SPD(2,R), is isomorphic

to the hyperbolic plane which is itself isomorphic to the disk D = {z ∈ C | |z| < 1}
equipped with the hyperbolic distance

dD(z, z
′) = 2arctanh

|z − z′|
|1− z̄z′| (Poincaré disk). (3.9)

Therefore, there is an isomorphism between the space of structure tensors and the

product space R+
∗ ×D. It is a straightforward computation to see that the distance



3.2. The mathematical structure of the set of structure tensors 35

in SPD(2,R) can be written in (∆, z) ∈ R+
∗ × D coordinates as

dSPD(2,R)(T , T ′) =

√
2 log

(
∆

∆′

)2

+ 2dD(z, z′)2. (3.10)

Figure 3.6: Illustration of the isomorphism between SPD(2,R) and R+
∗ × D.

Relationships between SSPD(2,R) and D We now detail the relationships be-

tween SSPD(2,R) and its representation in the Poincaré disk D. A unit deter-

minant structure tensor T is a 2 × 2 symmetric positive definite matrix defined

as

T =

(
a c

c b

)

with ab− c2 = 1. The corresponding point in D is given by:

z =
a− b+ 2ic

a+ b+ 2
(3.11)

where z satisfies

0 ≤ |z| = a+ b− 2

a+ b+ 2
< 1.

Conversely given a point z = z1 + iz2 representing a point of D, the corresponding

tensor coordinates are given by:

a =
(1 + z1)

2 + z22
1− z21 − z22

b =
(1− z1)

2 + z22
1− z21 − z22

c =
2z2

1− z21 − z22
.

(3.12)

Note that equation (3.11) is the “SSPD(2,R) to D” dictionary that allows us to

translate statements about structure tensors to statements to points in the Poincaré

disk and (3.12) is the “D to SSPD(2,R)” dictionary.
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Volume element We now express the volume element dT introduced in neural

field equations (3.4) and (3.5).

Proposition 3.2.1. The volume element in T = (∆, z) coordinates is

dT = 8
√
2
d∆

∆

dz1 dz2
(1− |z|2)2 with z = z1 + iz2. (3.13)

Corollary 3.2.1.The volume element in z ∈ D coordinates is

dm(z) =
4dz1 dz2
(1− |z|2)2 with z = z1 + iz2. (3.14)

Proof. Let T be a structure tensor

T =

(
x1 x3
x3 x2

)
,

∆2 its determinant, ∆ ≥ 0. T can be written

T = ∆T̃ ,

where T̃ has determinant 1. Let z = z1+ iz2 be the complex number representation

of T̃ in the Poincaré disk D.

In order to compute the volume element in (∆, z1, z2) space, we need to express

the metric gT in these coordinates. This is obtained from the inner product in the

tangent space TT at point T of SPD(2,R). The tangent space is the set S(2) of

symmetric matrices and the inner product is defined by:

gT (A,B) = tr(T −1AT −1B), A, B ∈ S(2),

We note that gT (A,B) = gT̃ (A,B)/∆2. We note g instead of gT̃ . A basis of TT (or

TT̃ for that matter) is given by:

∂

∂x1
=

(
1 0

0 0

)
∂

∂x2
=

(
0 0

0 1

)
∂

∂x3
=

(
0 1

1 0

)
,

and the metric is given by:

gij = gT̃ (
∂

∂xi
,
∂

∂xj
), i, j = 1, 2, 3.

The determinant GT of gT is equal to G/∆6, where G is the determinant of g = gT̃ .
G is found to be equal to 2. The volume element is thus:

dT =

√
2

∆3
dx1 dx2 dx3.

We then use the relations:

x1 = ∆ a, x2 = ∆ b, x3 = ∆ c,
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where a, b and c are given by the “D to SSPD(2,R)” dictionary of equations

(3.12). The absolute value of the determinant of the Jacobian of the transformation

(x1, x2, x3) → (∆, z1, z2) is found to be equal to:

8∆2

(1− |z|2)2 .

Hence, the volume element in (∆, z1, z2) coordinates is

dT = 8
√
2
d∆

∆

dz1 dz2
(1− |z|2)2 .

�

3.2.3 Isometries of the Poincaré disk

We now describe the isometries of D, i.e the transformations that preserve the

distance dD. We refer to the classical textbooks in hyperbolic geometry for details,

e.g, [Katok 1992]. The direct isometries (preserving the orientation) in D are the

elements of the special unitary group, noted SU(1, 1), of 2× 2 Hermitian matrices

with determinant equal to 1. Given:

γ =

(
α β

β̄ ᾱ

)
such that |α|2 − |β|2 = 1, (3.15)

an element of SU(1, 1), the corresponding isometry γ in D is defined by:

γ · z = αz + β

β̄z + ᾱ
, z ∈ D. (3.16)

Orientation reversing isometries of D are obtained by composing any transformation

(3.16) with the reflection κ : z → z̄. The full symmetry group of the Poincaré disc

is therefore:

U(1, 1) = SU(1, 1) ∪ κ · SU(1, 1).

The action of the group SU(1, 1) on the Poincaré disk is equivalent to the

conjugation on the set of structure tensors. We call it the lifted action of SU(1, 1)

to the set of structure tensors. Indeed, let

γ =

(
α β

β̄ ᾱ

)
with α = α1 + iα2, β = β1 + iβ2,

be an element of SU(1, 1) whose action on D is given by equation (3.16), then it

can be shown by an easy computation that the lifted action on the corresponding

structure tensor T is

γ̃ · T = γ̃TT γ̃, (3.17)

where

γ̃ =

(
α1 + β1 α2 + β2
β2 − α2 α1 − β1

)
∈ SL(2,R). (3.18)



38 Chapter 3. Textures modeling and structure tensor formalism

Equation (3.17) shows that the lifted action on a given structure tensor of an isom-

etry of D is a simple change of coordinates in the image plane. We show below

that these changes of coordinate systems have simple interpretations for many of

the subgroups that generate SU(1, 1).

Let us now describe the different kinds of direct isometries acting in D. We first

define the following one parameter subgroups of SU(1, 1):




K
def
= {rφ =

(
ei

φ
2 0

0 e−iφ
2

)
, φ ∈ S1},

A
def
= {aτ =

(
cosh(τ/2) sinh(τ/2)

sinh(τ/2) cosh(τ/2)

)
, τ ∈ R},

N
def
= {ns =

(
1 + is −is
is 1− is

)
, s ∈ R}.

Note that rφ · z = eiφz for z ∈ D and also aτ ·0 = tanh(τ/2). The corresponding

lifted elements of SL(2,R) are according to (3.18):




r̃φ =


 cos

(
φ
2

)
sin
(
φ
2

)

− sin
(
φ
2

)
cos
(
φ
2

)

 ,

ãτ =

(
eτ/2 0

0 e−τ/2

)
,

ns =

(
1 0

−2s 1

)
.

They generate three subgroups, respectively noted K̃, Ã and Ñ of SL(2,R). The

following decomposition holds (see [Iwaniec 2002]).

Theorem 3.2.1 (Iwasawa decomposition).

SU(1, 1) = KAN and SL(2,R) = K̃ÃÑ .

This theorem allows us to decompose any isometry of D as the product of at most

three elements in the groups, K,A and N . Then, it is possible to express each point

z ∈ D in hyperbolic polar coordinates: rφaτ · O = tanh(τ/2)eiφ with τ = dD(z, 0).

An other useful coordinate system is the horocyclic coordinates: z = nsaτ ·O ∈ D,

where ns are the transformations associated with the group N (s ∈ R) and aτ the

transformations associated with the subgroup A (τ ∈ R).

The group K is the orthogonal group SO(2) which fixes the center O of D. Its

orbits are concentric circles. The orbits of A converge to the same limit points of

the unit circle ∂D, b±1 = ±1 when r → ±∞. The elements of A are sometimes

called boosts in the theoretical Physics literature [Balazs 1986]. They are circular

arcs in D going through the points b1 and b−1. The orbits of N are the circles inside

D and tangent to the unit circle at b1. These circles are called horocycles with base

point b1. N is called the horocyclic group. These orbits are shown in figure 3.7.

The lifted action of the groups K and A have very intuitive interpretations in

term of structure tensors. Unfortunately, there is no corresponding interpretation

for the horocyclic group N .
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Figure 3.7: The orbits in the Poincaré disk of the three groups K, A and N .

(i) The action rφ ·z lifts to the conjugation r̃Tφ T r̃φ of the structure tensor T repre-

sented by z. This is equivalent to say that we rotate by φ/2 the orthonormal

basis (e1, e2) in which the coordinates of T are expressed.

(ii) The action aτ · z lifts to the conjugation ãTτ T ãτ of the structure tensor T
represented by z. This is equivalent to say that we scale the first vector of

the orthonormal basis (e1, e2) in which the coordinates of T are expressed by

eτ/2 and the second by e−τ/2.

3.2.4 Polar map and Poincaré disk formalism

Most of the time, we will drop the ∆ component of structure tensor T = (∆, z) and

only work with neural field equation (3.4) set on the Poincaré disk:

d

dt
V (z, t) = −V (z, t) +

∫

D

Wloc(dD(z, z
′))S(V (z′, t))dm(z′) + Iext(z, t), (3.19)

where dm(z′) is defined through equation (3.14). As in the previous subsection

3.1.3, it is important to look at biological evidence of representation of the Poincaré

disk within the primary visual cortex. A plausible answer comes with the notion of

polar map.

In optical imaging ([Chemla 2010a] for a review), a polar map is obtained by

combining the color code for preferred orientation with a brightness code represent-

ing the strength of orientation tuning, see figure 3.8(a). Dark regions represent areas

of weak tuning, whereas bright areas represent strong orientation preference. Dark

areas are prevalent in pinwheel centers. The polar map is a functional map that

assigns each location r, a complex number z(r). The values of z(r) are calculated

from the orientation map as follows. Let (ϕj)j=1...p be p equidistant orientations

presented to the animal, let S
ϕj
r denote the cortical response at location r evoked

by orientation ϕj .

z(r) = ρ(r)eiθ(r) =
2

p

p∑

j=1

S
ϕj
r eiϕj ,
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where θ(r) is the preferred orientation at location r and the magnitude measures

the degree to which the response at location r is modulated by the stimulus’s

orientation. This is the selectivity of location r. When moving from a point far from

the pinwheel towards the pinwheel, the selectivity is gradually reduced, resulting

in a large range of selectivity values. For each preferred orientation there is a wide

range of selectivities. It was shown in [Nauhaus 2008] that neurons in regions of

homogeneous orientation preference (iso-orientation domains) have much sharper

tuning than in heterogeneous regions of the map (near pinwheel centers), see figure

3.8(b). These anatomical experiments lead us to identify a point of the polar map

z(r) with a point in the Poincaré disk seen as a structure tensor of determinant

equal one. The point z = 0 of the Poincaré disk is interpreted as a point where all

orientations are represented with low selectivity and then corresponds to a pinwheel

center, whereas a point z = |z|eiθ close the boundary D has a preferred orientation

θ and a very high selectivity.

(a) Redrawn from Xu et al. [Xu 2004]. (b) Redrawn from Nauhaus et al.

[Nauhaus 2008].

Figure 3.8: Left. Polar map for the data obtained by [Xu 2004] for owl monkey.

Right. Examples of orientation tuning curves and their location within the orienta-

tion map. Tuning width decreases with increasing values of the local homogeneity

index (selectivity).

As we have identified the modulus of a point in the Poincaré disk to the se-

lectivity, it is now natural to see if it has an interpretation in term of structure

tensor. From the computer vision point of view, the modulus can also be linked to

the coherence of the corresponding structure tensor. We have already introduced

the coherence of a structure tensor in 3.1.2 and explain that it measures the degree

of anisotropy of the two eigenvalues of the structure tensor. For a given structure

tensor T , the coherence is defined as the ratio λ1−λ2

λ1+λ2
, where λ1 ≥ λ2 > 0 are the

two eigenvalues of T . In the case of a structure tensor T with determinant equal to

1 which is identified to a point z ∈ D, we have λ1−λ2

λ1+λ2
= 2|z|

1+|z|2 . Then, the notion of

coherence for an image and the notion of selectivity to an orientation are directly

linked with our Poincaré disk formalism which has certainly a good biological flavor.
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3.3 Theoretical and general results for structure tensor neu-

ral field equation

In this section we provide theoretical and general results of existence and uniqueness

of a solution of (3.4) together with some properties of the stationary solutions. The

detailed proof of the theorems can be found in [Faye 2011b].

3.3.1 Existence and uniqueness of a solution

From now on, we use the (∆, z)-coordinates for a structure tensor T introduced

in the previous section. Using the definition of the distance dSPD(2,R) of equation

(3.10) and the volume element dT of equation (3.13), we can rewrite equation (3.4)

as:
(
d

dt
+ 1

)
V (∆, z, t) =

∫

R
+
∗ ×D

W
(
log

(
∆

∆′

)
, dD(z, z

′)

)
S(V (∆′, z′, t))

d∆′

∆′ dm(z′)

+ Iext(∆, z, t),

(3.20)

where we have set

W
(
log

(
∆

∆′

)
, dD(z, z

′)

)
def
= 2

√
2Wloc



√

2 log

(
∆

∆′

)2

+ 2dD(z, z′)2


 .

We introduce the following mapping f : (φ) → f(φ) such that:

f(φ)(∆, z) =

∫

R
+
∗ ×D

W
(
log

(
∆

∆′

)
, dD(z, z

′)

)
S(φ(∆′, z′))

d∆′

∆′ dm(z′). (3.21)

Our aim is to find a functional space F where (3.20) is well-defined and the

function f maps F to F for all ts. A natural choice would be to take φ as a

Lp(R+
∗ ×,D)-integrable function of the space variable with 1 ≤ p < +∞. Unfortu-

nately, the homogeneous solutions (constant with respect to (∆, z)) and the periodic

solutions do not belong to that space. Moreover, a valid model of neural networks

should only produce bounded membrane potentials. That is why we focus our

choice on the functional space F = L∞(R+
∗ × D). As R+

∗ × D is an open set of R3,

F is a Banach space for the norm: ‖φ‖F = supz∈D sup∆∈R+
∗
|φ(∆, z)|.

Hypothesis 3.3.1. We suppose that W ∈ L1(R+
∗ × D), with the measure element

given in equation (3.13), where W(∆, z) = W(log(∆), dD(z, 0)) for all (∆, z) ∈
R+
∗ × D.

Proposition 3.3.1 (Well posedness). If W satisfies hypothesis 3.3.1 then f is well-

defined and is from F to F .

We rewrite (3.20) as a Cauchy problem of the form:

{
∂tV (∆, z, t) = −αV (∆, z, t) + f(V (∆, z, t)) + Iext(∆, z, t) t ≥ 0,

V (∆, z, 0) = V0(∆, z).
(3.22)
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Theorem 3.3.1 (Existence).Let J be an open interval containing 0. If the external

current Iext belongs to C(J,F) and W satisfies hypothesis 3.3.1, then fo all V0 ∈ F ,

there exists a unique solution of (3.22) defined on a subinterval J0 of J containing

0 such that V (z,∆, 0) = V0(z,∆) for all (∆, z) ∈ R+
∗ × D.

Proof. Direct application of the Cauchy-Lipschitz theorem, see [Faye 2011b]. �

Remark 3.3.1.Our result is quite similar to those obtained by Potthast and Graben

in [Potthast 2010]. The main differences is that our space features is no longer Rn

but a Riemannian manifold. In their article, Potthast and Graben also work with a

different functional space by assuming more regularity for the connectivity function

W and then obtain more regularity for their solutions.

Corollary 3.3.1.If the external current Iext belongs to C(R+,F) and if W satisfies

hypothesis 3.3.1 with J = R+, then for all V0 ∈ F , there exists a unique solution of

(3.22) defined on R+ such that V (z,∆, 0) = V0(z,∆) for all (∆, z) ∈ R+
∗ × D.

It is also possible to prove a result on the boundedness of a solution of (3.20).

We first denote W0 = ‖W‖L1 and Sm = supx∈R |S(x)|. Moreover, if the external

current Iext satisfies supt∈R+ ‖Iext(t)‖F < +∞, we can define ρ as:

ρ = 2

(
SmW0 + sup

t∈R+

‖Iext(t)‖F
)
.

Proposition 3.3.2.If the external current Iext belongs to C(R+,F) and is bounded

in time supt∈R+ ‖Iext(t)‖F < +∞ and W satisfies hypothesis 3.3.1 with J = R+,

then the solution of (3.22) is bounded for each initial condition V0 ∈ F . More

precisely, the open ball Bρ, centered at 0 with radius ρ in F , is stable under the

dynamics of (3.20). Moreover it is an attracting set for this dynamic and if V0 /∈ Bρ

and T = inf{t > 0 such that V (t) ∈ Bρ} then:

T ≤ log

(
2‖V0‖F − ρ

ρ

)
. (3.23)

Proof. Let V be a solution defined on R+. Then we have for all t ∈ R+
∗ :

V (∆, z, t) = e−tV0(∆, z, t) +

∫ t

0
e−(t−u) (f(V (∆, z, u)) + Iext(∆, z, u)) du.

The following upperbound holds

‖V (t)‖F ≤ e−t‖V0‖F +

(
SmW0 + sup

t∈R+

‖Iext(t)‖F
)(

1− e−t
)
, (3.24)

We can rewrite (3.24) as:

‖V (t)‖F ≤ e−t
(
‖V0‖F − ρ

2

)
+
ρ

2
. (3.25)

Let us now show that the open ball Bρ centered at 0 with radius ρ in F is stable

under the dynamics of (3.20). If V0 ∈ Bρ, this implies ‖V (t)‖F ≤ ρ
2

(
1 + e−t

)
for all
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t > 0 and hence ‖V (t)‖F < ρ for all t > 0, proving that Bρ is stable. Consider the

case where V0 ∈ ∁Bρ. Now assume that ‖V (t)‖F > ρ for all t ≥ 0. The inequality

(3.25) shows that for t large enough this yields a contradiction. Therefore there

exists t0 > 0 such that ‖V (t0)‖F = ρ. At this time instant we have

ρ ≤ e−t0
(
‖V0‖F − ρ

2

)
+
ρ

2
,

and hence

t0 ≤ log

(
2‖V0‖F − ρ

ρ

)
.

�

3.3.2 Stationary solutions

We end this chapter with the study of the stationary solutions of equation (3.20).

We suppose that W satisfies hypothesis 3.3.1 and the external input Iext is inde-

pendent of time. For convenience, we redefine the sigmoidal function to be of the

form:

S(x) =
1

1 + e−x+κ
,

with κ a fixed threshold. We assume that the stationary states V 0
µ of equation

(3.20) depend upon µ the slope of the sigmoidal function in the following way

0 = −V 0
µ (∆, z) +

∫

R
+
∗ ×D

W
(
log

(
∆

∆′

)
, dD(z, z

′)

)
S(µV 0

µ (∆
′, z′))

d∆′

∆′ dm(z′)

+ Iext(∆, z).

(3.26)

We define the nonlinear operator from F to F , noted Gµ, to be the right-hand side

of equation (3.26):

Gµ(V )(∆, z) =

∫

R
+
∗ ×D

W
(
log

(
∆

∆′

)
, dD(z, z

′)

)
S(µV (∆′, z′))

d∆′

∆′ dm(z′). (3.27)

We recall that we have set for the Banach space F = L∞(R+
∗ × D) and propo-

sition 3.3.1 shows that Gµ : F → F . We have the further properties:

Proposition 3.3.3. If we denote S′
m = supx∈R S

′(x), then Gµ satisfies the following

properties:

• ‖Gµ(V1)− Gµ(V2)‖F ≤ µW0S
′
m‖V1 − V2‖F for all µ ≥ 0,

• µ→ Gµ is continuous on R+,

• for all µ ≥ 0 the nonlinear operator Gµ is not compact.
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Proof. See [Faye 2011b]. �

Let Bµ the set of the solutions of (3.26) for a given slope parameter µ:

Bµ = {V ∈ F| − V + Gµ(V ) + Iext = 0}.

We have the following proposition.

Proposition 3.3.4. If the input current Iext is equal to a constant I0
ext

, i.e. does

not depend upon the variables (∆, z) then for all µ ∈ R+, Bµ 6= ∅. In the general

case Iext ∈ F , if the condition µS′
mW0 < 1 is satisfied, then Card(Bµ) = 1.

Proof. Due to the properties of the sigmoid function, there always exists a

constant solution in the case where Iext is constant. In the general case where

Iext ∈ F , the statement is a direct application of the Banach fixed point theorem,

as in [Faugeras 2009b]. �

Remark 3.3.2.If the external input does not depend upon the variables (∆, z) and

if the condition µS′
mW0 < 1 is satisfied, then there exists a unique stationary solu-

tion by application of proposition 3.3.4. Moreover, this stationary solution does not

depend upon the variables (∆, z) because there always exists one constant stationary

solution when the external input does not depend upon the variables (∆, z). Indeed

equation (3.26) is then equivalent to:

0 = −V 0 + βS(V 0)

where,

β =

∫

R
+
∗ ×D

W
(
log

(
∆

∆′

)
, dD(z, z

′)

)
d∆′

∆′ dm(z′)

and β does not depend upon the variables (∆, z). Because of the shape of the sigmoid

function S equation 0 = −V 0 + βS(V 0) has always one solution.

If on the other hand the input current does depend upon these variables, is

invariant under the action of a subgroup of U(1, 1), the group of the isometries of

D (see 3.2.3), and the condition µS′
mW0 < 1 is satisfied, then the unique stationary

solution will also be invariant under the action of the same subgroup.

When the condition µS′
mW0 < 1 is satisfied we call trivial solution the unique

homogeneous solution in Bµ.

We can now show that the condition µS′
mW0 < 1 guarantees the stability of the

trivial solution to (3.4).

Theorem 3.3.2.We suppose that Iext ∈ F and that the condition µS′
mW0 < 1 is

satisfied, then the associated trivial solution of (3.4) is asymptotically stable.

Proof. Let V 0
µ be the primary stationary solution of (3.4), as µS′

mW0 < 1 is

satisfied. Let also Vµ be the unique solution of the same equation with some initial

condition Vµ(0) = φ ∈ F . We introduce a new function X = Vµ−V 0
µ which satisfies:

(
d

dt
+ 1

)
X(∆, z, t) =

∫

R
+
∗ ×D

Wm

(
log

(
∆

∆′

)
, dD(z, z

′)

)
Θ(X(∆′, z′, t))

d∆′

∆′ dm(z′)

def
= FΘ(X(∆, z, t))

(3.28)
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with initial condition X(∆, z, 0) = φ(∆, z)− V 0
µ (∆, z). Wm is defined as

Wm

(
log

(
∆

∆′

)
, dD(z, z

′)

)
= S′

mW
(
log

(
∆

∆′

)
, dD(z, z

′)

)

and the vector Θ(X(∆, z, t)) is given by Θ(X(∆, z, t)) = S(µVµ(∆, z, t)) −
S(µV 0

µ (∆, z)) with S = (S′
m)−1S. We note that, because of the definition of Θ

and the mean value theorem |Θ(X(∆, z, t))| ≤ µ|X(∆, z, t)|. This implies that

|Θ(r)| ≤ |r| for all r ∈ R. We integrate over time equation (3.28) which gives

X(∆, z, t) = e−tX(∆, z, 0) +

∫ t

0
e−(t−u)FΘ(X(∆, z, u))du.

We then obtain the following estimate

⇒ ‖X(t)‖∞ ≤ e−t‖X(0)‖∞ + µW0S
′
m

∫ t

0
e−(t−u)‖X(u)‖∞du

If we set: G(t) = et‖X(t)‖∞, then we have:

G(t) ≤ G(0) + µW0S
′
m

∫ t

0
G(u)du

and G is continuous for all t ≥ 0. The Gronwall inequality implies that:

G(t) ≤ G(0)eµW0S′
mt

⇒ ‖X(t)‖∞ ≤ e(µW0S′
m−1)t‖X(0)‖∞,

and the conclusion follows.

�

3.4 Conclusion

In this chapter, we have introduced the structure tensor formalism developed by

Chossat and Faugeras in [Chossat 2009] and derived the neural field equations set

on the space of structure tensors SPD(2,R). We also presented the Riemannian

structure of this space together with its relation to the Poincaré disk model. We

gave arguments for a possible evidence of neurons selective to structure tensors in

the visual cortical area V1. We ended this chapter by providing theoretical results

of existence and uniqueness of a solution of the neural field equation (3.4) together

with some properties of the stationary solutions.
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The aim of this chapter is to introduce tools from bifurcation theory which are

necessary for the study of neural field equations set in the primary visual cortex.

In a first step, we deal with elementary bifurcations in low dimensions such as

saddle-node, transcritical, pitchfork and Hopf bifurcations. Neural field equations

are dynamical systems defined on Banach spaces and thus are infinite dimensional.

Bifurcation analysis for infinite dimensional systems is subtle and can lead to diffi-

cult problems. Whenever it is possible, the idea is to locally reduce the problem to

a finite dimensional one. This reduction is called the center manifold theory and it

will be the main theoretical result of this chapter. We also present some extensions

of the center manifold theorem for parameter-dependent and equivariant differential

equations. Directly related to the center manifold theory is the normal form theory

which is a canonical way to write differential equations. We conclude this chapter

with an overview of bifurcations with symmetry and give as a result the Equivariant

Branching Lemma. Most of the theorems of this chapter are taken from the book of
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Haragus-Iooss [Haragus 2010] (center manifolds and normal forms). The last part

on the Equivariant Branching Lemma is taken from the book of Chossat-Lauterbach

[Chossat 2000].

4.1 Elementary bifurcation

Definition 4.1.1.In dynamical systems, a bifurcation occurs when a small smooth

change made to the parameter values (the bifurcation parameters) of a system causes

a sudden “qualitative” or topological change in its behaviour. Generally, at a bifur-

cation, the local stability properties of equilibria, periodic orbits or other invariant

sets changes.

In this section, we consider scalar differential equations of the form

du

dt
= f(u, µ). (4.1)

Here the unknown u is a real-valued function of the time t, and the vector field f

is real-valued depending, besides u, upon a parameter µ. The parameter µ is the

bifurcation parameter. We suppose that equation (4.1) is well-defined and satisfies

the hypotheses of the Cauchy-Lipschitz theorem, such that for each initial condition

there exists a unique solution of equation (4.1). Furthermore we assume that the

vector field is of class Ck, k ≥ 2, in a neighborhood of (0, 0) satisfying:

f(0, 0) = 0,
∂f

∂u
(0, 0) = 0. (4.2)

The first condition shows that u = 0 is an equilibrium of equation (4.1) at µ = 0. We

are interested in local bifurcations that occur in the neighborhood of this equilibrium

when we vary the parameter µ. The second condition is a necessary, but not

sufficient, condition for the appearance of local bifurcations at µ = 0.

Remark 4.1.1.Suppose that the second condition is not satified: ∂f/∂u(0, 0) 6= 0.

A direct application of the implicit function theorem shows that the equation

f(u, µ) = 0 possesses a unique solution u = u(µ) in a neighborhood of 0, for

small enough µ. In particular u = 0 is the only equilibrium of equation (4.1) in

a neighborhood of 0 when µ = 0, and the same property holds for µ small enough.

Furthermore, the dynamics of (4.1) in a neighborhood of 0 is qualitatively the same

for all sufficiently small values of the parameter µ: no bifurcation occurs for small

values of µ.

4.1.1 Saddle-node bifurcation

Theorem 4.1.1 (Saddle-node bifurcation).Assume that the vector field f is of class

Ck, k ≥ 2, in a neighborhood of (0, 0) and satisfies:

∂f

∂µ
(0, 0) =: a 6= 0,

∂2f

∂u2
(0, 0) =: 2b 6= 0. (4.3)

The following properties hold in neighborhood of 0 in R for small enough µ:
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(i) if ab < 0 (resp. ab > 0) the differential equation has no equilibria for µ < 0

(resp. for µ > 0),

(ii) if ab < 0 (resp. ab > 0) the differential equation possesses two equilibria

u±(ε), ε =
√

|µ| for µ > 0 (resp. µ < 0), with opposite stabilities. Further-

more, the map ε → u±(ε) is of class Ck−2 in a neighborhood of 0 in R, and

u±(ε) = O(ε).

Then for equation (4.1), a saddle-node bifurcation occurs at µ = 0.

A direct consequence of conditions (4.3) is that f has the expansion:

f(u, µ) = aµ+ bu2 + o(|µ|+ u2) as (u, µ) → (0, 0).

The following bifurcation is an example where we impose some conditions on

the vector field f such that the condition (4.3) is no longer satisfied.

4.1.2 Pitchfork bifurcation

Theorem 4.1.2 (Pitchfork bifurcation).Assume that the vector field f is of class Ck,

k ≥ 3, in a neighborhood of (0, 0), that it is satisfies conditions (4.2), and that it is

odd with respect to u:

f(−u, µ) = −f(u, µ) (4.4)

Furthermore assume that:

∂2f

∂µ∂u
(0, 0) =: a 6= 0,

∂3f

∂u3
(0, 0) =: 6b 6= 0. (4.5)

The following properties hold in neighborhood of 0 in R for small enough µ:

(i) if ab < 0 (resp. ab > 0) the differential equation has one trivial equilibrium

u = 0 for µ < 0 (resp. for µ > 0). This equilibrium is stable when b < 0 and

unstable when b > 0.

(ii) if ab < 0 (resp. ab > 0) the differential equation possesses the trivial equilib-

rium u = 0 and two nontrivial equilibria u±(ε), ε =
√

|µ| for µ > 0 (resp.

µ < 0), which are symmetric, u+(ε) = −u−(ε). The map ε → u±(ε) is of

class Ck−3 in a neighborhood of 0 in R, and u±(ε) = O(ε). The nontrivial

equilibria are stable when b < 0 and unstable when b > 0, whereas the trivial

equilibrium has opposite stability.

Then for equation (4.1), a pitchfork bifurcation occurs at µ = 0.

A direct consequence of conditions (4.2), (4.4) and (4.5) is that f has the Taylor

expansion:

f(u, µ) = uh(u2, µ) h(u2, µ) = aµ+ bu2 + o(|µ|+ u2) as (u, µ) → (0, 0)

where h is of class C(k−1)/2 in a neighborhood of (0, 0).
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4.1.3 Transcritical bifurcation

Theorem 4.1.3 (Transcritical bifurcation).Assume that the vector field f is of class

Ck, k ≥ 2, in a neighborhood of (0, 0), that it is satisfies conditions (4.2), and also:

∂2f

∂µ∂u
(0, 0) =: a 6= 0,

∂2f

∂u2
(0, 0) =: 2b 6= 0. (4.6)

The following properties hold in neighborhood of 0 in R for small enough µ:

(i) the differential equation possesses the trivial equilibrium u = 0 and the non-

trivial equilibrium u0(µ) where the map µ → u0(µ) is of class Ck−2 in a

neighborhood of 0 in R, and u0(µ) = O(µ).

(ii) if aµ < 0 (resp. aµ > 0) the trivial equilibrium u = 0 is stable (resp. unstable)

whereas the nontrivial equilibrium u0(µ) is unstable (resp. stable).

Then for equation (4.1), a transcritical bifurcation occurs at µ = 0.

A direct consequence of conditions (4.2) and (4.6) is that f has the Taylor

expansion:

f(u, µ) = aµu+ bu2 + o(u|µ|+ u2) as (u, µ) → (0, 0)

Remark 4.1.2.In chapter 6, we will see the case of a transcritical bifurcation with

triangular D3 symmetry in the plane (see figure 6.5 for the associated bifurcation

diagram) where the solution u0(µ) is unstable on both sides of the bifurcation point

unless the subcritical branch bends back sufficiently near the bifurcation point.

4.2 Center manifold and normal form

Center manifolds are fundamental for the study of dynamical systems near crit-

ical situations and in particular in bifurcation theory. Starting with an infinite-

dimensional problem, the center manifold theorem will reduce the study of small

solutions, staying sufficiently close to 0, to that of small solutions of a reduced sys-

tem with finite dimension. The solutions on the center manifold are described by a

finite-dimensional system of ordinary differential equations, also called the reduced

system.

4.2.1 Notations and definitions

Consider two (complex or real) Banach spaces X and Y. We shall use the following

notations:

• Ck(Y,X ) is the Banach space of k-times continuously differentiable functions

F : Y → X equiped with the norm on all derivatives up to order k,

‖F‖Ck = max
j=0,...,k

(
sup
y∈Y

(
‖DjF (y)‖L(Yj ,X )

)
)
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• L(Y,X ) is the Banach space of linear bounded operators L : Y → X , equiped

with operator norm:

‖L‖L(Y,X ) = sup
‖u‖Y=1

(‖Lu‖X )

if Y = X , we write L(Y) = L(Y,X ).

• For a linear operator L : Y → X , we denote its range by imL:

imL = {Lu ∈ X | u ∈ Y} ⊂ X

and its kernel by kerL:

kerL = {u ∈ Y | Lu = 0} ⊂ Y

• Assume that Y →֒ X with continuous embedding. For a linear operator

L ∈ L(Y,X ), we denote by ρ(L), or simply ρ, the resolvent set of L:

ρ = {λ ∈ C | λId− L : Y → X is bijective }.

The complement of the resolvent set is the spectrum σ(L), or simply σ,

σ = C \ {ρ}.

Remark 4.2.1.When L is real, both the resolvent set and the spectrum of L are

symmetric with respect to the real axis in the complex plane.

4.2.2 Local center manifold

Let X ,Y and Z be Banach spaces such that:

Z →֒ Y →֒ X

with continuous embeddings. We consider a differential equation in X of the form:

du

dt
= Lu+R(u) (4.7)

in which we assume that the linear part L and the nonlinear part R are such that

the following holds.

Hypothesis 4.2.1 (Regularity). We assume that L and R in (4.7) have the follow-

ing properties:

(i) L ∈ L(Z,X ),

(ii) for some k ≥ 2, there exists a neighborhood V ⊂ Z of 0 such that R ∈ Ck(V,Y)

and

R(0) = 0, DR(0) = 0.
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Hypothesis 4.2.2 (Spectral decomposition). Consider the spectrum σ of the linear

operator L, and write:

σ = σ+ ∪ σ0 ∪ σ−
in which

σ+ = {λ ∈ σ | Reλ > 0}, σ0 = {λ ∈ σ | Reλ = 0}, σ− = {λ ∈ σ | Reλ < 0}

We assume that:

(i) there exists a positive constant γ such that

inf
λ∈σ+

(Reλ) > γ, sup
λ∈σ−

(Reλ) < −γ

(ii) the set σ0 consists of a finite number of eigenvalues with finite algebraic mul-

tiplicities.

Hypothesis 4.2.3 (Resolvent estimates).Assume that there exist positive constants

ω0 > 0, c > 0 and α ∈ [0, 1) such that for all ω ∈ R with |ω| ≥ ω0, we have that iω

belongs to the resolvent set of L and

‖(iωId− L)−1‖L(X ) ≤ c

|ω|
‖(iωId− L)−1‖L(Y,Z) ≤ c

|ω|1−α

As a consequence of hypothesis 4.2.2 (ii), we can define the spectral projection

P0 ∈ L(X ), corresponding to σ0, by the Dunford formula:

P0 =
1

2πi

∫

Γ
(λId− L)−1dλ (4.8)

where Γ is a simple, oriented counterclockwise, Jordan curve surrounding σ0 and

lying entirely in {λ ∈ C | |Reλ| < γ}. Then

P2
0 = P0, P0Lu = LP0u ∀u ∈ Z,

and imP0 is finite-dimensional (σ0 consists of a finite number of eigenvalues with fi-

nite algebraic multiplicities). In Particular, it satisfies imP0 ⊂ Z and P0 ∈ L(X ,Z).

We define a second projector Ph : X → X by

Ph = Id− P0

which also satisfies

P2
h = Ph, PhLu = LPhu ∀u ∈ Z,

and

Ph ∈ L(X ) ∩ L(Y) ∩ L(Z).
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We consider the spectral subspaces associated with these two projections:

E0 = imP0 = kerPh ⊂ Z, Xh = imPh = kerP0 ⊂ X
which provides the decomposition:

X = Xh ⊕ E0.
We also denote

Zh = PhZ ⊂ Z, Yh = PhY ⊂ Y
and denote by L0 ∈ L(E0) and Lh ∈ L(Zh,Xh) the restrictions of L to E0 and Zh.

The spectrum of L0 is σ0 and the spectrum of Lh is σ+ ∪ σ−.
Theorem 4.2.1 (Center manifold theorem). Assume that hypotheses 4.2.1, 4.2.2

and 4.2.3 hold. Then there exists a map Ψ ∈ Ck(E0,Zh), with

Ψ(0) = 0, DΨ(0) = 0,

and a neighborhood O of 0 in Z such that the manifold:

M0 = {u0 +Ψ(u0) | u0 ∈ E0} ⊂ Z
has the following properties:

(i) M0 is locally invariant: if u is a solution of equation (4.7) satisfying u(0) ∈
M0 ∩ O and u(t) ∈ O for all t ∈ [0, T ], then u(t) ∈ M0 for all t ∈ [0, T ].

(ii) M0 contains the set of bounded solutions of (4.7) staying in O for all t ∈ R.

The manifold M0 is called a local center manifold of (4.7) and the map Ψ is referred

to as the reduction function.

Let u be a solution of (4.7) which belongs to M0, then u = u0 +Ψ(u0) and u0
satisfies:

du0
dt

= L0u0 + P0R(u0 +Ψ(u0)) (4.9)

The reduction function Ψ satisfies:

DΨ(u0)(L0u0 + P0R(u0 +Ψ(u0))) = LhΨ(u0) + PhR(u0 +Ψ(u0)) ∀u0 ∈ E0

4.2.3 Parameter-dependent center manifold

We consider a parameter-dependent differential equation in X of the form

du

dt
= Lu+R(u, µ) (4.10)

where L is a linear operator as in the previous section, and the nonlinear part R is

defined for (u, µ) in a neighborhood of (0, 0) ∈ Z×Rm. Here µ ∈ Rm is a parameter

that we assume to be small. More precisely we keep hypotheses 4.2.2 and 4.2.3 and

replace hypothesis 4.2.1 by the following:

Hypothesis 4.2.4 (Regularity). We assume that L and R in (4.10) have the fol-

lowing properties:
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(i) L ∈ L(Z,X ),

(ii) for some k ≥ 2, there exists a neighborhood Vu ⊂ Z and Vµ ⊂ Rm of 0 such

that R ∈ Ck(Vu × Vµ,Y) and

R(0, 0) = 0, DuR(0, 0) = 0.

Theorem 4.2.2 (Parameter-dependent center manifold theorem). Assume that hy-

potheses 4.2.4, 4.2.2 and 4.2.3 hold. Then there exists a map Ψ ∈ Ck(E0×Rm,Zh),

with

Ψ(0, 0) = 0, DuΨ(0, 0) = 0,

and a neighborhood Ou ×Oµ of 0 in Z × Rm such that for µ ∈ Oµ the manifold:

M0(µ) = {u0 +Ψ(u0, µ) | u0 ∈ E0} ⊂ Z

has the following properties:

(i) M0(µ) is locally invariant: if u is a solution of equation (4.10) satisfying

u(0) ∈ M0(µ) ∩ Ou and u(t) ∈ Ou for all t ∈ [0, T ], then u(t) ∈ M0(µ) for

all t ∈ [0, T ].

(ii) M0(µ) contains the set of bounded solutions of (4.10) staying in Ou for all

t ∈ R.

Let u be a solution of (4.10) which belongs to M0(µ), then u = u0 +Ψ(u0, µ) and

u0 satisfies:

du0
dt

= L0u0 + P0R(u0 +Ψ(u0, µ), µ)
def
= f(u0, µ) (4.11)

where we observe that f(0, 0) = 0 and Du0
f(0, 0) = L0 has spectrum σ0. The

reduction function Ψ satiafies:

Du0
Ψ(u0, µ)f(u0, µ) = LhΨ(u0, µ) + PhR(u0 +Ψ(u0, µ), µ) ∀u0 ∈ E0

4.2.4 Empty unstable spectrum

Theorem 4.2.3 (Center manifold for empty unstable spectrum).Under the assump-

tions of theorem 4.2.1 and assume that σ+ = ∅. Then in addition to properties of

theorem 4.2.1, the local center manifold M0 is locally attracting: any solution of

equation (4.7) that stays in O for all t > 0 tends exponentially towards a solution

of (4.7) on M0.
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4.2.5 Normal forms

The normal forms theory aims at finding a polynomial change of variable which

improves near a singularity a nonlinear system, in order to recognize more easily

its dynamics.

We consider a parameter-dependent differential equations in Rn of the form

du

dt
= Lu+R(u, µ) (4.12)

in which we assume that L and R satisfy the following hypothesis.

Hypothesis 4.2.5 (Regularity). Assume that L and R have the following proper-

ties:

(i) L is a linear map in Rn;

(ii) for some k ≥ 2, there exist neighborhoods Vu ⊂ Rn and Vµ ⊂ Rm of 0 such

that R ∈ Ck(Vu × Vµ,R
n) and

R(0, 0) = 0, DuR(0, 0) = 0.

Theorem 4.2.4 (Normal form theorem). Assume that hypothesis 4.2.5 holds. Then

for any positive integer p, 2 ≤ p ≤ k, there exist neighborhoods V1 and V2 of 0 in

Rn and Rm such that for µ ∈ V2, there is a polynomial map Φµ : Rn → Rn of degree

p with the following properties:

(i) the coefficients of the monomials of degree q in Φµ are functions of µ of class

Ck−q and

Φ0(0) = 0, DuΦ0(0) = 0

(ii) for v ∈ V1, the polynomial change of variable

u = v +Φµ(v)

transforms equation (4.12) into the normal form:

dv

dt
= Lv +Nµ(v) + ρ(v, µ)

and the following properties hold:

(a) for any µ ∈ V2, Nµ is a polynomial map Rn → Rn of degree p, with

coefficients depending upon µ, such that the coefficients of the monomials

of degree q are of class Ck−q and

N0(0) = 0, DvN0(0) = 0

(b) the equality Nµ(e
tL∗
v) = etL

∗
Nµ(v) holds for all (t, v) ∈ R × Rn and

µ ∈ V2

(c) the map ρ belongs to Ck(V1 × V2,R
n) and

ρ(v, µ) = o(‖v‖p) ∀µ ∈ V2
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4.3 Equivariant bifurcation

4.3.1 Definitions

Definition 4.3.1 (Representation). A representation of a group G in a Banach space

X is a continuous homomorphism τ : G→ GL(X ) from G to the group of invertible

linear maps in X .

Definition 4.3.2 (Irreducible representation). A representation τ is irreducible if

the only subspaces of X which are invariant by τ(g) for all g ∈ G are {0} and X
itself.

Definition 4.3.3 (Absolutely irreducible representation). A representation τ of a

compact group G in a (finite dimensional) space X is absolutely irreducible if all

linear maps A which commute with τ are scalar multiple of the identity.

Definition 4.3.4 (Equivariant map). Let X and Y be two vector spaces with rep-

resentations σ and τ of a group G. If F : X → Y is a smooth operator (of class Ck,

k ≥ 2), then F is G-equivariant if for every g ∈ G and every x ∈ X we have

F(σ(g)x) = τ(g)F(x)

Definition 4.3.5.

(i) Let x ∈ X , we define H = Gx = {g ∈ G | τ(g)x = x}. H is the isotropy

subgroup of x. Note that the isotropy subgroup of τ(g)x is gHg−1, and when

one talks about classification of isotropy subgroups (for a given action), it

means “classification of conjugacy classes”.

(ii) Given an isotropy subgroup H, let FixH = {x ∈ X | τ(h)x = x for all h ∈ H}.
This is a linear subspace of X .

(iii) For x ∈ X , the G-orbit of x is the set G · x = {τ(g)x, g ∈ G}: the image of x

by the action of G.

Definition 4.3.6 (Normalizer). Let N(H) be the normalizer of H in G:

N(H) = {g ∈ G | gHg−1 = H}.

4.3.2 Equivariant center manifold

Let X ,Y and Z be Banach spaces such that:

Z →֒ Y →֒ X

with continuous embeddings. We consider a differential equation in X of the form:

du

dt
= Lu+R(u). (4.13)
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Hypothesis 4.3.1 (Equivariant equation). We assume that there exists a linear op-

erator T ∈ L(X ) ∩ L(Z), which commutes with vector field in equation (4.14):

TLu = LTu, TR(u) = R(Tu)

We also assume that the restriction T0 of T to E0 is an isometry.

Theorem 4.3.1 (Equivariant center manifold). Under the assumption of theorem

4.2.1, we further assume that hypothesis 4.3.1 holds. Then one can find a reduction

function Ψ which commutes with T:

TΨu0 = Ψ(T0u0), ∀u0 ∈ E0

and such that the vector field in the reduced equation (4.9) commutes with T0.

Remark 4.3.1.Analogous results hold for the parameter-dependent equation

(4.10).

4.3.3 Equivariant Branching Lemma

We consider a parameter-dependent differential equation in X of the form

du

dt
= Lu+R(u, µ) = F(u, µ) (4.14)

where L is a linear operator as in the previous section, and the nonlinear part

R is defined for (u, µ) in a neighborhood of (0, 0) ∈ Z × Rm. Here µ ∈ Rm is

a parameter that we assume to be small. We suppose that F is G-equivariant

with respect to a representation τ of the group G. If we apply the parameter-

dependent center manifold 4.3.1 theorem for equivariant differential equation (4.14),

the reduced equation on E0 has the general form:

du0
dt

= L0u0 + P0R(u0 +Ψ(u0, µ), µ)
def
= f(u0, µ)

with

τ(g)Ψ(u0, µ) = Ψ(τ(g)u0, µ), ∀u0 ∈ E0 and ∀g ∈ G.

Since E0 is a real space of dimension n, we may regard f as a map f : Rn×Rm → Rn.

Moreover, G acts on Rn and f is equivariant for this action.

Suppose now that the action of G on Rn possesses an isotropy subgroup H with

a one-dimensional fixed point space Fix(H). If we look for solutions in Fix(H), the

reduced equation on the center manifold restricts to a scalar equation.

Hypothesis 4.3.2. We suppose that G acts absolutely irreducibly on E0. As a

consequence, the linearization of f at the origin is a multiple of the identity and we

have Duf(0, µ) = c(µ)Id.

Theorem 4.3.2 (Steady-state Equivariant Branching Lemma).

We suppose that the assumptions of theorem 4.2.2 hold. Assume that the com-

pact group G acts linearly and that F is G-equivariant. We suppose that G acts

absolutely irreducibly on E0. We also suppose that L has 0 as an isolated eigenvalue
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with finite multiplicity. If H is an isotropy subgroup of G with dimFix(H) = 1 and

if c′(0) 6= 0, then it exists a unique branch of solutions with symmetry H.

Furthermore, for each isotropy subgroup H of G such that dimFix(H) = 1 in

E0, either one of the following situations occurs (where f(u0, µ) is left hand side of

equation (4.9) in Fix(H)):

(i) H = G. If Dµf(0, 0) 6= 0, there exists one branch of solution u(µ). If in

addition D2
uuf(0, 0) 6= 0, then u2 = O(‖µ‖) ⇒ saddle-node bifurcation.

(ii) H < G and the normalizer N(H) acts trivially in Fix(H). Then f(u0, µ) =

u0h(u0, µ) and if D2
uµf(0, 0) 6= 0 there exists a branch of solution u(µ). If in

addition D2
uuf(0, 0) 6= 0, then u = O(‖µ‖) ⇒ transcritical bifurcation.

(iii) H < G and the normalizer N(H)/H acts as −1 in Fix(H). Then f(u0, µ) =

u0h(u0, µ) with h an even function of u0. If D2
uµf(0, 0) 6= 0 there exists a

branch of solution ±u(µ) such that if D3
uuuf(0, 0) 6= 0, then u2 = O(‖µ‖) ⇒

pitchfork bifurcation.

Remark 4.3.2.

• If dimFix(H) = 1, then H is a maximal isotropy subgroup.

• When H < G, the bifurcating solutions in Fix(H) have lower symmetry than

the basic solution u = 0. This effect is called spontaneous symmetry breaking.
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The formation of steady patterns through Turing mechanism is a well-known

phenomenon [Murray 2003, Hoyle 2006]. For example, it occurs when a homo-

geneous state of a system of reaction-diffusion equations defined on the Euclidean

plane becomes neutrally stable when a bifurcation parameter reaches a critical value.

For the analysis of this phenomenon, the assumption that the system is invariant

under Euclidean transformations in the plane is essential. Any Fourier mode whose

wave vector has critical length is a neutral stable mode and a consequence of the

rotational symmetry of the system is that the kernel of the linearized problem at

the bifurcation point is infinite dimensional. By looking at the class of L-periodic
states, L being a discrete translation subgroup of R2, or by looking at the system

projected onto the torus R2/L, one renders the spectrum of the linearized problem

discrete: the critical wave vectors are finite in number, hence the critical eigenvalue

has finite multiplicity and standard methods of equivariant bifurcation theory (see

[Chossat 2000, Golubitsky 1988]) can be applied to compute bifurcated solutions

within the class of L-periodic states. Such solutions are called planforms.

The striking example of Turing mechanism in neuroscience is the Ermentrout

and Cowan model [Ermentrout 1979] of visual hallucination patterns. Visual hal-

lucinations can occur in a wide variety of situations such as with binocular deep

pressure (see figure 5.1), migraine headaches, epilepsy or as the result of external

stimulus by drugs such as LSD [Klüver 1966, Oster 1970, Tyler 1978]. Ermentrout

and Cowan idealized the primary visual cortex to the Euclidean plane and analyzed

neuronal activity in the neighborhood of an instability. Their equations, set on the

visual cortex, inherit naturally the E(2)-symmetry of the plane. By restricting the



62 Chapter 5. Pattern formation in the Euclidean case

solutions to doubly-periodic functions on some lattices, they demonstrated the exis-

tence of simple geometric patterns that are the cortical counterpart of the “forms”

seen during visual hallucinosis. Bressloff et al. [Bressloff 2001b] revisited this theory

and proposed a continuum model of the visual cortex defined on the space R2 ×S1

that takes into account the isotropic local and anisotropic lateral connections in V1.

Neurons in each hypercolumn are all-to-all coupled, while the connections between

hypercolumns couple only neurons sensitive to the same contour orientation that lie

in the direction of the preferred orientation. This model has still the E(2)-symmetry

but its action differs from the model of Ermentrout and Cowan in the sense that

there is a shift-twist symmetry of rotation due to the observation that if one rotates

the whole visual cortex one has also to rotate each hypercolumn. Their model was

able to produce new geometric visual hallucinations.

Figure 5.1: Typical observed binocular pressure phosphenes from Tyler’s paper

[Tyler 1978].

The aim of this chapter is to familiarize the reader to the notions of pattern

formation on the Euclidean plane which will be essential for the understanding of the

following chapter. Indeed, in the next chapter, we will treat an equivalent problem

but in the context of hyperbolic geometry. In order to illustrate the theoretical

results that we are going to present, we will present an elementary model of visual

hallucination patterns. This toy model will emphasize on the different possible

irreducible representations of a chosen lattice. To our knowledge, only the four-

dimensional (resp. six-dimensional) representation of the square (resp. hexagonal)

lattice has been studied in the context of visual hallucination patterns. In section

5.2, we treat the specific case of pattern formation on a square superlattice: the

kernel of the linearized equation of the neural field equation, at the bifurcation

point, consists of four complex Fourier modes.
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5.1 Planforms on the Euclidean plane

5.1.1 Lattices and lattice patterns

The Euclidean group In the real 2-dimensional affine space R2 we chose an origin

O and a coordinate frame so that any point P is determined by its coordinates

(x1, x2). The distance between P and Q is given by d(P,Q) =
√∑2

i=1(xi − yi)2.

This gives R2 a Euclidean structure. The Euclidean Group E(2) is the group

of all linear or affine linear isometries acting on R2: all linear transformations

which preserve the distances. It can be shown that any such transformation is a

composition of an orthogonal transformation O, i.e. an isometry which keeps the

origin O fixed, and a translation by a vector e. e is a vector of R2. The group of

isometries which keeps the origin O fixed is isomorphic to the real orthogonal group

O(2). Given any g ∈ E(2) we write g = (O, e) ∈ O(2)× R2. The composition law

is:

g · g′ = (OO′,Oe+ e′).

This shows that E(2) is the semi-product O(2)⋉R2.

Throughout this chapter, by “symmetry group” we will mean a closed subgroup

of E(2).

Planar lattice Let ℓ1, ℓ2 be a basis of R2. The set L = {m1ℓ1 +m2ℓ2 | (m1,m2) ∈
Z2} is a discrete subgroup of R2. It is called a lattice group because the orbit of

a point in R2, under the action of L forms a periodic lattice of points in R2. We

set L̃ = L(O). Denote by H the largest subgroup of O(2) which keeps L̃ invariant.

Then the symmetry group of L̃ is generated by the semi-direct product H⋉T2. The

group H is called the holohedry of the lattice. We define the dual lattice of lattice

L by L∗ = {m1k1 +m2k2 | (m1,m2) ∈ Z2} with ℓi · kj = 2πδi,j . We summerize in

table 5.1 the different holohedries of the plane.

Name Holohedry Basis of L∗

Hexagonal D6 ‖k1‖ = ‖k2‖ = k and 〈k1,k2〉 = ±k2 cos(2π/3)
Square D4 ‖k1‖ = ‖k2‖ and 〈k1,k2〉 = 0

Rhombic D2 ‖k1‖ = ‖k2‖ = k and |〈k1,k2〉| 6= 0, k2 cos(2π/3), k2

Rectangular D2 ‖k1‖ 6= ‖k2‖ and 〈k1,k2〉 = 0

Oblique C2 k1,k2 not colinear, ‖k1‖ 6= ‖k2‖ and 〈k1,k2〉 6= 0

Table 5.1: Lattices and holohedries of the plane.

A planar lattice pattern or planform is a function u(r, t) of the spatial variable

r ∈ R2 and time t that is periodic on L so that

u(r+ ℓ, t) = u(r, t) ∀ℓ ∈ L.
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In general a L-periodic function u(r, t) can be expressed as a sum of Fourier modes

that lie on the dual lattice in the form:

u(r, t) =
∑

k∈L∗

zk(t)e
ik·r + c.c.,

where c.c. stands for complex conjugate. From now on, we will only deal with dual

lattices that have ‖k1‖ = ‖k2‖.

5.1.2 Steady-state bifurcation on a lattice

Bifurcation problem We consider a general equation of the form

d

dt
u(r, t) = F(u(r, t), µ), (5.1)

where F : X × R → Y is a smooth nonlinear operator between suitably chosen

Banach spaces, µ ∈ R is a bifurcation parameter and u is a function of the spatial

variable r ∈ R2 and time t. For simplicity, we assume that u(r, t) ∈ R. We assume

that equation (5.1) has Euclidean symmetry and that the solutions evolve on the

infinite plane. In this case, F is equivariant with respect to E(2), the Euclidean

group, and we have

γF(u, µ) = F(γu, µ), ∀γ ∈ E(2). (5.2)

Without loss of generality, we assume that for all values of µ the trivial state

u(r, t) = 0 is solution of (5.1) and thus invariant under the symmetries of the plane.

We now assume that this trivial state undergoes a symmetry-breaking steady state

bifurcation at µ = 0, stable for µ < 0 and unstable for µ > 0. Consider Fourier

mode perturbations eik·r to u = 0. We assume that at µ = 0, the zero solution

is neutrally stable to a circle of modes with ‖k‖ = kc 6= 0 and stable to all other

modes, so that if a lattice pattern is selected from among that circle of modes it

will be exactly periodic in space with well-defined period at onset.

At this point, we want to apply the centre manifold theorem (see chapter 4) to

reduce the problem to a finite dimensional one. Unfortunately, there is an infinite

number of neutral modes lying on the circle ‖k‖ = kc and the hypothesis 4.2.2 of

the spectral decomposition of the center manifold is not satisfied. However, we can

restrict ourself to solutions that are doubly periodic with respect to a planar lattice.

An important consequence of restricting the solution space to L-periodic functions

is that the spectrum of the linearized operator Lµ = DuF(0, 0) is rendered discrete.

This restriction ensures that there are only a finite number of zero eigenvalues at

the bifurcation, with all other eigenvalues bounded away from the imaginary axis.

The dimension of the bifurcation problem depends on the number of point k ∈ L∗

that lie one critical circle of radius kc.

In what follows, it will be convenient to identify the kernel of the linear operator

Lµc ,

kerLµc = {U =
m∑

j=1

zje
ikj ·rUj + c.c. | zj ∈ C, ‖kj‖ = kc}, (5.3)
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with the vector space

V = {v =

m∑

j=1

zje
ikj ·r + c.c. | zj ∈ C, ‖kj‖ = kc} ∼= C

m. (5.4)

The isomorphism between V and Cm is defined by v → z = (z1, . . . , zm). Equation

(5.1), restricted to the center manifold, lead to the following system of ordinary

differential equations

ż = f(z, µ), f : Cm × R → C
m. (5.5)

In particular, if Γ is the symmetry group of the bifurcation problem (5.1), then f

satisfies the usual equivariance condition

γf(z, µ) = f(γz, µ), ∀γ ∈ Γ. (5.6)

Irreducible representations For a given lattice L, the vector space V is finite di-

mensional and is Γ-invariant if Γ = H⋉T2. We enumerate in table 5.2 all the trans-

lation free1 irreducible presentations of V under the action of Γ (see [Dionne 1992]).

Lattice Dimension of representation

Hexagonal 6, 12

Square 4, 8

Rhombic 4

Table 5.2: Lattice groups: dimension of translation free irreducible representations.

We now give for each irreducible representation (only in the case of the square

and hexagonal lattice) all the axial isotropy subgroups. Note that when the dimen-

sion of the irreducible representation is 8 (resp. 12) for the square (resp. hexagonal)

lattice, we say that L is a superlattice.

Isotropy subgroups on a square and hexagonal lattice We consider a stationary

bifurcation with Euclidean symmetry restricted to a square lattice. The symmetry

group is then Γs = D4 ⋉T2. We use the fundamental representation on the square

lattice in which there are two critical orthogonal vectors k1 and k2, and to leading

order a real scalar solution takes the form

u(r, t) =
2∑

j=1

zj(t)e
ikj ·r + c.c., z1, z2 ∈ C.

We consider the action of Γs on C2. The group Γs is generated by

1A representation is translation free if there are no (non-trivial) translations in Γ that acts

trivially on V .
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(i) ξ: a rotation through π/2 centered at the origin,

(ii) δ: a reflection which acts on r = (r1, r2) ∈ R2 as δ · (r1, r2) = (r1,−r2),

(iii) Θ ∈ T2: a translation.

The action of Γs on z = (z1, z2) is given by:




ξ(z) = (z̄2, z1)

δ(z) = (z1, z̄2)

Θ(z) = (e−iθ1z1, e
−iθ2z2)

(5.7)

where Θ = θ1ℓ1 + θ2ℓ2 with θ1, θ2 ∈ [0, 2π[.

The axial isotropy subgroups are given in table 5.3. We see that there ex-

ists two branches of one-dimensional fixed-point subspace: squares and rolls. The

Equivariant Branching Lemma (see chapter 4) guarantees that they will be primary

branches.

Branch Isotropy subgroup H Generators of H dim Fix(H)

Squares D4 ξ, δ 1

Rolls D2 ⋉ S1 ξ2, δ, [0, θ2] 1

Table 5.3: The axial isotropy subgroups (up to conjugacy) for the steady bifurcation

on a square lattice.

We now consider a stationary bifurcation with Euclidean symmetry restricted

on a hexagonal lattice with symmetry group Γh = D6⋉T2. We use the fundamental

representation, writing a scalar solution to leading order as

u(r, t) =

3∑

j=1

zj(t)e
ikj ·r + c.c., z1, z2, z3 ∈ C.

We consider the action of Γh on C3. For a hexagonal lattice, the wave vectors are

at angles of 2π/3 to each other and satisfy a resonance relation k1 + k2 + k3 = 0.

The group Γh is generated by

(i) ξ: a rotation through π/3 centered at the origin,

(ii) δ: a reflection which acts on r = (r1, r2) ∈ R2 as δ · (r1, r2) = (r1,−r2),

(iii) Θ ∈ T2: a translation.

The action of Γh on z = (z1, z2, z3) is given by:




ξ(z) = (z̄2, z̄3, z̄1)

δ(z) = (z1, z3, z2)

Θ(z) = (e−iθ1z1, e
−iθ2z2, e

i(θ1+θ2)z3).

(5.8)

where Θ = θ1ℓ1 + θ2ℓ2 with θ1, θ2 ∈ [0, 2π[.

The axial isotropy subgroups are given in table 5.4. We see that there exists

two branches of one-dimensional fixed-point subspace: hexagons and rolls.
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Branch Isotropy subgroup H Generators of H dim Fix(H)

Hexagons D6 ξ, δ 1

Rolls D2 ⋉ S1 ξ3, δ, [0, θ2] 1

Table 5.4: The axial isotropy subgroups (up to conjugacy) for the steady bifurcation

on a hexagonal lattice.

Isotropy subgroups on a square superlattice For the square lattice, we consider

the case where the center manifold is 8-dimensional and define:





K1 = αk1 + βk2 = (α, β)

K2 = −βk1 + αk2 = (−β, α)
K3 = βk1 + αk2 = (β, α)

K4 = −αk1 + βk2 = (−α, β)

(5.9)

where α, β ∈ Z, α > β > 0, α∧ β = 1 and α, β are not both odd with ‖Kj‖ = kc =√
α2 + β2. Each eigenfunctions of V can be written:

u(r, t) =
4∑

j=1

zj(t)e
iKj ·r + c.c., z1, z2, z3, z4 ∈ C.

We identify each such eigenfunctions with the vector (z1, z2, z3, z4) ∈ C4. Let θ =

θ1ℓ1 + θ2ℓ2 ∼= [θ1, θ2] ∈ T2, where θi ∈ [0, 2π[ and the action of the torus T2 is given

by

θ · (z1, z2, z3, z4) = (e−i(αθ1+βθ2)z1, e
−i(−βθ1+αθ2)z2, e

−i(βθ1+αθ2)z3, e
−i(−αθ1+βθ2)z4).

(5.10)

If we denote ξ the counterclockwise rotation through angle π
2 and δ the reflection

(r1, r2) → (r1,−r2), then the action of ξ and δ are:

ξ · (z1, z2, z3, z4) = (z̄2, z1, z̄4, z3)

δ · (z1, z2, z3, z4) = (z̄4, z̄3, z̄2, z̄1). (5.11)

Using standard notations for groups, we have listed in table 5.5 all the ax-

ial subgroups H (up to conjugacy) for 8-dimensional representation of Γs (see

[Dionne 1997] for more details). The reflection δd is defined as δd = δξ3 and is

the reflection of axis ℓ1 + ℓ2. The groups (si)i=1···4 are defined as follows: s1 =

{(βs,−αs) ∈ T2 | s ∈ R}, s2 is generated by
(

α
α2+β2 ,

β
α2+β2

)
,
(

−β
α2+β2 ,

α
α2+β2

)
∈

T2, s3 is generated by
(

1
2α ,

1
2β

)
,
(
−1
2α ,

1
2β

)
∈ T2 and s4 is generated by

(
α

α2−β2 ,
−β

α2−β2

)
,
(

−β
α2−β2 ,

α
α2−β2

)
∈ T2.
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Branch H Generators of H Fixed vector dimFix(H)

Super squares D4 ξ, δ (1, 1, 1, 1) 1

Anti-squares D′
4 ξ, δ

[
1
2 ,

1
2

]
(1, 1,−1,−1) 1

Rolls Z2 ⋉ s1 ξ2, s1 (1, 0, 0, 0) 1

Simple squares Z4 ⋉ s2 ξ, s2 (1, 1, 0, 0) 1

Rhombs-1 D2 ⋉ s3 ξ2, δ, s3 (1, 0, 0, 1) 1

Rhombs-2 D2,d ⋉ s4 ξ2, δd, s4 (1, 0, 1, 0) 1

Table 5.5: Axial isotropy subgroups H (up to conjugacy) for 8-dimensional irre-

ducible representation.

Isotropy subgroups on a hexagonal superlattice For the hexagonal lattice we

define: 



K1 = αk1 + βk2 = (α, β)

K2 = (−α+ β)k1 + αk2 = (−α+ β,−α)
K3 = −βk1 + (α− β)k2 = (−β, α− β)

K4 = αk1 + (α− β)k2 = (α, α− β)

K5 = −βk1 − αk2 = (−β,−α)
K6 = (−α+ β)k1 + βk2 = (−α+ β, β)

(5.12)

where α, β ∈ Z, α > β > α/2 > 0, α ∧ β = 1 and 3 ∧ α + β = 1 with ‖Kj‖ = kc =√
α2 + β2 − αβ.

Remark 5.1.1.In the hexagonal case, the wave vectors K2,K3 are obtained by

rotation K1 by ±2π
3 , K5 and K6 obtained from K4 in the same way.

Then each eigenfunctions can be written:

u(r, t) =
6∑

j=1

zj(t)e
iKj ·r + c.c., z1, z2, z3, z4, z5, z6 ∈ C.

We identify each such eigenfunctions with the vector (z1, z2, z3, z4, z5, z6) ∈ C6.

Let θ = θ1ℓ1+ θ2ℓ2 ∼= [θ1, θ2] ∈ T2, where θi ∈ [0, 2π[ and the action of the torus T2

is given by

θ · (z1, z2, z3, z4) = (e−i(αθ1+βθ2)z1, e
−i((−α+β)θ1−αθ2)z2, e

−i(−βθ1+(α−β)θ2)z3,

e−i(αθ1+(α−β)θ2)z4, e
−i(−βθ1−αθ2)z5, e

−i((−α+β)θ1+βθ2)z6)

If we denote ξ the counterclockwise rotation through angle π
3 and δ the reflection

(r1, r2) → (r1,−r2), then the action of ξ and δ are:

ξ · (z1, z2, z3, z4, z5, z6) = (z̄2, z̄3, z̄1, z̄5, z̄6, z̄4)

δ · (z1, z2, z3, z4, z5, z6) = ε(z6, z5, z4, z3, z2, z1).

We have listed in table 5.6 all the axial subgroups H (up to conjugacy) for

12-dimensional representation. The reflection δn (resp. δm) is defined as δn = ξδ
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(resp. δm = ξ5δ) and is the reflection through the axis ℓ1 − 2ℓ2 (resp. ℓ1 + ℓ2). The

groups (hi)i=1···5 are defined as follows:

h1 = {(βs,−αs) ∈ T2 | s ∈ R},
h2 is generated by

(
α−β

α2−2αβ
, −1
α−2β

)
,
(

−β
α2−2αβ

, 1
α−2β

)
∈ T2,

h3 is generated by
(

α
α2−β2 ,

−β
α2−β2

)
,
(

β
α2−β2 ,

−α
α2−β2

)
∈ T2,

h4 is generated by
(

1
2α−β ,

α−β
2αβ−β2

)
,
(

−1
2α−β ,

α
2αβ−β2

)
∈ T2

and h5 is generated by
(

α
α2−αβ+β2 ,

−α+β
α2−αβ+β2

)
,
(

β
α2−αβ+β2 ,

−α
α2−αβ+β2

)
∈ T2.

Branch H Generators of H Fixed vector dimFix(H)

Super hexagons D6 ξ, δ (1, 1, 1, 1, 1, 1) 1

Rolls Z2 ⋉ h1 ξ3,h1 (1, 0, 0, 0, 0, 0) 1

Rhombs-1 D2,n ⋉ h2 ξ3, δn,h2 (1, 0, 0, 1, 0, 0) 1

Rhombs-2 D2,m ⋉ h3 ξ3, δm,h3 (1, 0, 0, 0, 1, 0) 1

Rhombs-3 D2 ⋉ h4 ξ3, δ,h4 (1, 0, 0, 0, 0, 1) 1

Simple hexagons Z6 ⋉ h5 ξ,h5 (1, 1, 1, 0, 0, 0) 1

Table 5.6: Axial isotropy subgroups H (up to conjugacy) for 12-dimensional irre-

ducible representation.

5.2 Visual hallucination patterns of a square superlattice

5.2.1 Simplified Ermentrout-Cowan model

Following [Ermentrout 1979], we introduce the following neural field equation (see

chapter 2) set on the visual cortex for a single population of neurons:

τ
d

dt
V (r, t) = −V (r, t) +

∫

R2

W (r|r′)S(µV (r′, t))dr′ (5.13)

where τ a synaptic constant. Without loss of generality we fix τ = 1ms. W (r|r′) =
W (‖r − r′‖) is an excitatory/inhibitory cortical connectivity function and S is a

smooth function of sigmoidal type:

S(x) =
1

1 + exp(−x+ T )
− 1

1 + exp(T )
,

where T is a positive threshold. For the connectivity function, we take a local

excitatory and lateral inhibitory function (see figure 5.2(a)) with a “Mexican hat”

shape:

W (x) = A1e
− x2

σ2
1 −A2e

− x2

σ2
2 . (5.14)

The stationary state V = 0 is solution of equation (5.13) and the linearized

equation is given by:

∂

∂t
U(r, t) = −U(r, t) + µs1

∫

R2

W (‖r− r′‖)U(r′, t)dr′ = Lµ(U(r, t)) (5.15)
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Figure 5.2: (a) “Mexican hat” shape connectivity function . (b) Dispersion curve.

Increasing µ implies an upward translation of the dispersion curve which leads

to Turing instabilities at the critical point µc =
[
s1Ŵ (qc)

]−1
with Ŵ (qc) =

maxq

(
Ŵ (q)

)
. The stationary state V = 0 is unstable µ > µc.

where s1 = S′(0). We look for solutions of the form U(r, t) = U(r)eλt, this gives:

λU(r) = −U(r) + µs1

∫

R2

W (‖r− r′‖)U(r′)dr′

then, applying Fourier transform on R2 we obtain the following spectral problem:

λÛk =
[
−1 + µs1Ŵk

]
Ûk

with Ûk et Ŵk are Fourier transforms of U(r) and W (‖r‖). This yields a dispersion

relation for λ as a function of q = ‖k‖:

λ(q) = −1 + µs1Ŵ (q). (5.16)

Indeed, from the definition of W in equation (5.14) it is easy to obtain Ŵk = Ŵ (q):

Ŵ (q) = Ŵk
def
=

∫

R2

W (‖r‖)e−πk·rdr = A1πσ
2
1e

−σ2
1
q2/4 −A2πσ

2
2e

−σ2
2
q2/4.

Now λ(q) equals zero at the critical value µc =
[
s1Ŵ (qc)

]−1
with Ŵ (qc) =

maxq

(
Ŵ (q)

)
(see figure 5.2(b)). At the bifurcation point, there is a whole circle

of critical eigenvectors which becomes unstable: qc = ‖k‖. This is due to rotation

symmetry of the system.
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We restrict ourself to doubly periodic functions on the square lattice L. We

suppose that there are 8 points k ∈ L∗ that lie on the critical circle of radius qc.

These points are given by Ki in (5.9). The symmetry group acting on (5.13) is

now Γs = D4 ⋉ T2 where D4 =< ξ, δ > with ξ the rotation of angle π/2 and δ the

reflection of axis Ox. We suppose that qc =
√
α2 + β2 with α, β defined in (5.9).

We identify the kernel of the linear operator Lµc ,

kerLµc = {U =
4∑

j=1

zje
2iπKj ·rbj + c.c | zj ∈ C, ‖Kj‖ = qc}

with the vector space:

V = {v =
4∑

j=1

zje
2iπKj ·r + c.c | zj ∈ C, ‖Kj‖ = qc} ∼= C

4

The isomorphism between V and C4 is given by v → z = (z1, z2, z3, z4). The action

of Γs = D4⋉T2 on V is given by equations 5.10 and 5.11. The axial subgroups are

given in table 5.5.

Figure 5.3: Rolls: Z2 ⋉ s1, in visual field coordinates.

5.2.2 Theoretical results

The normal form, with symmetry D4, for the eight-dimensional representation is

given by (see [Dionne 1997]):




ż1 = z1

[
µ−µc

µc
+ a|z1|2 + b|z2|2 + c|z3|2 + d|z4|2

]
+ h.o.t

ż2 = z2

[
µ−µc

µc
+ a|z2|2 + b|z1|2 + c|z4|2 + d|z3|2

]
+ h.o.t

ż3 = z3

[
µ−µc

µc
+ a|z3|2 + b|z4|2 + c|z1|2 + d|z2|2

]
+ h.o.t

ż4 = z4

[
µ−µc

µc
+ a|z4|2 + b|z3|2 + c|z2|2 + d|z1|2

]
+ h.o.t

(5.17)
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Lemma 5.2.1.The real coefficients a, b, c, d are given by:




a
(
µ3cŴkc

)−1
=

s3
2

+ s22µc




Ŵ0

1− Ŵ0

(
Ŵkc

)−1 +
Ŵ2kc

2

(
1− Ŵ2kc

(
Ŵkc

)−1
)




b
(
µ3cŴkc

)−1
= s3 + s22µc


 Ŵ0

1− Ŵ0

(
Ŵkc

)−1 + 2
ŴK1+K2

1− ŴK1+K2

(
Ŵkc

)−1




c
(
µ3cŴkc

)−1
= s3 + s22µc


 Ŵ0

1− Ŵ0

(
Ŵkc

)−1 +
ŴK1+K3

1− ŴK1+K3

(
Ŵkc

)−1

+
ŴK1−K3

1− ŴK1−K3

(
Ŵkc

)−1




d
(
µ3cŴkc

)−1
= s3 + s22µc


 Ŵ0

1− Ŵ0

(
Ŵkc

)−1 +
ŴK1+K4

1− ŴK1+K4

(
Ŵkc

)−1

+
ŴK1−K4

1− ŴK1−K4

(
Ŵkc

)−1




(5.18)

where we have defined sk = S(k)(0) and:




Ŵ0 =
∫
R2 W (‖r‖)dr

Ŵkc =
∫
R2 W (‖r‖)e−ikc·rdr with kc = Kj

Ŵ2kc =
∫
R2 W (‖r‖)e−2ikc·rdr with kc = Kj

ŴKm±Kn =
∫
R2 W (‖r‖)e−i(Km±Kn)·rdr

Remark 5.2.1.Note that we have the following useful relations:




‖K1 +K2‖ = ‖K1 −K2‖
‖K1 +K4‖ = ‖K2 −K3‖
‖K1 −K4‖ = ‖K2 +K3‖
‖K1 +K3‖ = ‖K2 +K4‖
‖K1 −K3‖ = ‖K2 +K4‖.

The proof of the above lemma is a straightforward adaptation of the computa-

tions derived by Ermentrout in [Ermentrout 1991]. From the analysis conducted in

[Dionne 1997], we have the following result.

Lemma 5.2.2. The stability of the branches of solutions corresponding to the

following isotropy subgroups is:

(i) the Z2 ⋉ s1 branch (Rolls) is stable if and only if a < 0, b− a > 0, c− a < 0

and d− a < 0,
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Figure 5.4: Rhombs-1: D2 ⋉ s3, in visual field coordinates.

(ii) the Z4⋉s2 branch (Simple squares) is stable if and only if a+b < 0, a−b < 0

and c+ d− a− b < 0,

(iii) the D2 ⋉ s3 branch (Rhombs-1) is stable if and only if a + c < 0, a − b < 0

and b+ d− a− c < 0,

(iv) the D2,d ⋉ s4 branch (Rhombs-2) is stable if and only if a+ d < 0, a− d < 0

and b+ c− a− d < 0.

The stability of the D4 and D′
4 branches require the computation of higher order

terms in the normal form (5.17).

5.2.3 Network behaviour

Figure 5.5: Rhombs-2: D2,d ⋉ s4, in visual field coordinates.
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In order to restrict ourself to the space of solutions which are doubly periodic on

a square superlattice we need to select a specific wave vector ‖kc‖ = qc =
√
α2 + β2

with α > β > 0, α ∧ β = 1 and α, β not both odd. We have seen that kc is

determined as the maximum of the Fourier transform of the connectivity function

W . This maximum occurs at

qc =
2

σ22 − σ21

√
(
σ22 − σ21

)
ln

(
A2σ42
A1σ41

)
.

From qc =
√
α2 + β2, we find:

A2 = A1

(
σ1
σ2

)4

exp

(
(σ22 − σ21)(α

2 + β2)

4

)
.

In order to describe completely the connectivity W with the only parameter σ1,

we impose that σ2 = 2σ1 and A1 = 4. We plot in figure 5.6 the conditions given

in lemma 5.2.2 as function of the threshold T of the sigmoidal function and the

lateral extend of the connectivity σ1 for (α, β) = (2, 1). We obtain exclusive regions

where rolls, rhombs-1 and rhombs-2 can be stable patterns. We plot in figures 5.3,

5.4 and 5.5 the corresponding planforms in the visual field, using the retinotopic

organization of the primary visual cortex as mentioned in chapter 1. We use a log-

polar map [Ermentrout 1979, Bressloff 2001b] which transforms cortical coordinates

(x, y) into polar coordinates (ρ, θ) on the retina by

ρ = ω exp(εx)

θ = εy.

In our retinal image, we take ω = 30
e2π

and ε = π
18 , as used in [Golubitsky 2003].

Figure 5.6: Regions in the (σ1, T )-plane where Rolls, Rhombs-1 and Rhombs-2

planforms are stable for (α, β) = (2, 1).
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5.3 Conclusion

In this introductory chapter, we have presented results of symmetry-breaking steady

state bifurcation problems on planar lattices and illustrated it with a “toy model”

leading to visual hallucination patterns on a square superlattice. We can now turn

to the main results of part II that rely on the study of symmetry-breaking bifur-

cation problems for evolution equations set on the hyperbolic plane instead of the

traditional Euclidean plane. The notion of dimension of irreducible representations

will play a central role as it will be explained in chapters 7 and 8. The concept of

Euclidean lattices will also be important for the last chapter of this part.
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Motivated by our structure tensor model for the perception of textures by the

visual cortex in primates, we analyse in this chapter the bifurcation of periodic

patterns for nonlinear equations describing the state of a system defined on the

Poincaré disk D, when these equations are further invariant with respect to the

isometries of this space. We make use of the concept of periodic lattice in D to

further reduce the problem to one on a compact Riemann surface D/Γ, where Γ is

a cocompact Fuchsian group. The knowledge of the symmetry group of this surface

allows to carry out the machinery of equivariant bifurcation theory. Solutions which

generically bifurcate are called ”H-planforms”, by analogy with the ”planforms”

introduced for pattern formation in Euclidean space. This concept is applied to the
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case of an octagonal periodic pattern, where we are able to classify all possible H-

planforms satisfying the hypotheses of the Equivariant Branching Lemma. These

patterns are however not straightforward to compute, even numerically, and in

section 6.4 we describe a method for computation illustrated with a selection of

images of octagonal H-planforms. Finally, we show that this bifurcation analysis

can be extended to the space of structure tensors SPD(2,R).

6.1 Introduction to harmonic analysis in the Poincaré disk

6.1.1 The Laplace-Beltrami operator on the Poincaré disk

The Laplace-Beltrami operator is the equivalent of the Laplacian for the Euclidean

case. Writing the Riemannian structure in the general form

ds2 =

2∑

k,l=1

gijdzkdzl where gkl = 4(1− |z|2)−2δkl with z = z1 + iz2

and putting ḡ = | det(gkl)|, gkl = (gkl)
−1 (inverse matrix), we recover the Rieman-

nian measure (3.14) and the Laplace-beltrami operator:

LD : Ψ → 1√
ḡ

∑

k

∂k

(∑

l

glk
√
ḡ∂lΨ

)

becomes

LD =

(
1− |z|2

)2

4

(
∂2

∂z21
+

∂2

∂z22

)
. (6.1)

Let b be a point on the circle ∂D. For z ∈ D, we define the ”inner product”

〈z, b〉 as the algebraic distance to the origin of the (unique) horocycle based at b

and passing through z. This distance is defined as the hyperbolic signed length

of the segment Oξ where ξ is the intersection point of the horocycle and the line

(geodesic) Ob. This is illustrated in figure 6.1 in the case b = b1 = 1. Note that

〈z, b〉 does not depend on the position of z on the horocycle. In other words, 〈z, b〉
is invariant under the action of the one-parameter group N (see definition 3.2.3).

In analogy to the Euclidean plane waves, we define the ”hyperbolic plane waves”

as the function

eρ,b(z) = e(iρ+
1

2)〈z,b〉, ρ ∈ C. (6.2)

Lemma 6.1.1. For the Laplace-Beltrami operator defined in equation (6.1), we

have

LD eρ,b(z) = −
(
ρ2 +

1

4

)
eρ,b(z), ∀(ρ, z) ∈ C× D. (6.3)

Proof. See [Helgason 2000]. �
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Figure 6.1: Each point z of D can be written in horocyclic coordinates z = ns ·(at ·O)

(see 3.2.3). The horocycle through z is the circle tangent to ∂D at b1 and going

through z. 〈z, b1〉 is equal to the hyperbolic signed distance between the orgin O

and the point at ·O. It is negative if O is inside the horocycle and positive otherwise.

These elementary eigenfunctions allow the construction of general eigenfunctions

of LD. Let A(∂D) denote the space of analytic functions on the boundary ∂D of

the Poincaré disk, considered as an analytical manifold. Let U be an open annulus

containing ∂D, H(U) the space of holomorphic functions on U equipped with the

topology of uniform convergence on compact subsets. We identify A(∂D) with the

union
⋃

U H(U) and give it the limit topology. The element of the dual space

A′(∂D) are called analytic functionals or hyperfunctions. Since elements of A′(∂D)
generalize measures, it is convenient to write

T (f) =

∫

∂D
f(b)dT (b), f ∈ A(∂D) and T ∈ A′(∂D).

From Helgason’s theory we have the following theorem.

Theorem 6.1.1. The eigenfunctions of the Laplace-Beltrami operator on D are

precisely the functions

Ψ(z) =

∫

∂D
eρ,b(z)dTρ(b), (6.4)

where ρ ∈ C, Tρ ∈ A′(∂D) and the eigenvalue is −(ρ2 + 1).

Real eigenvalues −
(
ρ2 + 1

4

)
of LD correspond to taking ρ real or ρ ∈ iR. The

latter case is irrelevant for the following study as it corresponds to exponentially

diverging eigenfunctions. Therefore the real spectrum of LD is continuous and is

bounded from above by −1
4 .
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6.1.2 Helgason-Fourier transform

Based on the elementary eigenfunctions 6.2, Helgason built a Fourier transform

theory for the Poincaré disc, see [Helgason 2000] which we recall now.

Definition 6.1.1. If f is a complex-valued function on D, its Helgason-Fourier

transform is defined by

f̃(ρ, b) =

∫

D

f(z)e(−iρ+ 1

2)〈z,b〉dm(z) (6.5)

for all ρ ∈ C, b ∈ ∂D for which this integral exists.

If we denote D(D), the set of differentiable functions of compact support then

the following inversion theorem holds.

Theorem 6.1.2. If f ∈ D(D), then

f(z) =
1

2π

∫

R

∫

∂D
f̃(ρ, b)e(iρ+

1

2)〈z,b〉ρ tanh (πρ) dρdb (6.6)

where db is the circular measure on ∂D normalized by
∫
∂D db = 1.

6.1.3 Convolutional operator on the Poincaré disk

In this subsection we want to show that the following linear operator is a convolu-

tional operator on the Poincaré disk.

K(V )(z) =

∫

D
W (dD(z, z

′))V (z′)dm(z′). (6.7)

If O is the center of the Poincaré disk, we denote dg the Haar measure on the

group SU(1, 1) (see [Helgason 2000]), normalized by:

∫

SU(1,1)
f(g ·O)dg

def
=

∫

D

f(z)dm(z), (6.8)

for all functions of L1(D). Given two functions f1, f2 in L1(D) we define the convo-

lution ∗ by:

(f1 ∗ f2)(z) =
∫

SU(1,1)
f1(g ·O)f2(g

−1 · z)dg (6.9)

We recall the notation W(z)
def
= W (dD(z,O)), such that from equations (6.8) and

(6.9) we have K(V ) = W ∗ V .

Lemma 6.1.2. We suppose that the Helgason-Fourier W̃ of W is well defined.

Then it does not depend upon the variable b ∈ ∂D.

Proof. For all ρ ∈ R and b = eiθ ∈ ∂D, the Helgason-Fourier W̃ of W is given

by

W̃(ρ, b) =

∫

D

W(z)e(−iρ+ 1

2)<z,b>dm(z).
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We recall that for all φ ∈ R, rφ is the rotation of angle φ. It is easy to see that we

have:

W(rφ · z) = W(z),

dm(z) = dm(rφ · z),
〈z, b〉 = 〈rφ · z, rφ · b〉,

such that

W̃(ρ, b) =

∫

D

W(r−θ · z)e(−iρ+ 1

2)<r−θ·z,1>dm(z)

=

∫

D

W(z)e(−iρ+ 1

2)<z,1>dm(z)

def
= W̃(ρ).

�

We can now state the following proposition about some eigenfunctions of the

linear operator K which will be useful for our future studies.

Proposition 6.1.1. Let Φρ(z) =
∫
∂D e

(iρ+ 1

2)<z,b>db then:

• K(e−ρ,b) = W̃(ρ)e−ρ,b,

• K(Φρ) = W̃(ρ)Φρ.

Proof. We begin with b = 1 ∈ ∂D and use the horocyclic coordinates z = nsaτ ·O.

The volume element dm(z) is changed in e−τdτds in these coordinates and e−ρ,1(z)

reduces to e(−iρ+ 1

2)τ . We use the same changes of variables as in lemma

K(eρ,1)(nsaτ .O) =

∫

R2

W (dD(nsaτ ·O,ns′aτ ′ ·O))e(−iρ+ 1

2)τ
′
e−τ ′dτ ′ds′

=

∫

R2

W (dD(ns−s′aτ ·O, aτ ′ ·O))e(−iρ− 1

2)τ
′
dτ ′ds′

=

∫

R2

W (dD(aτn−x ·O, aτ ′ ·O))e(−iρ− 1

2)τ
′+τdτ ′dx

=

∫

R2

W (dD(O,nxaτ ′−τ ·O))e(−iρ− 1

2)τ
′+τdτ ′dx

=

∫

R2

W (dD(O,nxay ·O))e(−iρ− 1

2)(y+τ)+τdydx

= e(−iρ+ 1

2)<nsaτ ·O,1>W̃(ρ)

= W̃(ρ)e−ρ,1.

The third equality comes from the change of variables s′− s = xeτ and the relation

aτnx = nxeτaτ [Helgason 2000]. By rotation, we obtain the property for all b ∈ ∂D.

For the second property [Helgason 2000, Lemma 4.7] shows that:

W ∗ Φρ(z) =

∫

∂D
e(iρ+1)<z,b>W̃(ρ)db = W̃(ρ)Φρ(z).

�
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6.2 Spontaneous symmetry breaking in the Poincaré disk

6.2.1 Periodic lattices

A Fuchsian group is a discrete subgroup Γ of SU(1, 1). We are going to be concerned

with fundamental regions of Fuchsian groups.

Definition 6.2.1. To any Fuchsian group we can associate a fundamental region

which is the closure, noted FΓ, of an open set
o
FΓ ⊂ D with the following properties:

(i) if γ 6= Id ∈ Γ, then γ · FΓ ∩
o
FΓ = ∅;

(ii)
⋃
γ∈Γ

γ · FΓ = D.

The familly {γ · FΓ | γ ∈ Γ} is called the tesselation of D.

Fundamental regions may be unnecessarily complicated, in particular they may

not be connected. An alternative definition is that of a Dirichlet region of a Fuchsian

group.

Definition 6.2.2. Let Γ be a Fuchsian group and z ∈ D be not fixed by any element

of Γ \ Id. We define the Dirichlet region for Γ centered at z to be the set:

Dz(Γ) = {z′ ∈ D | dD(z′, z) ≤ dD(z
′, γ · z) ∀γ ∈ Γ}.

From [Katok 1992], we have the following theorem.

Theorem 6.2.1. If z ∈ D is not fixed by any element of Γ\Id, then Dz(Γ) is a

connected fundamental region for Γ.

Let Γ be a Fuchsian group acting on D with µ(D/Γ) < ∞, and Fγ be a fun-

damental region for this action. We write π : D → D/Γ the natural projection

and the points of D/Γ are identified with the Γ-orbits. The restriction of π to FΓ

identifies the congruent points of FΓ that necessarily belong to its boundary ∂FΓ,

and makes D/Γ into an oriented surface. Its topological type is determined by the

number of cusps and by its genus: the number of handles if we view the surface as

a sphere with handles. By choosing FΓ to be Dirichlet region, we can find the topo-

logical type of D/Γ (in this case D/Γ is homeomorphic to FΓ/Γ, see [Katok 1992]).

Furthermore, if finite, the area of a fundamental region (with nice boundary) is

a numerical invariant of the group Γ. Since the area of the quotient space D/Γ

is induced by the hyperbolic area on D, the hyperbolic area of D/Γ, denoted by

µ(D/Γ), is well defined and equal to µ(FΓ) for any fundamental region FΓ. If Γ has

a compact Dirichlet region FΓ, then FΓ has finitely many sides and the quotient

space D/Γ is compact. If, in addition, Γ acts on D without fixed points, D/Γ is a

compact Riemann surface and its fundamental group is isomorphic to Γ.

Definition 6.2.3.A Fuchsian group is called cocompact if the quotient space D/Γ

is compact.

When a Fuchsian group is cocompact, then it contains no parabolic elements

and its area is finite [Katok 1992]. Furthermore a fundamental region can always be
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built as a polygon. The following definition is just a translation to the hyperbolic

plane of the definition of an Euclidean lattice.

Definition 6.2.4.A lattice group of D is a cocompact Fuchsian group which con-

tains no elliptic element.

The action of a lattice group has no fixed point, therefore the quotient surface

D/Γ is a (compact) manifold and it is in fact a Riemann surface. A remarkable

theorem states that any compact Riemann surface is isomorphic to a lattice fun-

damental domain of D if and only if it has genus g ≥ 2 [Katok 1992]. The case

g = 1 corresponds to lattices in the Euclidean plane (in this case there are three

kinds of fundamental domains: rectangles, squares and hexagons). The simplest

lattice in D, with genus 2, is generated by an octagon and will be studied in detail

in section 6.3.

Given a lattice, we may ask what is the symmetry group of the fundamental

domain FΓ, identified with the quotient surface D/Γ. Indeed, this information

will play a fundamental role in the subsequent bifurcation analysis. In the case of

Euclidean lattice, the quotient R2/Γ is a torus T (genus one surface), and the group

of automorphisms is H⋊T where H is the holohedry of the lattice: H = D2,D4 or

D6 for the rectangle, square and hexagonal lattices respectively. In the hyperbolic

case the group of automorphisms of the surface is finite. In order to build this group

we need first to introduce some additional definitions.

Tilings of the hyperbolic plane can be generated by reflections through the edges

of a triangle τ with vertices P , Q, R and angles π/ℓ, π/m and π/n respectively,

where ℓ, m, n are integers such that 1/ℓ+ 1/m+ 1/n < 1 [Katok 1992].

P Q

R

π/l π/m

π/n

κ

κ'
κ"

Figure 6.2: The triangle τ , also noted T (2, 3, 8). The values of l, m, and n are l = 8,

m = 2 and n = 3.

Remember that reflections are orientation-reversing isometries. We note κ, κ′

and κ′′ the reflections through the edges PQ, QR and RP respectively (figure 6.2).

The group generated by these reflections contains an index 2 Fuchsian subgroup Λ

called a triangle group, which always contains elliptic elements because the product

of the reflections through two adjacent edges of a polygon is elliptic with fixed

point at the corresponding vertex. One easily shows that Λ is generated by the

rotations of angles 2π/l, 2π/m and 2π/n around the vertices P , Q, R respectively.

A fundamental domain of Λ is the ”quadrangle” FΛ = τ ∪ κτ [Katok 1992]. Note

that FΛ ≃ D/Λ is a sphere (genus 0 surface) obtained by identifying the three edges

of τ . The subgroup of hyperbolic translations in Λ is a lattice group Γ, normal in
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Λ, whose fundamental domain is filled with copies of the basic tile τ . The group

of orientation-preserving automorphisms of FΓ ≃ D/Γ is therefore G = Λ/Γ. From

the algebraic point of view, G is generated by three elements a, b, c satisfy the

relations aℓ = bm = cn = 1 and a · b · c = 1. We say that G is an (l,m, n) group.

Taking account of orientation-reversing isometries, the full symmetry group of FΓ

is G∗ = G∪κG = G⋊Z2(κ). This is also a tiling group of FΓ with tile τ : the orbit

G∗τ fills FΓ and its elements can only intersect at their edges.

Given a lattice, how to determine the groups G and G∗? The following theorem

gives conditions for this, see [Hartshorne 1977].

Theorem 6.2.2.An (l,m, n) group G is the tiling rotation group of a compact

Riemann surface of genus g if and only if its order satisfies the Riemann-Hurwitz

relation

|G| = 2g − 2

1− (1ℓ +
1
m + 1

n)
.

Tables of triangle groups for surfaces of genus up to 13 can be found in

[Broughton 2001].

6.2.2 Periodic eigenfunctions of the Laplace-Beltrami operator

Let us first recall the Euclidean setting for functions defined in R2. In this case

every function of the form eλk·r where k ∈ R2 is a unit vector, is an eigenfunction

of the Laplace operator, denoted △, in R2:

△eλk·r = −λ2eλk·r, r ∈ R
2.

The fact that the eigenvalues do not depend upon the direction of the wave vector

k reflects the rotational invariance of the Laplace operator. Moreover if we take

λ = iα, α ∈ R, then eλk·r is invariant under translations in R2 by any vector e

satisfying the condition k · e = 2nπ where n ∈ Z (it clearly does not depend upon

the coordinate along the axis orthogonal to k). The functions eiαk·r are elementary

spatial waves in R2.

Now, given α > 0 and a basis of unit vectors {k1,k2} of R2 we can define the

translation group L spanned by ei, i = 1, 2, such that ki · ej = 2π/αδij . Hence

L is a lattice group of R2. It defines a periodic tiling, the fundamental domain of

which is a compact cell which we may identify with the quotient space R2/L and

which we can identify with a 2-torus. Any smooth enough function in R2 which is

invariant under the action of L can be expanded in a Fourier series of elementary

spatial waves eiα(mk1+nk2)·r, m,n ∈ Z. The Laplace operator in the space of square-

integrable functions in R2/L is self-adjoint and its spectrum consists of real isolated

eigenvalues with finite multiplicities. The multiplicity depends upon the holohedry

of the lattice, which we defined in the previous section (the largest subgroup of

O(2) leaving invariant the lattice). There are five holohedries (see chapter 5). It

follows from the above considerations that by restricting the analysis to classes

of functions which are invariant under the action of a lattice group, one can apply

standard techniques of equivariant bifurcation theory to assert the generic existence
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of branches of solutions of Euclidean invariant bifurcation problems, which are

spatially periodic with respect to lattice groups and whose properties are largely

determined by the holohedry of the lattice [Golubitsky 1988],[Dionne 1992]. Note

also this was the approach of [Bressloff 2002c] for the analysis of the occurence of

visual hallucinations in the cortex.

We wish to apply the same idea to bifurcation problems defined in D. For this

we need to define elementary eigenfunctions of the Laplace-Beltrami operator such

that spatially periodic functions (in a sense to be defined later) can be expanded in

series of these elementary ”waves” in D. We have already seen that the “hyperbolic

plane waves” are given by the function eρ,b in equation (6.2). From theorem 6.1.1,

any eigenfunction of LD can be expressed as an integral over boundary elements.

In the following we will look for solutions of bifurcation problems in D, which are

invariant under the action of a lattice group: γ · u(z) = u(γ−1z) = u(z) for γ ∈ Γ.

This reduces to look at the problem restricted to a fundamental region with suitable

boundary conditions imposed by the Γ-periodicity, or, equivalently, to looking for

the solutions of the problem projected onto the orbit space D/Γ (which inherits

a Riemannian structure from D). Because the fundamental region is compact, it

follows from general spectral theory that LD is self-adjoint, non negative and has

compact resolvent in L2(D/Γ) [Buser 1992]. Hence its spectrum consists of real

positive and isolated eigenvalues of finite multiplicity.

Coming back to theorem 6.1.1, we observe that those eigenvalues λ of LD which

correspond to Γ-invariant eigenfunctions, must have ρ ∈ R or ρ ∈ iR. The case

ρ real corresponds to the Euclidean situation of planar waves with a given wave

number, the role of which is played by ρ in D. In this case the eigenvalues of LD

satisfy 1
4 < λ. On the other hand there is no Euclidean equivalent of the case ρ ∈ iR,

for which the eigenvalues 0 < λ ≤ 1
4 are in finite number. It turns out that such

”exceptional” eigenvalues do not occur for ”simple” groups such as the octagonal

group to be considered in more details in the Section 6.3. This follows from formulas

which give lower bounds for these eigenvalues. Let us give two examples of such

estimates (derived by Buser [Buser 1992], see also [Iwaniec 2002]): (i) if g is the

genus of the surface D/Γ, there are at most 3g − 2 exceptional eigenvalues; (ii) if d

is the diameter of the fundamental region, then the smallest (non zero) eigenvalue

is bounded from below by
(
4π sinh d

2

)−2
.

Suppose now that the eigenfunction in theorem 6.1.1 is Γ-periodic. Then the

distribution Tρ satisfies the following equivariance relation [Pollicott 1989]. Let γ(θ)

denote the image of θ ∈ ∂D under the action of γ ∈ Γ. Then

Tρ(γ · θ) = |γ′(θ)| 12+iρ Tρ(θ). (6.10)

Remark 6.2.1.As observed by [Series 1987], this condition is not compatible with

Tρ being a ”nice” function. In fact, not only does there exist no explicit formula

for these eigenfunctions, but their approximate computation is itself an uneasy task.

We shall come back to this point in the next chapter.
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6.2.3 Bifurcation of patterns in the Poincaré disk

We consider equation (3.19). Assuming Iext = 0 (no external input) and that the

sigmoidal function is centered at the origin (such that V = 0 is a trivial solution of

(3.19)), the equation (3.19) can be written

d

dt
V (z, t) = −V (z, t) + µWloc ∗ V (z, t) +R(V (z, t)) (6.11)

where:

• µ = S′(0),

• Wloc ∗ V denotes the convolution product defined in equation (6.9) with the

notation Wloc(z) =Wloc(dD(z,O)),

• R(V ) stands for the remainder terms in the integral part of equation (3.19),

• R(0) = DV R(0) = 0.

Let us look at the linear stability of the trivial solution of (6.11) against pertur-

bations in the form of hyperbolic waves (6.2) with ρ ∈ R. Using lemma 6.1.2, this

comes back to looking for σ’s such that

σ(ρ) = −1 + µW̃loc(ρ)

where W̃loc(ρ) is the Fourier-Helgason transform of Wloc as defined in (6.5). For

a connectivity function x → Wloc(x) with a “Mexican hat” shape, the numerical

calculation shows that for each value of ρ, there exists a value µ(ρ) such that if

µ < µ(ρ) then all σ’s are negative, while σ = 0 at µ = µ(ρ). The ”neutral stability

surface” defined by µ(ρ) is typically convex and reaches a minimum µc at some

value ρc. Therefore when µ < µc the trivial state V = 0 is stable against such

perturbations while it becomes marginally stable when µ = µc with critical modes

eρc,b, for any b ∈ S1 (rotational invariance). Therefore a bifurcation takes place at

this critical value.

The situation is absolutely similar if instead of equation (6.11) we consider

systems of PDEs in D with pattern selection behavior and with U(1, 1) invariance.

A paradigm for such systems is the ”Laplace-Beltrami” version of Swift-Hohenberg

equation
∂u

∂t
= µu− (LD + α)2u+ u2, α ∈ R

+
∗ .

with LD as in (6.1).

It is not possible to solve the bifurcation problem at this level of generality,

because the fact that the spectrum is continuous plus that each eigenvalue σ has an

infinite multiplicity (indifference to b) makes it impossible to use classical tools of

bifurcation theory. As in the Euclidean case of pattern formation, we therefore want

to look for solutions in a restricted class of patterns. In this chapter we look for

periodic patterns, which means looking for bifurcating patterns which are invariant
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under the action of a lattice group Γ in SU(1, 1). There is however an immediate

big difference with the Euclidean case. While in the latter any critical wave number

αc can be associated with a periodic lattice (of period 2π/αc), in the hyperbolic case

not every value of ρc can be associated with a lattice in D. We can therefore look

for the bifurcation of spatially periodic solutions associated with a given lattice, but

these patterns will not in general correspond to the most unstable perturbations

unless the parameters in the equations are tuned so that it happens this way. The

question of the observability of such patterns is therefore completely open.

We henceforth look for patterns in D which are invariant under a lattice Γ in

D and which are periodic. This reduces to look at solutions in the space L2(D/Γ).

With a suitable inner product this space admits an orthonormal Hilbert basis which

is made of functions of the form

Ψ(z), z ∈ D

where Ψ are the eigenfunctions of LD in L2(D/Γ). As we mentioned in the previous

section, these eigenfunctions are not known explicitly. By restricting the ”neutral

stability surface” µ(ρ) to those values which correspond to eigenfunctions with Γ

periodicity, we obtain a discrete set of points on this surface with one minimum µ0
associated with a value ρ0 of ρ. In general this minimum is unique. Moreover the

multiplicity of the 0 eigenvalue is now finite and this eigenvalue is semi-simple. Let

us call X the eigenspace associated with the 0 eigenvalue (therefore X is the kernel

of the critical linear operator).

The full symmetry group of D/Γ is equal to G where G is the (finite) group of

automorphisms in U(1, 1) of the Riemann surface D/Γ. The equation restricted to

this class of Γ-periodic patterns is invariant under the action of G. We can there-

fore apply an equivariant Lyapunov-Schmidt reduction to this bifurcation problem

[Chossat 2000], leading to a bifurcation equation in X

f(x, µ) = 0, x ∈ X (6.12)

where f : X×R → X is smooth, f(0, 0) = 0, ∂xf(0, 0) is not invertible and f(·, µ)
commutes with the action of G in X.

Now the methods of equivariant bifurcation theory can be applied to (6.12). In

particular we can apply the Equivariant Branching lemma (see chapter 4):

Theorem 6.2.3 (Equivariant Branching Lemma). Suppose the action of G is abso-

lutely irreducible in X (i.e. real equivariant linear maps in X are scalar multi-

ple of the identity). Let H be an isotropy subgroup of G such that the subspace

XH = {x ∈ X | H · x = x} is one dimensional. Then generically a branch of

solutions of (6.12) bifurcates in XH . The conjugacy class of H (or isotropy type)

is called ”symmetry breaking”.

Let us briefly recall the meaning of this theorem. By equivariance of f , any

subspace of X defined as XH , H a (closed) subgroup of G, is invariant under f .

By the irreducibility assumption, if H = G, then {x ∈ X | H · x = x} = {0}.
Therefore f(0, µ) = 0 for all µ. Now the assumption of absolute irreducibility
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implies that ∂xf(0, µ) = a(µ)IdX where a is a smooth real function such that

a(0) = 0 and generically a′(0) 6= 0. It follows that if now H is a subgroup such that

dimXH = 1, then equation (6.12) restricted to this subspace reduces to a scalar

equation 0 = a′(0)µx+xh(x, µ) (with h(0, 0) = 0), which has a branch of non trivial

solutions by the implicit function theorem.

Remark 6.2.2.The word ”generically” can be interpreted as follows: the result is

true unless additional degeneracies are introduced in the equations.

Remark 6.2.3.The assumption of absolute irreducibility is itself generic (in the

above stated sense) for one-parameter steady-state bifurcation problems. A given

irreducible representation of a compact or finite group need not be absolutely irre-

ducible, this fact has to be proven.

Remark 6.2.4.Theorem 6.2.3 does not necessarily give an account of all possible

branches of solutions of (6.12), see [Chossat 2000] and [Field 1989b]. It gives nev-

ertheless a large set of generic ones. To go further it is necessary to compute the

equivariant structure of f , or at least of its Taylor expansion to a sufficient order.

The same is true if one wants to determine the stability of the bifurcated solutions,

within the class of Γ periodic solutions of the initial evolution equation.

This theorem, together with the knowledge of the lattices and the (absolutely)

irreducible representations of the groups G, gives us a mean to classify the periodic

patterns which can occur in D. By analogy with the Euclidean case (bifurcation

of spatially periodic solutions in the Euclidean space), we call H-planforms the

solutions of a U(1, 1) invariant bifurcation problem in D, which are invariant by a

lattice group Γ.

Being interested in this chapter in the classification of solutions rather than in

their actual computation for a specific equation, all remains to do is to determine

the absolutely real irreducible representations of the group G and the computation

of the dimensions of the subspaces XH . Once the irreducible representations are

known, this can be achieved by applying the ”trace formula” [Golubitsky 1988,

Chossat 2000]:

Proposition 6.2.1. Let H be a subgroup of G acting in a space X by a represen-

tation ρ : G → Aut(X), then

dim(V H) =
1

|H|
∑

h∈H
tr(ρ(h)). (6.13)

Note that tr(ρ) is the character of the representation ρ (a homomorphism G → C).

What is really needed to apply the Equivaraint Branching Lemma is therefore

the character table of the representations. In the next section we investigate this

classification in the case when the lattice is the regular octagonal group.

6.3 A case study: the octagonal lattice
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6.3.1 The octagonal lattice and its symmetris

Among all lattices in the hyperbolic plane, the octagonal lattice is the simplest one.

As before we use the Poincaré disc representation of the hyperbolic plane. Then the

octagonal lattice group Γ is generated by the following four hyperbolic translations

(boosts), see [Balazs 1986]:

g0 =

(
1 +

√
2

√
2 + 2

√
2√

2 + 2
√
2 1 +

√
2

)
(6.14)

and gj = rjπ/4g0r−jπ/4, j = 1, 2, 3, where rϕ indicates the rotation of angle ϕ around

the origin in D. A fundamental domain of the lattice is the regular octagon O as

shown in Figure 6.3. The opposite sides of the octagon are identified by period-

icity, so that the corresponding quotient surface D/Γ is isomorphic to a ”double

doughnut” (genus two surface) [Balazs 1986]. Note that the same octagon is also

the fundamental domain of another group, not isomorphic to Γ, obtained by identi-

fying not the opposite sides but pairs of sides as indicated in Figure. This is called

the Gutzwiller octagon. A procedure of classification of the lattices using graphs

is presented in [Sausset 2007]. For us however there is no difference between the

two kinds of octagons because we are really interested in the full symmetry group

of the pattern generated by Γ, which includes the rotations rjπ/4, j = 1, · · · , 8, and
therefore the boosts rπ/2g

−1
0 , g1r−π/2 and their conjugates by the rotation rπ, which

are precisely the generators of the Gutzwiller lattice group.

We now determine what is the full symmetry group G of the octagonal lattice,

or equivalently, of the surface D/Γ. Clearly the symmetry group of the octagon

itself is part of it. This is the dihedral group D8 generated by the rotation rπ/4
and by the reflection κ through the real axis, but there is more. We have seen in

section 6.2.1 that G = Λ/Γ, Λ being the “triangle group” generated by reflections

through the edges of a triangle τ which tiles (by the action of Λ/Γ) the surface D/Γ.

The smallest triangle (up to symmetry) with these properties is the one shown in

Figure 6.2. It has angles π/8, π/2 and π/3 at vertices P = O (the center of D), Q,

R respectively, and its area is, by Gauss-Bonnet formula, equal to π/24. There are

exactly 96 copies of τ filling the octagon, hence |G| = 96. The index two subgroup

G of orientation-preserving transformations in G has therefore 48 elements. In

[Broughton 1991] it has been found that G ≃ GL(2, 3), the group of invertible 2×2

matrices over the 3 elements field Z3. In summary:

Proposition 6.3.1.The full symmetry group G of D/Γ is G ∪ κG where G ≃
GL(2, 3) has 48 elements.

The isomorphism between GL(2, 3) and G can be built as follows. We use the

notation Z3 = {0, 1, 2} and we call ρ the rotation by π/4 centered at P (mod Γ), σ

the rotation by π centered at Q (mod Γ) and ε the rotation by 2π/3 centered at R

(mod Γ). In the notations of section 6.2.1, a = σ, b = ε, c = ρ, and ρσε = 1. Then

we can take

ρ =

(
0 2

2 2

)
, σ =

(
2 0

0 1

)
, ε =

(
2 1

2 0

)
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Figure 6.3: Tesselation of the hyperbolic octagon with the triangle T (2, 3, 8), colored

in purple in the plot. We define two points Ŝ and S̃. Ŝ is the center of the rotation

σ̂ by π (mod Γ), see text in subsection 6.3.1. S̃ is the center of the rotation σ̃ by π

(mod Γ), see text in subsection 6.3.1.

since these matrices satisfy the conditions ρ8 = σ2 = ε3 = Id and ρσε = Id.

Note that ρ4 = −Id where Id is the identity matrix. We shall subsequently use this

notation. The group GL(2, 3), therefore the group G, is made of 8 conjugacy classes

which we list in Table 6.1, indicating one representative, the number of elements

in each class and their order. This result is classical and can be found, e.g., in

[Lang 1993].

representative Id ρ ρ2 −Id ρ5 σ ε −ε
order 1 8 4 2 8 2 3 6

# elements 1 6 6 1 6 12 8 8

Table 6.1: Conjugacy classes of G ≃ GL(2, 3).

We now turn to the full symmetry group G which is generated by G and κ, the

reflection through the real axis in D and which maps the octagon O to itself. We

write κ′ = ρκ the reflection through the side PR of the triangle τ . Note that (i) κ′

preserves also O, (ii) κ′′ = εκ′ = σκ is the reflection through the third side QR.

In what follows we rely on the group algebra software GAP (see [Schönert 1995]).

For this we have first identified a presentation for G ≃ GL(2, 3) considered as an

abstract group, then a presentation for G. The presentation for GL(2, 3) can be

obtained with the command ”P := PresentationViaCosetTable(GL(2,3))” and the
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class number 1 2 3 4 5 6 7

representative Id ρ ρ2 −Id σ ε −ε
order 1 8 4 2 2 3 6

# elements 1 12 6 1 12 8 8

Table 6.2: Conjugacy classes of G, orientation preserving transformations.

class number 8 9 10 11 12 13

representative κ κ′ σ̂κ ρσ̂κ εκ −εκ
order 2 2 8 4 12 12

# elements 6 12 12 2 8 8

Table 6.3: Conjugacy classes of G, orientation reversing transformations

relations are shown with the command ”TzPrintRelators(P)”:

Lemma 6.3.1.(i) As an abstract group, G is presented with two generators a and

b and three relations a2 = 1, b3 = 1 and (abab−1ab−1)2 = 1. (ii) As an abstract

group, G is presented with three generators a, b and c and six relations: the three

relations for G plus the three relations c2 = 1, (ca)2 = 1 and (cb)2 = 1.

(iii) These abstract elements can be identified with automorphisms of D/Γ as fol-

lows: a = σ, b = ε and c = κ′′.
Applying the above lemma we find with GAP that the 96 elements group G

has 13 conjugacy classes which are listed in table 6.2 for direct isometries and in

table 6.3 for isometries which reverse orientation. GAP gives representatives of the

conjugacy classes in the abstract presentation, which in general have complicated

expressions. In some cases we have chosen other representatives, using in particular

the 8-fold generator. To simplify some expressions in the tables 6.2 to 6.5 we also

use the notations

σ̂ = εσε−1, σ̃ = ρ2σρ−2,

where σ̂ is the rotation by π centered at Ŝ (mod Γ) and σ̃ is the rotation by π

centered at S̃ (mod Γ), see figure 6.3.

We shall also need in Section 6.3.3 the list of subgroups of G together with their

decomposition in conjugacy classes (in G) in order to apply the trace formula (6.13).

Here again we rely on GAP to obtain the necessary informations.

Then representatives of each class are determined by inspection. These data

are listed in tables 6.4 (subgroups of G) and 6.5 (subgroups containing orientation

reversing elements). The subgroups are listed up to conjugacy in G, the subgroups

of order two are not listed. The rationale for the notations is as follows:

• G0 is an index 2 subgroup of G. Seen as a subgroup of GL(2, 3) it is SL(2, 3),

the subgroup of determinant 1 matrices. It contains no order 2 elements

except −Id and no order 8 elements.
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• Cn, C̃n, C
′
n, denote order n cyclic groups. The notation Cn is standard for

the n-fold rotation group centered at the origin.

• Dn denotes a group isomorphic to the dihedral group of order 2n, generated

by an n-fold rotation and a reflection. Hence D8 is the symmetry group of the

octagon. The notation D̃n is used for a 2n element group which has an n-fold

rotation and a 2-fold rotation as generators. For example D̃8 =< ρ, σ̂ >, and

one can verify that σ̂ρσ̂−1 = ρ3, which makes D̃8 a quasidihedral group (see

[Gorenstein 1980]).

• Q8 is a usual notation for the 8 elements quaternionic group.

• The notation Hnκ indicates a group generated by the group Hn and κ. Same

thing if replacing κ by κ′. For example C̃3κ′ is the 6 elements group generated

by C̃3 and κ′.

Subgroup Order Generators Subclasses: representatives (# elements)

G0 ≃ SL(2, 3) 24 < ρ2, ε > {Id (1), −Id (1), ρ2 (6), ε (8), −ε (8)}
D̃8 16 < ρ, σ̂ > {Id (1), −Id (1), ρ (4), ρ2 (6), σ̂ (4)}
D̃6 12 < −ε, σ̃ > {Id (1), −Id (1), σ̃ (6), ε (2), −ε (2)}
C8 8 < ρ > {Id (1), −Id (1), ρ (4), ρ2 (2)}
Q8 8 < ρ2, σρ2σ > {Id (1), −Id (1), ρ2 (6)}
D̃4 8 < ρ2, σ̂ > {Id (1), −Id (1), ρ2 (2), σ̂ (4)}
C̃6 6 < −ε > {Id (1), −Id (1), ε (2), −ε (2)}
D̃3 6 < ε, σ̃ > {Id (1), ε (2), σ̃ (3)}
C4 4 < ρ2 > {Id (1), −Id (1), ρ2 (2)}
D̃2 4 < −Id, σ > {Id (1), −Id (1), σ (2)}
C̃3 3 < ε > {Id (1), ε (2)}
C2 2 < −Id > {Id (1), −Id (1)}
C̃2 2 < σ > {Id (1), σ (1)}

Table 6.4: Subgroups of G ⊂ G (up to conjugacy). The last column provides datas

about their conjugacy subclasses (in G).

6.3.2 Irreducible representation of the octagonal group

There are 13 conjugacy classes and therefore we know there are 13 complex irre-

ducible representations of G, the characters of which will be denoted χj , j = 1, ..., 13.

The character table, as computed by GAP, is shown in table 6.6.

The character of the identity is equal to the dimension of the corresponding

representation. It follows from table 6.6 that there are 4 irreducible representations

of dimension 1, 2 of dimension 2, 4 of dimension 3 and 3 of dimension 4. In the



6.3. A case study: the octagonal lattice 93

Subgroup Order Generators Subclasses: representatives (# elements)

G0κ 48 < G0, κ > G0 ∪ {κ (6), ρσ̂κ (2), εκ (8), −εκ (8)}
G0κ′ 48 < G0, κ

′ > G0 ∪ {κ′ (12), σ̂κ (12)}
D̃8κ 32 < D̃8, κ > D̃8 ∪ {κ (6), κ′ (4), σ̂κ (4), ρσ̂κ (2) }
D̃6κ′ 24 < D̃6, κ

′ > D̃6 ∪ {κ′ (6), εκ (2), −εκ (2), ρσ̂κ (2)}
C8κ (=D8) 16 < C8, κ > C8 ∪ {κ (4), κ′ (4)}

C′
8κ 16 < ρ2σ, κ > C8 ∪ {κ (2), ρσ̂κ (2), σ̂κ (4)}

Q8κ 16 < Q8, κ > Q8 ∪ {κ (6), ρσ̂κ (2)}
Q8κ′ 16 < Q8, κ

′ > Q8 ∪ {κ′ (4), σ̂κ (4)}
D̃4κ 16 < D̃4, κ > D̃4 ∪ {κ (4), σ̂κ (4)}
D̃4κ′ 16 < D̃4, κ

′ > D̃4 ∪ {κ (2), κ′ (4), ρσ̂κ (2)}
C′

12 12 < εκ > C̃6 ∪ {εκ (2), −εκ (2), ρσ̂κ (2)}
C̃6κ′ 12 < C̃6, κ

′ > C̃6 ∪ {κ′ (6)}
C′

8 8 < σ̂κ > C4 ∪ {σ̂κ (4)}
C4κ (= D4) 8 < C4, κ > C4 ∪ {κ (4)}

C4κ′ 8 < C4, κ
′ > C4 ∪ {κ′ (4)}

D̃2κ 8 < D̃2, κ > D̃2 ∪ {κ (2), κ′ (2)}
C′

4κ 8 < C′
4, κ > C′

4 ∪ {ρ2 (2), κ (2)}
C′

4κ′ 8 < C′
4, κ

′ > C′
4 ∪ {σ (2), κ′ (2)}

C̃3κ′ 6 < C̃3, κ
′ > C̃3 ∪ {κ′ (3)}

C′
4 4 < ρσ̂κ > {Id (1), −Id (1), ρσ̂κ (2)}

C2κ 4 < −Id, κ > {Id (1), −Id (1), κ (2)}
C2k′ 4 < −Id, κ′ > {Id (1), −Id (1), κ′ (2)}
C̃2k 4 < σ, κ > {Id (1), σ (1), κ (1), κ′ (1)}
C̃′

2κ 4 < σ̃, κ > {Id (1), σ̃ (1), κ (1), κ′ (1)}
C1κ 2 < κ > {Id (1), κ (1)}
C1κ′ 2 < κ′ > {Id (1), κ′ (1)}

Table 6.5: Subgroups of G, not in G (up to conjugacy). The last column provides

datas about their conjugacy subclasses (in G). C̃4 is a subgroup conjugate to C4

with generator (ρ2σ)2.
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Class # 1 2 3 4 5 6 7 8 9 10 11 12 13

Representative Id ρ ρ2 −Id σ ε −ε κ κ′ σ̂κ ρσ̂κ εκ −εκ
χ1 1 1 1 1 1 1 1 1 1 1 1 1 1

χ2 1 -1 1 1 -1 1 1 1 -1 -1 1 1 1

χ3 1 -1 1 1 -1 1 1 -1 1 1 -1 -1 -1

χ4 1 1 1 1 1 1 1 -1 -1 -1 -1 -1 -1

χ5 2 0 2 2 0 -1 -1 -2 0 0 -2 1 1

χ6 2 0 2 2 0 -1 -1 2 0 0 2 -1 -1

χ7 3 1 -1 3 -1 0 0 -1 -1 1 3 0 0

χ8 3 1 -1 3 -1 0 0 1 1 -1 -3 0 0

χ9 3 -1 -1 3 1 0 0 1 -1 1 -3 0 0

χ10 3 -1 -1 3 1 0 0 -1 1 -1 3 0 0

χ11 4 0 0 -4 0 -2 2 0 0 0 0 0 0

χ12 4 0 0 -4 0 1 -1 0 0 0 0
√
3 −

√
3

χ13 4 0 0 -4 0 1 -1 0 0 0 0 −
√
3

√
3

Table 6.6: Irreducible characters of G

following we shall denote the irreducible representations by their character: χj is

the representation with this character.

Lemma 6.3.2.All irreducible representations of G listed in table 6.6 are real ab-

solutely irreducible.

Proof.

(i) This is clear for the one dimensional representations whose characters are real.

(ii) For the two dimensional representations, let us consider the dihedral subgroup

D3 generated by the 3-fold symmetry ε and the reflection κ′. The represen-

tation of D3 in either representations planes of χ5 and χ6 have characters

χj(ε) = −1 and χj(κ
′) = 0 (j = 5 or 6). These are the characters of the 2D

irreducible representation of D3, which is absolutely irreducible, and there-

fore the representations χ5 and χ6 of G are also absolutely irreducible. Indeed

if any real linear map which commutes with the elements of a subgroup is

a scalar multiple of the identity, this is a fortiori true for the maps which

commute with the full group.

(iii) For the three dimensional representations χ7 to χ10, let us first remark that

if we write C2 = {Id,−Id}, then G/C2 ≃ O, the octahedral group. Its

subgroup T (tetrahedral group) can easily be identified with the 12 elements

group generated by the ”pairs” {Id,−Id}, {ε,−ε} and {ρ2,−ρ2}. Now we

consider the representation of G defined by the action of χj restricted to

G (for each 3D χj). One can check easily from the character table that it

projects onto a representation of G/C2, the character of which is given by

the value of χj on the corresponding conjugacy classes, and in particular the
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character for the representation of the group T is given, for any j = 7 to 10,

by χj({Id,−Id}) = 3, χj({ε,−ε}) = 0 and χj({ρ2,−ρ2}) = −1. But this

is the character of the irreducible representation of T [Miller 1972], which is

absolutely irreducible (natural action of T in R3). Hence the three dimensional

representations of G are absolutely irreducible by the same argument as above.

(iv) It remains to prove the result for the four dimensional representations χ11, χ12

and χ13. For this we consider the action of the group D8 generated by ρ and

κ, as defined by either one of these 4D irreducible representations of G. We

observe from the character table that in all cases, the character of this action

is χ(ρ) = 0, χ(ρ2) = 0, χ(−Id) = −4, χ(ρ3) = 0 (ρ and ρ3 are conjugate in

G), and χ(κ) = χ(κ′) = 0. We can determine the isotypic decomposition for

this action of D8 from these character values. The character tables of the four

one dimensional and three two dimensional irreducible representations of D8

can be computed easily either by hand (see [Miller 1972] for the method) or

using a computer group algebra software like GAP. For all one dimensional

characters the value at −Id is 1, while for all two dimensional characters,

the value at −Id is −2. Since χ(−Id) = −4, it is therefore not possible

to have one dimensional representations in this isotypic decomposition. It

must therefore be the sum of two representations of dimension 2. Moreover,

since χ(ρ) = χ(ρ2) = χ(ρ3) = 0, it can’t be twice the same representation.

In fact it must be the sum of the representations whose character values at

ρ are
√
2 and −

√
2 respectively. Now, these representations are absolutely

irreducible (well-know fact which is straightforward to check), hence any D8-

equivariant matrix which commutes with this action decomposes into a direct

sum of two scalar 2× 2 matrices λI2 and µI2 where λ and µ are real. But the

representation of G is irreducible, hence λ = µ, which proves that it is also

absolutely irreducible.

�

6.3.3 Octagonal H-planforms

We can now apply Theorem 6.2.3 in order to determine the H-planforms for the

octagonal lattice.

Theorem 6.3.1. The irreducible representations of G admit H-planforms with the

following isotropy types:

• χ1: G;

• χ2: G0κ;

• χ3: G0κ′;

• χ4: G ≃ GL(2, 3);

• χ5: D̃8, Q8κ′;
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• χ6: D̃8κ;

• χ7: C′
8κ, C

′
12, C4κ′;

• χ8: C8κ, C̃6κ′, D̃2κ;

• χ9: D̃6, D̃4κ;

• χ10: D̃6κ′, D̃4κ′;

• χ11: C̃2κ, C̃
′
2κ;

• χ12: D̃3, C̃3κ′, C̃2κ, C̃
′
2κ;

• χ13: D̃3, C̃3κ′, C̃2κ, C̃
′
2κ;

Proof.

For the one dimensional representations of G this is straightforward: each ele-

ment whose character image is +1 belongs to the isotropy group. The result follows

therefore directly from the character table and list of subgroups of G. For the higher
dimensional irreducible representations we need to find those isotropy subgroups H

such that (see (6.13)):

1 = dim(V H) =
1

|H|
∑

h∈H
χj(h)

where χj denotes the character of the j-th irreducible representation. This can be

done in a systematic way by using the character table 6.6 and applying the datas

on subgroups and their conjugacy classes listed in 6.4 and 6.5. The calculations are

cumbersome but can be slightly simplified by noting that if H ⊂ H ′ and dim(V H) =

0 (a case which occurs many times), then not only H is not symmetry breaking but

also H ′, since H ⊂ H ′ ⇒ V H′ ⊂ V H .

The following lemma is also useful as it eliminates most candidates in the case of

4D representations:

Lemma 6.3.3. If a subgroup H contains −Id, then for j = 11, 12 or 13, one has∑
h∈H χj(h) = 0. Proof of the lemma. In all three cases the result follows from

the relations: (i) χj(−Id) = −χj(Id), (ii) χ(−ε) = −χ(ε) and χ(−εκ) = −χ(εκ),
(iii) χj(s) = 0 for all s which is not conjugate to one in (i) or (ii). �

For the lower dimensional representations it is possible to reduce the problem

to known situations and to provide bifurcation diagrams without any further cal-

culations. The next theorem provides these informations. Stability of the solutions

has to be understood here with respect to perturbations with the same octago-

nal periodicity in D and under the condition that, in L2(D/Γ), the corresponding

representation corresponds to the ”most unstable” modes (”neutral modes” at bi-

furcation). We recall that the octahedral group O, the direct symmetry group of the

cube, possesses two irreducible representations of dimension three. In order to dif-

ferentiate these two irreducible representations we adopt the convention “natural”

and “non natural” as used in [Miller 1972].
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Theorem 6.3.2. For the one, two and three dimensional representations, the

generic bifurcation diagrams have the following properties:

(i) χ1: transcritical bifurcation (trivial symmetry, exchange of stability holds);

(ii) χ2, χ3, χ4: pitchfork bifurcation (Z2 symmetry, exchange of stability holds);

(iii) χ5: same as bifurcation with hexagonal D6 symmetry in the plane, see Figure

6.4;

(iv) χ6: same as bifurcation with triangular D3 symmetry in the plane. In par-

ticular H-planforms are always unstable on both sides of the bifurcation point

unless the subcritical branch bends back sufficiently near the bifurcation point

(see Figure 6.5);

(v) χ7: same as bifurcation with natural octahedral O symmetry in R3;

(vi) χ8: same as bifurcation with natural full octahedral O⋉ Z2 symmetry in R3;

(vii) χ9: same as bifurcation with the (unique) non natural full octahedral symmetry

in R3;

(viii) χ10: same as bifurcation with the (unique) non natural octahedral symmetry

in R3.

Proof.

(i) For the one dimensional representations, this follows from classical bifurcation

theory: in χ1 there is no symmetry breaking, hence generically the bifurca-

tion is of transcritical type and the trivial and bifurcated solutions exchange

stability at the bifurcation point. In the three other cases, a symmetry exists

which acts by reversing direction on the axis as can be seen from Table 6.6.

For example in χ2 this can be taken as σ (but also κ′ does the same thing).

Hence the bifurcation is of pitchfork type and exchange of stability holds.

(ii) For χ5, note that the subgroup Q8 acts trivially on any point of this plane

(dim(V Q8) = 2). In fact Q8 is the isotropy group of the principal stratum in

this group action. Now, G ≃ GL(2, 3) = Q8 ⋉D3, hence G/Q8 ≃ D3 ⋉Z2 ≃
D6, the symmetry group of an hexagon. This group action is isomorphic to

the natural action of D6 in the plane. It follows that the problem reduces

in this case to a bifurcation problem with the action of D6 in the plane, see

[Golubitsky 1988] for details.

(iii) In the case of χ6, the maximal subgroup which keeps every point in the plane

fixed is the 16 element group Q8κ. It follows that the problem reduces to a

bifurcation problem in the plane with symmetry G/Q8κ ≃ D3. Details on this

bifurcation can be found in [Golubitsky 1988].
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(iv) A similar reduction can be made with the 3 dimensional representations. In-

deed it can be seen that the principal isotropy type (which keeps all points in

the three dimensional representation space fixed) is C′
4 for χ7 and χ10, and C2

for χ8 and χ9. In the first case, this leads to reducing the problem to one with

G/C′
4 ≃ O symmetry, where O is the 24 elements group of direct symmetries

(rotations) of a cube. However there are two irreducible representations of

dimension 3 of O [Miller 1972], and it turns out that χ7 corresponds to one

of them (the ”natural” action of O in R3) while χ10 corresponds to the other

representation. This explains why there are 3 types of H-planforms for χ7 and

only 2 for χ10. Similarly, the principal isotropy type for χ8 and χ9 is the two

element group C2, and G/C2 ≃ O⋉Z2. Then the same remark holds for these

cases as for the previous ones. Note that the case of irreducible representation

χ8 will be studied in details in 8.3.2 and 8.3.3 and will rely on the singular

theory with octahedral symmetry developed by Melbourne [Melbourne 1986].

�

Figure 6.4: Bifurcation diagram for the case χ5. Dotted lines: unstable branches.

Figure 6.5: Bifurcation diagram for the case χ6. Dotted lines: unstable branches.

Remark 6.3.1.In the 4 dimensional cases, the principal isotropy type is the trivial

group, hence no reduction can be made. Bifurcation in this case will be the subject

of the next chapter 7.
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6.4 Computation of hyperbolic planforms

It follows from the definition that H-planforms are eigenfunctions of the Laplace-

Beltrami operator in D which satisfy certain isotropy conditions: (i) being invariant

under a lattice group Γ and (ii) being invariant under the action of an isotropy sub-

group of the symmetry group of the fundamental domain D/Γ (mod Γ). Therefore

in order to exhibit H-planforms, we need first to compute eigenvalues and eigenfunc-

tions of LD in D, and second to find those eigenfunctions which satisfy the desired

isotropy conditions. In this section we tackle this question in the case where the

lattice has the regular octagon as a fundamental domain.

6.4.1 Introduction

Over the past decades, computing the eigenmodes of the Laplace-Beltrami operator

on compact manifolds has received much interest from physicists. The main appli-

cations are certainly in quantum chaos [Balazs 1986, Aurich 1989, Aurich 1993,

Schmit 1991, Cornish 1998] and in cosmology [Inoue 1999, Cornish 1999,

Lehoucq 2002].

To our knowledge, the interest in such computation was sparkled by the

study of classical and quantum mechanics on surfaces of constant negative cur-

vature, and the connections between them (for an overview on the subject see

[Balazs 1986]). To be more precise, quantum chaology can be defined as the study

of the semiclassical behaviour characteristic of systems whose classical motion ex-

hibits chaos, for example the classical free motion of a mass point on a com-

pact surface of constant negative curvature (as it is the most chaotic possible).

In [Balazs 1986, Aurich 1989, Cornish 1998], authors studied the time-independent

Schroedinger equation on the compact Riemannian surface of constant curvature

-1 and genus 2, which is topologically equivalent to the regular octagon with four

periodic boundary conditions. This is the same as solving the eigenvalue prob-

lem for Γ invariant eigenmodes in D. The first computations have been per-

formed using the finite element method on ”desymmetrised” domains of the hy-

perbolic octagon with a mixture of Dirichlet and Neumann boundary conditions

[Balazs 1986, Schmit 1991]. We explain the procedure of desymmetrisation in the

next subsection. Aurich and Steiner in [Aurich 1989] were the first to compute the

eigenmodes on the whole octagon with periodic boundary conditions. They began

with the finite element method of type P2 and were able to exhibit the first 100

eigenvalues. In [Aurich 1993], the same authors used the direct boundary-element

method on an asymmetric octagon to reach the 20 000th eigenvalue.

There is also a strong interest of cosmologists for ringing the eigenmodes of

the Laplace-Beltrami operator on compact surfaces. Indeed this is necessary in or-

der to evaluate the cosmic microwave background anisotropy in multiply-connected

compact cosmological models. For some models, this computation is performed on

a compact hyperbolic 3-space called the Thurston manifold, and Inoue computed

the first eigenmodes of Thurston space such that each corresponding eigenvalue



100 Chapter 6. Pattern formation in the Poincaré disk

λ satisfies λ ≤ 10 with the direct boundary-element method [Inoue 1999]. For

3-dimensional spherical spaces, several methods have been proposed: the “ghosts

method” [Cornish 1999], the averaging method and the projection method. All

these methods are explained and summarized in [Lehoucq 2002].

Our aim is different in that we do not want to compute all the eigenvalues of

the Laplace-Beltrami operator, but instead to calculate the H-planforms with the

isotropy types listed in theorem 6.3.1. The methods of numerical computation are

however similar, and one question is to choose the method best suited to our goal.

For the H-planforms associated to irreductible representations of dimension 1 (i.e.

for (χi)i=1···4), we use a desymmetrization of the octagon with a reformulation of

the boundary conditions. For H-planforms associated with irreducible representa-

tions of dimension ≥ 2, the desymmetrization of the octagon is also possible but

much more complicated as noticed by Balazs and Voros [Balazs 1986]. In the fol-

lowing chapter 7, we will treat the four-dimensional case in great details. Here we

only identify some H-planforms of specific isotropy types. In order to find these

H-planforms, we use the finite-element method with periodic boundary conditions.

This choice is dictated by the fact that this method will allow us to compute all

the first n eigenmodes and among all these we will identify those which corre-

spond to a given isotropy group. As explained before, if we had used the direct

boundary-element method, we would have reached any eigenmode but the search

for H-planforms would also have became more random. Indeed, each iteration of

this method gives only one eigenmode while the finite-element method provides n

eigenmodes depending on the precision of the discretization. This is why we prefer

to use this last method in order to find some H-planforms associated with irre-

ducible representations of dimension ≥ 2, although it is quite more complicated to

implement because of the periodic boundary conditions.

6.4.2 Desymmetrization of the octagon for the 1D case

We have already seen that the fundamental domain T (2, 3, 8) of the group G gener-

ates a tiling of the octagon. Desymmetrization consists in separating the individual

solutions according to the symmetry classes of G. This entails solving the eigen-

value problem in certain irreducible subregions of the fundamental domain, such

as T (2, 3, 8), using special boundary conditions for these subregions. In effect the

periodicity conditions in the original domain (octagon) may produce Dirichlet or

Neumann conditions on the boundaries of these subregions. The symmetry group

G has a smaller fundamental domain, the triangle T (2, 3, 8) see figure 6.2, which is
1
96th of the original octagon. The method of desymmetrization can be applied to

many other techniques than finite element methods (see [Fässler 1992]).

We now focus on the four one-dimensional irreducible representations (χi)i=1···4
acting upon the generators as indicated in table 6.6. One can find in the book

of Fässler and Stiefel [Fässler 1992, Chapter 3] the principle of desymmetrization

in the context of dihedral symmetry. We follow their method in the case of the

symmetry group G. The first step is to attribute one number (value) to each of the
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96 triangles that tesselate the octagon under the action of G (see 6.3), according to

the character values obtained from table 6.6, i.e. ±1 depending on the conjugacy

class (remember we restrict ourselves to the one dimensional representations χ1 to

χ4).

Let us take the example of the first irreducible representation χ1 and explain

how we obtain the domain and the boundary conditions depicted in figure 6.6. Table

6.6 shows that all 96 triangles end up with the same value, 1. This means that the

eigenfunction we are looking for is even under all the 96 elements in G and it follows

that it must satisfy Neumann boundary conditions on all the edges of the tesselation

of the hyperbolic octagon [Balazs 1986, Aurich 1989]. Finally, it is sufficient to

solve the eigenproblem on the reduced domain T (2, 3, 8) with Neumann boundary

conditions on its three edges. For the four one-dimensional representations one has

to choose the correct combination of Neumann and Dirichlet boundary conditions

as shown in figure 6.6.

The representations of dimension ≥ 2 require the same number of values as their

dimension. For example there are two basis vectors determining the function values

in the case of an irreducible representation of dimension 2. The table 6.6 is then

no longer sufficient to set the values of the function on each triangles and one has

to explicitly write the matrices of the irreducible representation in order to obtain

the suitable conditions.

6.4.3 Numerical experiments

As there exists an extensive literature on the finite element methods (see for an

overview [Ciarlet 1991, Allaire 2005]) and as numerical analysis is not the main

goal of this section, we do not detail the method itself but rather focus on the way

to actually compute the eigenmodes of the Laplace-Beltrami operator.

Desymmetrized problem : For the four problems depicted in figure 6.6, we use

the mesh generator Mesh2D from Matlab to tesselate the triangle T (2, 3, 8) with

2995 nodes and we implement the finite element method of order 1. Our results

are presented in figure 6.7 and are in a good agreement with those obtained by

Balazs-Voros in [Balazs 1986] and Aurich-Steiner in [Aurich 1989]. Once we have

computed the eigenfunction in T (2, 3, 8), we extend it to the whole octagon by

applying the generators of G. We superimpose in figure 6.7(a) the tesselation of the

octagon by the 96 triangles in order to allow the reader to see the symmetry class

of G.

Non desymmetrized problem : As discussed previously, we also present some H-

planforms of higher dimension. We mesh the full octagon with 3641 nodes in such

a way that the resulting mesh enjoys a D8-symmetry, see figure 6.8.

We implement, in the finite element method of order 1, the periodic bound-

ary conditions of the eigenproblem and obtain the first 100 eigenvalues of the oc-

tagon. Our results are in agreement with those of Aurich and Steiner reported in
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(a) χ1 : G. (b) χ2 : G0κ.

(c) χ3 : G0κ′ . (d) χ4 : G.

Figure 6.6: Boundary conditions for the one-dimensional irreducible representa-

tions. Top left: boundary conditions for χ1, corresponding to the isotropy group G.
Top right: boundary conditions for χ2 corresponding to the isotropy group GOκ.

Bottom left: boundary conditions for χ3 corresponding to the isotropy group G0κ′ .

Bottom right: boundary conditions for χ4 corresponding to the isotropy group G.
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(a) χ1 : G, the corresponding eigenvalue

is λ = 23.0790.

(b) χ2 : G0κ, the corresponding eigen-

value is λ = 91.4865.

(c) χ3 : G0κ′ , the corresponding eigen-

value is λ = 32.6757.

(d) χ4 : G, the corresponding eigenvalue

is λ = 222.5434.

Figure 6.7: The four H-planforms with their corresponding eigenvalue associated

with the four irreducible representations of dimension 1, see text.
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Figure 6.8: A mesh of the octagon with 3641 nodes which is used for the method

of finite elements. It leads to matrices of dimension 3641× 3641.

[Aurich 1989]. Instead of giving a table of all the eigenvalues, we prefer to plot the

staircase function N(λ) = ♯{λn|λn ≤ λ} for comparison with Weyl’s law. Weyl’s

law is, in its simplest version, a statement on the asymptotic growth of the eigenval-

ues of the Laplace-Beltrami operator on bounded domains. If Ω is a given bounded

domain of R2, then the staircase function has the following asymptotic behaviour:

N(λ) = |Ω|
4π λ+o(λ) as λ→ ∞. We recall that in the case of the hyperbolic octagon,

one has |Ω| = 4π and hence N(λ) ∼ λ as λ → ∞. As can be seen in figure 6.9 the

asymptotic law describes the staircase well down to the smallest eigenvalues, which

confirms the validity of our numerical results.

We show in figure 6.10 two H-planforms, with D̃8 and D̃8κ isotropy respectively.

These two H-planforms belong to irreducible representations of dimension 2: χ5 for

6.10(a) and χ6 for 6.10(b) and 6.11(a).

We finally present in figure 6.11 three H-planforms, with C8κ, D̃4κ and

D̃4κ′ isotropy. These three H-planforms belong to irreducible representations of

dimension 3: χ8 for 6.11(a), χ9 for 6.11(b) and χ10 for 6.11(c).

In figures 6.7,6.10 and 6.11, we have plotted, for convenience, the corresponding

H-planforms in the octagon only. Nevertheless, H-planforms are periodic in the

Poincaré disc, as stated before, and in figure 6.12, we plot the H-planform with

G0κ′ isotropy type of figure 6.7(c). We recall that the octagonal lattice group Γ is

generated by the four boosts gj of subsection 6.3.1. Then, once the H-planform is

calculated, we report it periodically in the whole Poincaré disc by the actions of

there four boosts and obtain figure 6.12. Note that it is arduous to tesselate the

entire disc and this is why there remains some untesselated areas in the figure.
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Figure 6.9: The staircase function N(λ), in dark, is shown in comparison with

Weyl’s law N(λ) ∼ λ as λ→ ∞.

(a) χ5 : D̃8, the corresponding eigen-

value is λ = 73.7323.

(b) χ6 : D̃8κ, the corresponding eigen-

value is λ = 8.2501.

Figure 6.10: Two H-planforms with their corresponding eigenvalue associated to

the two irreducible representations of dimension 2, see text.
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(a) χ8 : C8κ, the corresponding eigen-

value is λ = 3.8432.

(b) χ9 : D̃4κ, the corresponding

eigenvalue is λ = 28.0888.

(c) χ10 : D̃4κ′ , the corresponding eigen-

value is λ = 15.0518.

Figure 6.11: Three H-planforms with their corresponding eigenvalue associated to

three irreducible representations of dimension 3, see text.
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Figure 6.12: Extension of the G0κ′ H-planform on the Poincaré disk.

Remark 6.4.1.The finite element method relies on a variational principle and

thus yields upper bounds for the eigenvalues. Note that it is not well-suited to

compute high eigenvalues. Thus, if one wants to compute, for example, the first

125 eigenvalues, then the finite element method provides a very good approximation

to the true eigenvalues. If however one wants to reach the 2000th eigenvalue by

the finite element method we need to use matrices of size at least 106 × 106 which

is impossible for desktop or laptop computers and requires going to more powerful

architectures. This is why the direct boundary element method should be preferred

for such computations (see [Aurich 1993]).

6.5 Application to the structure tensor formalism

The aim of this section is to extend the results from the Poincaré disk to the set of

structure tensors SPD(2,R). We can extend the definitions introduced in 6.2.1 to

SPD(2,R) = R+
∗ × D as follows.

Definition 6.5.1. A lattice group of R∗×D is a subgroup of the form Ξ×Γ where

Γ is a lattice group acting in D and Ξ is a non trivial discrete subgroup of R∗.

Any discrete subgroup of R∗ is generated by a positive number a and can be

further identified with Z: Ξ = {an, n ∈ Z}. A fundamental domain for Ξ× Γ is a

”box” [1, a]× FΓ.

The Laplace-Beltrami operator in R∗ × D in (∆, z1, z2) with z = z1 + iz2 coor-
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dinates is

LSPD(2,R) = ∆
∂

∂∆
+∆2 ∂2

∂∆2
+

(
1− |z|2

)2

4

(
∂2

∂z21
+

∂2

∂z22

)
. (6.15)

By using (6.15) we extend Theorem 6.1.1 to R∗ × D:

Corollary 6.5.1.

(i) Let us note T = (∆, z1, z2) ∈ SPD(2,R) and z = z1 + iz2. The function

ψρ,b,β(T ) = eρ,b(z) e
i log β log∆ (6.16)

satisfies the relation LSPD(2,R)ψρ,b,β = −
(
ρ2 + 1

4 + log2 β
)
ψρ,b,β.

(ii) Any eigenfunction of LSPD(2,R) admits a decomposition of the form

ei log β log∆

∫

∂D
eρ,b(z)dTρ(b). (6.17)

From there we can extend the definition (and properties) of the Helgason-

Fourier transform in the Poincaré disk given by Helgason [Helgason 2000] to the

space SPD(2,R). If we denote T = (∆, z) ∈ R+
∗ × D, then given a function f on

SPD(2,R), its Fourier transform is defined by

f̃(ρ, b, β) =

∫

SPD(2,R)
f(∆, z)e−ρ,b(z)e

−i log β log∆dm(z)
d∆

∆
. (6.18)

In the following we will look for solutions of bifurcation problems in SPD(2,R),

which are invariant under the action of a lattice group: (ξ, γ) · u(∆, z) =

u(ξ−1∆, γ−1z) = u(∆, z) for ξ ∈ Ξ, γ ∈ Γ. This reduces to looking for the problem

restricted to a fundamental domain with suitable boundary conditions imposed by

the Γ-periodicity, or, equivalently, to looking for the solutions of the problem pro-

jected onto the orbit space R+
∗ /Ξ × D/Γ (which inherits a Riemannian structure

from SPD(2,R)). Because the fundamental domain is compact, it follows from

general spectral theory that −LSPD(2,R) is self-adjoint, non negative and has com-

pact resolvent in L2(R+
∗ /Ξ×D/Γ). Hence its spectrum consists of real positive and

isolated eigenvalues of finite multiplicity.

6.5.1 Bifurcation problem

We now consider equation (3.4). Assuming again Iext = 0 (no external input) and

that the sigmoidal function is centered at the origin (such that V = 0 is a trivial

solution of (3.19)), the equation (3.4) can be written

d

dt
V (T , t) = −V (T , t) + µWloc ∗SPD(2,R) V (T , t) +R(V (T , t)) (6.19)

where:
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• µ = S′(0),

• Wloc ∗SPD(2,R) V denotes the convolution product

Wloc ∗SPD(2,R) V (T ) =

∫

SPD(2,R)
Wloc(dSPD(2,R)(T , T ′))V (T ′)dT ′

defined on SPD(2,R),

• R(V ) stands for the remainder terms in the integral part of equation (3.4),

• R(0) = DV R(0) = 0.

Following the same lines as in the previous section, we look at the linear stability

of the trivial solution of against perturbations in the form of hyperbolic waves (6.16)

with ρ ∈ R. This comes back to looking for σ’s such that

σ(ρ, β) = −1 + µW̃loc(ρ, β)

where W̃loc(ρ, β) is the hyperbolic Fourier transform of Wloc as defined in (6.18).

The numerical calculation shows that for each value of ρ and β, there exists a value

µ(ρ, β) such that if µ < µ(ρ, β) then all σ’s are negative, while σ = 0 at µ = µ(ρ, β).

The ”neutral stability surface” defined by µ(ρ, β) is typically convex and reaches a

minimum µc at some values ρc, βc. Therefore when µ < µc the trivial state V = 0 is

stable against such perturbations while it becomes marginally stable when µ = µc
with critical modes ψρc,b,βc , for any b ∈ S1 (rotational invariance). Therefore a

bifurcation takes place at this critical value.

In this section, we restrict ourself to bifurcating patterns in SPD(2,R) which

are invariant under a lattice Γ in D and which are periodic, with period 2π/βc, in

R+
∗ . This reduces to look for solutions in the space L2(R+

∗ /βcZ
+
∗ ×D/Γ). Note that

R+
∗ /βcZ

+
∗ ≃ S1. With a suitable inner product this space admits an orthonormal

Hilbert basis which is made of functions of the form

Ψ(z)eni log(βc) log(∆), z ∈ D, n ∈ N

where Ψ are the eigenfunctions of LD in L2(D/Γ). As we mentioned in the previous

section, these eigenfunctions are not known explicitly. By restricting the ”neutral

stability surface” µ(ρ, β) to those values which correspond to eigenfunctions with

βcZ
+
∗ × Γ periodicity, we obtain a discrete set of points on this surface with one

minimum µ0 associated with a value ρ0 of ρ and β0 of β. In general this mini-

mum is unique. Moreover the multiplicity of the 0 eigenvalue is now finite and

this eigenvalue is semi-simple. Let us call X the eigenspace associated with the 0

eigenvalue.

The full symmetry group of S1 × D/Γ is equal to O(2) × G where G as been

introduced in the previous section and O(2) is the symmetry group of the circle

(generated by S1 and by reflection across a diameter).
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6.5.2 Elementary results

The Equivariant Branching Lemma (6.2.3), together with the knowledge of the lat-

tices and the (absolutely) irreducible representations of the group G, gives us a mean

to classify the periodic patterns which can occur in R+
∗ ×D. Again, being interested

here in the classification of solutions rather than in their actual computation for a

specific equation, all remains to do is to determine the absolutely real irreducible

representations of the group O(2) × G and the computation of the dimensions of

the subspaces XH .

It only remains to deal with the S1 component of the domain of periodicity, the

G component has been done in the previous section. LetH = H1×H2 be an isotropy

subgroup for the representation R of O(2)×G acting in X. Then X = V ⊗W and

R = S ⊗ T , where S is an irreducible representation G in V and T is an irreducible

representation of O(2) in W [Serre 1978], and therefore H1 acts in V and H2 acts

in W . Now we have the following lemma, the proof of which is straightforward:

Lemma 6.5.1. dim(XH) = 1 if and only if dim(V H1) = dim(WH2) = 1.

Now, the irreducible real representations of O(2) are well-known: they are ei-

ther one dimensional (in which case every point is rotationally invariant) or two-

dimensional, and in the latter case the only possible one dimensional subspacesWH2

are the reflection symmetry axes in R2 (which are all equivalent under rotations in

O(2)). Then the classification follows straightforwardly from the classification of

the isotropy subgroups H1 of the irreducible representations of G which has been

done in 6.3.2.

6.6 Conclusion

In this chapter, we have analyzed the bifurcation of periodic patterns for nonlinear

equations describing the state of a system defined on the Poincaré disk, when these

equations are further invariant under the isometries in this space. We have made

use of the concept of periodic lattice in D to further reduce the problem to one

on a compact Riemann surface D/Γ, where Γ is a cocompact Fuchsian group. We

have applied the machinery of equivariant bifurcation theory in the case of an

octagonal periodic pattern, where we have been able to classify all possible H-

planforms satisfying the hypotheses of the Equivariant Branching Lemma. We have

also described a method to compute these patterns and illustrated it with a selection

of images of octagonal H-planforms. In the last section, we have described how these

results can be transferred to the case of bifurcating patterns in SPD(2,R).

There are three main questions which are raised by this analysis.

(i) The first one is that of the interpretation of these H-planforms for the model-

ing of the visual cortex. At this moment we believe that they could be involved

in the process of defining texture tuning curves in a way that would resemble

the definition of orientation tuning curves in the related ring model of ori-

entation selectivity [Hansel 1997, Shriki 2003, Ermentrout 1998, Dayan 2001,
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Bressloff 2000, Bressloff 2001b, Veltz 2010b]. Another fascinating possibility

is that they could be related to neural illusions caused by the existence of sev-

eral stable stationary solutions to (6.11) when, e.g., the slope of the sigmoid

at the origin becomes larger than that at which several branches of solutions

bifurcate from the trivial one. These neural illusions would be functions of

membrane potential values that would not correspond to the actual thalamic

input and could be expressed as combinations of these H-planforms. This is

of course still very speculative but very much worth investigating.

(ii) The second one is about the observability of such patterns in a natural system

or under direct simulation of the evolution equations. Indeed, not only there is

a high degeneracy of the bifurcation problem if one removes the assumption

that all perturbations respect the periodicity of the pattern, which is also

the case for patterns in Euclidean space, but in addition the fact that such

patterns would be neutral modes for the bifurcation problem posed in full

generality in D is non generic. We may however imagine mechanisms such as

”spatial frequency locking” by which periodic patterns could become “robust”,

hence observable.

(iii) The third one is that of a more effective computation of H-planforms for a

given isotropy type. As we have seen in section 6.4, a desymmetrization of

the domain allowed us to calculate all the H-planforms with isotropy types

associated to irreducible representations of dimension 1. For irreducible rep-

resentations of dimension ≥ 2 the computation becomes more intricate as the

desymmetrization method is no longer straightforward and remains misun-

derstood. Naturally, one solution would be to elaborate a general algorithm

which, for a given isotropy type, computes systematically the associated H-

planform. We think that such an algorithm would be of interests for quantum

physicists and cosmologists.
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This chapter completes the classification of bifurcation diagrams for H-planforms

in the Poincaré disc D whose fundamental domain is a regular octagon. An H-

planform is a steady solution of a PDE or integro-differential equation in D, which is

invariant under the action of a lattice subgroup Γ of U(1, 1), the group of isometries

of D. In our case Γ generates a tiling of D with regular octagons. Under ”generic”

assumptions the bifurcation problem reduces to an ODE which is invariant by an ir-

reducible representation of the group of automorphisms G of the compact Riemann

surface D/Γ. The irreducible representations of G have dimension one, two, three

and four. The bifurcation diagrams for the representations of dimension less than

four have already been described in the previous chapter and correspond to already
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well known group actions. In the present chapter we compute the bifurcation di-

agrams for the remaining three irreducible representations of dimension four, thus

completing the classification. In one of these cases, there is generic bifurcation of a

heteroclinic network connecting equilibria with two different orbit types.

7.1 Basic facts and results

In this section we summarize results for chapter 6 which will be useful in subsequent

analysis.

7.1.1 Steady-state bifurcations with G symmetry

We shall assume throughout this chapter that a center manifold reduction has

been performed for a steady-state bifurcation problem with G symmetry as can

arise from Equation (6.11) restricted to Γ-periodic patterns in D. This means

that a linear stability analysis of the trivial solution has led to finding a critical

parameter value µc at which, in the class of Γ-periodic functions, 0 is an eigenvalue

of the linear part. It is a generic fact that the corresponding eigenspace X be an

irreducible representation space of G, and any irreducible representation can be

involved, depending on the form of the function Wloc defined in equation (6.11).

Then the center manifold theorem reduces the initial problem to an ODE posed

in X, which is invariant under the action of the irreducible representation of G in

X. See [Haragus 2010] for a complete and rigorous exposition of the method and

[Chossat 2000] for an exposition in the context of equivariant bifurcations.

Here it may be useful to recall some basic facts about bifurcations with symme-

try. We write the bifurcation equation in X

dx

dt
= α(λ) x+ f(x, λ) (7.1)

where λ = µ−µc and α is a real Ck function (k ≥ 1) with α(0) = 0, f : X×R → X

has order ‖x‖o(‖x‖) and commutes with the action of G in X: if we denote by

(g, x) 7→ g·x the action (representation) of the group inX, then f(g·x, λ) = g·f(x, λ)
for all triples (g, x, λ). Moreover the property α′(0) 6= 0 is generic and in our neural

field model α′(0) = µ−1
c > 0 (see [Veltz 2010b]) so that the trivial solution looses

stability when λ > 0. This implies that after a suitable change of variable we have

α(λ) = λ in (7.1).

The problem is now to find the non trivial solutions (x(λ), λ) of (7.1) such that

x(0) = 0 and to analyze the local dynamics. Let H be an isotropy subgroup of G:
H = {g ∈ G | g · x = x} for some point x ∈ X. We define the fixed point subspace

of H, or subspace of H symmetry, as

XH = {x ∈ X | H · x = x}.

Then for all h ∈ H we have that h · f(x, λ) = f(h · x, λ) = f(x, λ). Hence XH is

invariant under the flow generated by (7.1): if x(0) ∈ XH , then x(t) ∈ XH for all
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t. We shall later use the notation Fix(H) instead of XH for convenience. It follows

that by restricting ourselves to the search of solutions with a given isotropy H, we

just need to solve (7.1) in the fixed point subspace XH . The case when dimXH = 1

is of particular interest. In this case looking for solutions with isotropy H reduces to

solving a scalar bifurcation equation. Under the above assumptions, this equation

always has a branch of non trivial, bifurcated equilibria. By group equivariance

of the problem any solution generates new solutions by letting G act on it. There

is a one to one correspondance between the number of elements in this G-orbit of

solutions and the number of elements in the quotient G/H (number of subgroups

conjugate to H in G). We call the conjugacy class of an isotropy subgroup H the

isotropy type of H.

Note that, when restricted to the invariant axis XH as above, the exchange of

stability principle holds for these solutions. Indeed let the axis of symmetry be

parametrized by a real coordinate u, the equation on this axis at leading order has

the form u̇ = λu+Cuk where C is a real coefficient and k ≥ 2. The bifurcated branch

is parametrized (at leading order) by λ = −Cuk−1, so that the radial eigenvalue is

(k−1)Cuk−1 = −(k−1)λ (at leading order). It therefore changes sign with λ. This

eigenvalue is called radial. The other eigenvalues for the Jacobian matrix J of (7.1)

evaluated at the solutions are transverse (the eigenvectors point orthogonally to the

axis of symmetry). The bifurcated equilibria are stable in X if the eigenvalues of J

all have a negative real part. The exchange of stability principle does not hold in

general when considering stability in the full space X.

Equilibria with isotropy not satisfying the condition dimXH = 1 or other types

of bounded solutions may also exist. However their analysis requires knowledge of

the equivariant structure of the vector field f or at least of its Taylor expansion up

to an order large enough to fully determine the bifurcation diagram. We shall see

in the next sections that solving the bifurcation equation (7.1) when dimX = 4

requires computing the equivariant terms in the expansion of f(·, λ) up to order 3,

5 or 7 depending on the problem treated.

We now come back to our specific problem with G symmetry. We can see

from the character table 6.6 that there are 13 possible cases for the irreducible

representations. The dimension of X for each representation χj (j = 1, . . . , 13)

is given by the corresponding character evaluated at the identity. We see that

dim(X) = 1 for χ1, . . . , χ4, dim(X) = 2 for χ5, χ6, dim(X) = 3 for χ7, . . . , χ10 and

dim(X) = 4 for χ11, χ12 and χ13.

For the representations χ1 to χ10 in Table 6.6, we have established that the

bifurcation diagrams are identical to those of classical bifurcation problems with

symmetry in R, R2 or R3. Theorem 6.3.1 gives also the isotropy types of represen-

tations χ11, χ12 and χ13 which have one dimensional fixed-point subspace. Hence

by application of the Equivariant Branching Lemma, we know that branches of

solutions with these isotropies exist (in a generic sense). However bifurcation di-

agrams cannot be deduced from already known bifurcation problems. Our aim in

the remainder of this chapter is to fill this gap. In the next proposition we list these

isotropy subgroups which give bifurcated solutions by the Equivariant Branching
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Lemma. We introduce the following subgroups which will be relevant in the re-

mainder of the paper. We use the notation σ̃ = ρ2σρ−2 (see Table 6.2).

Definition 7.1.1.

C̃2κ = 〈σ, κ〉 = {Id, σ, κ, κ′′}
C̃′

2κ = 〈σ̃, κ〉 = {Id, σ̃, κ,−ρ2κ′′ρ−2}
C̃3κ′ = 〈ε, κ′〉 = {Id, ε, ε2, κ′, εκ′ε2, ε2κ′ε}
D̃3 = 〈σ̃, ε〉 = {Id, ε, ε2, σ̃, εσ̃ε2, ε2σ̃ε}

Proposition 7.1.1. For the 4D representations of G, the isotropy subgroups with

one dimensional fixed point subspace are the following:

• χ11: C̃2κ, C̃
′
2κ;

• χ12: D̃3, C̃3κ′, C̃2κ, C̃
′
2κ;

• χ13: D̃3, C̃3κ′, C̃2κ, C̃
′
2κ.

These isotropy types are therefore symmetry-breaking.

7.1.2 Octagonal H-planforms in the 4D case

In order to illustrate our purposes, we numerically compute the octagonal H-

planforms associated to the isotropy groups given in proposition 7.1.1. We recall

that these planforms are eigenfunctions of the Laplace-Beltrami operator in D which

satisfy certain isotropy conditions: (i) being invariant under a lattice group Γ and

(ii) being invariant under the action of an isotropy subgroup of the symmetry group

of the fundamental domain D/Γ (mod Γ). In section 6.4 of chapter 6, we tackled

the problem of computing octagonal H-planforms and we described the required

numerical and geometrical methods. In this subsection, we complete this study for

the four-dimensional case and we illustrate it with a selection of images of octagonal

H-planforms.

We first explain how to recover the desymmetrized domain and the associated

boundary conditions for isotropy group C̃3κ′ in Figure 7.1(a). The group C̃3κ′

has six elements among them are ε the rotation by 2π/3 centered at R and the

reflections κ′, κ′′through the side PR and QR respectively, where P,Q and R are

the vertices of the purple triangle in Figure 6.3. Each reflection implies Neumann

boundary conditions on their respective edges. The Dirichlet boundary conditions

prevent an additional 3-fold rotation. The last Neumann boundary condition is

obtained by translating the desymmetrized domain with the four boosts (6.14).

In order to better illustrate the intrinsic differences of planforms with isotropy

types C̃2κ and C̃′
2κ, we decide to work with C

′
2κ = {Id,−σ,−κ, κ′′}, a conjugate of

C̃′
2κ. Indeed, isotropy groups C̃2κ and C

′
2κ share the same desymmetrized domain

but have different boundary conditions depending on their symmetries, see Figure

7.1(b) and 7.1(c). As we apply finite element method to compute the eigenvalues
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(a) C̃3κ′ (b) C̃2κ

(c) C
′
2κ (d) Action of the boost g3 on the desym-

metrized domain corresponding to isotropy

groups C̃2κ and C
′
2κ, see text.

Figure 7.1: Desymmetrized domain in red and associated boundary conditions cor-

responding to isotropy groups C̃3κ′ , C̃2κ and C
′
2κ. Letters N and D mean respec-

tively Neumann and Dirichlet boundary conditions.
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and eigenvectors of the Laplace-Beltrami operator, it is more convenient to work

with a connected domain. This is why the desymmetrized domain of isotropy groups

C̃2κ and C
′
2κ has the particularity of a part outside the octagon, however by the

action of the boost g3 one can translate this part inside the octagon, see Figure

7.1(d). Indeed, domain delimited by edges V 4 − V 5 − V 6 − V 7 is translated into

the domain delimited by edges B4 − B5 − B6 − B7 by the boost g3. For isotropy

group C̃2κ, the reflection κ imposes Neumann boundary condition on edges V 1, B5

and κ′′ on V 8, V 6. The action of g−1
3 implies Neumann boundary condition on edge

V 5 = g−1
3 (B5). We have to impose Dirichlet boundary condition on edge V 2 to

prevent the action of −κ, which does not belong to C̃2κ and further implies Dirichlet

condition on B4 and thus on V 4. Finally, reflection κ combined with boost g2 which

translates edge V 3 to the opposite side of the octagon, gives Neumann boundary

condition on edge V 3. The same method applies to isotropy group C
′
2κ and we find

the boundary conditions presented in Figure 7.1(c). For isotropy group D̃3, we do

not find any simple desymmetrized domain as in the other cases and we use the finite

element method on the full octagon with periodic boundary conditions: opposite

sides of the octagon are identified by periodicity. To identify planforms with isotropy

group D̃3, we first select eigenvectors with eigenfunctions of multiplicity 4 and then

check the symmetries.

We show in Figure 7.2 four H-planforms with isotropy groups C̃2κ, C
′
2κ, C̃3κ′

and D̃3 with eigenvalue λ = 5.3537 and in Figure 7.3 two H-planforms with isotropy

groups C̃2κ, C
′
2κ. Planform with isotropy group D̃3 is the only one which does not

possess any reflection, it is then easy to distinguish it from other planforms, see

Figure 7.2(d). We notice that patterns of planforms with isotropy C̃2κ (in Figure

7.2(a)) and C̃3κ′ (in Figure 7.2(c)) appear to be similar up to a rotation, despite

the fact that the two cooresponding groups are different. On the contrary, it is easy

to distinguish patterns of groups C̃2κ, Figures 7.2(a) and 7.3(a), and C
′
2κ, Figures

7.2(b) and 7.3(b).

In Figures 7.2 and 7.3, we have plotted for convenience, the corresponding

H-planforms in the octagon only. Nevertheless, H-planforms are periodic in the

Poincaré disc and in Figure 7.4, we plot the H-planform with C̃3κ′ isotropy type of

Figure 7.2(c). As the octagonal lattice group Γ is generated by the four boosts of

Equation (6.14), then once an H-planform is computed, we report it periodically in

the whole Poincaré disc by the action of these boosts and obtain Figure 7.4.

7.1.3 Bifurcation with submaximal isotropy

We briefly recall some basic results on bifurcation with submaximal isotropy which

will be used in sections 7.2 and 7.3. The condition dimXH = 1, required by

the Equivariant Branching Lemma, implies that H is maximal (there no isotropy

subgroup between H and G) and moreover in the case of representations χ11, χ12

and χ13 there are no maximal isotropy subgroups with fixed-point subspaces of

dimension greater than 1. However it is well-known that solutions with non maximal

isotropy can occur in generic bifurcation problems. It follows that the Equivariant
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(a) C̃2κ (b) C
′
2κ

(c) C̃3κ′ (d) D̃3

Figure 7.2: The four H-planforms associated to the eigenvalue λ = 5.3537.
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(a) C̃2κ

(b) C
′
2κ

Figure 7.3: Two H-planforms corresponding to isotropy group C̃2κ right and C
′
2κ

left for eigenvalue λ = 42.3695.

Figure 7.4: Extension of the C̃3κ′ H-planform on the Poincaré disc of Figure 7.2(c).
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Branching Lemma does not account for all the bifurcating equilibria and that the

study of bifurcation with submaximal isotropy is an important issue. Here we adopt

the approach of [Chossat 1990], see also [Chossat 2000].

The key for the analysis of bifurcation with submaximal isotropy is the deter-

mination of the number of copies in Fix(Σ) of subspaces Fix(∆) for the isotropy

subgroups ∆ containing Σ. Let [Σ] be the conjugacy class of Σ and write [Σ] < [∆]

if only if [Σ] 6= [∆] and γ−1Σγ ⊂ ∆ for some γ ∈ G. We call isotropy type the

conjugacy class of an isotropy subgroup. Let [∆1], . . . , [∆r] be the isotropy types

which satisfy the former condition. Let aj the number of solution branches with

isotropy ∆j (aj may be equal to 0). Then the total number of nontrivial solution

branches in Fix(Σ) with higher isotropy is

NΣ =
r∑

j=1

ajn(Σ,∆j)

where n(Σ,∆j) is the number of conjugate copies of Fix(∆) inside Fix(Σ).

We denote fΣ the restriction to Fix(Σ) of f given in Eq. (7.1). Then, if fΣ has

N0 zeroes in a neighborhood of the origin, there are precisely N0−NΣ−1 branches

of equilibria with isotropy Σ.

If we set N(Σ) = {g ∈ G | g−1Σg = Σ} (normalizer of Σ in G) and N(Σ,∆) =

{g ∈ G | Σ ⊂ g∆g−1}, the quotient set N(Σ,∆)

N(∆)
is well-defined even thoughN(Σ,∆)

is not a group in general [Chossat 1990]. Moreover we have that

n(Σ,∆) =

∣∣∣∣
N(Σ,∆)

N(∆)

∣∣∣∣

This formula allow us to compute the numbers n(Σ,∆), hence to determine the

number of solutions with isotropy ∆ in Fix(Σ).

Now note that the maximal isotropy subgroups for the representations χ11, χ12

and χ13 which are listed in Definition 7.1.1, have only cyclic subgroups generated by

elements σ, ε, κ or κ′ (or conjugates). The following lemmas give the informations

when ∆ is maximal.

Lemma 7.1.1. The normalizers of the isotropy subgroups of proposition 7.1.1 are

listed in table 7.1.

∆ N(∆) |N(∆)|
D̃3 〈D̃3,−Id〉 12

C̃3κ′ 〈C̃3κ′ ,−Id〉 12

C̃2k 〈C̃2k,−Id〉 8

C̃′
2κ 〈C̃′

2κ,−Id〉 8

Table 7.1: Isotropy subgroups of G and their normalizer. The last column provides

the cardinal of the normalizer.
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Proof. Let us consider, for example, Σ = C̃2k = 〈σ, κ〉. The only conjugate of

κ in C̃2k is κ itself, and the same holds for σ and σκ = κ′. Therefore N(C̃2k) =

N(〈κ〉)∩N(〈σ〉)∩N(〈σκ〉). Now for any element h ∈ G, we have that |N(〈h〉)| = 96
|[h]| .

Tables 6.2 and 6.3 show that |[κ]| = 6 while |[σ]| = |[κ′]| = 12. It follows that

|N(〈κ〉)| = 16 while |N(〈σ〉)| = |N(〈κ′〉)| = 8. Hence |N(Σ)| ≤ 8. But Σ ⊂ N(Σ)

and |Σ| = 4, moreover −Id commutes with any element in G and therefore belongs

to N(Σ). It follows that the group 〈Σ,−Id〉 = N(Σ). The same rationale applies

to the other isotropy subgroups. �

Lemma 7.1.2.The values of n(Σ,∆) for the maximal isotropy subgroups ∆ (see

Definition 7.1.1) are given in table 7.2.

[Σ] [∆] n(Σ,∆)

〈σ〉 C̃2k 1

〈σ〉 C̃′
2k 1

〈σ〉 D̃3 2

〈ε〉 D̃3 2

〈ε〉 C̃3κ′ 2

〈κ〉 C̃2k 2

〈κ〉 C̃′
2κ 2

〈κ′〉 C̃2κ 1

〈κ′〉 C̃′
2κ 1

〈κ′〉 C̃3κ′ 2

Table 7.2: Values of n(Σ,∆).

Proof.

• Case Σ = 〈κ〉: we have N(Σ, C̃2k) = N(Σ, C̃′
2k) = N(Σ) as κ is not conjugate

to σ nor to σκ. Moreover, |N(Σ)| = 16 (see proof of Lemma 7.1.1) and

|N(C̃2k)| = |N(C̃′
2k)| = 8, hence n(Σ, C̃2k) = n(Σ, C̃′

2k) = 2.

• Case Σ = 〈σ〉: we have N(Σ, Ĉ2k) = N(Σ, C̃′
2k) = N(Σ) with |N(Σ)| = 8

(see proof of Lemma 7.1.1), hence n(Σ, Ĉ2k) = n(Σ, C̃′
2k) = 1. By definition

N(Σ, D̃3) = {g ∈ G | gΣg−1 ⊂ D̃3} = {g ∈ G | gσ̃g−1 ∈ D̃3}. There are three

conjugates of σ̃ in D̃3. Therefore |N(Σ, D̃3)| = 3|N(〈σ〉)|. As shown in the

proof of Lemma 7.1.1), |N(〈σ〉)| = 8, hence N(Σ, D̃3) = 24 and n(Σ, D̃3) = 2.

• The proof for the other cases uses the same arguments as above.

�

7.1.4 Presentation with biquaternions

It is natural to identify the finite group G to a group of 4 × 4 real matrices as

dim(χ12) = 4. Lauterbach and Matthews [Lauterbach 2010] have successfuly intro-

duced biquaternions to study equivariant dynamical systems with SO(4) symmetry.
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Here we also use biquaterions to give a geometric way to describe the group G. We

denote by Q the set of unit quaternions. The set of pairs of such quaternions forms a

group, called the spinor group and denoted by Spin4. We get a map [Conway 2003]:

Spin4 → SO(4) : (l, r) 7→ [l, r] = {x 7→ l̄xr}

where a vector x ∈ R4 is identified with a quaternion x ∈ H via

x =




x1
x2
x3
x4


⇔ x = ex1 + ix2 + jx3 + kx4.

The two following propositions hold.

Proposition 7.1.2. For the irreducible representations χ12, χ13, the group G admits

the following presentation with biquaternions:

G = 〈[j, e] ,
[√

2

2
(j + k), j

]
, [e, i] , [i, e] ,

[
1

2
(−e+ i+ j + k),

1

2
(
√
3e+ i)

]
〉.

It is also possible to identify the generators of G in matrix form:

κ =




0 0 0 −1

0 0 −1 0

0 −1 0 0

−1 0 0 0


 , ρ =

√
2

2




0 0 −1 −1

0 0 1 −1

−1 −1 0 0

1 −1 0 0


 ,

σ =

√
2

4




1
√
3 −1

√
3√

3 −1 −
√
3 −1

−1 −
√
3 −1

√
3√

3 −1
√
3 1


 .

(7.2)

Proof. The computer algebra program GAP gives the presentation of G as

G = 〈m1,m2,m3,m4,m5〉 with:

m1 = [j, e] ,

m2 =

[√
2

2
(j + k), j

]
,

m3 = [e, i] ,

m4 = [i, e] ,

m5 =

[
1

2
(−e+ i+ j + k),

1

2
(
√
3e+ i)

]
.

We express each endomorphisms (ml)l=1...5 of G in the canonical basis B = (e, i, j, k)

and form the corresponding matrices Ml = MatB,B(ml) for l = 1 . . . 5. A direct

calculation shows that trace(M5) = −
√
3 and M5 is of order 12, such that we can
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write with our notations that (up to a conjugate) M5 = −εκ. Matrices M1,M3,M4

are of order 4 and M2 of order 2. We set κ = −M1M3, such that ε = M5M1M3.

We recognize that M2 = κ′ = ρκ then ρ = −M2M1M3 and we verify that ρ is of

order 8. A straightforward calculation shows that ρ2 = −M4 and we finally note

σ = ρ−1ε−1. The expression of the matrices of generators of G are given in Eq.

(7.2). �

Proposition 7.1.3. For the irreducible representation χ11, the group G admits the

following presentation with biquaternions:

G = 〈
[
1

2
(−e+ i+ j + k), e

]
, [e, j] , [e,−e] , [i, e] ,

[√
2

2
(j + k), i

]
〉.

It is also possible to identify the generators of G in matrix form:

κ =




0 0 0 −1

0 0 1 0

0 1 0 0

−1 0 0 0


 , ρ =

√
2

2




0 1 1 0

−1 0 0 −1

1 0 0 −1

0 −1 1 0


 , σ =

√
2

2




0 0 −1 1

0 0 1 1

−1 1 0 0

1 1 0 0


 .

(7.3)

Proof. The proof is exactly the same as the previous one. �

7.1.5 Molien series

In [Chossat 2000] we find theorems which allow to compute the vector space di-

mensions of the space of equivariant and invariant polynomial maps for a group

action of a given degree. We recall that the set of G-equivariant polynomial maps

forms a module M over the ring RG of G-invariant polynomial maps. We denote

by rd = dim
−→P d(G) the dimension of the polynomial equivariants of degree d.

Theorem 7.1.1 (Equivariant Molien’s theorem). Consider the formal power series

Φρ
M(z) =

∞∑

d=0

rdz
d.

It has a representation

Φρ
M(z) =

∫

G

Tr(g)

det(1− zρ(g))
dg.

In our case, G is a finite group, and we can directly apply this theorem together

with table 6.6 to find:

• for χ12:

Φχ12

M (z) =
1

96

[
4

(1− z)4
− 4

(1 + z)4
+

8

1− z − z3 + z4
− 8

1 + z + z3 + z4

+
8
√
3

1− z
√
3 + 2z2 − z3

√
3 + z4

− 8
√
3

1 + z
√
3 + 2z2 + z3

√
3 + z4

]
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and Φχ12

M (z) = z + 2z3 + 5z5 + 10z7 +O(z7).

• for χ11:

Φχ11

M (z) =
1

96

[
4

(1− z)4
− 4

(1 + z)4
− 16

(1 + z + z2)2
+

16

(1− z + z2)2

]

and Φχ11

M (z) = z + z3 + 4z5 + 12z7 +O(z7).

An analog of the Equivariant Molien’s theorem holds for invariant polynomial

maps and we denote cd = dimRd the dimension of invariants polynomials of degree

d.

Theorem 7.1.2 (Invariant Molien’s theorem). Consider the formal power series

P ρ
RG

(z) =

∞∑

d=0

cdz
d.

It has a representation

P ρ
RG

(z) =

∫

G

1

det(1− zρ(g))
dg.

Applying this theorem together with tables 6.2 and 6.3 yields

• for χ12:

Pχ12

RG
(z) = z2 + 2z4 + 3z6 +O(z6)

• for χ11:

Pχ11

RG
(z) = z2 + z4 + 3z6 +O(z6).

These results are summerized in the following table:

Character e3 i4 e5 i6 e7

χ11 1 1 4 3 12

χ12 2 2 5 3 10

χ13 2 2 5 3 10

Table 7.3: The information on the number of invariant/equivariant polynomial

maps for the irreducible representations χ11, χ12 and χ13. Here e stands for equiv-

ariant, i for invariant and the number behind these letters for the degree of the

polynomial map. The number in the table gives the dimension of the space of

equivariant/invariant polynomial maps in the given degrees.
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7.2 Bifurcation diagrams in the case of the representation

χ12

The character table 6.6 shows that the two 4D representations χ12 and χ13 are

almost identical, the only difference coming from the fact that the characters of

the group elements εκ and −εκ have opposite signs. It follows that the general

bifurcation analysis in the case of χ13 is identical to the case of χ12 and does not

introduce any novelty. In the following we shall therefore only describe the χ12 case.

7.2.1 Equivariant structure of the equations on the center manifold

We need to know the form of the asymptotic expansion of the G equivariant map

f(·, λ) in Equation (7.1). Table 7.3 tells us that there are two independent equiv-

ariant homogeneous polynomial maps of order 3. The computation of these terms

will prove to be sufficient to fully determine the bifurcation diagram under generic

conditions.

We first need to choose a system of coordinates in R4. In the remaining part

of this paper we shall use the same notation for an element in G and for its repre-

sentation when there is no ambiguity. The following lemma is proved in Appendix

A.1.1.

Lemma 7.2.1. For the representation χ12 the diagonalization of the 8-fold sym-

metry matrix ρ has the form

ρ =




exp( iπ4 ) 0 0 0

0 exp(− iπ
4 ) 0 0

0 0 exp(3iπ4 ) 0

0 0 0 exp(−3iπ
4 )


 .

We note (z1, z̄1, z2, z̄2) the complex coordinates in the corresponding basis.

The following theorem gives the form of the bifurcation equations on the center

manifold .

Theorem 7.2.1. For the representation χ12, Equation (7.1) expressed in the co-

ordinates (z1, z̄1, z2, z̄2) admits the following expansion

ż1 =
[
λ+ a(|z1|2 + |z2|2)

]
z1 + b

[√
3
(
3z21 + z̄22

)
z̄1 − i

(
z22 + 3z̄21

)
z2

]
+ h.o.t. (7.4)

ż2 =
[
λ+ a(|z1|2 + |z2|2)

]
z2 + b

[√
3
(
3z22 + z̄21

)
z̄2 + i

(
z21 + 3z̄22

)
z1

]
+ h.o.t. (7.5)

where (a, b) ∈ R2. Moreover the cubic part is the gradient of the G invariant real

polynomial function

a

2

[(
|z1|2 + |z2|2

)2]
+b·
[√

3

2

(
3
(
z21 z̄

2
1 + z22 z̄

2
2

)
+ z21z

2
2 + z̄21 z̄

2
2

)
+ i
(
z31 z̄2 + z̄32z1 − z32 z̄1 − z2z̄

3
1

)
]
.

Proof. We postpone to appendix A.1.1 the computation of the two cubic equiv-

ariant maps. The check of the gradient form is straightforward. �
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7.2.2 Isotropy types and fixed points subspaces

Lemma 7.2.2.The lattice of isotropy types for the representation χ12 is shown in

Figure 7.5. The numbers in parentheses indicate the dimension of corresponding

fixed-point subspaces.

Figure 7.5: The lattice of isotropy types for the representation χ12.

Proof. We recall the trace formula given in equation (6.13): if H is a subgroup

and χ is the character of the representation, then

dim(XH) =
1

|H|
∑

h∈H
χ(h).

By applying this formula for χ12 (see Table 6.6), one finds that the only cyclic

subgroups of G (subgroups generated by one element) with a fixed-point subspace of

positive dimension are those listed in the diagram of Figure 7.5, and this dimension

is equal to 2. The result follows. �

The next lemma gives expressions for the fixed-point subspaces of two-element

groups in the (z1, z̄1, z2, z̄2) coordinates, which will be useful for the bifurcation

analysis of (7.1) in the planes of symmetry. There are four types of these planes

but we express the fixed-point planes for the conjugates σ̃ of σ and κ′′ of κ′ for later
convenience.

Lemma 7.2.3. Fixed-point subspaces associated with the isotropy groups in the

diagram 7.5 have the following equations.

- Fix(σ) = {(z1, z̄1, z2, z̄2) | z2 = (
√
2− 1)(

√
2z1 − i

√
3z̄1)};

- Fix(σ̃) = ρ2Fix(σ) = {(z1, z̄1, z2, z̄2) | z2 = (1−
√
2)(

√
2z1 + i

√
3z̄1)};

- Fix(ε) = {(z1, z̄1, z2, z̄2) | z2 = (1 + i)z1 +
√
3z̄1};

- Fix(κ) = {(z1, z̄1, z2, z̄2) | z1 = iz̄1 and z2 = iz̄2};

- Fix(κ′) = {(z1, z̄1, z2, z̄2) |
√
2z1 = (−1 + i)z̄1)} and

√
2z2 = −(1 + i)z̄2)}.

- Fix(κ′′) = {(z1, z̄1, z2, z̄2) | z2 = (
√
3−

√
2)(−

√
2z1 + iz̄1)}.
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Proof. Given in Appendix A.2.1. �

The one dimensional fixed point subspaces are the intersections of planes of sym-

metry. This allows to easily obtain expressions for these axes from the expressions

listed in Lemma 7.2.3. For example we can write

Fix(C̃2κ) = {(z1, z2) ∈ C
2 | z1 = iz̄1 and z2 = (

√
2− 1)(

√
2−

√
3)z1}.

7.2.3 Bifurcation analysis

Figure 7.6: Region P = {(a, b) ∈ R2 | 3a+ 2b
√
3 < 0 and 3a+ 10b

√
3 < 0} for the

value of the parameters (a, b) is colored in blue.

Theorem 7.2.2. Provided that (a, b) ∈ P = {(a, b) ∈ R2 | 3a+2b
√
3 < 0 and 3a+

10b
√
3 < 0} (see Figure 7.6), the following holds for Equations (7.4)-(7.5).

(i) No solution with submaximal isotropy bifurcates in the planes of symmetry.

(ii) The branches of equilibria with maximal isotropy (as listed in Proposition

7.1.1) are pitchfork and supercritical.

(iii) If b > 0 (resp. b < 0), the equilibria with isotropy type C̃3κ′ (resp. D̃3) are

stable in R4. Branches with isotropy C̃2κ and C̃′
2κ are always saddles.

Remark 7.2.1.We have numerically checked that the domain P coincides with

the existence of an attracting, flow invariant sphere homeomorphic to S3 in R4. By

a theorem due to Field [Field 1989a, Chossat 2000], a condition for the existence

of such a sphere is that 〈q(ξ), ξ〉 < 0 for all ξ 6= 0, where ξ = (z1, z̄1, z2, z̄2), q

is the cubic part in the equations (7.4), (7.5) and 〈 , 〉 denotes the inner product
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ℜ(z1z̄′1 + z2z̄
′
2). Since q is an homogeneous polynomial map, it is sufficient to check

the condition for (z1, z2) ∈ S3, which does not present any difficulty.

Remark 7.2.2.The theorem doesn’t rule out the possibility that equilibria with

trivial isotropy could bifurcate. We conjecture this is not the case. This is supported

by the fact that under the ”generic” hypotheses of the theorem: (i) no other solution

than those with maximal isotropy bifurcates in the planes of symmetry, (ii) the

stability of these solutions is determined at cubic order and one of these types is

always stable, (iii) the system is gradient at cubic order, (iv) admitting the existence

of an invariant sphere (previous remark), the conjecture doesn’t contradict Poincaré-

Hopf formula [Guillemin 2010]: one can check that the sum of indices of equilibria

with maximal isotropy is equal to 0, the Euler characteristic of S3.

Proof. We first compute the branches with maximal isotropy, then we examine

bifurcation in the invariant planes and finally we provide the eigenvalues of the

bifurcated equilibria to complete the stability diagrams.

1. Branches with maximal isotropy. Notice that, since −Id acts non trivially

in R4−{0} for χ12, equilibria have to occur via pitchfork bifurcations. The maximal

isotropy subgroups are C̃2κ, C̃
′
2κ, C̃3κ′ and D̃3. By Lemma 7.2.3 one can easily find

the following parametrizations. Plugging this into the system (7.4)-(7.5) we obtain

scalar equations which we solve for the bifurcated branches:

• Fix(C̃2κ) = {z1 = (1 + i)x, z2 = (
√
2− 1)(

√
2z1 − i

√
3z̄1)}.

Bifurcated branch: λ = −4K1

(
a+ 2b(1 +

√
3)
)
x2 + O(x4), where K1 = 8 −

3
√
6− 5

√
2 + 4

√
3 > 0.

• Fix(C̃′
2κ) = {z1 = (1 + i)x, z2 = (1−

√
2)(

√
2z1 + i

√
3z̄1)}.

Bifurcated branch: λ = −4K2

(
a+ 2b(

√
3− 1)

)
x2 + O(x4), where K2 = 8 +

3
√
6− 5

√
2− 4

√
3 > 0.

• Fix(C̃3κ′) = {z1 = (1 + i(1 +
√
2))x, z2 = (1 + i)z1 +

√
3z̄1}.

Bifurcated branch: λ = −4K3

(
a
√
3 + 10b

)
x2 + O(x4), where K3 = −2 +√

6− 2
√
2 + 2

√
3 > 0.

• Fix(D̃3) = {z1 =
(
1 + i 1+

√
6−

√
3

−3+
√
2+

√
3

)
x, z2 = (1 + i)z1 +

√
3z̄1}.

Bifurcated branch: λ = −4K4

(
a
√
3 + 2b

)
x2 + O(x4), where K4 = 6

√
3 +

4
√
6 + 10 + 7

√
2 > 0.

From the formulas for the branches we deduce the direction of branching of the

equilibria, hence their stability along their axes of symmetry. For example the

equilibria with C̃2κ isotropy bifurcate supercriticaly if a + 2b(1 +
√
3) < 0, and

therefore the principle of exchange of stability (between the trivial state and the

bifurcated one) holds against perturbations with the same isotropy.

2. Bifurcation in the planes of symmetry. In each of the planes of symmetry

there are precisely 4 axes of symmetry. This immediately follows from Table 7.2.

For example Fix(〈σ〉) contains one copy of Fix(C̃2κ), one copy of Fix(C̃′
2κ) and two
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copies of Fix(D̃3). Let us choose real coordinates (x, y) in a plane of symmetry P

and write the equations in P

ẋ = λx+ q1(x, y) + h.o.t. (7.6)

ẏ = λy + q2(x, y) + h.o.t. (7.7)

where q1 and q2 are the components of the cubic part in the Taylor expansion of

f restricted to P . If (x(λ), y(λ)) is a branch of equilibria of this system, then the

equation

Q(x, y) = yq1(x, y)− xq2(x, y) = 0 (7.8)

admits an axis of solutions ε(x0, y0) where (x0, y0) represents the leading order in

the Taylor expansion of the solution. If Q is not degenerate the number of such

axes is bounded by the degree of Q which is equal to 4. Now, there are 4 axes of

symmetry in P and each of them corresponds to an axis of solutions of the above

equation. Therefore if Q is not degenerate, there are no other invariant axes for

Equation (7.8). To prove that there are no submaximal branches of solutions in the

planes of symmetry it remains to check the non degeneracy of Q.

Calculations with Maple have shown that in all cases the form Q in non degenerate,

hence there are no generic bifurcations of solutions with submaximal isotropy in

these planes.

Remark. The stability of the bifurcated equilibria in the planes of symmetry

is determined by the sign of the eigenvalues of the Jacobian matrix

(
∂xẋ ∂yẋ

∂xẏ ∂yẏ

)

evaluated at the equilibria. One eigenvalue is radial with leading part −2λ (since

q1 and q2 are cubic), the other one is transverse (see subsection 7.1.1). Calculations

lead to the Table 7.4 for the transverse eigenvalues.

3. Stability in R4.

Table 7.4 shows the leading part of the transverse eigenvalues for the two types

of bifurcated equilibria. Each equilibrium lies at the intersection of three planes.

The four constants (Ci)i=1...4 in Table 7.4 are given by:

C1 = 10 + 6
√
3− 4

√
6− 7

√
2 > 0 C2 = −10 + 6

√
3− 4

√
6 + 7

√
2 > 0

C3 = 2 + 2
√
3− 2

√
2−

√
6 > 0 C4 = −2 + 2

√
3 + 2

√
2−

√
6 > 0.

For those with C̃2κ and C̃′
2κ isotropy, the planes are Fix(κ), Fix(σ) and Fix(κ′).

The equilibria with C̃3κ′ isotropy lie in Fix(ε) and Fix(κ′). The action of ε ”rotates”

Fix(κ′) by an angle 2π/3 around the axis Fix(C̃3κ′), hence a transverse eigenvalue

is double and has eigenvectors in Fix(κ′) and its copies by ε and ε2. Similarly,

equilibria with D̃3 isotropy have a double transverse eigenvalue with eigenvectors

in Fix(σ) and its copies by ε and ε2.

Now, Table 7.4 shows that equilibria with isotropies C̃2κ and C̃′
2κ are never

stable. Indeed their transverse eigenvalues in the planes Fix(σ) and Fix(κ′) have

opposite signs (we assume the generic condition b 6= 0 to be true). Now suppose
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C̃2κ C̃′
2κ C̃3κ′ D̃3

Fix(κ) −32K1bX
2 32K2bX

2 no no

Fix(ε) no no −64K3bX
2 64K4bX

2

Fix(σ) −16C1bX
2 −16C2bX

2 no 16K4bX
2 (2)

Fix(κ′) 16C3bX
2 16C4bX

2 −16K3bX
2 (2) no

Table 7.4: Transverse eigenvalues of bifurcated equilibria in R4.

that the solutions with isotropy D̃3 are supercritical, a condition which is fulfilled

if a
√
3 + 2b < 0. Their transverse eigenvalues have the same sign as b. It follows

that if b < 0 these solutions are stable (while all other equilibria are unstable).

The same argument applies to solutions with isotropy C̃3κ′ : if a
√
3 + 10b < 0

(supercritical branch) and b > 0, these solutions are stable in R4 while all other

equilibria are unstable.

It remains to check the domain P in the theorem. One can easily show that all

bifurcated branches are supercritical if the inequalities a
√
3+2b < 0 and a

√
3+10b <

0 are satisfied. This finishes the proof. �

7.3 Bifurcation diagrams in the case of the representation

χ11

7.3.1 Equivariant structure of the equations on the center manifold

As for representation χ12, we also need to know the form of the asymptotic ex-

pansion of f(·, λ) in equation (7.1). Table 7.3, given by the computation of Molien

series, shows that there are only one equivariant homogeneous polynomial map of

order 3 and four linearly independent equivariant maps of order 5. The bifurcation

diagrams are fully determined, under generic conditions, by the computations of

these terms. However, it turns out that these computations are not anymore suffi-

cient if one wants to study some specific dynamics of equation (7.1) as depicted in

section 7.4.

We first need to choose a system of coordinates in R4. The following lemma is

proved in Appendix A.1.2.

Lemma 7.3.1. For the representation χ11 the diagonalization of the 8-fold sym-

metry matrix ρ has the form

ρ =




exp( iπ4 ) 0 0 0

0 exp(− iπ
4 ) 0 0

0 0 exp(3iπ4 ) 0

0 0 0 exp(−3iπ
4 )


 .

We note (z1, z̄1, z2, z̄2) the complex coordinates in the corresponding basis.

Remark 7.3.1.The diagonal matrix is the same as in Lemma 7.2.1, however the

corresponding bases differ for the two representations χ12, χ11. Indeed, from Propo-
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sitions 7.1.2 and 7.1.3, one can check that the presentation given by biquaternions

of ρ for representation χ12 and χ11 are different.

The bifurcation equations of the center manifold is given by the following the-

orem.

Theorem 7.3.1. For the representation χ11, Equation (7.1) expressed in the co-

ordinates (z1, z̄1, z2, z̄2) admits the following expansion

ż1 = λz1 +Az1
(
|z1|2 + |z2|2

)
+ az1

(
|z1|2 + |z2|2

)2
+ b

(
z41 z̄2 + 4z32 |z1|2 − z32 |z2|2

)

+ c
(
3z̄21z2|z2|2 − z21 z̄

3
2 − 2z̄21 |z1|2z2

)
+ d

(
−5z̄41 z̄2 + z̄52

)
+ h.o.t (7.9)

ż2 = λz2+Az2
(
|z1|2 + |z2|2

)
+az2

(
|z1|2 + |z2|2

)2
+b
(
−z̄1z42 − 4z31 |z2|2 + z31 |z1|2

)

+ c
(
−3z1z̄

2
2 |z1|2 + z̄31z

2
2 + 2z1z̄

2
2 |z2|2

)
+ d

(
5z̄1z̄

4
2 − z̄51

)
+ h.o.t (7.10)

where (A, a, b, c, d) ∈ R5.

Proof. There is one G-equivariant cubic map, hence necessarily equals to E3(z) =

z‖z‖2 with z = (z1, z̄1, z2, z̄2). We postpone to Appendix A.1.2 the computation of

the four quintic equivariant maps. �

7.3.2 Isotropy types and fixed points subspaces

Lemma 7.3.2.The lattice of isotropy types for the representation χ11 is shown in

Figure 7.7. The numbers in parentheses indicate the dimension of corresponding

fixed-point subspaces.

Figure 7.7: The lattice of isotropy types for the representation χ11.

Proof. The only cyclic subgroups of G with a fixed-point subspace of positive

dimension are given in the diagram of Figure 7.7 and determined by applying (6.13)

for χ11 (see Table 6.6). �

The next lemma gives expressions for the fixed-point subspaces of two-element

groups in the (z1, z̄1, z2, z̄2) coordinates, which will be useful for the bifurcation

analysis of (7.1) in the planes of symmetry. There are three types of these planes.

We also express the fixed-point plane for the conjugate κ′′ of κ′ for later convenience.
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Lemma 7.3.3. Fixed-point subspaces associated with the isotropy groups in the

diagram 7.7 have the following equations.

- Fix(σ) = {(z1, z̄1, z2, z̄2) | z2 = i(1 +
√
2)z1};

- Fix(κ) = {(z1, z̄1, z2, z̄2) | z1 = iz̄1 and z2 = −iz̄2};

- Fix(κ′) = {(z1, z̄1, z2, z̄2) | z1 =
√
2
2 (i− 1)z̄1 and z2 =

√
2
2 (i+ 1)z̄2};

- Fix(κ′′) = {(z1, z̄1, z2, z̄2) | z2 = iz1 −
√
2z̄1}.

Proof. Given in Appendix A.2.2. �

The one dimensional fixed point subspaces are the intersections of planes of sym-

metry. This allows to easily obtain expressions for these axes from the expressions

listed in Lemma 7.3.3. For example we can write

Fix(C̃2κ) = {(z1, z2) ∈ C
2 | z1 = iz̄1 and z2 = i(1 +

√
2)z1}.

7.3.3 Bifurcation analysis

(a) In Fix(σ), bifurcation of submaximal

solutions occur for values of coefficients

(b, c, d) in the blue regions II and IV . We

have set x = b+ c and y = d.

(b) In Fix(κ′), bifurcation of submaximal

solutions occur for values of coefficients

(b, c, d) in the regions II and IV . We have

set x = c and y = b+ d.

Figure 7.8: Conditions on coefficients (b, c, d) of existence of submaximal solutions

in the planes Fix(σ) and Fix(κ′′) (in blue).

Theorem 7.3.2. Provided that A < 0, there exists an attracting, flow invariant,

sphere homeomorphic to S3 in R4 and branches of equilibria with maximal isotropy

(as listed in Proposition 7.1.1) are pitchfork and supercritical. The bifurcation dia-

grams in each fixed-point planes are as follows.

(i) Fix(κ) contains two copies of each type of isotropy axes. Moreover,

• No solution with submaximal isotropy bifurcates in Fix(κ).
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• If b < d (resp. b > d) the equilibria with isotropy C̃2κ are stable (resp.

saddles) and C̃′
2κ are saddles (resp. stable).

(ii) Fix(σ) contains one copy of each type of isotropy axes. Moreover,

• If b+ c+ 9d > 0 (resp. b+ c+ 9d < 0) equilibria with isotropy C̃2κ are

stable (resp. saddles) and C̃′
2κ are saddles (resp. stable), see regions I

and IV (resp. II and III) in Figure 7.8(a).

• If d(3d − b − c) < 0 or (b + c − 15d)(b + c + 9d) > 0, no solution with

submaximal isotropy bifurcates in fixed-point plane Fix(σ), see regions I

and III in Figure 7.8(a).

• If d(3d − b − c) > 0 and (b + c − 15d)(b + c + 9d) < 0, regions II and

IV in Figure 7.8(a), solutions with submaximal isotropy bifurcate form

equilibria C̃2κ and C̃′
2κ in Fix(σ). The corresponding phase diagram is

shown in Figure 7.9.

(iii) Fix(κ′) contains one copy of each type of isotropy axes. Moreover,

• If d+ b− 3c < 0 (resp. d+ b− 3c > 0) equilibria with isotropy C̃2κ are

stable (resp. saddles) and C̃′
2κ are saddles (resp. stable), see regions II

and III (resp. I and IV ) in Figure 7.8(b).

• If (b+d)(b+d− c) < 0 or (5d−3c+5b)(d+ b−3c) < 0, no solution with

submaximal isotropy bifurcates in fixed-point plane Fix(κ′), see regions I

and III in Figure 7.8(b).

• If (b+ d)(b+ d− c) > 0 or (5d− 3c+5b)(d+ b− 3c) > 0, regions II and

IV in Figure 7.8(b), solutions with submaximal isotropy bifurcate form

equilibria C̃2κ and C̃′
2κ in fixed-point plane Fix(κ′). The corresponding

phase diagram is given in Figure 7.9.

Proof. The assumption A < 0 ensures that 〈q(ξ), ξ〉 = A‖ξ‖4 < 0 for all ξ 6= 0,

where ξ = (z1, z̄1, z2, z̄2), q is the cubic part in the equations (7.9), (7.10) and 〈 , 〉
denotes the inner product ℜ(z1z̄′1 + z2z̄

′
2) and ‖ ‖ the associated norm. This implies

the existence of the invariant sphere homeomorphic to S3 in R4. We now examine

bifurcation in the invariant planes. We can already note that, since −Id acts non

trivially in R4−{0} for χ12, equilibria have to occur via pitchfork bifurcations. We

proceed as in section 7.2 for the case with representation χ12.

1. Branches with maximal isotropy. Since A < 0 branches of solutions along the

axis of symmetry exist for λ > 0 with leading part λ = −A‖X‖2 where X

belongs to the corresponding axis.

2. Bifurcation and stability in Fix(κ). By Lemma 7.3.3,

Fix(κ) = {(z1, z2) ∈ C
2|z1 = (1 + i)x and z2 = (1− i)y, (x, y) ∈ R

2} .

By Table 7.2 this plane contains two axes with isotropy type C̃2κ and two

axes with isotropy type C̃′
2κ. We can choose as representative Fix(C̃2κ) =
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Figure 7.9: Changes of phase diagram in Fix(σ) and Fix(κ′) as the coefficients

(b, c, d) pass from regions I − II − III in Figure 7.8(a) (for Fix(σ)) and in Figure

7.8(b) (for Fix(κ′)). Σ±
1 and Σ±

2 indicate solutions with submaximal isotropy. The

case II/III corresponds to coefficient values at the boundary between region II

and III ( saddle-node bifurcation of equilibria with submaximal isotropy).
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{y = − (1 +
√
2)x} and Fix(C̃′

2κ) = {y = (1 +
√
2)x}. We change

coordinates so that Fix(C̃2κ) is the real axis. With the following choice:
(
x

y

)
=

[
α−1 β−1

−α−1(1 +
√
2) β−1(

√
2− 1)

](
X

Y

)

where α =
√

4 + 2
√
2 and β =

√
4− 2

√
2, the equations (7.9) and (7.10) read

Ẋ = λX + 2AX(X2 + Y 2) + 4aX(X2 + Y 2)2 + 2bX(−X4 − 2X2Y 2 + 7Y 4)

+ 2cX(X4 − 6X2Y 2 + Y 4) + 2dX(3X4 − 10X2Y 2 − 5Y 4)

Ẏ = λY + 2AY (X2 + Y 2) + 4aY (X2 + Y 2)2 − 2bY (−7X4 + 2X2Y 2 + Y 4)

+ 2cY (X4 − 6X2Y 2 + Y 4)− 2dY (5X4 + 10X2Y 2 − 3Y 4)

and the polynomial map Q defined in Equation (7.8) is Q(X,Y ) = −16(X −
Y )(X + Y )(X2 + Y 2)XY (b − d). The axes Y = 0 and X = 0 correspond to

C̃2κ isotropy type and the axes X = ±Y correspond to C̃′
2κ isotropy type.

Therefore if b 6= d there are no submaximal solutions in Fix(κ).

Stability of the solutions. The transverse eigenvalues are computed from

these equations and are summarized in Table 7.5.

Isotropy type C̃2κ C̃′
2κ

Tranverse eigenvalue 16(b− d)X4 −64(b− d)X4

Table 7.5: Transverse eigenvalues (leading order) of bifurcated equilibria in Fix(κ).

3. Bifurcation and stability in Fix(σ). By Lemma 7.3.3,

Fix(σ) = {(z1, z2) ∈ C
2 | z2 = i(1 +

√
2)z1} .

By Table 7.2 there are two axes of symmetry in this plane: one of type C̃2κ

and one of type C̃′
2κ. From Definition 7.1.1, a conjugate of C̃′

2κ containing σ

is C̃′′
2κ = ρ−2C̃′

2κρ
2 = {Id, σ,−κ,−κ′′}.

Let us write z1 = x + iy. In the (x, y) coordinates, Fix(C̃2κ) = {y = x},
Fix(C̃′′

2κ) = {y = −x}. We change coordinates such that x =
√
2/2(X + Y ),

x =
√
2/2(X − Y ). Hence Y = 0 is the equation of Fix(C̃2κ) and X = 0 is

the equation of Fix(C̃′′
2κ). Then

Ẋ = λX+2E1AX(X2+Y 2)+8E2aX(X2+Y 2)2−4E2bX(X2+Y 2)(X2−3Y 2)

+ 4E2cX(X2 + Y 2)2 + 12E2dX(X4 − 10X2Y 2 + 5Y 4)

Ẏ = λY +2E1AY (X2+Y 2)+8E2aY (X2+Y 2)2−4E2bY (X2+Y 2)(3X2−Y 2)

− 4E2cY (X2 + Y 2)2 − 12E2dX(5X4 − 10X2Y 2 + Y 4)
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where E1 = 2 +
√
2 and E2 = 3 + 2

√
2. For this system we obtain

Q(X,Y ) = 8E2XY
[
(b+ c+ 9d)X4 + 2(b+ c− 15d)X2Y 2 + (b+ c+ 9d)Y 4

]

We denote H(X,Y ) = (b+ c+9d)X4 +2(b+ c− 15d)X2Y 2 + (b+ c+9d)Y 4.

Study of the polynomial map H(X,Y ). We consider H as a polynomial

map of degree two in X2. When b + c − 15d = 0, then H is simplified as

H(X,Y ) = (b+ c+ 9d)(X4 + Y 4), and there is no submaximal bifurcation in

Fix(σ). In the remaining part of this paragraph, we suppose that b+c−15d 6=
0.

• Suppose that d(3d− b− c) > 0 then X2 = ν±Y 2 with

ν± =
−(b+ c− 15d)±

√
48d(3d− b− c)

(b+ c+ 9d)

and ν+ν− = 1, ν++ν− = −2 b+c−15d
b+c+9d . Hence if

b+c−15d
b+c+9d < 0, there are four

axes X = ±√
ν±Y which correspond to bifurcated submaximal solutions

in Fix(σ). If b+c−15d
b+c+9d > 0 no submaximal bifurcation can bifurcate in

Fix(σ).

• Suppose that d = 0 and b + c 6= 0 then H(X,Y ) = (b + c)(X2 + Y 2)2.

This implies that no submaximal bifurcation can bifurcate in Fix(σ) if

d = 0 and b+ c 6= 0.

• If 3d = b + c 6= 0 then H(X,Y ) = 12d(X − Y )2(X + Y )2 and the axes

X = ±Y correspond to bifurcated submaximal solutions in Fix(σ).

• If d(3d − b − c) < 0 then H has no other root than (0, 0). By the

same argument as before, this shows that no submaximal solution can

bifurcate in Fix(σ) in this case.

Stability of the solutions. The transverse eigenvalues for isotropy types

C̃2κ and C̃′
2κ are computed from the above equations and are summarized in

Table 7.6.

Isotropy type C̃2κ C̃′
2κ

Transverse eigenvalue −8(3 + 2
√
2)(b+ c+ 9d)X4 8(3 + 2

√
2)(b+ c+ 9d)X4

Table 7.6: Transverse eigenvalues (leading order) of equilibria with maximal

isotropy in Fix(σ).

We now discuss the stability of the bifurcated submaximal solutions found for

d(3d−b−c) > 0 and (b+c−15d)(b+c+9d) < 0, i.e regions II and IV of Figure

7.8(a). We denote Σ+
1 (resp. Σ−

1 ) the branch of solutions with axisX =
√
ν+Y

(resp. X = −√
ν+Y ) and Σ+

2 (resp. Σ−
2 ) the branch of solutions with axis
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X =
√
ν−Y (resp. X = −√

ν−Y ). When parameters pass from region I to

region II in Figure 7.8(a), pitchfork bifurcation with submaximal isotropy

occurs and two equilibria Σ±
1 emerge from equilibria with isotropy type C̃2κ

and two equilibria Σ±
2 emerge from equilibria with isotropy type C̃′

2κ with

exchange of stability: C̃2κ becomes unstable and C̃′
2κ stable, which implies

that Σ±
1 are stable and Σ±

2 are saddles, see Figure 7.9 (upper right). At the

boundary between region II and III, equilibria Σ+
1 (resp. Σ−

1 ) and Σ+
2 (resp.

Σ−
2 ) collide and form only one equilibrium denoted Σ+

c (resp. Σ−
c ), which

no longer exists in region III: saddle-node bifurcation. These two equilibria

Σ±
c are saddles, see Figure 7.9 (lower left). In region III, equilibria with

isotropy type C̃2κ are now unstable whereas equilibria with isotropy type C̃′
2κ

are stable, see Figure 7.9 (lower right). Same phenomena occur when values

of the parameters pass from region III to region I through region IV in

Figure 7.8(a). We summerize the positive section of the bifurcation diagrams

of Figure 7.9 in Figure 7.10.

Figure 7.10: Positive section of the bifurcation diagrams of Figure 7.9 when param-

eters pass from regions I − II − III. Dashed lines represent unstable branches and

continuous lines represent stable branches. �-P stands for pitchfork bifurcation and

�-SN for saddle-node bifurcation, see text for notations.

4. Bifurcation and stability in Fix(κ′). We consider instead Fix(κ′′). By Lemma

7.3.3,

Fix(κ′′) = {(z1, z̄1, z2, z̄2) | z2 = iz1 −
√
2z̄1} .

By Table 7.2 there are two axes of symmetry in this plane: one of type C̃2κ

and one of type C̃′
2κ. We have already noticed that a conjugate of C̃′

2κ which

contains κ′′ is Ĉ′
2κ = {Id,−σ,−κ, κ′′}. Setting z1 = x+ iy, the equations for

Fix(C̃2κ) and Fix(Ĉ′
2κ) are respectively y = x and y = −x. With the change

of coordinates x =
√
2/2(X + Y ), x =

√
2/2(X − Y ) the equations become:
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Ẋ = λX + 2E1AX(X2 + E2
3Y

2) + 8E2aX(X2 + E2
3Y

2)2

+ 4E2bX(−X2 + 2
√
2E3XY + E2

3Y
2)(X2 + 2

√
2E3XY − E2

3Y
2)

+4E2cX(X2−5E2
3Y

2)(X−E3Y )(X+E3Y )+4E2dX(3X4+10E2
3X

2Y 2−5E4
3Y

4)

Ẏ = λY + 2E1AY (X2 + E2
3Y

2) + 8E2aY (X2 + E2
3Y

2)2

− 4E2bY (−X2 + 2
√
2E3XY + E2

3Y
2)(X2 + 2

√
2E3XY − E2

3Y
2)

−4E2cY (5X2−E2
3Y

2)(X−E3Y )(X+E3Y )+4E2dY (5X4−10E2
3X

2Y 2−3E4
3Y

4)

where E3 = 1−
√
2. Then

Q(X,Y ) = −8E2XY
[
(b+ d− 3c)X4 − 2E2

3(5d+ 5b− 3c)X2Y 2

+E4
3(b+ d− 3c)Y 4

]
.

We set K(X,Y ) = (b+d−3c)X4−2E2
3(5d+5b−3c)X2Y 2+E4

3(b+d−3c)Y 4.

Study of the polynomial map K(X,Y ). We consider K as a polynomial of

degree two in X2. If 5d+5b−3c = 0, then K(X,Y ) = (b+d−3c)(X4+E4
3Y

4),

and no submaximal bifurcation can occur in fixed-point plane Fix(κ′′). We

now suppose that 5d+ 5b− 3c 6= 0.

• If (b+ d)(b+ d− c) > 0 then X2 = ν±Y 2 with

ν± = E2
3

5d− 3c+ 5b± 2
√
6(b+ d)(b+ d− c)

(d+ b− 3c)
Y 2

where ν+ν− = C2 and ν+ + ν− = 2E2
3
5d−3c+5b
d+b−3c . This implies that if

(5d − 3c + 5b)(d + b − 3c) > 0 there are four axes X = ±√
ν±Y which

correspond to bifurcated submaximal solutions in Fix(κ′′). And if (5d−
3c + 5b)(d + b − 3c) < 0, no submaximal solution can bifurcate in this

plane.

• If b+ d = c and c 6= 0, then K(X,Y ) = −2c(X2 + E2
3Y

2)4. There is no

bifurcated submaximal solution in Fix(κ′′).

• Suppose that d + b = 0 and c 6= 0, then K(X,Y ) = −3c(X2 − E2
3Y

2)2

and the axes X = ±E3Y correspond to bifurcated submaximal solutions

in Fix(κ′′).

• Finally, if (b+d)(b+d−c) < 0, then K has no other root than (0, 0). By

the same argument as before, this shows that no submaximal solution

can bifurcate in fixed-point plane Fix(κ′′).

Stability of the solutions. The transverse eigenvalues for isotropy type

C̃2κ and C̃′
2κ are summarized in Table 7.7.

The bifurcation analysis of submaximal solutions is the same as in fixed-point

plane Fix(σ) and presents no difficulty.
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Isotropy type C̃2κ C̃′
2κ

Transverse eigenvalue 8(3 + 2
√
2)(d+ b− 3c)X4 −8(3− 2

√
2)(d+ b− 3c)X4

Table 7.7: Transverse eigenvalues (leading order) of equilibria with maximal

isotropy in Fix(κ′′).

�

Remark 7.3.2. From tables 7.5, 7.6 and 7.7, we deduce that there always exists a

range of parameters such that equilibria with isotropy type C̃2κ and C̃′
2κ are unstable.

We also point out that, to leading order, the sign of transverse eigenvalues for

isotropy type C̃2κ is the opposite of the sign of transverse eigenvalues for isotropy

type C̃′
2κ.

We can choose coordinates to express fixed-point lines Fix(C̃2κ) and Fix(C̃′
2κ)

in R4 as Fix(C̃2κ) = {(x, x,−(1 +
√
2)x, (1 +

√
2)x) | x ∈ R} and Fix(C̃′

2κ) =

{(x,−x, (1+
√
2)x, (1+

√
2)x) | x ∈ R}. We summerize in table 7.8, to leading order,

radial and transverse eigenvalues (denoted tk, k = 1 . . . 3) of bifurcated branches C̃2κ

and C̃′
2κ in R4.

Isotropy type C̃2κ C̃′
2κ

Radial eigenvalue 8(2 +
√
2)Ax2 8(2 + 2

√
2)Ax2

t1 128(3 + 2
√
2)(b− d)x4 −128(3 + 2

√
2)(b− d)x4

t2 −32(3 + 2
√
2)(b+ c+ 9d)x4 32(3 + 2

√
2)(b+ c+ 9d)x4

t3 32(3 + 2
√
2)(b+ d− 3c)x4 −32(3 + 2

√
2)(b+ d− 3c)x4

Table 7.8: Radial and transverse eigenvalues (leading order) of bifurcated branches

in R4.

7.4 Bifurcation of a heteroclinic network in the χ11 case

7.4.1 Existence

We suppose now that the cubic term coefficient A < 0, and by a suitable change

of time scale we can take A = −1. This implies, as shown in Theorem 7.3.2, that

a flow-invariant S3 sphere bifurcates for Equations (7.9) and (7.10). The system

reads:




ż1 = λz1 − z1
(
|z1|2 + |z2|2

)
+ az1

(
|z1|2 + |z2|2

)2
+ b

(
z41 z̄2 + 4z32 |z1|2 − z32 |z2|2

)

+c
(
3z̄21z2|z2|2 − z21 z̄

3
2 − 2z̄21 |z1|2z2

)
+ d

(
−5z̄41 z̄2 + z̄52

)
+ h.o.t.

ż2 = λz2 − z2
(
|z1|2 + |z2|2

)
+ az2

(
|z1|2 + |z2|2

)2
+ b

(
−z̄1z42 − 4z31 |z2|2 + z31 |z1|2

)

+c
(
−3z1z̄

2
2 |z1|2 + z̄31z

2
2 + 2z1z̄

2
2 |z2|2

)
+ d

(
5z̄1z̄

4
2 − z̄51

)
+ h.o.t.

(7.11)

In the sequel we also suppose that coefficients (b, c, d) satisfy the following condi-

tions:
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• C1: b− d > 0,

• C2: d(3d− b− c) < 0 and b+ c+ 9d > 0,

• C3: (b+ d)(b+ d− c) < 0 and b+ d− 3c < 0.

Under these conditions all bifurcated equilibria have maximal isotropy and more-

over, according to remark 7.3.2, none of them is stable. More precisely, condition

C1 implies that saddle-sink heteroclinic orbits connect in the plane Fix(κ) equi-

libria of isotropy type C̃2κ to equilibria with isotropy type C̃′
2κ. Condition C2

implies that saddle-sink heteroclinic orbits connect in the plane Fix(σ) equilibria

with isotropy type C̃′
2κ to equilibria with isotropy type C̃2κ (case I in figure 7.9). In

the same fashion, saddle-sink heteroclinic orbits connect in the plane Fix(κ′′) equi-
libria with isotropy type C̃2κ to equilibria with isotropy type C̃′

2κ when condition

C3 is satisfied.

These heteroclinic orbits are robust against G-equivariant perturbations. Their
G-orbit realizes a heteroclinic network between the G-orbits of equilibria of types

C̃2κ and C̃′
2κ.

Notice that under the above hypotheses the equilibria of type C̃2κ have a one

dimensional unstable manifold, while equilibria of type C̃′
2κ have a two dimensional

unstable manifold which contains the heteroclinic orbits lying in the planes of type

Fix(σ) and Fix(κ′′).
The existence of a heteroclinic network can lead to interesting non trivial dy-

namics characterized by long periods of quasi-static state (trajectory approaches

an equilibrium of the cycle) followed by a fast excursion far from equilibrium and

relaxation to another quasi-static state, the process being repeated in an aperiodic

way [Chossat 2000, Armbruster 1988, Guckenheimer 1987]. This point will be con-

sidered in subsection 7.4.3, but we first simplify the problem by proceeding to a

suitable orbit space reduction.

7.4.2 Quotient network

The heteroclinic network introduced above has 48 nodes (equilibria) and 144 edges

(heteroclinic orbits). Indeed the isotropy subgroups C̃2κ and C̃′
2κ have order 4,

hence the orbits of equilibria with these isotropies have |G|/4 = 24 elements each.

To each node of type C̃2κ are associated 2 ”outgoing” edges and 4 ”incoming” edges.

There are 48 nodes but each edge has two ends, hence the result. We can simplify

this structure by projecting the system onto the quotient space (orbit space) S3/G
where S3 is the flow-invariant sphere. This procedure would project the network

onto a simpler one in which there are only two nodes. Moreover the trajectories

of the equivariant vector field in S3 project on trajectories for a smooth vector

field defined on the orbit space [Chossat 2000]. However this orbit space is not

a manifold (it would be if the action of G were free) and its geometric, stratified

structure is too difficult to compute to make this method useful in our case. We

can however proceed as [Aguiar 2005] by identifying a subgroup H of G with a free
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action on S3 and large enough to allow for a substantial reduction of the number of

equilibria on the 3-dimensional manifold S3/H. This is the aim of the next lemma.

Lemma 7.4.1. The group G0 ≃ SL(2, 3) generated by the elements ρ2 and ε has

24 elements (see table 6.4). It acts fixed-point free on S3 and the two G-orbits of

equilibria on S3 reduce to a pair of equilibria in the manifold S3/G0 for the projected

dynamics.

Proof. In subsection 6.3.1 of the previous chapter, G0 has already been identified

with the 24 element group SL(2, 3), the group of 2 × 2 matrices over the field

Z3. Since none of its elements appears in the isotropy subgroups of G for the

representation χ11, its elements only fix the origin. For the same reason G0 acts

fixed point free on the 24 elements orbits of equilibria and by taking the quotient

by this action these orbits reduce to single equilibria. �

It follows that the heteroclinic network “drops down” to a quotient heteroclinic

network between the two equilibria which we denote by A (C̃2κ type) and B (C̃′
2κ

type) in S3/G0. There are two connections from A to B and four connections from

B to A, as it can be seen in figure 7.11. This projected heteroclinic network can be

seen as the union of eight heteroclinic cycles which however belong to two symmetry

classes only: the cycles 1 → 5, 2 → 5, 1 → 6, 2 → 6 are exchanged by reflection

symmetries (projected on S3/G0), same thing for the cycles 3 → 5, 4 → 5, 3 → 6,

4 → 6. We call ν-cycle (resp. µ-cycle) the cycle 1 → 5 (resp. 4 → 5). We denote

νA, νB (resp. µA, µB) the eigenvalues at A and B along the connection 1− 2 (resp.

3− 4).

7.4.3 Asymptotic stability

The asymptotic stability of heteroclinic cycles has been studied by several authors

[Krupa 1992, Krupa 1995, Ashwin 1999, Krupa 2004] and sufficient conditions on

the ratio of eigenvalues ”along” the cycle have been provided to ensure this property

generically. Roughly speaking, the attractiveness property of a heteroclinic cycle is

determined by the relative strength of the contracting and expanding eigenvalues

along the cycle, computed at the equilibria in the cycle. If at an equilibrium in

the cycle the unstable manifold has dimension > 1 and does not realize a saddle-

sink connection to other equilibria in some fixed-point subspace, the heteroclinic

cycle can not be asymptotically stable in the usual sense, that is asymptotically

attracting for initial conditions in an open tubular neighborhood of the cycle. As

shown by Krupa and Melbourne in [Krupa 1992], it can still have a weaker attrac-

tiveness property which they called essential stability: under certain conditions on

the eigenvalues the heteroclinic cycle is attracting for initial conditions belonging

to the complement of a cuspidal region in a tubular neighborhood of the cycle.

A heteroclinic network is a union of cycles. As observed by Kirk and Silber

[Kirk 1994] those cycles can not be simultaneously essentially stable but conditions

can be derived to determine which one is. In this subsection we derive sufficient

conditions for the essential stability of the two cycles in our heteroclinic network

projected on the orbit space S3/G0.
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Figure 7.11: Representation of the quotient heteroclinic network between equilibria

A (C̃2κ type) and B (C̃′
2κ type) in S3/G0. Heteroclinic connections denoted 1, 2,

which link B to A, result of the quotient in S3/G0 of the heteroclinic connections

which connect C̃′′
2κ to C̃2κ in Fix(σ). Heteroclinic connections denoted 3, 4, which

link B to A, result of the quotient in S3/G0 of the heteroclinic connections which

connect Ĉ2κ to C̃′
2κ in Fix(κ′′). Heteroclinic connections denoted 5, 6, which link A

to B, result of the quotient in S3/G0 of the heteroclinic connections which connect

C̃2κ to C̃′
2κ in Fix(κ).

First we simplify notation by denoting (λA,−νA,−µA) the eigenvalues at equi-

librium A and (−λB, νB, µB) the eigenvalues at equilibrium B. We consider:

λe > 0, νe > 0, µe > 0 e = A,B

The hypotheses of [Krupa 1992] do not apply but we will proceed in the same

fashion as in [Kirk 1994]. In the following, we suppose without loss of generality

that:

νB > µB (7.12)

We define:

ρµ =
µAλB
λAµB

, σµ =
µA
λA

[
νB
µB

− νA
µA

]
, ρν =

νAλB
λAνB

, σν =
νA
λA

[
µB
νB

− µA
νA

]

Theorem 7.4.1. (i) Suppose that ρµ > 1 and ρν > 1.

1. If σν < 0 and σµ > 0, almost all orbits passing through a tubular neighborhood

of the µ-cycle escape this neighborhood in finite time, exceptions being those

orbits that lie in the stable manifolds of A or B. The ν-cycle is essentially

asymptotically stable: it attracts almost all trajectories starting in a small

enough tubular neighborhood of it, the only possible exceptions being those

orbits that pass through a cuspoidal region abutting the heteroclinic connection

from A to B.
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2. If σν > 0 and σµ < 0, almost all orbits passing through a tubular neighborhood

of the ν-cycle escape this neighborhood in finite time, exceptions being those

orbits that lie in the stable manifolds of A or B. The µ-cycle is essentially

asymptotically stable: it attracts almost all trajectories starting in a small

enough tubular neighborhood of it, the only possible exceptions being those

orbits that pass through a cuspoidal region abutting the heteroclinic connection

from A to B.

(ii) Suppose that 0 < ρµ < 1 (resp. 0 < ρν < 1). Then the µ-cycle (resp. ν-cycle)

repels almost all orbits and the attractivity properties of the ν-cycle (esp. µ-cycle)

are determined by σν (resp. σµ) as above.

Proof.

Figure 7.12: First return map in S3.

We apply the method for stability analysis of heteroclinic cycles as exposed

in [Krupa 1992] and [Krupa 1995], to which we refer for justifications. We first

linearize the flow in neighborhoods of A and B by a C1 and equivariant change of

variables. This requires that a finite set of nonresonance conditions between the

eigenvalues at A and B be satisfied. Such conditions are generic and can be verified

numerically in our case. In fact they can also be removed as shown for example in

[Field 1991]. We can further choose local coordinates such that the local stable and

unstable manifolds of A and B are either the horizontal axis or the vertical plane.

Using Euclidean coordinates (v, w) in the vertical plane and u for the horizontal

axis, we have for A:

W u
loc(A) = {(u, 0, 0) | u ∈ R} W s

loc(A) = {(0, v, w) | (v, w) ∈ R
2}
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and for B:

W s
loc(B) = {(u, 0, 0) | u ∈ R} W u

loc(B) = {(0, v, w) | (v, w) ∈ R
2}.

The linearized vector field about A is

u̇ = λAu

v̇ = −νAv
ẇ = −µAw

and about B:
u̇ = −λBu
v̇ = νBv

ẇ = µBw.

We now define rectangular cross sections in neighborhoods of e, e = A,B (see figure

7.12):

Re = {(u, v, w) | u = 1, −ve ≤ v ≤ ve, −we ≤ w ≤ we},
Rµ

e = {(u, v, w) | w = 1, −ue ≤ u ≤ ue, −ve ≤ v ≤ ve},
Rν

e = {(u, v, w) | v = 1, −ue ≤ u ≤ ue, −we ≤ w ≤ we}.

We can then build two first return maps Ψµ : Rµ
A → Rµ

A and Ψν : Rν
A → Rν

A as

follows:

Ψµ = Ψµ
BA ◦ Φµ

B ◦ΨAB ◦ Φµ
A and Ψν = Ψν

BA ◦ Φν
B ◦ΨAB ◦ Φν

A where

Φµ
A : Rµ

A → RA Φµ
B : RB → Rµ

B Φν
A : Rν

A → RA Φν
B : RB → Rν

B

ΨAB : RA → RB Ψµ
BA : Rµ

B → Rµ
A Ψν

BA : Rν
B → Rν

A.

The local maps Φµ
A and Φν

A are obtained by integrating the equations for the

flow linearized about A:

Φµ
A(u, v, 1) = (1, vu

νA
λA , u

µA
λA ) with u 6= 0,

Φν
A(u, 1, w) = (1, u

νA
λA , wu

µA
λA ) with u 6= 0.

Same thing for the maps Φµ
B and Φν

B:

Φµ
B(1, v, w) = (w

λB
µB , vw

− νB
µB , 1) with w

νB
µB > v ≥ 0,

Φν
B(1, v, w) = (v

λB
νB , 1, wv

−µB
νB ) with v > w

νB
µB ≥ 0

where Cµ
B = {(v, w) ∈ RB | w

νB
µB > v ≥ 0} and Cν

B = {(v, w) ∈ RB | v > w
νB
µB ≥ 0}

are complementary domains in RB of the maps Φµ
B and Φν

B. Note that the point

at which a trajectory intersects RB determines whether the trajectory leaves the

vicinity of B in the direction of A through Rµ
B or Rν

B. Condition (7.12) implies

that Cµ
B is a cuspoidal region of Rµ

B.
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By exploiting the equivariance of the vector field, we obtain for the “global”

maps ΨAB, Ψ
µ
BA : and Ψν

BA:

ΨAB(1, v, w) = (1, αABv, βABw) + h.o.t

Ψµ
BA(u, v, 1) = (αµ

BAu, β
µ
BAv, 1) + h.o.t

Ψν
BA(u, 1, w) = (αν

BAu, 1, β
ν
BAw) + h.o.t

where the α’s and β’s are real coefficients.

• Study of the µ-cycle. We consider trajectories that pass through Rµ
A and then

travel through a tubular neighborhood of the µ-cycle before returning to Rµ
A.

The behaviour of these trajectories is modelled by the return map Ψµ and we

find to leading order:

Ψµ(u, v, 1) = (c1u
ρµ , c2vu

−σµ , 1) with 0 ≤ v < c3u
σµ .

The domain of the return map is then defined as Dµ
A = {(u, v) ∈ Rµ

A | 0 ≤
v < c3u

σµ}. A sufficient condition for Dµ
A to be mapped into itself is σµ < 0.

This follows from the observation that the image under Ψµ of the bounding

surface defined by the equation v = c3u
σµ is the boundary defined by U = c4,

where c4 > 0 is some constant. Finally, if ρµ > 1 and σµ < 0 then Ψµ is a

contraction on Dµ
A.

• Study of the ν-cycle. We consider trajectories that pass through Rν
A and then

travel once through a tubular neighborhood of the ν-cycle before returning to

Rν
A. The behaviour of these trajectories is modelled by the return map Ψν

and we find to leading order:

Ψν(u, 1, w) = (c4u
ρν , 1, c5wu

−σν , 1) with 0 ≤ w < c6u
σν .

The study is analogous to that for the µ-cycle. If ρν > 1 and σν < 0 then the

ν-cycle attracts all trajectories that cross Rν
A sufficiently close to the origin.

The main difference between the results obtained for the µ-cycle and the ν-cycle

comes from the condition (7.12). If ρν > 1 and σν < 0 the ν-cycle attracts almost

all trajectories that lie near the heteroclinic connection from A to B, while, if ρµ > 1

and σµ < 0 the µ-cycle attracts just trajectories in a cuspoidal region emananting

from the heteroclinic connection.

It is not possible that both σµ and σν be simultaneously positive:

σµ = − νB
µB

σν .

Note that if σµ > 0 when ρν , ρµ > 1, then almost all trajectories near the µ-cycle

eventually leave it in the direction of the ν-cycle. However, since σν < 0 in this

case, the trajectories that switch to the ν-cycle can not at a later time switch back

to the µ-cycle.

�
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7.4.4 Computation of the stability conditions

In principle the stability conditions stated in Theorem 7.4.1 are easy to compute. In

our case however there is a difficulty which comes from the fact that for the system

(7.11), which is truncated at order 5, the expanding and contracting eigenvalues

along a given connection have exactly the same magnitude (see table 7.8). It is

interesting to observe that this follows from a property of reversibility of the vector

field on the invariant sphere, as the next lemma shows (proof of the lemma is

straightforward).

Lemma 7.4.2. Let s be the transformation in R4 defined by s(z1, z̄1, z2, z̄2) =

(z2, z̄2, z1, z̄1). Let us rewrite X = (z1, z̄1, z2, z̄2) and equation (7.11) in the form

Ẋ = (λ− ‖X‖2 + b‖X‖4)X + Ec,d(X) (7.13)

with Ec,d(X) = cE5,3(X) + dE5,4(X).

Then Ec,d(sX) = −sEc,d(X) for all X. Moreover, Fix(C̃′
2κ) = sFix(C̃2κ).

Remark 7.4.1.We recall that E5,3 (resp. E5,4) is the quintic equivariant map in

factor of c (resp. d) in equations (7.9) and (7.10) of Theorem 7.3.1, see Appendix

A.1.2 for the computations.

Now let X = rU , U ∈ S3. The system (7.11) decouples in a radial part and

tangential part:

ṙ = (λ− r2 + br4)r + r5〈Ec,d(U), U〉 (7.14)

U̇ = r4[Ec,d(U)− 〈Ec,d(U), U〉U ] = r4H(U). (7.15)

By lemma 7.4.2 the tangential part is a reversible vector field. Let X0 = r0U0 be an

equilibrium on Fix(C̃2κ) and X
′
0 = sX0 = r0sU0. Then X ′

0 is also an equilibrium,

moreover DH(sU0) = −sDH(U0)s, which implies that the transverse eigenvalues

at X ′
0 are exactly opposite to the transverse eigenvalues at X0. This property is

conserved by projection of the system on the orbit space S3/G0.

It is therefore necessary to consider the 7th order expansion of the system in

order to remove this degeneracy. There are 12 equivariant terms of order 7 (see table

7.3). We have checked that some of these terms are not reversible, for example the

following vector field which we note E7:

ż1 = z̄71 + 7z̄31 z̄
4
2

ż2 = z̄72 + 7z̄32 z̄
4
1

Numerical simulations have been carried out with Matlab by introducing the

term E7 in the system:

Ẋ = (λ− ‖X‖2 + b‖X‖4)X + Ec,d(X) + eE7(X) (7.16)

We give in tables 7.9 and 7.10, to leading order, the transverse eigenvalues of

bifurcated branches in R4 depending upon the parameter e of equation 7.16. These

transverse eigenvalues allow us to compute the stability conditions of Theorem 7.4.1.
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For the numerical simulations, the coefficient values are λ = 0.1, a = 0, b = 0.6,

c = 1.2 d = 0.55. We set e = −1 and we obtain:

λA = 0.0011 νA = 0.0745 µA = 0.0266

λB = 0.0023 νB = 0.0585 µB = 0.0215

which implies that:

ρµ = 2.6336 > 1 σµ = −1.8221 < 0 ρν = 2.7060 > 1 σν = 0.6686 > 0

Then we are in the second case of Theorem 7.4.1. Figure 7.13 shows one hour runs

with an initial condition close to an equilibrium with isotropy C̃2κ. For the value

e = −1 the solution converges to a heteroclinic cycle of type µ-cycle, while for e = 3

none of the heteroclinic cycles are stable.

Isotropy type C̃2κ

t1(e) 128(3 + 2
√
2)(b− d+ (2 +

√
2)ex2)x4

t2(e) −32(3 + 2
√
2)(b+ c+ 9d+ 24(2 +

√
2)ex2)x4

t3(e) 32(3 + 2
√
2)(b+ d− 3c− 10(2 +

√
2)ex2)x4

Table 7.9: Transverse eigenvalues (leading order) of bifurcated branch C̃2κ in R4

depending upon the parameter e of equation 7.16.

Isotropy type C̃′
2κ

t1(e) −128(3 + 2
√
2)(b− d− (2 +

√
2)ex2)x4

t2(e) 32(3 + 2
√
2)(b+ c+ 9d− 24(2 +

√
2)ex2)x4

t3(e) −32(3 + 2
√
2)(b+ d− 3c+ 10(2 +

√
2)ex2)x4

Table 7.10: Transverse eigenvalues (leading order) of bifurcated branch C̃′
2κ in R4

depending upon the parameter e of equation 7.16.

7.5 Conclusion

In this chapter we have completed the bifurcation analysis of periodic patterns,

started in chapter 6, for neural field equations defined on the Poincaré disk D.

These equations are assumed invariant under the action of the lattice group Γ of

U(1, 1) whose fundamental domain is the regular octagon. We have computed the

bifurcation diagrams for the three irreducible representations of dimension four.

We have proved that for two of the four-dimensional irreducible representations,

generically, there always exist stable equilibria with a given isotropy type. For the

third representation we have presented bifurcation diagrams in fixed-point planes
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(a) e = −1. (b) e = 3.

Figure 7.13: Projection on the plane (x1, y1) of a trajectory of (7.16) with initial

condition near an equilibrium of type C̃2κ. Coefficient values in both cases are

λ = 0.1, a = 0, b = 0.6, c = 1.2 d = 0.55.

and also shown that: (i) bifurcation of submaximal solutions can be generic, (ii) bi-

furcation of a heteroclinic network connecting the equilibria with maximal isotropy

type can also occur generically. In the final section, a stability analysis of this

heteroclinic network was presented.

The existence of the heteroclinic network raises many interesting questions from

the neuroscience point of view. Metastability in neuronal network has been observed

in the brains of anaesthetized animals where the cortex seems to show an intrin-

sic pattern of activity that evolves over time by switching among a specific set of

states [Kenet 2003, Ringach 2003, Goldberg 2004]. It has also been shown that

metastable states play a key role in the execution of cognitive functions. Indeed,

experimental and modeling studies suggest that most of these functions are the

result of transient activity of large-scale brain networks in the presence of noise

[Rabinovich 2008, Rabinovich 2010]. In our case the spontaneous activity repre-

sented by the heteroclinic network corresponds to switches between multiple states

where each state is a specific textural feature. Despite the fact that it seems un-

realistic to investigate experimentally the predicted behaviour, the presence of the

heteroclinic network is nonetheless an interesting mechanism which should be taken

into account for the validation of our texture model.
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Ermentrout and Cowan [Ermentrout 1979] were first to propose a mathematical

theory of visual patterns seen during hallucinations. Hallucinations can occur in a

wide variety of situations such as with migraine headaches, epilepsy or as the result

of external stimulus by drugs such as LSD [Klüver 1966, Oster 1970]. In their

model, the visual cortex is idealized by the Euclidean plane and it is assumed that

the effect of drugs is to cause instabilities, by spontaneous symmetry- breaking, in

the neural activity and these instabilities result in the visual patterns experienced
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by the subjects. This model is simple as that it assumes that neurons in the visual

cortex are not sensitive to features such as orientation, texture, color etc.

However we have seen in the first chapter of this Thesis that neurons in the pri-

mary visual cortex respond preferentially to visual stimuli that have a specific ori-

entation. Subgroups of inhibitory and excitatory neurons are tuned to a particular

orientation of an external stimulus; they form what we have called a hypercolumn.

Two cortical circuits have been characterised which further manifest the functional

structure of V1. A local circuit, operating at sub-hypercolumn dimensions, consists

of a mixture of intra-cortical excitation and inhibition and a lateral circuit, oper-

ating between hypercolumns, anisotropically connects cells with similar functional

properties: cells in different hypercolumns tend to connect in directions parallel

to their common preferred orientation (see figures 1.11 and 3.4). Based on these

anatomical structures, Bressloff et al. [Bressloff 2001b, Bressloff 2002b] took into ac-

count the orientation of cortical neurons and abstracted the visual cortex as R2×S1.

Their analysis recovered thin line hallucinations such as cobwebs and honeycombs.

However, the anisotropic nature of cortical long-range connections can be weak upon

species. For macaques (see figure 3.4) anisotropy tends to be weaker than for tree

shrews (see figure 1.11). Following this idea, Golubitsky et al. [Golubitsky 2003]

revisited the model of Bressloff et al. [Bressloff 2001b, Bressloff 2002b] by determin-

ing solutions obtained from symmetry-breaking bifurcations in the case of isotropic

lateral coupling and then studying how these solutions may change when anisotropy

is introduced as a forced symmetry-breaking parameter.

Our aim is now at (i) analyzing the spontaneous bifurcation of patterns for

our spatialized model of the primary visual cortex using structure tensor formalism

introduced in chapter 3 and (ii) at comparing our results with those found by

Bressloff and Golubitsky. The visual cortex is now abstracted as R2 × SPD(2,R),

where the feature space SPD(2,R) is the set of all structure tensors. This introduces

an important complication compared to the ring model of orientation preferences

for the bifurcation analysis. We shall see in section 8.1 that two different approaches

can be followed in order to overcome this difficulty. One is to remark that in a ”real”

cortex an upper bound must exist to the norm of effectively detectable structure

tensors, and therefore consider a suitably chosen bounded domain in SPD(2,R)

instead of SPD(2,R) itself. The other is to take advantage of the previous analysis

presented in chapter 6 where the bifurcation of periodic patterns in SPD(2,R)

was investigated. Periodic means here that the patterns are invariant under the

action of a discrete subgroup H of GL(2,R) which tiles the space SPD(2,R) with

a compact fundamental domain (the octagonal group in our case). This method

allows to reduce the domain to the quotient space SPD(2,R)/H, which is a compact

manifold. These two approaches are investigated respectively in sections 8.2 and

8.3.

8.1 The continuum models of V1 and their symmetries
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8.1.1 The model equations

We now recall the model that we have introduced in chapter 3. The average mem-

brane potential of a population of neurons at a cortical position r ∈ R2 at time t

is characterized by the real valued function V (r, T , t), where r labels a point in the

visual cortex and T is a structure tensor. All possible textures are represented at

every position: r and T are independent variables. The average membrane potential

evolves according to equation (3.5):

∂V (r, T , t)
∂t

= −V (r, T , t) +
∫

R2

∫

SPD(2,R)
W (r, T | r′, T ′)S(µV (r′, T ′, t))dT ′dr′.

(8.1)

Note that we put no external input in this equation, meaning that we look at

spontaneous pattern formation. The nonlinearity S is a smooth sigmoidal function

which saturates at ±∞ with S(0) = 0. In order to fix ideas we work with the

following sigmoidal function:

S(x) =
1

1 + e−x+T
− 1

1 + eT
, (8.2)

where T is a positive threshold. The parameter µ describes the stiffness of the

sigmoid.

With this nonlinearity, V = 0 is always a solution.

The associated weight distribution is decomposed into local (within the hyper-

columns) and long-range parts according to equation (3.6):

W (r, T | r′, T ′) =Wloc(dSPD(2,R)(T , T ′))δr,r′ +β(1− δr,r′)W ε
lat(r, T | r′, T ′). (8.3)

Microelectrode recordings suggest that β is small and therefore that the lateral

connections modulate rather than drive the cortical activity. The sign of β will

determine whether the lateral connections have a net excitatory or inhibitory effect.

The rules of long-range connections are given by equation (3.7):

W ε
lat(r, T | r′, T ′) = J

(√
(r− r′)T(I2 + εT )(r− r′)

)
K
(
d
(
T , T ′)) (8.4)

The factors J and K have been explained in details in subsection 3.1.4 of chapter

3. We recall that the parameter ε controls the degree of anisotropy.

8.1.2 Symmetries of the model

The Euclidean group E(2) is crucial to the analyses in [Bressloff 2001b,

Bressloff 2001a] where it acts on R2 × S1 by the so-called “shift-twist” represen-

tation due to the anisotropic nature of the lateral connections. In our model, the

action of E(2) on R2 × SPD(2,R) that preserves the structure of the long-range

connections in equation (8.4) is given by

a · (r, T ) = (r+ a, T ) a ∈ R
2

Rθ · (r, T ) =
(
Rθr,RθT RT

θ

)
θ ∈ S1

Mκ · (r, T ) = (Mκr,MκT MT
κ ) (8.5)
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where Mκ is the matrix representation of the reflection κ : (r1, r2) → (r1,−r2) and
Rθ is a matrix rotation of angle θ.

The corresponding group action on a function V : R2×SPD(2,R) → R is given

by:

γ · V (r, T ) = V
(
γ−1 · (r, T )

)

for all γ ∈ E(2) and the action on the weight distribution W (r, T | r′, T ′) is

γ ·W (r, T | r′, T ′) =W
(
γ−1 · (r, T ) | γ−1 · (r′, T ′)

)
.

It follows that W given by (8.3) and (8.4) is invariant under the action of the

Euclidean group defined by equations (8.5). As a consequence, equation (8.1) is

equivariant with respect to the symmetry group.

In the limit ε = 0, the lateral connectivity function defined in equation (8.4) is

called isotropic and reduces to

W 0
lat(r, T | r′, T ′) = J

(
‖r− r′‖

)
K
(
d
(
T , T ′)) . (8.6)

In that particular case, in addition to Euclidean symmetry, equation (8.1) admits

a GL(2,R)-symmetry,. The two actions decouple and are given by:

γ · (r, T ) = (γr, T ) γ ∈ E(2)

M · (r, T ) = (r,MTMT) M ∈ GL(2,R).
(8.7)

8.1.3 The Poincaré disk model

The feature space SPD(2,R) of structure tensors is the set of 2 × 2 symmetric

positive definite matrices. We have already seen that SPD(2,R) ≃ R+
∗ × D in

chapter 3 with the coordinates T = (∆, z) ∈ R+
∗ × D for a given structure tensor

T ∈ SPD(2,R). For mathematical convenience, we cancel out the dependence on

∆ ∈ R+
∗ as it would not play a significant role in the analysis that follows.

Hypothesis 8.1.1.Equation (8.1) is posed on R2 × D from now on.

The group of isometries of D is the unitary group U(1, 1), see subsection 3.2.3

of chapter 3 for definitions.

One can transcribe the group actions of E(2) and U(1, 1) defined in equations

(8.5) and (8.7) respectively on the space R2 × D. In the anisotropic case we have:

a · (r, z) = (r+ a, z) a ∈ R
2

Rθ · (r, z) =
(
Rθr, e

2iθz
)

θ ∈ S1

Mκ · (r, z) = (κr, z̄). (8.8)

and in the isotropic case (ε = 0):

γ · (r, z) = (γr, z) γ ∈ E(2)

g · (r, z) = (r, g · z) g ∈ U(1, 1) (8.9)
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where the action of g ∈ U(1, 1) on z ∈ D is defined in equation (3.16).

If we now write equation (8.1) as an abstract problem of the form:

dV (t)

dt
= F(V (t), µ, β, ε) = 0 (8.10)

then we can summarize the previous discussion as follows:

1. for all (µ, β, ε), F(·, µ, β, ε) is equivariant with respect to E(2) with shift-twist

action;

2. F(·, µ, β, 0) is equivariant with respect to E(2)×U(1, 1) (isotropic case);

3. F(·, µ, 0, 0) is equivariant with respect to U(1, 1) (no lateral connections).

8.1.4 Two complementary approaches

We are interested in the bifurcations from the trivial state V = 0 of equation

(8.10) where µ is the bifurcation parameter. Previous works like [Ermentrout 1979]

and [Golubitsky 2003] have assumed that the pattern arising in the V1 plane was

doubly periodic, ocuring either on a square or hexagonal lattice. This assumption

allows to reduce the bifurcation problem to a finite dimensional center manifold

and we shall keep this framework in the present chapter. We have however an

additional complication, of similar type, due to the fact that the feature space of

structure tensors, which we assimilate to the Poincaré disc D, is unbounded and

has non compact isometry group U(1, 1), which puts a strong obstruction to apply

the standard tools of bifurcation theory. To overcome this difficulty we can take

two different approaches which we now define.

Problem 8.1.1. Observe that natural images can only produce a bounded set of

structure tensors with determinant equal to one. This suggests to restrict ourselves

to a bounded domain of the Poincaré disc for the feature space. It is convenient

to choose a domain which still preserves the rotational invariance of (8.8). We

therefore choose a disc Ω ⊂ D of radius rω such that rω = tanh(ω/2) < 1.

As suggested by microelectrode recordings, β is small and therefore the lateral con-

nections modulate rather than drive the cortical activity. This suggests to begin

to study the case of no lateral coupling: β = 0 (model of a single hypercolumn

defined on Ω) and then use perturbation analysis when anisotropic coupling is

switched on: 0 < β ≪ 1. Problem 8.1.1 is closely linked to the analysis of

[Bressloff 2001b, Bressloff 2002b] for the ring model (the feature space is S1) and

[Bressloff 2003b, Bressloff 2003a] for the spherical model (the feature space is the

sphere S2 which accounts for orientations and spatial frequency), where pertur-

bation theory is used to calculate the eigenvalues and eigenfunctions of the ”spa-

tialized” cortical dynamics. Our aim is to use a similar approach in the case of a

bounded domain Ω, with lateral coupling given by equations (8.3) and (8.4). This

problem is treated in section 8.2.

Problem 8.1.2. We consider again the full feature space D and we rely on the

following remark. The anisotropy in lateral connections can be small depending on
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the animal studied [Lund 2003] and in that case we can assume ε ≈ 0. This suggests

to study first the isotropic case: ε = 0, which has symmetry group E(2)×U(1, 1), for

patterns which are periodic both spatially in R2 and in the feature space D. Then we

break the symmetry by switching on 0 < ε ≪ 1, so that it is reduced to E(2). This

forced symmetry breaking is treated as a perturbation of the isotropic case. Section

8.3 is devoted to this problem. This approach was initiated by Golubitsky et al

in [Golubitsky 2003] for the ring model. There is however an important difference:

in [Golubitsky 2003], the symmetry group for one (isolated) hypercolumn is S1

and it does not take account of the reflections which should naturally occur if the

connectivity function Wloc did only depend on the distance between angles. In

their case the ”isotropic” symmetry group is E(2)⋉ S1. However if reflections are

included in the symmetries, the group becomes the direct product E(2)×O(2). In

our case, because we use an explicit expression for Wloc, the ”isotropic” symmetry

group is E(2)×U(1, 1).

8.2 Problem 1: weak anisotropic coupling on a bounded

structure tensor space

8.2.1 Eigenfunctions of the Laplace-Beltrami operator on Ω

This section is devoted to the study of the eigenfunctions of the Laplace-Beltrami

operator on Ω which will be needed for the spectral analysis of the following parts.

We impose Dirichlet conditions on the boundary of the disk. From a physic point

of view, this problem is analog to finding the modes of a vibrating membrane in

hyperbolic geometry. The Laplace-Beltrami operator LD on D in hyperbolic polar

coordinates (τ, θ) with z = tanh(τ/2)eiθ is defined by:

LD =
∂2

∂τ2
+ coth(τ)

∂

∂τ
+ sinh(τ)−2 ∂

2

∂θ2
. (8.11)

We are looking for eigensolutions of
{
−LDV (z) = λV (z), ∀z ∈ Ω, λ ∈ R

+

V (z) = 0 ∀z ∈ ∂Ω
(8.12)

which can be written Vm(z) = eimθUm(cosh(τ)). Replacing the expression of Vm(z)

into equation (8.12) and setting y = cosh(τ) yields

(y2 − 1)Üm(y) + 2yU̇m(y) +

(
λ− m2

y2 − 1

)
Um(y) = 0.

We set −λ = l(l + 1) with l = −1
2 + iρ such that λ = ρ2 + 1

4 . The Legendre

functions Pm
l of the first kind and Qm

l of the second kind form a basis of the

space of solutions. Solutions Qm
l are not physically relevent as they blow up at

τ = 0. We write Vm(z) = eimθPm
l (cosh(τ)) for the other solutions. Finally the

solutions of (8.12) which further satisfy Vm(z) = 0 for all z ∈ ∂Ω can be expressed
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as Vm(z) = eimθPm
l (cosh(τ)) with Pm

l (cosh(ω)) = 0. Then for each m ∈ Z , one

has to impose that lm,n = −1
2 + iλm,n, where λm,n is the nth root of the function

λ→ Pm
− 1

2
+iλ

(cosh(ω)). As a consequence, each solution of (8.12) V can be written:

V (z) =
∑

m∈Z

∑

n∈N∗

am,nPm
lm,n

(cosh(τ))eimθ ∀z ∈ Ω and am,n ∈ C

=
+∞∑

n=1

A0,nPlm,n(cosh(τ)) +
+∞∑

m=1

+∞∑

n=1

Am,nPm
lm,n

(cosh(τ)) cos(mθ)

+
+∞∑

m=1

+∞∑

n=1

Bm,nPm
lm,n

(cosh(τ)) sin(mθ)

where A0,n, Am,n and Bm,n are real.

From the properties [Erdelyi 1985]:

Pm
l = Pm

−l−1 and Pm
l =

Γ(l +m+ 1)

Γ(l −m+ 1)
P−m
l ,

where Γ is the Gamma function, we can deduce that:

Am,n = am,n +
Γ(lm,n −m+ 1)

Γ(lm,n +m+ 1)
a−m,n

Bm,n = i

(
am,n − Γ(lm,n −m+ 1)

Γ(lm,n +m+ 1)
a−m,n

)
.

Proposition 8.2.1.For fixed m and ω, the function λ → Pm
− 1

2
+iλ

(cosh(ω)) pos-

sesses only isolated simple zeros which satisfy:

0 < λm,1 < λm,2 < · · · < λm,n < . . . with lim
n→+∞

λm,n = +∞.

If we normalize associated Legendre functions such that

Ym
n (τ)

def
= Ym

lm,n
(τ) =

Pm
−1/2+iρm,n

(cosh τ)

pm,n

with p2m,n
def
=

∫ ω

0

[
Pm
−1/2+iρm,n

(cosh τ)
]2

sinh τdτ

then

< Ym
n ,Ym

n′ >=

∫ ω

0
Ym
n (τ)Ym

n′ (τ) sinh τdτ = δn,n′ .

Proof.

Multiplying equation (8.12) by sinh(τ) we can rewrite the eigenvalue problem

as a Sturm Liouville problem:

d

dτ

(
sinh(τ)

dV

dτ
(τ)

)
− m2

sinh(τ)
V (τ) = −λ sinh(τ)V (τ), ∀τ ∈]0, ω] (8.13)
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with the boundary conditions: V (ω) = 0 and lim
τ→0

V (τ) < +∞. We look for eigen-

values of the form λ = ρ2 + 1
4 .

We first assume thatm = 0 such that equation (8.13) is now defined on [0, ω] and

is a regular Sturm Liouville problem. Sturm Liouville theorem for regular problem

[Zettl 2005, Chavel 1984] ensures that the eigenvalues of (8.13) are non-negative,

real and simple such that:

0 < λ0,1 < λ0,2 < · · · < λ0,n < . . . with lim
n→+∞

λ0,n = +∞.

On the other hand, equation (8.13) is a second order differential equation which ad-

mits two real linearily independant solutions τ → Pν(cosh(τ)) and τ → Qν(cosh(τ))

with ν = −1
2 + iρ. As we impose the boundary condition lim

τ→0
V (τ) < +∞, we

only keep the solution τ → Pν(cosh(τ)). The other boundary condition imposes

that P− 1

2
+iρ(cosh(ω)) = 0, and if ρ0,n is the nth zero of the analytic function

ρ → P− 1

2
+iρ(cosh(ω)) we have λ0,n = ρ20,n + 1

4 . Finally (λ0,n,P− 1

2
+iρ0,n

(cosh(·)) is

the solution of the eigenvalue problem (8.13). The orthogonality property is a con-

sequence of the simplicity of each eigenvalue and the form of equation (8.13). Take

(λ0,n, Vn = P− 1

2
+iρ0,n

(cosh(·)) and (λ0,n′ , Vn′ = P− 1

2
+iρ0,n′ (cosh(·)) two solutions of

equation (8.13) then:
∫ ω

0
Vn(τ)Vn′(τ) sinh(τ)dτ = − 1

λ0,n

∫ ω

0

d

dτ

(
sinh(τ)

dVn
dτ

(τ)

)
Vn′(τ)dτ

=
1

λ0,n

∫ ω

0
sinh(τ)

dVn
dτ

(τ)
dVn′

dτ
(τ)dτ

=
λ0,n′

λ0,n

∫ ω

0
Vn(τ)Vn′(τ) sinh(τ)dτ.

This implies that for n 6= n′,
∫ ω
0 Vn(τ)Vn′(τ) sinh(τ)dτ = 0.

Next, suppose m ≥ 1. The eigenvalue problem (8.13) is now a singular Sturm-

Liouville problem because of the singularity at τ = 0. Nevertheless, it is still

possible to prove the existence of real non-negative and simple eigenvalues of (8.13)

([Zettl 2005, Chavel 1984]):

0 < λm,1 < λm,2 < · · · < λm,n < . . . with lim
n→+∞

λm,n = +∞.

It is straightforward to see that (λm,n,Pm
− 1

2
+iρm,n

(cosh(·)) is a solution of the eigen-

value problem. The proof of the orthogonality property follows the same lines as

for the case m = 0, with the additional remark that for all m ≥ 1 the function

τ → sinh(τ)−1Pm
− 1

2
+iρm,n

(cosh(τ))Pm
− 1

2
+iρm,n′

(cosh(τ))

is integrable on ]0, ω] for all n, n′ ∈ N∗. �
The multiplicity of the eigenvalues of the Laplace-Beltrami operator is a complex

problem. As for the zeros of Bessel functions [Watson 1995], between two consec-

utive zeros of λ → Pm
− 1

2
+iλ

(cosh(ω)) there exists one zero of λ → Pm+1
− 1

2
+iλ

(cosh(ω))

[Lebedev 1972]. This implies that the multiplicity of λ0,1 is one and the multiplicity

of λ1,1 is two. We further have 0 < λ0,1 < λ1,1 < · · · .
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8.2.2 Study of an isolated hypercolumn

8.2.2.1 Linear stability analysis

We rewrite equation (8.1) for β = 0 in the lateral coupling function in (τ, θ)-

coordinates.

∂V (r, τ, θ, t)

∂t
= −V (r, τ, θ, t) +

∫ ω

0

∫ 2π

0
Wloc

(
dD

(
tanh(τ/2)eiθ, tanh(τ ′/2)eiθ

′
))

× S(µV (r, τ ′, θ′, t)) sinh(τ ′)dτ ′dθ′

(8.14)

The local connectivity function can be expressed in a compact form as

Wloc(τ, τ
′ | θ − θ′)

def
= Wloc

(
dD

(
tanh(τ/2)eiθ, tanh(τ ′/2)eiθ

′
))

=

+∞∑

m=0

∑

n∈N∗

Ŵm,nYm
n (τ)Ym

n (τ ′) cos(m(θ − θ′)). (8.15)

Equation (8.14) presents an O(2) symmetry with action:

ϕ · (τ, θ) = (τ, θ + ϕ) ϕ ∈ [0, 2π]

s · (τ, θ) = (τ,−θ).

With the fact that S(0) = 0 in the definition of the sigmoidal function S, the fully

symmetric state V = 0 is always a solution of (8.14) for all values of the parameter

µ. To study the linear stability of the trivial state V = 0, we have to look at

solutions of the linearized equation

∂V (r, τ, θ, t)

∂t
= −V (r, τ, θ, t) + µs1

∫ ω

0

∫ 2π

0
Wloc

(
τ, τ ′ | θ − θ′

)

× V (r, τ ′, θ′, t) sinh(τ ′)dτ ′dθ′.

(8.16)

with s1 = S′(0), of the form eσtU(r, τ, θ). Substituting the distribution (8.15) for

Wloc and using orthogonality relation shows that the dispersion relation is given by:

σn,m = −1 + µs1Ŵm,n

with corresponding eigenvectors Ym
n (τ) cos(mθ) and Ym

n (τ) sin(mθ) if m ≥ 1, Y0
n(τ)

if m = 0. Thus the eigenvalue σn,m is at least 2-fold degenerate for m ≥ 1. If we

denote

ŴM,N = max{Ŵm,n | (m,n) ∈ N× N
∗}

then V = 0 becomes unstable at a critical value µc =
(
s1ŴM,N

)−1
.

The cases (M = 0, N = 1) and (M = 1, N = 1) are relevant from a biological

point of view. If M = 0 and N = 1, sufficiently close to the bifurcation point, the

resulting activity profile satisfies

V (r, τ, θ) = a(r)Y1(τ)



160
Chapter 8. Application to spontaneous pattern formation in V1 using

structure tensor formalism

(a) Mode (0, 1) with λ0,1 = 0.2798. (b) Mode (1, 1) with λ1,1 = 0.334.

(c) Mode (2, 1) with λ2,1 = 0.3585. (d) Mode (3, 1) with λ3,1 = 0.3753.

Figure 8.1: Plot of solution of the form Pm
lm,n

(cosh(τ)) cos(mθ) with (τ, θ) ∈ [0, ω]×
[0, 2π] and lm,n = −1

2 + iλm,n.
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and if M = 1 and N = 1 we have:

V (r, τ, θ) = α(r)Y1
1 (τ) cos (θ − φ(r)) .

In the first case, the new steady state shows no orientation preference as it can

be seen in figure 8.1(a) where the region of high activity is centered at z = 0. In

the second case, the response is both unimodal with respect to τ and θ, see figure

8.1(b). The ocurence of a tuned surface peaked at some angle φ(r) corresponds

to the presence of local contour there. The angle φ(r) for each tuning surface is

arbitrary which reflects the O(2) equivariance of equation (8.14). Without any

lateral connections, the overall tuned response is uncorrelated across the cortex.

As explained in [Bressloff 2001b], the presence of anisotropy has for consequence to

correlate the peaks of the tuning surfaces at different locations.

8.2.2.2 Steady-state bifurcation with O(2) symmetry

From the linear stability analysis and the symmetries of the system, we have a

steady-state bifurcation with O(2) symmetry at the critical point µ = µc. In

order to be able to compare our results with those obtained in the Ring Model of

orientation, we select unimodal solution in the θ variable: M = 1 and the τ variable

N = 1. Close to the bifurcation point (V = 0, µ = µc) there exists a polynomial

change of variables of the form

V (r, τ, θ, t) = A(r, t)ζ1(τ, θ) +B(r, t)ζ2(τ, θ) + Ψ(A(r, t), B(r, t), µ− µc)

with

ζ1(τ, θ) = Y1
1 (τ) cos(θ) and ζ2(τ, θ) = Y1

1 (τ) sin(θ)

which transforms equation (8.14) into the normal form

dA

dt
=

[
µ− µc
µc

+̟(A2 +B2)

]
A+ h.o.t.

dB

dt
=

[
µ− µc
µc

+̟(A2 +B2)

]
B + h.o.t.

(8.17)

and ̟ can be expressed as

̟ =
µ3cπŴ1,1

4


s3Λ

2
+ µcs

2
2

∑

n∈N∗


 πŴ0,n (γ0,n)

2

(
1− µcs12πŴ0,n

) +
πŴ2,n (γ2,n)

2

4
(
1− µcs1πŴ2,n

)






(8.18)

with s2 = S′′(0), s3 = S′′′(0) and

Λ =

∫ ω

0

(
Y1
1 (τ)

)4
sinh(τ)dτ

γk,n =

∫ ω

0
Yk
n(τ

′)
(
Y1
1 (τ

′)
)2

sinh(τ ′)dτ ′.
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Proof. These formulas are derived in appendix B.1. �

The sign of ̟ determines if the bifurcation is subcritical or supercritical. If

̟ < 0, the Pitchfork is oriented towards the increasing µ (supercritical) otherwise

it points towards the decreasing µ (subcritical). In this latter case, it can be shown

[Veltz 2010b] that the bifurcated branch has to “turn around”, which produces two

additional solutions on each branch. As it has been noticed in [Veltz 2010a] in the

case of the ring model of orientation, the condition ̟ > 0 does not give a biological

plausible behaviour of the network. This is why we impose the condition ̟ < 0,

which gives a constrain on the threshold T of the sigmoidal function defined in

equation (8.2) and the coefficients Ŵm,n of the coupling function Wloc. In the sim-

plified case where Ŵ0,1 = −1 and Ŵm,n = 0 for all (m,n) ∈ N×N∗ \ {(0, 1), (1, 1)},
we plot in figure 8.2 the sign of ̟ as a function of T and Ŵ1,1.

Figure 8.2: Plot of the sign of ̟ as a function of T and Ŵ1,1.

8.2.3 Weak lateral interactions

We now turn on the lateral interactions: β 6= 0. We have already mentioned in

Problem 8.1.1 that the lateral connections modulate rather than drive the cortical

activity. This is why we will work in the regime where 0 < β ≪ 1. In order to be

able to present some analytic results, we select a simplified version of the function

K (this is the limit case kc → 0 in the definition of K in equation (8.4)):

K(τ, θ | τ ′, θ′) = 1

sinh(τ)
δτ,τ ′δθ,θ′ .

8.2.3.1 Eigenvalues and eigenfunctions of the linear problem

We first linearize equation (8.1) close to the fully symmetric state V (r, τ, θ, t) = 0.



8.2. Problem 1: weak anisotropic coupling on a bounded structure
tensor space 163

∂V (r, τ, θ, t)

∂t
= −V (r, τ, θ, t) + µs1

[∫ ω

0

∫ 2π

0
Wloc

(
τ, τ ′ | θ − θ′

)

×V (r, τ ′, θ′, t) sinh(τ ′)dτ ′dθ′ + β

∫

R2

J (r− r′, τ, θ)V (r′, τ, θ)dr′
]
,

(8.19)

where we have set:

J (r− r′, τ, θ)
def
= J

(√
(r− r′)T(I2 + εT (τ, θ))(r− r′)

)

with T (τ, θ) given through the “D to SSPD(2,R)” dictionary in subsection 3.2.2

of chapter 3 by

T (τ, θ) =

(
a(τ, θ) c(τ, θ)

c(τ, θ) b(τ, θ)

)

and

a(τ, θ) =
1 + tanh(τ/2)2 + 2 tanh(τ/2) cos(θ)

1− tanh(τ/2)2

b(τ, θ) =
1 + tanh(τ/2)2 − 2 tanh(τ/2) cos(θ)

1− tanh(τ/2)2

c(τ, θ) =
2 tanh(τ/2) sin(θ)

1− tanh(τ/2)2
.

We look for perturbations of the form eσtuk(τ, θ)e
ik·r + cc with k =

q(cosϕ, sinϕ) and uk(τ, θ) = u(τ, θ − 2ϕ). Equation (8.19) leads to the eigenvalue

problem for (σ, u(τ, θ)):

σu(τ, θ) = −u(τ, θ) + µs1βJ̃k(τ, θ + 2ϕ)u(τ, θ)

+ µs1

∫ ω

0

∫ 2π

0
Wloc

(
τ, τ ′ | θ − θ′

)
u(τ ′, θ′) sinh(τ ′)dτ ′dθ′

(8.20)

with

J̃k(τ, θ + 2ϕ) =

∫

R2

J (r− r′, τ, θ + 2ϕ)eik·(r−r′)dr′.

Due to the rotational invariance of the lateral coupling (8.4) with shift-twist action,

the function J̃k(τ, θ+2ϕ) only depends upon q the magnitude of vector k ∈ R2. This

is why (σ, u(τ, θ)) given by equation (8.20) also only depends upon q. Expanding

u(τ, θ) on the basis (Ym
n (τ) cos(mθ),Ym

n (τ) sin(mθ))m∈Z,n≥1 we obtain:

u(τ, θ) =
+∞∑

n=1

A0,n(q)Yn(τ) +
+∞∑

m=1

+∞∑

n=1

Ym
n (τ) (Am,n(q) cos(mθ) +Bm,n(q) sin(mθ)) .

Taking the scalar product of equation (8.20) with Yn,Ym
n cos(mθ) and

Ym
n sin(mθ′) gives respectively:
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[
σ + 1

µs1
− Ŵ0,n

]
A0,n(q) = β

∑

m′∈N

∑

n′∈N∗

J̃ 0
0n,m′n′(q)Am′,n′(q)

[
σ + 1

µs1
− Ŵm,n

]
Am,n(q) = β

∑

m′∈N

∑

n′∈N∗

J̃ +
mn,m′n′(q)Am′,n′(q)

[
σ + 1

µs1
− Ŵm,n

]
Bm,n(q) = β

∑

m′∈N∗

∑

n′∈N∗

J̃ −
mn,m′n′(q)Bm′,n′(q)

where

J̃ 0
0n,m′n′(q) =

1

2π

∫ ω

0

∫ 2π

0
J̃k(τ, θ + 2ϕ)Yn(τ)Ym′

n′ (τ) cos(m′θ) sinh(τ)dτdθ

J̃ +
mn,m′n′(q) =

1

π

∫ ω

0

∫ 2π

0
J̃k(τ, θ + 2ϕ)Ym

n (τ)Ym′
n′ (τ) cos(mθ) cos(m′θ) sinh(τ)dτdθ

J̃ −
mn,m′n′(q) =

1

π

∫ ω

0

∫ 2π

0
J̃k(τ, θ + 2ϕ)Ym

n (τ)Ym′
n′ (τ) sin(mθ) sin(m′θ) sinh(τ)dτdθ.

Based on the analysis made for β = 0, we assume that

Ŵ1,1 = max{Ŵm,n | (m,n) ∈ N× N
∗}.

There is a k-dependent splitting of the degenerate eigenvalue σ associated to the

mode (1, 1) and denoting the characteristic size of such a splitting by δσ = O(β),

we impose the condition that δσ ≪ µ∆Ŵ , where ∆Ŵ = min{Ŵ1,1 − Ŵm,n,m 6=
1 and n 6= 1}. We can introduce the following perturbation expansions and solve

the resulting hierarchy of equations to successive orders in β:

σ± + 1

µ
= Ŵ1,1 + βσ

(1)
± + β2σ

(2)
± + . . .

Am,n(q) = A(q)δm,1δn,1 + βA(1)
m,n(q) + β2A(2)

m,n(q) + . . .

Bm,n(q) = B(q)δm,1δn,1 + βB(1)
m,n(q) + β2B(2)

m,n(q) + . . .

Setting m = 1 and n = 1 we can collect the O(β) terms and get:

σ
(1)
± = J̃ ±

11,11(q)

A(1)
m,n(q) =

J̃ +
mn,11(q)A(q)

Ŵ1,1 − Ŵm,n

B(1)
m,n(q) =

J̃ −
mn,11(q)B(q)

Ŵ1,1 − Ŵm,n

.

For the O(β2) terms we obtain two equations:
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[
σ
(1)
+ − J̃ +

11,11(q)
]
A

(1)
1,1(q) + σ

(2)
+ A(q) =

∑

(m′,n′) 6=(1,1)

J̃ +
11,m′n′(q)A

(1)
m′,n′(q)

[
σ
(1)
− − J̃ −

11,11(q)
]
B

(1)
1,1(q) + σ

(2)
− B(q) =

∑

(m′,n′) 6=(1,1)

J̃ −
11,m′n′(q)B

(1)
m′,n′(q)

which give:

⇒ λ
(2)
± =

∑

(m′,n′) 6=(1,1)

(
J̃ ±
11,m′n′(q)

)2

Ŵ1,1 − Ŵm′,n′
.

Finally we have the following proposition.

Proposition 8.2.2.The two dispersion relations are given by:

σ± = −1 + µs1


Ŵ1,1 + βJ̃ ±

11,11(q) + β2
∑

(m′,n′) 6=(1,1)

(
J̃ ±
11,m′n′(q)

)2

Ŵ1,1 − Ŵm′,n′
+O(β2)




(8.21)

and uk(τ, θ) = u±k (τ, θ) where to O(β):

u+k (τ, θ) = Y1
1 (τ) cos(θ − 2ϕ) + β

∑

(m,n) 6=(1,1)

Ym
n (τ)

J̃ +
mn,11(q)

Ŵ1,1 − Ŵm,n

cos(m(θ − 2ϕ))

(8.22)

u−k (τ, θ) = Y1
1 (τ) sin(θ − 2ϕ) + β

∑

(m,n) 6=(1,1)

Ym
n (τ)

J̃ −
mn,11(q)

Ŵ1,1 − Ŵm,n

sin(m(θ − 2ϕ)).

(8.23)

8.2.3.2 Discussion

We suppose that H±(q) = Ŵ1,1 + βJ̃ ±
11,11(q) has a unique maximum at q = q± 6= 0.

We define qc = q+ if H+(q+) > H−(q−) and qc = q− if H+(q+) < H−(q−), then
the homogeneous state a(r, τ, θ) = 0 is marginally stable at µc = (s1H+(qc))

−1 if

qc = q+ and at µc = (s1H−(qc))
−1 if qc = q−. From the rotation invariance, all

modes lying on the critical circle ‖k‖ = qc become neutrally stable at µ = µc. The

question of the ocurence of even or odd patterns depends of the specific form of the

lateral connection J in equation (8.4).

The infinite degeneracy of the modes on the critical circle can be reduced to a

finite set of modes by restricting solutions to be doubly periodic functions on the

Euclidean plane, for which we recall some basic properties. Let ℓ1, ℓ2 be a basis of

R2 and L be a planar lattice of R2: L = {2πm1ℓ1+2πm2ℓ2 | (m1,m2) ∈ Z2}.. If we
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denote by H the holohedry of the lattice, then the symmetry group ΓL of the lattice

is generated by the semi-direct product ΓL = H⋉ T2, where T2 is the 2-torus. We

also define the dual lattice of L by L∗ = {2πm1k1 +2πm2k2 | (m1,m2) ∈ Z2} with

ℓi · kj = δi,j . The action of ΓL on the space of doubly periodic functions is the

one induced from the action of E(2) on R2 × Ω given in (8.8). We consider only

bifurcations based on dual wave vectors of shortest (unit) length and assume that

the critical eigenspace Vk consists of functions of the form:

a(r, τ, θ) =

s∑

j=1

zjukj
(τ, θ)eikj ·r + c.c. (8.24)

where (z1, . . . , zs) ∈ Cs with s = 2 for square or rhombic lattices and s = 3

for hexagonal lattices. It was shown in [Bressloff 2001a] that the subspace Vk
decomposes into two nonisomorphic absolutely irreducible representations of ΓL:
Vk = V +

k ⊕ V −
k , where V +

k is the space of even eigenfunctions and V −
k is the space

of odd eigenfunctions in θ. The actions of the group ΓL on V +
k and V −

k can be

explicitely written down for both the square or rhombic and hexagonal lattices and

are given in [Bressloff 2001b].

Finally, by applying the Equivariant Branching Lemma [Golubitsky 1988,

Chossat 2000], we can show the existence of branches of solution for each of

the axial subgroups of ΓL. All these axial subgroups have been calculated in

[Bressloff 2001a, Bressloff 2001b] and lead to even and odd planforms. In par-

ticular, the perturbation analysis made in the previous part shows that uk(τ, θ) in

equation (8.24) can take the forms:

(i) uk(τ, θ) ≈ Y1
1 (τ) cos(θ − 2ϕ) for even planforms (equation (8.22)),

(ii) uk(τ, θ) ≈ Y1
1 (τ) sin(θ − 2ϕ) for odd planforms (equation (8.23)).

The reduced feature space model for structure tensors is then a direct general-

ization of the model developed by Bressloff et al in [Bressloff 2001a, Bressloff 2001b]

but it does not predict new planforms.

8.3 Problem 2: bifurcation of doubly periodic planforms in

both R2 and D

In this section, we adopt the strategy developed in [Golubitsky 2003]. We will

determine solutions to symmetry-breaking bifurcations in the isotropic case (ε = 0),

with symmetry group E(2) × U(1, 1), and then study how these solutions change

when anisotropy is introduced as a forced symmetry-breaking parameter (0 < ε≪
1).
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8.3.1 Bifurcation problem

First of all we rewrite equation (8.5) on R2 ×D with W 0
lat in the definition of (8.3),

which gives

∂V (r, z, t)

∂t
= −V (r, z, t) +

∫

D

Wloc

(
dD(z, z

′)
)
S(µV (r, z′, t))dm(z′)

+ β

∫

D

∫

R2

J (‖r− r′‖)K
(
dD(z, z

′)
)
S(µV (r′, z′, t))dm(z′)dr′.

(8.25)

With the fact that S(0) = 0 in the definition of the sigmoidal function S, the fully

symmetric state V = 0 is always a solution of (8.25) for all values of the parameter

µ. To study the linear stability of the trivial state V = 0, we have to look at

solutions of the linearized equation

∂V (r, z, t)

∂t
= −V (r, z, t) + µs1

∫

D

Wloc

(
dD(z, z

′)
)
V (r, z′, t)dm(z′)

+ βµs1

∫

D

∫

R2

J (‖r− r′‖)K
(
dD(z, z

′)
)
V (r′, z′, t)dm(z′)dr′.

(8.26)

with s1 = S′(0) of the form eσtU(r, z). Solutions must satisfy the eigenvalue prob-

lem:

(σ + 1)U(r, z) = µs1

∫

D

Wloc

(
dD(z, z

′)
)
U(r, z′)dm(z′)

+ βµs1

∫

D

∫

R2

J (‖r− r′‖)K
(
dD(z, z

′)
)
U(r′, z′)dm(z′)dr′.

(8.27)

Because of the E(2)×U(1, 1) equivariance of equation (8.25), solutions of (8.27) are

plane waves in R2×D. Assuming that U(r, z) = eik·reρ,b(z) we obtain the following

relation

σ = −1 + µs1

(
W̃loc(ρ) + βĴ (q)K̃(ρ)

)
(8.28)

where Ĵ (q) is the Hankel transform of J (‖·‖) with q = ‖k‖ and W̃loc(ρ) (resp. K̃(ρ))

is the Helgason-Fourier transform ofWloc(dD(·, 0)) (resp. K(dD(·, 0))). The fact that
Helgason-Fourier transform of Wloc(dD(·, 0)) and K(dD(·, 0)) does not depend upon

b ∈ ∂D was already proved in lemma 6.1.2 of chapter 6. It follows that the neutral

stability curve

µ(q, ρ) =
(
s1

(
W̃loc(ρ) + βĴ (q)K̃(ρ)

))−1

attains its minimum at µc =
(
s1

(
W̃loc(ρc) + βĴ (qc)K̃(ρc)

))−1
with (qc, ρc) defined

by (qc, ρc) = max(q,ρ)∈R+×R

[
W̃loc(ρ) + βĴ (q)K̃(ρ)

]
.

A consequence of the E(2)×U(1, 1) symmetry is that the kernel of the linearized

equation (8.26), at the critical point µ = µc is infinite dimensional (indifference to

b and all k such that ‖k‖ = qc). As in the Euclidean case of pattern formation,

we want to look for solutions in the restricted class of patterns which are doubly
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periodic in the r variable and spatially periodic in the z variable. Doubly-periodic

functions on the Euclidean plane correspond to rectangular, square and hexagonal

tilings of R2. Functions which are periodic in the Poincaré disk D are, by definition,

invariant under the action of a discrete subgroup G of U(1, 1) whose fundamental

domain is a polygon (see chapter 6).

Tilings of the Poincaré disc have very different properties from tilings of the

Euclidean plane. In particular tilings exist with polygons having an arbitrary num-

ber of sides, while in R2 only rectangular, square and hexagonal periodic tilings

exist. But the size of a regular polygon with a given number of vertices is fixed

in hyperbolic geometry, a consequence of the Gauss-Bonnet formula [Katok 1992].

This has for consequence to render discrete the set of values of the wave number ρc
and hence µc. It follows that, although we can look for the bifurcation of spatially

periodic solutions associated with a given tesselation in D, these patterns will not

in general correspond to the most unstable perturbations unless the parameters in

the equation are tuned so that it happens this way. In section 8.3.3, we will tune

the parameters of the local connectivity function Wloc, such that the most unstable

mode is associated to the tiling that we have choosen.

8.3.2 Bifurcations of octagonal H-planforms

Irreducible representation χ8 For each representations χ1 to χ13, we have given

in chapter 6 the isotropy types of each representations which have on dimensional

fixed-point subspace and presented the corresponding bifurcation diagrams (see

chapter 7 for the four-dimensional representation case). In this chapter, we focus

on the case of the irreducible representation χ8. The choice of χ8 is arbitrary for

the moment but will be explained in the last paragraph of this subsection. In that

case, from Theorem 6.3.1, we have the following proposition. We recall that the oc-

tahedral group O, the direct symmetry group of the cube, possesses two irreducible

representations of dimension three. In order to differentiate these two irreducible

representations we adopt the convention “natural” as used in [Miller 1972].

Proposition 8.3.1. For the three dimensional irreducible representation χ8 of G,
the isotropy subgroups with one dimensional fixed point subspace are the following:

D8 = 〈ρ, κ〉
C̃6κ′ = 〈−ε, κ′〉
D̃2κ = 〈−Id, σ, κ〉.

The bifurcation diagram is the same as the bifurcation diagram with “natural” full

octahedral O⋉ Z2 symmetry in R3.

Associated octagonal H-planforms In order to illustrate our purpose, we numer-

ically compute the octagonal H-planforms associated to the irreducible represen-

tation χ8 of G (see section 6.4 of chapter 6). We recall that these planforms are

eigenfunctions of the Laplace-Beltrami operator in D. In figure 8.4, we plot the
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Figure 8.3: Maximal isotropy subgroups D8, C̃6κ′ and D̃2κ of O ⋉ Z2. The axes

γ1 · D8 and γ2 · D8 are copies of D8 by the elements γ1, γ2 ∈ G (see 8.3.2). The

plane (0, c2, c3) (resp. (c1, 0, c3)) has symmetry D2 (resp. D′
2).
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corresponding eigenfunctions of the Laplace-Beltrami operator associated to the

lowest non-negative eigenvalue λ = 3.8432 with multiplicity 3. We identify each

solution by its symmetry group. Note that the solution in figure 8.4(a) corre-

sponds to an axis of symmetry in the sense that its symmetry group is an isotropy

subgroup with one dimensional fixed point subspace. In figure 8.5, we plot each

eigenfunction in the Poincaré disk. It becomes now clear that 8.5(b) and 8.5(c)

can be obtained from 8.5(a) by hyperbolic transformations. From subsection 6.3.1

of chapter 6 and the definition of g0 in equation (6.14), we see that g0 = ar0 with

r0 = ln
(
1 +

√
2 +

√
2 +

√
2
)
. If we define γk ∈ G by:

γk = rotkπ/4ar0/2rot−kπ/4

then figure 8.5(b) (resp. 8.5(c)) is obtained from 8.5(a) by applying γ1 (resp. γ2).

Planforms in figure 8.5 correspond the three coordinate axes of the cube in figure

8.3.

(a) Symmetry D8 =< ρ, κ >.

(b) Symmetry D
′
2 =< −Id, ρ2κ >. (c) Symmetry D2 =< −Id, κ >.

Figure 8.4: Plot of the eigenfunctions of the Laplace-Beltrami operator in the oc-

tagon O associated to the lowest non-negative eigenvalue λ = 3.8432 corresponding

to the irreducible representation χ8.

Choice of χ8 The choice of irreducible representation χ8 comes from the direct

interpretation of H-planforms ploted in figures 8.4(b), 8.4(c) and 8.4(a) in terms of
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(a) H-planform Ψ3 with symmetry D8.

(b) H-planform Ψ1 with symmetry γ1 ·D8. (c) H-planform Ψ2 with symmetry γ2 ·D8.

Figure 8.5: Plot of the eigenfunctions of the Laplace-Beltrami operator in the

Poincaré disk D associated to the lowest non-negative eigenvalue λ = 3.8432 cor-

responding to the irreducible representation χ8. In (a) we also plot the octagon

(black line) and in (b),(c) its image by γ1, γ2 respectively.
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preferred orientation. For example, in figure 8.4(a), the high region of activity near

the center of the Poincaré disk traduces the fact the point z = 0 is preferred, this

means that the selectivity is low and all orientations are represented. On the other

hand, in figure 8.4(b), two points on the boundary of the octagon correspond to high

activity of the eigenfunction. Due to the periodicity (opposite faces of the octagon

are identified), these two points are the same and thus there is a preferred orientation

at π
4 . With a similar argument, in figure 8.4(c), there is a preferred orientation at

π
2 . As surprising as it can be, solutions in figures 8.4(b), 8.4(c) and 8.4(a) have

to be thought as unimodal solution of the z variable due to the periodicity. These

solutions are the counterpart, in the hyperbolic disk, to the tuning curves found in

the ring model of orientations [Ben-Yishai 1995, Hansel 1997].

8.3.3 Bifurcation diagrams for one hypercolumn

In this paragraph, we consider the case β = 0 and deal with the following equation:

∂V (z, t)

∂t
= −V (z, t) +

∫

D

Wloc

(
dD(z, z

′)
)
S(µV (z′, t))dm(z′). (8.29)

For S(0) = 0, the fully symmetric state V = 0 is always solution of (8.29) and the

associated linear equation is given by

∂V (z, t)

∂t
= −V (z, t) + µs1

∫

D

Wloc

(
dD(z, z

′)
)
V (z′, t)dm(z′). (8.30)

If we denote Ψ1 the H-planform in figure 8.4(b), Ψ2 the H-planform in figure 8.4(c)

and Ψ3 the H-planform corresponding to the symmetry group D8 in figure 8.4(a),

then (Ψ1,Ψ2,Ψ3) is a basis for the irreducible representation χ8. This can be easily

seen through the identification of each H-planform to the three coordinate axes of

the cube in figure 8.3. Then if we define:

1

4π

∫

O

∫

D

Wloc

(
dD(z, z

′)
)
Ψi(z)Ψi(z

′)dm(z′)dm(z) = W̃ c
loc ∀i = 1 . . . 3

there is a bifurcation at µc =
(
s1W̃

c
loc

)−1
such that for µ < µc the state V = 0 is

stable. Note that we have normalized planforms such that:

〈Ψi,Ψj〉 =
1

4π

∫

O
Ψi(z)Ψj(z)dm(z) = δi,j .

If we rewrite equation (8.29) as

V ′ = LV +R(V, λ)

with λ = µ− µc and

LV = −V + µcs1Wloc ⋆ V

R(V, λ) =Wloc ⋆ (S((λ+ µc)V )− µcs1V ) .
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Close to the bifurcation point, there exists a polynomial map Φ(·, λ) such that the

change of variable:

V (z) = c1Ψ1 + c2Ψ2 + c3Ψ3 +Φ(c1, c2, c3, λ) + h.o.t.

transforms equation (8.29) into the normal form (see [Melbourne 1986] for a review

on bifurcation problems with octahedral symmetry):




dc1
dt = λ

µc
c1 +

[
a(c22 + c23) + bc21

]
c1 + h.o.t.

dc2
dt = λ

µc
c2 +

[
a(c21 + c23) + bc22

]
c2 + h.o.t.

dc3
dt = λ

µc
c3 +

[
a(c21 + c22) + bc23

]
c3 + h.o.t.

(8.31)

Taylor expanding the map Φ:

Φ(c1, c2, c3, λ) =
∑

1≤r+s+l+m≤3

cr1c
s
2c

l
3λ

mΦrslm

and R:

R(V, λ) = R11(V, λ) +R20(V, V ) +R30(V, V, V ) + h.o.t.

with

R11(V, λ) = λs1Wloc ⋆ V

R20(U, V ) =
µ2cs2
2

Wloc ⋆ (UV )

R300(U, V,W ) =
µ3cs3
6

Wloc ⋆ (UVW )

where s2 = S′′(0) and s3 = S′′′(0) we obtain the following system of equations:

0 = −LΦ0020 −R20(Ψ3,Ψ3)

0 = −LΦ1010 − 2R20(Ψ1,Ψ3)

a = 〈2R20(Φ0020,Ψ1) + 2R20(Φ1010,Ψ3) + 3R30(Ψ1,Ψ3,Ψ3),Ψ1〉
b = 〈2R20(Ψ3,Φ0020) +R30(Ψ3,Ψ3,Ψ3),Ψ3〉. (8.32)

In order to solve the two first equations of the previous system, we need to

know the functions Ψ3(z)Ψ3(z) and Ψ1(z)Ψ3(z) can be expressed as a linear com-

bination of eigenfunctions of the Laplace-Beltrami operator on O. In general, it is

very difficult to obtain these expressions because the eigenfunctions are only know

numerically and one needs the computation of the associated Clebsch-Gordan coeffi-

cients. It turns out that in our case we have been able to conjecture and numerically

verify the following relations:

Ψ1(z)Ψ3(z) =
1√
3
Ψ

D′
2κ

χ10
(z)

Ψ2
3(z) =

6

5
ΨD̃8κ

χ6
(z) + 1
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where the corresponding isotropy subgroups are given by:

D′
2κ =< −Id, ρ2κ, ρ2σ > and D̃8κ =< ρ, ρ2σρ−2, κ > .

Furthermore we have normalized Ψ
D′

2κ
χ10

and ΨD̃8κ
χ6

such that:

〈ΨD′
2κ

χ10
,Ψ

D′
2κ

χ10
〉 = 〈ΨD̃8κ

χ6
,ΨD̃8κ

χ6
〉 = 1.

(a) Plot of Ψ
D

′

2κ
χ10

. (b) Plot of ΨD̃8κ
χ6

.

Figure 8.6: Plot of the eigenfunctions of the Laplace-Beltrami operator in the

octagon O corresponding to the irreducible representations χ10 with eigenvalue

λ = 15.0518 (left) and χ6 with eigenvalue λ = 8.2501 (right).

In figure 8.6, we plot the eigenfunctions Ψ
D′

2κ
χ10

and ΨD̃8κ
χ6

of the Laplace-Beltrami

operator in the octagon O. One interesting remark is that the product Ψ1Ψ3

corresponding to the three dimensional irreducible representation χ8 produces an

eigenfunction associated to another three dimensional irreducible representation:

χ10 whereas Ψ2
3 is the linear combination of the constant function which has G as

isotropy subgroup and thus corresponds to χ1 and the eigenfunction ΨD̃8κ
χ6

which is

associated to two dimensional irreducible representation χ6.

If we define

W̃
χ10,D′

2κ

loc =
1

4π

∫

O

∫

D

Wloc

(
dD(z, z

′)
)
Ψ

D′
2κ

χ10
(z)Ψ

D′
2κ

χ10
(z′)dm(z′)dm(z)

W̃χ6,D̃8κ

loc =
1

4π

∫

O

∫

D

Wloc

(
dD(z, z

′)
)
ΨD̃8κ

χ6
(z)ΨD̃8κ

χ6
(z′)dm(z′)dm(z)

W̃χ1

loc =

∫

D

Wloc

(
dD(z, z

′)
)
dm(z′)



8.3. Problem 2: bifurcation of doubly periodic planforms in both R2

and D 175

then the two first equations of system (8.32) give

Φ0020 = Span (Ψ1,Ψ2,Ψ3) +
µ2cs2
2

[
W̃χ1

loc

1− W̃χ1

loc/W̃
c
loc

+
6

5

W̃χ6,D̃8κ

loc

1− W̃χ6,D̃8κ

loc /W̃ c
loc

ΨD̃8κ
χ6

]

Φ1010 = Span (Ψ1,Ψ2,Ψ3) +
µ2cs2√

3

W̃
χ10,D′

2κ

loc

1− W̃
χ10,D′

2κ

loc /W̃ c
loc

Ψ
D′

2κ
χ10

.

We can now obtain the expression of the coefficients a and b in the reduced

equation (8.31).

Lemma 8.3.1.

a = µ3cW
c
loc

(
s3
6

+
µcs

2
2

2

[
W̃χ1

loc

1− W̃χ1

loc/W̃
c
loc

− 2

3

W̃χ6,D̃8κ

loc

1− W̃χ6,D̃8κ

loc /W̃ c
loc

+
1

3

W̃
χ10,D′

2κ

loc

1− W̃
χ10,D′

2κ

loc /W̃ c
loc

]) (8.33)

b = µ3cW
c
loc

(
61s3
150

+
µcs

2
2

2

[
W̃χ1

loc

1− W̃χ1

loc/W̃
c
loc

+
36

25

W̃χ6,D̃8κ

loc

1− W̃χ6,D̃8κ

loc /W̃ c
loc

])
. (8.34)

Proof. See appendix B.2. �

From the analysis derived in [Melbourne 1986], we have the following result.

Lemma 8.3.2. The stability of the branches of solutions corresponding to the three

maximal isotropy subgroups given in proposition 8.3.1 is:

(i) the D8 branch is stable if and only if a < b < 0,

(ii) the C̃6κ′ branch is stable if and only if 2a+ b < 0 and b− a < 0,

(iii) the D̃2κ branch is never stable.

The corresponding bifurcation diagram is given in figure 8.7 for a < b < 0.

We want that our hypercolumn produces tuning surfaces close the bifurcation

point µ = µc. From the discussion on the interpretation of H-planforms, we impose

that the condition a < b < 0 is satisfied such that the D8 branch is the only stable

branch. Depending on the initial condition in the (c1, c2, c3)-space, the solution will

converge to one of three axis of coordinates: D8, γ1 ·D8 or γ2 ·D8. The condition

a < b < 0 gives a constrain on the threshold T of the sigmoidal function defined in

equation (8.2) and the different coefficients W̃loc of the coupling function Wloc.

In order to illustrate this constrain on the parameters, we present a specific

example. The local coupling function is given by:

Wloc(x) = A cosh(2x)−σ0 − cosh(2x)−σ (8.35)
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Figure 8.7: Bifurcation diagram in the case a < b < 0. Solid lines correspond

to stable branches, dotted ones to unstable branches. For each maximal isotropy

subgroups, we plot the corresponding planform.

Figure 8.8: Plot of the local coupling function Wloc given in equation (8.35) and

its Helgason-Fourier transform W̃loc given in equation (8.35) with σ0 = 3.5 and

σ = 1.5. For the choice of A, see text.
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with A > 1 and σ0 > σ > 1
2 . The Helgason-Fourier transform of z →Wloc(dD(z, 0))

can be computed analytically [Terras 1988] and we have shown that it only depends

upon ρ ∈ R:

W̃loc(ρ) =
√
π


A2σ0−3

Γ(σ0)

∣∣∣∣∣Γ
(
σ0 + iρ− 1

2

2

)∣∣∣∣∣

2

− 2σ−3

Γ(σ)

∣∣∣∣∣Γ
(
σ + iρ− 1

2

2

)∣∣∣∣∣

2

 . (8.36)

Firstly, we fix the value of σ0 = 3.5. Then, we tune the value of A such that the

most unstable mode ρc = maxρ∈R W̃loc(ρ) corresponds to the irreducible represen-

tation χ8. Note that A depends upon (σ0, σ). In figure 8.8, we plot both the local

connectivity function and its Helgason-Fourier transform for σ = 1.5. For each

Figure 8.9: Regions of the plane (T, σ) where the branches D8 and C̃6κ′ are stable

with σ0 = 3.5.

value of (T, σ) in [0, 2]× [0.75, 1.75] we have numerically computed the coefficients

a and b given in lemma 8.3.1 and then checked if the stability conditions in lemma

8.3.2 are satisfied. Our results are ploted in figure 8.9. We can see the different

regions of the plane (T, σ) where the branches D8 and C̃6κ′ are stable: in blue the

region where D8 is stable and in purple the region where C̃6κ′ is stable.

8.3.4 Symmetry-breaking bifurcations on lattices

Knowing the behaviour of our network at the hypercolumnar level, we can come

back to the fully isotropically connected model and we restrict ourselves to doubly

periodic functions on a square lattice for the r variable and periodic on the octagon

O in the z variable. The choice of the square lattice is dictated by the fact that

the rotations by π/2 centered at 0 in the Euclidean square and of π at 0 in the

hyperbolic octagon can be identified. Indeed, for anisotropic coupling, the action
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of a rotation on (r, z) is given by (see equation (8.8))

Rθ · (r, z) =
(
Rθr, e

2iθz
)

so that if O is the feature space, only rotations with angle θ = k π
4 are allowed.

Hence the hexagonal lattice is not compatible with the octagonal tiling whereas

both rhombic and square lattices are compatible.

By restricting the bifurcation problem to a direct product of lattices, the group of

symmetries E(2)×U(1, 1) is transformed to the compact group Γ
def
= (D4⋉T2)×G,

where D4 is the holohedry of the square lattice, T2 is the 2-torus (see paragraph

8.2.3.2) and G is the group of automorphisms of the octagon O. The kernel of

the linearized equation (8.26), at the critical point µ = µc is now finite dimen-

sional and tools from equivariant bifurcation theory can be applied. Namely, the

Equivariant Branching Lemma [Golubitsky 1988, Chossat 2000] ensures the exis-

tence of branches of equilibria for every axial subgroup of Γ and the remaining

paragraphs will be dedicated to this study. There have been previous results on

visual pattern formation on the square lattice. In the Ermentrout-Cowan formalism

[Ermentrout 1979], the visual cortex is modeled by the Euclidean plane and trans-

lation symmetry leads to doubly periodic solutions on the square lattice: stripes

and spots. In Bressloff et al. [Bressloff 2001b, Bressloff 2001a], the visual cortex

is idealized by R2 × S1 and their model is able to produce a large variety of geo-

metric visual hallucinations recorder by experimentalists. Finally, Golubistky et al.

[Golubitsky 2003] worked with a model similar to those of Bressloff et al. but con-

sidered weak anisotropy in the lateral coupling which leads to rotating planforms.

8.3.5 Group actions

As the principal isotropy subgroup for χ8 is C2 =< Id,−Id > we get a faithfull

action by taking G/C2
∼= O× Z2, where O is the octahedral group. By identifying

elements of G with elements of the octahedral group O it is possible to construct

action on the eigenspace spanned by Ψ1,Ψ2,Ψ3. If we have:

u(z) = c1Ψ1(z) + c2Ψ2(z) + c3Ψ3(z)

we identify the eigenspace with (c1, c2, c3) ∈ R3 and we have





ρ · (c1, c2, c3) = (−c2, c1, c3)
κ · (c1, c2, c3) = (−c1, c2, c3)
σ · (c1, c2, c3) = (−c1,−c3,−c2)
ε · (c1, c2, c3) = (−c2,−c3, c1)

where ρ, κ, σ and ε have been defined in 6.3.1.

We denote ξ the rotation of angle π/2 centered at 0 of the square, δ the reflection

along the horizontal axis and

Θ = θ1ℓ1 + θ2ℓ2
def
= [θ1, θ2] (8.37)
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with (θ1, θ2) ∈ [0, 2π[2. We suppose that the critical eigenspace W consists of

functions of the form:

a(r, z) = (c1Ψ1(z) + c2Ψ2(z) + c3Ψ3(z)) e
ik1·r

+ (d1Ψ1(z) + d2Ψ2(z) + d3Ψ3(z)) e
ik2·r + c.c

(8.38)

where (c1, c2, c3, d1, d2, d3) ∈ C6. We will identify W with C6 through 8.38.

The action of ξ on a(r, z) can be expressed as:

ξ · a(r, z) = a(ξ−1r, z)

= (c1Ψ1(z) + c2Ψ2(z) + c3Ψ3(z)) e
ik1·ξ−1r

+ (d1Ψ1(z) + d2Ψ2(z) + d3Ψ3(z)) e
ik2·ξ−1r + c.c

=
(
d̄1Ψ1(z) + d̄2Ψ2(z) + d̄3Ψ3(z)

)
eik1·r

+ (c1Ψ1(z) + c2Ψ2(z) + c3Ψ3(z)) e
ik2·r + c.c .

Then we have ξ · (c1, c2, c3, d1, d2, d3) = (d̄1, d̄2, d̄3, c1, c2, c3) and the action of each

elements on (c1, c2, c3, d1, d2, d3) is given by




ξ · (c1, c2, c3, d1, d2, d3) = (d̄1, d̄2, d̄3, c1, c2, c3)

δ · ( ′′ ) = (c1, c2, c3, d̄1, d̄2, d̄3, )

Θ · ( ′′ ) = (e−i2πθ1(c1, c2, c3), e
−i2πθ2(d1, d2, d3))

ρ · ( ′′ ) = (−c2, c1, c3,−d2, d1, d3)
κ · ( ′′ ) = (−c1, c2, c3,−d1, d2, d3)
σ · ( ′′ ) = (−c1,−c3,−c2,−d1,−d3,−d2)
ε · ( ′′ ) = (−c2,−c3, c1,−d2,−d3, d1).

(8.39)

Lemma 8.3.3.The action of Γ on C6, given in 8.39, is absolutely irreducible.

Proof. Any 6 × 6 complex matrix which commutes with the action D4 ⋉ T2

decomposes into a direct sum of two 3 × 3 identical diagonal matrices with real

entries. Indeed the action of translations forces any 6 × 6 complex matrix to be

diagonal with real entries and the action of D4 decomposes this matrix into two

3 × 3 identical diagonal matrices. The action of G renders each diagonal matrix

equal to a scalar multiple of the identity matrix I3, which proves that the action

of Γ is absolutely irreducible. Note that we could also directly apply the general

result of lemma 8.3.4 in order to prove this lemma. �

Our aim is now to apply the Equivariant Branching Lemma (see

[Golubitsky 1988]). For this, we need to compute each axial isotropy subgroup

Σ of Γ such that the subspace WΣ = {x ∈ W | Σ · x = x} is one dimensional. We

recall the following lemma 6.5.1.

Lemma 8.3.4. Let H = H1×H2 be an isotropy subgroup for the irreducible repre-

sentation R of G1×G2 acting in X. Then X = X1⊗X2 and R = R1⊗R2 where R1

is an irreducible representation of G1 in V1 and R2 is an irreducible representation

of G2 in V2 and therefore H1 acts in V1 and H2 acts in V2. Furthermore we have:

dim
(
XH

)
= 1 if and only if dim

(
V H1

1

)
= dim

(
V H2

2

)
= 1.
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It is then possible to determine the maximal isotropy subgroups of Γ that satisfy

the hypotheses of the Equivariant Branching Lemma.

Theorem 8.3.1. The axial subgroups are (up to conjugacy):

• Σ1 = D4(ξ, δ)×D8

• Σ2 =
[
O2(ξ

2, [0, θ2])× Z2(δ)
]
×D8

• Σ3 = D4(ξ, δ)× C̃6κ′

• Σ4 =
[
O2(ξ

2, [0, θ2])× Z2(δ)
]
× C̃6κ′

• Σ5 = D4(ξ, δ)× D̃2κ

• Σ6 =
[
O2(ξ

2, [0, θ2])× Z2(δ)
]
× D̃2κ.

The corresponding fixed subspaces are listed in table 8.1.

Proof. We have already seen that D8, C̃6κ′ and D̃2κ are the three axial isotropy

subgroups for the irreducible representation χ8 of G. D4(ξ, δ) and O2(ξ
2, [0, θ2])×

Z2(δ) are the two axial subgroups for the irreducible action of D4 ⋉ T2 on C2

[Golubitsky 1988, Hoyle 2006]. Lemma 8.3.4 gives the result. �

Axial subgroup Fixed subspace

Σ1 R{(0, 0, 1, 0, 0, 1)}
Σ2 R{(0, 0, 1, 0, 0, 0)}
Σ3 R{(1,−1, 1, 1,−1, 1)}
Σ4 R{(1,−1, 1, 0, 0, 0)}
Σ5 R{(0, 1,−1, 0, 1,−1)}
Σ6 R{(0, 1,−1, 0, 0, 0)}

Table 8.1: Fixed subspaces of C6 for each axial subgroups.

8.3.6 Selection and stability of patterns

Close to the bifurcation point, there exists a polynomial map Φ(·, λ) such that the

change of variable:

V (r, z) =
3∑

l=1

[
clΨl(z)e

ik1·r + dlΨl(z)e
ik2·r

]
+

3∑

l=1

[
c̄lΨl(z)e

−ik1·r + d̄lΨl(z)e
−ik2·r

]

+Φ(c1, c2, c3, d1, d2, d3, c̄1, c̄2, c̄3, d̄1, d̄2, d̄3, λ) + h.o.t.

transforms equation (8.25) into

{
ċ1 = λc1 + c1

[
α1|c1|2 + α2

(
|c2|2 + |c3|2

)
+ α3|d1|2 + α4

(
|d2|2 + |d3|2

)]
+ h.o.t.

ḋ1 = λd1 + d1
[
α1|d1|2 + α2

(
|d2|2 + |d3|2

)
+ α3|c1|2 + α4

(
|c2|2 + |c3|2

)]
+ h.o.t.
(8.40)
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with (α1, α2, α3, α4) ∈ R4. Equations for ċj , ḋj , j = 2, 3, are obtained by cyclic

permutation.

Proof. See appendix B.3 for the computation of cubic equivariants. �

Remark 8.3.1.In order to simplify notations, we have normalized the normal form

equation (8.40) such that λ is the coefficient of the linear terms and not λ
µc

as for

normal form (8.31).

Theorem 8.3.2.The branches of solutions corresponding to the six maximal

isotropy subgroups satisfy the following equations:

• Σ1 : λ = −(α1 + α3)x
2 + o(x4),

• Σ2 : λ = −α1x
2 + o(x4),

• Σ3 : λ = −(α1 + 2α2 + α3 + 2α4)x
2 + o(x4),

• Σ4 : λ = −(α1 + 2α2)x
2 + o(x4),

• Σ5 : λ = −(α1 + α2 + α3 + α4)x
2 + o(x4),

• Σ6 : λ = −(α1 + α2)x
2 + o(x4).

The Σ1 branch is stable if and only if α2 + α4 < α1 + α3 and α1 < −|α3|. The Σ2

branch is stable if and only if α1 < 0, α2 < α1, α3 < α1 and α4 < α1. The Σ3

branch is stable if and only if α1 + 2α2 < −|α3 + 2α4| and α1 − α2 < −|α3 − α4|.
The Σ4 branch is stable if and only α1+2α2 < 0, α1 < α2 and α3+2α4 < α1+2α2.

Branches Σ5 and Σ6 are never stable.

Proof. The equation of each branch of solutions comes directly from table 8.1

and the amplitude equations (8.40). The stability of a branch requires the com-

putation of the Jacobian matrix of (8.40) evaluated on the branch and the study

of the corresponding eigenvalues. It is always possible to set the imaginary parts

of any solution (c1, c2, c3, d1, d2, d3) to zero, by moving the origin, and then choose

(c1, c2, c3, d1, d2, d3) to be real.

For the Σ1 branch for example, a straightforward calculation shows that the

eigenvalues of the Jacobian matrix evaluated at (0, 0, x, 0, 0, x) are:

µ1 = λ+ 3(α1 + α3)x
2 = 2(α1 + α3)x

2 + o(x4)

µ2 = λ+ (3α1 − α3)x
2 = 2(α1 − α3)x

2 + o(x4)

µ3 = µ4 = µ5 = µ6 = λ+ (α2 + α4)x
2 = (α2 + α4 − α1 − α3)x

2 + o(x4).

And the stability result automatically follows. �

8.3.7 Pictures of axial planforms Σ1 and Σ2

We have already explained that it is possible to interpret, in term of tuning surface,

planforms with D8-symmetry in the case of an isolated hypercolumn. This is why,
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(a) (b)

Figure 8.10: Axial planforms on the square lattice associated with D8-symmetry:

(a) square, (b) roll.

(a) (b)

Figure 8.11: Axial planforms on the square lattice associated with γ1 ·D8-symmetry:

(a) square, (b) roll.

(a) (b)

Figure 8.12: Axial planforms on the square lattice associated with γ2 ·D8-symmetry:

(a) square, (b) roll.
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(a) (b)

Figure 8.13: Axial planforms on the square lattice associated with D8-symmetry in

the visual field: (a) square, (b) roll.

(a) (b)

Figure 8.14: Axial planforms on the square lattice associated with γ1 ·D8-symmetry

in the visual field: (a) square, (b) roll.

(a) (b)

Figure 8.15: Axial planforms on the square lattice associated with γ1 ·D8-symmetry

in the visual field: (a) square, (b) roll.
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we will focus only on axial planforms Σ1 and Σ2 of theorem 8.3.1. For example, in

the case of Σ1, the corresponding planform can be written as:

a(r, z) = cΨ3(z) (cos(r1) + sin(r2))

with r = (r1, r2) and c a real constant. Planform Ψ3(z) has z = 0 as preferred

point in the Poincaré disk such that if we further have cos(r1)+sin(r2) > 0 then we

represent a dark region at r in terms of activity profile in V1 . On the other side,

planform −Ψ3(z) has z = ±(2k + 1)π/8 with k = 0 . . . 3 as preferred points in the

Poincaré disk such that when cos(r1) + sin(r2) < 0 we draw a star shape indicating

the presence of multiple orientations at r. In figure 8.10, we plot the axial plan-

forms corresponding to square and roll solutions on the plane and D8 solutions on

the Poincaré disk. In figures 8.11 and 8.12 we plot the planforms corresponding to

branches of solution with symmetry γ1 ·D8 and γ2 ·D8. Note that these planforms

are now contoured planforms as they only have one preferred orientation. In figures

8.13, 8.14 and 8.15 we plot the same planforms in the visual field coordinates, with

methods developped in [Bressloff 2001b]. Planforms in figures 8.11 and 8.12 have al-

ready been found by Bressloff et al in [Bressloff 2001a, Bressloff 2001b], whereas to

our best knowledge it is the first time that planform of type 8.10 is found. Planform

in figure 8.10 is a combination of both contoured and non-contoured regions, con-

toured regions having multiple orientations. In [Bressloff 2001a, Bressloff 2001b],

contoured planforms with multiple orientations have been found only in the case of

an hexagonal lattice.

8.3.8 Forced symmetry breaking

In this section we study the effect of taking ε 6= 0 in the bifurcation problem

analyzed in the previous sections. We therefore assume a square lattice in the plane

and the octagonal lattice in D. We wish to treat the problem as a weak perturbation

of the isotropic case. The symmetry group when ε = 0 is Γ and it acts as defined

in (8.39). The G symmetry of individual hypercolumns disappears when ε 6= 0

but something remains of it through the ”shift-twist” symmetries (8.8) which act

simultaneously on the ”spatial” and ”structure tensor” components. The action of

square symmetries ξ and δ introduced in (8.39) have therefore to be replaced by the

transformations R = ξρ and K = δκ, which act on (c1, c2, c3, d1, d2, d3) as follows

R(c1, c2, c3, d1, d2, d3) = (−d̄2, d̄1, d̄3,−c2, c1, c3)
K(c1, c2, c3, d1, d2, d3) = (−c1, c2, c3,−d̄1, d̄2, d̄3)

(8.41)

The continuous part Θ of the action in (8.39) remains unchanged. R,K and Θ

define a new action of D4 ⋉ T2 in R12 ≃ C6.

What is the effect of this perturbation on the bifurcation problem? In order to

give a full description of the perturbed bifurcation diagram one should consider the

codimension two bifurcation problem in the limit when both µ → µc and ε → 0,

which requires first to compute the eigenvalues of the linear operator Lµ,β,ε =
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DV F(0, µ, β, ε) (see equation (8.10) when (µ, ε) ∼ (µC , 0). For this we need to

know how the representation of D4 ⋉ T2 we just defined above decomposes into

irreducible components. There are two 4 dimensional irreducible representations

of this group which are called scalar and pseudoscalar because the former occur

naturally in the bifurcation analysis for scalar fields while the latter occur naturally

in the analysis of pseudoscalar fields1.

Lemma 8.3.5.The representation of D4 ⋉ T2 in R12 defined by Θ and (8.41)

is the sum of three real absolutely irreducible representations T1, T2, T3, each of

dimension 4, which act respectively on the subspaces E1 = {(c1, d2, c̄1, d̄2)}, E2 =

{(c2, d1, c̄2, d̄1)} and E3 = {(c3, d3, c̄3, d̄3)}. The representation T1 is pseudoscalar

while T2 and T3 are scalar (therefore equivalent).

Proof. The subspaces are clearly invariant by Θ = [θ1, θ2], R andK. We note Rj

andKj the restrictions of R andK on Ej for j = 1, 2, 3. Then a simple computation

using (8.41) shows that

[π/2,−π/2]R2 [−π/2, π/2] = R3 and [π/2,−π/2]K2 [−π/2, π/2] = K3.

This implies the equivalence of T2 and T3. Now, T3 is the ”standard” scalar abso-

lutely irreducible representation of dimension 4. There is however no such equiva-

lence with T1. Hence T1 is the pseudoscalar irreducible representation of dimension

4. �

This lemma provides the isotypic decomposition of the representation and it

implies that Lµ,β,ε admits a bloc diagonal decomposition with one 4×4 bloc L1
µ,ε =

λ(µ, ε)I4, λ ∈ R and λ(0, 0) = 0, corresponding to T1 and another 8 × 8 bloc

L2
µ,ε corresponding to the sum T2 + T3. We shall however not go further in this

bifurcation analysis here, it will be the subject of a forthcoming work.

We can instead look at the perturbation of the branches of equilibria listed in

Theorem 8.3.1 ”far” from the bifurcation. Given such an equilibrium P , its orbit

under the action of Γ consists in a disjoint union of tori which are isomorphic to

T2, resp. T, depending on whether its isotropy subgroup is finite, resp. contains

T. The number of connected components in the orbit is given by the action of G,
more precisely it is equal to nH = |G|/|H| where H is the part in G of the isotropy

subgroup of P . If this orbit is hyperbolic, in particular if the equilibrium is orbitally

stable, it persists as an invariant set for the equation when ε 6= 0 (small enough).

Moreover this invariant set is still filled with equilibria because the torus action is

not destroyed by the perturbation. However the nH tori are not anymore in the

same group orbit and therefore they correspond to different solutions.

Let us concentrate on the solutions of types Σ1 and Σ2. Note that Γ ∩ Σ1 =

Γ ∩ Σ2 = D8, hence nΣ1
= nΣ2

= 96/16 = 6. These six components correspond to

the hyperbolic planforms ±Ψ1(z), ±Ψ2(z) and ±Ψ3(z). These orientations persist

at leading order for the perturbed equilibria.

1A field u : R
2
→ R is pseudoscalar if a reflection S in the plane acts by S · u(x) = −u(Sx)),

see [Bosch Vivancos 1995]. The importance of this distinction in the context of neural fields was

first noticed by [Golubitsky 2003] in the ring model.
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One can say a little more. Looking for λ(µ, ε) = 0 and assuming that we have

λ′µ(0, 0) 6= 0, we have a curve of solutions µc(ε). For a fixed value of ε, a bifur-

cation occurs at µ = µc(ε), with kernel E1 and invariance by the pseudoscalar

representation T1. Therefore we expect branches of ”anti-rolls” and ”anti-squares”

to bifurcate [Bosch Vivancos 1995]. We recall that these planforms have isotropies

[π, 0]O(2) and [π, 0]D4 respectively. Here O(2) is generated by the translations

[0, θ2], θ2 ∈ S1, and K, while D4 is generated by R and K. A simple computation

shows that indeed, dimFix([π, 0]O(2)) = 1 and dimFix([π, 0]D4) = 1 (the Equiv-

ariant Branching Lemma can be applied), these axes belonging to the subspace E1,

while dimFix(O(2)) = dimFix(D4) = 2 and these planes are in E2 + E3.

8.4 Conclusion

In this chapter, we have analysed the spatialized network of interacting hyper-

columns introduced in chapter 3. Such a network is described by Wilson-Cowan

neural field equations set on an abstracted cortex R2 × SPD(2,R), where the fea-

ture space SPD(2,R) is the set of structure tensors. The coupling function of the

network is charaterized by local and long-range connections and can explicitly be

written down. Long-range connections modulate rather than drive the cortical ac-

tivity and can have an isotropic or anisotropic nature. We have only considered

structure tensors with determinant equal one for mathematical convenience and

identified the feature space to the Poincaré disk D. We addressed two complemen-

tary problems. The first one was to study the effect of weak anisotropic lateral

coupling on the cortical activity when the feature space is reduced to a bounded

compact disk Ω of the Poincaré disk. We have generalized the results obtained

by Bressloff et al. [Bressloff 2001a, Bressloff 2001b] for orientation to the context

of structure tensors. The second problem that we addressed in this chapter was

the spontaneous pattern formation for a model with E(2)×U(1, 1) symmetry. We

have restricted our study to solutions which are doubly periodic on the Euclidean

plane and periodic on the Poincaré disk. The visual planforms generated by our

spatialized network are correlated tuning surfaces across the visual cortex and are

the counterpart of the visual geometric hallucinations for orientation in the context

of textures.

An extension of this work would be to include external stimuli and see how

long-range connections modulate its effects. We think that our framework (center

manifold reduction close to the point of instability) is applicable if we further sup-

pose that the external input is sufficiently weak: amplitude of order O(β) if β is

the strength of the lateral coupling function. Of course it could be interesting to

include the effects of noise in our model and one approach would consist to add

space-dependent noise term to the external stimuli.

Another approach to the modelling of the primary visual cortex is to con-

sider model with no feature space [Bressloff 2003c, Blumenfeld 2006, Baker 2009,

Veltz 2011] where cortical maps are included into the equations. This re-
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quires understanding the mechanism of their formation. Wolf et al. [Wolf 1998,

Kaschube 2008, Kaschube 2010] have designed equations for the development of

cortical map of orientations and Bressloff-Oster [Oster 2006, Bressloff 2010] for oc-

ular dominance map. One can ask the question of formation of cortical map of

structure tensors during development. Then it would be very interesting to model

a structure tensor map embedded in the Riemannian manifold SPD(2,R) on a

growing cortex with different topology (disk, square and sphere) using an evolution

equation similar to those proposed in [Kaschube 2008, Bressloff 2010]. The maps

obtained from the model could be then compared to those obtained experimentally

by optical imaging technics and incorporated into a model of V1 with no feature

space.





Part III

Localized states on unbounded

neural field equations





Chapter 9

General introduction

We arrive at the last part of the Thesis, the one concerned with localized solutions

of unbounded neural field equations. Localized patterns arise everywhere in nature:

spots bundle magnetic field lines in ferromagnetic fluids, grass spots and rings de-

velop in deserts where resources are scarce or hexagon patches in cooling lava fields

(see figure 9.1). Spatially localized structures have also be found in some cortical

activity recordings (see figure 9.2).

Figure 9.1: Examples of natural patterns: desert grass spots and rings, hexagon

patches form in cooling lava fields and ferrosolitions.

In the past decades there has been a great deal of interest in the ori-

gin and properties of these spatially localized structures in differential equa-

tions [Amari 1977, Champneys 1998, Pinto 2001b, Laing 2002, Coombes 2005b,

Guo 2005b, Burke 2006]. The equation that is the most studied in pattern for-

mation is the well-known generalized Swift-Hohenberg equation

∂tu(r, t) = −(1 +△)2u(r, t)− µu+ f(u(r, t)), ∀r ∈ R
n (9.1)

with either cubic/quintic or quadratic/cubic nonlinearities f . For this particular

example, the presence of localized steady states is a dynamical property: a bifurca-

tion from the trivial state occurs for some value of the control parameter µ. These

localized solutions are then viewed as homoclinic orbits to the trivial state.
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Figure 9.2: Cortical activity in the primary visual cortex, redrawn from

[Angelucci 2002, Lund 2003].

In the neuroscience community, the canonical example is the unbounded Wilson-

Cowan neural field equation (see chapter 2):

τ
d

dt
V (r, t) = −V (r, t) +

∫

Rn

W (r, r′)S(V (r′, t))dr′. (9.2)

The study of localized solutions of equation (9.2) is an old and recurrent topic in the

mathematical neuroscience community, where a number of different coupling func-

tions W and firing-rate functions S have been used. The firing rate function can

be an Heaviside step function [Amari 1977, Pinto 2001b, Coombes 2005b], a piece-

wise linear function [Guo 2005b, Guo 2005a] or a smooth function of sigmoidal type

[Laing 2002, Coombes 2003, Faugeras 2008, Elvin 2010]. The connectivity function

is always assumed to have a so-called “Mexican hat” or so-called “wizard hat”

shape. Partial differential equation (PDE) methods [Laing 2002, Laing 2003a] can

be employed to transform the neural field equation (9.2) into a partial differential

equation involving high-order spatial derivatives. Interestingly spatially localized

solutions of persistent activity have been linked to working memory (the tempo-

rary storage of information within the brain). In many models of working memory,

transient stimuli are encoded by feature-selective persistent neural activity. Such

stimuli are imagined to induce the formation of a spatially localized state of persis-

tent activity (which coexists with a stable uniform state).

For n = 1, Laing et al. [Laing 2002] numerically investigated the integro-

differential equation (9.2) with

S(x) = 2 exp
(
−r/(x− θ)2

)
H(x− θ) (9.3)
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where H is the Heaviside step function and

W (x) = e−b|x|(b sin |x|+ cosx). (9.4)

The parameter b governs the rate at which oscillations in W decay with distance

from x = 0, the firing rate function S has threshold θ and slope r. In [Laing 2002],

numerical simulations of (9.2) show the existence of spatially localized states. Nu-

merical continuation techniques were used to follow, as the parameter b is var-

ied, branches of localized solutions of (9.2) and so-called “snaking” behaviour

was found. This remarkable phenomenon, in which a series of fold bifurcations

give rise to a hierarchy of localized solution branches with increasing number of

bumps, has been studied extensively for the canonical Swift-Hohenberg equation

[Woods 1999, Burke 2007a, Burke 2007b, McCalla 2010]. Numerical investigations

of [Laing 2002] indicate that localized solutions of equation (9.2) do not come into

existence through a reversible-Hopf bifurcation from a constant solution as is the

case for the Swift-Hohenberg equation. Although their system is reversible, the

shape of the nonlinearity function S in equation (9.3) (S is not analytical at x = 0)

renders impossible the application of tools from bifurcation theory. More recently,

Elvin et al [Elvin 2010] used the Hamiltonian structure of equation (9.2) and de-

veloped numerical techniques to find all homoclinic orbits of the system.

In this final part, we will study equation (9.2) for n = 1 and n = 2 with a

sigmoidal firing-rate function for specific type of connectivity function. The case

n = 1 will be the subject of chapter 10 and n = 2 of chapter 11. The shape of the

solutions in the scalar case is given in figures 10.4 and 10.5. For two dimensional

patterns, things can get more interesting. There are spots as seen in figures 9.1 and

9.3(a), rings (figure 9.1). Spots can also be concentrated on a hexagonal lattice to

produce hexagon patches as seen in figure 9.3(b).

(a) Redrawn from Lloyd and Sandstede

[Lloyd 2009].

(b) Redrawn from Lloyd et al.

[Lloyd 2008].

Figure 9.3: Left: spot. Right: patch of hexagons.

In chapter 11, we will be only interested in radially symmetric solutions of

equation (9.2) and let the analysis of localized solutions concentrated on a hexagonal
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lattice for future research. Note that spot solution in planar neural field equations

has been studied in [Laing 2003a, Laing 2003b, Folias 2004, Owen 2007] with an

Heaviside firing-rate function. The aim of chapter 11 is to extend some results

[Scheel 2003, Lloyd 2009, McCalla 2010] that have been obtained for the planar

Swift-Hohenberg equation to neural field equation set on the Euclidean plane. At

the end of chapter 11, we further extend the results in the case where the neural

field equation is set on the Poincaré disk.
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The main motivation of this chapter is to complete the study of local-

ized states of neural field equations on the unbounded real line initiated in

[Laing 2002, Elvin 2010] by showing that these states are bifurcated branches of

solutions emerging from the trivial state of equation (9.2) through reversible Hopf

bifurcation with 1:1 resonance when the slope of the sigmoidal function is increased.

To achieve this goal, we work with a wizard hat coupling function w(x) (difference

of exponential functions) and a smooth firing rate function which has non-vanishing

derivatives at the fixed point of equation (9.2). As previously shown for the Swift-

Hohenberg equation on the real line in [Burke 2007b], we calculate the normal form

coefficients [Iooss 1993, Haragus 2010] for the reversible 1:1 Hopf bifurcation and

find a condition on the different parameters which ensures the existence of a pair of

homoclinic branches. We present results on the stability of the bifurcating branches.
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We use numerical continuation in order to extend the study with an in-

vestigation of snaking behaviour; these methods have been applied extensively

for the Swift-Hohenberg equation [Burke 2006, Burke 2007a, Champneys 1998,

Lloyd 2009, McCalla 2010, Woods 1999] and, in a few isolated cases for the neural

field equation [Laing 2002, Laing 2003a, Coombes 2003]. Here, we use the con-

tinuation package AUTO [Doedel 1997] with the extension HOMCONT to follow

homoclinic cycles corresponding to localized solutions under variation of system

parameters. We confirm the solution structure determined analytically in this pa-

per and reproduce previously observed snaking behaviour. Further, we identify the

exact regions of parameter space for which localized solutions persist in terms of

two parameters governing the shape of the nonlinearity S and a third parameter

governing the shape of the connectivity function w.

This chapter is organized as follows. In section 10.1 our model and notations

are introduced. We explain in section 10.2 how stationary solutions of the neural

field equation are equivalent to homoclinic orbits in a related fourth order ordinary

differential equation and we show the existence of branches of localized solutions

using normal form theory. Section 10.3 focuses on the stability of these branches of

solutions. Finally, in section 10.4 we build on the theoretical results with a numerical

investigation of localized solutions under the variation of three parameters.

10.1 Wizard hat model

We introduce a bifurcation parameter µ > 0 in the neural field equation (9.2)

d

dt
v(x, t) = −v(x, t) +

∫ +∞

−∞
w(x− y)S(µv(y, t))dy,

= F(v(x, t), µ).

(10.1)

The firing rate function is either taken to be the sigmoidal function

S(x) =
1

1 + e−x+θ
with θ > 0 (10.2)

or its shifted version via:

S0(x) =
1

1 + e−x+θ
− 1

1 + eθ
. (10.3)

We define a stationary solution to be time independent solution of (10.1), thus

satisfies the equation:

v(x) =

∫ +∞

−∞
w(x− y)S(µv(y))dy. (10.4)

For a solution of (10.4), we define its region of excitation to be the set:

Rθ
µ(v) = {x ∈ R | µv(x) > θ}.

Following Amari’s definition [Amari 1977], a localized solution of (10.4) is a pat-

tern v(x) whose region of excitation consists of a finite disjoint union of bounded

connected intervals and which decays to zero as x goes to infinity.
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10.1.1 Connectivity function

In order to well define the convolutional part of the right hand side of equation

(10.1), we have to take a connectivity function at least integrable over the real line.

If w belongs to L1(R), the space of integrable functions on R, we can define its

Fourier transform ŵ as:

ŵ(ξ) =

∫

R

w(x)e−iξxdx.

If we further suppose that ŵ ∈ L1(R), then the inversion formula applies and we

have:

w(x) =
1

2π

∫

R

ŵ(ξ)eiξxdξ.

We now introduce some conditions on the connectivity function.

Hypothesis 10.1.1. We suppose that the following conditions are satisfied:

(i) w, ŵ ∈ L1(R),

(ii) w(0) > 0,

(iii) ŵ0
def
= ŵ(0) < 0,

(iv) there exists ξc > 0 such that ŵc
def
= ŵ(±ξc) = max

ξ∈R
ŵ(ξ) > 0,

(v) ŵ(ξ) = R(ξ2)
Q(ξ2)

with R,Q polynomial in ξ2 satisfying degR < degQ.

The first condition tells us that the connectivity function and its Fourier trans-

form are integrable over the real line such that we can apply the inversion formula

for Fourier transform. The second condition ensures that the connectivity function

is locally excitatory and the third condition that it is laterally inhibitory. The fourth

condition says that ŵ(ξ) has two global maxima at ±ξc. The condition ŵc > 0 is

necessary for the stability analysis developed in 10.1.2. Finally, the last condition

ensures that the partial differential equation (PDE) method conducted in 10.2.1

can be applied.

In order to fix ideas, from now on, we will work with the following connectivity

function (as used in [Guo 2005b, Guo 2005a]):

w(x) = b1e
−σ1|x| − b2e

−σ2|x|, (10.5)

with Fourier transform given by

ŵ(ξ) =

∫

R

w(x)e−iξxdx = 2

(
b1σ1

σ21 + ξ2
− b2σ2
σ22 + ξ2

)
. (10.6)

The real constants (b1, b2, σ1, σ2) are chosen such that all the conditions in Hypoth-

esis 10.1.1 are satisfied.
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Hypothesis 10.1.2. We assume that ξc = 1. We impose this condition in order

to fix the period to 2π of the critical modes which will bifurcate from the trivial

state (see 10.1.2). Now, if we define

Γ1 = 2σ1σ2(b1σ2 − b2σ1),

Γ2 = 2(b1σ1 − b2σ2),
(10.7)

then ŵc can be written:

ŵc =
Γ1 + Γ2

1 + σ21 + σ22 + σ21σ
2
2

. (10.8)

The condition ξc = 1, which is equivalent to d
dξ ŵ(ξ)|ξ=1 = 0, reduces to

Γ1(σ
2
1 + σ22 + 2) + Γ2(1− σ21σ

2
2) = 0. (10.9)

It is a straightforward computation to see that equations (10.8) and (10.9) imply

that:

σ21σ
2
2 −

Γ1

ŵc
= 1

σ21 + σ22 −
Γ2

ŵc
= −2.

(10.10)

10.1.2 Linear stability analysis of the trivial state

The aim of this subsection is to show that equation (10.1) has always a unique trivial

state that undergoes a bifurcation when increasing the slope µ of the sigmoidal

function. We present the results for both shifted and unshifted sigmoidal function.

10.1.2.1 Unshifted sigmoidal function S

Equation (10.1) has the trivial solution v0(µ) independent of time and space that

satisfies:

v0(µ) = ŵ0S(µv0(µ)) for all µ > 0.

The linearized equation around this trivial solution is:

∂tu(x, t) = −u(x, t) + µS′(µv0(µ))
∫

R

w(x− y)u(y, t)dy. (10.11)

Looking at perturbation of the form u(x, t) = eσteiξx, we obtain the following

dispersion relation:

σ(ξ) = −1 + µS′(µa0(µ))ŵ(ξ). (10.12)

Lemma 10.1.1. There exists a unique solution (µc, vc = v0(µc)) of:

{
vc = ŵ0S(µcvc)

1 = µcS
′(µcvc)ŵc.

(10.13)
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It is possible to express (µc, vc) with the following analytic formulas:

µc =
ŵ2
0

vcŵc(ŵ0 − vc)
,

vc =

ŵ0ŵcW

(
−ŵ0e

−−ŵ0+θŵc
ŵc /ŵc

)

ŵcW

(
−ŵ0e

−−ŵ0+θŵc
ŵc /ŵc

)
− ŵ0

.

(10.14)

W is the Lambert function which satisfies W (x)eW (x) = x.

Proof. The proof is given in appendix C.1. �

From this Lemma, we deduce that for all µ < µc the trivial solution v0(µ) is

stable.

10.1.2.2 Shifted sigmoidal function S0

In the case of the shifted sigmoidal function defined in equation (10.3), the null

solution v0 = 0 is clearly a solution of (10.4) for all µ > 0. Under the condition

ŵ0 < 0 it is the unique solution independent of time and space of (10.4). Following

the same lines as for the unshifted sigmoidal function, for perturbation of the form

u(x, t) = eσteiξx, we obtain for the dispersion relation:

σ(ξ) = −1 + µS′
0(0)ŵ(ξ). (10.15)

Then the critical value µc is given by:

µc =
1

S′
0(0)ŵc

, (10.16)

and for all µ < µc the null solution is stable.

10.1.2.3 Choice of the sigmoidal function

In order to simplify our notations, from now on, we work with the shifted sigmoidal

function S0 and denote for all k ≥ 1, S
(k)
0 (0) = sk. Of course, all the results that

we are going to present in the following sections are easily transportable to the

unshifted case.

10.1.3 Bifurcation of the trivial state for the full system

The trivial state v0 = 0 undergoes a bifurcation at the critical value µ = µc. Fur-

thermore, as equation (10.1) is equivariant with respect to the translations and the

symmetry (x → −x, v → v), the bifurcation is a steady bifurcation with O(2)-

symmetry [Chossat 2000, Haragus 2010]. We can apply the Lyapunov-Schmidt de-

composition (see [Chossat 2000] for a review) on the Hilbert space X = L2
per[0, 2π],

the set of 2π-periodic square integrable functions, in order to get a reduced equation
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on the two-dimensional space Span(eix, e−ix). If we denote λ = µ − µc, then the

neural field equation (10.1) is transformed into:

∂tv(x, t) = Lµcv(x, t) +R(v(x, t), λ) (10.17)

where Lµc and R are defined by

Lµcv(x, t) = −v(x, t) + µcs1

∫

R

w(x− y)v(y, t)dy

R(v(x, t), λ) =

∫

R

w(x− y) [S0 ((λ+ µc)v(y, t))− µcs1v(y, t)] dy

and

f0(X,λ) = S0 ((λ+ µc)X)− µcs1X. (10.18)

It is straightforward to check that R(0, 0) = DvR(0, 0) = 0. We can write each

solution of (10.17) on the form:

v(x, t) = Z(t)eix + Z(t)eix +Φ(Z(t), Z(t), λ).

The reduced equation is then:

Ż(t) =
(
νλ+ χ|Z(t)|2

)
Z(t) + h.o.t. (10.19)

Lemma 10.1.2. The coefficients of the reduced equation (10.19) are:

ν =
1

µc
,

χ =
µ3c
s1

[
s3
2

+
µcs

2
2(19Γ1 + 4Γ2)

18

]
.

(10.20)

Proof. The computation of the coefficients is postponed in appendix C.2. �

It follows that close to the bifurcation point, for λχ < 0, the amplitude Z(t) is

given by:

Zω(t) =

√
− λ

µcχ
eiω +O(|λ| 32 )

for any phase ω on the circle S1. This phase can be identified to the translation

invariance of equation (10.1). The bifurcation to this spatially periodic branch is

subcritical (λ < 0) in χ > 0 and supercritical (λ > 0) in χ < 0.

10.2 Reversible Hopf bifurcation with 1:1 resonance

10.2.1 PDE methods

We assume that v → v(·, t) ∈ C1(R+,H4(R)) is a solution of (10.17), where H4(R)

is the Sobolev space defined as:

H4(R) = {u ∈ L2(R) | ∀k ≤ 4 ∂kxku ∈ L2(R)}.
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Under this assumption, an application of Fourier transform in (10.17) gives:

(∂t + 1) v̂(ξ, t) = ŵ(ξ)
[
̂f0(v, λ)(ξ, t) + µcs1v̂(ξ, t)

]
.

Using the inverse Fourier transform we obtain:

(∂t + 1)Lµc(v) = M(v, λ) (10.21)

with Lµc and M defined by

Lµc(v) = (σ21σ
2
2 − Γ1µcs1)v − (σ21 + σ22 − Γ2µcs1)∂

2
x2v + ∂4x4v

and

M(v, λ) = Γ1f0(v, λ)− Γ2∂
2
x2 [f0(v, λ)] .

From equations (10.10) and the fact that µc = (s1ŵc)
−1, the coefficients of Lµc

reduce to:

σ21σ
2
2 − Γ1µcs1 = 1,

σ21 + σ22 − Γ2µcs1 = −2.

Note that equation (10.21) forms a fourth order reversible dynamical system in

space: the equation is invariant under spatial reflection (x→ −x, v → v). We look

for stationary solutions of equation (10.21) which satisfy

{
Lµc(v) = M(v, λ)

v ∈ H4(R).
(10.22)

The spatial coordinate x is recast as the time variable and the differential equa-

tion (10.22) is now equivalent to a four-dimensional system of first order ordinary

differential equations (ODEs) which can be written:

U ′ = AU +R(U, λ) (10.23)

with U = (u1, u2, u3, u4)
T (note thet u1 = v) and

A =




0 1 0 0

0 0 1 0

0 0 0 1

−1 0 −2 0


 , R(U, λ) =




0

0

0

R4 (u1, u2, u3, u4, λ)


 .

The fourth component of the nonlinear function R is given by

R4 (u1, u2, u3, u4, λ) = Γ1f0(u1, λ)− Γ2

[
(λ+ µc)

2 u22S
′′
0 ((λ+ µc)u1)− µcs1u3

+ (λ+ µc)u3S
′
0 ((λ+ µc)u1)

]
.

(10.24)
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Furthermore, we have the following Taylor expansion of R at (U = 0R4 , λ = 0)

R1,1(U, λ) = λs1 (0, 0, 0,Γ1u1 − Γ2u3)
T

R2,0(U,U) =
µ2cs2
2

(
0, 0, 0,Γ1u

2
1 − Γ2(2u

2
2 + 2u1u3)

)T

R3,0(U,U, U) =
µ3cs3
6

(
0, 0, 0,Γ1u

3
1 − Γ2(6u1u

2
2 + 3u21u3)

)T
.

10.2.2 Reversible-Hopf bifurcation

The associated linear problem of equation (10.23) is

U ′ = AU +R1,1(U, λ).

Eigenvalues of the linear problem satisfy the characteristic equation:

X4 + (2 + s1λΓ2)X
2 + 1− s1λΓ1 = 0. (10.25)

To the leading order in λ the discriminant of equation (10.25) seen as a quadratic

equation in X2 is

∆(λ) = 4s1(Γ1 + Γ2)λ+ o(λ).

From equation (10.8), we have sign(Γ1 + Γ2) = sign(ŵc) > 0. Then, for λ < 0

there exists four complex eigenvalues with real part symmetric with respect to the

imaginary axis, such that the trivial state is hyperbolic with two stables eigenvalues

and two unstable eigenvalues. In contrast, for λ > 0 all the eigenvalues lie on the

imaginary axis and the trivial state is no longer hyperbolic. At λ = 0, there is a

pair of imaginary eigenvalues ±i of double multiplicity. The bifurcation at λ = 0 is

thus a Hopf bifurcation in a reversible system with 1:1 (spatial) resonance.

10.2.3 Normal form theory

In the following, we adopt the formalism of [Iooss 1993, Haragus 2010] to study the

reversible Hopf bifurcation. We start by constructing a suitable basis of R4 and we

denote S the symmetry:

S =




1 0 0 0

0 −1 0 0

0 0 1 0

0 0 0 −1


 with S2 = IR4 .

Let ζ0 = (1, i,−1,−i)T be an eigenvector of A which satisfies:

(A− iIR4)ζ0 = 0 and Sζ0 = ζ̄0

and let ζ1 = (0, 1, 2i,−3)T be a generalized eigenvector that is:

(A− iIR4)ζ1 = ζ0 and Sζ1 = −ζ̄1.
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Then (Reζ0, Imζ0, Reζ1, Imζ1) is a basis of R4 with ζ0, ζ1 generalized eigenvec-

tors of A. In this basis, we represent a vector U ∈ R4 by (A,B, Ā, B̄),

U = Aζ0 +Bζ1 +Aζ0 +Bζ1

with A,B ∈ C.

Lemma 10.2.1 (Normal form). If we rewrite equation (10.23) as

U ′ = AU +R(U, λ) = F(U, λ)

then the vector field F is of class Ck, k ≥ 3, in a neighborhood of (0, 0) ∈ R4 × R

satisfying F(0, 0) = 0 and such that S anticommutes with F. For any integer p,

2 ≤ p ≤ k, there exist neighborhoods V1 and V2 of 0 in R4 and R, respectively, and

for any λ ∈ V2 there is a polynomial map Ψ(·, λ) : R4 → R4 of degree p with the

following properties:

1. The coefficients of the monomials of degree q in Ψ(·, λ) are functions of λ of

class Ck−q,

Ψ(0, 0, 0, 0, 0) = 0, ∂(A,B,Ā,B̄)Ψ(0, 0, 0, 0, 0) = 0,

and

SΨ(A,B, Ā, B̄, λ) = Ψ(Ā,−B̄, A,−B, λ).

2. For (A,B, Ā, B̄) ∈ V1, the changes of variables

U = Aζ0 +Bζ1 +Aζ0 +Bζ1 +Ψ(A,B, Ā, B̄, λ)

transforms the equation (10.23) into the normal form:

dA

dt
= iA+B + iAP

(
|A|2, i

2
(AB̄ − ĀB), λ

)
+ ρA(A,B, Ā, B̄, λ)

dB

dt
= iB + iBP

(
|A|2, i

2
(AB̄ − ĀB), λ

)
+AQ

(
|A|2, i

2
(AB̄ − ĀB), λ

)

+ ρB(A,B, Ā, B̄, λ)

(10.26)

where P and Q are real-valued polynomials of degree p − 1 in (A,B, Ā, B̄).

The remainders ρA and ρB are of class Ck, and satisfy

ρA(Ā,−B̄, A,−B, λ) = −ρA(A,B, Ā, B̄, λ),
ρB(Ā,−B̄, A,−B, λ) = ρB(A,B, Ā, B̄, λ)

with the estimate

|ρA(A,B, Ā, B̄, λ)|+ |ρB(A,B, Ā, B̄, λ)| = o ((|A|+ |B|)p) .
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Proof. See Haragus-Iooss [Haragus 2010]. �

Moreover, the expansions of P and Q in the normal form are given by:

P

(
|A|2, i

2
(AB̄ − ĀB), λ

)
= αλ+β|A|2+ iγ

2

(
AB̄ − ĀB

)
+0
(
(|λ|+ (|A|+ |B|)2)2

)

(10.27)

Q

(
|A|2, i

2
(AB̄ − ĀB), λ

)
= c11λ+c

0
3|A|2+

ic

2

(
AB̄ − ĀB

)
+0
(
(|λ|+ (|A|+ |B|)2)2

)
.

(10.28)

We wish to determine the different coefficients that appear in the expansions of

P and Q. The expression of each coefficient is given in the following lemma.

Lemma 10.2.2. The coefficients α, β, γ, c11, c
0
3 and c in the expansions of P and

Q in equations (10.27) and (10.28) are

α =
s1(Γ2 − Γ1)

8
,

β =
µ3c
32

[
3s3(Γ2 − Γ1)−

µcs
2
2(4Γ

2
2 + 187Γ2

1 + 29Γ1Γ2)

27

]
,

γ = −µ
4
cs

2
2(36Γ

2
1 + 4Γ1Γ2 + 7Γ2

2)

162
,

c11 = −s1(Γ1 + Γ2)

4
,

c03 = −µ
3
c(Γ1 + Γ2)

4

[
s3
2

+
µcs

2
2(19Γ1 + 4Γ2)

18

]
,

c =
µ3c
16

[
s3(Γ2 − Γ1)−

µcs
2
2(41Γ

2
1 − 209Γ1Γ2 − 52Γ2

2)

27

]
.

The proof of lemma 10.2.2 is let in appendix C.3. We can note that, as

expected, χ =
c0
3

µcc11
. Moreover, the coefficients are in agreement with those

computed for the Swift-Hohenberg equation with quadratic/cubic nonlinearity

[Burke 2006, Burke 2007a, Burke 2007b].

10.2.4 Existence of homoclinic orbits

We are now able to state the main result of this part.

Theorem 10.2.1 (Existence). If c03 < 0 and λ < 0, in a neighborhood of the sym-

metric equilibrium a0 and for sufficiently small λ, there is a pair of reversible ho-

moclinic orbits to a0.

Proof. The proof is a direct application of Theorem 3.21 in [Haragus 2010] with

c11 < 0 in Lemma 10.2.1. �

Under the conditions stated in the theorem, the homoclinic orbits of the normal

form (10.26) truncated at cubic order are given in polar coordinates A = r0e
i(t+ϕ0),
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B = r1e
i(t+ϕ1) by

r0(t) =

√
−2c11λ

c03
sech

(
t
√
c11λ

)
, r1 = |r′0|

ϕ1 − ϕ0 ∈ {0, π}, ϕ0(t) = αλt− 2β
√
c11λ

c03
tanh

(
t
√
c11λ

)
+ φ.

For sufficiently small λ, λ < 0, the localized solution of (10.1) can be approximated

by

a(x) = 2

√
−2c11λ

c03
sech

(
t
√
c11λ

)
cos(x+ φ) +O(λ). (10.29)

This family of localized solutions is parametrized by φ ∈ S1, which controls the

phase of the pattern within the sech (·) envelope. Within the asymptotics this phase

remains arbitrary, however it is known that this is no longer the case once terms

beyond all orders are included [Melbourne 1998, Kozyreff 2006, Chapman 2009].

These terms break the rotational invariance of the envelope equation and result in

a weak flow on the circle S1. This flow in turn selects specific values of the phase

φ = 0 and φ = π. Indeed these phases are the only that preserve the reversbility

symmetry (x → −x, v → v). It follows that the two branches of homoclinic orbits

given in Theorem 10.2.1 or equivalently the two branches of localized states bifurcate

subcritically from λ = 0 (c11 < 0 in Lemma 10.2.1). This is illustrated in Figure

10.2. Along the φ = 0 branch, also called up branch, the midpoint (x = 0) of the

localized state is always a local maximum, while along the φ = π branch, also called

down branch, the midpoint is always a local minimum.

Finally, as χ =
c0
3

µcc11
and c11 < 0, we deduce that the condition c03 < 0 is equivalent

to χ > 0. From the discussion in 10.1.3, there is also a subcritical bifurcation from

the trivial state of a branch of spatially periodic solutions at λ = 0 of equation

(10.1).

10.3 Stability of localized solutions

10.3.1 Asymptotic stability

In this section we denote Uµ
0 ∈ H4(R) a localized solution of equation (10.4) for a

fixed value µ of the slope of the sigmoidal function. We linearize equation (10.1)

around this localized solution:

∂ta(x, t) = −a(x, t) + µ

∫

R

w(x− y)S′
0(µU

µ
0 (y))a(y, t)dy.

We look for perturbation of the form a(x, t) = p(x)eσt, with p ∈ H4(R), and obtain

(σ + 1) p(x) = µ

∫

R

w(x− y)S′
0(µU

µ
0 (y))p(y)dy. (10.30)
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Due to the translation invariance of equation (10.1) (σ = 0, ∂xU
µ
0 ) is always solution

of the above equation. It follows that Uµ
0 cannot be asymptotically stable. Never-

theless, it is possible to define a notion of stability adapted to this problem as we will

now show. Let Tρ be the transformation on u ∈ H4(R) such that Tρu(x) = u(x+ρ)

(ρ ∈ R). Then Tρ commutes with equation (10.1) for all ρ ∈ R. We define the

“T -orbit” of the stationary localized solution Uµ
0 ∈ H4(R) of equation (10.4) by

O = {TρUµ
0 | ρ ∈ R}. (10.31)

For all u, v ∈ L2(R), we set:

〈u, v〉 =
∫

R

u(x)v(x)dx. (10.32)

We can now define the normal slice N to O at Uµ
0 as the set:

N = {v ∈ L2(R) | 〈∂xUµ
0 , v〉 = 0} ⊂ L2(R). (10.33)

Remark 10.3.1.Note that Uµ
0 ∈ N . Indeed:

〈∂xUµ
0 , U

µ
0 〉 =

∫

R

∂xU
µ
0 (x)U

µ
0 (x)dx =

1

2

[
(Uµ

0 (x))
2
]+∞

−∞
= 0,

because Uµ
0 ∈ L2(R).

Then we have the following decomposition.

Lemma 10.3.1. Let V a neighbourhood of Uµ
0 in L2(R), then any V ∈ V can be

decomposed into

V = Tρ (Uµ
0 + Y ) (10.34)

where Y ∈ N and ρ ∈ R.

Proof. For V ∈ V, we define the function f as

f : ρ→ f(ρ) = 〈T−ρU
µ
0 , V 〉 =

∫

R

Uµ
0 (x− ρ)V (x)dx. (10.35)

(i) We know that C∞
c (R), the set of differentiable functions of compact support,

is dense in L2(R) [Brezis 1983]. Then, there exists a sequence Vn ∈ C∞
c (R),

such that Vn −→
n→+∞

V in L2(R). We define fn as

fn : ρ→ fn(ρ) = 〈T−ρU
µ
0 , Vn〉. (10.36)

For all ρ ∈ R, we have

|fn(ρ)− f(ρ)| ≤ ‖Uµ
0 ‖L2(R)‖Vn − V ‖L2(R) −→

n→+∞
0,

where ‖ · ‖L2(R) is the norm associated to the scalar product (10.37). This

implies that fn uniformaly converges to f . Because Vn ∈ C∞
c (R), we deduce

that fn(ρ) −→
ρ→±∞

0 and then f(ρ) −→
ρ→±∞

0.
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(ii) Moreover, from the Sobolev inequality [Brezis 1983], the injection Hm(R) ⊂
Cm−1(R) with m ≥ 1 , is continuous. Then Uµ

0 ∈ H4(R) ⊂ C3(R) ⊂ L1
loc(R)

where L1
loc(R) is the space of functions which are integrable on any compact

subset of R. As Uµ
0 (x) = Uµ

0 (−x), it is straightforward that fn(ρ) = Vn ∗
Uµ
0 (ρ), where ∗ is the convolution on the real line. From the property of the

convolution, fn is C∞ on R for all n ≥ 1 and it is easy to see that:

f ′n(ρ) = −〈T−ρ∂xU
µ
0 , Vn〉.

For all ρ ∈ R, we have

|f ′n(ρ) + 〈T−ρ∂xU
µ
0 , V 〉| ≤ ‖∂xUµ

0 ‖L2(R)‖Vn − V ‖L2(R) −→
n→+∞

0.

This implies that f ′n uniformly converges to the function ρ→ −〈T−ρ∂xU
µ
0 , V 〉.

As a consequence f is C1 and f ′(ρ) = −〈T−ρ∂xU
µ
0 , V 〉.

(iii) We can now complete the proof of the lemma by introducing the function g:

g(ρ) = 〈T−ρU
µ
0 − V, T−ρU

µ
0 − V 〉 = ‖Uµ

0 ‖2L2(R)
+ ‖V ‖2

L2(R)
− 2f(ρ).

We know that g is C1(R) and g(ρ) −→
ρ→±∞

‖Uµ
0 ‖2L2(R)

+ ‖V ‖2
L2(R)

. This implies

that g has a minimum at ρ = ρ0 ∈ R where g′(ρ0) = 0. This is equivalent to

0 = f ′(ρ0) = −〈T−ρ0∂xU
µ
0 , V 〉 = −〈∂xUµ

0 , Tρ0V 〉.

We deduce that Tρ0V −Uµ
0 ∈ N , this proves the existence of Y ∈ N such that

Tρ0V = Uµ
0 + Y .

�

We can apply the previous Lemma and decompose any solution V ∈ V of equa-

tion (10.1) as

V (x, t) = Tρ(t) (Uµ
0 (x) + Y (x, t))

where t → ρ(t) ∈ C1(R) and t → Y (x, t) ∈ C1(R,N ). Replacing V (x, t) into

equation (10.1) and thanks to the translational equivariance of F , we obtain the

new equation

∂tY (x, t) + ρ′(t)∂xU
µ
0 (x) + ρ′(t)∂xY (x, t) = F(Uµ

0 (x) + Y (x, t), µ). (10.37)

We shall now decompose equation (10.37) into two parts: one part on the tan-

gent space TUµ
0
O = Span(∂xU

µ
0 ), which will solve ρ′(t), and the remaining part in

the normal slice N to O at Uµ
0 , which will contain the relevant information about

the dynamics near O. We define a projection P in H4(R) onto TUµ
0
O by

Pu = 〈u, ∂xUµ
0 〉

∂xU
µ
0

‖∂xUµ
0 ‖

(10.38)
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Figure 10.1: Decomposition of the flow near the relative equilibrium Uµ
0 .

Let us now apply P to equation (10.37). Then, since Y ⊥ TUµ
0
O, we obtain the

following equation

ρ′(t) (1 + P∂xY (x, t)) = PF(Uµ
0 (x) + Y (x, t), µ). (10.39)

Since Uµ
0 + Y is taken in a neighbourhood of Uµ

0 , Y is small in norm, such that

the left hand side of equation (10.39) is invertible. Therefore ρ′(t) can be solved in

function of Y and µ:

ρ′(t) = (1 + P∂xY (x, t))−1 PF(Uµ
0 (x) + Y (x, t), µ) for Y ∈ V ∩ N .

It follows that ρ is completely determined as a function of Y and µ.

The remaining equation in the normal slice N reads as

∂tY (x, t) = (Id− P)
[
F(Uµ

0 (x) + Y (x, t), µ)− ρ′(t)∂xY (x, t)
]
,

= G(Y (x, t), µ).
(10.40)

This decomposition is illustrated in Figure 10.1. It follows that the dynamics

near the relative equilibrium Uµ
0 is completely determined by the asymptotic be-

havior of the solutions of (10.40). If in particular Y = 0 is asymptotically stable for

(10.40), then it follows from the Lemma 10.3.1 that the Tρ-orbit O is an attractor

for equation (10.1). This justifies the following definition.

Definition 10.3.1. A localized solution Uµ
0 ∈ H4(R) of equation (10.1) is orbitally

stable, if for any initial condition of the form V0 = Tρ0(Uµ
0 + Y0), ρ0 ∈ R and

Y0 close to O in N , the solution V (t) of (10.1) such that V (0) = V0 satisfies

V (t) = Tρ(t)(Uµ
0 + Y (t)) with Y (t) solution of equation (10.40) and Y (t) −→

t→+∞
0 in

N .

If the spectrum of the linearized operator DY G(Y, µ)|Y=0 lies entirely in the half

plane {ℜ(z) ≤ ξ < 0}, the localized solution Uµ
0 ∈ H4(R) is orbitally stable. For

µ < µc, we have already seen that the trivial solution a0 = 0 is asymptotically stable
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.

.
µµcµL µTd

µTu
0

||U ||

Figure 10.2: Bifurcation diagram for branches of localized stationary solutions of

(10.1) with their stability. Solid (dashed) lines indicates stable (unstable) states.

Grey (black) indicates the down (up) branch.

for the full neural field equation (10.1). The bifurcation at µ = µc is subcritical

for the reduced system (10.22) such that the two branches of homoclinic orbits are

then orbitally unstable for the full neural field equation (10.1). It follows that these

two branches are oriented backward. Let us follow these branches of solutions by

decreasing values of µ. We introduce the following constant:

µL =
1

supx∈R |S′
0(x)|ŵc

.

An open question is to know if there exists or not a turning point µT ∈]µL, µc[ for
each branch of solutions, denoted µTu for the up branch and µTd

for the down one.

At these turning points, there should be an exchange of stability and the branches

should gain stability for µ > µTs , s ∈ {u, d}. This is illustrated in Figure 10.2.

Unfortunately, we can only conjecture the existence of such points. Nevertheless

our numerical simulations support this scenario (see 10.4). A rigorous proof of the

existence of orbitally stable localized solutions is a challenging problem.

10.3.2 Stability against perturbations in the connectivity function

The aim of the end of this section is to see under which conditions an orbitally

stable localized solution Uµ
0 ∈ H4(R) of equation (10.1) is transformed when we

perturb the connectivity function w. We define a new connectivity function wε for

all ε ≥ 0 as

wε(x) = b1e
−σ1((1−ε)|x|+εx2) − b2e

−σ2((1−ε)|x|+εx2), (10.41)

such that wε is a homotopy from w to a difference of Gaussian functions.

Theorem 10.3.1. Suppose that Uµ
0 ∈ H4(R) is a solution of (10.1) and that the

linearized operator DY G(Y, µ)|Y=0 is invertible for a given fixed µ ∈]µL, µc[. Then,

there exists η > 0 such that for all ε ∈]0, η[ there exists a unique solution Uµ
ε ∈ L2(R)
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solution of

Uµ
ε (x) =

∫

R

wε(x− y)S0(µU
µ
ε (y))dy. (10.42)

In particular, if Uµ
0 is orbitally stable than Uµ

ε is also orbitally stable.

Proof.

1. We look for solution of the form Uµ
ε (x) = Tρε (Uµ

0 (x) + Y (x)), with Y ∈ N
and ρε ∈ R. Replacing Uµ

ε into equation (10.42) and thanks to the translation

invariance we obtain:

Uµ
0 + Y = wε ∗ S(µ(Uµ

0 + Y )).

Projecting onto N we have:

0 = Fµ(U
µ
0 + Y, ε), (10.43)

where Fµ(U, ε) = (Id− P) (−U + wε ∗ S(µU)).

2. We now show that ε→
∫
R
wε(x− y)S(µU(y))dy is C1 on R+.

• y → wε(x− y)S(µU(y)) ∈ L1(R),

• ε→ wε(x− y)S(µU(y)) ∈ C1(R+),

• For all K > 0 and all ε ∈ [0,K] we have that:

|∂ε (wε(x))| ≤ g(x) ∈ L1(R)

with

g(x) =

{
|x2 − |x||e−x x ≥ 1

|x2 − |x||e−xK
4 x ≤ 1.

Then form the theorem of differentiation under the integral sign, we have

the result.

3. Equation (10.43) is an implicit equation. From the regularity of the sigmoidal

function, it is clear that y → Fµ(U
µ
0 +Y, ε) is C1 on N . Furthermore, we have

Fµ(U
µ
0 , 0) = 0 and

DY Fµ(U
µ
0 + Y, ε)|Y=0,ε=0 = DY G(Y, µ)|Y=0.

From our hypothesis, we have that DY Fµ(U
µ
0 + Y, ε)|Y=0,ε=0 is an invertible

operator from N to N .

4. We can apply the implicit function theorem which says that there exists η > 0

such that for all ε ∈]0, η[, ε → Yε ∈ N is solution of (10.43). Then, Uµ
ε =

Tρε (Uµ
0 + Yε) is a solution of (10.41) for all ρε ∈ R.

�
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10.4 Numerical results

10.4.1 Tuning the parameters

Before studying localized solutions in the model it is first necessary to identify

parameter ranges for which they exist. The sign of c03 in the normal form equation

(10.26) governs the existence of localized solutions as discussed in section 10.2.3.

The coefficient c03 depends upon the connectivity function parameters (b1, b2, σ1, σ2)

and the threshold of the firing rate function θ. We now describe a reduction the set

of parameters governing the shape of the connectivity function. Firstly, space can

be rescaled such that, without loss of generality, σ1 = 1. In our bifurcation analysis,

we have seen that the important quantities for the connectivity function are ŵ0, ŵc

and ξc, which determine the overall shape of the Fourier transform of w. In order

to fix the period of the critical modes bifurcating from the trivial state a0 = 0 at

µ = µc to 2π, we imposed that ξc = 1 in Hypothesis 10.1.2; see subsection 10.1.2.

Furthermore, the connectivity function can be reparameterized in terms of (ŵ0, ŵc)

by means of the following transformation:

σ2 =

√
ŵc

ŵc − ŵ0
,

b1 = −2ŵc(ŵc − ŵ0)

ŵ0
,

b2 = −(2ŵc − ŵ0)
2

2ŵ0

√
ŵc

ŵc − ŵ0
.

Finally, in order to express the connectivity function in terms of a single parameter,

we fix ŵ0 = −1. Recall that ŵ0 has to be negative in order to ensure the existence

of a unique trivial solution a0 of equation (10.1). The connectivity function only

depends upon ŵc and can be written:

w(x) = 2ŵc(ŵc + 1)e−|x| − (2ŵc + 1)2

2

√
ŵc

ŵc + 1
e
−
√

ŵc
ŵc+1

|x|
.

It follows directly from the above discussion that, defined in this way, w satisfies

the conditions ŵ0 = −1 and ξc = 1.

We plot the contour c03 = 0 as a function of (ŵc, θ) in Figure 10.3. We can see

that there exists a non empty region of the parameters where the condition c03 < 0 is

satisfied; therefore, there exist branches of spatially localized solutions within this

region. For small values of θ c03 > 0 and spatially localized solutions do not exist.

10.4.2 Numerical computation of the stability of localized solutions

In order to numerically investigate the stability of a localized solution Uµ
0 of equation

(10.1), we have to solve the following eigenvalue problem. We start from equation

(10.30) with p ∈ H4(R) and apply the PDE method developed in 10.2.1. We obtain:

(σ + 1)L0 (p(x)) = µ
(
Γ1 − Γ2∂

2
x2

) [
S′
0(µU

µ
0 (x)p(x)

]
(10.44)
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Figure 10.3: Coefficient c03 and connectivity function. (a) Shows the curve c03 = 0

in the (θ, ŵc)-plane; for values to the right of this curve c03 < 0. Inset (a1) shows

the wizard hat connectivity function w and its Fourier transform ŵ for ŵc = 5.

where L0 = ∂4x4 − (σ21 + σ22)∂
2
x2 + σ21σ

2
2. For all p ∈ H4(R) and q ∈ L2(R), we set

L0p = q. As the spectrum of L0 is given by specL0
= {ξ4+(σ21 +σ

2
2)ξ

2+σ21σ
2
2 | ξ ∈

R} ⊂ [σ21σ
2
2,+∞[, L0 is an invertible operator and p = L−1

0 q. It follows that

equation (10.44) can be rewritten:

σq(x) = −q(x) + µ
(
Γ1 − Γ2∂

2
x2

) [
S′
0(µU

µ
0 (x)L−1

0 q(x)
]
= B(q(x)).

Now, for every solution Uµ
0 discretized on a domain [−L, 0], we compute the eigen-

values σ of the corresponding discretized version of the linear operator B where

we use finite differences methods to approximate the Laplacian operator ∂2x2 . As

we numerically work on a finite domain, the 0 eigenvalue due to translation invari-

ance in the full model is not present in the spectrum of the discretized version of

the operator B. When all eigenvalues have negative real part, then the solution is

orbitally stable, otherwise it is unstable.

10.4.3 Snaking behaviour and localized solutions varying µ

In this section we use the numerical continuation package AUTO [Doedel 1997] with

the extension HOMCONT to compute homoclinic solutions of the system of ODEs

described by (10.23). Solutions of this system corresponds to steady states of the

neural field equation (10.1) where the spatial coordinate x has been recast as the

time variable in the ODE system.

Starting data for the continuation analysis is obtained by solving the system

(10.23) on the half-interval x ∈ [−L, 0] with the four boundary conditions u1(−L) =
u3(−L) = u1(0) = u3(0) = 0; a boundary value problem (BVP) solver in the

software package Matlab was used. Based on the analytical results presented in

this paper, for fixed (ŵc, θ) we set µ to a value less than but still close to µc,

where two types of unstable localized solutions are known to exist as discussed in

subsection 10.2.4. Up solutions, for which u1(0) > 0, and down solutions, for which

u1(0) < 0, are found by providing different initial conditions to the BVP solver.
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Figure 10.4: Snaking behaviour and localized solutions at ŵc = 5 and θ = 3.5.

(a) Bifurcation diagram in µ where stable branches are solid curves and unstable

branches are dashed curves. A trivial branch of solutions undergoes a reversible

Hopf bifurcation at RHµc . Bifurcating branches corresponding to up solutions are

black and to down solutions are grey. These branches undergo a series of fold

bifurcations that bound a µ-range (shaded gray) in which localized solutions exist;

see text. A vertical gray line corresponds to µ = 4. (b) Solution profile at µ = 4

on the lowest unstable up solution branch. (c)–(e) Solution profiles at µ = 4 on

the subsequent stable up solution branch segments. (f) Solution profile at µ = 4 on

the lowest unstable down solution branch. (g)–(i) Solution profiles at µ = 4 on the

subsequent stable down solution branch segments.

Using these solutions as starting data in AUTO, branches of localized solutions

were tracked under the variation of µ.

Figure 10.4 shows a bifurcation diagram in the parameter µ that gives an ex-

act qualitative agreement with the analytical results as summarized in Figure 10.2.

A branch of trivial solutions (||U || = 0) is stable for µ < µc and unstable after

undergoing a reversible Hopf bifurcation RHµc at µ = µc. There are two subcrit-

ical, unstable bifurcating branches, one corresponding to the up solution and one

corresponding to the down solution. The up and down branches undergo fold bifur-

cations at F 1
ul and F

1
dl in which the branches gain stability as predicted analytically.

A series of fold bifurcations Fn
∗ bound a region in which stable localized solutions

persist, with additional bumps added with increasing n, moving up the diagram. In

the subscript notation for the folds u and d correspond to up and down solutions,

whereas l and r correspond to the left and right boundaries of the region in which

stable localized solutions persist.

The panels (b)–(i) in Figure 10.4 show the solution profiles u1 of the homoclinic
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Figure 10.5: Adding of a bump through fold bifurcations. (a) Solution profile at

F 1
ur. (b) Solution profile at µ = 4 on unstable branch between F 1

ur and F 2
ul. (c)

Solution profile at F 2
ul. (a) Solution profile at F 1

dr. (b) Solution profile at µ = 4 on

unstable branch between F 1
dr and F 2

dl. (c) Solution profile at F 2
dl.

cycles on the full interval x ∈ [−L,L] by taking into account the reflectional sym-

metry about x = 0. All panels correspond to solutions at µ = 4. The bottom panels

(b) and (f) are from the lowest unstable up and down branches, respectively. Sub-

sequent panels show solutions from the stable branch segments only; for example,

panel (c) from the stable up branch between F 1
ul and F

1
ur, panel (g) from the stable

down branch between F 1
dl and F 1

dr, and so on. In general, for the up case there

are 2n− 1 bumps on the stable branch between Fn
ul and F

n
ur and for the down case

there are 2n bumps on the stable branch between Fn
dl and F

n
dr. The computations

terminate (arrows in panel (a)) at n = 4; beyond this the model will no longer be

valid when the localized solutions approach the limits of finite domain at x = ±L.
In order to illustrate the way in which bumps are added we show in Figure 10.5

solution profiles at the right-hand folds for n = 1, at the left-hand folds for n = 2

and at the intermediate value of µ = 4 on the unstable branches connecting these

fold points. Panels (a)–(c) show the up case and panels (d)–(f) show the down case.

One can see in panels (a) and (d) that at the right-hand fold points (F 1
ur and F 1

dr)

the new bump first appears; the bumps gradually grow along the unstable branch

between the fold points as shown in panels (b) and (e) and are finally the same size

as the existing bumps at the left-hand fold point (F 2
ul and F

2
dl), as shown in panels

(c) and (f). Note that with decreasing µ the overall range in u1 of the solutions

decreases approaching the left-hand fold points (F 2
ul and F

2
dl), but increases again on

the stable branch; compare Figure 10.5(a) with Figure 10.4(d) and Figure 10.5(e)

with Figure 10.4(h). The sequence described is analagous for the addition of further

bumps.

10.4.4 Regions of localized solutions in the parameter plane

In the previous section, for specific values of the critical Fourier mode ŵc = 5 and

the threshold θ = 3.5, we identified a particular range of µ for which localized

solutions exist. The aim here is to show that localized solutions exist over a range

of the other system parameters and are not an isolated phenomena in parameter
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Figure 10.6: Two-parameter bifurcation diagrams. (a) Bifurcation curves in the

(µ, ŵc)-plane. The locus of the reversible Hopf bifurcation RH is a dashed black

curve. The loci of the left-hand Fl and right-hand Fr fold bifurcations in the

snaking structure shown in Figure 10.4 are solid black curves. A horizontal gray

line corresponds with ŵc = 5, the value used in Figure 10.4. (b) Similarly indicated

bifurcation curves plotted in the (µ, θ)-plane. The fold curves Fl and Fr are con-

nected at a cusp point. A horizontal gray line corresponds with θ = 3.5 the value

used in Figure 10.4.

space. Further, we aim to identify exactly the ranges of the three parameters µ,

ŵc and θ for which localized solutions perist. First we observe that, as shown in

Figure 10.4(a), all the µ-values associated with the fold points for both the up and

down solutions are aligned on the left and right boundaries as demarkated by the

gray shaded region. Therefore, assuming that this is also the case when ŵc and

θ are varied, we can find bounds of regions for which localized solutions exist; for

example, in the (µ, ŵc)-plane it is sufficient to track the loci of the fold points F 1
ul

and F 1
ur under the simultaneous variation of those two parameters. We denote the

coinciding fold points at the left-hand boundary as Fl and the coinciding fold points

at the right-hand boundary Fr.

Figure 10.6(a) and (b) show curves that are the loci of bifurcations in the (µ, ŵc)

and (µ, θ) parameter planes, respectively. In each panel, the curve RH is the locus

of the reversible hopf bifurcation at µc, which is determined analytically by the

expression µc = (s1ŵc)
−1. The curves Fl and Fr bound the region for which localized

solutions persist (shaded in gray). A horizontal line in each panel corresponds to

the default values of ŵc and θ used in Figure 10.4. Under the variation of µ and ŵc,

shown in Figure 10.6(a), there is a channel in parameter space for which localized

solutions exist; as ŵc is increased the channel becomes narrower in µ and shifts to

lower values of µ; as ŵc is decreased the channel becomes wider in µ and shifts

to higher values of µ. Under the variation of µ and θ as shown in Figure 10.6(b)

the range of µ for localized solutions grows and shifts to the right with increasing

θ. For decreasing θ the µ range decreases and contracts to a cusp point that is

effectively lower bound on θ, below which there are no localized solutions. We note
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that in both cases the localized solutions always exist before the reversible Hopf.

Therefore, the localized solutions coexist with a stable trivial solution.

In [Coombes 2003], the authors present a snaking diagram computed under the

variation of the threshold of the sigmoidal function θ; in their formalism the sigmoid

slope is µ = 30. Their connectivity function was taken to be w(x) = w0

4 (1−|x|)e−|x|

with Fourier transform ŵ(ξ) = w0
ξ2

(1+ξ2)2
, which gives ŵ0 = 0, ξc = 1 and

ŵc = w0

4 > 0. In Figure 10.6(b) we recover their result: for a fixed value of

µ and ŵc, increasing the threshold leads to a supercritical reversible Hopf bifur-

cation. Note that, even though the bifurcation is supercritical, the trivial solu-

tion is unstable before the bifurcation and gains stability at the RH point. In

[Laing 2002, Elvin 2010] the authors presented a study of snaking-type behaviour;

however, as was noted in [Laing 2002], the normal form theory that we have de-

veloped in this article is not applicable in their formalism, such that it is difficult

to characterize their results from a bifurcation point of view. The shape of the

snaking diagrams plotted in [Laing 2002, Elvin 2010] shows that, when increasing

the parameter b in equation 9.4 (the equivalent of ŵc in our setting), branches of

localized solutions have the opposite orientation to Figure 10.4(a). This suggests a

supercritical type of bifurcation in b; we conjecture that the difference in behaviour

is mainly due to the shape of nonlinearity S which is not analytical at the trivial

solution in [Laing 2002, Elvin 2010].

10.5 Conclusion

In this chapter we have presented a neural field equation set on the real line with

a “wizard hat” connectivity function and an analytical firing rate function. Ap-

plying successively a Fourier transform and then an inverse Fourier transform to

our system, we have been able to transform our initial integro-differential equa-

tion into a partial differential equation involving spatial derivatives of even order.

Time-independant spatially localized solutions of our problem satisfy a fourth order

reversible dynamical system in the space variable. For some critical value of the

slope of the firing rate function, a Hopf bifurcation with resonance occurs from the

trivial state. We have computed the coefficients of the normal form for the 1:1

reversible Hopf bifurcation. This has allowed us to find sufficient conditions on the

parameters of our model for the existence of homoclinic orbits to the trivial states

and thus spatially localized states. We have also shown that our results extend to

other types of connectivity function for which the PDE method cannot been applied

(difference of Gaussian functions for example).

Numerical continuation was used to follow branches of homoclinic cycles cor-

responding to localized states and, thus, confirm the description of the system’s

solution structure both close to the reversible Hopf bifurcation and on the associ-

ated bifurcated branches (as described by the analytical results presented herein).

Further, varying the sigmoid slope, we show that the system exhibits snaking be-

haviour: a series fold bifurcations accumulating at lower and upper limits bound
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a parameter range over which stable localized solutions persist. The loci of these

fold bifurcations, which can be followed using two-parameter continuation, form the

boundaries of regions of localized solutions in the parameter plane. Importantly, we

show that localized solutions are not an isolated phenomenon in parameter space,

that they exist over wide ranges of three parameters and that it is possible to pro-

duce a snaking diagram in any of these parameters. Another important result is

that, for small values of the threshold of the sigmoid function, there are no localized

solutions.
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In the planar Swift-Hohenberg equation, near a Turing instability, three types

of radially symmetric localized solutions have been proven to exist: a localized

ring decaying to almost zero at the core, a spot with a maximum at the ori-

gin (called Spot A) and a spot with minimum at the origin (called Spot B); see

[Lloyd 2009, McCalla 2010, McCalla 2011]). In this chapter, we are only interested

in the existence of Spot A (see figure 9.3(a)) as these localized solutions are the

most relevant from a neuroscience point of view. Indeed, these spatially localized

solutions can be seen as localized persistent activity and have been linked to working

memory (the temporary storage of information within the brain). We will prove the

existence of Spot A solutions for a neural field equation, with sigmoidal firing-rate

function, set both on the Euclidean plane and the Poincaré disk.

This chapter is divided in two parts. The first section is dedicated to the Eu-

clidean case. We study a neural field equation with a well chosen connectivity

function, such that we can transform it into a partial differential equation on the

Euclidean plane. We then apply techniques from Scheel, Lloyd and Sandstede

[Scheel 2003, Lloyd 2009] to prove the existence of a bifurcated branch of Spot A

solution near a Turing instability. The main theorem of this section is given in
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11.1.1. In the second section, we study the existence of radially symmetric localized

solutions for a neural field equation set on the Poincaré disk. We have adapted

the PDE method developed by Troy and Laing [Laing 2003a] and the analysis con-

ducted by Scheel, Lloyd and Sandstede in the context of hyperbolic geometry. The

main theorem of this section is given in 11.2.1.

11.1 Localized patterns in Euclidean geometry

11.1.1 The model

We consider the Wilson-Cowan neural field equation for one population of neurons:

d

dt
v(r, t) = −v(r, t) +

∫

R2

W (‖r− r′‖)S(µv(r′, t))dr′ (11.1)

where ‖ · ‖ is the standard Euclidean norm. The nonlinearity S is defined by

S(x) =
1

1 + e−x+θ
− 1

1 + eθ
. (11.2)

The connectivity functionW is defined through its Hankel transform in the following

way:

W (x) =

∫ +∞

0
sŴ (s)J0(xs)ds, Ŵ (s) = 2

(
b1σ1
σ21 + s2

− b2σ2
σ22 + s2

)
. (11.3)

J0(s) is the Bessel function of first kind and (b1, b2, σ1, σ2) are real parameters. The

connectivity function W has a “Mexican hat” shape. The Fourier transform of

W (‖r‖) is Ŵ (‖k‖) for all (r,k) ∈ R2. The parameters (b1, b2, σ1, σ2) are chosen

such that the following hypotheses are satisfied.

Hypothesis 11.1.1.

(i) Ŵ (0) = Ŵ0 < 0,

(ii) W (0) > 0,

(iii) there exists kc > 0 such that Ŵc
def
= Ŵ (kc) = max

k=‖k‖∈R+
Ŵ (k) > 0,

(iv) kc = 1.

Now, if we define

Γ1 = 2σ1σ2(b1σ2 − b2σ1),

Γ2 = 2(b1σ1 − b2σ2),
(11.4)

then Ŵc can be written:

Ŵc =
Γ1 + Γ2

1 + σ21 + σ22 + σ21σ
2
2

. (11.5)
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The condition kc = 1, which is equivalent to d
dsŴ (s)|s=1 = 0, reduces to

Γ1(σ
2
1 + σ22 + 2) + Γ2(1− σ21σ

2
2) = 0. (11.6)

It is a straightforward computation to see that equations (11.5) and (11.6) imply

that:

σ21σ
2
2 − Γ1Ŵ

−1
c = 1

σ21 + σ22 − Γ2Ŵ
−1
c = −2.

(11.7)

We denote for all k ≥ 1, S(k)(0) = sk.

11.1.2 Linear stability analysis of the trivial state

Equation (11.1) has the trivial solution v = 0. The linearized equation around this

trivial solution is:

d

dt
u(r, t) = −u(r, t) + µs1

∫

R2

W (‖r− r′‖)u(r′, t)dr′. (11.8)

Looking at linear stability with u(r, t) = eσteik·r we obtain the following dispersion

relation:

σ(‖k‖) = −1 + µs1Ŵ (‖k‖). (11.9)

Then the critical value µc is given by:

µc =
1

s1Ŵc

, (11.10)

and for all µ < µc, the trivial solution v = 0 is stable.

We set λ = µ− µc and rewrite equation (11.1):

d

dt
v(r, t) = Lµcv(r, t) +R(v(r, t), λ) (11.11)

where Lµc and R are defined by

Lµcv(r, t) = −v(r, t) + µcs1

∫

R2

W (‖r− r′‖)v(r′, t)dr′,

R(v(r, t), λ) =

∫

R2

W (‖r− r′‖)
[
S
(
(λ+ µc)v(r

′, t)
)
− µcs1v(r

′, t)
]
dr′

with R(0, 0) = DvR(0, 0) = 0. We define f(X,λ) by:

f(X,λ) = S ((λ+ µc)X)− µcs1X

where f(0, 0) = ∂Xf(0, 0) = 0.
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11.1.3 PDE method

We assume that v → v(·, t) ∈ C1(R+,H4(R2)) is a solution of (11.11), where H4(R2)

is the Sobolev space defined as:

H4(R2) = {u ∈ L2(R2) | ∀ 0 ≤ |α| ≤ 4 Dαu ∈ L2(R2)}.

Under this assumption, an application of Fourier transform of equation (11.11), we

obtain:

(∂t + 1) v̂(k, t) = Ŵ (‖k‖)
[
µcs1v̂(k, t) + f̂(v, λ)(k, t)

]

Using the inverse Fourier transform we obtain:

(∂t + 1)Lµc(v) = M(v, λ) (11.12)

with Lµc and M defined by

Lµc(v) = (σ21σ
2
2 − Γ1µcs1)v − (σ21 + σ22 − Γ2µcs1)∆v +∆2v

and

M(v, λ) = Γ1f(v, λ)− Γ2∆f(v, λ),

where ∆ denotes the Laplcian on R2. From equations (11.7) and the fact that

µc = (s1ŵc)
−1, the coefficients of Lµc reduce to:

σ21σ
2
2 − Γ1µcs1 = 1,

σ21 + σ22 − Γ2µcs1 = −2.

We look for stationary radial solutions of equation (11.11), that is:

v(r) + 2∆rv(r) + ∆2
rv(r) = Γ1f(v(r), λ)− Γ2∆rf(v(r), λ) (11.13)

with r = ‖r‖ ∈ R+ and ∆r = ∂2r + 1
r∂r. Note that ∆rf(v(r), λ) can be expressed

as:

∆rf(v, λ) = (∆rv) f
′(v, λ) + (∂rv)

2 f ′′(v, λ).

11.1.4 The equation near the core

We rewrite equation (11.13) as a four dimensional system of non-autonomous dif-

ferential equations. We set:

∂ru1 = u3,

∂ru2 = u4,(
∂2r +

1

r
∂r + 1

)
u1 = u2,

(
∂2r +

1

r
∂r + 1

)
u2 = Γ1f(u1, λ)− Γ2∆rf(u1, λ).
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∂rU = A(r)U + F(U, λ), (11.14)

where

A(r) =




0 0 1 0

0 0 0 1

−1 1 −1
r 0

0 −1 0 −1
r


 and F(U, λ) =




0

0

0

F4 (u1, u2, u3, u4, λ)




with U = (u1, u2, u3, u4)
T and

F4 (u1, u2, u3, u4, λ) = Γ1f(u1, λ)− Γ2

[
(u2 − u1)f

′(u1, λ) + u23f
′′(u1, λ)

]
.

Furthermore the quadratic term in U of F(U, λ) at (0, 0) is given by:

F20(U,U) =
µ2cs2
2




0

0

0

(Γ1 + 2Γ2)u
2
1 − 2Γ2u1u2 − 2Γ2u

2
3


 .

We can now apply the theory developed in [Scheel 2003, Lloyd 2009]. First, we

set λ = 0 and linearize (11.14) about U = 0 to get the linear system ∂rU = A(r)U

which has four linearily independent solutions

V1(r) =
√
2π (J0(r), 0,−J1(r), 0)T

V2(r) =
√
2π (rJ1(r), 2J0(r), rJ0(r),−2J1(r))

T

V3(r) =
√
2π (Y0(r), 0,−Y1(r), 0)T

V4(r) =
√
2π (rY1(r), 2Y0(r), rY0(r),−2Y1(r))

T .

Lemma 11.1.1. Fix r0 > 0, then there are constants δ0, δ1 so that the set

Wcu
− (λ) of solutions U(r) of (11.14) for which sup0≤r≤r0 |U(r)| < δ0 is, for

|λ| < δ0, a smooth two-dimensional manifold. Furthermore, U ∈ Wcu
− (λ) with

|P cu
− (r0)U(r0)| < δ1 if only if

U(r0) = d̃1V1(r0) + d̃2V2(r0) + V3(r0)Or0(|λ||d̃|+ |d̃|2)
+ V4(r0)

(
Θd̃2

1

d̃21 +Θd̃1d̃2
d̃1d̃2 +O(r0)(|λ||d̃|+ |d̃2|2 + |d̃|3)

) (11.15)

where

Θd̃2
1

=
√
2πµ2cs2

Γ1 + Γ2

4

[
1√
3
+O(r

−1/2
0 )

]
,

Θd̃1d̃2
= −

√
2πµ2cs2Γ2

[
1√
3
+O(r

−1/2
0 )

]
,

for some d̃ = (d̃1, d̃2) ∈ R2 with |d̃| < δ1, where the right hand side in (11.15)

depends smoothly on (d̃, λ).
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Proof. We observe that four independent solutions to the adjoint problem ∂rU =

−AT (r)U are given by

W1(r) =

√
2π

8

(
−2rY1(r), r

2Y0(r),−2rY0(r),−r2Y1(r)
)T
,

W2(r) =

√
2π

8
(0,−rY1(r), 0,−rY0(r))T ,

W3(r) =

√
2π

8

(
2rJ1(r),−r2J0(r), 2rJ0(r), r2J1(r)

)T
,

W4(r) =

√
2π

8
(0, rJ1(r), 0, rJ0(r))

T .

It follows from
π

2
r (J1(r)Y0(r)− J0(r)Y1(r)) = 1

that

〈Vi(r),Wj(r)〉R4 = δi,j i, j = 1, . . . , 4

is independent of r. For given d̃ = (d̃1, d̃2) ∈ R2, we consider the fixed-point

equation:

U(r) =
2∑

j=1

d̃jVj(r) +
2∑

j=1

Vj(r)

∫ r

r0

〈Wj(s),F(U(s), λ)〉ds

+

4∑

j=3

Vj(r)

∫ r

0
〈Wj(s),F(U(s), λ)〉ds

=
2∑

j=1

d̃jVj(r) +
2∑

j=1

Vj(r)

∫ r

r0

Wj,4(s)F4(U(s), λ)ds

+
4∑

j=3

Vj(r)

∫ r

0
Wj,4(s)F4(U(s), λ)ds

(11.16)

on C0([0, r0],R
4), where Wj,4(r) (resp. F4(U(r), λ))denotes the fourth component

of Wj(r) (resp. F(U(r), λ)). A direct adaptation of Lemma 1 in [Lloyd 2009] gives:

• Each solution U ∈ C0([0, r0],R
4) of (11.16) gives a solution of (11.14) that is

bounded on [0, r0].

• Every bounded solution U ∈ C0([0, r0],R
4) of (11.14) satisfies (11.16) provided

we add d̃3V3(r) + d̃4V4(r) to the right hand side for an appropriate d̃ ∈ R4.

• Existence of solutions of (11.16) is given by the uniform contracting mapping

principle for sufficiently small (d̃1, d̃2) and λ.

• The resulting solution U satisfies on [0, r0]:

U(r) =

2∑

j=1

d̃jVj(r) +Or0(|λ||d̃|+ |d̃|2).
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As in [Lloyd 2009], we need to calculate the quadratic coefficient in d̃ in front

of V4(r0), denoted Θ. We recall that:

F2,0(U,U) =
µ2cs2
2

(
0, 0, 0, (Γ1 + 2Γ2)u

2
1 − 2Γ2u1u2 − 2Γ2u

2
3

)T
.

If we evaluate (11.16) at r = r0, we arrive at (11.15) except that we need to

calculate the quadratic coefficients in front of V4(r0): using a Taylor expansion, we

find that these coefficients are given by:

Θd̃2
1

=

∫ r0

0
W4,4(s)πµ

2
cs2
[
(Γ1 + 2Γ2)J0(s)

2 − 2Γ2J1(s)
2
]
ds

and

Θd̃1d̃2
= −4

∫ r0

0
W4,4(s)πµ

2
cs2Γ2J0(s)

2ds.

Then we have:

Θd̃2
1

=

√
2ππµ2cs2(Γ1 + 2Γ2)

8

∫ r0

0
sJ0(s)

3ds−
√
2ππµ2cs2Γ2

4

∫ r0

0
sJ0(s)J1(s)

2ds

=

√
2ππµ2cs2(Γ1 + 2Γ2)

8

(
2

π
√
3
+O(r

−1/2
0 )

)
−

√
2ππµ2cs2Γ2

4

(
1

π
√
3
+O(r

−1/2
0 )

)

=

√
2πµ2cs2(Γ1 + Γ2)

4

(
1√
3
+O(r

−1/2
0 )

)

and

Θd̃1d̃2
= −

√
2ππµ2cs2Γ2

2

∫ r0

0
sJ0(s)

3ds

= −
√
2πµ2cs2Γ2

(
1√
3
+O(r

−1/2
0 )

)
.

We have used the following two formulas on integral of Bessel functions:
∫ +∞

0
Jν(as)Jν(bs)Jν(cs)s

1−νds =
2ν−1△2ν−1

(abc)νΓ(ν + 1
2)Γ(

1
2)∫ +∞

0
Jµ(as)Jν(bs)Jν(cs)s

1−µds =
(bc)µ−1 sin(A)µ−1/2

√
2πaµ

P
1

2
−µ

ν− 1

2

(cos(A))

where △ is the area of triangle with lengths a, b and c, A = arccos
(
b2+c2−a2

2bc

)
and

P is associated Legendre function. The first integral with a = b = c = 1 and ν = 0

gives (△ =
√
3
4 and Γ(12) =

√
π):

∫ +∞

0
sJ0(s)

3ds =
2

π
√
3

and the second integral with a = b = c = 1, µ = 0 and ν = 1 gives (A = π
3 and

P
1

2
1

2

(z) =
√

2
π

z

(1−z2)
1
4

):
∫ +∞

0
sJ0(s)J1(s)

2ds =
1

π
√
3
.
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We have also used the estimations (see [McCalla 2011])

∫ +∞

r0

sJ0(s)
3ds = O(r

−1/2
0 )

and ∫ +∞

r0

sJ0(s)J1(s)
2ds = O(r

−1/2
0 ).

�

11.1.5 The far-field equations

We make equation (11.14) autonomous by adding the variable α = 1
r which satisfies

∂rα = −α2. equation (11.14) becomes:

d

dr




u1
u2
u3
u4
α




=




u3
u4

−u1 + u2 − αu3
−u2 − αu4 + F4 (u1, u2, u3, u4, λ)

−α2



. (11.17)

We use the normal-form coordinates:

U = Ãζ0 + B̃ζ1 + c.c., U = (u1, u2, u3, u4)
T

or equivalently (
Ã

B̃

)
=

1

4

(
2u1− i(2u3 + u4)

−u4 − iu2

)

where A(∞)ζ0 = iζ0 and A(∞)ζ1 = iζ1 + ζ0 with:

A(∞) =




0 0 1 0

0 0 0 1

−1 1 0 0

0 −1 0 0


 , ζ0 =




1

0

i

0


 , ζ1 =




0

2i

1

−2


 .

In these coordinates, equation (11.17) becomes

∂rÃ =
(
i− α

2

)
Ã+ B̃ +

α

2
Ã+O((|λ|+ |Ã|+ |B̃|)(|Ã|+ |B̃|))

∂rB̃ =
(
i− α

2

)
B̃ − α

2
B̃ +O((|λ|+ |Ã|+ |B̃|)(|Ã|+ |B̃|))

∂rα = −α2. (11.18)

Lemma 11.1.2.Fix 0 < m <∞, then there exists a change of coordinates

(
A

B

)
= eiφ(r)[1 + T (α)]

(
Ã

B̃

)
+O((|λ|+ |Ã|+ |B̃|)(|Ã|+ |B̃|)) (11.19)
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so that (11.18) becomes

∂rA = −α
2
A+B +RA(A,B, α, λ)

∂rB = −α
2
B + c11λA+ c03|A|2A+RB(A,B, α, λ)

∂rα = −α2 (11.20)

The constants c11 and c03 are given by:

c11 = −s1(Γ1 + Γ2)

4
(11.21)

and

c03 = −µ
3
c(Γ1 + Γ2)

4

[
s3
2

+
µcs

2
2(19Γ1 + 4Γ2)

18

]
. (11.22)

The coordinate change is polynomial in (A,B, α) and smooth in λ and T (α) =

O(α) is linear and upper triangular for each α, while φ(r) satisfies

∂rφ(r) = 1 +O(|λ|+ |α|3 + |A|2), φ(0) = 0

The remainder terms are given by

RA(A,B, α, λ) = O




2∑

j=0

|AjB3−j |+ |α|3|A|+ |α|2|B|+ (|A|+ |B|)5

+|λ||α|m(|A|+ |B|)
)

RB(A,B, α, λ) = O




1∑

j=0

|AjB3−j |+ |α|3|B|+ |λ|(|λ|+ |α|3 + |A|2)|A|

+(|A|+ |B|)5 + |λ||α|m|B|
)
.

Proof. See [Scheel 2003] and [Lloyd 2009] for the change of variables. The

coefficients c11 and c03 have been computed in chapter 10. �

First of all, we rescale (A,B, α) with the anticipated amplitude which is of the

order of
√
|λ|. We set λ = −ε, ε > 0 and c01 = −c11. We define

A =
√
εa, B = εb, r =

ρ√
ε
, (11.23)

for which (11.20) becomes

∂ρa = b− a

2ρ
+R1(a, b, ρ, ε)

∂ρb = − b

2ρ
+ c01a+ c03|a|2a+R2(a, b, ρ, ε)

(11.24)
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where

R1(a, b, ρ, ε) = ε−1RA(
√
εa, εb,

√
ε

ρ
, ε) = O(ε(|a|+ |b|))

R2(a, b, ρ, ε) = ε−3/2RB(
√
εa, εb,

√
ε

ρ
, ε) = O(ε(|a|+ |b|))

(11.25)

uniformally in ρ ≥ ρ1 for each fixed ρ1 > 0. We also use the variables

(
a

b

)
=

1√
ρ

(
â

b̂

)
(11.26)

in which (11.24) becomes

∂ρâ = b̂+O(ε(|â|+ |b̂|))
∂ρb̂ = c01â+ c03|â|2â+O(ε(|â|+ |b̂|)).

(11.27)

The estimates for the remainder terms given above are valid for ρ ≥ ρ1 for each

fixed ρ1 > 0. To capture the region r0
√
ε ≤ ρ ≤ ρ1, we use the variables

(
ã

b̃

)
=

(
a

ρ(b− a
2ρ)

)
, τ = log ρ (11.28)

so that ρ = eτ and ρ → 0 corresponds to τ → −∞. In these variables, (11.27)

becomes

∂τ ã = b̃+ R̃1(ã, b̃, ρ, ε)

∂τ b̃ =
ã

4
+ ρ2

(
c01ã+ c03|ã|2ã

)
+ R̃2(ã, b̃, ρ, ε)

∂τρ = ρ

(11.29)

with (ã, b̃, ρ) ∈ C2 × R+.

11.1.6 Matching the core and the far-field

We start by linearizing the far-field equation (11.27) about (â, b̂) = 0 to get the

equation

∂ρ

(
â

b̂

)
=

(
0 1

c01 0

)(
â

b̂

)
+O(ε)

(
â

b̂

)
. (11.30)

For ε = 0, the general solution of (11.30) is given by:

(
â

b̂

)
(ρ) = q1e

−ρ
√

c0
1

(
1

−
√
c01

)
+ q2e

ρ
√

c0
1

(
1√
c01

)
.

Thus, for each ρ = ρ1 > 0 and for sufficiently small ε > 0, we can write the

ρ = ρ1-fiber of the stable manifold W s
+(ε) of (11.27) near 0 as

Ws
+(ε) |ρ=ρ1 :

(
â

b̂

)
= η

(
1

−
√
c01

)
+ 0ρ1(ε|η|+ |η|3)

(
1√
c01

)
,
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where η ∈ C. Using (11.26) and (11.28) and redefining η, we obtain the expression

Ws
+(ε) |ρ=ρ1 :

(
ã

b̃

)
= η

(
1

−1
2 − ρ1

√
c01

)
+ 0ρ1(ε|η|+ |η|3)

(
1

−1
2 + ρ1

√
c01

)

for Ws
+(ε) in the (ã, b̃)-coordinates. We introduce the coordinates:

u =

(
u1
u2

)
=

1

2

(
1 2

1 −2

)(
ã

b̃

)
(11.31)

and get

Ws
+(ε) |ρ=ρ1 :

(
u1
u2

)
= η

(
−ρ1

√
c01

1 + ρ1
√
c01

)
+ 0ρ1(ε|η|+ |η|3)

(
ρ1
√
c01

1− ρ1
√
c01

)
.

The (u1, u2)-coordinates transform equation (11.29) into

∂τu =
[
D +O(εe−2τ )

]
u+O((

√
ε+ eτ )eτ |u|), D =

(
1
2 0

0 −1
2

)
. (11.32)

Lemma 11.1.3.The linear equation

∂τu =
[
D +O(εe−2τ )

]
u (11.33)

has an exponential dichotomy with exponents ±1
2 on [τ0, τ1]. Furthermore, the co-

ordinate transformation u→ ũ that brings (11.33) into the form

∂τ ũ =
[
D +O(εe−2τ )Id

]
ũ (11.34)

can be chosen such that

u(τ0) = ũ(τ0), u(τ1) =

(
1 O(ε)

O(r−2
0 ) 1

)
ũ(τ1). (11.35)

Proof. See [Lloyd 2009]. �

We recall that we have

Ws
+(ε) |ρ=ρ1 :

(
u1
u2

)
= η

(
−ρ1

√
c01

1 + ρ1
√
c01

)
+ 0ρ1(ε|η|+ |η|3)

(
ρ1
√
c01

1− ρ1
√
c01

)
.

for the stable manifold in the u-variables, which, thanks to (11.35), becomes

Ws
+(ε) |ρ=ρ1 :

(
ũ1
ũ2

)
= η

(
−ρ1

√
c01 +Oρ1(ε)

1 + ρ1
√
c01(1 +O(r−2

0 ))

)

+ 0ρ1(ε|η|+ |η|3)
(
ρ1
√
c01 +Oρ1(ε)

1− ρ1
√
c01(1 +O(r−2

0 ))

)
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in the ũ-variables. Choosing 0 < ρ1 ≪ 1 sufficiently small, we can solve

η

(
1 + ρ1

√
c01(1 +O(r−2

0 ))

)
+ 0ρ1(ε|η|+ |η|3)

(
1− ρ1

√
c01(1 +O(r−2

0 ))

)
= η̃

for η so that

η =
η̃

1 + ρ1
√
c01
(
1 +O(r−2

0 )
) + 0ρ1(ε|η̃|+ |η̃|3)

and consequently

Ws
+(ε) |ρ=ρ1 :

(
ũ1
ũ2

)
= η̃

(
−ρ1

√
c01(1 +O(ρ1 + r−2

0 ))

1

)
+0ρ1(ε|η̃|+|η̃|3)

(
1

0

)
.

(11.36)

Using (11.36) and (11.35), we find that the stable manifold Ws
+(ε) at r = r0 is

given by

Ws
+(ε) |r=r0 : u =

√
εr0η̂

(
−
√
c01 +O(ρ1 + r−2

0 ) +Oρ1(ε+
√
ε|η̂|2)

0

)
+η̂

(
0

1

)
.

We apply successive changes of variables to transform this expression into the

(A,B)-coordinates and obtain

Ws
+(ε) |r=r0 :

(
A

B

)
= εη̂

[
−
√
c01 +O(ρ1 + r−2

0 ) +Oρ1(ε+
√
ε|η̂|2)

](
r0
1

)

+
√
εη̂

(
1

0

)
. (11.37)

Our goal is to find nontrivial intersections of the stable manifold Ws
+(ε) with

the center-unstable manifold Wcu
− (ε). To this end, we write the expansion (11.15)

for each fixed r0 ≫ 1 in the (Ã, B̃) coordinates and afterwards in the coordinates

(A,B). Using the expansions of Bessel functions and using the variables (d1, d2) =

(d̃1/
√
r0,

√
r0d̃2) we arrive at the expression

(
Ã

B̃

)
= ei(r0−π/4)

(
d1(1 + 0(r−1

0 )) + d2(−i+ 0(r−1
0 ))

−d2r−1
0 (i+ 0(r−1

0 ))−
(

1√
3
+O( 1√

r0
)
)(

C1
√
r0d

2
1 +

C2√
r0
d1d2

)
)

+ ei(r0−π/4)

(
Or0(ε|d|+ |d|2)
Or0(ε|d|+ |d2|2 + |d1|3)

)
(11.38)

with C1 =
√
2πµ2cs2

Γ1+Γ2

4 and C2 = −
√
2πµ2cs2Γ2. We can apply the transformation

(11.19) and obtain the expression

Wcu
− (ε) |r=r0 :

(
A

B

)
= ei(−π/4+O(r−2

o )+Or0
(ε|d|+|d|2)

(
Or0(ε|d|+ |d|2)
Or0(ε|d|+ |d2|2 + |d1|3)

)

+ei(−
π
4
+O(r−2

o )+Or0
(ε|d|+|d|2)

(
d1(1 + 0(r−1

0 )) + d2(−i+ 0(r−1
0 ))

−d2r−1
0 (i+ 0(r−1

0 ))

)
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+ ei(−
π
4
+O(r−2

o )+Or0
(ε|d|+|d|2)

(
0

−
(

1√
3
+O( 1√

r0
)
)(

C1
√
r0d

2
1 +

C2√
r0
d1d2

)
)
.

(11.39)

After redefining η̂ to η to remove the phase in Wcu
− (ε) |r=r0 , it remains to solve:





√
εη + εr0η

[
−
√
c01 +O(ρ1 + r−2

0 ) +Oρ1(
√
ε)

]
= d1(1 + 0(r−1

0 )) + d2(−i+ 0(r−1
0 ))

+Or0(ε|d|+ |d|2)

εη

[
−
√
c01 +O(ρ1 + r−2

0 ) +Oρ1(
√
ε)

]
= −d2r−1

0 (i+ 0(r−1
0 )) +Or0(ε|d|+ |d2|2 + |d1|3)

−
(

1√
3
+O(r

−1/2
0 )

)(
C1

√
r0d

2
1 +

C2√
r0
d1d2

)
.

If we set dj =
√
εd̂j and write η = η1 + iη2, we obtain

d̂1 − id̂2 − iη2 + 0(r−1
0 )d̂+Or0(ε|d̂|+

√
ε|d̂|2) = η1 +

√
εr0O(η)

and

√
εr0η

[
−
√
c01 +O(ρ1 + r−2

0 ) +Oρ1(
√
ε)

]
= −id̂2 + 0(r−1

0 )d̂2

+Or0(ε|d̂|+
√
ε|d̂2|2+ε|d̂1|3)−

(
1√
3
+O(r

−1/2
0 )

)(
C1r

3/2
0

√
εd̂21 + C2

√
ε
√
r0d̂1d̂2

)
.

We have the expansion

d̂1 = η1 +Or0(
√
εη1), d̂2 = Or0(

√
εη1), η2 = O(r−1

0 )η1 +Or0(
√
εη1)

and we can solve the equation:

√
εr0η1

[
−
√
c01 +O(r−1

0 ) +O(ρ1) +Oρ1(
√
ε)

]

= −
(

1√
3
+O(r

−1/2
0 )

)
C1r

3/2
0

√
εη21 +Or0(εη1)

which has two solutions η1 = 0 and η1 small given to leading order by:

η1 =
1

C1

√
3c01
r0

+O(ρ1) +O(r−1
0 ) +Oρ1(

√
ε).

This gives d̃1 and d̃2:

d̃1 =
s1
µ2cs2

√
3ε

2πc01
, d̃2 = O(ε)

or equivalently (ε = −λ, c01 = −c11):

d̃1 =
s1
µ2cs2

√
3λ

2πc11
, d̃2 = O(λ).
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We can now state the main result of this section.

Theorem 11.1.1 (Existence of spot solutions). Fix θ ≥ 0 for the threshold of the

nonlinearity S and (b1, b2, σ1, σ2) ∈ R4 such that the connectivity functionW defined

in equation (11.3) satisfies hypotheses 11.1.1. Then there exists µ∗ < µc such that

the planar neural field equation (11.1) has a stationary localized radial solution v(r)

for each µ ∈]µ∗, µc[: these solutions stay close to v = 0 and, for each fixed r∗ > 0,

we have the asymptotics

v(r) = α
√
µc − µJ0(r) +O(µ− µc) as µ→ µc (11.40)

uniformly in 0 ≤ r ≤ r∗ for an appropriate constant α with sign(α) = sign(s2).

11.2 Localized patterns in the Poincaré disk

In this section, we consider the following neural field equation set on the Poincaré

disk
d

dt
v(z, t) = −v(z, t) +

∫

D

W (dD(z, z
′))S(µv(z′, t))dm(z′) (11.41)

where dD is the hyperbolic distance defined in (3.9). The nonlinearity S is defined

in equation (11.2), with θ ≥ 0. The first step is to construct a connectivity function

which can lead to a PDE when applying a suitable transformation as in subsection

11.1.3 for the Euclidean case.

11.2.1 Choice of the connectivity function

We work in geodesic polar coordinates z = (τ, ϕ) ∈ D, with z = tanh(τ/2)eiϕ. As

we want to prove the existence of radial solutions (τ being the radial coordinate), we

have to find the equivalent of Hankel transform for the hyperbolic disk. It is given by

the Mehler-Fock transform, and we adopt the notations defined in [González 1997].

Let f : [0,+∞) = R∗
+ → R such that f(τ)eτ/2 ∈ L1(R∗

+), then we define for all

ρ > 0 and all τ > 0 the Mehler-Fock transform of f as:

M · f(ρ) =
∫ +∞

0
f(τ)P− 1

2
+iρ(cosh τ) sinh τdτ. (11.42)

The inversion formula states that:

f(τ) =

∫ +∞

0
M · f(ρ)P− 1

2
+iρ(cosh τ)ρ tanh(πρ)dρ. (11.43)

Moreover, we denote Lτ
D
the radial part of the Laplace-Beltrami operator on D

defined in equation (8.11):

Lτ
D =

1

sinh τ

d

dτ

(
sinh τ

d

dτ

)
. (11.44)
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It is shown in [González 1997] that for all k ≥ 1





(−1)k
(
1

4
+ ρ2

)k

M · f(ρ) =
∫ +∞

0
(Lτ

D)
k f(τ)P− 1

2
+iρ(cosh τ) sinh τdτ

(−1)k (Lτ
D)

k f(τ) =

∫ +∞

0

(
1

4
+ ρ2

)k

M · f(ρ)P− 1

2
+iρ(cosh τ)ρ tanh(πρ)dρ.

(11.45)

Furthermore, for ℜa > 0 the following formula holds (pp. 788 [Ryzhik 2007]):

∫ +∞

0

1

a2 + ρ2
P− 1

2
+iρ(cosh τ)ρ tanh(πρ)dρ = Qa− 1

2

(cosh τ)

where Qν is the associated Legendre function of the second kind. From equations

(11.42) and (11.43), this implies that:

1

a2 + ρ2
=

∫ +∞

0
Qa− 1

2

(cosh τ)P− 1

2
+iρ(cosh τ) sinh τdτ. (11.46)

A natural choice for the connectivity function W is then:

W(z) =W (dD(z, 0)) = α1Qa1− 1

2

(cosh dD(z, 0))− α2Qa2− 1

2

(cosh dD(z, 0)) (11.47)

with (α1, α2, a1, a2) satisfying the relations:





α1 = 2σ1b1,

α2 = 2σ2b2,

a1 =

√
σ21 +

1

4
,

a2 =

√
σ22 +

1

4
.

(11.48)

From equation (11.46) and the definition of the Mehler-Fock transform, we have

that for all ρ > 0

W̃ (ρ)
def
= M ·W(ρ) = 2

(
b1σ1

σ21 +
1
4 + ρ2

− b2σ2

σ22 +
1
4 + ρ2

)
. (11.49)

As in the first section, we impose some conditions on the coefficients

(b1, b2, σ1, σ2).

Hypothesis 11.2.1.

(i) W̃ (0) = W̃0 < 0,

(ii) W (0) > 0,

(iii) there exists ρc > 0 such that W̃c
def
= W̃ (ρc) = max

ρ∈R+
W̃ (ρ) > 0,

(iv) ρc =
√
3
2 .
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In this case, for Γ1 and Γ2 defined in equation (11.4), W̃c can be written:

W̃c =
Γ1 + Γ2

1 + σ21 + σ22 + σ21σ
2
2

. (11.50)

The condition ρc =
√
3
2 , reduces to equatin (11.6). It is also straightforward to see

that equations (11.50) and (11.6) imply the relation given in equation (11.7).

11.2.2 Linear stability of the trivial state

Equation (11.41) has the trivial solution v = 0. The linearized equation around

this trivial solution is:

d

dt
u(z, t) = −u(z, t) + µs1

∫

D

W (dD(z, z
′))u(z′, t)dm(z′). (11.51)

Looking at linear stability with u(z, t) = eσte(
1

2
+iρ)〈z,b〉 we obtain the following

dispersion relation:

σ(ρ) = −1 + µs1M ·W(ρ). (11.52)

Then the critical value µc is given by:

µc =
1

s1W̃c

, (11.53)

and for all µ < µc, the trivial solution v = 0 is stable.

We set λ = µ− µc and rewrite equation (11.41):

d

dt
v(z, t) = Lµcv(z, t) +R(v(z, t), λ) (11.54)

where Lµc and R are defined by

Lµcv(z, t) = −v(z, t) + µcs1

∫

D

W (dD(z, z
′))v(z′, t)dm(z′),

R(v(z, t), λ) =

∫

D

W (dD(z, z
′))
[
S
(
(λ+ µc)v(z

′, t)
)
− µcs1v(z

′, t)
]
dm(z′)

with R(0, 0) = DvR(0, 0) = 0. We define f(X,λ) by:

f(X,λ) = S ((λ+ µc)X)− µcs1X

where f(0, 0) = ∂Xf(0, 0) = 0.

11.2.3 PDE methods in the Poincaré disk

We assume that v is a sufficiently smooth radially symmetric solution of equation

(11.54) such that if we apply the Mehler-Fock transform we obtain

(
d

dt
+ 1

)
M · v(ρ, t) = W̃ (ρ) [µcs1M · v(ρ, t) +M · f(v, λ)(ρ, t)] .
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We also assume that we can apply an inverse Mehler-Fock transform, this yields
(
d

dt
+ 1

)
(1 + Lτ

D)
2 v = Γ1f(v, λ)− Γ2L

τ
Df(v, λ). (11.55)

where we used the fact that:

σ21σ
2
2 − Γ1µcs1 = 1,

σ21 + σ22 − Γ2µcs1 = −2.

We look for stationary radial solutions of equation (11.54), that is:

(1 + Lτ
D)

2 v(τ) = Γ1f(v(τ), λ)− Γ2L
τ
Df(v(τ), λ). (11.56)

Note that Lτ
D
f(v(τ), λ) can be expressed as:

Lτ
Df(v, λ) = (Lτ

Dv) f
′(v, λ) + (∂τv)

2 f ′′(v, λ).

11.2.4 The equation near the core

We rewrite equation (11.56) as a four dimensional system of non-autonomous dif-

ferential equations. We set:

∂τu1 = u3,

∂τu2 = u4,(
∂2τ + coth(τ)∂τ + 1

)
u1 = u2,(

∂2τ + coth(τ)∂τ + 1
)
u2 = Γ1f(u1, λ)− Γ2L

τ
Df(u1, λ).

∂τU = A(τ)U + F(U, λ), (11.57)

where

A(r) =




0 0 1 0

0 0 0 1

−1 1 − coth(τ) 0

0 −1 0 − coth(τ)


 and F(U, λ) =




0

0

0

F4 (u1, u2, u3, u4, λ)




with U = (u1, u2, u3, u4)
T and

F4 (u1, u2, u3, u4, λ) = Γ1f(u1, λ)− Γ2

[
(u2 − u1)f

′(u1, λ) + u23f
′′(u1, λ)

]
.

Furthermore the quadratic term in U of F(U, λ) at (0, 0) is given by:

F20(U,U) =
µ2cs2
2




0

0

0

(Γ1 + 2Γ2)u
2
1 − 2Γ2u1u2 − 2Γ2u

2
3


 .
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First, we set λ = 0 and linearize (11.57) about U = 0 to get the linear system

∂τU = A(τ)U .

Proposition 11.2.1. The linear system ∂τU = A(τ)U has four linearly indepen-

dent solutions given by

V1(τ) =
(
Pν(cosh τ), 0,P1

ν (cosh τ), 0
)T

V2(τ) =
(
V 1
2 (τ),Pν(cosh τ), V

3
2 (τ),P1

ν (cosh τ)
)T

V3(τ) =
(
Qν(cosh τ), 0,Q1

ν(cosh τ), 0
)T

V4(τ) =
(
V 1
4 (τ),Qν(cosh τ), V

3
4 (τ),Q1

ν(cosh τ)
)T

where

ν = −1

2
+ i

√
3

2
(11.58)

and

V 1
2 (τ) = Pν(cosh τ)

∫ τ

0
Pν(cosh s)Qν(cosh s) sinh(s)ds

−Qν(cosh τ)

∫ τ

0
(Pν(cosh s))

2 sinh(s)ds

V 3
2 (τ) = P1

ν (cosh τ)

∫ τ

0
Pν(cosh s)Qν(cosh s) sinh(s)ds

−Q1
ν(cosh τ)

∫ τ

0
(Pν(cosh s))

2 sinh(s)ds

V 1
4 (τ) = Pν(cosh τ)

∫ τ

0
(Qν(cosh s))

2 sinh(s)ds

−Qν(cosh τ)

∫ τ

0
Pν(cosh s)Qν(cosh s) sinh(s)ds

V 3
4 (τ) = P1

ν (cosh τ)

∫ τ

0
(Qν(cosh s))

2 sinh(s)ds

−Q1
ν(cosh τ)

∫ τ

0
Pν(cosh s)Qν(cosh s) sinh(s)ds.

Proof. First of all, we recall that the associated Legendre function Pν(cosh ·)
and Qν(cosh ·) form a basis of solutions of:

∂2τΨ(τ) + coth(τ)∂τΨ(τ)− ν(ν + 1)Ψ(τ) = 0.

If ν = −1
2 + i

√
3
2 then we have ν(ν + 1) = −1. This implies that P− 1

2
+i

√
3

2

(cosh τ)

and Q− 1

2
+i

√
3

2

(cosh τ) are solutions of

∂2τΨ(τ) + coth(τ)∂τΨ(τ) + Ψ(τ) = 0.
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From now on ν = −1
2 + i

√
3
2 . The solution of ∂τU = A(τ)U can be found by

inspecting the equivalent system

(
∂2τ + coth(τ)∂τ + 1

)
u1 = u2,

(
∂2τ + coth(τ)∂τ + 1

)
u2 = 0.

As a consequence solutions V1(τ) =
(
Pν(cosh τ), 0,P1

ν (cosh τ), 0
)T

and V3(τ) =(
Qν(cosh τ), 0,Q1

ν(cosh τ), 0
)T

are two linearly independent solutions. Note that

we have used the useful relations:

∂τ (Pν(cosh τ)) = P1
ν (cosh τ), ∂τ (Qν(cosh τ)) = Q1

ν(cosh τ).

In order to find two other linearly independent solutions, we first solve the following

equation: (
∂2τ + coth τ∂τ + 1

)
u(τ) = Pν(cosh τ).

We search solutions of the form u(τ) = c1(τ)Pν(cosh τ) + c2(τ)Qν(cosh τ), where

the derivatives (ċ1(τ), ċ2(τ)) satisfy:

{
ċ1(τ)Pν(cosh τ) + ċ2(τ)Qν(cosh τ) = 0

ċ1(τ)P1
ν (cosh τ) + ċ2(τ)Q1

ν(cosh τ) = Pν(cosh τ)

which we rewrite in a matrix form:

(Pν(cosh τ) Qν(cosh τ)

P1
ν (cosh τ) Q1

ν(cosh τ)

)(
ċ1(τ)

ċ2(τ)

)
=

(
0

Pν(cosh τ)

)
.

From formula in [Erdelyi 1985] page 123, we obtain that:

W (τ) = Pν(cosh τ)Q1
ν(cosh τ)− P1

ν (cosh τ)Qν(cosh τ) = − 1

sinh τ
,

where W (τ) is non vanishing for all τ ∈]0; +∞[ such that we can inverse the matrix

in left hand side of the previous system and obtain:

ċ1(τ) = sinh τPν(cosh τ)Qν(cosh τ)

ċ2(τ) = − sinh τ (Pν(cosh τ))
2

which gives

u(τ) = c1Pν(cosh τ)+c2Qν(cosh τ)+Pν(cosh τ)

∫ τ

0
Pν(cosh s)Qν(cosh s) sinh(s)ds

−Qν(cosh τ)

∫ τ

0
(Pν(cosh s))

2 sinh(s)ds,

with two constants c1, c2 ∈ R. Equivalently, the solutions of

(
∂2τ + coth τ∂τ + 1

)
u(τ) = Qν(cosh τ)
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are given by

u(τ) = c3Pν(cosh τ) + c4Qν(cosh τ) + Pν(cosh τ)

∫ τ

0
(Qν(cosh s))

2 sinh(s)ds

−Qν(cosh τ)

∫ τ

0
Pν(cosh s)Qν(cosh s) sinh(s)ds,

with two constants c3, c4 ∈ R.

Choosing only linearly independent solutions, we finally obtain the result stated

in the proposition. �

In table 11.1, we summarize know expansions of the associated Legendre func-

tions in the limits τ → 0 and τ → ∞. Thus, V1(τ) and V2(τ) stay bounded as

τ → 0, while norms of V3(τ) and V4(τ) behave like ln τ as τ → 0. We expect that

the set of solutions of (11.57) that are bounded as τ → 0 forms a two-dimensional

manifold in R4 for each fixed τ > 0. We denote P cu
− (τ0) onto the space spanned by

V1(τ0), V2(τ0) with null space given by the span of V3(τ0), V4(τ0).

τ → 0 τ → ∞
Pν(cosh ·) 1 +O(τ2) C0 cos(

√
3τ
2 +Φ0)e

− τ
2 +O(e−

3τ
2 )

P1
ν (cosh ·) τ

(
−1

2 +O(τ2)
)

C0 cos(
√
3τ
2 +Φ0 +

2π
3 )e−

τ
2 +O(e−

3τ
2 )

Qν(cosh ·) (−1 +O(τ2)) ln τ +O(1) C1 cos(
√
3τ
2 − Φ1)e

− τ
2 +O(e−

3τ
2 )

Q1
ν(cosh ·) (1 +O(τ2))τ ln τ − 1

τ +O(1) C1 cos(
√
3τ
2 − Φ1 +

2π
3 )e−

τ
2 +O(e−

3τ
2 )

Table 11.1: Expansions of associated Legendre functions Pk
ν (cosh ·) and Qk

ν(cosh ·)
for τ → 0 and τ → ∞; see [Erdelyi 1985, Virchenko 2001]. C0, C1,Φ0 and Φ1 are

real constants.

Proposition 11.2.2.The constants C0, C1,Φ0 and Φ1 given in table 11.1 are

C0 =
2√
π

∣∣∣∣∣∣

Γ
(
i
√
3
2

)

Γ
(
1
2 + i

√
3
2

)

∣∣∣∣∣∣
, Φ0 = arg




Γ
(
i
√
3
2

)

Γ
(
1
2 + i

√
3
2

)


 ,

C1 =
√
π

∣∣∣∣∣∣
cot

(
π

(
−1

2
+ i

√
3

2

))
Γ
(
−i

√
3
2

)

Γ
(
1
2 − i

√
3
2

)

∣∣∣∣∣∣
,

Φ1 = arg


√π cot

(
π

(
−1

2
+ i

√
3

2

))
Γ
(
−i

√
3
2

)

Γ
(
1
2 − i

√
3
2

)


 .

Proof. The proof of this proposition is based on the asymptotics as z → ∞
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[Virchenko 2001]:

Pm
ν (z) ≈ zm/2

√
π(z − 1)m/2

(
(2z)νΓ(ν + 1/2)

Γ(ν −m+ 1)

(
1 +O(z−1)

)

+
(2z)−ν−1Γ(−ν − 1/2)

Γ(−m− ν)

(
1 +O(z−1)

)
)
,

and

Qm
ν (z) ≈ 2−ν−2z−ν−1

√
πΓ(−m− ν)Γ(ν −m+ 1)

(
1 + z

z − 1

)m/2
(
(2z)2ν+1Γ(−m−ν)Γ(ν+1/2)

× (ln(1 + z)− ln(z − 1))
(
1 +O(z−1)

)
+ Γ(−m+ ν + 1)Γ(−ν − 1/2)

× (2π + ln(1 + z)− ln(z − 1))
(
1 +O(z−1)

)
)
.

�

Proposition 11.2.3.The following formulas are satisfied

Φ0 +Φ1 = −π
2
, (11.59)

C0 = 2

√√√√ 2
√
3

3π tanh
(√

3π
2

) and C1 =

√√√√2π
√
3 tanh

(√
3π
2

)

3
. (11.60)

Proof. Relation (11.59) is straightforward to verifiy from the definition of Φ0

and Φ1. The formulas for C0 and C1 are obtained with the software Maple by

noticing that √
3C0

6
=
C1C

2
0

8
, (11.61)

which automatically gives
∣∣∣∣∣∣

Γ
(
i
√
3
2

)

Γ
(
1
2 + i

√
3
2

)

∣∣∣∣∣∣
=

√√√√ 2
√
3

3 tanh
(√

3π
2

) .

The formula (11.60) is then easily obtained from the above equation. �

We are now able to present the equivalent of lemma 11.1.1 in the case of the

Poincaré disk.

Lemma 11.2.1. Fix τ0 > 0, then there are constants δ0, δ1 so that the set Wcu
− (λ)

of solutions U(τ) of (11.14) for which sup0≤τ≤τ0 |U(τ)| < δ0 is, for |λ| < δ0, a

smooth two-dimensional manifold. Furthermore, U ∈ Wcu
− (λ) with |P cu

− (τ0)U(τ0)| <
δ1 if only if

U(τ0) = d̃1V1(τ0) + d̃2V2(τ0) + V3(τ0)Oτ0(|λ||d̃|+ |d̃|2)
+ V4(τ0)

(
Ξd̃2

1

d̃21 + Ξd̃1d̃2
d̃1d̃2 +Oτ0(|λ||d̃|+ |d̃2|2 + |d̃|3)

) (11.62)
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where

Ξd̃2
1

=
µ2cs2
2

[−(Γ1 + 2Γ2)I1 + 2Γ2I2 + o(1)] ,

Ξd̃1d̃2
= µ2cs2 [Γ2I1 + o(1)] ,

with

I1 =

∫ ∞

0
(Pν(cosh s))

3 sinh sds <∞,

I2 =

∫ ∞

0
Pν(cosh s)

(
P1
ν (cosh s)

)2
sinh sds <∞.

for some d̃ = (d̃1, d̃2) ∈ R2 with |d̃| < δ1, where the right hand side in (11.62)

depends smoothly on (d̃, λ).

Proof. The proof is also very similar to the proof of lemma 11.1.1. We observe

that four independent solutions to the adjoint problem ∂τU = −AT (τ)U are given

by

W1(τ) = sinh τ
(
Q1

ν(cosh τ),W
2
1 (τ),−Qν(cosh τ),W

4
1 (τ)

)T
,

W2(τ) = sinh τ
(
0,Q1

ν(cosh τ), 0,−Qν(cosh τ)
)T
,

W3(τ) = sinh τ
(
P1
ν (cosh τ),W

2
3 (τ),−Pν(cosh τ),W

4
3 (τ)

)T

W4(τ) = sinh τ
(
0,P1

ν (cosh τ), 0,−Pν(cosh τ)
)T
,

with

W 2
1 (τ) = P1

ν (cosh τ)

∫ τ

0
P1
ν (cosh s)Q1

ν(cosh s) sinh(s)ds

−Q1
ν(cosh τ)

∫ τ

0

(
P1
ν (cosh s)

)2
sinh(s)ds,

W 4
1 (τ) = −Qν(cosh τ)− Pν(cosh τ)

∫ τ

0
P1
ν (cosh s)Q1

ν(cosh s) sinh(s)ds

+Qν(cosh τ)

∫ τ

0

(
P1
ν (cosh s)

)2
sinh(s)ds,

W 2
3 (τ) = P1

ν (cosh τ)

∫ τ

0

(
Q1

ν(cosh s)
)2

sinh(s)ds

−Q1
ν(cosh τ)

∫ τ

0
P1
ν (cosh s)Q1

ν(cosh s) sinh(s)ds,

W 4
3 (τ) = −Pν(cosh τ)− Pν(cosh τ)

∫ τ

0

(
Q1

ν(cosh s)
)2

sinh(s)ds

−Qν(cosh τ)

∫ τ

0
P1
ν (cosh s)Q1

ν(cosh s) sinh(s)ds.

We have used the facts that:
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• the following relations are satisfied [Erdelyi 1985]:

∂τ
(
sinh τP1

ν (cosh τ)
)

= − sinh τPν(cosh τ)

∂τ
(
sinh τQ1

ν(cosh τ)
)

= − sinh τQν(cosh τ),

• the solutions of
(
∂2τ − coth τ∂τ + 1

)
q1(τ) = sinh τP1

ν (cosh τ)(
∂2τ − coth τ∂τ + 1

)
q2(τ) = sinh τQ1

ν(cosh τ)

are given by

q1(τ) = c1 sinh τP1
ν (cosh τ) + c2 sinh τQ1

ν(cosh τ)

+ sinh τP1
ν (cosh τ)

∫ τ

0
P1
ν (cosh s)Q1

ν(cosh s) sinh(s)ds

− sinh τQ1
ν(cosh τ)

∫ τ

0

(
P1
ν (cosh s)

)2
sinh(s)ds

q2(τ) = c3 sinh τP1
ν (cosh τ) + c4 sinh τQ1

ν(cosh τ)

+ sinh τP1
ν (cosh τ)

∫ τ

0

(
Q1

ν(cosh s)
)2

sinh(s)ds

− sinh τQ1
ν(cosh τ)

∫ τ

0
P1
ν (cosh s)Q1

ν(cosh s) sinh(s)ds,

with four real constants c1, c2, c3, c4 ∈ R.

It follows from

sinh τ
(
P1
ν (cosh τ)Qν(cosh τ)− Pν(cosh τ)Q1

ν(cosh τ)
)
= 1

that

〈Vi(τ),Wj(τ)〉R4 = δi,j i, j = 1, . . . , 4

is independent of τ . For given d̃ = (d̃1, d̃2) ∈ R2, we consider the fixed-point

equation:

U(τ) =
2∑

j=1

d̃jVj(τ) +
2∑

j=1

Vj(τ)

∫ τ

τ0

〈Wj(s),F(U(s), λ)〉ds

+
4∑

j=3

Vj(τ)

∫ τ

0
〈Wj(s),F(U(s), λ)〉ds

=

2∑

j=1

d̃jVj(τ) +

2∑

j=1

Vj(τ)

∫ τ

τ0

Wj,4(s)F4(U(s), λ)ds

+
4∑

j=3

Vj(τ)

∫ τ

0
Wj,4(s)F4(U(s), λ)ds

(11.63)

on C0([0, τ0],R
4), where Wj,4(τ) (resp. F4(U(τ), λ))denotes the fourth component

of Wj(τ) (resp. F(U(τ), λ)). We have:
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• Each solution U ∈ C0([0, τ0],R
4) of (11.63) gives a solution of (11.57) that is

bounded on [0, τ0].

• Every bounded solution U ∈ C0([0, τ0],R
4) of (11.57) satisfies (11.63) provided

we add d̃3V3(τ) + d̃4V4(τ) to the right hand side for an appropriate d̃ ∈ R4.

• Existence of solutions of (11.63) is given by the uniform contracting mapping

principle for sufficiently small (d̃1, d̃2) and λ.

• The resulting solution U satisfies on [0, τ0]:

U(τ) =

2∑

j=1

d̃jVj(τ) +Oτ0(|λ||d̃|+ |d̃|2).

We also need to compute the quadratic coefficient in d̃ in front of V4(τ0), denoted

Ξ.We recall that:

F2,0(U,U) =
µ2cs2
2

(
0, 0, 0, (Γ1 + 2Γ2)u

2
1 − 2Γ2u1u2 − 2Γ2u

2
3

)T
.

If we evaluate (11.63) at τ = τ0, we arrive at (11.62) except that we need to

calculate the quadratic coefficients in front of V4(τ0): using a Taylor expansion, we

find that these coefficients are given by:

Ξd̃2
1

=
µ2cs2
2

∫ τ0

0
W4,4(s)

[
(Γ1 + 2Γ2) (Pν(cosh s))

2 − 2Γ2

(
P1
ν (cosh s)

)2]
ds

and

Ξd̃1d̃2
= −µ2cs2Γ2

∫ τ0

0
W4,4(s) (Pν(cosh s))

2 ds.

Then we have:

Ξd̃2
1

=
µ2cs2
2

[−(Γ1 + 2Γ2)I1 + 2Γ2I2 + o(1)]

Ξd̃1d̃2
= µ2cs2 [Γ2I1 + o(1)] ,

with

I1 =

∫ ∞

0
(Pν(cosh s))

3 sinh sds <∞,

I2 =

∫ ∞

0
Pν(cosh s)

(
P1
ν (cosh s)

)2
sinh sds <∞.

�
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11.2.5 The far-field equations

We make equation (11.57) autonomous by adding the variable α = coth τ − 1 wich

satisfies ∂τα = −α(2 + α). Equation (11.57) becomes

d

dτ




u1
u2
u3
u4
α




=




u3
u4

−u1 + u2 − (1 + α)u3
−u2 − (1 + α)u4 + F4 (u1, u2, u3, u4, λ, α)

−α(2 + α)



. (11.64)

In the remainder of this section, we focus on the regime α ≈ 0 which corresponds

to the far field τ ≫ 1. If we denote A(∞, λ) the following matrix

A(∞, λ) =




0 0 1 0

0 0 0 1

−1 1 −1 0

s1(Γ1 + Γ2)λ −1− s1Γ2λ 0 −1




then A(∞, 0) has eigenvalues ν, ν̄ with multiplicity two (ν is defined in equation

(11.58)). As ℜ(ν) = −1/2, the trivial state U = 0 is asymptotically stable at λ = 0

and then there is no bifurcation at the far field. Remember that in the Euclidean

case a Turing instability occurs at infinity. In figure 11.1, we summarize how the

eigenvalues ℓ of A(∞, λ) split close to λ = 0. For λ > 0, there exist four complex

conjugate eigenvalues with ℜ(ℓ) = −1/2. For λ < 0, there exist also four complex

conjugate eigenvalues with ℜ(ℓ) 6= −1/2.

!=0 !>0

0

!<0

C

0

C

0

C

-1

2

-1

2

-1

2

Figure 11.1: Schematic splitting of the eigenvalues ℓ of A(∞, λ) for different values

of λ. At λ = 0, the multiplicity is two. Eigenvalues in the red box correspond to

the stable fast manifold Wsf
+ (λ).

Firstly, we can use the following formal argument. We have that V1(τ) and

V3(τ) decay like e−τ/2, while V2(τ) and V4(τ) decay like τe−τ/2 as τ → ∞.

Hence the tangent space of the stable manifold at (u, λ) = 0 is spanned by

(V1(τ), V2(τ), V3(τ), V4(τ)). On the other hand, we showed in lemma 11.2.1 that the

tangent space of the core manifold is spanned by V1(τ) and V2(τ). Then these tan-

gent spaces would intersect along the two-dimensional subspace spanned by V1(τ)

and V2(τ).
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As in the Euclidean case we use successive well chosen change of variables. We

can first use the linear change of coordinates

U = Ã




1

0

ν

0


+ B̃




0

2ν + 1

1

ν(2ν + 1)


+ c.c.

or equivalently,

(
Ã

B̃

)
=

(
1
2u1 + i

√
3
3

(
−1

2u1 − 1
3u2 − u3 − 2

3u4
)

−1
3

(
1
2u2 + u4

)
− i

√
3
6 u2

)
, U = (u1, u2, u3, u4)

T .

In these coordinates, (11.64) becomes, without the high order terms, at λ = 0,

∂τ Ã =

(
−1

2
− α

2
+ i

[√
3

2
− α

√
3

6

])
Ã+

(
1 +

α

3

)
B̃ + α

(
1

2
− α

√
3

6

)
Ã− α

3
B̃

∂τ B̃ =

(
−1

2
− α

2
+ i

[√
3

2
− α

√
3

6

])
B̃ + α

(
−1

2
+
α
√
3

6

)
B̃

∂τα = −α(2 + α). (11.65)

We can also find a transformation of the form of (11.19).

Lemma 11.2.2.Fix 0 < m <∞, then there exists a change of coordinates

(
A

B

)
= e−iφ(r)[1 + T (α)]

(
Ã

B̃

)
+O((|λ|+ |Ã|+ |B̃|)(|Ã|+ |B̃|)) (11.66)

so that (11.65) becomes

∂τA =

(
−1

2
− α

2

)
A+B + h.o.t.

∂τB =

(
−1

2
− α

2

)
B + c1λA+ h.o.t.

∂τα = −α(2 + α). (11.67)

The constant c1 is given by

c1 = −s1
Γ1 + Γ2

3
.

The coordinate change is polynomial in (A,B, α) and smooth in λ and T (α) = O(α)

is linear and upper triangular for each α, while φ(r) satisfies

∂rφ(r) =

√
3

2
+O(|λ|+ |α|+ |A|2), φ(0) = 0.
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Note that at (α, λ) = (0, 0), the trivial state (A,B) = (0, 0) is hyperbolic such

that the higher order terms in equation (11.67) are exponentially small for τ ≫ 1

and λ small enough and can be neglected. We can also directly solve the linear part

of equation (11.67) and obtain:

(
A(τ)

B(τ)

)
=

1√
sinh(τ)

[
q1e

−τ
√
c1λ

(
1

−
√
c1λ

)
+ q2e

τ
√
c1λ

(
1√
c1λ

)]
. (11.68)

We want to find solutions which have a finite energy density with respect to the

hyperbolic measure, i.e. functions that are in L2(R+, sinh(τ)dτ). This restriction

implies that we need to track the stable fast Wsf
+ (λ) of equation (11.68) which

corresponds to eigenvalues ℓ of A(∞, λ) with real part less than −1
2 as shown in

figure 11.1. Thus, for each fixed τ0 ≫ 1 and for all sufficiently small λ < 0, we can

write the τ = τ0-fiber of the stable fast manifold Wsf
+ (λ) of equation (11.68) near

U = 0 as

Wsf
+ (λ) |τ=τ0 :

(
A

B

)
= e−τ0/2

[
−η
√
c1λ (1 +Oτ0(|λ|))

(
τ0
1

)
+
√
c1λη

(
1

0

)]

(11.69)

for η ∈ C.

Our goal is now to find nontrivial intersections of the stable fast manifoldWsf
+ (λ)

with the center-unstable manifold Wcu
− (λ). To this end, we write the expansion

(11.62) for each fixed τ0 ≫ 1 in the (Ã, B̃) coordinates and afterwards in the

coordinates (A,B). Using the expansions of the associated Legendre functions

given in table 11.1 we arrive at the expression

(
Ã

B̃

)
= e−τ0/2


ei

(√
3

2
τ0+Φ0

)



C0

2 d̃1(1 +O(1)) + τ0d̃2

(
−i

√
3C0

6 +O(1)
)

−d̃2(i
√
3C0

6 +O(1)) + C1

√
3

6

(
Ξd̃2

1

d̃21 + Ξd̃1d̃2
d̃1d̃2

)



+e
i
(√

3

2
τ0+Φ0

)(
Oτ0(λ|d̃|+ |d̃|2)
Oτ0(λ|d̃|+ |d̃2|2 + |d̃1|3)

)]
. (11.70)

We can apply the transformation (11.66) to equation (11.70) and obtain the

expansion:

Wcu
− (λ) |τ=τ0 :

(
A

B

)
= ei(Φ0+O(τ−2

0
)+Oτ0

(λ|d̃|+|d̃|2)
(
Oτ0(λ|d̃|+ |d̃|2)
Oτ0(λ|d̃|+ |d̃2|2 + |d̃1|3)

)

+ei(Φ0+O(τ−2

0
)+Oτ0

(λ|d̃|+|d̃|2)
(

C0

2 d̃1(1 +O(1)) + τ0d̃2(−i
√
3C0

6 +O(1))

−d̃2(i
√
3C0

6 +O(1))

)

+ ei(Φ0+O(τ−2

0
)+Oτ0

(λ|d̃|+|d̃|2)
(

0
C1

√
3

6

(
Ξd̃2

1

d̃21 + Ξd̃1d̃2
d̃1d̃2

)
)
. (11.71)
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As in the Euclidean case, the final step of the analysis consists in finding nontriv-

ial intersections of the stable fast manifold Wsf
+ (λ) given above in equation (11.69)

and the core manifold Wcu
− (λ) given in (11.71). We can easily solve this problem in

(d̃1, d̃2) and we find that:

d̃1 = − C0

C1Ξd̃2
1

√
3λc1, d̃2 = O(λ).

We can now state the main result of this section.

Theorem 11.2.1 (Existence of spot solutions). Fix θ ≥ 0 for the threshold of the

nonlinearity S and (b1, b2, σ1, σ2) ∈ R4 such that the connectivity functionW defined

in equation (11.47) satisfies hypotheses 11.2.1. Then there exists µ∗ < µc such that

the planar neural field equation (11.41) has a stationary localized radial solution

v(τ) for each µ ∈]µ∗, µc[: these solutions stay close to v = 0 and, for each fixed

τ∗ > 0, we have the asymptotics

v(τ) = β
√
µc − µ P− 1

2
+i

√
3

2

(cosh τ) +O(µ− µc) as µ→ µc (11.72)

uniformly in 0 ≤ τ ≤ τ∗ for an appropriate constant β with sign(β) = −sign(Ξd̃2
1

).

11.3 Conclusion

In this chapter we have presented the mechanisms of formation of Spot A solutions

of neural field equations for the two geometries: Euclidean and hyperbolic. The

main idea is to transform the initial neural field equations into a PDE and look for

stationary radially symmetric solutions. We have applied techniques from Scheel,

Lloyd and Sandstede [Scheel 2003, Lloyd 2009] to prove the existence of a bifur-

cated branch of Spot A solution near a Turing instability for the Euclidean case

and adapted the proofs for the hyperbolic case. In the Poincaré disk, the analy-

sis near the core manifold is much more involved as it requires the knowledge of

the asymptotics of the associated Legendre functions. It turns out that the main

difference between the two geometries comes from the far field. At infinity, Bessel

function J0 scales as 1/
√
r whereas associated Legendre function Pν scales as e−τ/2.

Moreover, at infinity, there is a Turing instability at λ = 0 while in the hyperbolic

state the trivial state U = 0 is always asymptotically stable.

This chapter is actually formal and a rigorous numerical study should be done

to highlight the theoretical results. Moreover, for neural field equations set on

the Euclidean plane, we also expect the bifurcation of Spots B and localized rings

from the spatially homogeneous state provided that the coefficient c03 < 0 in lemma

10.2.2 in chapter 10: the one dimensional Turing bifurcation is subcritical (see

[McCalla 2010, McCalla 2011] for the planar Swift-Hohenberg equation).
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Chapter 12

General conclusion

In this Thesis, we have applied tools from dynamical systems to study, from a

theoretical point of view, the spontaneous activity of neural field equations. We

decided to focus our analysis on the symmetries given by the models and study

the different cortical states that can be produced because of these symmetries.

After the general introduction in part I, this Thesis splits in two mains parts, one

being dedicated to spatially periodic solutions and symmetry-breaking mechanism

on different kind of lattices, in different geometries, and the other one being centered

on the study of localized solutions.

In the part concerning spatially periodic solutions, we have developped an anal-

ysis of nonlinear pattern formation in the Poincaré disk, motivated by a model of

texture perception in the visual cortex. Functions that are periodic in the Poincaré

disk are, by definition, invariant under the action of a discrete subgroup of the group

of isometries of the Poincaré disk whose fundamental domain is a polygon. Tilings of

the Poincaré disc have very different properties from tilings of the Euclidean plane.

In particular tilings exist with polygons having an arbitrary number of sides, while

in the Euclidean plane only rhombic, square and hexagonal periodic tilings exist.

In this Thesis we have studied the case where the Poincaré disk is tiled with reg-

ular octagons. In this case, the quotient of the Poincaré disk by the tiling group

is a double torus (genus 2 surface) hence a compact manifold and techniques from

equivariant bifurcation theory can be applied. Solutions which generically bifurcate

are called ”H-planforms”, by analogy with the ”planforms” introduced for pattern

formation in Euclidean space. We have presented a complete classification all pos-

sible H-planforms satisfying the hypotheses of the Equivariant Branching Lemma.

However, these patterns are not easy to compute, even numerically, and we pre-

sented several methods for their computation. All the irreducible representations of

the octagonal tiling group were described: four representations have dimension one,

two have dimension two, four have dimension three and three have dimension four.

Each of these cases leads to a different bifurcation diagram. We have shown that

the bifurcation problem for the 2D cases is equivalent to problem with triangular

symmetry, and in the 3D cases, to problem with octahedral symmetry. It follows

that the bifurcation diagrams in these cases are known and show generically no

other bounded dynamics than the trivial ones associated with the equilibria with

maximal isotropy. The 4D case is much more involved. We have studied separately

the bifurcation diagrams and local dynamics in the 4D irreducible representation

spaces of the octagonal tiling group. We have also demonstrated that in one of

these cases, there is a generic bifurcation of a heteroclinic network connecting equi-

libria with two different orbit types. We have also shown that bifurcation with
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submaximal isotropy could occur generically.

In the last chapter of the part concerning spatially periodic solutions, we have

considered a spatial extension of the structure tensor model. We have conducted

a mathematical analysis of interacting hypercolumns that takes into account the

functional geometry of local and lateral connections in the primary visual cortex.

We have explicitly written down the lateral coupling function that incorporates

recent experimental data. The network topology of the hypercolumn was taken

to be that of the Poincaré disk. We investigated the spontaneous formation of

cortical activity patterns and addressed to two different problems. Firstly, natural

images can only produce a bounded set of structure tensors and, as suggested by

microelectrode recordings, the lateral connections modulate rather than drive the

cortical activity. The aim was to study the case of no lateral coupling (model of

a single hypercolumn) and to infer properties when anisotropic coupling is added,

when the feature space is reduced to a compact disk in the Poincaré disk. The second

problem was based on the fact that anisotropy in lateral connections can be small

depending on the animal studied. This suggests that the isotropic case should be

studied and the properties of the anisotropic case inferred. The strategy adopted

in order to solve this problem was to determine solutions to symmetry-breaking

bifurcations in the isotropic case and study how these solutions may change when

anisotropy is introduced as a forced symmetry-breaking parameter.

In the last part we have theoretically investigated stationary spatially localized

solutions of neural field equations set on unbounded domains with smooth firing

rate function. In the neuroscience community, these solutions are believed to be

the analog of short-term memory and thus are of particular interest. The main

results of this work are (i) a rigorous proof of the existence of localized states

via homoclinic bifurcation in the scalar case and a numerical analysis exhibiting

“snaking” bifurcation diagrams, (ii) a proof of the existence of localized radial

solutions in the Euclidean plane, (iii) an extension of the results to the Poincaré

disk. The study of localized solutions in the Euclidean plane and the Poincaré disk

draws on the methods developed in [Scheel 2003, Lloyd 2009, McCalla 2010] for the

Swift-Hohenberg equation, but which had not been applied previously to neural

field equations.

Perspectives

The work concerning pattern formation in neural field equations can be pushed

further. One could pursue the analysis of pattern formation in the Poincaré disk

and look, for example, at non-octagonal tilings and pseudoscalar actions. We think

that chapters 6, 7 and 8 provide most of the methods required to tackle such studies.

Furthermore, concerning localized solutions in the 2D case, the analysis initiated in

chapter 11 should be extended. The next step would be to study, for the Euclidean

case, the bifurcation of hexagonal localized solutions form the radially symmetric

solution along the lines of [Lloyd 2008]. And the second natural step would be to
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apply the same ideas in the context of the Poincaré disk.

One of the major remaining issues in neural field equations is the impact of

the external visual inputs on the dynamics. Typically, external inputs are sim-

ply ignored and only spontaneous cortical activity is studied [Bressloff 2001b,

Chossat 2011]. External inputs can have various forms and depend upon time,

space or features [Ermentrout 2010b, Rankin 2011]. It is also reasonable to think

that inputs are source of external noise [Hutt 2008]. Without any input, neural

field equations with convolutional coupling function have naturally some symmetry

properties which are broken when the input is turned on. The simplest example

is the ring model of orientation [Ben-Yishai 1995, Veltz 2011]: the amplitude, ε, of

the thalamic external input is seen as forced symmetry-breaking parameter: with-

out any input (ε = 0) the model presents an O(2)-symmetry which is broken when

the input is switched on (ε > 0). We see two different challenging issues. The first

one is to analyse the effects of a localized visual input in spatially extended neural

field models, like the spatialized model in chapter 8, and compare the mathematical

results to experimental data. The second challenge is the question of noisy external

input and the analysis of the related stochastic neural field equations.

Presently, there is no biological evidence for the existence of structure tensors

encoded in the primary visual cortex. This is why we need to make predictions

that can be easily recovered by experimentalists. So far, it has been explained in

details in chapter 3 how the structure tensor model encompasses the well-known

ring model of orientation [Ben-Yishai 1995] and in 8 it has been shown that it was

possible to recover all the geometric visual hallucinations found by Bressloff et al

[Bressloff 2001b]. In order to further pursue the validation of the model, it was also

explained how to identify a point in the Poincaré disk to a point in a polar map (see

chapter 3). Having done this identification, one can ask the question of formation

of map of structure tensors during cortical development. This problem is directly

related to the work of Wolf [Wolf 1998, Kaschube 2008, Kaschube 2010] for cortical

map of orientation and the work of Bressloff and Oster for ocular dominance map

[Oster 2006, Bressloff 2010]. It would be very interesting to model a structure tensor

map on a growing cortex with different topolgy (disk, square and sphere) using an

evolution equation similar to those proposed in [Kaschube 2008, Bressloff 2010].

The maps obtained from the model could be then compared to those obtained

experimentally by optical imaging techniques.

In the past decade, there has been a growing interest to what is called the neu-

rogeometry of the visual cortex [Petitot 2003b, Sarti 2008, Petitot 2009] where the

group of Euclidean transformations of the plane plays an important role. The func-

tional architecture of the primary visual cortex is modeled as a principal fiber bundle

where the two-dimensional retinal plane is the base manifold and hyprecolumns of

orientations constitute the vertical fibers over each point. Such an approach has

been successfully applied in computer vision for completion problem and in psy-

chophysics for Kaniza’s illusory contours. It could be interesting to study a model

of neurogeometry where the primary visual cortex is modeled as a principal fiber

bundle where the base manifold is abstracted by R2 and hypercolumns of struc-
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ture tensors constitute the vertical fibers over each point and apply it to surface

completion problem.

In chapter 7, it was shown that there is a generic bifurcation of a heteroclinic

network connecting equilibria with two different orbit types. So far, only sufficient

conditions on the parameters for essential stability of this network have been given.

The question of the stability of this network, in a more general setting, remains

open. It would be very interesting for a mathematical point of view to pursue the

analysis of this heteroclinic network.
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A.1 Computation of low-order equivariants

A.1.1 Computational part of the proof of theorem 7.2.1

Proposition A.1.1.For the irreductible representation χ12, the two cubic equivariant

maps are:

E1(z) = z
(
|z1|2 + |z2|2

)
and E2(z) =




√
3
(
3z21 + z̄22

)
z̄1 − i

(
z22 + 3z̄21

)
z2√

3
(
3z̄21 + z22

)
z1 + i

(
z̄22 + 3z21

)
z̄2√

3
(
3z22 + z̄21

)
z̄2 + i

(
z21 + 3z̄22

)
z1√

3
(
3z̄22 + z21

)
z2 − i

(
z̄21 + 3z22

)
z̄1




(A.1)

Proof. Let E denote a homogeneous equivariant mapping. We want to deduce

the restrictions placed on the form of E by the symmetry group G. We first choose

appropriate coordinates. Thanks to proposition 7.1.2 of subsection 7.1.4 we have a

presentation of G with 4× 4 real matrices with generators ρ, σ, κ given by equation

7.2. The eigenvalues of ρ are exp(± iπ
4 ), exp(±3iπ

4 ) (where i2 = −1). And we have

the following decomposition:

ρP = P−1ρP =




exp( iπ4 ) 0 0 0

0 exp(− iπ
4 ) 0 0

0 0 exp(3iπ4 ) 0

0 0 0 exp(−3iπ
4 )



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with P =




i −i i −i

−1 −1 1 1

−i i i −i

1 1 1 1


 .

Then we can express in this basis the other generators:

σP = P−1σP =

√
2

4




1 i
√
3 1 −i

√
3

−i
√
3 1 i

√
3 1

1 −i
√
3 −1 −i

√
3

i
√
3 1 i

√
3 −1


 ,

and κP = P−1κP =




0 i 0 0

−i 0 0 0

0 0 0 i

0 0 −i 0


 .

We denote z = (z1, z̄1, z2, z̄2) the complex coordinates associated to the eigen-

vectors of ρ i.e the columns of P . Write E in components as (f1, f̄1, f2, f̄2)
T. We

begin by describing the action of ρP on the equivariant map E.

For all z, the action is given by ρP · z = (e
iπ
4 z1, e

− iπ
4 z̄1, e

3iπ
4 z2, e

− 3iπ
4 z̄2) and the

equivariance yields
{
e

iπ
4 f1(z1, z̄1, z2, z̄2) = f1(e

iπ
4 z1, e

− iπ
4 z̄1, e

3iπ
4 z2, e

− 3iπ
4 z̄2)

e
i3π
4 f2(z1, z̄1, z2, z̄2) = f2(e

iπ
4 z1, e

− iπ
4 z̄1, e

3iπ
4 z2, e

− 3iπ
4 z̄2)

(A.2)

We are looking for cubic equivariants of the form αzk11 z̄
l1
1 z

k2
2 z̄

l2
2 satisfying the relation

k1 + k2 + l1 + l2 = 3. So with the first equation of (A.2) we simply get

αe
iπ
4 zk11 z̄

l1
1 z

k2
2 z̄

l2
2 = αei

π
4
[(k1−l1)+3(k2−l2)]zk11 z̄

l1
1 z

k2
2 z̄

l2
2

In order that this is equivariant under the action of ρP we have to impose:

(k1 − l1 − 1) + 3(k2 − l2) = 8n with n ∈ Z

which gives 5 elements in f1.

f1(z1, z̄1, z2, z̄2) = a1z
2
1 z̄1 + a2z1z2z̄2 + a3z

3
2 + a4z̄

2
1z2 + a5z̄1z̄

2
2

with (ai)i=1...5 ∈ C5. In the same fashion the second equation of (A.2) gives 5

elements in f2.

f2(z1, z̄1, z2, z̄2) = b1z
2
2 z̄2 + b2z1z̄1z2 + b3z

3
1 + b4z1z̄

2
2 + b5z̄

2
1 z̄2

with (bi)i=1...5 ∈ C5.

The action of κP on z is given by κP · z = (iz̄1,−iz1, iz̄2,−iz2). It is straight-

forward to see that this action imposes that a1, a2, a5, b1, b2, b5 are real and that

a3, a4, b3, b4 are imaginary numbers. Then we can rewrite f1 and f2 as:

f1(z1, z̄1, z2, z̄2) = α1z
2
1 z̄1 + α2z1z2z̄2 + iα3z

3
2 + iα4z̄

2
1z2 + α5z̄1z̄

2
2
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f2(z1, z̄1, z2, z̄2) = β1z
2
2 z̄2 + β2z1z̄1z2 + iβ3z

3
1 + iβ4z1z̄

2
2 + β5z̄

2
1 z̄2

with (αi, βi)i=1...5 ∈ (R× R)5.

Action of σP :

The action of σP on z is given by

σP · z =




√
2
4

(
z1 + z2 + i

√
3(z̄1 − z̄2)

)
√
2
4

(
z̄1 + z̄2 − i

√
3(z1 − z2)

)
√
2
4

(
z1 − z2 − i

√
3(z̄1 + z̄2)

)
√
2
4

(
z̄1 − z̄2 + i

√
3(z1 + z2)

)




T

and we find:

f1(z1, z̄1, z2, z̄2) = az1(|z1|2 + |z2|2) + b
(
3
√
3z1|z1|2 − iz32 − 3iz̄21z2 +

√
3z̄1z̄

2
2

)

f2(z1, z̄1, z2, z̄2) = az2(|z1|2 + |z2|2) + b
(
3
√
3z2|z2|2 + iz31 + 3iz1z̄

2
2 +

√
3z̄21 z̄2

)

with (a, b) ∈ R2.

�

A.1.2 Computational part of the proof of theorem 7.3.1

Proposition A.1.2.For the irreductible representation χ11, the four quintic equivariant

maps are:

E5,1(z) = z‖z‖4, E5,2 =




z41 z̄2 + 4z32 |z1|2 − z32 |z2|2
z̄41z2 + 4z̄32 |z1|2 − z̄32 |z2|2
−z̄1z42 − 4z31 |z2|2 + z31 |z1|2
−z1z̄42 − 4z̄31 |z2|2 + z̄31 |z1|2




E5,3 =




3z̄21z2|z2|2 − z21 z̄
3
2 − 2z̄21 |z1|2z2

3z21 z̄2|z2|2 − z̄21z
3
2 − 2z21 |z1|2z̄2

−3z1z̄
2
2 |z1|2 + z̄31z

2
2 + 2z1z̄

2
2 |z2|2

−3z̄1z
2
2 |z1|2 + z31 z̄

2
2 + 2z̄1z

2
2 |z2|2


 , E5,4 =




−5z̄41 z̄2 + z̄52
−5z41z2 + z52
5z̄1z̄

4
2 − z̄51

5z1z
4
2 − z51




Proof. Let E denote a homageneous cubic equivariant mapping. Thanks to

proposition 7.1.3 of subsection 7.1.4 the generators of G are given in matrix form

in equation (7.3). The eigenvalues of ρ are still exp(± iπ
4 ), exp(±3iπ

4 ). And we have

the following decomposition:

ρP = P−1ρP =




exp( iπ4 ) 0 0 0

0 exp(− iπ
4 ) 0 0

0 0 exp(3iπ4 ) 0

0 0 0 exp(−3iπ
4 )


 with P =




i −i −i i

−1 −1 1 1

i −i i −i

1 1 1 1



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Then we can express in this basis the other generators:

σP = P−1σP =

√
2

2




−1 0 −i 0

0 −1 0 i

i 0 1 0

0 −i 0 1


 and κP = P−1κP =




0 i 0 0

−i 0 0 0

0 0 0 −i

0 0 i 0




We denote z = (z1, z̄1, z2, z̄2) the complex coordinates associated to the eigen-

vectors of ρ i.e the columns of P . Write E in components as (f1, f̄1, f2, f̄2)
T. The

action of ρP on a quintic equivariant map of the form αzk11 z̄
l1
1 z

k2
2 z̄

l2
2 with the relation

k1 + k2 + l1 + l2 = 5 implies that (k1 − l1 − 1) + 3(k2 − l2) = 8n with n ∈ Z, which

gives 14 elements in f1.

f1(z1, z̄1, z2, z̄2) = a1z
3
1 z̄

2
1+a2z1z

2
2 z̄

2
2+a3z

2
1 z̄1z2z̄2+a4z

4
1 z̄2+a5z̄

2
1z

2
2 z̄2+a6z1z̄1z

3
2+a7z

3
1z

2
2

+a8z
4
2 z̄2 + a9z

2
1 z̄

3
2 + a10z1z̄

2
1 z̄

2
2 + a11z̄1z2z̄

3
2 + a12z̄

4
1 z̄2 + a13z̄

5
2 + a14z1z̄

3
1z2

And we also obtain 14 elements in f2 with the same method:

f2(z1, z̄1, z2, z̄2) = b1z
2
1 z̄

2
1z2+b2z1z̄1z

2
2 z̄2+b3z

3
2 z̄

2
2+b4z

4
1 z̄1+b5z

3
1z2z̄2+b6z̄

3
1z

2
2+b7z

2
1z

3
2

+b8z̄1z
4
2 + b9z1z2z̄

3
2 + b10z

2
1 z̄1z̄

2
2 + b11z1z̄

3
1 z̄2 + b12z̄

2
1z2z̄

2
2 + b13z̄

5
1 + b14z̄1z̄

4
2

where (aj)j=1...14 ∈ C14 and (bj)j=1...14 ∈ C14.

The action of κP implies that the coefficients (aj , bj)j=1...14 are real. The action

of σP is σP · z =
√
2
2 (−z1 − iz2,−z̄1 + iz̄2, iz1 + z2,−iz̄1 + z̄2) and we obtain:

f1(z1, z̄1, z2, z̄2) = a(z1|z1|4 + z1|z2|4 + 2z1|z1|2|z2|2) + b(z41 z̄2 + 4z32 |z1|2 − z32 |z2|2)

+c(3z̄21z2|z2|2 − z21 z̄
3
2 − 2z̄21 |z1|2z2) + d(−5z̄41 z̄2 + z̄52)

f2(z1, z̄1, z2, z̄2) = a(z2|z2|4 + z2|z1|4 + 2z2|z1|2|z2|2) + b(−z̄1z42 − 4z31 |z2|2 + z31 |z1|2)
+c(−3z1z̄

2
2 |z1|2 + z̄31z

2
2 + 2z1z̄

2
2 |z2|2) + d(5z̄1z̄

4
2 − z̄51)

with (a, b, c, d) ∈ R4. Thus, we find 4 equivariant maps which is in agreement with

computation of the Molien serie of subsection 7.1.5. �

A.2 Fixed-point subspaces

A.2.1 Proof of Lemma 7.2.3

To complete the proof of Lemma 7.2.3 we give the matrix of σ, σ̃, ε, κ, κ′ and κ′′ in
the basis associated to coordinates (z1, z̄1, z2, z̄2).

σ =

√
2

4




1 i
√
3 1 −i

√
3

−i
√
3 1 i

√
3 1

1 −i
√
3 −1 −i

√
3

i
√
3 1 i

√
3 −1


 , σ̃ =

√
2

4




1 −i
√
3 −1 −i

√
3

i
√
3 1 i

√
3 −1

−1 −i
√
3 −1 i

√
3

i
√
3 −1 −i

√
3 −1






A.2. Fixed-point subspaces 259

ε =
1

4




1− i
√
3(i− 1) −1− i

√
3(1 + i)

−
√
3(1 + i) 1 + i

√
3(1− i) i− 1

1− i
√
3(1− i) 1 + i

√
3(1 + i)√

3(1 + i) 1 + i
√
3(1− i) 1− i


 , κ =




0 i 0 0

−i 0 0 0

0 0 0 i

0 0 −i 0




κ′ =

√
2

2




0 i− 1 0 0

−1− i 0 0 0

0 0 0 −1− i

0 0 −1 + i 0


 , κ′′ =

√
2

4




√
3 i −

√
3 i

−i
√
3 −i −

√
3

−
√
3 i −

√
3 −i

−i −
√
3 i −

√
3




A.2.2 Proof of Lemma 7.3.3

To complete the proof of Lemma 7.3.3 we give the matrix of σ, κ, κ′ and κ′′ in the

basis associated to coordinates (z1, z̄1, z2, z̄2).

σ =

√
2

2




−1 0 −i 0

0 −1 0 i

i 0 1 0

0 −i 0 1


 , κ =




0 i 0 0

−i 0 0 0

0 0 0 −i

0 0 i 0




κ′ =

√
2

2




0 i− 1 0 0

−1− i 0 0 0

0 0 0 1 + i

0 0 1− i 0


 , κ′′ =

√
2

2




0 −i 0 −1

i 0 −1 0

0 −1 0 −i

−1 0 i 0



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B.1 Computation of ̟ in 8.2.2.2

We use methods developped in [Haragus 2010] in order to compute the coefficient

̟ in the normal form (8.17). We use the scalar product:

〈ζ1, ζj〉 =
1

π

∫ ω

0

∫ 2π

0
ζi(τ, θ)ζj(τ, θ) sinh(τ)dτdθ = δi,j .

If we rewrite equation (8.14) as

V ′ = LV +R(V, λ)

with λ = µ− µc and

LV (τ, θ) = −V (τ, θ) + µcs1

∫ ω

0

∫ 2π

0
Wloc

(
τ, τ ′ | θ − θ′

)
V (τ ′, θ′) sinh(τ ′)dτ ′dθ′

R(V, λ) =

∫ ω

0

∫ 2π

0
Wloc

(
τ, τ ′ | θ − θ′

)
S((λ+ µc)V (τ ′, θ′)) sinh(τ ′)dτ ′dθ′

− µcs1

∫ ω

0

∫ 2π

0
Wloc

(
τ, τ ′ | θ − θ′

)
V (τ ′, θ′) sinh(τ ′)dτ ′dθ′.

Taylor expanding the map Ψ:

Ψ(A,B, λ) =
∑

1≤s+l+m≤3

AsBlλmΨslm

and R:

R(V, λ) = R11(V, λ) +R20(V, V ) +R30(V, V, V ) + h.o.t.
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with

R11(V, λ) = λs1

∫ ω

0

∫ 2π

0
Wloc

(
τ, τ ′ | θ − θ′

)
V (τ ′, θ′) sinh(τ ′)dτ ′dθ′

R20(U, V ) =
µ2cs2
2

∫ ω

0

∫ 2π

0
Wloc

(
τ, τ ′ | θ − θ′

)
UV (τ ′, θ′) sinh(τ ′)dτ ′dθ′

R30(U, V,W ) =
µ3cs3
6

∫ ω

0

∫ 2π

0
Wloc

(
τ, τ ′ | θ − θ′

)
UVW (τ ′, θ′) sinh(τ ′)dτ ′dθ′

where s2 = S′′(0) and s3 = S′′′(0) we obtain the following system of equations:

0 = LΨ200 +R20(ζ1, ζ1)

̟ = 〈2R20(Ψ200, ζ1) +R30(ζ1, ζ1, ζ1), ζ1〉. (B.1)

We strat by evaluating R20(ζ1, ζ1):

R20(ζ1, ζ1) =
µ2cs2
2

∫ ω

0

∫ 2π

0
Wloc

(
τ, τ ′ | θ − θ′

) (
Y1
N (τ ′)

)2
cos(θ′)2 sinh(τ ′)dτ ′dθ′

=
µ2cs2
2

π
∑

n∈N∗

Y0
n(τ)Ŵ0,n

∫ ω

0
Y0
n(τ

′)
(
Y1
N (τ ′)

)2
sinh(τ ′)dτ ′

+
µ2cs2
2

π

2
cos(2θ)

∑

n∈N∗

Y2
n(τ)Ŵ2,n

∫ ω

0
Y2
n(τ

′)
(
Y1
N (τ ′)

)2
sinh(τ ′)dτ ′

=
µ2cs2
2

∑

n∈N∗

[
πY0

n(τ)Ŵ0,nγ0,n +
π

2
cos(2θ)Y2

n(τ)Ŵ2,nγ2,n

]

where

γk,n =

∫ ω

0
Yk
n(τ

′)
(
Y1
1 (τ

′)
)2

sinh(τ ′)dτ ′.

This implies that:

Ψ200 = Span(ζ1, ζ2) +
∑

n∈N∗

[
c0nY0

n(τ) + c2n cos(2θ)Y2
n(τ)

]

with c0n =
µ2cs2πŴ0,nγ0,n

2
(
1− µcs12πŴ0,n

) and c2n =
µ2cs2πŴ2,nγ2,n

4
(
1− µcs1πŴ2,n

) .

It is now possible to compute coefficient ̟:

〈R20(Ψ200, ζ1), ζ1〉 =
µ2cs2
2

Ŵ1,1〈Ψ200, ζ1ζ1〉

=
µ4cs

2
2π

4
Ŵ1,1

∑

n∈N∗


 πŴ0,n (γ0,n)

2

(
1− µcs12πŴ0,n

) +
πŴ2,n (γ2,n)

2

4
(
1− µcs1πŴ2,n

)



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and

〈R300(ζ1, ζ1, ζ1), ζ1〉 =
µ3cs3
6

Ŵ1,1〈ζ1ζ1, ζ1ζ1〉

=
µ3cs3π

8
Ŵ1,1Λ

with Λ =

∫ ω

0

(
Y1
1 (τ)

)4
sinh(τ)dτ

which implies

̟ =
µ3cπŴ1,1

4


s3Λ

2
+ µcs

2
2

∑

n∈N∗


 πŴ0,n (γ0,n)

2

(
1− µcs12πŴ0,n

) +
πŴ2,n (γ2,n)

2

4
(
1− µcs1πŴ2,n

)




 .

B.2 Proof of Lemma 8.3.1

We compute each term in the expression of a and b in (8.32).

〈R30(Ψ1,Ψ3,Ψ3),Ψ1〉 =
µ3cs3
6

〈Wloc ⋆ (Ψ1Ψ3Ψ3) ,Ψ1〉

=
µ3cs3
6

〈Ψ1Ψ3Ψ3,Wloc ⋆Ψ1〉

=
µ3cs3
6

W c
loc〈

1√
3
Ψ

D′
2κ

χ10
,
1√
3
Ψ

D′
2κ

χ10
〉

=
µ3cs3
18

W c
loc

〈R30(Ψ3,Ψ3,Ψ3),Ψ3〉 =
µ3cs3
6

〈Wloc ⋆ (Ψ3Ψ3Ψ3) ,Ψ3〉

=
µ3cs3
6

W c
loc〈Ψ3Ψ3Ψ3,Ψ3〉

=
µ3cs3
6

W c
loc〈

6

5
ΨD̃8κ

χ6
(z) + 1,

6

5
ΨD̃8κ

χ6
(z) + 1〉

=
61µ3cs3
150

W c
loc
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〈R20(Φ1010,Ψ3),Ψ1〉 =
µ2cs2
2

〈Wloc ⋆ (Φ1010Ψ3) ,Ψ1〉

=
µ2cs2
2

W c
loc〈Φ1010Ψ3,Ψ1〉

=
µ4cs

2
2

2

W̃
χ10,D′

2κ

loc

1− W̃
χ10,D′

2κ

loc /W̃ c
loc

W c
loc〈

1√
3
Ψ

D′
2κ

χ10
,
1√
3
Ψ

D′
2κ

χ10
〉

=
µ4cs

2
2

6

W̃
χ10,D′

2κ

loc

1− W̃
χ10,D′

2κ

loc /W̃ c
loc

W c
loc

〈R20(Φ0020,Ψ3),Ψ3〉 =
µ2cs2
2

〈Wloc ⋆ (Φ0020Ψ3) ,Ψ3〉

=
µ2cs2
2

W c
loc〈Φ0020Ψ3,Ψ3〉

=
µ4cs

2
2

4
W c

loc

[
W̃χ1

loc

1− W̃χ1

loc/W̃
c
loc

〈Ψ3,Ψ3〉

+
W̃χ6,D̃8κ

loc

1− W̃χ6,D̃8κ

loc /W̃ c
loc

〈6
5
ΨD̃8κ

χ6
,Ψ2

3〉
]

=
µ4cs

2
2

4
W c

loc

[
W̃χ1

loc

1− W̃χ1

loc/W̃
c
loc

+
36

25

W̃χ6,D̃8κ

loc

1− W̃χ6,D̃8κ

loc /W̃ c
loc

]

and

〈R20(Φ0020,Ψ1),Ψ1〉 =
µ2cs2
2

〈Wloc ⋆ (Φ0020Ψ1) ,Ψ1〉

=
µ2cs2
2

W c
loc〈Φ0020Ψ1,Ψ1〉

=
µ4cs

2
2

4
W c

loc

[
W̃χ1

loc

1− W̃χ1

loc/W̃
c
loc

〈Ψ1,Ψ1〉

+
W̃χ6,D̃8κ

loc

1− W̃χ6,D̃8κ

loc /W̃ c
loc

〈6
5
ΨD̃8κ

χ6
,Ψ2

1〉
]

=
µ4cs

2
2

4
W c

loc

[
W̃χ1

loc

1− W̃χ1

loc/W̃
c
loc

− 2

3

W̃χ6,D̃8κ

loc

1− W̃χ6,D̃8κ

loc /W̃ c
loc

]

where 〈65ΨD̃8κ
χ6

,Ψ2
1〉 = 〈Ψ2

3 − 1,Ψ2
1〉 = 〈Ψ1Ψ3,Ψ1Ψ3〉 − 〈Ψ1,Ψ1〉 = 1

3 − 1 = −2
3 .

It is now a simple calculation to obtain the coefficients a and b in the reduced

equation (8.31).
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B.3 Calculation of cubic equivariants

We want to compute the cubic equivariants for the action group defined in (8.39).

First of all, we adopt the following notations:

C = (c1, c2, c3) and D = (d1, d2, d3)

such that a cubic equivariant E is a cubic complex polynomial of C6 which we write:

E(C,D, C̄, D̄) =




f1(C,D, C̄, D̄)

f2(C,D, C̄, D̄)

f3(C,D, C̄, D̄)

g1(C,D, C̄, D̄)

g2(C,D, C̄, D̄)

g3(C,D, C̄, D̄)




It is straightforward to check that of all the possible cubic terms only ck|cl|2, ck|dl|2
and dk|cl|2, dk|dl|2 are transformed in the appropriate way by the translation Θ =

[θ1, θ2] such that we have:

fm(C,D, C̄, D̄) =
3∑

k=1

ck

3∑

l=1

[
aklm|cl|2 + bklm|dl|2

]

gm(C,D, C̄, D̄) =

3∑

k=1

dk

3∑

l=1

[
ãklm|cl|2 + b̃klm|dl|2

]

with aklm, b
kl
m, ã

kl
m and b̃klm are complex constants. Now using the reflection equivari-

ance κ shows that:

−
3∑

k=1

ck

3∑

l=1

[
akl1 |cl|2 + bkl1 |dl|2

]
= −c1

3∑

l=1

[
a1l1 |cl|2 + b1l1 |dl|2

]

+
3∑

k=2

ck

3∑

l=1

[
akl1 |cl|2 + bkl1 |dl|2

]

and

−
3∑

k=1

dk

3∑

l=1

[
ãkl1 |cl|2 + b̃kl1 |dl|2

]
= −d1

3∑

l=1

[
ã1l1 |cl|2 + b̃1l1 |dl|2

]

+

3∑

k=2

dk

3∑

l=1

[
ãkl1 |cl|2 + b̃kl1 |dl|2

]

which implies that akl1 = bkl1 = ãkl1 = b̃kl1 = 0 for all k = 2, 3 and l = 1, 2, 3 and:

f1(C,D, C̄, D̄) = c1
3∑

l=1

[
a1l1 |cl|2 + b1l1 |dl|2

]

g1(C,D, C̄, D̄) = d1

3∑

l=1

[
ã1l1 |cl|2 + b̃1l1 |dl|2

]
.
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Extending similar arguments for conjugate reflections of κ we finally have:

fm(C,D, C̄, D̄) = cm

3∑

l=1

[
aml
m |cl|2 + bml

m |dl|2
]

gm(C,D, C̄, D̄) = dm

3∑

l=1

[
ãml
m |cl|2 + b̃ml

m |dl|2
]
.

Now using reflection equivariance ∆ and ξ2∆ leads to the requirement that aml
m ,

bml
m , ãml

m and b̃ml
m are real. The rotation equivariance ξ imposes the conditions that:

aml
m = b̃ml

m and bml
m = ãml

m .

This reduces the form the equivariant map E to:

fm(C,D, C̄, D̄) = cm

3∑

l=1

[
aml
m |cl|2 + bml

m |dl|2
]

gm(C,D, C̄, D̄) = dm

3∑

l=1

[
bml
m |cl|2 + aml

m |dl|2
]

with real coefficients. To conclude the computation, we use the result about cubic

equivariants with octaheddral symmetry [Melbourne 1986] that we used for the

normal form in equation (8.17) (equivariance with respect to ρ, σ and ε) and find

that the following conditions have to be satisfied:

a111 = a222 = a333

b111 = b222 = b333

a121 = a131 = a212 = a232 = a313 = a323

b121 = b131 = b212 = b232 = b313 = b323 .

This gives:

E(C,D, C̄, D̄) =




c1
[
α1|c1|2 + α2

(
|c2|2 + |c3|2

)
+ α3|d1|2 + α4

(
|d2|2 + |d3|2

)]

c2
[
α1|c2|2 + α2

(
|c1|2 + |c3|2

)
+ α3|d2|2 + α4

(
|d1|2 + |d3|2

)]

c3
[
α1|c3|2 + α2

(
|c1|2 + |c2|2

)
+ α3|d3|2 + α4

(
|d2|2 + |d1|2

)]

d1
[
α1|d1|2 + α2

(
|d2|2 + |d3|2

)
+ α3|c1|2 + α4

(
|c2|2 + |c3|2

)]

d2
[
α1|d2|2 + α2

(
|d1|2 + |d3|2

)
+ α3|c2|2 + α4

(
|c2|2 + |c3|2

)]

d3
[
α1|d3|2 + α2

(
|d2|2 + |d1|2

)
+ α3|c3|2 + α4

(
|c2|2 + |c1|2

)]




with (α1, α2, α3, α4) ∈ R4.
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C.1 Proof of Lemma 10.1.1

We recall the Lemma 10.1.1 stated in subsection 10.1.2.

Lemma C.1.1.There exists a unique solution (µc, vc = v0(µc)) of:

{
vc = ŵ0S(µcvc)

1 = µcS
′(µcvc)ŵc.

(C.1)

It is possible to express (µc, vc) with the following analytic formulas:

µc =
ŵ2
0

vcŵc(ŵ0 − vc)
,

vc =

ŵ0ŵcW

(
−ŵ0e

−−ŵ0+θŵc
ŵc /ŵc

)

ŵcW

(
−ŵ0e

−−ŵ0+θŵc
ŵc /ŵc

)
− ŵ0

.

(C.2)

W is the Lambert function which satisfies W (x)eW (x) = x.

Proof. It has been shown in [Veltz 2010a] that if ŵ0 < 0 then system (C.1)

has a unique solution (µc, vc = v0(µc)). Formulas for vc and µc are related to the

properties of the sigmoidal function S defined in equation (10.2). Using the fact

that S satisfies the ordinary differential equations S′ = S(1−S) and combining the

two equations of (C.1), we find:

µc =
ŵ2
0

vcŵc(ŵ0 − vc)
.
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If m =
ŵc

ŵ0
and x = vc/ŵ0, from vc = ŵ0S(µcvc), x is solution of the equation:

1

x
= 1 + exp

(
− 1

m(1− x)
+ θ

)

⇔ x = (1− x) exp

(
+

1

m(1− x)
− θ

)

⇔ x

m(x− 1)
exp

(
x

m(x− 1)

)
= − 1

m
exp

(
−−1 + θm

m

)

⇔ x

m(x− 1)
=W

(
− 1

m
exp

(
−−1 + θm

m

))

⇔ x =

mW

(
− 1

m exp

(
−−1 + θm

m

))

mW

(
− 1

m exp

(
−−1 + θm

m

))
− 1

which gives the desired formula. �

C.2 Proof of Lemma 10.1.2

This section is devoted to the proof of Lemma 10.1.2.

C.2.1 Computation of ν

We recall that the linear operator Lµ is given by:

Lµv = −v + µs1w ∗ v.

It is straightforward to see that Lµe
ix = (−1+µs1ŵc)e

ix = λ
µc
eix. As a consequence

ν = 1
µc
.

C.2.2 Computation of χ

We have defined R as the following nonlinear operator:

R(v, λ) = w ∗ f0(v, λ).

We can Taylor expand R at (v = 0, λ = 0) and if we denote:

R11(v, λ) = λs1w ∗ v,

R20(v, w) =
µ2cs2
2

w ∗ (vw),

R30(u, v, w) =
µ3cs3
6

w ∗ (uvw),
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then, we find that R(v, λ) = R11(v, λ) + R20(v, v) + R30(v, v, v) + h.o.t. We also

Taylor expand Φ:

Φ(Z, Z̄, λ) =
∑

s,l,m

ZsZ̄ lλmΦslm.

Applying classical techniques [Chossat 2000, Haragus 2010] we obtain the following

equations:

0 = LµcΦ200 +R20(e
ix, eix)

0 = LµcΦ110 + 2R20(e
ix, e−ix)

χ = 〈2R20(e
−ix,Φ200) + 2R20(e

ix,Φ110) + 3R30(e
ix, eix, e−ix), eix〉L2

per[0,2π]
.

If we denote ŵ2 = ŵ(2), the two first equations are solved with:

Φ200 = µ2cs2
ŵ2

2(1− ŵ2/ŵc)
e2ix + Span(eix, e−ix)

Φ110 = µ2cs2
ŵ0

1− ŵ0/ŵc
+ Span(eix, e−ix).

It follows that χ is given by:

χ = µ3cŵc

[
s3
2

+ µcs
2
2

(
ŵ2

2(1− ŵ2/ŵc)
+

ŵ0

1− ŵ0/ŵc

)]
.

Relations (10.10) give the formula for χ, as stated in the Lemma.

C.3 Proof of Lemma 10.2.2

This section is devoted to the proof of Lemma 10.2.2. Firstly, the four eigenvalues

of D0F, when λ > 0, are given by:

X = ±i
(
1±

√
λs1(Γ1 + Γ2)

4
+
λs1(Γ2 − Γ1)

8
+ 0(|λ|3/2)

)
.

We observe that the eigenvalues of the linearization at the origin of the normal

form (10.26) are given by:

i

(
1±

√
−c11λ+ αλ+ 0(|λ|3/2)

)
,

where c11 and α are the coefficients in the expensions of P and Q which implies that:

c11 = −s1(Γ1 + Γ2)

4
, α =

s1(Γ2 − Γ1)

8
.

It remains to compute the coefficients c03, β, c, γ of the expansions P and Q which

requires the Taylor expansion of F. First of all, we have for the nonlinearity defined

in equation (10.24):

R(U, λ) = R1,1(U, λ) +R2,0(U,U) +R3,0(U,U, U) + h.o.t.
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and if U = (u1, u2, u3, u4), V = (v1, v2, v3, v4) and W = (w1, w2, w3, w4) we have:

R2,0(U, V ) =
µ2cs2
2

(0, 0, 0,Γ1u1v1 − Γ2(2u2v2 + u1v3 + u3v1))
T

R3,0(U, V,W ) =
µ3cs3
6

(0, 0, 0,Γ1u1v1w1 − Γ2(u1v1w3 + u1w1v3

+u3v1w1 + 2(u1v2w2 + u2v1w2 + u2v2w1)))
T .

The Taylor expansion of Ψ in the normal form (10.26) is given by:

Ψ(A,B, Ā, B̄, λ) =
∑

1≤r+s+q+l+m≤p

ArBsĀqB̄lλmΨrsqlm.

Using the expansions ofR,Ψ, P and Q, we end up with equations at different orders.

C.3.1 Computation of c03

Applying the method describes in the appendix of Haragus-Iooss [Haragus 2010],

we have first to solve the two following equations:

O(A2) : 0 = (A− 2i IR4)Ψ20000 +R2,0(ζ0, ζ0) (C.3)

O(AĀ) : 0 = AΨ10100 + 2R2,0(ζ0, ζ̄0) (C.4)

O(A2Ā) : c03ζ1 + iβζ0 = (A− i IR4)Ψ20100 + 2R2,0(ζ0,Ψ10100)

+ 2R2,0(ζ̄0,Ψ20000) + 3R3,0(ζ0, ζ0, ζ̄0).
(C.5)

The invertibility of the operators A,A−2i IR4 implies that solutions of equations

(C.3) and (C.4) are given by

Ψ20000 = −(A− 2i IR4)−1R2,0(ζ0, ζ0) =
µ2cs2((Γ1 + 4Γ2)

18
(1, 2i,−4,−8i)T

and as

R2,0(ζ0, ζ̄0) =
µ2cs2Γ1

2
(0, 0, 0, 1)T

we automatically have:

Ψ10100 = −2A−1R2,0(ζ0, ζ̄0) = µ2cs2Γ1 (1, 0, 0, 0)
T .

In order to compute the expression of c03 in equation (C.5), we need to define a

vector orthogonal to (ζ0, ζ̄1, ζ̄0) for the natural Hermitian scalar product 〈·, ·〉. Let

be ζ∗1 the vector in the kernel of (A− i)∗,

ζ∗1 = −1

4
(−i, 1,−i, 1)T

which satisfies

〈ζ1, ζ∗1 〉 = 1, 〈ζ0, ζ∗1 〉 = 0, 〈ζ̄1, ζ∗1 〉 = 0, 〈ζ̄0, ζ∗1 〉 = 0.
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Taking the scalar product of equation (C.5) with ζ∗1 we obtain a relation for c03

c03 = 〈2R2,0(ζ0,Ψ10100) + 2R2,0(ζ̄0,Ψ20000) + 3R3,0(ζ0, ζ0, ζ̄0), ζ
∗
1 〉

with

R2,0(ζ0,Ψ10100) =
µ4cs

2
2Γ1(Γ1 + Γ2)

2
(0, 0, 0, 1)T

R2,0(ζ̄0,Ψ20000) =
µ4cs

2
2(Γ1 + Γ2)(Γ1 + 4Γ2)

36
(0, 0, 0, 1)T

R3,0(ζ0, ζ0, ζ̄0) =
µ3cs3(Γ1 + Γ2)

6
(0, 0, 0, 1)T.

We deduce that

c03 = −µ
3
c(Γ1 + Γ2)

4

[
s3
2

+
µcs

2
2(19Γ1 + 4Γ2)

18

]
. (C.6)

C.3.2 Computation of β and c

If decompose Ψ̃20100 on (ζ0, ζ1) such that

Ψ20100 = Ψ̃20100 + iβζ1 + ψ20100ζ0, with ψ20100 ∈ R

then equation (C.5) can be rewritten with Ψ̃20100 only:

c03ζ1 = (A− i IR4)Ψ̃20100 + 2R2,0(ζ0,Ψ10100) + 2R2,0(ζ̄0,Ψ20000)

+ 3R3,0(ζ0, ζ0, ζ̄0).

Knowing each terms of the previous equation allows us to calculate Ψ̃20100:

Ψ̃20100 = c03(0, 0, 1, 3i)
T.

The coefficients β and c are obtained from orders O(A2B̄) and O(AĀB):

ic

2
ζ1 −

γ

2
ζ0 +Ψ20100 = (A− i IR4)Ψ̃20010 + 2R2,0(ζ0,Ψ10010)

+ 2R2,0(ζ̄1,Ψ20000) + 3R3,0(ζ0, ζ0, ζ̄1)
(C.7)

(
iβ − ic

2

)
ζ1 +

γ

2
ζ0 + 2Ψ20100 = (A− i IR4)Ψ̃11100 + 2R2,0(ζ0,Ψ01100)

+ 2R2,0(ζ̄0,Ψ11000) + 2R2,0(ζ1,Ψ10100)

+ 6R3,0(ζ0, ζ1, ζ̄0).

(C.8)

Taking scalar product with ζ∗1 equations (C.7) and (C.8) now give

iβ +
ic

2
= 〈2R2,0(ζ0,Ψ10010) + 2R2,0(ζ̄1,Ψ20000) + 3R3,0(ζ0, ζ0, ζ̄1), ζ

∗
1 〉

− 〈Ψ̃20100, ζ
∗
1 〉

(C.9)
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and

3iβ − ic

2
= 〈2R2,0(ζ0,Ψ01100) + 2R2,0(ζ̄0,Ψ11000)ζ

∗
1 〉

+ 〈2R2,0(ζ1,Ψ10100) + 6R3,0(ζ0, ζ1, ζ̄0)− 2Ψ̃20100, ζ
∗
1 〉.

(C.10)

Ψ10010,Ψ01100 and Ψ11000 satisfy the following set of equations

O(AB) : 2Ψ20000 = (A− 2i)Ψ11000 + 2R2,0(ζ0, ζ1)

O(AB̄) : Ψ10100 = AΨ10010 + 2R2,0(ζ0, ζ̄1)

O(BB̄) : Ψ10010 +Ψ01100 = AΨ01010 + 2R2,0(ζ1, ζ̄1).

The first equation gives:

Ψ11000 = (A− 2i IR4)−1(2Ψ20000 − 2R2,0(ζ0, ζ1))

=
µ2cs2
27

(i(8Γ1 + 20Γ2),−(13Γ1 + 28Γ2),−i(20Γ1 + 32Γ2), 28Γ1 + 16Γ2)
T .

The second one yiels

Ψ10010 = A−1
(
Ψ10100 − 2R2,0(ζ0, ζ̄1)

)

= A−1Ψ10100 as R2,0(ζ0, ζ̄1) = 0

= µ2cs2Γ1 (0, 1, 0, 0)
T

which implies that:

Ψ01100 = −SΨ10010 = µ2cs2Γ1 (0, 1, 0, 0)
T .

Finally, the last equation is just:

Ψ01010 = A−1
(
2Ψ10010 − 2R2,0(ζ1, ζ̄1)

)

= µ2cs2(−(4Γ1 + 2Γ2), 0, 2Γ1, 0)
T.

It is now possible to compute each term of the form R2,0(·, ·) and R3,0(·, ·) of

equations (C.9) and (C.10). They are summerize in the following set of equations:

R2,0(ζ0,Ψ10010) = −iµ4cs22Γ1Γ2 (0, 0, 0, 1)
T

R2,0(ζ̄1,Ψ20000) = − iµ
4
cs

2
2Γ2(Γ1 + 4Γ2)

18
(0, 0, 0, 1)T

R3,0(ζ0, ζ0, ζ̄1) = − iµ
3
cs3Γ2

3
(0, 0, 0, 1)T

R2,0(ζ0,Ψ01100) = −iµ4cs22Γ1Γ2 (0, 0, 0, 1)
T

R2,0(ζ̄0,Ψ11000) =
iµ4cs

2
2(4Γ

2
1 + 11Γ1Γ2 − 2Γ2

2)

27
(0, 0, 0, 1)T

R2,0(ζ1,Ψ10100) = (0, 0, 0, 0)T

R3,0(ζ0, ζ1, ζ̄0) = − iµ
3
cs3Γ2

3
(0, 0, 0, 1)T .
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Finally formula for β and c are

β =
µ3c
32

[
3s3(Γ2 − Γ1)−

µcs
2
2(4Γ

2
2 + 187Γ2

1 + 29Γ1Γ2)

27

]
, (C.11)

c =
µ3c
16

[
s3(Γ2 − Γ1)−

µcs
2
2(41Γ

2
1 − 209Γ1Γ2 − 52Γ2

2)

27

]
. (C.12)

C.3.3 Computation of γ

Now, it remains to compute the last coefficient γ. First of all, we decompose Ψ20010

and Ψ11100 such that we have

Ψ20010 = Ψ̃20010 + (ψ20100 − γ/2)ζ1

Ψ11100 = Ψ̃11100 + (2ψ20100 + γ/2)ζ1 + ψ11100ζ0 with ψ11100 ∈ R.

It will be enough to know the expression of the difference Ψ̃11100 − 2Ψ̃20010 and its

scalar product with ζ∗1 . Substracting from equation (C.8) two times equation (C.7),

we obtain the following relation

i

(
β − 3c

2

)
ζ1 = (A− i IR4)

(
Ψ̃11100 − 2Ψ̃20010

)
+ 2R2,0(ζ0,Ψ01100)

+ 2R2,0(ζ̄0,Ψ11000) + 6R3,0(ζ0, ζ1, ζ̄0)− 4R2,0(ζ0,Ψ10010)

− 4R2,0(ζ̄1,Ψ20000)− 6R3,0(ζ0, ζ0, ζ̄1),

where we have used the fact that R2,0(ζ1,Ψ10100) = 0R4 . We have already computed

some of the terms that appear in the right hand side of the previous equation. We

can easily deduce from our above calculations that

R2,0(ζ0,Ψ01100) = R2,0(ζ0,Ψ10010) = −iµ4cs22Γ1Γ2 (0, 0, 0, 1)
T

R3,0(ζ0, ζ0, ζ̄1) = R3,0(ζ0, ζ1, ζ̄0) = − iµ
3
cs3Γ2

3
(0, 0, 0, 1)T

R2,0(ζ̄0,Ψ11000) =
iµ4cs

2
2(4Γ

2
1 + 11Γ1Γ2 − 2Γ2

2)

27
(0, 0, 0, 1)T

R2,0(ζ̄1,Ψ20000) = − iµ
4
cs

2
2Γ2(Γ1 + 4Γ2)

18
(0, 0, 0, 1)T .

This implies that:

−2R2,0(ζ0,Ψ01100) + 2R2,0(ζ̄0,Ψ11000)− 4R2,0(ζ̄1,Ψ20000)

=
4iµ4cs

2
2

(
4Γ2

1 + 41Γ1Γ2 + 10Γ2
2

)

54
(0, 0, 0, 1)T .

From equations (C.11) and (C.12) we have

i

(
β − 3c

2

)
=

−iµ4cs22(4Γ2
1 + 41Γ1Γ2 + 10Γ2

2)

54
.
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Then we can conclude that

Ψ̃11100 − 2Ψ̃20010 =
−iµ4cs22(4Γ2

1 + 41Γ1Γ2 + 10Γ2
2)

54
(0, 0, 1, 3i)T

and

⇒ 〈Ψ̃11100 − 2Ψ̃20010, ζ
∗
1 〉 = −µ

4
cs

2
2(4Γ

2
1 + 41Γ1Γ2 + 10Γ2

2)

54
.

A linear combination of equations of orders O(ĀB2) and O(ABB̄) projected on

ζ1 gives the following relation for γ

3γ = 〈4R2,0(ζ̄0,Ψ02000) + 4R2,0(ζ1,Ψ01100) + 6R30(ζ1, ζ1, ζ̄0), ζ
∗
1 〉

− 〈2R2,0(ζ0,Ψ01010) + 2R2,0(ζ̄1,Ψ11000) + 2R2,0(ζ1,Ψ10010), ζ
∗
1 〉

− 〈6R30(ζ0, ζ1, ζ̄1)− 2Ψ̃20010 + Ψ̃11100, ζ
∗
1 〉.

(C.13)

The equation for Ψ02000 is obtained at order O(B2)

Ψ11000 = (A− 2i IR4)Ψ02000 + 2R2,0(ζ1, ζ1)

⇒ Ψ02000 = (A− 2i IR4)−1(Ψ11000 − 2R2,0(ζ1, ζ1))

=
µ2cs2
27

(−(14Γ1 + 30Γ2),−i(20Γ1 + 40Γ2), 27Γ1 + 52Γ2, i(34Γ1 + 72Γ2))
T .

We are now able to finish the proof of the lemma as all terms of the right hand

side of equation (C.13) are easily calculable. As stated in the lemma, the expression

of γ is

γ = −µ
4
cs

2
2(36Γ

2
1 + 4Γ1Γ2 + 7Γ2

2)

162
. (C.14)
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[Faugeras 2008] O. Faugeras, F. Grimbert and J.-J. Slotine. Abolute stability and

complete synchronization in a class of neural fields models. SIAM Journal

of Applied Mathematics, vol. 61, no. 1, pages 205–250, September 2008. 23,

192

[Faugeras 2009a] Olivier Faugeras, Jonathan Touboul and Bruno Cessac. A con-

structive mean field analysis of multi population neural networks with ran-

dom synaptic weights and stochastic inputs. Frontiers in Computational

Neuroscience, vol. 3, no. 1, 2009. 22

[Faugeras 2009b] Olivier Faugeras, Romain Veltz and Francois Grimbert. Persis-

tent neural states: stationary localized activity patterns in nonlinear con-

tinuous n-population, q-dimensional neural networks. Neural Computation,

vol. 21, no. 1, pages 147–187, 2009. 23, 44

[Faye 2010] Grégory Faye and Olivier Faugeras. Some theoretical and numerical

results for delayed neural field equations. Physica D, vol. 239, no. 9, pages

561–578, May 2010. Special issue on Mathematical Neuroscience. 23

[Faye 2011a] Grégory Faye and Pascal Chossat. Bifurcation diagrams and hete-

roclinic networks of octagonal H-planforms. Journal of Nonlinear Science,

2011. x, xiii

[Faye 2011b] Grégory Faye, Pascal Chossat and Olivier Faugeras. Analysis of a

hyperbolic geometric model for visual texture perception. The Journal of

Mathematical Neuroscience, vol. 1, no. 4, 2011. x, xii, 41, 42, 44

[Faye 2012a] G. Faye. Reduction method for studying localized solutions of neural
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[González 1997] B.J. González and E.R. Negrin. Mehler-Fock transforms of gener-

alized functions via the method of adjoints. PROCEEDINGS-AMERICAN

MATHEMATICAL SOCIETY, vol. 125, pages 3243–3254, 1997. 232, 233

[Gorenstein 1980] D. Gorenstein. Finite groups. Chelsea Pub Co, 1980. 92

[Grimbert 2008] F. Grimbert. Mesoscopic models of cortical structures. PhD thesis,

University of Nice Sophia-Antipolis, February 2008. 3

[Grinvald 1986] A. Grinvald, E. Lieke, R.D. Frostig, C.D. Gilbert and T.N. Wiesel.

Functional architecture of cortex revealed by optical imaging of intrinsic sig-

nals. Nature, 1986. 10

[Guckenheimer 1987] J. Guckenheimer and P. Holmes. Structurally stable hetero-

clinic cycles, volume 87. Cambridge University Press, 1987. 141

[Guillemin 2010] V. Guillemin and A. Pollack. Differential topology. Chelsea Pub

Co, 2010. 129



284 Bibliography

[Guo 2005a] Y. Guo and C.C. Chow. Existence and Stability of Standing Pulses

in Neural Networks: II Stability. SIAM Journal on Applied Dynamical

Systems, vol. 4, pages 249–281, 2005. 23, 192, 197

[Guo 2005b] Yixin Guo and Carson C. Chow. Existence and Stability of Standing

Pulses in Neural Networks: I. Existence. SIAM Journal on Applied Dynam-

ical Systems, vol. 4, no. 2, pages 217–248, 2005. 23, 191, 192, 197

[Gutkin 2000] B.S. Gutkin, G.B. Ermentrout and J. O’Sullivan. Layer 3 patchy

recurrent excitatory connections may determine the spatial organization of

sustained activity in the primate prefrontal cortex. Neurocomputing, vol. 32-

33, pages 391–400, 2000. 23

[Hammerstein 1930] A. Hammerstein. Nichtlineare Integralgleichungen nebst An-

wendungen. Acta Math., vol. 54, pages 117–176, 1930. 23

[Hannula 2005] D.E. Hannula, D.J. Simons and N.J. Cohen. Imaging implicit per-

ception: promise and pitfalls. Nature Reviews Neuroscience, vol. 6, no. 3,

pages 247–255, 2005. 5

[Hansel 1997] D. Hansel and H. Sompolinsky. Modeling feature selectivity in local

cortical circuits. Methods of neuronal modeling, pages 499–567, 1997. 25,

27, 32, 33, 111, 172

[Haragus 2010] M. Haragus and G. Iooss. Local bifurcations, center manifolds, and

normal forms in infinite dimensional systems. EDP Sci. Springer Verlag

UTX series, 2010. 50, 114, 195, 199, 202, 204, 261, 269, 270

[Hartshorne 1977] R. Hartshorne. Algebraic geometry, volume 52. Springer, 1977.

84

[Hazewinkel 2001] Michiel Hazewinkel, editeur. Encyclopaedia of mathematics.

Springer, 2001. 23

[Helgason 2000] S. Helgason. Groups and geometric analysis, volume 83 of Math-

ematical Surveys and Monographs. American Mathematical Society, 2000.

78, 80, 81, 108

[Hoyle 2006] R.B. Hoyle. Pattern formation: an introduction to methods. Cam-

bridge Univ Pr, 2006. 61, 180

[Hubel 1962] D.H. Hubel and T.N. Wiesel. Receptive fields, binocular interaction

and functional architecture in the cat visual cortex. J Physiol, vol. 160, pages

106–154, 1962. 7, 8, 10, 11

[Hubel 1965] D.H. Hubel and T.N. Wiesel. Receptive fields and functional archi-

tecture in two nonstriate visual areas (18 and 19) of the cat. Journal of

Neurophysiology, vol. 28, pages 229–289, 1965. 8, 10, 11



Bibliography 285

[Hubel 1968] D.H. Hubel and T.N. Wiesel. Receptive fields and functional archi-

tecture of monkey striate cortex. The Journal of Physiology, vol. 195, no. 1,

page 215, 1968. 25

[Hubel 1977] D.H. Hubel and T.N. Wiesel. Functional architecture of macaque

monkey. Proceedings of the Royal Society, London [B], pages 1–59, 1977. 8,

10, 11, 13

[Hubener 1997] M. Hubener, D. Shoham, A. Grinvald and T. Bonhoeffer. Spatial

Relationships among Three Columnar Systems in Cat Area 17. Journal of

Neuroscience, vol. 17, no. 23, pages 9270–9284, 1997. 13

[Hutt 2006] A. Hutt and F.M. Atay. Effects of distributed transmission speeds

on propagating activity in neural populations. Physical Review E, vol. 73,

no. 021906, pages 1–5, 2006. 23

[Hutt 2008] A. Hutt, A. Longtin and L. Schimansky-Geier. Additive noise-induced

Turing transitions in spatial systems with application to neural fields and

the Swift-Hohenberg equation. Physica D: Nonlinear Phenomena, vol. 237,

no. 6, pages 755–773, 2008. 251

[Inoue 1999] K.T Inoue. Computation of eigenmodes on a compact hyperbolic 3-

space. Rapport technique, arXiv, 1999. 99, 100

[Iooss 1993] G. Iooss and MC PerouEME. Perturbed homoclinic solutions in re-

versible 1:1 resonance vector fields. Journal of differential equations, vol. 102,

no. 1, pages 62–88, 1993. 195, 202

[Issa 2000] N.P. Issa, C. Trepel and M.P. Stryker. Spatial frequency maps in cat

visual cortex. J. Neurosci., vol. 20, pages 8504–8514, 2000. 30

[Iwaniec 2002] H. Iwaniec. Spectral methods of automorphic forms, volume 53 of

AMS Graduate Series in Mathematics. AMS Bookstore, 2002. 38, 85

[Kandel 2000] E.R. Kandel, J.H. Schwartz and T.M. Jessel. Principles of neural

science. McGraw-Hill, 4th édition, 2000. 3, 6, 9, 10, 11, 22

[Kaplan 2004] E. Kaplan. The M, P, and K pathways of the primate visual system,

chapitre 30, pages 481–493. In Chalupa & Werner [Chalupa 2004], 2004.

Two volumes. 30

[Kaschube 2008] M. Kaschube, M. Schnabel and F. Wolf. Self-organization and the

selection of pinwheel density in visual cortical development. New Journal of

Physics, vol. 10, page 015009, 2008. 32, 187, 251

[Kaschube 2010] M. Kaschube, M. Schnabel, S. Löwel, D.M. Coppola, L.E. White
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