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INTRODUCTION

The goal of my thesis work is to conceive novel image coders inspired from

the retina. Indeed, while the issue of coding is important for energy and

bandwidth saving, we are convinced that little is still to be gained if no

shift is made in the philosophy underlying the conception of new image

coders/decoders. So that, my work aims at laying the groundwork for the

design of original image and video compression schemes that are based on

models of biological visual systems. Here, we will focus on the retina as it

is the organ responsible of the acquisition of the visual stimulus and the

first coding device within the human visual system. The subject treated

is very challenging and motivating for two main reasons. The first one is

that the video compression techniques are now essential for most standard

equipments such as HDTV and DVD, and that recent technical progress

allows us to imagine more sophisticated coding schemes. The second one is

that the recent discoveries in neurosciences about the human visual system

could be a source of inspiration to propose new ideas, especially if we are

able to better understand the neural code of the retina. Thus, we expect

that an interdisciplinary approach can help achieve our goals. This approach

would combine the signal processing techniques and the knowledge acquired

by neurophysiologists. Hopefully, our effort will lead us towards novel coding

algorithms that go beyond the standards.

The challenges underlying our work are numerous. First of all, we expect

our effort to be at the origin of efficient bio-inspired image coders/decoders

and a fortiori we expect it to be the basis of novel bio-inspired 2D+t and

3D coding algorithms. Another important issue is related to the numerous

hypotheses concerning the retina coding schemes. Indeed, cracking the neural

code of the retina is one crucial, though long term, goal. This issue is at

the heart of several applications ranging from object recognition to retina

prosthetics and brain machine interfaces.

The fundamental hypothesis behind my work is that the retina generates

a code for the visual stimulus that has a suitable rate/quality trade-off. In

fact, the retina transforms the visual stimulus into a brain-friendly signal:

the retinal neural code. So that, the main novelty introduced here is to show

how could the code generated by the retina be exploited in the context of

still image compression.
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In the first part of this manuscript, we will focus on the rank order

coding. The rank order coding is one of several hypotheses about the coding

features within the retinal neural code. The rank ordering is based on the

hypothesis that the retina represents the visual stimulus by the order in which

its cells are activated. We will introduce the rank order coding founding

bases, formalize mathematically the concept of rank ordering, and detail a

retina model specified in [Van Rullen 2001b] intended to support it. We will

revisit this model by proposing an original and exact synthesis procedure for

it. Indeed, the classical decoding procedure employed yields reconstruction

errors that limit the model Rate/Quality performances when used as an

image codec. Here we solve this problem in an original fashion by using the

frames theory, where a frame of a vector space designates an extension for the

notion of basis. Our contribution encompasses an (i) original mathematical

demonstration that the filter bank used is a frame, (ii) an algorithm that

guarantees an errorless reconstruction, and (iii) a novel out-of-core algorithm

that computes the dual frame. Then, we will present a novel retina-inspired

coding scheme for static images. We aim at using this coder to transmit

the compressed visual information over low-bandwidth channels. Our novel

coder/decoder combines the spiking retina model under study and well known

data compression techniques. Then, we will compare our results to the JPEG

standards and show that our coder/decoder has comparable performances

with a simpler implementation under strong bandwidth restrictions. In

particular, the coder/decoder that we devised has an interesting feature

that we denote by the “time scalability”. Here, the time scalability feature

designates the ability of tuning the rate and quality through the choice of the

reconstruction time. We also study the case when the visual data is contami-

nated with noise and show that our coder acts as a coder coupled to a denoiser.

The second part of my thesis will lead this effort towards more biological

plausibility. Though the first model considered takes into account some of

the retinal visual processing mechanisms, several other processing stages are

ignored. So that, we will rely on a retina simulation software called Virtual
Retina [Wohrer 2009a] to enhance our first coder/decoder. We will design a

novel bio-inspired image coder that keeps a strong plausibility with regard to

the mammalians retina behavior. In order to do this, we will first consider the

deep retina layers and inspire ourselves from their behavior to design an orig-

inal and dynamic A/D converter. Interestingly, the retina and especially its

deepest layers operate a quantization process. The bio-inspired A/D converter

that we will introduce offers several interesting features as the scalability, and

the introduction of time dependency in the coding system. These features

inset implicit bit-allocation. Then, we will model the retinal noise by a dither
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signal, and thenceforth we identify the retina behavior to a non-subtractive

dithered quantizer. This hypothesis gives a possible interpretation for the

non-determinism observed in the spike-based neural code of the retina. When

introduced in our A/D converter, the dithering process enables several inter-

esting features. Indeed as we will show later in this chapter, the dithering

whitens the reconstruction error and decorrelates it from the input stimuli.

Finally, we will propose the design of an original scalable image coder/decoder

that is highly inspired from the mammalians retina. Our coder accounts for

the time-dependent and also non-deterministic behavior of the actual retina.

We will introduce within our coder a multiscale dither signal in order to gain

interesting perceptual features. The dithering process introduced here is an

extension to what we presented in our previously specified A/D converter in

the sense that it accounts for the multiscale nature of the transform. The

dithering process that we propose adds several interesting features to our im-

age coder. Integrating the multiscale dither noise in our coder/decoder allows

a faster recognition of the fine details of the image during the decoding process.





INTRODUCTION

Mon travail de thèse vise à concevoir de nouveaux codeurs/décodeurs

d’images inspirés de la rétine. En effet, la problématique de la compression

est importante pour des questions d’économie d’énergie et de bande passante,

notamment pour les équipements embarqués. Nous sommes convaincus qu’un

changement est nécessaire dans la philosophie qui sous-tend la conception

des codeurs/décodeurs d’images afin d’aboutir à des systèmes innovants et

performants. Notre travail vise donc à poser les jalons de futurs systèmes

originaux de compression d’images et vidéos qui soient basés sur des modèles

de systèmes visuels biologiques. Ici, nous allons nous concentrer sur la

rétine puisqu’elle est l’organe chargé de l’acquisition du stimulus visuel et le

premier dispositif de codage dans le système visuel humain. Le sujet traité

est extrêmement stimulant et motivant pour deux raisons principales. La

première est que les systèmes de compression d’images et de vidéos sont

aujourd’hui présents dans divers équipements standards tels que la TVHD,

et que les progrès techniques récents nous permettent d’imaginer des schémas

de codage plus élaborés qu’auparavant. La seconde est que les résultats

établis par les neuroscientifiques ainsi que les récentes découvertes concernant

le système visuel pourraient être une source d’inspiration pour proposer de

nouvelles idées pour le codage d’images. Ainsi, nous pensons qu’une approche

interdisciplinaire peut aider à atteindre nos objectifs. Cette approche devra

combiner les techniques de traitement du signal et les connaissances acquises

par les neurophysiologistes. Cet effort nous conduira vers l’élaboration de

nouveaux algorithmes de codage qui vont au-delà des standards actuels.

Les défis sous-tendant notre travail sont nombreux. Tout d’abord, nous

nous attendons à ce que notre effort soit à l’origine de codeurs/décodeurs

d’images bio-inspirés efficaces et a fortiori nous nous attendons à ce que

ce travail soit à la base d’algorithmes de codage bio-inspirés 2D + t et

3D originaux. Une autre question importante concerne les nombreuses

hypothèses quant au schémas de codage adoptés par la rétine. En effet,

le décryptage du code neural de la rétine est un objectif crucial, quoi que

de long terme. Cette question est au cœur de plusieurs applications allant

de la reconnaissance d’objets aux prothèses de rétine et autres interfaces

cerveau-machine.

L’hypothèse fondamentale de mon travail est que la rétine représente le

stimulus visuel sous la forme d’un code ayant un rapport débit/distorsion

satisfaisant pour la compression d’images. En effet, la rétine transforme le
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stimulus visuel en un signal manipulable par les zones corticales du cerveau

consacrées à la vision. Ce signal est le code neuronal de la rétine. La

principale nouveauté introduite ici est de de montrer comment le code généré

par la rétine peut être exploité dans le contexte de la compression d’images.

Dans la première partie de ce manuscrit, nous considérerons le codage

d’images par rang. Le codage par rang est une hypothèse parmi plusieurs

autres concernant les caractéristiques supposées être significatives au sein

du code neuronal de la rétine. Le codage par rang se base sur l’hypothèse

selon laquelle la rétine représente le stimulus visuel par l’ordre dans lequel ses

cellules sont activées. Nous allons introduire les fondements du codage par

rang, nous les formaliserons mathématiquement, et détaillerons un modèle

de rétine spécifié dans [Van Rullen 2001b] destiné à soutenir cette hypothèse.

Nous revisiterons ce modèle en proposant une procédure de synthèse originale

et garantissant une reconstruction exacte. En effet, la procédure classique

de décodage employée donne des erreurs de reconstruction qui limitent les

performances du modèle en terme de rapport débit/distorsion lorsqu’il est

utilisé comme un codeur/décodeur d’images. Ici, nous résolvons ce problème

d’une manière originale en utilisant la théorie des frames, où une frame d’un

espace vectoriel désigne une extension de la notion de base. Ma contribution

englobe (i) une démonstration mathématique que le banc de filtres utilisé est

une frame, (ii) un algorithme qui garantit une reconstruction sans erreur, et

(iii) un nouvel algorithme out-of-core qui calcule la frame duale. Ensuite,

nous présenterons un nouveau schéma de codage/décodage inspiré de la

rétine. Ce nouveau codeur/décodeur est adapté à la transmission de données

à travers des canaux de faible bande passante. Notre codeur/décodeur

combine le modèle rétine étudié et des techniques éprouvées de compression

de données. Ensuite, nous comparerons les résultats à ceux des normes JPEG

et montrerons que notre codeur/décodeur a des performances comparables

avec une implémentation plus simple sous une forte contrainte de bande

passante. En particulier, le codeur/décodeur que nous avons imaginé

possède une caractéristique intéressante que nous désignerons par “scalabilité

temporelle”. Dans notre cas, la scalabilité temporelle désigne la capacité

d’ajuster la qualité et le coût de l’image à travers le choix du temps accordé

à la reconstruction. Nous étudierons également le cas où les données sont

contaminées par du bruit et nous montrerons que notre codeur agit comme

un codeur couplé à un débruiteur.

La deuxième partie de ma thèse nous conduira vers l’élaboration d’un

codeur/décodeur ayant plus de plausibilité biologique. En effet, le premier

modèle de rétine considéré prend en compte plusieurs mécanismes impliqués
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dans le traitement rétinien du stimulus. Cela étant, plusieurs autres mécan-

ismes sont ignorés. Nous nous appuierons donc sur le logiciel de simulation

de rétine appelée Virtual Retina [Wohrer 2009a] pour améliorer notre pre-

mier codeur/décodeur. Afin de concevoir notre nouveau codeur d’images bio-

inspiré, nous allons d’abord considérer les couches profondes et la rétine et

nous inspirer de leur comportement pour spécifier un convertisseur A/D origi-

nal et dynamique. En effet, la rétine et en particulier ses couches les plus pro-

fondes opèrent une quantification. Le convertisseur A/D bio-inspiré que nous

introduiront offre plusieurs fonctionnalités intéressantes comme la scalabilité

et l’incorporation d’une évolutivité temporelle dans notre système de codage.

Ces caractéristiques permettent un mécanisme d’allocation de débit implicite.

Ensuite, nous modéliserons le bruit observé dans les signaux de la rétine par

un bruit dither. Nous identifierons donc le comportement de la rétine à celui

d’un quantificateur avec dither non-soustractif. Cette hypothèse donne une in-

terprétation possible pour le non-déterminisme observé dans le code neuronal

rétinien. Lorsqu’il est introduit dans notre convertisseur A/D, le processus de

dithering lui adjoint plusieurs fonctionnalités intéressantes. En effet, comme

nous le montrerons, le dithering rend blanc le spectre de l’erreur de recon-

struction et il le décorrèle des stimuli d’entrée. Enfin, nous proposerons un

design pour un codeur/décodeur d’images scalable qui est fortement inspiré de

la rétine des mammifères. Notre codeur/décodeur a un comportement dépen-

dant du temps et qui prend en compte le non-déterminisme des processus de

codage rétinien. Nous incorporons au sein de notre codeur/décodeur un pro-

cessus de dithering multi-échelle original. Le processus de dithering que nous

proposons ajoute des fonctionnalités intéressantes à notre codeur d’images. En

particulier, intégrer le bruit dither multiéchelle dans notre codeur/décodeur (i)

décorrèle les coefficients d’analyse de l’erreur de reconstruction et (ii) permet

une reconnaissance plus rapide des détails fins de l’image pendant le processus

de décodage.





Organization

My Thesis consists of an introductory chapter followed by two parts of three

and two chapters. The manuscript is organized as follows:

*) In Chapter 1, we overview the mammalians visual system from a “work-

flow” point of view. We describe the main cortical areas crossed by the

information within the two visual pathways: the ventral one and the

dorsal one. We also introduce fundamental concepts about the neural

code generated by the retina and the different hypotheses about the

coding features within.

1. Part I is dedicated to the conception of a bio-inspired image coder

starting from the rank order coding hypothesis. We especially consider

the retina model defined in [Van Rullen 2001b] as a basis for our novel

coder/decoder and make the adequate modifications and enhancements

to adapt it to the coding application.

1) In Chapter 2, we detail our main working hypothesis for the first

part of this work: the rank order coding. We describe its guiding

principles and report the neurophysiologic results supporting it. We

also give a new mathematical formalism that rigorously defines the

rank order code. We then recall the specification of a simplified model

of the retina in [Van Rullen 2001b] that is intended to support the

rank order coding.

2) In Chapter 3, we revisit the retina model specified

in [Van Rullen 2001b] by proposing an original and exact syn-

thesis procedure for it. The solution that we propose relies

on the frames theory. Our contribution encompasses a the-

oretical and a technical aspect. We published these results

in [Masmoudi 2012b, Masmoudi 2012a]

3) In Chapter 4, we present an original retina-inspired coding scheme

for static images. Our coder has three stages that combine the spik-

ing retina model presented in Chapter 2 and data compression tech-

niques from the literature. We detail the specifications of our new

coder stages, then we compare its performances to state of the art

coders. This chapter is based mainly on the results that we published

in [Masmoudi 2010d].
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2. Part II is based also on the model specified in [Van Rullen 2001b]. We

enhance it through the introduction of time dynamics in the coding and

decoding processes. We also introduce several other mechanisms in-

volved in the retina behavior and that are reproduced in the retina sim-

ulation software called Virtual Retina [Wohrer 2009a]. The bio-inspired

image coder/decoder that we present in this part mimics as faithfully

as possible the retina behavior.

1) In Chapter 5, we explore the behavior of the inner layers of the

mammalians retina. We take the Virtual Retina simulation soft-

ware as a basis for our study. In a first step, we design a dynamic

quantization scheme that relies on a rate code. This scheme en-

compasses three stages mimicking the inner layers of the retina.

In a second step, we hypothesize that the noise observed in the

retina is a dither signal. We then overview a few interesting

features of our retina-inspired analog-to-digital (A/D) converter.

This chapter is based mainly on the results that we published

in [Masmoudi 2010a, Masmoudi 2010b, Masmoudi 2010c].

2) In Chapter 6, we propose the design of an original scalable image

coder/decoder that is inspired from the mammalians retina. Our

coder accounts for the time-dependent and also non-deterministic

behavior of the actual retina. This chapter is based mainly on the

results that we published in [Masmoudi 2012c] and [Masmoudi 2011].
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Overview

In this chapter, we will first introduce briefly the fundamental concepts of

image coding. In particular, we will raise the analogy between the classical

image coding systems and the stimulus coding within the human visual system

(HVS). Then, we will overview the HVS from a “workflow” point of view. For

this sake, we will describe the main processing stages crossed by the visual code

within the different visual pathways, from the retina to the deeper cortical

areas. Finally, we will introduce the reader to some fundamental concepts

about the neural code generated by the retina and its different interpretation

hypotheses.

Organization

This chapter is organized into four sections:

1. Section 1.1 introduces the fundamental concepts of image coding.

2. Section 1.2 describes the visual processing pathways that the visual data

follows starting from the retina based on the two streams hypothesis.

3. Section 1.3 presents some fundamental concepts about the neural code

of the retina such as spikes and spike trains. We especially focus on the

main spike-based coding strategies in the retina and we distinguish rate

and timing codes.

4. Section 1.4 summarizes the important concepts about the visual system

that we tackled. Starting from this point, we discuss the different evoked

retina coding strategies and justify our working hypotheses.
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While the mind is in doubt it is driven

this way and that by a slight impulse

Terence

During the past three decades, research in lossy compression for still

images yielded several coding algorithms especially the JPEG standards.

Since then, subsequent efforts for conceiving lossy image coders followed

almost the same schema [Antonini 1992, Christopoulos 2000, Skodras 2001].

These coding algorithms were mostly designed in a signal processing way of

thinking and do not account for the actual biological visual systems behavior.

Yet, computational neuroscience made substantial progress during the same

period in better understanding the internal representation of the sensory

world. In particular, concerning the visual stimuli sensing, one can find

many results and heuristics on how information is encoded, transmitted, and

interpreted within the mammalians visual system. Based on those results,

it is our conviction that the mammalians visual system developed efficient

coding strategies that could be used as a source of inspiration to imagine

novel compression algorithms.

Our goal in this work is to conceive novel image coders inspired from

the existing biological systems which role is to encode the visual stimuli. To

this end, we focus our study on the retina as it is the first coding device

encountered by a visual stimulus within the visual chain of treatments. So

that, we will begin this introductory chapter by recalling the fundamental

concepts about image coding and compression that will be used in the rest of

this work [Rabbani 1991, Wallace 1992, Antonini 1992, Skodras 2001]. Then,

we will overview the behavior of the retina and the HVS as a whole and

describe the functional role of its different cortical areas. For this sake, we

will base ourselves on the so-called “two streams hypothesis” [Goodale 1992].

Yet, the retina transforms the visual stimulus into a brain-friendly sig-

nal: the neural code [Rieke 1997]. This neural code follows thenceforth two

visual pathways across the cortex to be processed and analyzed, namely the

dorsal and the ventral streams. So that, in this chapter we will briefly in-

troduce the reader to these visual pathways and the processing stages that

they involve. We then bring into focus the neural code of the retina it-
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self. We tackle the fundamental concepts that will be necessary for the

comprehension of the rest of this work. Especially, we detail the notion of

spikes which are the electrical entities that convey the visual data in the cor-

tex. As no clear evidence is established about the relevant metrics to be

measured over the spikes, numerous hypotheses are discussed in the litera-

ture [Bialek 1991, Mainen 1995, VanRullen 2005, Johansson 2004]. Thus, we

will make an overview of the main candidate coding strategies based on spikes

that might be employed by the retina.

This chapter is organized into four sections. First, in Section 1.1, we

introduce the reader briefly to the fundamental concepts of image coding and

raise the possible analogy to be made with the retina functioning. Second,

in Section 1.2, we describe the pathways that the visual data follows starting

from the retina and the processing stages within. Third, in Section 1.3, we

present some fundamental concepts about the neural code of the retina such

as spikes and raster plots. We will also make an overview of the main retina

coding strategies that are potentially relevant with regard to the mass of data

conveyed by spikes. Finally, in Section 1.4, we discuss the different notions

addressed and especially the different possible retinal coding strategies. This

discussion will inset our main working hypothesis which is the rank order

coding strategy [Thorpe 1990] to be detailed in the next chapter.

1.1 Basics about image compression

We will overview in this chapter fundamental notions about the image cod-

ing theme. First, we will introduce the image transforms and in particular

the pyramid transforms, then we will recall some elements about the rate-

distortion theory, and finally we will evoke the possible analogy to be made

between classical image coders with the retina behavior.

1.1.1 Generalities

A characteristic that is common to most images is that their neighboring pix-

els are correlated. Thus images contain redundant information. The goal

of a coding system is then to find the less correlated representation of the

image. Two fundamental issues related to compression are the reduction of
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redundancy and the reduction of irrelevancy. Reducing redundancy amounts

to remove duplication from the source signal. Reducing irrelevancy aims at

omitting parts of the signal that will not be distinguished by the signal re-

ceiver, namely the HVS. In general, two types of redundancy can be identified:

1. Spatial Redundancy or correlation between neighboring pixel values.

2. Spectral Redundancy or correlation between different color planes or

spectral bands.

The goal of image compression algorithms is to reduce the number of

bits needed to represent an image by removing as much spatial and spectral

redundancies as possible.

Lossless vs. Lossy compression: In lossless compression schemes, the

image that is synthesized, starting from its compressed version, is strictly iden-

tical to the original image. However lossless compression can only a achieve

a modest amount of compression. On the contrary, an image reconstructed

following lossy compression is altered compared to the original one. Often,

this is caused by the fact that lossy compression scheme discards redundant

information. However, lossy schemes are able to achieve much higher compres-

sion ratios. Under normal viewing conditions, barely visible loss is perceived

(visually lossless).

Predictive vs. Transform coding: In predictive coding, information al-

ready sent or available is used to predict future values, and the difference is

coded. Since this is done in the image or spatial domain, it is relatively simple

to implement and is readily adapted to local image characteristics. Differential

Pulse Code Modulation (DPCM) is one particular example of predictive cod-

ing. Transform coding, on the other hand, first transforms the image from its

spatial domain representation to a different type of representation using some

well-known transform and then codes the transformed values (coefficients).

This method provides greater data compression compared to predictive meth-

ods, although at the expense of greater computation. We will introduce the

image transforms and especially the pyramid transforms in the next section.
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1.1.2 Pyramid image transforms

In most of the coding/decoding systems, source signals are encoded in a trans-

form domain. This transform is operated because it generally enables a suit-

able representation of the signal by means of few coefficients. For the sake

of compression, the fewer are the coefficients needed to represent the source

signal, the better is the transform. Over the years, a variety of linear trans-

forms have been developed which include Discrete Fourier Transform (DFT),

Discrete Cosine Transform (DCT) [Ahmed 1974], Discrete Wavelet Transform

(DWT) [Daubechies 1990, Antonini 1992, Vetterli 1995] and many more, each

with its own advantages and disadvantages. In this introduction, we will con-

sider another type of transforms, namely the pyramid transforms, as we will

be thoroughly using them in this work.

An image can be represented as a pyramid structure via a pyramid trans-

form. The pyramid structure obtained can be described as a collection of

images at different scales that together represent the original image. Among

the pyramid transforms specified in the literature, two main efforts can be

cited. The first one is specified in [Burt 1983]. The authors coded images

using the Gaussian and Laplacian pyramids. The basis functions are low-pass

kernels repeated at a series of positions, and appear at scales varying by factors

of two. The pyramid transform gives an exact reconstruction, though the ba-

sis set is not orthogonal, and the number of transform coefficients exceeds the

number of original pixels by a factor of
4

3
. The second transform is specified

in [Watson 1987]. The authors has developed an oriented pyramid transform.

The basis functions of this transform resemble Gabor functions and their spa-

tial frequencies and orientations are similar to that inferred in the HVS, in a

cortical area named V1. Again, the nonorthogonal basis set is overcomplete

by
4

3
. The reconstruction is nearly exact. The pyramid transforms have two

main advantages:

• Localization in space and spatial frequency: One way to achieve local-

ization in both space and spatial frequency is to compute a DCT in a

small blocks. But the linear and arbitrary edges of these blocks intro-

duce discontinuities in the image and alter the frequency localization. In

the same way as the wavelet transforms, pyramid transforms guarantee

a good frequency resolution while keeping reasonable spatial resolution.
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Figure 1.1: Example of a progressive transmission/reconstruction with three types of
pyramid transforms. Each row shows the results for a given pyramid transform type
(from [Adelson 1987]).

This is achieved by means of the multiscale representation of a pyramid

structure [Adelson 1987].

• Progressive transmission: In several applications it is desirable that the

decoder synthesizes a low resolution version of the coded image rapidly,

and then that higher resolutions are added as time goes on. Many

image coding techniques can be modified to allow such a progressive

transmission. But in the case of pyramids, which are inherently mul-

tiscale representations, progressive transmission is achieved simply by

sending information from successive pyramid levels in sequence. This

adds no informational overhead. This property will be used in the rest

of this work especially when studying rank order coding. An example

of progressive transmission/reconstruction is shown in Figure 1.1.

In order to compare objectively these different transforms and their ability

to improve an image coding/decoding scheme, an evaluation framework is



8 Chapter 1. Basics about the image compression and the HVS

needed. The rate-distortion theory is a discipline providing information theory

tools to accomplish this task. We introduce some elements of this theory in

the next section.

1.1.3 Rate-distortion theory

Rate-distortion theory is a theoretical discipline which goal is to tell what is

the maximum fidelity that a coder/decoder can achieve at a given bit-rate?

This issue amounts also to find what is the minimum rate required to ob-

tain a given distortion? Here, a distortion measure is generally a distance

or a divergence between a random variable and its representation after cod-

ing/decoding. The rate is usually understood as the number of bits per data

sample to be stored or transmitted. These two measures define the so-called

rate-distortion function.

A usual study case is the memoryless independent Gaussian source of σx

standard deviation. Considering the distortion D as the expected value of

the square of the difference between input and output signal (i.e., the mean

squared error), an analytical expression for the rate-distortion function can be

found [Cover 1991]. This function is shown in Figure 1.2. The rate-distortion

theory states that no compression system exists that performs outside the

gray area. The closer a given compression system is to the red bound (cf.

Figure 1.2), the better it performs.

While the mean squared error (MSE) remains widely used, it is to be

noted that the notion of distortion is still a hot issue of discussion among the

image and video compression community [Nauge 2010]. In image and video

compression, the human perception models are not well developed and their

inclusion is mostly limited to weighting traditional measure as the MSE.

Once we made an overview of image coding and the rate distortion theory,

we will evoke, in the next section, the possible analogy to be made between

classical image coders with the retina behavior.

1.1.4 Typical image coders design vs the retina

A typical lossy image compression system consists of three closely connected

components namely:
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Figure 1.2: The analytical rate-distortion function in the case of a memoryless independent
Gaussian source.

1. Source Encoder

2. Quantizer

3. Entropy Encoder

Compression is accomplished by applying a linear transform to decorrelate

the image data, quantizing the resulting transform coefficients, and entropy

coding the quantized values.

As discussed earlier, a variety of linear transforms have been developed as

DFT, DCT, DWT, or the pyramid transforms. A quantizer simply reduces

the number of bits needed to store the transformed coefficients by reducing

the precision of those values. Since this is a many-to-one mapping, it is a

lossy process and is the main source of compression in an encoder. Quan-

tization can be performed on each individual coefficient, which is known as

Scalar Quantization (SQ). Quantization can also be performed on a group of

coefficients together, and this is known as Vector Quantization (VQ). Both

uniform and non-uniform quantizers can be used depending on the problem

at hand. For an analysis on different quantization schemes, see [Gersho 1992].

An entropy encoder further compresses the quantized values losslessly to

give better overall compression. It uses a model to accurately determine the
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probabilities for each quantized value and produces an appropriate code based

on these probabilities so that the resultant output code stream will be smaller

than the input stream. The most commonly used entropy encoders are the

Huffman encoder and the arithmetic encoder, although for applications re-

quiring fast execution, simple run-length encoding (RLE) has proven very

effective. An overview on various entropy encoding techniques can be found

in [Gersho 1992, Nelson 1996]. It is important to note that a properly designed

quantizer and entropy encoder are absolutely necessary along with optimum

signal transformation to get the best possible compression.

Figure 1.3 shows a block diagram of an image coder and raises the analogy

with the retina functioning. Indeed, the retina operates a transform on the

continuous input signal, before transmitting a quantized series of spikes to

the brain. Besides, the outermost photosensing cells of the retina are one

hundred times more numerous than the innermost cells that are wired of the

optic nerve. Thus the retina might be compressing the source signal. As the

HVS is at the center of our investigations, we will overview in the next section,

the cortical areas that the neural code will get through once transmitted by

the retina.

1.2 The visual processing pathways:

The two streams and the FF/FB connections within

The main goal of our work is to design an image coder that is inspired from

the retina. In this context, our comprehension of the neural code of the retina

requires to have the adequate knowledge of (i) the succession of cortical areas

that the neural code will get through once transmitted by the retina, and (ii)

the usage that these considered areas are supposed to make of it. This is a

challenging task since the visual system is the largest in volume among all

sensing systems. So that, we will overview the main cortical areas involved in

the visual chain of treatments following the retinal coding and the resulting

decisions to be undertaken by the cortex. According to the nature of these

decisions, the visual neural code follows one of two pathways: the dorsal

stream or the ventral one. Within each pathway the different cortical areas

are interconnected in two directions: a feedforward (also called FF or top-
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Figure 1.3: Possible analogy between a classical image coder and the retina.

down) direction then a feedback (also called FB or bottom-up) one.

In this section, we first describe in Section 1.2.1 the track that is common

to all visual stimuli from the retina to the first cortical relay, the LGN. Then in

Section 1.2.2, we describe the visual flux bifurcation into a ventral and a dorsal

stream and the role of each of them. Finally, we describe the feedforward and

feedback interconnections that exist within each stream in Section 1.2.3.

1.2.1 From the retina to the LGN

The image forming data follows a single track from the retina to the first

cortical relay before bifurcating. We overview in this section the two main

stages encountered by the stimulus in this primal pathway: (i) the retina

and (ii) the Lateral Geniculate Nucleus (LGN). From the LGN through the

primary visual cortex (V1) to higher order areas, the visual stream is divided

in two as will be detailed in the next section. Figure 1.4 schematizes the

connections of the retina with the cited cortical areas by means of the optic

nerve.
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Figure 1.4: The visual pathway from the retina to the occipital region of the brain (from the
Howard Hughes Medical Institute website11). The top right panel shows a schematic view of
the retina and its different layers. The neural code generated by the retina is transmitted to
the LGN via the optic nerve. The neural code then continues its way through the chain of
treatments to the V1 area.

The first organ encountered by a light stimulus is the retina. The retina is

the device that acquires the visual stimuli and conditions the way high order

cortical areas accomplish shape categorization, motion control and the other

visual tasks that the cortex is expected to do.

It has a layered architecture (see the right panel in Figure 1.4 and the

schematic view in Figure 1.5). The successive layers of the retina perform

consecutive transforms on the stimulus to finally generate the retinal neural

code [Dowling 1966]. The outermost layer of the retina is tiled with a dense

mosaic of photoreceptors. It is to be noted that photoreceptors are said to

be outermost considering the chain of retinal treatments but the deepest ones

“anatomically speaking”. Indeed, the retina is paradoxally “reversed” because

the light must pass through the retina before it can reach the photoreceptors.

In humans, there are several types of photoreceptors but only two are image

forming: the rods and cones [Fu 2005]. The sensing topography defined by the

rods and cones is at the origin of the visual process that samples the continuous

stimulus passing through the ocular optics to a discrete array of signals. Rods

are mainly devoted to the peripheral vision and to the motion detection, while

cones are mainly devoted to color contrast perception. Though, this role

11http://www.hhmi.org/senses/b150.html
12http://www.arthursclipart.org/medical/senseorgans/page_02.htm

http://www.hhmi.org/senses/b150.html
http://www.arthursclipart.org/medical/senseorgans/page_02.htm
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(a)

(b)

Figure 1.5: 1.5(a): Optical coherence tomography (OCT) scan of the retina
(from [Cabrera Fernández 2005]). 1.5(b) Schematic view of the successive layers of the retina
(modified from Arthur’s clipart website 12)..
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distinction is not as strict as previously thought since rods seem to contribute

to color contrast perception via the rod-cone gap junctions [Cao 2008].

Among the subsequent layers we may cite the outer nuclear layer, inner

nuclear layer, the outer plexiform layer, the inner plexiform layer, the gan-

glionic layer, and finally the internal limiting membrane. We will focus here

on our main layers of interest, the inner nuclear layer and the ganglionic layer.

These layers encompass the neurons of the retina. They are interconnected

and each one has a specific function. Figure 1.6 shows the diversity of the

retinal cell types and the specificity of their wiring.

The inner nuclear layer includes a variety of retinal neurons which may be

classified into three categories:

1. The bipolar cells that are thus named because they are connected to both

the photoreceptor cells and ganglion cells: the two “poles”. There are

several groups of bipolar cells: (i) the bipolar rods, connecting several

rods to a ganglion cell, and (ii) the bipolar cones, connecting one or

more cones to a ganglion cell.

2. The horizontal cells which that are thus named because of the position

of their synapses. These cells modulate the information transmission

laterally.

3. Amacrine cells that are in contact via their synapses with the bipolar

and ganglion cells.

The last neuron layer of the retina is the ganglionic layer. The ganglion

cells are terminated with wires called axons, and the set of these axons is the

optic nerve. While, the human retina is populated with around 108 photore-

ceptors, there are only 106 ganglion cells that are responsible of the informa-

tion transmission to the brain [Curcio 1990]. This lead us to conjecture that

the retina compresses the visual data, and this fact provided us with a further

motivation for this work.

The cells within each layer are characterized by their sensitivity region

that is referred to as its receptive field. An example of such receptive fields in

the case of bipolar cells is given in Figure 1.7. These retina layers encompass

several processing stages including contrast detection filtering, gain control,

and non-linear rectification. Interested readers may refer to [Gollisch 2010]
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(a)

(b)

Figure 1.6: 1.6(a) Diversity of retinal cell types. For all five classes of retinal neu-
rons?photoreceptors (P), horizontal cells (H), bipolar cells (B), amacrine cells (A), and ganglion
cells (G) (from [Gollisch 2010]). 1.6(b) Specificity of retinal wiring (from [Gollisch 2010])
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Figure 1.7: Center-surround receptive field structure of an OFF-center midget bipolar cell
(from [Dacey 2000]). (A) Cell hyperpolarized to a small 150 mm diameter spot centered on
the receptive field. (B) Cell depolarized to an annulus (inner diameter = 150 µm and outer
diameter = 1200 µm).

for a review of the different retina layers. The behavior of these layers will

also be detailed in Part II.

The ganglion cells transmit the image forming data via the optic nerve to a

major cortical area: the LGN. The LGN is a sensory relay nucleus lying in the

thalamus. Though the retinal ganglion cells have been categorized into five

classes, only two of them project onto the LGN cells. These two classes are

the M cells and the P cells. The M cells are connected to the magnocellular

(or macrocellular) layers of the LGN, which are two in number for macaques.

These layers initiate the magnocellular or dorsal pathway. Respectively, the

P cells are connected the parvocellular layers of the LGN, which are four

in number for macaques. These layers initiate the parvocellular or ventral

pathway. Figure 1.8 schematizes the cited layers of the LGN. The LGN is

thought to convey information mainly about spatial contrast in the stimulus,

but the content-based differentiation between the two pathways remains

highly unknown [Nealey 1994]. Though, several neurophysiologic studies

suggest that the magnocellular pathway transmits low stimulus contrasts

and contributes also in the transmission of high stimulus contrasts to V1.

On the contrary, the parvocellular pathway appears to influence mainly the

responses to high stimulus contrasts. Thus, the magnocellular pathway is

often assumed to be the predominant conveyor of information about spatial

contrast to the visual cortex [Purpura 1988]. Besides, the parvocellular

pathway appears to be slower than the magnocellular one. The role of

this speed differentiation is also unclear [Livingstone 1988, Maunsell 1999].

13http://www.colorado.edu/intphys/Class/IPHY3730/07vision.html

http://www.colorado.edu/intphys/Class/IPHY3730/07vision.html
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Figure 1.8: The lateral geniculate nucleus LGN (from the university of Colorado website13).
The figure the multilayered architecture of the LGN. Four layers are parvocellular and two are
magnocellular (also called macrocellular).

Another major supposed role of the LGN is to enable stereoscopy in the

human visual system also referred to as binocular vision. Indeed, lesion

studies have proven that the parvocellular layers of the LGN affects fine but

not coarse static stereopsis [Schiller 1990]. Though, the actual involvement

of LGN in stereoscopic vision is challenged in several studies [Lehky 1996].

The subsequent cortical area that receives information directly from the

LGN is the primary visual cortex V1 also called the striate cortex. From that

point, the visual information stream is then divided in two before flowing

through the cortical hierarchy as detailed in the next section.

1.2.2 The dorsal and ventral streams

The visual system is thought to have a hierarchical architecture such that

the chained cortical areas within it perform increasingly complex tasks. This

chain of treatments yields decisions about (i) the cognitive operations as cate-

gorization, and about (ii) the motor actions such as grasping an object. Con-

sequently, since [Goodale 1992] emerged the so-called two streams hypothesis

which states that two distinct, though still communicating, visual pathways
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are present within the visual cortex. One is dedicated to the perception of

objects, and the other to the control of motor actions to be performed on

those objects. These two pathways are termed as the dorsal and the ventral

streams. The areas crossed by the dorsal stream lie in the so-called occipito-

parietal region of the cortex, while those crossed by the ventral stream lie in

the so-called occipitotemporal region. Figure 1.9 schematizes these two path-

ways in the apes brain. As described below, behavioural evidence derived from

lesion studies and neuroimaging enabled the inference of these two streams

functions.

Figure 1.9: The ventral and dorsal visual pathways (modified from the Australian National
University website14). The areas crossed by the dorsal stream lie in the occipitoparietal region
of the cortex (in green). The areas crossed by the ventral stream lie in the occipitotemporal
region (in purple).

The first stream is the dorsal “action” stream that projects to the pos-

terior parietal cortex. It starts from the LGN magnocellular layers and en-

compasses a chain of consecutive areas including V1, V2, V3, MT, MST,

and FEF [Schmolesky 1998]. The mangocellular pathway is responsible of

the estimation of objects position in space and their movement comprehen-

sion. It helps visuomotor modules monitor the motor acts to be performed on

the considered objects [Goodale 1992, Goodale 2004]. Behavioural evidence
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supports this assertion about the role of the dorsal pathway. Indeed lesion

studies showed that apes with posterior parietal lesions are impaired in the

discrimination of rotated shapes or mirrored images, while cognitive tasks as

face discrimination are not impaired [Ockleford 1977, Walsh 1996]. Besides,

neuroimaging and particularly functional magnetic resonance imaging (fMRI)

provided further evidence about the role of the dorsal pathway. For exam-

ple, it has been shown that the anterior intraparietal (AIP) region of the

brain responds more strongly during grasping than reaching towards visual

objects [Binkofski 1998]. Because of the functions that the dorsal pathway is

involved in, it is often referred to as the “where” pathway.

The second stream is the ventral “perception” stream that projects to the

temporal lobe. It starts from the LGN parvocellular layers and encompasses a

chain of consecutive areas including V1, V2, and V4 [Schmolesky 1998]. The

pavocellular or ventral pathway is responsible of the elaboration of stimulus

representations that are used for cognitive tasks such as the categorization

of objects. The temporal lobe holds in its different areas rich and detailed

maps representing the visual environment [Goodale 1992, Goodale 2004]. For

example, (i) V1 contains inter alia an orientation-based representation of the

stimulus contours [Li 2002, Tanaka 2009], (ii) V2 contains inter alia a map

for visual horizontal disparity [Chen 2008], (iii) while V4 contains inter alia a

retinotopic saliency map that guides the eye movements during a visual search

task [Mazer 2003]. As for the dorsal pathway, lesion studies and neuroimaging

support the hypothesis stating that the ventral pathway is responsible of

the perception. Indeed, lesion studies showed that monkeys with lesions

of the inferior temporal cortex were profoundly impaired in visual pattern

discrimination, while they can discriminate between shapes that differ only in

orientation [Gross 1973, Walsh 1996]. In this case also, fMRI brought further

evidence about the role of the ventral pathway. In fact, the occipitotemporal

cortex appears to be highly activated by 3D objects depicted in line drawings

compared to textures or scrambled objects [Grill-Spector 2001].

Several studies state that the dorsal and ventral streams discrimination is

14http://sciencewise.anu.edu.au/articles/dyslexia

http://sciencewise.anu.edu.au/articles/dyslexia
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relatively strict at the level of V1 and in the adjacent V2. This segregation

is also thought to predominate in V4 or in the middle temporal area MT.

Though this hypothesis is challenged. For example, the cells of V1 seem to

integrate information from both streams [Allison 2000]. Thus, the segregation

between dorsal and ventral information in the cortex might not be as obvious

as initially thought. The functional study of the visual pathways is further

complicated by the criss-cross of the connections within. We describe in the

next section this feedforward and feedback connectivity.

1.2.3 The feedforward and feedback connections

The visual system is thought to be organized into two hierarchical processing

chains as described above: the first one goes through the dorsal stream

and the second through the ventral one. Within each pathway there

exists a dichotomous communication system with feedforward and feedback

connections. The so called top-down processing of the neural code is done

during the feedforward sweep, while the bottom-up processing is done during

the feedback sweep. While the functional role of the top-down processing

is inferred from the studies cited in the previous section, this role is less

obvious for the bottom-up processing. Thus, in this section, we describe the

functional role of the bottom-up processing for (i) visuomotor control in the

dorsal pathway and (ii) for perception in the ventral stream.

The areas within the dorsal stream are responsible of complex tasks

such as the monitoring of visuomotor actions. Such tasks require high order

analysis of the position and movement of a given object. The hierarchy

within the dorsal stream may suggest that a top-down scan through the

feedforward connections is sufficient to accomplish the “where” tasks. We

report in this section the literature results about the role of the feedback

connections in this analysis process.

Yet, though V1 is a major relay within the dorsal stream, it is often considered

to be a simplistic visual processor. Thus, it was thought that V1 is unable

to accomplish visuomotor control, and that higher order cortical areas as

MT are responsible of it. This is due to the apparently simple nature of the

stimuli that activate its cells as bars and spots. In addition, the fact that
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Figure 1.10: The feedback and feedforward connections in the ventral stream
(from [Ungerleider 2000]). Here are shown the areas V1, V2, VP, and V4 in the occipital
region of the brain and the areas TEO and TE in the temporal cortex. The connections be-
tween successive pairs of areas are reciprocal, such that feedforward projections from one area
to the next are reciprocated by feedback projections from the second area back to the first.

V1 responds within 20 ms leaves a too short time for a complex analysis to

be done [Bullier 2001]. Surprisingly, it appears that this assumption have to

be reconsidered and that there is a need for bottom-up processing via the

feedback connections. In fact, evidence has been made that V1 has a late

activity that is initiated after the first top-down sweep is over, around 600 ms

after stimulus onset. In particular, experiments using transcranial magnetic

stimulation (TMS) has shown that this late activity of V1 was critical

for awareness of visual motion [Pascual-Leone 2001]. Other results such

as [Hupe 1998] concluded that V1 gets feedback information from the top of

the hierarchy of the dorsal stream before the arrival of the parvocellular infor-

mation. These efforts suggest that feedback connections in the dorsal stream

contribute to the “where” functions but probably also to the “what” functions.

The ventral stream has also been shown to be crossed by feedforward

and feedback connections. Indeed, anatomical studies reveal that almost

each pair of successive areas within the ventral stream is connected back and

forth [Felleman 1991]. Figure 1.10 shows the different areas crossed by the

ventral stream and a diagram of the feedforward and feedback connections

within. Several studies supported this assumption such as [Bullier 2001].
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Though, until recently, no experimental evidence confirmed the functional

role of feedback in the ventral stream, whereas this has been demonstrated for

the dorsal stream as described above [Koivisto 2011, Crouzet 2011]. Thus, the

first feedforward sweep in the ventral stream was thought to be predominant

for perception and cognitive tasks. In fact, while the visual neural code goes

forward in the ventral stream, the cells of the crossed areas become selective

to increasingly complex features. This progression enables categorization

tasks for instance. In this context, experiments showed that simple go/no-go

categorization tasks in apes and humans occur within less than 150 ms

from stimulus onset [Thorpe 1996, Serre 2007]. Recent studies have also

shown that more complex categorization tasks such as the recognition of

valid and invalid coins occur within the same delay [Tallon-Baudry 2011].

Yet, the neural code travels through around 10 coding stages to reach the

high order cortical areas and spends 10 to 20 ms per stage. Bearing in mind

these facts, the categorization occurs too early to consider that the feedback

pathway brings a crucial contribution for perception. The cited works lead

to the conjecture that, despite the existence of feedback connections, a single

forward sweep through the ventral stream is sufficient to perform complex

cognitive tasks.

However a recent study in [Koivisto 2011] proved the causal role of the

feedback pathway in natural scene categorization. The authors tested a

go/no-go categorization task as in [Thorpe 1996]. The results showed that

V1 and V2 contribute to categorization and subjective perception during

a long activity period after the first feedforward sweep is over. This result

suggests that the feedback connections within the ventral stream accounts

for the “what” perception functions.

We introduced in this section the visual pathways that the neural code

travels through starting from the retina, and the processing stages that they

involve. This overview highlighted the complexity of the processes conducted

within the visual cortex. Though, it has to be noted that these complex visual

tasks can be done thanks to the neural code generated by the retina. So that,

we expect this neural code to account for a variety of visuomotor and cognitive

issues. As our main goal is to inspire ourselves from the retina to design image
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coders, we will bring into focus the retina neural code in the next section.

1.3 Fundamental notions about the neural

code of the retina

In this section we present some prerequisites about the neural code of the

retina. In Section 1.3.1, we will especially introduce the fundamental notion

of spikes which are the coding entities that convey visual information. Then,

in Section 1.3.2, we will give an overview of a variety of possible spike-based

coding strategies that might be employed by the retina.

1.3.1 The retinal neural code shape

The human visual system conveys information broadly by means of a set

of electrical impulses termed as action potentials or also spikes [Rieke 1997,

Gerstner 2002]. Spikes are emitted by specific neurons tiling the retina re-

ferred to as ganglion cells. As a response to a given visual stimulus each

ganglion cell emits a series of spikes: the spike train. The set of these spike

trains defined over the set of ganglion cells is the neural code of the retina.

Interestingly a spike as generated by a ganglion cell is an all-or-none event.

This means that it occurs fully or do not occur at all. As a consequence, one

can consider that the retina quantizes the visual data. Furthermore, neuro-

physiologists noticed that all spikes have almost the same characteristic shape

and amplitude. So that, the spike amplitude is independent of the stimulus

intensity. This observation lead neurophysiologists to conclude that the retina

generates a binary-like code. Thus the neural code is often represented by a

so-called raster plot. A raster plot is intended to represent spike occurrences

on a binned time axis, this over a set of observed neurons. A schematic view

of a spike, a spike train, and a raster plot is shown in Figure 1.11. This figure

also shows the hierarchy relating these different notions.

The raster plot contains all the information about the acquired visual

stimuli but is still a challenging code to understand. The neural code of the

retina is not a simple intensity signal transform and through experiments, it

appears that the code corresponding to a given stimulus encompasses many
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Figure 1.11: A spike, a spike train, and a raster plot. Spikes have the same shape and amplitude.
A series of spikes emitted by a single neuron in a predefined time bin is a spike train. The whole
set of spike trains is the neural code of the retina. The neural code is represented using a raster
plot that contains all the information about the visual stimuli.
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measurable characteristics, and that each one of these characteristics could

convey the relevant information about the stimulus. We give an overview of

the main hypotheses discussed in the literature in the subsequent section.

1.3.2 Possible coding metrics in the retina

Since [Adrian 1926] it was claimed that the relevant information would be

contained mostly in the mean spike firing rate. Whereas, in [Perkell 1968a],

authors suggested that the information conveyed by each single spike timing

could be relevant with regard to the stimulus. Since then numerous other

coding metrics were proposed as the relevant ones to be measured in the mass

of data that is represented in a raster plot. Figure 1.12 outlines a few of them.

Roughly two main sorts of coding schemes are proposed in the literature: rate

codes and timing codes.

Figure 1.12: Some examples of possible relevant measures in the spiking code
(from [Escobar 2009]). The vertical axis represents a range of ganglion cells. The horizon-
tal axis is oriented from right to left and represents time. Each line in the Figure is a spike train.
In green Rate coding : For each cell, the firing rate is the spike count over a predetermined time
window, of width T , divided by T . In blue Phase coding : the phase of spike signals is measured
with respect to a background carrier wave (here in dotted line). In orange Synchrony coding:
ganglion cells reacting to a stimulus region "belonging the same object" fire simultaneously.
Cells are thus grouped into clusters. This defines a bio-inspired segmentation algorithm. In red

Time to first spike coding: The code output is the time to emit a first spike for each ganglion
cell. In contradiction with the previous coding scheme, this assumes complete asynchrony in
the encoding procedure.
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Rate coding metrics (or also frequency coding metrics) assume that each

ganglion cell conveys most of the valuable information about the visual stim-

uli in its spike firing rates. Rate coding strategies are widely used in the

literature. This is due to the non-deterministic behavior of the retina as a

coder [Stein 2005]. Indeed, given a single visual stimulus, the retina generates

different (though still resembling) neural codes over the repeated trials. So

in order to define a single output code for a given stimulus, experimenters

had to consider the neural code from probabilistic point of view. The most

commonly used approach is to recourse to averaging methods that are robust

with the regard to the trial-to-trial code variability. These averaging methods

are referred to as rate coding strategies. We draw the reader attention to the

fact that rate coding strategies confusingly refer to a range of metrics. Among

them, we can cite three distinct metrics depending on the experimental pro-

tocol:

(i) Trial-to-trial averaging. The experimenter presents a visual stimulus to

the retina neurons over several trials (cf. Figure 1.13). Each neuron is

considered separately and the spike trains generated are recorded. For

each neuron the experimenter averages the spikes count, over the number

of trials, in a succession of relatively tight time bins. Typically, a time

bin has a size of 1 to 5 ms but greater values could be used as in the

example below where the authors used a time bin of 30 ms.

(ii) Population averaging. The experimenter presents a visual stimulus to

a population of uncorrelated retina neurons (cf. Figure 1.14). All the

neurons in the population are submitted to the same stimulus. The

experimenter averages their spike counts, over the number of neurons

in the recorded population, in a succession of relatively tight time bins.

Here also, a time bin has a size of 1 to 5 ms.

(iii) Time averaging. The experimenter presents a visual stimulus to the

retina neurons (cf. Figure 1.12 green lines). The spike trains are gen-

erally recorded using an array of electrodes. The experimenter averages

the spike count over a relatively wide time window for each single neuron.

Typically the time window has a size of 50 to 500 ms.
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Figure 1.13: Rate estimation by means of trial-averaging (from [Nawrot 1999]). (A) Raster
display of spike events for 30 trial repetitions. (B) Peristimulus time histogram (PSTH 15) of
average spike response, constructed from all 30 trials using a bin size of 30 ms.

The latter time averaging assumption is the one that is the most commonly

used in the literature (Figure 1.12 green lines). For a more detailed discussion

about the above cited rate codes see [Rieke 1997]. In addition to these sim-

ple rate codes, more sophisticated frequency-based approaches emerged. For

example in [Freeman 2001], the authors consider that a stimulus alters a pre-

defined carrier wave signal. The retina could then encode information in the
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Figure 1.14: Population of neurons (from [Gerstner 2002, Gerstner 2000]). All neurons receive
the same input Iext(t) (left), which results in a time-dependent population activity A(t) (right).

phase of spikes with respect to the background wave oscillation (Figure 1.12

blue lines).

Though largely adopted, several studies such as [Gautrais 1998,

Stein 2005] criticized rate coding strategies. Several timing codes were pro-

posed as an alternative.

Time coding metrics emerged in the last twenty years to offer an alter-

native to rate codes. Indeed, there is some biological evidence stating that

rate codes are unable to discriminate rapidly-varying visual stimuli. Besides,

decisions made in the visual cortex occur in such a rapid manner that the

underlying coding process could not rely on the estimation of a neural firing

rate over a large time window.

One first approach is the time-to-first-spike coding strategy (Figure 1.12

red lines). Many authors proposed that the first wave of spikes that the

retina neurons generate contains most of the information about the stim-

15The PSTH shows neuron firing times wrapped to one cycle of the stimulus. In this
case, the stimulus is periodic.
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ulus [Johansson 2004, VanRullen 2005, Zohar 2011]. Clearly, neurophysiolo-

gists demonstrated that the more a neuron is excited the shorter is the latency

time of its first spike. So that, one can assume that considering only the first

spike per each neuron in the retina enables the visual cortex to accomplish high

order visual tasks. In addition, there is conjecture confirming this hypothesis

for other sensory modes as the auditory system [Phillips 1998] and somatic

nervous system [Panzeri 2001]. This approach was mainly used to explain the

fast categorization ability in the visual cortex [Thorpe 1996, Johansson 2004].

Interestingly, the time-to-first-spike coding scheme found also technical appli-

cations in bio-inspired electronic sensory networks. For instance, this strategy

has been applied to devise a low-consumption image sensor [Guo 2007]. We

will reconsider this approach in the next chapter when describing the rank

order coding scheme.

One limitation of the time-to-first-spike scheme is the fact that the stimulus

onset time is not always clearly identified in natural situations, ie. when

recording is not made in laboratory conditions. By using relative spike times

one can avoid this issue. For example, authors in [Gollisch 2008] reported

that the retina neurons encode the spatial structure of a visual stimulus in

the relative timing of their first spikes. Still, these approaches discard all

the spikes following the first one per each neuron. So that, one alternative

approach inspired from the efforts conducted in the auditory system study is

to measure the interspike intervals (ISI) [Shih 2011]. Obviously, this metric

accounts for the spikes fired after the first one. Several experiments about

this metric suggest there exist a relationship between the ISI measures and

the stimulus amplitude, and thus ISI might be exploited as a part of the neural

code [Oswald 2007].

The coding schemes above are mainly used for categorization tasks.

When considering different visual tasks such as segmentation, other metrics

appear to be more relevant. One possible coding strategy, that is suitable

for segmentation, is to group neurons into clusters which elements fire

simultaneously. The underlying idea is that simultaneous firing could mean

“belonging to the same region” in the image perceived (Figure 1.12 orange

lines).
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The coding strategies cited above, though not exhaustive, show that the

spike-based possible coding strategies are numerous. Readers interested in

a detailed overview of possible coding strategies in the retina may refer

to [Van Rullen 2002, Gerstner 2002, VanRullen 2005]. Among all these strate-

gies we chose the rank order coding (ROC) as a basis for our work, where the

ROC is an extension for the time-to-first-spike hypothesis. The reasons behind

this choice are exposed in the following section.

1.4 Discussion

On a first step in this chapter, we based ourselves on the two streams

hypothesis and overviewed the visual processing pathways within the cortex.

We described the functional behavior of the dorsal and the ventral streams.

We reported the neurophysiologic evidence about the contribution of the

dorsal pathway in the monitoring of visuomotor tasks. We also reported

literature results that proved the contribution of the ventral stream in

the cognitive visual tasks as the categorization. Then, we described the

feedforward and feedback interconnections that exist within each stream. In

particular, we described several behavioral experiments showing that: (i)

during the feedforward scan a rapid top-down processing pass is done in less

than 150 ms from stimulus onset, (ii) and that during the feedback scan, a

slower bottom-up processing is accomplished 600 ms after stimulus onset.

On a second step in this chapter, we presented some fundamental concepts

about the neural code of the retina such as spikes. Then, we discussed a

variety of measurable metrics that could be used by the retina to encode the

information. Among these spike-based coding strategies, we distinguished

rate and timing codes. Whether the retina employs rate or timing codes

is still an open issue in the neuroscience community. The measurement of

firing rates are the most common. This due to the experimental ease of these

measurements and their resilience to the trial-to-trial variability of the retina

neural code. However, we reported some experimental evidence suggesting

that rate may be too simplistic to account for the rich information content

conveyed by spikes. Yet, we evoked several studies demonstrating that coding
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strategies based on the exact spike timings might be relevant.

The goal of this work is to conceive an image coder that is inspired from

the retina. So that, our coder will be necessarily based on a model of the

retina. Ideally, this retina-based coder should be optimized for perception, ie.

when compared to other coders at equal rate we expect it to have a better

perceptual quality. Furthermore, our coder should be simple. Thus, consid-

ering late feedbacks in the process that generates the neural code might be

inappropriate for this sake. A fast top-down analysis of the stimulus appears

to be more relevant. Finally, our coder should be rapid. Thus considering

a coding strategy that integrates spikes during a long period of time before

averaging might be inappropriate. For the reasons cited above, we will focus

our work on the neural code generated by the retina that circulates through

the feedforward connections of the ventral stream.

Fortunately, in the literature there exist perception-oriented retina models

that could account for the rapidity of processing observed in the primate vi-

sual system as the one introduced in [Van Rullen 2001b]. The main working

hypothesis behind this model is the rank order coding assumption which states

that: “The first wave of spikes surfing forth through the ventral stream encodes

the perception-relevant information about the stimulus” [Van Rullen 2002].

Part I will introduce the retina model under study and the fundamental con-

cepts behind it.
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Overview

In this chapter, we will focus on our main working hypothesis for the first

part of this work: the rank order coding. First, we will describe the guiding

principles of this hypothesis as stated in [Thorpe 1990] and we will report the

neurophysiologic results supporting it. Second, we will give a new mathemat-

ical formalism that rigorously defines the rank order code. Finally, we present

the simplified model of the retina in [Van Rullen 2001b] that is based on the

rank order coding.
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Contribution

We bring a new mathematical formalism for the rank order coding. This

formalization of the hypothesis statement is intended to provide a rigorous

basis for future works. Details are described in Section 2.2.

Organization

This chapter is organized into three sections:

1. Section 2.1 is divided into two sections. Section 2.1.1 enumerates the

guiding principles of the rank order coding. Section 2.1.2 reports several

neurophysiologic results that sustains this hypothesis.

2. Section 2.2 gives a mathematical formalism for the rank order coding.

3. Section 2.3 presents a retina model defined in [Van Rullen 2001b] that

is based on the rank order coding.
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There is no logical way to the discovery

of these elemental laws. There is only

the way of intuition, which is helped

by a feeling for the order lying behind

the appearance.

Albert Einstein

As discussed in the previous chapter, several hypotheses about the coding

features within the neural code of the retina were proposed. Among these hy-

potheses, we will focus on the latency time of the first spike given the stimulus

onset. In particular, we will consider in the first part of this work an extension

of this hypothesis: the rank order coding. This choice was motivated by com-

pelling neurophysiologic evidence and technical reasons as well. So that, this

chapter will be structured into three sections. The first one will introduce the

rank order coding founding bases, the second will formalize mathematically

the concept of rank ordering, and the third will detail a retina model design

intended to support it. First, in Section 2.1 we will recall the principles of the

rank order coding hypothesis and the experimental evidence that sustains it

since the Thorpe founding effort [Thorpe 1990]. Second, we will give a new

mathematical formalism for the rank order coding strategy in Section 2.2.

This formalism is intended to offer a rigorous framework for our present effort

and also for future extensions to be made. Finally, in Section 2.3 we will

detail the specification of a retina model proposed in [Van Rullen 2001b] to

support the rank order coding. The model under study transforms an image

into a wave of spikes in a bio-inspired manner. In addition, this retina model

provides both a coding and a decoding algorithm which makes it a further

interesting choice for a bio-inspired coder basis. The adaptation and usage

of the retina model in [Van Rullen 2001b] in the context image coders design

will be detailed in the next two chapters.
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2.1 The rank order coding:

Principles and neurophysiologic evidence

The rank order coding scheme will be the basis of the first part of this work. So

that, this section will be structured into two parts. First, in Section 2.1.1, we

enumerate the guiding principles of the rank order coding hypothesis. Second,

in Section 2.1.2, we give an overview of the neurophysiologic experimental

results that supports it.

2.1.1 The rank order coding principles

As an explanation for the apes extraordinary performance in cognitive tasks,

Thorpe proposed in its founding effort [Thorpe 1990] the rank order coding

hypothesis. This hypothesis states that the order in which the retina emits

its first wave of spikes encodes the stimulus. The rank order coding followed

a review of experimental results conducted in [Thorpe 1989] which conjec-

ture that the visual system accomplishes its main cognitive tasks in a single

feedforward pass through the ventral stream. The hypothesis relies on the

following simplifying assumptions:

(i) From stimulus onset only the first spike emitted by each neuron is con-

sidered in the retina response. All subsequent spikes are discarded.

(ii) The latency time before a neuron fires its first spike is a decreasing

function on its degree of excitation.

(iii) Only the order in which the neurons fire is the neural code of a given

stimulus. The exact latency time of each single neuron is discarded.

Since then, accumulating neurophysiologic results came as a support for

this hypothesis and more generally to approaches based on the time-to-first

spike metric. These results further motivated our choice of it. In the following

section, we overview these results.

2.1.2 The experimental evidence behind

Since the sixties, neurophysiologists has been interested in the coding features

within the retina neural code. This issue is fundamental since the comprehen-
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sion of the retina code is determinant for the comprehension of the functional

role of the visual cortical areas, and vice versa. A widely admitted assump-

tion states that the retina neurons convey the information by means of their

firing rate. Though as described in Section 1.3.2, alternatives to rate coding

emerged such as the time-to-first spike metric. The latter hypothesis relies on

the experimental evidence that the more a neuron is excited the shorter is its

first spike firing latency. Figure 2.1 schematizes this phenomenon. One major

Figure 2.1: The first wave of spikes (from [Van Rullen 2002]). The more a neuron is excited
the shorter is its first spike firing latency time. All spikes following the first one, at the level of
each neuron, are discarded.

result that lead in this direction is that the image coding performed by the

retina allows face recognition tasks to be undertaken within short latencies be-

tween 80 and 160 ms [Perrett 1982]. Since then, several experimental studies

corroborated approaches based on the time-to-first spike metric. Among these

approaches, the rank order coding [Thorpe 1990] got a specific attention. In

the following we report some of these experimental results.

Oram et al further studied face recognition capabilities of primates in their

1992 effort [Oram 1992]. The evidence was made that the decision occurs

quickly though information has to be processed through several stages in the

brain. Typically, the discrimination between static head views stimuli occurs

within 25 ms from response onset. The authors stated that this measures

could make sense if the visual cortex considered only the first spike emitted

by each neuron for face recognition tasks. As a consequence authors raised

the idea that the first wave of spikes encodes the stimulus. Obviously, this
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coding scheme relies on the time-to-first-spike metric.

The previous result was generalized by Thorpe et al in [Thorpe 1996].

Authors confronted the rapid categorization capabilities of the visual cortex

to stimuli that are not specific to face recognition. Stimuli considered for the

experiment are natural complex scenes. The ape subject was given a go/no-go

task, namely it had to answer the question whether there is an animal in the

scene or not. Pictures were flashed during 20 ms and the generated retina

code (the event related potentials in this case) was recorded in the frontal sites

of the brain. The study of the output code showed that decision occurs within

150 ms from stimulus onset. Later this result was extended to non biologically

relevant targets in [Van Rullen 2001a]. As an explanation the authors claimed

that the first wave of spikes conveys the code used for rapid categorization

tasks.

Later, Meister et al validated the relevance of the time-to-first-spike metric

in the neural code of the retina [Gollisch 2008]. This effort relied on quan-

titative measures. Authors investigated the neural output of the salamander

retina. The stimuli considered were flashed still images of gratings. Spike

trains were recorded at the level of the retina ganglion cells. Two metrics

were then measured over spike trains. The first one was the time-to-first-

spike and the second was the spike firing rate within a time window of fixed

size. The experimental results confirmed that the time-to-first-spike code is

more discriminative than the rate code with regard to the input stimuli. Be-

sides, the amount of information measured by the entropy (see [Cover 1991] for

a definition) showed that the time-to-first-spike code conveys twice as much

information as the rate code [Gollisch 2008]. These measures validated the

assumption that time-to-first-spike metric is predominant in the visual neural

code.

Recent studies have also shown that more complex categorization tasks

occur within extremely short delays [Tallon-Baudry 2011]. The authors con-

sidered two stimuli categories: (i) valid coins such as Euros or Australian Dol-

lars and (ii) invalid coins that lost their change value such as French Francs

or Finnish Marks. The authors then recoded magneto-encephalographic re-

sponses to visual stimuli from the two categories. It appeared that the ventral

visual pathway discriminates between valid and invalid coins within only 150



2.1. The rank order coding 41

Figure 2.2: Invariance of ROC to stimuli contrast and dynamic range (from Spikenet documen-
tation21). The three graphs on the left illustrate how an input intensity profile can be converted
first into a latency profile, and then into a rank profile. The center and right-hand panels show
that changes in either intensity (center) or contrast (right) will have no effect on the rank
ordering of the units, although latencies will change.

ms. The categorization was successful whether the coins were familiar or not.

As discussed above neurophysiologic evidence supports the idea that only

the first wave of spikes encodes the visual stimulus in the retina. This idea

was extended with the proposition of the rank order coding [Thorpe 1990,

Thorpe 1996, Van Rullen 2001b, Van Rullen 2002, Delorme 2003]. The rank

order coding is based on the assumption that the visual stimulus is not encoded

by the exact time-to-first-spike of the retina neurons but rather by their order

of occurrence. One major advantage of order coding over time-to-first-spike

coding is its invariance to the contrast and dynamic range of the stimulus.

Authors in [Delorme 2003] demonstrated this property (see Figure 2.2). This

invariance property is important because it accounts for the dynamic range

and contrast invariance observed in some areas of the visual cortex. Especially

in V1, the neurons should discriminate orientations independently from the

contrast and illumination of the stimulus image. The authors then concluded

that coding the visual stimulus by means of the neurons firing rank is more

coherent with the subsequent visual cortical areas behavior.

We described in this section the guiding principles and the biological

evidence behind it. Though the idea at the basis of this code is simple, the
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literature lacks a formal mathematical definition for it. So that, we formalize

in the following the coding function underlying this hypothesis.

2.2 A mathematical formalism for the rank

order coding

On a first step in this section, we give a mathematical formalism that defines

the time-to-first-spike coding scheme within a rigorous framework. Then on

a second step, we extend this definition to the rank order coding scheme.

As described previously many authors consider that only the first wave

of spikes conveys the relevant information about the stimulus. Under this

assumption, one can define the neural code of the retina as the set of the

occurrence times of the first spikes given the stimulus onset. Because the

literature lacks a formal definition for this code, let us give it in the following.

If we suppose that (i) the stimulus is a regular n × m array of intensities

f ∈ Mm,n, and that (ii) the retina is tiled with a regular N × M array of

neurons (νij)(i,j)∈!0,M−1"×!0,N−1", we define the retina time-to-first-spike coding

function φwave by:

φwave : Mm,n( ) −→ Mm,n( +)

f %−→ τ, (2.1)

where τij is the occurrence time of the first spike emitted by the neuron νij

given the stimulus onset. According the time-to-first-spike scheme, the cortex

could recover f , the original stimulus, given its code τ = φwave(f). The rank

order coding proposed in [Thorpe 1990] is a biologically plausible extension

of this coding strategy. As described in Section 2.1.1, this coding scheme

supposes that the order in which the retina neurons emit their first spike is

the only metric that encodes a given stimulus. Let us recall the rank order

coding assumptions:

(i) Only the first spike emitted by each neuron is considered.
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(ii) The more a neuron is excited the shorter is its firing latency time.

(iii) Only the order in which the neurons fire encodes a given stimulus.

Thus, we define the retina rank order coding function φroc by:

φroc : Mm,n( ) −→ S

(

!0, M − 1" × !0, N − 1"
)

f %−→ σ, (2.2)

where S

(

!0, M − 1" × !0, N − 1"
)

is the group of possible permutations over

the elements of !0, M − 1" × !0, N − 1", and σ is the permutation such that:

τσ(0,0) < τσ(1,0) < . . . < τσ(i,j) < . . . < τσ(M−1,N−1), (2.3)

where τ = φwave(f). This means that σ is the permutation that sorts the

neurons ν(i, j) in the increasing order of their time-to-first-spike τ(i, j) (cf.

Equation (2.1)).

In order to test the relevance of rank order coding, a model of the retina

was proposed in [Van Rullen 2001b]. With the aid of the formal definition in

Equation (2.1), we describe this spike-based model in the next section. The

model described will be at the heart of the following chapters of this work.

2.3 A retina model based on rank order

coding

In this section, we describe the retina cells model and architecture according to

the bio-inspired retina model specified in [Van Rullen 2001b]. We then show

how this modelled retina analyzes then synthesizes a still image stimulus.

2.3.1 The retina cells: model and architecture

Neurophysiologic experiments have shown that, as for classical image coders,

the retina encodes the stimulus representation in a transform domain. The

21http://sccn.ucsd.edu/~arno/spikenet/order.html

http://sccn.ucsd.edu/~arno/spikenet/order.html
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retinal stimulus transform is performed in the cells of the outer layers. Quan-

titative studies such as [Field 1994, Rodieck 1965] have proven that the outer

cells processing can be approximated by a linear filtering. In particular, neuro-

physiologic experiments conducted in [Field 1994] yielded the largely adopted

DoG filter which is a weighted difference of spatial Gaussians that is defined

as follows:

DoG(x, y) = wcGσc(x, y) − wsGσs(x, y), (2.4)

where wc and ws are the respective positive weights of the center and surround

components of the receptive fields, σc and σs are the standard deviations of

the Gaussian kernels Gσc and Gσs , such that σc < σs. Based on [Field 1994],

the retina model specification in [Van Rullen 2001b] chose the DoG filter to

model the retina cells and set the weights to wc = ws = 1 and the standard

deviations ratio to
σs

σc
= 3. The latter values are biologically realistic. A

DoG filter thus defined is a contour detector as shown in Figure 2.3.

Having these parameters, the value of σc (cf. Equation (2.4)) determines

the spatial resolution of the retina cell considered. In the actual retina, one can

observe a wide range of cells with different scales. Besides, the retina cells den-

sity and scale are inversely proportional. The authors in [Van Rullen 2001b]

modelled this architecture by spreading the retina cells over a hierarchical

grid Γ that is said to be dyadic. Formally a finite dyadic grid is defined as

in [Cardoso 2006]:

Définition 1. Finite dyadic grids : A finite dyadic grid Γ has an obvious

unique representation as a finite 0-4 tree, a quadtree where every node (which

represents a cell of Γ) has either 0 or 4 children nodes. Conversely, every 0-4

tree defines a finite dyadic grid.

Such a grid is represented in Figure 2.4. In this architecture, all filters of

the same level Γk in Γ have the same scale. For each scale the receptive fields

of the retina cells have to tile the stimulus image space. Thus each layer Γk

in the grid Γ (with 0 ! k < K) is tiled with filtering cells denoted by DoGk,

having a scale k, and generating a transform subband Bk such that:

DoGk(x, y) = wcGσc
k
(x, y) − wsGσs

k
(x, y), (2.5)
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(a) (b)

(c) (d)

Figure 2.3: Behavior of the DoG filter when applied to Lena with biologically plausible pa-
rameters. 2.3(a)-2.3(b): the DoG filter with parameters wc = ws = 1, σc = 0.5 pixel, and
σs = 1.5 pixel. 2.3(c): the classical test image Lena. 2.3(d): the absolute value of the image
resulting from the convolution of Lena with the DoG filter in 2.3(a)-2.3(b).
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Figure 2.4: Dyadic repartition of the DoG
filters considered for the image analysis.
Here 4 scales are represented. As we
get from the tightest scale (at the top
layer) to the largest one (at the bot-
tom layer) the number of filters consid-
ered per scale is divided by 4 at each step
(from [Van Rullen 2002]).

where σc
k+1 = 1

2
σc

k, σs
k+1 = 1

2
σs

k, and σc
K−1 = 0.5 pixel. Each DoGk filter has

a size of (2Mk + 1) × (2Mk + 1) such that Mk is proportional to σs
k (We will

consider in the rest of this work that Mk = 3 σs
k). The authors considered

eight possible scales (ie, K = 8) for the model. The choice made for the

number of scales K is arbitrary but has an incidence on the quality of the

image reconstruction as we will show later in this work. These scale-variable

cells chop the image spectrum into different subbands. Indeed, Figure 2.5

shows that the DoG filters that model the retina cells cover a large part of

the available spectrum.

Remark The presented architecture accounts, to some extent, for the actual

retina topology. The cells density and scale are indeed inversely proportional.

Though the authors in [Van Rullen 2001b] do not claim biological plausibility.

Such an architecture is not biologically plausible for mainly two reasons. First,

in [Hammond 1974] experiments made on cats retina showed that the largest

receptive fields of the retina cells are, in average, only two to three times

wider than the tightest ones. Whereas in the model presented the scaling

factor goes up to 128 from the Γ7 to Γ0. Second, for a given scale, ganglion

cells are not regularly dispatched over the retina. In fact observations made

on apes [Lee 1998] and cats [Hammond 1974] showed that large receptive field

cells are more dense in the periphery of the retina, while tight receptive field

cells are more dense in its center. Baring in mind these facts, the model is

still strongly inspired from the mammalians retina and could be employed to
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(a) (b)

Figure 2.5: 2.5(a): Spectra of the DoG filters. The abscissa represents the frequencies ranging
from (−0.5) to (0.5) sample per pixel. The ordinate axis represents the different DoGk filters
gain in dB. 2.5(b): Half of the spectrum in 2.5(a) with the abscissa having a logarithmic step.
Frequencies are ranging from 0 to (0.5) sample per pixel.

devise bio-inspired coders for images.

2.3.2 Image analysis

Having the specification of the retina cells behavior and the architecture de-

scribed in Section 2.3.1, the authors in [Van Rullen 2001b] had also to define

the measure of excitation of a given retina cell. To measure this degree of ex-

citation, one computes the convolution of the stimulus image f by the DoGk

filter corresponding to the cell considered. Yet each layer k in the dyadic

grid Γ is undersampled with a pace of 2K−k−1 pixels with an original offset

of &2K−k−2' pixels, where &.' is the floor operator. Having this, we define

the function uk, such that the resulting ckij coefficients are computed at the

locations
(

uk(i), uk(j)
)

as follows:

uk(i) = &2K−k−2' + 2K−k−1i, ∀k ∈ !0, K − 1". (2.6)

uk can be seen as an undersampling function. We notice that uK−1(i) = i,

and that the other functions (uk)k∈!0,K−2" are undersampled versions of uK−1.

We also define Nk:

Nk =

⌊

N − &N − 2K−k−2'

2K−k−1

⌋

, (2.7)
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such that N2
k is the number of cells in Γk, the kth level of Γ. We also notice here

that NK−1 = N . Having these definitions, ckij is then computed as follows:

ckij =

uk(i) + Mk
∑

x = uk(i) − Mk

uk(j) + Mk
∑

y = uk(j) − Mk

DoGk(uk(i) − x, uk(j) − y) f(x, y). (2.8)

Thus, we obtain Ns cells responses. If N is a power of 2 then Ns = 4
3
N2 − 1.

Neurons responses are then sorted in the decreasing order of their amplitude,

i.e., |ckij|. According to the rank order coding principles, this is equivalent to

sorting the cells according to the increasing order of their time-to-first-spike.

At this level, the retina code for an N2-sized stimulus image is the series

of Ns sorted quadruplets
(

k, i, j, ckij

)

. The retina code can equivalently be

determined by the sorting permutation σ (cf. Equation (2.3)) and the list of

corresponding coefficients
(

cσ(k,i,j)

)

kij∈Γ
. In accordance with the retina model

notations we re-define the permutation σ (cf. Equation (2.3)) by means of the

two conditions that follows:







σ ∈ S

(

∪K−1
k=0

(

{k} × uk

(

!0, Nk"
)

× uk

(

!0, Nk"
)))

, the group of possible

permutations over the locations of the cells in the dyadic grid Γ.

|c(σ(0,0,0))| > |c(σ(1,0,0))| > . . . > |c(σ(k,i,j))| > . . . > |c(σ(K−1,NK−1−1,NK−1−1))|.

(2.9)

As mentioned in Section 2.1.1, the retina-based code that we con-

sider discards the exact values of the coefficients
(

|ckij|
)

kij∈Γ
. Indeed,

in [Van Rullen 2001b, Van Rullen 2002, Perrinet 2003, Perrinet 2004], the au-

thors showed that there exists a one-to-one map f rank between the firing rank

σ(k, i, j) and the amplitude |ckij|. Interestingly this map has approximately

the same shape across natural images. Thus the authors supposed that the

values of
(

|ckij|
)

kij∈Γ
are known a priori at the level of the visual cortex. The

authors also supposed that this knowledge has been probably acquired by

learning. This assumption was justified by the neurophysiologic experiments

conducted in [Delorme 2003]. Furthermore, the loss of the exact values of
(

|ckij|
)

kij∈Γ
diminishes the amount of information that is necessary to encode

the stimulus image, and this will be of some interest for the conception of
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bio-inspired image coders.

From an implementation point of view, the characteristic one-to-one-map

f rank is constructed off-line and stored in a look-up table. For instance,

in [Van Rullen 2001b] this look-up table is obtained as the average of the

possible f rank maps over a set of natural images. Another example of possible

construction of f rank is given in [Perrinet 2003]. The author used a parametric

function of the rank rkij corresponding to a given coefficient
(

|ckij|
)

that is

defined as follows:

f rank(rkij) = C (rσ−1(k,i,j))
−γ, (2.10)

where C is an arbitrary constant positive value, γ is the parameter of the

function that is learned over a set of natural images, and rkij the rank of the

considered ckij coefficient. The rank rkij is defined as follows:







(k′, i′, j′) = σ
(

(k, i, j)
)

rkij = 0, if k′ = 0,

rkij = k′ N2
k′−1 + i′ Nk′ + j′, if k′ > 0,

(2.11)

where σ is the permutation defined in Equation (2.9). Figure 2.6 shows some

examples of f rank maps that could be used to recover the
(

|ckij|
)

kij∈Γ
coeffi-

cients.

Figure 2.6: Three examples of possible look-up tables to recover the excitation coefficients
(
|ckij |

)

kij∈Γ
. The vertical axis represents estimated values of the coefficients

(
|ckij |

)

kij∈Γ
. The

horizontal axis represents the cell rank normalized between 0 and 100. The green area around
the curve represents the standard deviation over the set of tested images (from [Perrinet 2003]).

As the look-up table infers only the absolute values of the
(

|ckij|
)

kij∈Γ
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coefficients, we obviously need to store the series (sign(ckij)) to re-

cover the exact values of the coefficients lost. At the end of this stage,

this retina model described generates a sorted series of Ns quadruplets
(

k, i, j, sign(cσ−1(k,i,j))
)

kij∈Γ
of retina cells locations and their corresponding

activation signs or simply the Ns sorted couples
(

rkij, sign(cσ−1(k,i,j))
)

kij∈Γ
.

The retina code can equivalently be determined by the sorting permuta-

tion σ (cf. Equation (2.9)) and the list of corresponding activation signs
(

sign(cσ−1(k,i,j))
)

kij∈Γ
. The output of this retina model can be referred to as

the rank profile of a given stimulus image.

We present in the next section the specification of the stimulus synthesis

algorithm in [Van Rullen 2001b]. The authors aim is to reconstruct the orig-

inal stimulus with no other data than its rank profile, ie. the series of the Ns

sorted quadruplets
(

k, i, j, sign(cσ−1(k,i,j))
)

kij∈Γ
or equivalently the Ns sorted

couples
(

rkij, sign(cσ−1(k,i,j))
)

kij∈Γ
.

2.3.3 Image synthesis

The retina model in [Van Rullen 2001b] is provided with a decoding algorithm.

This allows the model users to recover the stimulus image starting from the

retina output consisting in a rank profile. The decoding capability is a major

advantage as it enables the conception of an image coder/decoder as discussed

later in this work. The specification of the retina model decoder is simple and

we detail it in the following.

First let us suppose that the exact values of the analysis coefficients

(ckij)kij∈Γ are known. The authors in [Van Rullen 2001b] and later implemen-

tations assumed that all the DoG filters in the dyadic grid Γ are orthonormal.

Then, having a set of Ns coefficients, the reconstruction estimate f̃Ns
of the

stimulus image f is obtained as follows:

f̃Ns
(x, y) =

Ns−1∑

rkij=0

ckij DoGk(uk(i) − x, uk(j) − y), (2.12)

where rkij is the rank of the considered ckij coefficient according to the sorting

permutation σ (cf. Equation (2.9)) as defined in Equation (2.11).
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Now let us reconsider the estimation of f̃Ns
baring in mind that the only

data coding a stimulus is its rank profile, ie. discarding the exact values of

the analysis coefficients. Recovering ckij by means of the look-up table f rank

and replacing it in (2.12) the stimulus reconstruction estimate f̃Ns
becomes:

f̃Ns
(x, y) =

Ns−1∑

rkij=0

sign(ckij) f rank(rkij) DoGk(uk(i) − x, uk(j) − y).

This formula allows progressive reconstruction as one can stop at a given max-

imum rank value, Ns. Thereby f̃0, f̃1, f̃2,..., f̃Ns
are different but increasingly

accurate reconstruction of the stimulus image. An example of progressive

reconstruction is shown in Figure 2.7. This property allows the coder to be

scalable.

It is to be noted also that the reconstruction evolution maps actual retina

behavior, as low frequencies are first transmitted, then details progressively

added.

2.4 Discussion

As discussed in the previous chapter, there exists a variety of coding metrics

that can be measured over the spikes population, but no clear evidence es-

tablishes which one is employed by the retina to encode the visual stimuli.

Among these metrics, we focused in this chapter on the rank order coding

which is our main working hypothesis. To that end, we described the guiding

principles and the biological evidence behind it. We attached a particular

attention to the introduction of a mathematical formalism for the concepts

used which might be lacking in the literature. Then, we detailed the specifi-

cation of a retina model introduced in [Van Rullen 2001b] to test the the rank

order coding for image categorization applications. This model supports the

analysis and the synthesis of images, so that we can use it as a basis for a

lossy image coder/decoder. However, considering the synthesis stage, we note

that the orthonormality assumption of the DoG filters is false and leads to

approximations in the reconstruction. We tackle this issue in the next chapter

and resolve it in an original fashion by using the frames theory.
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0.5%

1%

5%

10%

100%

Figure 2.7: Progressive stimulus synthesis of Lena (cf. Figure 2.3(c)) using the retina model
in [Van Rullen 2001b]. Left column: The percentage of coefficients taken into account in the
dyadic grid Γ. Center column: The coefficients taken into account in the dyadic grid Γ. All
coefficients above the considered rank are discarded and represented in black. Right column:
The reconstruction obtained with the considered coefficients. As the percentage of spikes
decoded increases, the visual quality of the coded/decoded images increases.
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Overview

We revisit in this chapter the retina model specified in [Van Rullen 2001b]

by proposing an original and exact synthesis procedure for it. The solu-
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tion that we propose relies on the frames theory. Our contribution en-

compasses a theoretical and a technical aspect. We published these results

in [Masmoudi 2012b, Masmoudi 2012a]

Contribution

Our contribution is threefold.

1. We add to the original retinal filter bank an adequate scaling function

that enables the invertibility of the transform.

2. We prove mathematically that the filter bank that we augmented with

a scaling function is a frame. Then, we propose the computation of

dual frame to eliminate the reconstruction errors yielded by the classical

synthesis.

3. We solve the technical issue related to memory overhead when comput-

ing the dual frame with a novel recursive out-of-core algorithm.

Organization

This chapter is organized into four sections:

1. Section 3.1 shows the limitations of the retina model specified in the

previous chapter.

2. Section 3.2 gives the specification of an exact decoding algorithm

through the construction of a dual frame. The solution encompasses

the addition of a low pass scaling function (Section 3.2.1), the demon-

stration that the analyzing filter bank is a frame (Section 3.2.2) and the

out-of-core construction of the dual frame (Section 3.2.3).

3. Section 3.3 summarizes the results and shows the gain obtained by our

solution when compared to the classical decoder in terms of reconstruc-

tion quality at equal rate.

4. Section 3.4 discusses our approach with regard to state of the art.
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The person who can combine frames

of reference and draw connections

between ostensibly unrelated points of

view is likely to be the one who makes

the creative breakthrough.

Denise Shekerjian

Our goal in this chapter is to revisit the retina model specified

in [Van Rullen 2001b] by proposing an original and exact synthesis proce-

dure for it. This model was designed to support the rank order coding (ROC)

which is based on the hypothesis that the retina represents the visual stimulus

by the order in which its cells are activated. The retina model under study

encompasses an analyzing (or coding) stage and a synthesizing (or decoding)

one. It was implemented to accomplish recognition tasks with a manner that

is inspired from the retina behavior. The classical model analysis/synthesis

procedure was detailed in the last chapter. It involves: (i) A model of the

stimulus transform in the retina consisting in a DoG filter bank analysis;

(ii) A sorting stage of the filters according to their activation degree; (iii) A

straightforward decoding procedure that consists in a weighted sum of the

most activated filters. Focusing on this last stage, it appears that the de-

coding procedure employed yields reconstruction errors that limit the model

Rate/Quality performances when used as an image codec. Attempts made in

the literature to overcome this issue are time consuming and alter the coding

procedure or are infeasible for standard size images and lacking mathematical

support. Here we solve this problem in an original fashion by using the frames

theory, where a frame of a vector space designates an extension for the notion

of basis. Our contribution is threefold. (i) We add to the original retinal filter

bank an adequate scaling function, and (ii) we give an original mathematical

demonstration that the filter bank thus defined is a frame. Then we pro-

pose an algorithm that guarantees an errorless reconstruction of the stimulus

through the computation of a so-called dual frame; (iii) We solve the technical

issue related to memory overhead that prevented the use of frames for high

dimension spaces, with a novel out-of-core algorithm that computes the dual

frame. Furthermore, the framework presented here can be extended to several

models of the visual cortical areas using redundant representations.
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This chapter is organized as follows: In Section 3.1, we discuss the coding

capabilities of the bio-inspired retina model under study and show the limita-

tions of it. Then in Section 3.2 we define an exact decoding scheme through

the construction of a dual frame. Finally in Section 3.3 and Section 3.4, we

summarize and discuss the results and show the gain that we obtain in terms

of Rate/Quality tradeoff.

3.1 The retina model behind the ROC:

Limitations and a first imperfect solution

We discuss in this section the behavior of the retina model under study when

used as an image coder/decoder. To this end, we will divide the section

into two parts. First, in Section 3.1.1, we give a brief reminder of the retina

model specification and introduce a matrix-based formalism for the analysis

and synthesis procedures of it. This formalism simplifies the expression of

the analysis as well as the synthesis procedures and will be necessary for the

subsequent sections. Second, in Section 3.1.2, we show the strong limitations

of the retina model when used as an image coder/decoder. We then give a

first straightforward solution to the issues raised and test the ability of the

model to code and decode stimuli images with sufficient fidelity.

3.1.1 Matrix notations for ROC

As detailed in Section 2.3.2, the retina cells are modelled by DoG filters.

These cells are arranged in a dyadic grid Γ of K layers to sweep all the stim-

ulus spectrum as shown in Figure 3.1(b) [Van Rullen 2001b, Perrinet 2004,

Masmoudi 2010d]. As in the retina topology, the cells density and scale are

inversely proportional. So that, each layer 0 ! k < K in the grid Γ, is

tiled with filtering cells, denoted by DoGk, having a scale k and generat-

ing a transform subband Bk. We recall the definition of the filter DoGk (cf.

Equation (2.5)):

DoGk(x, y) = wcGσc
k
(x, y) − wsGσs

k
(x, y),
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where σc
k+1 = 1

2
σc

k and σs
k+1 = 1

2
σs

k. Each DoGk filter has a size of (2Mk + 1)2,

with Mk = 3 σs
k. The biologically plausible parameters chosen are wc = ws =

1, σc
k = 1

3
σs

k ∀k, and σc
K−1 = 0.5 pixel. Then the activation coefficient ckij

of each cell in the layer Γk is computed at the location
(

uk(i), uk(j)
)

(cf.

Equation (2.6)). The coefficient ckij is the result of the convolution of the

original image f by the corresponding DoGk filter. We recall the definition of

ckij (cf. Equation (2.8)):

ckij =

uk(i) + Mk
∑

x = uk(i) − Mk

uk(j) + Mk
∑

y = uk(j) − Mk

DoGk(uk(i) − x, uk(j) − y) f(x, y).

This architecture is similar to a Laplacian pyramid [Burt 1983]. Thus, if

f is an N2-sized image and if N is a power of 2, this transform gener-

ates a vector c of (4
3
N2 − 1) coefficients ckij. Unlike the implementations

in [Van Rullen 2001b, Perrinet 2004, Masmoudi 2010d], we use, in the rest of

this work, a matrix Φ to compute the DoG transform through the modelled

retina. The circular convolution can indeed be modelled by a Toeplitz matrix.

The lines of Φ are the different analyzing DoGk filters shifted to map the differ-

ent (uk(i), uk(j)) locations. Baring in mind that uk is a dyadic undersampling

function, the construction of Φ yields an “undersampled Toeplitz-bloc” sparse

matrix. Each bloc in the matrix is 4 times less dense than the subsequent

one as shown in Figure 3.2(a). The DoG transform is then outlined in the

following simple and concise equation:

c = Φ f. (3.1)

Such an implementation allows fast computation of this multi-scale DoG

transform through sparse matrix specific algorithms [Golub 1996]. This will

in addition help us to construct an exact inversion algorithm for this retina

model as we will see in the next section. An example of such a transform

performed on the cameraman test image is shown in Figure 3.1.

As mentioned earlier in this work, the retina model in [Van Rullen 2001b]

specifies also a decoding algorithm. We recall that if the decoder is provided

with the exact values of the Ns analysis coefficients in c, the straightforward

reconstruction f̃Ns
of the stimulus image f is obtained by the following formula
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(a) (b)

(c)

Figure 3.1: 3.1(a): The cameraman test image. The image size is 257×257 pixels. 3.1(b):
Example of a dyadic grid of DoG’s used for the image analysis (from [Van Rullen 2001b]).
3.1(c): The transform result c re-arranged as a pyramid of images with the different generated
subbands Bk (here shown in a logarithmic scale).

(cf. Equation (2.12)):

f̃Ns
(x, y) =

Ns−1∑

rkij=0

ckij DoGk(uk(i) − x, uk(j) − y),

where rkij is the rank of the considered ckij coefficient according to the sorting

permutation σ (cf. Equation (2.9)) as defined in Equation (2.11). We remind
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the reader that σ sorts the ckij coefficients in the decreasing order of their

absolute values. Interestingly, this straightforward synthesis amounts to the

multiplication of the coefficients vector c by Φ∗ the Hermitian transpose of

Φ. Figure 3.2(b) shows the template of the synthesis application Φ∗. The

reconstruction procedure is then outlined in the following equation:

f̃Ns
= Φ∗ c. (3.2)

(a) Φ template (b) Φ∗ template

Figure 3.2: Template of the DoG analysis and synthesis matrices, Φ and Φ∗. In this work,
Φ and Φ∗ are represented as matrices where blue dots correspond to non-zero elements. Note
here that Φ and Φ∗ are highly sparse matrices.

The Equation (2.12) that we recalled above enables the scalability feature

in the image decoder [Masmoudi 2010d]. This feature is of great importance

in the context of image coding as a progressive reconstruction can be defined

depending on Ns. Yet, f̃0, f̃1, f̃2,..., f̃Ns
are different but increasingly accurate

estimations of the stimulus image. Our aim is to recover this behavior with the

matrix-based implementation we just defined. To this end, we must threshold

the coefficients in c to get the vector cm, such that f̃m is the image of cm by

the reconstruction function. The coefficients cm
i of cm are the m most valuable
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coefficients in c. Thus, the vector cm is defined as follows:







pkij = k N2
k + i Nk + j,

cm
pkij

= ckij, if rkij ! m,

cm
pkij

= 0, if rkij > m,

(3.3)

where rkij is the rank of the considered coefficient ckij as defined in Equa-

tion (2.11). So that the progressive reconstruction formula becomes:

f̃m = Φ∗ cm. (3.4)

The matrix-based implementation that we defined in this section

is mathematically equivalent to the original implementation specified

in [Van Rullen 2001b]. If one wants to discard the exact values of the coeffi-

cients in cm, a look-up-table f rank can be used as described in Section 2.3.3.

The look-up table infers the absolute values of the coefficients, and the trans-

mitted series
(

sign(crkij
)
)

0!rkij<m
enables the recovery of the exact values of

the coefficients. Obviously Equation (3.4) still holds when using the look-up-

table to guess the values of cm
i .

We suppose in the next section that the decoder is provided with a per-

fect look-up-table, so that no prediction error is introduced in the synthesis

procedure. We then experience, under this condition, the ability of the retina

model to code and decode a stimulus image with sufficient fidelity.

3.1.2 Limitations of the retina model and a first

straightforward solution to code images

The retina model under study, as well as most of the retina models available

in the literature, was designed to accomplish fast categorization tasks. Our

aim in this work is to design an image coder/decoder based on the retina

behavior. So that, the coded/decoded image f̃m defined in Equation (3.4)

have to match as accurately as possible the original image f .

To this end, we experience the result of the coding/decoding procedure in

the optimal case when all the retina cells have fired, ie. m = Ns. Furthermore,
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we suppose that the decoder is provided with a perfect look-up-table f rank,

so that the exact values of the coefficients cNs

i are known. Unfortunately, the

mean squared error (MSE) of the reconstruction ‖f − f̃Ns
‖2 is poor. This

leads to a PSNR quality of 1.9 dB if we consider the test image Lena for f .

Thus, the retina model, as it is, is unsuitable for image coding applications.

We can analyze the reasons through the result shown in Figure 3.3(a).

Figure 3.3(a) compares the grayscale histograms of f and the corresponding

f̃Ns
. We observe that the histograms resemble each other in shape. However,

we also notice that the dynamic range and the energy values of f are

completely lost in its estimation f̃Ns
. For these reasons we cannot use this

retina model as such in an image coder/decoder. Note that we considered

the test image Lena, but the observations that we make still hold for any

other image. We give in the following the main reasons behind this erratic

behavior and propose a first solution.

The first issue behind the errors in the reconstruction f̃Ns
is that the

authors in [Van Rullen 2001b] supposed that the DoG filters used for the

transform of the stimulus image are orthonormal. The DoG vectors used

for the analysis could then be used for the synthesis. As mentioned

in [Bhattacharya 2007], this assertion is false. Yet, we can easily verify that

any pairwise scalar product of different DoG filters is small but not nil, so

that we have:







〈

DoGk(uk(i) − ., uk(j) − .), DoGk(uk(i) − ., uk(j) − .)
〉

= 1,

∀ (k, i, j) ∈
(

∪K−1
k=0

(

{k} × uk

(

!0, Nk"
)

× uk

(

!0, Nk"
)))

〈

DoGk(uk(i) − ., uk(j) − .), DoGk′(uk(i′) − ., uk(j′) − .)
〉

= ε,

∀ (k, i, j) += (k′, i′, j′) ∈
(

∪K−1
k=0

(

{k} × uk

(

!0, Nk"
)

× uk

(

!0, Nk"
)))

with 0 < ε , 1

(3.5)

Another issue is that the number of DoG filters used to analyze an N2-sized

image is equal to (4
3
N2 − 1) and thus exceeds the space dimension of the

stimulus image. Thus the DoG filters do not form a basis. As a consequence,

the reconstruction estimation f̃Ns
could not reach the expected optimal
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reconstruction f if we use the formula in Equation (3.4).

A first solution that might be employed is to equalize the two first moments

of f and its estimation f̃m. In the following, we denote the image obtained

from f̃m after the moment equalization by f̃ corr
m . This method is implemented

easily and resolves the problems of energy and dynamic range conservation.

Indeed, the first moment of f is a measure of its mean and the second moment

a measure of its energy. Furthermore, from a coding point of view, adding two

scalar values in the data transmitted to the decoder has a negligible bit-cost.

We can outline the process employed in the following equations.







µf = (f) ,

σf =
(

(f − µf )2
)

,

µf̃m
= (f) ,

σf̃m
=

(

(f − µf )2
)

,

f̃ corr
m = σf

f̃m − µf̃m

σf̃m

+ µf ,

(3.6)

where (f) is the mathematical expectation of f . Figure 3.3(b) shows the

comparison between the histogram of f and the obtained histogram of f̃ corr
Ns

.

We notice that the problem of histogram matching is mostly resolved, but

also that a slight residual distortion remains between the two histograms.

An example of such a reconstruction is given in Figure 3.4, with all the

retina cells taken into account. Figure 3.4 also shows that the retina model

decoding procedure, though giving a good approximation of the stimulus,

is still inaccurate. In this example, reconstruction quality is evaluated to

26.8 dB/27dB of PSNR for Lena/cameraman.

We tested this slightly modified retina model as part of an image coder

decoder in [Masmoudi 2010d]. The results obtained are encouraging but the

residual errors still limit the rate/quality performances compared to the JPEG

standards. We give a mathematical and exact solution to the issues of or-

thonormality and over-dimensionality of the DoG transform in the following

section.
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(a) The original retina model

(b) The model with corrected moments

Figure 3.3: Comparison between the histograms of a given stimulus image f and the corre-
sponding coded/decoded image. We considered in this case the test image Lena. Figure 3.3(a)
shows the histograms of f and the corresponding f̃Ns

. The dynamic range and the energy
values of f are completely lost in its estimation f̃Ns

. Figure 3.3(b) shows the histograms of the
test image Lena f and the corresponding f̃corr

Ns
. The dynamic range and the energy values of

f are recovered in f̃corr
Ns

through the equalization of their first two moments.

3.2 Inverting the retina model

In this section, we define an original and exact image reconstruction algorithm

starting from the ROC. First, we introduce in Section 3.2.1 a low-pass scaling
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(a) (b)

(c) (d)

Figure 3.4: Result of the decoding procedure with the equalized moments using the totality of
the retina cells. 3.4(a)-3.4(c): Reconstructed images Lena and cameraman. The PSNR quality
measure of f̃corr

Ns
yields 26.8 dB (for Lena)/ 27 dB (for cameraman). 3.4(d)-3.4(b): Error

image shown in a logarithmic scale: high frequencies are the ones that are the most affected by
this approach.

function in the analyzing filter bank. This modification will be shown to be

necessary for the transform invertibility. Then, in Section 3.2.2, we use the

matrix-based formalism given above to prove that our filter bank is a frame.

Finally, in Section 3.2.3, we show the exact reconstruction results using the

dual frame and introduce an out-of-core algorithm to construct it.
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3.2.1 Introduction of a low-pass scaling function

We introduce a low-pass scaling function in the filter bank used for image

analysis. This modification does not alter the ROC coder architecture and

has both a mathematical and a biological justification.

Indeed, the Fourier transform of a Gaussian is another Gaussian, so that

F (DoGk) is a difference of Gaussians. Therefore, with wc = ws = 1 (cf.

Equation (2.5)), we have:

F (DoGk) = 2π (σc
k)2

G
(σc

k)
−1 − 2π (σs

k)2
G

(σs
k)

−1 . (3.7)

We can easily verify that the central Fourier coefficient

F (DoGk)
(

u0(0), u0(0)
)

= 0 ∀k, and that F (DoGk)(i, j) > 0

∀(i, j) +=
(

u0(0), u0(0)
)

.

In order to cover up the centre of the spectrum, we propose to replace the

DoG0 filter, with no change in the notation, by a Gaussian low-pass scaling

function consisting in its central component, such that:

DoG0(x, y) = wcGσc
0
(x, y). (3.8)

Figures 3.5(a) and 3.5(b) show the spectrum partitioning with the different

DoGk filters (k ≥ 1, in blue) and the spectrum of the new scaling function

DoG0 (in red dashed line) which covers low frequencies. With no scaling

function, all constant images would be mapped into the null image 0 and this

would make the transform be non-invertible. Here we overcome this problem

as the central Fourier coefficient F (DoG0)
(

u0(0), u0(0)
)

> 0.

The scaling function introduction is further justified by the actual retina

behavior. Indeed, the surround Gσs
k

in Equation (2.5) appears progressively

across time driving the filter passband from low frequencies to higher ones.

So that, the Gaussian scaling function represents the very early state of the

retina cells.

Having the DoG0 scaling function, and in order to define an inverse for

the new transform, let us demonstrate that it is a “frame”.
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(a) (b)

Figure 3.5: 3.5(a): Spectra of the DoG filters. The abscissa represents the frequencies.The
ordinate axis represents the different DoGk filters gain in dB. 3.5(b): Half of the spectrum
in 3.5(a) with the abscissa having a logarithmic step. The scaling function DoG0 is plotted in
red dashed line.

3.2.2 The DoG transform is a frame operator

Our aim is to prove that the bio-inspired retina image transform presented,

if augmented with a low-pass scaling, amounts to a projection of the input

image f onto a frame of a vector space. This proof is crucial to invert the

transform exactly as we will show later in this section.

The frame is a generalization of the idea of a basis to sets which may

be linearly dependent [Duffin 1952, Kovacevic 2008]. These frames allow a re-

dundant signal representation which, for instance, can be employed for coding

with error resilience. By proving the frame nature of this transform, we will

be able to achieve an exact reverse transform through the construction of a

dual frame.

A set of vectors is a frame if it verifies the so-called “frame condi-

tion” [Duffin 1952, Kovacevic 2008] which states that ∃ β " α > 0 such that:

α ‖f‖2
!

∑

kij∈Γ

(ckij)
2
! β ‖f‖2

, ∀f. (3.9)

Positioning with respect to the state of the art Pyramid ar-

chitectures are very common in signal processing and involve a wide

range of filters [Van Rullen 2001b, Do 2003, Rakshit 1995]. For example,

in [Rakshit 1995] the authors proved experimentally that the classical Lapla-
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cian pyramid is a frame. However, in our case, we prove that the pyra-

mid introduced in [Van Rullen 2001b] -which is not Laplacian- is a frame.

We showed this mathematically through an original demonstration. Also,

in [Do 2003] the authors proposed the design of a set of orthogonal vectors

inspired from the Laplacian pyramid to conceive a new orthogonal and tight

(α = β cf. Eq. (3.9)) frame. The filter bank defined from [Van Rullen 2001b]

form a frame that is neither orthogonal nor tight.

Proposition 3.2.1. Let Ψ(φ) = {φkij, (k, i, j) ∈ Γ} be the set of vectors φkij,

such that φkij(x, y) = DoGk (uk(i) − x, uk(j) − y) as defined in Eq. (2.5) for

k > 0, and in Eq. (3.8) for k = 0. Then Ψ(φ) is a frame of the N×N images

vector space.

Proof:

Upper bounding: Let us prove the upper bounding in Equation (3.9). We

have:
∑

kij∈Γ

(ckij)
2 =

∑K−1

k=0
‖Bk‖2, (3.10)

where Bk is the subband of scale k generated by the image transform with:

Bk(i, j) =
uk(i)+Mk∑

x=uk(i)−Mk

uk(j)+Mk∑

y=uk(j)−Mk

DoGk(uk(i) − x, uk(j) − y) f(x, y).

If we denote by Uk the undersampling operator corresponding to the function

uk (cf. Equation (2.6)), we can write the following:

Bk = Uk(DoGk ∗ f). (3.11)

Then, we have the following obvious inequalities:

‖Bk‖ = ‖Uk(DoGk ∗ f)‖

! ‖Uk (|DoGk| ∗ |f |)‖

! ‖|DoGk| ∗ |f |‖

! ‖DoGk‖ ‖f‖.
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Then, we get back to (3.10) and infer the following bounding:

∑

kij∈Γ

(ckij)
2 =

K−1∑

k=0

‖Bk‖2

!

(
K−1∑

k=0

‖DoGk‖2

)

‖f‖2

= β‖f‖2. (3.12)

Lower bounding: Now, let us demonstrate the lower bounding in Equa-

tion (3.9). We start from the fact that:

K−1∑

k=0

‖Bk‖2
" ‖BK−1‖

2 + ‖B0‖
2
, (3.13)

which amounts to write the following inequalities:

∑

kij∈Γ

(ckij)
2 =

K−1∑

k=0

‖Bk‖2

" ‖DoGK−1 ∗ f‖2 + ‖
(

DoG0 ∗ f
)(

u0(0), u0(0)
)

‖
2

= ‖F (DoGK−1) F (f)‖2 + ‖
(

F (DoG0) F (f)
)(

u0(0), u0(0)
)

‖
2

=
N−1∑

i,j=0

(

F (DoGK−1)(i, j) F (f)(i, j)
)2

+‖F (DoG0)
(

u0(0), u0(0)
)

F (f)
(

u0(0), u0(0)
)

‖
2
,

where F designates the discrete Fourier transform. We know

that F (DoGK−1)(i, j) > 0, ∀(i, j) +=
(

u0(0), u0(0)
)

and that

F (DoGK−1)
(

u0(0), u0(0)
)

= 0. We also have F (DoG0)
(

u0(0), u0(0)
)

> 0.

So, if we define a set SK−1 by SK−1 = !0, N − 1"2 \
(

u0(0), u0(0)
)

and α by:

α =min

{

F (DoG0)
2
(

u0(0), u0(0)
)

,
{

F (DoGK−1)
2(i, j), (i, j) ∈ SK−1

}}

> 0,
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then we get the following:

N−1∑

i,j=0

(

F (DoGK−1)(i, j) F (f)(i, j)
)2

+ ‖F (DoG0)
(

u0(0), u0(0)
)

F (f)
(

u0(0), u0(0)
)

‖
2

=
∑

i,j∈SK−1

(

F (DoGK−1)(i, j) F (f)(i, j)
)2

+ ‖F (DoG0)
(

u0(0), u0(0)
)

F (f)
(

u0(0), u0(0)
)

‖
2

" α
∑

i,j∈!0,N−1"2

(

F (f)(i, j)
)2

=α‖f‖2,

and Finally,
∑

kij∈Γ (ckij)
2
" α‖f‖2. Thus, the set of DoG filters satisfies the

frame condition (3.9).

3.2.3 Synthesis using the dual DoG frame

We introduce in this section a correction means for the reconstruction error

in the retina model presented through the frame theory.

The straightforward analysis/synthesis procedure can be outlined in the

relation between the input image and the reconstruction estimate:

f̃Ns
= Φ∗Φf, (3.14)

where Φ∗ and Φ are the matrices specified in Equation (3.2) and (3.1). As we

already demonstrated that the DoG transform is a frame, Φ∗Φ is said to be

the frame operator. To have an exact reconstruction of f , one must construct

the dual DoG vectors. A preliminary step is to compute (Φ∗Φ)−1, the inverse

frame operator. We then get a corrected reconstruction f∗
Ns

, defined by: f ∗
Ns

=

(Φ∗Φ)−1f̃Ns
. If Ns is the total number of the retina model cells, we have:

f∗
Ns

= (Φ∗Φ)−1f̃Ns

= (Φ∗Φ)−1Φ∗ c

= (Φ∗Φ)−1Φ∗ Φ f

f∗
Ns

= f. (3.15)
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As made clear through Equation (3.15), the dual vectors are the lines of

(Φ∗Φ)−1Φ∗. Besides, (Φ∗Φ) is a square, definite positive invertible ma-

trix [Kovacevic 2008]. This is a crucial issue as it ensures the exactness of

the reverse frame operator.

We compute the reverse frame operator (Φ∗Φ)−1 and get the results shown

in Figure 3.6. The reconstruction obtained by the means of the dual frame

operator is accurate and requires only a simple matrix multiplication. In this

example, reconstruction quality is evaluated to 295 dB of PSNR.

Dual vectors resemble the DoG analyzing filters. This is obvious as the

straightforward image reconstruction f̃Ns
is already close to f , which means

that Φ∗Φ is close to identity. However, the dual filters lose the symmetry

property of the primal ones. An example of dual vectors constructed as the

rows of (Φ∗Φ)−1Φ∗ is shown in Figure 3.7. Figure 3.7 shows also that the exact

reconstruction of f is obtained by a relaxation in the symmetry constraint of

the DoG filters

3.2.3.1 The recursive out-of-core blockwise inversion algorithm

Though the mathematical fundamentals underlying this work are simple, the

implementation of such a process is a hard problem. In spite of the sparsity

of Φ and Φ∗, the frame operator Φ∗Φ is an N4-sized dense matrix for an N2-

sized image f . For instance, if N = 257, Φ∗Φ holds in 16 Gbytes, and 258

Gbytes if N = 513. As noticed in (Do & Vetterli 2003): A key observation

is that one should use the dual frame operator for the reconstruction. While

this seems a somewhat trivial observation, it has not been used in practice,

probably because the usual reconstruction, while suboptimal, is very simple.

Indeed due to its technical difficulty, there is no solution in the literature that

computes explicitly the dual of a frame in a general case like ours. In our

work, we tackled this technical issue and resolved it with success by designing

an original “out-of-core” inversion algorithm.

The frame operator Φ∗Φ is constructed block by block, and each bloc is

stored separately on disk. The inversion is then performed using a recursive
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(a) (b)

(c) (d)

Figure 3.6: Result of the decoding procedure with the dual DoG frame using the totality of the
retina cells. 3.6(a)-3.6(c): Reconstructed image. The PSNR quality measure of f∗

Ns
yields 295

dB. 3.6(b)-3.6(d): Error image in logarithmic scale. This shows that the reconstruction using
the dual frame is very precise.
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(a) (b)

(c) (d)

Figure 3.7: 3.7(a)- 3.7(c): Comparison between the DoG filters (in blue line) and their duals
(in red dashed line). 3.7(b)- 3.7(d): Same as previous with the highest value of each filter
normalized to 1. Though close in shape to the DoG filters, the dual DoG filters are asymmetric.
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algorithm that relies on the blockwise matrix inversion formula that follows:




A B

C D





−1

=




A−1 + A−1 B Q−1 C A−1 −A−1 B Q−1

−Q−1 C A−1 Q−1



 ,

where Q is the Schur complement of A, such that:

Q = D − C A−1 B.

Thus, inverting a matrix amounts to the inversion of two matrices that are 4

times smaller. The inversion consists then in subdividing the problem by a

factor 4 at each recursion level until we reach a single bloc problem. Obviously,

this algorithm requires out-of-core blockwise matrix routines for multiplica-

tion, subtraction and addition, that we implemented in a “multi-threaded”

fashion to accelerate the computation. A pseudo-code description of this al-

gorithm is available in Appendix A.

Advantages of our approach (Φ∗Φ) is a square, definite positive, and

invertible matrix [Kovacevic 2008]. Thus (Φ∗Φ)−1 exists and obviously the

exact reverse transform of Φ too. Another advantage of our method is that

(Φ∗Φ) is well conditioned, with a conditioning number estimated to around 16,

so that its inversion is stable. This is a crucial issue as previous work aimed at

conceiving the DoG reverse transform tried to invert the original filter bank

with no scaling function DoG0 [Bhattacharya 2007, Bhattacharya 2010]. This

is obviously mathematically incorrect as the filter bank thus defined is not

a frame and thus its pseudo inverse (Φ∗Φ)−1Φ∗ does not exist. The solution

proposed by the authors of [Bhattacharya 2007, Bhattacharya 2010] gives only

a least squares solution to an ill-conditioned problem. Our method instead

is stable. Besides through the out-of-core algorithm that we designed we can

invert (Φ∗Φ) even for large images whereas authors in [Bhattacharya 2007,

Bhattacharya 2010] are restricted to a maximum size of 32 × 32. Indeed, we

were able to reconstruct 257 × 257 and 513 × 513 images through our new

approach.

The exactness of our decoding schema is confirmed when applied on several

classical test images. For example cameraman reconstruction quality increases
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from 27 dB with the classical decoder to 296 dB with ours (see Figure 3.9).

The same test on Lena leads to an increase from 31 to 300 dB of PSNR (see

Figure 3.8). We also confirm these results by using quality metrics that are

more consistent than PSNR with the human eye perception. Here we show the

mean structural similarity measure (SSIM) [Wang 2004b] (an index between

0 and 1) which also confirms the precision of our new decoder with an increase

in quality from 0.9 to 1 when all the retina cells have fired (Figures 3.9 and 3.8

captions)

Furthermore, correcting the reconstruction errors using the adequate dual

frame does not alter the coding procedure. Indeed, methods introduced

in [Perrinet 2004, Bhattacharya 2010] are based on the matching pursuit (MP)

algorithm. MP is time consuming and depends on the order in which the

“match and update” mechanism is performed. Our method keeps the coding

procedure straightforward, multi-threadable and order-independent.

3.3 Results

We experiment our new decoder in the context of scalable image decoding.

We reconstruct the test image using an increasing number m of significant

coefficients (cf. Equation (3.4)). We then compare the results when using

the original DoG filters in Φ and their dual DoG filters in (Φ∗Φ)−1Φ∗ for the

decoding procedure.

Figures 3.9 and 3.8 show two example results obtained for cameraman

and Lena. In both figures the left column shows the progressive straightfor-

ward reconstruction f̃Ns
and the right column shows the corrected progressive

reconstruction f ∗
Ns

using the dual frame.

Qualitatively speaking, the high frequencies which were the most altered

by the straightforward synthesis are now well rendered. This is obvious even

for low rates and we can verify it in the camera contours (Figure 3.9) or in

Lena hair details (Figure 3.8). This is an important issue as contours and

salient points are the most important features used for categorization tasks.

Bearing in mind that the retina model under study was first designed for fast

categorization, our results become crucial.

Quantitatively speaking, the gain in PSNR is significant for low rates



3.4. Discussion 75

(around 0.2 dB for both cases) and very high when we consider the totality of

the retina cells in the reconstruction (over 260 dB for both cases). Figure 3.10

compares the Rate/quality curves of the two methods and shows the high

improvement we obtain. Here the rate is implicitly related to the number of

neurons taken into account for the image reconstruction. In all the curves

shown the abscissa represents the percentage of the highest responses used for

the reconstruction and the ordinate represents the reconstruction quality in

terms of PSNR. This figure shows that the PSNR gain grows exponentially

with the number of neurons taken into account for the reconstruction. This

means that the dual frame correction, though already significant for low rates,

becomes extremely important for high rates.

3.4 Discussion

We proposed in this work an original exact decoding procedure for the

classical rank order coder defined in [Van Rullen 2001b]. The authors

in [Van Rullen 2001b] has then proposed the design a bio-inspired retina model

for the image transform and reconstruction. Our contribution encompasses a

theoretical and a technical aspect.

Regarding the theoretical aspect, (i) we proved that the bio-inspired trans-

form used to model the retina in [Van Rullen 2001b] is non-invertible as it is,

and (ii) we gave an original mathematical proof that this transform if aug-

mented with an adequate scaling function is a frame. We also showed that

the scaling function besides its mathematical justification has a biological one.

We then defined the corresponding dual frame that is necessary for the exact

image reconstruction.

Regarding the technical aspect, we overcame the problem of memory over-

head encountered while computing this dual frame. Up to our knowledge,

no work in the literature concerned with high dimensionality frame inversion

tackled explicitly this problem [Rakshit 1995, Do 2003]. Indeed usual recon-

struction algorithms avoid such a calculation by using inaccurate, though very

simple, methods. Thus we designed an original recursive out-of-core block-

wise algorithm. Our algorithm is general and could be used in a variety of

applications requiring a high dimension matrix inversion.
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Furthermore, the method presented in this work does not alter the cod-

ing procedure and keeps it straightforward unlike the stimulus-dependent MP

methods in [Perrinet 2004, Bhattacharya 2010]. In fact, MP-like algorithms

require the computation of a specific reconstruction filter bank for each specific

image. On the contrary, in our case the dual vectors used for the reconstruc-

tion (i) are computed once for all and (ii) are the same for all images. This

keeps the decoding procedure committed to the rank order coding philosophy.

Yet, the rank ordering supposes that the retina cells are independent and fire

asynchronously.

One last major advantage is that our algorithm is multi-threadable. In-

deed, there is no possible data hazard in the decoding procedure. Each value

of f ∗
Ns

is independent from the others and the concurrent reading in Φ∗Φ does

not alter the data.

Though it is to be noted that, in some implementations, the rank order

decoder inaccuracy is enhanced for a supplemental reason: the inexactness

of the look-up-table that might be used used to re-generate the transform

coefficients cp. In this work and for a sake of clarity, we considered only the

filters overlap as a source of error. Otherwise the reader could not distinguish

the part of error due to the filters overlap and the other part that is due to

the look-up-table. In our case, the decoder is supposed to be provided with

an optimal look-up table. Still the approach presented remains (i) relevant

because the inaccuracy of any look-up-table that might be used will affect

both the "classical" reconstruction and the "dual frame", (ii) novel through

the introduction of the frames theory and (iii) general and thus could be

extended to several models of cortical areas using redundant representations.
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0.5%
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m f∗

m
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Figure 3.8: Reconstruction of the Lena image f using different percentages of significant co-
efficients. To get this reconstruction coefficients are set to 0 if under a descending threshold.
The left column shows the progressive f̃corr

Ns
synthesis. The right column shows f∗

Ns
.
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Figure 3.9: Reconstruction of the cameraman image f using different percentages of significant
coefficients. The left column shows the progressive f̃corr

m synthesis. The right column shows
f∗

m.
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(a) (b)

(c) (d)

Figure 3.10: PSNR quality of the reconstruction using the DoG filters [Van Rullen 2001b] (in
blue solid line) and the dual DoG filters (in red dashed line). Results for cameraman are shown
in the first line and results for Lena are shown in the second line. The abscissa represents
the percentage of the highest responses used for the reconstruction. The ordinate represents
the reconstruction quality in terms of PSNR. 3.10(a)- 3.10(c): Results shown for percentages
between 0% and 100%. 3.10(b)- 3.10(d): Results shown for percentages between 0% and 10%.
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Overview

In this chapter, we present an original retina-inspired coding scheme for static

images. Our coder has three stages that combine the spiking retina model
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presented in Chapter 2 and data compression techniques from the literature.

In the following, we detail the specifications of our new coder stages, then we

compare its performances to state of the art coders. This chapter is based

mainly on the results that we published in [Masmoudi 2010d].

Contribution

We designed a novel image coding algorithm that uses the visual neural code

as generated by a model of the retina. Thanks to this design basis, our coder

goes beyond the current standards. Besides, image compression is an origi-

nal application of neural-based codes. The contribution of our coder is the

combination that we made of (i) a model of a biological coding device, and

(ii) data compression techniques. These techniques include stack-run coding

and context-based arithmetic coding. In this context, we attached a partic-

ular attention to the representation formalism of the code generated at the

level of each stage. We showed that our coder has encouraging performances

compared to state of the art coders under very strong bandwidth restrictions.

Besides, we showed that our coder acts as a coder coupled to a denoiser if the

data to encode is highly corrupted with noise. This feature is of great interest

in the visual systems with noisy sensors and restricted transmission channel.

Organization

This chapter is organized into three sections:

1. Section 4.1 details the three stages of the coding pathway. First in

Section 4.1.1, we make a quick overview of the whole system. Then, we

describe separately each stage:

i. Section 4.1.2 recalls the retina-inspired image transform used.

ii. Section 4.1.3 details the stack-run coder.

iii. Section 4.1.4 details the context-based arithmetic coder that com-

presses the bit-stream.

2. Section 4.2 we summarize the results obtained. We considered two cases:
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i. The case of noiseless data to be transmitted at low bit-rates.

ii. The case of noisy data to be transmitted at average bit-rates.

3. Section 4.3 discusses the results obtained and introduces ideas of re-

search efforts to be made. We especially highlight the potential of our

approach based on biology mimicking for compression applications.
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When you take something extremely

broad, then it is not a work of expan-

sion or work of compression. It’s hard

because you have to decide what to

throw out.

Iris Chang

We present, in this chapter, a novel retina-inspired coding scheme for static

images. We aim at using this coder to transmit the compressed visual in-

formation over low-bandwidth channels. As discussed in Chapter 1, several

measurable features of the neural code of the retina could convey this visual

information. In this work, we focused on the rank order coding hypothesis that

we detailed in Chapter 2. The rank order coding hypothesis states that there

is information in the order in which the retina cells fire spikes [Thorpe 1998].

This choice was motivated by several neurophysiologic results obtained mainly

in the context of stimulus categorization in the ventral stream. The rank or-

der coding was further supported by the conception of a bio-inspired retina

model [Van Rullen 2001b].

Our coder combines this spiking retina model and well known data com-

pression techniques. The fundamental hypothesis behind this work is that

the retina generates a neural code for the visual stimulus that has a suitable

rate/quality tradeoff. So that, the main novelty introduced in this chapter is

to show how could the neural code of the retina be exploited in the context

of still image compression. Our coder has three main stages. The first stage

is the enhanced version of the retina model studied as we detailed it in Chap-

ter 3 and in [Masmoudi 2012b, Masmoudi 2012a]. This model transforms an

image into a rank profile based on the first wave of spikes. In the second

stage, we re-express the rank profile of a given stimulus image using a 4-ary

dictionary. This is done through the stack run coding technique. The third

stage consists in applying a context-based arithmetic coder to the stack run

coded signal. Then, we compare our results to the JPEG standards and we

show that our model has comparable performances for lower computational

cost under strong bandwidth restrictions. In particular, we discuss an inter-

esting feature of the coder/decoder that we devised: the scalability. We also

study the case when the visual data is contaminated with noise and show that
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our coder acts as a coder coupled to a denoiser.

This chapter is organized as follows. In section 4.1, we detail the stages of

our static image coding scheme. Then in Section 4.2, we summarize the results

obtained, and in Section 4.3, we highlight many potential avenues for future

research efforts in the conception of novel bio-inspired compression schemes.

4.1 The coding pathway

In this chapter, we would like to investigate if the retina model under study

could be useful for image compression. So that, in Section 4.1.1 we give a

proposal for a coding scheme based on rank ordering, then we detail its three

stages from Section 4.1.2 to Section 4.1.4.

4.1.1 System overview

Our coding scheme encompasses three stages. First, the enhanced spiking

retina model presented in the previous chapter transforms the image into

a rank profile using a DoG filter bank. The exact values of the transform

coefficients are recovered from the rank profile through a parametric look-

up-table, so that the considered parameter is estimated at this level and is

added to the bit-stream. Second, a zero-run length coder, namely a stack

run coder, re-expresses the rank order code using a 4-ary dictionary. At

this level the code is divided into two different files. The first one contains

run lengths and the second contains non-zero coefficients. Finally, a context-

based arithmetic coder compresses the bit-stream before its transmission to

the decoder. These stages are summarized in the block diagram shown in

Figure 4.1. The following sections detail each one of these stages.

4.1.2 The image transform in the retina model

The retina model described in Chapter 2 encompasses an analyzing stage and

a synthesizing one. The analyzing stage transforms the stimulus image into

a rank profile as the retina is supposed to do. It involves (i) a model of

the stimulus transform in the retina consisting in a DoG filter bank analy-

sis, and (ii) a sorting stage of the filters according to their activation degree.
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Figure 4.1: Block diagram of the compression scheme. First, a retina model based on rank
ordering analyses the stimulus image. The image is analyzed through a dyadic grid of DoG filters
to get a series of activation coefficients. Then these coefficients are sorted in the decreasing
order of their response energy. Starting from these coefficients, the parameter of the look-up-
table is estimated and added to the bit-stream. Second, the rank order code is zero-run length
encoded by the stack run coder. Finally a context-based arithmetic coder is applied to get the
compressed image file. The decoding process goes exactly the opposite way.

As described in Section 3.2.1, the original filter bank was augmented with a

Gaussian scaling function. With this enhancement, the retina-inspired trans-

form defined amounts to an image projection onto a frame of vectors Φ. From

an implementation point of view, this transform will be performed by a single

matrix computation as detailed in Section 3.1.1. This implementation has the

advantage of being simple and rapid. We outlined this transform for a given

image f in Equation (3.1) that we recall below:

c = Φf.

Once this transform is performed, we generate the rank profile of the image

which is the only data encoding it. The rank profile is the sorted series of

cells indexes coupled to their sign of activation: (rkij, sign(cσ−1(k,i,j))) (cf.

Section 2.3.2). In the following, we recall the definition of the ranked index

rkij (cf. Equation (2.11)):







(k′, i′, j′) = σ
(

(k, i, j)
)

rkij = 0, if k′ = 0,

rkij = k′ N2
k′−1 + i′ Nk′ + j′, if k′ > 0,
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Figure 4.2: The normalized look-
up-table estimated for Lena. The
real (|ckij |) coefficients values (dot-
ted red line) are compared to the
parametric functional frank (contin-
uous blue line). The parameter of
the function γ is estimated through
a gradient descent.

where σ is the permutation that sorts the transform coefficients ckij in the

decreasing order of their energy (cf. Equation (2.9)).

Besides, a one-to-one map f rank allows the recovery of the amplitudes

(|ckij|) knowing their firing rank. This one-to-one map (or also look-up-

table) is known a priori by the decoder, so that there is no need to transmit

it. The loss of the exact values of (|ckij|) has the advantage of diminishing

the amount of information that is necessary to encode the stimulus image.

In [Perrinet 2003], f rank is defined as follows (cf. Equation (2.10)):

f rank(rkij) = C (rσ−1(k,i,j))
−γ.

Though unlike the implementation in [Perrinet 2003], we consider that (i)

C = |cσ(0,0,0)| rather than an arbitrary constant positive value, and that (ii)

the parameter γ of f rank is estimated using a gradient descent algorithm rather

than using an average over a set of images. By this means, we get a parameter

α that is specific to each image to be coded. This enables a smaller recon-

struction error as the look-up-table f rank is closer to the exact values. Besides,

the algorithm is simple to implement. With an adequate initialization, the

gradient descent algorithm converges quickly. In our case, the initialization is

set to α = 0.5. Figure 4.2 shows an example of such a map.

At the end of this stage, we get the rank order code of an image as the

next stages will be using it. In this context, we redefine a spike entity, that
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we denote e, as follows:

eσ−1(k,i,j) =
(

rkij, sign(cσ−1(k,i,j))
)

. (4.1)

If Ns is the dimension of c (cf. Equation (3.1)), then the list of Ns spikes

(ekij) is the complete rank order code of the stimulus image f . According to

the bit-rate/quality of the image to be transmitted, one can restrict the code

to the first and thus most significant Nc spikes. The message MNc

retina received

by the decoder is then a truncated rank order code that we define as follows:

MNc

retina =
(

e0,0,0, e1,0,0, ..., ek,i,j, ..., ekc,ic,jc

)

︸ ︷︷ ︸

The Nc most significant spikes

. (4.2)

The message MNc

retina in its current shape may be unsuitable for compression.

Interestingly, MNc

retina can be represented in a sparse manner to enable a zero-

run length representation of it. We will detail this representation transform

in the following section.

4.1.3 Spikes coding using the stack-run algorithm

As demonstrated in Figure 2.7, few spikes can reasonably represent the im-

age to code. Indeed while the pyramid-like transform is highly populated

with nil coefficients, one can reconstruct a suitable estimation of the stimu-

lus. This property is loosely referred to as code sparseness in the literature.

The sparseness of neural codes has been shown to help conceive meaningful

representations of the visual data [Olshausen 1996]. Keeping sparseness as a

design principle, we define in this section a sparse representation of the series

MNc

retina. We then introduce a zero-run length coder that is well suited for

sparse data coding, namely the stack-run coder.

Making the rank order code sparse

In general, coding the message MNc

retina is expensive in terms of bit-rate. In-

deed, the dimension of MNc

retina is Nc but the values to encode may be large.

In addition, the representation defined in Equation (4.2) does not account for

the spatial neighbourhood between the indexes. For this reason, we propose
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an alternative though equivalent representation that is sparse and that takes

into account the relative positions of the spiking cells. So, we denote this new

representation of the coded image by MNc
sparse and we define it by:

MNc

sparse = (m0, ..., mlkij
, ..., mNs−1), (4.3)

where lkij is the lexicographic index of the considered cell defined by:

lkij =







0, if k = 0,

k N2
k−1 + i Nk + j, if k > 0,

and mlkij
is the scalar value determined by the following equation:

ml =







(

1 + lσ−1(k,i,j)

)

sign(cσ−1(k,i,j)) if 0 ! lσ−1(k,i,j) < Nc,

0 otherwise.
(4.4)

The representation MNc
sparse is strictly equivalent to MNc

retina up to a one-to-one

map since σ is a bijection. Let us consider an example of such a transform

with Ns = 21 and Nc = 4. The message M4
retina could have the following

value:

M4
retina =

(

(20, ” + ”), (4, ” + ”), (9, ” − ”), (15, ” + ”)
)

. (4.5)

Then, the corresponding sparse representation is given by M4
sparse such that:

M4
sparse = (0, 0, 0, 0, 2, 0, 0, 0, 0, −3, 0, 0, 0, 0, 0, 4, 0, 0, 0, 0, 1). (4.6)

The dimension of MNc
sparse is Ns, but the range of values to encode depends

now on Nc. This detail is important because, if Nc , Ns, we decrease the

number bits that are necessary to encode the significant values (in blue in

Equation (4.6)). Besides, the runs of zeros are generally not expensive to

encode (in red in Equation (4.6)). For a sufficiently small value of Nc, MNc
sparse

is a sparse data set. This sparseness is the feature we tried to enhance in our

message code MNc
sparse.
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A zero-run length code for the sparse representation of the image

Zero-run length coders are well suited for the compression of sparse data sets

such as MNc
sparse [Bell 1990, Sayood 2000]. In our scheme, we use an enhanced

run-length coding algorithm called the stack run code [Tsai 1996]. This spe-

cific choice is motivated by both the simplicity of the algorithm and its high

efficiency experienced for a variety of coding applications [Antonini 2006].

The stack run coding algorithm uses a 4 symbol dictionary D such that

D = {0, 1, +, −}. As any zero-run length coder, MNc
sparse is mapped into a

series of couples (zero-run length, non-zero value). As specified in [Tsai 1996],

the subsequent bit-wise operations are then applied:

i) "-" encodes a binary bit 0 in run lengths.

ii) "+" encodes a binary bit 1 in run lengths.

iii) "0" encodes a binary bit 0 in non-zero values.

iv) "1" encodes a binary bit 1 in non-zero values.

The use of 4 symbols in the alphabet removes the ambiguity between zero-run

lengths and significant coefficient values. In addition to the rules above, the

following rules enhance the algorithm:

i) Every non zero value is set to its absolute value after we stored its sign.

ii) The MSB of a non-zero value is set to "+" if the sign is positive.

iii) The MSB of a non-zero value is set to "-" otherwise.

The resulting stuck run coded message will be denoted MNc

stack. For example,

if we consider the following portion of code:

MNc

sparse = (0, 0, 0, 0, 0, 0, 0, 0, 5, 0, 0, 0, 0, 0, −18), (4.7)

then applying the rules of stack-run encoding we obtain the stack run code

MNc

stack such that:

MNc

stack = − − −+10++ − +0100−, (4.8)
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The string delimited by the first numeric character is "− − −+". This string

must be read from the right to the left, so that we get the binary value "1000"

encoding for 8 zeros. Then to the first alphabetic character included, we get

the string "10+". This string encodes for the significant value "5". The rest

of the code is read in the same manner. It is to be noted that the stack-run

thus defined is a simplified version of the implemented algorithm. Further

optimizing mechanisms are discussed in [Tsai 1996].

Context split

While reading the portion of code in Equation (4.8), the decoder switches from

the run context to the non-zero value or stack context when it encounters a

”0” or a ”1”. The decoder switches contexts in the opposite way when it

encounters a ” + ” or a ” − ”. Thus, we split the MNc

stack code into two different

files, one for the run context and the other for the stack context. Considering

the example in Equation (4.8), we get in the first file Frun:

Frun = − − −+1+ − +0, (4.9)

and in the second one Fstack:

Fstack = 0+100−. (4.10)

Thanks to this split, we get (i) a first file Frun mainly populated with +’s and

−’s, and (ii) a second file Fstack mainly populated with 0’s and 1’s. Indeed

when we separate the run context from the stack context, we skew occur-

rence probabilities of the symbols in each file. We can verify the histograms

skewness of Frun and Fstack in Figure 4.3. This figure shows the probability

distribution function of the symbols in D within each files for the test image

Lena. Comparable results are obviously obtained for several other test im-

ages. Having these two files with enhanced contextual features, we can apply

an arithmetic coder for compression with optimal performances. We present

the principles and features of arithmetic coding in the following section.
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(a) (b)

Figure 4.3: Histograms of the two files composing the stack run code for the test image
Lena. 4.3(a): Histogram of the zero run length file Frun. 4.3(b): Histogram of the non-zero
values file Fstack.

4.1.4 Arithmetic coding

At the end of the stack run coding stage, we get a code written with a 4

symbol dictionary D. This code is dispatched on two files, such that the

probability distribution within each one of them becomes highly skewed. In-

terestingly arithmetic coding is an efficient lossless compression algorithm,

especially when dealing with small alphabets and highly skewed probabili-

ties [Girod 1993, Sayood 2000]. Thus, as in [Tsai 1996], we make the choice

of coupling the stack run coder to a context-based arithmetic coder. The

interaction between the stack run coder and the arithmetic coder stages is

schematized in Figure 4.4.

Figure 4.4: Block diagram of the stack run coder coupled to a context based arithmetic coding
(inspired from [Hoang 2009]). The context is split into a run context and a stack context.
This split is meant to skew the occurrence probabilities within each context and improve the
arithmetic coder performances.

Arithmetic coding is a lossless compression technique that represents the
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data to code as a fractional value in the scalar segment [0, 1[ [Langdon 1984,

Sayood 2000]. Let us consider a message M = (m0, m1, .., mi, ..., mNs
). Unlike

entropic coders, arithmetic ones do not replace each symbol mi in M by a

predefined sequence of full bits. An arithmetic coder encodes the totality of the

message in one stroke. In order to do this, the coder is provided with a model

distribution P M . This model is a map representing a plausible expectation

of the probability distribution function of the symbols in M . P M associates

each symbol of the dictionary D to a predefined occurrence probability in the

message M . Formally, a model P M is a function defined as :

P M : D −→ [0, 1[: (4.11)

di %→ P M(di),

where
∑3

0 P M(di) = 1 [Bodden 2007]. Furthermore, we associate to P M its

cumulative distribution function χM augmented with the scalar value χM(d−1)

such that:

χM(di) =







0, if i = −1
∑i

k=0 P M(dk), if 0 ! i ! 3.
(4.12)

The principle of the algorithm lies in the association of a string of symbols

to an unique interval in [0, 1[. On a first step, the interval [0, 1[ is split

into four subintervals (T 0
i )0!i!3 such that their lengths are proportional to

(

P M(di)
)

0!i!3
. These subintervals are T 0

i = [χM(di−1), χM(di)[. If m0 =

di, T 0
i is associated to the substring message (m0). On a second step, the

subinterval T 0
i is split, in its turn, into four subintervals (T 1

i )0!i!3 such that

their lengths are proportional to
(

PM(di)
)

0!i!3
. As for the first iteration, the

subinterval T 1
i such that m1 = di is associated to the string message (m0, m1).

The same process is iterated until we reach the end of the string message

M . The result of the process described is a single interval T Ns

i coding for the

entire message. The median value of T Ns

i could be used as a tag encoding for

the message. Figure 4.5 shows an example of the processing of the arithmetic

coding algorithm.

From an implementation point of view, we will be using the adaptive arith-

metic coder in [Bodden 2007]. Adaptive arithmetic coders are an extension

of the classical arithmetic coder specified above. The coder used is adaptive
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Figure 4.5: An example of arithmetic coding : The string to encode is 11+ and the model P M

used is defined by P M (0) = 0.4, P M (1) = 0.3, P M (+) = 0.2 and P M (−) = 0.1. On a first
step, the interval [0, 1[ is split into subintervals which lengths are proportional to the model
probabilities. The first symbol is then associated 1 to the interval [0.4, 0.7[. On a second step,
we split [0.4, 0.7[ into subintervals which lengths are proportional to the model probabilities.
Then, the string 11 is associated to the interval [0.52, 0.61[. The interval [0.52, 0.61[ is split, in
its turn, in the same manner as the two first iterations. Finally, the string 11+ is associated to
the interval [0.583, 0.601[.
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Figure 4.6: Example bloc diagram of a context based adaptive arithmetic coder
(from [Marpe 2001]).

in the sense that it performs an update of the probability model P M . Fig-

ure 4.6 shows an example of block diagram of such a coder. For a detailed

specification of the algorithm, interested readers may refer to [Witten 1987].

In our specific case, we can provide our coder with two starting probability

distribution functions P M
run and P M

stack. These models will evolve during the

coding process to adapt to the file currently being processed. The subsequent

empirical models can be used, (i) to encode the Frun file:







P M
run(0) = 0.1

P M
run(1) = 0.1

P M
run(−) = 0.4

P M
run(+) = 0.4

and (ii) to encode the Fstack file:







P M
stack(0) = 0.4

P M
stack(1) = 0.4

P M
stack(−) = 0.1

P M
stack(+) = 0.1

The context-based adaptive arithmetic coder is the last stage of our coding

scheme.

Having our coder thus specified, we can infer in a straightforward manner

the decoding scheme. The decoding process goes exactly the opposite way.

First, we perform consequently the arithmetic decoding, and the stack run

decoding. Then, we recover the input stimulus by means of the dual frame

as described in Equation (3.15) (Chapter 3). So that in the next section, we

present the resulting performances of our coder/decoder and compare them
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to standard image compression algorithms.

4.2 Results

At this stage we have a complete implementation of a coder/decoder for

static images. In order to do this, we first specify the quality met-

rics that we use. Then, we plot comparative rate-quality curves. Fi-

nally, we discuss competitiveness of our codec compared to JPEG and

JPEG2000 [Skodras 2001, Christopoulos 2000].

4.2.1 Quality metrics

Our goal is to quantify the quality of the reconstructed image f̃ compared to

the original one f . Several quantitative measures for image quality are dis-

cussed in the literature. The most common one is the peak signal to noise ratio

(PSNR) which is based on the mean squared error (MSE). PSNR is a quadratic

measure and thus is well suited for optimization processes. Though, PSNR

has been proved to be inconsistent with human eye perception [Girod 1993].

Other metrics were designed as alternatives to PSNR. We are interested in the

metrics that quantify the reconstruction fidelity by comparing f and f̃ struc-

tures. Among them the Structural SIMilarity (SSIM) index [Wang 2004b] is

a measure for statistical similarity between two images f̃ and f . The SSIM

index is a functional of the first and second order statistical metrics. The

computation of it consists in computing a similarity index between two anal-

ogous windows in f̃ and f . The SSIM measure is then the average over all

possible windows of the index. The resulting quantity is a coefficient between

0 and 1. Formally we define SSIM [Wang 2004b] by :

SSIMindex(Wx, Wy) =
(2 µWx

µWy
+ c1)(2 covWx Wy

+ c2)

(µ2
Wx

+ µ2
Wy

+ c1)(σ2
Wx

+ σ2
Wy

+ c1)

MSSIM(f̃ , f) =
1

Nw

∑

Wx,Wy

SSIM(Wx, Wy) (4.13)

where Wx is a window of f̃ , Wy the corresponding window in f , µWx
the

average of Wx, µWy
the average of Wy, σ2

Wx
the variance of Wx, σ2

Wy
the
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variance of Wy, covWx Wy
the covariance of Wx and Wy, Nw the number of

windows.

4.2.2 Comparison to JPEG standards

We compared our results to the existing JPEG standards behavior under

strong bandwidth restriction. Rates (or bit-costs) are measured in bits per

pixel based on the size of the file generated by each coder. Performances

are comparable until 0.15 bpp image rate, which shows our algorithm to have

encouraging performances. The comparison curve in terms SSIM is plotted in

Figure 4.7.

Figure 4.7: Comparison between JPEG, JPEG2000 and our new codec. The quality measure
is the mean Structural SIMilarity (SSIM). The bit-cost measure is the bit per pixel (bpp).

Besides our codec shows good robustness to noise compared to JPEG and

JPEG2000. Figure 4.8 shows the comparative performances of our codec and

JPEG standards when dealing with noisy data. Indeed, the wavelet-like retina

behavior in the model [Van Rullen 2001b] enables a better robustness. The

rate/quality curve is plotted in Figure 4.9 and show up to 0.4 of gain in mean

structural similarity measure (SSIM) for 0.25 bpp of image rate compared to

classic JPEG. As the rate increases JPEG codecs convey more high frequency

(HF) signals, which are noise. This explains the decreasing rate/quality be-

havior of JPEG. As HF is encoded with loss in JPEG, artifacts appear in the

image decoded. On the contrary, our new codec do not show artifacts because
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every spike is transmitted with no loss of information and encodes for the

whole image. The scalability of our codec is monitored only by the choice of

the number Nc of spikes to be encoded.

Figure 4.8: Robustness to noise: qualitative comparison between our new codec, JPEG, and
JPEG2000 under the same rate restriction (here 0.27 bpp). Upper left: Lena (renormalized in
the range of values from 0 to 1) with additive Gaussian noise (mean = 0, variance = 0.05).
Upper right: coded/decoded image using the new codec. Lower left: coded/decoded image
using JPEG. Lower right: coded/decoded image using JPEG2000.

4.3 Discussion

We have proposed a new bio-inspired codec for static images. First, the image

is converted into a ROC code via a simplified retinal model, then a stack

run coder is applied, followed by a first order arithmetic compressor. The
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Figure 4.9: Rate/Quality behavior in the case of noisy data: quantitative comparison between
our new codec, JPEG, and JPEG2000. The quality measure is the mean Structural SIMilarity
(SSIM). The bit-cost measure is the bit per pixel (bpp).

performances of this coding scheme were tested against well established JPEG

standards, and we obtain encouraging results for low bandwidth transmissions,

especially when dealing with noisy data. This compression scheme also offers

interesting features such as scalability and reasonable complexity. Limitations

have been observed in terms of rate/quality, when compared to JPEG2000 for

noiseless data transmissions. Beyond the proposition of a new compression

scheme, we would like to highlight a variety of important issues and present

potential avenues for future research efforts in this direction.

The first perspective concerns the retina coding model of our scheme.

Although we focused on the latency time of the first spike, several models

take into account the whole structure of spike trains. For example, it appears

that burst or synchronies are features that could encode for the stimulus. This

opens new perspectives to extend this model as soon as we are able to produce

realistic spike trains. In particular, we will need to consider more realistic

retina models converting videos into spike trains, such as [Wohrer 2009a]. The

goal is then to use such models in order to reproduce some spiking pattern as

observed in real cell recordings, and establish how spikes are triggered by a

stimulus then decoded by the nervous system [Rieke 1997].

The second perspective concerns compressing spikes. In this work, even

with a simplified representation of the spiking activity as a wave of spikes,
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classical approaches as stack run coding are not optimal. In the general case,

with a continuous and intense spiking activity, new ideas will have to be

introduced. New bio-inspired compression schemes will have to take into

account the features of the neural code that are the most relevant for the

stimulus representation.



Part II

FROM VIRTUAL RETINA

TO A BIO-INSPIRED AND
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Part I of this work was dedicated to the conception of a bio-inspired image

coder starting from the rank order coding hypothesis. We especially con-

sidered the retina model defined in [Van Rullen 2001b] as a basis for our

novel coder and made the adequate modifications to adapt it to the image

coders/decoders design. Part II of this work will lead this effort towards more

biological plausibility. Though the first model considered takes into account

some of the retinal visual processing mechanisms, several other processing

stages are ignored. So that, we will base the rest of this work on a more

complete retina model called Virtual Retina [Wohrer 2009a]. Starting from

Virtual Retina, our aim is to design a second bio-inspired image coder that

reproduces as closely as possible the retina behavior.

Indeed the action of perception seems to be effortless, but yet neurophys-

iologic experiments proved that the mechanisms involved in the retina are

highly complex and demanding. Recent studies such as [Gollisch 2010] con-

firmed that the retina is accomplishing non-trivial operations on the stimulus

signal before its transmission to the visual cortex. The retina model described

in [Van Rullen 2001b] and consisting in a linear filtering followed by a sort-

ing stage is a rough simplification of the reality. Besides, the retina appears

to be a non-deterministic system. The neural code of the retina fluctuates

randomly, such that a single stimulus leads to different codes across trials.

Various retina models from the literature propose to reproduce these phe-

nomena . Efforts such as [Meister 1999, Wohrer 2008] made a review of a few

of them. Among these models, we considered the retina simulation software

named Virtual Retina. Our motivation to start from this model is that it

keeps a strong biological plausibility and takes into account implementation

constraints.

This Part is divided into two chapters. First in Chapter 5, we focus on

the behavior of the inner layers of the retina solely. In this study, we isolate

these inner layers to show that their behavior is similar to analog-to-digital

converters. Based on that, we devise a deterministic then a non-deterministic

quantizer with their corresponding decoders. In this context, we give a bio-

logically plausible interpretation for the randomness of the neural code of the

retina. Second in Chapter 6, we consider both the outer and the inner layers

of the retina. Based on the behavior of this complete set of layers, we de-
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sign an original scalable image coder. This novel coder accounts for the time-

dependent and also non-deterministic behavior of the actual retina. Our coder

mimics most of the retinal processing stages as specified in [Wohrer 2008] and

its non-determinism enables interesting perceptual features.
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Overview

In this chapter, we explore the behavior of the inner layers of the mam-

malians retina. We take the Virtual Retina simulation software as a basis

for our study. In a first step, we design a dynamic quantization scheme

that relies on a rate code. This scheme encompasses three stages mimick-

ing the inner layers of the retina. In a second step, we hypothesize that

the noise observed in the retina is a dither signal. We then overview a

few interesting features of our retina-inspired analog-to-digital (A/D) con-

verter. This chapter is based mainly on the results that we published

in [Masmoudi 2010a, Masmoudi 2010b, Masmoudi 2010c].

Contribution

We start from state of the art equations modelling each retina layer under

study as they are resumed in [Wohrer 2009a]. Based on these efforts, our con-

tribution in this chapter is twofold. The first contribution is the conception

of a deterministic quantization/decoding system that goes beyond the stan-

dards. Indeed, our new bio-inspired quantizer has two main properties: (i)

It emphasizes high magnitude signals rather than high probability ones, and

(ii) it gradually changes across time from a coarse and quasi-uniform quan-

tizer to a refined and highly non-linear one. In addition to its originality,

our quantization system offers several interesting features as time scalability.

The second contribution is the proposal of a novel hypothesis regarding the

non-determinism observed in the neural code of the retina. This hypothesis

supposes that the retina code randomness is the result of a dithering process.

Under this assumption, interesting features are added to our quantization

system such as (i) error whitening and (ii) error decorrelation from the input

stimuli. Our proposal concerning the dither noise in the retina found an echo

recently in the computational neurosciences community [Vidne 2012].

Organization

This chapter is organized into five sections:
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1. Section 5.1 describes the main stages of the Virtual Retina simulation

software.

2. Section 5.2 specifies the three stages of our quantization scheme and the

corresponding decoding algorithm.

3. Section 5.3 compares our retina-inspired A/D converter to classical

quantization systems.

4. Section 5.4 introduces our hypothesis about the non-determinism ob-

served in the retinal code. Our hypothesis states that this non-

determinism is the result of a dithering process.

5. Section 5.5 discusses the contributions of this chapter.
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Do what you know and perception is

converted into character.

Ralph Waldo Emerson

Our goal in part II of this work is to design a bio-inspired image coder that

keeps a strong plausibility with regard to the mammalians retina behavior. In

order to do this, we first consider in this chapter the deep retina layers and

inspire ourselves from their behavior to design an original and dynamic A/D

converter.

Obviously, A/D signal conversion is a crucial step in the image coding

chain. Interestingly as described in Chapter 1, the retina and especially its

deepest layers operate a quantization process. Starting from a continuous sig-

nal, the retina generates a series of quantum electrical entities, the spikes. In

order to reproduce a plausible spike-based neural code, we base our study on a

biologically realistic model of the retina named Virtual Retina [Wohrer 2009a].

In a first step, we focus on the temporal behavior of the three last retina layers.

Starting from this spike-based code, we design a dynamic quantization scheme

that relies on a rate code for its simplicity and efficiency. Then, we propose

a possible decoding procedure. This yields an original quantization/decoding

system which evolves dynamically from coarse to fine, and from uniform to

non-uniform. The bio-inspired A/D converter that we propose offers several

interesting features as the scalability, and the introduction of time depen-

dency in the coding system. These features inset implicit bit-allocation. In

a second step, we model the retinal noise by a dither signal, and thenceforth

we identify the retina behavior to a non-subtractive dithered quantizer. This

hypothesis gives a possible interpretation for the non-determinism observed

in the spike-based neural code of the retina. When introduced in our A/D

converter, the dithering process enables several interesting features. Indeed

as we will show later in this chapter, the dithering whitens the reconstruction

error and decorrelates it from the input stimuli.

This chapter is organized according to five sections. First in Section 5.1, we

describe the main stages of Virtual Retina and the biological phenomena that

are modelled within it. Second in Section 5.2, we specify a quantization scheme

that mimics the time behavior of the three deepest retina layers, and then we

propose a possible decoding algorithm. Third in Section 5.3, we compare
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the specified retina-inspired A/D converter to classical quantization systems.

In particular, (i) we raise the analogy between the retina behavior and the

general scheme of A/D conversion, and (ii) we emphasize the original features

of our system as its time dynamics. Fourth in Section 5.4, we hypothesize that

the non-determinism observed in the retinal code is resulting from a dithering

process. In this context, we show qualitative results on the role of dithering

in a coding system. Finally in Section 5.5, we discuss the main features of our

A/D conversion system and give perspectives to further developments.

5.1 Virtual Retina: A bio-plausible model

In this work, we considered the retina model called Virtual Retina. This

choice is motivated by the completeness of the model and its adequacy to

simulation purposes. In fact, Virtual Retina gathers state of the art mod-

els of several retinal mechanisms into a single simulation tool. Thus, Vir-

tual Retina takes into account the major phenomena involved in the retina

processing [Masquelier 2011]. Besides, the authors confirmed the biological

plausibility of their model by reproducing actual retina cell recordings for

several experiments. Virtual Retina follows the organization of the mam-

malians retina. Indeed, the considered model is composed of a stack of layers,

such that each layer has a specific functional role. The architecture of Vir-

tual Retina is schematized in Figure 5.1. Three main processing steps can be

distinguished within this organization:

• The outer layers: The first processing step is described by non-separable

spatio-temporal filters. These filters behave as time-dependent edge

detectors. This is a classical step implemented in several retina models.

The cells modelled have an excitatory/inhibitory structure that enables

the detection of spatial contours as wells as intensity variations in time.

Several studies interpret this processing stage as a wavelet analysis of

the input stimulus [Mallat 1989, Gaudart 1993].

• The inner layers: The second processing step is performed by a non-

linear contrast gain control mechanism. This stage models mainly bipo-

lar cells behavior by control circuits with time-varying conductances.
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This stage is implemented as a low-pass separable spatio-temporal filter.

Studies such as [Beaudoin 2007] tend to confirm the model employed.

• The ganglionic layer: The third processing step is performed by leaky

integrate and fire neurons. These neurons model the ganglionic layer

processing that finally converts the stimulus into spikes.

5.1.1 The outer layers

The processing of the retina outer layers is mainly conducted within the so-

called outer plexiform layer (OPL). The OPL is tiled with cells of finite re-

ceptive fields that are organized retinotopically. Each one of these receptive

fields have a central and a surround component that are interacting across

time. This results in a phenomenon referred to as center-surround differen-

tiation. In order to reproduce it, Virtual Retina models an OPL cell by a

non-separable spatio-temporal filter. This filter is the difference of two low-

pass filters representing the two components of a given receptive field. If we

denote the input light stimulus by L and the current resulting from the cen-

ter (respectively surround) filtering by Ic (respectively Is), then the output

current of this stage Iopl is defined by:







Ic(x, y, t) = Gσc(x, y) ∗ Twu,τu(t) ∗ Enc,τc(t) ∗ L(x, y, t),

Is(x, y, t) = Gσs(x, y) ∗ Eτs ∗ Ic(x, y, t),

Iopl(x, y, t) = λopl
(

Ic(x, y, t) − woplIs(x, y, t)
)

,

(5.1)

where Gσc (respectively Gσs) is the Gaussian filter representing the central (re-

spectively surround) component, Eτs is an exponential temporal filter, Enc,τc

is a gamma temporal filter, Twu,τu is a high pass temporal filter, {σc, σs} is

the set of considered Gaussian standard deviations,
{

λopl, wopl, wu
}

is the set

of considered weights, and {τu, τ c, τ s} is the set of considered time constants.

For a detailed description of the parameters, interested readers should refer

to [Wohrer 2009a]. The continuous current Iopl is the output of this stage and

is the only data to be processed by subsequent retina layers. Iopl conveys infor-

mation about spatial and temporal local contrasts in the stimulus. Thus, we

discard the OPL in this chapter since it does not intervene in A/D conversion

process. We will introduce an original model of this stage in Chapter 6.
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Figure 5.1: Schematic view of Virtual Retina

architecture (from [Wohrer 2009a]). The in-
put stimulus is processed from the topmost
stage to the nethermost one. The green box
delimits the outer layers processing stage.
The orange box delimits the inner layers pro-
cessing stage. This stage encompasses two
sub-stages: (i) a fast gain controller and (ii)
a non-linear rectifier. The blue box delim-
its the ganglionic layer stage. This stage is
the one responsible for the transform of a
continuous current into a countable set of
spikes.
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5.1.2 The inner layers

As described in the previous section, the outer layers of the retina generate a

continuous current Iopl which magnitude is proportional to the local contrasts

of the stimulus. Though, a major issue encountered by any biological sys-

tem is to adjust its operational range to match the input stimuli magnitude

range [Rieke 2001]. This adaptation is done in the inner layers of the retina

in two steps. The first one is performed in the inner nuclear layer (INL) and

the second is performed in the inner plexiform layer (IPL).

The inner nuclear layer: The retina has the capability to quickly adapt

the gain of its transfer function to the input magnitude [Shapley 1978,

Kim 2001, Baccus 2002]. This fast magnitude adaptation mechanism is

largely observed at the level of the bipolar cells that populate the INL. The

phenomenon involved is termed shunting inhibition and is both non-linear and

dynamic. Virtual Retina includes a realistic model of it based on a feedback

loop. If we denote the output potential of this stage by V b(x, y, t), then the

contrast gain control is defined by the following equations:







cb
dV b(x, y, t)

dt
= Iopl(t) − gb(t)V b(x, y, t),

gb(x, y, t) = Gσb ∗ Eτb ∗ Q
(

V b(x, y, t)
)

,

Q
(

V b(x, y, t)
)

= gb
0 + λb

(

V b(x, y, t)
)2

,

(5.2)

where gb is a variable leakage term in the membrane of a bipolar cell, Q is a

quadratic activation function, Eτb is an exponential temporal filter, Gσb is a

Gaussian spatial filer, and
{

cb, gb
0, λb

}

is a set of constant scalar parameters

defining the considered capacitance, conductance, and weight. As for the pre-

vious stage, interested readers should refer to [Wohrer 2009a] for exhaustive

definitions.

As the retina has a layered architecture, the output voltage V b is the input

of the subsequent (IPL) stage.

The inner plexiform layer: We consider the signal, of voltage V b, as

generated by the bipolar cells of the retina. This potential is subject to a

non-linear rectification in the IPL. Several types of cells are involved in this
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rectification especially the amacrine cells. If we denote the current output of

this stage by Ig, then a biologically realistic model of this rectification is given

in Virtual Retina by:

Ig(x, y, t) = N
(

Twg,τg(x, y, t) ∗ V b(x, y, t)
)

, (5.3)

where Twg,τg is a linear transient filter, {wg, τ g} is a set of constant scalar

parameters, and N is a function defined by:

N(v) =







i
g
0

i
g
0 − λg(v − v

g
0)

if v < v
g
0 ,

i
g
0 + λg(v − v

g
0) if v " v

g
0 ,

(5.4)

where {i
g
0, v

g
0 , λg} is a set of constant scalar parameters defining a current, a

voltage, and a weight.

Ig is obviously the current input of the last retina stage, namely the gan-

glionic layer. This latter is the one that produces the neural code of the

retina.

5.1.3 The ganglionic layer

The ganglionic layer is the deepest one tiling the retina. This layer is respon-

sible of the transform of the Ig(t) current into a discrete set of spikes. The

cells of the ganglionic layer are modelled in Virtual Retina by leaky integrate

and fire (LIF) neurons. Each neuron integrates a potential until it reaches a

given threshold δ, fires a spike, and then restarts integrating. If we denote the

potential of a ganglion cell by V l, then we can define the spike timings (ti) by

the following equation:







t0 = 0 s,

ti < ti+1, ∀i " 0,

V l(ti) = δ.

(5.5)
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Each neuron in the ganglionic layer behaves according to the following equa-

tion:







V l = V l
0 if t ∈ [ti, ti + ηi

refr[,

cl
dV l(x, y, t)

dt
= Ig(x, y, t) − glV l(x, y, t) + ηl(x, y, t) if t ∈ [ti + ηi

refr, ti+1[,

(5.6)

where (i)
{

V l
0 , gl, cl

}

is a set of constant scalar values defining the reset voltage,

the conductance and the capacitance, (ii) ηl is a noise source, and (iii) ηi
refr is

the ith realisation of a positive random variable. The variables ηl and ηi
refr are

added to the spike generation process in order to reproduce the trial-to-trial

variability of actual ganglion cells [Keat 2001, Stein 2005, Kostal 2007].

Starting from the retina model presented in this section, our aim is to

devise a bio-inspired A/D converter. So that, we will specify in the next

section a complete original dynamic quantization/decoding system based on

a rate code.

5.2 A retina-inspired A/D converter

Our goal in this section is to revisit the last processing stages of Virtual

Retina to design a novel bio-inspired A/D converter. The retina processing

stages considered are the ones following the image transform stage in the outer

layers. These stages include three layers, namely the INL, the IPL and the

ganglionic layer. Thus, our A/D converter will have three stages that mimic all

of the cited layers. First in Section 5.2.1, we specify our working hypotheses.

Second in Section 5.2.2, we specify the stimulus coding steps through our A/D

converter. Finally in Section 5.2.3, we describe the design of our decoder.

5.2.1 Study context

Up to our knowledge, there is no work that considered the retina as a basis

for a complete quantization/decoding scheme. Though, few efforts have been

made in the literature aiming at conceiving A/D converters that are inspired

from neuron cell models. These works mainly consider the integrate and fire

(IF) neuron model. For instance, authors in [Feichtinger 2011, Rastogi 2011]

designed an asynchronous A/D converter based on IF neurons. The coding
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process generates a family of spike timings (ti)i"0 as a response to a time

function f(t). Along with the coding process, the authors designed an

approximate reconstruction algorithm that assumes several constraints about

the bandwidth and shape of the function to recover. The decoding algorithm

is non linear and its main principle is to multiply a given kernel function (typ-

ically an exponential one) by delayed Diracs. A second algorithm is described

in [Lazar 2004, Lazar 2008]. The authors designed another asynchronous

A/D converter which they referred to as the time encoding machine. The

neuron model considered is still the IF model, and the output is the family

of spike timings (ti)i"0. The approximate reconstruction algorithm is referred

to as the time decoding machine. It assumes a minimum lag between two

consecutive spikes and impose restriction on the bandwidth to be used. In

this case too, the decoder performs a multiplication of delayed Diracs with a

set of adequate low pass filters. We may also cite [Camuñas-Mesa 2010] as

another neuron-inspired quantization scheme designed for recognition tasks

rather than for the exact decoding of the stimulus.

The cited efforts assume a coding function φif transforming the stimulus

f(t) into a family of at most N s spikes. The coding function φif could be

defined as follows:

φif : K ( ) −→ Ns

f %−→ (ti)0!i<Ns , (5.7)

where K ( ) is the space of continuous functions with compact support. Sev-

eral reasons lead us to design an alternative coding scheme. The first reason

is that these efforts consider integrate and fire neurons rather than the leaky

integrate and fire (LIF) neurons that we manage to use (see Section 5.1.3).

Besides the deep retina layers considered, and a fortiori our retina-inspired

A/D converter, include two more non-linear stages prior to the LIF stage.

Thus, the quantization/decoding algorithms described are unsuitable for our

case. The second reason is that the cited works are directed towards the design

of asynchronous devices, whereas our target application which is the image

coding and communication supposes a synchronous coder. The third reason

is that φif encodes each single value from the input stimulus into a family of
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floating numbers (ti)0!i<Ns . In the context of still image coding, the stimulus

image magnitudes are integers lying in a restricted interval (typically !0, 255").

So that, encoding each integer by the family of floating numbers (ti)0!i<Ns

will lead to an increase in the bit-cost of the image. The latter observation

makes this coding scheme incompatible with our compression purposes. Thus,

we would rather consider a coding function φtobs

lif that we define as follows:

φtobs

lif : K 1( ) −→

f %−→ |(ti)ti<tobs
| , (5.8)

where K 1 is the set of constant functions with compact support, [0, tobs[ is

the observation window, and |.| denotes the cardinality.

As made clear through Equation (5.8), we restrict the retina deep layers

models to their temporal behavior as the state of the art studies did. The

supplementary constraints that arise from Equation (5.8) are in concern with

the input current, the temporal window of observation, and the coding feature

that we assume in a spike train.

The input current: Focusing on the last stages of the mammalians retina,

we assume that the INL cells receive heaviside input currents that are constant

during the observation window [0, tobs[. So that the input current Iopl(t) will

be defined as follows:

Iopl(t) = α 1{t"0}(t), (5.9)

where α is the magnitude of the current to be encoded, and 1{t"0} is the

indicator function such that, 1{t"0}(t) = 0 if t < 0 and 1 otherwise. This

assumption is justified by the input stimuli studied in our case which are still

images. This amounts to suppose that our A/D converter encodes an image

flashed during a given temporal window of observation [0, tobs[.

The temporal window of observation: We will observe our system at

different tobs timings. We will assume that 0 ! tobs < T and that T has an

order of magnitude of some tens of milliseconds. Typically in this chapter,

T = 30 ms. There are two justifications for this choice of T . The first one

is that 30 ms is approximately the duration of exposition of a frame in a
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conventional video stream, though, there is no jolt while playing a sequence.

Thus, we can argue that the capture and coding process through the retina

takes less than 30 ms. The second justification is that the mammalians

visual system is able to accomplish complex categorization tasks in durations

as short as 150 ms [Van Rullen 2001a]. The authors of the latter work

then concluded that the input stimulus spends approximately 10 ms per

coding layer. Thus, T = 30 ms is a compatible duration with the number of

processing layers crossed by the stimulus. In our A/D converter, these layers

are in the number of three.

The coding feature in a spike train: As discussed in Chapter 1, there is a

variety of possible coding features in a spike train. Among them, we chose the

rate coding. Here, we assume that the number of spikes emitted within [0, tobs[

is the relevant quantity that encodes neurons activity. Indeed, the spike count

is a quantity that is assimilable to a firing rate. We denoted this quantity by

|(ti)ti<tobs
| (cf. Equation (5.8)). In order to show our A/D converter behavior,

we estimate |(ti)ti<tobs
| as a function of the intensity magnitude, and we do this

at different observation timings tobs. The spike count metric is the one that

is commonly admitted for the analysis of the neural code since [Adrian 1926].

Thus, our metric choice is justified by (i) the common usage and (ii) the fact

that this metric takes its values in the countable space .

5.2.2 The coding pathway

Having the assumptions specified in the previous section, we detail in the

following the behavior of our A/D converter stages.

5.2.2.1 The rapid contrast gain control stage

The rapid contrast gain control stage, as described in Section 5.1.2, is a succes-

sion of two coding layers: the INL layer that ensures the contrast gain control

and the IPL layer that rectifies the signal non-linearly. The time behavior of

these two layers is described in the two paragraphs below.
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The contrast gain control loop: First, we consider the contrast gain

control stage in the retina. This stage is performed by the bipolar cells in

the INL. Each bipolar cell gets a current Iopl(x, y, t) and generates a bipolar

voltage V b(x, y, t). The development of Equation (5.2) yields the following

expression:

cb dV b

dt
(x, y, t) =

λb

τ b






∫ ∞

−∞

∫ ∞

−∞

∫ t

0

(

V b
)2

(x − u, y − v, s)
e

− u2+v2

2(σb)2

2π(σb)2
e

− t−s

τb dsdudv




 V b(x, y, t).

(5.10)

Then, we solve numerically the above ordinary differential equation through

an Euler schema. In order to do this, we discretize the time and space as

follows:

• Gσb has a finite spatial support, such that Gσb is an (2m + 1) × (2m + 1)

discrete filter with an horizontal resolution of dx and a vertical resolution

of dy.

• The [0, t] time interval is binned according to a time resolution dt. We

denote by ti the instant such that ti = i dt.

So that, we can write the following approximations:

(

V b(x, y, ti+1) − V b(x, y, ti)

dt

)

0
dV b

dt
(x, y, ti),

V b(x, y, ti+1) 0 dt

(

dV b

dt
(x, y, ti)

)

+ V b(x, y, ti).

This yields the following expression:

V b(x, y, ti+1) =
λbdt

2πτ bcb(σb)2

m∑

k=−m

m∑

l=−m





i∑

j=0

(

V b
)2

(x − kdx, y − ldy, tj)e
−

ti−tj

τb dt





e
−

(kdx)2+(ldy)2

2(σb)2 dxdyV b(x, y, ti) + V b(x, y, ti). (5.11)

As we made a restriction considering only the time behavior of INL, we set

m = 0 and σb = 1 m. For a given magnitude value α of the heaviside input

Iopl(t), let us estimate the time-varying output voltage V b(t). We do so for
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a set of α values in [0, 100] pA which is the range of standard current values

in the retina. The model simulation leads to the results shown in Figure 5.2.

Figure 5.2 proves that the gain of the INL stage increases across time. All

current values in the standard range of intensities are magnified until the

system saturates by 23 ms when the gain begin to decrease. The behavior

of the gain control in the bipolar cells will be compared to standard signal

processing devices in Section 5.3.

Figure 5.2: V b(t): Input/output map of the INL layer for a heaviside input Iopl(t). Figure
shows the time-varying output voltage V b(t) of the bipolar cells layer for different values of
magnitude α, such that Iopl(t) = α1{t!0}(t). The model parameters are set to biologically

realistic values: gb
0 = 5 10−10S, τ b = 20 10−3s, λb = 10−6AV −2, cb = 10−10F .

The non-linear rectification Second, we consider the non-linear rectifi-

cation stage which is ensured by the cells of the IPL layer of the retina. Each

IPL cell gets a bipolar voltage V b(t) as an input and generates a ganglionic

current Ig(t). The effects of the non-linear rectification as defined in Equa-

tion (5.3) are shown in Figure 5.3. For a time-varying voltage V b(t), we notice

that the behavior of Ig(t) is different according to the values of α, where α

is the magnitude of the input current. Indeed when compared to Figure 5.2,
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Figure 5.3 shows that the the high magnitudes are differentiated with higher

precision (cf. 20 < tobs < 25 ms) than the low magnitudes (cf. tobs < 10 ms).

This issue will be discussed with further details in Section 5.3.

Figure 5.3: Ig(t): Input/output map of the IPL layer cascaded to the INL layer. The non-
linear rectification is cascaded to the contrast gain control for several heaviside inputs Iopl(t).
The figure shows the time-varying output intensity Ig(t) of the IPL layer for different values
of magnitude α, such that Iopl(t) = α1{t!0}(t). The model parameters are set to biologically
realistic values: v

g
0 = 4 10−3 V, i

g
0 = 20 10−12 A, ωg = 7.5 10−1, τg = 15 10−3 s, λg = 30 10−9.

5.2.2.2 The spike generation stage

Finally given the initial input current Iopl(t), our goal is to estimate the gen-

erated spike count within a given temporal window [0, tobs[. We do this esti-

mation for every possible input current magnitude α (cf. Equation (6.2)). So

that, we start from the current Ig(t) which curves are shown in Figure 5.3,

then we compute the time-varying ganglion cell voltage V l(t) according to

Equation (5.6). As for the gain control stage, we recourse to an Euler schema

for the implementation of the LIF neurons. Examples of the resulting voltages

V l(t), for different current magnitudes α, are shown in Figure 5.4. We can
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notice that the more a neuron is stimulated, the quicker it fires and with a

higher frequency [Adrian 1926, Van Rullen 2001b].

(a) α = 0pA (b) α = 25pA

(c) α = 50pA (d) α = 75pA

Figure 5.4: V l(t): Cascading the rapid contrast gain control and the spike generation stages for
different values of magnitude α, such that Iopl(t) = α1{t!0}(t). In solid line, the time behavior

of the ganglion cell voltage V l(t). In dotted line, the spike emission threshold δ. δ = 1 10−3V

gl = 5 10−9S, cl = 10−10F , V l
0 = 0V .

Based on the above results, we can infer the temporal maps associating a

spike count to an observation time for a given value of α. We denote these

maps by nα(t). Example maps are shown in Figure 5.5(a). Our goal is to get

an instantaneous picture of the bio-inspired system implemented at different

observation timings. Given an observation time tobs, this amounts to estimate

the function ntobs(α). We can obtain this function starting from the curves of

nα(t) for different values of α, by means of a transversal cut in Figure 5.5(a).

The spike count map ntobs(α) defined over the set of possible input magnitudes

α is shown in Figure 5.5(b). It appears that, across time, the bio-inspired

quantizer is evolving (i) from coarse to fine and (ii) from uniform to non-

uniform.
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The A/D converter that we end up with is time-dependent. Indeed, to each

observation time tobs we associate a quantizer ntobs that maps a real magnitude

value α into a quantum value ntobs(α) = |(ti)ti<tobs
|. Once we defined our

time-dependent A/D converter, we have to design the corresponding decoding

procedure. This is detailed in the following section.

(a) nα(t) (b) ntobs(α)

Figure 5.5: Behavior evolution of our retina-inspired A/D converter. 5.5(a): The abscissa axis
represents the time. The ordinate axis represents the spike count nα(t). 5.5(b): Transversal
cuts in 5.5(a). The abscissa axis represents the magnitude of the step input α. The ordinate
axis represents the spike count ntobs(α). δ = 1 10−3V gl = 5 10−9S, cl = 10−10F , V l

0 = 0V .

5.2.3 The decoding pathway

Starting from the quantization scheme defined above, we describe in this sec-

tion a straightforward decoding scheme. Our aim is to recover α̂tobs , the

estimation of the step input magnitude α at the observation time tobs. For a

given observation timing tobs, the only data that is transmitted to the decoder

is the generated spikes count ntobs(α). All the model parameters are known a

priori by both the coder and the decoder.

The decoding map, which we denote n̂tobs is a direct reverse look up table

of the coding map. In order to be able to decode the input signal, we first

compute the coding maps off-line as specified in 5.2. Then the coding maps

axis are permuted. Figure 5.6 shows examples of decoding functions α̂tobs at

different observation timings from 0 to 30 ms. The reader will notice that the
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decoding map n̂tobs is a set of unconnected points as the decoding map starts

from , the set of possible spike counts, to , the set of decoded current

values.

Figure 5.6: Time evolution of the decoding map. The decoder is time-dependent and evolves
in the same manner as the coding map. The resulting function is shown at 0 ms, 6 ms, 12 ms,
18 ms, 24 ms, and 30 ms.

Though the coding scheme in Section 5.2 is strongly related to actual bio-

logical retina behavior, we do not claim that the proposed decoding algorithm

is the one that is actually employed in the visual cortex. This being said, we

have now a complete specification of a bio-inspired quantization scheme and

the corresponding decoding scheme. So that in the next section, we will study

our scheme behavior and compare it to standard A/D converters.
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5.3 Our retina-inspired A/D converter vs

standard A/D converters

The A/D converter that we presented relies on a biologically realistic model

of the retina. The coding procedure assumes the spike count to be the

coding feature in a spike train. Our retina-inspired A/D converter offers

interesting properties as (i) the time-dependent gain amplification, (ii) the

time-dependent non-linear rectification and (iii) the scalability of the quan-

tizer/decoder. In the following, we first exhibit the overall behavior of our

system and then we compare it to the standard quantizers and A/D convert-

ers.

5.3.1 Our A/D converter overall behavior

In order to show the behavior our bio-inspired quantization/decoding scheme,

we compute the characteristic function of it, ie the map that associates α̂tobs

to α for a given observation timing tobs. Figure 5.7 shows the evolution of

our A/D converter characteristic function across time. The resulting map is

a mid-tread quantizer with a central dead zone. As expected, the behavior of

the quantizer evolves according to the two laws below.

• The retina inspired A/D converter evolves from coarse to fine: The

number of quantizing steps for the range of magnitude values in [0, 100]

pA increases across time (see also Figure 5.5). This denotes a time-

dependent refining process in the retina. The refining is intuitive as

the visual cortex perceives roughly the stimulus first, then as time goes,

reconstruct it more accurately: This mechanism enables scalability.

• The retina inspired A/D converter evolves from uniform to non-uniform:

The retinal quantizer is non-uniform. High magnitude signals are

mapped accurately, by a small quantization step, while small magnitude

signals are coarsely rendered. This is due to the non-linear rectification

in the IPL stage. Indeed, this rectification compresses the dynamic

range of small magnitude signals around zero and spans higher ones in a

linear fashion, this before the generation of spikes in the ganglion cells.

This tendency to non-uniformity is accentuated as the gain control gets
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higher across time: This phenomenon results from the time-dependent

gain control and non-linear rectification.

Figure 5.7: Time-evolution of the characteristic function of our retina-inspired A/D converter.
The abscissa represents the magnitude of the step input current α. The ordinate represents the
decoded value α̂tobs . The resulting function is shown at 12, 18, 24 and 30 ms.
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5.3.2 A beyond the standards A/D converter

Interestingly, the behavior of the A/D converter that we specified is similar

to several already existing devices. Figure 5.8 raises the analogy between

our retina-inspired A/D converter and the standard A/D converters. Indeed,

a standard A/D converter encompasses also three stages, namely (i) a gain

controller, (ii) a non-linear rectifier and (iii) an uniform quantizer.

Figure 5.8: The analogy between the deep retina layers and the standard A/D converters.

Original time-dependent gain amplifier/compander

In the literature, the non-linear rectifiers are commonly referred to as com-

panding circuits [Clark 1928]. Companding is a technique that is widely used

in telecommunications to make the quantization steps unequal. This tech-

nique has an analogous functional role to what the IPL stage does in our

case. It is also interesting to denote that, for audio recordings, a compander

is generally preceded by a variable-gain amplifier which is locally linear. The

functional role of this amplifier is also analogous to the one of the bipolar cells

in our case. In the following, we show the effects of each layer on the input

current Iopl(t), this at different observation timings tobs.

First, we start from the study of V b(t) which curves are shown in Fig-

ure 5.2. We then perform a transversal cut to get the maps V b
tobs

(α) that
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associate a bipolar voltage to a stimulus magnitude α at a given observation

time tobs. Figure 5.9(a) schematizes the transversal cut performed. The result-

ing maps are shown in Figure 5.9(b). These maps describe the time evolution

of the bipolar cells behavior as a function of the input magnitude. These

results highlights the fact that the contrast gain control in the retina is linear

for short latencies (cf. t ! 20 ms), but then it saturates leading to a flat map

(cf. t > 20 ms). We retrieve as in consumer electronic devices a variable-gain

linear amplifying system, that also takes into account a saturation bound.

(a) V b(t) (b) V b
tobs

(α)

Figure 5.9: Behavior evolution of the gain control in the bipolar cells. 5.9(a): The abscissa
axis represents the time. The ordinate axis represents the time-varying bipolar voltage V b(t).
5.9(b): Transversal cuts in 5.9(a). The abscissa axis represents the magnitude of the step input
α. The ordinate axis represents the intensity-varying bipolar voltage V b

tobs
(α).

Second, we cascade the non-linear rectification stage to the gain control

one. We start from the study of the time behavior of the INL/IPL stages

and infer their behavior as a function of the input magnitude α. The process

that we employ is schematized in Figure 5.10(a) and is analogous to what

we did for the INL stage study. We show in Figure 5.10(b) the resulting

Ig
tobs

(α) maps that associate a ganglionic current to a stimulus magnitude α

at a given observation time tobs. We notice that the IPL non-linear rectifica-

tion (i) compresses the low magnitudes dynamic range, and (ii) expands the

high magnitudes one. This implies that the high magnitude inputs are well

rendered while low magnitude ones are coarsely approximated.

The INL/IPL stages behavior in our case is in contradiction with the
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(a) Ig(t) (b) I
g
tobs

(α)

Figure 5.10: Behavior evolution of the gain control cascaded to the non-linear rectification in
the IPL layer. 5.10(a): The abscissa axis represents the time. The ordinate axis represents the
time-varying ganglionic current Ig(t). 5.10(b): Transversal cuts in 5.10(a). The abscissa axis
represents the magnitude of the step input α. The ordinate axis represents the intensity-varying
ganglionic current I

g
tobs

(α).

traditional companding algorithms behavior as the A-law or the µ-law coma-

panders. Indeed, these algorithms work in a logarithmic fashion and em-

phasize low magnitudes and compress high magnitudes range. Figure 5.11

shows a comparison between the INL/IPL stages and the standard gain am-

plification/companding algorithms. Considering the above results, two main

features make the INL/IPL stages go beyond the standards when compared

to classical gain amplifiers/companders:

1. The INL/IPL stages emphasize high energy signals while the compan-

ders based on the µ-law emphasize high probability ones which have

often the lowest energy.

2. The INL/IPL stages implement a time-dependent gain controller cou-

pled to a time-dependent non-linear rectifier while the companders based

on the µ-law have a static behavior.

Comparison to the Lloyd-Max quantizer

The originality of our approach arises also from its comparison to the stan-

dard of the quantization application: the Lloyd-Max quantizer [Garey 1982,
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Figure 5.11: A comparison between the INL/IPL stages and the standard gain amplifica-
tion/companding algorithms. In solid line: the non-linear rectification used in the retina. In
dotted line: the companding rescaled µ-law map.

Antonini 2002]. Figure 5.12 compares our retina-inspired A/D converter to

the Lloyd-Max quantizer. The origin of these differences is that the retina-

inspired A/D conversion is time-dependent and scalable while the Lloyd-Max

quantizer is distribution-dependent and non-scalable by essence. The scalabil-

ity of the retina-inspired is tuned by the only observation timing tobs. Indeed,

the choice of a given tobs value implicitly imposes the choice of a quantizer

and a decoder. The accuracy of our system increases proportionally to tobs

and this makes it scalable. On the contrary, if we would make the Lloyd-Max

quantizer scalable, this would amount to tune the number nq of quantiza-

tion steps considered. Obviously for any value of nq, the quantization process

would require the off-line computation of the corresponding codebook. The

Lloyd-Max quantizer thus defined is the optimal quantizer in terms of the

rate/distortion behavior for a given distribution of the values to encode. The

philosophy underlying the conception of the the Lloyd-Max quantizer makes it

distribution-dependent and distribution-optimal. Thus, two major properties

differentiate our retina-inspired A/D converter from the optimal quantizer:

1. The time dependency of our retina-inspired A/D conversion scheme al-

lows it to be scalable. Indeed, the choice of the observation timing tobs

sets the level of accuracy of the quantizer/decoder.
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2. Our retina-inspired A/D conversion offers scalability with no training

process and no dictionary to transmit to the decoder.

(a) The bio-inspired retinal quantizer at 18ms (b) Lloyd-Max quantizer

Figure 5.12: A comparison between our retina-inspired A/D converter and the stan-
dard Lloyd-Max quantizer. 5.12(a)The characteristic function of our retina-inspired A/D con-
verter. 5.12(b)The characteristic function of a Lloyd-Max quantizer for a Gaussian source.

We specified an original quantizer/decoder mimicking the retina behav-

ior. Though we restrained our study to the temporal behavior of the deep

retina layers, we reproduced many mechanisms involved in the actual biologi-

cal system. Interestingly, our quantizer/decoder behavior evolves across time

(i) from coarse to fine and (ii) from uniform to non-uniform. As shown in this

section, the time dynamics allow scalability. Besides, the philosophy underly-

ing is in contradiction with the traditional Lloyd-Max quantizers because (i)

it is distribution-independent (ii) it renders high magnitudes precisely while

it renders low magnitudes coarsely.

5.4 The dithering hypothesis

In the preceding sections, we showed the behavior of the deep retina seen as an

A/D converter. Despite being time-dependent, this retinal quantizer evolves
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according to a deterministic law. Though, one major issue encountered by

neuroscientists is the non-determinism of the retinal neural code. Indeed,

given a single visual stimulus, spikes timings in the retina output are not ex-

actly reproducible across trials. Yet, no clear evidence is established about

the phenomena at the origin of this trial-to-trial variability. Several hypothe-

ses were discussed in the literature and yielded two different points of view.

The first hypothesis is that the precise timings of individual spikes convey

a large amount of information [Perkell 1968b, Panzeri 2001]. This hypoth-

esis suggests that the stimulus coding process in the retina is deterministic

and reports detailed information about the stimulus with a high temporal

fidelity. In this case, each single spike timing makes sense. The second hy-

pothesis is that only a few statistical quantities measured over the spike-based

output convey the relevant information about the stimulus to the visual cor-

tex [Brown 2004]. For instance, since [Adrian 1926] it was widely assumed

that the variable spike patterns corresponding to a single stimulus are ran-

dom instantiations of a desired firing rate. In this case, the precise timing

of each single spike may not be meaningful and thus spikes may carry some

amount of noise. The spike based-output should then be averaged to reveal

meaningful signals [de Ruyter van Steveninck 1997].

The role of spikes timings variability in the neural code of the retina is

still an open issue and no clear evidence establishes whether this variabil-

ity conveys precise information or random noise [Shadlen 1998]. Here, we

make the proposal that the non-determinism in the retinal processing prior to

the ganglionic layer yields a dither noise [Masmoudi 2010a, Masmoudi 2010c].

This noise, while corrupting the input of the ganglionic layer by a completely

random signal, brings interesting features to the spike-based output of the

retina. For this to be possible, the distribution of the noise that we intro-

duce obeys specific constraints defined in [Wannamaker 2000]. Obviously, the

dither noise hypothesis is one possible assumption among several others and

we do not claim its biological exactness. Still, our present effort aims at

bridging the differences between the different points of view reported above

by exploring the hypothesis of a “retinal useful noise”.

Commonly, the dithering consists in adding a noise to a given input before

passing it through an uniform scalar quantizer. In our case, the quantizer user
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is the LIF neuron. We can prove experimentally that this neuron, under the

assumption of a rate code, is an uniform scalar quantizer. Figure 5.13 shows

the behavior of the LIf neuron when used in our A/D converter with no prior

gain control and non-linear rectification. The results demonstrate that the

LIF neuron could be considered as an uniform scalar quantizer.

(a) Quantization functions (b) Quantization step

Figure 5.13: The LIF neuron seen as an uniform scalar quantizer. Figure 5.13(a): The LIF
neuron quantization maps at different observation timings tobs. Figure 5.13(b): Time evolution
of the mean quantization step of the LIF neuron.

Two implementations of the dithering process are possible. The first one is

the subtractive dithering (SD) and the second is the non-subtractive dithering

(NSD). Theoretically, SD can add interesting features to the quantizing sys-

tem without degrading its signal-to-noise ratio. Unfortunately, SD requires

the subtraction of the exact noise signal from the quantizer output before

decoding. So that, the subtractive dithering supposes that the exact values

of the noise signal are transmitted to the decoder. As a consequence, the hy-

pothesis that we study is that the retina is a non-subtractive dithered system

(NSD).

Up to our knowledge, little have been done to explicit the probability dis-

tribution of such a noise. In the literature, it is generally and empirically

assumed that the retinal noise η is Gaussian [Wohrer 2008]. Thus, we refer to

the results established in [Wannamaker 2000], and recall the following funda-
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mental theorem of dither noise distribution for the case of an uniform scalar

quantizer:

Theorem 1. The choice of zero-mean dither probability distribution function

(pdf) which renders the first and second moments of the total error independent

of the input, such that the first moment is zero and the second is minimized,

is unique and is a triangular pdf of 2 LSB peak-to-peak amplitude.

Thus, we suppose that (i) ηl magnitude (cf. Equation (5.6)) has a triangu-

lar probability distribution function across the possible locations in an image,

and (ii) that the dynamic range of ηl is twice wider than the quantization step

of the considered ganglion cell. Having these two conditions we verify the the-

orem. Under the restriction of these hypotheses correctness, we identify the

retinal noise η to a dither signal. As we do not subtract the dither signal in

the decoding process, our coder is an NSD. Although not intuitive, adding

such a random dither signal to the input stimulus allow the quantizer to have

interesting features. Mainly, the quantization error values ε = (α − α̂tobs)

and the input stimulus magnitude α are de-correlated. This feature is clearly

demonstrated when computing the cross correlation between ε and α as shown

in the Figures 5.14(a) and 5.14(b) for the test image Lena. Besides, quantiza-

tion error is whitened so that error is uniformly distributed over the stimulus

spectrum. Figures 5.14(c) 5.14(d) show a comparison between the spectra of

the ganglion cell quantizer with and without NSD.

The whitening and de-correlation features yield a greater reconstruction

error in terms of mean squared error [Wannamaker 2000]. Though, the vi-

sual quality of the reconstruction Ĩ is better when using a dithered system.

Figure 5.15 shows the great impact of an NSD ganglion cell quantizer when

compared to a non-dithered one, for the same observation time tobs. Note that,

the number of quantization steps in a dithered and a non-dithered coder is

roughly the same, but the distribution of the quantization values varies greatly.

This gives us an idea on what could be transmitted by the non-deterministic

retinal coder and its impact on the stimuli reconstruction.
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(a) Without dithering (b) With dithering

(c) Without dithering (d) With dithering

Figure 5.14: 5.14(a) 5.14(b): Cross correlation of the quantization error and the input stim-
uli. The abscissa represents the spatial lag and the ordinate the cross correlation magnitude.
5.14(c) 5.14(d): Noise whitening using a dithered quantizing ganglion cell: A comparison of
reconstruction error spectra between non-dithered and dithered quantizing ganglion cell. The
test image is Lena. The observation time is tobs = 55ms.

(a) Without dithering (b) With dithering

Figure 5.15: Comparison of the reconstruction visual quality between non-dithered and dithered
quantizing ganglion cell. The test image is Lena. The observation time is tobs = 55ms.
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5.5 Discussion

We presented a bio-inspired quantizer/decoder mapping the retina behavior.

The model of the retina that we adopted, though restrained to its temporal

aspect, reproduces many mechanisms involved in the actual biological system.

Our quantizer behavior evolves dynamically, and thus, it permits scalability as

it goes from coarse to fine across time. Interestingly, the quantizer evolves also

from uniform to non-uniform, but in contradiction with traditional Lloyd-Max

quantizers, as it renders high magnitudes precisely while it maps low magni-

tudes coarsely. Besides, we emitted a biologically plausible hypothesis that

supposes the retinal noise distribution to have specific characteristics, yielding

the definition of a non-subtractive dithered system. We do not claim that the

retinal noise is a dither signal, but still such an hypothesis is seducing by the

noise whitening and de-correlation features it allows. Our future work aims

at adding several mechanisms of the retinal processing that are not taken into

account in the current quantizer/decoder. The spatial filtering and lateral in-

hibitions are two examples of features that could be integrated in an upcoming

effort. A long term goal would be to infer, starting from a sufficiently realistic

model, a decoding algorithm that could decipher actual neural recordings.
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Overview

We propose the design of an original scalable image coder/decoder that is

inspired from the mammalians retina. Our coder accounts for the time-

dependent and also non-deterministic behavior of the actual retina. This

chapter is based mainly on the results that we published in [Masmoudi 2012c]

and [Masmoudi 2011].

Contribution

The present work brings two main contributions. In a first step, we design

a deterministic image coder mimicking most of the retinal processing stages.

Then in a second step, we introduce a retinal noise in the coding process,

that we model here as a multiscale dither signal. Concerning the first con-

tribution, we specify an original model of the retinal transform through the

introduction of time delays. Then, we cascade the specified transform to the

A/D converter defined in the previous chapter to get a complete, original

and scalable coder/decoder. Concerning the second contribution, the dither-

ing process introduced is original since it takes into accounts the multiscale

nature of the prior transform. Besides, it enables (i) reconstruction error

whitening, (ii) reconstruction error decorrelation from the input, and (iii) a

faster recognition of the fine details of the image during the decoding process.

Organization

This chapter is organized into two part:

1. The first part consists of the Sections 6.1 to 6.3 and presents the design

of our bio-inspired scalable image coder/decoder with a deterministic

behavior.

2. The second part consists of the Sections 6.4 to 6.5. In Section 6.4,

we show how we integrated the dithering process in our coder/decoder.

Then, in Section 6.5, we detail the perceptual impact of it.
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We propose the design of an original scalable image coder/decoder that

is inspired from the mammalians retina. Our coder accounts for the time-

dependent and also non-deterministic behavior of the actual retina. The

present work brings two main contributions. The first one is the design of

a deterministic image coder/decoder mimicking most of the retinal process-

ing stages. The second contribution is the introduction of a retinal noise in

the coding process. Here, we model this noise by a multiscale dither signal

in order to gain interesting perceptual features. Regarding our first contri-

bution, our main source of inspiration will be the retina models introduced

in [Van Rullen 2001b] and [Wohrer 2009a]. The coder that we propose has

two stages. The first stage is an image transform which is performed by the

outer layers of the retina. Here we specify an original model for this trans-

form. We reproduce the outer layers behavior by filtering the image with a

bank of difference of Gaussians with time-delays. The second stage is a time-

dependent analog-to-digital conversion which is performed by the inner layers

of the retina as specified in Chapter 5. The main novelty of this coder is to

show that the time-dependent behavior of the retina cells could ensure, in an

implicit way, scalability and bit allocation. Regarding our second contribution,

we reconsider the inner layers of the retina. We emit a possible interpretation

for the non-determinism observed by neurophysiologists in their output. For

this sake, we model the retinal noise that occurs in these layers by a dither

signal. The dithering process introduced here is an extension to what we pre-

sented in Chapter 5 in the sense that it accounts for the multiscale nature of

the transform. The dithering process that we propose adds several interesting

features to our image coder. The dither noise whitens the reconstruction error

and decorrelates it from the input stimuli. Furthermore, integrating the dither

noise in our coder allows a faster recognition of the fine details of the image

during the decoding process. The present chapter goal is twofold. First, we

aim at mimicking as closely as possible the retina for the design of a novel

image coder while keeping encouraging performances. Second, we bring a new

insight concerning the non-deterministic behavior of the retina.

This chapter is organized into two parts. The first part consists of the

Sections 6.1 to 6.3 and presents the design of our bio-inspired scalable image

coder/decoder with a deterministic behavior. This part is organized as follows.
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In Section 6.1, we detail the specification of a novel retina-inspired image

coder. In Section 6.2, we present the decoding pathway. In Section 6.3,

we show the main results that demonstrate the properties of our model. The

second part consists of the Sections 6.4 to 6.5. In Section 6.4, we show how we

integrated the dithering process in our coder/decoder. Then, in Section 6.5,

we detail the perceptual impact of it. Finally, in Section 6.6, we summarize

our main conclusions.

6.1 The coding pathway

The coding pathway is schematized in Figure 6.1. It follows the same archi-

tecture as the Virtual Retina model. However, since we have to define also a

decoding pathway, we need to think about the invertibility of each processing

stage. For this reason some adaptations are required and described in this

section.

6.1.1 The image transform: The outer layers of the

retina

In Virtual Retina, the outer layers were modelled by a non-separable spatio-

temporal filtering. This processing produces responses corresponding to spa-

tial or temporal variations of the signal because it models time-dependent

interactions between two low-pass filters: this is termed center-surround dif-

ferences. This stage has the property that it responds first to low spatial

frequencies and later to higher frequencies. This time-dependent frequency in-

tegration was shown for Virtual Retina [Wohrer 2009b] and it was confirmed

experimentally (see, e.g., [Sterling 1992]). This property is interesting since

a large amount of the total signal energy is contained in the low frequencies

subbands, whereas high frequencies bring further details. This idea already

motivated bit allocation algorithms to concentrate the resources for a good

recovery on lower frequencies.

However, it appears that inverting this non-separable spatio-temporal fil-

tering is a complex problem [Wohrer 2009b, Zhang 2005]. To overcome this

difficulty, we propose to model differently this stage while keeping its essen-

tial features. To do so, we decomposed this process into two steps. The first
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Figure 6.1: (a) Schematic view of the Virtual Retina model proposed by [Wohrer 2009a]. (b)
and (c): Overview of our bio-inspired codec. Given an image, the static DoG-based multi-scale
transform generates the subbands {Fk}. DoG filters are sorted from the lowest frequency-band
filter DoG0 to the highest one DoGN−1. Each subband Fk is delayed using a time-delay
circuit Dtk

, with tk < tk+1. The time-delayed multi-scale output is then made available to the
subsequent coder stages. The final output of the coder is a set of spike series, and the coding
feature adopted will be the spike count nkij(tobs) recorded for each neuron indexed by (kij) at
a given time tobs.
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one considers only center-surround differences in the spatial domain (through

differences of Gaussians) which is justified by the fact that our coder here

gets static images as input. The second step reproduces the time-dependent

frequency integration by the introduction of time-delays.

Center-surround differences in the spatial domain: The DoG model

Neurophysiologic experiments have shown that, as for classical image coders,

the retina encodes the stimulus representation in a transform domain. In

a first step, we will consider the model of the retinal transform defined

in [Van Rullen 2001b] that we detailed in Chapter 2. In this model, the outer

layers cells are implemented by a difference of two Gaussian filters. We recall

that according to this model, the DoG cells can be arranged in a dyadic grid

to sweep all the stimulus spectrum as schematized in Figure 6.2(a). Each

layer k in the grid, is tiled with DoGk cells having a scale k and generating

a transform subband Fk, where σsk+1
= 1

2
σsk

and σck+1
= 1

2
σck

. So, in order

to measure the degree of activation ckij of a given DoGk cell at the location

(i, j) with a scale k, we compute the convolution of the original image f by

the DoGk filter:

ckij =
∞∑

x,y=−∞

DoGk(i − x, j − y) f(x, y). (6.1)

This transform generates a set of (4
3
N2 − 1) coefficients for an N2-sized

image. An example of such a bio-inspired multi-scale decomposition is shown

in Figure 6.2(b). Note here that we added to this bank of filters a Gaussian

low-pass scaling function that represents the state of the OPL filters at the

time origin (see Chapter 3 for more details).

Integrating time dynamics through time-delay circuits

Of course, the model described in (6.1) has no dynamical properties. In the

actual retina, the surround Gσs
in Equation (2.4) appears progressively across

time driving the filter passband from low frequencies to higher ones. Our goal

is to reproduce this phenomenon that we called time-dependent frequency

integration. To do so, we added in the coding pathway of each subband Fk a

time-delay circuit Dtk
. The value of tk is specific to Fk and is an increasing
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(a) (b) (c)

Figure 6.2: (a) Input image cameraman. (b) Example of a dyadic grid of DoG’s used for
the image analysis (from [Van Rullen 2001b]). (c) Example on image (a) of DoG coefficients
generated by the retina model (the subbands are shown in the logarithmic scale)

function of k. The tk delay causes the subband Fk to be transmitted to the

subsequent stages of the coder starting from the time tk. The time-delayed

activation coefficient Iopl
kij (t) computed at the location (i, j) for the scale k at

time t is now defined as follows:

I
opl
kij (t) = ckij 1{t"tk}(t), (6.2)

where 1{t"tk} is the indicator function such that, 1{t"tk}(t) = 0 if t < tk and

1 otherwise. While in our previous work [Masmoudi 2011] tk is increasing

linearly as a function of k, we changed the law governing tk to an exponential

one with a time constant denoted by τ opl [Masmoudi 2012c]. This change is

intended to bring more biological plausibility to our new coder as the time

behavior of the outer layers cells is exponential [Field 1994, Wohrer 2009a].

Indeed, in the actual retina, the passband of the DoG cells runs through the

low frequencies at a fast pace, then decelerates in an exponential fashion. So,

the time-dependent frequency integration is not a linear phenomenon. The

evolution of time delays tk with respect to the scale k, in the present work, is

detailed in Figure 6.3.

6.1.2 The A/D converter: The inner and ganglionic

layers of the retina

The retinal A/D converter is defined based on the processing occurring in the

inner and ganglionic layers, namely a contrast gain control, a non-linear recti-
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Figure 6.3: Time delays Dtk
introduced in the coding process. The time-dependent frequency

integration is reproduced by delaying the coding process start of the subband Fk by tk. The
series tk is represented as a function of the scale k. The progression law is exponential with a
time constant τopl = 65 ms.

fication and a discretization based on LIF neurons (see Chapter 5). A different

treatment will be performed for each delayed subband, and this produces a

natural bit allocation mechanism. Indeed, as each subband Fk is presented at

a different time tk, it will be subject to a transform according to the state of

our dynamic A/D converter at tk.

6.1.2.1 Contrast gain control

The retina adjusts its operational range to match the input stimuli magnitude

range. We described this stage in detail in Chapter 5. Given the scalar

magnitude ckij of the input step current Iopl
kij (t), the contrast gain control is a

non-linear operation on the potential of the bipolar cells. This potential varies

according to both the time and the magnitude value ckij; and will be denoted

by V b
kij(t, ckij). This phenomenon is modelled as described in Equation (5.2).

We recall the model equation, with a slight adaptation made to the notations,

as follows:







cb
dV b

kij(t, ckij)

dt
+ gb(t)V b

kij(t, ckij) = I
opl
kij (t), for t " 0,

gb(t) = Eτb

t
∗ Q(V b

kij(t, ckij)),
(6.3)

where Q(V b
kij) = gb

0+λb
(

V b
kij(t)

)2
and Eτb =

1

τ b
exp

−t

τb , for t " 0. Figure 6.4(a)

recalls the time behavior of V b
kij(t, ckij) for different magnitude values ckij of

I
opl
kij (t).
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(a) (b)

(c) (d)

Figure 6.4: 6.4(a): V b
kij(t) as a function of time for different values of c; 6.4(b): I

g
kij as a

function of time for different values of c; 6.4(c): The functions f
g
tk

that map ckij into I
g
kij for

different values of tk; 6.4(d): The functions fn
tobs

that map Īr
kij into nkij for different values of

tobs

6.1.2.2 Non-linear rectification

In the next processing step, the potential V b
kij(t, ckij) is subject to a non-

linear rectification yielding the so-called ganglionic current I
g
kij(t, ckij). This

phenomenon is modelled as described in Equation (5.3). For a constant scalar

value ckij, and with the notations adopted in this chapter, I
g
kij(t, ckij) is defined

as follows:

I
g
kij(t, ckij) = N

(

Twg ,τg(t) ∗ V b
kij(t, ckij)

)

, for t " 0,

where wg and τ g are constant scalar parameters, Twg ,τg is a linear transient

filter, and N is defined as in Equation (5.4). Figure 6.4(b) recalls the time

behavior of I
g
kij(t, ckij) for different values of ckij.

As the currents ckij are delayed with times {tk}, our goal is to catch the
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instantaneous behavior of the inner layers at these times {tk}. This amounts

to infer the transforms Ig
tk

(ckij) that maps a given scalar magnitude ckij into

a rectified current Īr
kij as the modelled inner layers would generate it at tk.

To do so, we start from the time-varying curves of Ig
kij(t, ckij) in Figure 6.4(b)

and we do a transversal cut at each time tk. We show in Figure 6.4(c) the

resulting maps f
g
tk

such that I
g
kij(tk, ckij) = f

g
tk

(ckij).

As for I
opl
kij (t) (see Equation (6.2)), we introduce the time dimension using

the indicator function 1{t"tk}(t). The final output of this stage is the set of

step functions Ir
kij(t) defined by:

Ir
kij(t) = Īr

kij 1{t"tk}(t), with Īr
kij = f

g
tk

(ckij). (6.4)

6.2 The decoding pathway

The decoding pathway is schematized in Figure 6.1(c). It consists in inverting,

step by step, each coding stage described in Section 6.1. At a given time tobs,

the coding data is the set of (4
3
N2 − 1) spike counts nkij(tobs), this section

describes how we can recover an estimation f̃tobs
of the N2-sized input image

f(x, y). Naturally, the recovered image f̃tobs
(x, y) depends on the time tobs

which ensures time-scalability: the quality of the reconstruction improves

as tobs increases. The ganglionic and inner layers are inverted using look-up

tables constructed off-line and the image is finally recovered by a direct reverse

transform of the outer layers processing.

Recovering the input of the ganglionic layer:

First, given a spike count nkij(tobs), we recover Ĩr
kij(tobs), the estimation of

Ir
kij(tobs). To do so, we compute off-line the look-up table ntobs

(Īr
kij) that

maps the set of current magnitude values Īr
kij into spike counts at a given

observation time tobs (see Figure 6.4(d)). The reverse mapping is done by

a simple interpolation in the reverse-look up table denoted LUT LIF
tobs

. Here

we draw the reader’s attention to the fact that, as the input of the ganglionic

layer is delayed, each coefficient of the subband Fk is decoded according to the

reverse map LUT LIF
tobs−tk

. Obviously, the recovered coefficients do not match

exactly the original ones due to the quantization performed in the LIF’s.
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Recovering the input of the inner layers:

Second, given a rectified current value Ĩr
kij(tobs), we recover Ĩopl

kij (tobs), the es-

timation of Iopl
kij (tobs). In the same way as for the preceding stage, we infer

the reverse “inner layers mapping” through the pre-computed look up table

LUT CG
tobs

. The current intensities Ĩopl
kij (tobs), corresponding to the retinal trans-

form coefficients, are passed to the subsequent retinal transform decoder.

Recovering the input stimulus:

Finally, given the set of (4
3
N2−1) coefficients {Ĩopl

kij (tobs)}, we recover f̃tobs
(x, y),

the estimation of the original image stimulus f(x, y). Though the dot prod-

uct of every pair of DoG filters is approximately equal to 0, the set of filters

considered is not strictly orthonormal. We proved in [Masmoudi 2012a] that

there exists a dual set of vectors enabling an exact reconstruction (see Chap-

ter 3 for more details). Hence, the reconstruction estimate f̃ of the original

input f can be obtained as follows:

f̃tobs
(x, y) =

∑

{kij}

Ĩ
opl
kij (tobs) D̃oGk(i − x, j − y), (6.5)

where {kij} is the set of possible scales and locations in the considered

dyadic grid and D̃oGk are the duals of the DoGk filters obtained as detailed

in [Masmoudi 2012a]. Equation (6.5) defines a progressive reconstruction de-

pending on tobs. This provides our code with an important feature: the scal-

ability. Despite the fact that the input of our coder is a static image, we will

be referring to this feature as time-scalability. Indeed, in our case different

levels of rate and quality levels are achievable thanks to the observation time

tobs.
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6.3 Results: Case of the bio-inspired and

noiseless scalable image coder

We show examples of image reconstruction using our bio-inspired coder at

different times1. Then, we study these results in terms of quality and bit-cost.

Quality is assessed by classical image quality criteria (PSNR and mean

SSIM [Wang 2004c]). The cost is measured by the Shannon entropy H(tobs)

upon the population of {nkij(tobs)}. The entropy computed in bits per pixel

(bpp), for an N2-sized image, is defined by:

H(tobs) =
1

N2

K−1∑

k=0

22kH
({

nskij(tobs), (i, j) ∈ !0, 2k − 1"
2
})

, (6.6)

where K is the number of analyzing subbands. Figure 6.5 shows two examples

of progressive reconstruction obtained with our new coder. Bit-rate/Quality

are computed for each image in terms of the triplet (bit-rate in bpp/ PSNR

quality in dB/ mean SSIM quality). Progressive reconstruction of cameraman

in the left column yields: From top to bottom (0.006 bpp/ 16.02 dB/ 0.48),

(0.077 bpp/ 18.34 dB/ 0.55), (0.23 bpp/ 21.20 dB/ 0.65), and (1.39 bpp/ 26.30

dB/ 0.84). Progressive reconstruction of baboon in the right column yields:

From top to bottom (0.037 bpp/ 16.98 dB/ 0.18), (0.32 bpp/ 19.07 dB/ 0.35),

(0.63 bpp/ 20.33 dB/ 0.49), and (2.24 bpp/ 27.37 dB/ 0.92).

The new concept of time scalability is an interesting feature as it intro-

duces time dynamics in the design of the coder. Figure 6.6 illustrates this

concept. This is a consequence of the mimicking of the actual retina. We

also notice that, as expected, low frequencies are transmitted first to get a

first approximation of the image, then details are added progressively to draw

its contours. The bit-cost of the coded image is slightly high. This can be

explained by the fact that Shannon entropy is not the most relevant metric

in our case as no context is taken into consideration, especially the temporal

context. Indeed, one can easily predict the number of spikes at a given time

t knowing nkij(t − dt). Note also that no compression techniques, such that

1In all experiments, the model parameters are set to biologically realistic values: gb
0 =

8 10−10 S, τ b = 12 10−3 s, λb = 9 10−7, cb = 1.5 10−10 F , v
g
0 = 4 10−3 V , i

g
0 = 15 10−12 A,

wg = 8 10−1, τg = 16 10−3 s; λg = 12 10−9 S, δ = 2 10−3 V, gL = 2 10−9 S, V 0
R = 0 V ,

t0 = 10 10−3s, tK−1 = 38 10−3s, τopl = 65 10−3s.
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Figure 6.5: Progressive image reconstruction of cameraman and baboon using our new bio-
inspired coder. The coded/decoded image is shown at: 20 ms, 30 ms, 40 ms, and 50 ms.
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(a) Bit-rate as a function of time (b) Quality as a function of time

Figure 6.6: Illustration of the concept of time scalability. the test image is cameraman. 6.6(a)
shows the bit-rate variation of the encoded image as a function of the observation time tobs.
The bit-rate is measured by means of the entropy in bits per pixel (bpp). 6.6(b) shows the
reconstruction quality variation as a function of the observation time tobs. The quality is
measured by means of the mean structural similarity index (mean SSIM). The only parameter
that is tuned by the user is tobs. Both quality and cost increase in accordance with tobs. We
talk about time-scalability.

bit-plane coding, are yet employed. Our work aims mainly at setting the basis

of new bio-inspired coding designs.

For the reasons cited above, the performance of our coding scheme in terms

of bit-cost have still to be improved to be competitive with the well estab-

lished JPEG and JPEG 2000 standards. Thus we show no comparison in

this chapter. Though primary results are encouraging, noting that optimizing

the bit-allocation mechanism and exploiting coding techniques as bit-plane

coding [Taubman 2000] would improve considerably the bit-cost. Besides, the

image as reconstructed with our bio-inspired coder shows no ringing and no

block effect as in JPEG. Finally our codec enables scalability in an original

fashion through the introduction of time dynamics within the coding mecha-

nism.

Note also that differentiation in the processing of subbands, introduced

through time-delays in the retinal transform, ensures an implicit bit-allocation

mechanism. In particular the non-linearity in the inner layers stage amplifies

singularities and contours, and these provide crucial information for the anal-

ysis of the image.
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6.4 Introducing the noise in the coder: The

non-subtractive dither hypothesis

In the preceding Sections 6.1 and 6.2, we presented the design of an im-

age coder based on a bio-plausible model of the retina. We especially

emphasized the deep retina layers analogy with A/D converters. De-

spite the fact that our coder takes into account several features of the

actual retina as its time-dependent behavior, still it follows a determin-

istic law. Though, the actual neural code of the retina is clearly non-

deterministic [de Ruyter van Steveninck 1997, Shadlen 1998]. Thus, in this

section, we tackle the issue of the coding non-determinism in the retina. As

in Chapter 5, we make the proposal that the processing stages prior to the

ganglionic layer yield a special type of noise: the dither noise. We then expe-

rience the perceptual impact of such a noise in our coder and give an original

and plausible interpretation of its role in the stimuli coding process.

6.4.1 Study context

We introduce in this section a multiscale dithering process that will be inte-

grated in our bio-inspired image coder. Indeed, the coder that we designed

has a multiscale architecture. So that the dither noise to be introduced

must take into consideration the different scales of the retina model cells

used for the image analysis. We will assume that the processing stages of

the retina that precede the ganglionic layer introduce a noise. As this noise

is prior to the quantization done in the ganglionic layer, it is referred to

as a dither noise. Furthermore, this dither noise takes into consideration

the multiscale architecture of the retina model. So that, we will be talking

about a multiscale dithering. The present work extends our previous efforts

in [Masmoudi 2010a, Masmoudi 2010c] to the multiscale case.

Few techniques referred to as multiscale dithering have been described

in the literature. For example, in [Wang 2004a] the authors considered

a hierarchical wavelet transform. The sibling subbands, id est lying in

the same level, are decorrelated by applying a series of rotations. The

transform applied on the subbands is loosely referred to as dithering because
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it introduces a change on the wavelet coefficients prior to quantization.

The resulting image is meant to reduce entropy while keeping the same

perceptual quality. Another example is given in [Katsavounidis 1997]. The

authors used an image hierarchical quadtree representation and employ an

error diffusion algorithm to get a binary halftone image. The distribution

of binary pixels over the image space gives the impression of a multi-gray

level image while using only two quantization levels. Although interesting,

these state-of-the-art algorithms have one major drawback regarding the

goals of our present work. Indeed, the techniques described rely on a totally

deterministic algorithm. No random behavior is introduced during the coding

process. Whereas in our case, we need to consider a coding process that

may lead to different codes across trials for a single image. Besides the two

algorithms are iterative and time consuming and this is contradicts the speed

of processing in the retina.

6.4.2 Introducing the multiscale NSD

In order to define the dither noise that corrupts the current Ir
kij (cf. Equa-

tion (6.4)) at the input of the ganglionic layer, we reconsider the ganglion cell

as a noisy leaky integrate and fire neuron (nLIF), that behaves according to

Equation (5.6) that we recall in the following:

cl dVkij(t)

dt
+ glVkij(t) = Ir

kij(t) + ηl
kij, for t ∈ [t

(l)
kij, t

(l+1)
kij ],

The choice of the noise ηl
kij distribution model to apply must obey two con-

straints: the biological plausibility and the mathematical constraints that

provide our coder with interesting perceptual properties.

First, let us consider the biological plausibility constraint. Our aim is

to mimic as closely as possible the actual retina behavior while modelling

the multiscale dithering ηl
kij. So that, one must consider the nature of the

dependency (if any) between the scale and the noise strength according to

neurophysiologists observations. In this context, the authors in [Kier 1995]

stated that: “The main difference between small and large cells is that the

larger ones have lower peak sensitivity”. This means that the large retina
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cells have a low reactivity to stimulus variations and thus are poorly affected

by noise. On the contrary, small cells are extremely sensitive to stimulus

variations and thus could be highly affected by noise. Our aim is to reproduce

this phenomenon of noise strength variability as a function of retina cells

scale. So that, we will corrupt the currents (Ir
kij) at the input of the retina

ganglionic layer with noise coefficients ηl
kij, such that the dynamic range of

this noise distribution depends on the cells scale k. The larger the subband Fk

cells are, the lower the noise dynamic range is. Thus, we will have to generate

K noise subbands, with an increasing dynamic range, to corrupt K subbands

of rectified currents Ir
kij.

Second, let us consider the mathematical constraint. Indeed we must

consider the statistical properties that have to be verified by the added noise

to provide our coder with interesting perceptual features. To this end, we

refer to theorem 1 (Chapter 5). Thus, we suppose that (i) ηl
kij has a triangular

probability distribution function with no loss of biological plausibility, and

(ii) that the dynamic range of ηl
kij is twice wider than the quantization step

of the considered ganglion cell. Having these two conditions we verify the

theorem. In this way, we identify the retinal noise ηl
kij to a dither signal. As

we do not subtract the dither signal in the decoding process, our coder is

said to be an NSD [Wannamaker 2000, Wannamaker 2004].

According to the discussion above we will consider that the noise ηl
kij

dynamic range (i) is an increasing function of the scale k of the considered

DoG retina cell, and (ii) is twice the width of the quantization step of the

sussequent ganglion cell. Here we remind the reader that the ganglion cells

are modelled, in our coder, by LIF neurons that are dynamic quantizers.

Indeed the ganglionic layer evolves from a coarse to a fine quantizer. The

quantization step of a LIF neuron will be denoted Qlif . Obviously, Qlif is

a decreasing function of the observation time tobs as shown in Figure 6.7.

Furthermore, according to our original retina transform (cf. Section 6.1.1),

the coding process of each subband Fk is delayed in time by tk. So that,

the ganglion cells will have different levels of progression at a given time tobs

depending on the subband scale k. We set the dithering parameters for an

optimal observation time t∗
obs. So that, each subband will be corrupted by a
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Figure 6.7: Estimation of the LIF neuron quantization step Qlif as a function of the observation
time tobs. The abscissa shows the observation times tobs between 0 ms and 100 ms. The
ordinate axis shows the mean quantization step Qlif estimated at a given tobs in Amperes.

noise subband having a triangular pdf which dynamic range ∆k depends on

the scale k such that: 





Qlif (t∗
obs − tk) = Q∗

k

∆k = 2 Q∗
k

(6.7)

An example of a multiscale dither noise thus defined is given in Figure 6.8.

The test image is cameraman and the optimal observation time chosen is

t∗
obs = 52 ms. The rectified currents Ir

kij in each subband of scale k are subject

to a dither noise ηl
kij that has a triangular distribution with a dynamic

range ∆k. We can notice that large cells in the low frequency subbands

are poorly corrupted with noise while tight cells in the high frequency

subbands are highly corrupted with noise. This is due to the fact that

∆k+1 > ∆k, ∀0 ! k < K − 2. Interestingly, we remark that the time delays

introduced in our model of the retinal transform allow us to implicitly satisfy

the constraint of noise dynamic range ∆k being an increasing function of the

cells scale k.

Adding such a dither noise to the input of the ganglionic layer Ir
kij induces

interesting features. As specified in the theorem 1 (Chapter 5), one important

feature is the decorrelation between the reconstruction error at the output

of the de-quantizer and the original signal at the input of the corresponding

quantizer. The results of the theorem were demonstrated for uniform scalar

quantizers. Whereas in our coder the ganglionic layer is not strictly a scalar
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(a) Original rectified coefficients (b) Dithered rectified coefficients

Figure 6.8: Example of dither noise introduced at the input of the ganglionic layer. The test
image is cameraman. 6.8(a) shows the noiseless rectified coefficients (Ir

kij). 6.8(b) shows the

rectified coefficients (Ir
kij +ηl

kij) with the dither noise ηl
kij added. The noise parameters are set

for the optimal observation time is t∗
obs = 52ms. The dither noise has a triangular distribution

with a dynamic range ∆k that depends on the subband Fk considered. The larger the subband
cells are, the lower the noise dynamic range is. The high frequencies are more corrupted with
noise than the low frequencies.

quantizer but rather an approximation of it and, furthermore, the bio-inspired

A/D converter that we designed is not uniform due to the preceding gain con-

trol and non-linear rectification stages. So that, we must verify the relevance

of our approach. As the dithering process occurs in the DoG transform do-

main, we measure the error/input correlation in the transform domain. The

error that we will denote by εkij is defined, in this case, as the difference be-

tween the output of the OPL layer Iopl
kij and the estimation of it after decoding

Ĩopl
kij , such that:

εkij = Iopl
kij − Ĩopl

kij (6.8)

We can experimentally verify that, in fact, εkij and the input stimuli Iopl
kij are

decorrelated. This feature is clearly demonstrated when computing the cross

correlation between εkij and Iopl
kij as shown in Figures 6.9(a) and 6.9(b) for the

test image cameraman and the highest frequency subband FK−1. Compara-

ble observations are made on the other subbands. Figure 6.9(a) shows the

cross-correlation between εkij and Iopl
kij measured for the noiseless case. The

correlation is high especially when the spatial lag is small. 6.9(b) shows the

same cross-correlation measures for the dithered case. We observe a very high

decrease in the correlation even for the small spatial lags cases. Then, we can

conclude that the signals εkij and Iopl
kij are clearly decorrelated.
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Another perceptually important feature that is induced by the dithering

process is the error whitening. We verify also this feature in our case. As

shown in Figures 6.9(c), the spectrum of the error obtained when using

our coder with no addition of noise is non-uniform. This denotes strong

geometric correlations in the error image which yields annoying artefacts.

On the contrary, we notice in Figure 6.9(d) that the error spectrum is

equally dispatched in the Fourier domain if we add a dither noise. Thus our

new dithered scalable image coder gained interesting features through the

integration of a dithering process.

The whitening and de-correlation features yield a greater reconstruction

error in terms of mean squared error [Wannamaker 2000]. Though, the error

whitening and decorrelation features acquired in the transform domain are

perceptually important. Indeed, a strong correlation between the coding error

and the original signal implies annoying artefacts. Besides the error whitening

is important because all frequencies are affected by the same noise. The

perceptual impact of dithering on the final image reconstruction f̃tobs
is shown

in the next section.

6.5 Results: Case of the bio-inspired and

dithered scalable image coder

We show in this section the perceptual impact of the dithering on the recon-

structed images using our decoder. Our experiments demonstrate the ability

of the dither noise to accelerate the recognition of the image details and sin-

gularities during the decoding process.

A first example is given in Figure 6.10. The left column shows the evolution

of the reconstruction f̃tobs
with increasing times tobs, in the case of noiseless

coding. The right column shows the evolution of the reconstruction f̃tobs

with increasing times tobs, in the case of addition of a dither noise to the

input of the ganglionic layer. The central column shows a filtered version

of cameraman. Cameraman is sharpened to enhance the image details. The

comparison between the noiseless case reconstruction (on the left) and the

dithered reconstruction (on the right) demonstrates perceptual importance
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(a) Noiseless case (b) Dithered case

(c) Noiseless case (d) Dithered case

Figure 6.9: Error whitening and decorrelation in the DoG transform domain induced by the dither
noise addition. The results are shown for the highest frequency subband BK−1, but comparable
observations are made on the other subbands. The dither noise is introduced at the input of the
ganglionic layer. The dither noise parameters are set for the optimal observation time is t∗

obs =

52ms. 6.9(a) (respectively 6.9(b)) shows the cross-correlation between εkij and I
opl
kij measured

for the noiseless (resp. dithered) case. We observe a very high decrease in the correlation
induced by the noise. The error is decorrelated from the input. 6.9(c) (respectively 6.9(d))
shows the amplitude spectrum of εkij computed for the noiseless (resp. dithered) case. We
observe a wide spreading of the error spectrum in Fourier domain induced by the noise. The
error is whitened.
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of noise in the image coding process in the retina. With the addition of

noise, details of cameraman are well rendered “before date”. For example,

the hand of cameraman and the tower in the background appear since tobs =

44ms for the dithered case while still invisible in the noiseless case at the

same observation time. We can also notice that the horizontal stripes in the

background, the grass details, the pant folds, and the hand are well rendered

since tobs = 48ms. On the contrary these details are still invisible or highly

blurry in the noiseless case at the same observation time. Finally, at the

optimal observation tobs = t∗
obs = 52ms all the fine details of the image,

including the coat and the background details, are clearly distinguished in the

dithered case while still blurry or invisible in the noiseless case.

A second example is given in Figure 6.11 for the baboon test image. This

image is rich of details and singularities and thus particularly challenging.

Though, our dithered coder still renders the image details “before date in

this case” (with another adequate parametrization for the dither noise). As

for the preceding example, the left image shows the reconstruction f̃tobs
in

the case of noiseless coding. The right image shows the reconstruction f̃tobs

in the case of addition of a dither noise to the input of the ganglionic layer.

The central image is a sharpened version of baboon. The observation time

shown in this figure is also the optimal observation tobs = t∗
obs = 44 ms. The

comparison between the noiseless case reconstruction (on the left) and the

dithered reconstruction (on the right) confirms the observations made in the

first example. The dither noise helps the recognition of fine details “before

date”. While in the noiseless case face and bear details of baboon are still

blurry, these details are well rendered in the dithered reconstruction case.

On one hand, the integration of a dither noise in the coding pro-

cess yield a greater reconstruction error in terms of mean squared er-

ror [Wannamaker 2000]. Besides, as the dither noise is a disordered signal, it

also increases the entropy of the image code. On the other hand, the error

whitening and de-correlation features acquired by our system are perceptually

important. This is a crucial point because our current results may prove that

the retina conveys a code that is optimized for the tasks to be performed by the

visual cortex as categorization. While the rate/distortion trade-off remains

an important goal for a coding scheme it may not be the central performance
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Figure 6.10: Perceptual impact of the multiscale dithering on the reconstruction of cameraman.
The observation times tobs are shown on the left. From top to bottom, tobs take successively
the values of: 40 ms, 44 ms, 48 ms, and 52 ms. The observation time shown in this figure is
also the optimal observation tobs = t∗

obs = 44 ms.
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Ditherless reconstruction Sharpened baboon Dithered reconstruction
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Figure 6.11: Perceptual impact of the multiscale dithering on the reconstruction of baboon.
The observation time shown in this figure is also the optimal observation tobs = t∗

obs = 44 ms.

criterion for the retina.

6.6 Conclusion

The work that we presented brings two main contributions. As a first step, we

proposed a bio-inspired codec for static images with a deterministic behavior.

The image coder is based on two stages. The first stage is the image transform

as performed by the outer layers of the retina. In order to integrate time

dynamics, we added to this transform time delays that are subband specific

so that, each subband is processed differently. The second stage is a succession

of two dynamic processing steps mimicking the deep retina layers behavior.

These latter perform an A/D conversion and generate a spike-based, invertible,

retinal code for the input image in an original fashion.

In a second step, we investigated the issue of non-determinism in the

retina neural code. We proposed to model the retinal noise by a multiscale

dither signal with specific statistical properties. The dithering process that

we proposed whitens the reconstruction error and decorrelates it from the

input stimuli. Besides, from a perceptual point of view, our coder allows an

earlier recognition of the image details and singularities during the decoding

process.

In conclusion, our coding scheme offers interesting features such as (i)

time-scalability, as the choice of the observation time of our codec enables
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different reconstruction qualities, and (ii) bit-allocation, as each subband of

the image transform is separately mapped according to the corresponding

state of the inner layers. In addition, when integrating a dithering process our

coder gained interesting perceptual features. These features, if the dithering

hypothesis is confirmed, help the visual cortex recognize the fine details of

the image. This latter point is interesting because it may prove that the

retina conveys a code that is optimized for the tasks to be performed by the

visual cortex. Interestingly, our dithering hypothesis found an echo recently in

the computational neurosciences community [Vidne 2012]. We are convinced

that further neurophysiologic investigations may also confirm the relevance of

dithering in the retinal processing.

In terms of rate/distortion, the results accomplished by our coding scheme

are encouraging. Though the rate/distortion performance is not the primary

goal of this work, our coder could still be improved to be competitive with

the well established JPEG and JPEG 2000 standards. Optimizing techniques

as bit-plane coding are to be investigated.

This work is at the crossroads of diverse hot topics in the fields of neuro-

sciences, brain-machine interfaces, and signal processing and tries to bridge

the gap between these different domains towards the conception of new bio-

logically inspired coders.





Chapter 7

DISCUSSION AND

PERSPECTIVES

The work that we presented in this manuscript had the aim of conceiving

novel image coders inspired from the retina. We organized our effort into

two parts. In the first part of the manuscript, we assumed that the rank

order is the coding feature within the retinal neural code. We started from

the classical the retina model specified in [Van Rullen 2001b]. We enhanced

this model and combined it with data compression techniques to get a first

bio-inspired image coder/decoder. This coder/decoder has several interesting

features, among them the scalability. In addition to [Van Rullen 2001b], the

second part of my manuscript relied also on a retina simulation software

called Virtual Retina [Wohrer 2009a]. This simulator specification helped us

enhance our first coder/decoder by taking into account several supplemental

retinal processing stages. The bio-inspired coder/decoder that we devised

in this part is an enhancement of the first one in the sense that we lead

our effort towards more biological plausibility. Our coder/decoder is time

scalable, where the time scalability designates the ability of tuning the rate

and quality through the choice of the reconstruction time. We kept the

design of our coder/decoder as close as possible to the biological reality, while

keeping an interesting rate/distortion trade-off.

Regarding the first part of this work, we proposed an original and

exact decoding procedure for the retina model considered. Our contribution

encompassed a theoretical and a technical aspect. Regarding the theoretical

aspect, (i) we proved that the classical bio-inspired transform used to model

the retina is non-invertible as it is, and (ii) we gave an original mathematical

proof that this transform if augmented with an adequate scaling function is a
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frame. We then defined the corresponding dual frame that is necessary for the

exact image reconstruction. Regarding the technical aspect, we overcame the

problem of memory overhead encountered while computing this dual frame

using an original recursive out-of-core blockwise algorithm.

Then, we have proposed a new bio-inspired coder/decoder for static im-

ages. First, the image is converted into a ROC code, then a stack run coder

is applied, followed by a first order arithmetic compressor. The performances

of this coding scheme were tested against well established JPEG standards,

and we obtain encouraging results for low bandwidth transmissions, especially

when dealing with noisy data. This compression scheme also offers interesting

features such as scalability and reasonable complexity. Though, limitations

have been observed in terms of rate/quality, when compared to JPEG2000 for

noiseless data transmissions.

Regarding the second part of this work, we first presented a bio-

inspired A/D converter mapping the retina behavior. Our A/D converter

is dynamic and implicitly enables scalability. Interestingly, our quantizer

evolves from uniform to non-uniform, but in contradiction with traditional

Lloyd-Max quantizers, as it renders high magnitudes precisely while it maps

low magnitudes coarsely.

We proposed a bio-inspired coder/decoder for static images with a deter-

ministic behavior. Our image coder/decoder is based on two stages. The first

stage is the image transform as performed by the outer layers of the retina.

In order to integrate time dynamics, we added to this transform time delays

that are subband specific so that, each subband is processed differently. The

second stage is our A/D converter previously designed.

We investigated the issue of non-determinism in the retina neural code.

We emitted a biologically plausible hypothesis that supposes the retinal noise

is a dither signal. We do not claim that the exactness of our hypothesis,

but still it is seducing as it enables the noise whitening and de-correlation

features. In order to adapt this hypothesis to our coder/decoder, we modelled

the retinal noise by a multiscale dither signal. The dithering process that

we proposed (i) whitens the reconstruction error and (ii) decorrelates it from

the analysis coefficients of the input stimuli. Besides, from a perceptual

point of view, our coder allows an earlier recognition of the image details and
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singularities during the decoding process.

As conclusion, our novel coder/decoder scheme offers interesting features

such as (i) time-scalability, and (ii) bit-allocation. In addition, when inte-

grating a dithering process our coder gained interesting perceptual features.

These features, if the dithering hypothesis is confirmed, help the visual cortex

recognize the fine details of the image.

Regarding the future work and perspectives, several aspects are to

be extended and enhanced. One possible extension could be the addition of

several mechanisms of the retinal processing that are not taken into account in

the current coder/decoder. The lateral inhibitory mechanism is an example

of features that could be integrated in an upcoming effort. A long term

goal would be to infer, starting from a sufficiently realistic model, a decoding

algorithm that could decipher actual neural recordings.

One perspective concerns the coding features used in our different schemes,

namely rank order or spike counts. Several coding models relying on alterna-

tive coding features. For example, it appears that bursts or synchronies are

features that could encode for the stimulus. The goal is then to use these

models in order to reproduce some spiking pattern as observed in real cell

recordings, and establish with more accuracy how spikes are triggered by a

stimulus then decoded by the nervous system [Rieke 1997, Lesica 2004].

In terms of rate/distortion, the results accomplished by our coding scheme

are encouraging. Though the rate/distortion performance is not the primary

goal of this work, our coder could still be improved to be competitive with

the well established JPEG and JPEG 2000 standards. Optimizing techniques

as bit-plane coding are to be investigated.

Regarding our dithering hypothesis, we think that the neurosciences com-

munity could conduct interesting investigations. Indeed, this hypothesis found

an echo recently in the computational neurosciences community [Vidne 2012].

We are convinced that further neurophysiologic experimentations may confirm

the relevance of dithering in the retinal processing.

One more perspective concerns the design of a novel framework to capture

and represent the retinal code at a rate that we expect to be below the Nyquist

rate. This framework would rely on the theory of compressive sensing that
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employs combined and non-adaptive linear projections to encode the signal.

In a compressive sensing system, the unknown is a highly sparse signal, and

given the adequate restrictions could be recovered exactly though coded below

the Nyquist rate [Candès 2008]. Both compressive sensing systems and rank

order coders suppose that the signals transmitted are highly sparse. So that we

think that an analogy is to be made between the issues underlying the retinal

coding and the tools developed in the compressive sensing literature. This

work would bring a new insight on the coding and decoding processes within

the retina and might answer to the question: Is the retina is a compressive

sensing system?

One last perspective concerns our retina inspired A/D converter. Indeed,

our A/D converter mimics the retina neurons behavior. Interestingly,

recent efforts try to raise analogies between some neuron models and Σ-∆

modulators [Rastogi 2011]. These Σ-∆ modulators have several applications

in particular in brain machine interfaces [Moxon 2000]. Yet, Σ-∆ modulators

are already applied in neural prosthetics. Thus we think that our A/D

converter could be extended and highly improved to be incorporated in the

design of retinal prosthetics. Therefore this issue is of particular importance.

This work is at the crossroads of diverse hot topics in the fields of neuro-

sciences, brain-machine interfaces, and signal processing and tries to bridge

the gap between these different domains towards the conception of new bio-

logically inspired coders. Thus we hope that this manuscript would be helpful

for researchers from the different cited domains.



Appendix A

AN OUT-OF-CORE

ALGORITHM FOR

HIGH-DIMENSION MATRIX

INVERSION

We give in the following a pseudo-code description of the out-of-core matrix in-

version evoked in Chapter 3. This algorithm is not specific to the matrices used

in this work and could be used for any other invertible high-dimensionality

matrix. The inversion of a high-dimension matrix can be achieved bloc by

bloc. Each bloc is stored separately on disk. The inversion is then performed

using a recursive algorithm that relies on the blockwise matrix inversion for-

mula that follows:




A B

C D





−1

=




A−1 + A−1 B Q−1 C A−1 −A−1 B Q−1

−Q−1 C A−1 Q−1



 ,

where Q is the Schur complement of A. Inverting a matrix amounts to the

inversion of two matrices that are 4 times smaller. The inversion consists then

in subdividing the problem by a factor 4 at each recursion level until we reach

a single bloc problem. This algorithm requires a set of out-of-core blockwise

matrix routines for multiplication, subtraction and addition and also other

utility functions. All of these functions calls are marked in dark green in the

code that follows and their names are self-explanatory. It is also to be noted

that the algorithm that we implemented is multi-threaded to accelerate the

computation but this aspect is discarded in the pseudo-code below:
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void computeBlockWiseInversion (baseNameMatrixFile,...

xLimits, yLimits, baseNameInverseMatrixFile, recursionLevel)

2:

{//Initialize boundary variables}

4:

xBegin ← xLimits[1];

6: xEnd ← xLimits[2];

yBegin ← yLimits[1];

8: yEnd ← yLimits[2];

{//Treat the single bloc case: The recursion end-point}

10: if (getNumberOfColumns(baseNameMatrixFile)== 1 &&...

getNumberOfLines(baseNameMatrixFile)== 1) then

bloc ← computeGaussJordanElimination(baseNameMatrixFile)

12: store(baseNameInverseMatrixFile, bloc)

{//Treat the multi bloc case: The recursion must go on}

14: else

numberOfLinesInSubBloc ← round((xEnd-xBegin+1) / 2)

16: numberOfColumnsInSubBloc ← round((yEnd-yBegin+1) / 2)

xLimitsOfA ← {xBegin, xBegin+numberOfLinesInSubBloc-1}

18: yLimitsOfA ← {yBegin, yBegin+numberOfColumnsInSubBloc-1}

xLimitsOfB ← {xBegin, xBegin+numberOfLinesInSubBloc-1}

20: yLimitsOfB ← {yBegin+numberOfColumnsInSubBloc, yEnd-1}

xLimitsOfC ← {xBegin+numberOfLinesInSubBloc, xEnd}

22: yLimitsOfC ← {yBegin, yBegin+numberOfColumnsInSubBloc-1}

xLimitsOfD ← {xBegin+numberOfLinesInSubBloc, xEnd}

24: yLimitsOfD ← {yBegin+numberOfColumnsInSubBloc, yEnd}

computeBlockWiseInversion (baseNameMatrixFile, xLimitsOfA,

yLimitsOfA, baseNameInverseOfA, recursionLevel+1) {//A−1}

26: auxilaryVariableName ← concatenateStrings(baseNameSchurA,

"Aux1")

multiplyBlockwiseMatrices(baseNameInverseOfA, 1 nbrLignesSous-

Bloc, 1 nbrColonnesSousBloc, baseNameMatrixFile, xLimitsOfB,

yLimitsOfB, auxilaryVariableName) {//D − CA−1B}
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28: auxilaryVariableName2 ← concatenateStrings(baseNameSchurA,

"Aux2")

multiplyBlockwiseMatrices ( baseNameMatrixFile, indicesCII, in-

dicesCJJ,...auxilaryVariableName1, 1 nbrLignesSousBloc, 1 nbrColon-

nesSousBloc,...auxilaryVariableName2);

30: delete(concatenateStrings(auxilaryVariableName1, "*")

substractBlockWiseMatrices( baseNameMatrixFile, indicesDII, indices-

DJJ, auxilaryVariableName2, 1 nbrLignesSousBloc, 1 nbrColonnes-

SousBloc, baseNameSchurA);

32: delete(concatenateStrings(auxilaryVariableName2, "*")

baseNameSchurAinv ← concatenateStrings (baseNameInverseMatrix-

File, "SchurAinverseRecursionLevel", itoa(recursionLevel+1))

34: computeBlockWiseInversion( baseNameSchurA, 1 nbrLignesSous-

Bloc, 1 nbrColonnesSousBloc, baseNameSchurAinv, recursionLevel+1)

{//System command}

36: command = ’del ’, baseNameSchurA, ’*’;

system(command);

38: for ii=indicesDII(1):indicesDII(2) do

for jj=indicesDJJ(1):indicesDJJ(2) do

40: nomBlocInverse = baseNameInverseMatrixFile, num2str(ii),

num2str(jj), ’.mat’;

nomBlocSchurAinvIIJJ = baseNameSchurAinv, num2str(ii-

indicesDII(1)+1), num2str(jj-indicesDJJ(1)+1), ’.mat’;

42: load(nomBlocSchurAinvIIJJ)

save(nomBlocInverse, ’blocIIJJ’)

44: auxilaryVariableName1 = baseNameInverseMatrixFile, ’AuxB1’;

multiplyBlockwiseMatrices( nomBaseFichiersMatrice, indicesBII, in-

dicesBJJ,...baseNameSchurAinv, 1 nbrLignesSousBloc, 1 nbrColonnes-

SousBloc,...auxilaryVariableName1);

46: auxilaryVariableName2 = baseNameInverseMatrixFile, ’AuxB2’;

multiplyBlockwiseMatrices( baseNameInverseOfA, 1 nbrLignesSous-

Bloc, 1 nbrColonnesSousBloc,...auxilaryVariableName1, 1 nbrLignes-

SousBloc, 1 nbrColonnesSousBloc,...auxilaryVariableName2);

48: command = ’del ’, auxilaryVariableName1, ’*’;
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system(command);

50: for ii=indicesBII(1):indicesBII(2) do

for jj=indicesBJJ(1):indicesBJJ(2) do

52: nomBlocInverse = baseNameInverseMatrixFile, num2str(ii),

num2str(jj), ’.mat’;

nomBlocAuxiliaire2IIJJ = auxilaryVariableName2, num2str(ii-

indicesBII(1)+1), num2str(jj-indicesBJJ(1)+1), ’.mat’;

54: load(nomBlocAuxiliaire2IIJJ)

blocIIJJ = -blocIIJJ;

56: save(nomBlocInverse, ’blocIIJJ’)

auxilaryVariableName1 = baseNameInverseMatrixFile, ’AuxA1’;

58: multiplyBlockwiseMatrices( nomBaseFichiersMatrice, indicesCII, in-

dicesCJJ,...baseNameInverseOfA, 1 nbrLignesSousBloc, 1 nbrColonnes-

SousBloc,...auxilaryVariableName1);

auxilaryVariableName3 = baseNameInverseMatrixFile, ’AuxA4’;

60: multiplyBlockwiseMatrices( auxilaryVariableName2, 1 nbrLignesSous-

Bloc, 1 nbrColonnesSousBloc,...auxilaryVariableName1, 1 nbrLignes-

SousBloc, 1 nbrColonnesSousBloc,...auxilaryVariableName3);

command = ’del ’, auxilaryVariableName2, ’*’;

62: system(command);

addBlockwiseMatrices( auxilaryVariableName3, 1 nbrLignesSousBloc,

1 nbrColonnesSousBloc,...baseNameInverseOfA, 1 nbrLignesSousBloc,

1 nbrColonnesSousBloc,...baseNameInverseMatrixFile);

64: command = ’del ’, auxilaryVariableName3, ’*’;

system(command);

66: auxilaryVariableName2 ← baseNameInverseMatrixFile, ’AuxC1’;

multiplyBlockwiseMatrices( baseNameSchurAinv, 1 nbrLignesSous-

Bloc, 1 nbrColonnesSousBloc,...auxilaryVariableName1, 1 nbrLignes-

SousBloc, 1 nbrColonnesSousBloc,...auxilaryVariableName2);

68: for ii=indicesCII(1):indicesCII(2) do

for jj=indicesCJJ(1):indicesCJJ(2) do

70: nomBlocInverse = baseNameInverseMatrixFile, num2str(ii),

num2str(jj), ’.mat’;
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nomBlocAuxiliaire2IIJJ = auxilaryVariableName2, num2str(ii-

indicesCII(1)+1), num2str(jj-indicesCJJ(1)+1), ’.mat’;

72: load(nomBlocAuxiliaire2IIJJ)

blocIIJJ = -blocIIJJ;

74: save(nomBlocInverse, ’blocIIJJ’)

delete(concatenateStrings(auxilaryVariableName1, "*")

76: delete(concatenateStrings(auxilaryVariableName2, "*")

delete(concatenateStrings(baseNameSchurAinv, "*")

78: delete(concatenateStrings(baseNameInverseOfA, "*")
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