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Abstract

The brain is the most complex system in the known universe. Its nested structure with

small-world properties determines its function and behavior. The analysis of its structure

requires sophisticated mathematical and statistical techniques. In this thesis we shed new

light on neural networks, attacking the problem from different points of view, in the spirit

of the Theory of Complexity and in terms of their information processing capabilities. In

particular, we quantify the Fisher information of the system, which is a measure of its

encoding capability. The first technique developed in this work is the mean-field theory

of rate and FitzHugh-Nagumo networks without correlations in the thermodynamic limit,

through both mathematical and numerical analysis. The second technique, the Mayer’s

cluster expansion, is taken from the physics of plasma, and allows us to determine nu-

merically the finite size effects of rate neurons, as well as the relationship of the Fisher

information to the size of the network for independent Brownian motions. The third tech-

nique is a perturbative expansion, which allows us to determine the correlation structure

of the rate network for a variety of different types of connectivity matrices and for dif-

ferent values of the correlation between the sources of randomness in the system. With

this method we can also quantify numerically the Fisher information not only as a func-

tion of the network size, but also for different correlation structures of the system. The

fourth technique is a slightly different type of perturbative expansion, with which we can

study the behavior of completely generic connectivity matrices with random topologies.

Moreover this method provides an analytic formula for the Fisher information, which is

x



in qualitative agreement with the other results in this thesis. Finally, the fifth technique

is purely numerical, and uses an Expectation-Maximization algorithm and Monte Carlo

integration in order to evaluate the Fisher information of the FitzHugh-Nagumo network.

In summary, this thesis provides an analysis of the dynamics and the correlation structure

of the neural networks, confirms this through numerical simulation and makes two key

counterintuitive predictions. The first is the formation of a perfect correlation between the

neurons for particular values of the parameters of the system, a phenomenon that we term

stochastic synchronization. The second, which is somewhat contrary to received opinion,

is the explosion of the Fisher information and therefore of the encoding capability of the

network for highly correlated neurons. The techniques developed in this thesis can be used

also for a complete quantification of the information processing capabilities of the network

in terms of information storage, transmission and modification, but this would need to be

performed in the future.

Keywords: Computational Neuroscience, Stochastic Neural Networks, Theory of Com-

plexity, Finite Size Effects, Connectome, Fisher Information.
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Résumé (en Français)

Ce travail a été développé dans le cadre du projet européen FACETS-ITN, dans le do-

maine des Neurosciences Computationnelles. Son but est d’améliorer la compréhension

des réseaux de neurones stochastiques de taille finie, pour des sources corrélées à carac-

tère aléatoire et pour des matrices de connectivité biologiquement réalistes. Ce résultat

est obtenu par l’analyse de la matrice de corrélation du réseau et la quantification de la

capacité de codage du système en termes de son information de Fisher. Les méthodes

comprennent diverses techniques mathématiques, statistiques et numériques, dont cer-

taines ont été importés d’autres domaines scientifiques, comme la physique et la théorie

de l’estimation. Ce travail étend de précédents résultats fondées sur des hypothèses sim-

plifiées qui ne sont pas réaliste d’un point de vue biologique et qui peuvent être pertinents

pour la compréhension des principes de travail liés cerveau. De plus, ce travail fournit les

outils nécessaire à une analyse complète de la capacité de traitement de l’information des

réseaux de neurones, qui sont toujours manquante dans la communauté scientifique.

Le Chapitre 1 présente la structure et les fonctions du cerveau, en particulier celle du

cortex cérébral, en mettant l’accent sur sa structure imbriquée. Nous expliquons com-

ment a évolué le cerveau au cours de l’histoire, selon la théorie de P. D. MacLean, ainsi

que ses aires les plus importants. Nous clarifions aussi le rôle des différentes parties

du cerveau, parmi l’incroyable collection de fonctions cognitives de l’être humain. Nous

mettons l’accent sur la partie la plus externe du cerveau, appelée le cortex cérébral, en

xiv



décrivant sa subdivision en lobes, aires sensorielles primaires et uni modale ainsi qu’en

aires associatives multimodales. Pour conclure, nous soulignons l’existence d’une struc-

ture imbriquée des connexions synaptiques dans chacune de ces aires, qui sera décrite

mathématiquement dans le Chapitre 6.

Le Chapitre 2 explique deux points de vue différents qui sont couramment utilisés pour

décrire les réseaux de neurones, à savoir la Théorie de la Complexité et l’approche compu-

tationnelle. La Théorie de la Complexité concerne les systèmes constitués de nombreuses

particules qui interagissent pour d’atteindre un but. C’est donc est un candidat idéal

pour décrire l’interaction entre les neurones du cerveau. En particulier, selon la Théorie

de la Complexité, il est plus pertinent d’étudier le comportement du cerveau en utilisant

des connexions synaptiques très réalistes plutôt que d’utiliser des modèles réalistes de la

soma des neurones. Pour cette raison, nous mettons l’accent sur la nécessité de développer

des modèles mathématiques de réseaux de neurones avec des matrices de connectivité bi-

ologiquement réalistes. Ce problème est abordé dans les Chapitres 5 et 6. Dans le Chapitre

2, nous expliquons egalement la différence entre le calcul et le traitement de l’information,

en montrant comment le cerveau accomplit les deux à la fois. Dans le détail, nous allons

présenter les différents types de calculs, c’est à dire quantique et classique, déterministe

et probabiliste, numérique et analogique, et sémantique et non-sémantique, en expliquant

leurs intérêts dans le contexte du cerveau. Nous présenterons également les différentes

notions de l’information, en particulier l’information de Shannon, l’information de Fisher

et l’information sémantique, avec un accent sur le second type d’information. L’information

de Fisher du système, permettant de quantifier la capacité de codage du réseau de neu-

rones, est l’un des principaux sujets de cette thèse, et sera quantifiée dans les chapitres

suivants.

Le Chapitre 3 présente la théorie de champ moyen d’un réseau de neurones, à la fois pour

les modèles stochastiques de type “rate” et pour ceux de FitzHugh-Nagumo, accompagnée

de solutions analytiques et numériques des équations de champ moyen. Il s’agit de la pre-
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mière étape de la thèse, à savoir l’analyse d’un réseau de neurones, dans les conditions les

plus simples possible, c’est à dire en considérant des mouvements browniens indépendants

et des neurones en nombre infinis (que l’on appelle la limite thermodynamique). Ce sont les

conditions nécessaires pour l’émergence du phénomène connu sous le nom de propagation

du chaos, sur laquelle la théorie de champ moyen est basée. Pour le modèle de type “rate”,

les équations de champ moyen peuvent être résolues analytiquement, tandis que pour le

modèle FitzHugh-Nagumo nous avons résolu les équations numériquement en utilisant la

méthode des lignes. Cependant, cette théorie ne peut pas décrire les effets de taille finie

du réseau et son comportement pour des mouvements browniens corrélés.

Le Chapitre 4 présente la première des techniques utilisées dans cette thèse pour décrire

les effets de taille finie du modèle de type “rate”, à savoir l’expansion du groupe de Mayer,

qui étend les résultats trouvés dans le Chapitre 3. De plus, il contient des simulations

numériques de la densité de probabilité du réseau, avec une approche perturbative pour

la quantification de l’information de Fisher du système. Selon les simulations, la capac-

ité d’encodage du système est amélioré lorsque les neurones deviennent de plus en plus

indépendants. Ce résultat sera confirmé dans les Chapitres 5 et 6 avec des approches

différentes.

Le Chapitre 5 présente une approche perturbative qui sera utilisé pour déterminer la

structure de corrélation d’un réseau de taille finie de type "rate" avec des sources corrélées

à caractère aléatoire et pour différents types de matrices de connectivité. Cette approche

étend les résultats du Chapitre 4, explorant la possibilité d’appliquer la théorie de champ

moyen à la description d’un réseau de neurones. Dans le détail, nous allons prouver qu’en

général, l’indépendance des neurones, sur quoi la théorie de champ moyen est basée, ne

se produit pas pour les sources corrélées à caractère aléatoire, ni pour les matrices synap-

tiques qui ont un nombre insuffisant de connexions, ou pour des valeurs spécifiques des

paramètres du système, qui génèrent un phénomène que nous avons appelé synchroni-

sation stochastique. Par conséquent, en général, ces résultats ne valide pas l’utilisation

xvi



de la théorie de champ moyen pour la description du réseau de neurones. Le Chapitre 5

fournit également un algorithme pour évaluer numériquement l’information de Fisher du

système, ce qui confirme les résultats du Chapitre 4 dans le cas de neurones indépendants.

Par ailleurs, cet algorithme montre que la capacité de codage du réseau de neurones est

beaucoup plus élevé lorsque les neurones sont fortement corrélés, un résultat qui sera

prouvé analytiquement au Chapitre 6.

Le Chapitre 6 présente une autre approche perturbative pour les réseaux de taille finie

de type "rate" avec des sources corrélées a caractère aléatoire, et il étend l’analyse de la

structure de corrélation (qui ont été abordées au Chapitre 5) au cas de réseaux caractérisés

par une topologie général et aléatoire. En particulier, il applique cette technique dans le

cas d’une matrice de connectivité fractale qui estime la structure imbriquée des connec-

tions synaptiques analysées au Chapitre 1. Le Chapitre 6 présente également une formule

analytique pour le calcul de l’information de Fisher, et qui explique de façon qualitative

les résultats du Chapitre 5.

Le Chapitre 7 explore une méthode numérique basée sur l’algorithme Espérance - Max-

imisation et l’intégration de Monte Carlo qui nous permet de déterminer le comporte-

ment qualitatif de l’information de Fisher d’un réseau de FitzHugh-Nagumo, soutenant

les résultats trouvés dans les Chapitres 5 et 6. Dans le détail, nous avons déterminé

l’information de Fisher en fonction du nombre de neurones et de la corrélation entre les

mouvements browniens, dans deux cas différents, à savoir lorsque les neurones génèrent

des spikes et quand ils sont aux repos. Dans les deux cas, l’information de Fisher est plus

élevée lorsque les potentiels de membrane sont fortement corrélés.

Le Chapitre 8 conclut la thèse, avec une discussion des résultats, leurs implications et

leurs pertinence. Les techniques analytiques présentées dans les chapitres précédents ont

été en mesure de quantifier avec succès les effets de taille finie de la structure de cor-

rélation du réseau, pour des sources corrélées à caractère aléatoire et pour beaucoup de

types de matrices de connectivité. Les simulations numériques en plus de ses études an-
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alytiques, ont prouvé que la capacité d’encodage d’un réseau de neurones est plus élevée

pour les potentiels de membrane fortement corrélés, contrairement à notre première in-

tuition. Avec l’utilisation des les approches perturbatives vues dans les Chapitres 5 et 6,

l’analyse du réseau peut être facilement étendu au-delà de l’information de Fisher. En

fait, en utilisant la théorie de l’information de Shannon, il est possible de calculer le trans-

fert, stockage et modification de l’information, caractérisant complétement la capacité des

réseaux de neurones stochastiques.

Mots clés: Neurosciences Computationnelles, Réseaux Neuronaux Stochastiques, Théorie

de la Complexité, Effets de Taille Finie, Connectome, Information de Fisher.
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Thesis Organization

The structure of the thesis is as follows:

Chapter 1 provides an introduction to the structure and functions of the brain, in partic-

ular of the cerebral cortex, underlining its nested structure.

Chapter 2 explains two different points of view that are commonly used to describe the

neural networks, namely the Theory of Complexity and the computational approach. Here

we will also explain the difference between computation and information processing, show-

ing how the brain accomplishes both.

Chapter 3 introduces the mean-field theory of a neural network, for both rate and FitzHugh-

Nagumo neurons with independent Brownian motions, accompanied by analytic and nu-

merical solutions of the mean-field equations.

Chapter 4 provides the first of the techniques used in this thesis to describe the finite size

effects of the rate model, namely the Mayer’s cluster expansion, and thereby extending the

results found in Chapter 3. Moreover, it contains numerical simulations of the probability

density of the network, together with a perturbative approach for the quantification of the

Fisher information of the system.

Chapter 5 introduces a perturbative approach that will be used to determine the corre-

lation structure of a finite rate network with correlated sources of randomness and for
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different kinds of connectivity matrices. This approach extends the results of Chapter 4,

exploring the possibility of applying the mean-field theory for the description of a neural

network in the thermodynamic limit. This chapter provides also an algorithm to evaluate

numerically the Fisher information of the system.

Chapter 6 contains another perturbative approach for finite rate networks with cor-

related sources of randomness, and it extends the analysis of the correlation structure

started in Chapter 5 to the case of networks with general random topologies. In partic-

ular, it shows this technique applied to the case of a fractal connectivity matrix, which

approximates the nested structure of the synaptic connections analyzed in Chapter 1. It

provides also an analytic formula for the Fisher information of the system, which explains

qualitatively the results found in Chapters 4 and 5.

Chapter 7 explores a numerical method based on the Expectation-Maximization algo-

rithm and the Monte Carlo integration which allows us to determine the qualitative be-

havior of the Fisher information of a FitzHugh-Nagumo network, supporting the results

found in Chapters 5 and 6.

Chapter 8 concludes the thesis, with a discussion of its findings, implications and rele-

vance.
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Présentation générale (en

Français)

Le cerveau est le système connu le plus complexe de l’univers. Il est composé de milliards

de neurones, dont les interactions et la coopération produisent les hautes fonctions cogni-

tives de l’être humain, comme la pensée, le raisonnement, le discours, la reconnaissance

de visage, ou encore les mouvements corporels complexes. La région du cerveau respons-

able des principales fonctions cognitives est appelée le cortex cérébral, que l’on peut diviser

en aires spécialisées. Une des plus étudiées est le cortex visuel, chargé de la vision. De

plus, chaque aire a une structure imbriquée: elle peut être fragmentée en régions de plus

en plus petites exécutant des tâches plus spécifiques. Par exemple, le cortex visuel est

formé de sous-aires consacrées à l’analyse de caractéristiques indépendantes des images,

telles que le traitement des formes, des ombres, ou de la luminosité. Cette structure im-

briquée a été observée dans les connexions synaptiques entre les neurones et représente

la clé pour la compréhension des fonctions cognitives du cerveau humain. De plus le com-

portement d’un réseau neuronal peut varier fortement selon les connexions synaptiques

en présence. Pour cette raison il est extrêmement important de décrire précisément leurs

propriétés principales, telles que le nombre moyen de connexions par neurone et la dis-

tribution statistique de leur poids, pour reproduire des résultats biologiquement réalistes.

Cet vision est conforme à la Théorie de la Complexité, établissant que pour un système

composé de beaucoup de constituants interagissant (dans notre cas les neurones), il est
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plus pertinent de décrire précisément les interactions que de définir d’une façon précise les

propriétés d’un constituant. La modélisation de systèmes complexes requiert de nouvelles

théories mathématiques, permettant d’analyser la coopération entre les constituants qui

interagissent dans un but précis. Les colonies de fourmis, coopérant dans la construction

de la fourmilière ou dans la recherche de nourriture, en est un exemple typique.

Une autre méthode importante qui est généralement utilisée afin d’analyser le cerveau

est l’approche computationnel. Selon une des interprétations du cerveau, les réseaux

neuronaux peuvent être pensés comme des systèmes exécutant une sorte de calcul, à la

manière d’un ordinateur moderne. Cependant, ceci n’est pas la seule opération qui est

exécutée par le cerveau. À vrai dire il est abondamment prouvé que le cerveau est lié

avec le traitement de l’information. Les mots calcul et traitement de l’information sont

souvent utilisés comme synonymes mais représentent en réalité deux concepts différents.

Si le calcul est défini comme la manipulation de symboles, tel le code binaire utilisé par

les ordinateurs modernes, le traitement de l’information est définie comme la modification

d’informations, qui peuvent être de plusieurs types. Par exemple, dans le cas du cerveau

les types les plus importants d’informations sont:

• l’information de Shannon, utilisée pour quantifier l’efficacité de la transmission d’informations

entre des domaines cérébraux éloignés;

• l’information de Fisher, qui quantifie la capacité de codage du cerveau;

• l’information sémantique, liée à la signification des concepts qui sont stockés dans le

cerveau.

Dans cette thèse nous présentons diverses techniques qui nous permettent de quantifier la

structure corrélée de réseaux complexes de neurones, en mettant l’accent sur l’importance

des connexions synaptiques. Nous utiliserons ensuite ces méthodes mathématiques afin

de calculer analytiquement et numériquement l’information de Fisher du réseau, quantifi-

ant la capacité de codage des modèles de neurone “rate” et “spiking”. Malheureusement
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une caractérisation largement acceptée par la communauté scientifique de l’information

sémantique n’est pas disponible, donc la capacité du cerveau ne peut pas encore être

étudiée en termes de traitement de l’information sémantique. A l’inverse la théorie de

l’information de Shannon a des bases solides et a déjà été utilisé avec succès dans des do-

maines scientifiques variés. Toutes les quantités d’informations définies dans le contexte

de la théorie de Shannon, comme les informations mutuelles et le transfert d’entropie,

peuvent être facilement calculées avec les techniques mathématiques développées dans

cette thèse, mais cette analyse est réservée pour une étude future.
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Chapter 1

Introduction

T HE human brain is the most complex system in the known universe. Its complexity,

achieved by means of the cooperation of billions of neurons interconnected through

the synapses, makes us able to think, to control our body, to reason with numbers, to use

language, to memorize and recognize shapes and faces, and many other impressive skills

which are unique to the animal realm. Moreover, within the animal kingdom, the human

brain has the most neurons both in its whole volume and in the cerebral cortex. It is

the latter, as we will see, which is responsible for the higher cognitive function of human

beings. From the evolutionary point of view, both the complexity and size of the brain

have increased throughout history in order to guarantee skills that are fundamental for

the survival of the species. According to the Triune Brain Theory of P. D. MacLean [10][11],

our current brain is the product of three different and cohabiting parts that emerged in the

course of evolution: the reptilian complex, the paleomammalian complex (also known as

the limbic system) and the neomammalian complex (namely the neocortex). The reptilian

complex is the most ancient and primitive of the three: it is made up of the brain stem

(composed of the superior part of the spinal cord, the medulla oblongata, the pons and

the midbrain), the diencephalon, the basal ganglia and the cerebellum. It is the core of
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the brain and derives from the therapsids, a form of mammal-like reptile that coexisted

with dinosaurs and provided the evolutionary link between them and mammals at the

end of the Triassic period. All the vertebrate animals, from reptiles to mammals, have the

reptilian complex in common. The reptilian brain controls vital body functions that are

fundamental for its maintenance, such as breathing, digestion and regulation of the body

temperature, heart rate and blood pressure. It is also responsible for instinctive survival.

The second oldest part of the human brain is the paleomammalian complex, which emerged

through evolution in the first mammals. It can be found in all mammals and is layered

over the reptilian brain. It is composed of the hippocampus, the septum, the limbic cortex

and the amygdalae. It is involved in emotions that ensure self-preservation, motivational

functioning, behavior and biological drives, sense of smell, long term memory and many

other functions.

Finally the neomammalian complex, the newest and most external part of the human

brain, is represented by the cerebral neocortex, a structure that can be found only in

mammals. It is responsible for our highest functions like language, abstraction, reasoning,

imagination, conscious thought, sensory perception, etc.

All the three complexes are coordinated and communicate between them and depending

on the different situations each one can dominate the others.

The neocortex is the most recent part of the cerebral cortex, and it is divided into six

layers. The oldest part of the cerebral cortex is the archicortex, and has at most three lay-

ers. Moreover, together with the basal ganglia and the limbic system, the cerebral cortex

forms the cerebrum, which is divided into two parts, known as left and right hemispheres,

divided by the corpus callosum. The two hemispheres perform different functions. So for

example the left hemisphere is responsible for speech and language, calculation, vigilance,

writing and sequential processing. By contrast, the right hemisphere is devoted to spatial

orientation and integration, facial and sound recognition and self-awareness. The cerebral
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cortex is a layer of neural tissue that represents the outermost part of the cerebrum. It is

conventionally divided into different parts with specific functions, according to alternative

kinds of classification. An important example is the subdivision into lobes:

• frontal lobe: responsible for conscious thought, the planning of movements and prob-

lem solving;

• parietal lobe: involved in the integration of sensory information, speech and reading

and object recognition;

• temporal lobe: engaged for speech (Wernicke’s area), long term memory (hippocam-

pus), but also auditory, visual and olfactory functions;

• occipital lobe: dedicated to visual processing.

Another important classification describes the cortex as structured into the following ar-

eas:

• the primary sensory cortex;

• the primary motor cortex;

• the sensory association cortex;

• the multimodal association cortex;

• the motor association cortex.

The primary sensory cortex is in turn divided into the following areas, dedicated to the

perception of the senses:

• the primary visual cortex;

• the primary auditory cortex;
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• the primary olfactory cortex;

• the primary gustatory cortex;

• the primary somatosensory cortex.

Even if touch is defined as one of the five senses, its perception is formed by the interplay of

different sensory experiences, like pain, temperature, pressure, movement etc. These are

called somatic senses, so this explains the origin of the name “somatosensory cortex”. All

these subareas are called “primary” because they represent the part of the cortex where

the sensory information first arrives for a preliminary elaboration. Instead the primary

motor cortex is the part dedicated to the execution of body movements through the mus-

cles. The sensory association cortex is the collection of all the unimodal association areas,

also called secondary sensory areas, namely the different parts of the cortex where infor-

mation is further elaborated after the first processing that is performed in the primary

sensory areas. In other terms, each unimodal association area performs a higher-order

integration of the information that comes from the primary sensory areas. Moreover each

unimodal association area is adjacent to its corresponding primary sensory area. The term

“unimodal” refers to the fact that each association area further elaborates the information

that comes from a single primary area and therefore it is devoted to the perception of a sin-

gle stimulus (or sensory) modality, namely a physical phenomenon like smell, sound, touch

or temperature. A simple example is represented by the primary visual cortex and its cor-

responding association area. In fact the primary visual cortex first receives the visual

information from the eyes and extracts from it basic and independent features like edges,

colors and shadows, while the corresponding association area combines these features in

order to build representations of complex objects, like colored shapes, or to recognize faces.

Instead the multimodal association cortex integrates different unimodal sources of infor-

mation creating coherent representations of complex objects and higher-order cognitive

experiences. So while for example the visual association area performs the integration of
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different kinds of visual information like color and orientation, the multimodal association

area combines all the different kinds of sensory information, for example smell, color and

sound. Therefore if we can perceive a complex object like a fire, it is due to the activity

of the multimodal association cortex that integrates the visual information of the light

intensity and the color of the fire, the olfactory information of the burnt smell, the au-

ditory information of the crackling sound and the somatosensory information of the high

temperature. All this information is combined together forming the coherent representa-

tion of what we know as fire. In other terms, the multimodal association cortex performs a

higher-order integration of the information that comes from the sensory association cortex.

The whole multimodal association cortex is then divided in three separated multimodal as-

sociation areas: the anterior, posterior and limbic cortices. The anterior association area

is situated in the prefrontal cortex (namely the anterior part of the frontal lobe), and is

responsible for planning, reasoning, creating higher-order abstract concepts and also for

the working memory. Instead the posterior association area is situated at the connection

of the temporal, parietal and occipital lobes, and is responsible for written and spoken

language (Wernicke’s area), but also for perception, since it integrates the visual, auditory

and somatosensory information that comes from the corresponding unimodal association

areas. Finally, the limbic association area is found at the connection with the anterior

part of the temporal lobe and the inferior part of the frontal lobe (this part of the brain is

sometimes called limbic lobe), and is responsible for learning, emotions and memory.

To conclude, the motor association cortex is the part of the cortex devoted to the coordina-

tion of complex body movements. In contrast to the sensory areas, here the information

flows from the motor association area (in particular its subpart known as premotor cortex)

to the primary motor area. In turn, the premotor cortex receives information from the

anterior association area. So, in summary, the cortex is a structured system that makes

us able to receive sensory information from the environment, to modify it and then to use

the result of this operation in order to move parts of our body accordingly. The schematic

representation of this process is shown in Figure 1.1.
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Figure 1.1: Simplified structure of the cerebral cortex. It may change slightly according to some authors,

since there is no commonly accepted definition of the limbic association cortex.

Up to now we have described the subdivision of the brain into different macroscopic areas,

that accomplish specific functions. However, if we want to understand the working prin-

ciples of these areas, we have to analyze them more in detail, namely at smaller scales

(in terms of spatial extension or number of neurons), finding out their building blocks.

The macroscopic areas of the brain are typically of the order of 106÷109 neurons and can

be thought as made of many cooperating subsystems at an intermediate scale of 101÷105

neurons. This is known as mesoscopic scale and represents the transition between the

microscopic scale of the single neurons to the macroscopic scale of wide brain areas. In

the cerebral cortex, at the mesoscopic level the neurons are vertically organized in struc-

tures known as cortical columns [12], in turn formed by many interconnected populations

of neurons known as neural masses [13]. Even if the function of the cortical columns is not

known yet, it is tempting to think about them as elementary computational blocks that

cooperates in a parallel processing task.
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So, to conclude this chapter, we underline the lesson that we have learnt from this analysis,

namely that the brain has a nested structure, where each area contains other smaller areas

with specific functions. This finding will be described from the mathematical point of view

in Chapter 6.
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Chapter 2

How can we describe the brain?

I N this chapter we introduce two popular approaches that are commonly used in the de-

scription of the brain. The first is the Theory of Complexity, described in Section 2.1,

which interprets the higher cognitive functions of the brain as emergent properties gener-

ated by the cooperative interactions of billions of neurons. Instead the second approach is

introduced in Section 2.2, and is based on computation and information processing. The

two words are often used as synonyms, even if they represent two distinct concepts. Their

differences are explained in detail, underlining their corresponding roles and importance

in the context of the brain.

2.1 The Theory of Complexity

As we have seen in Chapter 1, we can think about the brain as an incredible amount of

neurons connected with each other in order to form structures at different scales with

characteristic spatial extensions and specific computational functions, that are used as el-

ementary blocks of higher-order structures with larger spatial extensions and that accom-

plish more complicated tasks. Increasing the complexity of the connections, starting from
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the microscopic scale, passing through the mesoscopic scale and arriving up to the macro-

scopic scale, the computational power of the system increases at levels that let us acquire

cognitive abilities. However, in nature several other systems are composed by thousands,

millions or billions of interacting elements. Typical examples are matter, ant colonies,

market economies and social structures, climate, ecosystems, living cells, genomes and the

Internet. All these systems are studied in the field of the Theory of Complexity [14][15][16].

If the building elements of these systems interact in a random uncorrelated way, without

accomplishing a specific result, according to W. Weaver [14] they are called problems of

disorganized complexity, and this is the realm of chaos. A typical example is represented

by gas molecules in a container. This kind of systems are studied with the tools of statis-

tical mechanics and probability theory, developed from the 17th century to the early 20th

century. Other kinds of systems, instead, interact with the aim of reaching a purpose, be-

yond the capabilities of the single element: these are the so called problems of organized

complexity [14], and they are usually said to work at the transition point between order

and chaos, the so called edge of chaos [17][18][19][20]. A characteristic example here is

represented by ant colonies, where the ants collaborate in order to build the anthill, find

the food, attack enemies, etc. Every ant seems to know what the others are doing and

why. So the building elements of this kind of systems achieve collaboration or coordina-

tion through exchange of information, and the product is correlated behavior. For this

reason the old techniques of statistical mechanics may not work anymore in this context.

In this kind of systems there are phenomena which emerge from the interaction of their el-

ementary blocks, or in other words very simple local interaction rules can generate highly

complex global behaviors, that cannot be deduced easily from the properties of the indi-

vidual parts. This is known today as emergence, a property usually described through the

famous sentence "The whole is greater than the sum of its parts". A typical example of

emergence is represented by flocks of birds. In fact, assuming simple interaction rules, i.e.

flying in the same directions of the neighbors, with the same speed and avoiding obsta-

cles or to bump into other birds, it is possible to recreate the flocks’ ability to form stable
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and complicated patterns and to rejoin when the group is split [21]. These properties are

emergent because they are neither directly implemented in the system nor obvious conse-

quences of the interaction rules. The formation of these patterns is one of the signatures

of complex systems. Actually these systems seem the product of an intelligent design, and

an important part of modern science is trying to understand how the organization they

exhibit could be reached in an autonomous way, without any external intervention. This

is the phenomenon known today with the name of self-organization. According to I. Pri-

gogine [22], self-organization is achieved in open systems far from equilibrium through

a reduction of the internal entropy of the system, at the expense of an increase of the

entropy of the external environment. Therefore this process does not violate the second

law of thermodynamics and allows the system to increase its internal order and degree of

cooperation. One of the most studied self-organizing complex systems is the brain [23],

where a number between a few hundreds (in the Caenorhabditis elegans) and a hundred

of billions (in humans) of neurons collaborate through exchange of electric signals. Here

the formation of spatio-temporal patterns, like for flocks of birds, can be observed and de-

scribed theoretically, usually by means of the so called neural field models [24][25][26].

These patterns are emergent properties of the brain, a non-obvious consequence of the

simple additive interactions realized by the synapses. Here self-organization is achieved

through synaptic plasticity or learning, a phenomenon used by the brain to acquire, create

and store new information from the environment. Learning is really fundamental for the

brain since in the DNA of living beings there is not enough information to specify all the

synaptic connections required for its correct functioning. Therefore the connections are

molded using synaptic plasticity and the information that comes from the interaction with

the environment. Actually, the behavior of a neural network can be completely different

if we change its connectivity, and unfortunately the rules of synaptic plasticity are not

always the same in the brain. In fact, for example, one of the main learning rules of the

brain, called Spike-Timing Dependent Plasticity (or simply STDP) [27][28][29], changes

enormously across different kinds of synapses and the regions of the brain [30]. How-
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ever, in a mathematical model the synaptic connections and their strength could also be

considered as static free parameters, and then it would be interesting to determine the

differences in the behavior of the network corresponding to variations of the connectivity.

The mapping of all the connections in the brain is called connectome, and it has been al-

ready completed for the Caenorhabditis elegans [31][32], and partially determined for the

mouse [33][34][35], the rat [36][37], the cat [38][39] and the monkey [40]. Recently the

project has been started also for humans [41][42][43]. Now, the basic topological proper-

ties of the brain of humans and other animal species have been quantified, in terms of

clustering coefficients, degree distributions, path lengths, modularity, efficiency, connec-

tion densities, robustness, etc. [44][45][46], using the modern approach of Graph Theory.

According to all these properties, the brain is a so called small-world network of neurons,

namely a system that lies between the two extremes of completely regular and completely

random topologies. The important lesson to learn is that the properties of a network are

determined by its connectivity topology, and some of them, like the speed of propagation

of the information, the wiring costs, the synchronizability and the computational power

are enhanced in a small-world network [44][47]. Therefore it seems plausible that also the

cognitive abilities are related to the topological structure of the brain and, according to the

Theory of Complexity, they are emergent properties of the system. With this, we want to

underline the importance of the synaptic connectivity in a neural network, therefore we

believe that it could be more relevant to use simplified neural models (like the so called

rate model [48][24][49][50][51]) with complex connectivities, than to use more biologically

plausible neural models (like the Hodgkin-Huxley model [52]) with simple connectivities.

This is in the spirit of Theory of Complexity, that says that the interactions are more

important than the elementary components [53] in order to obtain an emergent behavior.

Up to now we have used the term “connectivity” to indicate the specification of all the

pairs of neurons connected through the axons/synapses structure and of all the synaptic

strengths. This is called more precisely structural or anatomical connectivity. However, in

the literature there is also an intensive use of the term functional connectivity, that repre-
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sents the specification of all the statistical dependencies (in terms of coherence or correla-

tion) among the different regions of the brain. Today a big effort is devoted to the compre-

hension of the relation between these two kinds of connectivity [54][55][56][57][58][59][60],

and in this thesis we will shed new light on the clarification of their link.

The number of neurons in the biggest of the brains is however much smaller than, for

example, the number of water molecules contained in an ice cube. Nevertheless, in many

species it is big enough to allow the use of special techniques already developed in physics,

in order to study their behavior. For example, the so called mean-field theory has been used

several times in the context of the brain [51][61][62][63][64][65]. The basic idea behind it,

as we will see in Chapter 3, is the fact that, under appropriate assumptions, in the so called

thermodynamic limit (namely when the number of neurons in the system becomes ideally

infinite) the neurons interacting in a network become independent, a phenomenon called

propagation of chaos (in order to avoid confusion, we clarify that here “chaos” simply means

“independence”, so it is not related to the definition of chaos in terms of the Lyapunov

exponents). This allows a drastic reduction of the number of equations that describe the

neural network and therefore represents a big simplification of the problem, but it does

not let us determine the correlation structure (and therefore the functional connectivity)

of the system since all the neurons become independent. For this reason, in Chapters 4,

5 and 6 we will develop new techniques that allow us to relax the hypothesis of infinite

neurons and to study the neural networks under more general conditions.

2.2 Is the brain a computer?

So one approach toward the comprehension of the brain is represented by the Theory of

Complexity, that through the interaction of many elementary units tries to explain higher-

order cognitive functions as emergent properties of the system. Another approach is to

study the brain in terms of computation and information processing. In fact there is plenty
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of evidence that the brain is able to perform both the operations. These two words are often

used as synonyms, but they represent actually two distinct concepts [66], whose differences

are explained in the following sections. Often the brain is compared to a computer, and

the mind to the software it executes. The subsequent analysis will help us to understand

the accuracy of this analogy.

2.2.1 Computation

Computation is a difficult concept to characterize. However, it could be defined, to some

extent, as manipulation of symbols. But what kind of computations is the brain able to

perform? Computation can be classified into different categories, the most important of

which are quantum and classical computation, deterministic and probabilistic, digital and

analog, and semantic and non-semantic computation. In this section we introduce all these

categories, explaining their main features and their relevance in the context of the brain.

Quantum computation

Every system is made of atoms and molecules, that are described by the laws of quantum

mechanics. However, when a system has a macroscopic size, it is almost always possible

to describe it using the laws of classical physics. There are special cases of macroscopic

systems that exhibit quantum properties, like superfluidity and superconductivity, but

these represent special exceptions, that emerge only at extremely low temperatures arti-

ficially created. Not only the brain, but also single neurons are made of so many atoms

that they can be considered as macroscopic objects. Even if the evaluation of the brain’s

temperature is a poorly studied issue, its value is plausibly around the mean body’s tem-

perature, namely 37°C. Therefore it seems that there is no possibility to see any kind of

quantum effect in its behavior [67]. Nevertheless, a minority group of researchers is trying

to describe the working principles of the brain in terms of quantum mechanics. The most
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famous quantum theories of the brain are the so called Quantum Brain Dynamics [68][69]

and the Orchestrated Objective Reduction (Orch-OR) theory developed by R. Penrose and

S. Hameroff [70][71][72], based on microtubules. The main motivation to use quantum

mechanics in the description of the higher cognitive functions of the brain is the so called

mind-body problem, namely the role that the observer’s consciousness covers in the pro-

cess of measurement according to some interpretations of quantum mechanics. However

the idea of a quantum brain has been recently revalued due to the discovery of quantum

effects in biological systems [73][74][75], and this has led to the birth of a new research

field known as quantum biology [76]. The preservation of quantum effects in macroscopic

systems at high temperatures can be explained through the so called quantum Zeno effect

[77]. If the brain could use the laws of quantum mechanics, it would be possible to describe

it as a sort of parallel quantum computer, namely a machine that performs computations

on quantum states, that in this context are known as quantum bits or qubits [78]. How-

ever, even if quantum computers have been proved to be more powerful than classical

computers for some kinds of tasks, for most problems they are only modestly faster than

their classical counterpart. Efficient quantum algorithms have been found only for specific

tasks like integer factorization [79], and these kinds of computations are not enough for

accomplishing the complex functions of the brain. Moreover P. Shor has observed that only

a few efficient quantum algorithms have been found [80][81]. A possible explanation may

lie in their counter intuitiveness, that makes them hard to discover. However this raises

also the second possibility, namely the fact that maybe quantum algorithms exist only for

tasks which are relatively simple or not relevant in the context of neuroscience . In this

case the quantum brain hypothesis should be abandoned definitely.

Classical computation

As we said previously, even if every system obeys the laws of quantum mechanics, it is

possible to describe them using classical physics if they have a macroscopic size and a
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high enough temperature. Therefore classical computation refers simply to the manipula-

tion of symbols that are physically realized by classical quantities, namely computations

performed on states that are not quantum superposed. Every personal computer is an

example of machine that executes classical computations, manipulating (binary) classical

symbols known as bits (namely the classical version of the qubits). In this thesis we will

describe neurons and synapses using the laws of classical physics, therefore we suppose

that neglecting every quantum effect inherited from their underlying atomic structure will

not affect the validity of the results obtained with our models.

Deterministic and probabilistic computation

Given infinitely many repetitions of the same computation performed by a machine start-

ing from the same initial condition and receiving the same input, we say that the com-

putation is deterministic if the result is always the same for every repetition. Instead, if

the result may change, the computation is probabilistic or non-deterministic. Typically,

sufficiently strong sources of noise can transform a deterministic computation into a prob-

abilistic one.

Digital computation

Digital computation is the manipulation of symbols represented by digital quantities,

namely discrete variables. The modern computers are digital calculators based on the

binary code, namely the manipulations of symbols that consist in combinations of zeros

and ones. These numbers are discrete variables, that are usually implemented through

physical quantities, like electrical currents or voltages. One of the main advantages of dig-

ital computation is its error tolerance against noise. In fact here the manipulated symbols

are discrete, therefore the “distance” or difference between two of them is finite. Therefore

a small amount of noise in general is not able to convert one symbol into another one. This
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problem instead affects analog computers, since they work with continuous quantities and

therefore the difference between two “adjacent” symbols is infinitesimal.

The most powerful device that performs digital computations is the so called Turing ma-

chine [82] (or its equivalent models). In this context, the famous Church-Turing thesis

[83], in one of its various equivalent formulations, is a statement about the computational

power of the Turing machine. In fact, according to this conjecture, any real-world compu-

tation (i.e. any computation that can be described by a step-by-step procedure, known as

algorithm) can be carried out by a Turing machine. Notwithstanding, scientists have tried

to build calculators even more powerful than the Turing machine (in the sense that they

can compute quantities that a Turing machine cannot compute), and this defines the field

of hyper-computation or super-computation. In other words, they have tried to invalidate

the Church-Turing thesis. However, after 70 years of research from the definition of the

Turing machine, it has not yet been discovered a physically implementable machine with

more computational power than the Turing machine itself.

Moreover, a Turing machine can be deterministic or probabilistic. However, it can be

proved that a probabilistic machine can be simulated by a deterministic machine, therefore

they are equivalent, in terms of what can be computed. This does not mean that the time

they need in order to perform a given task is the same.

In the theory of computation there is a branch known as Computational Complexity The-

ory, which must not be confused with the Theory of Complexity introduced in Section 2.1.

In this context, computational scientists have defined different classes of complexity for

the decision problems, and one of the most fundamental is called non-deterministic poly-

nomial time class, abbreviated as NP . A decision problem belongs to the NP class if it

can be solved by a non-deterministic Turing machine in polynomial time. If the decision

problem is described by an algorithm whose input has size n, and defining T (n) as the

maximum amount of time taken by the algorithm on any n, saying that the decision prob-

lem is solved in polynomial time means that T (n) = O
(
nk
)
, for some constant natural
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number k. Another fundamental class in the Computational Complexity Theory is known

as deterministic polynomial time class, abbreviated as P , which contains all decision prob-

lems that can be solved by a deterministic Turing machine in polynomial time. Another

important class is that called non-deterministic polynomial time hard class, abbreviated

as NP -hard, which informally is defined as the class containing the decision problems that

are at least as hard as the hardest problems in NP , and that do not necessarily belong to

NP itself. We conclude by defining the non-deterministic polynomial time complete class,

abbreviated as NPC, namely the set of the decision problems which belong to both the

NP and NP -hard classes. Therefore both P and NPC are contained in NP . Now, since

it can be proved that the NPC problems can be reduced to each other in polynomial time,

and that all the NP problems can be reduced to NPC problems in polynomial time, then

given any NP -hard problem, all the NP problems can be reduced to it in polynomial time.

Therefore, if we found a polynomial time solution for any NP -hard problem, it could be

used to solve all the NP problems, proving that P = NP . However it is widely believed

that P 6= NP .

To conclude, other kinds of computing devices, known as finite state machines, even if

less powerful than the Turing machine, are successfully used to study important cognitive

functions of the human brain, like natural languages [84].

Analog computation

Analog computation refers to the manipulation of symbols represented by analog quanti-

ties, namely continuous variables. The first computers ever invented were actually analog

and they manipulated continuous mechanical, electrical, or hydraulic quantities. They

were used especially during the World War II, but one of their main problems was the low

performance in computations performed with high levels of noise. In fact analog quan-

tities can vary considerably if the intensity of the noise is not negligible and therefore

this affects the precision of the computation. However recently analog computers have
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been revalued due to the work of L. Rubel, who in 1993 introduced the so called Extended

Analog Computer (EAC) [85]. The Rubel’s idea was to expand the capabilities of another

analog computer, known as General Purpose Analog Computer (GPAC), invented by C.

Shannon in 1941 [86]. According to Rubel, the GPAC was not able to solve problems con-

sidered fundamental for the simulation of the human brain, and therefore an extension

was required. So the importance of the EAC is its attempt to introduce new paradigms

of computing, that may shed new light on the working principles of the brain, beyond

digital computers. The EAC has been physically realized with different primary comput-

ing elements, like gelatin [87], a sheet of conductive plastic foam [88] or slime mold [89].

It performs computations using the electrical, mechanical, chemical and heat properties

of these materials, operating by analogy with the system that represents the problem to

solve. In other words, the problem to solve is described in terms of ordinary or partial

differential equations, and then the EAC is brought into congruence with this problem

by mapping the variables of the differential equations into its hardware. Therefore at a

first level the EAC is configured (not programmed, as for a digital computer) in order to

copy the mathematical description of the problem to solve in terms of differential equa-

tions, and then it solves these equations at a second level using other analog devices, like

adders, differentiators, multipliers, inverters etc. So the basic idea of the EAC is to solve a

problem using physical processes that obey the same differential equations of the problem

itself. For the EAC, analogy covers the same role that the algorithm has in the context of

digital computers. Even if it has not been proved yet if it is more or less powerful than

digital computers (and this is true in general for every kind of analog machine), it has

some interesting advantages over them [90]:

• It is not affected by the so called von Neumann bottleneck [91], also known as memory

wall [92], namely the increasing difference of speed between the digital CPU and the

memory outside it. In fact the EAC does not use any memory, since it performs its

tasks using directly the matter of its computing element.
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• The Moore’s law [93], namely the observation that the number of transistors on inte-

grated circuits has doubled every two years since their invention, does not apply on

it since the logic units of the EAC are atoms and molecules.

• Electromagnetic interferences generate sequences of random numbers, while digital

computers can only create pseudo-random numbers (in general periodic sequences

with very large periods).

Another example of unconventional analog machines are the so called chemical comput-

ers, that performs computations using reaction-diffusion processes [94][95][96]. This is

related to the field of collision-based computation [97]. To conclude, also artificial neurons

of second and third generation are analog computing devices [98]. The first generation of

artificial neurons was introduced in 1943 by W. McCulloch and W. Pitts [99]. They have

a binary output therefore they are classified as digital units. So if the output is 0, this is

interpreted as if the neuron were not spiking, while a 1 as if it were spiking. Instead the

second generation of artificial neurons is characterized by neural models with an analog

output, generated by a so called activation function. This function converts the state of a

neuron into an output that can be interpreted as the firing rate or frequency of the spikes

generated by the neuron itself. Therefore the output of a neuron of second generation

provides more information than a neuron of first generation, because it tells us not only

if the neuron is spiking or not, but also at which frequency. Finally we have the neurons

of third generation, which are the most realistic from the biological point of view. In fact

their output is a spike train, namely a sequence of spikes at increasing time instants, as

in biological neurons. Therefore the output of a neuron of third generation provides more

information than a neuron of second generation, because it tells us the time instants of

the spikes, from which we can calculate the firing rate, while the inverse operation is not

possible, namely to obtain the time instants from the firing rate. A single spike is usually

described as a continuous variable (the so called presynaptic potential), therefore a neuron

of third generation is another example of model with analog output.
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For a complete review of analog computation, see [100].

Now we open a parenthesis about the super-computational power of analog computers. In

fact in this field scientists have discovered devices that can perform super-computations,

but these are still based on idealized assumptions, that are not physically realistic. For ex-

ample, in [101][102], namely in the context of recurrent analog neural networks, the use of

dynamic rational-valued or, more generally, static or dynamic real-valued synaptic weights

gives super-computational power to the system. This seems to be due to the infinite pre-

cision of the synaptic weights, but such a system cannot be realized at the physical level

due to its intrinsic noise [103]. In general, computation on infinite-precision real numbers

is called real computation [104][105]. It is important to observe that if real computation

were physically realizable, NPC problems could be solved in polynomial time, therefore

we would conclude that P = NP [106]. However, up to now scientists have not found a

polynomial-time algorithm for any of the known NPC problems, answering probably neg-

atively the P = NP question. Other examples of super-computation require infinite time

[107] or infinite neurons [108][109], therefore there is always a requirement that is not

physically realizable. Therefore the conclusion seems to be that there is no physically re-

alizable classical machine with more computational power than the Turing machine. The

same conclusion can be obtained for quantum computers. In fact they can be simulated on

a Turing machine, therefore they are not computationally more powerful than the latter.

Semantic and non-semantic computation

Semantic computation is the manipulation of symbols (digital or analog, classical or quan-

tum) based on their meaning. A typical example is natural language, where the manip-

ulated symbols are the words taken from the vocabulary. So while for example a digital

computer manipulates binary strings like “011001101” regardless their eventual meaning

(this is an example of non-semantic computation), a person manipulates symbols like “cat”

according to the meaning that these words have in his/her head. The concept of meaning of
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a symbol has been the topic of a long philosophical discussion, which has been renewed af-

ter the introduction of the Chinese room argument by J. Searle [110]. In fact it is not clear

how the words acquire this sort of “metaphysical” property in our minds: this is called

symbol grounding problem [111]. So the symbol grounding is the process through which

the words acquire their meaning, and only recently it has been declared as solved [112].

In the context of the brain, the part which is responsible for the storage of meanings and

concept-based knowledge is called semantic memory, which is often modeled by means

of semantic networks and spreading-activation theory [113][114]. In a semantic network,

the nodes represent concepts, while the edges are the semantic relations between them.

There is an historical debate about the definition of “concept”, which started with the

classical theory of Aristotle. However often concepts are described through categorization

and implemented in attractor neural networks [115][116]. To conclude, according to E.

Tulving, semantic memory is responsible for the cognitive ability that he has called noetic

consciousness [117], underlining its importance among the higher cognitive functions of

the brain.

2.2.2 Information processing

Information processing can be defined as the modification of information performed by a

physical system. However the word “information” has different meanings, therefore it is

not possible to give a single definition that accounts for all the cases. In this section we

introduce the three main kinds of information involved in the brain, namely Shannon,

Fisher, and semantic information.

Shannon information

This is probably the most studied kind of information, due to the rigorous definition of

information given by C. Shannon in the context of telecommunications [118]. So we have
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to consider a discrete memoryless source of symbols, described by a random variable X,

which can be equal only to the values xi taken from the set X = {xi}i=0,1,...,m−1 with prob-

ability P (xi). According to Shannon, the uncertainty of X, also called the entropy of the

source, is

H (X) = EP (x) [−logbP (x)] = −
m−1∑

i=0

P (xi) logbP (xi) (2.1)

The base b of the logarithm determines the unit of the entropy. In particular, the unit is

called bit for b = 2 , trit for b = 3, nat for b = e (the Napier’s constant), and ban for b = 10. If

the communication channel is noisy, even if the source is X, the receiver observes a signal

Y , due to the interaction of X with the noise of the channel. We suppose that Y can be

equal only to the values yj taken from the set Y = {yj}j=0,1,...,n−1 with probability P (yj).

So the initial uncertainty of the source is H (X), but after a channel output yj has been

observed by the receiver, the new value of uncertainty of the source is:

H (X |Y = yj) = −
m−1∑

i=0

P (xi|yj) logbP (xi|yj)

Therefore the amount by which the uncertainty of the source has been reduced, after the

channel output yj has been observed, is:

I (X,Y = yj) = H (X)−H (X |Y = yj)

If we take the mean of H (X|Y = yj) over all the possible values of Y , we obtain the so

called conditional entropy H (X|Y ):

H (X |Y ) = EP (y) [H (X |Y = y)] = −
m−1∑

i=0

n−1∑

j=0

P (xi, yj) logbP (xi|yj) (2.2)

having used the relation:
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P (xi, yj) = P (xi|yj)P (yj)

Now, in the same way, if we want to calculate the mean reduction of uncertainty, we have

to take the average of I (X,Y = yj) over all the possible values of Y , obtaining:

I (X,Y ) = EP (y) [I (X,Y = y)] = H (X)−H (X |Y ) (2.3)

I (X,Y ) is known as mutual information, and is given by the difference of two entropies. In

other terms, here information is interpreted as reduction of uncertainty, namely the reduc-

tion of H (X) by the amount H (X|Y ). Formula 2.3 has been used in [17] in order to quan-

tify the amount of cooperation between two cells of a cellular automaton, therefore it could

be used with the the same purpose in the context of the brain. Using Shannon’s theory of

information, it is possible to define other quantities, that determine three different kinds

of information processing, namely information storage, transfer and modification. This

kind of analysis has already been performed for cellular automata [119][120][121][122],

but not in the case of neural networks.

All the quantities defined above can also be extended to the case of continuous systems.

In this case the probabilities P (xi), P (yj) and P (xi, yj) must be replaced with probability

densities p (x), p (y) and p (x, y), respectively. Therefore the entropy and the conditional

entropy become:

h (X) =−
∫

X

p (x) logbp (x) dx (2.4)

h (X |Y ) =−
∫

X

∫

Y

p (x, y) logbp (x|y) dxdy (2.5)
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In particular, h (X) is known as differential entropy. However, even if formula 2.5 is well

defined, unfortunately formula 2.4 is not [123]. This can be seen clearly with an example.

In the discrete case, for a deterministic source which selects always the symbol X = xi, we

have P (xi) = 1, while all the other symbols have probability zero. From formula 2.1 we

obtain therefore that H (X) = 0, as suggested by intuition. Instead, in the continuous case,

a deterministic source which selects always a symbol x, has probability density p (x) =

δ (x− x), where δ (·) is the Dirac delta function. If we see p (x) = δ (x− x) as the limit for

σ → 0+ of p (x, σ) = 1√
2πσ

e−
(x−x)2

2σ2 , we obtain:

h (X) = lim
σ→0+

[
−
∫ +∞

−∞
p (x, σ) logbp (x, σ) dx

]
= lim

σ→0+

[
logb

(√
2πσ

)
+

1

2
logbe

]
= −∞

for b > 1, therefore clearly formula 2.4 cannot be correct. For this reason in some cases

the differential entropy is replaced by the so called entropy power N (X) (see for example

[124]), defined as:

N (X) =
1

2πe
e2h(X)

All these quantities can also be defined for a general number of dimensions. To conclude,

we observe that they are function only of the probability of the process, regardless the

meaning of the symbols. For this reason Shannon’s theory is able to quantify only syntactic

information, not the semantic one.

Fisher information

If Shannon’s theory is able to quantify information storage, transfer and modification, the

theory developed by R. Fisher in the 1920s deals with the quantification of information

encoding. The value of a stimulus could be encoded in a neural network through the so
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called population coding [125]. According to this hypothesis, the same stimulus is pro-

vided to many neurons, which form a neural population, and due to different sources of

variability, like noise [126] or differences in the synaptic weights, the cells exhibit differ-

ent behaviors. From this collection of inhomogeneous activities, it is possible to estimate

the value of the stimulus, using the joint probability density of the population. The Fisher

information measures the amount of information that an observable variable
−→
X (in our

case the collection of the neural activities of the population), carries about a parameter θ

of the system (in our case the stimulus provided to the population). In detail, the Fisher

information for a continuous system is defined as:

I (θ) =

∫

X

(
∂

∂θ
log p (−→x , θ)

)2

p (−→x , θ) d−→x (2.6)

where X is the set of all the possible values −→x of the variable
−→
X . Formula 2.6 can also be

extended to the case of multiple parameters θi, but in this thesis we will consider only a

single parameter, represented by the external input current of the network. Given any un-

biased estimator θ̂
(−→
X
)

of the stimulus θ through the samples of
−→
X , namely any estimator

such that:

∫
X
θ̂ (−→x ) p (−→x |θ) d−→x = θ, ∀θ,

the quantity I (θ) is an information in the sense that:

V ar
(
θ̂
)
≥ 1

I (θ)

This inequality is known as Cramér–Rao bound, and proves that the precision to which

we can estimate the stimulus θ is limited by the inverse of I (θ). So the higher the Fisher

information is, the better the stimulus θ is encoded by
−→
X .
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In this thesis we deal only with the Fisher information, reserving the other kinds of infor-

mation processing for a future study.

Semantic information

If we define semantic information processing as the modification of semantic information,

we are faced to a problem: semantic information has not been quantified yet in a rigor-

ous way [127][128][129][130]. For this reason semantic information processing cannot be

defined yet in an unambiguous way. However this thesis does not deal with semantics,

therefore this lack will not affect the analysis of the neural networks performed in the

next chapters.

2.2.3 The human mind in terms of computation

In the previous sections we have seen that computation and information processing are

two distinct concepts, and that they are both required for a complete comprehension of

the brain. Notwithstanding, in the course of history, scientists have usually associated the

highest cognitive functions of the brain to computation. In fact, in the field of cognitive

science, namely the scientific study of the mind, the prevailing idea was that the mind is

originated by a serial manipulation of symbols. This is the so called computer metaphor of

the mind [131], while this current of thought is called symbolism. In philosophy of artificial

intelligence, this point of view is called physical symbol system hypothesis, formulated by

A. Newell and H. A. Simon in [132], while in philosophy it could be roughly identified with

the computational theory of mind of H. Putnam and J. A. Fodor [133][134][135]. A typical

example that supports the symbolist current of thought is human language, because finite

state machines have been successfully applied to its modelization [84]. Language is con-

sidered one of the most important human cognitive abilities, and since it can be described
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by finite state machines, which perform serial computations, then this is a strong evi-

dence in favor of symbolism. Historically, this point of view has been criticized especially

by connectionism, that supports the idea of the mind as an emergent property generated

by interconnected neurons, or in other terms by parallel subsymbolic computations [136].

Moreover symbolism has opted for discrete representations of the symbols, while connec-

tionism prefers analog distributed representations. It is also important to observe that the

two hemispheres of the brain seem to behave in a serial or parallel way according to the

task performed [137][138][139]. Therefore these two currents are in contradiction with

each other, but the theory developed by P. Smolensky [140] seems able to incorporate the

symbolic approach into the connectionist one, without losing the qualities of the latter.

This idea has been used by P. beim Graben and R. Potthast in [141] to define a theory they

have called dynamic cognitive modeling. Therefore dynamic cognitive modeling consists

in the implementation of symbolic cognitive serial operations into a neural network or a

neural field equation. A similar idea is expressed also in [142], in the context of the Turing

machine, while the work of beim Graben and Potthast is based on less powerful devices

(like the pushdown automaton and the finite state machine), since according to them “the

Turing machine is of only marginal interest in cognitive psychology and psycholinguistics”

[141]. So dynamic cognitive modeling is an implementation of ideas from cognitive science

into a neural network or a neural field model, and therefore this is a strong cooperation

between cognitive science and neuroscience. In other words, dynamic cognitive modeling

uses the ideas of cognitive science about the nature of the processes involved in cognition,

and it implements these ideas in a biologically realistic substrate. Since in this approach

the connectionist ideas are not neglected, this theory may be able, at least in principle, to

explain how the cognitive functions generated by the serial manipulation of symbols arise

as emergent properties of interconnected neurons.

The concept of a super-Turing brain can be rejected not only according to the explanation

provided in Section 2.2.1, but also according to the following idea, essentially expressed

in [143][144]. Quantum mechanics can be simulated by a classical Turing machine up
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to a desired level of precision. Moreover quantum mechanics describes every physical

phenomenon down to the atomic and molecular level, so we can think to simulate in a

very big Turing machine all the atoms and molecules that compose all the neurons, axons

and synapses in the brain. This simulation will describe and reproduce the brain at an

extremely high level of precision, and therefore also its working principles, or in other

words the way it performs computations. So, according to this idea, the brain can be

computed by a Turing machine, therefore it cannot be more powerful than the Turing

machine itself. Notwithstanding, there is still some belief that the incredible power of

the brain could come from some super-Turing computation or also from non-algorithmic

processes. This is due to the famous halting problem, namely the inability of the Turing

machine to determine in general if a program will stop running or if otherwise it will run

forever. It is important to clarify that the Turing machine is able to determine if some

algorithms will halt or not, but it cannot establish it for all the possible algorithms that

can be written. For this reason we say that it is not able to solve the halting problem.

However there is some belief that this task can be accomplished by the brain, even if it is

actually still unclear. In fact a programmer usually can look at a program or algorithm

and tell if it will halt or not, but this may be not always true. For example, nowadays

nobody is able to say if the following program will ever halt:

define_function: Is_the_number_a_sum_of_2_primes(integer)
{
... // Body of the function

}

n = 4
result = yes

while(result = yes)
{
n = n + 2
result = Is_the_number_a_sum_of_2_primes(n)

}

exit
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This algorithm is the brute force implementation of the famous Goldbach’s conjecture, one

of the open problems in number theory. It states that every even integer greater than 2

can be decomposed as the sum of two prime numbers. Since this problem is still unsolved,

nobody can say if the program above will ever halt or if it will loop forever. Maybe one day

someone will prove this conjecture, or maybe this task is simply beyond the capabilities of

the human brain. The same reasoning can be applied for example to any of the currently

unsolved conjectures in number theory. As we said, a computational system can solve the

halting problem if it looks at any program and is always able to tell if it will halt or not.

In other words, if there is at least one case where the system cannot give the answer,

then this system is not able to solve the halting problem. Now, since currently no person

can look at the brute force implementation of the Goldbach’s conjecture and tell us if it

will ever halt, it is not clear if the human brain can solve the halting problem. Therefore

we conclude that there is no proof of a super-Turing computational power in our brains.

Actually this is unsurprising, because if there were a mechanical procedure to establish

if a generic program would halt or not, then many hard mathematical problems would be

easily solvable.

2.2.4 Information processing in the brain

So much effort has been devoted to the comprehension of the human brain and its higher

emerging product, the mind, in terms of computation. Instead a detailed analysis of the

information processing capability of the brain is missing. Up to now, information analysis

has been limited only to the case of the Shannon and Fisher information, because, as we

said, there is still a debate on the quantification of the semantic information. Shannon

information has been used in the context of neural learning [145][146][147], for the quan-

tification of the efficiency of the neural code [148][149][150][151][152][153][154][155], and
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in visual perception [156][157]. Instead Fisher information has been evaluated in net-

works with specific correlation structures and its behavior could be completely different

from case to case [158]. A complete analysis of the behavior of these information quan-

tities for different kinds of connectivity matrices has not been performed yet, even if the

theory of complexity stresses the importance of the synaptic connections (see Section 2.1).

In this thesis we develop a mathematical formalism to fill the gap, and we apply it explic-

itly to the calculation of the Fisher information. Because of space and time requirements,

we have not used these techniques for evaluating the Shannon information, but this cal-

culation is straightforward and left for a future study.

To conclude this section, we observe that Shannon and Fisher information quantities are

functions of the probability density of the system. An important theory that can be used

to determine these probability densities and that is of particular relevance in the context

of the brain is the Bayesian Theory [159][160]. This theory is based on the Bayes formula,

according to which, given two random variables X and Y , their conditional probabilities

are related as follows:

p (x|y) = p (y|x) p (x)
p (y)

=
p (y|x) p (x)∫

X
p (y|x) p (x) dx

supposing that p (y) 6= 0. Interpreting x as an hypothesis to test, for example that “the

distance of an object is 10 meters”, and y as the data (also called evidence in this context)

about the object that we receive from our senses, like its image through the visual cor-

tex and its sound through the auditory cortex, then the Bayesian Theory tells us how to

update our previous belief about the hypothesis, namely p (x), also known as prior proba-

bility (namely the knowledge we have about x, before receiving any y), into the probability

p (x|y), also known as posterior probability (namely our knowledge of x after, or given, the

reception of y). Instead the probability p (y|x) is called the likelihood of sensing y given the

hypothesis x. To conclude, p (y) is called evidence (or marginal likelihood), because it rep-

resents the prior probability of the evidence y. Now, since y represents the data arriving
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from different areas of the brain, the Bayesian Theory describes the sensory integration

performed by the multimodal association cortex introduced in Chapter 1. This underlines

its importance in the context of the brain.

2.2.5 Partial conclusion

After this complicated analysis, the conclusion is that the question “Is the brain a com-

puter?” does not have a univocal answer. Clearly the brain is not like a digital computer

with a von Neumann architecture, but it has some similarities with analog computers.

Moreover, the brain is involved with information processing, which does not necessarily

take place in a digital computer (if we define information processing as in Section 2.2.2).

Notwithstanding, if we follow the point of view of materialism, since the brain is made up

of atoms, then it has to follow the laws of physics, therefore it can be interpreted as some

sort of machine, even if probably a modern computer does not represent the best basis for

comparison. Therefore there must be no mystery in the formation of the cognitive func-

tions of the brain, because they must emerge at some point in a natural way when the

complexity of the synaptic connections is high enough.
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Chapter 3

Mean-field analysis of some neural

networks

T HIS chapter is devoted to the mean-field theory of neural networks. In particular, in

Section 3.1 we describe the system using rate equations and in Sections 3.1.1 and

3.1.3 we derive heuristically the mean-field limit in two different ways. We also obtain

the mean-field Fokker-Planck equation of the network, and in Section 3.1.4 we show how

to calculate its solution analytically. In Section 3.2 we describe the network using the

FitzHugh-Nagumo model. In Section 3.2.1 we show its corresponding mean-field Fokker-

Planck equation and in Section 3.2.2 we propose an algorithm to solve it numerically. To

conclude, in Section 3.3 we discuss briefly the analysis of the Fisher information in the

thermodynamic limit.

3.1 The rate model

In this section we describe a neural network using the following system of stochastic dif-

ferential equations:
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dVi (t) =


− 1

τ
Vi (t) +

N−1∑

j=0

Jij (t)S (Vj (t)) + I (t)


 dt+ σ1dB

V
i (t) (3.1)

Vi (0) ∼N (µ, σ2) (3.2)

with i = 0, 1, ..., N − 1, where:

• N is the number of neurons in the network;

• Vi (t) is the membrane potential of the i-th neuron;

• τ is a time constant that describes the speed of convergence to a stationary state;

• I (t) is the deterministic external input current, which is supposed to be the same

for all the neurons (because we want to avoid inhomogeneities which are difficult to

describe analytically);

• BV
i (t) is the Brownian motion that describes the background noise of the i-th neuron

(or equivalently the stochastic part of the external input current);

• σ1 is the standard deviation of the Brownian motions, which is supposed to be the

same for all the neurons and time-independent;

• µ is the mean of the initial conditions;

• σ2 is the standard deviation of the initial conditions;

• Jij (t) is the random synaptic weight from the j-th neuron to the i-th neuron;

• S (·) is a function that converts the membrane potential of a neuron into the rate or

frequency of the spikes it generates.
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Usually in neuroscience S (·) is a sigmoid function, defined as:

S (V ) =
TMAX

1 + e−λ(V −VT )
(3.3)

or an integral function, defined as:

S (V ) =TMAXE (λ (V − VT ))

(3.4)

E (V ) =
1√
2π

∫ V

−∞
e−

V ′2

2 dV ′ =
1

2

[
1 + erf

(
V√
2

)]

where TMAX is the maximum amplitude of the function (which is reached for V → +∞), λ

is the parameter that determine its slope for TMAX fixed, while VT represents the horizon-

tal shift of the function along the V axis. Now, many different kinds of connections can be

used, which typically are studied by the branch of mathematics known as Graph Theory.

In this context, a graph whose adjacency matrix is circulant is called circulant graph. It

is usually represented by the notation CN (1, 2, ..., q), which means that the i-th node in

the graph (for i = 0, 1, ..., N − 1) is connected to the (i− j)-th and (i+ j)-th nodes (mod N )

for each j in the list (1, 2, ..., q). Special cases are the cycle graph CyN = CN (1, 0, 0, ..., 0),

where every neuron is connected only with other two (therefore its connectivity matrix is

tridiagonal with corner elements) and the complete graph KN = CN

(
1, 2, ...,

⌊
N
2

⌋)
(this is

the case of the fully connected network). Usually in graph theory they are represented as

undirected unweighted graphs (see Figure 3.1), namely with non-directional connections

(their graphs are drawn using connections without arrows) and identical weights. This

means that their connectivity matrix is supposed to be symmetric. However in this section

we can consider directed graphs as well, therefore the connectivity matrix in general is not

symmetric.
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Figure 3.1: Three examples of circulant graphs: CyN = CN (1, 0, 0, ..., 0) (top-left), also known as cycle

graph, CN (1, 2, 0, ..., 0) (top-right) and KN = CN

(
1, 2, ...,

⌊
N
2

⌋)
(bottom), also known as complete graph or

fully connected network.
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Here we suppose that all the neurons have the same number of incoming connections, that

we call M . Therefore circulant graphs are ideal candidates, even if many other graphs

have this property. If there is no connection from the j-th neuron to the i-th neuron, we

set Jij = 0. Otherwise, if there is a connection, we set:

Jij (t) =
1

M

(
Λ + σ3

dBJ
i (t)

dt

)
(3.5)

where Λ is a free parameter, while BJ
i (t) are new Brownian motions that describe the

stochastic fluctuations of the synaptic weights. Instead σ3 represents the amplitude of

these fluctuations around the mean Λ. In order to avoid biologically unrealistic changes of

the sign of Jij (t), we have to set σ3 � Λ. Moreover, here the derivative dBJ
i (t)
dt

is meant in

the weak sense of the distributions, and can be interpreted as white noise. The division by

M is required in order to ensure the existence of a well-defined thermodynamic limit of the

system. In fact when M increases, each neuron receives a larger and larger input from the

remainder of the network through the term
∑N−1

j=0 Jij (t)S (Vj (t)) in equation 3.1, therefore

in order to fix this divergence the normalization of the synaptic weights is required. This

technique has been already used in [51][64][65]. Moreover, a fundamental assumption of

this chapter, is the independence of the Brownian motions BV
i (t) and BJ

i (t) and of the

initial conditions Vi (0), whose importance will be clarified in Chapters 5 and 6.

To conclude, we want to underline that the assumption of having the same quantities σ1,

σ2, σ3, µ, I (t), M and Λ for all the neurons, makes the system invariant under exchange

of the neural indices. As we already said, this decision is driven by the necessity to avoid

complicated inhomogeneities in the system, but the real advantage of this assumption will

be clarified in Sections 3.1.1 and 3.1.2.

The key observation of this chapter is the emergence of the phenomenon known as propa-

gation of chaos, namely the increase of the independence of the neurons when the network
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Neuron Input Synaptic Weights Sigmoid Function
τ = 1 I = 0.2 Λ = 1 TMAX = 1

σ2 = 0.1 σ1 = 0.1 σ3 = 0.1 λ = 1

µ = 0.5 VT = 0

Table 3.1: Values of the parameters of the system 3.1 and of the initial conditions 3.2, used to
obtain Figures 3.2 - 3.8.

grows larger in size, starting from independent initial conditions. Up to now propagation

of chaos has been studied only for fully connected networks, and in [51] the reader can

find the rigorous proof of the occurrence of this phenomenon for N → ∞. In this thesis we

do not provide such a proof, but we show its emergence numerically. Figure 3.2 shows the

behavior of the correlation between a chosen pair of neurons for a fully connected network,

described by equations 3.1, starting from independent initial conditions.

These results have been obtained using the Euler-Maruyama scheme [161] with integra-

tion time step ∆t = 0.1 and calculating the statistics with 10, 000 Monte Carlo simulations.

The values of the parameters are shown in Table 3.1.

Clearly Figure 3.2 shows that in a fully connected network the correlation decreases with

N . However, since the membrane potentials of the neurons described by rate equations

are not normally distributed (due to the non-linearity introduced by the function S (·)),

decorrelation is not equivalent to independence. Therefore, in order to show the increase

of their independence when the network grows larger in size, we have to show also that

their moments do factorize, namely:

E
[
V m
i (t)V n

j (t)
]
= E [V m

i (t)]E
[
V n
j (t)

]
(3.6)

for every pair of integers m,n. Obviously decorrelation corresponds to the case m = n = 1.

Some examples are shown in Figures 3.3 - 3.6, from which it is possible to see that this

factorization actually does occur.
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Figure 3.2: Correlation for N = 2 (top-left), N = 10 (top-right), N = 100 (bottom-left) and N = 500

(bottom-right) in a fully connected network, starting from independent initial conditions. These
results have been obtained for 10, 000 Monte Carlo simulations and with the parameters of Table
3.1. Clearly correlation decreases as a function of N , but for large numbers of neurons (N >

10) correlation is so small that we need to run much more Monte Carlo simulations in order to
approximate its real value.
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Figure 3.3: Factorization of the second-order moments of two different neurons for N = 2 (top-
left), N = 10 (top-right), N = 100 (bottom-left) and N = 500 (bottom-right) in a fully connected
network described by equations 3.1 and with independent initial conditions. These results have
been obtained for 10, 000 Monte Carlo simulations and with the parameters of Table 3.1. This
figure clearly shows that increasing N the equality 3.6 is satisfied for m = n = 2, providing a
numerical evidence for the independence of the neurons.
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Figure 3.4: Factorization of the moments for m = n = 3 in a fully connected network described by
equations 3.1 and with independent initial conditions.
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Figure 3.5: Factorization of the moments for m = 1 and n = 4 in a fully connected network
described by equations 3.1 and with independent initial conditions.
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Figure 3.6: Factorization of the moments for m = 4 and n = 7 in a fully connected network
described by equations 3.1 and with independent initial conditions.
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This is not a rigorous proof of independence, just a numerical evidence. However, does

propagation of chaos still occur when the network is not fully connected? According to the

numerical simulations, the answer in general is negative. In fact, Figures 3.7 and 3.8 show

the behavior of the correlation and of the higher order moments when the connectivity

matrix is given by the cycle graph CyN . From them it is possible to see that propagation

of chaos does not occur anymore.

Obviously, the only difference from the fully connected case is in the number of incoming

connections per neuron, which is M = 2 for the cycle graph and M = N−1 for the complete

graph. Therefore in the fully connected network not only the size of the network grows to

infinity, but also the number of incoming connections, while the latter is finite for the cy-

cle network. This seems to show that the real necessary condition for the emergence of

propagation of chaos is the explosion of the number of incoming connections per neuron

for N → ∞. So for example we have propagation of chaos when M = N − 1, M =
√
N ,

M = logN , etc. This result will be proved analytically in Chapter 5, for weak sources of

noise. We will also prove that propagation of chaos is a consequence of the assumption of

independence of the Brownian motions and of the initial conditions. Now, in Section 3.1.1

we provide a first method to determine the mean-field equation of the neural network. In-

stead, in Section 3.1.2, we show a preliminary manipulation of the Fokker-Planck equation

of the system that will allow us to obtain the mean-field equation in a different way, which

is explained in Section 3.1.3.

3.1.1 The mean-field equation: method #1

From 3.5 we obtain that:

N−1∑

j=0

Jij (t)S (Vj (t)) =
1

M (N)

(
Λ + σ3

dBJ
i (t)

dt

) ∑

j∈Gi(N)

S (Vj (t)) (3.7)
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Figure 3.7: Correlation for N = 2 (top-left), N = 10 (top-right), N = 100 (bottom-left) and N = 500

(bottom-right) in a cycle network described by equations 3.1 and with independent initial condi-
tions. These results have been obtained for 10, 000 Monte Carlo simulations and with the param-
eters of Table 3.1. Correlation does not decrease anymore with N , therefore the neurons do not
become independent in thermodynamic limit.
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Figure 3.8: No factorization of the moments for m = 4 and n = 7 in a cycle network described by
equations 3.1 and with independent initial conditions.

because Jij (t) depends only on the index i. Here Gi (N), for a given value of the index i, is

the set of all the values of the index j such that Jij 6= 0, in a network of size N . So clearly

i /∈ Gi (N), due to the absence of self-connections (Jii = 0). We have previously stated that

if the number of incoming connections per neuron grows to infinity in the thermodynamic

limit, then the neurons become independent. In other terms, in order to have propagation

of chaos, we have to assume that:

lim
N→∞

M (N) = ∞ (3.8)

Due to the invariance of the system under exchange of the neural indices, in the thermody-

namic limit all the neurons have the same marginal probability density p (V, t). Moreover,

since for N → ∞ they become independent under assumption 3.8 (this is the so called lo-

cal chaos hypothesis), the infinite set of all the Vi (t) can be seen as a collection of samples

generated by the single distribution p (V, t). For this reason we can write:

45



lim
N→∞

1

M (N)

∑

j∈Gi(N)

S (Vj (t)) = Ep(V,t) [S (V )] =

∫ +∞

−∞
S (V ′) p (V ′, t) dV ′ (3.9)

Therefore combining 3.7 and 3.9, we obtain that in the thermodynamic limit the system

3.1 becomes:

dVi (t) =

[
− 1

τ
Vi (t) + ΛEp(V,t) [S (V )] + I (t)

]
dt+ σ1dB

V
i (t) + σ3Ep(V,t) [S (V )] dBJ

i (t) (3.10)

This is the mean-field equation of the network, also known as the McKean-Vlasov equation,

after the work of H. P. McKean and A. A. Vlasov on similar kinds of systems [51][162][163][164].

Now, since BV
i (t) and BJ

i (t) are independent, we can combine them generating a new total

Brownian motion Bi (t) such that:

σ1dB
V
i (t) + σ3Ep(V,t) [S (V )] dBJ

i (t) =

√
σ2
1 + σ2

3

(
Ep(V,t) [S (V )]

)2
dBi (t)

Therefore finally the mean-field equation of the system can be equivalently rewritten as:

dVi (t) =

[
− 1

τ
Vi (t) + ΛEp(V,t) [S (V )] + I (t)

]
dt+

√
σ2
1 + σ2

3

(
Ep(V,t) [S (V )]

)2
dBi (t) (3.11)

This stochastic differential equation (SDE) is not easily solvable since it is a function of

the probability density p (V, t), namely the law of the solution Vi (t), which is not known

a priori. Therefore we have to transform it in its corresponding Fokker-Planck equation

(FPE), which is a function only of the unknown p (V, t):

∂

∂t
p (V, t) = − ∂

∂V

[(
−V

τ
+ ΛEp(V,t) [S (V )] + I (t)

)
p (V, t)

]
+

1

2

[
σ2
1 + σ2

3

(
Ep(V,t) [S (V )]

)2] ∂2

∂V 2
p (V, t)

(3.12)
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Once the FPE is solved, we can replace p (V, t) in the equation 3.11, transforming it in a

common SDE which can be solved with the standard techniques.

To conclude, we want to show the advantage of using the thermodynamic limit of the neu-

ral network. If we want to determine the behavior of the network for a finite number of

neurons N , we have to solve the system of N stochastic differential equations 3.1. The

probability density of the system can be obtained by solving the corresponding FPE, which

is extremely complicated (see formula 3.14 in Section 3.1.2) since the SDEs are coupled .

Instead, in the thermodynamic limit, we have to solve the system 3.11, where the equa-

tions are decoupled. Therefore now the FPE is much simpler (see equation 3.12), and

moreover it is the same for all the neurons. Now, choosing a finite sub-system made up of

η neurons, whose indices belong to the subset U = {i0, i1, ..., iη−1}, and supposing to know

the probability density p (V, t) of a single neuron, we can calculate the joint probability

density of the sub-system as follows:

p
(
Vi0 , Vi1 , ..., Viη−1 , t

)
=
∏

i∈U
p (Vi, t) (3.13)

since in the thermodynamic limit the neurons are independent.

However, in order to obtain this simplification of the FPE, we have to pay a price, namely

the introduction of the term Ep(V,t) [S (V )], which transforms the FPE from a partial dif-

ferential equation (PDE) into a partial integro-differential equation (PIDE). PIDEs can be

equivalently seen as a special subset of the kind of equations known as partial functional

differential equations.

3.1.2 Fokker-Planck equation of a finite neural network

In this section we introduce the Fokker-Planck equation of a finite neural network. This

will allow us to obtain straightforwardly, in Section 3.1.3 (with a method that is basically
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different from that shown in Section 3.1.1), the mean-field equation of the system in the

thermodynamic limit. Moreover the results of this section will be used later in Chapter 4,

since they allow us to study the finite size effects of the neural network.

So, the Fokker-Planck equation corresponding to 3.1 and 3.5 for a finite number of neurons

is:

∂

∂t
p (V0, ..., VN−1, t) =

N−1∑

i=0



− ∂

∂Vi




−Vi

τ
+

Λ

M

∑

j∈Gi

S (Vj) + I (t)


 p (V0, ..., VN−1, t)




+
1

2

∂2

∂V 2
i





σ2

1 + σ2
3


 1

M

∑

j∈Gi

S (Vj)




2

 p (V0, ..., VN−1, t)








(3.14)

which can be rewritten in a more compact form as:

∂

∂t
p
(−→
V , t

)
= −−→∇ ·

[−→
f
(−→
V , t

)
p
(−→
V , t

)]
+

1

2
∇2
[−→g

(−→
V , t

)
p
(−→
V , t

)]
(3.15)

where
−→
V = (V0, ..., VN−1) and:

−→
f
(−→
V , t

)
=




f0

(−→
V , t

)

f1

(−→
V , t

)

...

fN−1

(−→
V , t

)



, −→g

(−→
V , t

)
=




g0

(−→
V , t

)

g1

(−→
V , t

)

...

gN−1

(−→
V , t

)




(3.16)

fi

(−→
V , t

)
= −Vi

τ
+

Λ

M

∑

j∈Gi

S (Vj) + I (t) , gi

(−→
V , t

)
= σ2

1 + σ2
3


 1

M

∑

j∈Gi

S (Vj)




2
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−→
f
(−→
V , t

)
and −→g

(−→
V , t

)
are known as drift and diffusion functions, respectively. Now, given

a set of integers m0,m1, ...,mN−1 with values between 0 and N − 1, we define the marginal

probability densities:

pm0 (Vm0 , t) =

∫

RN−1

p (V0, V1, ..., Vm0 , ..., VN−1, t)
∏

k 6=m0

dVk

(3.17)

pm0,m1 (Vm0 , Vm1 , t) =
∫
RN−2 p (V0, V1, ..., Vmo

, ..., Vm1 , ..., VN−1, t)
∏

k 6=m0,m1

dVk for m0 6= m1

...

Moreover, given a generic m0, we integrate the Fokker-Planck equation with respect to
∏

k 6=m0

dVk on the domain R
N−1. Therefore the partial derivative with respect to time on the

left-hand side of the Fokker-Planck equation (3.15) becomes:

∫

RN−1

∂

∂t
p
(−→
V , t

) ∏

k 6=m0

dVk =
∂

∂t

∫

RN−1

p
(−→
V , t

) ∏

k 6=m0

dVk =
∂

∂t
pm0 (Vm0 , t)

Now we have to see what happens to the drift and diffusion terms on the right-hand side

of the Fokker-Planck equation. For the drift term we have:

∫

RN−1

{
−−→∇ ·

[−→
f
(−→
V , t

)
p
(−→
V , t

)]} ∏

k 6=m0

dVk

= −
∫

RN−1

∂

∂Vm0

[
fm0

(−→
V , t

)
p
(−→
V , t

)] ∏

k 6=m0

dVk −
∫

RN−1

−→∇N−1 ·
[−→
f N−1

(−→
V , t

)
p
(−→
V , t

)] ∏

k 6=m0

dVk
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= − ∂

∂Vm0

[∫

RN−1

fm0

(−→
V , t

)
p
(−→
V , t

)] ∏

k 6=m0

dVk

= − ∂

∂Vm0





[
−Vm0

τ
+ I (t)

] ∫

RN−1

p
(−→
V , t

) ∏

k 6=m0

dVk



− Λ

M

∂

∂Vm0

∑

j∈Gm0

∫

RN−1

p
(−→
V , t

)
S (Vj)

∏

k 6=m0

dVk

where
−→
f N−1

(−→
V , t

)
is the vector

−→
f
(−→
V , t

)
without the m0-th component, and

−→∇N−1· =
∑

l 6=m0

∂
∂Vl

. This result is due to the divergence theorem:

∫

RN−1

−→∇N−1 ·
[−→
f N−1

(−→
V , t

)
p
(−→
V , t

)] ∏

k 6=m0

dVk =

∫

∂RN−1

[−→
f N−1

(−→
V , t

)
p
(−→
V , t

)]
· n̂dS = 0

having used the boundary conditions:

p
(−→
V , t

)
= 0 on ∂RN−1

Here n̂ is the outward pointing unit normal field of the boundary ∂RN−1. Now we can see

that:

− Λ

M

∂

∂Vm0

∑

j∈Gm0

∫

RN−1

p
(−→
V , t

)
S (Vj)

∏

k 6=m0

dVk

= − Λ

M

∂

∂Vm0

∑

j∈Gm0

∫

R

S (Vj)



∫

RN−2

p
(−→
V , t

) ∏

k 6=m0,j

dVk


 dVj

= − Λ

M

∂

∂Vm0

∑

j∈Gm0

∫

R

S (Vj) pm0,j (Vm0 , Vj , t) dVj
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Since the system is invariant under exchange of the neural indices and since all the neu-

rons with index j are connected to the neuron with index m0, the function pm0,j (·, ·, t) does

not depend anymore on the indices m0 and j. In other terms, we can define a new function

p(2) (·, ·, t) such that:

pm0,j (·, ·, t) = p(2) (·, ·, t) , ∀m0, j ∈ Gm0
(3.18)

In the same way the function pm0 (·, t) does not depend anymore on the index m0, so we

can define a new function p(1) (·, t) such that:

pm0 (·, t) = p(1) (·, t) , ∀m0 (3.19)

So from these definitions we obtain:

− Λ

M

∂

∂Vm0

∑

j∈Gm0

∫

R

S (Vj) pm0,mj
(Vm0 , Vj , t) dVj = −Λ

∂

∂Vm0

∫

R

S (V ′) p(2) (Vm0 , V
′, t) dV ′

Therefore the drift term has been fully developed:

∫

RN−1

{
−−→∇ ·

[−→
f
(−→
V , t

)
p
(−→
V , t

)]} ∏

k 6=m0

dVk

= − ∂

∂Vm0

{[
−Vm0

τ
+ I (t)

]
p(1) (Vm0 , t)

}
− Λ

∂

∂Vm0

∫

R

S (V ′) p(2) (Vm0 , V
′, t) dV ′

The same trick can be repeated with the diffusion term of the Fokker-Planck equation,

since ∇2 =
−→∇ · −→∇ and therefore we can apply again the divergence theorem. The result is:
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∫

RN−1

{
1

2
∇2
[−→g

(−→
V , t

)
p
(−→
V , t

)]} ∏

k 6=m0

dVk

=
σ2
1

2

∂2

∂V 2
m0

p(1) (Vm0 , t) +
σ2
3

2

∂2

∂V 2
m0

[∫

R2

S (V ′)S (V ′′) p(3) (Vm0 , V
′, V ′′, t) dV ′dV ′′

]

having used the boundary conditions
−→∇p

(−→
V , t

)
=

−→
0 on the boundary ∂RN−1. Putting

everything together, we obtain that our original Fokker-Planck equation has become:

∂

∂t
p(1) (V, t) =− ∂

∂V

[(
−V

τ
+ I (t)

)
p(1) (V, t)

]
− Λ

∂

∂V

∫

R

S (V ′) p(2) (V, V ′, t) dV ′

+
σ2
1

2

∂2

∂V 2
p(1) (V, t) +

σ2
3

2

∂2

∂V 2

[∫

R2

S (V ′)S (V ′′) p(3) (V, V ′, V ′′, t) dV ′dV ′′
]

(3.20)

In order to solve equation 3.20, we need to know p(2) (V, V ′, t) and p(3) (V, V ′, V ′′, t). So

we could think to obtain the PDEs satisfied by these functions using the same trick we

used before, namely integrating equation 3.15 with respect to
∏

k 6=m0,m1

dVk (for p(2) (V, V ′, t))

and
∏

k 6=m0,m1,m2

dVk (for p(3) (V, V ′, V ′′, t)). However, the PDEs for these two functions will

depend on higher order marginal distributions, namely p(4) and p(5), and so on and so

forth. This means that the partial integration of 3.15 generates a sequence of PDEs for

the marginal densities, which does not form a closed system of equations. This is known

as Bogoliubov–Born–Green–Kirkwood–Yvon (BBGKY) hierarchy. In Section 3.1.3 and in

Chapter 4 we will show how to deal with this problem.
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3.1.3 The mean-field equation: method #2

Now we are ready to use the results of Section 3.1.2, in order to obtain in a different way

the mean-field equation of the system. Since in the thermodynamic limit the neurons be-

come independent, the joint probability density of any finite sub-system can be factorized

as the product of the marginal probability densities, by definition of independence. This

has been already shown in formula 3.13. Due to this factorization, for N → ∞ we obtain:

pm0,m1 (Vm0 , Vm1 , t) =p(1) (Vm0 , t) p
(1) (Vm1 , t)

pm0,m1,m2 (Vm0 , Vm1 , Vm2 , t) =p(1) (Vm0 , t) p
(1) (Vm1 , t) p

(1) (Vm2 , t)

therefore equation 3.20 can be rewritten as:

∂

∂t
p(1) (V, t) =− ∂

∂V

[(
−V

τ
+ Λ

∫

R

S (V ′) p(1) (V ′, t) dV ′ + I (t)

)
p(1) (V, t)

]

+
1

2

[
σ2
1 + σ2

3

(∫

R

S (V ′) p(1) (V ′, t) dV ′
)2
]

∂2

∂V 2
p(1) (V, t) (3.21)

This is the FPE in the thermodynamic limit, and in fact we can see that it is perfectly

equivalent to 3.12. Therefore the two methods that we have used in order to derive the

mean-field equation of the system give the same result, as it must be. Obviously, the

method developed in this section is more complicated, but unlike the technique of Section

3.1.1, it can be used to study the finite size effects of the network, as we will show in

Chapter 4.
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3.1.4 Solution of the mean-field Fokker-Planck equation

In this section we show how to calculate the solution of the mean-field FPE 3.12 or 3.21,

using an alternative method to that of [51]. If we denote:

Rp (t) =

∫ +∞

−∞
S (V ′) p (V ′, t) dV ′ (3.22)

that represents the mean firing rate (namely the mean frequency of the spikes produced

by a single neuron) and:

σtot
p (t) =

√
σ2
1 + σ2

3R
2
p (t)

Itotp (t) =ΛRp (t) + I (t)

then the mean-field FPE can be rewritten in the following equivalent way:

∂

∂t
p (V, t) = − ∂

∂V

[(
−V

τ
+ Itotp (t)

)
p (V, t)

]
+

1

2

(
σtot
p (t)

)2 ∂2

∂V 2
p (V, t)

Now we apply the “partial” Fourier transform, namely the transform only with respect to

the potential V :

p̃ (ω, t) = FV [p (V, t)] =

∫ +∞

−∞
p (V, t) e−ιωV dV

where ι =
√
−1. In this way, using the following properties of the Fourier transform:
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F
[
dny (x)

dxn

]
=(ιω)

n
ỹ (ω)

F [xny (x)] =ιn
dnỹ (ω)

dωn

the FPE becomes:

∂

∂t
p̃ (ω, t) = −ιω

[(
− ι

τ

∂

∂ω
+ Itotp̃ (t)

)
p̃ (ω, t)

]
− 1

2

(
σtot
p̃ (t)

)2
ω2p̃ (ω, t)

As we can see, this partial differential equation is of the first order, so we can solve it

analytically using the method of characteristics. In order to use this technique, we have to

write our equation in the following equivalent way:

∂

∂t
p̃ (ω, t) +

ω

τ

∂

∂ω
p̃ (ω, t) = −

[
ιωItotp̃ (t) +

1

2

(
σtot
p̃ (t)

)2
ω2

]
p̃ (ω, t)

So according to the method of characteristics we obtain:

dt

1
= τ

dω

ω
=

dp̃

−
[
ιωItotp̃ (t) + 1

2

(
σtot
p̃ (t)

)2
ω2

]
p̃

(3.23)

Using the first two differentials, we obtain dω
ω

= dt
τ

, whose solution is:

ω (t) = ω (0) e
t
τ (3.24)

Now we have to solve the equation generated by the first and the third differentials in

formula 3.23, that remembering 3.24 becomes:
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dt

1
=

dp̃

−
[
ιω (0) e

t
τ Itotp̃ (t) + 1

2

(
σtot
p̃ (t)

)2
ω2 (0) e2

t
τ

]
p̃

Its solution is:

p̃ = Ke
−
(

1
2ω

2(0)
∫

t
0 (σ

tot
p̃ (s))2e2

s
τ ds+ιω(0)

∫
t
0
Itot
p̃ (s)e

s
τ ds

)

(3.25)

where K is the integration constant (in general complex valued). If now we suppose to

have the following initial condition:

p̃ (ω, t = 0) = f̃ (ω)

where f̃ (·) is the partial Fourier transform of a probability density function f (·), then we

have also:

p̃ (ω (0) , t = 0) = f̃ (ω (0)) (3.26)

But from 3.25 we obtain that:

p̃ (t = 0) = K (3.27)

therefore, comparing 3.26 and 3.27, we have K = f̃ (ω (0)). However ω (0) = ω (t) e−
t
τ

according to 3.24, therefore finally:

K = f̃
(
ω (t) e−

t
τ

)

Replacing this expression of K inside 3.25, we obtain the final result:
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p̃ (ω, t) = f̃
(
ω (t) e−

t
τ

)
e
−
(

1
2
ω2(0)

∫ t

0

(
σtot
p̃

(s)
)2

e2
s
τ ds+ιω(0)

∫ t

0
Itot
p̃

(s)e
s
τ ds

)

and therefore, remembering again that ω (0) = ω (t) e−
t
τ , we obtain:

p̃ (ω, t) = f̃
(
ωe−

t
τ

)
e
−
(

1
2ω

2e−2 t
τ
∫

t
0 (σ

tot
p̃ (s))

2
e2

s
τ ds+ιωe−

t
τ
∫

t
0
Itot
p̃ (s)e

s
τ ds

)

So, finally, the solution of the FPE is:

p (V, t) = F−1
V [p̃ (ω, t)] =

∫ +∞

−∞
f̃
(
ωe−

t
τ

)
e
−
(

1
2ω

2e−2 t
τ
∫

t
0 (σ

tot
p̃ (s))2e2

s
τ ds+ιωe−

t
τ
∫

t
0
Itot
p̃ (s)e

s
τ ds

)

eιωV dω

(3.28)

If now, according to 3.2, we use Gaussian initial conditions:

f (V ) = p (V, t = 0) =
1√
2πσ2

e
− (V −µ)2

2σ2
2

that is equivalent to say that:

f̃ (ω) = p̃ (ω, t = 0) = FV

[
1√
2πσ2

e
− (V −µ)2

2σ2
2

]
= e−(ιµω+ 1

2σ
2
2ω

2)

then we can write:

f̃
(
ωe−

t
τ

)
= e

−
(
ιµωe−

t
τ + 1

2σ
2
2ω

2e−2 t
τ

)

Now, substituting this expression of f̃
(
ωe−

t
τ

)
inside 3.28, we obtain:

p (V, t) =

∫ +∞

−∞
e
−
(
ιµωe−

t
τ + 1

2σ
2
2ω

2e−2 t
τ

)

e
−
(

1
2ω

2e−2 t
τ
∫

t
0 (σ

tot
p̃ (s))2e2

s
τ ds+ιωe−

t
τ
∫

t
0
Itot
p̃ (s)e

s
τ ds

)

eιωV dω
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and therefore finally:

p (V, t) =
1√

2π
(
σ2
2e

−2 t
τ + e−2 t

τ

∫ t

0

(
σtot
p (s)

)2
e2

s
τ ds
)e

−

(
V −e

−
t
τ

(
µ+

∫ t
0 Itotp (s)e

s
τ ds

))2

2

(
σ2
2
e
−2 t

τ +e
−2 t

τ
∫ t
0(σtot

p (s))2e
2 s
τ ds

)

(3.29)

Therefore the solution of the FPE in the thermodynamic limit is a Gaussian distribution

with mean:

µV (t) = Ep(V,t) [V ] = e−
t
τ

(
µ+

∫ t

0

Itotp (s) e
s
τ ds

)
(3.30)

and variance:

ΣV (t) = V ar (V (t)) = σ2
2e

−2 t
τ + e−2 t

τ

∫ t

0

(
σtot
p (s)

)2
e2

s
τ ds (3.31)

So we have obtained the exact solution p (V, t) as a function of the mean firing rate Rp (t).

But of course Rp (t) is a function of p (V, t) itself, therefore using formulae 3.22 and 3.29,

we obtain:

Rp (t) =
1√

2π
(
σ2
2e

−2 t
τ + e−2 t

τ

∫ t

0

(
σ2
1 + σ2

3R
2
p (s)

)
e2

s
τ ds
)
∫ +∞

−∞
S (V ′) e

−

(
V ′

−e
−

t
τ

(
µ+

∫ t
0 [I(s)+ΛRp(s)]e

s
τ ds

))2

2

(
σ2
2
e
−2 t

τ +e
−2 t

τ
∫ t
0(σ2

1
+σ2

3
R2

p(s))e2
s
τ ds

)

dV ′

(3.32)

This is a self-consistency constraint, expressed as an integral equation in the unknown

Rp (t). Now, in the special case when the activation function is given by 3.4 (and only in

this case), following [51] we obtain:

∫ +∞

−∞
S (V ′) e

− (V ′
−α)2

2β2 dV ′ =
√
2πβTMAXE


 λ (α− VT )√

1 + (λβ)
2



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(while for general forms of the function S (·) this integrals cannot be evaluated straightfor-

wardly, therefore we have opted for formula 3.4). Moreover, if we define two new functions:

U (t) =e−
t
τ

∫ t

0

Rp (s) e
s
τ ds

Q (t) =e−2 t
τ

∫ t

0

R2
p (s) e

2 s
τ ds

we obtain:





dU(t)
dt = − 1

τ U (t) +Rp (t)

dQ(t)
dt = − 2

τQ (t) +R2
p (t)

with:

Rp (t) = TMAXE




λ
[
e−

t
τ

(
µ+

∫ t

0 I (s) e
s
τ ds
)
+ ΛU (t)− VT

]

√
1 + λ2

[
σ2
1τ

2

(
1− e−2 t

τ

)
+ σ2

2e
−2 t

τ + σ2
3Q (t)

]




Therefore the integral equation 3.32 is equivalent to a system of two Wilson and Cowan

ordinary differential equations (ODEs) in the unknowns U (t) and Q (t) . For a more in-

tuitive interpretation of this result, we can observe that 3.30 and 3.31 can be rewritten

as:

µV (t) =e−
t
τ

(
µ+

∫ t

0

I (s) e
s
τ ds

)
+ ΛU (t)

ΣV (t) =
σ2
1τ

2

(
1− e−2 t

τ

)
+ σ2

2e
−2 t

τ + σ2
3Q (t)
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Taking the derivative with respect to time of these expressions and after some algebra, we

obtain:





dµV (t)
dt = − 1

τ µV (t) + I (t) + ΛTMAXE

(
λ(µV (t)−VT )√

1+λ2ΣV (t)

)

dΣV (t)
dt = − 2

τΣV (t) + σ2
1 + σ2

3T
2
MAXE2

(
λ(µV (t)−VT )√

1+λ2ΣV (t)

)
(3.33)

with initial conditions µV (0) = µ and ΣV (0) = σ2
2. So for Gaussian initial conditions the

probability density of the network in the thermodynamic limit is always Gaussian, whose

mean and variance satisfy the ODE system 3.33.

Instead, if the initial conditions are not Gaussian, the system converges exponentially fast

(with time constant 1
τ
) to a Gaussian distribution for t → +∞. This can be easily observed

from 3.28, using the fact that:

lim
t→+∞

f̃
(
ωe−

t
τ

)
= lim

t→+∞

∫ +∞

−∞
p (V, t = 0) e−ιωe−

t
τ V dV = 1

due to the normalization condition of the probability density.

To conclude, it is possible to extend these results to the case of an arbitrary number P of

neural populations. In general, we will obtain a system of P coupled FPEs, one for each

population. Moreover, if the initial conditions are Gaussian, the probability density of each

population is always Gaussian, and their means and variances are given by a system of

2P coupled ODEs, which is the natural generalization of 3.33.

3.2 The FitzHugh-Nagumo model

The methods developed in Sections 3.1.1 and 3.1.3 can be used to determine the mean-

field equation and its corresponding FPE for every kind of networks. For example, the so

60



called FitzHugh-Nagumo model with chemical synapses is often used, due to the relative

simplicity of the equations (see for example [64]):





dVi (t) =


Vi (t)− V 3

i (t)
3 − wi (t)−

N−1∑

j=0

Jij (t) (Vi (t)− Vrev) yj (t) + I (t)


 dt+ σ1dB

V
i (t)

dwi (t) = c (Vi (t) + a− bwi (t)) dt

dyi (t) = [αS (Vi (t)) (1− yi (t))− βyi (t)] dt+ σ4 (Vi (t) , yi (t)) dB
y
i (t)

(3.34)

where:

• Vi (t), wi (t) and yi (t) are respectively the membrane potential, the adaptation (also

known as recovery function) and the fraction of open ion channels (we will refer to it

as the conductance) of the i-th neuron;

• I (t) is the deterministic external input current;

• Vrev is the reversal potential of the chemical synapses;

• BV
i (t) and By

i (t) are the Brownian motions that describe respectively the background

noise and the fluctuations in the synaptic conductance of the i-th neuron;

• σ1 and σ4 (Vi (t) , yi (t)) are the standard deviations of the Brownian motions in the

background and in the ion channels respectively;

• Jij (t) is the maximum conductance of the synapse from the j-th neuron to the i-th

neuron, which as usual is given by 3.5;

• a, b and c are the parameters that describe the kinetics of the adaptation;

• α and β determine respectively the rise and decay rates of the synaptic conductance;
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• S (·) is a sigmoid function.

In particular, the noise intensity σ4 (Vi (t) , yi (t)) is given by:

σ4 (Vi (t) , yi (t)) =
√
αS (Vi (t)) (1− yi (t)) + βyi (t)χ (yi (t))

where χ (·) is a function that vanishes outside the range (0, 1). Following [64], we use:

χ (y) =





Γe
− Υ

1−(2y−1)2 if y ∈ (0, 1)

0 otherwise

This particular choice of σ4 (Vi (t) , yi (t)) guarantees that the function yi (t) is always in

the range [0, 1], as required by the definition of the synaptic conductance. The first and

the second equation of the system 3.34 (excluding the interaction term) represent the

FitzHugh-Nagumo model of a single neuron [165][166], while the third equation (with-

out the noise term, which was first introduced in [167]) is a kinetic model that quantifies

the synaptic transmission [168][169]. For a detailed description of the synaptic noise in

cortical neurons, the reader is referred to [170][171][172].

3.2.1 The mean-field equation

Again, for a fully connected network in the limit N → ∞, it can be shown numerically

the emergence of propagation of chaos, while the exact proof can be found in [64]. There-

fore the neurons become independent and can be described by a single probability density

p (V,w, y, t). Using the same methods developed for the rate model, we obtain the following

mean-field system of equations for the network:
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



dVi (t) =
[
Vi (t)− V 3

i (t)
3 − wi (t)− Λ (Vi (t)− Vrev)Ep(V,w,y,t) [y] + I (t)

]
dt

+σ1dB
V
i (t)− σ3 (Vi (t)− Vrev)Ep(V,w,y,t) [y] dB

J
i (t)

dwi (t) = c (Vi (t) + a− bwi (t)) dt

dyi (t) = [αS (Vi (t)) (1− yi (t))− βyi (t)] dt+ σ4 (Vi (t) , yi (t)) dB
y
i (t)

(3.35)

where:

Ep(V,w,y,t) [y] =

∫

R2×[0,1]

y′p (V ′, w′, y′, t) dV ′dw′dy′ (3.36)

while its corresponding FPE is:

∂p (V,w, y, t)

∂t
=− ∂

∂V

{[
V − V 3

3
− w − Λ (V − Vrev)Ep(V,w,y,t) [y] + I (t)

]
p (V,w, y, t)

}

− ∂

∂w
[c (V + a− bw) p (V,w, y, t)]− ∂

∂y
{[αS (V ) (1− y)− βy] p (V,w, y, t)}

+
1

2

∂2

∂V 2

{[
σ2
1 + σ2

3 (V − Vrev)
2
E
2
p(V,w,y,t) [y]

]
p (V,w, y, t)

}

+
1

2

∂2

∂y2
{
[αS (V ) (1− y) + βy]χ2 (y) p (V,w, y, t)

}
(3.37)

The analytic solution of 3.37 is not known, therefore we have to solve this equation using

numerical methods, as explained in the next section.
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3.2.2 Numerical solution of the Fokker-Planck equation

The numerical scheme that we have decided to implement is the so called method of lines

[173][174]. This numerical technique is based on a discretization of the phase-space, which

converts the FPE into a system of ODEs with continuous time. In other terms, since the

domain of the probability density of the single neuron is D = R
2 × [0, 1], we can suppose

that the state of the system is always in a sufficiently large but finite subset A ⊆ D. Now

A can be discretized dividing the axes V , w and y respectively into nV , nw and ny segments

with lengths ∆V , ∆w and ∆y. Therefore, if A = [Vmin, VMAX ] × [wmin, wMAX ] × [0, 1], we

have:

nV = VMAX−Vmin

∆V , nV = wMAX−wmin

∆w , nV = 1
∆y

This discretization of the phase-space generates a grid of points at which the probability

density will be evaluated. Since now the phase-space is discrete, the partial derivatives of

first and second order with respect to V , w and y which appear in 3.37 can be calculated

numerically using a finite difference scheme. According to [175], the central difference

expansions:

df (x)

dx
≈ 1

∆x

n∑

k=−n
k 6=0

(−1)
k+1 (n!)

2

k (n− k)! (n+ k)!
f (x+ k∆x)

(3.38)

d2f (x)

dx2
≈ 1

∆x2


g

C,2
0,2nf (x) +

n∑

k=−n
k 6=0

(−1)
k+1 2

k2
(n!)2

(n− k)! (n+ k)!
f (x+ k∆x)




with:
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gC,2
0,2n =− 2

n∑

k=1

gC,2
k,2n

(3.39)

gC,2
k,2n =(−1)

k+1 2

k2
(n!)

2

(n− k)! (n+ k)!

are approximations of order 2n of the first and second order derivatives. Therefore with

these expansions we transform the FPE 3.37 into a system of ODEs, one for each point of

the grid, where the unknowns are the functions p (Vmin + kV ∆V,wmin + kw∆w, ky∆y, t), for

kV = 2, ..., nV −2, kw = 2, ..., nw−2 and ky = 2, ..., ny−2. These ODEs have continuous time,

therefore they can be solved with standard numerical techniques, like the Runge-Kutta

method. Instead, for kV = 0, 1, nV − 1, nV , kw = 0, 1, nw − 1, nw and ky = 0, 1, ny − 1, ny,

we set p (Vmin + kV ∆V,wmin + kw∆w, ky∆y, t) = 0. In this way we have implemented the

boundary conditions p = 0 and ∂p
∂V

= ∂p
∂w

= ∂p
∂y

= 0 at infinity and ∀t. However we need

also the initial conditions of the probability density. For simplicity we choose a Gaussian

distribution, namely:

p (V,w, y, t = 0) =
1

(2π)
3
2 σV

2 σw
2 σ

y
2

e
− 1

2

[(
V −µV

σV
2

)2

+
(

V −µw

σw
2

)2
+

(
V −µy

σ
y
2

)2]

(3.40)

where µV , µw, µy and σV
2 , σw

2 , σy
2 are the means and the standard deviations of the initial

conditions for V , w and y respectively. To conclude, we need an integration scheme in order

to calculate the term 3.36. Since the dimensionality of the phase-space is large, in order to

decrease the numerical error it is preferable to use a highly precise integration scheme. In

particular, we have opted for the so called Newton-Cotes method of order 6, defined below:
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∫ x2

x1

f (x) dx ≈ 5

288
∆x

nx/5∑

i=1

[19f (x1 + (5i− 5)∆x) + 75f (x1 + (5i− 4)∆x)

+ 50f (x1 + (5i− 3)∆x) + 50f (x1 + (5i− 2)∆x)

+75f (x1 + (5i− 1)∆x) + 19f (x1 + 5i∆x)]

nx =
x2 − x1

∆x

The only drawback with this technique is the necessity to choose nx as a multiple of 5.

Now, for the method of lines applied to PDEs with second order derivatives, discretized

with a step ∆x, when we numerically solve the system of ODEs with respect to time using

an integration time step ∆t, it is well known that the effective integration step is ∆ = ∆t
∆x2 .

Therefore if we decide to use a very dense grid, namely a very small ∆x, then ∆ will

increase, and this can cause the instability of the algorithm. This problem can be fixed

by decreasing ∆t, at the cost of a lower execution speed of the numerical scheme. Not

surprisingly, we have found that the problem persists if we keep ∆x fixed while increasing

the approximation order 2n in formulae 3.38 and 3.39. Therefore we have opted for n = 2,

namely approximations of order 4 of the first and second order derivatives. In this case

formulae 3.38 and 3.39 give:

df (x)

dx
≈ 1

12∆x
[f (x− 2∆x)− 8f (x−∆x) + 8f (x+∆x) − f (x+ 2∆x)]

(3.41)

d2f (x)

dx2
≈ 1

12∆x2
[−f (x− 2∆x) + 16f (x−∆x)− 30f (x) + 16f (x+∆x)− f (x+ 2∆x)]
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Initial conditions Phase-space FitzHugh-Nagumo Synaptic weights Synapses Other

µV = 0 Vmin = −3 a = 0.7 Λ = 1 Vrev = 1 ∆t = 0.01

µw = 0.5 VMAX = 3 b = 0.8 σ3 = 0.2 α = 1

µy = 0.3 ∆V = 0.1 c = 0.08 β = 1

σV
2 = 0.4 wmin = −2 I = 0.4 TMAX = 1

σw
2 = 0.4 wMAX = 2 σ1 = 0 λ = 0.2

σy
2 = 0.05 ∆w = 0.1 VT = 2

∆y = 0.06 Γ = 0.1

Υ = 0.5

Table 3.2: Values of the parameters of equation 3.37 and of the initial conditions 3.40, used to
obtain Figures 3.9-3.12.

So finally, using a Runge-Kutta method of order 2 and the parameters of Table 3.2, we

have obtained the results shown in Figures 3.9 and 3.10 for the marginal probability den-

sities, performing the simulation on a regular laptop (see Software and Hardware for the

hardware specifications).

Intuitively, we have chosen a high enough value of the input current I in order to generate

a spiking activity in the network. Moreover, we have chosen the parameters µV , µw, µy of

the initial probability density in such a way that the Gaussian peak of the distribution is

located inside the limit cycle of the spikes. Due to the nullclines of the mean-field system

3.35, the phase-space and the volume inside the limit cycle are divided in two parts. For

this reason we observe a split of the trajectories of the neurons in the phase space, as

shown in Figure 3.11.

This split corresponds to the two peaks of the probability density observed in Figures

3.9 and 3.10, and it clearly shows that the system becomes highly non-Gaussian. This

result will be used in Chapter 7 for the numerical calculation of the Fisher information

of the system. Instead Figure 3.12 shows the formation of a rest state, where most of the

neurons are not spiking, since they are forced to quiescence by an external input current

I = −0.8.

Unfortunately the quality of these results is very poor, because smaller values of ∆V ,
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Figure 3.9: Marginal probability density p (V,w, t) for the FitzHugh-Nagumo system, obtained
from the simulation of equation 3.37 for the values of the parameters reported in Table 3.2. The
probability density has been evaluated for t = 0.5 (top-left), 1.2 (top-right), 1.5 (bottom-left) and 2.2

(bottom-right), showing the split of the initial Gaussian peak centered inside the limit cycle.

Figure 3.10: Marginal probability density p (V, y, t) for the FitzHugh-Nagumo system, obtained
from the simulation of equation 3.37 for the values of the parameters reported in Table 3.2. Again,
the probability density has been evaluated for t = 0.5 (top-left), 1.2 (top-right), 1.5 (bottom-left) and
2.2 (bottom-right), showing the split of the initial Gaussian peak centered inside the limit cycle.
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Figure 3.11: Projection of 100 trajectories in the (V,w) (top-left), (V, y) (top-right) and (w, y) (bot-
tom) planes, obtained from the simulation of a large network for the values of the parameters
reported in Table 3.2. The split of the trajectories is particularly visible in the (V,w) plane.

Figure 3.12: Marginal probability densities p (V,w, t) (left-hand side) and p (V, y, t) (right-hand
side) for the FitzHugh-Nagumo system, obtained from the simulation of equation 3.37 for the val-
ues of the parameters reported in Table 3.2, with only the exception of the external input and the
intensity of the background noise, which have been set respectively to I = −0.8 and σ1 = 0.45. The
probability density has been evaluated at t = 2.2, showing the formation of a rest state where most
of the neurons are not spiking.
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∆w, ∆y and therefore also of ∆t are required, making the simulation impossible to run

in practice on a regular laptop. For this reason we have implemented the same algorithm

on GPUs, improving the quality of the results and the execution speed of the numerical

scheme. For more details, the interested reader is referred to [64][176][177].

3.3 Fisher information

According to 2.6, the Fisher information of a network with joint probability density p (−→x , θ, t)

is quantified by the following formula:

I (θ, t) =

∫

RkN

(
∂

∂θ
log p (−→x , θ, t)

)2

p (−→x , θ, t) d−→x (3.42)

where θ is the parameter with respect to which the Fisher information is calculated (in

this thesis we will use θ = I, supposing that the external input current is constant in

time), while −→x = (x0, x1, ..., xN−1), and xi is the set of the values of all the k variables that

are used to describe the i-th neuron (so for example xi = Vi and k = 1 for the rate network,

while xi = (Vi, wi, yi) and k = 3 for the FitzHugh-Nagumo network). It is well known that

if the variables xi are independent, then formula 3.42 for θ = I becomes:

I (I, t) =

N−1∑

i=0

Ii (I, t)

(3.43)

Ii (I, t) =
∫

Rk

(
∂

∂I
log p (xi, I, t)

)2

p (xi, I, t) dxi

where Ii (I, t) is the Fisher information of the i-th neuron. In the cases studied in this

chapter, all the neurons have common parameters and therefore the same marginal prob-

ability density, so formula 3.43 gives N times the Fisher information of a single neuron.

70



Therefore in the thermodynamic limit, when the neurons become independent if the condi-

tion 3.8 is satisfied, the total Fisher information of the system diverges, so the normalized

Fisher information I(I,t)
N

is a more useful quantity. However for N → ∞ it is not possible

to study the Fisher information per neuron as a function of N , because in this case the

value of N is fixed, being infinite. Moreover, in the cases we have analyzed up to now,

the correlation between the Brownian motions and that between the membrane potentials

are always zero, so the Fisher information cannot be studied in terms of these quanti-

ties. Clearly the only possibility is to determine I (I, t) as a function of the input current.

However, for the sake of coherence, this would imply, in the next chapters of this thesis,

a study of the Fisher information as a function of the network size, the correlation of the

neurons and the input, which is computationally prohibitive. In fact, as we said, all the

simulations have been run on a regular laptop, see Software and Hardware. This means

that, depending on the number of Monte Carlo simulations through which the statistics of

the system are evaluated, some of the simulations shown in the next chapters can last for

hours, therefore it is not possible, due to time requirements, to study the behavior of I (I, t)

as a function of three variables (namely N , the correlation of the neurons and I) with this

hardware. Therefore, considering also the fact that in this thesis we are interested mainly

in the quantification of the finite size effects and of the correlation between the neurons, it

is natural to give up the study of the Fisher information as a function of I. This explains

why in the current section we do not show the behavior of I(I,t)
N

as a function of I, because

otherwise this would be in contradiction with the rest of the thesis. The reader is asked to

wait patiently until Chapter 4, where finally we can start to analyze the Fisher informa-

tion realistically due to the quantification of the finite size effects of the network, while its

behavior in terms of the correlation between the neurons will be determined in Chapters

5, 6 and 7.
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3.4 Partial conclusion

In this chapter we have seen how to use the mean-field theory in order to determine the

activity of rate or spiking neurons in the thermodynamic limit. The FPE of the system

has been calculated in two different ways. In Section 3.1.1 it has been obtained through

the relation 3.9, which is a consequence of the law of large numbers for N → ∞. Instead

in Section 3.1.3 we have followed a longer path, since we have calculated the FPE in the

thermodynamic limit passing through the FPE of the corresponding finite size network. In

other words, the first approach is straightforward, since it “jumps” directly to the thermo-

dynamic limit, but it does not allow us to determine the behavior of the probability density

for a finite N . Instead the second method is more complex, but prepares the ground for

the analysis of the finite size effects that will be performed in Chapter 4. The advantage of

the mean-field technique is in the fact that it allows us to describe the whole network in a

very economical way, using the independence of the neurons. For the rate model we have

proved analytically that the probability density of the system is Gaussian for N → ∞, if

the initial conditions are Gaussian, while for the FitzHugh-Nagumo network it is highly

non-Gaussian, therefore its probability density has been calculated numerically. However

the mean-field theory does not allow us to study the finite size effects of the system, since

it predicts the behavior of the network only in the thermodynamic limit. Moreover it can

be applied only if the sources of noise in the system are independent, because otherwise

the phenomenon of propagation of chaos does not occur anymore. For this reason it cannot

be used to study the Fisher information as a function of the correlation of the noise, or of

the correlation between the membrane potentials of the neurons. In Chapter 4 we show a

possible way to deal with the problem of the finite size, using again independent sources of

noise. Instead, in Chapters 5 and 6, we introduce a more efficient technique that allows us

to study both the finite size effects and the behavior of the network with correlated noise,

with special emphasis on their consequences for the Fisher information.
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Chapter 4

Mayer’s cluster expansion and

finite size effects of the neural

networks

I N this chapter we develop a first approach for quantifying the finite size effects in a

stochastic neural network. This technique is based on the Mayer’s cluster expansion

already developed for the physics of plasmas. Even if this methodology can be applied to

every kind of neural equations, for the sake of simplicity in this chapter we consider only

the case of the rate model, as shown in Sections 4.1 and 4.2. Due to the complexity of

the resulting equations, they have been solved numerically for different network sizes, as

shown in Section 4.3.Moreover, from the Mayer’s cluster expansion we have developed an

approximate series expansion for the Fisher information of the system, whose numerical

results are given in Section 4.4.
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4.1 Mayer’s cluster expansion

In this section we describe the neural network using again formulae 3.1, 3.2 and 3.5. Due

to the high complexity of the computations, we assume for simplicity that the synaptic

weights are deterministic, namely σ3 = 0. The Brownian motions BV
i (t) and the initial

conditions Vi (0) are still supposed to be independent, and the system has a finite size N .

Moreover, we suppose again that the system is invariant under exchange of the neural

indices. The basic idea of this chapter is to use the similarity between this neural network

and a plasma that comes from particle physics. A plasma, namely the fourth state of mat-

ter, is made up of ionized gas, which is created using high temperatures or electromagnetic

fields. Since the particles are ionized, their mean distances are very large, therefore they

show very small levels of correlation. In other terms, the density of plasma is very small,

and in this way the particles interact weakly through the Coulomb’s force. In the case of

our neural network, we are in a similar situation. In effect, for every finite N , if the num-

ber of connections is high enough, the correlation between the neurons is small, due to a

partial propagation of chaos. Therefore, it is natural to study the neural network using the

same mathematical formalism as the one developed for the physics of plasmas (this is not

surprising, since the original work of Vlasov [164] introduced in Chapter 3 was actually on

plasmas). In this context, a well known method is the so called Mayer’s cluster expansion,

which is based on the decomposition of the joint probability density of the system. In more

detail, it consists in analyzing the contributions to the joint probability density that come

from the interactions between pairs, triplets, quadruplets etc of particles (in our case of

neurons). Since it involves the interactions between the single units of the system, clearly

there is an important difference between plasmas and neural networks. In fact, in plas-

mas every particle is interacting with all the others, since the Coulomb’s force is always

active if all the particles have a non-zero electric charge. Instead, in the case of a neural

network, the neurons are not always fully connected, since some synapses can be missing.

Therefore we start to define the Mayer’s cluster expansion in the simplest case of a fully
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Figure 4.1: Mayer’s cluster expansion for the marginal probability density p(3) (V, V ′, V ′′, t). The
arrows represent the interactions between the neurons, while their absence means that the neu-
rons are independent.

connected network, then we extend it to the general case. So, remembering the definitions

3.17, 3.18 and 3.19, the expansion in the fully connected case is:

p(2) (V, V ′, t) =p(1) (V, t) p(1) (V ′, t) + P (V, V ′, t)

p(3) (V, V ′, V ′′, t) =p(1) (V, t) p(1) (V ′, t) p(1) (V ′′, t) + p(1) (V, t)P (V ′, V ′′, t) (4.1)

+ p(1) (V ′, t)P (V, V ′′, t) + p(1) (V ′′, t)P (V, V ′, t) + T (V, V ′, V ′′, t)

where P (V, V ′, t) and T (V, V ′, V ′′, t) are the so called pair and triplet correlation functions,

respectively. See also Figure 4.1 for an intuitive interpretation of this expansion.

The expansion can be extended to all orders, so for example p(4) (V, V ′, V ′′, V ′′′, t) depends

also on the quadruplet correlation function Q (V, V ′, V ′′, V ′′′, t), and so on and so forth. In

the Appendix A we give the conditions that must be satisfied by the correlation functions
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in order to have a self-consistent Mayer’s cluster expansion. It is easy to understand why,

for example, P (V, V ′, t) is called pair correlation function. In fact, from 4.1, it is defined

as P (V, V ′, t) = p(2) (V, V ′, t) − p(1) (V, t) p(1) (V ′, t), therefore it represents the “part” of the

joint probability density of two neurons which is not taken into account by the indepen-

dence term p(1) (V, t) p(1) (V ′, t). So we conclude that intuitively P (V, V ′, t) describes the

correlation between the pair of neurons. More rigorously, if we quantify the correlation

with the Pearson’s coefficient, namely:

Corr (Vi (t) , Vj (t)) =
Cov (Vi (t) , Vj (t))√

V ar (Vi (t))V ar (Vj (t))

V ar (Vi (t)) =Cov (Vi (t) , Vi (t))

where:

Cov (Vi (t) , Vj (t)) =E [Vi (t)Vj (t)]− E [Vi (t)]E [Vj (t)]

=

∫

R2

p(2) (V, V ′, t)V V ′dV dV ′ −
[∫

R

p(1) (V, t)V dV

]2

=

∫

R2

P (V, V ′, t)V V ′dV dV

and:
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V ar (Vi (t)) =E
[
V 2
i (t)

]
− E

2 [Vi (t)]

=

∫

R

p(1) (V, t)V 2dV −
[∫

R

p(1) (V, t)V dV

]2

then we can clearly see that the correlation is “proportional” to P (V, V ′, t), which explains

the choice of its name. At this point we open a short parenthesis about the quantification

of the correlation function in this thesis: we always calculate the correlation between

the membrane potentials, while many authors prefer to calculate the correlation between

the spike-counts or the firing rates (see for example [158][178][179]). However, at least for

relatively small values of the fluctuations of the membrane potentials, these two quantities

are equivalent, as proved for the rate model in the Appendix B.

It is important to observe that in a fully connected network the functions P (V, V ′, t),

T (V, V ′, V ′′, t) etc are the same for all the neurons, as a consequence of the invariance of

the system under exchange of the neural indices and of the all-to-all connectivity matrix.

We are now ready for the definition of the Mayer’s cluster expansion in a general network.

The difference with a fully connected network is that the function P (V, V ′, t) between two

neurons depends on the existence or absence of a connection between them, while in a

fully connected network there is no distinction since all the neurons are connected. The

same problem affects all the higher order correlation functions. So, for example, given

three neurons i, j and k, the function T (V, V ′, V ′′, t) has 23 = 8 different forms, because in

general we have eight different kinds of connections between these neurons (for example,

i is connected with j but not with k and j is connected with k, or they are all connected,

etc). The situation is even more complicated since in general the networks do not have

symmetric connections, therefore the case with connection from i to j is different from the

case with the connection in the opposite direction, namely from j to i. For simplicity, we

consider only the case of symmetric connections, namely if i is connected to j, then j is
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connected to i. The Mayer’s cluster expansion is therefore defined as:

p
(2)
Cα

(V, V ′, t) =p(1) (V, t) p(1) (V ′, t) + PCα
(V, V ′, t)

p
(3)
Cα,Cβ ,Cγ

(V, V ′, V ′′, t) =p(1) (V, t) p(1) (V ′, t) p(1) (V ′′, t) + p(1) (V, t)PCβ
(V ′, V ′′, t) (4.2)

+ p(1) (V ′, t)PCγ
(V, V ′′, t) + p(1) (V ′′, t)PCα

(V, V ′, t) + TCα,Cβ,Cγ
(V, V ′, V ′′, t)

...

where α, β, γ ∈ {0, 1}. Here C0 means that there is no connection between the two cor-

responding neurons, while C1 means that the connection is present. So for example

PC1 (Vi, Vj , t) is the pair correlation function between the i-th and the j-th neuron, that

are supposed to be connected. Instead TC0,C1,C0 (Vi, Vj , Vk, t) is the triplet correlation func-

tion between these three neurons, where only the j-th and the k-th neuron are connected.

In other words, the sequence Cα, Cβ, Cγ represents the presence or absence of the connec-

tions between the neurons in positions (i, j) (j, k) (k, i). We observe that we have not used

the subscript Cx for the marginal density p(1). In fact this function does not depend on

the presence or absence of the connections, because it describes a single neuron, whose

behavior is always the same, due to the invariance of the system under exchange of the

neural indices.

Usually correlations of higher and higher order are more and more negligible (we show an

explicit example in Appendix E), therefore we can suppose that Q � Tp(1) � Pp(1)p(1) �

p(1)p(1)p(1)p(1) etc. Therefore the higher order correlation functions can be neglected. In

this chapter we take into account only the correlations between pairs of neurons, there-

fore we set TCα,Cβ ,Cγ = 0 and the same for all the higher order correlation functions. This

approximation allows us to break the infinite BBGKY hierarchy (see Chapter 3), trans-
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forming it into a closed system of equations. Now, from Section 3.1.2 we know that:

∂

∂t
pm0 (Vm0 , t) =− ∂

∂Vm0

[(
−Vm0

τ
+ I (t)

)
pm0 (Vm0 , t)

]
+

1

2
σ2
1

∂2

∂V 2
m0

pm0 (Vm0 , t)

− Λ

M

∂

∂Vm0

∑

j∈Gm0

∫

R

S (Vj) pm0,j (Vm0 , Vj , t) dVj (4.3)

which, using 4.2, can be equivalently rewritten in the following way:

∂

∂t
p(1) (V, t) =− ∂

∂V

[(
−V

τ
+ I (t)

)
p(1) (V, t)

]
+

1

2
σ2
1

∂2

∂V 2
p(1) (V, t)

− Λ
∂

∂V

{[∫

R

S (V ′) p(1) (V ′, t) dV ′
]
p(1) (V, t) +

∫

R

S (V ′)PC1 (V, V
′, t) dV ′

}
(4.4)

Now we have to find the PDEs satisfied by the functions PC0 (V, V
′, t) and PC1 (V, V

′, t), in

order to close the system of equations. This can be done using a similar trick to that used

in Section 3.1.2, as shown in the next section.

4.2 Second equation

In order to obtain the PDEs satisfied by PC0 (V, V
′, t) and PC1 (V, V

′, t), we integrate the

FPE 3.15 with respect to
∏

k 6=m0,m1

dVk on the domain R
N−2. So we obtain that:

∫

RN−2

∂

∂t
p
(−→
V , t

) ∏

k 6=m0,m1

dVk =
∂

∂t
pm0,m1 (Vm0 , Vm1 , t)

while for the drift term defined by 3.16 we obtain:
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∫

RN−2

N−1∑

i=0

{
− ∂

∂Vi

[
fi

(−→
V , t

)
p
(−→
V , t

)]} ∏

k 6=m0,m1

dVk

= −
∫

RN−2

∂

∂Vm0

[
fm0

(−→
V , t

)
p
(−→
V , t

)] ∏

k 6=m0,m1

dVk −
∫

RN−2

∂

∂Vm1

[
fm1

(−→
V , t

)
p
(−→
V , t

)] ∏

k 6=m0,m1

dVk

−
∑

i6=m0,m1

∫

RN−2

∂

∂Vi

[
fi

(−→
V , t

)
p
(−→
V , t

)] ∏

k 6=m0,m1

dVk (4.5)

The last term is equal to zero for the divergence theorem and the boundary conditions at

infinity. Now consider the first term of 4.5. It writes:

−
∫

RN−2

∂

∂Vm0

[
fm0

(−→
V , t

)
p
(−→
V , t

)] ∏

k 6=m0,m1

dVk

= −
∫

RN−2

∂

∂Vm0

[(
−Vm0

τ
+ I (t)

)
p
(−→
V , t

)] ∏

k 6=m0,m1

dVk

− Λ

M

∫

RN−2

∂

∂Vm0




 ∑

j∈Gm0

S (Vj)


 p

(−→
V , t

)

 ∏

k 6=m0,m1

dVk (4.6)

The first term of the right-hand side of 4.6 is:

− ∂

∂Vm0



(
−Vm0

τ
+ I (t)

)∫

RN−2

p
(−→
V , t

) ∏

k 6=m0,m1

dVk


 = − ∂

∂Vm0

[(
−Vm0

τ
+ I (t)

)
pm0,m1 (Vm0 , Vm1 , t)

]

The analysis of the second term of the right-hand side of 4.6 illuminates the difference in

the behavior between connected and disconnected neurons. In effect, if m1 /∈ Gm0 , namely
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if the m0-th and the m1-th neurons are not connected, this second term writes:

− Λ

M

∫

RN−2

∂

∂Vm0




 ∑

j∈Gm0

S (Vj)


 p

(−→
V , t

)

 ∏

k 6=m0,m1

dVk

= − Λ

M

∂

∂Vm0

∑

j∈Gm0

∫

R

S (Vj)



∫

RN−3

p
(−→
V , t

) ∏

k 6=m0,m1,j

dVk


 dVj

= − Λ

M

∂

∂Vm0

∑

j∈Gm0

∫

R

S (Vj) pm0,m1,j (Vm0 , Vm1 , Vj , t) dVj (4.7)

Instead, if m1 ∈ Gm0 , namely if the m0-th and the m1-th neurons are connected, the second

term of the right-hand side of 4.6 gives:

− Λ

M

∫

RN−2

∂

∂Vm0




 ∑

j∈Gm0

S (Vj)


 p

(−→
V , t

)

 ∏

k 6=m0,m1

dVk

= − Λ

M

∂

∂Vm0

∑

j∈Gm0

∫

RN−2

S (Vj) p
(−→
V , t

) ∏

k 6=m0,m1

dVk

= − Λ

M

∂

∂Vm0



∫

RN−2

S (Vm1) p
(−→
V , t

) ∏

k 6=m0,m1

dVk +
∑

j∈Gm0
j 6=m1

∫

RN−2

S (Vj) p
(−→
V , t

) ∏

k 6=m0,m1

dVk




= − Λ

M

∂

∂Vm0




S (Vm1)

∫

RN−2

p
(−→
V , t

) ∏

k 6=m0,m1

dVk +
∑

j∈Gm0
j 6=m1

∫

R

S (Vj)



∫

RN−3

p
(−→
V , t

) ∏

k 6=m0,m1,j

dVk


 dVj




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= − Λ

M

∂

∂Vm0


S (Vm1) pm0,m1 (Vm0 , Vm1 , t) +

∑

j∈Gm0
j 6=m1

∫

R

S (Vj) pm0,m1,j (Vm0 , Vm1 , Vj , t) dVj


 (4.8)

To finish, the diffusion term in the FPE gives:

1

2
σ2
1

∫

RN−2

[
N∑

i=1

∂2

∂V 2
i

p
(−→
V , t

)] ∏

k 6=m0,m1

dVk

=
1

2
σ2
1




∫

RN−2

∂2

∂V 2
m0

p
(−→
V , t

) ∏

k 6=m0,m1

dVk +

∫

RN−2

∂2

∂V 2
m1

p
(−→
V , t

) ∏

k 6=m0,m1

dVk +
∑

i6=m0,m1

∫

RN−2

∂2

∂V 2
i

p
(−→
V , t

) ∏

k 6=m0,m1

dVk





=
1

2
σ2
1

[
∂2

∂V 2
m0

pm0,m1 (Vm0 , Vm1 , t) +
∂2

∂V 2
m1

pm0,m1 (Vm0 , Vm1 , t)

]

having used again the divergence theorem and the boundary conditions at infinity. Putting

everything together and remembering the following definitions (see 3.18):

pm0,m1 (·, ·, t) =p
(2)
Cα

(·, ·, t)

pm0,m1,j (·, ·, ·, t) =p
(3)
Cα,Cβ ,Cγ

(·, ·, ·, t)

we obtain that the marginal probability density of two chosen neurons satisfies the follow-

ing PDE:
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∂

∂t
p
(2)
Cα

(V, V ′, t) =− ∂

∂V

[(
−V

τ
+ I (t)

)
p
(2)
Cα

(V, V ′, t)

]
− ∂

∂V ′

[(
−V ′

τ
+ I (t)

)
p
(2)
Cα

(V, V ′, t)

]

+
1

2
σ2
1

[
∂2

∂V 2
p
(2)
Cα

(V, V ′, t) +
∂2

∂V ′2 p
(2)
Cα

(V, V ′, t)

]

− Λ

M

∂

∂V


αS (V ′) p

(2)
Cα

(V, V ′, t) +

1∑

β,γ=0

ζαβγ

∫

R

S (V ′′) p
(3)
Cα,Cβ ,Cγ

(V, V ′, V ′′, t) dV ′′




− Λ

M

∂

∂V ′


αS (V ) p

(2)
Cα

(V, V ′, t) +

1∑

β,γ=0

ζαβγ

∫

R

S (V ′′) p
(3)
Cα,Cβ ,Cγ

(V, V ′, V ′′, t) dV ′′




(4.9)

where ζαβγ represents the number of times the sequence Cα, Cβ, Cγ is generated by the

sum over j in the terms 4.7 and 4.8. In general ζαβγ depends on the connectivity matrix,

and can be evaluated with combinatorial calculus. Now, equation 4.9 is the PDE satisfied

by p
(2)
Cα

(V, V ′, t), which is a function of p(1) (V, t) and PCα (V, V ′, t). The PDE for p(1) (V, t) is

already known (see formula 4.4), so we need to transform 4.9 into the corresponding PDE

satisfied by PCα (V, V ′, t). To this purpose, we observe that:

∂

∂t
PCα

(V, V ′, t) =
∂

∂t
p
(2)
Cα

(V, V ′, t)−
[
∂

∂t
p(1) (V, t)

]
p(1) (V ′, t)− p(1) (V, t)

∂

∂t
p(1) (V ′, t) (4.10)

therefore substituting 4.9 into 4.10 and after some algebra we obtain:
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∂

∂t
PCα

(V, V ′, t) =− ∂

∂V

[(
−V

τ
+ I (t)

)
PCα

(V, V ′, t)

]
− ∂

∂V ′

[(
−V ′

τ
+ I (t)

)
PCα

(V, V ′, t)

]

+
1

2
σ2
1

{(
∂2

∂V 2
+

∂2

∂V ′2

)
PCα

(V, V ′, t)

}

− Λ

M

{
α

[
S (V ′)

∂

∂V
+ S (V )

∂

∂V ′

] [
p(1) (V, t) p(1) (V ′, t) + PCα

(V, V ′, t)
]

+

1∑

β,γ=0

ζαβγ

(
∂

∂V
+

∂

∂V ′

)[
Rp(1) (t) p(1) (V, t) p(1) (V ′, t)

+Rp(1) (t)PCα
(V, V ′, t) + p(1) (V, t)UP,Cβ

(V ′, t) + p(1) (V ′, t)UP,Cγ
(V, t)

]}

+ Λp(1) (V ′, t)
∂

∂V

[
Rp(1) (t) p(1) (V, t) + UP,C1 (V, t)

]

+ Λp(1) (V, t)
∂

∂V ′

[
Rp(1) (t) p(1) (V ′, t) + UP,C1 (V

′, t)
]

(4.11)

where we have defined:

Rp(1) (t) =

∫

R

S (V ) p(1) (V, t) dV

UP,Cα
(V, t) =

∫

R

S (V ′)PCα
(V, V ′, t) dV ′

Therefore now we have a closed system of three coupled PDEs of the McKean-Vlasov type

for p(1) (V, t), PC0 (V, V
′, t) and PC1 (V, V

′, t). Equation 4.11 can be considerably simplified

neglecting all the terms multiplied by Λ
M

, provided that M is large enough compared to
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Λ (however, in the numerical simulations of Section 4.3 they will be always taken into

account).

At this point, an important observation must be made. According to the Mayer’s cluster ex-

pansion, in the case for example of a fully connected network, the joint probability density

of the whole network is given by:

p
(−→
V , t

)
=

N−1∏

i=0

p(1) (Vi, t) +
∑

a,b
a<b






 ∏

c 6=a,b

p(1) (Vc, t)


P (Va, Vb, t)



 (4.12)

having neglected all the higher order correlation functions, like Q, PP , PT , and so on. Now,

according to the numerical simulations (see Figures 4.2, 4.3 and 4.4), the function p(1) (V, t)

depends weakly on N , while P (V, V ′, t) is approximately proportional to 1
N

(which confirms

the phenomenon of propagation of chaos discussed in Chapter 3). Instead, the sum over a

and b in formula 4.12 generates N(N−1)
2 terms, therefore roughly speaking the second term

of the right-hand side of 4.12 is proportional to N(N−1)
2N . Since p(1) (V, t) depends weakly on

N , for large network sizes the right-hand side of 4.12 dominates
∏N−1

i=0 p(1) (Vi, t). Moreover,

in the Appendix E we prove that for a fully connected network, at least for weak Brownian

motions, the 3-neurons correlation is zero. This means that we can neglect the contribution

of the triplet correlation function T . According to the same analysis, the 4-neurons corre-

lation is equal to the square of the 2-neurons correlation, which is proportional to 1
N

. This

means that Q ∝
1
N2 . Given a network with N neurons, the number of quadruplets that we

can create is N(N−1)(N−2)(N−3)
24 . This means that the total contribution of the quadruplet

correlation function to the joint probability density is roughly N(N−1)(N−2)(N−3)
24N2 . This term

grows quadratically with N , therefore for large networks it dominates the term generated

by the pair correlation function, which is proportional to N(N−1)
2N . This proves that in gen-

eral we cannot use 4.12 to evaluate the joint probability density of the whole network,

because higher order contributions are not negligible. Notwithstanding, this formula can

be used to evaluate the probability density of a small subset of the network, which con-
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Neuron Input Synaptic Weights Sigmoid Function Phase-space Other
τ = 1 I = 0.2 Λ = 1 TMAX = 1 Vmin = −3.5 ∆t = 0.01

σ2 = 0.5 σ1 = 0.5 σ3 = 0 λ = 1 VMAX = 3.5

µ = 0.5 VT = 0 ∆V = 0.1

Table 4.1: Parameters used to generate Figures 4.2 - 4.6.

tains a number of neurons η � N . In effect, in this case the contributions of the functions

P and Q are η(η−1)
2N and η(η−1)(η−2)(η−3)

24N2 respectively. These terms are much smaller than 1

if η is sufficiently smaller than N . The same happens to all the higher order terms that

we have neglected in formula 4.12, therefore now this formula can be safely used. It is

important to observe that for N → ∞ and η finite, 4.12 gives formula 3.13, as it must

be. This explains intuitively why in formula 3.13 we restricted the calculation of the joint

probability density only to a finite number of neurons. For an alternative analysis of the

contribution of the higher order terms, the reader is referred to [180].

4.3 Numerical simulations of the probability density

In this section we show the results obtained from the numerical simulation of formulae 4.4

and 4.11. For simplicity we consider only the case of a fully connected network (for which

α = β = γ = 1 and ζ111 = N − 2), for the values of the parameters reported in Table 4.1.

All results are shown at t = 2.

As in Section 3.2.2, these equations are solved on a regular laptop using the method of lines

and the Newton-Cotes integration scheme of order 6. Figure 4.2 shows the results obtained

for p(1) (V, t), while Figures 4.3 and 4.4 show the behavior of the function P (V, V ′, t). The

hypothesis P � p(1)p(1) is seen to be satisfied.

From these results, we can see that p(1) (V, t) depends weakly on N and is approximately

Gaussian. Moreover, also the shape of the function P (V, V ′, t) does not change considerably
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Figure 4.2: Function p(1) (V, t) in a fully connected network, obtained at t = 2 and for the values
of the parameters reported in Table 4.1. This figure shows the marginal probability density of a
single neuron for N = 2 (top-left), 10 (top-right), 100 (bottom-left) and 1000 (bottom-right), and its
extremely weak dependence on the size of the network.
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Figure 4.3: Front view of the function P (V, V ′, t) obtained at t = 2 and for the values of the
parameters reported in Table 4.1. This figure shows the front view of the pair correlation function
in a fully connected network for different values of the network size, namely N = 2 (top-left), 10
(top-right), 100 (bottom-left) and 1000 (bottom-right). The presence of negative values, required
in order to satisfy the constraint A.2, clearly shows that P (V, V ′, t) cannot be interpreted as a
probability density. Moreover, the maximum amplitude of the function, and therefore also the
correlation between neurons, is approximately proportional to 1

N . This result is proved analytically
in Chapter 5 for weak sources of noise.
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Figure 4.4: Top view of the function P (V, V ′, t) obtained at t = 2 and for the values of the parame-
ters reported in Table 4.1. This figure shows the top view of the pair correlation function in a fully
connected network for different values of the network size, namely N = 2 (top-left), 10 (top-right),
100 (bottom-left) and 1000 (bottom-right). From it we can clearly see that P (V, V ′, t) = P (V ′, V, t).

with N , with only the exception of small networks, and its amplitude seems to be roughly

proportional to 1
N

, as we already said.

4.4 Numerical results for the Fisher information

In this section we show the numerical results for the Fisher information obtained from the

following approximate expression:
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I (θ, t) ≈

− η

∫

R

p
(1) (V, t)

∂2logp(1) (V, t)

∂θ2
dV

−
η (η − 1)

2

∫

R2

[
p
(1) (V, t) p(1)

(
V

′
, t
)
+ P

(
V, V

′
, t
)] ∂2d (V, V ′, t)

∂θ2
dV dV

′

+
η (η − 1)

4

∫

R2

p
(1) (V, t) p(1)

(
V

′
, t
) ∂2d2 (V, V ′, t)

∂θ2
dV dV

′ (4.13)

+
η (η − 1) (η − 2)

2

∫

R3

p
(1) (V, t) p(1)

(
V

′
, t
)
p
(1) (

V
′′
, t
) ∂2 [d (V, V ′, t) d (V, V ′′, t)]

∂θ2
dV dV

′
dV

′′

+
η (η − 1) (η − 2) (η − 3)

8

∫

R4

p
(1) (V, t) p(1)

(
V

′
, t
)
p
(1) (

V
′′
, t
)
p
(1) (

V
′′′
, t
) ∂2 [d (V, V ′, t) d (V ′′, V ′′′, t)]

∂θ2
dV dV

′
dV

′′
dV

′′′

where:

d (Va, Vb, t) =
P (Va, Vb, t)

p(1) (Va, t) p(1) (Vb, t)

The proof of this formula is rather complicated and can be found in the Appendix C (see

formula C.9). Clearly, since we do not know the analytic expressions of p(1) (V, t) and

P (V, V ′, t), we cannot calculate exactly the integrals of 4.13. Moreover, the second or-

der derivatives with respect to the parameters of the system are not known, therefore we

have to use numerical techniques of integration. However, since these integrals are low-

dimensional, there is no need to use Monte Carlo integration techniques, so we can simply

use the standard numerical methods. In particular, here we use again the Newton-Cotes

method of order 6, while the functions p(1) (V, t) and P (V, V ′, t) are calculated numerically

as explained in Section 4.3. For simplicity we use only the second order approximation of

the Fisher information, namely formula 4.13. The second order derivatives with respect to
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θ are calculated repeating three times the simulation of the PDE system and using formula

3.38 for n = 1, which gives:

d2f (x)

dx2
≈ 1

∆x2
[f (x−∆x)− 2f (x) + f (x+∆x)] (4.14)

In this thesis we are particularly interested in evaluating how well the neural network

encodes the value of its external input current, therefore we choose θ = I. Moreover

the derivatives are calculated using ∆I = 10−4. It is important to observe that all the

integrated quantities of this formula are well defined and converge quickly to zero when

the membrane potentials are large, which implies that also the corresponding integrals

are well defined. For example, the function:

[
p(1) (V, t) p(1) (V ′, t) + P (V, V ′, t)

] ∂2d (V, V ′, t)

∂I2

which appears in the second term of the right-hand side of 4.13, is shown in Figure 4.5.

Finally, Figure 4.6 shows the behavior of the Fisher information calculated at t = 2 as a

function of N and for the values of the parameters shown in Table 4.1.

4.5 Partial conclusion

In this chapter we have developed an extension of the mean-field technique introduced in

Chapter 3. With this approach, inspired by the physics of plasmas, we have described the

finite size effects of the network and therefore its deviation from the situation of perfect

independence of the neurons. All the results of Chapter 3 can be re-obtained with this new

method if we let N → ∞. We have also developed a perturbative expansion that allows

us to calculate approximately the Fisher information of the system, obtaining that its en-

coding capability increases when the neurons are decorrelated. This seems to confirm the
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Figure 4.5: Behavior of
[
p(1) (V, t) p(1) (V ′, t) + P (V, V ′, t)

] ∂2d(V,V ′,t)
∂I2 calculated for t = 2, N = 100

and for the values of the parameters reported in Table 4.1. Since this function converges quickly to
zero for large values of the membrane potential, the second term of 4.13 is well defined. The same
conclusion holds for all the other terms of the Fisher information, which are not shown here.

Figure 4.6: Fisher information of the subnetwork for η = 3 and N = [25, 50, 100, 250, 500, 1000] (left-
hand side), and for η = 10 and N = [100, 250, 500, 1000, 2500, 5000] (right-hand side), obtained from
4.13 for ∆I = 10−4, t = 2 and for the values of the parameters shown in Table 4.1. In both cases
the Fisher information of η neurons increases with N , reaching a saturation point when neurons
get close to independence.
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common belief that the network encodes better the external signals when the neurons are

independent [178][181][182][183]. Notwithstanding, as we will see in the next chapters,

the most interesting behavior of I (I, t) is obtained when the neurons are highly correlated.

Unfortunately, with the Mayer’s cluster expansion we cannot study the encoding capabil-

ity of the system in the correlated case. This is due to the fact that the correlation of the

neurons cannot be fixed arbitrarily, since it depends on the size of the network. Moreover

the size must be high enough in order to use formula 4.12, so the neurons are highly decor-

related because propagation to chaos is very fast, as we have seen in Chapter 3. Therefore

we cannot quantify the Fisher information keeping N fixed and changing the pair correla-

tion. In order to do this, we need to introduce correlations between the Brownian motions

that define the background noise, while in this chapter we have supposed that they are

independent. So an extension of the model is required, and it will be developed in the

next chapters. In other words, Figure 4.6 shows only one side of the coin, namely a small

increase of the encoding capability of the network for highly decorrelated neurons. This

result will be confirmed in Chapters 5 and 6 for the rate model with homogeneous synap-

tic weights, but there we will obtain much higher values of the Fisher information when

the neurons are correlated and inhomogeneous. This proves that the belief of a better

encoding capability for independent neurons is incorrect. The same result is obtained in

Chapter 7 for the FitzHugh-Nagumo network. It is also important to observe that we have

implemented numerically the Mayer’s cluster expansion and the series expansion of the

Fisher information only in the case of a fully connected network. Nevertheless in Chapter

6 we will prove analytically that the increase of I (I, t) for highly correlated and highly

decorrelated neurons is a general phenomenon, that does not depend on the topology of

the synaptic connections.

To conclude, we underline the main advantage of the Mayer’s cluster expansion, namely

the fact that it can be used to study the behavior of the network for arbitrarily high values

of the noise, while the techniques developed in the next chapters work only for relatively

weak sources of randomness.
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Chapter 5

Perturbative analysis with strong

synaptic weights

T HIS chapter is devoted to the development of a perturbative technique which can

be used to study the correlation structure of the rate model, for a generic number

of neurons. This is somehow an extension of the previous analysis to the case of corre-

lated Brownian motions in the background. In order to make the model more complete,

we introduce also correlated initial conditions for the membrane potentials and correlated

synaptic weights. In this approach we have to assume that the standard deviations of the

three sources of randomness are relatively weak, since they are used as perturbative pa-

rameters, together with the existence of a stationary solution around which we perturb the

solution. Moreover we have also to assume that the system is invariant under exchange

of the neural indices, but the mean intensity of the synaptic weights can be arbitrarily

high. This is an important point, since in Chapter 6 we will develop another perturba-

tive approach with less hypotheses but with relatively weak mean synaptic weights. In

Section 5.1 we describe the perturbative technique applied to the case of the rate model,

while in Section 5.2 we use it in order to calculate the correlation structure of the network.
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Instead, in Section 5.3 we apply this technique to special kinds of connectivity matrices,

while in Section 5.4 we provide many numerical results that support the goodness of this

approach. Moreover, in Section 5.5 we show the behavior of the correlation as a function

of the intensity of the external input, and in Section 5.6 we prove in 3 different ways that

in general the neurons do not become independent in this kind of network, preventing the

use of the mean-field theory in the thermodynamic limit. To conclude, in Section 5.7 we

use the perturbative method for calculating the Fisher information of the system in the

case of approximately Gaussian behavior, obtaining that the network encodes better the

value of the external input when the neurons are highly correlated.

5.1 Description of the model

Here we suppose again that the neural network is described by the rate equations that we

have used in the Chapters 3 and 4, namely:

dVi (t) =


− 1

τ
Vi (t) +

N−1∑

j=0

Jij (t)S (Vj (t)) + Ii (t)


 dt+ σ1dBi (t) (5.1)

with i = 0, 1, ..., N − 1. We recall that the functions Bi (t) are Brownian motions, which can

be equivalently interpreted as a background noise for the membrane potentials Vi (t) or as

the stochastic component of the external input Ii (t). In Chapters 3 and 4 the functions

Bi (t) were independent, while here we extend the model, supposing that in general the

Brownian motions are correlated according to a covariance matrix Σ1, whose components

are:
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[Σ1]ij =Cov

(
dBi (t)

dt
,
dBj (s)

ds

)
= C1

ijδ (t− s)

(5.2)

C1
ij =





1 if i = j

C1 if i 6= j

where δ (·) is the Dirac delta function, while C1 represents the correlation between two

different Brownian motions (here the derivative of the Brownian motion is meant in the

weak sense of distributions and is interpreted as white noise). In order to be a true covari-

ance matrix, Σ1 must be positive-semidefinite. Since it is symmetric, then it is positive-

semidefinite if and only if its eigenvalues are non-negative. But Σ1 is a circulant matrix,

therefore its eigenvalues are e0 = 1 + C1 (N − 1) and ei = 1 − C1, for i = 1, 2, ..., N − 1.

Therefore Σ1 is positive-semidefinite if and only if 1
1−N

≤ C1 ≤ 1. We could increase the

complexity of this correlation structure, since there is no technical difficulty in doing that,

but we keep it simple for the sake of clarity.

Now we suppose also that the initial conditions are distributed according to the following

multivariate normal probability density:

−→
V (0) ∼ N (−→µ ,Σ2) (5.3)

where for simplicity:
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µi = µ, i = 0, 1, ..., N − 1 (5.4)

Σ2 =σ2
2




1 C2 · · · C2

C2 1 · · · C2

...
...

. . .
...

C2 C2 · · · 1




(5.5)

Here σ2 represents the initial standard deviation of each neuron, while C2 is the initial cor-

relation between pairs of neurons. As before, the matrix Σ2 must be positive-semidefinite,

and this is true if and only if 1
1−N

≤ C2 ≤ 1. Again, we could increase the complexity of

this correlation structure, if desired.

About the synaptic connectivity matrix J (t), we describe it using a different kind of model.

In fact, in Chapter 3 we supposed that the synaptic weights fluctuated stochastically in

time around a mean value. Here we suppose that their temporal evolution is determinis-

tic, but the weights are distributed randomly over many repetitions of the network. This

choice is dictated by the fact that adding stochastic fluctuations in the weights, according

to 3.5, is somehow redundant, since we have already a similar kind of noise introduced

by the Brownian motions in the background. Moreover, with this new kind of model for

the synaptic weights we can match our results with those appeared in [184]. So, in de-

tail, in this chapter the synaptic connectivity matrix J (t) has random entries distributed

according to the law:

J (t) ∼ MN
(
J + σ4Z (t) ,Ω3,Σ3

)
(5.6)

This is the so called matrix normal distribution [185], namely the generalization of the

multivariate normal distribution to the case of matrix-valued random variables. Here J ,
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Z (t), Ω3 and Σ3 are N ×N deterministic matrices. In particular, J +σ4Z (t) represents the

mean of J (t), while Ω3 and Σ3 are its covariance matrices. We suppose that J has only two

different kinds of entries, namely 0 (absence of connection) and Λ, where Λ is a free non-

zero parameter. We also suppose that Z (t) has general entries (with the obvious exception

that Zij (t) = 0 if there is no connection from the j-th neuron to the i-th neuron, namely

if Jij (t) = 0 ∀t), therefore it is a source of inhomogeneity and time-variability for the

connectivity matrix. We use for simplicity specific structures of the covariance matrices Ω3

and Σ3. Supposing that all the non-zero entries of J (t) have the same standard deviation

σ3, it is possible to rewrite the matrix J (t) in the following equivalent way:

J (t) =J + σ3W + σ4Z (t) (5.7)

W ∼MN
(
0, Ω̃3, Σ̃3

)
(5.8)

where Ω̃3 and Σ̃3 are normalized covariance matrices. Their explicit structure is not im-

portant, and the only thing that we need to know is that they are chosen in order to have:

Cov (Wij ,Wkl) =





0 if (g (i, j) = 0) ∨ (g (k, l) = 0)

1 if (i = k) ∧ (j = l) ∧ (g (i, j) = 1)

C3 otherwise

(5.9)

where g (x, y) = 0 if there is no synaptic connection from the the y-th neuron to the x-th

neuron (namely if Jxy (t) = 0 ∀t), and 1 otherwise, while C3 is the correlation between

two different and non-zero synaptic weights. We observe that the range of the possible

values of C3 in general depends on the topology of the connectivity matrix, and Wij = 0 if
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there is no connection from the j-th neuron to the i-th neuron (this is a consequence of the

formulae 5.7 and 5.9). Again, as for the Brownian motions and the initial conditions, we

could increase the complexity of this correlation structure, if desired.

Now we suppose that every neuron has the same number of incoming connections, that

we call M . We observe that our assumptions imply that the network is invariant under

exchange of the neuronal indices, which is the main hypothesis of this chapter. When

M increases, each neuron receives a larger and larger input from the remainder of the

network, therefore in order to fix this divergence we normalize the synaptic weight in the

following way:

J (t) → J (t)

M

as we did in Chapters 3 and 4. This normalization is intended to be used only when M 6= 0,

because otherwise we obtain Jij =
0
0 . For M = 0 the neurons have no incoming connections,

therefore we have simply to set Jij = 0.

To conclude, we also suppose that the external input current is deterministic (if we inter-

pret Bi (t) as the noise of the membrane potential) and given by:

−→
I (t) =

−→
I + σ5

−→
H (t) (5.10)

where the vector
−→
I is time-independent and such that Ii = I, for i = 0, 1, ..., N−1. The vec-

tor
−→
H (t) has in general different and time-variable entries, so it is a source of inhomogene-

ity and time-variability. Now we define the following 2nd order perturbative expansion of

the membrane potential:

Vi (t) ≈ µ+

5∑

m=1

σmY i
m (t) +

5∑

m,n=1
m≤n

σmσnY
i
m,n (t) (5.11)
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which will be used to obtain an approximate analytic solution of the system 5.1.

5.1.1 The system of equations

Now we put the perturbative expansion 5.11 and the expressions 5.7 and 5.10 for, respec-

tively, the synaptic weights and the external input current inside the system 5.1. If all the

parameters σm are small enough, we can expand the sigmoid function in a Taylor series

around µ (see 5.4). In order to be rigorous, we have to determine the radius of convergence

of the Taylor expansion of S (V ) for every value of V and to check if it is big enough com-

pared to σm, because otherwise our technique cannot be applied. In fact, the various σm

determine the order of magnitude of the fluctuations of V around µ, therefore it is impor-

tant to check that V is inside the interval of convergence of the Taylor expansion of S (V ).

To our knowledge, this calculation has been performed only for V = 0, so in Appendix D we

show the general analysis, obtaining that in general the radius of convergence decreases

with the slope parameter λ of the sigmoid function. So, supposing that λ is small enough,

if we call:

ζj =

5∑

m=1

σmY j
m (t) +

5∑

m,n=1
m≤n

σmσnY
j
m,n (t)

the Taylor expansion of the sigmoid function is:
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S (µ+ ζj) ≈S (µ) + S′ (µ) ζj +
1

2
S′′ (µ) ζ2j

≈S (µ) + S′ (µ)

5∑

m=1

σmY j
m (t)

+
5∑

m,n=1
m<n

σmσn

[
S′ (µ)Y j

m,n (t) + S′′ (µ)Y j
m (t)Y j

n (t)
]

+
5∑

m=1

σ2
m

[
S′ (µ)Y j

m,m (t) +
1

2
S′′ (µ)

(
Y j
m (t)

)2
]

having neglected the terms with order higher than 2. Now we substitute this expansion of

the sigmoid function inside the neural equation system and we equate the terms with the

same σ coefficients, obtaining (here we report only the equations that we will actually use

to compute the correlation structure in Section 5.2):

µ =τ
[
ΛS (µ) + I

]
(5.12)

dY i
1 (t) =


− 1

τ
Y i
1 (t) + S′ (µ)

N−1∑

j=0

J ijY
j
1 (t)


 dt+ dBi (t) (5.13)

dY i
2 (t) =


− 1

τ
Y i
2 (t) + S′ (µ)

N−1∑

j=0

J ijY
j
2 (t)


 dt (5.14)

dY i
3 (t) =


− 1

τ
Y i
3 (t) + S′ (µ)

N−1∑

j=0

J ijY
j
3 (t) + S (µ)

N−1∑

j=0

Wij


 dt

(5.15)
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dY i
4 (t) =


− 1

τ
Y i
4 (t) + S′ (µ)

N−1∑

j=0

J ijY
j
4 (t) + S (µ)

N−1∑

j=0

Zij (t)


 dt (5.16)

dY i
5 (t) =


− 1

τ
Y i
5 (t) + S′ (µ)

N−1∑

j=0

J ijY
j
5 (t) +Hi (t)


 dt (5.17)

...

dY i
1,4 (t) =


− 1

τ
Y i
1,4 (t) + S′ (µ)

N−1∑

j=0

J ijY
j
1,4 (t) + S′ (µ)

N−1∑

j=0

Zij (t)Y
j
1 (t) + S′′ (µ)

N−1∑

j=0

J ijY
j
1 (t)Y j

4 (t)


 dt

(5.18)

dY i
1,5 (t) =


− 1

τ
Y i
1,5 (t) + S′ (µ)

N−1∑

j=0

J ijY
j
1,5 (t) + S′′ (µ)

N−1∑

j=0

J ijY
j
1 (t)Y j

5 (t)


 dt (5.19)

...

dY i
2,4 (t) =


− 1

τ
Y i
2,4 (t) + S′ (µ)

N−1∑

j=0

J ijY
j
2,4 (t) + S′ (µ)

N−1∑

j=0

Zij (t)Y
j
2 (t) + S′′ (µ)

N−1∑

j=0

J ijY
j
2 (t)Y j

4 (t)


 dt

(5.20)

dY i
2,5 (t) =


− 1

τ
Y i
2,5 (t) + S′ (µ)

N−1∑

j=0

J ijY
j
2,5 (t) + S′′ (µ)

N−1∑

j=0

J ijY
j
2 (t)Y j

5 (t)


 dt (5.21)

...

dY i
3,4 (t) =


− 1

τ
Y i
3,4 (t) + S′ (µ)

N−1∑

j=0

J ijY
j
3,4 (t) + S′ (µ)

N−1∑

j=0

Zij (t)Y
j
3 (t)

+S′ (µ)

N−1∑

j=0

WijY
j
4 (t) + S′′ (µ)

N−1∑

j=0

J ijY
j
3 (t)Y j

4 (t)


 dt (5.22)

dY i
3,5 (t) =


− 1

τ
Y i
3,5 (t) + S′ (µ)

N−1∑

j=0

J ijY
j
3,5 (t) + S′ (µ)

N−1∑

j=0

WijY
j
5 (t) + S′′ (µ)

N−1∑

j=0

J ijY
j
3 (t)Y j

5 (t)


 dt

(5.23)

...
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Equation 5.12 is algebraic and non-linear, therefore must be solved numerically. 5.13 is

the only stochastic differential equation of the set and can be solved analytically, since it is

linear with constant coefficients. Equations 5.14 - 5.17 are ordinary, and can be solved in

the same way as 5.13. To conclude, equations 5.18 - 5.23 determine the functions Y i
m,n (t),

and depend on the terms Y i
m (t), which have been calculated at the previous step. Being

linear and with constant coefficients, they can be integrated analytically as a function of

the already known functions Y i
m (t).

5.1.2 The initial conditions

The perturbative expansion 5.11 at t = 0 gives:

Vi (0) ≈ µ+

5∑

m=1

σmY i
m (0) +

5∑

m,n=1
m≤n

σmσnY
i
m,n (0)

Moreover, according to 5.3, we have Vi (0) ∼ N
(
µ, σ2

2

)
= µ+σ2N (0, 1), so from the compar-

ison it must be:

Y i
2 (0) ∼ N (0, 1) (5.24)

Y i
m (0) = 0, m = 1, 3, 4, 5 (5.25)

Y i
m,n (0) = 0, ∀ (m,n) : m ≤ n (5.26)

So we have Vi (0) = µ+ σ2Y
i
2 (0) and therefore:
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Cov (Vi (0) , Vj (0)) = σ2
2Cov

(
Y i
2 (0) , Y j

2 (0)
)

But from 5.5 we also know that:

Cov (Vi (0) , Vj (0)) =





σ2
2 if i = j

σ2
2C2 if i 6= j

so from the comparison it must be that:

Cov
(
Y i
2 (0) , Y j

2 (0)
)
=





1 if i = j

C2 if i 6= j

(5.27)

5.1.3 Solutions of the equations

As we said at the end of Section 5.1.1, the algebraic equation 5.12 is non-linear, therefore

it cannot be solved exactly. However, the differential equations satisfied by all the func-

tions Y i
m (t) and Y i

m,n (t) are linear with constant coefficients, therefore they can be solved

analytically. In particular, the equations 5.13 - 5.17 can be solved directly. Instead the

remaining equations are functions of the previous Y i
m (t), that we have already calculated.

For example, according to 5.18, Y i
1,4 (t) can be determined analytically as a function of Y i

1 (t)

and Y i
4 (t), which are already known from the equations 5.13 and 5.16. Now we introduce

the fundamental matrix Φ (t) such that:
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Φ (t) =eAt

(5.28)

Aij =





− 1
τ if i = j

J ijS
′ (µ) if i 6= j

where:

J = JS′ (µ) (5.29)

is the effective connectivity matrix of the network. Therefore the solutions of all the func-

tions Y i
m (t) can be obtained straightforwardly as follows:

Y
i
1 (t) =

N−1∑

j=0

∫ t

0

[Φ (t− s)]ij dBj (s) (5.30)

Y
i
2 (t) =

N−1∑

j=0

Φij (t)Y
j
2 (0) (5.31)

Y
i
3 (t) = S (µ)

N−1∑

j,k=0

Wjk

∫ t

0

[Φ (t− s)]
ij
ds (5.32)

Y
i
4 (t) = S (µ)

N−1∑

j,k=0

∫ t

0

[Φ (t− s)]
ij
Zjk (s) ds (5.33)

Y
i
5 (t) =

N−1∑

j=0

∫ t

0

[Φ (t− s)]
ij
Hj (s) ds

(5.34)
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...

Y
i
1,4 (t) =S

′ (µ)

N−1∑

j,k,l=0

∫ t

0

[Φ (t− s)]
ij

{∫ s

0

[Φ (s− u)]
kl
dBl (u)

}
Zjk (s) ds

+ S (µ)S′′ (µ)
N−1∑

j,k,l,m,n=0

Jjk

∫ t

0

[Φ (t− s)]
ij

{∫ s

0

[Φ (s− u)]
kl
dBl (u)

}{∫ s

0

[Φ (s− u)]
km

Zmn (u) du

}
ds

(5.35)

Y
i
1,5 (t) =S

′′ (µ)

N−1∑

j,k,l,m=0

Jjk

∫ t

0

[Φ (t− s)]
ij

{∫ s

0

[Φ (s− u)]
kl
dBl (u)

}{∫ s

0

[Φ (s− u)]
km

Hm (u) du

}
ds (5.36)

...

Y
i
2,4 (t) =S

′ (µ)

N−1∑

j,k,l=0

Y
l
2 (0)

∫ t

0

[Φ (t− s)]
ij
Φkl (s)Zjk (s) ds

+ S (µ)S′′ (µ)
N−1∑

j,k,l,m,n=0

JjkY
l
2 (0)

∫ t

0

[Φ (t− s)]
ij
Φkl (s)

{∫ s

0

[Φ (s− u)]
km

Zmn (u) du

}
ds (5.37)

Y
i
2,5 (t) =S

′′ (µ)

N−1∑

j,k,l,m=0

JjkY
l
2 (0)

∫ t

0

[Φ (t− s)]
ij
Φkl (s)

{∫ s

0

[Φ (s− u)]
km

Hm (u) du

}
ds (5.38)

...

Y
i
3,4 (t) =S (µ)S′ (µ)

N−1∑

j,k,l,m=0

Wlm

∫ t

0

[Φ (t− s)]
ij

{∫ s

0

[Φ (s− u)]
kl
du

}
Zjk (s) ds

+ S (µ)S′ (µ)
N−1∑

j,k,l,m=0

Wjk

∫ t

0

[Φ (t− s)]
ij

{∫ s

0

[Φ (s− u)]
kl
Zlm (u) du

}
ds

+ S
2 (µ)S′′ (µ)

N−1∑

j,k,l,m,n,p=0

J jkWlm

∫ t

0

[Φ (t− s)]
ij

{∫ s

0

[Φ (s− u)]
kl
du

}{∫ s

0

[Φ (s− u)]
kn

Znp (u) du

}
ds

(5.39)

Y
i
3,5 (t) =S

′ (µ)
N−1∑

j,k,l=0

Wjk

∫ t

0

[Φ (t− s)]
ij

{∫ s

0

[Φ (s− u)]
kl
Hl (u) du

}
ds

+ S (µ)S′′ (µ)

N−1∑

j,k,l,m,n=0

JjkWlm

∫ t

0

[Φ (t− s)]ij

{∫ s

0

[Φ (s− u)]kl du

}{∫ s

0

[Φ (s− u)]kn Hn (u) du

}
ds

(5.40)

...
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To conclude, we have performed a perturbative expansion around a stationary state µ

because in this way the equations 5.13 - 5.23 have constant coefficients and therefore

they can be solved exactly using the fundamental matrix 5.28. Had we performed the

perturbative expansion around a non-stationary state, we would have obtained a system of

differential equations with time-varying coefficients, whose general solution is not known.

In this case, the best thing that we can try is to write the solution in terms of the Magnus

expansion [186], but this introduces another approximation to the real solution of the

neural network.

In this chapter we have also supposed that the system is invariant under exchange of the

neural indices: for this reason we have used the same stationary solution µ, the same

(unperturbed) input current I and the same number of incoming connections for all the

neurons in the network. This invariance is required in order to ensure that the effective

connectivity matrix J given by 5.29 has the same structure as the real and unperturbed

connectivity matrix J . In this way the fundamental matrix Φ (t) can be calculated using

the properties of J , as explained in Section 5.3. If the system is not invariant under ex-

change of the neural indices, J does not inherit the structure of J , therefore the technique

introduced in this chapter cannot be used anymore (see also the discussion at the end of

Section 5.3.2). To conclude, it is important to observe that even if we have chosen struc-

tures of Σ1, Σ2, Σ3 and Ω3 that are invariant under exchange of the neural indices, their

invariance is not required here: we have used it only to simplify the final formulae that we

will obtain in Section 5.2. Therefore in principle inhomogeneous structures can be used

for these covariance matrices.

5.2 Correlation structure of the network

In this section we want to calculate the correlation structure of the membrane poten-

tials, according to the perturbative expansion 5.11. Since the covariance function is bilin-
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ear, we have to compute it for all the possible combinations of the pairs
(
Y i
m (t) , Y j

n (t)
)

,
(
Y i
m (t) , Y j

n,p (t)
)

and
(
Y i
m,n (t) , Y

j
p,q (t)

)
. However we do not have to consider the terms of

order 4, like σ2
1σ

2
2Cov

(
Y i
1,1 (t) , Y

j
2,2 (t)

)
, because they are incomplete. In effect, in the per-

turbative expansion of Vi (t), we did not consider the terms of order 3, like σ2
1σ2Y

i
1,1,2 (t), that

generate contributions of order 4 in the formula of the covariance. So the terms of order 4

cannot be considered in the expansion of the covariance, therefore the final formula is of or-

der 3. For simplicity we suppose that the Brownian motions, the initial conditions and the

uncertainty of the synaptic weights are 3 independent random processes (and indeed there

is a priori no obvious reason to think that they are correlated), so all the cross terms like

σ1σ2Cov
(
Y i
1 (t) , Y

j
2 (t)

)
, σ1σ2Cov

(
Y i
2 (t) , Y

j
1 (t)

)
, σ2

1σ3Cov
(
Y i
1,1 (t) , Y

j
3 (t)

)
, ... are equal to

zero (however, if desired, we could assume non-zero correlations between these 3 sources

of randomness, since there is no technical difficulty in the calculations, only the problem

to compute many non-zero cross terms). Let us show it with an example:

Cov
(
Y i
1 (t) , Y j

2 (t)
)
=Cov

(∫ t

0

N−1∑

k=0

[Φ (t− s)]ik dBk (s) ,

N−1∑

l=0

Φjl (t)Y
l
2 (0)

)

=
N−1∑

k,l=0

Φjl (t)Cov

(∫ t

0

[Φ (t− s)]ik dBk (s) , Y
l
2 (0)

)

=0

since Bk (s) and Y l
2 (0) are independent by assumption. Moreover, due to the Isserlis’ the-

orem [187], we obtain also that all the terms in the covariance proportional to σ2
mσn with

m,n = 1, 2, 3 are equal to zero, like σ2
1σ2 and σ3

3. The same thing happens to all the terms

proportional to σ2
mσn, with m = 4, 5 and n = 1, 2, 3. This is due to the fact that, according

to the Isserlis’ theorem again, the mean of the product of any odd number of zero-mean

normal processes is equal to zero. We show it with an example:
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Cov
(
Y i
2 (t) , Y j

2,2 (t)
)

= Cov




N−1∑

k=0

Φik (t)Y
k
2 (0) ,

1

2
S′′ (µ)

N−1∑

l,m,n,p=0

J lmY n
2 (0)Y p

2 (0)

∫ t

0

[Φ (t− s)]jl Φmn (s)Φmp (s) ds




=
1

2
S′′ (µ)

N−1∑

k,l,m,n,p=0

Φik (t)J lm

{∫ t

0

[Φ (t− s)]jl Φmn (s)Φmp (s) ds

}
Cov

(
Y k
2 (0) , Y n

2 (0)Y p
2 (0)

)

= 0

because:

Cov
(
Y k
2 (0) , Y n

2 (0)Y p
2 (0)

)
= E

[
Y k
2 (0)Y n

2 (0)Y p
2 (0)

]
− E

[
Y k
2 (0)

]
E [Y n

2 (0)Y p
2 (0)] = 0

since E
[
Y k
2 (0)Y n

2 (0)Y p
2 (0)

]
= 0 by the Isserlis’ theorem and E

[
Y k
2 (0)

]
= 0, because

Y k
2 (0) ∼ N (0, 1) from 5.24. In the final formula of the covariance, also the terms pro-

portional to σmσn and σ2
mσn with m,n = 4, 5 are zero, because the functions Y i

m (t) and

Y i
m,n (t) are deterministic for m,n = 4, 5. In fact, for example, from the formulae 5.33 and

5.34 we can easily see that the functions Y i
4 (t) and Y i

5 (t) depend only on deterministic

functions (Φ (t), Zjk (t) and Hj (t)), deterministic parameters (τ and all the parameters of

S (·)) and deterministic initial conditions (Y i
4 (0) = Y i

5 (0) = 0, from 5.25), and therefore

they are deterministic as well. Also the terms proportional to σmσnσp for m = 4, 5 and

n 6= p are zero, due to the independence of the sources of randomness or to the fact that

Y i
m (t) is deterministic for m = 4, 5. In the same way the terms obtained from the covari-

ance of Y i
m (t) for m = 4, 5 with Y i

n,n (t) for n = 1, 2, 3 are zero due to the fact that the first

function is deterministic.
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To conclude, the only non-zero terms in the final formula of the covariance are those pro-

portional to σ2
m for m = 1, 2, 3, and those obtained from the covariance of Y i

m,n (t) with

Y i
m (t), for m = 1, 2, 3 and n = 4, 5. So the final formula for the covariance is:

Cov (Vi (t) , Vj (t))

= σ
2
1Cov

(
Y

i
1 (t) , Y j

1 (t)
)
+ σ

2
2Cov

(
Y

i
2 (t) , Y j

2 (t)
)
+ σ

2
3Cov

(
Y

i
3 (t) , Y j

3 (t)
)

+ σ4

{
σ
2
1

[
Cov

(
Y

i
1 (t) , Y j

1,4 (t)
)
+Cov

(
Y

i
1,4 (t) , Y

j
1 (t)

)]
+ σ

2
2

[
Cov

(
Y

i
2 (t) , Y j

2,4 (t)
)
+Cov

(
Y

i
2,4 (t) , Y

j
2 (t)

)]

+σ
2
3

[
Cov

(
Y

i
3 (t) , Y j

3,4 (t)
)
+ Cov

(
Y

i
3,4 (t) , Y

j
3 (t)

)]}

+ σ5

{
σ
2
1

[
Cov

(
Y

i
1 (t) , Y j

1,5 (t)
)
+Cov

(
Y

i
1,5 (t) , Y

j
1 (t)

)]
+ σ

2
2

[
Cov

(
Y

i
2 (t) , Y j

2,5 (t)
)
+Cov

(
Y

i
2,5 (t) , Y

j
2 (t)

)]

+σ
2
3

[
Cov

(
Y

i
3 (t) , Y j

3,5 (t)
)
+ Cov

(
Y

i
3,5 (t) , Y

j
3 (t)

)]}
(5.41)

Even if the third order terms can be calculated exactly using the Isserlis’ theorem (and

even if in principle we can extend this perturbative expansion to any higher order), due to

their complexity in this chapter we consider only the second order terms, that is equivalent

to say that we truncate the perturbative expansion 5.11 of the membrane potential at the

first order. After some algebra we obtain:

110



Cov
(
Y i
1 (t) , Y j

1 (t)
)
=

N−1∑

k=0

∫ t

0

[Φ (t− s)]ik [Φ (t− s)]jk ds

+ C1

N−1∑

k,l=0
k 6=l

∫ t

0

[Φ (t− s)]ik [Φ (t− s)]jl ds (5.42)

Cov
(
Y i
2 (t) , Y j

2 (t)
)
=

N−1∑

k=0

Φik (t)Φjk (t) + C2

N−1∑

k,l=0
k 6=l

Φik (t)Φjl (t) (5.43)

Cov
(
Y i
3 (t) , Y j

3 (t)
)
=
S2 (µ)

M

N−1∑

k=0

{∫ t

0

[Φ (t− s)]ik ds

}{∫ t

0

[Φ (t− s)]jk ds

}

+ C3S
2 (µ)





N−1∑

k,l=0

{∫ t

0

[Φ (t− s)]ik ds

}{∫ t

0

[Φ (t− s)]jl ds

}

− 1

M

N−1∑

k=0

{∫ t

0

[Φ (t− s)]ik ds

}{∫ t

0

[Φ (t− s)]jk ds

}
 (5.44)

So now the covariance Cov (Vi (t) , Vj (t)) is known for all the possible pairs (i, j), with i, j =

0, 1, ..., N − 1, therefore we can determine the correlation structure of the network using

the formula for the Pearson’s correlation coefficient:

Corr2 (Vi (t) , Vj (t)) =
Cov (Vi (t) , Vj (t))√

V ar (Vi (t))V ar (Vj (t))
(5.45)

where:

V ar (Vi (t)) = Cov (Vi (t) , Vi (t)) (5.46)

is the variance of the stochastic process Vi (t). The subscript “2” means that this is a
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correlation between a pair of neurons.

In order to determine the higher order correlations between triplets, quadruplets, quintu-

plets etc of neurons, we have to extend the Pearson’s formula in the following way. The

natural generalization of the covariance for n functions is:

κn

(
Vi0 (t) , Vi1 (t) , ..., Vin−1 (t)

)
= E



n−1∏

j=0

(
Vij (t)− V ij (t)

)

 (5.47)

This is known as the joint cumulant of the functions Vi0 (t) , Vi1 (t) , ..., Vin−1 (t). Unfortu-

nately this is not enough, because as with the Pearson’s correlation coefficient, we want to

normalize the joint cumulant in order to find a function that is in the range [−1, 1]. To this

purpose, we can observe that:

∣∣∣∣∣∣
E



n−1∏

j=0

(
Vij (t)− V ij (t)

)


∣∣∣∣∣∣
≤ E



∣∣∣∣∣∣

n−1∏

j=0

(
Vij (t)− V ij (t)

)
∣∣∣∣∣∣


 ≤





n−1∏

j=0

E

[∣∣Vij (t)− V ij (t)
∣∣n
]




1
n

having used the fact that |a+ b| ≤ |a|+ |b| at the first step and a special case of the Hölder’s

inequality at the second. Therefore we have:

∣∣∣∣∣∣∣∣∣∣∣∣

E



n−1∏

j=0

(
Vij (t)− V ij (t)

)



n

√√√√
n−1∏

j=0

E

[∣∣Vij (t)− V ij (t)
∣∣n
]

∣∣∣∣∣∣∣∣∣∣∣∣

≤ 1 (5.48)

This means that the function:

Corrn
(
Vi0 (t) , Vi1 (t) , ..., Vin−1 (t)

) def
=

E



n−1∏

j=0

(
Vij (t)− V ij (t)

)



n

√√√√
n−1∏

j=0

E

[∣∣Vij (t)− V ij (t)
∣∣n
]

(5.49)
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is in the range [−1, 1], therefore it is a good formula to express higher order correlations.

We can see that for n = 2 it gives the Pearson’s formula, as it should be. Now, all these

means E can be computed using the Isserlis’ theorem as we did for the covariance, so

in principle we can determine also the higher order correlation structure of the neural

network. However, in practice, this gives rise to combinatorial problems with different

levels of complexity when Vij (t) does not have the same behavior for different values of ij,

namely if the deterministic matrix J ij + σ4Zij (t) and the input vector
−→
I (t) do not have

strong symmetries. Therefore, for simplicity, in the Appendix E we show only the fully

connected case with the same synaptic weights and the same input current for all the

neurons.

5.3 Calculation of the fundamental matrix

As we can see from the formulae 5.42, 5.43 and 5.44, the correlation structure is a function

of the matrices Φ (t) and Φ (t) ΦT (t). Therefore we need to compute them for different kinds

of connectivity matrices J . In general this is not an easy task, but however in some special

cases they can be obtained as discussed in Sections 5.3.1 and 5.3.2.

5.3.1 Block circulant matrices with circulant blocks

Given two positive integers R and S, with 1 ≤ R,S ≤ N , we suppose that J is an N × N

block circulant matrix (with N = RS) of the form:

J =
Λ

M




b(0) b(1) · · · b(R−1)

b(R−1) b(0) · · · b(R−2)

...
...

. . .
...

b(1) b(2) · · · b(0)




(5.50)
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where b(0), b(1), ..., b(R−1) are S × S circulant matrices:

b(i) =




b
(i)
0 b

(i)
1 · · · b

(i)
S−1

b
(i)
S−1 b

(i)
0 · · · b

(i)
S−2

...
...

. . .
...

b
(i)
1 b

(i)
2 · · · b

(i)
0




(5.51)

All the entries b
(i)
j , for i = 0, 1, ..., R − 1 and j = 0, 1, ..., S − 1, can only be equal to 0 or

1, with only the exception of b
(0)
0 that must always be equal to 0 in order to avoid the

self-connections. R can be interpreted as the number of neural populations, and S as the

number of neurons per population. Due to this particular structure of the connectivity

matrix, all the neurons have the same number of incoming synaptic connections M , as

required. This analysis includes the special case when the matrix J is circulant (obtained

for R = 1 or S = 1). As we said in Chapter 3, in the context of Graph Theory, a net-

work whose adjacency matrix is circulant is called circulant graph (see Figure 3.1) and is

usually represented by the notation CN (1, 2, ..., q). Moreover we have to recall that even

if in Graph Theory the connections are often represented through undirected unweighted

graphs, which means that the connectivity matrix is symmetric, in this section we do not

assume in general that J is symmetric.

Now we want to calculate the matrices Φ (t) and Φ (t)ΦT (t) in terms of the eigenquantities

of J . The eigenvalues of J are the collection of the eigenvalues of the following matrices:

b̃(i) =
R−1∑

j=0

e
2π
R

ijιb(j) (5.52)

where ι =
√
−1. Since the matrices b̃(i) are circulant, we can compute their eigenvalues e(i)j

as follows:

e
(i)
j =

S−1∑

k=0

e
2π
S

jkι
[
b̃(i)
]
0k

=

S−1∑

k=0

R−1∑

l=0

e2π(
jk
S

+ il
R)ιb

(l)
k (5.53)
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Instead the matrix of the eigenvectors of J is:

Q =FR ⊗ FS

(5.54)

[FK ]ij =
1√
K
e

2π
K

ijι, K = R,S, i, j = 0, 1, ...,K − 1

where ⊗ is the Kronecker product. Now, for k = 0, 1, ..., N − 1, we call ak the eigenvalues

of A = − 1
τ
IdN + JS′ (µ) (where IdN is the N × N identity matrix) and ek the eigenvalues

of J (namely the collection of all the e
(i)
j , with k = iS + j), while we call −→v k and −→w k their

respective eigenvectors. Therefore we have ak = − 1
τ
+ ekS

′ (µ) and −→v k = −→w k. Moreover,

using also the fact that the matrix eAt can be diagonalized and is real, we can write:

Φ (t) =eAt = QD (t)Q∗

Φ (t)ΦT (t) =eAt

([
eA(t)

]T)∗
= QD (t)Q∗QD∗ (t)Q∗ = QD (t)D∗ (t)Q∗

where ∗ is the element-by-element complex conjugation, and D (t) = diag
(
ea0t, ea1t..., eaN−1t

)
.

Here we have used the fact that D (t) and Q are symmetric matrices and also the identity:

Q∗Q = (F ∗
R ⊗ F ∗

S ) (FR ⊗ FS) = (F ∗
RFR)⊗ (F ∗

SFS) = IdRS = IdN

due to the mixed-product property of the Kronecker product and to the elementary identity

F ∗
KFK = IdK . Now, since:

[FR ⊗ FS ]ij = [FR]mn [FS ]pq =
1√
N

e2π(
mn
R

+ pq
S )ι
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m =
⌊

i
S

⌋
, n =

⌊
j
S

⌋
, p = i−mS, q = j − nS

we conclude that:

Φij (t) =
1

N

N−1∑

k=0

e[−
1
τ
+ekS

′(µ)]tfijk

(5.55)

[
Φ (t) ΦT (t)

]
ij
=

1

N

N−1∑

k=0

e2[−
1
τ
+<(ek)S

′(µ)]tfijk

where < (ek) represents the real part of ek, while:

fijk = [FR ⊗ FS ]ik [FR ⊗ FS ]
∗
kj = e2π{ 1

Rb k
S c(b i

S c−b j
S c)+ k

S
(i−j)}ι

These formulae seem to give complex-valued functions, but due to the particular structure

of the eigenvalues ek and of the function fijk, their imaginary parts are equal to zero (see

Appendix F). Therefore the covariance is a real function, as it should be.

Now we show an explicit example of this technique, namely the case when the blocks of

the matrix J have the following symmetric circulant band structure:
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b(i) =





1− δi0 1 · · · 1 0 · · · 0 1 · · · 1

1 1− δi0
. . .

. . .
. . .

. . .
. . .

...
...

. . .
. . .

. . .
. . .

. . . 0
. . . 1

1
. . .

. . .
. . .

. . .
. . . 0

0
. . .

. . .
. . .

. . .
. . .

. . .
...

...
. . .

. . .
. . .

. . .
. . . 0

0
. . .

. . .
. . .

. . . 1

1
. . . 0

. . .
. . .

. . .
. . .

...
...

. . .
. . .

. . .
. . . 1− δi0 1

1 · · · 1 0 · · · 0 1 · · · 1 1− δi0





(5.56)

where, supposing for simplicity that S ≥ 3, the first row of b(i) (excluding the term
[
b(i)
]
00

,

which is 0 for i = 0 and 1 for i > 0) can be written explicitly as:





[
b(i)
]
0j

= 1, (1 ≤ j ≤ νi) ∨ (ρi ≤ j ≤ S − 1)

[
b(i)
]
0j

= 0, νi < j < ρi

ρi =S − νi +H

(
νi −

⌊
S

2

⌋
+ (−1)

S

)

H (x) =





0, x ≤ 0

1, x > 0

with 1 ≤ νi ≤
⌊
S
2

⌋
. Here we have to suppose that S ≥ 3 because otherwise it is not possible

to distinguish the diagonal band from the corner elements. Now, the bandwidth of b(i) is

2νi + 1, so this defines the integer parameters νi. Moreover, 2ν0 − H
(
ν0 −

⌊
S
2

⌋
+ (−1)S

)
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represents the number of connections that every neuron in a given population receives

from the neurons in the same population. Instead 2νi + 1 −H
(
νi −

⌊
S
2

⌋
+ (−1)S

)
, for i =

1, 2, ..., R− 1, is the number of connections that every neuron in the the k-th population re-

ceives from the neurons in the (i+ k)-th mod R population, for k = 0, 1, ..., R−1. So the total

number of incoming connections per neuron is M = R−1+
∑R−1

i=0

[
2νi −H

(
νi −

⌊
S
2

⌋
+ (−1)S

)]
.

It is important to observe that even if all the matrices b(i) are symmetric, the matrix J in

general is not, since the number of connections in every block is different (the case of

symmetric connectivity matrices is studied in Section 5.3.2). Now, using formula 5.53, we

obtain that:

emS+n =





Λ
M

[
R − 1 +

R−1∑

k=0

f (n, νk, S)

]
, m = 0, ∀n

Λ
M

[
−1 +

R−1∑

k=0

e
2π
R

mkιf (n, νk, S)

]
, m 6= 0, ∀n

(5.57)

f (n, νk, S) =





2νk −H
(
νk −

⌊
S
2

⌋
+ (−1)

S
)
, n = 0, ∀νk

−1, n 6= 0, νk =
⌊
S
2

⌋

sin

(
πn(2νk+1)

S

)

sin( πn
S )

− 1, n 6= 0, νk <
⌊
S
2

⌋

with m = 0, 1, ..., R − 1 and n = 0, 1, ..., S − 1.

Many different special cases can be studied. The simplest one is obtained for ν0 = ν1 =

... = νR−1
def
= ν, and in this case formula 5.57 gives:
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emS+n =





Λ
M [R− 1 +Rf (n, ν, S)] , m = 0, ∀n

− Λ
M , m 6= 0, ∀n

(5.58)

with M = R − 1 + R
[
2ν −H

(
ν −

⌊
S
2

⌋
+ (−1)S

)]
. Therefore in this case the eigenvalues

are real, as it must be, since with this special choice of the parameters the matrix J is

symmetric. For R = 1 and ν <
⌊
N
2

⌋
we have M = 2ν and formula 5.58 gives the eigenvalues

of the circulant network:

en =





Λ, n = 0

Λ
2ν

[
sin( πn(2ν+1)

N )
sin( πn

N )
− 1

]
, n 6= 0

(5.59)

Instead for ν =
⌊
S
2

⌋
and ∀R, S we have M = N − 1 and formula 5.58 gives the eigenvalues

of the fully connected network:

en =





Λ, n = 0

− Λ
N−1 , n 6= 0

(5.60)

5.3.2 Symmetric matrices

Another case where the matrices Φ (t) and Φ (t)ΦT (t) can be computed easily is when we

have a general symmetric matrix J . Since its entries are real, it can be diagonalized by an

orthogonal matrix Q (namely such that Q−1 = QT ), therefore we have:
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J =QD̃QT

D̃ =diag
(
d̃1, d̃2, ..., d̃N−1

)

So we obtain:

A =− 1

τ
IdN + JS′ (µ) = Q

[
− 1

τ
IdN + D̃S′ (µ)

]
QT

Φ (t) =eAt = Qe[−
1
τ
IdN+D̃S′(µ)]tQT = QD (t)QT

having defined the diagonal matrix D (t) as follows:

D (t) =e[−
1
τ
IdN+D̃S′(µ)]t = diag (d1, d2, ..., dN−1)

di =e[−
1
τ
+d̃iS

′(µ)]t

Moreover, also the matrix A is symmetric in this case, therefore:

Φ (t)ΦT (t) = e2At = QD2 (t)QT

so their components are:
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Φij (t) =

N−1∑

k=0

eDk(t−s)QikQjk

(5.61)

[
Φ (t)ΦT (t)

]
ij
=

N−1∑

k=0

e2Dk(t−s)QikQjk

Again, now we need only the eigenquantities of J , but it is not possible to find explicit

expressions for a general symmetric connectivity matrix. Actually they can be calculated

analytically only if J has some special kind of structure. However, since it is symmetric

and all its non-zero entries have the same value Λ
M

(as we said in Section 5.1), it can be

interpreted as the adjacency matrix of an undirected unweighted graph. Due to this cor-

respondence, we can study the eigenquantities of J using the powerful techniques already

developed in the context of Graph Theory for this kind of graphs. Lee and Yeh [188] have

proved that it is possible to perform binary operations (in particular the Kronecker product

⊗ and the Cartesian product ×) on pairs of graphs G1 and G2, obtaining more complicated

graphs, whose eigenvalues and eigenvectors can be calculated easily from those of the

graphs G1 and G2. If eG and −→v G represent respectively the eigenvalues and eigenvectors

of the graph G, then we obtain:





ei,jG1⊗G2
= eiG1

ejG2

−→v i,j
G1⊗G2

= −→v i
G1

⊗−→v j
G2

(5.62)





ei,jG1×G2
= eiG1

+ ejG2

−→v i,j
G1×G2

= −→v i
G1

⊗−→v j
G2

(5.63)
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Figure 5.1: Example of the graph PN , known as path on N nodes. Its connectivity matrix is tridiagonal

without corner elements.

for i, j = 0, 1, ..., N − 1. In particular we can choose G1 and G2 to be PN and/or CyN , where

PN is the so called path on N nodes (see Figure 5.1), while CyN is the cycle graph (see

Figure 3.1).

Their eigenquantities (in the case of unitary weights) are:





eiPN
= 2 cos

[
(i+1)π
N+1

]

[−→v i
PN

]
j
= sin

[
(i+1)(j+1)π

N+1

]
(5.64)





eiCyN
= 2cos

(
2πi
N

)

[−→v i
CyN

]
j
= e

2πij
N

ι

, ι =
√
−1 (5.65)

Combining them through the binary operations ⊗ and ×, we can create several classes of

well-known graphs, like:

• Ladder: Ln = Pn × P2, with 2n = N ;

• Circular Ladder (also known as Annulus or Prism): CLn = Cyn × P2, with 2n = N ;
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Figure 5.2: Some examples of graphs: the Ladder Ln = Pn × P2 (top left), the Circular Ladder CLn =

Cyn × P2 (top right), the Grid Gm,n = Pm × Pn (bottom left) and the Cross Crm,n = Pm ⊗ Pn (bottom right).

• Grid: Gm,n = Pm × Pn, with mn = N ;

• Cylinder: Clm,n = Pm × Cyn, with mn = N ;

• Torus: Tm,n = Cym × Cyn, with mn = N ;

• Cross: Crm,n = Pm ⊗ Pn, with mn = N ;

• Hypercube: Hn = P2 × P2 × ...× P2︸ ︷︷ ︸
n−times

, with 2n = N ;

and so on and so forth. Some of these examples are shown in the Figures 5.2 and 5.3. Even

much more complicated graphs can be created in this way, like Crm,n⊗Tp,q, or Gm,n⊗Tp,q×

Hr ⊗ Clx,y, and so on.

Using the mixed-product property of the Kronecker product, we obtain:
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Figure 5.3: Three examples of the Hypercube graph Hn.
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−→v i,j
PN1⊗PN2

· −→v k,l
PN1⊗PN2

=
(−→v i

PN1
· −→v k

PN1

)(−→v j
PN2

· −→v l
PN2

)
= 0

if i 6= k and/or j 6= l, since the eigenvectors of the path are orthogonal (of course the same

is true for −→v i,j
PN1

×PN2
· −→v k,l

PN1
×PN2

). Therefore the eigenvectors −→v i,j
PN1

⊗PN2
(or equivalently

−→v i,j
PN1

×PN2
) are orthogonal. Moreover −→v i,j

PN1
⊗PN2

have real entries, therefore they form

an orthogonal matrix, that can be used directly to compute Φ (t) and Φ (t) ΦT (t) through

formula 5.61.

For the eigenvectors −→v i,j
CyN1

⊗CyN2
the procedure is slightly more complicated, since the

eigenvectors −→v i
CyN

have in general complex entries (with only the exception of the cases

i = 0 and i = N
2 for N even) and therefore we cannot use them to form an orthogonal

matrix. However, if J is the connectivity matrix corresponding to the graph CyN , we have:

J−→v i
CyN

= eiCyN
−→v i

CyN

which implies:

J
∗ (−→v i

CyN

)∗
=
(
eiCyN

)∗ (−→v i
CyN

)∗

where ∗ is the element-by-element complex conjugation. Since J and eiCyN
are real, we

obtain that −→v i
CyN

and
(−→v i

CyN

)∗
are both eigenvectors of J , corresponding to the same

eigenvalue eiCyN
. Therefore, if for all the complex eigenvectors −→v i

CyN
we define the new

vectors:
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−→
V i

CyN
=
1

2

(−→v i
CyN

+
[−→v i

CyN

]∗)

(5.66)

−→
W i

CyN
=

1

2ι

(−→v i
CyN

−
[−→v i

CyN

]∗)

we conclude that they are eigenvectors of J with eigenvalue eiCyN
. Now, it is easy to see

that
−→
V i

CyN
· −→W j

CyN
= 0 ∀i, j. Moreover

−→
V i

CyN
and

−→
W i

CyN
are orthogonal also to

−→
V 0

CyN
and

−→
V

N
2
CyN

in the case of N even, and their entries are real. Therefore, if we use this set of real

eigenvectors with the rules 5.62 or 5.63, we obtain a set of eigenvectors for CyN1 ⊗CyN2 or

CyN1 ×CyN2 which are orthogonal and real (the proof is similar to the case PN1 ⊗PN2 seen

before). So they can be used to form an orthogonal matrix, through which we can compute

Φ (t) and Φ (t) ΦT (t), according to formula 5.61.

To conclude, taking for example the cases we have written previously, it is important to

observe that only the graphs CLn, Tm,n and Hn can be considered in our analysis. In effect

these three graphs have the same number of incoming connections per neuron, a feature

that is not shown by the ladder, the grid etc, due to their boundaries. The latter graphs

can be studied using this approach only in the thermodynamic limit N → ∞. In fact

only in this case the number of incoming connections per neuron is the same for all the

neurons in the network, because when N → ∞ the system "loses" its boundaries, since

they are pushed to infinity. For example, in the graph Ln all the neurons have 3 incoming

connections (see neurons 1 − 4 and 7 − 10 in the case of the graph L6 shown in Figure

5.2), with only the exception of those at the boundaries, which have only 2 connections

(see neurons 0, 5, 6 and 11 in Figure 5.2). When N → ∞, if we start to travel on the

ladder from its center toward the boundaries, we will never reach them, since they are at

infinity, therefore during the trip we meet only neurons with the same number (namely

3) of incoming connections. Therefore in the thermodynamic limit all the neurons of the

graphs with boundaries behave in the same way. This means that we have obtained the
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invariance of the system under exchange of the neural indices, which is what we need in

order to apply the perturbative approach introduced in this chapter.

5.4 Numerical comparison

The Figures 5.4 - 5.10 show the numerical comparison obtained with the first-order pertur-

bative expansion. For simplicity in this case we have chosen σ4 = σ5 = 0, since according

to 5.41 these two parameters affect the covariance only at a higher order. These figures

report both the results obtained from the exact network equations 5.1 (blue lines) and

from the first-order perturbative expansion (red lines), the latter being generated with

the equations 5.12 - 5.15. Moreover we have shown the comparison with the analytic re-

sults for the variance, covariance and correlation generated by the formulae 5.41 - 5.46

(green lines). Instead the Figure 5.11 shows the results for the second-order perturba-

tive expansion, obtained from the equations 5.12 - 5.23. For the sake of brevity, here we

have reported only the results for the correlation, but we have not shown the comparison

with its analytic formula (green lines), due to the complexity of the higher order terms

of the variance and covariance. In this case we have used σ4 = σ5 = 1, Z (t) = e−tJ

and
−→
H (t) = sin (2πt)

−→
1 , where

−→
1 is the vector whose entries are all ones. For all these

simulations we have used the parameters reported in Table 5.1, while the statistics have

been calculated with 10, 000 Monte Carlo simulations. Moreover the equations 5.1 and

5.12 - 5.23 have been solved numerically using the Euler-Maruyama scheme, while the

time-integrals involved in the formulae 5.42, 5.43 and 5.44 have been calculated with the

trapezoidal rule. The integration time step is ∆t = 0.1. The covariance and correlation

have always been calculated between the 0th and the 1st neuron, while the potentials

and the variances have been reported only for the former. The general conclusion is that

for small enough values of the parameters σ1-σ5 there is a very good agreement between

the real network and the first-order perturbative expansion and that for higher values of

these parameters the second-order expansion should be used. The match depends on the
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Neuron Input Synaptic Weights Sigmoid Function

τ = 1 I = 0 Λ = 1 TMAX = 1

C2 = 0.4 C1 = 0.3 C3 = 0.5 λ = 1

VT = 0

Table 5.1: Parameters used for all the numerical simulations of the Figures 5.4 - 5.13.

dynamics of the neurons, on the synaptic connectivity and on the network size, and in the

case of the variance, covariance and correlation, it also depends on the number of Monte

Carlo simulations used to evaluate the statistics.

5.5 Correlation as a function of the input

From the formulae 5.42, 5.43, 5.44 and 5.55 the effect of the non-linearity introduced by

the sigmoid function S (V ) is evident. Through its slope, it generates an effective con-

nectivity matrix JS′ (µ), which can be interpreted as the real connectivity matrix of the

system if it were linear. Now, the stationary solution µ depends on the external input

current I through the formula 5.12, therefore the effective synaptic strength and the cor-

relation structure depend on I as well. In particular, it is interesting to observe that if
∣∣I
∣∣ is very large, then |µ| is also very large, therefore S′ (µ) and the entries of the effective

connectivity matrix are small. In other words, the neurons become (effectively) discon-

nected. An important consequence of this phenomenon is that, for C1 = C2 = C3 = 0 and

for large values of
∣∣I
∣∣, the neurons become independent, even if the size of the network is

finite. This intuition is confirmed numerically in Figure 5.12, which has been obtained for

the graph Cy5 (which is made of 10 neurons) simulated with the exact equations 5.1, for

I = −5, 0, 5 and 50, 000 Monte Carlo simulations. The sources of randomness have inten-

sities σ1 = σ2 = σ3 = 0.1, and moreover σ4 = σ5 = 0, while all the remaining parameters

are those of Table 5.1. As usual, the numerical scheme is the Euler-Maruyama one, with

integration time step ∆t = 0.1.
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Figure 5.4: First-order perturbative expansion (σ4 = σ5 = 0) for a network with connectivity matrix CL10

(namely N = 20). These results have been obtained for the values of the parameters reported in Table

5.1, for σ1 = σ2 = σ3 = 0.01 and with the statistics evaluated through 10, 000 Monte Carlo simulations.

Since σ1, σ2 and σ3 are small, in the picture of the membrane potentials Vi (t) (top-left) there is a perfect

agreement between the result obtained from the exact network equations 5.1 (blue line) and that obtained

from the first-order perturbative expansion, namely from the equations 5.12 - 5.15 (red line). Instead the

comparison between the variances (top-right), covariances (bottom-left) and correlations (bottom-right) is less

good because small values of σ1, σ2 and σ3 determine small values of the variance and covariance, therefore

a higher number of Monte Carlo simulations is required in order to improve the match. The green line

represents the analytic result obtained for the first-order perturbative expansion for an infinite number of

Monte Carlo simulations (formulae 5.41 - 5.46), therefore it is the limit curve reached by the red line when

the number of simulations is increased indefinitely. The blue and red lines have been obtained numerically

by solving the corresponding equations with the Euler-Maruyama scheme, while the integrals with respect to

time involved in the formulae for the evaluation of the green line have been calculated with the trapezoidal

rule. In all the cases the integration time step is ∆t = 0.1.
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Figure 5.5: First-order perturbative expansion for a network with connectivity matrix CL10. These results

have been obtained for the values of the parameters reported in Table 5.1, for σ1 = 0.01, σ2 = σ3 = 0.1 and

with the statistics evaluated through 10, 000 Monte Carlo simulations. The parameter σ1 is small because

high values determine large fluctuations of the variance and covariance (see Figure 5.8), so in that case a

higher number of Monte Carlo simulations is required in order to obtain a good match.
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Figure 5.6: First-order perturbative expansion for a network with connectivity matrix CL10. These results

have been obtained for the values of the parameters reported in Table 5.1, for σ1 = 0.01, σ2 = σ3 = 0.5 and

with the statistics evaluated through 10, 000 Monte Carlo simulations.
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Figure 5.7: First-order perturbative expansion for a network with connectivity matrix CL10. These results

have been obtained for the values of the parameters reported in Table 5.1, for σ1 = 0.01, σ2 = σ3 = 1 and with

the statistics evaluated through 10, 000 Monte Carlo simulations. The match between the exact behavior and

the first-order perturbative expansion is still reasonably good, even if σ2 and σ3 are large.
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Figure 5.8: First-order perturbative expansion for a network with connectivity matrix CL10. These results

have been obtained for the values of the parameters reported in Table 5.1, for σ1 = σ2 = σ3 = 0.1 and with

the statistics evaluated through 10, 000 Monte Carlo simulations. The match is not as good as in the previous

figures because large values of σ1 determine large fluctuations of the variance and covariance. In other terms,

the variance (over many repetitions of groups made up of 10, 000 Monte Carlo simulations each) of the variance

and covariance is large if σ1 is big.
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Figure 5.9: First-order perturbative expansion for a network with connectivity matrix H3 (namely N = 8).

These results have been obtained for the values of the parameters reported in Table 5.1, for σ1 = 0.01, σ2 =

σ3 = 0.1 and with the statistics evaluated through 10, 000 Monte Carlo simulations.
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Figure 5.10: First-order perturbative expansion for a network with connectivity matrix C10 (1, 2, 0, ..., 0).

These results have been obtained for the values of the parameters reported in Table 5.1, for σ1 = 0.01, σ2 =

σ3 = 0.1 and with the statistics evaluated through 10, 000 Monte Carlo simulations. This figure clearly shows

that the goodness of the match between the curves depends on the connectivity matrix of the network, for a

fixed number of Monte Carlo simulations.
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Figure 5.11: Correlation function obtained with the second-order perturbative expansion for a network with

connectivity matrix CL10 (top-left), H5 (top-right), K10 (bottom-left) and Cy15 (bottom-right). These results

have been obtained for the values of the parameters reported in Table 5.1, for σ1 = 0.01, σ2 = σ3 = 0.1,

σ4 = σ5 = 1, Z (t) = e−tJ and
−→
H (t) = sin (2πt)

−→
1 and with the statistics evaluated through 10, 000 Monte

Carlo simulations. The match is good even if σ4 and σ5 are large.

136



Figure 5.12: Correlation function obtained for the graph Cy5 and I = −5 (top-left), 5 (top-right) and

0 (bottom). These results have been obtained from the exact equations 5.1, numerically solved using the

Euler-Maruyama scheme with integration time step ∆t = 0.1 and with 50, 000 Monte Carlo simulations. The

parameters used are C1 = C2 = C3 = 0, σ1 = σ2 = σ3 = 0.1 and σ4 = σ5 = 0, while all the remaining

parameters are those of Table 5.1. From this figure it is possible to see that the correlation between pairs of

neurons strongly decreases for high values of
∣∣I
∣∣, confirming its relation with the effective connectivity matrix

JS′ (µ).
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5.6 Failure of the mean-field theory

In this section we show three different reasons that invalidate the use of the mean-field

theory for the mathematical analysis of a neural network. A neural network is generally

described by a large set of stochastic differential equations, that makes it hard to under-

stand the underlying behavior of the system. However, if the neurons become independent,

their dynamics can be described with the mean-field theory using a highly reduced set of

equations, that are much simpler to analyze (see Chapter 3). For this reason the mean-

field theory is a powerful tool that can be used to understand the network. One of the

mechanisms through which the independence of the neurons can be obtained is the phe-

nomenon known as propagation of chaos [51][63][64][65]. Propagation of chaos refers to

the fact that, if we choose independent initial conditions for the membrane potentials at

t = 0 (which may be called initial chaos), then the neurons are always perfectly indepen-

dent ∀t > 0. Therefore the term propagation refers to the “transfer” of the independence

of the membrane potentials from t = 0 to t > 0. Under simplified assumptions about the

nature of the network (namely that the other sources of randomness in the system, in

our case the Brownian motions and the synaptic weights, are independent), propagation

of chaos does occur in the so called thermodynamic limit of the system, namely when the

number of neurons in the system grows to infinity. However in Sections 5.6.1, 5.6.2 and

5.6.3 we show that for a system with correlated Brownian motions, initial conditions and

synaptic weights, with a general connectivity matrix or with an arbitrarily large (but still

finite) size, the correlation between pairs of neurons can be high. Therefore in general the

neurons cannot be independent, invalidating the use of the mean-field theory.

138



5.6.1 Independence does not occur for N → ∞ if C1, C2 or C3 are not equal

to zero

Let us consider the case when at least one of the parameters C1, C2 and C3 (defined by 5.2,

5.5 and 5.9) is not equal to zero. For example we analyze the term proportional to C1 in

the formula 5.42, for a fully connected network. Using the technique developed in Section

5.3.1, it is easy to prove that this term for i 6= j is:

C1

N−1∑

k,l=0
k 6=l

∫ t

0

[Φ (t− s)]ik [Φ (t− s)]jl ds

=
C1

2

{(
1− 1

N

)
1

1
τ − ΛS′ (µ)

[
1− e−2( 1

τ
−ΛS′(µ))t

]
+

1

N

1
1
τ + ΛS′(µ)

N−1

[
1− e

−2
(

1
τ
+ΛS′(µ)

N−1

)
t
]}

while for i = j it is:

C1

N−1∑

k,l=0
k 6=l

∫ t

0

[Φ (t− s)]ik [Φ (t− s)]il ds

=
C1

2

(
1− 1

N

){
1

1
τ − ΛS′ (µ)

[
1− e−2( 1

τ
−ΛS′(µ))t

]
− 1

1
τ + ΛS′(µ)

N−1

[
1− e

−2
(

1
τ
+

ΛS′(µ)
N−1

)
t
]}

So the covariance (and therefore also the correlation) does not go to zero for N → ∞, or in

other words the neurons are not independent, even in the thermodynamic limit.

The reader can easily check that the same result holds for the terms of the covariance

proportional to C2 and C3.
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5.6.2 Propagation of chaos does not occur for a general connectivity ma-

trix

We study propagation of chaos as a function of the number of connections in the circulant

network. To this purpose, we have to set C2 = 0 (initial chaos) and also C1 = C3 = 0,

because otherwise the neurons cannot be independent, as explained in Section 5.6.1. Using

the formulae 5.42, 5.43, 5.44 and 5.55 we obtain that in this case the covariance is:

Cov (Vi (t) , Vj (t)) =σ2
1

∫ t

0

[
Φ (t− s)ΦT (t− s)

]
ij
ds+ σ2

2

[
Φ (t)ΦT (t)

]
ij

+ σ2
3

S2 (µ)

M

N−1∑

k=0

[∫ t

0

Φik (t− s) ds

] [∫ t

0

Φjk (t− s) ds

]
(5.67)

where:

∫ t

0

[
Φ (t− s)ΦT (t− s)

]
ij
ds =

1

2N

N−1∑

k=0

cos
[
2π
N k (i− j)

]

− 1
τ + ekS′ (µ)

{
1− e2[−

1
τ
+S′(µ)ek]t

}

[
Φ (t)ΦT (t)

]
ij
=

1

N

N−1∑

k=0

e2[−
1
τ
+S′(µ)ek]tcos

[
2π

N
k (i− j)

]

N−1∑

k=0

[∫ t

0

Φik (t− s) ds

] [∫ t

0

Φjk (t− s) ds

]

=
1

N2

N−1∑

l,m=0

e
2π
N

liιe
2π
N

mjι

[
N−1∑

k=0

e−
2π
N

(l+m)kι

]{
1− e[−

1
τ
+S′(µ)el]t

− 1
τ + elS′ (µ)

}{
1− e[−

1
τ
+S′(µ)em]t

− 1
τ + emS′ (µ)

}

=
1

N

N−1∑

l=0

{
1− e[−

1
τ
+S′(µ)el]t

− 1
τ + elS′ (µ)

}2

cos

[
2π

N
l (i− j)

]

while the eigenvalues ek are given by formula 5.59 or by formula 5.60. Now, for N → ∞
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Figure 5.13: Propagation of chaos for t = 1 as a function of ν = M
2

, in the case of a circulant connectivity

matrix. This result has been obtained for C1 = C2 = C3 = 0 (while all the remaining parameters are those of

Table 5.1), using the analytic formula 5.67 (normalized with the variance).

the right-hand side of formula 5.67 converges to a non-zero function (see Figure 5.13),

therefore for every finite value of ν (which is the number of incoming connections per

neuron divided by 2) propagation of chaos does not occur.

Moreover correlation decreases with ν, therefore propagation of chaos occurs in the circu-

lant network only in the thermodynamic limit N → ∞ and if ν is an increasing function of

N , namely if lim
N→∞

ν = ∞ (compare with 3.8). For example, in the fully connected network

ν =
⌊
N
2

⌋
, so it explains why in this case correlation goes to zero in the thermodynamic

limit. Instead in a network described by a cycle graph, perfect decorrelation is never pos-

sible, also for N → ∞, since ν = 1. In other words, having infinitely many neurons is not a

sufficient condition for getting propagation of chaos, because also infinite connections per

neuron are required. This result had already been obtained numerically in Chapter 3 (see

Figure 3.8).

5.6.3 Stochastic synchronization

In this section we show that for every finite and arbitrarily large number of neurons N in

the network, it is possible to choose special values of the parameters of the system such
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that, at some finite and arbitrarily large time instant t, the correlation between pairs of

neurons is (approximately) 1. In general t increases with N .

The general theory

We show that even when C1 = C2 = C3 = 0, if the matrix A = − 1
τ
IdN + JS′ (µ) has an

eigenvalue of multiplicity 1 with non-negative real part, while all the other eigenvalues

have negative real parts, then correlation goes to 1 for t → +∞, for every finite N . In

other terms, the stochastic components of the membrane potentials become perfectly syn-

chronized. From now on we refer to this phenomenon as stochastic synchronization. To

prove this, we suppose that A has an eigenvalue a with non-negative real part and with a

generic multiplicity m > 0, while all the other eigenvalues have negative real parts. Now

we recall that eAt = QeDtQ−1, where D is the diagonal matrix of the eigenvalues of A, and

Q is the matrix of its eigenvectors. So for t → +∞ we have:

eDt ≺ diag(0, 0, ..., 0, eat, eat, ..., eat︸ ︷︷ ︸
m−times

, 0, 0, ..., 0)

where ≺ means dominated by, because all the eigenvalues have negative real part but a.

If the as are the r-th, (r + 1)-th, ..., (r +m− 1)-th eigenvalues of A and if we call Q−1 = B

in order to simplify the notation, we obtain:
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QeDtB ≺eat




0 0 · · · 0 Q0,r Q0,r+1 · · · Q0,r+m−1 0 0 · · · 0

0 0 · · · 0 Q1,r Q1,r+1 · · · Q1,r+m−1 0 0 · · · 0

...
...

. . .
...

...
...

. . .
...

...
...

. . .
...

0 0 · · · 0 QN−1,r QN−1,r+1 · · · QN−1,r+m−1 0 0 · · · 0




×




B0,0 B0,1 ... B0,N−1

B1,0 B1,1 ... B1,N−1

...
...

. . .
...

BN−1,0 BN−1,1 ... BN−1,N−1




and therefore:

eAt =QeDtB ≺ eatE

Epq =

m−1∑

k=0

Qp,r+kBr+k,q

This means that:

Cov (Vi (t) , Vj (t)) =σ2
1

N−1∑

k=0

∫ t

0

[
eA(t−s)

]
ik

[
eA(t−s)

]
jk

ds+ σ2
2

N−1∑

k=0

[
eAt
]
ik

[
eAt
]
jk

+ σ2
3

S2 (µ)

M

N−1∑

k=0

{∫ t

0

[
eA(t−s)

]
ik
ds

}{∫ t

0

[
eA(t−s)

]
jk

ds

}

≺
[
σ2
1

2a
+ σ2

2 +
σ2
3

a2
S2 (µ)

M

]
e2at

N−1∑

k=0

EikEjk (5.68)

so the variance is:
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V ar (Vi (t)) = Cov (Vi (t) , Vi (t)) ≺
[
σ2
1

2a
+ σ2

2 +
σ2
3

a2
S2 (µ)

M

]
e2at

N−1∑

k=0

(Eik)
2 (5.69)

Therefore the correlation is:

Corr (Vi (t) , Vj (t)) =
Cov (Vi (t) , Vj (t))√

V ar (Vi (t))V ar (Vj (t))
→

N−1∑

k=0

EikEjk

√√√√
[
N−1∑

k=0

(Eik)
2

] [
N−1∑

k=0

(Ejk)
2

] (5.70)

when t → +∞. Now, in the special case m = 1 we obtain:

Epq =QprBrq

N−1∑

k=0

EikEjk =QirQjr

N−1∑

k=0

(Brk)
2

N−1∑

k=0

(Eik)
2 =(Qir)

2
N−1∑

k=0

(Brk)
2

so we conclude that Corr (Vi (t) , Vj (t)) → 1 when t → +∞. This proves that if C1 = C2 =

C3 = 0 and the matrix A has an eigenvalue of multiplicity 1 with non-negative real part

while all the other eigenvalues have negative real parts, then propagation of chaos does

not occur. For continuity, for every finite N we have that Corr (Vi (t) , Vj (t)) → 1 also for

R (a) → 0− (where R means the real part of ), i.e. correlation is very big also when the

system is stable but close to the instability region R (a) > 0. It is also interesting to

observe that, due to the Perron-Frobenius theorem [189], if Λ > 0 and if J is an irreducible

matrix (namely if its corresponding directed graph is strongly connected, which means

that it is possible to reach each vertex in the graph from any other vertex, by moving on
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the edges according to their connectivity directions), then it has a unique largest positive

eigenvalue, which can be used to generate stochastic synchronization. We conclude that

in general propagation of chaos does not always occur, even if C1 = C2 = C3 = 0, therefore

this invalidates the use of the mean-field theory, at least in this special case.

The example of the fully connected network

We show how to set the parameters of the system such that the phenomenon of stochastic

synchronization does occur. For simplicity we assume a fully connected network. In this

case, from formula 5.60, we know that the matrix A has eigenvalues:

a0 = − 1
τ + ΛS′ (µ) , a1 = − 1

τ − ΛS′(µ)
N−1

(5.71)

The multiplicity of a0 and a1 is respectively 1 and N − 1, therefore in order to obtain

the stochastic synchronization, according to Section 5.6.3, we have to set a0 ≥ 0. Let us

consider the case a0 = 0, namely ΛS′ (µ) = 1
τ
. Now, since:

S′ (µ) = λ

[
S (µ)− S2 (µ)

TMAX

]
(5.72)

we obtain the algebraic equation:

Λλ

[
S (µ)− S2 (µ)

TMAX

]
=

1

τ

whose solutions are:

S (µ1,2) = TMAX

1±
√
1− 4

τΛλTMAX

2
(5.73)

where µ1,2 are two possible stationary solutions of the membrane potential. Moreover,

from equation 5.12 we know that:
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µ1,2 = τ
[
ΛS (µ1,2) + I

]
(5.74)

Putting together the formulae 5.73 and 5.74 we obtain:

µ1,2 = τ


ΛTMAX

1±
√
1− 4

τΛλTMAX

2
+ I


 (5.75)

Replace this value of µ1,2 in 5.74 to obtain the final result:

TMAX

1±
√
1− 4

τΛλTMAX

2
= S


τ


ΛTMAX

1±
√
1− 4

τΛλTMAX

2
+ I




 (5.76)

This non-linear algebraic equation is the constraint that must be satisfied by all the pa-

rameters of the system in order to have correlation equal to 1 in the limit t → +∞. An

example of solution of this equation is λ = TMAX = 1, VT = 0, Λ = −2I and τ = −2
I
, ∀I < 0.

In this case µ1,2 = 0 and it can be used as initial condition in order to ensure the station-

arity of the system. In Figure 5.14 we show the phenomenon of stochastic synchronization

in the case of a fully connected network, for the values of the parameters reported in Ta-

ble 5.2, which satisfy the constraint 5.76. As we can see, correlation goes to 1 more and

more slowly if we increase the number of neurons N in the network. It reaches the value

1 asymptotically with an inverse exponential-like behavior, with a time constant that in-

creases with the size of the network. For N → ∞ the time constant diverges, therefore

for every finite time the system has correlation 0. This proves that in the thermodynamic

limit there is still propagation of chaos, provided that C1 = C2 = C3 = 0. This is in perfect

agreement with the result on propagation of chaos proved in [51][64][65] for independent

Brownian motions, initial conditions and synaptic weights.
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Neuron Input Synaptic Weights Sigmoid Function

τ = 0.1 I = −20 Λ = 40 TMAX = 1

C2 = 0 C1 = 0 C3 = 0 λ = 1

VT = 0

Table 5.2: Parameters used for the numerical simulations of Figure 5.14.

Figure 5.14: Stochastic synchronization in a fully connected network. Correlation gets closer and closer to

1 with a speed that depends on the number of neurons N in the system. These results have been obtained

with the exact non-linear equations 5.1 and with 1, 000 Monte Carlo simulations. The parameters are those of

Table 5.2, which are chosen in order to satisfy the constraint 5.76 for Λ = −2I and τ = −
2

I
. The value of the

external current is purposely large (I = −20) because it causes a faster convergence of the correlation to the

value 1.
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5.7 Fisher information

At the first perturbative order, the probability density of the membrane potentials is a

multivariate normal distribution, therefore using formula 2.6 with θ = I (therefore we

have to set σ5 = 0, in order to have a unique input current for all the neurons) and evalu-

ating analytically the integrals of this definition, we obtain that the Fisher information is

given by the well-known formula:

I
(
I, t
)
=

∂−→mT (t)

∂I
Σ−1 (t)

∂−→m (t)

∂I
+

1

2
Tr

(
∂Σ (t)

∂I
Σ−1 (t)

∂Σ (t)

∂I
Σ−1 (t)

)
(5.77)

where −→m (t) is the vector of the means of the membrane potentials, while Σ (t) is their

covariance matrix, namely:

mi (t) =E [Vi (t)] (5.78)

Σij (t) =Cov (Vi (t) , Vj (t)) (5.79)

for i, j = 0, 1, ..., N − 1.

In order to match the results of the Fisher information of this chapter with those of Chap-

ter 6, we modify slightly our model: we assume that the entries of the synaptic connec-

tivity matrix J are generic, deterministic and constant in time. For this reason we set

σ3 = σ4 = 0, obtaining that J = J , where J is a generic matrix with time-constant entries.

Since E
[
Y i
1 (t)

]
= E

[
Y i
2 (t)

]
= 0, from 5.11 we obtain that:

mi (t) = µi ∀t
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where µi is given by:

µi = τ



N−1∑

j=0

JijS (µj) + I


 (5.80)

which is the extension of 5.12 to the case of a generic connectivity matrix J . This system

of equations is solved with the Newton’s method, using the inverse of its Jacobian matrix.

Defining the function:

fi
(−→µ , I

)
= µi − τ



N−1∑

j=0

JijS (µj) + I


 , i = 0, 1, ..., N − 1 (5.81)

we obtain that the Jacobian matrix
∂
−→
f (−→µ ,I)
∂−→µ has the following components:

∂fi
(−→µ , I

)

∂µj
=





1 if i = j

−τJijS
′ (µj) if i 6= j

Since the dependence on the initial conditions vanishes quickly, we also assume for sim-

plicity that σ2 = 0. Therefore the covariance matrix of the system has the simple form:

Σij (t) =σ2
1



N−1∑

k=0

∫ t

0

Φik (t− s)Φjk (t− s) ds+ C1

N−1∑

k,l=0
k 6=l

∫ t

0

Φik (t− s)Φjl (t− s) ds




Φ (t) =eAt
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Aij =





− 1
τ if i = j

JijS
′ (µj) if i 6= j

= − 1

τ

∂fi
(−→µ , I

)

∂µj

The derivatives of −→m (t) with respect to I, that appear in 5.77, can be calculated as follows.

From formulae 5.80 and 5.81, we obtain that fi
(−→µ , I

)
= 0, and differentiating this relation

we obtain:

dfi
(−→µ , I

)
=
∑N−1

j=0

∂fi(−→µ ,I)
∂µj

dµj +
∂fi(−→µ ,I)

∂I
dI = 0, i = 0, 1, ..., N − 1

Now, if we divide this formula by dI , we obtain a system of N equations with N unknowns,

namely the terms dµj

dI
. Inverting the system, we obtain:

d−→µ
dI

= −
[
∂
−→
f
(−→µ , I

)

∂−→µ

]−1
∂
−→
f
(−→µ , I

)

∂I

where in our case:

∂
−→
f
(−→µ , I

)

∂I
= −τ

−→
1

This way of calculating the derivatives with respect to I is numerically convenient, because

the inverse of the Jacobian matrix is known, since it has already been calculated in order

to solve the system 5.80. This trick cannot be used to determine the derivatives dΣ
dI

which

appear in the second term of 5.77, therefore we have calculated them using formula 3.38.

However, in all our simulations the second term of the Fisher information has always

been much smaller than the first term, therefore it can be safely neglected. This is due

to the fact that the covariance matrix Σ depends weakly on I, as we will see in Chapter
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Neuron Input Synaptic Weights Sigmoid Function

τ = 1 I = 0.5 α = 1 TMAX = 1

σ1 = 0.01 β = [0, 1, 20] λ = 1

VT = 0

Table 5.3: Parameters used for the numerical simulations of Figure 5.15.

6. Therefore now we have an algorithm to calculate numerically the Fisher information of

the neural network.

In particular, we suppose that in a single trial the synaptic weights are independent and

identically distributed as Jij ∼ N
(

α
N−1 ,

(
β

N−1

)2)
∀ (i, j) : i 6= j, where α and β are two

generic parameters. The simulations have been performed for the parameters of Table

5.3 and are reported in Figure 5.15, which shows that the Fisher information depends

strongly on the inhomogeneities of the matrix J , namely on the parameter β. These inho-

mogeneities can be chosen arbitrarily high, since β is not a perturbative parameter. It is

important to observe that these results have not been obtained by averaging the Fisher in-

formation over several realizations of the synaptic weights, because we are supposing that

the Jijs are deterministic, as we said previously. Clearly they are generated by the ran-

dom distribution N
(

α
N−1 ,

(
β

N−1

)2)
, but only once, with the purpose of creating quickly a

sequence of "frozen" (and therefore deterministic) numbers that are used in the numerical

calculation of I
(
I, t
)
.

To conclude, the main message is that the Fisher information can be higher for values of

C1 close to 1 (i.e. for highly correlated neurons) than for values of C1 close to 0 (i.e. decor-

related neurons), depending on the inhomogeneities of the synaptic connectivity matrix.

An intuitive explanation of this phenomenon is not available, however in Chapter 6 we

will provide an analytic formula that explains the emergence of the peaks of the Fisher

information in the case of weak synaptic weights. We can also see that for a homogeneous

network the Fisher information has a peak only for C1 → 0. This corresponds to the result

found in Chapter 4 (see Figure 4.6), since there we analyzed the behavior of the neural
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Figure 5.15: Four possible examples of Fisher information, obtained from the perturbative expan-
sion with strong synaptic weights in a fully connected network with N = 20, t = 2, and for the
parameters reported in Table 5.3. In detail, the figures on the top has been obtained for β = 0

(left-hand side) and β = 1 (right-hand side), while those at the bottom are two examples obtained
for β = 20. The result depends on the values of the synaptic weights from trial to trial, showing
higher encoding efficiency for C1 → 0 and/or C1 → 1. The non-linear system of algebraic equations
5.80 have been solved with the Newton’s method, iterated times, while the integrals with respect
to the time have been calculated with the trapezoidal rule, with integration time step ∆t = 0.1.
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network for constant and homogeneous synaptic weights.

5.8 Partial conclusion

In this chapter we have introduced a new technique, that extends the results found in

Chapter 4. It is based on a perturbative expansion of the membrane potentials in terms

of the sources of randomness of the system, namely the Brownian motions in the back-

ground, the initial conditions and the distribution of the synaptic weights. The expansion

is performed around the stationary states of a finite network of rate neurons, assuming

that the system is invariant under exchange of the neural indices. The variations of the

membrane potentials in time and the inhomogeneities of the synaptic weights and of the

external input currents are also introduced perturbatively. If the sources of randomness

have sufficiently small variances, the expansion can be truncated at the first order. So

this technique provides a way to study analytically the finite size effects of the network for

many topologies of the connectivity matrix. It is important to observe that this approach

works also for small networks, unlike the method used in Chapter 4, where we had to

study large systems in order to avoid the higher order correlations.

The numerical comparison of this expansion with the real stochastic differential equations

of the network provides a good match for relatively weak sources of randomness, especially

at the second perturbative order. Moreover, by calculating the correlation structure of the

system, it proves in three different ways that in general the mean-field theory cannot be

used to describe the neural network, even in the thermodynamic limit. This is due to the

impossibility to obtain the independence of the neurons when:

• the sources of randomness are correlated;

• the number of incoming synaptic connections per neuron is not high enough;
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• even for decorrelated sources of randomness, special values of the parameters are

chosen.

The second case had already been proved numerically in Chapter 3 with the cycle net-

work, while the third case corresponds to the phenomenon that we have called stochastic

synchronization. It consists in a perfect correlation between the neurons, generated by

carefully tuned values of the parameters of the network. A perfect correlation means that

the random fluctuations of the membrane potentials are exactly synchronized, so this ex-

plains our choice of the name for this phenomenon.

To conclude, we have used this perturbative expansion to calculate the Fisher information

of the network. This analysis shows that the encoding capability of the system increases

when the neurons are highly correlated or decorrelated. In particular, the increase of

I
(
I, t
)

for decorrelated neurons had already been proved in Chapter 4 with the Mayer’s

cluster expansion. However the perturbative expansion has also revealed the second side

of the coin, namely that the Fisher information could be much higher for correlated neu-

rons, depending on the degree of inhomogeneity of the synaptic connections. This result

will be proved analytically in the next chapter.
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Chapter 6

Perturbative analysis with weak

synaptic weights

T HIS chapter is devoted to the development of another kind of perturbative analysis,

similar to that considered in Chapter 5. However, now the perturbative parameters

are not only the standard deviations of the Brownian motions, of the initial conditions

and of the synaptic weights, but also the mean strength of the weights themselves. For

this reason, this perturbative analysis provides a good agreement with the exact neural

equations only in the case of relatively weak synaptic weights. The power of this new

technique is in the fact that it does not require stationary states and the invariance of the

system under exchange of the neural indices, as in Chapter 5. Moreover, it lets us analyze

the case when also the topology of the network is random. In Section 6.1 we describe this

approach, applied to the case of the rate model, while in Sections 6.2 and 6.3 we use it in

order to calculate the correlation structure of the system. In Section 6.4 we apply this idea

to the case of a fractal connectivity matrix with small-world properties, and we conclude

in Section 6.5 by showing numerical evidence that supports this perturbative technique.
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6.1 Description of the model

In this chapter we suppose again that the neural network is described by the rate equa-

tions that we have used in the Chapters 3, 4 and 5, namely:

dVi (t) =


− 1

τ
Vi (t) +

N−1∑

j=0

Jij (t)S (Vj (t)) + Ii (t)


 dt+ σ1dBi (t) (6.1)

with i = 0, 1, ..., N − 1. Randomness is present in the system through three different

variables, the Brownian motions, the initial conditions and the strength of the synaptic

weights, which are treated perturbatively. Their distributions are still supposed to be nor-

mal, because this will let us calculate analytically the correlation structure of the network

using the Isserlis’ theorem. We also introduce a fourth non-perturbative source of ran-

domness, namely the topology of the synaptic connections. This means that not only the

intensities of the synaptic weights are considered as random, but also the existence or not

of a connection between two given neurons is not certain anymore. For the first three vari-

ables, we use the same covariance structures as in Chapter 5. For the Brownian motions

it is given by the matrix Σ1, whose entries are:

[Σ1]ij =Cov

(
dBi (t)

dt
,
dBj (s)

ds

)
= C1

ijδ (t− s)

(6.2)

C1
ij =





1 if i = j

C1 if i 6= j

where C1 is a free parameter that represents the correlation between two Brownian mo-

tions, while δ (·) is the Dirac delta function. The matrix Σ1 is a genuine covariance matrix
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only if it is positive-semidefinite, namely if 1
1−N

≤ C1 ≤ 1.

The initial conditions are defined in terms of the following multivariate normal process:

−→
V (0) ∼ N (−→µ ,Σ2) (6.3)

where:

Σ2 = σ2
2




1 C2 · · · C2

C2 1 · · · C2

...
...

. . .
...

C2 C2 · · · 1




(6.4)

We remind the reader that σ2 represents the standard deviation of the initial conditions,

while C2 is their correlation. Again we have to choose 1
1−N

≤ C2 ≤ 1.

In this chapter we consider networks with random topologies, which means that the fact

to have or not a connection between two given neurons is a (known) random variable: if

in one realization of the network there is a connection from the j-th neuron to the i-th

neuron, in another realization this connection could be missing. Therefore we suppose

that the synaptic weights are given by the following formulae:

Jij (t) =
1

Mi

[
σ4J ij (t) + σ3Wij

]
(6.5)

J ij (t) =Ĵ ij (t) ◦ T (6.6)

W =Ŵ ◦ T (6.7)

Ŵ ∼MN (0,Ω3,Σ3) (6.8)
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Mi =

N−1∑

j=0

Tij (6.9)

where σ3 and σ4 are two perturbative parameters that represent (after the division by

Mi), respectively, the standard deviation and the mean strength of the synaptic connec-

tions. Mi is the number (in general random) of incoming connections to the i-th neuron,

and is used to prevent the explosion of the term
N−1∑

j=0

Jij (t)S (Vj (t)) in equation 6.1 when

Mi grows arbitrarily large. The symbol “◦” represents the Hadamard product, therefore

C = A ◦ B means that Cij = AijBij, ∀i, j. T is a generic binary random matrix which rep-

resents the topology of the synaptic connections. More explicitly, we have Tij = 0 if there

is no connection from the j-th to the i-th neuron (namely if Jij (t) = 0 ∀t), while Tij = 1

if this connection is present. Below we show an example of connectivity matrix and its

corresponding topology:

J (t) =




0 0 2cos (t) 3.6

sin (5t) 0 10 0

1 π 0 arctan (7t)

0 (1 + t)−5 e−3t 0



, T =




0 0 1 1

1 0 1 0

1 1 0 1

0 1 1 0




The matrix Ĵ (t) is completely deterministic, while the matrix Ŵ is random only in the

amplitudes of the synaptic weights (which follow a matrix normal distribution), but not in

the topology. The covariance matrices Ω3 and Σ3 of Ŵ are chosen in order to have:

Cov
(
Ŵij , Ŵkl

)
=





1 if (i = k) ∧ (j = l)

C3 otherwise

(6.10)

The free parameter C3 represents the correlation between two different and non-zero
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synaptic weights, and the range of its plausible values depends on the topology of the

connections, which is supposed to be completely generic. Moreover we assume that Ŵ and

T are independent.

To finish, we suppose that also the Brownian motions, the initial conditions, the ampli-

tudes of the synaptic weights and the topology are independent from each other, therefore

their reciprocal covariances are equal to zero:

Cov (Bi (t) , Vj (0)) = Cov
(
Bi (t) , Ŵjk

)
= Cov (Bi (t) , Tjk)

= Cov
(
Vi (0) , Ŵjk

)
= Cov (Vi (0) , Tjk) = 0, ∀i, j, k (6.11)

In principle, as we said in Chapter 5, the inner and mutual covariance structure of Bi (t),

Vi (0) and Ŵij can be arbitrarily chosen. However in the current chapter we use only the

simple structure defined by formulae 6.2, 6.4, 6.10 and 6.11, because this will generate

simple analytic results for the correlation structure of the membrane potentials. We now

are ready to introduce a perturbative expansion of Vi (t) in terms of the parameters σ:

Vi (t) ≈ Y i
0 (t) +

4∑

m=1

σmY i
m (t) +

4∑

m,n=1
m≤n

σmσnY
i
m,n (t) (6.12)

where the functions Y i
m (t) and Y i

m,n (t) are to be determined through equation 6.1. In

principle this expansion can be extended to any perturbative order, but in this chapter we

truncate it at the second because the complexity of the results becomes quickly intractable.
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6.1.1 The system of equations

In order to evaluate the functions Y i
m (t) and Y i

m,n (t), we have to replace the expansion

6.12 inside the equation 6.1, and to identify the coefficients of the same monomials in σ.

Before doing this, we need the expansion of the sigmoid function in terms of σ. Therefore,

defining, as in Chapter 5:

ζj =

4∑

m=1

σmY j
m (t) +

4∑

m,n=1
m≤n

σmσnY
j
m,n (t)

the Taylor expansion of the sigmoid function is:

S (µ+ ζj) ≈S (µ) + S′ (µ) ζj +
1

2
S′′ (µ) ζ2j

≈S (µ) + S′ (µ)

4∑

m=1

σmY j
m (t)

+

4∑

m,n=1
m<n

σmσn

[
S′ (µ)Y j

m,n (t) + S′′ (µ)Y j
m (t)Y j

n (t)
]

+

4∑

m=1

σ2
m

[
S′ (µ)Y j

m,m (t) +
1

2
S′′ (µ)

(
Y j
m (t)

)2]

having neglected the terms with order higher than 2. As in Chapter 5, we remind that

this expansion can be used provided that its radius of convergence is large enough and

that the rigorous analysis of the radius of convergence can be found in the Appendix D,

if the activation function S (·) is given by 3.3. Now, if we replace this expansion and 6.12

inside the equation 6.1, comparing the coefficients of the same monomials in σ we obtain

the following equations:
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dY i
0 (t) =

[
− 1

τ
Y i
0 (t) + Ii (t)

]
dt (6.13)

dY i
1 (t) =− 1

τ
Y i
1 (t) dt+ dBi (t) (6.14)

dY i
2 (t) =− 1

τ
Y i
2 (t) dt (6.15)

dY i
3 (t) =


− 1

τ
Y i
3 (t) +

1

Mi

N−1∑

j=0

WijS
(
Y j
0 (t)

)

 dt (6.16)

dY i
4 (t) =


− 1

τ
Y i
4 (t) +

1

Mi

N−1∑

j=0

J ij (t)S
(
Y j
0 (t)

)

 dt (6.17)

...

dY i
1,4 (t) =


− 1

τ
Y i
1,4 (t) +

1

Mi

N−1∑

j=0

J ij (t)S
′
(
Y j
0 (t)

)
Y j
1 (t)


 dt (6.18)

dY i
2,4 (t) =


− 1

τ
Y i
2,4 (t) +

1

Mi

N−1∑

j=0

J ij (t)S
′
(
Y j
0 (t)

)
Y j
2 (t)


 dt (6.19)

dY i
3,4 (t) =


− 1

τ
Y i
3,4 (t) +

1

Mi

N−1∑

j=0

J ij (t)S
′
(
Y j
0 (t)

)
Y j
3 (t) +

1

Mi

N−1∑

j=0

WijS
′
(
Y j
0 (t)

)
Y j
4 (t)


 dt (6.20)

dY i
4,4 (t) =


− 1

τ
Y i
4,4 (t) +

1

Mi

N−1∑

j=0

J ij (t)S
′
(
Y j
0 (t)

)
Y j
4 (t)


 dt (6.21)

...

We have only written the equations that will be used in Section 6.2. The others do not
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influence the perturbative expansions of the variance and covariance truncated at the 3rd

perturbative order, therefore they are not shown here.

6.1.2 The initial conditions

The perturbative expansion 6.12 at t = 0 gives:

Vi (0) ≈ Y i
0 (0) +

4∑

m=1

σmY i
m (0) +

4∑

m,n=1
m≤n

σmσnY
i
m,n (0)

From 6.3 we have Vi (0) ∼ N
(
µi, σ

2
2

)
= µi + σ2N (0, 1), so comparing the two expressions

we obtain:

Y i
0 (0) = µi (6.22)

Y i
2 (0) ∼ N (0, 1) (6.23)

Y i
m (0) = 0, m = 1, 3, 4 (6.24)

Y i
m,n (0) = 0, ∀ (m,n) : m ≤ n (6.25)

Therefore we can write the initial conditions as Vi (0) = µi+σ2Y
i
2 (0), from which we obtain:

Cov (Vi (0) , Vj (0)) = σ2
2Cov

(
Y i
2 (0) , Y j

2 (0)
)

Since from 6.4 we also know that:
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Cov (Vi (0) , Vj (0)) =





σ2
2 if i = j

σ2
2C2 if i 6= j

from the comparison of these two expressions of the covariance matrix of Vi (0) we obtain:

Cov
(
Y i
2 (0) , Y j

2 (0)
)
=





1 if i = j

C2 if i 6= j

(6.26)

6.1.3 Solutions of the equations

Since equations 6.13 - 6.21 are linear, they can be solved analytically, giving the following

solutions:

Y i
0 (t) =e−

t
τ

[
µi +

∫ t

0

e
s
τ Ii (s) ds

]
(6.27)

Y i
1 (t) =e−

t
τ

∫ t

0

e
s
τ dBi (s) (6.28)

Y i
2 (t) =e−

t
τ Y i

2 (0) (6.29)

Y i
3 (t) =

e−
t
τ

Mi

N−1∑

j=0

Wij

∫ t

0

e
s
τ S
(
Y j
0 (s)

)
ds (6.30)

Y i
4 (t) =

e−
t
τ

Mi

N−1∑

j=0

∫ t

0

e
s
τ J ij (s)S

(
Y j
0 (s)

)
ds (6.31)
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...

Y i
1,4 (t) =

e−
t
τ

Mi

N−1∑

j=0

∫ t

0

J ij (s)S
′
(
Y j
0 (s)

)[∫ s

0

e
u
τ dBj (u)

]
ds (6.32)

Y i
2,4 (t) =

e−
t
τ

Mi

N−1∑

j=0

Y j
2 (0)

∫ t

0

J ij (s)S
′
(
Y j
0 (s)

)
ds (6.33)

Y i
3,4 (t) =

e−
t
τ

Mi





N−1∑

j,k=0

Wjk

Mj

∫ t

0

J ij (s)S
′
(
Y j
0 (s)

) [∫ s

0

e
u
τ S
(
Y k
0 (u)

)
du

]
ds

+

N−1∑

j,k=0

Wij

Mj

∫ t

0

S′
(
Y j
0 (s)

) [∫ s

0

e
u
τ Jjk (u)S

(
Y k
0 (u)

)
du

]
ds



 (6.34)

Y i
4,4 (t) =

e−
t
τ

Mi

N−1∑

j,k=0

1

Mj

∫ t

0

J ij (s)S
′
(
Y j
0 (s)

)[∫ s

0

e
u
τ Jjk (u)S

(
Y k
0 (u)

)
du

]
ds (6.35)

...

Now we can use these results to calculate the correlation structure of the membrane po-

tentials.

6.2 Correlation structure of the network

In this section we analyze the general case of random topologies, and we consider the net-

works with deterministic connections as a special case. From the perturbative expansion

6.12 with all the functions Y i
m (t) and Y i

m,n (t) evaluated as shown in Section 6.1.3, in or-

der to calculate the covariance matrix of the membrane potentials we need to determine

all the pair covariances between all the possible combinations of these functions. This is

a consequence of the bilinearity property of the covariance operator. However, using the
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Isserlis’ theorem and the relations 6.11, it is easy to see that many of these terms are

equal to zero. Moreover we have also to remove the 4th order terms in the expression of

the covariance, like σ2
1σ

2
3Cov

(
Y i
1,3 (t) , Y

j
1,3 (t)

)
, since they are not complete. This is due to

the fact that there are also 4th order terms like σ2
1σ

2
3Cov

(
Y i
1 (t) , Y

j
1,1,3 (t)

)
. These terms

are due to 3rd order functions, like Y j
1,1,3 (t) in this case, in the perturbative expansion

6.12, which have not been taken into account since we have truncated the expansion of the

membrane potential at the 2nd order. Therefore the expansion of the covariance must be

truncated at the 3rd order. So, to conclude, we obtain the following result:

Cov (Vi (t) , Vj (t))

= σ2
1Cov

(
Y i
1 (t) , Y j

1 (t)
)
+ σ2

2Cov
(
Y i
2 (t) , Y j

2 (t)
)

+ σ2
3Cov

(
Y i
3 (t) , Y j

3 (t)
)
+ σ2

4Cov
(
Y i
4 (t) , Y j

4 (t)
)

+ σ4

{
σ2
1

[
Cov

(
Y i
1 (t) , Y j

1,4 (t)
)
+ Cov

(
Y i
1,4 (t) , Y

j
1 (t)

)]
+ σ2

2

[
Cov

(
Y i
2 (t) , Y j

2,4 (t)
)
+ Cov

(
Y i
2,4 (t) , Y

j
2 (t)

)]

+σ2
3

[
Cov

(
Y i
3 (t) , Y j

3,4 (t)
)
+ Cov

(
Y i
3,4 (t) , Y

j
3 (t)

)]
+ σ2

4

[
Cov

(
Y i
4 (t) , Y j

4,4 (t)
)
+ Cov

(
Y i
4,4 (t) , Y

j
4 (t)

)]}

(6.36)

where, due to formulae 6.28, 6.29 and 6.30, for i 6= j we obtain:
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Cov
(
Y i
1 (t) , Y j

1 (t)
)
=
τC1

2

(
1− e−

2t
τ

)
(6.37)

Cov
(
Y i
2 (t) , Y j

2 (t)
)
=C2e

− 2t
τ (6.38)

Cov
(
Y i
3 (t) , Y j

3 (t)
)
=C3e

− 2t
τ

N−1∑

k,l=0

[∫ t

0

e
s
τ S
(
Y k
0 (s)

)
ds

] [∫ t

0

e
s
τ S
(
Y l
0 (s)

)
ds

]
E

[
TikTjl

MiMj

]
(6.39)

and for i = j:

V ar
(
Y i
1 (t)

)
=
τ

2

(
1− e−

2t
τ

)
(6.40)

V ar
(
Y i
2 (t)

)
=e−

2t
τ (6.41)

V ar
(
Y i
3 (t)

)
=e−

2t
τ





N−1∑

k=0

[∫ t

0

e
s
τ S
(
Y k
0 (s)

)
ds

]2
E

[(
Tik

Mi

)2
]

+C3

∑

k,l
k 6=l

[∫ t

0

e
s
τ S
(
Y k
0 (s)

)
ds

] [∫ t

0

e
s
τ S
(
Y l
0 (s)

)
ds

]
E

[
TikTil

M2
i

]




(6.42)

Because of formulae 6.28 - 6.35, for all i, j we obtain:
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Cov
(
Y i
4 (t) , Y j

4 (t)
)
= e−

2t
τ

N−1∑

k,l=0

[∫ t

0
e

s
τ Ĵik (s)S

(
Y k
0 (s)

)
ds

] [∫ t

0
e

s
τ Ĵjl (s)S

(
Y l
0 (s)

)
ds

]
Cov

(
Tik

Mi

,
Tjl

Mj

)
(6.43)

Cov
(
Y i
1 (t) , Y j

1,4 (t)
)
=

=
τ

2
e−

2t
τ





E

[
Tji

Mj

] [∫ t

0
Ĵji (s)S

′
(
Y i
0 (s)

) (
e

2s
τ − 1

)
ds

]
+ C1

N−1∑

k=0
k 6=i

E

[
Tjk

Mj

] [∫ t

0
Ĵjk (s)S′

(
Y k
0 (s)

)(
e

2s
τ − 1

)
ds

]





(6.44)

Cov
(
Y i
2 (t) , Y j

2,4 (t)
)
= e−

2t
τ





E

[
Tji

Mj

] [∫ t

0
Ĵji (s)S

(
Y i
0 (s)

)
ds

]
+ C2

N−1∑

k=0
k 6=i

E

[
Tjk

Mj

] [∫ t

0
Ĵjk (s)S

(
Y k
0 (s)

)
ds

]




(6.45)

Cov
(
Y i
3 (t) , Y j

3,4 (t)
)

= e−
2t
τ

{
N−1∑

k=0

E

[(
Tik

Mi

)2 Tji

Mj

] [∫ t

0
e

s
τ S
(
Y k
0 (s)

)
ds

] ∫ t

0
Ĵji (s)S

′
(
Y i
0 (s)

) [∫ s

0
e

u
τ S
(
Y k
0 (u)

)
du

]
ds

+ C3

N−1∑

k,l=0

E

[
TikTilTji

M2
i Mj

] [∫ t

0
e

s
τ S
(
Y k
0 (s)

)
ds

] ∫ t

0
Ĵji (s)S

′
(
Y i
0 (s)

) [∫ s

0
e

u
τ S
(
Y l
0 (u)

)
du

]
ds

+ C3

N−1∑

k,l=0

E

[
TikTlkTjl

MiMjMl

] [∫ t

0
e

s
τ S
(
Y k
0 (s)

)
ds

] ∫ t

0
Ĵjl (s)S

′
(
Y l
0 (s)

)[∫ s

0
e

u
τ S
(
Y k
0 (u)

)
du

]
ds

+C3

N−1∑

k,l,m=0

E

[
TikTlmTjl

MiMjMl

] [∫ t

0
e

s
τ S
(
Y k
0 (s)

)
ds

] ∫ t

0
Ĵjl (s)S

′
(
Y l
0 (s)

)[∫ s

0
e

u
τ S (Y m

0 (u)) du

]
ds




 (6.46)

Cov
(
Y i
4 (t) , Y j

4,4 (t)
)

= e−
2t
τ

N−1∑

k,l,m=0

Cov

(
Tik

Mi

,
TjlTlm

MjMl

)[∫ t

0
e

s
τ Ĵik (s)S

(
Y k
0 (s)

)
ds

] [∫ t

0
Ĵjl (s)S

′
(
Y l
0 (s)

)[∫ s

0
e

u
τ Ĵ lm (s)S (Y m

0 (u)) du

]
ds

]

(6.47)

Formula 6.44 is obtained using the following identity (which is a consequence of the mutual

independence of the random variables):
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Cov

(
Bi (t) , Bj (t)

Jkl (t)

Mk

)
=E

[
Bi (t)Bj (t) Ĵkl (t)

Tkl

Mk

]
− E [Bi (t)]E

[
Bj (t) Ĵkl (t)

Tkl

Mk

]

=Ĵkl (t)

(
E [Bi (t)Bj (t)]E

[
Tkl

Mk

]
− E [Bi (t)]E [Bj (t)]E

[
Tkl

Mk

])

=Ĵkl (t)E

[
Tkl

Mk

]
Cov (Bi (t) , Bj (t))

A similar relation can be found for the initial conditions
−→
V (0) and the topology T :

Cov

(
Vi (0) , Vj (0)

Jkl (t)

Mk

)
= Ĵkl (t)E

[
Tkl

Mk

]
Cov (Vi (0) , Vj (0))

from which we have obtained formula 6.45. Instead, in order to obtain formula 6.46, we

have used the following result:

Cov

(
Wij

Mi
,
Wkl

Mk

Jmn (t)

Mm

)
=Cov

(
Ŵij

Tij

Mi
, Ŵkl

Tkl

Mk
Ĵmn (t)

Tmn

Mm

)

=Ĵmn (t)

(
E

[
Ŵij

Tij

Mi
Ŵkl

Tkl

Mk

Tmn

Mm

]
− E

[
Ŵij

Tij

Mi

]
E

[
Ŵkl

Tkl

Mk

Tmn

Mm

])

=Ĵmn (t)

(
E

[
ŴijŴkl

]
E

[
TijTklTmn

MiMkMm

]
− E

[
Ŵij

]
E

[
Tij

Mi

]
E

[
Ŵkl

]
E

[
TklTmn

MkMm

])

=Ĵmn (t)Cov
(
Ŵij , Ŵkl

)
E

[
TijTklTmn

MiMkMm

]

which is a consequence of the independence between Ŵ and T . In the same way it is

possible to prove that:
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Cov

(
Wij

Mi
,
Jkl (t)

Mk

Jmn (t)

Mm

)
= Ĵkl (t) Ĵmn (t)E

[
Ŵij

](
E

[
TijTklTmn

MiMkMm

]
− E

[
Tij

Mi

]
E

[
TklTmn

MkMm

])
= 0

so for this reason the term Cov
(
Y i
3 (t) , Y

i
4,4 (t)

)
does not appear in formula 6.36.

Once the covariance matrix of the membrane potentials has been determined, we can

evaluate their correlation structure using the Pearson’s correlation coefficient. The only

quantities that remain unspecified are E

[
Tij

Mi

]
, E
[
TikTjl

MiMj

]
and E

[
TikTlmTjl

MiMjMl

]
, that depend on

the distribution of the matrix T . This can be accomplished by a multidimensional Taylor

expansion. For example, for E

[
Tij

Mi

]
we Taylor-expand the function:

f : (Ti0, ..., Ti,N−1) → Tij

Mi
(6.48)

at the point (E [Ti0] , ...,E [Ti,N−1]) to obtain:

E

[
Tij

Mi

]
=E





Tij

N−1∑

k=0

Tik





=
∞∑

n0=0

∞∑

n1=0

· · ·
∞∑

nN−1=0

E
[
(Ti0 − E [Ti0])

n0 · · ·
(
Ti,N−1 − E

[
Ti,N−1

])nN−1
]

n0! · · ·nN−1!

(
∂n0+...+nN−1f

∂T
n0
i0 · · · ∂TnN−1

i,N−1

)
(
E [Ti0] , · · · ,E

[
Ti,N−1

])

(6.49)

In detail, we have up to the third order:

E

[
Tij

Mi

]
≈ E [Tij ]

N−1∑

k=0

E [Tik]

+
1

2

N−1∑

k,l=0

Cov (Tik, Til)

(
∂2f

∂Tik∂Til

)
(E [Ti0] , · · · ,E [Ti,N−1]) (6.50)
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where:

(
∂2f

∂Tik∂Til

)
(E [Ti0] , · · · ,E [Ti,N−1])

=





2E[Tij ]


N−1∑

m=0

E[Tim]




3 if k, l 6= j

2E[Tij ]−
N−1∑

m=0

E[Tim]




N−1∑

m=0

E[Tim]




3 if ((k 6= j) ∧ (l = j)) ∨ ((k = j) ∧ (l 6= j))

−

2

N−1∑

m=0
m 6=j

E[Tim]




N−1∑

m=0

E[Tim]




3 if k, l = j

The function 6.48 is analytic everywhere, but when Mi = 0. However, we remind that the

case Mi = 0 is not contemplated by formula 6.5, since it gives Jij =
0
0 , therefore we simply

set Jij = 0 since there are no incoming connections to the i-th neuron. For this reason we

have always to consider Mi 6= 0, so the multidimensional Taylor series of f (Ti0, ..., Ti,N−1)

has a finite radius of convergence and it does converge to Tij

N−1∑

k=0

Tik

everywhere.

After this analysis, the conclusion is that we can calculate E

[
Tij

Mi

]
once we know the quan-

tities E [Tik], E [TikTil] etc. The same reasoning can be applied to E

[
TikTjl

MiMj

]
and E

[
TikTlmTjl

MiMjMl

]
.

In Section 6.4 we show how to determine these quantities for the fractal connectivity ma-

trix introduced by Sporns in [190]. These results can also be used for networks with deter-

ministic topologies, but we have to set E
[∏

T
M

]
=
∏

T
M

in formulae 6.39, 6.42, 6.44, 6.45,
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6.46, and we have to set to zero the covariance functions of T
M

in formulae 6.43 and 6.47

(so that Cov
(
Y i
4 (t) , Y

j
4 (t)

)
= Cov

(
Y i
4 (t) , Y

j
4,4 (t)

)
= 0).

6.3 A problem with the initial conditions

Before we start to analyze a concrete example of connectivity matrix, we have to show

a problem with the initial conditions. In fact, if we choose σ2, σ4 6= 0, σ1, σ3 = 0 and

C2 = 0, at least in the case of a deterministic topology the correlation function that we

have calculated perturbatively is not necessarily in the range [−1, 1] as required. This

can be seen from formulae 6.36 - 6.47, which for these values of the parameters and a

deterministic T , give:

Corr (Vi (t) , Vj (t)) =
σ2
2Cov

(
Y i
2 (t) , Y j

2 (t)
)
+ σ4σ

2
2

[
Cov

(
Y i
2 (t) , Y j

2,4 (t)
)
+ Cov

(
Y i
2,4 (t) , Y

j
2 (t)

)]

σ2
2V ar

(
Y i
2 (t)

)
+ σ4σ2

2

[
Cov

(
Y i
2 (t) , Y i

2,4 (t)
)
+ Cov

(
Y i
2,4 (t) , Y

i
2 (t)

)]

=σ4

{
Tji

Mj

[∫ t

0

Ĵji (s)S
(
Y i
0 (s)

)
ds

]
+

Tij

Mi

[∫ t

0

Ĵ ij (s)S
(
Y j
0 (s)

)
ds

]}
(6.51)

where for simplicity we have also supposed that all the neurons behave in the same way, so

that V ar (Vi (t)) = V ar (Vj (t)). Therefore, if Ĵ ij (t), Ĵ ji (t), S
(
Y i
0 (t)

)
and S

(
Y j
0 (t)

)
are for

example constant in time, from formula 6.51 we obtain that Corr (Vi (t) , Vj (t)) increases

linearly with time, therefore at some point it will be outside the range [−1, 1]. This can

be seen also from Figure 6.1 (left-hand side), which has been obtained from the numerical

simulation of the equations 6.13 - 6.21 (the details of the numerical scheme will be provided

in Section 6.5) for the values of the parameters reported in Table 6.1.

This problem does not happen when σ1, σ4 6= 0 and σ2, σ3 = 0, or when σ3, σ4 6= 0 and

σ1, σ2 = 0, or when σ4 6= 0 and σ1, σ2, σ3 = 0, therefore it is only related to the initial

171



Neuron Input Synaptic Weights Sigmoid Function

τ = 1 Ii = 0 Ĵ ij = 3 TMAX = 1

σ2 = 0.1 σ1 = 0 σ3 = 0 λ = 1

σ4 = 0.1 VT = 0

C2 = 0 C1 = 0 C3 = 0

µ = 0

Table 6.1: Values of the parameters used to generate Figure 6.1.

Figure 6.1: Correlation obtained from formula 6.36 using the numerical simulation of formulae
6.13 - 6.21 (left-hand side), and the same function obtained from formula 6.53 (right-hand side).
The values of the parameters are shown in Table 6.1, while the topology of the network is K10. In
the first figure the correlation does not stay in the range [−1, 1] for all time, and the problem is
corrected in the second figure, see text.
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conditions. It is of course due to our approximation. In fact, if we want to calculate the

variance and covariance between two perturbative expansions of the form Fi (t) = F i
0 (t) +

εF i
1 (t) + ε2F i

2 (t), where F i
0 (t) is deterministic, we obtain:

V ar (Fi (t)) =ε2V ar
(
F i
1 (t)

)
+ 2ε3Cov

(
F i
1 (t) , F

i
2 (t)

)
+ ε4V ar

(
F i
2 (t)

)

Cov (Fi (t) , Fj (t)) =ε2Cov
(
F i
1 (t) , F

j
1 (t)

)
+ ε3Cov

(
F i
1 (t) , F

j
2 (t)

)
+ ε3Cov

(
F i
2 (t) , F

j
1 (t)

)

+ ε4Cov
(
F i
2 (t) , F

j
2 (t)

)

Due to the Cauchy-Schwarz inequality, we always have:

[Cov (Fi (t) , Fj (t))]
2 ≤ V ar (Fi (t))V ar (Fj (t))

namely |Corr (Fi (t) , Fj (t))| ≤ 1. However, if we neglect the terms proportional to ε4, as

we did in Section 6.2, this inequality is not guaranteed to hold anymore. Therefore even

if the approximations of the variance and covariance are good, the correlation could be

completely wrong. This is the origin of the problem we have mentioned before. Moreover,

it happens only when we deal with the initial conditions and not with the other random

variables, because only for σ2, σ4 6= 0 and σ1, σ3 = 0 do we have 4th order terms and

the variance and covariance converge to zero for t → +∞, giving rise to an undefined

correlation of the form 0
0 .

The solution is to keep the 4th order terms generated by the initial conditions in the for-

mula of the variance and covariance. Now, for σ2, σ4 6= 0 and σ1, σ3 = 0 we have:

Vi (t) = Y i
0 (t) + σ2Y

i
2 (t) + σ4Y

i
4 (t) + σ2σ4Y

i
2,4 (t) + σ2

4Y
i
4,4 (t)
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since it can be easily proved that Y i
2,2 (t) = 0 ∀t. Therefore in this case the exact covariance

function is:

Cov (Vi (t) , Vj (t))

= σ2
2Cov

(
Y i
2 (t) , Y j

2 (t)
)
+ σ2

4Cov
(
Y i
4 (t) , Y j

4 (t)
)

+ σ4σ
2
2

[
Cov

(
Y i
2 (t) , Y j

2,4 (t)
)
+ Cov

(
Y i
2,4 (t) , Y

j
2 (t)

)]
+ σ3

4

[
Cov

(
Y i
4 (t) , Y j

4,4 (t)
)
+ Cov

(
Y i
4,4 (t) , Y

j
4 (t)

)]

+ σ2
2σ

2
4Cov

(
Y i
2,4 (t) , Y

j
2,4 (t)

)
+ σ4

4Cov
(
Y i
4,4 (t) , Y

j
4,4 (t)

)
(6.52)

The 4th order term σ2σ
3
4Cov

(
Y i
2,4 (t) , Y

j
4,4 (t)

)
has not been taken into account because it is

proportional to Cov
(
Y k
2 (0) Tik

Mi
,
Tjk

Mj

Tkl

Mk

)
, which is equal to zero, as proved below:

Cov

(
Y k
2 (0)

Tik

Mi
,
Tjk

Mj

Tkl

Mk

)
=E

[
Y k
2 (0)

Tik

Mi

Tjk

Mj

Tkl

Mk

]
− E

[
Y k
2 (0)

Tik

Mi

]
E

[
Tjk

Mj

Tkl

Mk

]

=E
[
Y k
2 (0)

](
E

[
Tik

Mi

Tjk

Mj

Tkl

Mk

]
− E

[
Tik

Mi

]
E

[
Tjk

Mj

Tkl

Mk

])

=0

We can simplify 6.52 further by noticing that for σ4 6= 0 and σ1, σ2, σ3 = 0 the problem of

the correlation does not appear anymore if we calculate it using the truncated covariance

function 6.36. Since for these values of the perturbative parameters the covariance 6.52

becomes simply:
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Cov (Vi (t) , Vj (t)) =σ2
4Cov

(
Y i
4 (t) , Y j

4 (t)
)

+ σ3
4

[
Cov

(
Y i
4 (t) , Y j

4,4 (t)
)
+ Cov

(
Y i
4,4 (t) , Y

j
4 (t)

)]
+ σ4

4Cov
(
Y i
4,4 (t) , Y

j
4,4 (t)

)

which differs from formula 6.36 (calculated for σ4 6= 0 and σ1, σ2, σ3 = 0) only in the 4th

order term σ4
4Cov

(
Y i
4,4 (t) , Y

j
4,4 (t)

)
, this means that there is no need to add this term in

order to correct the perturbative expansion. Therefore we see from 6.52 that the only term

which is required to alleviate the problem of the correlation is σ2
2σ

2
4Cov

(
Y i
2,4 (t) , Y

j
2,4 (t)

)
.

To conclude, the final formula for the covariance that we have to use is:

Cov (Vi (t) , Vj (t))

= σ2
1Cov

(
Y i
1 (t) , Y j

1 (t)
)
+ σ2

2Cov
(
Y i
2 (t) , Y j

2 (t)
)

+ σ2
3Cov

(
Y i
3 (t) , Y j

3 (t)
)
+ σ2

4Cov
(
Y i
4 (t) , Y j

4 (t)
)

+ σ4

{
σ2
1

[
Cov

(
Y i
1 (t) , Y j

1,4 (t)
)
+ Cov

(
Y i
1,4 (t) , Y

j
1 (t)

)]
+ σ2

2

[
Cov

(
Y i
2 (t) , Y j

2,4 (t)
)
+ Cov

(
Y i
2,4 (t) , Y

j
2 (t)

)]

+σ2
3

[
Cov

(
Y i
3 (t) , Y j

3,4 (t)
)
+ Cov

(
Y i
3,4 (t) , Y

j
3 (t)

)]
+ σ2

4

[
Cov

(
Y i
4 (t) , Y j

4,4 (t)
)
+ Cov

(
Y i
4,4 (t) , Y

j
4 (t)

)]}

+ σ2
2σ

2
4Cov

(
Y i
2,4 (t) , Y

j
2,4 (t)

)
(6.53)

where:
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Cov
(
Y i
2,4 (t) , Y

j
2,4 (t)

)

= e−
2t
τ





N−1∑

k=0

E

[
TikTjk

MiMj

] [∫ t

0

Ĵ ik (s)S
′ (Y k

0 (s)
)
ds

] [∫ t

0

Ĵjk (s)S
′ (Y k

0 (s)
)
ds

]

+C2

N−1∑

k,l=0
k 6=l

E

[
TikTjl

MiMj

] [∫ t

0

Ĵ ik (s)S
′ (Y k

0 (s)
)
ds

] [∫ t

0

Ĵjl (s)S
′ (Y l

0 (s)
)
ds

]




(6.54)

We remind the reader that if he/she is interested only in the calculation of the variance and

covariance, the term Cov
(
Y i
2,4 (t) , Y

j
2,4 (t)

)
is not important, but it must be used if he/she

needs to evaluate the correlation function. Indeed, using formula 6.53, the problem of the

correlation is corrected, as it can be seen from Figure 6.1 (right-hand side).

6.4 Fractal connectivity matrix

As we reported in Section 2.1, the brain is often characterized by a small-world topol-

ogy. A famous algorithm that generates networks with this property has been introduced

by Watts and Strogatz [47]. Even if in principle it is possible to calculate analytically

the covariance structure of the neurons over the random topology generated by this algo-

rithm, in practice it is not a simple task, because the exact evaluation of E [Tij ], E [TikTjl],

E [TilTjmTkn] etc, which is required for example by formula 6.49, can be accomplished

through a complicated combinatorial analysis. Moreover this algorithm does not mimic

the nested structure of the connectivity matrix of the brain. In fact, Watts and Strogatz

tried to replicate only two features of the brain, namely its path length (which repre-

sents the shortest distance between two vertices in terms of the number of edges) and its
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clustering coefficient (which, for a given vertex, quantifies the connectivity degree of its

neighbourhood, i.e. of the vertices directly connected to it), without taking into account its

nested structure. A more tractable algorithm, which reproduces more biologically realistic

connections, has been introduced by Sporns in [190]. Since the connectome of the brain

has a nested structure, Sporns suggested to describe it using a fractal connectivity matrix.

One of the cases he studied is what he called the fractal pattern (frc). It is obtained by

choosing two integer numbers, µ and η (Sporns called them m and n, but we prefer to use

different symbols to avoid confusion with the vector and matrix indices) with µ ≤ η, and a

real non-negative number E. The total number of neurons in the network is N = 2η , and

the different levels of the fractal structure are described by a parameter κ = 0, 1, ..., η − µ

(Sporns called it k). As shown in Figure 6.2, we start with an elementary block of 2µ neu-

rons, which forms the level 0 of the fractal structure (κ = 0). Within this block the neurons

are fully connected and without self-connections. Then we duplicate this block. The con-

nection density between the two elementary blocks is the number of actual connections

between them divided by the total number of possible connections. So we connect them

with a connection density E−1 (here κ = 1, namely we are at the level 1). This means that

the number of connections between the two blocks in one direction is the integer part of

4µE−1. We emphasize the fact that these connections are randomly chosen. The result-

ing network is then “duplicated”, namely we produce another pair of groups with 2µ fully

interconnected neurons in each one, and interconnected between them with a connection

density E−1 (the connections are chosen randomly again, so this is not an identical copy).

Then we connect the two "copies" with a connection density E−2 (κ = 2), and so on and

so forth. The process is repeated iteratively until we reach the level κ = η − µ. It is also

important to observe that these connections are directed, therefore the connectivity matrix

is generally not symmetric. Two examples are shown in Figure 6.3.

According to [190], the parameter E determines the path length, the clustering coefficient

and the complexity of the network. The latter was first introduced in [191], and quantifies

the extent to which a system is both functionally segregated and functionally integrated.
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Figure 6.2: Sporns’ algorithm for the fractal connectivity matrix. At the level κ = 0 a single dot
represents a group of 2µ fully connected neurons. At κ = 1 we duplicate this elementary block,
obtaining two groups of 2µ neurons which are linked together with a connection density E−1. This
structure is generated again at the level κ = 2, and connected to the previous one with a connection
density E−2, and so on. This figure has been taken and adapted from [190].

Figure 6.3: Two examples of fractal matrix obtained with the Sporns’ algorithm, for η = 8, µ = 4

and E = 2.0 (left-hand side) and for η = 11, µ = 2 and E = 1.5 (right-hand side). A blue dot
corresponds to a 1 in the topology matrix, while the absence of the dot corresponds to a 0. The
figure on the right-hand side has been resized in order to the have the same spatial extension as
the figure on the left-hand side. For this reason it does not clearly show the diagonal white line
corresponding to Jii (t) = 0, namely to the absence of self-connections.
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This means that both the degree of independence of the blocks and their level of coopera-

tion are taken into account by a single quantity, the complexity of the network, which for

the fractal topology is maximum when E ≈ 2.

Now we have to determine the quantities E [Tij ], E [TikTjl], E [TilTjmTkn] etc. Therefore we

need to analyze the algorithm that generates the fractal connectivity matrix. If all the

connections are at the level κ = 0, where the neurons are always fully connected, then we

trivially have:

E [Tij ] =1− δij

E [TikTjl] = (1− δik) (1− δjl)

E [TilTjmTkn] = (1− δil) (1− δjm) (1− δkn)

...

because in this case the entries of the topology are deterministic. Moreover, if we have an

entry of the topology matrix, for example Tik, at the level κ = 0, and another entry, for

example Tjl, at a different level, we obtain E [TikTjl] = (1− δik)E [Tjl], and so on and so

forth.

We next compute these statistical quantities when the connections are not at the level κ =

0. At a given level κ > 1, the total number of possible connections (in one direction) is ακ =

4µ+κ−1, among which the algorithm has to choose randomly βκ = bE−κακc connections.

At the level κ the probability that Tij is chosen at some time after βκ steps, regardless the

step at which it has been actually chosen, is:
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p (Tij = 1) =
βκ

ακ

since we can draw uniformly among ακ possible connections, therefore:

E [Tij ] = 0× p (Tij = 0) + 1× p (Tij = 1) =
βκ

ακ

Now we want to evaluate E [TijTkl]. If, in the picture of the connectivity matrix, Tij and Tkl

are in two different squares, then clearly they are not correlated, therefore in that case we

have E [TijTkl] = E [Tij]E [Tkl] =
βκ1
ακ1

βκ2
ακ2

. If instead they are in the same square, we have:

E [TijTkl] =
βκ (βκ − 1)

ακ (ακ − 1)

since they are selected sequentially and independently from each other. In general, for n

entries of the topology in the same square, with n ≤ βκ, we obtain:

E
[
Ti0j0Ti1j1 ...Tin−1jn−1

]
=

βκ (βκ − 1) ... (βκ − n+ 1)

ακ (ακ − 1) ... (ακ − n+ 1)
=

βκ! (ακ − n)!

ακ! (βκ − n)!

thereby the problem of determining the correlation structure of the neural network with

the fractal connectivity matrix is solved.

6.5 Numerical experiments

As we did in Chapter 5, we want to show that this perturbative expansion provides a good

match with the exact equations of the network. For this reason in Figures 6.4 and 6.5 we

have shown the comparison between the membrane potential, variance, covariance and
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correlation of pairs of neurons for two kinds of connectivity matrices (fully connected and

cycle graphs), obtained from the simulation of equations 6.1 (blue line), of equations 6.13

- 6.17 (red line) and from formulae 6.37 - 6.43, 6.53 and 6.54 (green line). Therefore, as

in Chapter 5, we have obtained these figures without considering the second order terms

in the perturbative expansion of Vi (t). In other words, we have omitted the third order

terms 6.44 - 6.47 in the variance and covariance, due to the difficulty of implementing

them numerically. Instead in Figures 6.6 and 6.7 we have shown the comparison between

equations 6.1 (blue line) and equations 6.13 - 6.21 (red line), therefore considering also

the higher order terms, because the numerical calculation of the variance and covariance

through the simulation of equations 6.18 - 6.21 is much easier than the implementation of

the terms 6.44 - 6.47.

For the networks with random topology, the analytic formulae of the variance, covariance

and correlation are rather complex to implement. In fact usually the approximation of

order 0 of the quantities E
[
Tij

Mi

]
, E
[
TikTjl

MiMj

]
and E

[
TikTlmTjl

MiMjMl

]
is not precise enough, forcing us

to add the higher order corrections. For example, for a network with independent random

connections with p (Tij = 1) = p ∀i, j : i 6= j, the approximation of order 0 of E
[
Tij

Mi

]
is:

E

[
Tij

Mi

]
≈ E [Tij ]

N−1∑

k=0

E [Tik]

=
p

(N − 1) p
=

1

N − 1

which does not depend on p and therefore does not contain information about the random-

ness of the topology. This means that in general this approximation is a too poor descrip-

tion of the random topology, and therefore the higher order corrections must be included.

Unfortunately, according to 6.50, the approximations of order 1 are always equal to zero,

therefore we have to extend the approximation up to the 2nd order. In other terms, we

have to compute the second order derivatives in the multidimensional Taylor expansions

of E
[
Tij

Mi

]
, E
[
TikTjl

MiMj

]
and E

[
TikTlmTjl

MiMjMl

]
. This is a feasible but complex task, and it is partic-

ularly hard for the fractal connectivity matrix, since it depends on the blocks the synaptic
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connections belong to. For this reason we have opted for showing only the comparison

between the numerical simulations of the stochastic differential equations (red and blue

lines), without using the analytic formulae. Figures 6.8 - 6.14 show these results for a

network with independent random connections and for the Sporns’ fractal matrix. The

differential equations have been solved numerically using the Euler-Maruyama scheme,

while the integrals with respect to time have been calculated using the trapezoidal rule, in

both cases with an integration time step ∆t = 0.1. All the statistics have been evaluated

with 10, 000 Monte Carlo simulations (where we have independently generated repetitions

of the four sources of randomness of the system), while the remaining parameters are re-

ported in Table 6.2. The covariance and correlation have always been calculated between

the 0th and the 1st neuron. The only exceptions are in Figures 6.12, 6.13 and 6.14, where

the comparison is between the 0th and the 8th neuron. Instead the membrane potentials

and the variances have always been reported only for the the 0th neuron. In general we

have obtained a better agreement with the exact equations when we use also the second

order corrections of the membrane potential.

It is important to observe that a detailed analysis of the error introduced by the perturba-

tive expansion as a function of the approximation order, the values of all the parameters

of the system and the infinitely many connectivity matrices is missing and is beyond the

purpose of this thesis.

6.6 Fisher information

We consider again only the first order terms in the perturbative expansion of the mem-

brane potentials, because this allows us to use formulae 5.77, 5.78 and 5.79 for the ana-

lytic evaluation of the Fisher information. In general it is not easy to calculate the inverse

Σ−1 (t) of the covariance matrix. This can be done straightforwardly only in the case when

σ3 = 0, because otherwise the term 6.39 determines a complicated structure of Σ (t), which
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Figure 6.4: Comparison of the variance, covariance and correlation obtained from the simulation
of equations 6.1 (blue line), of equations 6.13 - 6.17 (red line) and from formulae 6.37 - 6.43, 6.53
and 6.54 (green line). Therefore the perturbative expansion of the membrane potential has been
truncated at the first order, while those of the variance and covariance at the second order. We
have compared the 0th and the 1st neuron, using the Euler-Maruyama scheme (blue and red lines)
and the trapezoidal rule (green line) with integration time step ∆t = 0.1. The statistics have been
evaluated with 10, 000 Monte Carlo simulations, for the values of the parameters reported in Table
6.2. The topology is K10 (see Chapter 3) and therefore deterministic.
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Neuron Input

τ = 1 Ii (t) =

{
sin (2t) , i = 0÷ N

2 − 1

0.2 + e−t, i = N
2 ÷N − 1

C2 = 0.5 C1 = 0.4

σ2 = 0.1 σ1 = 0.01

µi =

{
−1, i = 0÷ N

2 − 1

0.5, i = N
2 ÷N − 1

Synaptic Weights Sigmoid Function

Ĵ ij (t) =





(
1 + t2

)−1
, i, j = 0÷ N

2 − 1

cos (t) , i = 0÷ N
2 − 1, j = N

2 ÷N − 1√
1 + 2

π arctan (t), i = N
2 ÷N − 1, j = 0÷ N

2 − 1

e−t sin (t) , i, j = N
2 ÷N − 1

TMAX = 1

C3 = 0.6 λ = 1

σ3 = 0.1 VT = 0

Table 6.2: Parameters used to generate Figures 6.4 - 6.14

Figure 6.5: Comparison of the variance, covariance and correlation obtained for the deterministic
topology Cy10 (see Chapter 3), for the values of the parameters reported in Table 6.2.
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Figure 6.6: Comparison of the variance, covariance and correlation obtained for the deterministic
topology K10, for the values of the parameters reported in Table 6.2, but considering also the second
order corrections of the membrane potential. Clearly the match has been improved by the addition
of these terms, as the reader can easily check from the comparison with Figure 6.4.
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Figure 6.7: Comparison of the variance, covariance and correlation obtained for the deterministic
topology Cy10, for the values of the parameters reported in Table 6.2, but considering also the
second order corrections of the membrane potential. This time the improvement of the match
is not evident, if compared with Figure 6.5, which proves that the goodness of the perturbative
expansion depends also on the topology of the network. It is important to observe that the second
order corrections are generally small, therefore their magnitude could be of the same order of the
numerical error introduced by the finite number of Monte Carlo simulations.
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Figure 6.8: Comparison of the variance, covariance and correlation obtained for a random topol-
ogy, for the values of the parameters reported in Table 6.2, considering also the second order cor-
rections of the membrane potential. In detail, here we have assumed that each pair of neurons is
connected independently from the others and with probability p = 0.7. Even if the match of the
variance and covariance is quantitatively very good, the approximation of the correlation is not sat-
isfying for t > 2. This is due to the fact that the ratio of small quantities (in this case the variance
and covariance) is very sensitive to small errors in the numerator and denominator. Nevertheless
the second order expansion provides a satisfying result, because the variance and covariance are
in very good agreement with the exact neural equations. It is important to observe that the dis-
crepancy is also due to the finite number of Monte Carlo simulations, which should be increased
especially for small values of the variance and covariance.
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Figure 6.9: Comparison of the variance, covariance and correlation obtained for the Sporns’ topol-
ogy, for the values of the parameters reported in Table 6.2, considering also the second order cor-
rections of the membrane potential. In this example we have set η = 4 (N = 16), µ = 2 and E = 1.1,
therefore the network is almost fully connected. The two neurons are in the same block, therefore
they are connected at the level κ = 0.
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Figure 6.10: As in the Figure 6.9, but with E = 2. This, according to [190], is approximately the
point of maximum complexity of the network, see text.
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Figure 6.11: As in the Figure 6.9, but with E = 5. In this case the blocks are almost completely
disconnected. From the comparison with Figures 6.9 and 6.10, the reader can easily check that the
increase of the parameter E determines the reduction of the correlation at large t, as a consequence
of the diminution of the number of connections.
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Figure 6.12: Comparison of the variance, covariance and correlation obtained for the Sporns’
topology, for the values of the parameters reported in Table 6.2, considering also the second order
corrections of the membrane potential. In this example we have set η = 4 (N = 16), µ = 2 and
E = 1.1, as in Figure 6.9, but now the neurons are in two different blocks, and they are connected
at the level κ = 2.
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Figure 6.13: As in the Figure 6.12, but with E = 2.
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Figure 6.14: As in the Figure 6.12, but with E = 5. Again, the increase of the parameter E

determines the reduction of the correlation for large t. It is important to observe that the difference
between the two cases with the neurons in the same block or in two different blocks is very small.
This is due to the fact that the values of the parameters C1, C2 and C3 are relatively high (see Table
6.2), therefore they strongly determine the behavior of the correlation, for every topology. When
these parameters are set to zero, a richer behavior of the correlation emerges. This analysis is not
shown in the thesis, because the purpose of this work is to develop mathematical tools that allow
us to understand a neural network, not the analysis of the consequences of the formulae.
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in general cannot be inverted easily. Moreover, for simplicity, we consider again the case

when the synaptic weights are constant in time and the initial conditions are deterministic

as well (i.e. σ2 = 0). In order to obtain concise formulae, we consider only the stationary

case, namely the limit for t → +∞. Therefore we have:

mi =E [Vi (t)] = Iτ +
1

τ
S
(
Iτ
)N−1∑

j=0

Jij (6.55)

Σij =





σ2
1
τ
2 if i = j

σ2
1
τC1

2 if i 6= j

(6.56)

[
Σ−1

]
ij
=





2
σ2
1τ

1−C1+C1(N−1)
(1−C1)[1+C1(N−1)] if i = j

− 2
σ2
1τ

C1

(1−C1)[1+C1(N−1)] if i 6= j

(6.57)

having used formulae 6.12, 6.31 and 6.37. This is formally equivalent to the additive

noise case studied in [158] (the difference consists in the fact that Abbott and Dayan

performed the analysis in terms of the firing rates, while here we are using the

membrane potentials), with the advantage that now we have an expression for the Fisher

information as a function of the dynamics of the network (when t is finite), of its

parameters and of its connectivity matrix, which are not taken into account in [158].

According to Abbott and Dayan, the first term of the Fisher information is:

I1
(
I
)
=

∂−→mT

∂I
Σ−1 ∂

−→m
∂I

=
2

σ2
1τ

[
C1N

2
[
F1

(
I
)
− F2

(
I
)]

(1− C1) [1 + C1 (N − 1)]
+

NF1

(
I
)

1 + C1 (N − 1)

]
(6.58)
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where:

F1

(
I
)
=

1

N

N−1∑

i=0

(τ + ai)
2

F2

(
I
)
=

[
1

N

N−1∑

i=0

(τ + ai)

]2

and:

ai = S′ (Iτ
)N−1∑

j=0

Jij

Instead the second term of the Fisher information is:

I2
(
I
)
=

1

2
Tr

(
∂Σ

∂I
Σ−1 ∂Σ

∂I
Σ−1

)
= 0 (6.59)

since Σ does not depend on I. This is compatible with the result found in Chapter 5,

namely that the trace term of the Fisher information is negligible. So formula 6.58

explains the origin of the two peaks of the Fisher information we found in Section 5.7.

The right-hand side of 6.58 has two sub-terms, the first proportional to F1

(
I
)
−F2

(
I
)

and

the second proportional to F1

(
I
)
. It is easy to see that when F1

(
I
)
−F2

(
I
)
≈ 0 the second

term dominates for small values of the correlation, and actually it increases for C1 → 0.

However also a small difference between F1

(
I
)

and F2

(
I
)

generates an explosion of the

Fisher information for C1 → 1, because the denominator goes to zero but not the

numerator, so this explains the formation of the two peaks obtained in Section 5.7. Some
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Neuron Input Synaptic Weights Sigmoid Function

τ = 1 I = 0.5 α = 0.1 TMAX = 1

σ1 = 0.01 β = [0, 0.2] λ = 1

VT = 0

Table 6.3: Parameters used for the numerical simulations of Figure 6.15.

numerical examples are shown in Figure 6.15, where in a single trial we have used again

independent and identically distributed synaptic weights given by

Jij ∼ N
(

α
N−1 ,

(
β

N−1

)2)
∀ (i, j) : i 6= j. The values of the parameters are shown in Table

6.3.

However it must be noted that formula 6.58 gives a fairly poor approximation of the Fisher

information, since it has been obtained from formula 6.56, which, we know, is not precise.

In fact, if we set C1 = 0, formula 6.56 predicts independent neurons, which is not true

for synaptic weights of generic strength. Nevertheless, this approximation of the Fisher

information predicts the two peaks we have found in Section 5.7, so it can be used to

predict qualitative results. Moreover it clearly shows that the formation of the two peaks

does not depend on the topology of the synaptic connections, since formula (6.58) is true

for a generic connectivity matrix J .

6.7 Partial conclusion

In this chapter we have introduced another perturbative expansion, that somehow ex-

tends the results of Chapter 5. While in Chapter 5 we expanded the membrane potentials

around the stationary solutions of the network, which was supposed to be invariant under

the exchange of the neural indices, here the expansion is performed with respect to the

network without connections. In this way the correlation structure of the system can be

calculated for arbitrary (and in general time-varying) states and for any connectivity ma-

trix. The disadvantage, compared to the technique of Chapter 5, is in the fact that this new
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Figure 6.15: Two possible examples of Fisher information, obtained from the perturbative expan-
sion with weak synaptic weights in a fully connected network with N = 20 and for the parameters
reported in Table 6.3. The result depends on the values of the synaptic weights from trial to trial,
showing higher encoding efficiency for C1 → 0 and/or C1 → 1, as in Section 5.7. In detail, the figure
on the top has been obtained for β = 0, F1 = 1.0475 and F1 − F2 = 0, while the two figures at the
bottom have been obtained for β = 0.2, F1 = 1.0566 and F1 − F2 = 1.447 × 10−4. The figure on
the bottom-right side represents the zoom of the figure on the bottom-left side for C1 → 1, from
which it is possible to see the explosion of the Fisher information for highly correlated membrane
potentials.
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expansion can be used only for relatively weak synaptic weights. However now the connec-

tions can have a random topology, so we have used the new method to study biologically

realistic cases. An important example, characterized by biological relevance and mathe-

matical tractability, is the connectivity matrix introduced by Sporns [190]. This is a first

attempt to describe the main features of the human connectome, namely its small-world

properties and the nested structure (see Chapters 1 and 2). Even if we have completely

calculated the correlation matrix generated by this connectome, obtaining a good match

with the numerical simulation of the exact neural equations, we have not analyzed in

detail its implications for the network. Being very complex, this analysis is reserved for

future work.

To conclude, we have used the perturbative expansion to calculate the Fisher information

of the network, obtaining an approximate analytic expression that predicts two peaks of

I
(
I
)

for highly correlated and highly decorrelated neurons with inhomogeneous synaptic

weights. This confirms the result found in Chapter 5, and clearly shows that the formation

of the two peaks is a generic phenomenon, that does not depend on the topology of the

connections.
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Chapter 7

Numerical calculation of the

Fisher information

T HIS chapter introduces an algorithm to calculate the Fisher information of a neural

network, which is not based on any analytic approximation of the probability den-

sity. Therefore this technique is purely numerical, and in principle can be applied to every

kind of neural model. The method is based on the Expectation-Maximization algorithm

with Gaussian mixtures, and on the Monte Carlo integration with importance sampling,

as shown in Section 7.1. In Section 7.2 we show the results provided by the algorithm

for the case of the FitzHugh-Nagumo network with correlated Brownian motions. In par-

ticular, we confirm the fact that the Fisher information is higher when the membrane

potentials are highly correlated than when they are independent.

7.1 Description of the algorithm

In the context of Statistical Estimation Theory, many efficient algorithms have been in-

vented for the numerical evaluation of the Fisher information using a Monte Carlo ap-
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proach (see for example [192][193][194][195][196]). Nevertheless, for the sake of simplicity

and clarity, in this chapter we only introduce an elementary algorithm, that allows us to

confirm qualitatively the results found in Chapters 5 and 6 for a different kind of neural

model. In other words, this algorithm is particularly useful when the probability density

of the system is strongly non-Gaussian, therefore we apply it to the case of the FitzHugh-

Nagumo network. In fact, the techniques for the calculation of the Fisher information

introduced in Chapters 5 and 6 can be applied only to the rate model, since its probability

density is approximately Gaussian. Instead for a spiking network the probability density

in general is highly non-Gaussian, therefore a new technique must be used. We remind

the reader that, according to 2.6, the Fisher information is defined as:

I (θ, t) =

∫

RkN

(
∂

∂θ
log p (−→x , θ, t)

)2

p (−→x , θ, t) d−→x (7.1)

Therefore we need to evaluate the joint probability density of the solutions of the equa-

tions describing the network, and this can be achieved by repeating the simulation of the

network many times. In other words, we could take a finite portion of the phase space,

divide it in many bins (namely construct a grid) and build a histogram that approximates

the probability density using a Monte Carlo method. However, unfortunately, this can

be done only in principle. In fact, suppose for example that we would like to build the

histogram of a network made up of 100 neurons, and suppose also that every dimension

in the phase space is divided in 10 bins. In this case, the number of subdivisions of the

whole phase space is 10100. If now we would like to increase the precision of the grid, or

to increase the size of the network, this number becomes quickly prohibitive in terms of

memory consumption. Therefore we need to find a more efficient way for evaluating the

probability density of the network. As we said, the basic idea presented in this chapter is

to use a simplified version of the techniques developed in the context of Statistical Estima-

tion Theory. In particular we will use an Expectation-Maximization (EM) algorithm [197]

with Gaussian mixtures in order to evaluate the joint probability density of the network.
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Supposing that the system is made up of N neurons and that it is has been simulated a cer-

tain number of times (that we call MCS, which stands for Monte Carlo Simulation) with

a Monte Carlo method, then we have generated a collection of N ×MCS samples. Using

these data, the EM algorithm can estimate the joint probability density of the system as

a mixture (namely a sum) of Gaussian multivariate distributions. This result is achieved

without the subdivision of the phase space into bins, therefore it is not affected by the

problem of the previous method. Therefore using this technique we can study also large

neural networks without memory problems. The use of Gaussian mixtures is particularly

useful for systems whose probability density is strongly non-Gaussian. In particular, from

Section 3.2.2 we know that the probability density of the FitzHugh-Nagumo network devi-

ates considerably from the Gaussian distribution when the neurons are spiking. Therefore

it is an optimal candidate for testing this approach. More in detail, we suppose that the

probability density of the network could be approximated as a weighted sum of multivari-

ate Gaussian distributions. The weights of the sum, the mean vectors and the covariance

matrices of the Gaussian distributions are not known and must be evaluated through the

samples that come from the Monte Carlo simulations of the network. Moreover, every sin-

gle Gaussian distribution has hyper-volume 1, therefore the sum of the weights must be

equal to 1, for the normalization condition of the probability densities. In this section we

suppose that the Brownian motions BV
i (t), BJ

i (t) and By
i (t) have all correlation C, and

Figures 7.1 and 7.2 show two examples of this approximation, respectively when most of

the neurons are spiking or are at rest. In these results the EM algorithm has been used

with a mixture of 6 Gaussian distributions, a percentage of the log likelihood difference

between 2 iterations equal to 10−3 and with a maximum of 200 iterations allowed.

Now, the joint probability density has to be used for the evaluation of the Fisher infor-

mation. However, this distribution is useful also for another reason. According to formula

7.1, the Fisher information is obtained after the calculation of a high-dimensional integral.

In the case of the FitzHugh-Nagumo network this integral has 3N dimensions, and when

N is large it cannot be calculated with the standard numerical methods. However it is
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Figure 7.1: Marginal probability densities p (V, t), p (w, t) and p (y, t) (respectively top, middle and
bottom of the figure) of the FitzHugh-Nagumo network, according to the EM algorithm. These
results have been obtained for N = 5, t = 4 and 10, 000 Monte Carlo simulations of the network.
Moreover the values of the parameters are those of Table 7.1, while the EM algorithm has been
used with a mixture of 6 Gaussian distributions. The formation of the two peaks of the probability
density explained in Figures 3.9, 3.10 and 3.11 is particularly evident from the behavior of p (V, t),
and represents the spiking activity of the neurons on the limit cycle.
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Figure 7.2: Marginal probability densities p (V, t), p (w, t) and p (y, t) (respectively top, middle and
bottom of the figure) of the FitzHugh-Nagumo network, according to the EM algorithm. These
results have been obtained for N = 10, t = 4 and 10, 000 Monte Carlo simulations of the network.
Moreover the values of the parameters are those of Table 7.1, with only the exception of the external
input current and the background noise, which have been set to I = −0.8 and σ1 = 0.45, while the
EM algorithm has been used with a mixture of 6 Gaussian distributions. The single peak of the
probability density is explained in Figure 3.12 and corresponds to a rest state, where most of the
neurons are not spiking.
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Initial conditions FitzHugh-Nagumo Synaptic weights Synapses Other

µV = 0 a = 0.7 Λ = 1 Vrev = 1 ∆t = 0.1

µw = 0.5 b = 0.8 σ3 = 0.2 α = 1
C = [0, 0.2, 0.4,

0.6, 0.8, 1]

µy = 0.3 c = 0.08 β = 1

σV
2 = 0.4 I = 0.4 TMAX = 1

σw
2 = 0.4 σ1 = 0 λ = 0.2

σy
2 = 0.05 VT = 2

Γ = 0.1

Υ = 0.5

Table 7.1: Values of the parameters of equation 3.34 used to obtain Figures 7.1 and 7.4. These are
the same parameters of Table 3.2, with only the exception of the correlation between the Brownian
motions.

well known that an efficient technique for highly dimensional integrals is the Monte Carlo

approach. Supposing that we want to integrate a multidimensional function f (−→x ), we can

do it using the following trick:

∫

Ω
f (−→x ) d−→x = V ol (Ω)

∫

Ω
f (−→x )

1

V ol (Ω)
d−→x = V ol (Ω)EB [f (−→x )]

where Ω is the hyper-dimensional set with hyper-volume V ol (Ω) on which we want to

integrate the function f (−→x ), while EB [·] is the mean evaluated with respect to the hyper-

dimensional box probability density B (−→x ), defined as follows:

B (−→x ) =





0 if −→x /∈ Ω

1
V ol(Ω) if −→x ∈ Ω

Now we can evaluate this mean using infinitely many samples generated by the distribu-

tion B (−→x ), obtaining finally:
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∫

Ω
f (−→x ) d−→x = V ol (Ω) lim

MCI→∞


 1

MCI

MCI−1∑

j=0

f
(−→x j

)



where −→x j is the j-th sample generated by B (−→x ), while MCI (which stands for Monte Carlo

Integration, and that must not be confused with MCS) is the total number of samples.

Therefore in practice the integral can be approximated through the calculation of the mean

of the function f (−→x ), evaluated with many different samples −→x j, generated randomly by

the hyper-dimensional box probability density. Due to the law of large numbers, the error

of this integration scheme is always O
(
MCI−

1
2

)
, regardless of the dimensionality D of

the function f (−→x ). Instead the standard integration schemes suffer from the curse of

dimensionality. For example, the error of the trapeziodal rule is O
(
MCI−

2
D

)
, while for

the Simpson’s rule it is O
(
MCI−

4
D

)
, which clearly shows that for D � 1 the error of

the standard integration schemes could be unacceptably large. Instead the Monte Carlo

method does not depend on D, therefore it is the ideal candidate for our purpose.

However, if the function f (−→x ) has non-zero values only in a very limited subset of Ω,

many random points−→x j generated by B (−→x ) will give f (−→x ) = 0 and therefore they will

not contribute to the evaluation of the integral. In other terms if the sampling probability

density is not chosen accurately, the points it generates will be wasted. Therefore, in

order to use the Monte Carlo integration in an efficient way, we have to choose a sampling

distribution P (−→x ) which generates points only in the range where the function f (−→x ) is not

negligible. This is called importance sampling [198], and is formally described as follows:

∫

Ω
f (−→x ) d−→x =

∫

Ω

f (−→x )

P (−→x )
P (−→x ) d

−→
X = EP

[
f (−→x )

P (−→x )

]
= lim

MCI→∞


 1

MCI

MCI−1∑

j=0

f
(−→x j

)

P (−→x j)




where now the samples −→x j are randomly generated using the probability density P (−→x ).

This is the method that we will use to evaluate numerically the Fisher information of the
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neural network. From formula 7.1 and since we have θ = I, we can see that in our case

the function to integrate is:

f (−→x ) =

(
∂

∂I
log p (−→x , I, t)

)2

p (−→x , I, t) (7.2)

and that the integration set is Ω = R
3N (therefore D = 3N ). Now we have only to deter-

mine a good sampling distribution P (−→x ). It is obvious that the areas of the phase space

where the probability density p (−→x , I, t) is flat do not contribute to the Fisher information.

Moreover the probability density of the FitzHugh-Nagumo network is flat only when it is

close to zero. This means that the areas of the phase space that contribute to the Fisher

information are only those where p (−→x , I, t) is significantly larger than zero. Therefore

the most natural sampling distribution in this case is P (−→x ) = p (−→x , I, t), since this dis-

tribution generates the random points mainly in correspondence of its peaks, where the

function 7.2 contributes more to the Fisher information. However we already know the dis-

tribution p (−→x , I, t), since we have calculated it through the EM algorithm, so we can use

it to generate many samples for the Monte Carlo integration of the function 7.2. Actually

this last step is not necessarily required, since the samples obtained from the simulation

of the network (the same samples that we used to determine p (−→x , I, t) through the EM

algorithm) are distributed according to p (−→x , I, t) and therefore they could be used to inte-

grate the function 7.2. However in this case, if we need more samples for improving the

precision of the Monte Carlo integration, we have to increase the number of simulations

of the whole network, in order to generate more samples. Unfortunately, if the network is

large this could be a very slow procedure. Therefore the best way to integrate the function

7.2 is to generate many new samples using the EM approximation of p (−→x , I, t). In general,

to produce samples distributed according to a given probability density is a complicated

task. However in our case p (−→x , I, t) is a mixture of Gaussian distributions, so it can be

done easily. In fact, given a mixture of m variables −→y i ∼ N (−→µ i,Σi) with weights wi, for

i = 0, 1, ...,m − 1, and such that
∑m−1

i=0 wi = 1, it is possible to generate a sample sj from
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the mixture distribution through the following two steps:

• first, choosing randomly an index i in the set {0, 1, ...,m − 1}, where the i-th element

of this set has a probability of being chosen equal to wi;

• second, generating the sample −→s j from the multivariate normal distribution with

mean −→µ i and covariance Σi.

Finally, we still have to evaluate the derivative ∂
∂I

log p (−→x , I, t) required in the calculation

of the Fisher information. Since the execution of this algorithm on a regular laptop is quite

slow, we want to avoid the use of formula 3.38, since it requires at least 3 repetitions (for

n = 1) of the simulation, for slightly different values of I. Therefore we have opted for a

simple forward difference scheme of first order, namely:

f (−→x ) =

[
1

∆I
(log p (−→x , I +∆I, t)− log p (−→x , I, t))

]2
p (−→x , I, t) (7.3)

since it allows us to evaluate f (−→x ) using only 2 repetitions of the simulation. Therefore,

to recapitulate, the whole algorithm is based on two different Monte Carlo methods. The

first is the repetition, for MCS times, of the network simulation in order to generate the

samples used for the evaluation of p (−→x , I, t) through the EM algorithm. Instead the second

is the generation of MCI new samples from the approximation of p (−→x , I, t), that are used

to integrate the function 7.3. A schematic representation of the process is shown in Figure

7.3.

7.2 Numerical results

Figure 7.4 shows the Fisher information calculated by this algorithm for different values

of the correlation between the Brownian motions.
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Figure 7.3: Flow chart of the algorithm used for the numerical evaluation of the Fisher informa-
tion. MCS and MCI are, respectively, the total number of Monte Carlo simulations of the network
equations and the total number of samples used for the Monte Carlo integration with importance
sampling.
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Figure 7.4: Interpolation of the Fisher information for spiking (top) and non-spiking (bottom)
neurons, obtained for the FitzHugh-Nagumo network with N = 2, 6, 10, 25, 50 and for t = 4. In
these simulations we have used the parameters of Table 7.1 for the figure on the top, while for the
figure at the bottom we have used the same parameters with only the exception of the external
input and the intensity of the background noise, which have been set respectively to I = −0.8 and
σ1 = 0.45. The partial derivative with respect to the input has been calculated with ∆I = 0.01. To
conclude, the EM algorithm has been used with 10, 000 repetitions of the network, while the Monte
Carlo integration has been performed with 100, 000 samples. NOTE: for the figure at the bottom,
the Fisher information has not been reported for C = 1 and N = 50 because the algorithm does not
provide a plausible result, due to the extremely fast divergence of the curve.
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The error analysis of this numerical method has not been performed, therefore its preci-

sion has not been quantified yet. This means that the figures shown in this chapter must

be taken as indicative, namely they are only qualitative results. Nevertheless they clearly

show again, as in Chapters 5 and 6, that the Fisher information is larger when the correla-

tion between the Brownian motions is high. Furthermore, now the analysis has been split

into two parts, namely the cases when the neurons are spiking and when they are at rest,

showing that the Fisher information is always larger in the case of strong correlations.

These results also prove that qualitatively the behavior of I (θ, t) depends on the state of

the network and is characterized by a higher variability when the neurons are not spiking.

7.3 Partial conclusion

In this chapter we have developed an algorithm that calculates the Fisher information of

any neural network in a purely numerical way, without analytic approximations. This ap-

proach is based on statistical techniques, namely the Expectation-Maximization algorithm

with Gaussian mixtures and the Monte Carlo integration with importance sampling. This

numerical method in principle works also for systems with highly non-Gaussian proba-

bility distributions, therefore we applied it to the case of the FitzHugh-Nagumo network.

Unlike the rate model, in a spiking network the neurons can be essentially in two different

states, namely the rest or the spiking state. We analyzed both cases with the algorithm,

obtaining that the Fisher information is always higher for correlated membrane poten-

tials, especially if the neurons are in the rest state. This confirms the results obtained

in Chapters 5 and 6, and highlights the strong dependence of the Fisher information on

the state of the network. This relation is less evident in the case of the rate model, since

its probability density is usually close to a Gaussian distribution. It is also important to

observe that the increase of the Fisher information for correlated FitzHugh-Nagumo neu-

rons is probably due to the presence of two different sources of inhomogeneity. The first is

the inhomogeneity of the synaptic weights, generated by σ3 (compare with Chapters 5 and
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6), while the second is that generated by the bifurcations of the system. In detail, if the

neurons are in a spiking state, the bifurcation is described by the split of the trajectories

in the phase space (see Figure 3.11). Instead, if the neurons are in a rest state, the bifur-

cation is due to the non-negligible probability of generating a spike through their random

fluctuations.

To conclude, we remind that the results of this algorithm must be considered as qualita-

tive, because they are based on statistical techniques, whose error analysis has not been

performed yet.

211



Chapter 8

Conclusion

I N this thesis we have introduced different techniques that describe the dynamics and

the statistics of the neural networks, with a special interest for their information en-

coding capabilities.

In Chapter 1 we have discussed the structure of the brain, in particular of the cerebral

cortex, which is responsible for our higher cognitive functions. In particular, the main fea-

ture of the brain that has emerged from this analysis is its nested structure, namely its

subdivision into areas containing other smaller areas with specific functions. The exten-

sion of these regions goes from the macroscopic scale of 106÷109 neurons to the microscopic

scale of single neurons, passing through an intermediate mesoscopic scale of 101÷105 neu-

rons. This property of the brain reflects its working principles, therefore must be taken

into account in the description of large neural networks. In Chapter 6 we have shown how

this can be accomplished from the mathematical point of view, using the Sporns’ fractal

topology.

In Chapter 2 we have explained that, according to the Theory of Complexity, it may be

more relevant to describe correctly the interactions between the neurons, than to use ex-

tremely realistic models for the single cells. In fact, as we said, the functions of the brain
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are mainly due to its connectivity matrix, therefore we have underlined the importance of

developing a mathematical theory which is able to describe the behavior of the network for

different kinds of synaptic connectivity. In this chapter we have clarified the differences

between computation and information processing, explaining that they are both performed

by the brain. Since in this thesis we have considered stochastic networks, which are char-

acterized by a probability density, and since we have determined this density in different

ways, it is natural to apply these techniques for studying the information processing capa-

bilities of the system. In particular, here we have considered information encoding, which

is quantified by the Fisher information of the neural network.

In Chapter 3 we have started with the mean-field theory, showing that, if the correlations

between neurons are negligible, it is possible to reduce the full system of the network

equations to a smaller set, which describes a single neuron with a mean-field interaction.

This is known as the McKean-Vlasov equation of the system, which is a stochastic differ-

ential equation with an implicit interaction term that depends on the marginal probability

density of a single neuron. Since the marginal density is not known a priori, the mean-

field equation cannot be solved directly. For this reason it is convenient to transform it in

the corresponding Fokker-Planck equation (FPE). The FPE is a partial integro-differential

equation (PIDE) whose unknown is the marginal probability density of a single neuron.

The equation has a non-linear integral term, inherited from the implicit interaction of the

McKean-Vlasov equation, therefore in general it cannot be solved analytically. Once the

solution is known, usually numerically or semi-analytically, it can be used to calculate the

joint probability density of a sub-system of the network. In fact, due to independence, the

joint probability density of the sub-system can be reconstructed through the product of

the marginal densities. Therefore this represents a very compact and convenient way to

describe the activity of the network. In this thesis we have derived the FPE in two dif-

ferent intuitive ways and we have solved it for two kinds of network, made up of rate or

FitzHugh-Nagumo neurons. In the latter case, the solution can be obtained only numer-

ically, but this has proved to be a difficult task, due to the stiffness of the equations and
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to the quite high dimensionality of the phase space of a single neuron. This has led us to

evaluate the solution using powerful calculators like GPUs [64][176]. Therefore the sim-

ulation of systems with an even higher dimensionality, like the Hodgkin-Huxley neuron,

represents a real challenge. Instead, in the case of the rate model, not only the FPE is

easy to solve numerically due to its low dimensionality, but it can also be converted into

a system of 2P coupled ordinary differential equations (ODEs), in the case of P neural

populations. This system is much more convenient to solve than a PIDE, and describes

the evolution of the mean and the variance of the stochastic process. This is a sufficient

description for the probability density of the single neuron, because in the case of the rate

model, if the initial conditions are Gaussian, then the process is always Gaussian at every

time instant. In this thesis we have shown an alternative derivation, compared to that

appeared in [51], of the ODE system of the mean and the variance and of the probability

density of the process, based on the solution of the FPE.

In Chapter 4 we have extended the previous mean-field analysis in order to describe finite-

size effects. In fact the mean-field theory works properly only in the thermodynamic limit,

namely when the number of neurons in the system is ideally infinite. Therefore an ex-

tension of the theory is required in order to quantify the behavior of a finite number of

interacting neurons. The idea expressed in Chapter 4 is to use the same mathematical

formalism already developed in physics of plasma, which is known as the Mayer’s cluster

expansion (MCE). In fact, a network with independent Brownian motions and a sufficient

number of connections, and a plasma, share similar statistical properties, namely small

values of correlation. However, if the amount of correlation is not small enough to be

neglected, an extension of the mean-field theory is required. The MCE is a formal decom-

position of the global interaction between a finite number of particles (in our case neurons)

in the contributions generated by the interplay of pairs, triplets, quadruplets etc. In this

way, the negligible part of the interaction can be removed, allowing us to write a conve-

nient system of PIDEs for the probability density of the finite size system. Usually only the

pairwise interactions are considered, while higher order correlations are neglected. This
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idea works properly if we study the behavior of a small sub-system and if the total number

of neurons in the whole network is high enough. Otherwise higher order correlations could

give a relevant contribution to the joint probability density of the sub-system. In this chap-

ter we have also solved numerically the PIDE system obtained from the MCE, and we have

used the probability density to evaluate the Fisher information of the network. Compared

to the mean-field case, the Fisher information is now much more difficult to calculate, due

to the presence of correlation. In fact, since the neurons are not independent anymore, the

Fisher information of the whole system is not the sum of the Fisher information of the sin-

gle neurons. Therefore we have solved the problem by expanding the Fisher information

up to the third order, using the small pairwise correlations as perturbative parameters.

The simulations clearly show that the Fisher information increases when the neurons are

more and more independent, a result that we have confirmed in Chapters 5 and 6.

In Chapters 5 and 6 we have emphasized the role of the connectivity matrix and for the

first time in the thesis we have used three different sources of external correlation, that we

have introduced in the Brownian motions of the background noise, in the initial conditions

and in the distribution of the synaptic weights. These networks have been studied using

two complementary perturbative expansions, that for simplicity have been applied only to

rate neurons. The first technique can be used only around stationary solutions and if the

network is invariant under exchange of the neural indices. Instead the second expansion

can be applied only if the synaptic weights are weak enough, but works for general con-

nectivity matrices with random topologies. The formulae have been obtained for a generic

number of neurons and describe also some non-linear effects of the network. In the first ap-

proach the inhomogeneities of the neural behavior can be added perturbatively. Moreover

it does not require weak synaptic weights and, first of all, has been used to study block cir-

culant connectivity matrices with circulant blocks and with a generic number of incoming

connections per neuron, that we have called M . In the special case when the connectivity

matrix is circulant, we have proved that, if the three external sources of correlation are set

to zero, correlation decreases with M , and not with the number of neurons, as previously
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thought [64]. Then, using graph theory, we have studied special symmetric connectivity

matrices, generated by the Cartesian or the Kronecker product of circulant graphs. We

have also proved that if the intensities of the three external sources of correlation, namely

those of the Brownian motions, the initial conditions and the synaptic weights, are not

negligible, then the neurons cannot become independent. Moreover, even if these external

correlations are set to zero, for special values of the parameters of the system the neurons

can be perfectly correlated. We have called this phenomenon stochastic synchronization,

and it can occur for any finite number of neurons. The time instant at which the neurons

become perfectly correlated is finite and increases with the network size. Therefore in

the mean-field limit this phenomenon occurs only at t → +∞, or in other words it never

happens, confirming the phenomenon of propagation of chaos discussed in [64] for inde-

pendent initial conditions. In the case of networks with weak synaptic weights, the second

kind of perturbative expansion can be used. This approach can be applied to any kind of

connectivity matrix, also with random topology, therefore we have used it to describe the

behavior of the network in the case of biologically realistic matrices. In particular we have

chosen the fractal connectivity introduced in [190], which roughly describes the nested

structure of the brain discussed in Chapter 1. All the results of Chapters 5 and 6 have

been verified also numerically. Finally, we have also used these perturbative expansions

truncated at the first order for evaluating the Fisher information of the network. Since at

the first order the probability density is Gaussian, there is a simple formula that quantifies

the Fisher information in terms of the mean-vector and the covariance matrix of the mem-

brane potentials. The two perturbative methods have provided the same result, namely

that the Fisher information increases for highly independent neurons, as in Chapter 4,

but also that for networks with inhomogeneities the Fisher information diverges when the

neurons are highly correlated, contrarily to common belief [178][181][182][183].

Finally, in Chapter 7 we have developed an algorithm for the numerical evaluation of the

Fisher information of the FitzHugh-Nagumo network. Due to the exponential explosion

of the amount of data that are necessary for the construction of a histogram, we have
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used another way to approximate the probability density of the whole network. Particu-

larly convenient is the use of an Expectation-Maximization algorithm, that approximates

the probability density with a mixture of multivariate Gaussian distributions. Then the

the integral that defines the Fisher information has been evaluated with a Monte Carlo

method and importance sampling. This numerical technique is affected by three different

kinds of error:

• the finite number of Monte Carlo simulations that are used to determine the joint

probability density of the network;

• the approximation of the derivative with respect to the external input;

• the finite number of Monte Carlo repetitions that are used to evaluate the multidi-

mensional integral.

We have not analyzed in detail the magnitude of these three sources of error, therefore the

results shown in Chapter 7 should be taken as qualitative indications of the behavior of the

Fisher information. Nevertheless, the algorithm clearly shows that for both spiking and

non-spiking FitzHugh-Nagumo neurons, the Fisher information is higher for correlated

membrane potentials. In particular, for non-spiking neurons the function quickly diverges

for sufficiently large networks. This confirms the results found in Chapters 5 and 6.

Probably, the incorrect belief of higher encoding capabilities for independent neurons is

due to the comparison with the case of the Shannon information. In fact, in the case

of transmission through a communication channel, usually the signal is coded in such a

way that its redundancy is increased, in order to protect it against noise. In fact even if

the code has been damaged by the random fluctuations of the communication channel, its

information content was repeated so many times (due to the high redundancy) that the

original message can still be reconstructed. So, if we have many neurons with essentially

the same membrane potentials (namely highly correlated), their redundancy is very high,
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and therefore the Shannon information content is very low. However this is true only for

the Shannon information, and not for the Fisher information. This could explain why the

belief that independent neurons are required for high encoding capabilities is so common.

To conclude, this thesis contributes to the comprehension of the mechanisms that underlie

the dynamics and the statistics of stochastic neural networks, for many different kinds of

connectivity matrices. Moreover, it provides an analytic relation between the anatomical

connectivity and the functional connectivity of the system, a problem that is currently in-

tensively investigated [54][55][56]. This work opens also the way to the quantification of

the information processing capability of the neural networks. In particular, we have stud-

ied information encoding, through the evaluation of the Fisher information of the system

as a function of the correlation between the neurons in the network. Other information

quantities can be calculated in the same way, like the Shannon differential entropy, the

mutual information, the transfer entropy [199][200][201], and so on and so forth. This

allows us to quantify the information storage, transfer and modification, following the

same ideas already developed in the field of automata theory [119][120][121][122]. A kind

of information that we are not yet able to quantify is the so called semantic information

[127][128][129][130]. A full comprehension of this rather elusive concept is necessary in or-

der to understand the brain in all its complexity. Instead, at the other end of the spectrum,

we have the Shannon’s information theory, that provides a syntactic notion of information.

In other words, Shannon’s theory quantifies the amount of information conveyed in a mes-

sage as a function of its syntax and probability density, regardless of its semantic content.

Therefore Shannon information and semantic information can be seen as two complemen-

tary aspects of the brain. In this thesis we have laid the foundations for studying only

the former side of the coin. Moreover, it must be noted that the networks described in

this work are not necessarily performing a specific task, since their function is determined

by the connectivity matrix, which has been chosen arbitrarily. In a real neural network,

the strength of the connections is modeled by synaptic plasticity and learning, in response

to the stimuli coming from the environment. However, the perturbative techniques in-
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troduced in Chapters 5 and 6 can be extended in order to include this phenomenon. In

particular, the second perturbative expansion can be also applied to the case of spiking

neurons, as now we are going to explain. The first expansion requires the existence of a

stationary state, around which we perturb the solution of the neural equations. Clearly, in

the conductance-based models, like those of FitzHugh-Nagumo or Hodgkin-Huxley, when

the neurons are spiking their membrane potentials are not in a stationary state, there-

fore the first perturbative approach cannot be used. Instead, in the case of the second

expansion, the perturbation is performed around the case without synaptic connections

(i.e. J (t) = 0), therefore the existence of a stationary state is not required. This means

that the second perturbative approach can be also used for the conductance-based models,

as we stated, therefore now we are in a much better position for understanding in detail

the working principles of extremely realistic neural networks.
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Conclusion générale (en Français)

Dans cette thèse nous avons présenté une variété de techniques mathématiques, statis-

tiques et numériques permettant l’analyse de réseaux neuronaux stochastiques pour un

large spectre de matrices de connectivité. Toutes les techniques utilisées, à savoir la

théorie de champ moyen, l’expansion de groupe de Mayer, deux développements perturbat-

ifs distincts et les différentes méthodes numériques de calcul de l’information de Fisher du

réseau, ont fourni des résultats compatibles. Ainsi nous avons une vision beaucoup plus

claire des principes sous-jacents qui régissent la relation entre la matrice de connectivité

synaptique d’un réseau neuronal et sa structure de corrélation, qui détermine à son tour

la capacité de codage du système.

La contribution de cette thèse est double. D’une part, elle fournit une extension de la

théorie de champ moyen, largement utilisée dans la description des réseaux neuronaux,

dans le cas où cette dernière ne peut pas être appliquée du fait de la non-indépendance

des neurones. Cela inclue les réseaux de taille finie, ceux comprenant des sources aléa-

toires corrélées, ou encore ceux à densité faible de connexion et avec à valeurs spéciales

de paramètre impliquant une corrélation forte (ceci est le phénomène que nous avons

appelé la synchronisation stochastique). D’autre part cette thèse propose le calcul de

l’information de Fisher pour les modèles de neurones “rate” et “spiking”, avec différents or-

dres d’approximation, montrant que la capacité de codage du système est plus haute pour

des neurones fortement corrélés. Ceci est contraire à l’intuition et aux hypothèses faites
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communément et joue un rôle important dans le cadre du traitement de l’information exé-

cuté par le cerveau.

Les techniques perturbatives développées aux Chapitres 5 et 6 peuvent également être

utilisées pour calculer toutes les quantités d’informations définies par la théorie de l’information

de Shannon, tels l’information mutuelle, le transfert d’entropie, l’entropie différentielle, ou

encore le stockage et la modification de l’information. En raison des contraintes de temps

cette analyse n’a pas été effectué et est reportée à une future étude. En outre ces tech-

niques peuvent être appliquées à toutes sortes d’équations neurales même dans le cas

de la plasticité synaptique et de l’apprentissage. Leurs inconvénients est qu’on ne peut

les utiliser que dans le cas de sources aléatoires relativement faibles. Si l’incertitude est

élevée l’ordre d’approximation de la perturbation doit être augmenté. Malheureusement

la complexité induite par cette élévation augmente fortement, devenant rapidement in-

soluble. À l’inverse l’expansion de groupe de Mayer développée au Chapitre 4 peut être

appliquée pour toute source aléatoire mais ne fournit pas de résultat analytique et restera

un complément de l’approche perturbative.

En conclusion, cette thèse propose des techniques efficaces pouvant améliorer notre com-

préhension du cerveau en terme de corrélation neuronale et de traitement de l’information.

Ces techniques ont été appliquées avec succès à diverses topologies de connexions synap-

tiques, des plus basiques aux plus réalistes. Cependant dans tous nos modèles le poids des

connexions est fixe avec des fluctuations stochastiques ou évolue selon une loi d’évolution

quelconque indépendamment des principes biologiques. Ainsi la prochaine étape est l’extension

de cette théorie aux réseaux de neurones dont les connexions évoluent selon un apprentis-

sage comme observé expérimentalement. Cela permettra d’étudier des réseaux acquérant

des fonctions et des comportements spécifiques du fait de l’interaction avec l’environnement

et donc d’améliorer la plausibilité du modèle.
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Appendix A

Self-consistency constraints of the

Mayer’s cluster expansion

In order to have a self-consistent Mayer’s cluster expansion, the following constraints

must be satisfied:

∫

R

p(1) (V, t) dV =1

∫

R

p(2) (V, V ′, t) dV ′ =p(1) (V, t) (A.1)

∫

R

p(3) (V, V ′, V ′′, t) dV ′′ =p(2) (V, V ′, t)

...

Now, the first condition of A.1 is assumed to be true, since it can be easily satisfied by mul-
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tiplying eventually the function p(1) (V, t) by a normalization constant. Moreover, according

to (4.1):

∫

R

dV ′p(2) (V, V ′, t) =p(1) (V, t)

∫

R

p(1) (V ′, t) dV ′ +

∫

R

P (V, V ′, t) dV ′

=p(1) (V, t) +

∫

R

P (V, V ′, t) dV ′

having used the normalization condition on p(1) (V, t). Therefore the second constraint of

A.1 is satisfied if and only if:

∫
R
P (V, V ′, t) dV ′ = 0 ∀V (A.2)

Clearly the same constraint is satisfied if we integrate P (V, V ′, t) with respect to V . This

is the only condition that must be satisfied by the pair correlation function P .

To conclude, we have also:

∫

R

p(3) (V, V ′, V ′′, t) dV ′′

=

∫

R

[
p(1) (V, t) p(1) (V ′, t) p(1) (V ′′, t) + p(1) (V, t)P (V ′, V ′′, t)

+p(1) (V ′, t)P (V, V ′′, t) + p(1) (V ′′, t)P (V, V ′, t) + T (V, V ′, V ′′, t)
]
dV ′′

= p(1) (V, t) p(1) (V ′, t)

∫

R

p(1) (V ′′, t) dV ′′ + p(1) (V, t)

∫

R

P (V ′, V ′′, t) dV ′′
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+ p(1) (V ′, t)

∫

R

P (V, V ′′, t) dV ′′ + P (V, V ′, t)

∫

R

p(1) (V ′′, t) dV ′′ +

∫

R

T (V, V ′, V ′′, t) dV ′′

= p(1) (V, t) p(1) (V ′, t) + P (V, V ′, t) +

∫

R

T (V, V ′, V ′′, t) dV ′′

Therefore the second condition is satisfied if and only if:

∫
R
T (V, V ′, V ′′, t) dV ′′ = 0 ∀V, V ′ (A.3)

and so on and so forth.
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Appendix B

Spike count correlation

Usually in experiments the researchers measure the spike-count of a single neuron in a

given time range [t; t+∆t], that is formally defined as:

Ni (t; t+∆t) =

∫ t+∆t

t

ρi (τ) dτ

where:

ρi (t) =

ni−1∑

k=0

δ (t− tk,i) , t ≤ tk,i ≤ t+∆t ∀k

is the neural response function of the i-th neuron, i.e. the sum of all the spikes (assumed

to be Dirac delta functions and detected at the time instants tk,i) produced by that neuron

in the time range [t; t+∆t] of a single Monte Carlo simulation (in this case we have of

course Ni (t; t+∆t) = ni). Instead in the literature the instantaneous spike-count rate is

defined as:

scri (t) = lim
∆t→0

Ni (t; t+∆t)

∆t
= lim

∆t→0

1

∆t

∫ t+∆t

t

ρi (τ) dτ
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and from it we can define the instantaneous mean firing rate as the mean E [·] of the

instantaneous spike-count rate over many Monte Carlo simulations:

Ri (t) = E [scri (t)] = lim
∆t→0

E [Ni (t; t+∆t)]

∆t
= lim

∆t→0

1

∆t

∫ t+∆t

t

E [ρi (τ)] dτ = lim
∆t→0

Ri (t; t+∆t) (B.1)

where:

Ri (t; t+∆t) =
E [Ni (t; t+∆t)]

∆t
=

1

∆t

∫ t+∆t

t

E [ρi (τ)] dτ

is the average mean firing rate in the time range [t; t+∆t]. Here the adjective “average”

means “average over time”, i.e. in the time range [t; t+∆t] (this is inspired by physics,

where for example the average speed over a given space is equal to the length of the space

divided by the time spent to travel on it), while “mean” is referred to the mean over many

Monte Carlo simulations. Instead in the rate model we can quantify the instantaneous

mean firing rate, defined as:

Ri (t) =

∫

R

S (V ′) pi (V
′, t) dV ′

where pi (·, t) is the marginal probability density function of the i-th neuron at time t (see

3.17), and S (·) is the activation function. This is equivalent to the mean of the function

S (·) over infinitely many Monte Carlo simulations, therefore according to formula B.1

we can identify S (V (t)) with scr (t). Now, the correlation between the spike-counts of 2

neurons i and j is defined as:

Corr (Ni (t; t+∆t) , Nj (t; t+∆t)) =
Cov (Ni (t; t+∆t) , Nj (t; t+∆t))√

V ar (Ni (t; t+∆t))V ar (Nj (t; t+∆t))

where:

226



Cov (Ni (t; t+∆t) , Nj (t; t+∆t)) =E [Ni (t; t+∆t)Nj (t; t+∆t)]− E [Ni (t; t+∆t)]E [Nj (t; t+∆t)]

V ar (Ni (t; t+∆t)) =Cov (Ni (t; t+∆t) , Ni (t; t+∆t))

Now we observe that:

lim
∆t→0

1

(∆t)
2E [Ni (t; t+∆t)Nj (t; t+∆t)] = lim

∆t→0
E

[
Ni (t; t+∆t)

∆t

Nj (t; t+∆t)

∆t

]
= E [scri (t) scrj (t)]

and remembering that scr (t) = S (V (t)), we can write:

E [scri (t) scrj (t)] = E [S (Vi (t))S (Vj (t))] =

∫

R2

S (V ′)S (V ′′) pi,j (V
′, V ′′, t) dV ′dV ′′

where pi,j (·, ·, t) is the marginal probability density function of the i-th and j-th neurons

at time t. Finally, supposing that
∫
R2 S (V ′)S (V ′′) pi,j (V ′, V ′′, t) dV ′dV ′′ does not change too

much in the time range ∆t, we can write:

E [Ni (t; t+∆t)Nj (t; t+∆t)] ≈
[∫

R2

S (V ′)S (V ′′) pi,j (V
′, V ′′, t) dV ′dV ′′

]
(∆t)

2

In a similar way we can prove also that:

E [Ni (t; t+∆t)] ≈
[∫

R

S (V ′) pi (V
′, t) dV ′

]
∆t

So we can conclude that the spike-count correlation usually evaluated by experimentalists

can be calculated with the rate model using the following formula:

Corr (Ni (t; t+∆t) , Nj (t; t+∆t)) ≈ fi,j (t)√
fi (t) fj (t)
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where:

fi,j (t) =

[∫

R2

S (V ′)S (V ′′) pi,j (V
′, V ′′, t) dV ′dV ′′

]
−
[∫

R

S (V ′) pi (V
′, t) dV ′

] [∫

R

S (V ′) pj (V
′, t) dV ′

]

fi (t) =fi,i (t)

Now we have to compute, according to the rate model, the different terms involved in this

formula. Let us show the procedure for the term
∫
R2 S (V ′)S (V ′′) pi,j (V ′, V ′′, t) dV ′dV ′′.

For relatively weak stochastic fluctuations we can approximately expand the function

S (V ′)S (V ′′) in a 2D Taylor series up to the second order with respect to the point:

(mi (t) ,mj (t)) =

∫

R2

(V ′, V ′′) pi,j (V
′, V ′′, t) dV ′dV ′′ = (E [Vi (t)] ,E [Vj (t)])

obtaining:

S (V ′)S (V ′′) ≈S (mi (t))S (mj (t))

+ S (mi (t))S
(1) (mj (t)) (V

′′ −mj (t)) + S (mj (t))S
(1) (mi (t)) (V

′ −mi (t))

+ S(1) (mi (t))S
(1) (mj (t)) (V

′ −mi (t)) (V
′′ −mj (t))

+
1

2
S (mi (t))S

(2) (mj (t)) (V
′′ −mj (t))

2
+

1

2
S (mj (t))S

(2) (mi (t)) (V
′ −mi (t))

2

since under our hypothesis the fluctuations (Vi −mi (t) , Vj −mj (t)) are small. Therefore,

using the Isserlis’ theorem, we obtain:
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∫

R2

S
(
V

′
)
S
(
V

′′
)
pi,j

(
V

′
, V

′′
, t
)
dV

′
dV

′′
≈S (mi (t))S (mj (t)) + S

(1) (mi (t))S
(1) (mj (t)) Σij (t)

+
1

2
S (mi (t))S

(2) (mj (t))Σjj (t) +
1

2
S (mj (t))S

(2) (mi (t))Σii (t)

where:

Σij (t) = Cov (Vi (t) , Vj (t))

In the same way we can also prove that:

∫

R

S (V ′) pi (V
′, t) dV ′ ≈ S (mi (t)) +

1

2
S(2) (mi (t))Σii (t)

Finally, putting all the results together and neglecting the higher order terms proportional

to V ar (Vi (t))V ar (Vj (t)), we obtain:

Corr (Ni (t; t+∆t) , Nj (t; t+∆t)) ≈ Corr (Vi (t) , Vj (t))

Therefore for relatively small stochastic fluctuations the correlation of the spike-counts

is approximately equal to the correlation of the membrane potentials, which can be cal-

culated from the neural equations of the rate model using the methods developed in this

thesis. So the values of the parameters of the system with respect to which we calculate

the Fisher information are encoded by both the spike-counts and the membrane poten-

tials, but it is better to reason in terms of the latter, since it is more natural. In fact our

neural network is described for example by 3.1, namely by differential equations whose

unknowns are the membrane potentials, not the spike-counts. Due to this approximate
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equality of the correlation structures we can conclude that the spike-counts and the mem-

brane potentials encode the value of the external input qualitatively in the same way, as it

must be. In fact, there is an interplay between these two variables since, roughly speaking,

the pre-synaptic membrane potentials determine the values of the firing rates (and there-

fore of the spike-counts), while the firing rates determine the values of the post-synaptic

membrane potentials. However this does not mean that the Fisher information calculated

over the membrane potentials is the same of that calculated over the spike-counts. In fact

the Fisher information is related not only to the covariance matrix of the process, but also

to its mean vector, which is not the same for our two variables:

E [Ni (t; t+∆t)] ≈
[∫

R

S (V ′) pi (V
′, t) dV ′

]
∆t ≈

[
S (mi (t)) +

1

2
S(2) (mi (t))Σii (t)

]
∆t

From this formula we see that there is no simple relation between the Fisher information

calculated over the spike-counts and that evaluated over the membrane potentials.
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Appendix C

Perturbative expansion of the

Fisher information

In this appendix we consider for simplicity only the case of a fully connected network.

According to the discussion at the end of Section 4.2, formula 4.12 can be used only for a

subset of η � N neurons. Moreover, it can be rewritten in the following way:

p
(−→
V , t

)
=

η−1∏

i=0

p(1) (Vi, t) + P̃
(−→
V , t

)
=

[
η−1∏

i=0

p(1) (Vi, t)

] [
1 +D

(−→
V , t

)]
(C.1)

where:

P̃
(
−→
V , t

)
=
∑

a,b
a<b








∏

c 6=a,b

p
(1) (Vc, t)


P (Va, Vb, t)





D
(
−→
V , t

)
=

P̃
(
−→
V , t

)

η−1∏

i=0

p(1) (Vi, t)
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Clearly D
(−→
V , t

)
� 1 because P � p(1)p(1), as we numerically proved in Section (4.3). Now

observe that D
(−→
V , t

)
can be rewritten as:

D
(−→
V , t

)
=
∑

a,b
a<b

d (Va, Vb, t)

where:

d (Va, Vb, t) =
P (Va, Vb, t)

p(1) (Va, t) p(1) (Vb, t)

According to 2.6, the Fisher information of the subset of η neurons with respect to a pa-

rameter θ is defined as:

I (θ, t) =

∫

Rη



∂ log p

(−→
V , θ, t

)

∂θ




2

p
(−→
V , θ, t

)
d
−→
V (C.2)

where p
(−→
V , θ, t

)
is given by C.1. Clearly, plugging C.1 into C.2 does not provide a useful

formula for calculating the Fisher information of the system. In the case of independent

neurons, in Section 3.3 we have seen that I (θ, t) can be calculated easily in terms of a

single one-dimensional integral, which can be evaluated easily with standard numerical

techniques. Instead, in the case studied in Chapter 4, this trick cannot be used, since in

general the neurons are correlated. However, the main idea is still to find a way to express

the Fisher information of a finite network in terms of low-dimensional integrals, in order

to avoid the use of Monte Carlo integration techniques (which instead are used in Chapter

7). To this purpose, we have to write formula C.2 in an another form. Supposing that the

following regularity conditions are satisfied:

• the support of p
(−→
V , θ, t

)
does not depend on θ,
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• p
(−→
V , θ, t

)
is twice differentiable,

• differentiation under integral sign can be applied,

it is well known that the Fisher information can be equivalently rewritten as:

I (θ, t) = −
∫

Rη

∂2logp
(−→
V , θ, t

)

∂θ2
p
(−→
V , θ, t

)
d
−→
V (C.3)

We use formula C.3 in order to write a perturbative expansion of I (θ, t). Together with C.1

it can be rewritten as:

I (θ, t) =−

∫

Rη

[
η−1∏

i=0

p
(1) (Vi, t) + P̃

(
−→
V , t

)] ∂2log

{[
η−1∏

i=0

p(1) (Vi, t)

] [
1 +D

(
−→
V , t

)]}

∂θ2
d
−→
V

=−

∫

Rη

[
η−1∏

i=0

p
(1) (Vi, t)

] ∂2log

[
η−1∏

i=0

p(1) (Vi, t)

]

∂θ2
d
−→
V −

∫

Rη

[
η−1∏

i=0

p
(1) (Vi, t)

]
∂2log

[
1 +D

(
−→
V , t

)]

∂θ2
d
−→
V

−

∫

Rη

P̃
(
−→
V , t

) ∂2log

[
η−1∏

i=0

p(1) (Vi, t)

]

∂θ2
d
−→
V −

∫

Rη

P̃
(
−→
V , t

) ∂2log
[
1 +D

(
−→
V , t

)]

∂θ2
d
−→
V (C.4)

Now we show how to calculate the four terms of (C.4).

C.1 First term

This term is the easiest to calculate, and it is simply given by:

−
∫

Rη

[
η−1∏

i=0

p(1) (Vi, t)

] ∂2log

[
η−1∏

i=0

p(1) (Vi, t)

]

∂θ2
d
−→
V = −η

∫

R

p(1) (V, t)
∂2logp(1) (V, t)

∂θ2
dV
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C.2 First order approximation of the second term

This term cannot be calculated exactly, so we have to use the Taylor expansion of the

logarithmic function. In particular, now we consider only the expansion at the first order,

namely

log
[
1 +D

(−→
V , t

)]
≈ D

(−→
V , t

)
(C.5)

The second and third orders will be taken into account in Sections C.6 and C.7 respectively.

So from C.5 the second term of C.4 can be approximated as follows:

−
∫

Rη

[
η−1∏

i=0

p(1) (Vi, t)

]
∂2log

[
1 +D

(−→
V , t

)]

∂θ2
d
−→
V

≈ −
∫

Rη

[
η−1∏

i=0

p(1) (Vi, t)

]
∂2D

(−→
V , t

)

∂θ2
d
−→
V

= −
∑

a,b
a<b

∫

Rη

[
η−1∏

i=0

p(1) (Vi, t)

]
∂2d (Va, Vb, t)

∂θ2
d
−→
V

= −
∑

a,b
a<b


 ∏

i6=a,b

∫

R

p(1) (Vi, t) dVi



[∫

R2

p(1) (Va, t) p
(1) (Vb, t)

∂2d (Va, Vb, t)

∂θ2
dVadVb

]

= −
∑

a,b
a<b

[∫

R2

p(1) (Va, t) p
(1) (Vb, t)

∂2d (Va, Vb, t)

∂θ2
dVadVb

]
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= −η (η − 1)

2

∫

R2

p(1) (V, t) p(1) (V ′, t)
∂2d (V, V ′, t)

∂θ2
dV dV ′

having used the normalization condition of the function p(1) and the fact that the function

d (·, ·, t) does not depend on the neural indices in the case of a fully connected network.

C.3 Third term

This term can be calculated exactly as follows:

−
∫

Rη

P̃
(−→
V , t

) ∂2log

[
η−1∏

i=0

p(1) (Vi, t)

]

∂θ2
d
−→
V

= −
η−1∑

i=0

∫

Rη

P̃
(−→
V , t

) ∂2logp(1) (Vi, t)

∂θ2
d
−→
V

= −
∑

a,b
a<b

η−1∑

i=0

∫

Rη


 ∏

c 6=a,b

p(1) (Vc, t)


P (Va, Vb, t)

∂2logp(1) (Vi, t)

∂θ2
d
−→
V

= −
∑

a,b
a<b

∑

i6=a,b


 ∏

c 6=a,b,i

∫

R

p(1) (Vc, t) dVc



[∫

R2

P (Va, Vb, t) dVadVb

] [∫

R

p(1) (Vi, t)
∂2logp(1) (Vi, t)

∂θ2
dVi

]

−
∑

a,b
a<b


 ∏

c 6=a,b

∫

R

p(1) (Vc, t) dVc



{∫

R

[
∂2logp(1) (Va, t)

∂θ2

∫

R

P (Va, Vb, t) dVb

]
dVa

}
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−
∑

a,b
a<b


 ∏

c 6=a,b

∫

R

p(1) (Vc, t) dVc



{∫

R

[
∂2logp(1) (Vb, t)

∂θ2

∫

R

P (Va, Vb, t) dVa

]
dVb

}

= 0

having used the constraint A.2 on the function P .

C.4 Fourth term

Using again the approximation C.5, we obtain:

−
∫

Rη

P̃
(−→
V , t

) ∂2log
[
1 +D

(−→
V , t

)]

∂θ2
d
−→
V ≈−

∫

Rη

P̃
(−→
V , t

) ∂2D
(−→
V , t

)

∂θ2
d
−→
V

=−
∑

a,b
a<b

∑

a′,b′

a′<b′

∫

Rη


 ∏

c 6=a,b

p(1) (Vc, t)


P (Va, Vb, t)

∂2d (Va′ , Vb′ , t)

∂θ2
d
−→
V

Now, we can see that many terms are equal to zero due to the constraint A.2. The only

non-zero terms are those for which (a = a′) ∧ (b = b′), therefore we obtain:

−
∑

a,b
a<b

∑

a′,b′

a′<b′

∫

Rη


 ∏

c 6=a,b

p(1) (Vc, t)


P (Va, Vb, t)

∂2d (Va′ , Vb′ , t)

∂θ2
d
−→
V
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= −
∑

a,b
a<b

∫

Rη


 ∏

c 6=a,b

p(1) (Vc, t)


P (Va, Vb, t)

∂2d (Va, Vb, t)

∂θ2
d
−→
V

= −
∑

a,b
a<b


 ∏

c 6=a,b

∫

R

p(1) (Vc, t) dVc



∫

R2

P (Va, Vb, t)
∂2d (Va, Vb, t)

∂θ2
dVadVb

= −η (η − 1)

2

∫

R2

P (V, V ′, t)
∂2d (V, V ′, t)

∂θ2
dV dV ′

However this term is of second order since it contains the product P (V, V ′, t) ∂2d(V,V ′,t)
∂θ2

,

therefore it does not appear in the first order approximation of the Fisher information. So

we will use it in Section C.6, for the calculation of the Fisher information at the second

order.

C.5 Putting everything together: First order approximation

of the Fisher information

Collecting all these results, the final formula for the Fisher information at the first order

of approximation is:

I (θ, t) ≈− η

∫

R

p(1) (V, t)
∂2logp(1) (V, t)

∂θ2
dV

− η (η − 1)

2

∫

R2

p(1) (V, t) p(1) (V ′, t)
∂2d (V, V ′, t)

∂θ2
dV dV ′ (C.6)
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Hence, we have decomposed the high-dimensional integral in formula C.3 into terms of

low-dimensional integrals, which can be calculated with standard integration techniques.

In the next sections we extend this result to higher order approximations.

C.6 Second order approximation of the Fisher information

We consider again the second term of the Fisher information that we have already cal-

culated in Section C.2, and include the second order term in the Taylor expansion of the

logarithm:

log
[
1 +D

(−→
V , t

)]
≈ D

(−→
V , t

)
− 1

2
D2
(−→
V , t

)
(C.7)

Using the same methods already shown in the previous sections, we obtain that the con-

tribution to the Fisher information generated by −1
2D

2
(−→
V , t

)
is:

1

2

∫

Rη

[
η−1∏

i=0

p
(1) (Vi, t)

]
∂2D2

(
−→
V , t

)

∂θ2
d
−→
V

=
1

2

∑

a,b

a<b

∑

a′,b′

a′<b′

∫

Rη

[
η−1∏

i=0

p
(1) (Vi, t)

]
∂2 [d (Va, Vb, t) d (Va′ , Vb′ , t)]

∂θ2
d
−→
V

=
1

2

{
η (η − 1)

2

∫

R2

p
(1) (V, t) p(1)

(
V

′
, t
) ∂2d2 (V, V ′, t)

∂θ2
dV dV

′ (C.8)

+ η (η − 1) (η − 2)

∫

R3

p
(1) (V, t) p(1)

(
V

′
, t
)
p
(1) (

V
′′
, t
) ∂2 [d (V, V ′, t) d (V, V ′′, t)]

∂θ2
dV dV

′
dV

′′

+
η (η − 1) (η − 2) (η − 3)

4

∫

R4

p
(1) (V, t) p(1)

(
V

′
, t
)
p
(1) (

V
′′
, t
)
p
(1) (

V
′′′
, t
) ∂2 [d (V, V ′, t) d (V ′′, V ′′′, t)]

∂θ2
dV dV

′
dV

′′
dV

′′′

}
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It is important to observe that the second order term in C.7 has generated three integrals,

where the terms inside the derivative are of the form:

• d2 (V, V ′, t)

• d (V, V ′, t) d (V, V ′′, t)

• d (V, V ′, t) d (V ′′, V ′′′, t)

These are all the possible different terms that can be generated by d (Va, Vb, t) d (Va′ , Vb′ , t),

with (a < b) ∧ (a′ < b′). Moreover the sum of their corresponding coefficients is:

η (η − 1)

2
+ η (η − 1) (η − 2) +

η (η − 1) (η − 2) (η − 3)

4
=

[
η (η − 1)

2

]2

as it must be, since the double sum:

∑

a,b
a<b

∑

a′,b′

a′<b′

which appears in C.8 generates exactly
[
η(η−1)

2

]2
terms. To conclude, if we put together all

the results collected up to now, including the second order term found in Section C.4, we

obtain that the Fisher information at the second order is:
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I (θ, t)

≈ −η

∫

R

p
(1) (V, t)

∂2logp(1) (V, t)

∂θ2
dV

−
η (η − 1)

2

∫

R2

[
p
(1) (V, t) p(1)

(
V

′
, t
)
+ P

(
V, V

′
, t
)] ∂2d (V, V ′, t)

∂θ2
dV dV

′

+
η (η − 1)

4

∫

R2

p
(1) (V, t) p(1)

(
V

′
, t
) ∂2d2 (V, V ′, t)

∂θ2
dV dV

′ (C.9)

+
η (η − 1) (η − 2)

2

∫

R3

p
(1) (V, t) p(1)

(
V

′
, t
)
p
(1) (

V
′′
, t
) ∂2 [d (V, V ′, t) d (V, V ′′, t)]

∂θ2
dV dV

′
dV

′′

+
η (η − 1) (η − 2) (η − 3)

8

∫

R4

p
(1) (V, t) p(1)

(
V

′
, t
)
p
(1) (

V
′′
, t
)
p
(1) (

V
′′′
, t
) ∂2 [d (V, V ′, t) d (V ′′, V ′′′, t)]

∂θ2
dV dV

′
dV

′′
dV

′′′

This is the formula that we use in Section 4.4 for the calculation of the Fisher information.

C.7 Third order approximation of the Fisher information

At the third perturbative order the Taylor expansion of the logarithmic function is:

log
[
1 +D

(−→
V , t

)]
≈ D

(−→
V , t

)
− 1

2
D2
(−→
V , t

)
+

1

3
D3
(−→
V , t

)

D3
(−→
V , t

)
can be expressed as:

D3
(−→
V , t

)
=
∑

a,b
a<b

∑

a′,b′

a′<b′

∑

a′′,b′′

a′′<b′′

d (Va, Vb, t) d (Va′ , Vb′ , t) d (Va′′ , Vb′′ , t)

therefore we have seven different terms of the form:
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• d3 (V, V ′, t)

• d2 (V, V ′, t) d (V ′, V ′′, t)

• d2 (V, V ′, t) d (V ′′, V ′′′, t)

• d (V, V ′, t) d (V ′, V ′′, t) d (V, V ′′, t)

• d (V, V ′, t) d (V ′, V ′′, t) d (V, V ′′′, t)

• d (V, V ′, t) d (V ′, V ′′, t) d (V ′′′, V ′′′′, t)

• d (V, V ′, t) d (V ′′, V ′′′, t) d (V ′′′′, V ′′′′′, t)

whose corresponding coefficients are:

• η(η−1)
2

• 2η (η − 1) (η − 2)

• η(η−1)(η−2)(3η−5)
4

• η(η−1)(η−2)(η−3)
2

• η(η−1)(η−2)(5η−11)
4

• η (η − 1) (η − 2)2 (η − 3)

• η(η−1)(η−2)2(η−3)2

8

These coefficients can be obtained with a complicated combinatorial calculus, which is not

explained here, since it goes beyond the purpose of this thesis. However the reader can

easily check that their sum is equal to
[
η(η−1)

2

]3
, as it must be. To conclude, in order

to obtain the Fisher information at the third order, we have to calculate the third order

contribution generated by the fourth term of C.4, namely:
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1

2

∫

Rη

P̃
(−→
V , t

) ∂2D2
(−→
V , t

)

∂θ2
d
−→
V

=
1

2

∑

a,b
a<b

∑

a′,b′

a′<b′

∑

a′′,b′′

a′′<b′′

∫

Rη


 ∏

c 6=a,b

p(1) (Vc, t)


P (Va, Vb, t)

∂2 [d (Va′ , Vb′ , t) d (Va′′ , Vb′′ , t)]

∂θ2
d
−→
V

=
1

2





∑

a,b
a<b

∑

a′′,b′′

a′′<b′′

∫

Rη


 ∏

c 6=a,b

p(1) (Vc, t)


P (Va, Vb, t)

∂2 [d (Va, Vb, t) d (Va′′ , Vb′′ , t)]

∂θ2
d
−→
V

+
∑

a,b
a<b

∑

a′,b′

a′<b′

∫

Rη


 ∏

c 6=a,b

p(1) (Vc, t)


P (Va, Vb, t)

∂2 [d (Va′ , Vb′ , t) d (Va, Vb, t)]

∂θ2
d
−→
V





since the only non-zero terms are those such that (a = a′) ∧ (b = b′) or (a = a′′) ∧ (b = b′′).

The two double sums are equivalent, therefore finally we obtain:

∑

a,b

a<b

∑

a′,b′

a′<b′

∫

Rη




∏

c 6=a,b

p
(1) (Vc, t)



P (Va, Vb, t)
∂2 [d (Va, Vb, t) d (Va′ , Vb′ , t)]

∂θ2
d
−→
V

=
η (η − 1)

2

∫

R2

P
(
V, V

′
, t
) ∂2

[
d2 (V, V ′, t)

]

∂θ2
dV dV

′

+ η (η − 1) (η − 2)

∫

R3

P
(
V, V

′
, t
)
p
(1) (

V
′′
, t
) ∂2 [d (V, V ′, t) d (V, V ′′, t)]

∂θ2
dV dV

′
dV

′′

+
η (η − 1) (η − 2) (η − 3)

4

∫

R4

P
(
V, V

′
, t
)
p
(1) (

V
′′
, t
)
p
(1) (

V
′′′
, t
) ∂2 [d (V, V ′, t) d (V ′′, V ′′′, t)]

∂θ2
dV dV

′
dV

′′
dV

′′′

Collecting all the terms, we can write the final expression for the Fisher information at
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the third order of approximation. Being very long, we do not show this formula here. The

interested reader can work it out by himself.

To conclude, the general structure that emerges from this analysis is clear. We have proved

that the Fisher information for correlated neurons can be expanded in terms of integrals

with increasing dimension and polynomial coefficients in η with increasing order. More-

over, as we have already said, according to our numerical simulations the function p(1) (V, t)

depends weakly on N , while P (V, V ′, t) depends approximately on 1
N

(in Chapter 5 we de-

rive the explicit formulae in the case of weak noise). Therefore essentially we have ex-

pressed the Fisher information as a series of terms which depend on η and N . For N → ∞,

these terms converge to zero, therefore we obtain:

I (θ, t) = −η

∫

R

p(1) (V, t)
∂2logp(1) (V, t)

∂θ2
dV

as it must be in the thermodynamic limit (compare with 3.43).
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Appendix D

Radius of convergence of the

sigmoid and arctangent functions

In this section we compute numerically the radius of convergence of two examples of the

activation function S (·). For simplicity we consider only the case with TMAX = 1 and

VT = 0, but this analysis can be extended easily to the most general case.

D.1 The sigmoid function

According to [202], the n-th order derivative of the sigmoid function:

S (x) =
1

1 + e−λx

is:

S(n) (x) = λn
n∑

k=1

(−1)k−1 A (n, k − 1) [S (x)]k [1− S (x)]n+1−k
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where A (n, k) are the so called Eulerian numbers [203]. Now we can rewrite this expres-

sion in the following way:

S(n) (x) =λnS (x) [1− S (x)]
n

n∑

k=1

(−1)
k−1

A (n, k − 1) [S (x)]
k−1

[1− S (x)]
−(k−1)

=λnS (x) [1− S (x)]n
n−1∑

k=0

(−1)k A (n, k) [S (x)]k [1− S (x)]−k

=λnS (x) [1− S (x)]
n

n−1∑

k=0

A (n, k)
(
−e−λx

)−k

Now from [204], we know that:

Li−n (x) =
xn

(1−x)n+1

n−1∑

k=0

A (n, k)x−k, n > 0, |x| < 1 (D.1)

where Li−n (·) represents the so called polylogarithm (with negative order). Here we have

omitted the n-th term of the sum since A (n, n) = 0 ∀n > 0. So we can write:

S(n) (x) = λnS (x) [1− S (x)]
n

(
1 + e−λx

)n+1

(−e−λx)
n Li−n

(
−e−λx

)
= (−λ)

n
Li−n

(
−e−λx

)
(D.2)

This result is true only for
∣∣−e−λx

∣∣ < 1, i.e. only for x > 0. Instead, for x < 0, we can use

the relation S (−x) = 1− S (x), from which we deduce that:

• S(n) (−x) = (−1)n−1 S(n) (x) , ∀n > 0;

• S (−x) has the same radius of convergence of S (x).

So formula D.2 can be used to express S(n) (x) ∀x 6= 0. Instead for x = 0 it gives Li−n (−1),

that is defined by an analytic continuation of the polylogarithm function. In this way

245



we can determine S(n) (0). Another way is to use the following property of the Eulerian

numbers:

n∑

k=1

(−1)
k−1

A (n, k − 1) = 2n+1
(
2n+1 − 1

) Bn+1

n+ 1
(D.3)

where Bn are the so called Bernoulli numbers [205], from which we obtain:

S(n) (0) =
λn

2n+1

n∑

k=1

(−1)
k−1

A (n, k − 1) = λn
(
2n+1 − 1

) Bn+1

n+ 1
(D.4)

Now we can compute the radius of convergence R (x0) of the Taylor series:

S (x) =

+∞∑

n=0

S(n) (x0)

n!
(x− x0)

n

using the Cauchy root test:

R (x0) =
1

lim sup
n→+∞

n

√∣∣∣S(n)(x0)
n!

∣∣∣

For x0 = 0 we obtain:

R (0) =
1

lim sup
n→+∞

n

√∣∣∣∣
λn(2n+1−1)

Bn+1
n+1

n!

∣∣∣∣

=
π

λ

This can be proved after the substitution n → 2n − 1 (which is motivated by the fact that

B2n+1 = 0 ∀n > 0), using the following asymptotic expansion of the Bernoulli numbers:

B2n ∼ (−1)n−1 4
√
πn
(

n
πe

)2n
, n → +∞
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Figure D.1: Radius of convergence R of the Taylor series of the sigmoid function, in terms of the point

x0 about which the expansion is performed. R (x0) has been computed numerically, for many values of the

parameter λ, which determines the slope of the sigmoid function. For large x0 the radius of converge increases

linearly since the sigmoid function is asymptotically flat. Instead for λ → +∞ we obtain R (0) → 0, because

in that limit the sigmoid function S (x) becomes a Heaviside step function with a discontinuity in x = 0.

and the Stirling approximation of (2n− 1)!. We are not aware of any asymptotic expansion

of Li−n (−e−x0) for n → +∞ and x0 6= 0, so we have to compute the radius of convergence

numerically ∀x0 6= 0.

Figure D.1 shows the result for different values of λ. From it we can see that the radius of

convergence of the Taylor series of S (x) around the point x = x0 increases with x0. This is

reasonable, since the function S (x) becomes flat when x is large. Moreover for large λ it

converges to R (x0) = |x0| and therefore it is equal to zero only for x0 = 0, as it must be. In

fact, for λ → +∞ the function S (x) converges to the Heaviside step function, which has a

vertical jump at x = 0.
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D.2 The arctangent function

Now we calculate the radius of convergence of the arctangent function. According to [206],

the n-th order derivative of this function is:

arctan(n) (λx) = λn (−1)
n−1

(n− 1)!
[
1 + (λx)

2
]n

2
sin


n arcsin


 1√

1 + (λx)
2






So from the root test we obtain:

R (x0) =

√
1 + (λx0)

2

λlim sup
n→+∞

n

√∣∣∣∣sin
[
n arcsin

(
1√

1+(λx0)2

)]∣∣∣∣
n
√
n

Now, since:

lim
n→+∞

n

√√√√√

∣∣∣∣∣∣
sin


n arcsin


 1√

1 + (λx0)
2





∣∣∣∣∣∣
= 1

due to the fact that:

∣∣∣∣∣∣
sin


n arcsin


 1√

1 + (λx0)
2





∣∣∣∣∣∣
∈ [0, 1]

and moreover lim
n→+∞

n
√
n = 1, we obtain finally:

R (x0) =
1

λ

√
1 + (λx0)

2

Therefore the radius of convergence increases with x0, as it must be. Moreover in the limit

λ → +∞ it gives R (x0) = |x0|, as with the sigmoid function.
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Appendix E

Higher order correlations for a

fully connected neural network

Here we show how it is possible to use the perturbative expansion to calculate the higher

order correlations between the neurons. For simplicity, we consider only the simplest case,

namely a fully connected network, even if this analysis could be extended to more com-

plicated connectivity matrices. Moreover we want to avoid long expressions for the joint

cumulants, therefore we consider only the expansion of the membrane potential at the

first perturbative order. In principle this calculation can be performed at any perturbative

order, but starting from the second order (namely from the third order terms in the covari-

ance) the functions Z (t) and
−→
H (t) in general introduce inhomogeneities in the covariance

structure of the network, therefore the higher order correlations should be calculated us-

ing combinatorial techniques applied to the Isserlis’ theorem. In this section we avoid the

issue and we focus only on the first order perturbations. In this case the probability den-

sity of every Vi (t) is normal and this is true also for the quantities Vi (t) − V i (t), which

have all zero mean and the same variance, that we call V ar (V (t)). Since they have zero

mean we can use the Isserlis’ theorem, that for a fully connected network gives simply:
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E



n−1∏

j=0

(
Vij (t)− V ij (t)

)

 =





0, n odd

n!

2
n
2 (n

2 )!
[Cov (Vi (t) , Vj (t))]

n
2 , n even

(E.1)

because in this case all the pairs of neurons are equivalent, since they are all-to-all con-

nected (instead, if the network is not fully connected, the connected pairs give a different

contribution with the Isserlis’ theorem compared to the disconnected pairs). Moreover, the

central absolute moments of a normal distribution are:

E

[∣∣Vij (t)− V ij (t)
∣∣n
]
=

2
n
2 Γ
(
n+1
2

)
√
π

[V ar (V (t))]
n
2 (E.2)

and if n is even we have Γ
(
n+1
2

)
= n!

2n(n
2 )!

√
π. Therefore putting everything together we

obtain:

Corrn
(
Vi0 (t) , Vi1 (t) , ..., Vin−1 (t)

)
=





0, n odd

[Corr2 (Vi (t) , Vj (t))]
n
2 , n even

(E.3)

From this result it is interesting to observe that if there is a perfect stochastic synchroniza-

tion between pairs of neurons, then it is “propagated” to all the higher order correlations

with even order, namely Corr2 (Vi (t) , Vj (t)) = 1 implies Corrn
(
Vi0 (t) , Vi1 (t) , ..., Vin−1 (t)

)
=

1, ∀n even. It is also curious to observe that all the odd order correlations are always equal

to zero, even if the size of the network is finite.
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Appendix F

Proof that formula 5.55 gives real

functions

In this appendix we want to prove that the quantities Φij (t) and
[
Φ (t) ΦT (t)

]
ij

, given by

formula 5.55, are real functions. The proof can be divided into four cases, namely when R

and S are both even, both odd, R even and S odd, or vice versa. Here we analyze only the

first case, while the others can be proved in a similar way.

So, if R and S are both even, the function Φij (t), according to 5.55, can be equivalently

rewritten as:

Φij (t) =

R−1∑

x=0

S−1∑

y=0

e[−
1
τ
+exS+yS

′(µ)]tfi,j,xS+y (F.1)

where now the subscripts are separated by commas, in order to avoid confusion. Defining:

gijx,y = e[−
1
τ
+exS+yS

′(µ)]tfi,j,xS+y

formula F.1 can be rewritten in the following symmetric way, with respect to R and S:
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Φij (t) =gij0,0 + gijR
2 ,0

+ gij
0,S2

+ gijR
2 ,S2

+

R
2 −1∑

x=1

[
gijx,0 + gijR−x,0

]
+

S
2 −1∑

y=1

[
gij0,y + gij0,S−y

]
+

S
2 −1∑

y=1

[
gijR

2 ,y
+ gijR

2 ,S−y

]
+

R
2 −1∑

x=1

[
gij
x,S2

+ gij
R−x,S2

]

+

R
2 −1∑

x=1

S
2 −1∑

y=1

[
gijx,y + gijR−x,S−y

]
+

R
2 −1∑

x=1

S
2 −1∑

y=1

[
gijx,S−y + gijR−x,y

]
(F.2)

The quantities gij0,0, gijR
2
,0

, gij
0,S

2

and gijR
2
,S
2

are real numbers. Moreover, since:

fi,j,xS+y =e2π{ x
R (b i

S c−b j
S c)+ y

S
(i−j)}ι = f∗

i,j,(R−x)S+(S−y)

fi,j,xS+(S−y) =e2π{ x
R (b i

S c−b j
S c)− y

S
(i−j)}ι = f∗

i,j,(R−x)S+y

for 0 ≤ y < S and 0 ≤ x < R, and also, according to 5.53:

exS+y =

S−1∑

k=0

R−1∑

l=0

e2π(
yk
S

+ xl
R )ιb

(l)
k = e∗(R−x)S+(S−y)

exS+(S−y) =

S−1∑

k=0

R−1∑

l=0

e2π(−
yk
S

+ xl
R )ιb

(l)
k = e∗(R−x)S+y

we conclude that:
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gijx,y =
(
gijR−x,S−y

)∗

gijx,S−y =
(
gijR−x,y

)∗

For this reason, all the quantities in the square parenthesis in formula F.2 are real, and

therefore also Φij (t). A similar proof can be obtained for
[
Φ (t)ΦT (t)

]
ij

, and in the cases

when only one of R and S, or both, are odd.
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