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Abstract

This thesis presents the results of the mathematical analysis of models in augmen-
tative biological control. Biological contro in agriculturel involves the use of natural
predators to suppress pest invertebrates that attack crops. It is an essential com-
ponent in efforts to reduce pesticide usage. In this thesis, we model augmentative
biological control programs, in which a fixed number of predators are periodically
released. Such predators are usually not able to establish in an ecosystem in the ab-
sence of the pest. We introduce a general class of impulsive models that describe the
intrinsic predator-prey dynamics by a pair of ordinary differential equations and the
periodic releases by a discrete equation. We study the variants of this class of models
that may arise in a biological control set-up and highlight the consequences on the
strategy of releases. In particular, we analyse the effect of intra-predatory interfer-
ence occurring when the predator preys on the pest, the impact of cannibalism among
the predators, and finally the outcome of partial harvests of crops on the biological
control program. We also interpret the results of our mathematical analysis as a set
of practical guidelines. We report experiments on an agronomic predator-prey sys-
tem, in which the predator species exhibits interfering behaviour. The experimental
results validate our mathematical predictions.

Keywords: impulsive systems, zero-pest solution, local stability, global stability.
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Résumé

Les travaux présentés dans cette thèse portent sur des problématiques de modélisa-
tion mathématique de lutte biologique augmentative et des recommandations pra-
tiques qui en sont dériées. La lutte biologique est une méthode de phytoprotec-
tion visant à combattre les ravageurs des cultures à l’aide de leurs ennemis na-
turels ; son développement est crucial en vue de diminuer l’utilisation de pesticides
qui représente un risque notamment pour la santé des agriculteurs et des consomma-
teurs, mais aussi pour l’environnement. Dans cette thèse, nous nous intéressons plus
particulièrement à la lutte biologique augmentative, qui consiste à lâcher périodique-
ment des ennemis naturels qui n’ont pas la capacité de s’établir dans l’environnement
en l’absence des ravageurs cibles. Nous introduisons une famille générique de mod-
èles représentant d’une part la relation proie/prédateur à la base de la lutte bi-
ologique sous forme d’équations différentielles ordinaires, mais également les lâch-
ers périodiques sous forme d’événements discrets. Nous précisons ensuite ce mod-
èle pour diverses situations rencontrées dans le cadre de la lutte biologique et in-
diquons quelles en sont les conséquences sur les stratégies de déploiement des enne-
mis naturels : nous étudions notamment l’effet d’interférences entre prédateurs pour
l’accès aux proies, l’existence de relations de cannibalisme entre prédateurs et les
conséquences que peuvent avoir des récoltes partielles des plantes sur l’efficacité de
la lutte biologique. Enfin, nous résumons tous nos résultats sous forme de recomman-
dations pratiques pour la lutte biologique et en présentons une validation expérimen-
tale sur un exemple agronomique d’intérêt, dans lequel les prédateurs entretiennent
des relations d’interférence.

Mots-clefs : systèmes impulsionnels, solution zéro proie, stabilité locale, stabilité
globale.
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1
Introduction

(...) Du plus gros au moindre dans la série animale, le ventre est le souverain du monde ; les
données fournies par le manger dominent les autres documents de la vie.
– J-Henri Fabre (1823–1915)

1.1 Understanding biological control

1.1.1 Who kills who?

At the heart of the biological control problem lies a very simple question: “Who kills who?”
It is the answer to this question which determines the implementation of a biological control
program. In most cases, the motive for killing is, simply, food: one organism kills another and
feeds on it. Killing and feeding on one resource may also have indirect effects on another;
for instance, the exploitation of a common food source by one organism also leaves another
less competitive organism to die out. Not all killing is food-based however - we discuss this in
more details shortly.

The idea of an organism as the food of another has been formalised in ecology several
decades ago by the concept of food webs. This formalism represents the interdependence of
species one or more species being the food resource of another or others (Odum, 1968). The
network of connections within the food web organise species across different trophic or food
levels, between which biomass (or energy) flows from a lower level species (a lower trophic
level) to a higher level one (a higher trophic level) which feeds on it. Species on one trophic
level can also be grouped within functional groups, which determines their relationship with
respect to a particular organism. Examples of functional groups that are typically located at
one trophic level above the organism are predators, parasitoids and pathogens. These attack
the organism in different ways and may or may not feed on it. Competitors are another
functional group that are at the same trophic level as the organism and compete for similar

0“(...) From the least to the greatest in the zoological progression, the stomach sways the world; the
data supplied by food are the chief of all the documents of life." Taken from Souvenirs Entomologiques,
Série X, Note 1, translated by Alexander Teixeira de Mattos (1865–1921).
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CHAPTER 1. INTRODUCTION

resources. The different species on which the organism in question feeds on form part of the
functional group consisting of its prey.

Another more general formalism is that of the ecological niche. This formalism – as pro-
posed by Cohen (1978) – considers, in addition to the trophic relations of a target organism
with its immediate food web community, the influence of environmental factors on it. These
environmental factors refer to as much to the ambient conditions (such as temperature, light,
humidity, as well as climate) as other “non-living resources’ it uses such as space (in partic-
ular to habitat structure or shelter). All these factors combined with the target organism’s
behaviour or strategy in optimising its survival define the ecological niche1.

A systemic definition of biological control fits neatly in this framework as follows:
The biological control of a population consists of manipulating the functional groups

and/or energy pathways that determine its survival (or disappearance) within its ecological
niche.

Figure 1.1 represents the ecological niche of a target organism (red box). The functional
groups (blue boxes, and the autocide) are those that are exploited in biological control pro-
grams. The resources (green box) can be living as well as non-living (e.g. space, water, ...) are
also used in other forms of control programs. Arrows i-iv represent food pathways through
which there is an actual mass or energy transfer following the direction of the arrows. The ar-
row i corresponding to a host-parasitoid interaction is particular since the killing is performed
by an individual whose progeny feeds on the killed organism; however at the population scale
it still remains a mass/energy transfer. Broken arrows v and vi indicate that group at the
source of the arrow has a disruptive effect on the target: there is no actual mass transfer.
Pathogens cause mortality through disease; autocides are sterile conspecifics of the target
organism whose progeny is also sterile and cause a population collapse.

Predators Pathogens

CompetitorsTarget organism

Parasitoids
Autocides

Resource

i

ii

iii
iv

v

vi

Figure 1.1: An organism (red box) belongs to an ecological niche, which consists of its
immediate natural enemies (blue boxes) and its resources - living or nonliving, such as
space, water - it consumes (green box) (Hutchinson, 1967). This definition is extended to
include autocides. Arrows i-iv refer to mass transfer pathways across groups. Arrows v
and vi represent disruptive effects which do not involve mass transfer.

The transfer through the pathways or the intensity of one functional group on another
(such as the target organism) is determined by the size of the functional groups, the attack

1This holistic definition proposed by Cohen (1978) has evolved from Elton (1927), through Hutchin-
son (1967) (as cited by Whittaker et al. (1973)).
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1.1. UNDERSTANDING BIOLOGICAL CONTROL

mechanisms and the defence mechanisms of the various species. These three features are in-
fluenced by abiotic factors. In addition, attack and defence mechanisms are usually related to
specific phenotypic traits (behavioural and physical characteristics) of the respective organ-
isms (Hill, 1975), some of which can be enhanced or repressed through genetic manipulation.

Attack mechanisms of a natural enemy are determined by intraspecific interactions. In-
traspecific competition makes food searching or attacking more difficult. Cannibalism sup-
presses the need to consume other organisms for survival. Conversely, cooperative behaviours
improve foraging abilities. Some species or strains are just also more effective (or virulent in
the case of viruses) than others.

Defence mechanisms among animal species include antipredator behaviour such as nest
constructions which hinder predator attacks and cooperation where individuals fight back
predators. Among plants, defence is more complex: many plants contain chemicals that get
released when herbivories attack it; these chemicals may then attract the herbivory organ-
ism’s enemies (Turlings and Wäckers, 2004) or act directly against the pests (‘antibiosis’ phe-
nomenon, see e.g. (Gassman et al., 2009)).

Remark: Organisms in each of the functional groups belong to their respective ecological
niches. The predator, for instance, is prey to another predator; considering it as the new ‘target
organism’ shifts its prey (previously considered as the target organism) to the resources level.
�

1.1.2 Kill the pest!

Crop protection in agriculture

More often than not, in a plantation system, the target is an undesirable (thus defined from
the human point of view) organism that destroys a crop. Such an organism is called a pest. it
needs to be suppressed, if not completely eliminated in order to protect the crop and ensure
satisfactory yields.

One of the most common ways to do so has been by applying chemical pesticides. Pes-
ticides modify directly the environment of the organism within its niche. Usually inhaled
or absorbed through the exoskeleton, they operate by disrupting nervous or other systemic
processes within the target organism. DDT for instance acts on sodium channels in the nerve
cells of insects. Organophosphates also attack the nervous system of insects and kill them.
Other pesticides are non-lethal to an organism, but will however damage its reproductive
system and thus bring about a collapse in the pest population one generation later.

Since the post World War period, chemical pesticides have been easily mass produced and
their effectiveness when used against pests explains to a large extent their ubiquity (Metcalf,
1994); so does perhaps the lobbying power of pesticide producers (Van den Bosch, 1978). As
one of the pillars of intensive plantation farming programs – which is the most common form
of mass agriculture produced today –, the pesticide industry took off during the post World
War period and diversified. In 2000, Van Lenteren (2000) reported that the industry was
worth $30 billion in the US alone.

Reducing pesticide usage

There are several problems related to pesticide usage. In higher doses than that required for
insects or other pest control programs, pesticides can also be toxic to more complex organisms
such as mammals (including humans). The persistence of some pesticides can pose serious
risks to human health due to accumulation effects.

3



CHAPTER 1. INTRODUCTION

The frenzy over pesticides, given their success in pest control programs, has unfortunately
led to their abuse in the 1970s. An immediate and visible consequence was that many treated
areas in the USA saw their biodiversity collapse. In fact, at that time, most pesticides were
broad-spectrum, that is they killed a wide range of species: the use of DDT, for instance, to
control pests mass-killed pollinating bees Metcalf (1994). Some regions also suffered from
secondary pest outbreaks: herbivory insects that were previously maintained at low level by
local enemy populations and were not considered as pests underwent a population explosion
causing huge crop destruction (see e.g. King and Powell (1992), as well as references in Met-
calf (1994), and Ch.1 in DeBach and Rosen (1991)). They acquired in the process their status
as pests. Many pesticides were consequently banned or their use, such as DDT, restricted
(Berenbaum et al., 2000). This measure mitigated greatly health and environmental risks.

The mode of action of pesticides (targetting specific physiological processes in a living or-
ganism) has however another serious drawback: that of pest resistance. Survivors of the first
pesticide application reproduce into another generation of resistant individuals who require
a higher dose of the same pesticide or the application of a more potent one to be eliminated.
This adaptation of the pest population to the pesticide versus the development of new pesti-
cides is referred to as the pesticide treadmill or the pesticide trap.

This issue was reported back in RCEP (1979). This problem remains an important envi-
ronmental and economic issue to this day. Compiling available data, Metcalf (1994) pointed
that more than 500 species in 1989 had developed resistance to at least one class of pesticides
(see Figure 1.2). As Hoy (1998) stated on resistance, “Even aside from environmental and
health issues [which fuel the pesticide debate], the use of pesticides is not sustainable”.
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Figure 1.2: Increasing insecticide resistance is major problem in pest control. The data
shows the increase for five classes of insecticides over 1940-1989 (from P.251, in Metcalf
(1994); see references therein for data sources).

Due to these issues (persistence, resistance and risks to the environment and human
health), pesticide usage needs to be reduced. In order to provide adequate pest control, ex-
ploiting other dimensions of the ecological niche, namely through biological control, becomes
essential.
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1.1. UNDERSTANDING BIOLOGICAL CONTROL

Remark: Health and environmental issues motivate a reduction in pesticide usage indirectly,
in that they are considered to be the main factors that galvanise public opinion and sway mar-
ket movements. In fact, while contamination of the environment has been reported widely and
in much detail (see e.g.Berenbaum et al. (2000); Voltz et al. (2005); RCEP (2005); Moss (2008)),
studies that measure the impact on the environment of this contamination are often too frag-
mentary and are unable to offer precise indices to be conclusive (see the discussion by Moss
(2008), and DEFRA (2006)). Likewise for the impact of pesticides on human health (see e.g.
Baldi and Lebailly (2007)). We summarise the results of a small bibliographical research on
the matter in Appendix A. �

1.1.3 Use predators

In crop protection, one of the ways to exploit the ecological niche of various pests in their
control involves the use of their natural enemies. Figure 1.3 gives an example of the food web
surrounding a crop.

Figure 1.3: Part of a typical food web in a farm shows plant components, herbivores
(pests and non-pests) and their predators/parasitoids that can be used to control them.
Other animals interacting indirectly with the herbivores are birds and mammals that
share a common base resource with them. Their feeding behaviour impacts indirectly
the herbivores. From Memmott (2009), the Norwood Farm Project, UK. Available online
at: http://www.bio.bris.ac.uk/research/community/fwproject5.html.

The two major groups of natural enemies used are predators and parasitoids (see e.g.
Van Lenteren (2000) for greenhouse crops). However, because of their relationships with
respect to the pest which is fairly similar (i.e. they both kill and feed on the pest), we will use
the same terminology as Begon et al. (1996) and refer to “predator" these two types of natural
enemies (see Figure 1.4).

In pushing for the wide-scale implementation of such biological control programs, field
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Predators

Target organism

Parasitoids

Resource

iii

i ii

Level 0

Level 1

Level 2

Figure 1.4: Because of the relationships with respect to the herbivory pest (Level 1),
predators and parasitoids belong to the same trophic level above the pest (Level 2) (Be-
gon et al., 1996). The crop on which the pest feeds is on a lower level (Level 0).

researchers such as Joop van Lenteren (greenhouse crop protection in the Nethelands) and
Paul Van Mele (mango and citrus crop protection in Vietnam and Africa) have noted that from
the growers’ perspective, there are several practical reasons why they would be willing to
switch from pesticide use to biological control.

We outline these reasons as follows2:

• Reduced resistance issues. Biological control by predators circumvents this problem
simply because pests and their natural enemies evolve concurrently on a much slower
evolutionary scale. To quote Van Lenteren (2007a): “once a good natural enemy, always
a good natural enemy.”

• A better or the only control method available. Sometimes a natural enemy does
a better job than would a chemical pesticide. Weaver ants, for instance, are very metic-
ulous in their handling of their prey, the mango fruit flies (Van Mele et al., 2007). In
other cases, whether due to resistance issues (see above) or otherwise (pesticides have
not been developed), a natural predator is the only control agent for a given pest.

• Positive consumer perceptions to organic products. In Europe and North Amer-
ica, consumers are increasingly ready to pay premiums and drive the organic market or
alternate farming movement. In fact, these premiums may provide incentives to farm-
ers in the developing world to adopt alternative methods of farming and pest control
(Byers et al., 2008).

• No premature abortion of flowers and fruits. Due to their toxicity, some pesticides
damage plants at early stages of their development. No such risk is known to exist with
natural specialist predators which feed exclusively on the pest (Van Lenteren, 2007a;
Gerson et al., 2003). Even for predators that are generalists – that is which eat plants
as well as pests, the risk is minimal.

• No discomfort during spraying. In greenhouses, with high humidity levels, workers
prefer alternative methods to pesticide spraying (Van Lenteren, 2000) (see also RCEP
(2005)). Most likely because of the toxins they contain, pesticides often cause headaches

2This list is guided by Van Lenteren (2007a) and is substantiated by other sources.
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and may also represent the strongest health risks (namely cancers, see e.g. Baldi and
Lebailly (2007)) to the people directly manipulating them. Predators allow planters to
circumvent this issue.

• Timing convenience. The use of natural predators is perfectly safe: unlike the appli-
cation of pesticides, there is no buffer time zone after the release of predators. This
is convenient for growers whose work is uninterrupted. In some cases, less applications
of biological control agents may be required than pesticide applications - this not only
saves time but also labour costs (see e.g. Stevens III et al. (2000)).

• Lower costs of implementation. Biological control can offer a less costly alternative
to pesticides in some cases simply because biological control agents can sometimes be
found locally (Van Mele et al., 2007). They can in some cases also require less applica-
tions (Stevens III et al., 2000).

1.1.4 Augmentative control

There are three control schemes for crop protection by predators ((Hoy, 1994)). The first,
conservation, involves no release and focuses instead on increasing a resident natural enemy
population by landscape or habitat management and ensuring an adequate - often alternate
- food supply at low prey levels. This technique can be categorised under cultural control3.

Classical control involves one sufficiently large release of a (usually artificially reared
or non-indigenous) predator population. The ultimate aim for this release is the establish-
ment of the predator population to provide permanent control for potential pest species. It
may however result in undesired non-target effects, especially since the introduced predator
species may become invasive and threaten the indigenous fauna (see e.g. Howarth (1991) for
a review).

The third scheme, referred to as augmentative control involves repeated releases of a
(usually artificially reared or non-indigenous) predator. A key feature of this scheme is that
there is no establishment of predators. This can be deliberately done (for example to
prevent invasions by the exotic predator) or simply because the predators would not survive
anyway in the absence of pests. Releases then provide the only (substantial) way to replenish
the populations.

In this thesis, we model augmentative predator releases. Because of the continuous re-
plenishment of the predator population, this scheme can work for most predator species.
Predators feeding voraciously on the pest species would however be more advantageous as
they would result in a less costly release program.

Remark: An augmentative release program can become classical when releases that are
programmed to be large and rare (referred to as an inundative release) result unwittingly in
the establishment of the predator. This is less likely to happen when releases are small and
frequent (referred to as inoculative releases). In this thesis, we will consider that there is no
establishment of the predator population in the absence of pest in either case. �

1.1.5 Predator types

Predators can be classified into two broad categories, according to their diet: specialists and
generalists. In the case of predaceous mites, which represent a major group of predators for
common agricultural pests, the classification can be refined into four categories which depend

3See also shortly the section Integrated Pest Management, IPM
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on the behavioural traits and diet patterns, habitat sensitivity and even physical character-
istics (see Ch. 26 in Gerson et al. (2003) and references therein). Under this classification,
specialist predators are referred to Type I, while generalists belong to either one of Types
II-IV. The choice of a predator control program (classical vs. augmentative releases, releases
vs. conservation) depends on this characterisation. We highlight the key features of each
category and type as follows:

Specialists

Type I feed on only one prey species, in the absence of which they die out. Group dynamics in-
clude high aggregation about a prey source. Such predators can only be used in augmentative
control programs. Examples include Phytoseiulus persimilis (Athisa Henriot), Metaseuilus
occidentalis (Nesbitt). Note also that because they are very specialised to their hosts, para-
sitoids such as Encarsia formosa (Gahan) that can only work in augmentative release pro-
grams may be considered to belong to this category.

Generalists

Generalists feed on other resources such as alternate prey species, other predators, plant
components such as pollen and exudiates.

Type II are generalists that eat preferentially the target prey species (the pest). They
cannibalise or prey on competitors only out of starvation. They display high aggregation
about a prey source. Such predators can only provide control in augmentative release pro-
grams. Examples include Galendromus occidentalis (Nesbitt) (control of webbing spiders
in apple orchards), Neoseiulus fallacis (Garman) (control of European red mite, other phy-
tophagous mites e.g. eriophyoids in apple trees).

Types III & IV are omnivory generalists that preferentially feed on other prey than
tetranychids, and consume readily pollen and plant exudiates. They also more often indulge
in cannibalism and interspecific predation than do Types I and II. They display low aggre-
gation. Some can only reproduce on specific prey (which can be a pest), so will maintain
control only through an augmentative release scheme. One such example is Typhlodromalus
manihoti (Moraes) (control of cassava green mite in Africa).

Figure 1.5: Left. Picture of a group of Neoseiulus Californicus handling their prey, the
pest Tetranychus urticae c©Alexandre Bout. Right. Phytoseiulus persimilis handling its
prey (right), the pest Tetranychus urticae c©Jarmo Holopainen.

Remark: Diet patterns are intrinsic to a predator foraging behaviour, and consequently im-
pacts directly a given prey uptake and hence a pest control program. In modelling terms, it
has a direct effect on the functional response which represents the removal of a prey (in this
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thesis, the pest) by the predator. �

See later: The effects of predator behaviour and their diet spectrum on an augmentative
release program are investigated through the models in Chapters 4 and 5. �

1.1.6 Integrated Pest Management (IPM)

Integrated Pest Management (IPM) involves using the whole array of pathways in the ecolog-
ical niche (biological including genetic methods, conservation of the natural enemies through
cultural methods) as well as direct removal of the pest (Luckmann and Metcalf, 1994; Morales-
Ramos and Rojas, 2003). Figure 1.6 illustrates these different methods.

Cultural methods
____________
agronomic practices

incl. habitat 

management,

pruning, crop 

rotation

Chemical control
____________

Pesticides

Physical control
____________

Heat, humidity, 

light, temperature

Target organism

Human factors

Mechanical control
____________

incl. hand destruction, 

exclusion by screen

and barriersBiological 

methods
____________

Predator, parasitoids, 

pathogen releases

Genetic methods
____________

GM crops, autocides

Figure 1.6: Integrated Pest Management (IPM) combines different techniques of pest
control in order to decrease pesticide usage. The choice of the components or the extent
to which biological, chemical or physical control methods are used for the IPM program
depends on human factors such as expertise in the various components, consumer per-
ception and awareness, and law and policy. Adapted from Luckmann and Metcalf (1994).

Remark: Direct killing of the pests through physical methods, hand destruction, pruning ,
and chemical pesticides are instantaneous processes - like the augmentative releases of preda-
tors. �
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See later: We study the effects of pest (and predator) removal due to control methods (other
than biological control) within an IPM program in Chapter 6. �

1.1.7 Some vital statistics

Predator species

In their review on biological control in greenhouses, Pilkington et al. (2010) report (from
Van Lenteren (2007b)) that 150 species of natural enemies are available to growers world-
wide. 30 species of these enemies, that is only one fifth of the available species, make up 90%
of the global sales (from Bolckmans (1999)).

Outdoor crops

Resistance to pesticides may be the driving force for switching from chemical control pro-
grams to predator control. Metcalf (1994) reports that the European red mite Paronychus
ulmi (Koda) and citrus red mite P. citri (McGregor) have become resistant to almost all arach-
nicides used in fruit production. In Egypt, cotton leafworm Spodoptera littoralis (Hübner) has
become resistant to more than 20 insecticides, none of newly developed ones remaining effec-
tive for more than two to four years.

Conversely, a number of predators have been identified and tested in these crops and
others. We note the use Pediobius foveolatus (Crawford) against the Mexican bean beetle in
soybean protection, and Trichogramma nubiale (Ertle & Davis) against the European corn
borer in corn protection (see e.g. Table 1, P 254 from Elzen and King (1999)).

Greenhouses

Pilkington et al. (2010) reports that up to 52,000 Ha of greenhouses operate on predator
releases for pest control. This is a very small area compared to total world figures (estimated
at around 2.43 million Ha, (Pilkington et al., 2010) - 2 million of which are in China (Zheng
et al., 2005)).

However, we need to put this proportion in perspective: to date, 90% of the vegetable
greenhouse production in the Netherlands is under IPM or biological control programs. This
is probably because the effort to bridge the gap between entomological research and agro-
nomic practice has paid off (Van Lenteren, 2007a). Given the proximity to other European
countries, this know-how is likely to spread very quickly across this continent. The routine
use of biological control in Almeria greenhouses in Spain (at 20,000 Ha) is probably a first
step in that direction4.

Greenhouse area is also very small compared to field crops areas, nonetheless it can make
up a substantial proportion of agricultural production. In the Netherlands, 0.5% of agricul-
tural land use dedicated to greenhouses which represent 20% of agricultural production.

Remark: We gather from these statistics that: first, the expertise acquired in greenhouse
crop protection as well as the availability of predator species on the market indicate biological
control and IPM programs are likely to expand such pest control methods to a larger scale in
greenhouses. Second, predator species that have not yet been exploited represent an untapped

4Pilkington et al. (2010) reports that predators in Almeria are principally Orius laevigatus (Fieber),
a generalist predatory bug, and Amblyseius swirskii (Athias-Henriot), a Type III predatoy mite which
requires repeated releases when the crop is not a pollen producer.
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potential for biological control. Third, there is also scope for a wider field application of bi-
ological control methods, though this development is likely to be slower than for greenhouses
(these systems being open, predator populations are more difficult to track). The potential of
biological control is apparent in figure 1.7, which shows the scale of land use for outdoor crop
growth compared to greenhouse cultivations.

Greenhouse

Fibre crops

Vegetables

Fruits

Roots and tubers

Pulses

Soyabeans

Maize

Rice

0 10 20 30 40 50 60 70 80 90 100 110 120 130 140 150 160
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Figure 1.7: Several of the world major crops namely maize and soya beans can be
protected with predator releases. Estimates in grey are based on FAO 2004 figures
taken from The Economist (2005). Greenhouse crop figures are from 2005, based on
Van Lenteren (2000), Zheng et al. (2005), and Pilkington et al. (2010) greenhouse crop
production covers 2.43 million hectares. (Total world arable land use in 2007 was esti-
mated at 1398 million hectares (FAO, 2009).)

�

1.2 Scope of this thesis

Goal and methodology
Based on the discussion presented in the previous section, the aims of this thesis is to pro-
vide a mathematical framework to improve current augmentative biological control (includ-
ing those within an IPM programs) and develop new ones by informing experimental research
related to potential predators. More specifically, this thesis aims to:

• Quantify the minimal number of biological control agents to release to eliminate pests
in biological control programs;

• Identify release strategies based on the frequency and size of releases to ensure faster
elimination of targeted pests;

• Provide a valuable measure of predator behaviour so as to determine if they can work
as biological control agents - in particular, by quantifying interference and foraging
effects.

To do so, we use qualitatively defined deterministic impulsive models so that our results can
apply to the majority of predator-prey systems.
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Main contributions

The main contributions of this thesis are:

1. The qualitative modelling of the hybrid process describing an augmentative biological
control program. We provide sufficient detail so that general trends in the system be-
haviour may be observed and interpreted while modelling artefacts are reduced.

2. Sector condition formulation to model arguments of the trophic functions and mortality
functions in order to provide a complete qualitative description of these processes.

3. The global stability analysis of the zero-pest solution of the models. The conditions are
expressed as a minimal bound on the release rate that would eradicate the pest pop-
ulation. The global stability condition in the analysis of the various models proposed
extends the local basin of attraction to the whole non-negative orthant.

4. The practical interpretation of the stability conditions in terms of the pest control strat-
egy. The results of our analysis form the basis of recommendations for biological control
experiments to be carried out at the French National Institute of Agricultural Reseach
(INRA).

1.3 Detailed plan

Ch. 8 Conclusions 

and outlook

Ch. 7 Preliminary

experimental results 

and practical 

guidelines

Ch. 5 Cannibalism 

among predators

Ch. 6 Partial harvest

IPM

Predator behaviour

Ch. 1 Introduction

Ch. 2 Modelling
augmentative
biological control

Ch. 3 Groundwork:
a simple model 
and analytic 
methods 

Ch. 4 Predators 
interfering 
during predation

Figure 1.8: This map represents the interconnectivity of the different chapters of this
thesis. The arrows indicate that information from one chapter (start of the arrow) is
required for another (target of the arrow). The chapters in red represent the core of our
work: the analysis of mathematical models. These chapters are motivated by Chapter
1. Chapter 2 situates it with respect to past and ongoing research trends. The Chapter
7 (in yellow) covers applications of our analyses. Chapter 8 points to potential research
avenues that we have identified through our investigations.
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Chapter 2. Making a choice: modelling approach This chapter presents the canonical
form of the models used in this thesis to describe augmentative biological control. The
modelling approach is characterised by two key features: The first are hybrid or im-
pulsive dynamics, which depict the intrinsic predator-prey interactions as continuous
processes and the periodic predator releases as discrete events. The second is the qual-
itative description of the predator-prey process functions. We explain in particular how
modelling is about making a choice - from the number of variables and parameters that
are used in the model to the mathematical framework used to describe the system. We
defend our modelling choice with respect to the other models in the literature.

Chapter 3. Groundwork: a simple model and analytic methods. In this chapter, we in-
troduce the framework used for the augmentative biological control programs described
in this thesis. We present the analytic methodology used throughout our work and cal-
culate the existence and stability condition of the zero-pest solution. These results
provide the benchmark against which we compare the results of the models presented
in this thesis.

Chapter 4. Predators interfering with each other during predation. In this chapter,
we generalise the description of the functional response to account for intrapredator
interference. We show that these behavioural characteristics have a substantial impact
on the biological control program. They result in both a biological and a managerial
condition for the stability of the zero-pest solution. Whether or not a stability condition
of the zero-pest solution exists depends on the strength of the interference. We also
study in this chapter the speed of eradication of a pest population.

Chapter 5. Cannibalism among predators. Predator cannibalise or kill conspecifiics for
various reasons. In this chapter, we model three effects: territoriality, hunger and in-
trinsic diet. Territoriality is modelled as predator mortality enhanced by a quadratic
term. The stability condition indicates that stability is favoured by small release pe-
riods (i.e. frequent releases). Hunger results cannibals which compete for conspecific
victims. Finally, the last effect, intrinsic diet, takes into account intrapredator com-
petition both in foraging for the prey and for conspecifics. This last model can in fact
be extended to intraguild predation. Similarly to Chapter 4, we analyse the influence
of these characteristics on the biological control program. We focus on the predator
release strategy.

Chapter 6. Partial harvests. In this chapter, we look at impulsive removals of predator
and pest populations that occur upon partial harvesting of crops or when pesticides
(or other direct pest removal strategies in an IPM program) are in use. We consider
that one of the periods of impulsive removals and of of predator releases is the integer
multiple of the other. We treat the case when partial removals (harvests) are more
frequent than releases and vice-versa. We show that the partial harvest frequency
provides a threshold for the release frequency, below which biological control is less
costly. We also look at the effect of varying partial harvest intensities on the respective
predator and prey populations, and identify the cases when partial harvests disrupt
control and when they aid towards eradication of pests.

Chapter 7. Practical guidelines. These guidelines are based on the mathematical anal-
yses in Chapters 4-6. They provide suggestions for biological control experiments. We
also report results from the laboratory experiments carried out at INRA5 on intrapreda-
tor interference.

5The French National Institute for Agricultural Research

13



CHAPTER 1. INTRODUCTION

Chapter 8. Conclusion and outlook. We provide a summary of our results and list the
publications arising from the work presented in Chapters 4-6 of this thesis. We also dis-
cuss the limitations of our results and propose potential avenues for further research.
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2
Making a choice: modelling approach

Overview

The interdependency of species and their sensitivity to their surroundings underlie the com-
plexity of biosystems. As a result, modelling such systems mathematically usually boils down
to making compromises or a choice on the most relevant parameters and processes involved.
This choice is to a great extent motivated by the context of the problem and the questions that
the model seeks to resolve. In this chapter, where we present the canonical model studied for
this thesis, we explain the process of building this model and the reasons behind the approach
we use. We also take the opportunity to review the literature with respect to the two basic
features of our model: its hybrid or impulsive nature and the use of qualitative descriptions
for predator-prey processes.

Keywords: Qualitative modelling, impulsive control, predator-prey dynamics.

Organization of this chapter:
This chapter is structured as follows.

Section 2.1 explains how we build the model for the augmentative control program. It in-
cludes the assumptions made that lead to the modelling framework used throughout
this thesis and introduces the canonical form of the model.

Section 2.2 highlights two fundamental mathematical properties of the system, namely pos-
itivity and local Lipschitz continuity of the intrinsic predator-prey processes.

Section 2.3 puts forward the need to model augmentative control with an impulsive sys-
tem (rather than a purely continuous one). We comment here the impulsive control
literature and the pertinence of hybridity as opposed to continuity.

Section 2.4 presents the various families of functions for each of the intrinsic predator-prey
processes. It also highlights the genericity of the results obtained when using a meta-
model that relies on general trends instead of explicit descriptions of processes.
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Section 2.5 provides a discussion on the difficulties of modelling biological systems. It also
illustrates how meta-modelling helps circumvent these inherent problems whilst also
providing some insight on the general behaviour of a system.

Section 2.6 summarises the features of our model. We give a brief overview of other models
in the pest control literature that use different modelling frameworks. We also tie in
the aim of the biological control program we want to implement with the mathematical
analysis which is required.

2.1 Building the model

2.1.1 Keeping count

The primary aim of modelling change consists of estimating and predicting a variable to
which a numerical value can be assigned.

When studying population dynamics, the variables of interest are often population sizes
which vary over time. Biological pest control models usually focus on the pest and its predator
population. These two populations tend to evolve the most over the time frame considered. In
these models, they are also implicitly tracked over a selected area, which can be for instance
be the plantation that needs to be protected from the pest or a smaller patch within the
plantation.

To determine how the populations evolve through time, these models incorporate the ma-
jor processes that determine an increase and a decrease in their numbers respectively: these
are natural growth and predation for the pest, and pest uptake and natural mortality for the
predator. The changes in predator and pest populations are linked through the transfer from
the prey to the predator population, that is the predation for the prey and the pest consump-
tion for the predator. These two populations thus form a two-dimensional food chain that is
ensconced within a far more complex food web. However, we may consider that the crop (and
other prey) of the pest is implicit in the pest growth, and predation on the predator included
in its natural mortality. Schematically, we may represent this system in Figure 2.1.

Top
Predator

Crop Pest

Pest 
uptake

Predator
mortality

Pest 
growth

Predation+

+
Predator

- -

Figure 2.1: The pest (prey) and predator populations are linked by a biomass transfer
from the pest to the predator through predation: this link forms the basis of the two
dimensional food chain which is surrounded by the broken-lined rectangle. This chain
is itself ensconced in a far more complex food web. We may however consider that the
effect of this food web is implicit in the pest growth (which are determined by the plants
and resources that the pest depend on) and predator mortality (which include mortality
due to predation by the predator’s natural enemies).
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2.1. BUILDING THE MODEL

The processes involved can be described in more detail. The pest population (the prey)
grows as it feeds on the plant and reproduces. The pest may also die from old age, but it
is assumed that overall, the sum of births and mortality can be encompassed into a single
growth term for pest population, which can be positive or negative whether actual growth or
mortality dominates. Death by predation is considered separately. So, the pest population
will change according to:

Pest population change = Pest growth - Predation. (C1)

From the energy they acquire through the pest uptake, predators can also reproduce and
increase in numbers. This energy intake takes place via pest consumption. Conversely, the
predator population will decrease as predators die or escape from the system. This decrease
is modelled as the predator mortality. So, the predator population will change according to:

Predator population change = Pest consumption - Mortality. (C2)

The above two change equations provide an adequate description for conservation biolog-
ical control programs, where an established predator population controls the pest population.
In augmentative biological control programs however, a number of predators are released into
the patch under observation. This creates an instantaneous surge in the predator population
which also needs to be taken into account. The change equation for this particular process is
given as:

Predator pop. after release = Predator pop. before release + Size of release (C3)

2.1.2 Some key assumptions
Once the variables identified (here the pest and predator populations), some further assump-
tions need to be made. These will determine the framework that will be used to model the
interactions.To translate the change equations (C1)–(C3) into a mathematical model, we list
three such basic assumptions:

(A1) The populations are uniformly distributed across the patch or area under observa-
tion;

(A2) Abiotic parameters are uniform or can be averaged over this patch.

(A3) Finally, compared to the predator releases which bring an instantaneous increase in
the predator populations, the processes involved intrinsically with the predator-prey
interactions are considered to be continuous. We assume in particular that, for species
that are considered in this thesis, these processes do not occur by seasonal or cyclic
booms.

Processes such as reproduction and predation (and pest uptake) are dependent on the rate
of encounters between individuals. The mathematical expressions or functions to describe
them can then be derived mechanistically from the respective population concentrations or
densities. By the first two assumptions (A1) and (A2), we average out and ignore spatial
effects. So, the respective population densities are proportional to the population sizes.

2.1.3 Hybrid dynamics
By making the above assumptions, the continuous changes described by the change equa-
tions (C1)–(C2) can be modelled by deterministic differential equations1. Let x be the pest

1This is a classical approach which dates back to Lotka (1924); Volterra (1926).
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population and y be the predator population. The differential equations are written as:{
ẋ = f(x)− g(.)y

ẏ = h(.)y −m(.)y
(Mcont.)

where the function f(x) represents the pest growth rate. The function g(.) is the predation
per predator (the functional response). The function h(.) is the pest uptake per predator
(numerical response). These functions (g(.) and h(.)) are also collectively known as the trophic
functions. The function m(.) represents the predator mortality rate. Table 2.1 gives a list of
the most common functions used to describe these processes. More details on the choice of
these functions are given shortly.

This predator releases bring about an instantaneous change in the predator pop-
ulation as described in the change equation (C3). Therefore, it cannot be modelled by
a continuous differential equation but by a difference equation:

y(t+) = y(t) + Y,

where the + superscript indicates the instant right after t. Y represents the size of
the release. In an augmentative control program, releases are periodic. This means
that the time instants at which releases take place can be indexed by the number of
release periods, that is we represent them by nT where n ∈ N. Releases are also of
fixed size. This implies that the number of predators at each release can be calcu-
lated as the product of the predator release rate, which is the number of predators
released per unit time, and the release period, which is the interval of time between
two releases. We can rewrite the difference equation thus:

y(nT+) = y(nT ) + µT where n ∈ N (Mdisc.)

Remark: This formulation is due to Mailleret and Grognard (2006) and allows two
control entries for the formulation of the predator release strategy: first, the release
rate µ (which can for instance represent the budget a planter invests in for his control
program per year), and the release period T (which indicates how to spread the preda-
tors given a release rate). �

Figure 2.2 illustrates the schematics of the predator-prey dynamics involved in
the augmentative control program.

2.1.4 Canonical form

The canonical form of the model combines both the differential and difference dynam-
ics. It is written as: 

ẋ = f(x)− g(.)y

ẏ = h(.)y −m(.)y

}
t 6= nT

y(nT+) = y(nT ) + µT, n ∈ N
(M)

where the continuous differential equations form an autonomous model that de-
scribes the intrinsic predator-prey dynamics and the difference equation represents
the population surge on a predator release.
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Summary of common functions

Growth functions

f(x) =



rx, Malthus1,

rx
(

1− x

K

)
, Verhulst2,

rx ln

(
K

x

)
, Gompertz3,

rxv

(
1−

( x
K

)1/v
)
, Generalised logistic function4,

rx
(

1− x

K

)( x

KA
− 1

)
, Growth with Allee effect5,

...

Functional responses

g(x) =



ax, Lotka-Volterra6,{
ax, ∀x ≤ x̄,
ax̄, ∀x ≥ x̄ Holling Type I7,
ax

dx+ c
, Holling Type II7,

axv

dxv + c
, Holling Type III8,

1− e−ux, Ivlev9,
...

g(x, y) =


ax

dx+ (by + b0)c
, Beddington-DeAngelis10,

ax

dx+ cy
, Ratio-dependent11,

...

Numerical response
h(.) = eg(.)

Mortality

m(y) =


m, Constant natural mortality,

m+ qy, Mortality enhanced by territorial behaviour12

...

m(.) =

{
m+ ϕ(.)y, Mortality enhanced by other forms of cannibalism13

...

Table 2.1: Pest growth, the functional response, the numerical response and the mortal-
ity function are the four main functional processes used to build predator-prey models.
The references are: 1Malthus (1798), 2Verhulst (1838), 3Laird (1965), 4Richards (1959),
5Courchamp et al. (1999), 6Lotka (1924); Volterra (1926), 7Holling (1961), 8Real (1977),
9Ivlev (1961), 10Beddington (1975); DeAngelis et al. (1975), 11Arditi and Ginzburg
(1989), 12Goh (1976), 13Kohlmeier and Ebenhoh (1995).
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Pest
x y

µT

h(.)y
m(y)yf(x)

g(.)y

Functional
response+

+

+

- -
Predator

Numerical
response

Pest
growth

Predator
releases

Predator
mortality

Figure 2.2: The augmentative biological control program is described by a two-
dimensional impulsive model. It takes into account two types of dynamical regimes:
continuous predator-prey dynamics (denoted by the continuous arrows) augmented by
discrete predator releases (broken arrow).

The resulting system is hybrid in nature since it involves two types of dynam-
ics. The current canonical model is in fact a subclass of hybrid systems known as
impulsive systems.

2.2 Two mathematical properties of the impulsive model

A more general formulation for impulsive systems is given by:
dx

dt
= F (x, t), t 6= τk

x(τ+k ) = θ(x(τk), τk)

When describing population dynamics, such models are characterised by the follow-
ing two mathematical properties: positivity and local Lipschitz continuity.

Property 1: Positivity

Populations can take on only nonnegative values, that is at any given instant, they
will either be zero or positive. Mathematically, these populations are represented
as state variables, and they are described as forming a positive vector, i.e. they are
restricted within the positive orthant. A formal definition is given below (see e.g.
Mailleret (2004)):

Definition 1 (Positive vector) A vector x = (x1, x2, . . . , x
n)T is positive (denoted as

x ≥ 0) if each of the components is a non-negative real number, that is if xi ≥ 0 ∀ i.

Definition 2 (Positive orthant) The positive n-dimensional orthant (denoted Rn
+)

is the set of all positive vectors of dimension n.

Models that describe state values that remain nonnegative are a special class of
models known as positive systems. A formal definition is given as:
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2.3. WHY GO IMPULSIVE?

Definition 3 (Positive system) A dynamical system is a positive system if its state
is confined to the positive orthant when the initial state is positive. That is:

x(t0) ∈ Rn
+ ⇒ x(t) ≥ 0 ∀ t ≥ t0.

From the above definitions, a positive system can be identified by the following
conditions:

Theorem 1 (Positive system) A dynamical system is positive if

xi = 0 ⇒ ẋi ≥ 0 ∀ i

and if
θ(x) ≥ 0 ∀x ∈ Rn

+

Remark: Positivity is a useful property of the model. First, given that we are mod-
elling populations, which are non-negative, a simple way to test the validity of the
model is to test for its positivity. A model that is used to describe population dynamics
but does not satisfy this property is clearly not appropriate for this task. Second, this
property can be used to bound deviations from a given solution to the system that are
tracked in order to establish stability of the given solution. More details are given in
subsequent chapters. �

Property 2: Local Lipschitz continuity of processes

Ecological processes do not show sharp marginal increases or decreases. The growth
rate f(x), the trophic processes g(.)y and h(.)y, and the mortality effect m(y)y are con-
tinuous functions, with finite slopes (Solomon, 1949). This notion translates math-
ematically as the local Lipschitz continuity. Using the same notations as in Defini-
tions 2-3, we can define this property for any two vectors of x at time t (denoted xi

and xj respectively) (Coddington and Levinson, 1955) :

Definition 4 (Local Lipschitz continuity) F (x) is said to be locally Lipschitz con-
tinuous in x, if for every x, there exists ε > 0 and k > 0 such that

∀xi, xj s.t. |xi − x| < ε and |xj − x| < ε, |F (xi)− F (xj)| ≤ k|xi − xj |.

This condition provides the existence of unique solutions for a Model ẋ = F (x).
For the proof, see e.g. Coddington and Levinson (1955).

2.3 Why go impulsive?

A review of biomathematical control models

Biological systems can display intrinsically impulsive dynamics (see e.g. biological
oscillators in swarms of fireflies (Buck, 1988) and crickets (Walker, 1969), stage-
structured populations with dormant stages (Ghosh and Pugliese, 2004)). As in this
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thesis, other biological systems can also be characterised by continuous intrinsic dy-
namics that are forced by an external impulsive control. The general formulation of
the impulsive model, given as:

dx

dt
= F (x, t), t 6= τk

x(τ+k ) = θ(x(τk), τk)

can describe a wide variety of biological dynamics. In some cases, the discrete part
can represent the cumulative effects of a non-empty period of time, so that τ+ is not
necessarily the instant right after τk. This time-scale separation as it is called, can
be used for instance to depict winter months during which insects are dormant and
at the end of which only a proportion of the population has survived (Ghosh and
Pugliese, 2004). It can also be used to represent the transition from the juvenile to
adult stage (Geritz and Kisdi, 2004).

Mailleret and Lemesle (2009) provide an extensive review of impulsive systems in
mathematical biology: these span a wide variety of problems in ecology, epidemiology,
medical treatments to name but a few. We highlight here the main ideas behind this
review which supports the use of impulsive modelling.

• In many situations involving such hybrid dynamics, semi-discrete models are
often able to predict more accurately temporal variations than a purely contin-
uous or a purely discrete model would.

For instance, Gubbins and Gilligan (1997)’s host-parasitoid model that included
both seasonal variations and impulsive harvesting of a lettuce crop were able to
provide the best fit for their data set.

Other works by e.g. Meng and Chen (2008); Choisy et al. (2006); Liu et al. (2006)
also point out to certain complex dynamics which were not predicted by a purely
continuous model, thus suggesting that in some cases, chaos may not be due to
an exogenous chaotic forcing but rather related to the semi-discrete nature of a
system itself.

• The semi-discrete characterisation of the model also yield more accurate thresh-
olds given by some analytical conditions. Indeed, it is often the case that these
conditions turn out to be dependent on the timing or frequency. When an inher-
ently impulsive process is modelled continuously, estimates for similar thresh-
olds are then erroneous. An example is the invasion by the gypsy moth, a major
pest in the U.S.A, whose spread is underestimated when pulsed migration ef-
fects are not taken into account (Sharov and Liebhold, 1998; Johnson et al.,
2006).

• The analysis of a desired target state in such systems also points out to the more
profitable control programs between impulsive and continuous ones. Thus, Agur
et al. (1993) recommended pulsed vaccination strategies rather than a contin-
uous one; similarly, Kroll (2000) worked out that pulsed hormone treatments
would work better than continuous ones as they would reduce resorption ef-
fects; in badger control Swinton et al. (1997) recommended pulsed lethal culling
rather than fertility control (which has a continuous impact).
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Conversely, polio vaccination was found to be more effective when carried out
continuously (Wagner and Earn, 2008); pest control can under some circum-
stances be implemented at lower release rates if releases are carried out as
frequently as physically possible (nearly continuous) (Nundloll et al., 2010a).

Remark: Aside from a few papers (like Lakmeche and Arino (2000)’s), most of the
impulsive systems studied in mathematical biology consist of an explicit description
of interaction processes. In the case of predator-prey interactions, most of the models
in the literature use a combination of specific growth, trophic response, and mortality
functions. We discuss further the drawbacks of this method shortly in Section 2.5. �

2.4 Why go qualitative? – I. Structural advantages

2.4.1 Predator-prey processes

While the change equation for the predator releases is straightforward (the size of
the predator population being periodically increased by the size of a release), the pro-
cesses governing the continuous predator-prey dynamics are not modelled so easily.

There are two reasons for this: first, the mechanisms underlying these processes
can vary as much from one species to another as from a given set of natural conditions
to another (see for instance Holling (1961)). Second, the data sets collected for a given
organism can also be very noisy, and can thus be fitted by functions with fundamental
structural differences (Jost and Ellner, 2000). We cover more of the latter issue in
Section 2.5.1.

In an attempt to provide more accurate descriptions of the intrinsic predator-prey
dynamics, the literature abounds with functions for each of the processes involved.

Nonetheless, for each process, the functions need to satisfy some basic properties.
We highlight these properties (‘General properties’) then give examples of functions
that are most commonly used and also pertinent to the species involved in agricul-
tural pest control programs. The examples are grouped in categories or families of
functions that share some basic properties (‘Main categories’).

Figure 2.3 illustrates the different families of functions for the pest growth, func-
tional response and mortality with respect to the population densities.

Pest growth rate, f(x)

General properties

The pest growth rate represents the net effect of natality and mortality of the pest
population.

• ‘Life begets life’. Pest reproduction and therefore the pest growth rate is a prey-
dependent process. It is denoted by the function f(x).
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• As for other living organisms, the pest growth is zero when the population is
zero. At positive pest numbers, reproduction can take place, hence growth can
be positive - though it can also be negative if the natural mortality is too high.

Main categories

Growth functions take one of three forms:

1. First form: unlimited/exponential/Malthusian growth. This was the first growth func-
tion proposed in the literature (Malthus, 1798). It has the form:

f(x) = rx.

The parameter r is a constant which represents the net effect due to birth and mortality.
In this scenario, the pest population increase is proportional to the pest population size,
that is it is unlimited unless predation takes place. The growth is termed as exponential
or Malthusian.

2. Second form: limited logistic growth – overcrowding. In nature however, it has been
observed that an organism’s growth is limited by the resources available per individual.
So beyond a certain population size, competition due to overcrowding effects take over
and growth is not proportional to the population size. Verhulst (1838) modelled this
feature as the logistic function:

f(x) = rx
(

1− x

K

)
.

The parameter K is a positive constant which represents the carrying capacity of the
environment – this is the maximal population size that can be sustained by the envi-
ronment. It is easy to see that for x < K, we have f(x) > 0 which means that the
population grows. Beyond K, the population will tend to decrease as growth is negative
f(x) < 0.

Remark: A generalised logistic function is given as f(x) = rxυ

(
1−

( x
K

) 1
v

)
, where

the parameter v modifies the rate at which the population reaches the carrying capacity.
When v → +∞, the resulting growth function is another function commonly found in the
literature to model tumor growth: f(x) = rx ln

(
K
x

)
. �

3. Third form: limited growth with Allee effect – undercrowding. In addition to overcrowd-
ing, another growth limiting factor is the Allee effect (see Allee (1938) and also Stephens
et al. (1999)). This phenomenon occurs at low population levels: individuals are too few
to survive and reproduce. It may for instance be due to insufficient genetic diversity
which makes the population susceptible to pathogens and provokes for instance pop-
ulation collapses. This effect has also been termed as undercrowding. A very simple
model is given by Courchamp et al. (1999):

f(x) = rx
(

1− x

K

)( x

KA
− 1

)
,

where KA is the critical population threshold, below which the population decreases
and crashes to zero.

Remark: The Allee effect among the pests is advantageous to a biological control pro-
gram: introducing sterile males or autocides in a target organism’s population enhances
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the Allee effect and leads to a desired population crash. Among predators, such effects
are not as desirable, especially when the control scheme is ‘classical’ (that is, if the preda-
tors are expected to establish after one release only). Repeated releases in an augmenta-
tive control scheme help circumvent this issue (Mailleret and Lemesle, 2009). �

The functional response, g(.)

General properties

The functional response is the rate at which prey are killed per predator (Solomon,
1949). Before looking at the analytical forms proposed for this process, we may deduce
that it will have the following properties:

• From its definition the functional response represents predation and therefore
on the prey population size.

• In particular, the functional response is zero, i.e. no predation can take place,
when there are no pests.

• When the prey population is positive, predation probably increases (and we ex-
plain how this may happen shortly).

• Predators can also either cooperate to increase the rate of per capita predation
(the converse of undercrowding) or interfere with each other to reduce the per
capita predation (overcrowding), or not influence the rate of per capita preda-
tion. In the first two cases, the functional response would also be predator-
dependent.

Main categories

Functional response models are related to a wide range of theories motivated by eco-
logical to evolutionary concerns – foraging strategies has direct consequences on the
ecological scale, and survival thanks to some strategies but not others influence evo-
lution. For a full review, we refer the reader to Jeshke et al. (2002). There are two
broad categories of functional responses (Begon et al., 1996).

1. First category: prey-dependence only, g(x). the functional response is dependent only on
the prey density, but not on the predator density: g(x). The predator population only
has an indirect effect on the elimination of pests as the term g(x)y.

Lotka (1924); Volterra (1926) proposed a linear dependence in the prey density

g(x) = ax

where a > 0 is a constant. The overall predation effect g(x)y = axy, a mass-action term.

The most widely accepted and – as a result – most commonly used prey-dependent
functional responses are those by Holling (1961). In his seminal paper, he proposed
three types of functional responses, each derived from the mechanisms involved in the
animal’s physiology (especially for the Type I curve) and the foraging strategy (relevant
for the Types II and III curves). Real (1977) provides a summary on these curves as
follows:
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i Holling Type I curves correspond to animals consuming food at a rate proportional
to prey encounters, up to a saturation level limited by their gut size. Examples
include filter feeders.

g(x) =

{
ax, ∀ x < x̄,

ax̄, ∀ x ≥ x̄,

where a is a positive constant.

ii Holling Type II curves depict the response of organisms that take a certain amount
of time to capture and ingest their prey (search and handle in Holling (1961)’s ex-
planation). Typically insects show such feeding patterns. The curve is a smoothed
out version of the Type I curve, and can be modelled as (Holling, 1961):

g(x) =
ax

dx+ c

where a, d, c > 0 are constants. An alternate model for the Type II curve is given by
Ivlev (1961):

g(x) = 1− e−ux

where the parameter u > 0 is constant.

iii Holling Type III curves are sigmoid or S-shaped. According to Holling (1965), they
are characteristic of animals which show some learning behaviour in their foraging
patterns. Below a certain threshold in the prey population numbers, predators do
not recognise the prey as viable food source. Above this threshold, feeding rates in-
crease rapidly until saturation. Real (1977) reports that the predators in this case
"tend to learn slowly and forget the value of a food source unless they encounter
it fairly often. So, when a food item is scarce, it will be eaten proportionately less
often and a lag will appear in the functional response." Using an analogy with en-
zyme kinetics of oxyhaemoglobin described by Barcroft and Hill (1909), Real (1977)
proposes a sigmoid function of the form:

g(x) =
axv

dxv + c
,

where v > 0 is a constant that determines the threshold prey populations and the
sharpness of the increase at the threshold level. Sigmoid functional curves are
mainly attributed to vertebrates (see Holling (1959a, 1961)). However, in a series
of laboratory experiments, Hassell et al. (1977) published results on three insect
predators (Plea atomaria (Pall) and Notonecta glauca (Linnaeus), two Hemiptera,
and Coccinella septempunctata (Linnaeus), a Coleoptera) and one parasitoid (Aphid-
ius uzbeckistanicus (Luzchetzki), a Hymenoptera) showing Type III responses.
An interesting point to note is that the Type III curve is a variation of the Holling
II response. The Holling II curve can be rewritten as:

g(x) =
1

d+ c/(ax)

where the term c/(ax) represents the time taken to locate prey, with a is the detec-
tion rate per prey. In the Type III curve, which we can rewrite as:

g(x) =
1

d+ c/((axv−1)x)
,

due to the learning process the detection rate per prey is modified by the number of
prey and is calculated as axv−1.

26



2.4. WHY GO QUALITATIVE? – I. STRUCTURAL ADVANTAGES

Remark: The widespread use of Holling’s functional responses is as much due to their
successful application in models (including the fact that they match with the collected
data for predation for given predator population sizes), as to the mechanistic explana-
tions supporting them. �

2. Second category: direct predator-dependence g(x, y). The net predation effect on the
prey population is then g(x, y)y. This can happen when predators show interfering
behaviour with their conspecifics that intensifies with higher predator populations and
penalises the functional response.

Alternatively, direct predator dependence of the functional response can be due to
predators showing mutualistic or cooperative behaviours in attacking their prey. This
phenomenon referred by Holling (1961) as group stimulation results in enhanced pre-
dation at higher predator numbers. It is similar to the Allee effect (see previous de-
scriptions of growth functions).

Models of the interference effects hail from two main schools of thought:

i Density-dependence. One, by Beddington (1975) and DeAngelis et al. (1975) is based
on a similar mechanistic construction as Holling Type II function’s and takes the
form:

g(x, y) =
ax

dx+ (by + b0)c
. (2.1)

ii Ratio-dependence. The other approach, introduced by Arditi and Ginzburg (1989),
is phenomenological, and is based on the premise that the functional response is
dependent on the proportion of prey to predator, and not on the prey only. The
strength of intrapredator interference depends on this ratio of prey to predator,
and is thus referred to as ratio-dependence. In most papers, the ratio-dependent
functional response is a modification of the Holling II response, i.e.

g(x, y) =
ax/y

dx/y + c
=

ax

dx+ cy
.

Contrary to all others, ratio-dependent functional responses are undefined at (0, 0).

See later: The effect of predator density dependence on the augmentative biological
control program is investigated in Chapter 4. �

The numerical response, h(.)

General properties

The numerical response is the rate at which the predator population increases per
predator due to prey consumption. As a result, we mlight consider it to be a function
of the functional response, or of the same base variables.

Main categories

Holling (1961) reports that there are three possible ways in which the predator den-
sity varies with prey.
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1. The first is that it follows immediately the predation, i.e. predators are able to repro-
duce at any prey population level at which predation takes place. The most common
formulation is that the numerical repsonse is proportional to the functional response:
h(.) = eg(.) where e is a constant with value within the range 0 < e ≤ 1.

2. The second is restricted by thresholds of prey density below which the functional re-
sponse might be too weak for a given number of prey for reproduction of the predator
to be possible. In this case, the numerical response is delayed (with respect to the prey
population size).

3. The third is that the numerical response remains nil. This can happen in the case when
the prey is not nutritious enough for reproduction or when there are other constraints
in the predator’s niche, e.g. cover limitations, which prevent it from reproducing.

The predator mortality rate, m or m(.)

General properties

The predator mortality rate represents the net effect of the predator birth rate and
death rate. It is usually expressed as a constant, representing the fraction of the
predator population that dies. In the model, the overall morality expressed as the
product of the rate and the actual predator population size. So in the absence of
predator, the overall mortality is nil.

Main categories

The term for the predator mortality rate can encompass the net effect of predator
birth and mortality, as well as other mortality enhancing factors such as cannibalism
(including overcrowding) among predators. We list the main components the term for
predator mortality can contain:

1. Fixed mortality. In a given environment, under constant abiotic conditions, this param-
eter is assumed to be fixed, that is independent of predator density. The mortality is a
positive constant:

m(y) = m

where m > 0. The net mortality effect is m(y)y = my.

2. Mortality enhanced by overcrowding. Among territorial species, the mortality rate can
be enhanced to include overcrowding effects per predator. Overcrowding is directly
dependent on the predator population density (Goh, 1976). So the mortality is modelled
as:

m(y) = m+ qy

The net mortality effect on the predator population is m(y) = my + qy2. Figure ??
illustrates the two curves.

The cannibalism term can also saturate at higher predator desnsities; this can happen
as predators reach satiety. The cannibalism function then takes on a logistic shape,
that is dependent in the predator density. A generic formulation is:

m(y, x) = m+ ϕ(y)
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Figure 2.3: Top left. Pest growth rates: Curve i is Malthusian, f(x) = rx. Curve
ii is logistic, f(x) = rx(1 − x/K). Curve iii is logistic with the Allee effect, f(x) =

rx(1−x/K)(x/Ka−1). Middle. Functional response: Curve i is Lotka-Volterra, g(x) = ax.
Curve ii - iv are the Holling Types I - III functions respectively: ∀x ∈ (0, x̄), g(x) =

ax and ∀x ≥ x̄, g(x) = ax̄; and g(x) = ax/(c + x); g(x) = axv/(dxv + c). Curves i-iv
are independent of predator density. Curve v is predation with Beddington-DeAngelis
interference, which is predator-density dependent: g(x, y) = ax/(dx+(by+b0)c). Curve vi
is predation with Arditi-Ginzburg interference, which is ratio-dependent in predators:
g(x, y) = ax/(dx + cy). Bottom right. Mortality rate: Curve i is the natural mortality
rate, m(y) = m. Curve ii represents mortality enhanced by territorial effects, which is
dependent in predator density: m(y) = m+ qy.

29



CHAPTER 2. MAKING A CHOICE

3. Mortality enhanced by prey- and predator-dependent cannibalism. Depending on the
mechanisms underlying cannibalism, and/or modelling paradigms, cannibalism can be
limited by both predator and prey densities (see e.g. Kohlmeier and Ebenhoh (1995)).
So we define this process generically as:

m(y, x) = m+ ϕ(y, x)

See later: Chapter 5 investigates the effect of this generic type of cannibalism on aug-
mentative biological control in detail. �

2.4.2 Asymptotic behaviour

Autonomous prey-predator system

Different hypotheses on the modelling of predator-prey interactions result in different dynam-
ical and asymptotic behaviours (see e.g. Murray (2002)). For example, the classical Lotka-
Volterra predator-prey model (with Malthusian growth rate of the preys, linear mortality of
the predators and mass-action predation),{

ẋ = rx− axy,
ẏ = γaxy −my,

produces sustained fluctuations of the populations densities whose amplitude is dependent
on the initial population densities.

If prey growth is modelled as a logistic mapping rather than a linear one, as in the model
below: {

ẋ = rx
(

1− x

K

)
− axy,

ẏ = γaxy −my,

then, two situations are possible in both of which sustained fluctuations collapse. If the
carrying capacity K is too low, the prey cannot grow sufficiently large to sustain the predator
population. So predators die out while the prey density goes to the carrying capacity. If K
is large, then both prey and predator populations converge asymptotically towards a positive
equilibrium value provided their initial conditions are positive.

Finally, if in addition one models the predation process using a Holling II functional re-
sponse, 

ẋ = rx
(

1− x

K

)
− axy

dx+ 1
,

ẏ = γ
axy

dx+ 1
−my,

the dynamics are even more complex. For low K values, the predator population dies out as
previously. For intermediate K values, a globally stable positive equilibrium between preys
and predators appears. For largeK values however, this equilibrium is destabilised and there
is the emergence of a limit cycle to which the model trajectories converge – a phenomenon
known as “the paradox of enrichment" (Rosenzweig, 1971). The bifurcation diagram displayed
in Figure 2.4 summarises the asymptotic behaviour of this model.

Remark: The intrinsic predator-prey dynamics describe conservation biological control, in
which pest eradication is neither possible nor desirable. The stability of coexisting states
are favoured over that of others. The bifurcation parameter K, the carrying capacity, can
be changed by habitat management. �
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Figure 2.4: The bifurcation diagram describes the asymptotic predator population as a
function of the carrying capacity K for the Rosenzweig-MacArthur model (Rosenzweig,
1971). Thick lines represent stable equilibria, thin ones unstable ones and circles the
extrema of a periodic solution. A transcritical bifurcation occurs at K = K1 and a Hopf
bifurcation at K = K2. From Zhou (2008).

With augmentative control

With an exogenous control - such as periodic predator releases - it is possible to drive the
three systems and stabilise them at a desired state.

Liu et al. (2005a) for instance demonstrate that when a predator-prey system with Malthu-
sian growth and mass action predation is impulsively controlled as in:

ẋ = rx− axy,
ẏ = γaxy −my,

}
t 6= nT

y(nT+) = y(nT ) + µT, n ∈ N
(Mex(i))

the system will reach a periodic pest-free state if µ >
rm

a
2. This solution’s stability implies

that pest eradication is possible provided the release rate is large enough.
Likewise when pest growth is logistic, i.e. the impulsive system is given as:

ẋ = rx
(

1− x

K

)
− axy,

ẏ = γaxy −my,

}
t 6= nT

y(nT+) = y(nT ) + µT, n ∈ N
(Mex(ii))

Liu et al. (2005b) show that the system converges to the pest-free solution if the release rate
satisfies the condition µ >

rm

a
.

Finally, Liu and Chen (2003) calculate for the system with logistic growth and Holling II

2The size of predator releases given by Liu et al. (2005a) corresponds to µT in our model formulation.
So, using their result with the appropriate change of variables, we calculate the condition for pest

eradication as: µT >
rmT

a
, which we see is independent of the release period T . Similar notations are

given by Liu et al. (2005b) and Liu and Chen (2003), which are then adapted for subsequent models
discussed in this section
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predation: 
ẋ = rx

(
1− x

K

)
− axy

dx+ 1
,

ẏ = γ
axy

dx+ 1
−my,

 t 6= nT

y(nT+) = y(nT ) + µT, n ∈ N

(Mex(iii))

the pest-free solution is (locally) stable if - again - µ >
rm

a
.

In fact for the three systems given above, we find that the control needs to satisfy an iden-
tical condition to bring about pest eradication (locally, i.e. provided the initial conditions are
in the neighbourhood of the zero-pest solution). This indicates that the stability condition de-
pends on one or more of the underlying properties inherent to pest growth and predation that
are common to all three systems. A similar analysis ensues for global attractivity: though
the condition is not identical in all three cases, it is possible to apply the same principle and
identify a common trend.

Mailleret and Grognard (2006) thus propose a qualitative formulation satisfied by all
three systems (and more) as below


ẋ = f(x)− g(x)y

ẏ = h(x)y −my

}
t 6= nT

y(nT+) = y(nT ) + µT, n ∈ N
(2.2)

where the process functions satisfy the following hypotheses:

1. f(0) = 0 and f ′(0) > 0;

2. g(0) = 0, g′(0) > 0, and ∀x > 0, g(x) > 0;

3. h(0) = 0 and ∀x > 0, h(x) ≥ 0;

4.
f(x)

g(x)
is upper bounded for x ≥ 0 such that Sg = sup

x≥0

(
f(x)

g(x)

)
.

They are then able to generalise the respective conditions for local asymptotic stability global
asymptotic attractivity as:

µ >
mf ′(0)

g′(0)
and µ > msup

x≥0

f(x)

g(x)
.

It is easy to see that f ′(0) is identical for logistic and Malthusian growth are equal (f ′(0) =

r in both cases). Likewise the term g′(0) is equal for the mass balance term and Holling II
predation (g′(0) = a in both cases). Similarly, the ratio of the pest growth to that of the
predation can be upper bounded for the three combinations of growth-predation functions
given in the models above. Table 2.2 summarises the values this ratio takes.

See later: A full description of the model by Mailleret and Grognard (2006) and details of
analytical methods are given in Chapter 3. �

The first advantage of qualitative modelling approach is that it gives generic results: once
we have identified the stability conditions for the solution of a generic model, the result for a
specific model is recovered simply by plugging the explicit function’s parameters.
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f(x)

rx rx(1− x/K)

g(x)

Mex(i) Mex(ii)

ax
f(x)

g(x)
=
r

a

f(x)

g(x)
=
r

a

(
1− x

K

)
sup
x≥0

f(x)

g(x)
=
r

a
sup
x≥0

f(x)

g(x)
=
r

a

F Mex(iii)
ax

dx+ 1

f(x)

g(x)
=
r

a
(dx+ 1)

f(x)

g(x)
=
r

a

(
1− x

K

)
(dx+ 1)

unbounded sup
x≥0

f(x)

g(x)
=


r

a
, if K ≤ 1/d

r(Kd+ 1)2

4aKd
, if K > 1/d

Table 2.2: ModelsMex(i)-Mex(iii) satisfy the hypotheses listed by Mailleret and Grog-
nard (2006), so both the local and global asymptotic stability condition for the zero-pest
solution can be calculated from their generic result. TheF-combination (not considered
in the examples) gives an unbounded ratio for f(x)/g(x). We discuss the impact on the
global attractivity in Section 3.2.5 of Chapter 3

2.5 Why go qualitative? – II. Field realities

2.5.1 Finding the right compromise

Complexity

Because of their sensitivity to a wide range of biotic as well as abiotic parameters, a complete
model description of a biological system (ecosystem, genetic network, etc) would consist of
an extremely large number of parameters. This presents two problems. First, to write and
parameterise accurately a complete model would be a feat in itself.

Temperature, humidity, and carbon dioxide concentration are known to impact reproduc-
tive cycles, functional responses and mortality of various animals (see e.g. examples given
in Chapter 7 in Cohen (1978), Gerson et al. (2003), and Weeden et al. (2007)). This inherent
complexity introduces process errors which arise if an experiment is to be repeated under
conditions that are not identical. It also motivates some of the criticisms against experiments
in laboratory, that is under highly controlled environments (which could aid in parameteris-
ing the system), in that they do not accurately mimic field or real world conditions. These
features represent the process errors.

Second, even for models of intermediate complexity, there are additional obstacles on the
way: its mathematical analysis is only possible by numerical methods. Such calculations tend
to be computationally intensive.

Noise

Observation errors also contribute to the difficulty in modelling the biological processes in a
predator-prey system.

In many cases, this is due to the problem of scale both with respect to the observer (the
human being) and with respect to the observed patch. For instance, tracking insects that

33



CHAPTER 2. MAKING A CHOICE

may barely be a fraction of millimetres wide over hectares of crops cannot be done with the
same precision as counting larger animals (of size of the same order or larger than humans).
Likewise, measuring fish stock accurately is impossible as the oceans span the planet without
borders: here it is the size of the patch which is extremely big. The problem of scale also
encompasses the idea of refuges where the living organisms hide and remain out of sight of
the observer’s eye. This makes the process of keeping count extremely tricky.

Sensitivity to the observer is also a source of measurement error. An observer can rep-
resent an enemy threat or physically hurt individuals of the species under obervation when
manipulating them. Small organisms can be hurt or killed when manipulated roughly. This is
the case with Frankliniella occidentalis (Pergande) and Amblyseiulus cucumeris (Oudemans)
– which are a major plant pest and one of its biological control agents and only a fraction of
millimetres in length – that are considered in our experiments reported in Chapter 7 (Vitte,
2008). They can also show defensive behaviour provoked by the presence of the observer who
represents a potential enemy threat. Larson (2003) captures the issue best (see Figure 2.5).
This is another source of observation error.

Figure 2.5: Human observation can be disruptive and yield inaccurate results on the
behaviour of living organisms. Larson (2003) provides a humourous take on the be-
haviour of cows in the absence of humans.

Artefacts

Finding the right compromise between complexity and simplicity is one of the aims of math-
ematical modelling (Bernard, 2004)3. Tackling process and observation errors is, however, no

3We can confirm that such a compromise is achieved when predictions from a simple model match
with observed behaviours. Lemesle and Gouze (2008) provides a neat example of how a simple model
is identified to reproduce oscillatory dynamics that were modelled by PDEs, which could not be studied
analytically.
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2.5. WHY GO QUALITATIVE? – II. FIELD REALITIES

mean feat.
Suppose, as biomathematicians, we decide to focus on a set of processes only and describe

them in detail. Here there is still a risk that the analysis yields results that are related to
modelling artefacts (Clark, 1990). Take for example the Holling Type II functional response
(Holling, 1961). The general shape of a data cloud can also be fitted by Ivlev (1961)’s function
which is instead based on satiation of predators. Emlen (1973) (in Real (1977)) offers an
alternative food handling explanation, where the majority of time is spent feeding on either
prey to reach a similar form. In fact, there are also probably other functions that can fit a
noisy data set representing the process at each population size4. Inevitably the use of either
function (here, Holling’s or Emlen’s) or either interpretation of parameters (here, Holling’s or
Emlen’s) will have consequences on the final interpretation of the analytical results from the
model.

This problem also arises when fitting models directly to time-series data on populations.
Because of noise (observation or process errors) in the collected data, models that are struc-
turally different can be fitted - after adequate parameter adjustments - to the same time-
series. Jost and Arditi (2000) (see Figure 2.6) show how data artificially generated with a
prey-only dependent functional response can also be fitted by a model with a ratio-dependent
(that is prey and predator) functional response, and vice-versa5. This indicates a fundamen-
tal difficulty in identifying mechanisms underlying the functional processes that are used to
build a model and interpret the results of its analysis.
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Figure 2.6: From Jost and Arditi (2000): (a) A model with ratio-dependent functional
response can approximately fit data generated by a model with prey-dependent re-
sponse. (b) The model with prey-dependent response can fit data generated by the ratio-
dependent model.

Remark: In order to tackle large models analytically, a biomathematician can also resort to
a variety of model reduction techniques (see e.g. Beck et al. (1996)). These are not always very
straightforward to implement. Other approaches exist: Cohen (1978)’s study of niche spaces
resorts to graphical methods to reduce niche space and food web sizes. As he points out, this
approach does not take into account the dynamical processes between the individual species of
the web. �

4Examples of process data sets are given in Begon et al. (1996). We also illustrate the applications of
our results in Chapter 7 with such data sets

5See also the article by Jost and Ellner (2000) and Jost and Arditi (2001)
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2.5.2 One model to rule them all

Genericity

One way to reduce the risks of modelling artefacts in a simple model is to focus on the general
trends that a process follows with respect to the state variables. Gouzé (1996) for instance
remarked that biological systems were characterised by some general properties: positive
variables, dynamic state changes being dependent on the sum or difference of some positive
processes etc. Such a modelling approach is said to be qualitative or generic; the resultant
model is referred to as a meta-model(D’Onofrio, 2008).

By focusing on general trends, the meta-model smoothes out uncertainties or errors in
parameterising various process functions. As discussed previously in Section 2.4.2 it also
yields results that apply to a wide class of models instead of being specific to one particular
explicitly formulated model. Once we have identified the stability conditions for the solution
of a generic model, the result for a specific model is recovered simply by plugging the explicit
function’s parameters.

Lakmeche and Arino (2000)’s analysis of a generic model inspired by chemotherapeutic
treatment models gives generic results that are applicable to the predator-prey models with
impulsive dynamics (e.g. in this thesis, Negi and Gakkhar (2007)). The use of generic func-
tions is common in chemostat modelling: the substrate consumption is often modelled as
some function of the substrate satisfying some basic properties (see e.g. Bernard (2004)).

Among predator-prey models, qualitative modelling is rare. Nonetheless, there are com-
mon attributes which can be exploited. All pest growth functions are zero at zero pest. We
also note that at worst for a pest control program, marginal pest growth rate at zero pest,
that is the slope of the growth rate, is positive. We can consider, as a basic description for the
pest growth for our model: f(0) = 0 and f ′(0) ≥ 0.

Functional responses are also nil in the absence of pest (because there is no predation);
they are always positive at positive pest numbers. So we can describe the prey-dependent
functional response by these qualities: g(0) = 0 and ∀x, g(x) ≥ 0. Intrapredator interfer-
ence is perceived as a general decrease in the functional response as the predator population
increase (see Buffoni et al. (2005), and Chapter 4 of this thesis). The numerical function is
defined similarly, and so on.

2.6 Summary of model characteristics and aims

2.6.1 Modelling features

Throughout this thesis, we use qualitatively-defined impulsive models to describe augmenta-
tive control programs. They are characterised by the four features below:

Bi-dimensionality. We assume that we are at the onset of a pest invasion and that crops
or plants (the primary resource in our ecosystem) are in abundance. This means we
make the assumption that the crop is implicit in the pest growth rate function. Unless
stated otherwise, we consider that the predator species is a specialist, that is it feeds
exclusively on the pest species. In the absence of the pest, the predators cannot sustain
themselves and die (or leave the patch we model).

Implicit spatial effects. Second, we consider a homogeneous medium, the pest and preda-
tor populations are uniformly distributed across the crop or in specific ‘local’ patches
- the size of which depend on the respective species mobility. Spatial effects such as
migration to and from such patches are then implicitly taken into account in the net
pest growth and predator mortality respectively else as an extension of the patch as its
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populations spread uniformly. This allows us to use a lumped-parameterisation deter-
ministic formulation.

Qualitative functions. Third, we use a qualitative description for the predator-prey pro-
cesses (pest growth, trophic interaction, and predator mortality). This has two uses: on
one hand it tackles uncertainty, for instance, it evens out fluctuations that can be due
to abiotic factors; on the other hand, it allows us to obtain results that are valid for a
wider class of function. As will be shown throughout our work, this approach already
yields insightful results on various biological control systems in addition to reducing
the risk of modelling artefacts (which arise when a model is too complex and explicit).
More details are available in subsequent chapters where a new model is introduced.

Fixed-size periodic releases. The control of the pest is also punctuated by the sudden
surge in the predator population occurring at a predator release. Releases differ from
the intrinsic predator-prey dynamics in that they are not continuous but discrete in
time. We consider that the size of the predator population injected into the ecosystem
at each release instant is fixed, independently of the pest population size. One key as-
pect of our work is that we define the size of a release as the product of a release rate
and the release period. The release rate is the size of the predator population released
per unit time and the period is the fixed interval between two releases. This modelling
choice allows for an efficient comparison between deployment strategies; indeed, when
the release rate is fixed and the influence of the period is studied, no bias due to a vary-
ing number of released predators per time-unit is introduced into the analysis of the
influence of the period of release.

Remark: Our choice with respect to other modelling approaches is motivated by the aim of
our model (what problem we seek to solve or what we seek to investigate and why), as well as
the practicality of the chosen framework (namely the mathematical tools that are available).
The biological control literature however spans other models which focus on other aspects of
the ecosystem.

Spatial effects for instance are usually modelled by partial differential equations
that track the population dynamics in time as well as in space (see e.g. Sherratt et al. (1997)).
To include spatial effects within the ordinary differential equations (ODE) framework, Hanski
(1998) developed the metapopulation model, which consists of visualising a landscape as a
set of patches or islands, within which populations are perfectly homogeneous (see Figure 2.7).
The movement across space is determined by migration from one patch to the other. Shea and
Possingham (2000) tried to predict the success of repeated predator releases using the metapop-
ulations approach: they were able to provide a numerical analysis using stochastic dynamical
programming methods to assess the success of establishment of predators (the invasive species)
within each patch.

The focus of these models is on invasion dynamics; in fact, the metapopulation approach
has led in particular to adaptative dynamics theory, which defines whether or not a species
or mutant can take over a current local population based on how it uses the environmental
resources surrounding it (see e.g. Diekmann (2004) for an introduction).

When biological control is carried out by parasitoids, the prey population can be stage-
structured in terms of susceptibles and infected. Some predators also attack the prey prefer-
entially at specific growth stages. The pest population can then be structured into vulnerable
and non-vulnerable stages. Anderson and May (1981); May and Hassell (1988) give examples
of such stage-structured models.

Many invasive species also undergo cyclic booms or cyclic increases in population, and this
effect can be incorporated into a biological control model (May and Hassell, 1988; Vaidya and
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Theoretical Ecology Metapopulations Ecology Landscape Ecology

Figure 2.7: Hanski (1998) formulated the metapopulations approach to bridge the gap
between theoretical ecology (which consides uniform density and homogeneous popula-
tion interactions across landscape) and landscape ecology (which focuses on landscape
features and not populations themselves). By considering populations spread in dif-
ferent patches and the effects of migrations, metapopulation models take into account
implicitly the physical barriers imposed by landscape from one group (one patch) to the
other; however within each patch, populations are assumed to be homogeneous.

Wu, 2008). Introducing delays in the numerical response seems to result in a better fit in the
case of predator-prey processes when the functional response shows predator dependence (Jost
and Ellner, 2000).

Stage-structuring, cyclic booms and delays add complexity to a model. The first two can
be ignored because they do not match to the context and the species considered in this thesis.
Population booms which usually cycle every 5-7 years (May and Hassell, 1988) are not visible
for the time horizon that we consider in our biological control program (usually one season).
So we can safely assume that the pest species considered in our model reproduce continuously,
and are consumed continuously by their predators. On this time horizon as well as across the
patch considered, we can also assume that the pest growth is continuous across the population,
i.e. does not take place in cohorts, so we can model the pest population as one variable. We
also assume that the predator reproduces quickly relative to the pest growth - as is the case for
many voracious predaceous mites. Ignoring this delay also allows us to obtain first analytical
estimates for stability conditions as outlined in this thesis.
�

2.6.2 Analysis
Throughout our work, we consider that the plantation to be protected from pest invasions
consists of crops with very low or zero tolerance to pest. Examples include greenhouse crops
with high cosmetic value. Alternatively, plants attacked by highly voracious invertebrates,
which cause considerable damage even at low numbers, would have similarly low tolerance
levels to their invasions.

In the biological control program considered in our work, pest eradication is therefore
desirable. Mathematically, we will therefore be interested in the following properties of the
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system:

The zero-pest solution. The existence of this solution, which we prove for each of the model
we study, implies that provided some conditions are respected (see below), the control
program may bring the pest population to zero.

The local and global stability of the zero pest solution. As far as possible, we formu-
late the conditions for the local (resp. global) asymptotic stability as a minimal bound
on the release rate. This rate is the first control entry we have in our system. When
respected, these conditions suppress pest invasions and deviations in the predator pop-
ulation from the periodic solution are compensated for. The global condition applies to
all starting values of the pest-predator population, as much to any pest invasion size as
to any predator population crash. The local condition caters for only ‘small’ fluctuation.

The dependence of the stability condition on the release period. This provides us with
a second control feature, which allows us to identify the strategy of releases that:

1. requires the lowest release rate for pest eradication;

2. provides, for a given release rate, the fastest local convergence to the pest-free
solution;

3. brings about the lowest risk of pest damage on a crop.
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3
Groundwork: a simple model and analytic

methods

“Draw a magical circle around them,
So that neither blight nor mildew,
Neither burrowing worm nor insect,
Shall pass o’er the magic circle. ”
– From The Song of Hiawatha,
by H W Longfellow (1807–1882).

Overview

The aim of this Chapter is twofold: firstly, it introduces our bench model. This model depicts
the fundamental biological and mechanical processes involved in an augmentative control
program. Secondly, through the analysis of the zero-pest solution, this chapter presents in
detail the mathematical concepts underlying the corpus of our work. We highlight the key
steps involved in this analysis in order to allow the reader to grasp the underlying dynamics
of the system.

Keywords: impulsive control, stability analysis, fixed-point transformation

Organisation of this chapter:
We proceed as follows.

Section 3.1 introduces a simple augmentative control model. This section also presents the
notations used throughout this thesis. Moreover, based on the modelling premises, we
define a set of general hypotheses on the functions involved in the system, which unless
stated otherwise, apply to the variants of this model.

Section 3.2 deals with the existence and stability of the zero-pest or pest-free solution. This
state is of interest to us because it represents mathematically the target of our pest
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control program: pest eradication. Thus in this section, we first give a preview of the
effect of applying instantaneous control to a system - or hybridising it - to obtain some
insight on this solution’s behaviour. In particular, we show the effect of the control on
the fixed point of the intrinsic predator-prey dynamics. Then, we show, using the simple
model as an example, how we may prove the existence of the pest-free solution of an
impulsive control model. We also show - though this may not be possible for all models
- how we explicitly calculate it. The criterion for pest eradication corresponds to the
stability conditions of the zero-pest solution, which we express as a minimal condition
on the predator release rate.

Section 3.3 includes a practical interpretation of our results.

The results obtained on this simple model, as well as the analytical methods used, provide
the benchmark against which we compare those obtained for three of its variants studied
subsequently in this thesis.

3.1 A simple model

In this thesis, we use as bench model the system presented by Mailleret and Grognard (2006).
It depicts only two dimensions, namely the pest and the predator populations, denoted as x
and y respectively. 1 We can represent it schematically by Figure 3.1.

Pest
x y

µT

h(x)y
myf(x)

g(x)y

Predation+
+

+

- -
Predator

Pest 
uptake

Pest
growth

Predator
releases

Predator
mortality

Figure 3.1: In the basic model for augmentative biological control, the biological pro-
cesses considered are pest growth, the trophic responses, and predator mortality. The
functional and numerical responses depend on pest density only. The mortality rate per
predator is also constant. These processes are all continuous and are therefore repre-
sented by continuous arrows. By comparison, the predator releases occur at discrete
moments in time. The broken arrow implies that it brings an instantaneous change
(here, a surge) in the predator population size.

The intrinsic predator-prey dynamics are considered to be continuous and are therefore
described using a pair of ordinary differential equations. By comparison, the predator re-
leases occur at discrete instants in time, at which they cause a surge in the predator popula-
tion. They are described by a discrete component. The resulting model is said to be hybrid,
impulsive or semi-discrete because it takes into account both dynamical regimes. We write it
as:

1The crop, on which the pest feeds, is incorporated within the pest growth.
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
ẋ = f(x)− g(x)y

ẏ = h(x)y −my

}
t 6= nT

y(nT+) = y(nT ) + µT, where n ∈ N
(M)

with non-negative initial conditions x0 and y0 at time t0.

Continuous component (biological processes)

The function f(x) represents the pest growth rate. The functional response g(x) is the number
of pests killed by predator or the decrease per predator in pest numbers due to predation. The
numerical response h(x) is the increase in predator biomass due to the consumed prey per
predator. Recall that these functions are also referred to as trophic functions (see Chapter
2 and for instance Buffoni et al. (2005)). The predator mortality rate is represented by the
positive constant m.

The functions f(x), g(x) and h(x) are all locally Lipschitz continuous for x, y ≥ 0: they
have finite slopes and the solutions to the system are unique (Coddington and Levinson,
1955).

The growth and trophic functions are defined by biologically sensible properties. The first
set of properties (General Hypotheses (H1)–(H3)) apply to all the models in this thesis. Note
that the prime indicates the derivative of functions with respect to their argument.

General hypotheses
Pest growth at zero pest:

f(0) = 0 and f ′(0) > 0 (H1)

Functional response:

g(0) = 0, g′(0) > 0, and ∀x > 0, g(x) > 0; (H2)

Numerical response:
h(0) = 0 and ∀x > 0, h(x) ≥ 0 (H3)

Through Hypothesis (H1), we consider that there is no spontaneous generation of the pest
and that the pest population does not suffer from Allee effect.

The functional response is considered, unless stated otherwise, to be prey-dependent only.
Hypothesis (H2) implies that there is no predation in the absence of pest, and that predation
becomes immediately positive upon a pest invasion. This qualitative formulation encom-
passes the Holling Types I and II functions, as well as Holling III-like functions if we set g′(0)

to be arbitrarily low.
The numerical response is also considered to be prey-dependent only. Hypothesis (H3)

implies that there is no predator population growth in the absence of pests, and that predation
never has a negative effect on the predator.

We define separately the set of properties that are specific to the model presented in a
given chapter or section. Here, Hypothesis (H4)) is specific to Model (M).

Specific hypothesis
Ratio of pest growth to functional response:

f(x)

g(x)
is upper bounded for x ≥ 0 such that Sg = sup

x≥0

(
f(x)

g(x)

)
. (H4)

Hypothesis (H4) means that there is no value of x where the pest growth will overwhelm-
ingly dominate the predation – which would otherwise make biological control impossible.
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Discrete component (releases)

The augmentative releases are described by the third equation in Model (M), with the +-
superscript indicating the instant right after a release. The number of predators injected at
these instants is defined as the product of the predator release rate µ and the release period
T .

Written thus, we decouple the two characteristics of the biological control strategy to
implement namely: the number of predators we are to invest in per unit time and, for a given
rate, how to distribute this number over time. By doing so, we are able to compare different
biological control strategies in terms of the release size and release frequency that involve
the same overall number of predators.

3.2 Mathematical analysis of the simple model

3.2.1 A local preview: with or without continuous control

We may obtain some insights on the system’s behaviour if we consider two regimes: one under
continuous control and one without it. We write this model as:{

ẋ = f(x)− g(x)y

ẏ = h(x)y −my + µ
(3.3)

We analyse the local behaviour of the system – setting µ > 0 gives the controlled local trajec-
tories while µ = 0 corresponds to the uncontrolled system. At equilibrium,{

f(x)− g(x)y = 0

h(x)y −my + µ = 0
(3.4)

From Hypotheses (H1)–(H3) on the system functions, one of the solutions of f(x)− g(x)y = 0

is x = 0. Setting x = 0 in the second equation of (3.4), we calculate the zero-pest equilibrium
(x∗, y∗) as:

(x∗, y∗) =
(

0,
µ

m

)
(3.5)

The Jacobian matrix, which describes the local dynamics of the system (see e.g. Dieudonné
(1960)), about this fixed point is:

D =

(
f ′(0)− g′(0)y∗ 0

h′(0)y∗ −m

)
In the absence of control, µ = 0, so the system equilibrium is the origin. The first eigen-

value of the Jacobian matrix is f ′(0) which is positive, so this point is a saddle point - with,
in fact, trajectories decreasing locally along y and increasing in x.

When µ > 0 however, that is control is on, the equilibrium point is positive in y. Further-
more, instead of a saddle point, because of the control entry available through y∗ = µ

m , this
equilibrium point can be stabilised by providing a sufficiently large µ

µ >
mf ′(0)

g′(0)
, (3.6)

which brings the eigenvalue f ′(0) − g′(0)y∗ to a negative value. The control µ in fact drives
the pest population to zero while maintaining a positive predator population.

Figure 3.2 illustrates the two trajectories of the autonomous and the controlled systems
respectively.
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Controlled
trajectory

Equilibrium
point

Autonomous
system 
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Figure 3.2: When the predator population is not replenished, the pest population will
tend to increase while the predator population decreases: the origin is a saddle point. If
the predator release rate is high enough, a locally stable zero-pest equilibrium exists at
(0, µ/m). The arrows show the local trajectories over the state space.

Though this is an inadequate mathematical construct, we can imagine the effect of peri-
odic predator releases in an augmentative control program as causing the system to switch
alternatively from a controlled regime to the uncontrolled one. Upon a release (provided µ

is large enough), the predator population momentarily increase and our calculations show
that the system trajectories will be driven towards a positive-predator, zero-pest equilibrium
point. Conversely, between releases the local predator dynamics run uncontrolled (i.e. µ = 0)
towards the origin. This would suggest the existence of a time varying zero-pest solution of
the system (along the predator axis).

Releases are however discrete or instantaneous events compared to the intrinsic predator-
prey dynamics. Thus using a purely continuous modelling approach, we cannot calculate
the form of the zero-pest solution. Hybridising the system as (M) introduces the release
period as a parameter of the model while giving a more accurate description of the mixed
continuous-discrete dynamics. This in fact allows us to evaluate the zero-pest solution, then
assess the way in which the release rate required for pest eradication would depend on the
release period. Note that when the release period T tends to 0, Model (M) reduces to the
continuously controlled model (3.4).

3.2.2 Positivity of the system and existence of the zero-pest solution

As stated in Section ??, positivity is an important property of biological models, without which
the practical relevance of a given model can be put in doubt. We should then analyse this for
Model (M). A classical way of showing positivity consists in using Theorem 1 by showing that
the solutions cannot cross the boundaries of the positive orthant. In order to do that, let us
consider the boundary where x = 0, where we we have:{

ẋ = 0

ẏ = −my
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which ensures invariance of this boundary. When y = 0, we have{
ẋ = f(x)

ẏ = 0

which also ensures invariance of the boundary. Had we been in a situation where we only
were considering continuous dynamics, Theorem 1 would have indicated that our system is
positive. However, we must also take into account what happens at the impulses; since the
impulses (x(nT ), y(nT )) −→ (x(nT ), y(nT ) + µT ) also ensure the invariance of the positive
orthant, system (M) is positive.

We now define the zero-pest solution in Proposition 1, then describe in detail the calcula-
tions leading to it in the proof.

Proposition 1 (Existence of the pest-free solution)

(xp(t), yp(t)) = (0, y∗e−m(t mod T )) (3.7a)

where

y∗ =
µT

1− e−mT
(3.7b)

is a periodic solution of Model (M).

Proof: To prove the existence of the pest-free solution, we proceed as follows:

Step 1. Describe the zero-pest subsystem. In the absence of pests, System (M) simplifies
to 

ẋ = 0

ẏ = −my

}
t 6= nT

y(nT+) = y(nT ) + µT, where n ∈ N

Within this subsystem, the pest-dynamics solution x = 0 is trivial.

The predator population is periodically forced by the augmentative releases (the impul-
sive component), between which it decays due to its natural mortality (the continuous
component). Steps 2-4 detail how to compute yp under these hybrid dynamics.

Step 2. Calculate the sequence of post-release y-values. Let the initial time be t = nT+.
Until the next release, t ∈ (nT+, (n+ 1)T ) and we integrate the continuous y-dynamics
to evaluate y(t) as:

y(t) = y(nT+)e−m(t−nT ) (3.8)

At the end of the release period, t = (n+ 1)T , predators are released. So we obtain the
sequence:

y((n+ 1)T+) = y(nT+)e−mT + µT (3.9)

Step 3. Calculate the limit of convergence of the sequence. We note that the coefficient

|e−mT | < 1,

so the linear sequence (3.9) has an equilibrium to which it converges. By setting y((n+

1)T+) = y(nT+) = y∗ in Equation (3.9), we calculate this limit as:

y∗ =
µT

1− e−mT
. (3.10)
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Step 4. Formulate the periodic solution. We recall that between two releases, the con-
tinuous dynamics are determined by ẏ = −my and the predator population value at the
start of the release period. The latter is fixed by the limit y∗ previously calculated in
Step 3. This implies that, once y∗ reached, the predator population will follow a peri-
odic pattern. This periodic pattern is calculated by simply substituting y∗ for y(nT+) in
Equation (3.8) and replacing (t−nT ) by (t mod T ) for a generalisation to all continuous
intervals. Thus:

yp(t) = y∗e−m(t mod T ),

as given in (3.7a).

�

The limit y∗ of the post-release sequence (calculated as (3.10)) can be seen as analogous
to the fixed point calculated in (3.4). Readers will note however, due to the impulsive model
formulation, y∗ (3.10) is parameterised by the release period T . Incidentally, in the limit that
T → 0, that is in the limit that releases become continuous,

lim
T→0

µT

1− e−mT
=

µ

m
,

that is, we recover the value in (3.4).

3.2.3 Stability of the zero-pest solution
We state the conditions required for the stability of the zero-pest solution in Theorem 2 (also
given by Mailleret and Grognard (2009)). We then describe in its proof details of the analytic
method used to reach this result.

Theorem 2 (Stability of the zero-pest solution) Let µ(Z) = mZ. The zero-pest solution
of Model (M) defined in (3.7a) is locally asymptotically stable (LAS), if and only if

µ > µ

(
f ′(0)

g′(0)

)
(3.11a)

If, in addition, the following condition is satisfied,

µ > µ (Sg) (3.11b)

the solution is globally asymptotically stable (GAS) .

Proof: We calculate first the global attractivity condition in Steps 1-5 below. Under this
condition, all trajectories of the system starting in the positive orthant converge asymptoti-
cally to the zero-pest solution. We then compute the local stability condition in Step 5 (Op-
tions 1 and 2). When both the global attractivity and the local stability conditions hold,
Step 7 shows how the global asymptotic stability is established, hence the proof completed.
This is a classical method of analysis (see e.g. Khalil (2002) for a textbook reference).

Step 1. Describe the deviations systems dynamics. The deviation coordinates represent
the difference between the actual state pair and the reference periodic solution (0, yp).
We define these deviation coordinates as:

x̃(t) = x(t)− xp(t) = x(t) and ỹ(t) = y(t)− yp(t). (3.12)

Subjected to System (M) dynamics and Hypotheses (H1) and (H2), the x̃-deviation
varies as:

˙̃x = f(x)− g(x)y = f(x̃)− g(x̃)(y + yp)
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In a similar way, under Hypothesis (H3) and noting that xp = 0, the continuous ỹ-
dynamics will vary as:

˙̃y = h(x)y −my − h(xp)yp +myp
= h(x̃)(ỹ + yp)−m(ỹ + yp) +myp
= h(x̃)(ỹ + yp)−mỹ

The impulsive component of the ỹ dynamics vanishes because:

ỹ(nT+) = y(nT+)− yp(nT+)

= y(nT ) + µT − yp(nT )− µT
= y(nT )− yp(nT )

= ỹ(nT )

The dynamics in these new coordinates are:{
˙̃x = f(x̃)− g(x̃)(ỹ + yp)
˙̃y = h(x̃)(ỹ + yp)−mỹ (3.13)

with initial conditions assigned as x̃0 and ỹ0 at t0. Note that x̃0 is non-negative because
x = x̃+ xp ≥ 0, while ỹ0 ≥ −max(yp) = −y∗ since y = ỹ + yp ≥ 0.

Step 2. Divide the continuous ˙̃x-dynamics by an appropriate function, then inte-
grate over the state and time domains. For reasons which will be apparent shortly
(in the next step), this function is chosen positive.

For this simple model, we choose this function as g(x̃). From Hypothesis (H2), it is a
positive function in x̃:

∀x̃ > 0, g(x̃) > 0.

Dividing the ˙̃x-dynamics equation throughout by g(x̃) and integrating from t0 to t, we
have: ∫ t

t0

˙̃x

g(x̃)
dτ =

∫ t

t0

[
f(x̃)

g(x̃)
− (ỹ + yp)

]
dτ. (3.14)

We note that ˙̃x dt = dx̃, so the left-hand side integral of (3.14) can be calculated on the
x̃ domain as: ∫ t

t0

˙̃x

g(x̃)
dτ =

∫ x̃

x̃0

1

g(s)
ds;

We can then simply write the following relationship between the state and time do-
mains: ∫ x̃

x̃0

1

g(s)
ds =

∫ t

t0

[
f(x̃)

g(x̃)
− (ỹ + yp)

]
dτ. (3.15)

Step 3. Identify the criterion for the convergence of x̃ to zero. We would like to iden-
tify what happens with the left-hand side of (3.15) when x̃ goes to zero. For a given x̃0,
since g(x̃) is locally Lipschitz continuous from Hypothesis (H2), there exists r > 0 such
that g(x̃) ≤ rx̃ for all x̃ ∈ [0, x̃0]; therefore,

1

g(x̃)
≥ 1

rx̃
.

Furthermore, because these functions are positive, the integrals over the state-domain
when x̃ < x̃0 compare as: ∫ x̃

x̃0

1

g(s)
ds ≤

∫ x̃

x̃0

1

rs
ds (3.16)
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When x̃→ 0+,

lim
x̃→0+

∫ x̃

x̃0

1

rs
ds = −∞.

Due to the comparison in (3.16), this implies that (again, in the limit that x̃→ 0+):

lim
x̃→0+

∫ x̃

x̃0

1

g(s)
ds = −∞.

Moreover, since g(x̃) > 0 for all x̃ > 0, the integral
∫ x̃

x̃0

1

g(s)
ds is finite for all x̃ > 0.

Therefore, if we can prove that

lim
t→+∞

∫ x̃(t)

x̃0

1

g(s)
ds = −∞, (3.17)

then we can deduce that lim
t→+∞

x̃ = 0, that is x̃ converges asymptotically to zero. Equa-

tion (3.17) thus provides the criterion for the convergence of x̃ to zero.

Step 4. Using appropriate bounds on system, identify the condition for the conver-
gence of x̃ to zero. From (3.15), the criterion for the convergence of x̃ to zero in (3.17)
is equivalent to:

lim
t→+∞

∫ t

t0

[
f(x̃)

g(x̃)
− (ỹ + yp)

]
dτ = −∞. (3.18)

We make a small digression to identify the bounds on the elements of the integrand in
Equation (3.18).

i. First, we recall Hypothesis (H4),

sup
x̃≥0

f(x̃)

g(x̃)
≤ Sg. (3.19)

This upper bound is time-independent.

ii. Second, from Hypothesis (H3), ∀x, h(x) ≥ 0, we can bound the ˙̃y-dynamics as:

˙̃y ≥ −mỹ (3.20)

which means that, from a simple comparison Theorem (Khalil, 2002) :

ỹ(t) ≥ ỹ0e
−m(t−t0).

Furthermore, since ỹ + yp = y, and that (from the positivity of the system), y ≥ 0,
we have:

∀ t, ỹ(t) ≥ − max
t∈[0,T ]

yp(t) = −y∗.

Thus, ỹ0 ≥ −y∗. We can thus calculate a finer bound on ỹ as:

ỹ(t) ≥ −y∗e−m(t−t0). (3.21)

From the exponential form of the lower bound on ỹ(t), we can deduce that its
integral over time will be lower bounded by a constant, which we calculate as

lim
t→+∞

∫ t

t0

ỹ(τ)dτ ≥ lim
t→+∞

∫ t

t0

−y∗e−m(τ−t0)dτ

= −y
∗

m
limt→+∞(1− e−mt)

= −y
∗

m
.

(3.22)
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Based on bounds (3.19) and (3.21), we split the time domain and the integrand in Equa-
tion (3.18) as2:∫ t

t0

[
f(x̃)

g(x̃)
− (ỹ + yp)

]
dτ

=

(∫ (b t0T c+1)T

t0

+

∫ b tT cT
(b t0T c+1)T

+

∫ t

b tT cT

)[
f(x̃)

g(x̃)
− yp

]
dτ −

∫ t

t0

ỹ(τ)dτ

The first and third integrals are upper bounded by SgT . In the limit that t → +∞, the
fourth integral is also upper bounded (see Equation (3.22)).
We focus on the second integral which, in that limit, can diverge. Using (3.19), we then
upper bound the integrand with a T -periodic expression. We can express the integral
as a multiple of smaller integrals each spanning a period T . Because of the periodicity,
we can choose to integrate these smaller integrals over t ∈ [0, T ] for simplicity.∫ b tT cT

(b t0T c+1)T

[
f(x̃)

g(x̃)
− yp

]
dτ ≤

∫ b tT cT
(b t0T c+1)T

[Sg − yp(τ)]dτ

=

b tT c−1∑
n=b t0T c+1

∫ (n+1)T

nT

[Sg − yp(τ)]dτ

=
(
b tT c − b

t0
T c − 2

) ∫ T
0

[Sg − yp(τ)]dτ

The divergent term is the number of smaller integral required to make the larger inte-
gral, i.e.

(
b tT c − b

t0
T c − 2

)
. For the attractivity criterion (3.18) to be satisfied, it suffices

that: ∫ T

0

[Sg − yp(τ)] dτ < 0 (3.23)

We then evaluate the integral of the predator solution yp, which is parameterised by
the release rate µ (see solution (3.7a)), and express Condition (3.23) as a lower bound
on the release rate. Resuming our calculations, Condition (3.23) is equivalent to:∫ T

0

yp(τ) dτ > SgT

⇔ µT

1− e−mτ

∫ T

0

e−mτ dτ > SgT

⇔ µT

1− e−mτ

(
1− e−mT

m

)
> SgT

⇔ µ > mSg

which is the condition (3.11b).

Step 5. Establish convergence of ỹ to zero when attractivity condition is satisfied.
Since x̃ goes to zero, there exists a finite time tf after which h(x̃) ≤ m

2 for all times.
After this time, when ỹ > 0 we have

˙̃y = h(x̃)(yp(t) + ỹ)−mỹ ≤ h(x̃)yp(t)−
m

2
ỹ < 0

2For visual clarity, the following notation is used to split an integral into k integrals:∫ B

A

F (t)dt =

(∫ n1

A

+

∫ n2

n1

+ · · ·+
∫ B

nk

)
F (t)dt

where (∫ n1

A

+

∫ n2

n1

+ · · ·+
∫ B

nk

)
F (t)dt =

∫ n1

A

F (t)dt+

∫ n2

n1

F (t)dt+ · · ·+
∫ B

nk

F (t)dt
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Since h(x̃)yp(t) goes to zero as t goes to infinity, so does also ỹ. Conversely, suppose that
ỹ < 0: following a similar reasoning, we obtain, when t > tf ,

˙̃y = h(x̃)(yp(t) + ỹ)−mỹ ≥ h(x̃)yp(t)−
m

2
ỹ > 0

Once again, since h(x̃)yp(t) goes to zero as t goes to infinity, so does also ỹ. At this step,
we can conclude that the solution (0, yp(t)) is globally attractive for Model (M) provided
criterion (3.18) holds.
We now need to investigate the local stability of this solution. Two different methods
can be used.

Step 6 (Option 1). Identify the Floquet multipliers of the system by calculating the
discrete linearised mapping of (x̃, ỹ)(nT+) onto (x̃, ỹ)((n + 1)T+). The local sta-
bility of a periodic solution of a nonlinear system is established using Floquet Theory
(Amabili, 2008).
Recalling from Hypotheses (H1)–(H3) that

f(0) = 0, g(0) = 0, and h(0) = 0,

the first-order dynamics in x̃ and ỹ of System (M) is:{
ẋ = (f ′(0)− g′(0)yp)x̃
˙̃y = h′(0)ypx̃−mỹ (3.24)

In matrix form, we can write the system dynamics as:(
˙̃x
˙̃y

)
=

(
f ′(0)− g′(0)yp(τ) 0

h′(0)yp −m

)(
x̃

ỹ

)
(t)

Solving for the post-release mapping (which we write in matrix form):(
x̃

ỹ

)
((n+ 1)T+) = B

(
x̃

ỹ

)
(nT+)

where the matrix

B =

 e
∫ (n+1)T+

nT+ [f ′(0)−g′(0)yp(τ)]dτ 0

‡ e−m
∫ (n+1)T+

nT+ dτ

 (3.25)

The term ‡ is not calculated since it is not needed for our analysis. The integrands being
T -periodic, we can set n = 0 for convenience. The mapping matrix is lower-triangular,
so the spectral radius is the largest of its two diagonal terms (see e.g. Khalil (2002) for
the stability of discrete multidimensional systems). We simply require first that:∣∣∣e−m ∫ T0 dτ

∣∣∣ < 1, (3.26)

that is,
∣∣e−mT ∣∣ < 1. This is trivially satisfied since m > 0. Secondly we require that:∣∣∣e∫ T0 [f ′(0)−g′(0)yp(τ)]dτ

∣∣∣ < 1

⇔
∫ T

0
[f ′(0)− g′(0)yp(τ)]dτ < 0

(3.27)

On dividing by g′(0) throughout, this inequality is of the same form as the global sta-
bility condition (with Sg replaced by f ′(0)/g′(0)). We then obtain as condition:

µ >
mf ′(0)

g′(0)
(3.28)
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which is the LAS condition (3.11a) for System (M); this shows that (0, yp(t)) is stable iff
(3.11a) holds.

The second method that can be used to show this is detailed now.

Step 6 (Option 2). Alternatively, quote directly Theorem 1 from Lakmeche and Arino
(2000). One of the components of the trivial solution being zero, the periodic linear
mapping is lower triangular (see matrix B (3.25)). Using this feature, Lakmeche and
Arino (2000) generalise the calculation of the Floquet multipliers of a two-dimensional
qualitatively defined periodic impulsive system. They also provide the local stability
condition for the trivial solution. We adapt their notation thus:

ẋ = F2(y, x)

ẏ = F1(y, x)

}
t 6= nT

x(nT+) = θ2(y, x)

y(nT+) = θ1(y, x), where n ∈ N.

(L)

We reformulate Theorem 1 from Lakmeche and Arino (2000) (for the complete proof, we
refer the reader to Lakmeche and Arino’s paper) as:

Theorem 3 (LAS conditions, from Lakmeche and Arino (2000))
The zero-pest solution (0, yp) of System (M) is LAS if and only if∣∣∣∣∣ ∂θ1

∂y

∣∣∣∣
(y,x)=(yp(T ),0)

∣∣∣∣∣ exp
(∫ T

0

∂F1

∂y

∣∣∣∣
(y,x)=(yp(τ),0)

dτ

)
< 1 (L1)

and ∣∣∣∣∣ ∂θ2

∂x

∣∣∣∣
(y,x)=(yp(T ),0)

∣∣∣∣∣ exp
(∫ T

0

∂F2

∂x

∣∣∣∣
(y,x)=(yp(τ),0)

dτ

)
< 1. (L2)

Using this notation for system (M), we have:
ẏ = F1(y, x) = h(x)y −my
ẋ = F2(y, x) = f(x)− g(x)y

}
t 6= nT

y(nT+) = θ1(y, x) = y(nT ) + µT

x(nT+) = θ2(y, x) = x(nT ), where n ∈ N.

(3.30)

Applying Theorem 3, we compute from (L1) the trivial condition m > 0 while (L2) yields
the LAS condition (3.11a).

Step 7. Show that the LAS condition completes the proof for global asymptotic sta-
bility. The expression µ(Z) is increasing in Z:

∂µ

∂Z
= m > 0.

We note that
f ′(0)

g′(0)
= lim

x→0

f(x)

g(x)
, so that, from its definition in Hypothesis (H4), Sg ≥

f ′(0)

g′(0)
. Consequently,

µ(Sg) ≥ µ
(
f ′(0)

g′(0)

)
.

When the global attractivity condition and the LAS condition are satisfied, the proof for
global asymptotic stability is complete. In this simple model, when µ > µ(Sg), the LAS
condition is de facto satisfied, which shows that this is a sufficient condition for GAS.
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3.2. MATHEMATICAL ANALYSIS OF THE SIMPLE MODEL

�

Remark: The function µ represents the minimal release rate that would ensure pest eradica-
tion. In this simple model, the minimal release rate does not depend on the release period T .
We discuss the insights this hybrid formulation gives us for the simple Model (M) in Section
3.3 of the present chapter. �

3.2.4 A note on the computation of the global attractivity condition
Throughout this thesis, in our calculation of the global attractivity conditions, we will do as
in Steps 1-5 and divide the ˙̃x-dynamics throughout by a Lipschitz continuous function Ψ(x̃)

as:
˙̃x

Ψ(x̃)
=
f(x̃)

Ψ(x̃)
− g(.)

Ψ(x̃)
(ỹ + yp) (3.31)

Through similar arguments as in the previous section, in order to show the convergence of x̃
to zero, we will then need to establish the divergence:

lim
t→+∞

∫ x̃(t)

x̃0

1

Ψ(s)
ds = −∞ (3.32)

by using the right-hand side of (3.31), but also other terms in some cases like the one exposed
in Chapter 6, where harvesting introduces impulses that do not disappear upon the change
of coordinates.

A model-specific requirement will then be that there is an upper bound on the ratio of the

pest growth to the Ψ(x)-function: ∀x ≥ 0,
f(x)

Ψ(x)
≤ SΨ, where SΨ = sup

x≥0

f(x)

Ψ(x)
, and still be able

to say something about
g(.)

Ψ(x̃)
, so that the condition will depend on the analysis of the integral

of yp(t), which contains most of the information about the choice of release rate.

Remark: We may remark here from this brief description of our methodology that the global
stability condition will depend on two main features:

1. the choice of the function Ψ(x̃), and the consequent upper bound on f(x̃)/Ψ(x̃) – this
will also determine how refined the minimal bound on the release rate required for pest
eradication will be;

2. the y dynamics, notably on the integration of yp, which mainly indicates the influence of
the release rate.

�

3.2.5 Interpreting the LAS and GAS conditions
The LAS condition applies to a local neighbourhood of the pest-free solution: this means that
the LAS minimal release rate in (3.11a)

µ > µ

(
f ′(0)

g′(0)

)
= m

f ′(0)

g′(0)

is able to eradicate only small pest invasions. It is also resilient to small deviations from the
periodic predator solution due to small predator migrations or sudden depensations related to
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environmental factors. This rate would work best in a preventive context, that is to maintain
a sentry predator population irrespective of pest detection so that an invasion is suppressed
at its onset.3

The GAS condition (3.11b)
µ > µ(Sg) = mSg

extends the basin of attraction covered by the LAS condition to the whole (x, y) domain: this
means that when the release rate respects this condition, any starting value of (x, y) will
converge to the pest-free solution. This rate therefore can provide control even as a curative
measure.

Interestingly, the GAS condition is a generalisation of the LAS condition in the limits
of some function relation (here, in particular this relation is the ratio of the per capita pest
growth rate to the per capita predation rate). However, though such relations between the
GAS and LAS conditions make for a rather neat analytical result, they cannot be deduced
from a direct inspection of the system dynamics.

The Lotka-Volterra Model

Beyond this analytical resemblance, GAS and LAS conditions are identical for some of the
most classical predator-prey models. For instance, the Lotka-Volterra model

ẋ = rx− axy
ẏ = γaxy −my

}
t 6= nT

y(nT+) = y(nT ) + µT, ∀n ∈ N

yields identical conditions for local and global stability µ >
mr

a
since

f ′(0)

g′(0)
= Sg =

r

a
. This

is due to the intrinsically linear character of the pest-growth function and of the functional
responses, and shows more that this model if over-simplified than about actual equivalence
in real-life.

The Rosenzweig-MacArthur Model

We can also consider the more elaborate Rosenzweig-MacArthur model (Rosenzweig (1971,
1972)) 

ẋ = rx
(

1− x

K

)
− ax

c+ x
y

ẏ =
γax

c+ x
y −my

 t 6= nT

y(nT+) = y(nT ) + µT, ∀n ∈ N

where the pest growth follows a classical logistic formulation, parameterised by a growth
rate r ≥ 0 and a carrying capacity K ≥ 0. The functional and numerical responses are
Holling Type II Holling (1961), defined by a > 0, the half-saturation constant c > 0, and the
conversion factor γ > 0. In this case, the comparison between the two conditions is not as

direct because they are in the form µ >
rmc

a
(LAS) and µ >

rmSg
a

(GAS) with

Sg =

 (K + c)2

4K
for 0 ≤ c ≤ K

c for c ≥ K

Since Sg ≥ c, we conclude that the LAS condition is, as expected, weaker than the GAS
condition, but that the two are equivalent whenK ≤ c, that is when the pest carrying capacity

3The size of this local neighbourhood - how ‘small’ the invasion needs to be in order to be tackled
successfully by the LAS-condition - requires further calculations.
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is smaller than the half-saturation constant of the predation terms; in essence, this means
that the functional response is roughly linear in the zone of interest for the model (because x
stays smaller than K), which entails that local and global stability conditions are equivalent.

Unbounded f(x)

g(x)

Two possible scenarios arise:

• Suppose this ratio is unbounded only as x → ∞, i.e. lim
x→∞

f(x)

g(x)
= ∞. Then, the

pest-free solution can be globally attractive if the numerical response of the predators
(h(x)) increases quickly enough with the pest population. From the predator dynamics,
ẏ = h(x)y −my, the predators y increase to sufficiently large numbers and are able to
suppress the pest invasion by predation (the g(x)y term in ẋ = f(x)− g(x)y).

• Suppose however that the ratio is unbounded at a finite pest population level, i.e.

lim
x→x̄

f(x)

g(x)
= ∞, where x̄ < ∞. In this case, if the initial pest population size at an

invasion is larger than x̄, the predators will never be able to suppress the pest popula-
tion: as the pest population decreases, it either undergoes a boom at x̄ or predation is
insufficient to contain it (or both). Mathematically, the pest population cannot approach
the basin of attraction beyond x̄ and to zero. The pest cannot be eradicated.

3.3 Pest control strategy

3.3.1 The minimal predator release rate

How many predators need to be released to eradicate a pest population
surge?

The predator release rate µ needs to be larger than some minimal value described by the
function µ. For our simple model, the predator release rate must respect the following condi-
tion:

µ > µ(Sg) = mSg (the GAS condition)

or, at smaller invasions:

µ > µ

(
f ′(0)

g′(0)

)
= m

f ′(0)

g′(0)
(the LAS condition).

This minimal predator release rate depends on predator mortality and the ratio of per
capita pest growth to per capita predation. A higher predator mortality requires a higher
release rate. Conversely, pest control is achieved at a lower cost for pest species with lower
reproductive rates and predators with higher attack rates.

See also Section 3.2.5.

What happens when the predator release rate is lower than the minimal
bound?

When µ < µ

(
m
f ′(0)

g′(0)

)
, the zero-pest solution is not stable. From the matrix B in Equation

(3.25), the pest population will tend to increase in size at least locally, which shows that
eradication is then not possible. This actually does not mean that the pest will grow very
large: one can expect a bifurcation to a periodic positive solution with small pest population
densities, for µ values close to the threshold.

55



CHAPTER 3. GROUNDWORK

3.3.2 The period of release

Do we choose to make rare large releases or frequent smaller ones?

The stability conditions are independent of the release period. This suggests that a given
release rate satisfying the stability condition is able to eradicate the pest population whether
the total number of predators are released once or they are spread over more frequent smaller
releases.

In fact, the LAS-condition is even identical to the one obtained in the continuous con-
trolled model in Section 3.3 of the present chapter. So, does this mean that modelling the
control continuously is an adequate description of an augmentative biological control pro-
gram? The answer is ‘no’.

The first reason is that the actual system that we are modelling is intrinsically impulsive.
Using continuous modelling would yield conclusions whose translation into real-life we could
not trust.

The second reason is that one of the control parameters whose value we want to fix is the
period of release; if it is absent from the model, we will not be able to say anything about it.
Even though the stability conditions did not give any indication as to what choice should be
made for the period of release, Mailleret and Grognard (2006, 2009) showed that, in order to
prevent large damage in the case where a pest-invasion would take place at the worst time
between two releases, it is advised to take the period of release as small as possible. Indeed,
if this period is chosen large, the released predators die out quite fast in the absence of preys,
so that they are not able to counter the invasion taking place subsequently before the next
release is made.
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4
Predators interfering with each other

during predation

Overview

There are two ways in which intrapredator interference can impact the population dynamics.
The first is through interfering with the pest uptake, the second enhances predator mortality
through fights or cannibalism Hassell (1978).

In this chapter we are concerned with the first type of interference: interference during
the predation process. In this case, the trophic responses are best described as being directly
predator-density dependent (see e.g. Begon et al. (1996)). Interference is penalising, that
is predators prevent each other from feeding. So the predation per predator decreases as
the predator density increases. We focus on this general trend and propose to use sector
conditions from the control engineering literature (Vidyasagar, 1993) when specific predator
interactions are not precisely known.

Through the analysis of our model, we answer two questions: firstly, what conditions are
required for the pest population to be eliminated and secondly, what release strategy is to
be employed for this eradication be as quick as possible thereby minimising the damage to
crops. These concern the stability of the zero-pest solution and the local convergence to that
solution respectively.

Keywords: intrapredator interference, Beddington-DeAngelis, ratio-dependent functional
response, sector conditions.

Organization of this chapter:
This chapter is structured as follows.

Section 4.1 gives specific instances of the intrapredator competition occurring among nat-
ural enemy species involved in biological control. In particular, we highlight how this
competition can directly interfere with the predators’ efficacy to kill the prey, and hence,
is to be incorporated within the trophic responses in predator-prey models.
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Section 4.2 introduces our model which includes generic trophic responses that are directly
dependent on the predator population. We use sector conditions to bound nonlinear
parameters of these functions: this caters for uncertainties in the predator-prey be-
haviour. We argue that it can also account for local effects, that is slight changes in
behavioural patterns occurring over short ranges.

Section 4.3 demonstrates the existence of the periodic pest-free solution driven by the
predator releases and compute the conditions required for its stability: one is related to
the biology of the predator species while the other defines a minimal predator release
rate that guarantees pest eradication. We treat separately the case where the param-
eters of the trophic functions are affine mappings and the case where these mappings
are nonlinear and bounded within sector conditions. In the nonlinear case, we are only
able to specify an upper threshold for the minimal release rate, above which the zero-
pest solution is stable; and a lower threshold below which a release rate is insufficient
to stabilise the zero-pest solution.

In the next sections, we treat two features of our analysis in more detail:

Section 4.4 establishes that the minimal predator release rate is an increasing function of
the release period.

Section 4.5 shows that the speed of eradication decreases with the release period.

In each section, the results are presented first for the case when parameters of the trophic
responses are affine, which is a simpler version than the one allowed by a more general
formulation. These results are then extended to the case when the parameters are nonlinear
and are bounded within sectors.

Section 4.6 provides a review of our results.

4.1 The premises

Impact of interference on predator access to prey

Intrapredator interference during predation is well-documented in the biological control liter-
ature. In instances where it does not cause the predator to disperse, only the trophic response
(in particular, the functional response) is affected, and not predator mortality (which includes
fleeing rate). There are two types of behaviours which suppress the trophic responses at
higher predator numbers.

The first is mechanistic: the presence of higher densities of conspecifics results in a higher
interaction with them - for no particular reason, and is observed as collisions - and decreases
the time a predator could spend searching for and handling a prey. Such interference is
apparent, for example, among predatory mites that are widely used against various pests
in orchards and greenhouse crops (Everleigh and Chant, 1982; Gerson, 2007; Skirvin et al.,
2007).

The second is a consequence of energistic requirements. Several insect species of the Hy-
menoptera and Coleoptera order emit volatile products at high population densities. We cite
a few examples: Damon (2000) reports that adult Cephalonomia stephanoderis (a parasitoid
of the coffee berry borer) emit an aromatic substance in confined spaces. Yasuda et al. (2000)
observed that the females of the predatory ladybirds Harmonia axyridis (predators of several
pest species) emits oviposition deterring volatile pheromones. Damon (2000) argues that this
process has a high energetic cost as a consequence of which, the organism is less efficient in
prey searching and handling, or in controlling pests.
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Nachman (2006); Umbanhowar and Maron (2003) and several others assert that interfer-
ence effects are not as apparent in an open field (where predators can disperse to avoid each
other) as they are in laboratory conditions. According to Damon and Valle (2002) however,
such effects cannot be ignored in a biological control program: this is because control agents
are usually carried in boxes in which they are densely packed and where the emission of such
pheromones is high.

Direct predator-dependence of the trophic response
Holling (1959a) built the functional response mechanistically (see Chapter 2). His calcu-
lations were based on the time taken for a predator to search for and handle a prey. He
obtained a function of the form:

g(x) =
ax

bx+ 1
,

which is known as the Holling Type II functional response. The functional response is not
predator dependent (Begon et al., 1996). The total prey removal is then given by g(x)y =
axy

bx+ 1
(a and b are parameters).

In fact, though he did not himself formulate a predator-dependent functional response,
Holling (1959b, 1961) acknowledged (from the data in his bibliographical research) that preda-
tors interact with each other at varying degrees at different densities. He remarked that this
was likely to affect prey handling and searching, and thus the functional response form. Fol-
lowing Holling’s mechanistic reasoning to calculate the Holling II functional response, Bed-
dington (1975) and DeAngelis et al. (1975) postulated that in addition to encountering their
prey, predators were also likely to collide with each other. They added a time component
that describes the time predators ‘lose’ in interfering with each other and formulated the
eponymous function (the Beddington-DeAngelis functional response) as:

g(x, y) =
ax

bx+ cy + 1
,

where a, b and c are parameters.
Arditi and Ginzburg (1989) later suggested that it was only the ratio of the prey density

to the predator density, and not the actual populations densities, that best captured the in-
terference effect. As a result, Arditi and Ginzburg (1989) modified the Holling II function
by changing the prey density argument into the per predator capita food availability. They
proposed a response of the form

g(x/y) =
a(x/y)

b(x/y) + 1
=

ax

bx+ y
(4.1)

This formulation is said to be ratio-dependent. The support for such a model has been rather
strong because it is in good agreement with experimental data (e.g. Akcakaya et al. (1995);
Skalski and Gilliam (2001)). But the singularity the model displays at the origin and the
lack of mechanistic support has been subject to a fierce debate in the ecological modelling
community (see e.g. Abrams (1994); Gleeson (1994); Sarnelle (1994)).

Buffoni and Gilioli (2003); Buffoni et al. (2005) generalised the analysis of density-dependent
(Beddington-DeAngelis) and ratio-dependent functional responses by parameterising the ar-
gument of the trophic functions thus:

g

(
ax

θby + (1− θ)

)
, (4.2)

with the parameter θ taking its values between 0 and 1. They qualitatively defined the
response as:

g(0) = 0, lim
s→+∞

g(s)→ constant (positive), ∀ s, g′(s) > 0 (4.3)
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and pointed out that a Holling Type II function respects these criteria. In fact, under a
mapping of the form g(s) =

s

s+ 1
(which is a simple version of the Holling II mapping), this

functional response becomes:

g

(
ax

θby + (1− θ)

)
=

ax

ax+ θby + (1− θ)
(4.4)

In the limit that θ = 0, the expression in (4.4) is a Holling Type II response, and when θ = 1,
it takes a ratio-dependent form. The intermediate values of 0 < θ < 1 give the Beddington-
DeAngelis functional response. So, the qualitative description of the function by Buffoni et al.
(2005) generalises all three formulations.

In the present chapter, we generalise even further Buffoni et al. (2005)’s formulation, by
considering qualitative functions to describe the parameters, that is:

g

(
α(x)

β(y)

)
(4.5)

where α(x) and β(y) are generally increasing in x and y respectively. We explain the basis for
this generalisation in the next section.

Remark: In the functions described above, g(x, y) is decreasing in y. Yet, although preda-
tor interference is taken into account, the total prey removal g(x, y)y for both Beddington-
DeAngelis and ratio-dependent interference is still increasing in y. This kind of interference is
therefore said to be ‘moderate’. We come back to this point in the Section 4.6 of this chapter. �

Interference with impulsive control
To the best of our knowledge, impulsive models that also take into account density-dependent
predation consider only explicit Beddington-DeAngelis. Zhang and Chen (2006) and Zhang
et al. (2008) analyse the local (but not global) stability of the pest-free solution, and focus on
coexisting states.

Negi and Gakkhar (2007) investigate the behaviour of a system where the predator is
subjected to impulsive proportional harvesting. There are no additive impulses modelling
releases. They establish the global stability condition for the trivial prey-only state, but this
result cannot be mapped directly to a system with additive releases such as the one used
to describe augmentative biological control. In Nundloll et al. (2010b), we calculate global
stability conditions for the zero-pest solution in an impulsive control program, but the model
only considers an explicit Beddington-DeAngelis functional response.

The more general formulation by Buffoni et al. (2005) cater only for conservation biological
control programs, where the dynamics are purely continuous and thus do not consider the
influence of impulsive releases on the model dynamics.

In this chapter, we generalise Buffoni et al. (2005)’s formulation and extend the analysis
for the density-dependent case to the zero-pest solution within an impulsive framework. Thus,
we investigate how predator releases affect a model that incorporates a general description
of intrapredatory interference.

Remark: In the final paper published during this thesis (Nundloll et al., 2010a), we have
been able to extend our results to include the generalised version of ratio-dependence, thus
completing the analysis of the zero-pest solution for the generalised model by Buffoni et al.
(2005). Due to time constraints however, it was not possible to update the calculations in this
chapter. �
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4.2 The model

Generic qualitative formulation
We adopt the general framework proposed in Chapter 3, but use trophic responses that are di-
rectly dependent on the predator density to include the penalising intrapredator interference
effects (see Figure 4.1).

Pest
x y

µT

myf(x)

Predation+
+

+

- -
Predator

Pest 
uptake

Pest
growth

Predator
releases

Predator
mortality

Interference 
disrupts
predation and 
pest uptake

h(x,y)y

g(x,y)y

Figure 4.1: The trophic responses are directly dependent on the predator density.
Furthermore, when predators interfere with each other in prey access, the transfer of
biomass from prey to predator is reduced.

Using the formulation in (4.5), we therefore modify the augmentative control model as:
ẋ = f(x)− g

(
α(x)
β(y)

)
y

ẏ = h
(
α(x)
β(y)

)
y −my

 t 6= nT

y(nT+) = y(nT ) + µT, where n ∈ N

(Mb)

with non-negative initial conditions x0 and y0.
To ensure unicity of trajectories, the growth function f(x) and predation functions g

(
α(x)
β(y)

)
y

and h
(
α(x)
β(y)

)
y are assumed all locally Lipschitz continuous for x, y ≥ 0. As previously, m rep-

resents the mortality rate of the predators. It is a positive constant, independent of the
predator population size. We recall the general hypotheses from Chapter 3 on the growth and
trophic responses as:

General hypotheses
f(0) = 0, f ′(0) > 0; (H1)

g(0) = 0, g′(0) > 0, ∀s > 0, g(s) > 0; (H2∗)

h(0) = 0, ∀s > 0, h(s) ≥ 0 (H3∗)

The trophic responses are parameterised by s = α(x)
β(y) ; so the prime of the functional response

indicates the derivative with respect to s. The mapping α(x) verifies linear sector conditions,
that is ∀ x ≥ 0

a1x ≤ α(x) ≤ a2x. (4.7)

Likewise, β(y) are assumed to verify affine sector conditions as follows: x, y ≥ 0.

b1y + b0 ≤ β(y) ≤ b2y + b0. (4.8)
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When the coefficient b0 equals zero, the argument is ratio-dependent, while a strictly positive
b0 > 0 results in a density-dependent argument. The other coefficients are all strictly positive,
i.e. ai, bi > 0. In this chapter we shall stick to a positive b0; in this situation it is fairly easy
to show through the reparameterisation of a1 and b1 that we can consider the case b0 = 1

without any loss of generality. Hence, (4.8) becomes:

b1y + 1 ≤ β(y) ≤ b2y + 1. (4.9)

We refer to Nundloll et al. (2010a) for the study of b0 = 0.

Remark: The previous hypotheses for the basic model on the trophic responses, i.e. Hypothe-
ses (H2∗)-(H3∗), now hold for the composite argument α(x)

β(y) . Together with the sector conditions
(4.7)-(4.9), these hypotheses imply that there is no predation in the absence of pests. Predation
becomes immediately positive upon a pest invasion, then remains positive for all positive pest
population. The numerical response of the predators is on its part only assumed to be non-
negative in the presence of pests. �

In our analysis of the zero-pest solution of Model Mb, we will make use of the two bio-
logically sensible assumptions concerning the pest growth rate. We list them as Hypotheses
(H5)-(H6) below:

Specific hypotheses
Limited pest growth:

∃ x̄ such that ∀ x ≥ x̄, f(x) < 0; (H5)

Specific notation
Limited per capita pest growth:

f(x)/x is upper bounded ∀ x ≥ 0, such that S = sup
x≥0

(f(x)/x); (H6)

Hypothesis (H5) implies that the population cannot be sustained beyond x̄. This can be be-
cause the resources available to the pest population are limited, or alternatively, that the pest
population’s ability to exploit the resources (notably, the crop) available to them is limited.
This is the basic characteristic of logistic and Gompertz growth (see e.g. Murray (1989)). So
when the population is above x̄, it decreases back under x̄. In fact, we express this behaviour
of the system mathematically by Proposition 3.

The notation (H6) simply highlights that the pest growth rate per pest individual f(x)/x

cannot be infinite at any density x. This is a directly due to the local Lipschitz continuity of
the pest growth function.

We note that with Hypotheses (H1)-(H6) and conditions (4.7)-(4.9), (Mb) is a positive sys-
tem. Its variables stay in the non-negative orthant if initiated therein. We refer the reader to
Theorem 1 in Chapter 2 for a formal mathematical explanation .

Sector conditions

The use of sector conditions caters for a nonlinear parameterisation of the trophic responses.
Figure 4.2 shows three examples of nonlinear α(x) and β(y) functions bounded within a sector
defined as in conditions (4.7) and (4.9). The Lipschitz square-like fluctuations depicted for
both functions provide a rather extreme example for the purpose of our analysis: we do not
expect them to occur in nature.
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4.2. THE MODEL

Figure 4.2: Sector conditions (4.7)(left figure) and (4.9)(right figure) bound nonlinear-
ities in the α(x) and β(y) parameters. The square variations probably do not occur in
nature but are used as a textbook example for the purpose of our analysis.

To explain the advantages of this formulation, it makes more sense biologically to consider
that the trophic responses are increasing functions of their argument, that is:

∀ s > 0, g′(s) > 0 and h′(s) > 0. (H6)

There are two reasons why we feel that our description is more exhaustive than Buffoni et al.
(2005)’s. The first is that the degree of interference may fluctuate at a given population size.
This may be due to some climate forcing or seasonal patterns: during reproductive periods,
the stress for territorial defence may be higher. Pheromones would then be emitted in higher
quantities, which means that predation would be more heavily penalised - this for the same
number of predators. Denoting g̃

(
α(x)
β(y) , t

)
the seasonally forced functional response of the

predators, provided there exist sectors that lower and upper bound this function, that is,
provided there exist a1, a2, b1 and b2 such that for all time t:

g

(
a1x

b2y + 1

)
≤ g̃

(
α(x)

β(y)
; t

)
≤ g

(
a2x

b1y + 1

)
.

Then, the sector formulation, and thus the results we derive next, would also encompass such
time dependent functions.

Fluctuations may also be due to momentary decreases of interfering behaviour due to
cooperation (among predators) in searching for prey. Interference could intensify only during
prey handling. The exact behaviour of the predators (and the prey individuals) can vary at
for a given predator population size. The sectors bound this variation.

Secondly, the nonlinearity may provide a more precise way for the trophic response to cap-
ture local effects, which occur over short ranges of predator and prey population sizes. When
the functions α(x) and β(y) are highly nonlinear, they modulate in turn the trophic response
with respect to the pest and predator populations. For instance, a dip in the β(y) function can
be due to intrapredator cooperation, which dominates (locally) interference. Many species of
arthropods attack their prey in small groups especially if the prey is too large compared to
their size. Similarly, fluctuations in the mapping α(x) can describe aggregative effects of pest
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CHAPTER 4. INTRAPREDATOR INTERFERENCE

individuals which may either facilitate predation (groups of prey are more easily located than
solitary prey individuals by predators, see e.g. Krause and Ruxton (2002); Saito (1997)) or
antipredator behaviour (webs of spider mite colonies of critical sizes protect them from their
predators, see e.g. Mori and Saito (2004); Saito (1997)).

Simply put, the mappings α(x) and β(y) capture the details, while the sectors focus on
the general trends. It is the general trends that motivate our model. The trophic functions
argument follows a generally increasing trend with respect to x as given by α(x), so under
Hypothesis (H6) the trophic uptake generally tends to increase with x. Conversely, increasing
predator numbers penalises this argument according to the strength of intraspecific compe-
tition given by β(y), so that it generally tends to decrease with y. These two characteristics
of the functional response are typical of the type of interference we consider in this chapter.
Knowing the upper and lower bounds allow us to refine our result, namely to obtain limits of
stability and instability of the periodic zero-pest solution.

This phenomenological description aims to minimise the risks of modelling artefacts linked
to the use of specific forms for the modelling of the interference, while giving enough in-
formation on the general properties of the system. It provides sufficient detail for realistic
interpretations of the results and the formulation of practical guidelines.

Remark: We note here that if the trophic responses are Type II Holling curves, that is g(s) is
of the form s

s+1 , and if α(x) and β(y) are affine, that is a1 = a2 in (4.7), b1 = b2 in (4.9), one
recovers a classical Beddington-DeAngelis form. Indeed:

g

(
α(x)

β(y)

)
=

ax
1+by
ax

1+by + 1
=

ax

ax+ by + 1

Figure 4.3 shows the effect of varying the functions α and β with respect to x and y and the
consequences on the trophic responses. �

Absolute stability

The use of sector conditions is common in the control engineering and neural networks litera-
ture: as we showed, these conditions bound nonlinearities between two linear functions. The
stability results obtained for this kind of formulation are termed absolute stability, that
is the considered system is stable for any nonlinearity that satisfies the sector conditions.
We refer the reader to Luré and Postnikov (1944) for the founding paper, Liberzon (2006) for
a review, Vidyasagar (1993); Khalil (2002) for textbook presentations and, finally, Duan et al.
(2008) for current research on the topic.

4.3 The zero-pest solution

Model (Mb) has a zero pest solution which we express in Proposition 2 below.

Proposition 2 (Existence, intrapredatory competition) Let Hypotheses H5-H6 and con-
ditions (4.7)–(4.9) be satisfied. Then,

(xp(t), yp(t)) = (0, y∗e−m(t mod T )) (4.11a)

where
y∗ =

µT

1− e−mT
(4.11b)

is a periodic solution of model (Mb).
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Figure 4.3: Nonlinear parameters distort the functional response. The two figures are
plots of the a Holling Type II function g(s) = s

s+1 , where s = α(x)
β(y) in order to incorporate

predator dependence. In the figure at the top, α(x) and β(y) are linear and affine respec-
tively. In the figure at the bottom α(x) is sill linear and β(y) follows the Lipchitz square
like function depicted on figure 4.2 (right).
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The reader is referred to the proof of Proposition 1 in Chapter 3, which is similar.
We treat separately the case when the parameterisation of the trophic responses is affine

(as in Buffoni et al. (2005)), and the case when it is nonlinear (which requires the use of sector
conditions).

Before presenting the results of our analyses, we state two preliminary propositions on
pest growth and on the functional response which will be useful in our calculations.

Proposition 3 (Limited pest growth) Let Hypotheses (H1)–(H6) and Conditions (4.7)–(4.9)
be satisfied. Then there exists tf (x0) ≥ 0 such that α(x(t))

β(y(t)) ∈ [0, a2x̄] for t ≥ tf (x0).

Proof: First suppose x0 ≤ x̄. Since f(x̄) < 0, ẋ(x = x̄) < 0. Therefore, ∀ t ≥ 0, x(t, x0) ≤ x̄.
Next, suppose x0 > x̄. g(.) ≥ 0 for x, y ≥ 0 and f(x) < 0 for x ≥ x̄, ẋ = f(x)−g(.)y ≤ max

x̄≤x≤x0

f(x).

This is a negative constant, so that x decreases into x ∈ [0, x̄] in finite time tf (x0). This im-
plies that α(x)

β(y) ≤
a2x̄
1 ∈ [0, a2x̄] for t ≥ tf (x0). �

Proposition 4 (Lower bound on the functional response) Let σ(s, q) = g′(0) qs
q+s where

q > 0. Then for all K > 0, there exists q such that ∀s ∈ [0,K], σ(s, q) ≤ g(s), and σ′(0, q) = g′(0).

Proof: The proof for the existence of σ(s, q) is constructed in two parts on the interval
[0,K]. We note that

σ′(0, q) = g′(0)

Let q∗ > 0 be chosen such that

σ′′(0, q∗) =
−2g′(0)

q∗
< g′′(0)

Then
σ(s, q∗)− g(s) = σ(0, q∗) + σ′(0, q∗)s+

σ′′(0, q∗)

2
s2

−g(0)− g′(0)s− g′′(0)

2
s2 +O(s3)

=
s2

2
(σ′′(0, q∗)− g′′(0)) +O(s3)

Therefore for the chosen q∗ there exists ε > 0 such that ∀ s ∈ [0, ε), σ(s, q∗) − g(s) ≤ 0.
Furthermore, σ(s, q) is an increasing function in q so that ∀s ∈ [0, ε), ∀q ∈ (0, q∗], σ(s, q) ≤ g(s).
Next, we consider the interval s ∈ [ε,K]. Here, since for any given s, lim

q→0+
σ(s, q) = 0, it

suffices to choose a sufficiently small q ≤ q∗ such that

max
s∈[ε,K]

σ(s, q) ≤ min
s∈[ε,K]

g(s)

and thus
σ(s, q) ≤ g(s) ∀s ∈ [0,K]

�

Figure 4.4 illustrates Proposition 4, in particular how the lower bound behaves with varying
q: for any g(.) it suffices to decrease sufficiently q to obtain a σ(s, q) that satisfies Proposition
4.

We also introduce the following notation for the bounds on the predator release rates:

µ(Q,λ, T ) = Q

(
1− e−λmT

e−λmT − e−mT

)(
1− e−mT

T

)
. (4.12)
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Figure 4.4: The parameter q determines the deceleration of the lower bound σ with
respect to s. The smaller the q the larger the deceleration, and σ is able to provide a
lower bound.

When λ < 1 and Q > 0, we note that

∂µ

∂Q
=

(1− e−λmT )(1− e−mT )

(e−λmT − e−mT )T
> 0, (4.13)

and
∂µ

∂λ
=
Q(1− e−mT )2mTe−λmT

T (e−λmT − e−mT )2
> 0. (4.14)

4.3.1 Stability with affine parameterisation
In the affine case, the functions read α(x) = ax and β(y) = by + 1, where a, b are positive
constants. This formulation corresponds to that of Buffoni et al. (2005) for density-dependent
trophic responses; our analysis extends his work to the case of impulsive biological control. It
is a generalisation of the Beddington-DeAngelis trophic response. The results of this section
therefore encompass those obtained by Zhang and Chen (2006) and Nundloll et al. (2010b) on
biological control with explicit Beddington-DeAngelis functions.

The stability conditions are described by the following theorem.

Theorem 4 (Stability, affine parameterisation) The solution (0, yp(t)) of (Mb) is LAS if
and only if

f ′(0) <
ag′(0)

b
(4.15a)

and

µ >
1

b

(
1− e−m

bf′(0)
ag′(0)T

e
−m bf′(0)

ag′(0)T − e−mT

)(
1− e−mT

T

)
= µ

(
1

b
,
bf ′(0)

ag′(0)
, T

)
(4.15b)
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Furthermore, let q be chosen as in Proposition 4 with K = ax̄. Then, the solution is GAS if

S <
ag′(0)

b
(4.15c)

and

µ >
q + ax̄

qb

(
1− e−m

bS
ag′(0)T

e
−m bS

ag′(0)T − e−mT

)(
1− e−mT

T

)
= µ

(
q + ax̄

qb
,

bS

ag′(0)
, T

)
(4.15d)

Proof: For convenience, we start by calculating the local stability conditions. We apply
directly Theorem 1 from Lakmeche and Arino (2000), as described in Chapter 3 of this thesis.
We obtain as necessary and sufficient conditions:

e−m
∫ T
0
dτ < 1

and

e

∫ T
0

[
f ′(0)− g

′(0)α′(0)yp(τ)
β(yp(τ))

]
dτ
< 1.

The former is trivial while the latter yields∫ T

0

α′(0)yp(τ)

β(yp(τ))
dτ >

f ′(0)

g′(0)
T. (4.16)

We note that in this equation α′(0) = a and β(yp(τ)) = by∗e−mτ + 1, so we can rewrite it as:∫ T

0

ay∗e−mτ

by∗e−mτ + 1
dτ >

f ′(0)

g′(0)
T.

On evaluating the integral and rearranging, we obtain:

− a

mb
ln

(
by∗e−mT + 1

by∗ + 1

)
>
f ′(0)

g′(0)
T,

⇔ by∗e−mT + 1 > by∗e
−m bf′(0)

ag′(0)T + e
−m bf′(0)

ag′(0)T ,

⇔
(
e
−m bf′(0)

ag′(0)T − e−mT
)
by∗ >

(
1− e−m

bf′(0)
ag′(0)T

)
. (4.17)

The right-hand side of the above inequality is positive, which requires that the left-hand
side be too. Thus for the stability condition to hold we need that:

e
−m bf′(0)

ag′(0)T − e−mT > 0,

or (on rearranging) that:

−mbf ′(0)

ag′(0)
T > −mT,

⇔ f ′(0) <
ag′(0)

b
.

This is the necessary condition (4.15a). The inequality (4.17) can be rewritten as:

y∗ >
1

b

 1− e−m
bf′(0)
ag′(0)T

e
−m bf′(0)

ag′(0)T − e−mT

 . (4.18)
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Since from Equation (4.11b), y∗ =
µT

1− e−mT
, we obtain, by substitution in (4.18):

µ >
1

b

 1− e−m
bf′(0)
ag′(0)T

e
−m bf′(0)

ag′(0)T − e−mT

(1− e−mT

T

)
,

which is condition (4.15b).
As in Chapter 3, to establish the condition for global stability of Solution (4.11a), we define

a new system of coordinates x̃ = x−xp and ỹ = y− yp which describes the departure from the
pest-free solution. This gives the equivalent system:{

˙̃x = f(x)− g(s)y = f(x̃)− g(s)(ỹ + yp)
˙̃y = h(s)y −my +myp = h(s)(ỹ + yp)−mỹ

(4.19)

where s = α(x)
β(y) = ax̃

b(ỹ+yp)+1 . The impulsive component vanishes.

Let the initial conditions be (x̃0, ỹ0) at t = t0. Integrating ˙̃x
x̃ , we get∫ x̃(t)

x̃0

1

u
du =

∫ t

0

[
f(x̃)

x̃
− g(s)

x̃
(ỹ + yp)

]
dτ

Similarly to Chapter 3, to show that lim
t→+∞

x̃ = 0, we demonstrate the divergence of
∫ x̃(t)

x̃0

1

u
du

to −∞ as t→ +∞. For t large enough, we can write:

∫ x̃(t)

x̃0

1

u
du =

∫ (
b
tf
T c+1

)
T

t0

+

∫ b tT cT(
b
tf
T c+1

)
T

+

∫ t

b tT cT

[f(x̃)

x̃
− g(s)

x̃
(ỹ + yp)

]
dτ, (4.20)

with tf defined as in Proposition 3. The first and third terms in (4.20) are bounded for all t.
The second integral, however, is not necessarily so. More specifically, we need for stability
that:

lim
t→+∞

∫ b tT cT(
b
tf
T c+1

)
T

[
f(x̃)

x̃
− g(s)

x̃
(ỹ + yp)(τ)

]
= −∞ (4.21)

At this point it is useful to note that from Proposition 4, we can write

g(s)

x̃
(ỹ + yp) ≥

σ(s, q)

x̃
(ỹ + yp) =

qg′(0)a(ỹ + yp)

qb(ỹ + yp) + q + ax̃

which is an increasing function of (ỹ + yp) and a decreasing one of x̃.
Because of the positivity of the system (and recalling the inequality (3.21)), y can be lower

bounded as:
yp(t) + ỹ(t) ≥ y∗(e−m(t mod T ) − e−m(t−t0)).

From the proof of Proposition 3, we also note that x̃ ∈ [0, x̄], as t is sufficiently large.
Therefore, from these two bounds, we can write

g(s)

x̃
(ỹ + yp) ≥

ag′(0)qy∗(e−m(t mod T ) − e−m(t−t0))

qby∗(e−m(t mod T ) − e−m(t−t0)) + q + ax̄
(4.22)

Recall from Hypothesis (H6) that S = supx≥0(f(x)/x). So, from this property and equation
(4.22) we can upper bound the second term of the inequality (4.20) as

∫ b tT cT(
b
tf
T c+1

)
T

[
f(x̃)

x̃
− g(s)

x̃
(ỹ + yp)(τ)

]
dτ ≤

b tT c−1∑
n=b

tf
T c+1

I(n) (4.23)
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where

I(n) =

∫ (n+1)T

nT

[
S +

ag′(0)

bm

mqby∗e−m(τ−nT )(1− e−m(nT−t0))

qby∗e−m(τ−nT )(1− e−m(nT−t0)) + q + ax̄

]
dτ

= ST +
ag′(0)

bm

[
ln
(
qby∗e−m(τ−nT )(1− e−m(nT−t0)) + q + ax̄

)](n+1)T

nT

= ST +
ag′(0)

bm
ln

(
qby∗e−mT

(
1− e−m(nT−t0)

)
+ q + ax̄

qby∗
(
1− e−m(nT−t0)

)
+ q + ax̄

)
.

To satisfy (4.21), knowing (4.23), it would suffice that:

lim
t→+∞

b tT c−1∑
n=b

tf
T c+1

I(n) = −∞. (4.24)

Two properties of the function I(n) suggest that this condition may be satisfied. First, I(n)

is decreasing in n: the argument of the logarithm is a fraction of two affine functions of(
1− e−m(nT−t0)

)
with the same intercept. The numerator affine function has a smaller slope

than the denominator affine function, thus the argument of the logarithm is decreasing in(
1− e−m(nT−t0)

)
, which is by itself increasing in n. Thus I(n) is decreasing in n.

Second, it has a limit when n→ +∞ exists1; we calculate it as:

lim
n→+∞

I(n) = ST +
ag′(0)

bm
limn→+∞ ln

(
qby∗e−mT (1− e−m(nT−t0)) + q + ax̄

qby∗(1− e−m(nT−t0)) + q + ax̄

)
= ST +

ag′(0)

bm
ln

(
qby∗e−mT + q + ax̄

qby∗ + q + ax̄

)
Based on these two properties, in order for Equation (4.24) to be satisfied, we require that

lim
n→∞

I(n) < 0,

that is:

ST +
ag′(0)

bm
ln

(
qby∗e−mT + q + ax̄

qby∗ + q + ax̄

)
< 0.

Rearranging the above inequality yields

(e
−m bS

ag′(0)T − e−mT )qby∗ > (q + ax̄)
(

1− e−m
bS

ag′(0)T
)

(4.25)

As previously for inequality (4.17), because the right-hand side of (4.25) is positive, we need
that

(e
−m bS

ag′(0)T − e−mT ) > 0.

which gives the first condition (4.15c). Finally, recalling (4.11b) and rearranging (4.25) so that
µ is the subject of formula yields

µ >
q + ax̄

qb

(
1− e−m

bS
ag′(0)T

e
−m bS

ag′(0)T − e−mT

)(
1− e−mT

T

)
which is the GAS condition (4.15d). Proving the convergence of ỹ to zero as well is straight-
forward and similar to the one in Chapter 3.

1This limit can be taken because the log function and hence I(n) is continuous in n.
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We notice that the LAS and GAS conditions µ have a similar form. Using the notation
(4.12), we can rewrite the LAS condition (4.15b) and the GAS condition (4.15d) as:

µ > µ

(
1

b
,
bf ′(0)

ag′(0)
, T

)
(4.26)

and
µ > µ

(
q + ax̄

qb
,

bS

ag′(0)
, T

)
(4.27)

respectively. We recall that µ(Q,λ, T ) is increasing in Q and λ. Since
q + ax̄

qb
>

1

b
, and

bS

ag′(0)
>
bf ′(0)

ag′(0)
, the lower bound in (4.15b) is smaller than the lower bound in (4.15d). This

means that when condition (4.15d) is satisfied, the solution is also locally asymptotically sta-
ble. It also implies that when Condition (4.15d) holds, the solution is globally asymptotically
stable. �

The calculations for the affine case serve as a basis for the analysis when α and β are
nonlinear.

The proof on affine α and β yields two types of conditions for the stability of the pest-free
solution: The first concerns the biological processes and species behaviour (Conditions (4.15a)
and (4.15c)). We will refer to these conditions as the biological conditions. When expressed in
terms of b, as:

b <
f ′(0)

ag′(0)
and b <

S

ag′(0)
,

this condition informs the selection of the predator species.
The second set of conditions concerning the minimal release rate is managerial (Condi-

tions (4.15b) and (4.15d)). Because of the minimal release rate’s dependence in the release
period T , these conditions can be analysed further to identify the effect of various release
strategies on the minimal release rate. We discuss this shortly in the next section.

Finally, we note that the managerial conditions exists only if the biological condition is
satisfied. The local biological condition means that if the predators interfere too much with
their conspecifics, no control will work even if the invasion is negligible.

4.3.2 Stability with nonlinear parameterisation
When the α and β functions are nonlinear, we bound them within sectors given by (4.7) and
(4.9).

As previously, the non-trivial local stability condition is obtained as (4.16), that is∫ T

0

α′(0)yp(τ)

β(yp(τ))
dτ >

f ′(0)

g′(0)
T

Due to the sector conditions, the left-hand side of the inequality is bounded as:∫ T

0

a1yp(τ)

b2yp(τ) + 1
dτ ≤

∫ T

0

α′(0)yp(τ)

β(yp(τ))
dτ ≤

∫ T

0

a2yp(τ)

b1yp(τ) + 1
dτ (4.28)

Therefore, for absolute stability, it is clear that considering the lower bound in (4.28) will yield
a sufficient condition for local stabiliy; that is, only the lower bound of α and the upper bound
of β are of interest. This gives ∫ T

0

a1yp(τ)

b2yp(τ) + 1
dτ >

f ′(0)

g′(0)
T
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The analysis for the local stability of (4.11a) follows as in the previous subsection except that
a and b are now replaced by a1 and b2.

The procedure to find the global stability condition is also similar to the linear case. The
key point to note is that the σ-function from Proposition 4 is bounded as

σ(s, q) ≥ g′(0)
qa1x

qb2y + q + a1x
(4.29)

provided q is chosen appropriately to satisfy Proposition 4, with K = a2x̄. The lower bound
on σ as given in (4.29) is sure to lower bound g(s). The analysis for global stability therefore
follows as in the linear section, except that a1 and b2 are substituted in for a and b respectively.
As for the local stability, due to the sector conditions (4.7) and (4.9), we thus obtain only
sufficient conditions.

Theorem 5 summarises the conditions for the nonlinear parameterised system.

Theorem 5 (Stability, nonlinear parameterisation) Let q be chosen as in Proposition 4
with K = a2x̄. The solution (0, yp(t)) of (Mb) is LAS if

f ′(0) <
a1g
′(0)

b2
(4.30a)

and

µ > µ

(
1

b2
,
b2f
′(0)

a1g′(0)
, T

)
(4.30b)

Furthermore, the solution is GAS if

S <
a1g
′(0)

b2
(4.30c)

and

µ > µ

(
q + a1x̄

qb2
,

b2S

a1g′(0)
, T

)
(4.30d)

We note that the minimal rates stated above are only sufficient conditions. Due to the sector
conditions, a given µ value below the minimal release rate at a given T value does not neces-
sarily result in an unstable pest-free solution. The instability condition is in fact given by the
upper bound of the α function and the lower one of the β function as follows.

Proposition 5 (Instability, nonlinear parameterisation) The solution (0, yp(t)) of system
(Mb) is unstable if

f ′(0) ≥ a2g
′(0)

b1
(4.31a)

or if

µ < µ

(
1

b1
,
b1f
′(0)

a2g′(0)
, T

)
(4.31b)

Proof: The conditions for local instability obtained from Lakmeche and Arino (2000) are
e−m

∫ T
0
dτ > 1 or

e

∫ T
0

[
f ′(0)− g

′(0)α′(0)yp(τ)
β(yp(τ))

]
dτ
> 1.

The former is physically impossible. After some computations, the latter however can be
written as ∫ T

0

α′(0)yp(τ)

β(yp(τ))
dτ <

f ′(0)

g′(0)
T
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Recalling (4.28), this instability condition is necessarily satisfied if∫ T

0

a2yp(τ)

b1yp(τ) + 1
dτ <

f ′(0)

g′(0)
T

⇔
(
e
−m b1f

′(0)
a2g
′(0)T − e−mT

)
b1y
∗ <

(
1− e−m

b1f
′(0)

a2g
′(0)T

)
(4.32)

We note at this point that if (4.31a) holds, the left-hand side of inequality (4.32) is negative
or zero while the right-hand side is positive, so that (4.32) is satisfied. Otherwise, we obtain,
on rearranging the inequality (4.32),

µ <
1

b1

 1− e−m
b1f
′(0)

a2g
′(0)T

e
−m b1f

′(0)
a2g
′(0)T − e−mT

(1− e−mT

T

)

which is condition (4.31b). �

We obtain similar conditions (a biological and a managerial condition) in the case when
parameterisation is nonlinear. When the parameterisation of α and β is affine however, the
definition of the minimal rate, that is the local stability condition on µ, is a necessary and suf-
ficient condition. In the nonlinear case, since we only have sufficient conditions for stability
and instability, when

µ

(
1

b1
,
b1f
′(0)

a2g′(0)
, T

)
< µ < µ

(
1

b2
,
b2f
′(0)

a1g′(0)
, T

)
(4.33)

no conclusion can be drawn for the local stability of the pest-free solution.

4.4 The minimal predator release rate

We investigate the effects of the biological processes and the release period T on the minimal
release rate, first when the parameterisation is affine, then when it is nonlinear. The expres-
sion for the minimal release rate required for the eradication of pests is obtained from the
stability analysis presented previously.

4.4.1 Affine parameterisation

Dependence in biological processes

The product term ag′(0) can be interpreted as the ‘effective’ marginal predation at zero pest.
It represents the attack rate of the predators, the coefficient a specifies this rate with respect
to the prey species. We can consider a as an index of the prey’s exposure or vulnerability.

The dependence of the minimal release rate µ for pest eradication with respect to the term
ag′(0) is found to be monotonic decreasing: recall that λ in both the LAS and GAS conditions
(given in (4.26) and (4.27) respectively) is inversely proportional to ag′(0):

λ =
bf ′(0)

ag′(0)
and, respectively, λ =

bS

ag′(0)
.

So
∂λ

∂(ag′(0))
< 0. Since from (4.14)

∂µ

∂λ
> 0, we have:

∂µ

∂(ag′(0))
=
∂µ

∂λ

∂λ

∂(ag′(0))
< 0.
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Hence a higher attack rate (or ‘effective’ marginal predation at zero pest) of the predators
lowers the release rate required for pest elimination.

Analysing the influence of the interference strength b requires a few more computations.
We proceed by inspecting the inequality (4.16). When the parameterisation of α(x) and β(y)

is affine, we can write this inequality as:∫ T

0

ay∗e−m(τ mod T )

by∗e−m(τ mod T ) + 1
dτ >

f ′(0)

g′(0)
T.

where:
y∗ =

µT

1− e−mT

We note, that the integral on the left-hand of the inequality is decreasing in the interference
strength b. When b is high, y∗ needs to be increased in order to compensate for the depression
in the integral value due to b, and hence ensure that conditions for the stability of the pest-
free solution are satisfied. Since y∗ is directly proportional to µ, we can infer that a higher
interference strength requires a higher minimal rate for pest eradication.

Dependence in the release period

We also find that the minimal rate is a function of the release period T . When the arguments
of the trophic responses are considered to be affine as in subsection 4.3.1, the calculation of
∂µ

∂T yields the following observation:

Theorem 6 (Dependence in T ) For 0 < λ < 1, µ(Q,λ, T ) is increasing in T for T > 0 and
lim
T→∞

µ(Q,λ, T ) = +∞.

The proof is presented below.

Proof: The function can be rewritten as

µ(Q,λ, T ) = Qm
2 sinh

(
λmT

2

)
sinh

(
mT
2

)
sinh

(
(1−λ)mT

2

)
mT

= Qm
2(

coth
(
λmT

2

)
− coth

(
mT
2

))
mT

Its derivative is calculated as

dµ

dT
= 2Qm2

−
(
coth

(
λmT

2

)
− coth

(
mT
2

))
+
(

λmT
2

sinh2(λmT2 )
−

mT
2

sinh2(mT2 )

)
m2T 2(coth

(
λmT

2

)
− coth

(
mT
2

)
)2

=
2Q
(
Γ
(
λmT

2

)
− Γ

(
mT
2

))
T 2(coth

(
λmT

2

)
− coth

(
mT
2

)
)2

where
Γ(u) =

u

sinh2 u
− cothu

The denominator is positive so the sign of dµ

dT will depend on that of the numerator. We note
that

dΓ

du
=

2

sinh2 u
(1− u cothu)

is negative for all u ≥ 0. Γ(u) is therefore a decreasing function of u. Since λ < 1, we deduce
that

Γ

(
λmT

2

)
> Γ

(
mT

2

)
so that

dµ

dT
> 0

74



4.5. THE PEST EVOLUTION RATE

Finally,

lim
T→+∞

µ = lim
T→+∞

Q(1− e−mT )(1− e−λmT )

(1− e−(1−λ)mT )

eλmT

T
= +∞

�

This result applied to (4.15b) and (4.15d) has two possible interpretations. First, more
frequent releases will require a smaller minimal rate to succeed in driving the pest population
to zero. Second, a given rate µ∗ will work up to a threshold release period T ∗, which is defined
such that

µ

(
1

b
,
af ′(0)

bg′(0)
, T ∗

)
= µ∗

Beyond this period, as the zero-pest solution becomes unstable, pest invasion occurs.

4.4.2 Nonlinear parameterisation

Dependence in biological processes

When the parameterisation of α(x) and β(y) is nonlinear, only general trends in the behaviour
of the release rate with respect to the biological processes can be identified. While the precise
value of the minimal release rate, which we shall denote by µ̃(T ), is unknown, we know
however that it is bounded as in (4.33). Each of the bounds have the same form as for the
affine case: each of the minimal release rate bounds will decrease with aig

′(0) and increase
with bi. The actual µ̃(T ) will therefore generally tend to increase with respect to each aig

′(0)

and bi within a tube defined by these two bounds.

Dependence in the release period

Likewise, each bound is increasing in T . The actual µ̃(T ) will therefore generally tend to
increase with respect to the release period T within a tube defined by these two bounds. As
in the affine case, increasing the release period for a given release rate µ∗ will at some point
destabilise the pest-free solution. Due to the sector formulation, we are able to calculate that
the rate µ∗ will work up to a release period T ∗, but not beyond a T ∗ > T ∗, defined respectively
such that

µ

(
1

b2
,
a1f
′(0)

b2g′(0)
, T ∗

)
= µ∗ and µ

(
1

b1
,
a2f
′(0)

b1g′(0)
, T ∗

)
= µ∗

A graphical representation of this result is presented in Figure 4.5. Here we have con-
sidered α(x) to be affine and β(y) a Lipschitz square-like wave similar to the one given in
Figure 4.2. The shaded tube is limited by the bounds resulting from the sector formulation
and contains the actual µ̃(T ) curve for the pair of α(x) and β(y) functions considered. Note
that in this example the actual µ̃(T ) coincides with µ

(
1
b2
, a1f

′(0)
b2g′(0) , T

)
for small T and hedges

close to µ
(

1
b1
, a2f

′(0)
b1g′(0) , T

)
for intermediate T values. This somewhat validates the quality of

the bounds obtained on µ̃(T ) from the chosen sectors.

4.5 The pest evolution rate

Classical indicators of pest damage are often based on pest population thresholds at a given
time moment (economic injury level, economic threshold (Stern et al., 1959), and even aes-
thetic threshold levels for ornamental crops (Schumacher et al., 2006)).
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0 10

0.04

0.06

Figure 4.5: The minimal release rate µ̃(T ) is numerically computed from an affine α(x)

and a Lipschitz square-like β(y) shown on Figure 4.2. The shaded area is the tube
defined by (4.33) to which µ̃(T ) belongs. The threshold T ∗ (resp. T ∗) under which (resp.
over) the pest-free solution is guaranteed to be locally stable (resp. unstable) is also
shown for µ∗ = 0.05.

However, pest populations cause continuous damage over a period of time and the extent
of their impact is the result of cumulative population effects, measured in “insect-day" (Rup-
pel, 1983; Carey, 1993). Pest damage is therefore best captured by the integral of the density
of pests over time, rather than by the actual pest population density at some time moment.

So, when designing the biological control program, a way to reduce the damage caused by
pests on the crop is to ensure that the pest eradication is as fast as possible. We may define
a mathematical expression for the rate of evolution around the pest-free state as follows. At
first order in (x, y − yp), the x-dynamics are

ẋ =

(
f ′(0)− g′(0)

α′(0)

β(yp(t))

)
x.

Because of the periodicity of yp in T , we have

∀t x(t+ kT ) = x(t)eφ(T )kT ,

where the exponent

φ(T ) =
1

T

∫ T

0

(
f ′(0)− g′(0)

α′(0)

β(yp(τ))
yp(τ)

)
dτ (4.34)

is the mean rate of evolution of x around the pest-free solution (0, yp).
We note that φ < 0 when the solution is locally stable, so that x converges to zero. For all

positive φ, x diverges from zero. Likewise, we can say from the sign of φ whether x converges
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to zero or not: a negative φ implies that pests are eliminated, while a positive φ implies that
the pest population will persist at some positive value.

Furthermore, the mean speed of evolution of x around (0, yp) depends on the magnitude
of φ: the larger its magnitude, the higher the speed of evolution (divergence or convergence).

These two points on the sign and magnitude of φ are important in the interpretation of
the subsequent results.

We note that this evolution rate φ is dependent, via yp, on the release rate µ. It is also
dependent on the release period, related to the release program.

4.5.1 Affine parameterisation

Dependence in the release rate

We can identify this dependence by inspection of Equation (4.34). When β(yp) is affine, yp
β(yp) =

yp
byp+1 increases with yp and therefore increases with µ. Consequently, the rate φ decreases
with the predator release rate used. When the pest-free solution is stable, φ is negative.

Therefore, as φ is more negative when higher predator release rates are implemented,
using as high a release rate as possible ensures a faster pest eradication.

Remark: In practice however, due to financial constraints, this rate has a maximal fixed
value, which in turn limits the speed of pest elimination, at a given release period. �

Dependence in the release period

Here, for a given release rate µ, the question is how to deploy the predators in time in order
to maximise the speed of eradication. When the arguments of the trophic responses are
considered to be affine as in subsection 4.3.1, the convergence rate φ(T ) is calculated as

φ(T ) = f ′(0) +
g′(0)a

bmT
ln

(
by∗e−mT + 1

by∗ + 1

)
(4.35)

In the affine case, the following theorem applies.

Theorem 7 (Rate of evolution, affine parameterisation) Suppose that local stability con-
ditions are satisfied. Then for a given µ, the average rate of evolution of x to the pest-free
solution is an increasing function of the release period.

Proof: Recalling (4.11b), for a given µ, we can write

φ(T ) = f ′(0) +
g′(0)a

bmT
ln

(
bµTe−mT + 1− e−mT

bµT + 1− e−mT

)
(4.36)

This equation can be rearranged with µ as the subject of the formula and expressed using the
µ-function as follows:

µ =
1

b

 1− e−
b
a

(
f′(0)−φ(T )

g′(0)

)
mT

e
− ba
(
f′(0)−φ(T )

g′(0)

)
mT − e−mT

 1− e−mT

T
= µ

(
1

b
,
b

a

(
f ′(0)− φ(T )

g′(0)

)
, T

)

To determine the sign of ∂φ
∂T , we make use of the chain rule:

∂µ

∂T
=
∂µ

∂T
+
∂µ

∂φ

∂φ

∂T
(4.37)
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For a given µ, ∂µ
∂T = 0. We note that independently of the sign of φ(T ), from its definition in

(4.35) and since by∗ > 0, for T > 0

b

a

(
f ′(0)− φ(T )

g′(0)

)
= − 1

mT
ln

(
by∗e−mT + 1

by∗ + 1

)
< − 1

mT
ln(e−mT ) = 1

Furthermore, since 0 < by∗e−mT+1
by∗+1 < 1, we can deduce that

− 1

mT
ln

(
by∗e−mT + 1

by∗ + 1

)
> 0

Therefore we can establish that

0 <
b

a

(
f ′(0)− φ(T )

g′(0)

)
< 1

So, we can apply Theorem 6, with λ =
b

a

(
f ′(0)− φ(T )

g′(0

)
, and deduce that ∂µ

∂T > 0. Further-
more

∂µ

∂φ
= − m

ag′(0)

(1− e−mT )2 e
− ba
(
f′(0)−φ(T )

g′(0)

)
mT(

e
− ba
(
f′(0)−φ(T )

g′(0)

)
mT − e−mT

)2 < 0

So for (4.35) to be satisfied, since
∂φ

∂T
= −

∂µ

∂T
/
∂µ

∂φ
,

we deduce that ∂φ
∂T > 0. �

When the zero-pest solution is stable, φ(T ) is negative and the pest population asymp-
totically tends towards zero. The above result therefore means that the rate of evolution
towards zero becomes less negative, that is its magnitude decreases, as the period of release
is increased. The speed of convergence towards the pest-free solution decreases until zero.

Figure 4.6 illustrates this result. The convergence of x to zero for three different release
periods is shown. In all three cases, µ is identical and sufficiently high to ensure the stability
of this solution. So φ is negative and the convergence of x to zero is faster for smaller release
periods.

The proof of Theorem 7 actually tells us more than Theorem 7 itself. For positive φ(T ),
that is when the stability of the pest-free system is not guaranteed, increasing the period of
releases increases the magnitude of φ. In fact, it is the rate of invasion that is increased. We
remark here that keeping T small is favourable even if φ is positive since it would be delaying
the pests invasion.

4.5.2 Nonlinear parameterisation
When the parameterisation of α(x) and β(y) is nonlinear, we can determine the rate of evo-
lution to be enclosed within a tube, the upper and lower bounds of which are related to the
sector conditions. Recalling (4.28), that is:∫ T

0

a1yp(τ)

b2yp(τ) + 1
dτ ≤

∫ T

0

α′(0)yp(τ)

β(yp(τ))
dτ ≤

∫ T

0

a2yp(τ)

b1yp(τ) + 1
dτ

we can bound φ defined in (4.34) as

φ(T ; a2, (b1yp + 1)) ≤ φ(T ;α′(0), β(yp)) ≤ φ(T ; a1, (b2yp + 1)) (4.38)
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Figure 4.6: Pest convergence for a given µ at different release periods, T1 < T2 < T3. As
the period of release is increased, the pest population converges less quickly to zero.

Dependence in the release rate

We follow a similar reasoning as in the affine case. Each of the bounds imposed in (4.38) have
the same form as (4.35) and will be decreasing in the release rate µ. So we can deduce that φ
will follow a generally decreasing trend with respect to the release rate.

Dependence in the release period

From the proof of Theorem 7, both φ(T ; a2, (b1yp+1)) and φ(T ; a1, (b2yp+1)) are increasing in T .
From the bounds imposed in (4.38), we can deduce that φ(T ) will follow a generally increasing
trend with respect to the release period T . The actual speed of convergence towards the pest-
free solution will tend to decrease. Similarly to the behaviour of µ with respect to T described
above, the value of T at the actual crossover of φ is unknown. The threshold values T ∗ and
T ∗ are however obtained as

φ(T ∗; a1, (b2yp + 1)) = 0 and φ(T ∗; a2, (b1yp + 1)) = 0

Figure 4.7 shows the variation of the rate of evolution φ with respect to the release period
T , with the release rate fixed at µ∗ = 0.05. As for the simulation to calculate µ̃(T ) in the
previous section, α(x) is affine and β(y) Lipschitz square-like. All parameters are identical.
The shaded tube is limited by the bounds obtained from the sector conditions and contains
the actual φ that was computed numerically. The two thresholds on the release period (T ∗

and T ∗) are equal to the ones in Figure 4.5. Once again, for this example, we note that the
actual φ coincides with the upper bound φ(T ∗; a1, (b2yp + 1)) for small T and approaches close
to φ(T ∗; a2, (b1yp + 1)) for intermediate T values. The quality of our bounds is demonstrated.
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Figure 4.7: The mean rate of evolution φ(T ) is numerically computed from µ = 0.05,
an affine α(x) and a Lipschitz square-like β(y) shown on Figure 4.2. The shaded area is
the tube defined by (4.38) to which φ belongs. The threshold T ∗ (resp. T ∗) under which
(resp. over) the pest-free solution is guaranteed to be locally stable (resp. unstable) is
also shown.

4.6 The pest control strategy

We are able to obtain, from the stability analysis of the pest-free solution, two types of con-
ditions: the first one of biological nature and the second in terms of implementation of the
biological control program that would inform the choice of the predator species and the strat-
egy of its release respectively.

4.6.1 Choice of the predator species

Which predator species makes a successful biological control agent?

The biological condition determines an upper threshold on the interference parameter b, be-
yond which no control would be possible - this even if the invasion of pests were to be very
small. That is,

b <
ag′(0)

f ′(0)

Thus to be a successful biological control agent, a predator species needs to have a suf-
ficiently low intraspecific interfering behaviour b. A high attack rate g′(0), compared to the
term f ′(0)

a , also favours biological control program. The term f ′(0)
a can on its part be inter-

preted as the ‘effective pest growth rate’, since it is the pest growth weighed by a, which is
similar to pest exposure or vulnerability index with respect to the predator.
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Moreover, we have shown that similar conclusions can be derived in the more general case
where interference can only be described through the sector condition framework, and not by
a more precise analytical formulation. The information obtained through this phenomeno-
logical modelling approach clarifies the interplay of the pest growth versus the predation
capacity of the predator which may be weighed down by interference effects and enhanced by
the pest’s exposure.

4.6.2 The predator releases

How many predators need to be released to eradicate a pest population
surge?

Provided the biological condition is satisfied, our calculations show that the rate of predator
release µ must be larger than a minimal threshold to guarantee the stability of the pest-free
solution. This threshold is expressed as

µ > µ(Q,λ, T )

where the terms Q > 0 and 0 < λ < 1 are constants defined by intrinsic biological properties
of the interacting species, and also depend on the gravity of the invasion.

When the parameterisation is affine, a given rate that is smaller than this threshold value
results in the pest-free solution being unstable.

When the parameterisation is nonlinear, we cannot pinpoint the exact threshold value of
the minimal release rate. We obtain two distinct thresholds: first, a lower bound on the rate
for stability. Above this bound, stability is guaranteed. Secondly, we obtain an upper bound
for instability of the pest-free solution. Below this bound, the pest is guaranteed to persist.
Both conditions are only sufficient. The actual threshold is between the two bounds.

Nonetheless, a robust result from our analysis is that the more predator releases are
invested in, i.e. the larger the µ, the higher the chances that the biological control program
will be successful. We shall however see briefly in Section 4.6.3 that, although this result
sounds intuitive, it does not necessarily hold for any interference type.

Why choose small frequent releases over large rare ones?

The release strategy of the pest management program can be optimised in two aspects.
Firstly, to minimise the financial costs of a biological program related to predator purchase,
we would like to minimise the threshold release rate for pest eradication µ(λ,Q, T ). Secondly,
as explained in Section 4.5, we would like to minimise the damage caused by pests on the
crop and thus maximise the the speed of convergence of the pest population to zero after an
invasion.

Our computations of the release rate condition’s dependence on T reveals that small fre-
quent releases lower the minimal release rate required for pest eradication and jointly in-
creases the speed of convergence of the pest population towards zero. This result is strictly
correct in the linear parameterisation context, and still remains generically true in the more
general sector conditions framework.

This means that in practice, small frequent releases are to be favoured over large less
frequent ones. Interestingly, by using a minimal risk of damage approach, Mailleret and
Grognard (2006, 2009) obtained similar recommendations on a predator-prey model without
predator interference. Such corroborating results lend support to the validity of the strategy
in real-life.
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See later: We had the opportunity to test this recommendation for a reduced experimen-
tal batch and report this work in Chapter 7. This preliminary experimental evidence seems
to match with the prediction: more frequent releases produced a faster eradication. However,
things may not be that simple (see Section 4.6.3, ‘Additional questions’) and require more exper-
imental work both on the strength of interference among individuals of a species for validation
and frequency of releases. �

Can the pest eradication be accelerated?

We saw during our calculations that a higher predator release rate increased the speed of
eradication. It is possible to split the predator release regime into two. Having massive
release at the start of an invasion (the first regime, also at a higher release rate) can provide
a fast reduction in the pest population. If this reduction is sufficient, i.e. it reduces the
pest population size to the local basin of attraction of the system, we can follow up by a
smaller release rate (local stability condition) that is spread over more frequent releases (the
second regime) in order to guarantee eradication and keep the risk of damage at low levels.
Adapting the pest control program to pest invasions as such depends on how easy it is to
detect them. Our model does not tackle explicitly tackle adaptability to invasions, but is only
able to provide a first guess on the strategy to follow.

4.6.3 Additional questions: beyond sector modelling

The sector formulation in this chapter generate a maximal family of models that yield two
types of stability conditions for the zero-pest solution: the first is a biological and necessary
condition, and the second, a managerial one. This observation indicates that the result of
the stability analysis is not related to the explicit form of the trophic responses (such as the
Beddington-DeAngelis function, which yields these two types of conditions), but rather, to the
structure of the trophic response’s parameters.

In our final paper (Nundloll et al., 2010a), we presented the structural changes that occur
to the stability of the zero-pest solution when the parameters of the trophic response can-
not be be enclosed within sectors. We highlighted the need to discriminate between three
levels of interference:‘within sectors or moderate’, ‘too weak’, and ‘too strong’. We were also
able to generalise completely Buffoni et al. (2005)’s formulation for both density and ratio-
dependence.

We summarize these additional results in the answers to the three questions below:

What if the intrapredator interference are due to ratio-dependence effects?

The ratio dependence case correponds to b0 = 0 in equation (4.8). We were able to prove that
although a biological condition of the form (4.15a) is still required for the pest-free solution
to be stable, it is actually the only condition required for stability: the pest-free solution is
stable for any positive release rate µ. This result is consistent with the stability of the origin
of the unforced ratio-dependent system (Kuang and Beretta, 1998), which states that, if the
equivalent of our biological condition is satisfied, and if the predators cannot go extinct while
preys are present, then the origin (pest-free solution, when there are no releases) is stable.
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What happens if interference is extremely weak?

Mathematically, this implies that the β(y) function cannot be lower bounded by an increasing
linear function. In the weak interference case, it was shown that no biological necessary
condition like (4.15a) needs to be satisfied in order for the pest population to be stable: as in
the non-interfering predator case (see Chapter 3), there always exist a large enough predator
release rate that guarantees the pests can be eradicated. In this situation, the interference
is actually weaker than the density effect on the predation: the more predators are present,
the more efficient the total predation is.

What happens if interference is too strong?

The strong interference case implies mathematically that the β(y) function cannot be upper
bounded by an increasing linear function. As a result, things are a little bit different. We
concluded that the pest free solution can be stable over intermediate values of the release
rate µ only: in particular if µ is too large, biological control is disrupted. This contrasts with
our result in the presence of sector conditions where, when a biological condition is satisfied,
increasing the release rate ensures that the zero-pest solution is stable. Here, the interfer-
ence is stronger than the density effect: the larger the predator-density, the less efficient the
effective predation g(x, y)y is.
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5
Cannibalism among predators

Overview

Other than interfering with predation or pest uptake1, intrapredator encounters can also
impact the mortality rate of the predator population.

We will use the terminology adopted by Claessen et al. (2004) to define cannibalism as all
the processes that enhance mortality - including those that are not cannibalistic in the biolog-
ical sense of the term. As we will explain shortly, our use of the term ‘cannibalism’ includes
killing without eating or the elimination of individuals from the patch under consideration
via fleeing. We also extend this definition to include interpredator feeding within a guild of
predators as proposed by Kohlmeier and Ebenhoh (1995).

Cannibalism implies that predators get depleted faster, that is fewer predators than an-
ticipated are present to control pests. This means that the augmentative biological control
program will have to compensate for this predator behaviour. In this chapter, we analyse
three models, which depict different circumstances under which predators cannibalise, and
the impact on the pest control strategy.

Keywords: enhanced mortality, feeding strategy, intraguild predation.

Organization of this chapter:
This chapter is organized as follows.

Sections 5.1 introduces the notion of cannibalism as it is used in biomathematics. It
presents a general model for this behaviour, variants of which are studied in more
detail in the next three sections.

Section 5.2 covers in detail the first variant of the general model which describes canni-
balism arising from territorial effects. This includes a linear as opposed to a constant
mortality rate, which introduces some new challenges at the analytical level.

1See Chapter 4 for the effects of intrapredator interference that impacts predation on an augmenta-
tive biological control program.
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Section 5.3 deals with hunger-related cannibalism. Here, the model is bounded between
two systems that have the same form as our benchmark model in Chapter 3.

Section 5.4 presents a model of cannibalism that arises due to dietary requirements. This
model is bounded as the competition model in Chapter 4 with the added cannibalism
term. We use sector conditions to describe the function arguments.

In each section, we analyse the existence and stability of the zero-pest solution. For the latter
two models, we focus on the key points of our analysis which justify the choice of these bounds
on them.

Section 5.5 provides a comparison among the minimal release rates for pest eradication
obtained in the preceding sections. We study in detail the form of the minimal rate
solution for territoriality, and derive the characteristic features of the hunger-related
model and the diet-related ones based on our work in Chapters 3 and 4.

5.1 Understanding cannibalism

5.1.1 Cannibalism in the biomathematical jargon
Cannibalism is the process whereby an individual kills and feeds on its conspecifics. It im-
pacts directly the mortality of a population. If we follow the biomass transfers during canni-
balism however, we see that the consequences of this killing and feeding differ across differ-
ent species or under different environmental conditions. Cannibalism among predators does
not necessarily modify the pest uptake by the predators. Conversely, the biomass recovered
through the consumption of conspecifics may not get transformed into more predators. As Po-
lis (1981) and Claessen et al. (2004) point out, this means that cannibalism will also influence
the functional and numerical responses only under a particular set of circumstances.

Likewise, we can also describe two other instances whereby mortality of the predator
population is enhanced by intrapredator interactions: the first is that one or one group of
predators (which we refer to as the victim of the encounter) flees the patch upon meeting
another (the winner of the encounter). Another instance is that the victim gets killed by the
winner but not consumed.

Mathematically, this then implies that, in some instances, the modelling of cannibalism -
or at least some forms of it - is strictly identical to the modelling of predators getting killed
but not eaten by their conspecifics or simply fleeing them.

Because of these similarities from a mathematical point of view, the term cannibalism is
therefore used to define all the processes that enhance mortality, including those that are not -
biologically speaking - actually so (Claessen et al., 2004). Schematically, it can be represented
as in Figure 5.1.

In this chapter, we look at three mechanisms underlying cannibalism, each of which is
matched to a specific model. They are:

1. Territoriality,

2. Hunger,

3. Diet (which we also extend to intraguild predation effects).

5.1.2 Impact of cannibalism on augmentative pest control
When predators are killed through cannibalism, it is reasonable to assume that predation
on the pest is reduced. Here’s why: first, in most reported cases, the energy or biomass of
the defeated conspecific cannot be fully recovered. Even during consumption of the victim,
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Figure 5.1: Cannibalism enhances predator mortality, but may or may not affect pre-
dation and pest uptake.

part of the carcass - which forms a fraction of the biomass - is wasted (see for instance the
reviews by Polis (1981) and Claessen et al. (2004) and the references therein). Likewise, it is
possible that the nutrients recovered during cannibalism are not sufficient for reproduction,
so the numerical response can remain unaffected. This implies that whether as an immediate
consequence or over a subsequent generation, the number of predators is decreased.

When this happens in the case of competitive predators, which compete for the pest as
prey, the per capita predation (represented by the functional response) can increase as preda-
tors have more prey per surviving cannibalist. Nonetheless, because of saturation effects that
are fixed by stomach size, a decrease in the total number of predators results in a decrease in
predation.

So cannibalism can be expected to have detrimental impact on pest control.

5.1.3 General model of cannibalism
As was mentioned in Section 5.1.1, cannibalism affects directly predator mortality. Depend-
ing on the circumstances provoking this behaviour, it may also modify the trophic response.
Consequently, we generalise a model of cannibalism as:

ẋ = f(x)− g(x, y)y

ẏ = h(x, y)y −my − ϕ(y, x)y

}
t 6= nT

y(nT+) = y(nT ) + µT, ∀n ∈ N
(Mq)

where ϕ(y, x)y represents cannibalism.
We recall the general biologically plausible hypotheses (H1)–(H3‡) on the basic predator-

prey processes:

General hypotheses on predator-prey processes
Pest growth at zero pest:

f(0) = 0 and f ′(0) > 0 (H1)

Functional response: ∀y ≥ 0 :

g(0, y) = 0, ∀x ≥ 0,
∂g

∂x
(x, y) > 0, and ∀x > 0, g(x, y) > 0; (H2‡)

Numerical response: ∀y ≥ 0 :

h(0, y) = 0 and ∀x > 0, h(x, y) ≥ 0 (H3‡)
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The trophic responses g(x, y) and h(x, y) can be solely prey-dependent or dependent on both
prey and predator densites (in case of interferences similar to those presented in Chapter 3).

The function ϕ(y, x) which represents pure cannibalism has the following characteristics:

General hypothesis on the cannibalism function
Cannibalism function:

∀ x, y ≥ 0, ϕ(y, x) ≥ 0 (H7)

The hypothesis (H7) on the cannibalism function implies that cannibalism is non-negative
in the presence of predators. The function ϕ(.) may only depend on predator density or both
on prey and predator population densities (it may even be constant, but that would lead to a
simple increased mortality rate).

The models differ in the dependency of the trophic responses and the cannibalism func-
tion on the respective population densities. This dependency arises from the behavioural
mechanisms leading predators to cannibalise. Table 5.1 summarises the consequences of the
various kinds of cannibalism on the trophic responses and cannibalism function of Model
(Mq). More details are given in each of the sections.

Territoriality Hunger Diet
Model (i) (ii) (iii)
Functional response g(x) g(x) g(x, y)

Numerical response h(x) h(x) h(x, y)

Cannibalism function ϕ(y) ϕ(y, x) ϕ(y, x)

Table 5.1: Direct and indirect impacts of cannibalism. Intrapredator competition and
alternate prey determine the dependence of the trophic responses and the cannibalism
function on the prey and predator densities.

5.2 Mechanism I: Territoriality

5.2.1 The premises

Territorial behaviour among ladybirds has been observed by Agarwala et al. (2003); they
mark their territory by their feces to deter conspecifics from foraging: this forced fleeing from
the prey patch can also be modelled as enhanced mortality, since it corresponds to a decrease
of the predator density on the patch. Cannibalism is a strategic behaviour: individuals can-
nibalize potential enemies to defend resources such as space and ultimately increase chances
of reproductive success.

Some species such as Phytoseiulus persimilis (Athias-Henriot) which are natural enemies
of Tetranychus urticae (Koch). P. persimilis are extremely voracious and do not discriminate,
at high predator numbers, between the prey and conspecifics (Gerson et al., 2003). Here
cannibalism appears to be a direct consequence of overcrowding but not territoriality per se.

In both cases, cannibalism is the result of density-related encounters. Higher densities
of predators increase the rate of conspecific encounters, hence the rate of territorial disputes.
Likewise, cannibalism is not limited by the pest population, nor is predation of the pest lim-
ited by the presence of an alternate food source represented by the potential cannibal victims
among predators. So, we simply consider the cannibalism function as a term dependent in
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the predator density only (ϕ(y) with dϕ
dy > 0) without any impact on the trophic responses.

This has been proposed before in the literature Rosenzweig (1972); Kuang et al. (2003); Ruan
et al. (2007); Deng et al. (2007), with Goh (1976) specifically attributing it to overcrowding.
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Figure 5.2: Territoriality effects enhance predator loss. This is represented by a mass-
balance term which describes asymmetric encounters upon which the weaker conspecific
flees the stronger one of the two.

5.2.2 The model and specific hypotheses

The following model is used to depict territorial effects:
ẋ = f(x)− g(x)y

ẏ = h(x)y −my − qy2

}
t 6= nT

y(nT+) = y(nT ) + µT, ∀n ∈ N
(Mq(i))

In this case, we chose to model territorial effects as qy2 since it corresponds to cannibalism
taking place every time two predators meet (Deng et al., 2007). The factor q represents the
loss incurred in predator biomass at predator-to-predator encounters. In the case where the
encounter is particularly asymmetric (for instance, due to size - small versus large predator -,
or mobility - immobile larval stage versus highly active adult stage), the factor represents the
fraction of the predator population lost (dead or escaped) as victims of cannibalistic combat.
We see here that this form of cannibalism is very strong: when the predator density is very
high, cannibalism causes its quick decrease.

We now make the following assumptions:

Specific hypotheses during overcrowding
Ratio of pest growth to functional response:

f(x)

g(x)
is upper bounded for x ≥ 0 such that Sg = sup

x≥0

(
f(x)

g(x)

)
. (H4)

5.2.3 Existence of the zero-pest solution

The nonlinear predator mortality has a direct impact on the form of the predator dynamics
in the pest-free periodic solution. We state the result before detailing the computation of this
solution in the proof further below.
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Proposition 6 (Existence, elementary cannibalism) Model (Mq(i)) possesses a pest-free
solution

(xp (t) , yp (t)) =

(
0,

my∗e−m(t mod T )

m+ (1− e−m(t mod T ))qy∗

)
, (5.2a)

where

y∗ =
1

2

µT − m

q
+

√(
µT − m

q

)2

+
4µmT

q(1− e−mT )

 . (5.2b)

Proof: In the absence of pests, x(t0) = 0 and system (Mq(i)) is simplified to
ẋ = 0

ẏ = −(m+ qy)y

y(nT+) = y(nT ) + µT

(5.3)

As in the previous models, xp(t) = 0 is trivially found. We consider the time interval be-
tween two releases t ∈ (nT+, (n+ 1)T ) to calculate the variation of yp(t) under the continuous
regime. The quadratic component in the mortality requires some additional computations in
the integration of the ẏ dynamics. We start by separating variables and obtain:∫ y(t)

y(nT+)

1

(m+ qs)s
ds =

1

m

∫ y(t)

y(nT+)

(
1

s
− q

m+ qs

)
ds = −

∫ t

nT+

dτ

⇔ ln

(
y(t)

y(nT+)

(
m+ qy(nT+)

m+ qy(t)

))
= −m(t− nT )

⇔ y(t) =
my(nT+)e−m(t−nT )

m+ (1− e−m(t−nT ))qy(nT+)
.

(5.4)

After release at t = (n+ 1)T , we can formulate the sequence

y((n+ 1)T+) =
my(nT+)e−mT

m+ (1− e−mT )qy(nT+)
+ µT (5.5)

Since this discrete nonlinear system is positive and
d

dy

(
mye−mT

m+ (1− e−mT )qy

)
≤ e−mT < 1, this

system has a unique and stable positive equilibrium

y∗ = y((n+ 1)T+) = y(nT+),

which can be computed as (5.2b). The existence of (5.2a) is thus proved. �

5.2.4 Stability of the zero-pest solution
The conditions required for the stability involves at some point comparing the upper bound
on the per capita pest growth to predation rate with the periodic predator variation which
is a function of the release rate µ. Because of the quadratic mortality however, the predator
reference fixed point y∗ is a highly nonlinear mapping of this release rate. We may only
provide an implicit stability condition in terms of this release rate. Theorem 8 states the
result of our analysis.

Theorem 8 (Stability, elementary cannibalism) The solution (x(t), y(t)) = (0, yp(t)) of Model
(Mq(i)) is LAS if and only if

ln
(

1 +
q

m
(1− e−mT )y∗

)
>
f ′(0)

g′(0)
qT (5.6a)
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and is GAS if, in addition,

ln
(

1 +
q

m
(1− e−mT )y∗

)
> SgqT (5.6b)

where Sg is as defined in Hypothesis (??).

Proof: To prove the condition for local stability, we evoke once again Theorem 1 from Lak-
meche and Arino (2000), and obtain the necessary and sufficient conditions e−

∫ T
0

(m+qyp(τ))dτ <

1, which is trivial, and e
∫ T
0
f ′(0)−g′(0)yp(τ)dτ < 1. Recalling yp(t) from (5.2a), the latter yields∫ T

0

[f ′(0)− g′(0)yp(τ)]dτ < 0

⇔
∫ T

0

my∗e−mτ

m+ (1− e−mτ )qy∗
dτ >

f ′(0)

g′(0)
T

⇔ 1
q ln

(
m+ q(1− e−mT )y∗

)
− 1

q ln (m) >
f ′(0)

g′(0)
T

⇔ ln
(

1 +
q

m
(1− e−mT )y∗

)
>
f ′(0)

g′(0)
qT

(5.7)

which is the LAS condition (5.6a).
Next, to obtain the global stability condition, we consider the deviations from the periodic

solution as x̃ = x−xp and ỹ = y−yp respectively. The equivalent system, which is continuous
as the release effect cancels, is given as2:{

˙̃x = f(x̃)− g(x̃)(ỹ + yp)
˙̃y = h(x̃)(ỹ + yp)−mỹ − 2qypỹ − qỹ2 (5.8)

Let the starting coordinates be x̃0 and ỹ0 at time t0. As previously, the global asymptotic
stability of the pest-free solution is proved by first showing the convergence of x̃ and ỹ to zero.

We start by looking at the x̃ dynamics. As previously, we divide the ˙̃x-equation throughout
by g(x̃). If we separate state x̃ and time domains, then integrate from t0 up to an instant t,
we obtain: ∫ x̃(t)

x̃0

1

g(s)
ds =

∫ t

t0

[
f(x̃)

g(x̃)
− (ỹ + yp)

]
dτ

Following what we did in the previous chapters, convergence of x̃ to zero is shown by proving

lim
t→+∞

∫ x̃(t)

x̃0

1

g(s)
ds = lim

t→+∞

∫ t

t0

[
f(x̃)

g(x̃)
− (ỹ + yp)

]
dτ = −∞. (5.9)

As in the previous chapters, we focus on the time-domain integral, which we split as:∫ t

t0

[
f(x̃)

g(x̃)
− (ỹ + yp)

]
dτ

=

(∫ (b t0T c+1)T

t0

+

∫ b tT cT
(b t0T c+1)T

+

∫ t

b tT cT

)[
f(x̃)

g(x̃)
− yp

]
dτ −

∫ t

t0

ỹ dτ . (5.10)

2The calculations are detailed as follows
˙̃x = ẋ− ẋp = f(x̃)− g(x̃)(ỹ + yp)
˙̃y = ẏ − ẏp = h(x)y −my − qy2

p +myp + qy2
p

= h(x̃)(ỹ + yp)−m(ỹ + yp)− q(ỹ + yp)
2 +myp + qy2

p

= h(x̃)(ỹ + yp)−mỹ − qỹ2 − 2qypỹ
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We make at this point a small digression to show that the integral
∫ t
t0
ỹ dτ is bounded as

t goes to infinity. Since x and y are always non-negative

˙̃y(t) ≥ −(m+ 2qyp + qỹ)ỹ = −(m+ qyp + qy)ỹ (5.11)

There are two possible lower bounds on the variation of ỹ depending on the initial values ỹ0.
Indeed, the positivity of ỹ can be seen from (5.11), so that when ỹ0 ≥ 0, ỹ(t) ≥ 0 for all t ≥ 0.
Conversely, when ỹ0 < 0, ˙̃y(t) ≥ −(m+ qyp+ qy)ỹ ≥ −mỹ, so that ỹ(t) ≥ ỹ0e

−m(t−t0). Therefore

ỹ(t) ≥ min
(

0, ỹ0e
−m(t−t0)

)
So,

∫ t
t0
ỹ dτ is lower-bounded with

∫ t
t0

min
(
0, ỹ0e

−m(τ−t0)
)
dτ whose limit as t→∞ is finite.

Back to the other components of the split integral in (5.10), we note that the first and
third integral span at most over one period. The integrand is upper bounded by Sg, so these
integrals are each upper bounded by SgT .

The magnitude of the second integral however, grows indefinitely as t goes to infinity. By
considering the periodic upper bound of the integrand (Sg − yp), we may upper bound this
integral by a sum of T -integrals each spanning over a complete period (0, T ). Equation (5.9),
that shows convergence of x̃ to zero is then satisfied if:

lim
t→+∞

∫ b tT cT
(b t0T c+1)T

[
f(x̃)

g(x̃)
− yp

]
dτ

≤ lim
t→+∞

(
b t
T
c − b t0

T
c − 2

)∫ T

0

[Sg − yp] dτ = −∞ (5.12)

For convergence, it therefore suffices that the sign of the T -integral be negative, which we
may then compute to give condition (5.6b), as follows:∫ T

o

[Sg − yp] dτ < 0

⇔
∫ T

0

my∗e−mτ

m+ (1− e−mτ )qy∗
dτ > SgT

⇔ ln
(

1 +
q

m
(1− e−mT )y∗

)
> SgqT

Having shown global convergence to the pest-free solution, we finally notice that, when con-
dition (5.6b) is satisfied, the local stability condition (5.6a) also is, so that condition (5.6b)
implies global asymptotic stability. �

Remark: On inspecting conditions (5.6a) and (5.6b), we see that the pest-free solution will
be stabilised by a low pest growth and a high predation rate - indeed, both lower the right-
side of the inequality. The effect of predator mortality is less apparent (because of its influence
on y∗) but numerical simulations show that the left-hand side of the inequality is monotonic
decreasing with m. This means that low predator mortality stabilises the pest-free solution.
These observations are not surprising: low pest growth implies slowly developing preys, high
predation rate implies efficient control by the predator, and low mortality means longer-living
predators. These parameter conditions indicate the ease with which pest control can be carried
out and thus, as expected, point towards a small minimal release rate. �
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5.2.5 The minimal release rate

The formulation (5.6a) and (5.6b) are not explicit enough for a practical read-off of the math-
ematical result. The dependence of the left-hand side of these inequalities in µ and the non-
dependence of the right-hand side only indicate that provided µ is large enough,the stability
condition can be satisfied. However, the release rate µ and the release period T are embedded
in a highly nonlinear way in y∗, so unlike previous models, it is not possible to express the
minimal release rate at all T by simply rearranging condition (5.6a) or (5.6b). To extract µ,
we can however consider two distinct situations, one for T large and one for T small.

Large release period

In this case, we note that

y∗ =
1

2

µT − m

q
+

√(
µT − m

q

)2

+
4µmT

q(1− e−mT )


is essentially linear in T because the first term under the square root dominates the second
one. For T → +∞, we then have

y∗(T ) = µT + o(µT )

so that, for example, for the local stability condition (5.6a) to be satisfied, we need

ln
(

1 +
q

m
(µT + o(µT ))

)
>
f ′(0)

g′(0)
qT. (5.13)

For a given µ, the left-hand-side is essentially the logarithm of a linear function in T , so that
this condition cannot stay satisfied for large T : neither the local (5.6a) nor the global stability
(5.6b) conditions are fulfilled for T large.

Small release period

We may now shift our attention to the case when releases are ‘frequent enough’, i.e. in the
limit that T → 0+. This case is particulary relevant, since we have seen in the previous
chapters that small release periods are advocated most of the time. In that case, we can
prove the following corollary to Theorem 8.

Corollary 1 (Release rate, cannibalism due to overcrowding) Provided T is small enough,
the periodic solution (x(t), y(t)) = (0, yp(t)) of Model (Mq(i)) is LAS if

µ > µ
qa

=
f ′(0)

g′(0)

(
f ′(0)q

g′(0)
+m

)
(5.14a)

and is GAS if
µ > µ

qb
= Sg(Sgq +m) (5.14b)

Proof: We define Ω(T, y∗(T )) = ln
(
1 + q

m (1− e−mT )y∗(T )
)

and note that both sides of (5.6a),

Ω(T, y∗(T )) and
f ′(0)

g′(0)
qT , cancel at T = 0 because y∗(T ) stays bounded for T small. Taking the

Taylor expansion of (5.6a) then yields

d

dT
Ω(T, y∗(T ))T|0 + o(T ) >

f ′(0)

g′(0)
qT
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so that the condition is satisfied for T small if

d

dT
Ω(T, y∗(T )) >

f ′(0)

g′(0)
q

in the limit as T → 0+, with

lim
T→0+

d

dT
Ω(T, y∗(T )) = lim

T→0+

∂Ω

∂T
+ lim
T→0+

∂Ω

∂y∗
∂y∗

∂T
(5.15)

We first calculate lim
T→0+

y∗(T ) =
1

2q

(
−m+

√
m2 + 4qµ

)
. Hence

lim
T→0+

∂Ω

∂T
= lim

T→0+

me−mT q
my
∗(T )

1 + (1− e−mT ) qmy
∗(T )

=
1

2

(
−m+

√
m2 + 4qµ

)
and lim

T→0+

∂Ω

∂y∗
∂y∗

∂T
= 03.

So, the stability condition (5.15) becomes

lim
T→0+

d

dT
Ω(T, y∗(T )) =

1

2

(
−m+

√
m2 + 4qµ

)
>
f ′(0)q

g′(0)

⇔ µ >

(
2
f ′(0)q

g′(0)
+m

)2

−m2

4q
=
f ′(0)

g′(0)

(
f ′(0)q

g′(0)
+m

)
3This is calculated as follows: the second expression on the right-hand side of (5.15) is a product of

two partial derivatives:
∂Ω

∂y∗
=

q(1− e−mT )

m+ q(1− e−mT )y∗

and
∂y∗

∂T
=

µ

2
+

1

2q

 qµ2T−mµ+2mµ 1−e−mT−mTe−mT

(1−e−mT )2√(
m
q
−µT

)2
+ 4mµ

q
T

(1−e−mT )


In the limit as T → 0+, the product ∂Ω

∂y∗
∂y∗

∂T
can be written as the sum of three terms as follows

lim
T→0+

∂Ω

∂y∗
∂y∗

∂T
=

qµ

2
lim
T→0+

(
1−e−mT

m+q(1−e−mT )y∗(T )

)
+
qµ2

2
lim
T→0+

 (1−e−mT )T

(m+q(1−e−mT )y∗(T ))
√(

m
q
−µT

)2
+ 4mµ

q
T

(1−e−mT )


+
mµ

2
lim
T→0+

 (1−e−mT )

(
−1+2 1−e−mT−mTe−mT

(1−e−mT )2

)
(m+q(1−e−mT )y∗(T ))

√(
m
q
−µT

)2
+ 4mµ

q
T

(1−e−mT )


It is easily seen that the denominators are bounded away from zero when T → 0+, since m + q(1 −
e−mT )y∗(T ) ≥ m and √(

m

q
− µT

)2

+
4mµ

q

T

(1− e−mT )
= 2y∗(T )− µT +

m

q

which is larger than m
2q

when T is small. We are then left with considering the numerators and checking
their convergence to zero: it can be seen directly that this is the case for the first two terms. For the
third term, we note that

lim
T→0+

1−e−mT−mTe−mT
(1−e−mT )2

= lim
T→0+

mT
2(1−e−mT )

= lim
T→0+

1
2e−mT

=
1

2

This brings the numerator of the third term to zero, which proves that ∂Ω
∂y∗

∂y∗

∂T
= 0.
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which is condition (5.14a). The global condition (5.14b) on µ follows from the fact that the
inequality (5.6b) has exactly the same form as (5.6a), with f ′(0)

g′(0) substituted by Sg. �

This result is consistent with what was shown in Chapter 3 since, when q goes to 0, model
(Mq(i)) becomes model (M) and the stability conditions coincide.

5.3 Mechanism II: Hunger and fighting for survival

5.3.1 The premises

Hunger forces the predators to expand their dietary spectrum. The preferred food source of
the predators is the pest and predators cannibalize only when the pest population is low. This
is referred to as a lifeboat mechanism (Polis, 1981).

The rove beetle, Aleochara bilineata (Gyllenhaal) (Coleoptera: Staphylinidae), a predator
of root maggots is known to eat their own eggs and attack other adults when food levels are
low (Weeden et al., 2007). Some generalist predaceous mites such as Neoseiulus californicus
(McGregor), feed preferentially on pest species, and cannibalize only out of necessity, that is
at low pest levels Gerson et al. (2003). In fact, cannibalism does not allow it to lay eggs: this
means that there is no evolutionary benefit to it, so it should limit its occurence to emergency
survival cases (Walzer et al. (1999)). In population dynamical terms, the cannibalism term is
both prey and predator limited. Conversely, predation on the pest remains unaffected.

5.3.2 The model and specific hypotheses

This type of cannibalism is a fight for survival, so we will consider that predators also com-
pete among themselves for the cannibalised victims. We can then consider the cannibalism
function to be limited by the pest densities (ϕ(y, x) with dϕ

dx < 0) and bounded (dϕdy > 0 and
ϕ(y, 0) < C: the more conspecifics the predator has, the more it will cannibalize, up to a cer-
tain point given by the limited handling time). This cannibalism term has a similar form as
the one by Kohlmeier and Ebenhoh (1995). We can represent the system schematically as in
Figure 5.3.

Pest
x y

µT

h(x)y

(m+φ(y,x))yf(x)
g(x)y

Trophic 
responses
only 
prey-
dependent

+

+

+

- -
Predator

Pest
growth

Predator
releases

Predator
mortality
enhanced by
hunger-related
cannibalism
which is 
prey-dependent

Figure 5.3: Predators cannibalising out of hunger result in enhanced mortality. Hunger
effects result in a prey-dependent cannibalism function.
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We write the model as:
ẋ = f(x)− g(x)y

ẏ = h(x)y − ϕ (y, x) y −my

}
t 6= nT

y(nT+) = y(nT ) + µT, ∀n ∈ N,
(Mq(ii))

with the following Hypotheses:

Specific hypotheses for hunger-related cannibalism
Ratio of pest growth to the functional response:

f(x)

g(x)
is upper bounded for x ≥ 0 such that Sg = sup

x≥0

(
f(x)

g(x)

)
. (H4)

The cannibalism term is bounded

∂ϕ

∂y
(y, 0) ≥ 0 and ∃C > 0,∀y ≥ 0 : 0 ≤ ϕ (y, 0) ≤ C (H8)

In essence, ϕ(y, x) is a decreasing function of x since we presented cannibalism as hunger-
driven in this case: in the presence of few prey, cannibalism takes place while, if food is
abundant, no cannibalism should occur. However, this hypothesis on the dependency of ϕ
with respect to x does not need to be made for the mathematical proof.

On the other hand, the larger the predator population is, the more cannibalistic preys
are available, so that the larger the cannibalism rate per predator is; this translates into
∂ϕ

∂y
(y, 0) ≥ 0 in Hypothesis (H8). The boundedness of ϕ(y, 0) is due to the classical saturation

phenomenon that is usually modelled by Holling type II functional responses (due to satiation
or limitation because of the food handling time).

Remark: This form of cannibalism is weaker than the one presented in the previous section:
the present form has a bounded cannibalism rate, while this rate was linear in y in the previ-
ous case, which would result in massive cannibalism for large values of y. �

5.3.3 Existence of the zero-pest solution

The zero-pest subsystem of Model (Mq(ii)) is given as:
ẋ = 0

ẏ = −ϕ (y, 0) y −my

}
t 6= nT

y(nT+) = y(nT ) + µT, ∀n ∈ N,
(5.16)

Since we do not know exactly the ϕ function, we cannot give an explicit form of a periodic
pest-free condition. Through the previous hypotheses, we will however be able to show that
it is unique and give an upper and lower bound to it. The result is stated in Proposition 7 and
the calculations detailed in the proof.

Proposition 7 (Existence, cannibalism due to hunger) Let Hypotheses (H1)–(H3‡), (H7),
and (H8) be satisfied. Then Model (Mq(ii)) possesses a unique periodic pest-free solution whose
y coordinate is bounded as

µT

1− e−(C+m)T
e−(C+m)(t mod T ) ≤ yp(t) ≤

µT

1− e−mT
e−m(t mod T ) (5.17)
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Proof: We first tackle unicity of the pest-free solution. Following the steps in the proof
of Proposition 6, we consider the time interval between two releases t ∈ [nT+, (n + 1)T ] to
calculate the variation of y(t) over the continuous interval. Separating variables, we obtain:∫ y(t)

y(nT+)

1

(ϕ(s, 0) +m)s
ds = −

∫ t

nT+

dτ.

For a periodic solution yp(t) of period T , there exists y∗ such that y∗ = y((n+ 1)T+) = y(nT+).
Furthermore, the discrete component imposes that at the end of the period, just before a
release,

yp((n+ 1)T ) = yp(nT
+)− µT = y∗ − µT.

To establish unicity of the periodic solution, we must then show explicitly that the y∗ value
that solves ∫ y∗−µT

y∗

1

(ϕ(s, 0) +m)s
ds = −T, (5.18)

is unique.
To do so, we demonstrate that the left-hand side integral is bijective in y∗. Let this integral

be denoted as H(y):

H(y) =

∫ y−µT

y

1

(ϕ(s, 0) +m)s
ds

Because of the positivity of the system, y − µT ≥ 0, so we consider only y ≥ µT . H(y) is
well-defined, continuous and is calculated to be an increasing (though negative) function in
y4:

H ′(y) =
1

(ϕ(y − µT, 0) +m)(y − µT )
− 1

(ϕ(y, 0) +m)y

=
(ϕ(y, 0) +m)y − (ϕ(y − µT ) +m)(y − µT )

(ϕ(y − µT, 0) +m)(y − µT )(ϕ(y, 0) +m)y

=
(ϕ(y, 0)− ϕ(y − µT, 0))y + (ϕ(y − µT, 0) +m)µT

(ϕ(y − µT, 0) +m)(y − µT )(ϕ(y, 0) +m)y
> 0

since from Hypothesis (H8), the cannibalism function ϕ is increasing in y. Recalling from
Hypothesis (H8) that the cannibalism term is bounded, we can write:

− 1

m
ln

(
y

y − µT

)
≤ H(y) ≤ − 1

C +m
ln

(
y

y − µT

)
.

It is easy to see within these bounds that

lim
y→µT

H(y) = −∞ and lim
y→+∞

H(y) = 0.

So, H(y) is a strictly increasing (and negative) function over the domain y ∈ (µT,+∞], i.e. it
is bijective. We can further deduce that ∀α < 0, ∃ y ∈ (µT,+∞] such that H(y) = α. So for
α = −T , there exists a unique y∗ ∈ (µT,+∞] such that H(y∗) = −T , i.e. that solves (5.18).
This means that there is a unique pest-free periodic solution to (Mq(ii)).

We then show that the solution yp is constrained by the bounds defined in (5.17) as follows.
Using (H8), we have that

−(C +m)y ≤ ẏ = −ϕ (y, 0) y −my ≤ −my

which yields, for nT ≤ t ≤ (n+ 1)T , and for a given initial condition y(nT+) at time nT+:

y(nT+)e−(C+m)(t−nT ) ≤ y(t) ≤ y(nT+)e−m(t−nT )

4It is also possible to show this behaviour by inspection: From Hypothesis (H8), the argument of the
integral is a decreasing function (considering only values of y ≥ µT ). The left-hand-side is therefore an
increasing (negative) function of y.
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so that the post-release y-sequence is then given as:

y(nT+)e−(C+m)T + µT ≤ y((n+ 1)T+) ≤ y(nT+)e−mT + µT

It is then easily seen that the fixed point of the sequence is then also bounded between the
fixed-points of the left and right sequences:

µT

1− e−(C+m)T
≤ y∗ ≤ µT

1− e−mT
(5.19)

Hence, (5.17) is satisfied. �

5.3.4 Stability of the zero-pest solution
Here, the bounds provide a lower threshold below which the solution is unstable and an upper
threshold above which the solution is guaranteed to be stable. We focus on this sufficient
condition. The result is stated in Theorem 9 and the calculation details follow in its proof.

Theorem 9 (Stability, hunger effects) The solution (x(t), y(t)) = (0, yp(t)) of Model (Mq(ii))
is LAS if

µ > (C +m)
f ′(0)

g′(0)
(5.20a)

and is GAS if, in addition,
µ > (C +m)Sg (5.20b)

Moreover, it is unstable if

µ < m
f ′(0)

g′(0)
(5.21)

Proof: We evoke Theorem 1 from Lakmeche and Arino (2000) to identify the LAS condition.
As usual, this theorem yields a first condition

e
∫ T
0 [− ∂ϕ∂y (yp,0)yp−ϕ(yp,0)−m]dτ < 1

which is trivial because ∂ϕ
∂y (y, 0) ≥ 0 and ϕ(y, 0) ≥ 0. A second nontrivial condition is calcu-

lated as:
e
∫ T
0

[f ′(0)−g′(0)yp]dτ < 0

Upper-bounding the left-hand-side by replacing yp with its lower-bound from (5.17), we obtain
a sufficient condition for stability, which becomes, upon rearranging the terms,

µ > (C +m)
f ′(0)

g′(0)
,

which is condition (5.20a).
Similarly, e

∫ T
0

[f ′(0)−g′(0)yp]dτ < 0 is a condition for instability, which, when satisfied when
replacing yp with its upper-bound, gives the sufficient condition (5.21) for instability

µ < m
f ′(0)

g′(0)

To evaluate the GAS condition, we consider, as in our previous models, the deviation of{
˙̃x = f(x)− g(x)y = f(x̃)− g(x̃)(ỹ + yp)
˙̃y = h(x̃)(ỹ + yp)− ϕ(ỹ + yp, x̃)(ỹ + yp) + ϕ(yp, 0)yp −mỹ.

(5.22)
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From here on, we concentrate on the evolution of the x̃ variable, and follow the footsteps
of the proof of Theorem 2 in which the x dynamics are identical to the ones here. Identical
developments lead to (3.23) ∫ T

0

[Sg − yp(τ)] dτ < 0.

Since we do not have an explicit expression of yp(t), this sufficient condition for global conver-
gence to the pest-free solution is satisfied if it is so while replacing yp with its lower-bound.
We then have the condition

SgT −
∫ T

0

[
µT

1− e−(C+m)T
e−(C+m)(t mod T )

]
< 0

In computing the integral and isolating µ, we obtain condition (5.20b)

µ > (C +m)Sg

for global convergence of x to 0. Convergence of y to yp follows from similar arguments as
in previous chapters. Noticing that (5.20a) is satisfied when (5.20b) is concludes the proof of
GAS.

�

5.4 Mechanism III: Diet, alternate prey & intraguild predation

5.4.1 The premises

Using one predator species

Part of the predator population form an integral component of the predator diet. Predators
cannibalize to recover nutrients not commonly found in their environment. In other words,
both the prey and the cannibal victims provide alternate diet sources to the predator, so
that both take part to the same extent in the predator repletion or the limited handling
time predators can devote to feeding. Cannibalism influences the way predators consume
the preys (unlike other forms of cannibalisms which do not tend to perturb predation). On
the basis of heuristics presented in Kohlmeier and Ebenhoh (1995), this model may also be
used to describe intraguild predation: the predation of one species on another is modelled as
cannibalism within the predator guild.

When diet motivates cannibalism, this means that the predator preys equally on the pest
and vulnerable conspecifics so the presence of either food source will hinder the exploitation
of the other. The presence of pests lowers cannibalism while the presence of vulnerable con-
specifics reduces pest uptake: the conspecifics are actual desired food for the predators and
not only a means for survival in case of absence of preys. Alternatively, this can be a model of
interfering predator behaviour involving both cannibalism and intrapredator competition for
the prey and cannibal victims.

Schausberger (2003) reports that this behaviour is common among specialist predatory
mites like Phytoseiulus persimilis and Phytoseiulus macropilis (Banks) which have a limited
diet range. In particular, he reports from Walzer et al. (1999) and Schausberger and Croft
(2000) that both these species develop on an exclusive cannibalistic diet as fast as on their
primary prey, spider mites.
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Using a guild of predators

Several species of predators, that is a guild of predators rather than one predator species, are
sometimes used to control a pest. Reasons vary as to why this is done: predators are used
in tandem to control wider range of pest densities than if each is used alone. For instance,
phytoseiids which are more aggressive predators when pest density is high are often used
with stigmaeidae which are more efficient at low pest populations (Gerson, 2007). Some
predator species also attack specific life stages of the pest and are used with other predators
that are effective predators of other life stages. Also, different species of predators have
different resistance patterns to pesticides, and using both improves chance of survival of at
least one group after chemical application.

Within the predator guild, one of the predator species (an IG predator) usually also pre-
dates on another (an IG prey), a process referred to as intraguild predation (IGP). Exam-
ples of species involved in IGP systems are the phytoseiid mite Neoseiulus cucumeris (Oude-
mans), which feeds on the thrips Franklinothrips vespiformis (Crawford), and their shared
prey, Frankliniella occidentalis (Pergande), in rose greenhouses (Hervouet, 2006).

Kohlmeier and Ebenhoh (1995) proposed a similar model within the fisheries context
where they group several species of predator within one category (or state variable). Within
this framework, competition for the different predator species for a shared prey and inter-
predator predation correspond to intragroup competition and a pseudo-cannibalism respec-
tively. We may use a similar approach in intraguild predation (IGP) networks arising in
biological control programs (see Rosenheim et al. (1995); Holt and Polis (1997); Bampfylde
and Lewis (2007); Briggs and Borer (2005) for biological instances and modelling approaches
to intraguild predation).

In the predator group, we may then consider two natural enemy species: the intraguild
predator and the intraguild prey, which we group as one predator. The intraguild predator
feeding on the intraguild prey counts as cannibalism. The released predators consist of an
unspecified mix of both species or only one of them (see Figure 5.4). The model for appar-
ent cannibalism from the grouping of IG predators and IG preys into one predator class is
identical to that of pure diet-related cannibalism. So the results of our analyses for such a
diet-related cannibalism model are in fact applicable to both cases.

5.4.2 The model and specific hypotheses

We can represent schematically diet-related cannibalism as in Figure 5.5:
We consider in our model that cannibalism and prey predation will then each be limited

by the presence of the other food source (g(x, y) with dg
dy < 0 and ϕ(y, x) with dϕ

x < 0). We use
sector conditions to bound the arguments of the trophic response as in Chapter 4. Thus we
propose a generalisation of Kohlmeier and Ebenhoh (1995)’s formulation as:

ẋ = f(x)− g
(

ax
1+by

)
y

ẏ = h
(

ax
1+by

)
y − ϕ(y, x)y −my

 t 6= nT

y(nT+) = y(nT ) + µT, ∀n ∈ N

(Mq(iii))

where a, b > 0. This model is very similar to Model (Mb) with the addition of a cannibalism
term ϕ(y, x). The forms of the functional and numerical responses have a slightly different
justification: with the conspecifics being part of the diet of the predators, a high density of
predators implies that the predators satisfy their need for food by eating their conspecifics,
so that they do not eat the preys much. This behaviour, which is intrinsically related to
cannibalism, mathematically translates into interference between predators for the access to
the preys.

100



5.4. DIET, ALTERNATE PREY, INTRAGUILD PREDATION

IG Prey

Pest Pest

Predator guild

IG Predator

Level 1

Level 2
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iii
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iii
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Figure 5.4: Intraguild predation is often observed among predator species used to con-
trol pests. In addition to the predation on the prey, and the competition between the
predators for the prey, one predator species (usually a generalist species) can predate
on the other. In his fisheries model involving numerous species of predator (and prey),
Kohlmeier and Ebenhoh (1995) propose to merge predators in one group and model the
trophic interactions among them as cannibalism. This simplification provides a prelim-
inary approach in modelling the use of multiple predators and the effect of intraguild
predation in an augmentative control program.
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Figure 5.5: Diet-related cannibalism impacts both the trophic responses and the mor-
tality of predators. The trophic responses are penalised by conspecific handling and
searching. Cannibalism is also mitigated due to pest handling by the predator. In an
intraguild predation model, the trophic responses represent the transfer from the pest
population to the predator guild which consists of more than one predator species. The
cannibalism function represents the consumption of the intraguild prey species by the
intraguild predator species.
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Specific hypotheses for diet-related cannibalism or IGP
Limited pest growth:

∃ x̄ such that ∀ x ≥ x̄, f(x) < 0; (H5)

Limited per capita pest growth:

f(x)/x is upper bounded ∀ x ≥ 0, such that S = sup
x≥0

(f(x)/x); (H6)

Bounded cannibalism:

∂ϕ

∂y
(y, 0) ≥ 0 and ∃C > 0,∀y ≥ 0 : 0 ≤ ϕ (y, 0) ≤ C (H8)

Hypotheses (H5) and (H6) are the ones that were already necessary for modelMb describing
interference for access to the preys through sector conditions. We do not go through the length
of describing the present result with sector conditions and limit it to the specific interference
forms g

(
ax

1+by

)
and h

(
ax

1+by

)
. An extension to sectors similar to that presented in Chapter 4

could readily be made.

5.4.3 Existence and stability of the zero-pest solution
It is straightforward to see that the zero-pest solution has the same form as for hunger-
motivated cannibalism since the zero-pest subsystem is identical in both cases. We only state
this solution below; for the proof please see Proposition 7.

Proposition 8 (Existence, diet and intraguild predation)
Let general hypotheses (H1), (H2‡) and (H3‡), and specific hypotheses (H7), and (H8) be satis-
fied. Then Model (Mq(iii)) possesses a unique periodic pest-free solution whose y coordinate is
bounded as

µT

1− e−(C+m)T
e−(C+m)(t mod T ) ≤ yp(t) ≤

µT

1− e−mT
e−m(t mod T ) (5.23)

We have seen in Section 5.3 that the stability conditions were identical between the “Hunger
cannibalism” and the simple model of Chapter 3. In the current case, we see that the same
holds when comparing “diet cannibalism” and the interference model of Chapter 4, so that
the Theorem is similar, except that the lower-bound of yp needs to be considered in order to
compute the conditions

Theorem 10 (Stability, Diet and intraguild predation)
The solution (xp(t), yp(t)) = (0, yp(t)) of Model (Mq(iii)) is LAS if

f ′(0) <
ag′(0)

b
(5.24a)

and if

µ >
1

b

 1− e−(C+m)
bf′(0)
ag′(0)T

e
−(C+m)

bf′(0)
ag′(0)T − e−(C+m)T

 1− e−(C+m)T

T
(5.24b)

The solution is unstable if

f ′(0) >
ag′(0)

b
(5.24c)

or

µ >
1

b

 1− e−m
bf′(0)
ag′(0)T

e
−m bf′(0)

ag′(0)T − e−mT

 1− e−mT

T
(5.24d)
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Proof: The proof is the same as that of Theorem 4, except that, when reaching equation
(4.16) ∫ T

0

α′(0)yp(τ)

β(yp(τ))
dτ >

f ′(0)

g′(0)
T,

which is a neccessary and sufficient condition for Local Asymptotic Stability, we cannot com-
pute it directly and, since the argument of the integral is increasing in yp, we can replace yp(t)
by its lower-bound from (5.23) to obtain a sufficient condition for stability. The remainder of
the proof is unchanged and directly yields (5.24a) and (5.24b).

The instability conditions is in the line of Proposition 5 where we need to replace yp with
its upper-bound in the proof to obtain (5.24c) and (5.24d).

�

Remark: The extra term obtained because of the nonlinear cannibalism term has no effect
on the biological conditions: as shown after the proof of Theorem 4 this biological condition is
strictly related to the ẋ dynamics and the capacity of the predators to control the preys, inde-
pendently of the predator dynamics. The managerial instability condition (5.24d) is identical
to the one without cannibalism. It is normal that it is not any better, since cannibalism will
reduce the predator population; however, since our lower-bound on cannibalism is 0, there is
no basis for the instability condition to be worse.
The minimal stability rate resulting from our analysis has the same form as the minimal re-
lease rate in Chapter 4, with the natural mortality of the predators enhanced by cannibalism
or the consumption of the intraguild prey by the intraguild predator; larger releases have to be
carried out in order to counter the additional predator mortality related to cannibalism; since
cannibalism is here upper-bounded by a linear function, the general form of the condition is
unchanged. �

5.4.4 The Kohlmeier- Ebenhöh model

We have justified the introduction of this family of models by relating it to the model proposed
in Kohlmeier and Ebenhoh (1995), which we will now use to particularise the result that we
just obtained: 

ẋ = rx
(

1− x

K

)
− γx

1 + ν(x+ ηy)
y

ẏ =
γ′(x+ ηy)− γηy

1 + ν(x+ ηy)
y −my

 t 6= nT

y(nT+) = y(nT ) + µT, ∀n ∈ N

(5.25)

where the preys have a logistic growth, the available food for the predator is x+ηy (with η the
preference of the predator for cannibalism), and γ/ν and γ′/ν are respectively the maximal
food uptake rate and the maximum assimilation rate (with γ′ < γ).

In order to apply Theorem 10, we need to put model (5.25) in the framework of model
(Mq(iii)). Prey growth f(x) = rx

(
1− x

K

)
(so that S = r), predator mortality −my and can-

nibalism ϕ(y, x) =
γηy − γ′ηy

1 + ν(x+ ηy)
are easily identified. This last term satisfies (H8) since

ϕ(y, 0) =
γηy − γ′ηy

1 + νηy
≤ γ−γ′

ν , C and dϕ
dy (y, 0) > 0. The functional response is then obtained

by taking g(s) = γ
ν

s
s+1 , a = ν and b = νη. Conditions (5.24a) and (5.24b) then write as

r <
γ

νη
(5.26)
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and

µ >
1

νη

 1− e−( γ−γ
′

ν +m) νηrγ T

e−( γ−γ
′

ν +m) νηrγ T − e−( γ−γ
′

ν +m)T

 1− e−( γ−γ
′

ν +m)T

T

5.5 The pest control strategy

5.5.1 Predator releases

When cannibal predators are territorial

When predators are territorial, we have shown that, for a given release period, pest-eradication
could be achieved for a large enough release rate. Necessary condition (5.13) points more pre-
cisely to the fact that, the larger the T , the larger µwill need to be because the right-hand-side
increases linearly in T , while the left-hand-side only increases logarithmically, which should
be compensated by µ. This point at the necessity of not taking T too large to keep µ in check.
Similarly, if µ is fixed, T has a maximal value that it can take without violating (5.13). All this
is quite natural indeed; taking large values of T implies that large quantities of predators are
released at the same time; this produces intensive cannibalism right after the release, and
thus wastes biocontrol agents.

When cannibalism is hunger-driven

Not much is different with respect to what was shown in Chapter 3: we can only bound hunger
effects linearly and therefore obtain a T -independent bound on the release rate required for
pest eradication. The cannibalism effect only enhances mortality, so that the bound is large
than in the absence of cannibalism, but it does not fundamentally changes. An optimised
minimal risk strategy as in Mailleret and Grognard (2006, 2009) would require small frequent
releases as was shown in Section 3.3.2.

When cannibalism is part of the diet

The same analysis as for the simple model in Chapter 3 is conducted. As for the IGP model
or when cannibalism is motivated by dietary requirements, the minimal release rate has
the same form as the interference model, with the mortality effect enhanced by cannibalism.
Smaller release periods are to be favoured as they lower the minimal release rate and increase
the speed of pest eradication. From that point of view, this form of cannibalism is similar to
the territorial one. The main difference lies in the fact that, in the case of territoriality, for
any T , one can always find µ large enough such that pest-eradication, even if it means wast-
ing a lot of them in cannibalistic encounters, while in the present case, there is a biological
condition that needs to be satisfied for that to be possible. This is visible as the biological
condition for the Kohlmeier-Ebenhöh model (5.26): if the slope of the functional response at
low pest densities (γν ) is too weak or - and this is quite natural - if the predators have a too
large preference in consuming conspecifics rather than preys (large η), no pest-eradication
can be achieved.

5.5.2 The selection of the predator species

Low cannibalism levels

As expected, we should favour biocontrol agents that have small cannibalism levels: this is
directly apparent on conditions (5.20a) and (5.20b) for the hunger related cannibalism: the
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lower the cannibalism parameter, the smaller the predator release rate required. This is
also directly clear in the overcrowding case with T small by inspecting the influence of q on
(5.14a)-(5.14b).

Low cannibalism preference

As we have seen, the cannibalism preference is central in the possibility of controlling the
pest while using a cannibalist predator that has its conspecifics in its own diet or an IGP
system: quite naturally, we should favour predators whose diet favor the preys or IGP system
whose IG predators favor the pests over the IG prey.
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6
Partial harvest effects

Overview

Over their growing period, many agricultural crops, such as greenhouse grown flowers and
vegetables, are partially harvested on a regular basis (see e.g. Gerson and Weintraub (2007);
Schumacher et al. (2006) for such crops). This practice can remove a proportion of the insects
- including the predatory ones - present throughout the plantation.

In this chapter, we explicitly account for the discrete nature of crop harvesting and, like
predator releases, model it as an instantaneous change occuring periodically. We consider
the harvest period as a reference since it is set by crop growth and market constraints. We
investigate in particular how the frequency of releases is to be varied with respect to the
harvesting frequency to minimise the minimal budget value.

Keywords: Periodic harvests, Integrated Pest Management (IPM), multiple integer peri-
ods

Organization of this chapter:
This chapter is organised as follows:

Section 6.2 describes the model and its biological premises.

Section 6.3 presents two forms of the pest-free solution: first in the case when releases
occur more often than partial harvests, and second, when they are less frequent.

Section 6.4 identifies the conditions for the global and local stability of the pest-free solu-
tions.

Section 6.5 investigates the consequences of the previous mathematical results on the
strategy of pest control to employ. We look first at how the release period relative to
the partial harvest influences the minimal predator release required for pest eradica-
tion. Then, we identify the partial harvesting parameters that would either contribute
to or interfere with pest control by the predator releases.
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Section 6.6 provides a summary of the mathematical results presented in this chapter and
their practical interpretation, and the perspectives for extending the analysis to the
case where neither period (release or partial harvest) is the integer multiple of the
other.

6.1 The premises

Partial population removals

Harvest has already been shown in Volterra (1978); Negi and Gakkhar (2007) among others
to influence, even counter-intuitively, predator-prey dynamics. Volterra (1978) for instance
shows that adding a continuous harvest rate to both prey and predator populations would
benefit the prey population and repress the predator population.

The effect of partial harvesting is similar to that of pesticide usage proposed by Liu et al.
(2005b) in their Integrated Pest Management (IPM) strategy. Like predator releases, it is
modelled as an instantaneous change occuring periodically. They investigate in particular
how the frequency of releases is to be varied with respect to the harvesting frequency to
minimise the minimal budget value.

There are two aspects that are taken into account in including partial harvesting into our
model:

1. Firstly, both the predator and pest populations are subjected to partial harvesting when
it occurs, which involves a proportional decrease in the respective populations. In par-
ticular, since pest and predator are likely to occupy different parts of a plant, we allow
the strength of the removal to be different for each population.The effect of partial
harvesting is similar to that of pesticide usage proposed by Liu et al. (2005b) in their
Integrated Pest Management (IPM) strategy.

2. Secondly, one period (the predator releases or the harvest one) is taken as the integer
multiple of the other. This feature is a key for calculating the stability condition to ob-
tain the minimal budget value and include the case where the frequencies of predator
releases and of crop harvests are not the same. Although accounting for different dis-
crete phenomena occuring at the same frequency but not at the same instants is quite
common (see e.g. Liu et al. (2004, 2005b, 2006); Zhang et al. (2007)), we know of only
one other contribution describing discrete phenomena occuring at different moments
and periods by Terry (2010).

Remark: In the present chapter, we will focus our discussion around partial harvest effects.
Pesticide usage is discussed in the Chapter 7. �

6.2 The model

The processes involved in this system are represented schematically in Figure 6.1. Partial
harvesting is considered to be instantaneous, hence the discontinuous arrows.
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Figure 6.1: System schematic including partial harvesting on the predator and prey
populations. The process is impulsive hence depicted in broken arrow.

Following the modelling framework detailed in the previous chapters, we get:

ẋ = f(x)− g(x)y

ẏ = h(x)y −my
x(vT+

h ) = (1− αx)x(vTh) ∀v ∈ N
y(vT+

h ) = (1− αy)y(vTh) + δ (vTh mod Tr)µTr ∀v ∈ N
y(nT+

r ) = (1− δ (nTr mod Th)αy)y(nTr) + µTr ∀n ∈ N

(Mv)

Partial crop harvests and predator releases occur respectively every Th and Tr time units. αx
and αy represent the respective proportions of the prey and predator populations affected at
each harvest. These parameters are allowed be different since in reality, it might be the case
that each species occupies preferentially different parts of the plant. We also assume that
the insects are uniformly distributed throughout our plantation so that the effect of partial
harvesting is directly correlated with the number of plants harvested. We assume that the
crop maturates at a constant velocity so the proportion of crops harvested each time and
hence insects removed is considered as fixed. The δ-function, such that

δ(0) = 1 and δ(z) = 0,∀z 6= 0

is used thus to identify instants of simultaneous partial harvest and predator release. We
note that while in our analysis we consider only the case when either period is the integer
of the other, this formulation extends to many more possibilities (including irrational ratios
between the periods).

As in the basic model, the functions f(x), g(x) and h(x) are all locally Lipschitz continuous
for x, y ≥ 0. They are qualitatively defined according to Hypotheses (H1)-(H4) below. The
prime indicates their derivative with respect to their argument, x.

General hypotheses
Pest growth at zero pest:

f(0) = 0 and f ′(0) > 0 (H1)

Functional response:

g(0) = 0, g′(0) > 0, and ∀x > 0, g(x) > 0; (H2)
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Numerical response:
h(0) = 0 and ∀x > 0, h(x) ≥ 0 (H3)

Here, the ratio of the pest growth to functional response is upper bounded for all x.

Specific hypothesis
Ratio of pest growth to functional response:

f(x)

g(x)
is upper bounded for x ≥ 0 such that Sg = sup

x≥0

(
f(x)

g(x)

)
. (H4)

Specific notation
Because of its Lipschitz continuity, the slope of the functional response – also the functional
response per pest – can be upper bounded. We denote this upper bound as:

r = sup
x≥0

(
g(x)

x

)
(N1)

Period of reference and point of reference
We demonstrate that impulsive forcing by releases and harvests will provoke the predator
population to reach a periodic pattern of period equal to max(Tr, Th), which we shall refer to
as the period of reference. The instant following a coinciding partial harvest and release is
taken as the point of reference.

6.3 Existence of the zero-pest solution

In the absence of pest, the predator population will vary according to the number of preda-
tors manually injected into the system and also according to the partial harvest effect. The
absence of their source of food will cause an exponential decay of the population.

We consider in this section first the case when the period of reference is the harvesting
period, divided into subintervals between two releases, and then when the period of reference
is the release period, divided into subintervals between two partial harvests.

6.3.1 Releases more frequent than harvests
When releases occur more frequently than partial harvests, the pest-free solution of System
(Mv) is calculated as follows. First we state the result.

Proposition 9 (Existence, releases more frequent) Let Th = kTr where k ∈ N∗ and Hy-
potheses (H1)-(H3) be satisfied. Then, in the absence of pests, Model (Mv) possesses a globally
stable periodic solution

(xph (t) , yph (t))

=

0, y∗e−m(t mod Th) + µTre
−m(t mod Tr)

b t mod Th
Tr

c−1∑
j=0

e−jmTr

 (6.4a)

where

y∗ =

(
(1− e−mTh)(1− αy) + (1− e−mTr )αy

)
µTr

(1− (1− αy)e−mTh)(1− e−mTr )
(6.4b)
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Proof: When Th = kTr, in the absence of pests and using Hypotheses (H1)-(H3), the system
is simplified to 

ẋ = 0

ẏ = −my
x(nT+

r ) = (1− δ (n mod k)αx)x(nTr)

y(nT+
r ) = (1− δ (n mod k)αy)y(nTr) + µTr, ∀n ∈ N

(6.5)

The solution xph(t) = 0 is trivial. To calculate yph(t), we first show by induction that the
predator population right after a release can be expressed in terms of the point of reference
as follows

y(vTh + iT+
r ) = y(vT+

h )e−imTr + µTr

i−1∑
j=0

e−jmTr (6.6)

where i ∈ [0, 1, . . . , (k − 1)]

It is seen that (6.6) is valid for i = 0 since it is equal to

y(vT+
h ) = y(vT+

h )e0 + µTr

−1∑
j=0

e−jmTr = y(vT+
h )

Now suppose that (6.6) holds for i = i? where i? ∈ [0, 1, . . . , k − 2], i.e.

y(vTh + i?T
+
r ) = y(vT+

h )e−i?mTr + µTr

i?−1∑
j=0

e−jmTr

We will now show that (6.6) is valid for i = i? + 1. We calculate y(vTh + (i? + 1)T+
r ) from

y(vTh + i?T
+
r ) using (6.5), and get

y(vTh + (i? + 1)T+
r ) = y(vTh + i?T

+
r )e−mTr + µTr

=

y(nT+
h )e−i?mTr + µTr

i?−1∑
j=0

e−jmTr

 e−mTr + µTr

= y(nT+
h )e−(i?+1)mTr + µTr

i?∑
j=1

e−jmTr + µTr

= y(vT+
h )e−(i?+1)mTr + µTr

i?∑
j=0

e−jmTr

so that (6.6) holds true for i ∈ [0, 1, . . . , k − 1].
To evaluate the evolution of y according to the period of reference Th, we need to calculate

the value of y((v + 1)T+
h ), which is equivalent to y(vTh + kT+

r ), in terms of y(vT+
h ) . At this

point however, partial harvesting takes place before predator release; so we first express it in
terms of y(vTh + (k − 1)T+

r ) then expand the expression using (6.6) as follows

y
(
(v + 1)T+

h

)
= y (vTh + (k − 1)T+

r ) e−mTr (1− αy) + µTr

=

y(vT+
h )e−m(k−1)Tr + µTr

k−2∑
j=0

e−jmTr

 e−mTr (1− αy) + µTr

= y(vT+
h )e−mTh(1− αy) + µTr(1− αy)

k−1∑
j=1

e−jmTr + µTr

= y(vT+
h )e−mTh(1− αy) + µTr

(1− αy)

k−1∑
j=0

e−jmTr + αy


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Note that the summation term can also be evaluated so the sequence can be expressed as

y
(
(v + 1)T+

h

)
= (1− αy)y(vT+

h )e−mTh + µTr

(
(1− αy)

1− e−mTh
1− e−mTr

+ αy

)
(6.7)

In this linear dynamical system, the coefficient of y(vT+
h ), (1 − αy)e−mTh is less than one in

magnitude, so the sequence will converge to a limit, the equilibrium of (6.7). This equilibrium
yields (6.4b) and the convergence of y(t) to a periodic solution yph(t) based on y∗.

Now that we have established the existence of the periodic solution yph(t), we seek to
formulate it. We focus on a reference period over vTh < t ≤ (v + 1)Th during which yph(t) is
piecewise continuous, with the continuous components separated by predator releases. The
continuous intervals are defined over vTh + iTr < t ≤ vTh + (i+ 1)Tr where i ∈ [0, 1, . . . , k− 1].
For a given value of t, the value of i is easily identified as being i = b t mod Th

Tr
c. The value of

yph(t) is then of the form

yph(t) = yph(nTh + iT+
r )e−d(t mod Tr)

and, from (6.6) with y(nT+
h ) = y∗, we have that

yph(vTh + iT+
r ) = y∗e−imTr + µTr

i−1∑
j=0

e−jmTr

so that

yph(t) =

y∗e−imTr + µTr

i−1∑
j=0

e−jmTr

 e−d(t mod Tr)

= y∗e−m(t mod Th) + µTre
−m(t mod Tr)

i−1∑
j=0

e−jmTr

= y∗e−m(t mod Th) + µTre
−m(t mod Tr)

b t mod Th
Tr

c−1∑
j=0

e−jmTr

This is the form proposed in (6.4a), thereby completing our proof. �

Figure 6.2 illustrates yph(t). The piecewise continuity is exploited in the calculation of its
integral over a period (0, T ) (see Section 6.4.2).

6.3.2 Releases less frequent than harvests

When harvesting is more frequent than the release of predators, we have a similar result
about the existence of a periodic solution.

Proposition 10 (Existence, releases less frequent) Let Tr = kTh where k ∈ N∗ and Hy-
potheses (H1)-(H3) be satisfied. Then, in the absence of pests, Model (Mv) possesses a globally
stable periodic solution

(xpr(t), ypr(t)) =
(

0, y∗e−m(t mod Tr)(1− αy)
b t mod Tr

Th
c
)

(6.8a)

where

y∗ =
µTr

1− (1− αy)ke−mTr
(6.8b)
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Figure 6.2: Form of the periodic solution yph(t) in the case where k = 3. Harvests are
apparent at every vTh instant, while the release of predators dominates the harvest at
every nTr instant. Between those instants, the population decays exponentially since it
has no prey to feed on.

Proof: When Tr = kTh, in the absence of pests and using Hypotheses (H1)-(H3), the system
is simplified to 

ẋ = 0

ẏ = −my
x(vT+

h ) = (1− αx)x(vTh)

y(vT+
h ) = (1− αy)y(vTh) + µTrδ (v mod k) , ∀v ∈ N

(6.9)

As previously explained, xpr(t) is solved for trivially as being

xpr(t) = 0

We prove that the predator population again reaches a periodic solution. This time, how-
ever, the period of reference is Tr. The point of reference is the instant after a coinciding
harvest and release, with the release occurring right after the partial harvest. We show by
induction that the population after a harvest can be expressed as

y(nTr + iT+
h ) = y(nT+

r )e−imTh(1− αy)i (6.10)

where i ∈ [0, 1, . . . , (k − 1)].
It is seen that (6.10) is valid for i = 0 since it resumes to

y(nT+
r ) = y(nT+

r )e0(1− αy)0

Suppose (6.10) holds for i = i? where i? ∈ [0, 1, . . . k − 2], i.e.

y(nTr + i?T
+
h ) = y(nT+

r )e−i?mTh(1− αy)i? (6.11)
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We will now show that (6.11) is valid for i = i? + 1. We calculate the value of y when i = i? + 1

in terms of y(nTh + i?T
+
r ), knowing from ẏ = −my in System (6.9) it will be an exponential

decay with the added component for the harvest. Using (6.11), we then get

y(nTr + (i? + 1)T+
h ) = y(nTr + i?T

+
h )e−mTh(1− αy)

=
(
y(nT+

r )e−i?mTh(1− αy)i?
)
e−mTh(1− αy)

= y(nT+
r )e−m(i?+1)Th(1− αy)i?+1

(6.12)

This is clearly the same form given from the expression in (6.10), thereby validating it.
y∗ is given as the fixed point of the sequence representing post-release instants. Therefore,

using (6.10) for i = k and model (6.9), we next calculate y((n+ 1)T+
r ) as

y((n+ 1)T+
r ) = y(nTr + kT+

h )

= y(nT+
r )e−kmTh(1− αy)k + µTr

= y(nT+
r )e−mTr (1− αy)k + µTr

In this linear dynamical system, the coefficient of y(nT+
r ), e−mTr (1 − αy)k is less than one in

magnitude, which confirms the existence of the fixed point y∗ to which the sequence converges.
This equilibrium (6.8b) yields the convergence of y(t) to a periodic solution ypr(t).

Now that we have established the existence of the periodic solution ypr(t), we seek to
formulate it. We focus on a reference period over nTr < t ≤ (n + 1)Tr during which ypr(t) is
piecewise continuous, with the continuous components separated by harvests. The intervals
of continuity span nTr + iTh < t ≤ nTr + (i+ 1)Th where i ∈ [0, 1, . . . , k − 1]. For a given value
of t, the value of i is easily identified as being i = b t mod Tr

Th
c. The value of ypr(t) is then of the

form

ypr(t) = ypr(nTr + iT+
h )e−m(t mod Th)

and, from (6.10) with y(nT+
r ) = y∗, we have that

ypr(nTr + iT+
h ) = y∗e−imTh(1− αy)i

so that
ypr(t) =

(
y∗e−imTh(1− αy)i

)
e−m(t mod Th)

= y∗e−m(t mod Tr)(1− αy)
b t mod Tr

Th
c

which is exactly the expression given in (6.8a) and completes the proof. �

The form of the ypr function is illustrated on Figure 6.3.

6.4 Stability of the pest-free solution

6.4.1 The methodology

We start by explaining the method and bounds used for finding the stability conditions, be-
fore applying it specifically to the case when releases are more frequent (Section 6.4.2) then
when they are less so (6.4.3). We first define the deviation coordinates, which represent the
difference between the actual state pair and the reference periodic solution:

x̃(t) = x(t)− xp(t)
ỹ(t) = y(t)− yp(t)
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6.4. STABILITY OF THE PEST-FREE SOLUTION

Figure 6.3: Form of the periodic solution ypr(t) in the case where k = 3. Harvests are
apparent at every nTh instant, while the release of predators dominates the harvest at
every mTr instant. Between those instants, the population decays exponentially since it
has no prey to feed on.

In these new coordinates, the system becomes1


˙̃x = f(x̃)− g(x̃)(ỹ + yp)
˙̃y = h(x̃)(ỹ + yp)−mỹ
x̃(vT+

h ) = (1− αx)x̃(vTh)

ỹ(vT+
h ) = (1− αy)ỹ(vTh)

(6.13)

We note that the partial harvesting effects are preserved, but that as in the previous sections,
the releases disappear.

Then we bound ỹ as follows. Let the initial condition for system (6.13) be (x̃0, ỹ0) at time
t0, that is right after the harvest and the predator release. Note that since x̃ ≥ 0, h(x̃) ≥ 0.

1The calculations are detailed here:

˙̃x = f(x)− g(x)y − f(xp) + g(xp)yp
= f(x̃)− g(x̃)(ỹ + yp)− f(0) + g(0)yp = f(x̃)− g(x̃)(ỹ + yp)

˙̃y = h(x)y −my − h(xp)yp +myp
= h(x̃)(ỹ + yp)−m(ỹ + yp)− h(0)yp +myp = h(x̃)(ỹ + yp)−mỹ

x̃(vT+
h ) = x(vT+

h )− xp(vT+
h )

= (1− αx)x(vTh) = (1− αx)x̃(vTh)

ỹ(vT+
h ) = y(vT+

h )− yp(vT+
h )

= (1− αy)y(vTh)− (1− αy)yp(vTh) = (1− αy)ỹ(vTh)

ỹ(nT+
r ) = y(nT+

r )− yp(nT+
r )

= y(nTr) + µTr − (yp(nTr) + µTr) = ỹ(nTr)
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Moreover, (ỹ + yp) ≥ 0 and 0 ≤ (1− αy) ≤ 1. So the dynamics can be bounded as:{
˙̃y ≥ −mỹ∣∣ỹ(vT+

h )
∣∣ ≤ |ỹ(vTh)|

Next, we know that at any moment, because of the positivity of the system,

ỹ0 ≥ −yp ≥ −Syp

where Syp = sup
t≥0

yp(t) over the reference period T . Because they involve proportional removal,

thus a decrease in magnitude, the impulsive component of the dynamics can be ignored. We
can bound the ỹ dynamics as

ỹ(t) ≥ ỹ0e
−m(t−t0) ≥ −Sype−m(t−t0) (6.14)

The aim of out analysis is to identify the conditions for which x̃ goes to zero. We are able to
deduce subsequently that ỹ will also converge to zero, following a reasoning similar to those
proposed in the previous chapters. The convergence of (x, y) to (0, yp) is then guaranteed for
the abovementioned conditions. Similarly to what we’ve done in Chapter 3, we consider the
integral ∫ x̃

x̃0

1

g(s)
ds (6.15)

which, in the limit that x̃ tends to zero, is

lim
x̃→0+

∫ x̃

x̃0

1

g(s)
ds = −∞ (6.16)

This will thus provide the equivalent requirement for global convergence to the pest-free
solution.

We point out here that if the integral starts and ends between two partial harvests, i.e. the
initial and final times, t0 and t, both lie within the same continuous interval (vT+

h , (v+ 1)Th),
we may use the ˙̃x-dynamics in (6.13) to express the integral (6.15) over the (continuous) time
domain as ∫ x̃

x̃0

1

g(s)
ds =

∫ t

t0

˙̃x

g(x̃)
dτ =

∫ t

t0

[
f(x̃)

g(x̃)
− (yp + ỹ)

]
dτ (6.17)

Over a harvest period, starting right after a partial harvest up to and including the subse-
quent one, we need to take care in computing (6.15) because, contrarily to what was done
in the previous chapters, the x-dynamics is discontinuous: we need to take into account the
discontinuity that occurs upon the partial harvest. The integral can be split into a continuous
and a discrete component as shown below.

∫ x̃((v+1)T+
h )

x̃(vT+
h )

1

g(s)
ds =

(∫ x̃((v+1)Th)

x̃(vT+
h )

+

∫ x̃(v+1)T+
h

x̃(v+1)Th

)
1

g(s)
ds

=

∫ (v+1)Th

vT+
h

[
f(x̃)

g(x̃)
− (yp + ỹ)

]
dτ +

∫ x̃((v+1)T+
h )

x̃((v+1)Th)

1

g(s)
ds

(6.18)

From Hypotheses (H2)-(H3), and the lower bound on ỹ established in (6.14), and further
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noting that x̃((v + 1)T+
h ) = (1− αx)x̃((v + 1)Th), the integral (6.18) can be upper bounded as:

∫ x̃((v+1)T+
h )

x̃(vT+
h )

1

g(s)
ds

≤
∫ (v+1)Th

vT+
h

[
Sg − (yp − Sype−m(τ−t0))

]
dτ +

∫ (1−αx)x̃(v+1)Th

x̃(v+1)Th

1

rgs
ds

= SgTh −
∫ (v+1)Th

vT+
h

ypdτ +
Syp
m

(1− e−mTh)e−m(vTh−t0) +
ln(1− αx)

rg

(6.19)

where Sg and rg are defined in Hypotheses (H4)-(N1) respectively.
Finally, the linear approximation of the deviation system around the periodic solution

(0, yp(t)) is given as 
˙̃x = (f ′(0)− g′(0)yp(t))x̃
˙̃y = h′(0)yp(t)x̃−mỹ
x̃(vT+

h ) = (1− αx)x̃(vTh)

ỹ(vT+
h ) = (1− αy)ỹ(vTh)

(6.20)

The stability analysis is carried out separately, first when Th as the period of reference,
then when Tr is so.

6.4.2 Releases more frequent than harvests
In order to state the results for the case when releases are more frequent than harvests, we
first need to define the function

µ
vh

(S, r) = m

(
S +

ln (1− αx)

rTh

)
1

1−
(

αy(1−e−mTh)
1−(1−αy)e−mTh

)(
e−mTh/k

k(1−e−mTh/k)

)
This function is increasing in S and r because the sign of the partial derivatives is deter-

mined by the sign of the last factor, which can be shown to be positive. Indeed, this factor is
positive when (

αy
(
1− e−mTh

)
1− (1− αy) e−mTh

)(
e−mTh/k

k
(
1− e−mTh/k

)) < 1

and we have αye−mTh/k ≤ αy and 1− (1− αy) e−mTh > αy, so that

αye
−mTh/k

1− (1− αy) e−mTh
< 1

Also, k
(
1− e−mTh/k

)
≥
(
1− e−mTh

)
since both sides of the inequality have the same value in

Th = 0, and

d

dTh

[
k
(

1− e−
mTh
k

)]
= me−mTh/k ≥ me−mTh =

d

dTh

[
1− e−mTh

]
which shows that µ

vh
(S, r) is increasing in S and r. Theorem 11 summarises the results

concerning the stability conditions.

Theorem 11 (Stability, releases more frequent) When Th = kTr with k ∈ N∗, the solu-
tion (x(t), y(t)) = (0, yph(t)) of ModelMv is LAS iff

µ > µ
vh

(
f ′(0)

g′(0)
, g′(0)

)
(6.21a)
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and is GAS if

µ > µ
vh

(Sg, rg) (6.21b)

where Sg and rg are defined in Hypothesis (H4) and (N1) respectively.

Proof: We start with the proof of global convergence under condition (6.21b). The reference
period in this scenario is Th, which means that we count one impulse on x (i.e. one harvest)
per period. We split the integral of (6.15) from x̃0 to x̃ into integrals over complete partial
harvest periods and remaining intervals at their fringe as follows:

∫ x̃

x̃0

1

g(s)
ds =

∫ x̃
((
b t0Th c+1

)
T+
h

)
x̃0

+

b t
Th
c−1∑

v=b t0Th c+1

∫ x̃((v+1)T+
h )

x̃(vT+
h )

+

∫ x̃(t)

x̃
(
b t
Th
cT+
h

)
 1

g(s)
ds

The first and third components are bounded. The second term tends to +∞ in magnitude as
t→ +∞. From (6.19), the summation of periodic integrals can also be upper bounded as:

b t
Th
c−1∑

v=b t0Th c+1

∫ (v+1)T+
h

vT+
h

1

g(s)
ds

≤
b t
Th
c−1∑

v=b t0Th c+1

[
SgTh −

∫ Th

0

yphdτ +
Syph
m

(1− e−mTh)e−m(vTh−t0) +
ln(1− αx)

rg

]
(6.22)

Note that we integrate the periodic variation yph over the interval (0, Th), which is equivalent
to integrating it over any arbitrary period. The term to be summed is decreasing in v. Thus, to
ensure that the series goes to −∞, we require that at some point, this term becomes negative.
It suffices to consider that its behaviour in the limit that v → +∞ is as

lim
v→+∞

[
SgTh −

∫ Th

0

yphdτ +
Syp
m

(1− e−mTh)e−m(vTh−t0) +
ln(1− αx)

rg

]
< 0

⇔
∫ Th

0

yphdτ > SgTh +
ln(1− αx)

rg

(6.23)
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We calculate the yph integral2:

∫ Th

0

yph(τ)dτ =

k−1∑
i=0

[
yph(iT+

r )

∫ (i+1)Tr

iTr

e−m(τ−iTr)dτ

]
=
µTh
m

(
1− (1− e−mTh)αye

−mTr

k(1− e−mTr )(1− (1− αy)e−mTh)

) (6.24)

Plugging (6.24) into the inequality (6.23) and rearranging, we obtain

µ > m

(
Sg +

ln(1− αx)

rgTh

)
1

1−
(

αy(1−e−mTh)
1−(1−αy)e−mTh

)(
e−mTh/k

k(1−e−mTh/k)

) (6.25)

which is the inequality (6.21b).
In order to have the global asymptotic stability, we are only left with the local asymptotic

stability to prove. Here, we only have to consider the discrete system that maps the state at
time nT+

h onto the state at time (n + 1)T+
h with respect to the linear equation in ỹ and the

discrete component of Equation (6.20).
After a few computations, we obtain:(

x̃

ỹ

)(
(v + 1)T+

h

)
= B

(
x̃

ỹ

)(
vT+

h

)
(6.26)

where

B =

 (1− αx)e
∫ (v+1)Th
vTh

f ′(0)−g′(0)yphdτ 0

‡ (1− αy)e
−m

∫ (v+1)Th
vTh

dτ


Note that ‡ is a term that we do not use in our analysis, therefore it is not expressed.

Since the matrix is triangular and |B22| < 1, it is stable iff |B11| < 1, i.e.∫ (v+1)Th

vTh

yphdτ >
f ′(0)Th + ln(1− αx)

g′(0)
(6.27)

2The calculation is detailed as follows:∫ Th

0

yph(τ)dτ =

k−1∑
i=0

[
yph(iT+

r )

∫ (i+1)Tr

iTr

e−m(τ−iTr)dτ

]

=

k−1∑
i=0

[(
y∗e−imTr + µTr

i−1∑
j=0

e−jmTr

)
(1− e−mTr )

m

]

=

k−1∑
i=0

[(
y∗e−imTr + µTr

1− e−imTr
1− e−mTr

)]
(1− e−mTr )

m

=

(
y∗
k−1∑
i=0

e−imTr +
µTr

1− e−mTr

k−1∑
i=0

[1− e−imTr ]

)
(1− e−mTr )

m

=

(
y∗

1− e−kmTr
1− e−mTr +

µTr
1− e−mTr

(
k − 1− e−kmTr

1− e−mTr

))
(1− e−mTr )

m

=

(
y∗(1− e−kmTr ) + µTr

(
k − 1− e−kmTr

1− e−mTr

))
1

m

=

(
((1− e−mTh)(1− αy) + (1− e−mTr )αy)µTr(1− e−mTh)

(1− (1− αy)e−mTh)(1− e−mTr )
− µTr(1− e−mTh)

1− e−mTr + µTrk

)
1

m

=
µTrk

m

(
1− e−mTh
k(1− e−mTr )

(
((1− e−mTh)(1− αy) + (1− e−mTr )αy)− 1 + (1− αy)e−mTh

1− (1− αy)e−mTh

)
+ 1

)
=
µTh
m

(
1− (1− e−mTh)αye

−mTr

k(1− e−mTr )(1− (1− αy)e−mTh)

)
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Similarly to what was done earlier, it can be shown that (6.27) is equivalent to (6.21a), so
that the necessary and sufficient condition for local stability is proven.

It is directly seen that (6.27) is satisfied when (6.21b) is because µ
h
(S, r) is increasing in

S and r and we have

f ′(0)

g′(0)
= lim
x
>→0

f(x)

g(x)
≤ sup

x≥0

f(x)

g(x)
and g′(0) = lim

x
>→0

g(x)

x
≤ sup

x≥0

g(x)

x
(6.28)

This completes the proof of global stability, since we have shown global convergence and
local stability when (6.21b) is satisfied. �

The lower bound on the release rate required for the stability of the periodic pest-free
solution is the minimal release rate that the biological control practitioner needs to meet if
pests are to be eliminated.

6.4.3 Releases less frequent than harvests
If we now consider the case where predators releases take place less often than harvests, we
also obtain global and local stability results based on the following function

µ
vr

(S, r) = m

(
S +

ln(1− αx)

rTh

)
1− (1− αy)e−mTh

1− e−mTh

which is non-decreasing in S and r since the last fraction is positive and αx ∈ [0, 1].

Theorem 12 (Stability, releases less frequent) When Tr = kTh with k ∈ N∗, the solution
(x(t), y(t)) = (0, ypr(t)) of Model (Mv) is LAS iff

µ > µ
vr

(
f ′(0)

g′(0)
, g′(0)

)
(6.29)

and is GAS if

µ > µ
vr

(
sup
x≥0

f(x)

g(x)
, sup
x≥0

g(x)

x

)
(6.30)

Proof: This proof does not depart very much from the one of Theorem 11. We make use of
the same integral ∫ x̃

x̃0

1

g(s)
ds.

The only difference is that the reference period is now Tr, which consists of k partial harvests.
As before, we first consider its evolution over the reference period: the latter is expressed as
a sum of k integrals as defined in (6.18), then bounded using (6.19).∫ x̃((n+1)T+

r )

x̃(nT+
r )

1

g(s)
ds =

k−1∑
i=0

∫ x̃(nTr+(i+1)T+
h )

x̃(nTr+iT+
h )

1

g(s)
ds

=

k−1∑
i=0

[(∫ x̃(nTr+(i+1)Th)

x̃(nTr+iT+
h )

+

∫ x̃(nTr+(i+1)T+
h )

x̃(nTr+(i+1)Th)

)
1

g(s)
ds

]

≤
k−1∑
i=0

[
SgTh −

∫ (i+1)Th

iTh

yprdτ +
Sypr
m

(1− e−mTh)e−m(vTh−t0) +
ln(1− αx)

rg

]

= kSgTh −
∫ (n+1)Tr

nTr

yprdτ +
kSypr
m

(1− e−mTh)e−m(vTh−t0) +
k ln(1− αx)

rg

120



6.4. STABILITY OF THE PEST-FREE SOLUTION

Over an interval of time τ ∈ (t0, t), this integral may be decomposed as

∫ x̃(t)

x̃0

1

g(s)
ds =

∫ x̃((b t0Tr c+1)T+
r )

x̃0

+

b tTr c−1∑
n=b t0Tr c+1

∫ x̃((n+1)T+
r )

x̃(nT+
r )

+

∫ x̃(t)

x̃(b tTr cT
+
r )

 1

g(s)
ds.

The first and third terms are bounded. We focus on the second one.
We proceed as in the previous section to deduce that upper bound on this term’s integrand

is a decreasing function of n. So for it to tend to −∞, it suffices that

lim
n→+∞

[
SgTr −

∫ Tr

0

yprdτ +
Syp
m

(1− e−mTh)e−m(nTr−t0) +
k ln(1− αx)

rg

]
< 0

⇔
∫ Tr

0

yprdτ > SgTr +
k ln(1− αx)

rg
.

(6.31)

The ypr integral is calculated as a sum of subintegrals3:

∫ Tr

0

yprdτ =

k−1∑
i=0

ypr(iT
+
h )

∫ (i+1)Th

iTh

e−m(τ−iTh)dτ

=
µTr(1− e−mTh)

m(1− (1− αy)e−mTh)

Substituting it in (6.31) and noting that
k

Tr
=

1

Th
, we obtain, upon rearranging the terms,

µ > m

(
Sg +

ln(1− αx)

rgTh

)(
1− (1− αy)e−mTh

1− e−mTh

)
,

which corresponds to the expression (6.30).
Global convergence of (x̃, ỹ) to (0, 0) is then concluded by using the same argument as in

the proof of Theorem 11 to show the convergence of ỹ to 0.
Similarly, the local stability condition (6.29) results from the analysis of the discrete lin-

earized system that maps ỹ(nT+
r ) onto ỹ((n+ 1)T+

r ).(
x̃

ỹ

)(
(n+ 1)T+

r

)
= B

(
x̃

ỹ

)(
nT+

r

)
(6.32)

where

B =

(
(1− αx)ke

∫ (n+1)Tr
nTr

f ′(0)−g′(0)yprdτ 0

‡ (1− αy)ke−m
∫ (n+1)Tr
nTr

dτ

)
(6.33)

3The complete calculation is as follows:∫ Tr

0

yprdτ =

k−1∑
i=0

ypr(iT
+
h )

∫ (i+1)Th

iTh

e−m(τ−iTh)dτ

=

k−1∑
i=0

y∗eimTh(1− αy)i
∫ Th

0

e−mτdτ

=
y∗(1− e−mTh)

m

k−1∑
i=0

eimTh(1− αy)i

=
µTr(1− e−mTh)

m(1− (1− αy)ke−mTr )

(
1− (1− αy)ke−kmTh

1− (1− αy)e−mTh

)
=

µTr(1− e−mTh)

m(1− (1− αy)e−mTh)
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Again, since the system matrix is lower triangular, for stability we simply require that
|B11| < 1 and |B22| < 1. The latter yields a trivial condition, while the former:∫ (n+1)Tr

nTr

yprdτ >
f ′(0)Tr + k ln(1− αx)

g′(0)
(6.34)

This expression has the same form as (6.31). After some obvious changes, we obtain condi-
tion (6.29) for local stability. Thus the proof of global stability is also complete because µ

vr
is

increasing in S and r and (6.28) is still satisfied. �

Varying the release period has no effect on the minimal rate when they take place less
often than harvests; however, it influences this minimal bound if it takes place more often
than the partial harvests. In the next section, we investigate more closely the effect of varying
this release period (for a fixed partial harvesting period). We also look at how the partial
harvest parameters will affect the minimal release rate required for biological control. We
highlight in particular when partial harvesting (or insecticide usage in an IPM framework)
contributes to control pests and when it is likely to disrupt a control program.

6.5 The minimal release rate

6.5.1 Dependence in biological processes

Whether releases take place more or less often than the partial harvests, if the pest growth
rate is higher and the functional response lower, a higher bound is required. Predator mor-
tality also raises the minimal release value. Moreover, the minimal value can be lowered if
the strength of partial harvests on the pest increases while that on the predator decreases.

6.5.2 Dependence in the period of release

From our stability analysis in Theorem 12, the minimal release rate µ
vr

, corresponding to
harvests more frequent than releases, is independent of the release period (actually it does
not depend on k). Thus

∂µ
vr

∂Tr
= 0

The influence of Tr on µ
vh

(releases are more frequent) calculated in Theorem 11 cannot
be deduced directly from the expression for the minimal release rate. Instead we need to
evaluate the sign of its derivative with respect to the release period: Theorem 13 states the
result.

Theorem 13 (Dependence in release period, µ
vh

) Let Th = kTr where k ∈ N∗. The mini-
mal budget is monotonically decreasing with respect to the release period Tr for non-negative
values of µ

vh
, i.e.

∂µ
vh

∂Tr
< 0.

.

Proof: Knowing that Tr is equal to Th
k , we may write

∂µ
vh

∂Tr
=
∂µ

vh

∂k

∂k

∂Tr
=
∂µ

vh

∂k

(
−k2

Th

)
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So

sgn
(
∂µ

vh

∂Tr

)
= −sgn

(
∂µ

vh

∂k

)
(6.35)

We note that µvh is expressed as the product of two distinctive parts, one of which is indepen-
dent of k and which, for the non-trivial stability condition, should be positive:

S +
ln(1− αx)

rTh
> 0

where S and r are the parameters required for the local or global conditions, as defined previ-
ously. If the previous coefficient were to be negative, it would simply mean that the harvests
would by themselves be sufficient to suppress the pest population: the

(
ln(1−αx)

r

)
term cor-

responding to the harvesting then dominates pest-growth during one period represented by
STh. So (6.35) can be evaluated simply in considering the second factor of µvh:

sgn
(
∂µ

vh

∂Tr

)
= −sgn

 ∂

∂k

 1

1−
(

αy(1−e−mTh )

1−(1−αy)e−mTh

)
σ(k)


where σ(k) = e−mTh/k

k(1−e−mTh/k)
. We can compute

∂µ
vh

∂σ > 0, therefore:

sgn
(
∂µ

vh

∂Tr

)
= −sgn

(
∂σ

∂k

)
= −sgn

(
e−mTh/k

k2(1− e−mTh/k)2

(
mTh
k
− 1 + e−mTh/k

))
= −sgn

(
ke−mTh/k +mTh − k

)
.

This function behaves thus: first,

∂

∂k
[ke−mTh/k +mTh − k] =

(
1 +

mTh
k

)
e−mTh/k − 1 ≤ 0,

and then, applying twice l’Hospital’s Rule

lim
k→∞

(
ke−dTh/k + dTh − k

)
= dTh + lim

k→∞

(
e−dTh/k − 1

1
k

)

= dTh + lim
k→∞

(
dTh
k2 e

−dTh/k

− 1
k2

)
= 0

which means that sgn
(
ke−mTh/k +mTh − k

)
> 0. Therefore, sgn

(
∂µ

h

∂Tr

)
< 0, what completes

the proof. �

Thus we hit the smallest minimal value for the largest possible Tr, in this case when
k = 1. This happens when the release frequency equals the partial harvest frequency. Figure
6.4 illustrates this observation.

Interestingly, the various analyses presented in this thesis as well as the optimisation
problem solved in Mailleret and Grognard (2006), then in Mailleret and Grognard (2009) sug-
gest that higher release frequencies are to be favoured in order to obtain fastest convergence
to the pest-free solution or minimise the worst case damage on a pest invasion. Merging this
observation involving partial harvests and the cited works suggests that the compromise is to
increase the release frequency up to the partial harvest one, beyond which biological control
is more demanding.
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Figure 6.4: Variation of the minimal predator release rate as a function of release to
harvest period ratio. In this simulation, parameters were given the values (in arbitrary
units): αx = αy = 0.5, m = 1, the growth rate f ′(0), trophic responses g′(0) and h′(0)

when the ecosystem is pest-free (xp = 0) were all set to 1.

6.5.3 Dependence in partial harvesting parameters

The effects of partial harvest parameters are investigated by comparing the minimal release
rate µ

v
(defined as the union of the functions µ

vh
and µ

vr
) with µ (the minimal release rate

obtained from the analysis of the basic model we considered in Chapter 3, i.e. the same model
but with no harvest.

We focus on the case with the most interest to us, i.e. when µ
v

is minimal, which is when
releases take place less often or as often as the partial harvests. We set k = 1 without any
loss of generality since it preserves the same form as µ

vr
when releases are less frequent.

There are four possibilities for the minimal release rate, depending on the partial har-
vest strengths and the frequency at which it takes place. We shall subdivide them into two
categories: the first where biological control is unnecessary and the second where it is to be
implemented in conjunction with the partial harvests. Figure 6.5 illustrates how µ

v
varies

with Th for different combinations of αx and αy.
Here as well, S and r refer to the parameters required for the local or global conditions,

as defined previously.

Trivial µ
v
: Partial harvests provide complete pest control up to a harvest period.

For a given αx, provided that the partial harvest periods are small enough, the min-
imal release rate is a nonpositive value (it is trivial). Conversely, for a given partial
harvest period, if αx is large enough, partial harvests suffice to completely control pests
(scenario I).
The condition on αx and Th for µ

v
≤ 0 is calculated as

S +
ln(1− αx)

rTh
≤ 0

⇔ αx ≥ 1− e−SrTh
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Figure 6.5: The minimal release rate as a function of the harvest period calculated for
αy = 0.45 and three αx values, which are: for curve, or scenario (IIa): 0.42; (IIb): 0.35

and (IIc): 0.21. As αx is increased, we obtain increasing threshold values Th(I) which are
referenced by the grey markers. µ, represented by a red line, is the minimal release rate
for the basic model. The red markers are, in ascending order of their value T †h(IIc)

, Th(IIb)

and T ‡h(IIc)
.

Alternatively, the intercept of µ
v

and the Th-axis is an increasing function of αx given
as:

Th(I) = − ln(1− αx)

rS
This means that larger harvest effects on the prey can suppress the pest up to a larger
period than with lower ones, which is quite natural.

Nontrivial µ
v
: As the harvesting period is increased, partial harvests aid towards pest con-

trol (i.e. 0 < µ
v
< µ), then may or may not disrupt it (i.e. µ

v
> µ).

The minimal release rate µ
v

converges to µ (which is independent of the partial harvest
period) as partial harvests become rarer and their effects attenuate.

lim
Th→+∞

µ
v

= lim
Th→+∞

m

(
S +

ln(1− αx)

rTh

)
1− (1− αy)e−mTh

1− e−mTh
= mS (6.36)

Moreover, we can show that this minimal release rate increases to that limit. Indeed

∂µ
v

∂Th
= −m ln(1− αx)

rT 2
h

1− (1− αy)e−mTh

1− e−mTh

+m

(
S +

ln(1− αx)

rTh

)
m(1− αy)e−mTh(1− e−mTh)−me−mTh(1− (1− αy)e−mTh)

(1− e−mTh)2

= −m ln(1− αx)

rT 2
h

− m ln(1− αx)

rT 2
h

αye
−mTh

1− e−mTh
−m

(
S +

ln(1− αx)

rTh

)
mαye

−mTh

(1− e−mTh)2
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so that lim
Th→+∞

∂µ
v

∂Th
= 0+. The plus superscript indicates that µ

v
approaches the asymp-

tote µ with a positive gradient. Indeed, the first term of the derivative goes to zero as
the inverse of T 2

h , while the other two terms converge to zero exponentially. The first
term, which is positive, then dominates the others for large values of Th.

For a given αx and αy combination, we can identify three possibilities. The minimal
release rate required is lower than when no partial harvest takes place (i.e. 0 < µ

vh
<

µ):

• at all harvest periods Th > Th(I) (scenario IIa), or

• at all harvest periods except at one critical period where it is exactly µ, where
partial harvesting or chemical control brings nothing to the control strategy (sce-
nario IIb), or

• at all harvest periods except over a finite range of periods where µ
v
> µ, that is

biological control is disrupted (scenario IIc).

We are able to derive necessary or sufficient conditions which lead to either of (scenar-
ios IIa-IIc) described above. Mathematically, the behaviour of µ

v
with respect to µ is

determined by the number of intersections between the two curves or the number of
solutions satisfying the equation µ

v
= µ, i.e.:

(
S +

ln(1− αx)

rTh

)
1− (1− αy)e−mTh

1− e−mTh
= S. (6.37)

Rearranging this equation yields

ln(1− αx)

rTh
(1− (1− αy)e−mTh) = S((1− e−mTh)− (1− (1− αy)e−mTh))

so that finding the solutions of Equation (6.37) is equivalent to finding the solution of
the following equation

− ln(1− αx)

rSαy
=

e−mThTh
1− (1− αy)e−mTh

. (6.38)

The left-hand side of Equation (6.38) is constant with respect to Th. The right-hand side
is non-monotonic: we note that in the limit that Th → 0+ and Th → +∞, it is zero, and
it is clearly positive in between. Thus the right-hand side curve should possess at least
one local maximum. At this maximum we have,

∂

∂Th

[
e−mThTh

1− (1− αy)e−mTh

]
= 0,

⇔
e−mTh

[
(1−mTh)

(
1− (1− αy)e−mTh

)
−mTh(1− αy)e−mTh

]
(1− (1− αy)e−mTh)2

= 0,

⇔ e−mTh(1−mTh − (1− αy)e−mTh)

(1− (1− αy)e−mTh)2
= 0.

e−mTh > 0 for all non-negative Th, so that at the maximum, we necessarily have

1−mT ?h − (1− αy)e−mT
?
h = 0. (6.39)
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Solving this equation, we obtain4 that the local maximum is actually single and thus
global, and writes

T ?h =
1

m

(
1 +W0

(
αy − 1

e1

))
,

which, we note, is a decreasing function of αy.

Moreover, because 0 ≤ αy ≤ 1, we deduce −1 < W0

(
αy − 1

e1

)
< 0, so that:

0 ≤ T ?h ≤
1

m
(6.40)

The conditions for the behaviour of the curves are then derived from this result. We
note from (6.39) that 1− (1− αy)e−mT

?
h = mT ?h ; so, the maximum of the right hand side

of equation (6.38) can be written as

e−mT
?
hT ?h

1− (1− αy)e−mT
?
h

=
e−mT

?
h

m
.

For curves characterised by

• no intercept, i.e. the minimal release rate curve increases asymptotically to the
no-harvest case without overshoot, we have using (6.38)

− ln(1− αx)

rSαy
>
e−mT

?
h

m

⇔ ln(1− αx) < −rS
m
αye
−mT?h

(6.41a)

Because 0 ≤ T ?h ≤
1

m
, we can further specify this condition. In particular, a

sufficient condition for (6.41a) to hold true, and thus to ensure that there is no
intercept, is:

ln(1− αx) < −rS
m
αy (6.41b)

and a sufficient one for (6.41a) to be false, and thus to ensure that there is (at
least) an intercept, is

ln(1− αx) > −rS
m
αye
−1 (6.41c)

4 The calculations are detailed as follows. Let u = 1 − mT ?h . Substituting in Equation (6.39), we
obtain:

u− (1− αy)eu−1 = 0

⇔ u = (1− αy)
eu

e1

⇔ −ue−u =
αy − 1

e1

⇔ −u = W0

(
αy − 1

e1

)
,

W0 is linked to the Lambert’s W (or Omega) function. The W function is the inverse of the function
f(z) = zez on the complex numbers, and is multivalued. The branch ofW restricted to the real axis, and
with an argument larger than (−1

e
), is denoted W0. W0 is single valued and monotonically increasing

from −1 at (−1
e

); moreover W0(0) = 0. A major reference on Lambert’s W function is (Corless et al.,
1996).

Reintroducing our original notations instead of u and rearranging yields

T ?h =
1

m

(
1 +W0

(
αy − 1

e1

))
.

127



CHAPTER 6. PARTIAL HARVEST EFFECTS

• only one intercept, i.e. partial harvests aid biological control up to a critical period
of harvest,

Th(IIb) = T ?h

at which it has no effect. This equation must be satisfied:

ln(1− αx) = −rS
m
αye
−mT?h (6.42)

Once Th is increased however, that is the partial harvests are carried out less
often, we are able to lower the minimal release rate.

• two intercepts: here, µ
v

overshoots µ at a threshold period T †h(IIc) 6= Th(IIb), before
decreasing back to lower values than µ beyond a second threshold T ‡h(IIc). In other
words, over the range (T †h(IIc), T

‡
h(IIc)), partial harvesting is detrimental to pest

control. The condition for this scenario is given as:

ln(1− αx) > −rS
m
αye
−mT?h (6.43)

As for the no-intercept case, due to the bounds on T ?h we can derive sufficient
conditions for the existence or not of the two intercepts scenario, which turn out
to be the same than for the non-existence or existence of the no intercept scenario,
respectively (6.41c) and (6.41b).

The conditions established are influenced by three intrinsic processes: the predator mor-
tality m, the per prey capita functional response g(x)

x and the ratio of the pest growth versus
functional response f(x)

g(x) . Given the size of these processes, in order to ensure that the partial
harvest always contributes towards pest control (scenario (IIa)), the pest removal αx needs to
be larger than a value calculated as a function of the predator removal αy. If αx is smaller
than this value, the partial harvests will be disruptive over a range of periods. Figure 6.6
depicts the parameter space for the (αx, αy)-pairs which would result in either of scenarios
(IIa)-(IIc).

We note that the size of parameter regions will be modified by the intrinsic processes.
Thus a high per capita functional response and low pest growth rate to predation ratio reduce
the space for overshoot, as would a high predator mortality. This is not to be confused with
their impact on the actual minimal release rate required. Indeed, while a high m increases
the range of (αx, αy) giving no overshoot, it does effectively increase the actual minimal re-
lease rate, both in the basic model and in the partial harvest one and is thus disadvantageous
to the pest control strategy.

6.6 The pest control strategy

What is the recommended release period when partial harvesting (or
removal) takes place?
When the partial harvest (or removal via other instantaneous methods) take place at periods
where one is the integer multiple of the other (with the two events coinciding over the longer
period), we found that the harvest frequency provided a threshold for the release frequency.
We have calculated that a lower minimal release rate is required when releases are rarer
than partial harvests. This threshold period does not depend on the absolute value of the
harvest period in itself. Combined with the findings of Mailleret and Grognard (2006, 2009)
and the previous chapters which point towards using as high a release frequency as possible,
we would recommend as the current ‘best’ strategy to release predators at the same frequency
as partial harvests take place.
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partial harvest strength required on the pest population, αx, for a given partial harvest
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What is the recommended partial harvesting period?
It depends on the partial harvesting strength parameters. For a given harvest strength on
the pest population, sufficiently frequent harvests can provide complete pest control. Alter-
natively, for a given harvest period, provided the removal of pests at each harvest is high
enough, biological control is not needed. However, while our calculations show that a high
frequency of high impact partial harvests is desirable, the latter is not always achievable (say
if for instance the pest removal is too low or conversely the crop grows slowly so that it can not
be harvested frequently). Depending on the strength of harvest on the predator population,
there are three possible scenarios: partial harvests may either aid towards pest control by
lowering the minimal release rate required, or have no effect, or disrupt pest control. Figures
6.5 and 6.6 give an indication of how combinations of harvest period and harvest strengths
determine the release rate to use.

What if neither release period nor partial harvest period is an integer
multiples of the other?
This is where one of the shortcomings of our approach lies. In the case where the ratio
is rational, we are able to calculate y∗ as follows, hence prove the existence of a pest-free
solution. This result is expressed in Theorem 14 (the proof is not presented here).

Theorem 14 (Existence, neither period is integer multiple of the other) Let T be the
least common multiple of the release and partial harvest periods such that T = krTr = khTh,
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where kr, kh ∈ N∗

y∗ =

µ
v
Tr

kr∑
j=1

e−m(T−jTr)(1− αy)
dT−jTrTh

e

1− (1− αy)khe−mT
(6.44)

The integral
∫ T

0

ypdτ , hence the minimal release rate, is more difficult to calculate. The

case when the harvest and release periods are completely unrelated has not been investigated
yet and would probably require another approach.

It is also possible that these intermediate ratios may induce other dynamics in the system.
Whether they may stabilise it giving even lower minimal budget values or bring chaos is to
be seen.

Terry (2010) does not consider any relation between the periods of the different impulsive
components of his system and might provide cues. Nevertheless, our results already have a
practical economic advantage: coinciding periods imply little or no additional costs incurred
in terms of labour since the task of predator release can be assigned to workers in charge of
partial harvesting.

See later: We discuss in more detail the combined effects of partial removals and predator
releases in an Integrated Pest Management context in Chapter 7. In the case that partial re-
movals are due to pesticide usage, the parameters αx and αy can evolve. This will impact the
choice of the pest control strategy to implement. �
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7
Practical guidelines

and experimental results

Overview

The modelling approach in this thesis is qualitative, that is the predator-prey processes are
characterized by a few basic properties. This allows us to focus on the general trends or
properties of a set of data points obtained from field and/or lab observations. In Section
7.1, we formulate practical guidelines based on the analyses we have made in Chapters 4-
6. We illustrate how the qualitative nature of our models can be used to obtain estimates
for minimal release rates and identify pest control strategies. In Section 7.2, we then give
the results on the predatory mite Neoseiulus cucumeris (Oudemans) and its prey, the thrips
Frankliniella occidentalis (Pergande) obtained from preliminary experiments carried out at
URIH - INRA Sophia Antipolis (France).

Keywords: release rate, release frequency, pesticide resistance, N. cucumeris, F. occiden-
talis.

7.1 Guidelines

We formulate the control guidelines as follows: First, we assemble data sets related to the
ecological processes (pest growth, predation and predator mortality). Second, we look at the
general trends in some of these processes to identify a model with matching premises. Third,
once the model has been identified, we measure or estimate some specific characteristics of
the data sets that were collected (namely gradients, suprema and some intercepts); these
values are relevant to the calculation of the minimal release rate predicted by the model that
has been selected for use.
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7.1.1 Matching data with the model
To be able to formulate a pest release strategy, we require data on the different processes that
take place in the biological control system, namely on the pest growth, the predation and the
mortality of the predators. In particular, we assemble data sets on the variation of:

1. the pest growth with respect to the pest population size;

2. the predation on the pest per average predator (the functional response) with respect to
the pest population size;

3. the functional response with respect to the predator population size;

4. the predator mortality with respect to the predator population size.

From this data, it is useful to calculate:

5. the per capita pest growth, which is the pest growth rate at a given pest population size
divided by that pest population size;

6. the functional response per pest, which is the functional response at a given pest popu-
lation size divided by that pest population size;

7. the pest growth divided by the functional response for a given pest population size;

8. the predator mortality rate, which is the predator mortality divided by the predator
population size.

We will refer to the collection of graphs representing the data as the data grid.
In this thesis we considered different situations and adapted a model accordingly. The

process is now reversed as we go from data to model: given a set of data on a system, we
need to identify the model that would provide the best recommendations for the pest control
strategy and notably, the best estimate of the minimal predator release rate. To do so, we
look at:

i. how the functional response varies with the predator population (whether it is constant
or decreasing), then

ii. how the predator mortality rate varies with the predator population (whether it is con-
stant or increasing), and

finally:

iii. whether we want to use an integrated pest management program or harvest the crop
partially on a regular basis.

Based on these three characteristics, we match the data with the model that best de-
scribes it. A decision tree is given in Figure 7.1.

Remark: In this chapter, we use artificially generated data for didactic purposes1. �

7.1.2 Simple augmentative control program

Data acquisition

The data grid given in Figure 7.2 is characterised by:

i. a functional response that is independent of the predator density (top right graph);
1For an explanation of how the data can be collected, see e.g. references given in Begon et al. (1996)
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Figure 7.1: This decision tree describes how to match the data with a model. We look at
the dependence of the functional response on the predator density (whether it is decreas-
ing or constant); then at the predator mortality rate (increasing with predator density or
constant); then whether we stay within a pure biological control vs. an IPM framework.
The red box indicates that this model is not covered in the present chapter
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ii. a mortality rate that is independent of the predator density (bottom centre).

When only biological control is to be implemented, the simple model (Chapter 3) should
provide a satisfactory description of the system dynamics.

Consequently, with reference to the Figure 7.2 and the choice of the model, the properties
that need to be measured on the different data sets are:

1. Top left. the marginal pest growth at zero pest (the gradient of the pest growth at zero
pest): f ′(0) ;

2. Middle left. the marginal functional response with respect to the pest at zero pest (the
gradient of the functional response with respect to the pest at zero pest): g′(0) ;

3. Middle right. the superiormost value of the ratio of the pest growth to the functional
response over the range of pest population considered: Sg ;

4. Bottom centre. the mortality rate of the predator (the equation of this function with
respect to the predator density): m.

Remark: With respect to discrete data points, there is often some controversy that can arise
in the number of points to consider in the calculation of marginal values, or gradients, at the
origin. In our example, we chose to look at three consecutive points in order to calculate these
gradients. �

Predator release strategy

The minimal release rate µ, that is the size of predators release per unit time, is then cal-
culated as:

For small invasions: µ =
mf ′(0)

g′(0)
;

For large invasions: µ = mSg.

(7.1)

For pest eradication, use a release rate above the µ.
If a lower release rate is used, the pest population is expected to persist. Figure 7.3

illustrates our model prediction. The left column shows pest eradication as the release rate is
larger than µ while the right column shows the pest population persisting as the release rate
is insufficient.

Extra tip 1: To minimise the risk of pest damage 2, we recommend to use frequent small
releases rather than rare large ones as it ensures the continued presence of predators in the
crop. For example, if a 28-day calendar month µ is calculated as 1200 predators per month,
then a release strategy of 40 predators a day is more advisable than releasing 280 predators
at the beginning of a week (which is in itself more advisable than releasing 1200 predators at
the start of the month).

Extra tip 2: On detecting a pest invasion, the predators can be released in a large massive
number satisfying the release rate for large invasions. Provided this release reduces the pest
population quickly enough to small enough levels, a smaller predator release rate can be used
- satisfying the release rate for small invasions - and spread over more frequent releases.

2This was recommended by Mailleret and Grognard (2009).
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Remark: Note that the units for the ‘population size’ are actually unknown; until experimen-
tal results allow us to callibrate the time and population scales, it is the shape of these curves
as well as the ratio of one population to the other that the model predicts. �

7.1.3 Interfering predators

Data acquisition

The second data grid given in Figure 7.4 consists of a functional response that is decreasing
with the predator density (but increasing with the prey). This implies interfering preda-
tors. When all other processes follow similar trends as in the ‘simple model’ case, the data is
matched to the ‘interference model’ studied in Chapter 4 of this thesis.

The processes that need to be measured are given in Figure 7.4 – the figure is self-
explanatory.

Here, note that a lower bound on the functional response is required (Middle left). It is
parameterised as:

Lower bound = g′(0)
qax

ax+ qby + q
, (7.2)

where a, b and q are constants:

a : index of pest vulnerability
b : index of intrapredator interference
q : parameter for lower bound

Predator release strategy

For pest eradication to be possible, first select the predator species appropriately: use preda-
tors with interference index lower than a maximal interference threshold, denoted b
and calculated as

For small invasions: b =
ag′(0)

f ′(0)
;

For large invasions: b =
ag′(0)

S
.

(7.3)

Then, use a predator release rate higher than the minimal release rate µ calculated as:

For small invasions:

µ =
1

b

(
1− e−m

bf′(0)
ag′(0)T

e
−m bf′(0)

ag′(0)T − e−mT

)(
1− e−mT

T

)
,

For large invasions:

µ =
q + ax̄

qb

(
1− e−m

bS
ag′(0)T

e
−m bS

ag′(0)T − e−mT

)(
1− e−mT

T

)
.

where
T : release period
x̄ : estimate of maximal value the pest population can take

Figure 7.5 illustrates our model prediction when the predator interference is below b for the
case that the release rate is large enough (the pest is eradicated), then too small (the pest
persists).
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Caution: If the predator species exhibits higher interference than b, no release rate exists
that can eradicate the pests.

Extra tips: Increase the speed of pest eradication by using as high a predator release rate
as possible and as frequent releases as possible. Using as frequent releases as possible also
contributes to lower the minimal release rate µ.

7.1.4 Overcrowding

Data acquisition

The third data grid given in Figure 7.6 consists of a functional response that is independent
of predator density (Top right) but with a mortality rate that is affine in the predator density
(Bottom centre). This indicates overcrowding.

In a pure biogical control program, this system is best matched by the ‘Cannibalism by
overcrowing’ model given in Chapter 5.

The processes that need to be measured are given in Figure 7.6 (the figure is self-explanatory).

Here, note that:

1. the natural predator mortality rate m is calculated as the intercept of the mortality
rate with the vertical axis

2. the overcrowding parameter q calculated from the gradient of the mortality rate.

Predator release strategy

Use a release rate larger than the minimal release rate µ.
Here, µ is calculated numerically such that:

y∗ =
1

2

µT − m

q
+

√(
µT − m

q

)2

+
4µmT

q(1− e−mT )

 (7.4)

gives:

For small invasions: ln
(
1 + q

m (1− e−mT )y∗
)
− f ′(0)

g′(0)T = 0,

For large invasions: ln
(
1 + q

m (1− e−mT )y∗
)
− ST = 0.

(7.5)

Figure 7.7 illustrates our model prediction when the predator interference is below b for
the case that the release rate is large enough (the pest is eradicated), then too small (the pest
persists).

Extra tip: Use high frequency of releases, or as small T as possible, in order to lower the
minimal release rate and guarantee pest eradication.

Remark: We do not discuss the two other forms of cannibalism studied in Chapter 5: the
data measurements are carried out in a similar manner as described above. Curve fittings for
upper bounds on the mortality rates are required: for an example, see Section 7.1.3. �
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Figure 7.5: Intrapredator interference model predictions. Left. The release rate
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Figure 7.7: Overcrowding model predictions. Left. The release rate is larger than
the minimal release rate recommended at small invasions: for a small invasion, pests
are eradicated. Right. The release rate is smaller than the minimal release rate: pests
persist.
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7.1.5 Integrated Pest Management (or partial harvests)

Data acquisition

If we want to implement an Integrated Pest Management (IPM) program on a system where
biological processes display similar general properties as in the data grid in Figure 7.2, the
model to use is the ‘partial harvest’ model studied in Chapter 6 of this thesis.

This model caters for partial removals of either the pest or predator populations due to:

- partial harvests of the plant (e.g. ornamentals), pruning;

- pesticide usage within an IPM program;

- other physical removals (e.g. heat treatments, manual control, etc) available in an IPM
program.

The model applies to the case when the predator release period is a complete integer multiple
of the partial removal period (‘less frequent releases’), and vice-versa (‘more frequent
releases’).

The data sets and properties that need to be measured match those of the simple model
(see Figure 7.2). In addition, we require the values of:

Th : partial removal period (harvest period or period of pesticide spraying
αx : fraction of pest pop. removed at harvest or pesticide application

(that is pesticide strength on pest)
αy : fraction of predator pop. removed at harvest or pesticide application

(that is pesticide strength on predator)
Also,

(1− αx) : pest resistance to pesticide application
(1− αy) : predator resistance to pesticide application

Predator release strategy

Use a predator release rate larger than the minimal release rate µ calculated as:

For less frequent releases:

µ = m

(
C1 +

ln(1− αx)

C2 Th

)
1− (1− αy)e−mTh

1− e−mTh
,

For more frequent releases:

µ = m

(
C1 +

ln(1− αx)

C2 Th

)
1

1− (
αy(1−e−mTh )

1−(1−αy)e−mTh
) e−mT

k(1−e−mT )

.

where C1 and C2 values to take depend on the pest invasion size:

For small invasions: C1 =
f ′(0)

g′(0)
and C2 = g′(0)

For large invasions: C1 = S and C2 = r
(7.6)

Figure 7.8 illustrates our model prediction for the ‘releases less frequent’ case: when the
release rate is above µ (the pest is eradicated), then too small (the pest persists). Figure 7.9
illustrates our model prediction for the ‘releases more frequent’ case.
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Figure 7.8: Partial harvest model predictions (releases less frequent: T = 5,
Th = T/4 = 1.2). On the left, the release rate is larger than the minimal release rate
recommended at small invasions: for a small invasion, pests are eradicated. On the
right, the release rate is smaller than the minimal release rate: pests persist.
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Figure 7.9: Partial harvest model predictions (releases more frequent: T = 5,
Th = 4T = 20). On the left, the release rate is larger than the minimal release rate
recommended at small invasions: for a small invasion, pests are eradicated. On the
right, the release rate is smaller than the minimal release rate: pests persist.
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Extra tip: Release as frequently as partial harvests to lower the minimal release rate and
to keep risks of damage on a pest invasion as low as possible.

Caution: The predictions do not apply when one interval is not a complete integer multiple
of the other.

Dealing with pesticide resistance

In Chapter 6, we found that partial removals can be complementary to, have no effect on, or be
disruptive to a biological control program. In an IPM program, the minimal release rate is3:

µ(IPM) = m

(
C1 +

ln(1− αx)

C2 Th

)
1− (1− αy)e−mTh

1− e−mTh
,

whereas in a purely biological control (only predator releases), the minimal release rate is:

µ = mC1.

We define disruption’, ‘complementarity’ and ‘no effect’ of pesticide applications as in Table 7.1.
Graphical plots can be used to achieve the desired complementarity, and identify short-term
and long-term pesticide application strategies as resistance to a pesticide increases.

Sign‡ Effect Action

µ(IPM) < µ: (+) Complementary Maintain
µ(IPM) = µ: 0 None Reassess
µ(IPM) > µ: (−) Disruptive Reassess and change†

Table 7.1: Identifying the effects of the partial removals on a biological control program
carried out by predator releases only, and determining the actions. ‡Sign of (µ−µ(IPM))
indicates whether the IPM program requires a higher predator release rate than a pure
biological control program. †Change of pesticide application strategy implies changing
the frequency of application or switching to a purely biological control program if neces-
sary.

Dealing with pesticide resistance requires a three-stepped strategy which we describe be-
low:

1. Initial strategy: For a given pesticide strength, plot a graph of µ(IPM) versus appli-
cation periods. Identify a value of Th values for which µ(IPM) < µ = mC1.

The first graph is the green curve on Figure 7.10 (top). The chosen application period is
T ∗.

2. Monitoring: For the chosen application period, plot a map of (µ(IPM)−µ) with
respect to the pesticide strength parameters αx and αy. As predator and pest
resistance changes, refer to the map to identify whether pesticides aid towards
the biological control program or not.

3Release as frequently as the partial pesticide usage as advised in the last ‘Extra tip’.
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7.2. EXPERIMENTS WITH THE PREDATOR NEOSEIULUS CUCUMERIS TO CONTROL THE
PEST FRANKLINIELLA OCCIDENTALIS

Point 1 (also in green) in Figure 7.10 (bottom) corresponds to the pesticide strength on
prey and predator at the chosen T ∗ value. The pest resistance evolves over Point 1
(green) - Point 2 (blue) - Point 3 (red) (decreasing pesticide strength). Here predator
resistance is fixed.

3. Reassessing strategy: When pesticide strength has decreased so that µ(IPM) ≥
µ, plot a graph of µ(IPM) (for new and expected or a future pesticide strengths)
versus application periods (e.g. Figure 7.10 (bottom)). Devise the new strategy
based on this second graph.
At Point 2 (blue - current pesticide strength, (bottom)), pesticide usage has no effect on
the pest control program. This combination yields the blue curve for minimal release
rate µ(IPM) versus application period (top). Higher pesticide resistance from the pest
(Point 3 - red, bottom) gives the red curve (top). From Point 2, the farmer has four
choices.

• Case (i) (long-term cost: medium): maintain the pesticide application program
as it is. The minimal release rate jumps to Point 3.

• Case (ii) (short-term cost: lowest, long-term cost: highest): apply pesticides
more frequently. The minimal release rate is lowered (Point 2a, bottom plot), but
a further increase in pest resistance requires the minimal release rate to jump to
a much higher value (Point 3a, bottom plot).

• Case (iii) (low cost at all times): apply pesticides less frequently, there is only
a slight short-term gain for the biological control program (Point 2b), but in the
longer-term, the minimal release rate also is maintained below the minimal rate
of a pure biological control program (Point 3b).

• Case (iv) (not shown): stop pesticide applications. The minimal release rate stays
fixed (Point 2).

Remark: In this example, applying pesticides at low frequency gives a more ‘robust’
predator release program and has the added benefit that resistance is also developed
more slowly. �

Caution: Pesticide applications can provide complete pest control provided
they take place at periods smaller than some threshold value of Th (given as
the Th intercept of the curves). This threshold period becomes smaller as αx

decreases. It becomes physically impossible to apply chemical pesticides at ex-
tremely high frequency; a more frequent application of chemicals only worsens
the problem of resistance.

7.2 Experiments with the predator Neoseiulus cucumeris to
control the pest Frankliniella occidentalis

The Unité de Recherches Intégrées en Horticulture (URIH) is a research team based at INRA
- Sophia Antipolis (France) that is currently in charge of 4800 m2 of experimental greenhouse-
grown rose crops. These roses are prone to attacks by the western flower thrips Frankliniella
occidentalis (Pergande), a major pest in the Mediterranean region. Females of the predatory
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Figure 7.10: These two graphs provide a decision tool for the pesticide application strat-
egy to put into place when pesticide resistance evolves; matching colours imply the same
combination of predator-prey pesticide resistances. The evolution is as: green = initial
(smallest) resistance→ blue = current (medium) resistance→ red = predicted (highest)
resistance. A pesticide application strategy at a given period T ∗ is reassessed to Strat-
egy (i), (ii) or (iii) when resistance reaches Point 2. The effect on µIPM is visualised on
the top right sticks. Strategy (iii) gives the best short-term benefits of the three, while
Strategy (ii) gives the best long-term benefits. Note that this analysis is by no means
exhaustive but has a didactic purpose.
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mite Neoseiulus cucumeris (Oudemans) are well-known predators of the larvae of this pest:
their success in biologically controlling F. occidentalis has been reported on potted roses (see
Linnamäki et al. (1998) in Gerson (2007)). Following our proposals, the URIH set up two ex-
periments to investigate intrapredator interference and compare predator release strategies.

7.2.1 Experiment 1: intrapredator interference
Interfering behaviour among N. cucumeris in preying on F. occidentalis was reported by Skirvin
et al. (2005) on chrysanthemums plants. The purpose of this experiment was to investigate if
the predator exhibited similar interference on rose plants. It was motivated by the results in
Nundloll et al. (2010a)4 which demonstrated that the interference strength influenced a biolog-
ical control program and that the selection of a potential biological control agent had to take
into account such interference. So, in this experiment, we compared the per capita predation
rates5 of a single predator and a group of five predators. In particular we aimed to answer
the question: is the per capita predation rate of this predator penalised by higher predator
population sizes?

Experiments were carried out by Guillaume Vitte during his internship at URIH in 2008,
under the supervision of Alexandre Bout, and reported in detail in Vitte (2008).

Short description

This experiment consisted of a series of 24-hour trials in controlled laboratory chambers.
Using a similar experimental protocol to Madadi et al. (2007); Zilahi-Balogh et al. (2007),
the temperature was maintained at a constant level at 25◦C and humidity at 60%. The light
regime was set to 16 hours of light versus 8 hours of darkness.

Under this protocol, homogenoeous cohorts of the pest were required: to ensure a continu-
ous supply of the prey (stage 1 larvae ‘L1’ thrips), thrips were reared on bean plants Phaseolus
vulgaris that were grown in two phytotrons6 following the protocol by Steiner (1998). The L1
thrips were selected by cohorts of 60 individuals, twice a week (30-60 L1 larvae were obtained
per phytotron per harvest).

To identify female predators, the predatory mite population was isolated during 24 hours
at the end of which only individuals that had laid eggs were selected. These selected females
were then starved for a further 24 hours to control for satiation level.

To simulate leafscape effects (that is, related to the surface area, the shape and structure
of the leaf), two sets of trials were carried out: one on circular leaf discs7 with diameter equal
to 4 cm (‘disc’) and the other on a whole leaf consisting of five leaflets (‘leaf ’)). We collected
data on the total surface area of the leaves used for each trial. The leaf discs were placed on
humid flower foam soaked in a petri dish half-filled with water. Similarly, the leaves (with
five leaflets) were pinned at their petiole in a humid flower foam. Figure 7.11 shows the
experimental set-up.

Trials were carried out in batches of three in three separate petri dishes. At the start of
the experiment, 10 thrips were placed in each of the petri dishes on the leaf disc or complex
leaf. Predator numbers differed from one dish to the other: the dishes contained none (Dish
1: ‘control’), 1 predator only (Dish 2: ‘single’), and 5 predators (Dish 3: ‘many’) respectively.

After 24 h, a count of the number of dead (carcasses on the leaf only, that is excluding
thrips in water) or disappeared thrips and predatory mite was taken (disappeared individuals

4See also Chapter 4 of this thesis
5The per capita predation rate corresponds to the functional response.
6A phytotron is a completely closed usually indoors greenhouse that can be used for the study of

environmental plant growth and in which the production (and consumption) of gases can be monitored.
7The leaf disc is obtained by punching a 4 cm hole into a leaflet.
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water
petri dish

floral foam

petri dish
cover

leaf disc complete leaf 
with 5 leaflets

0 predator 1 predator 5 predators0 predator 1 predator 5 predators

Figure 7.11: During this experiment, trials were carried out in batches of three in
three separate petri dishes, all of which contained 10 thrips at the beginning of the
experiment. Predator numbers differed from one dish to the other: the dishes contained
none (‘control’), 1 predator only (‘single’), and 5 predators (‘many’) respectively. Left:
leaf discs with diameter equal to 4 cm were used as the arena for the predatory mites
and thrips interactions (‘disc’)). The yellowish spots on the leaf disc in middle figure
are thrips and predatory mites. Right: complete leaf with five leaflets provided a more
complex landscape feature (‘leaf ’). The experiment consisted of 20 trials.
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were counted as dead). Thrips and predatory mites have lengths of the order of 0.1mm, and
being of the same colour, cannot easily be distinguished by the naked eye. The identification
was carried out using a stereomicroscope at 20x magnification. If no thrips or no predatory
mite (in Dishes 2 and 3) were recovered alive, the observation was not included in the data
analysis.

We assume that there is no death of larval thrips due to natural causes at the end of the
24 hour period. Deaths of thrips due to predation was calculated as explained in Table 7.2
below. Note in particular that we use the average number of thrips killed by cannibalism over
the number of valid trials.

Dish ID: Cause of thrips death No. of dead thrips

1: Cannibalism only N1

2 (or 3): Predation and/or cannibalism N2 (or N3)
∴ 2 (or 3): Predation only (N2− < N1 >)† (or (N3− < N1 >)†)

Table 7.2: At each trial, calculating the thrips death by predation involves subtracting
the number of dead thrips in the ‘control’ dish (Dish 1) which corresponds to cannibal-
ism. †We use the mean number of cannibalised thrips < N1 > averaged over the number
of valid trials. The number of dead thrips is set to zero if the calculation yields a negative
result.

We consider that the number of predators that have been found at the end of the exper-
iment equals the number of predators which consumed the thrips. We calculate the mean
number of predators at the end of a trial for Dish 3 over the whole series, and use this value
to calculate the average predation on Dish 3 per trial.

Results

The mean predation were calculated for each modality (‘single’ versus ‘many’ preda-
tors) for each set-up (‘disc’ versus ‘leaf ’): this value was lower in the ‘many’ modality
than in the ‘single’ one. Predation was also lower on the complete leaf than on the
leaf disc. This suggests intrapredator interference that penalises predation. Results
are given in Figure 7.12

The predation data from this experiment were subjected to an Analysis of Vari-
ance (ANOVA) test with respect to predator numbers (‘single’ versus ‘many’) and area
(‘disc’ versus ‘leaf ’). The p-value indicates how similar the data sets being compared
are. For the data to be statistically significant (that is, for data sets to be effectively
different), p must be smaller than 0.05.

The results are summarised in Table 7.3. The first line confirms that the mean
predation per predator at one predator being higher than that of at five predators
(given in Figure 7.12 above) is statistically significant. Note however that surface
area contributes significantly to predation (second and third lines).
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Figure 7.12: Per capita predation was lower in the 5-predator (‘many’) modality than
in the 1-predator case (‘single’) in both the leaf disc and complete leaf set-ups. This sug-
gests intrapredator interference penalising predation. The predation for the 1-predator
modality was calculated over 12 trials; predation in the 5-predator modality was calcu-
lated over 17 trials.

Between ‘single’ and ‘many’ predators treatment: p = 0.00110

Between ‘leaf ’ and ‘disc’ set-up: p = 1.54 x 10−8

Table 7.3: Summary of statistical tests comparing predation. Tests are statistically
significant.
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Summary

In this experiment, predatory mites N. cucumeris were less effective predators of the
thrips F. occidentalis in the presence of conspecifics. Results were statistically sig-
nificant. This indicates that some form of intrapredator interference which affects
predation. Further investigations can be carried out for larger populations of thrips
and predatory mites and to calculate the interference parameter strength.

7.2.2 Experiment 2: release frequencies and pest control

Given the intrapredator interference observed in Experiment 1, we wanted to test the
prediction by Nundloll et al. (2010a) that, for a fixed overall number of predators, more
frequent and smaller releases were more effective than rare larger ones. In Experiment
2, two release treatments were therefore used to control an artificial pest invasion:
‘Tsmall’ (predators were released every week) and ‘Tlarge’ (predators were released every
four weeks). To assess and compare these two treatments, the aim of the experiment
was to answer the question: which one kept it at a lower level during the whole or most
of the time?

The experiment can be read in more detail in Pizzol et al. (2009).

Short description

This experiment took place from April (Week 17) to September 2006 (Week 37) in a green-
house. Predatory mites N. cucumeris were bought from Syngenta Bioline (UK) in packets
of 1000. Thrips F. occidentalis were reared on bean plants in a phytotron (as described in
Experiment 1).

The greenhouse consisted of three benches (denoted Bench A, Bench B and Bench C),
each with three compartments of surface area 2 m2. On the 28th of April 2006, in Week 17,
two rows of roses (Aubade R©cultivars) were planted in each bench. Humidity, temperature,
light shades openings were controlled automatically, as well as irrigation with agricultural
effluents rich in mineral fertilisers8.

In Week 24, the plants were chemically treated with lufenuron9, a pesticide, to eliminate
any thrips F. occidentalis present in the greenhouse before the start of the experiment. The
aim was to ensure that the population of thrips that is artificially released into the greenhouse
is uniformly spread. A first count of thrips shortly after the pesticide release confirmed that
the thrips population was zero.

Starting in Week 25 until the end of the experiment in Week 37, predators were released
in Benches B and C. No predator was released in Bench A (‘Control’). In each of the compart-
ments of Bench B (‘T large’ treatment), predators were released at a density of one packet per
m2, that is two packets were released in total every four weeks. In each of the compartments
of Bench C (‘T small’ treatment), predators were released at a density of 0.25 packet per m2,
that is 0.5 packet was released every week . Overall, the same number of predators were
released during Treatments 2 and 3 (that is two packets per month).

From Week 30 to Week 34, 20 thrips were released at a rate of five thrips per week in
each of the nine compartments (over Benches A-C).

The thrip population on the roses was tracked weekly without destroying any plant by
the following method: in each compartment six roses or rose plants under which a sheet of

8a process known as fertigation or fertirrigation in French
9Incidentally, lufenuron usage has been banned by the European Parliament in January 2009.
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white paper was placed were tapped gently. Thrips that fell off onto the paper support were
counted. The fallen thrips and predatory mites were put back onto the roses. This method
minimised disruptions on the plant-thrips-predatory mite system. A separate count was kept
for the larvae and the adult thrips at various stages of the plant growth.

Results

For our analyses, only the thrips population data from Week 30 (at the first release
of thrips), then from Week 32 up to Week 37 were used. The data for the thrips
population count was log-transformed (see Figure 7.13), then analysed. Results of
the statistical analysis are summarised in Table 7.4.

In the absence of either form of treatment, the pest population grows unchecked
(‘Control’). Small-sized more frequent releases (‘Tsmall treatment’) keeps pests at
lower levels than a larger-sized less frequent release (‘Tlarge treatment’): this is vali-
dated by p-value of 0.1. Note that, as a side result, we obtain a statistically significant
difference between the control and either release treatment which confirmed that N.
cucumeris was an effective biological control agent against F. occidentalis.

30 31 32 33 34 35 36 37
10

0

10
1

10
2

M
ea

n 
# 

th
ri

ps
 p

er
 f

lo
w

er
 (

x1
0+

1)

Time (week number)

 

 

Control

T large

T small

Figure 7.13: Artificial pest invasions or pest releases were carried out at Weeks 30-
34. The pest population increased significantly when there were no predator releases
(‘Control’). A treatment of 500 predators every week (‘Tsmall’) kept the pest population
at a lower level than 2000 predators every month (‘Tlarge’).

Remark: The data for each compartment are repeated measures on the same popula-
tion and so are subjected to what is called “pseudo-temporal replication". In any given
compartment, the thrips population in one week depends on the population value in
the preceding week. We applied the “repeated measures analysis" method proposed
by the University of California in Los Angeles on its web site UCLA: Academic Tech-
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Between control and Tsmall treatment: p = 5.31 x 1010 < 0.0001

Between control and Tlarge treatment: p = 3.7 x 10−7 < 0.0001

Between Tsmall and Tlarge treatments: p = 0.101

Table 7.4: Summary of statistical tests comparing predator release rates

nology Services (2010). This involves fitting under the software R10 a linear model
with, as factors, ‘Treatment’ (here ‘Tsmall’ or Tlarge), ‘Time’ (here week number) and the
interaction between ‘Treatment’ and ‘Time’. The significativity of the treatment effect
over time is then given by the p-value associated with the interaction between time and
effect.11 �

Summary

In this experiment, we were able to show that pest control is improved when smaller
and more frequent predator releases are used as opposed to larger and rarer ones.
This agrees with the prediction by Nundloll et al. (2010a). Results are however not
significant enough (the statistical significance threshold being at 0.05): this implies
that more experiments are required to validate it. In addition to replicate the experi-
ment, we could, to improve it, also test the impact of other release periods and predator
release sizes.

10See R Development Core Team (2009).
11Interestingly, this method also reduces to computing the significativity of the differences between

the slopes of the counts in the different treatments with respect to time (Wonnacott and Wonnacott,
1990).
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8
Conclusion and prospects

“A farm is not just a clever crop: it is an ecosystem managed with intelligence.”
– The Economist, 2010.

Overview

In this chapter, we give a general summary of our work (in Section 8.1). We also
specify the publications that arose from it. Then (in Section 8.2), based on our in-
vestigations, we give a critical analysis of our results. We highlight the limitations of
our work, then describe how our models can be improved and what potential avenues
exist for further research.

8.1 Summary

Generic models

We studied generic impulsive control models describing an augmentative biological
control program. This genericity presents three major advantages: first, it lowers
risks of modelling artefacts. Second, the results of our analysis apply to a wide class
of models, consequently, for a given model with generic characteristics matching that
of the generic model, specific functions can be simply plugged into the generic results
in order to obtain specific conditions (Chapters 4–6). Third, it also provides us with
a preliminary way to tackle uncertainty in ‘data clouds’ (Chapter 7). By focusing on
some general trends in these data, we are already able to provide initial estimates
for biological control programs.
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Minimal predator release rate

Throughout our analyses, we defined a minimal predator release rate, which is the
smallest number of predators released per unit time that can drive a pest population
to zero. It is obtained from the stability analysis of the zero-pest solution of the model.
Because it pertains to the predator release strategy, we say that this condition is
managerial.

We can also identify how ‘best’ to spread the release rate by studying its depen-
dence in the release period T and/or the partial harvest period Th. In our thesis, ‘best’
is defined in terms of the lowest minimal release rate (which minimises the amount of
money a planter invests in purchasing predators) and fastest pest eradication (which
minimises pest damage on the crop and the planter’s loss).

As is apparent in the works of e.g. Sharov and Liebhold (1998); Johnson et al.
(2006) and discussed in the review by Mailleret and Lemesle (2009), this dependence
in T (or the partial harvest period, Th) also indicates that the releases and harvests
must be modelled as impulsive processes rather than continuous ones.

Interfering predators penalising predation

After reviewing the effect of varying the components of a simple impulsive predator-
prey model (given in Chapter 3), we investigated what happens when the functional
response is penalised by predator interference.

We therefore have generalised Buffoni et al. (2005)’s formulation of the predator-
dependent functional response through the use of sector conditions (Vidyasagar, 1993)
– and analyse the effect of intrapredator interference within an impulsive frame-
work. In this thesis, we presented the results only for the generalisation of the
predator density-dependent class of models. We provided a small discussion on the
ratio-dependent class of models which is covered fully in the article Nundloll et al.
(2010a).

The analysis yields two conditions for pest eradication. First, the strength of the
interference is required to be smaller than a ratio of the predation rate to the pest
growth. Satisfying this first condition is critical to the existence of the minimal preda-
tor release rate (which is the second condition): when this condition is not satisfied,
no release rate can eradicate the pest.

We found that releasing the predators as frequently as possible, lowers the mini-
mal release rate. When a given release rate is higher than the minimal release rate,
this accelerates (for small pest invasions) pest eradication; in fact when the given
rate is lower, using higher frequency releases decelerates the speed at which the pest
population settles at a positive value. When the pest invasion is lower (rather than
higher) than this value, this implies that pest damage is reduced.

Our analysis of the zero-pest solution provides a generic version of that presented
in Zhang and Chen (2006), specifying both local and global asymptotic stability con-
ditions for the pest-free solution.

Peer-reviewed journal:
Nundloll, S., L. Mailleret, and F. Grognard: 2010, ‘Influence of intrapredatory inter-
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ferences on impulsive biological control efficiency.’ Bulletin of Mathematical Biology
(accepted).

Cannibal predators enhancing mortality

In Chapter 5, we investigated the effect of cannibalism, which enhances the mortality
of predators. We analysed three models of predator cannibalism.

We started by considering unlimited cannibalism (referred to as an elementary
description of overcrowding by Goh (1976)). The minimal release rate was calculated
in the limit that the release period is small enough (T = 0). We observed that the
stability condition would not be satisfied beyond a large release period value. This
pointed to more frequent smaller releases. The analysis extends the results of e.g.
Rosenzweig (1972); Kuang et al. (2003); Deng et al. (2007) to the impulsive case, both
local and global conditions being calculated.

We then considered the case when cannibalism was ‘moderate’ or limited by the
predator population, arising from hunger. We calculated, using a sector approach, two
thresholds for the minimal release rate - one above which pest eradication is guaran-
teed, and one below which pest eradication is not possible. This analysis covered a
generic formulation of mortality, augmented with an impulsive component.

Finally, we analysed the case when cannibalism formed an integral part of the
diet: we used sector conditions and considered a generic version of Kohlmeier and
Ebenhoh (1995)’s model augmented by the impulsive component due to predator re-
leases. This model accounted for a simplified description of intraguild predation. The
analysis provided a first insight into the influence of intraguild predation in an aug-
mentative biological control program. Results are similar to Chapter 4, with two con-
ditions: one related to the competition strength and the other to the minimal release
rate. Only local asymptotic stability and instability conditions were calculated.

The analyses of the last two forms of cannibalism extend the analysis of Kohlmeier
and Ebenhoh (1995) to the impulsive case, specifically around the zero-pest solution.
They have, however, not been published yet (we feel there is scope to improve them
further). Results for the first (overcrowding) cannibalism model were published in
the following:

Peer-reviewed journal:
Nundloll, S., L. Mailleret, and F. Grognard: 2010, ‘Two models of interfering preda-
tors in impulsive biological control.’ Journal of Biological Dynamics 4(1), 102–114.

Impulsive partial removals

Finally, in Chapter 6, we looked at what happens when partial pest and predator
populations removals take place during the partial harvesting of a crop or through
other means within an Integrated Pest Management (IPM) program (these removals
are impulsive processes).

We provided a complete analysis of the effects of partial harvesting or impulsive
removals within an IPM program when either of the partial removal or predator re-
lease period is an integer multiple of the other. Both local and global conditions were
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calculated. We found that the partial harvest period provided a threshold for the
frequency of releases: for releases occurring more frequently than harvests, the min-
imal release rate was an increasing function of the frequency, while it was constant
and smaller for less frequent releases. These results were published in two articles –
the complete version in a peer-reviewed journal in applied mathematics; a shortened
version is available in the IFAC 2008 proceedings (see below).

In this thesis, we also analysed in more detail the effect of the strengths of partial
removals. Depending on the strength of the harvests, removals can either disrupt,
have no effect on, or help towards pest control. In Chapter 7, we shifted the analy-
sis to pesticide usage where resistance to pesticides would result in changes in the
removal strengths.

Within an IPM context, our contribution generalises the results of Liu et al.
(2005a,b) by being applicable to a wider class of models and allowing two distinct
values for the harvest and release periods.

Peer-reviewed journal:
Nundloll, S., L. Mailleret, and F. Grognard: 2008, ‘The effect of partial crop harvest
on biological pest control.’ Rocky Mountain Journal of Mathematics 38, 1633-1662.

Conference proceedings:
Nundloll, S., L. Mailleret, and F. Grognard: 2008, ‘Global stability in a general im-
pulsive biological control model with harvest’ 17th IFAC World Congress Seoul, South
Korea.

8.2 Discussion

Using feedback

In this thesis, the size and timing of releases are also fixed; the release rate (whether
to use the local or global stability estimate) is based on a ‘rough’ estimate (‘small’
versus ‘large’) of pest presence. Predator releases are usually carried out as such to
protect crops largely for logistic reasons: pest detection is usually a labour intensive
process. The main problem with this approach (especially for large invasions) is that
global asymptotic stability ensures convergence only in the limit that t tends to infin-
ity. What happens during that time? The pest population converges to zero of course,
but there is a risk it might do so too slowly (for e.g. during supertransients (Tang
et al., 2005)) and already cause a lot of damage to the crop.

If unfixed sizes and timings of predator releases are deemed realistic, through
adequate support for detection, a reactive approach can be adopted. In particular,
pest control can be ‘adapted’ for the detected pest population to accelerate eradication.
This detection can be achieved eg through a pest video surveillance (see e.g. Boissard
et al. (2008)).

H
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This also complicates things mathematically. The Floquet analysis technique as used
in this thesis might not work as there is no release (or harvest) period that is set from
the beginning. Tang et al. (2005), for instance, calculated that periodicity is main-
tained when only one impulse (one control action) is applied per period for a specific
Lotka-Volterra types of models. What if using two or more actions (at other thresh-
olds within the period) improves pest eradication further? What about predator-prey
models with other forms of interactions?

Perhaps a solution would be to resort to a higher level of mathematical abstraction?
One approach, that is currently dominating the hybrid control engineering literature,
consists of using set theory (see e.g. Goebel et al. (2009) for a review).

Refining ‘best’

As we said earlier, in this thesis, ‘best’ is defined in terms of the lowest minimal
release rate (which minimises the amount of money a planter invests in purchasing
predators) and fastest pest eradication (which minimises pest damage on the crop
and the planter’s loss). Of course, this is a highly simplistic definition. We can do
better by incorporating other economic constraints into our model.

H

There are a number of ways to improve on the definition, namely to include the cost
of labour, other inputs such as pesticide usage, and pest damage: to do so, we could
perhaps define a cost function parameterised by the minimal release rate (to min-
imise), the cost of labour involved at predator releases (to minimise), as well as for
partial harvesting, and finally – as an indicator for pest damage – the speed of pest
eradication (to maximise). For pesticide applications, the cost of pesticides will have
to be taken into account (to minimise).

The formulation of a well-posed problem taking into account all these economic
forces is not, however, trivial. A major difficulty here is that the control is impulsive
(see e.g. the analysis by Xiao et al. (2006) on optimising harvests for the Maximum
Sustainable Yield (MSY), and Mailleret and Grognard (2009) on minimising the risk
of pest damage for examples of the difficulties). Perhaps, considering our model as a
component of a larger, fuller description of the farming system as above, we
might use the numerically calculated multi-objective approach proposed by Cardoso
et al. (2009), with other components of the farming program? Alternatively, for an an-
alytical study, using the methodology presented by Chatterjee (1973) (who analyses the
trade-offs between the damage to crops by pests and the damage to the environment by
pesticides) might yield some insights on how to tackle this problem.

More experimental validation

Ultimately, we also want to know how well our model fits within a more complete
mathematical description of the system. However, our discussions and results have
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no basis unless we test them in the field. Also, we can improve our model only if we
can test it.

Unless we are able to obtain field data, some simple questions, if left unanswered,
will undermine the progress in modelling biological control: were our premises cor-
rect and sufficient? Can we really ignore spatial effects? Plants for instance release
chemicals when attacked by pests, that attract predators: can this be rightfully inte-
grated within the functional response or would a spatial component provide a better
prediction of the predator behaviours as they move along the ‘chemical gradient’ to
the source of their food?

To which extent is it necessary to complexify our model? Do we need to consider
higher dimensions? We analysed a simplified intraguild predation (IGP) system as
given by Kohlmeier and Ebenhoh (1995), where the predator species were grouped
together within one state value. The resultant minimal release rate provided the
overall predator release rate, but not the specific mix of the species1.

Data on agricultural predator-prey systems is hard to collect, which also explains
their rarity in the literature: first, there is the problem of scale (see Section 3.3 in
Chapter 3); second, invertebrate species involved have life-cycles that are of the or-
der of week(s) – this is a relatively long life-cycle; These two problems are logistic and
render the data collection a labour intensive process. The problem of scale also im-
plies a high risk for the spread of the pest to other sites (it is difficult and very costly
to monitor invertebrates without this risk). So the idea of reproducing a biological
control scenario by artificially rearing pest species and releasing them on a test site
is often met with objections. This makes for a third, equally significant, obstacle.

H

A solution to the third obstacle would perhaps be to include farmers themselves in
efforts for data collection. Naturally, this requires that an adequate data collection
protocol is set up by biologists, modellers, and farmers. This does not seem to be an
easy task, but is probably the best way forward given the nature and diversity of the
predator and prey species in agricultural systems.

Let’s think about it a little: chemostat experimenters have the advantage of con-
trolled data collection, but it is also to their disadvantage that such experiments are
technologically intensive! Our proposal is humanly or labour intensive but not impos-
sible if technological means are lacking. The successes encountered by Van Lenteren
(2007a) and Van Mele et al. (2007) lend support to our proposal. In fact, involving
farmers could help in maintaining the critical mass of biological control profession-
als required for a large-scale implementation of such programs (see for instance the
discussion in Van Driesche and Bellows Jr. (1996) which underlines that ad hoc at-
tempts at biological control solutions are rarely successful because they usually require
sustained efforts of scientists with expertise in systematics, ecology and the rearing of
natural enemies.").

1This is not surprising: we had not in our model parameterised this mix. But this remains a valid
question from a practitioner who now has a large choice of predators, many of which can be used at the
same time.
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A word of care though: the turnover (in terms of valid and refined data) of such
large-scale experiments is not for the immediate future. The data collection protocol
can only be improved through adequate feedback back and forth the farming to the
biologist and modelling communities. This process takes time.

Shifting the focus: Conservation biological control?

In our introduction, we discussed the problem of pest resistance to pesticide usage,
and how biological control circumvented this problem. Augmentative control, as mod-
elled in this thesis has however a couple of drawbacks. First, though to a lesser extent
than classical control, the introduction of an ‘exotic’ predator can pose a direct threat
to ‘indigenous’ ones which are less competitive in exploiting their own niche than a
migrant, and may even predate on it. A particularly successful predator may even
be able to mate with a local variety and persist (an initially augmentative control
program can thus become classical). The local species is wiped out in the process.
In Europe, for instance, the invasive ladybird Harmonia axyridis outcompetes and
preys on the eggs of the native Coccinella septempunctata Hironori and Katsuhiro
(1997) and most other indigeneous coccinelidae; it tends to progressively spread to
the whole continent Roy and Wajnberg (2008). There are plenty of other examples of
such biological control programs gone wrong, where a predator becomes a new pest
that needs to be controlled (see e.g. Cox (2004))2.

Secondly, aside from the resistance issues, an augmentative control program does
not really solve the other problems associated with pesticides, namely that of pest
resurgence and secondary pest outbreaks (Metcalf, 1994). As a given pest is com-
pletely eliminated, its natural enemy populations which might have buffered previ-
ous invasions also dwindle; a resurgence of the same pest is likely to be more violent.
Likewise, there often exist other species that are potentially harmful to a crop but
are kept at bay by their position in their related food web: supposing that it shared a
similar natural enemy guild as the pest, the absence of its enemies can result in an
uncontrolled increase in its numbers to harmful levels.

H

Lewis et al. (1997) frame this problem within the question: When is a pest a pest?
They then argue that an ecosystem is self-regulatory so that instead of focusing on
pest control techniques that are ‘therapeutic’, we must improve our understanding of
the feedback mechanisms within an ecosystem that maintain its balance. We must
favour first conservation control methods, then use augmentative control to drive back
an ecosystem to its equilibrium state only when necessary.

Mathematically, this might indicate looking at higher dimensional systems. Would
a greater overlap between niche theory (see e.g. Cohen (1978)) and dynamical systems
hold the key to solving this problem?

2Sfar and Trondheim (2001) exploit this catastrophic feature for comical purposes in an unusual
surgical operation (see Figure 8.2).
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Figure 8.1: From Macfadyen et al. (2009), this web represents a whole-farm network.
The bottom level shows all the plant species sampled on the farm, the middle level the
insect herbivores, and the top level the parasitoid wasps. Each bar indicates a different
species and the width of the bars represents their abundance on the farm. The lines
between trophic levels indicate that these two species are interacting and the width
of the lines indicates the frequency of this interaction. Arable plant species and their
herbivores have been shaded black. These plants make up only a small proportion of
the vegetation on each farm as they are short-lived in comparison to natural or semi-
natural vegetation, being harvested as soon as they reach maturity, and also ephemeral,
in comparison to, for example, field margins and rough ground.

Also how realistic is this in practice? Intensive agriculture, as it is practised nowa-
days, has changed substantially ecological landscapes: in particular, it has greatly
diminished species diversity and probably the resilience of ecological webs (see Fig-
ure 8.1 on the difference in species diversity between a converntional and an organic
farming system). Moreover, the world human population has grown to five times its
size within the past century; can we go back to a lower impact agricultural system and
sustain the population? Perhaps, in which case it is likely that transportation routes
of food will have to be reorganised, mentalities will have to change, long-term policies
and perseverence will be required. Can we rise to that challenge?
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Figure 8.2: In Sfar and Trondheim (2001)’s ‘Donjon : Coeur de Canard’, the biological
control operation on the dungeon keeper to remove a mysterious creature (known as
a‘berbouche’) from his stomach goes horribly wrong. The minuscule men, predators of
this ‘berbouche’, stay in the stomach after the operation and need to be treated by men-
eating ants. The ants proliferate so the surgeon requires a giant anteater to remove
them. For the giant anteater to reach the ants, the surgeon needs to flip the dungeon
keeper inside out!... How will this chain of events stop?!
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A
Why reduce pesticide usage

“The dose makes the poison.”1

– Paracelsus (1495–1541)

“Biocides are, by definition, designed to kill living organisms, however, and the pre-
sumption must be of some damage where they are detected.”2

– Brian Moss, 2008

A little bit of history

The large-scale use of chemical pesticides as we know it today dates back to the post-
World War period. In the 1950s, an intensive agriculture program - referred to as
the Green Revolution - was developed to deal with a growing world population and
mass famine threats in the developing countriesThis program was based on three
inputs: first, more resistant cultivars or strains for various crops - especially cereals
such as wheat. Second, fertilisers to enrich the soil with nutrients to stimulate plant
growth. Third, chemical pesticides to fight pest invasions. It was largely accredited
to Norman Borlaug (1914–2009), whose work on wheat cultivars and intensive plan-
tation farming made Mexico self-sufficient in food. The success of the program led
it to be applied in India, Pakistan and other developing countries which were un-
dergoing very sharp population increases. Norman Borlaug was awarded the Nobel
Peace Prize in 1970 for his efforts to fight world famine(The Economist, 2009). It is
in fact the expertise developed in chemical processes (namely the Haber process) dur-

1"Alle Ding sind Gift, und nichts ohn Gift; allein die Dosis macht, das ein Ding kein Gift ist.” Which
translates literally as: “All things are poison and nothing is without poison, only the dose permits some-
thing not to be poisonous."

2Quoted from Moss (2008).
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ing the World Wars which led to the industrial synthesis of fertilisers and pesticides
(Szöllösi-Janze, 2001).

Harmless doses or time bombs?

Public perception of pesticide risks has been and still is largely swayed by the press.
As I understand it, the media coverage on health and environmental issues related to
pesticides gathered momentum around works such as Rachel Carson’s ‘Silent Spring’
(Carson, 1962) and Van den Bosch’s ‘The Pesticide Conspiracy’ (Van den Bosch, 1978).

To date, the situation in Europe and the US can be summarised as follows:
Contamination of the air, soil and water has been reported widely and in detail

(see recent export reports such as Berenbaum et al. (2000); Voltz et al. (2005); RCEP
(2005); Moss (2008)). However, all these reports acknowledge that, apart from a few
organisms, the actual pesticide effects on biodiversity are too fragmentary to be con-
clusive.

Likewise, pesticides are currently developed to have shorter half-lives and more
specific to organisms that they target to reduce undesired side-effects on natural en-
emies. Regulations on the availability of pesticides have also been tightened: new
pesticides undergo a vigorous screening process by the European Commission before
being put up on the market for sale. As a consequence, policy makers have responded
by saying that current regulations sufficed for the control of pesticide usage (see, for
instance, DEFRA (2006) which supports the use of pesticides in agriculture as being
‘harmless’.).

The few attempts to measure the effects of pesticides on exposed agricultural
workers and farmers have pointed to a higher incidence of some cancers specifically
to these occupations (see Blair et al. (1992); Acquavella et al. (1998) in Baldi and
Lebailly (2007)). Indirect effects on consumers due to persistence of pesticides in the
environment seem however to be unknown.

That is, any threat that pesticides potentially represent is negligible under the
current situation. They merely represent a form of environmental and health risk,
which are kept at bay (satisfactorily, according to institutions).

In the developing countries however - where food security is an issue - the absence
of legislation and lack of information on pesticide resistance often leads to their mis-
use. (Dhar et al. (2004), for instance, reports of leaching; Mathur et al. (2005) reports
of an above average percentage of pesticides in the blood samples of a villagers’ cohort
in Punjab, the cotton belt of India). Furthermore, pesticides with shorter half-lives
and or narrower spectrum of action are not used because they tend to be more costly.
Toxicity is then not a mere risk but a real threat to the environment and human
health.

With respect to the question of dosing pesticides appropriately, one may still quote
Moss (2008):

“In an ideal world, it would be possible to take an individual agricultural activity, the
spraying of a particular pesticide at a known dose rate, [...] for example, and measure
precisely the effects of these on, respectively, the fecundity of a particular fish species,
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the growth of aquatic plants in a receiving lake or the extent of silting of a river stretch.
The effects can be measured in a general way and modelled with varying degrees of
uncertainty [...], but the sort of precision demanded by legislators and lobbies will never
be attainable and this has been a major weapon used to delay regulation of agricultural
activities.

[...] Although ecotoxicology is a precise science in simple systems in the laboratory, its
accuracy in determining ecological consequences is highly questionable. A particular
substance may be shown in laboratory systems to have a particular threshold at which
a test organism survives, or at which there is no observable effect. These thresholds are
determined on a very restricted array of test species that are extremely tough, otherwise
they would not be flexible enough to be used in laboratory systems. Nor are such or-
ganisms exposed to the risks of competition, predation and environmental fluctuation
that they, and far more sensitive species, will be exposed to in nature and which may
reduce thresholds enormously. Nor are they exposed to the much more complex chemi-
cal environment of nature where an array of potentially damaging substances may be
simultaneously present."

In other words, we might simply be sitting on an environmental and health time
bomb.
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