
HAL Id: tel-00850704
https://theses.hal.science/tel-00850704v1
Submitted on 8 Aug 2013 (v1), last revised 8 Oct 2013 (v2)

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Enumerating Functional Substructures of Genome-Scale
Metabolic Networks: Stories, Precursors and

Organisations
Paulo Vieira Milreu

To cite this version:
Paulo Vieira Milreu. Enumerating Functional Substructures of Genome-Scale Metabolic Networks:
Stories, Precursors and Organisations. Data Structures and Algorithms [cs.DS]. Université Claude
Bernard - Lyon I, 2012. English. �NNT : �. �tel-00850704v1�

https://theses.hal.science/tel-00850704v1
https://hal.archives-ouvertes.fr

No d’ordre: 267-2012 Année 2012

Thèse

Présentée

devant l’Université Claude Bernard - Lyon 1

pour l’obtention

du Diplôme de Doctorat

(arrêté du 7 août 2006)

et soutenue publiquement le
19 Décembre 2012

par

Paulo Vieira Milreu

Enumerating Functional Substructures of Genome-Scale
Metabolic Networks: Stories, Precursors and Organisations

Directeur de thèse: Marie-France Sagot
Co-Directeur: Christian Gautier
Co-Encadrant: Vincent Lacroix

Jury: Ludovic Cottret, Examinateur
Pierluigi Crescenzi, Examinateur
Joseph Heijnen Rapporteur
Steffen Klamt, Rapporteur
Alain Viari, Président
Peter Widmayer Rapporteur

UNIVERSITÉ CLAUDE BERNARD-LYON 1
Président de l’Université M. François-Noël GILLY
Vice-Président du Conseil d’Administration M. le Professeur Hamda BEN HADID
Vice-Président du Conseil des Etudes et M. le Professeur Philippe LALLE
de la Vie Universitaire
Vice-Président du Conseil Scientifique M. le Professeur Germain GILLET
Secrétaire Général M. Alain HELLEU

SECTEUR SANTÉ

Composantes
Faculté de Médecin Lyon-Est - Claude
Bernard

Directeur: M. le Professeur J. ETIENNE

Faculté de Médecine et de Maïeutique Adm. prov.: M. le Professeur G. KIRKORIAN
Lyon Sud - Charles Mérieux
UFR d’Ontologie Directeur: D. BOURGEOIS
Institut des Sciences Pharmaceutiques Directeur: Mme. la Professeure C. VINCIGUERRA
et Biologiques
Institut Techniques de Réadaptation Directeur: M. le Professeur Y. MATILLON
Département de Formation et Centre de Directeur: M. le Professeur P. FARGE
Recherche en Biologie Humaine

SECTEUR SCIENCES

Composantes
Faculté des Sciences et Technologies Directeur: M. le Professeur F. De MARCHI
Département Biologie Directeur: M. le Professeur F. FLEURY
Département Chimie Biochimie Directeur: Mme. le Professeur H. PARROT
Département Génie Electrique et Directeur: M. N. SIAUVE
des Procédés
Département Informatique Directeur: M. le Professeur S. AKKOUCHE
Département Mathématiques Directeur: M. le Professeur A. GOLDMAN
Département Mécanique Directeur: M. le Professeur H. BEN HADID
Département Physique Directeur: M. le Professeur S. FLECK
Département Sciences de la Terre Directeur: M. le Professeur I. DANIEL
des Activités Physiques et Sportives
UFR Sciences et Techniques Directeur: M. C. COLLIGNON
Observatoire de Lyon Directeur: M. B. GUIDERDONI
Ecole Polytechnique Universitaire de Lyon 1 Directeur: M. P. FOURNIER
Ecole Supérieure de Chimie Directeur: M. G. PIGNAULT
Physique Electronique
Institut Universitaire de Technologie de
Lyon 1

Directeur: M.R. BERNARD

Institut de Science Financière Directeur: Mme. la Professeure
et d’Assurances V. MAUME-DESCHAMPS

Acknowledgements

Merci beaucoup a tout le monde qui m’a aidé pendant les 5 ans de ma vie ou j’ai travaillé
sur les sujets de cette thèse.

This is going to be a sui generis section of this thesis since I decided to write in three
languages, including a general acknowledgement using my poor and under-developed french
and some words in portuguese to my family.

Writing this thesis was not at all as I supposed it would be. It was much easier and fun.
The reason is surely because I was surrounded by a team that conciliate highly competent
and passionate professionals with gentle, humble and friendly people. Starting with the best
directors I could think of: Marie-France, Vincent and Christian, each one of you contributed
with your vision, orientation and patience for this to be the best work possible. Marie has
become during these years much more than a director but a very special friend, a kind of
friend that you want to spend Christmas together and with whom sharing a nice meal in a
restaurant is always much more than eating and drinking well. Vincent (and Camille and
Tao) has also become a friend. I am his first PhD student and I am really happy about it.
Specially because he is an amazing and passionate professional who deeply understand both
biology and computer science and discussing with him was always enlightening. Christian has
arrived in the thesis more towards its end but I am also quite happy to have had the possibility
to know more about biology, mathematics, science and laughing with you. This is, obviously,
not an individual work and I would like to specially thank all my other co-authors, namely
Alberto, Andrea, Cecilia, Etienne, Fabien, Fábio, Hubert Charles, Leen, Ludo, Matteo, Pilu
and Vicho. You are the best and I cannot imagine this work without your presence, knowledge
and support. Thank you also BleriBleri for sharing the same slide-template you used in your
own PhD defense. I would also like to thank the reporters of my thesis: Joseph Heijnen,
Steffen Klamt and Peter Widmayer and the president of my jury, Alain Viari.

Special thanks to all my very supportive friends that helped me directly or indirectly, far
away in Brazil (ex: André e Alessandra, Bart e Paula, Be e família, Digão e Mel, Edson e
Carmem, Joe e Elisa, Lurdinha, Mattheus, Paulo Vargas e Mariana, Robinson e Lu, Said e
Odineia, Teddy, Teofilo e familia, Van) or physically closer in Europe (ex: Alexandre, Ana,
Augusto e Lu, Blerina, Christian, Florence, Gustavo, Janice and Thomas, Lauranne, Leandro
e Aline, Lilia, Mariana, Martin and Julie, PAF, Pat, Susan), and of course everybody else
that were not explicitly mentioned but that were also part of this.

Para completar os agradecimentos não poderia faltar a minha família. Minha mamãozinha,
Malu, pessoa que me deu a minha base moral e emocional e que é, portanto, a mais importante
de todas. Agradeço também a minha irmã, Isabela, e aos meus sobrinhos queridos, Julia,
João e Sofia. Agradeço a todos os demais familiares que me apoiaram com incentivos e muito
afeto. Agradeço ao meu pai, que já se foi há alguns bons anos e, infelizmente, ainda tão jovem.
Certamente, o senhor é parte integrante de mais essa etapa de minha vida.

Agradeço especialmente à Dri, por ter acreditado em mim e também por ter me feito

4

acreditar que sim, eu poderia. Sem você, nada disto teria sequer começado. Sou muito grato
e feliz que você tenha dividido comigo cada momento desta trajetória que agora encerro, desde
antes do início lá na 26 de agosto até o final, já aqui em Lyon. Este lugar é seu e estará para
sempre gravado em mim.

Obrigado novamente a todos. Cette partie de l’histoire est fini...

Contents

Introduction 1

1 Biological Concepts 4
1.1 Metabolic network . 4
1.2 Metabolic network reconstructions . 6

2 Mathematical Concepts 10
2.1 Graphs and hypergraphs . 11
2.2 Modelling metabolic networks . 13
2.3 Analysing structural properties of metabolic networks 16
2.4 Algorithm complexity analysis . 17

2.4.1 Algorithms on graphs . 18
2.4.2 Complexity analysis of algorithms . 20
2.4.3 Enumeration problems . 21

3 Metabolic Stories 24
3.1 Introduction . 24
3.2 Modelling metabolic stories . 27
3.3 Definitions . 29
3.4 Algorithms and complexity for finding and enumerating stories 30

3.4.1 Preprocessing the graph . 30
3.4.2 Finding single stories . 34
3.4.3 Enumerating stories by enumerating FASs 37
3.4.4 Enumerating stories by enumerating permutations 39

3.5 Alternative definition of a story . 40
3.6 Biological application . 42

3.6.1 Enumerating stories for interpreting metabolomics experiments 44
3.6.2 Enumerating stories for recovering metabolic pathways 51

3.7 Open problems and perspectives . 65

4 Precursor Sets 67
4.1 Introduction . 67
4.2 Definitions . 69
4.3 Complexity results . 72
4.4 Algorithms for precursor sets enumeration . 75
4.5 Performance analysis . 84
4.6 Biological application . 86
4.7 Open problems and perspectives . 91

5 Chemical Organisations 95
5.1 Introduction . 95
5.2 Definitions . 97
5.3 Chemical organisations in consistent networks 99
5.4 Enumerating chemical organisations . 102
5.5 Hitting set approach to enumerate organisations 104
5.6 Open problems and perspectives . 107

Conclusion 108

Bibliography 110

Appendix: Metabolic Network Software Library 118

Introduction

The work presented in this thesis may be seen as a collection of efforts to uncover structural
properties in metabolic networks with the goal of arriving at a better understanding of their
functional aspects. When I started writing this thesis, my idea was that I would have to
put here all the things I had done for the past 6 years, from the point I got involved with
bioinformatics and the minimal precursor set enumeration problem until now. But now that
this document has a definitive shape, format and content, I can see that in fact this is more
about what I have learned from the past 6 years, and this subtle difference made me much
happier about it. It has surely been a multidisciplinary work, with big doses of Computational
Theory and Algorithms, as much Biology as I could learn and also a lot of work on Software
Engineering, which was one of the main areas I worked on before starting my master, back in
2006.

This work is mainly about metabolism and how to use computational tools, and specially
graph algorithms to understand it better. Metabolism may be seen as a set of chemical
reactions transforming sets of compounds (substrates) into other sets of compounds (prod-
ucts), while a metabolic network is an organized view of these reactions highlighting their
possible interactions. Examples of interesting problems one may address on metabolism are:
to detect what are the compounds needed for a given organism to produce key compounds
such as amino-acids, to identify possible subnetworks that provide a biological hypothesis for
a change in metabolite concentration that may be measured through metabolomics experi-
ments, to identify possible metabolic exchanges between organisms living in community or
in a symbiotic relationship, or finally, to identify what are the metabolic processes that take
place in some special cell conditions such as growth, disease or some other stress situation.

All of these problems may be, at least partially, addressed through the enumeration of
different metabolic structures, each one of them particularly designed with the goal of pro-
viding a better understanding of an underlying biological process. In this work, we present
enumeration algorithms for minimal metabolic precursor sets, metabolic stories and chemical
organisations, as well as some results on applying such enumeration procedures in order to
(try to) answer some biological questions. Such applications confirm the fit of these structures
as valid efforts for grasping the actual biological behaviour of the studied systems.

Although the biological questions that motivated each piece of work were diverse, the
methodology for dealing and trying to answer them was quite similar and can be decomposed
in the following three steps. Initially a formal definition capturing the biological features of
interest has to be developed and accepted, specially by the biologists involved in the process,
as a good candidate to represent the biological entity of interest. Once this modelling step
is done, we can move to an algorithmic approach, first classifying the mathematical problem
in terms of its time complexity, and then proposing algorithms for recovering solutions from
the available data, even in the cases where the problem is computationally intractable. A
biological validation of the solutions obtained closes this methodological cycle by providing a

Introduction 2

new understanding of the model under study as well as proposing new directions and further
improvements needed for an even better comprehension of the given system. During the time
taken to achieve the results here presented, I have acquired some knowledge on Biology, more
specifically on metabolism. This was possible mainly due to this methodological pipeline that
my team follows since the modelling and the validation steps are inherently multi-disciplinary.
I believe that for this reason already, this is a nice pipeline for dealing with biological questions
because of its collaborative and complementary nature.

Another aspect of metabolism and its study using graph models is the different aspects one
may concentrate on depending on the question one wants to answer. Of course, there are sev-
eral pieces of information that are important to be taken into account from a biological point
of view: biochemical reactions, metabolic pathways, reversibility of reactions, stoichiometric
coefficients, thermodynamical constraints, enzymatic regulation, and so on. Currently, there is
no model that takes all these informations into account, as far as our knowledge goes. Indeed,
models vary from very simple representations concentrating only on the possible interactions
between reactions to more complex linear programming models coupling stoichiometric and
regulatory approaches in order to quantitatively predict the output of some objective func-
tion. This spectrum of models is explored in this thesis in the sense that each one of the three
main problems addressed has different needs in terms of information and, hence, deals with
different models of a metabolic network.

Metabolic Stories are maximal acyclic subgraphs with a constrained set of sources
and targets (Acuña et al. (2012a)). The motivation behind this definition is going to be
further detailed but, briefly, metabolic stories are our way of recovering chains of reactions
that explain the flow of matter from a set of compounds S to another set T . Each story is
an hypothesis to explain the concentration changes observed in a metabolomics experiment,
or more generally to understand the interdependencies between a given set of vertices in a
graph. The efforts to provide a formal definition required from us to separate biological issues
from mathematical ones. Once the problem has been translated, it may be that it has been
already considered in different domains and that there are ready-to-use algorithms that may
be applied, or closely related algorithms that may be adapted. On the other hand, the formal
definition may constitute a new computational problem, as seems to be the case for the stories
problem. In this case, the algorithms we design to address the biological problem may be,
in the future, useful for solving problems in completely different domains. This observation
highlights another key feature of the previously mentioned pipeline, which is the need to move
from the biological question to a general formally defined mathematical problem, which eases
reusability of results.

Besides metabolic stories, this work also covers minimal precursor sets enumeration.
The work on precursor sets was the one, as I previously mentioned, that introduced me to the
field and I have never stopped working on it since then. During my master thesis, we published
(Cottret et al. (2008)) our first version of the algorithm. This is an example in which the main
result was the formal definition of a problem, since it was the first time that a definition of a
minimal precursor set took cycles into account, which was a significant biological advance for
the problem because cycles are very common in metabolic networks. In terms of algorithms,
we presented a first version that in practice allowed us to work only on small networks, which
was enough to provide us some biological insight on a relatively complex symbiotic system
(Cottret et al. (2010a)). More recently, we developed new algorithms for exploring larger
networks (Acuña et al. (2012b)).

Finally, we also worked on a mathematical object definition proposed in a different context,
the chemical organisations (Dittrich and di Fenizio (2007)), and considered its use in the

Introduction 3

context of metabolic network, with its specific properties such as mass and flux consistency. It
is still the same pipeline but now we started directly from the second step and, to be honest,
we did not reach the third yet. The work done for the moment answers our theoretical
question of whether the enumeration algorithm could be made more efficient by considering
such consistencies, and unfortunately the answer is negative. We however propose algorithms
with improved expected performances over existing ones (Milreu et al. (2010)). The next and
future step now is to consider practical algorithms that may run on our target networks, and
to address the biological questions that possibly chemical organisations may help to answer.

This text is organized as follows. Chapter 1 presents the main biological concepts used
throughout the work, namely metabolism, metabolic network reconstruction and metabolomics.
Chapter 2 plays the same role for the main mathematical concepts, namely graph and hy-
pergraph definitions and how to use them to model metabolic networks, the stoichiometric
matrix, the concept of algorithmic enumeration problems and their time-complexity analysis.
Chapter 3 presents the main contribution of this work, the enumeration of metabolic stories,
detailing the whole process from the biological motivation, passing through the mathematical
definition, the algorithmic and the complexity issues, to a validation of their biological value
and, finally, to a different application whose result indicates that the method may also be
adapted to answer a different biological question than the original one it was designed for.
Chapter 4 presents a compilation of the work on the enumeration of minimal precursor sets,
for which we have developed three different algorithms that will be detailed, as well as a
biological validation and the time-complexity analysis of the problem. Chapter 5 presents
our algorithmic approach for enumerating chemical organisations in metabolic networks un-
der the assumption of mass and flux-consistency of such networks. Finally, a Conclusion and
Perspectives chapter closes the discussion summarising the results obtained and highlighting
interesting open problems. The software engineering aspects of the work, presenting diagrams
and the general organisation of the code developed for addressing the metabolic precursors
and stories problems, as well as information on how this library may be further extended to
become a platform for metabolism-related software development is presented as an Appendix.

Chapter 1

Biological Concepts

Contents
1.1 Metabolic network . 4
1.2 Metabolic network reconstructions 6

The purpose of this chapter is to familiarise the reader with the basic biological concepts
used throughout this thesis: metabolic networks and related notions such as metabolites and
chemical reactions, as well as how to move from genomic information to obtain a representation
of such a network.

1.1 Metabolic network

“Life is a chemical process involving thousands of different reactions occurring in an orga-
nized manner. These are calledmetabolic reactions and, collectively,metabolism" [Elliott
and Elliott (2001)]. A chemical reaction may be described as a possible transformation of a
set A of chemical compounds into a different set B. Ideally, both directions of such a trans-
formation are possible, i.e., one may observe A → B as well as B → A. Such a reaction for
which both directions are possible is called a reversible reaction and is denoted by A↔ B.
However, given thermodynamical constraints associated with the transformation in one of the
directions of a reaction, it is possible to say that one of the two directions is so unlikely to hap-
pen that in practice the reaction is irreversible. Chemical compounds involved in reactions
related to metabolism are called metabolites or, equivalently compounds. For a metabolic
reaction A → B, A is its set of substrates or reactants and B is its set of products.
Metabolites may be imported inside the cell through so-called transport reactions and in
this case they are called nutrients. Transport reactions are also responsible for exporting
synthetized metabolites outside the cell.

A chemical equation may be used to describe the atoms being exchanged by the metabolites
during a chemical reaction. For example, we describe the burning of methane as CH4+2O2 →
CO2 +2H2O. Notice that the substrates of the reaction are CH4 and O2 and the products are
CO2 and H2O. The quantities of each of the substrates and products that are needed for the
reaction to take place are known as its stoichiometry and the stoichiometric coefficients
denote their proportions. In the given example, we may see that 1 molecule of CH4 and 2 of
O2 react to produce 1 molecule of CO2 and 2 of H2O. Notice that both sides of a chemical
reaction are expected to be mass balanced, i.e. the same atoms present in the substrates
should be also present - even if rearranged - in the products.

1.1 Metabolic network 5

Chemical processes in a cell usually are performed by a chain of chemical reactions such
that, at each step a reaction consumes some compounds to produce some others that are
going to be consumed by the next reaction and so on. This organized collection of reactions
that performs some specific and useful task for a cell is known as a metabolic pathway. A
metabolic pathway may still be seen as a transformation of a set of substrates into a set of
products but now the task is performed by several successive metabolic reactions. Differently
from reactions, metabolic pathways are in general irreversible. Indeed, after the collective
effort of transporting the substrates into the cell and transforming them into an important
product (amino-acids, cell walls, etc.), it would be a great loss if such a process was reverted by
breaking again the product and reversing the whole pathway to expel the substrates out of the
cell. For this kind of control, the irreversible reactions play an important role and, in general,
the first and last steps of a metabolic pathway are performed by this kind of reactions. This
does not mean that chemical processes inside the cell are irreversible but that they are done
through different metabolic pathways depending on their direction, normally exchanging just
the extremities of the pathway and keeping the reversible intermediate reactions. For example,
“during violent exercise muscles convert glycogen to lactic acid. During rest, the lactic acid is
converted to glycogen and the forward conversion switched off. To independently control the
two directions (that is, to switch one on and the other off) there must be separated reactions
to control; otherwise it would be possible only to switch both directions on and off together"
[Elliott and Elliott (2001)].

Historically, metabolic pathways were inferred, validated experimentally and put into a
catalog for further references. Even if the collection of all known metabolic pathways for
a given cell provides a good view of its metabolic capacities, such a collection is far from
representing all possible chemical transformations that may occur in a cell and, as we will
further explore in Chapter 3 which presents our results on metabolic stories, even a metabolic
pathway itself represents just one among several different possibilities for the transformation
of a specific substrate set into a specific product set.

Figure 1.1: Illustration of the catalysis work performed by an enzyme. Source: Wikipedia

Reactions do not depend only on entropy, temperature, substrate concentrations, or ener-
getic constraints to take place. Even if “thermodynamic considerations of sugar reacting with
oxygen to form CO2 and H2O are highly favourable, sugar is stable in air. There is a barrier to
the occurrence of chemical reactions, even if they involve large negative free energy changes"
[Elliott and Elliott (2001)]. Usually, such constraints on chemical reactions indicate only if
they may occur but the fact that they do occur depends on the presence of some catalytic
agent such as enzymes. There may be spontaneous reactions, that happen without the need
of any catalysis, but these are rare events. Metabolic reactions are, generally, catalysed by
enzymes, i.e., only in the presence of such special proteins do such reactions occur with
the required speed. The role of the enzymes is exactly to accelerate thousands of times the

1.2 Metabolic network reconstructions 6

normal velocity in which chemical reactions occur. Figure 1.1 presents a schema on how the
catalysis is done by the enzyme through the binding of the substrates to the active site of
the enzyme, the formation of the enzyme-substrate intermediate, followed by the formation
of the enzyme-products complexes, and finally, by the release of the products of the reaction.

Enzymes are biological catalysts and their synthesis by the cell is one of the main com-
ponents for the cell to genetically control its metabolic activities. In general, each reaction
is catalysed by a specific enzyme which is encoded by a specific gene but, usually, any other
combination may occur in practice. There are three different possibilities for enzyme activity
as exemplified in Figure 1.2. There may be multi-enzyme complexes that together may catal-
yse a single reaction like ANS. Conversely, there may also be multi-functional enzymes such
as PfkA that is able to catalyse two different reactions, PFK and PFK2. Finally, there
may also be the case that the same reaction may be catalysed by different enzymes and the
reaction PFK is an example since it may be catalysed both by PfkB or PfkA. Figure 1.2
thus illustrates the relation between gene content, enzymes and the reactions they catalyse.

Figure 1.2: Examples of Gene-Protein-Reaction (GPR) associations and their representation in Boolean format are

shown for Escherichia coli. Source: Figure 5 in Thiele and Palsson (2010)

A metabolic network of a given organism may thus be seen as a collection of all possible
reactions that may happen in a cell of this organism. The set of all metabolites in a metabolic
network is called its metabolome.

1.2 Metabolic network reconstructions

The process of recovering the list of metabolic reactions that corresponds to the real
metabolic network of an organism is known as metabolic network reconstruction. Ba-
sically, it consists in identifying the link between the gene content of an organism and its
metabolic capabilites. Usually, this is done by identifying among the genes the ones that
synthetize enzymes. Once a list of enzymes is available, it is possible to extend it to a list
of the corresponding biochemical reactions catalysed by them. Figure 1.3 illustrates this

1.2 Metabolic network reconstructions 7

process. Another important point is that metabolism may be divided into small-molecule
metabolism and large-molecule metabolism. The latter takes into account the biosynthesis
of proteins and other large molecules. Most bioinformatics works are focused only on small-
molecule metabolism and the metabolic network models used throughout this thesis have only
metabolic reactions of this kind.

Figure 1.3: Metabolic network reconstruction showing how to move from the gene content to a set of enzymes and,

finally, to the list of biochemical reactions corresponding to the metabolic network of an organism. Source: Wikipedia

The first challenge for reconstructing a metabolic network is to identify its genes and to
assign a function to them, which is in itself a very interesting and well studied research topic in
Bioinformatics (Reed et al. (2006); Lacroix et al. (2008); Thiele and Palsson (2010)). To apply
comparative analysis in order to transfer knowledge that was acquired and curated on well
studied organisms to less known and studied ones, phylogenetic information on the involved
organisms is often required. Phylogenetics is the study of the history of evolutionarily related
entities that may be, for instance, species or genes. Phylogenetic information is commonly
expressed by means of a so-called phylogenetic tree in which the leaves correspond to current
exemplars of the genes or species, and intermediate nodes to a prediction of their common
ancestors until the root. Several variations of such a tree exist: the tree may be unrooted,
or its edges (arcs) may be valued by the time estimated to have passed, etc. Details on
phylogenetics are out of the scope of this work, since our goal here is just to illustrate how
this can be used as a tool for metabolic network reconstruction. For this purpose only, we
show a simple illustration of a phylogenetic tree of three species and three genes in Figure
1.4.

The main assumption for automatically assigning function to genes is that ortholog genes
share a same function, i.e., if in the past a speciation event happened, ortholog genes found
in both species to be derived from the event probably have a same function. As an example,
if gene A1 is known to catalyse reaction R1 in the mouse species and gene A1 has an ortholog
gene in the rat species, it is fair to assume that this plays the same role also in rats. Identifying
ortholog and paralog genes is done by comparing the DNA sequences that code for the gene.
Paralog genes are less likely to keep a same function than ortholog ones since they occur after
a duplication event. Indeed, it is less expected that a gene and its copy would be kept during
evolution, performing exactly a same function. Of course, such assumptions depend strongly
on the quality of the annotation of gene A1 in the mouse as well as on how phylogenetically

1.2 Metabolic network reconstructions 8

speciation

duplication

speciation speciation

A B1 B2C1 C2
human mouse rat mouse rat

Figure 1.4: Phylogenetic tree involving three species (human, mouse and rat) and five genes (A,B1,B2,C1,C2). The

genes B1 and C1 are ortholog genes, since they are derived from a speciation event. The genes B1 and B2, however,

are paralog genes since they derived from a duplication event.

close mice and rats are. Once the function of the genes is known, it is a trivial task to select
among them the catalytic related proteins, i.e., the enzymes. A third step is then to identify,
from this enzyme set, a list of biochemical reactions catalysed by them. To this purpose, there
are several databases focused on enzyme data, such as BRENDA (Scheer et al. (2011)) and
Uniprot (Consortium (2009)), from which the link between enzymes and chemical reactions
may be recovered. Here, again, we assume that the link between enzymes and reactions is
conserved through evolution. A final step is to identify which metabolic pathways may be
present in the organism, based on the list of candidate reactions produced in the third step.

For some reference organisms such as Escherichia coli and Saccharomyces cerevisae, the
list of chemical reactions inferred from their genomes is highly curated, i.e., the presence
in these organisms of a good percentage of those reactions was experimentally validated.
For several other less studied organisms, this is not the case. Indeed, a metabolic network
reconstruction for non-reference organisms may be automatically produced by several tools
developed with this goal, for example the ones that integrate two of the most largely used
platforms dedicated to metabolic information: Kegg (Kanehisa et al. (2008)) and BioCyc
(Caspi et al. (2010)). As a matter of fact, both platforms store much more than simply
metabolic information, providing also genomic and biochemical data and several tools for a
large range of organisms. However, to obtain a better quality model, some further steps after
the automatic reconstructions should be done, such as manual validation done by experts on
the organism and/or an experimental validation of the proposed candidate reactions.

The quality of the first draft of a metabolic network reconstruction automatically obtained
from one of these tools will depend basically on the taxonomy of the organism. This is due
to the fact that the process of inferring functions for the genes is highly comparative. In the
best case, a very close organism will be available and its gene content will be well annotated,
providing good candidate enzymes for the metabolic network of the target organism. For the
moment, this quality is the higher, the closer is the organism from the reference ones such as
E. coli and S. cerevisae, for which the relation between gene and function is well validated.
However, even in this ideal case, the resulting model will probably still contain errors, resulting

1.2 Metabolic network reconstructions 9

in metabolic networks with missing reactions, informally called gaps, reactions with wrong
reversibility indications, etc. In order to improve the quality of the automatic reconstructions,
several methods were developed for completing the missing information (Orth and Palsson
(2010); Marashi and Bockmayr (2011); Satish Kumar et al. (2007a)).

Although the techniques of metabolic network reconstruction have still a lot of room for im-
provements, there exists well curated and experimentally validated reconstructions available,
specially for model organisms such as Escherichia coli and Saccharomyces cerevisiae. Less
studied organisms have become more and more focus of metabolic reconstruction projects
and nowadays good quality data is also available for a wide spectrum of organisms. As the
next section details, there are a variety of bioinformatics applications that were developed for
the structural analysis of genome-wide metabolic networks. Even if the methods developed
in this work may be applied on currently available data, they are expected to be even more
useful when well curated metabolic network reconstructions become available.

Chapter 2

Mathematical Concepts

Contents
2.1 Graphs and hypergraphs . 11
2.2 Modelling metabolic networks . 13
2.3 Analysing structural properties of metabolic networks 16
2.4 Algorithm complexity analysis . 17

2.4.1 Algorithms on graphs . 18
2.4.2 Complexity analysis of algorithms 20
2.4.3 Enumeration problems . 21

The purpose of this chapter is to familiarise the reader with the basic mathematical con-
cepts used throughout this thesis, namely the definition of a graph, a directed graph and a
hypergraph. Moreover, the chapter also gives an introduction to some classical algorithms in
Graph Theory that are used repeatedly for the more complex methods of this work, specif-
ically one of the main procedures for graph traversal: breadth-first search (BFS). A very
brief introduction to algorithm analysis and the time-complexity model is also presented as
well as its extension to enumeration problems. To this purpose, we propose to explore the
feedback vertex set problem and its variation, the feedback arc set problem, that also form
a basis for at least two of the three problems explored in this work (metabolic stories and
chemical organisations) and that serve as a good illustration for algorithm time-complexity
analysis, including the enumeration case. There is no intention to cover these subjects in
detail. For more information on graphs and digraphs we refer to Bondy and Murty (1976)
and Bang-Jensen and Gutin (2010), for more information on hypergraphs we refer to Berge
(1976) and Ausiello et al. (2001), and for more information on algorithms on graphs and their
complexity analysis we refer to Cormen et al. (2001), Garey and Johnson (1990) and Ausiello
et al. (1999).

Finally, the metabolic network modelling aspects are also covered in this chapter. Indeed,
we may use graphs, digraphs and hypergraphs to model the topology of such networks, each
model having more or less details and, subsequently, being suitable for answering different
kinds of biological questions. Graph models are static and qualitative models in contrast to
dynamic and quantitative models of metabolic networks such as the description of a set of
chemical reactions using differential equations. Such dynamic models are not considered in
this work. An intermediate step moving from topology-based models to quantitative-based
models are the so-called constraint-based models, that are also introduced in this chapter.

2.1 Graphs and hypergraphs 11

These models explore the stoichiometries and the irreversibility of the reactions as constraints
on the possible fluxes of a network, the network is at the steady-state, i.e., the concentrations
of internal metabolites are balanced. In this work, such models are considered marginally, as
a validation step in our chemical organisation enumeration algorithms and as perspectives for
future work for the enumeration of both metabolic stories and minimal precursor sets. For a
more detailed review on the differences between a quantitative and a qualitative modelling of
metabolic networks, we refer to Stelling (2004).

2.1 Graphs and hypergraphs

A directed graph, or simply digraph, is a pair of disjoint sets (V,A). The set V
represents the set of vertices or nodes while A, the set of arcs of the digraph, is a set of
ordered pairs of vertices, i.e., an arc is an ordered pair (u, v). An undirected graph, or
simply graph, is a pair of disjoint sets (V,E), V is the set of vertices or nodes while E, the
set of edges of the graph, is a set of unordered pairs of vertices, i.e., an edge is an unordered
pair (u, v). An arc or edge (u, u) is called a self-loop.

In a digraph, a vertex u is said to be adjacent to a vertex v if (u, v) ∈ A and we denote
it by u → v. The set N−(u), called in-neighbourhood of u, is the set of vertices v such
that the arc v → u exists and the set N+(u), called out-neighbourhood of u, is the set of
vertices v such that the arc u → v exists. The in-degree of a vertex u, denoted by d−(u),
is |N−(u)|, while its out-degree, denoted by d+(u), is |N+(u)|. For undirected graphs, the
adjacency relation is symmetric, i.e., if u and v are adjacent then both arcs (u, v) = (v, u) ∈ E
and we may define the neighbourhood N(u) of a vertex u as the set of vertices v adjacent
to u and the degree d(u) of u as |N(u)|. A vertex is said to be isolated if it has an empty
neighbourhood set or, equivalently, if its degree is zero. For the directed case, nodes with
in-degree zero and out-degree positive are called sources, while nodes with in-degree positive
and out-degree zero are called sinks or targets. In a digraph, a node is said to be isolated if
both its in-degree and out-degree are zero. Figure 2.1 gives a visual representation of graphs
and digraphs and examples of the above definitions.

a b

d

c

e

f

a) graph

a

b) digraph

b c

d e f

g h

i

Figure 2.1: a) A graph with V = {a, b, c, d, e, f} and E = {(a, b), (a, d), (b, d), (c, e)}. N(a) =

{b, d}, d(a) = 2. Vertex f is isolated. b) A digraph with V = {a, b, c, d, e, f, g, h, i} and A =

{(a, b), (b, a), (b, e), (d, a), (e, d), (g, d), (g, e), (f, h), (f, i), (h, h), (h, i)}. N+(a) = {b} and N−(a) = {b, d}, with d+(a) =

1 and d−(a) = 2. Arc (h, h) is a self-loop. Vertex c is isolated. Vertex g is a source and vertex i is a target.

A (elementary) path from a vertex u to a vertex v in a digraph G(V,A) is defined as
a sequence of vertices {p0, p1, . . . , pk} such that p0 = u, pk = v and (pi, pi+1) ∈ A, for
i = 0, . . . , k − 1. The length of such a path is k. A path from u to v is denoted by u ; v.

2.1 Graphs and hypergraphs 12

For example, in the digraph of Figure 2.1(b), there is a path g ; b = {g, d, a, b} of length 3.
Notice that this is not the unique path between g and b, for instance you also have the path
g ; b = {g, e, d, a, b} of length 4. If a path p = u ; v exists in a digraph G, we say that v
is reachable from u in G. Again, the very same definition of a path may be extended for an
undirected graph and the reachability relation is symmetric for this class of graphs. A cycle
is defined as a path that starts and ends in the same vertex u, i.e., a cycle is a path u ; u.
For example, in the graph of Figure 2.1, there is a cycle {a, b, d, a} and in the digraph of the
same figure, there is a cycle {a, b, e, d, a} and a cycle {h, h}, which is a self-loop.

A subgraph G′(V ′, A′) of a digraph G(V,A) is a digraph such that V ′ ⊆ V and A′ ⊆ A.
For instance, the digraph V = {a, b, d} and A = {(b, a), (d, a)} is a subgraph of the digraph
presented in Figure 2.1. Given a graph G = (V,A) and a set of vertices V ′ ⊆ V , the
subgraph G′(V ′, A′) induced by V ′, and denoted by G[V ′], is such that A′ = {(u, v) : (u, v) ∈
A and u, v ∈ V ′}. The same definitions may be directly extended for undirected graphs.

A graph is connected if, for any two vertices u and v, the path u; v exists. In Figure 2.1,
the graph G presented is not connected but the subgraphs G[{a, b, d}], G[{c, e}] and G[{f}]
are connected and are called the connected components of G. The connected components
of a graph may be defined as the maximal connected induced subgraphs of G. A graph is said
to be connected only if it has a unique connected component. A digraph is said to be weakly
connected if, for any two vertices u and v, the path u; v or the path v ; u exists, and it is
said to be strongly connected if both paths exist. In Figure 2.1 the digraph G presented is
neither weakly nor strongly connected but the induced subgraphs G[{a, b, d, e, g}], G[{c}] and
G[{f, h}] are weakly connected and are called the weakly connected components of G. The
induced subgraphs G[{a, b, d, e}], G[{g}], G[{c}], G[{f}] and G[{h}] are strongly connected
and are called strongly connected components of G. Analogously to the undirected case, we
may define the weakly (respectively, strongly) connected components of G as the maximal
weakly (respectively, strongly) connected induced subgraphs of G.

A graph or a digraph that contains no cycle is said to be acyclic. A digraph with no
cycles is known as a directed acyclic graph or simply DAG. A graph with no cycles is
known as a forest. If the graph is acyclic and connected, then it is called a tree. In a forest,
each connected component is a tree.

A digraph G(V,A) is bipartite if its vertex set may be split in two disjoint sets such that
any arc of the graph has one of its extremity in one set. Formally, V = VA ∪ VB, such that
VA ∩ VB = ∅, and ∀(u, v) ∈ A, u ∈ VA ⇒ v ∈ VB. This definition may be directly extended
for undirected graphs.

A hypergraph H = (V,E) is a pair of sets V of vertices and E of unordered subsets of
V . A directed hypergraph H = (V,A) is a pair of sets V of vertices and A of pairs of subsets
of V , i.e., a = (in(a), out(a)) ∈ A is an hyperarc of H and in(a) ⊆ V and out(a) ⊆ V . These
are the two classic definitions of undirected (Berge (1976)) and directed hypergraphs (Ausiello
et al. (2001)) found in the literature. Figure 2.2 presents a graphical representation for the
two proposed definition of undirected hypergraphs as well as for the directed version.

Graphs and hypergraphs, directed or undirected, may be extended with additional infor-
mation associated both with their vertices or their arcs/edges/hyperarcs. A very common ex-
tension is to add quantitative information on the vertices using a mapping function w : V 7→ R
or on the arcs/edges/hyperarcs using a mapping function w : A 7→ R. The function w is said
to assign costs or weights to the vertices, arcs, edges or hyperarcs. The value w(v), v ∈ V ,
is the cost or weight of the vertex v. The value w(a), a ∈ A, is the cost or weight of the arc
a, and so on. A graph or hypergraph with an associated weight function is called a weighted
graph or hypergraph.

2.2 Modelling metabolic networks 13

a

a) undirect hypergraph (sets)

b

c

d

e
f

a

b) directed hypergraph

b

c

d

e

fg
h

Figure 2.2: a) An hypergraph with V = {a, b, c, d, e, f} and E = {(a, b, d), (b, d), (c, d, e, f)}. b) A directed hypergraph

with V = {a, b, c, d, e, f, g, h} and A = {({a}, {b, e}), ({b}, {e}), ({d}, {e, g}), ({g, h}, {c, f})}.

2.2 Modelling metabolic networks

Metabolic networks may be seen as a collection of biochemical reactions that may occur
in the metabolism of an organism. There are different ways to model metabolic networks,
depending on the focus and the level of details desired. If one is mainly interested in the
topological attributes of such a network, graph or hypergraph models are well suited.

A compound graph is a digraph modelling a metabolic network whose focus is on the
compounds (also called metabolites). The vertex set of the digraph is the set of metabolites,
and there exists an arc from a metabolite u to a metabolite v if there is a reaction in the
network such that u is a substrate and v is a product of this reaction. A reaction graph is
a digraph modelling a metabolic network whose focus is on the reactions. The vertex set of
the digraph is the set of reactions, and there exists an arc from a reaction u to a reaction v if
at least one of the products of reaction u is a substrate of reaction v. Figure 2.3(a-c) presents
an example of how a list of reactions may be modelled into compound and reaction graphs.
These representations of a metabolic network are very simple and significant information is
lost (van Helden et al. (2002); Lacroix et al. (2008); Klamt et al. (2009)). For instance, if
you look only at the compound graph in the figure, the information that you need both a
and b in order to produce c and d is lost. Indeed, if we replace reaction R1 by two reactions
R4 : a → c and R5 : b → d, the compound graph representation will remain unchanged,
but the biochemical transformations that we are modelling are not the same. In the same
way, the reaction graph is supposed to capture the dependencies between reactions, but it
is not possible to distinguish that the two arcs arriving in R3 from R1 and R2 mean that
R3 depends on both reactions to happen for it to have all its substrates, while the two arcs
arriving in R2 from R1 and R3 are two alternative ways for obtaining the only substrate R2
needs.

A bipartite representation of a metabolic network may overcome some of these problems
by partitioning the set of nodes in two: metabolites and reactions. In this way, each substrate
has an outgoing arc to the reaction that consumes it and each product has as incoming arc
from the reaction that produces it, eliminating the ambiguity present in the previous models.
However, the fact that all substrates of a reaction must be present for the reaction to take
place and that, in such a case, all products will be synthesized is not explicit in the model, i.e.,
it is still possible to find a path a→ R1→ c, ignoring the information that the presence of b
is mandatory for the reaction to take place. For this reason, an undirected or, preferentially, a

2.2 Modelling metabolic networks 14

a) list of reactions

a

b) compound graph

b

c d

e

R1: a + 2b 2c + 2d
R2: d 2e
R3: e + c d

c) reaction graph

R1 R2

R3

d) bipartite graph

a

c d

e

b

R1

R2R3

e) directed hypergraph

a

c d

e

b
R1

R2
R3

f) weighted directed hypergraph

a

c d

e

b
R1

R2
R3

1 2

2 2

1
1

1

1
2

Figure 2.3: a) List of reaction corresponding to a metabolic network (b) Compound graph representation of the

network (c) Reaction graph representation of the network. (d) Bipartite graph representation of the network (e) Directed

hypergraph representation of the network (f) Directed hypergraph representation of the network with stoichiometric

coefficients.

directed hypergraph is a more accurate representation of a set of reactions since the hyperarcs
may be modelled to correspond exactly to the set of substrates and products of a reaction.
Figure 2.3(d-e) presents the bipartite and directed hypergraph representation of the same
metabolic network previously modelled as compound and reaction graphs. Notice that with
the directed hypergraph representation, the imprecisions mentioned before are not present,
which makes such models increasingly more used for modelling metabolic networks but also
other sorts of biological networks, such as Protein-Protein Interaction networks (Klamt et al.
(2009)).

A weighted version of a graph or hypergraph may include quantitive information on the
model. For instance, one may want to consider the addition of the stoichiometric coefficients
of the chemical reactions, detailing the proportions with which each metabolite is taken by the
reaction. Figure 2.3(f) presents a weighted directed hypergraph with a weight assigned to each
node in the hypearc, corresponding to the stoichiometric coefficients of the reaction modelled
by the hypearc. However, this representation becomes cumbersome and a much more widely
used approach is a so-called stoichiometric matrix representation of a metabolic network,
which may be seen as the incidence matrix of the weighted directed hypergraph previously
described. Each row of this matrix represents a metabolite of the metabolic network and
each column represents a reaction. Considering a stoichiometric matrix S, the cell S[i, j]
denotes how many molecules of metabolite i is consumed or produced by reaction j. Negative
values indicate consumption while positive values indicate production. If the metabolite is not
involved in the reaction, the value of the corresponding cell is zero. A stoichiometric matrix
corresponding to the metabolic network of Figure 2.3 is shown in Figure 2.4.

Notice that even if a stoichiometric matrix seems to capture as much information as a
weighted directed hypergraph, this is not always true. A subtle case in which a directed

2.2 Modelling metabolic networks 15

R1 R2 R3
a -1 0 0
b -1 0 0
c 2 0 -1
d 2 -1 1
e 0 2 -1

Figure 2.4: Stoichiometric matrix corresponding to the list of reactions presented in Figure 2.3.

hypergraph is able to represent more information relates to the presence of autocatalytic
metabolites, i.e., metabolites that are involved in their own synthesis. This is an example in
which hypergraphs may be more precise than the matrix, namely when a metabolite appears
both as substrate and product, and its corresponding cell in the matrix contains the difference
between production and consumption. Hypothetically, we could also model the enzymatic
level with a directed hypergraph, by adding the enzyme catalysing a reaction in both the
substrate and the product sets of the reaction, using stoichiometry one on both sides to
model that the enzyme is not transformed by the reaction, i.e., it remains unchanged after
the reaction finishes. This is also not possible with a stoichiometric matrix, since a zero value
will be assigned to the cell corresponding to the enzyme.

In constraint-based approaches, it is common to suppose that the system is at steady-state,
which means that the concentration of the internal nodes (all metabolites except nutrients and
substrates of large molecule metabolism) is balanced, i.e., that the internal molecules that are
being produced are being consumed at the same rate. A first constraint that comes from this
assumption is to identify flux vectors v ∈ Rm, with m the number of reactions of the network,
satisfying Sv = 0, with S a stoichiometric matrix representing the metabolic network of a
cell. Reversible reactions may have positive or negative fluxes, depending on which direction
the transformation occurs but the irreversible reactions should always have a positive flux,
which brings a second constraint to the model. The set of basis vectors that satisfy such
inequations may be obtained by a convex analysis if we consider the inequalities v[i] ≥ 0 for
each irreversible reaction i of the network and the steady-state assumption Sv = 0. In such a
case, the feasible flux space of a metabolic network may be described as a multidimensional
cone, each axis corresponding to a set of flux through the reactions of the network. Two
main methods have been proposed to describe such a cone, namely elementary modes
(Schuster et al. (1999)) and extreme pathways (Schilling et al. (2000)). An elementary
mode is a minimal (non-decomposable) set of reactions working at steady-state, and the set
of all elementary modes describe all possible routes through a metabolic network. Extreme
pathways may be seen as a minimal subset of elementary modes, i.e., an extreme pathway may
not be generated by a nonnegative linear combination of extreme pathways. A more detailed
comparison between the two methods may be found in Papin et al. (2004). Elementary modes
and extreme pathways are an inner description of the cone. More recently an outer description
of such a cone, calledminimal metabolic behaviours (Larhlimi and Bockmayr (2009)), has
been proposed with the goal to provide a smaller description than the previous approaches.

Constraint-based approaches have also been extensively used in the context of flux bal-
ance analysis (FBA) (Varma and Palsson (1994a); Price et al. (2003); Kauffman et al. (2003)).
In this context, in addition to the steady-state assumption and the constraints on the irre-
versibility of reactions, an optimal flux maximizing/minimizing some given objective function
is sought. Typical flux balance analysis applications are to obtain in-silico predictive models
for inferring growth or yield rates of some product of interest for several different organisms

2.3 Analysing structural properties of metabolic networks 16

(Varma and Palsson (1994b); Fong et al. (2005); Boyle and Morgan (2009)), to study the
viability of mutant strains bio-engineered by gene knockouts or other genetic manipulations
(Pharkya et al. (2004); Joyce and Palsson (2008); Suthers et al. (2009)), to check the flux
consistency or curation of a metabolic network reconstruction (Satish Kumar et al. (2007b);
Gevorgyan et al. (2008); Acuña et al. (2009)), and a wide variety of other possibilities. Notice
that the choice of the objective function is fundamental for such approaches. For instance, a
common objective function used for studying bacteria is to assume that in rich media they
grow at maximum speed, which is modelled as an objective function in which the goal is
to optimize the flux over a fake reaction, added to the model to emulate the production of
biomass from compounds that should be essential for a bacterium to grow (Feist and Palsson
(2010)).

2.3 Analysing structural properties of metabolic networks

The content of this work may be put in the general context of Structural Analysis of
Metabolic Networks. The three subjects that form the kernel of this work, namely metabolic
stories, metabolic precursor sets and chemical organisations, may be seen as subnetworks
which satisfy some given topological and/or stoichiometric properties, and the proposed al-
gorithms are therefore techniques for graph extraction focused on efficiently identifying these
subnetworks. In this sense, the work here presented may be categorized as global, since
genome-wide metabolic networks are explored and all possible subnetworks are taken into
account, in contrast to a local analysis where the networks are only partially analysed. An-
other characteristic shared by the three methods is their static, structural and mainly
qualitative nature, in opposition to the study of the dynamics of metabolic networks, or to
quantitative analyses based on local or global measures of their graph representations.

There are several works that try to uncover biological knowledge based on analysing
topological and/or quantitative properties of metabolic networks. A basic initial idea is to
simply compute topological measures on the graph representation of metabolic networks. A
natural question one may pose is how important is a node, i.e. if it plays a major role on
the biological context under study, and centrality measures may thus be computed to try to
give to each node some value of its importance, based on local or global properties. Local
properties take into account information on the node and its surroundings but do not inspect
the graph entirely, examples of local information is the degree of a node and the set of nodes
directly connected to it. Global properties, on the other hand, take into account the whole
graph in order to assign a value to a node, examples are the average distance of the node to
the other nodes in the graph or how many shortest paths between two nodes passes through
it. Some surveys on the use of graph measures for the analysis of metabolic networks and
the issues and cautions needed for applying such techniques are Mason and Verwoerd (2007);
Koschutzki and Schreiber (2008); Lacroix et al. (2008); Pavlopoulos et al. (2011); Klein et al.
(2012b). Notice that these techniques may be applied not only to metabolic networks but
also on other biological networks such as protein-protein interaction networks and regulatory
networks.

In addition to the known issues related to measure-based approaches, we have recently
argued (Klein et al. (2012b)) that care must be taken by methods relying on global measures
or on identifying global subnetworks, such as our own. Our concern is about the difference
between genome-wide metabolic network reconstruction and the subset of chemical reactions
that are really active at any given moment in the cells. Metabolic network reconstructions
provides information on all possible chemical reactions that may take place in the cell of an

2.4 Algorithm complexity analysis 17

organism and represents, thus, a potential network. However, only a subnetwork will be
active at a given time interval, and we call each of these subnetworks, that are probably
performing some task for the cell, a realization of a network. Local or, specially, global
measures computed in the potential network may provide insights that are not true when one
inspects all realizations of a same network, i.e., it may be the case that even if the topological
identified feature is potentially true, it is not true or it has a completely different interpretation
for the real instances. For instance, identifying highly connected nodes, or hubs, on the
potential network will provide some understanding on its essentiality or functional importance,
while looking for nodes that are commonly hubs over a large set of realizations may have a
completely different interpretation. In our case, applying metabolic stories enumeration on
genome-wide metabolic network will provide all possible scenarios explaining transformations
observed in a given metabolomics experiment. Ideally, we could apply the same enumeration
algorithm on realizations of this network corresponding to the same conditions the cell was
during the experiments, obtaining a smaller set of solutions and, probably, with a better
quality. From an algorithmic point of view, however, this discussion has no impact since
the method is exactly the same independent on the input being the whole network or some
subnetwork.

Another topological analysis that may be done on metabolic and other biological networks
is a modular decomposition of the network. The idea is to decompose a network in its
functional modules that are commonly hierarchically grouped. Another possible benefit of a
modular decomposition is that it allows the study of the modules independently and, since
they are considerably smaller than the whole network, analytical methods that do not scale
well for large networks may again be employed. For instance, by the means of the concept
of reaction correlation coefficient, that tries to model the concept of an enzyme, hierarchical
metabolic trees may be built where the leaves are individual reactions, the root of the tree is the
whole network and intermediate nodes represent subsystems of reactions or metabolic modules
(Poolman et al. (2007)). Different approaches for modular decomposition were proposed in
the context of metabolic networks (Holme et al. (2003); Yoon et al. (2007); Verwoerd (2011))
and also for protein-protein interaction networks (Gagneur et al. (2004)).

Another structural approach is to compare the metabolic capabilities of two or more
organisms, providing information on their similarities and their differences and, possibly some
insight on the metabolic features that are conserved through evolution and may form a shared
core of chemical reactions (or genes). A common application of such technique is to try to
identify essential reactions (and, consequently, genes) that must form a core of the metabolic
reactions that must be present in (almost) all compared organisms, usually focused on bacteria
(Gabaldon et al. (2007); Barve et al. (2012); Klein et al. (2012a)).

This section has no hope of exhaustively covering all the various methods already employed
for the structural analysis of metabolic networks. Subnetwork extraction techniques as well as
methods for automatically proposing metabolic pathways are going to be covered in Chapter
3. Methods that explore the metabolic capabilities of an organism for nutrient-related analysis
are covered in Chapter 4.

2.4 Algorithm complexity analysis

A problem is a general question to be answered and may be described by giving a general
list of all its parameters and a statement of what properties the solution to the problem has
to satisfy. An instance of a problem consists in specifying values to the parameters (Garey
and Johnson (1990)). For example, the shortest path problem is the following: given a

2.4 Algorithm complexity analysis 18

graph G and two vertices u and v, what is the shortest path between u and v, i.e., what is
the minimum length of a path connecting these two nodes? An instance of this problem is,
for example, the digraph presented in Figure 2.1 and the pair of vertices g and b, and the
solution of the problem for this instance is 3.

An algorithm is a list of consecutive procedures or instructions to solve a problem. An
algorithm is said to solve a problem if it can be applied to any instance of the problem
and is guaranteed to finish and to produce a valid and correct solution for that instance
(Garey and Johnson (1990)). Informally, an algorithm is usually seen as a recipe, a list
of instructions that one should follow to have, at the end, the answer to the question the
algorithm addresses. There are different ways of solving the same problem and, obviously,
there are different algorithms that may solve the same problem. Normally, we are interested
in the most efficient one but, in this case, we should be able to compare algorithms in terms
of their efficiency. By efficiency, we mean the use of computational resources such as memory,
CPU time, bandwidth, etc. Here we are mainly interested in the maximum computational
time taken by the algorithm to solve the problem, i.e., how much time will it need to solve the
worst possible instance. In order to avoid differences due to computer hardware or software
that would be extremely hard to take into account, the computational model commonly used
in order to define the efficiency of an algorithm is based on a uniform cost per instruction,
assuming all pieces of information stored in memory have almost the same size.

The theory that allows us to compare algorithms is based on decision problems, which
are problems that may have only yes or no as an answer. Even if this seems very restrictive,
this is not the case since algorithmically solvable problems may be, in general, translated in
terms of decision problems. For instance, problems known as optimisation problems are
problems for which a solution is a “best" possible value, for example “find a shortest path
between two nodes in a digraph". The decision version of such a problem is “is there a path
between these two nodes of length at most k in a digraph".

Algorithmic analysis consists in specifying the execution time of an algorithm as a function
of its input. A natural problem that arises in this case is that problems differ enormously on
their inputs: these may be simply integers or strings, or yet more complex data structures.
For this reason, we assume the inputs to be encoded in a string over some finite alphabet.
We say that the encoded input has size n and, therefore, the complexity of an algorithm is
a function f(n). We say that a function f(n) is O(g(n)) if there exist constants c, a and n0

such that, for all n ≥ n0, f(n) ≤ cg(n) + a. The constant a is independent of the size of
the input and is usually related to the time spent on the preparation steps. If the number of
steps performed by an algorithm in the worst-case is O(g(n)), we say that this algorithm has
complexity O(g(n)), i.e., for any instance with size n, the running time of such an algorithm
is bounded from above by the value g(n). This behaviour do not need to be valid for all
input sizes, but there must be a point from which one function limits the other. A graphical
illustration of such a comparison between two functions is given in Figure 2.5.

2.4.1 Algorithms on graphs

As an illustration of algorithms and their complexity analysis, let us provide an example.
Consider the breadth-first search (BFS) algorithm, which is a classical algorithm in Graph
Theory for traversing a graph: starting from a given source vertex s, at each step i of the
algorithm, all nodes that have a distance i from u are visited. By the end of the execution,
all reachable nodes from s have been visited and a so-called BFS-tree is obtained, as shown
is Figure 2.6, that explores the induced subgraph G[{a, b, d, e, g}] corresponding to the larger

2.4 Algorithm complexity analysis 19

n

n0
ag

af

g(n)

f(n)

t

Figure 2.5: A function f(n) ∈ O(g(n)) as there exists c > 0 (e.g. c = 1) and n0 such that f(n) < cg(n) whenever

n > n0.

weakly connected component of the digraph presented in Figure 2.1(b).

Algorithm BFS(G, s)

Require: a digraph G = (V,A) and a source vertex s ∈ V (G).
A BFS tree T rooted in s.
s.color = GREY
T.root← s
for all v ∈ V (G)− {s} do
v.color = WHITE

put s in a queue Q
while Q 6= ∅ do
u← dequeue from Q
for all v : {u, v} ∈ A(G) do

if v.color = WHITE then
v.color = GREY
hang v in T with u as its parent
put v in Q

u.color = BLACK
Ensure: T

In order to analyse the BFS algorithm, we have to inspect how many computations it
may take for it to solve the problem for any possible input. Classically, for graph algorithms,
the size of the input is measured in terms of n, the number of vertices, or m, the number of
arcs of the graph. For the given pseudo-code of the BFS algorithm, it is easy to verify that
the algorithm performs some initialisation steps, including defining an initial white colour for
all the nodes, signaling that they were not yet traversed by the algorithm. This consumes n
operations. The core of the algorithm is performed by the main loop that analyses vertices
in the queue. Notice that each vertex is added to the queue only if it has a white colour.
Immediately after, its colour is changed to grey and is never changed again to white, which
guarantees that each vertex is added just once to the queue. For each vertex, however, all its
neighbourhood is inspected which means that in the end, all the arcs will be inspected once
and then we can say that this main loop takes m operations. As a conclusion, we can say
that the time complexity of BFS is O(n+m).

Analysing a BFS tree, like the one in Figure 2.6, we may see that the BFS algorithm can
be useful to solve the previously mentioned problem “given a graph G and two vertices u and

2.4 Algorithm complexity analysis 20

a b

d e

g

a) input

a

b

d e

g

b) BFS-Tree

Figure 2.6: a) Input digraph G and the source vertex g, coloured in grey. b) BFS-Tree rooted in g.

v, find a shortest path between u and v". Indeed, by calling BFS(G, u), we will obtain a BFS
tree rooted in u, and we may easily search for v in this tree to compute the minimum distance
between u and v. We say then that this problem is also O(n + m), as there is an algorithm
with this complexity to solve it. Every time the complexity of an algorithm is bounded by a
polynomial of its input size, the problem is said to be polynomial solvable and to belong
to a class P of problems.

2.4.2 Complexity analysis of algorithms

Finding the shortest path between two vertices of a graph may be done with an algorithm
that makes a total number of steps that is a polynomial on the size of the input. These
problems are said to be polynomial solvable. There are, however, problems for which no
polynomial algorithm is known. Among those, there is a very interesting class of problems,
known as the non-deterministic polynomial (or, NP) problems, for which a polynomial-time
certificate algorithm exists, i.e., if we provide an instance of the problem and a candidate
solution, this certificate algorithm may answer, in polynomial-time, if the solution provided
is a valid one or not. One of the most important theoretical open questions in Computer
Science is to answer if P and NP are equal or not. The importance comes from the fact that
there is a subset of the NP problems for which we may prove an equivalence that states that
a polynomial-time algorithm solving any of them may also be adapted into a polynomial-time
algorithm to solve any of the other problems in such a subset. This subset is known as the NP-
Complete problems and is composed of several classical problems in Computer Science such
as: the boolean satisfyability problem, the travelling salesman problem and the vertex cover
problem (Karp (1972)). In order to prove a problem Y to be part of the NP-Complete class,
one has to provide a polynomial-time certificate algorithm for Y as well as a polynomial-time
algorithm that translates any instance of a NP-Complete problem X to an input of Y , with
the sizes of the two instances polynomially comparable. To finish the proof, it is necessary
to show that an algorithm solving Y will answer yes to some instance y of the problem Y if
and only if an algorithm solving X also answers yes for the corresponding instance x of X.
Basically, what these operations guarantee is a class of equivalent problems, in the sense that,
once a polynomial algorithm is found for any of the problems in the class, automatically all
other problems are also polynomially-solvable.

As an example of a NP-Complete problem, we present another problem in Graph Theory
known as feedback vertex set (FVS), that may be defined as follows: given a digraph
G(V,A), find a minimum size set F ⊆ V such that G[V − F] is acyclic. A variant of this

2.4 Algorithm complexity analysis 21

problem is the feedback arc set (FAS) problem, in which we want to find a minimum size
set F ⊆ A such that G′(V,A− F) is acyclic. Informally, we want to find a minimum number
of vertices or arcs that we need to remove from the graph to make it acyclic.

2.4.3 Enumeration problems

There exists another class of problems for which we are not interested in a single solution,
as is the case for decision and optimisation problems, but in enumerating all of them. In
this work, we mainly focused on this class of problems, since in biology it is common to work
with incertitudes and errors on obtaining the input data, so that it is desirable to analyse
sub-optimal solutions and, if possible, to really inspect all possible alternatives of explanation
for some phenomena under study. In many cases, the decision to address the problem initially
through an enumeration approach comes from the fact that no clear function to optimise is
available.

The complexity analysis of enumeration algorithms, i.e., algorithms devoted to find all
possible solutions for a given problem, is different from the complexity analysis of decision
or optimisation problems. The reason for this is clear, since the output of such an algorithm
may be exponential in the input size, then just the time needed to write this output down
will not be polynomial. Indeed, for this class of problems, we may have to consider not
only the input size but also the output size. The classes of polynomial-time enumeration
problems are polynomial delay, incremental polynomial delay and polynomial total
time (Johnson et al. (1988)). More recently, a review on enumeration problems and their
complexity specially focused on problems for which the order of the output is important has
been published (Schmidt (2009)).

To explain the three classes of enumeration problems, we introduce three variables: n(I)
is the input size of the problem, n(O) is the output size of the problem and S(i) is a set
containing all computed solutions until step i of the algorithm execution. We say that an
enumeration algorithm has a polynomial delay complexity if at any step i of its execution,
the time taken for the algorithm to compute the next solution or to state that there is no
additional solution is bounded by a polynomial in n(I). We say that an enumeration algorithm
has an incremental polynomial delay complexity if at any step i of its execution, the time taken
for the algorithm to compute the next solution or to state that there is no additional solution
is bounded by a polynomial in n(I) + |S(i)|. We say that an enumeration algorithm has a
polynomial total time complexity if it can be solved with time bounded by a polynomial in
n(I) + n(O).

As an illustration of such a process, we move back to the FVS and FAS problems, for
which algorithms with polynomial delay complexity have been proposed (Schwikowski and
Speckenmeyer (2002)). One of the enumeration problems addressed in that work (Schwikowski
and Speckenmeyer (2002)) is the enumeration of all minimal feedback arc sets (MFAS) in a
digraph. The algorithm proposed has a polynomial-delay, which means that the time interval
needed to output each of the solutions is polynomial in the size of the input, in this case in
the number of vertices of the graph. Their approach consists in two main ideas. The first, and
most important one, is based on what they called a (v)-successor function, which is defined
as a function s(F, v)→ F ′′ that has as input a MFAS F and a vertex v, and through a local
modification in F , namely by replacing arcs from the in-neighbourhood of v by arcs in the
out-neighbourhood of v, produces a new FAS F ′. F ′ is surely a FAS because for any cycle
passing through v that was covered in F by an arc (u, v), this cycle is also covered in F ′ by
some arc (v, w). However, F ′ may be not minimal. In this case, it is easy to obtain a MFAS

2.4 Algorithm complexity analysis 22

F ′′ ⊆ F ′ by just checking for each arc a ∈ F ′ if F − {a} is a FAS, keeping only the ones with
a negative response to produce F ′′. Assuming this minimalization operation and an arbitrary
and fixed order of the nodes, we may state that a unique MFAS is obtained when computing
s(F, v), for any MFAS F and vertex v. Based on this idea, the authors proposed a procedure
that transforms any MFAS F into any target MFAS F∗ by iteratively producing intermediate
MFASs computed with the help of the defined successor function. The algorithm is illustrated
in Figure 2.7 and works basically in the following way: initially a topological order T of the
nodes of the graph is inferred based on the acyclic digraph obtained by removing the arcs in
F∗, and the algorithm starts with the MFAS F0 = F . The algorithm iterates until a MFAS
Fk = F∗ is obtained. To move from a MFAS Fi to a MFAS Fi+1, a node vi is selected that
holds two properties: it is an endpoint of an arc contained in Fi but not in F∗ and it is
minimal with respect to T . A new MFAS Fi+1 is computed as s(Fi, vi). Notice that vi will
always exist because Fi 6= F∗, or else the algorithm would have stopped. An additional and
important property of this procedure is that the number of iterations is bounded by |V |, since
at each step a vi+1 > vi is chosen.

a b

d e

a) F0

g

a b

d e

b) F*

g

c) T(G-F*) = {a,b,g,e,d}

a b

d e

d) F1

g

a b

d e

e) F2 = F*

g

Figure 2.7: Example on how applying a carefully chosen successor function, one may transform any minimal feedback

arc set F0 into any target minimal feedback arc set F∗ with a maximum number of steps given by |V | − 1. This is

a fundamental result for the enumeration algorithm proposed in Schwikowski and Speckenmeyer (2002). a) Starting

MFAS F0 =
{
{b, a}, {b, e}

}
. b) Target MFAS F∗ =

{
{b, a}, {d, a}

}
. c) Topological order inferred from the DAG

obtained by removing the arcs in F∗. d) Computation of F1: the only arc that is in F0 and not in F∗ is {b, e} and

therefore v1 = e. Thus the arc {b, e} is exchanged by the outgoing arcs from e, in this case only the arc {e, d}, covering
exactly the same cycles than before. The feedback arc set obtained is minimalized and F1 =

{
{b, a}, {e, d}

}
is obtained.

e) Computation of F2: the only arc that is in F1 and not in F∗ is {e, d} and therefore v2 = d. Thus the arc {e, d} is
exchanged by the outgoing arcs from d, in this case only the arc {d, a}, covering exactly the same cycles than before.

The feedback arc set obtained is minimalized and F2 =
{
{b, a}, {d, a}

}
is obtained. As F2 = F∗, the algorithm finishes.

The second idea, that is in fact the enumeration algorithm, is to build a graph φ where

2.4 Algorithm complexity analysis 23

V (φ) is the set of all MFASs of a graph G and φ has an arc between two vertices F, F ′ ∈ V (φ)
if s(F, v) = F ′ for some vertex v. A nice property of φ is that it is strongly connected given
the previous result on the transformation of any MFAS into another by applying the successor
function. The enumeration algorithm consists in dynamically building φ starting from any
initial MFAS and traversing (finding) its nodes by the use of the successor function for all
possible v′s. In order to guarantee that only nodes that were not yet expanded are considered,
a dictionary to keep track of already traversed nodes is used. This approach achieves the goal
of producing a new MFAS with a delay of O(|V ||E|(|V |+ |E|)) per minimal solution. In this
case, the proposed algorithm may be said to be efficient, since a polynomial-delay method is
the best one may expect for an enumeration problem.

Chapter 3

Metabolic Stories

Contents
3.1 Introduction . 24
3.2 Modelling metabolic stories . 27
3.3 Definitions . 29
3.4 Algorithms and complexity for finding and enumerating stories 30

3.4.1 Preprocessing the graph . 30
3.4.2 Finding single stories . 34
3.4.3 Enumerating stories by enumerating FASs 37
3.4.4 Enumerating stories by enumerating permutations 39

3.5 Alternative definition of a story . 40
3.6 Biological application . 42

3.6.1 Enumerating stories for interpreting metabolomics experiments . . . 44
3.6.2 Enumerating stories for recovering metabolic pathways 51

3.7 Open problems and perspectives 65

3.1 Introduction

The theoretical results presented in this chapter are strongly based on our paper Acuña
et al. (2012a) while the biological application will soon be submitted to a Computational
Biology journal. A classical goal of metabolic studies is to try to understand which are
the metabolic processes involved in the adaptation to an environmental change. Recently,
metabolomic techniques gained the spotlight by providing a way to monitor metabolism by
measuring the concentration of metabolites in different conditions or at different time points.
A typical result from such an experiment is a list of metabolites whose concentrations signif-
icantly changed when the cell was exposed to some stress. How to interpret this list became
then a new research topic, consisting in identifying the metabolic processes that link the
metabolites of interest, possibly explaining the observed variations in their concentrations.

The simplest idea one may think of is to simply highlight the set of metabolites identified
in the experiment, let us call them interesting compounds, and then to visually analyse
their interconnections. For genome scale networks, the metabolism of a whole organism
is considered, which may thus be very large (Thiele and Palsson (2010)), while a metabolic
perturbation caused by some stress condition may impact only a small portion of this complex

3.1 Introduction 25

network. However, even if in some cases it might be possible to keep track of some monitored
metabolites, the internal mechanisms that lead to the observed variation are not easy to
identify. As an example of how a visual analysis of such processes may be difficult, consider
Figure 3.1 that shows a representation of the metabolic network of Saccharomyces cerevisiae,
which contains more than a thousand reactions and metabolites, and some highlighted nodes
that correspond to the metabolites identified in a metabolomics experiment in which the yeast
cell was exposed to cadmium. Nodes in red are the ones corresponding to the metabolites
whose concentration decreased after exposition to cadmium while the green nodes correspond
to an increase of concentration.

Figure 3.1: Graph representation of the metabolic network of Yeast (Model IMM904) with 6 nodes highlighted in

red (methionine, serine (mitochondrial and cytoplasmatic), glycine (mitochondrial and cytoplasmatic) and homoserine)

and 4 in green (cystathionine, gamma-glutamyl-cysteine, reduced glutathione, cysteinylglycine) that correspond to

metabolites whose concentration decreased (red) or increased (green) during a metabolomics experiment.

Recently, automatic methods have been proposed to deal with this kind of data (Dittrich
et al. (2008); Antonov et al. (2009); Faust et al. (2010); Leader et al. (2011)). A natural
idea is to try to link all interesting compounds through chains of reactions. In the context of
Computer Science, a Steiner tree is a minimum cost tree connecting all nodes in a predefined
subset called terminals. It was therefore natural to explore the computation of Steiner trees

3.1 Introduction 26

to connect all interesting compounds (Scott et al. (2005); Dittrich et al. (2008)). However,
any pair of metabolites may be connected through several alternative paths within a network,
which makes the extraction of subgraphs more relevant than the extraction of trees. Another
point is that no criterion of minimality could be easily employed in order to correctly predict
which is the real underlying process observed in the experiment.

A simplification of the subgraph extraction process is to concentrate on a pair of interest-
ing compounds, searching for subgraphs corresponding to source-to-sink paths between two
interesting compounds (van Helden et al. (2002); Croes et al. (2006); Faust et al. (2010)). A
step further is the approach based on unifying the shortest paths, limited by some maximum
length k, between each pair of metabolites (Antonov et al. (2009)), which can lead to still large
networks (if k is too big) or to disconnected ones (if k is too small). In more detail, the method
of Antonov et al. (2009) for dealing with the list of interesting compounds consists in building
graphs denoted by Di containing the interesting compounds and the paths between them with
length up to i. Thus, D1 corresponds to a graph containing the interesting compounds and
the arcs directly connecting them (if they are present in the original network), while D2 is
D1 with the addition of any path between two interesting compounds passing through one
intermediate node, and so on. For each Di graph, a p-value Pi is computed as the probability
of inferring models of the same or larger sizes, using the same graph as input and a randomly
generated list of compounds. The output of the method is therefore a collection of graphs
connecting as many interesting compounds as possible through shortest paths. There is a
possible filter for outputting only the ones found to be statistically significant. However, the
solution may be disconnected, i.e., in the reported models it may happen that not all the
interesting compounds are present in the same connected component. Despite this, it may
also be that the final model remains large and hard to analyse.

The previously mentioned methods are based only on the topology of the network but one
could consider different approaches based on flux distributions over the set of reactions, such
as elementary modes (Schuster and Hilgetag (1994); Schuster et al. (1999)) that are minimal
subnetworks working at steady-state. There are, however, issues that need to be taken into ac-
count if one decides to use constraint-based techniques such as elementary modes enumeration
to explain metabolomics experimental data. Flux-based models need stoichiometric values as
well as a definition of the boundaries of the system under analysis, which are not always
simple to identify, particularly in the case of a metabolomics experiment in which the list
of interesting compounds does not directly define the boundaries of the system. Indeed, the
very same metabolite may play different roles in different metabolic processes, being source
in one, intermediate in a second and target in a third one; for instance pyruvate is the input
of gluconeogenesis while it is the output in glycolysis. The inability, and the unwillingness
to tell, a priori, the role of the interesting compounds in the metabolic stories to be found
is a key factor of our approach. In fact, we are interested in metabolic stories that not only
connect all the interesting compounds but also establish their individual role in each story.

Our approach for connecting all interesting compounds is also a subgraph extraction tech-
nique. We want to find maximal directed acyclic subgraphs whose set of sources and targets
are interesting compounds. We call such subgraphs metabolic stories. However, we do not
simply want to find one single story but to enumerate all of them. This allows us to avoid
any a priori optimisation criterion, which makes the method general enough to be applied in
different contexts. For the specific case of metabolomics data analysis, we propose a score
function that assigns value to the stories based on how the concentration of the interesting
compounds is observed to vary in the experiment. This procedure allows a very good filter of
the solutions, selecting stories that best fit the experimental data.

3.2 Modelling metabolic stories 27

This chapter is organised in the following way. Section 3.2 presents the motivation behind
our proposed modelling of metabolic stories while Section 3.3 formally defines the model and
the algorithmic problem. Section 3.4 presents some operations that allow a huge simplification
of the input graph without losing solutions as well as a polynomial time algorithm for finding
one story, and also a proof that the problem of finding stories with a specific set of sources
and targets is NP-complete. Subsections 3.4.3 and 3.4.4 propose two different approaches to
enumerate stories: the first one makes use of a minimal feedback-arc-set enumerator but can
only be applied to a specific class of graphs while the second is an extension of our algorithm
to find one story based on an initial permutation of the nodes, and can be used for any
graph. Section 3.5 provides complexity results for an alternative definition of stories. Finally,
Section 3.6 presents some biological applications of our method and Section 3.7 points out
perspectives and open problems.

3.2 Modelling metabolic stories

Informally, we call a set of metabolic reactions linking all the metabolites of interest a
metabolic story. For instance, one metabolomics study compared a yeast cell under two con-
ditions, with and without exposition to cadmium (Madalinski et al. (2008)). The metabolic
network reconstruction of Yeast has about 1300 metabolites and the experiment identified a
list of 24 metabolites whose concentrations changed. Figure 3.1 presents a graph representa-
tion of the Yeast metabolic network. The green and red nodes correspond to a subset of the
metabolites identified in the experiment, specifically the ones whose concentration changed
the most. Green nodes are the metabolites whose concentration increased while the red ones
are those whose concentration decreased. The concentration of the other metabolites did
not change significantly. Figure 3.2 shows a metabolic story that corresponds to the current
knowledge on the metabolic processes under study (Madalinski et al. (2008)). It was found to
be part of the set of solutions computed by our method to enumerate metabolic stories that
will be detailed in this chapter. The chain of reactions present in this story goes along with
the conclusions found in Madalinski et al. (2008), since the order in which the metabolites are
transformed - i.e., the flow of matter - is the same. There are several other possible scenarios
close to the one of this story that could also be considered and might provide new insights on
the underlying metabolic process. Finding and enumerating all these alternatives is what we
call the “metabolic stories problem".

First, let us introduce the main features we believe a metabolic story should have. A
metabolic story should capture the relationship between all the nodes of interest. Each in-
dividual story should explain how some metabolites are derived from others through a chain
of reactions. In other words, our definition of a metabolic story should allow us to define a
flow of matter from a set of source metabolites to a set of target metabolites. The candidates
to be the endpoints (sources or targets) of a story should belong to the set of interesting
compounds. Finally, we want each story to explain as many alternative pathways connecting
the interesting compounds as possible. In order to ensure these features, we introduce the
following constraints: only red and green nodes are allowed to be sources and targets in a
story, even if they can appear as intermediate nodes in some stories. In order to guarantee
that stories will have at least one source and one target, we introduce the acyclicity constraint.
These two combined constraints lead us to search for directed acyclic subgraphs (DAGs) with
sources and targets contained in the given subset of interesting compounds. We also want
such a DAG to be maximal, in the sense that alternative pathways between these nodes should
be included, provided that their addition does not create cycles. Finally, in a first step, we

3.2 Modelling metabolic stories 28

Figure 3.2: One possible metabolic story connecting all metabolites of interest. Each arc in this graph corresponds to

a reaction (black arcs) or to a chain of reactions (grey arcs) in the original metabolic network. The colour of the nodes

corresponds to decreased (red) or increased (green) concentration while their size corresponds to their concentration

change in the metabolomic experiment.

prefer to model red and green nodes as a single set, called black nodes. There are two main
reasons supporting this decision. The first one is to keep our definition more general, since
it may be that more than two conditions are being evaluated in a metabolomics experiment
and in such case, the roles of the interesting compounds are not clearly defined. The second
reason is that this more general definition allows us to explore all possible scenarios including
the ones in which red nodes are targets or green nodes are sources, and these may correspond
to interesting biological cases that would not be considered otherwise.

More formally, we introduce a constrained version of the problem of enumerating all
maximal directed acyclic subgraphs of a graph G (Schwikowski and Speckenmeyer (2002)). In
our version, only a given subset B of the nodes are allowed to be sources or targets of the DAGs
to be enumerated. The subset B corresponds to compounds that have been experimentally
identified. The aim is then to extract all the interaction dependencies among the compounds
in B which do not create cycles, but at the same time involve as many compounds and
reactions as possible. These may require intermediate steps that concern compounds not in
B, but the initial and final steps must involve only compounds in B. A solution, that is a
possible scenario of metabolic dependencies, is called a (metabolic) story. The problem is then
to “tell" all possible stories given as input a graph G and a subset B of the nodes of G.

The idea of connecting a set of nodes in a graph suggests that our problem could be
related to a Steiner problem, whose applications have been already widely explored in biology
(Betzler (2005)) for different problems. However, a major difference is that Steiner problems
look for minimal structures while we are searching for a maximal one. On the other hand,
enumerating maximal DAGs in a graph is equivalent to enumerating feedback arc sets (FASs),
which is also a widely studied problem. However, as we will later show, the constraint on the

3.3 Definitions 29

sets of sources and targets is enough to change the nature of the problem. More precisely,
as previously presented in more detail in Chapter 2, a feedback arc set is a minimal set of
arcs that break all the cycles, i.e. it is the complement of a DAG. In this sense, enumerating
stories is a generalisation of enumerating FASs, since the complement of a story is a minimal
set of arcs that breaks all the cycles and also avoids sources or targets that are not in B. We
call such minimal sets of arcs story arc sets (SASs). Hence every SAS is a FAS. We show
that indeed not every FAS is a SAS, and give evidence that telling stories is possibly harder
than enumerating feedback arc sets.

3.3 Definitions

Let G = (B ∪W, R) be a directed graph such that B ∩W = ∅. We write V = B ∪W.
Nodes in B are said to be black while those in W are said to be white. Let d+(u) and d−(u)
denote, respectively, the in-degree and the out-degree of a node u. Node u is called a source
if d+(u) = 0 and d−(u) > 0 and a target if d−(u) = 0 and d+(u) > 0.

A pitch of G is an acyclic subgraph G′ = (B ∪W′, R′) of G with W′ ⊆ W and R′ ⊆ R
and, for each node w ∈W′, d+(w) > 0 and d−(w) > 0. A trivial pitch is G′ = (B ∪ ∅, ∅): the
subgraph containing all the black nodes and no arc. We define a story as a maximal pitch.
We denote by Σ(G) the set of stories of G.

Problem enum-stories(G): Given G = (B ∪W, R) enumerate Σ(G).

For independent reading, we define a feedback arc set (FAS) of a directed graph G =
(V,E), which is a subset F of E such that GF− = (V,E \ F) is acyclic. A FAS is said to be
minimal if there exists no f ∈ F such that F \{f} is a FAS. We notice that, if V = B∪W, the
complement of a FAS is not always a story since GF− may contain white sources or targets.
Indeed, the FAS enumeration problem is a particular instance of our problem in which every
node is black, i.e., W = ∅. We define a story arc set (SAS) as a FAS S with the extra
property that no white node in GS− is a source or a target. A SAS is said to be minimal if
there exists no subset S′ of S such that S \ S′ is a SAS. This implies that if S is minimal,
then for every s ∈ S, the graph GS−,s+ = (B ∪W, (E \ S) ∪ {s}) either contains a cycle or
contains a white source or target. If S is a minimal SAS, then GS− is a story. A SAS is also
a FAS. However, the example in Figure 3.3 shows that, as expected, not every minimal FAS
is a minimal SAS and, more surprisingly, that not every minimal SAS is a minimal FAS.

b

a

x

c y

Figure 3.3: In this case, B = {a, b, c} and W = {x, y}. There are 4 possible minimal FASs: {(a, x)}, {(x, c)},
{(c, y)}, and {(y, a)}. Only one of these minimal FASs (that is, the first one) is also a minimal SAS. For example, the

second one is not a SAS since G{(x,c)}− contains a white target (that is, node x). On the other hand, another minimal

SAS is {(c, y), (y, a)}, which is not a minimal FAS (even though it is a FAS).

3.4 Algorithms and complexity for finding and enumerating stories 30

In order to enumerate all stories, one might consider using the polynomial-time delay
enumeration algorithm for minimal FAS proposed in Schwikowski and Speckenmeyer (2002):
however, as in the example in Figure 3.3 this FAS enumerator would not solve our problem
since some minimal SAS may not be detected.

We shall see in a next section that this is not the case when we restrict ourselves to some
particular class of graphs.

3.4 Algorithms and complexity for finding and enumerating
stories

In this section, we present five operations for preprocessing the graph in order to reduce
it while focusing only on the interactions between the black nodes. The graph obtained after
this preprocessing, that we call compressed network, captures in a very compact way the
relationships between these nodes. The first preprocessing consists in simply computing all-
pairs lightest paths between all black nodes and to compute a new graph with their union. This
first step is specially important when the method is applied in metabolic networks represented
as compound graphs as detailed further and could be avoided if one wants to really examine
all possible paths between black nodes.

The other four operations derive immediately from our formal definition of a metabolic
story, taking advantage of the topological properties that may be inferred allowing simplifica-
tions on the input graph without losing solutions. This preprocessing step is a first practical
result since it allows a reduction of the size of the input graph to less than 20% of its initial
size. These much smaller graphs, focused on the interactions between the black nodes only,
are already valuable objects that may be visually analysed by biologists.

Opposite to the metabolic story that is an acyclic object, the compressed network contains
usually plenty of cycles. Naturally, while visually inspecting such a structure we concentrate
ourselves on how some subset of the nodes follow a chain of reactions to be transformed into
another subset of products. A particular case of this problem that is worth investigating both
from an algorithmic and also from a biological point of view is: given a fixed set of sources
and targets, can we find a story with these sets? In terms of algorithm complexity, the answer
to this question is no and we provide a NP-completeness proof for the problem of finding a
single story with a fixed set of sources and targets.

Another way to explore the alternative transformation scenarios hidden in a compressed
network is exactly to enumerate the metabolic stories contained on such a graph. We show
then two different algorithms to perform this task. The first one is to use a minimal feedback
arc set enumeration algorithm (Schwikowski and Speckenmeyer (2002)) but this approach is
restricted to instances where no so-called bad nodes are present. The second one is our
algorithm that explores the relationship between total orders of the nodes and a story.

3.4.1 Preprocessing the graph

First, we show how a graph may be simplified without essentially changing the set of its
stories. The simplifications allow, from a theoretical point of view, shorter proofs of our results
and, from a biological point of view, the simplified graphs obtained by these preprocessing
steps turn out to be interesting since they correspond to a more compact representation of
graphs that is equivalent in terms of story sets.

For the applications of the stories enumeration method described in this work, the input
graph is a compound graph representation of a metabolic network. In this case, not all paths

3.4 Algorithms and complexity for finding and enumerating stories 31

between black nodes are biologically meaningful. Metabolic reactions are in many cases of the
form m1 + s1 → m2 + s2, where m1 and m2 are the main compounds and s1 and s2 are so-
called side compounds. For example, a typical pair of side compounds is ATP and ADP, that
appear in many reactions with the role of providing energy for the reaction to take place. The
problem, however, is that a path from m1 to ATP will be present in the compound graph even
if there was no direct exchange of atoms between these two compounds. Consider a second
reaction transforming m3 into m4 that also uses these side compounds. Figure 3.4 shows a
shortcut connecting m1 to m4 passing through ATP. Notice that we could also connect m3

to m2 simply passing through ADP. Considering that a large portion of the reactions are
reversible, it is clear that almost any pair of nodes may be connected with a few steps. One
way to avoid these unrealistic paths is to compute a graph corresponding to the union of all
lightest paths between all pairs of black nodes and to eliminate the remaining of the network,
given some definition of arc weight.

m1

ADP

ATP

m2

m3

m4

a) hypergraph

m1

ADP

ATP

m2

m3

m4

b) compound graph

Figure 3.4: An example of shortcuts in a metabolic network caused by the presence of hubs like ATP and ADP.

Notice how in the compound graph representation there is a path from m1 to m4 passing through ATP that does not

exist in the hypergraph representation.

For the computed paths to be more biologically meaningful than simply the shortest ones
in terms of reactions, we may adopt as arc weight the out-degree of the target vertex. In this
way, the weight of a path is the sum of the weights of the arcs in the path. Naturally, ATP
and ADP have high degrees in the compound graph since they are involved in a large number
of reactions as side compounds and, therefore, shortcuts passing through them tend to be
avoided with the selected weight policy. An even more sophisticated approach to compute
meaningful paths is to consider the exchange of carbon atoms between the metabolites and
to trace a route between the source and the target of interest in such a way that in every step
there is a carbon atom passing from one metabolite to the other (Boyer and Viari (2003);
Arita (2004); Blum and Kohlbacher (2008)). However, this approach needs more detailed data
and algorithms, such as a graph representation of the chemicals of the whole network, that
were not available at the time our experiments were performed. We intend, though, to use
this approach in the near future in order to check how it improves our results, specially for
the application on automatically recovering metabolic pathways that will be further described
later. In the remaining of this chapter, we consider that the input graph is a collection of
lightest paths between all-pairs of black nodes.

We now define the following four simplification operations:

• A white source and target removal consists in removing iteratively a white node
from the graph that is either a source or a target. Clearly such nodes cannot appear in
any story. Let de(G) be the graph resulting from such removals.

3.4 Algorithms and complexity for finding and enumerating stories 32

• A self-loop removal consists in removing all arcs of the form (u, u). Since stories are
acyclic, such arcs do not appear in any story. Let sl(G) be the graph resulting from
such removals.

• A forward bottleneck removal consists in removing a white node v whose out-degree
is equal to 1, and directly connecting any predecessor of v to the unique successor of v
(without creating multi-arcs). Let fb(G, v) be the resulting graph.

• A backward bottleneck removal consists in removing a white node whose in-degree
is equal to 1, and directly connecting the unique predecessor of v to the successors of v
(without creating multi-arcs). Let bb(G, v) be the resulting graph.

We prove that the last two operations leave the set of stories essentially unaltered. First
an observation:

Observation 1. Let v, p, and s be three nodes such that (p, v), (v, s), (p, s) ∈ E and v is a
(white) bottleneck. Then, for any story S, (p, v), (v, s) ∈ S if and only if (p, s) ∈ S.

Proof. The lemma follows from two observations. First, (p, v) and (v, s) belong to cycle C of
G if and only if the arc (p, s) belongs the cycle C ′ of G, which contains, next to (p, s), all the
arcs of C except (p, v) and (v, s). Second, (p, s) and the pair (p, v), (v, s) will create the same
white sources or targets, if any.

Given three nodes v, p, s ∈ V with (p, v), (v, s) ∈ E and (p, s) 6∈ E, let ab(G, v, p, s) denote
the graph obtained by adding to G the arc (p, s).

Lemma 1. Let v ∈ W be a forward bottleneck and let p, s ∈ V be such that (p, v), (v, s) ∈ E
and (p, s) 6∈ E. Then there exists a bijection from Σ(G) to Σ(ab(G, v, p, s)).

Proof. For any story S ∈ Σ(G), we define f(S) = S∪{(p, s)} if (p, v) ∈ S (and hence, (v, s) ∈
S since v is a forward bottleneck), otherwise f(S) = S. To prove that f(S) ∈ Σ(ab(G, v, p, s)),
we use Observation 1 to show that f(S) is acyclic if and only if S is acyclic. We now show
that f(S) is maximal. Indeed, if (p, s) ∈ f(S), then no set of arcs could be added to f(S)
since otherwise it could also be added to S. Otherwise, if (p, s) could be added to f(S), then,
from Observation 1 also (p, v) and (v, s) could be added to f(S) and, hence, these two arcs
could be added to S.

Let us now prove that, if S1 and S2 are two stories such that S1 6= S2, then f(S1) 6= f(S2).
If (p, v) 6∈ S1 ∪ S2, then f(S1) = S1 6= S2 = f(S2). Otherwise, if (p, v) ∈ S1 ∩ S2, then
f(S1) = S1 ∪ {(p, s)} 6= S2 ∪ {(p, s)} = f(S2). Finally, if (p, v) ∈ S1 \ S2 (the other case can
be dealt with similarly), then (p, s) ∈ f(S1) while (p, s) 6∈ f(S2) and, hence, f(S1) 6= f(S2).

It remains to show that, for any S′ ∈ Σ(ab(G, v, p, s)), there exists a S ∈ Σ(G) such
that f(S) = S′. Define S = S′ \ {(p, s)}. Since S′ is acyclic, so is S. If (p, s) 6∈ S′, then
S = S′ and S ∈ Σ(G), since the only difference between G and ab(G, v, p, s) is the arc (p, s).
Otherwise, from Observation 1, it follows that (p, v), (v, s) ∈ S′ and, hence, (p, v), (v, s) ∈ S:
the maximality of S then follows from the maximality of S′, since any set of arcs that could
be added to S could also be added to S′.

By this lemma we may assume that, for any forward bottleneck v ∈ W whose unique
successor is s, and for any predecessor p of v, the graph contains the arc (p, s). To complete the
forward bottleneck removal operation, we then need to delete the vertex v without changing
the stories set of the graph. Consider now the following operation: given a graph G with a
forward bottleneck v, dp(G, v) denote the graph obtained by deleting from G the vertex v
and all incident arcs.

3.4 Algorithms and complexity for finding and enumerating stories 33

Lemma 2. Let v ∈ W be a forward bottleneck and s its unique successor. Suppose that for
any predecessor p of v, the graph contains the arc (p, s). Then there is a bijection from Σ(G)
to Σ(dp(G, v)).

Proof. For any S ∈ Σ(G), we define f(S) = S\{v}, that is the subgraph obtained by removing
v and all incident arcs from S if v ∈ S. Since S is acyclic, so is f(S). Moreover, from
Observation 1, it follows that if (p, v), (v, s) ∈ S, then (p, s) ∈ S and, hence, (p, s) ∈ f(S).
The maximality of f(S) then follows from the maximality of S, since any set of arcs that
could be added to f(S) could also be added to S.

Let us now prove that, if S1 and S2 are two stories such that S1 6= S2, then f(S1) 6= f(S2).
If (p, s) 6∈ S1 ∪ S2, then (p, v), (v, s) 6∈ S1 ∪ S2 and f(S1) = S1 6= S2 = f(S2). Otherwise,
if (p, s) ∈ S1 ∩ S2, then (p, v), (v, s) ∈ S1 ∩ S2 and f(S1) = S1 \ {(p, v), (v, s)} 6= S2 \
{(p, v), (v, s)} = f(S2). Finally, if (p, s) ∈ S1 \S2 (the other case can be dealt with similarly),
then (p, s) ∈ f(S1) while (p, s) 6∈ f(S2) and, hence, f(S1) 6= f(S2).

Finally, let S′ be a story of dp(G, v). Then S obtained by adding to S′ the path (p, v), (v, s)
for every predecessor p of v such that (p, s) ∈ S′ is clearly a story and f(S) = S′.

Using the two previous lemmas, we obtain a justification for the third simplification op-
eration.

Theorem 1. For any forward bottleneck v ∈W, Σ(G) = Σ(fb(G, v)).

Analogously, we can justify the fourth operation.

Theorem 2. For any backward bottleneck v ∈W, Σ(G) = Σ(bb(G, v)).

For any graph G, let fb(G) (respectively bb(G)) denote the graph obtained by applying
as many times as possible the forward (respectively backward) bottleneck removal operation.
Notice that, even if G does not contain self-loops, it might happen that fb(G) (respectively
bb(G)) contains self-loops created by one bottleneck removal. Remember also that sl(G)
denotes the graph obtained by the removal of all self-loops fromG and de(G) denotes the graph
obtained by the iterative removal of all white sources and targets from G. Our simplification
procedure can now be described as follows.

(1) Let G0 = sl(de(G)) and let i = 0.

(2) Let Gi+1 = sl(bb(sl(fb(Gi)))).

(3) If Gi+1 = Gi then return Gi, otherwise let i = i+ 1 and go to Step 2.

As a consequence of the previous results, we have that if H is the graph returned by this
procedure, then there is a bijection between Σ(G) and Σ(H), and we may enumerate Σ(H)
instead. Hence from now on, we assume that any v ∈W has d+(v) > 1 and d−(v) > 1. Notice
that this avoids graphs like the one shown in Figure 3.3. Indeed, in this case, the two arcs
(c, y) and (y, a) would disappear and the arc (c, a) would be inserted. Furthermore, also x
will disappear and we get arcs (b, c) and (a, c). Observe also that this simplification procedure
does not guarantee that a minimal FAS enumerator would produce all possible minimal SAS.

We applied the preprocessing steps described in this section on a collection of 107 metabolic
networks obtained from MetExplore (Cottret et al. (2010a)). We randomly chose sets of black
nodes with sizes varying from 5% to 15% of the total number of nodes of the graph. For each
pair of metabolic network and set of randomly chosen black nodes we then computed sub-
graphs corresponding to the lightest paths between all pairs of black nodes. These subgraphs

3.4 Algorithms and complexity for finding and enumerating stories 34

vary on number of vertices from 42% to 98% with respect to the number of vertices in the
original input graph and from 46% to 68% with respect to the number of arcs. In average,
extracting all lightest-paths between the black nodes gives a graph with 68% of the nodes and
69% of the arcs of the original input graph. Over this new collection of graphs we applied
then the four simplification operations: white source and target removal, self-loops elimina-
tion and forward and backward bottlenecks removals. The compression ratio on the number
of nodes goes from 65% to 98% with an average reduction of 83%, while the compression ratio
on the number of arcs goes from 56% to 99% with an average reduction of 77%, with respect
to the original input graph. Overall it is 60% of reduction due to the lightest paths and an
additional 20% because of the graph simplifications. This more compact representation of the
interactions between black nodes greatly facilitates the visualisation and analysis of the input
data.

3.4.2 Finding single stories

We move now to the problem of finding some story. We show that this can be done in
polynomial time. Our algorithm basically starts with a pitch and grows it into a story by
adding paths between black nodes while avoiding cycles. We can start with a trivial pitch
such as the subgraph containing all the black nodes and no arcs. We present the algorithm
complete_pitch for completing a pitch into a story. Figure 3.5 presents an example for
which the algorithm is applied to a graph containing five black nodes and one white node,
completing a starting pitch that contains only the black nodes and no arcs. Assuming lexical
ordering of the nodes, the algorithm traverses each of them trying to find paths from this initial
node to other nodes belonging to the pitch. Once such paths are found they are examined
to verify if their addition creates cycles and, in the negative case, the paths are added to the
pitch. A partial order of the nodes is inferred from the pitch and it is used in order to decide
whether the addition of a new path a ; b will generate a cycle. This verification is simply
done by verifying on the partial order if a and b are incomparable or if a comes before b and
both cases are safe. After any modification of the pitch the partial order of the nodes have
to be updated. The algorithm finishes when all nodes are traversed and no new path may be
added, i.e., the pitch is now a story.

Algorithm complete_pitch(G,P)

Require: a graph G = (B ∪W, R)) with B ∩W = ∅ and an initial pitch P ;
Ensure: A story completing P

i← 1
π ← any topological order of P
while i ≤ |V (P)|) do
u← i-th element according to π with u ∈ V (P)
Apply BFS(u,G \ E(P)) until reach a node v ∈ V (P)
if π(u) < π(v) ∨ (u and v are incomparable) then

include the path u; v in P and update π
i← 1

else if no such node v exists then
i← i+ 1

return P

Theorem 3. A story can be determined in polynomial time.

Proof. The algorithm complete_pitch determines a story by completing a starting pitch
P . It chooses a topological order π of the nodes consistent with the pitch. Starting in u, which
can be any of the first nodes in this order that has not been scanned yet, a breadth-first search

3.4 Algorithms and complexity for finding and enumerating stories 35

a) input graph

a

e

c d

b

x

b) trivial pitch

a

e

c d

b

x

c) Complete pitch #1

a

e

c d

b

x

d) Complete pitch #2

a

e

c d

b

x

e) Complete pitch #3

a

e

c d

b

x

f) Complete pitch #4

a

e

c d

b

x

g) Complete pitch #5

a

e

c d

b

x

g) Complete pitch #6

a

e

c d

b

x

h) Story

a

e

c d

b

x

Figure 3.5: a) The input graph with set of black nodes B = {a, b, c, d, e} and white nodes W = {x}. b) The starting

pitch, which is simply a graph V = B and no arcs. c) The path a ; b is added to the pitch. d) Three paths starting

from b are added to the pitch: b ; c, b ; x ; c and b ; x ; d. Notice that as x did not belong to the pitch at

this point, the algorithm goes further and stops only when nodes in the pitch are found. e) The path c ; d is added

to the pitch. f) The path d ; e is added to the pitch. g) The path e ; x is evaluated but may not be added since e

comes after x in the current partial order inferred from the pitch, and therefore such an addition creates at least one

cycle, for instance e → x → d → e. h) The path x ; a is evaluated but may not be added since x comes after a in

the current partial order inferred from the pitch, and therefore such an addition creates at least one cycle, for instance

x→ a→ b→ x. i) There is no more nodes to traverse, the final object is a maximal pitch, i.e., a story.

(BFS) is performed using only arcs not in E(P). Any branch of the BFS tree is pruned as
soon as it hits a vertex v ∈ V (P). If v has π(u) < π(v) or u and v are incomparable, then
the path u ; v is added to P and the topological order is updated. This addition creates
no cycle since there was no path v ; u in P due to the fact that π(u) < π(v) or u and v
were incomparable, which can be checked in polynomial time. Moreover, since P contained
no white source nor target before the addition of the path, then it does not contain any after
adding the path because u and v, which are the only candidates to become source or target,
were already present in P . Hence, the addition of u; v to P creates a new pitch.

This procedure is repeated until no new path starting from u can be found. At this point,
we continue with the next node in the updated order π. Every time a new path is found,
π is updated and the procedure is started from the minimum node according to the new
order. Since at each updating of the topological order, we add at least one arc, the algorithm
terminates in polynomial time. The final pitch produced by this procedure is maximal and,
therefore, a story.

3.4 Algorithms and complexity for finding and enumerating stories 36

We proceed by showing that the problem becomes NP-complete if we wish to identify a
specific single story, i.e., one having a particular set of sources and/or targets.

p2 n2 p5 n5 p9 n9

ps2

pt2 ns2
nt2

pt5
ps5

ns5
nt5

pt9
ps9

ns9
nt9

s7 t7

Figure 3.6: The subgraph corresponding to the clause C7 = ¬x2 ∨ x5 ∨ x9

Theorem 4. Deciding whether there exists a story with a given set of sources and targets is
NP-complete.

Proof. In order to prove this theorem, we show how the 3-SAT problem (Garey and Johnson
(1990)) is reducible to the problem of deciding whether, given a directed graph G = (V,E)
and two subsets S and T of V , G contains a maximal DAG with its set of sources equal to S,
and its set of targets equal to T . If this is true for maximal DAGs, it is also true for stories
since any story is also a maximal DAG.

Consider a 3-CNF Boolean formula ϕ with clauses Ci, i = 1, . . . ,m, over a set Boolean
variables xj , j = 1, . . . , n. We define a directed graph G as follows (see also Figure 3.6).

• For each variable xj , we create a set of six nodes, pj , psj , p
t
j , nj , n

s
j , n

t
j , and for each clause

Ci, two nodes si and ti. We define the set S = {psj , nsj | j = 1, . . . , n}∪{si | i = 1, . . . ,m}
and the set T = {ptj , ntj | j = 1, . . . , n} ∪ {ti | i = 1, . . . ,m}.

• The set of arcs of G includes the six arcs

(psj , pj), (pj , p
t
j), (pj , nj), (nj , pj), (n

s
j , nj), (nj , n

t
j)

related to each variable xj and the arc (ti, si) for each clause Ci.

• For each clause Ci = l1i ∨ l2i ∨ l3i , we introduce for each literal two arcs: if lhi = xj then
we create the arcs (si, pj) and (nj , ti), and if lhi = ¬xj the arcs (si, nj) and (pj , ti),
h = 1, 2, 3.

We prove that ϕ is satisfiable if and only if G includes a maximal DAG whose sets of
sources and targets are, respectively, S and T .

Suppose ϕ is satisfiable and let τ be a satisfying truth-assignment. In the FAS F we include
the arc (nj , pj) if τ(xj) = true and the arc (pj , nj) if τ(xj) = false. Moreover, for each
clause Ci, we include in F the arc (ti, si) (see Figure 3.7). Clearly, the resulting subgraph
GF− is a DAG whose set of sources (respectively, targets) is equal to S (respectively, T).
Moreover, GF− is maximal since removing any arc from F would create either a two-node
variable cycle or, for some clause Ci, at least one six-node cycle corresponding to a true literal
in Ci.

3.4 Algorithms and complexity for finding and enumerating stories 37

p2 n2 p5 n5 p9 n9

ps2

pt2 ns2
nt2

pt5
ps5

ns5
nt5

pt9
ps9

ns9
nt9

s7 t7

Figure 3.7: The directed acyclic subgraph corresponding to the truth assignment τ(x2) = true, τ(x5) = false, and

τ(x9) = true that satisfies the clause C7 = ¬x2 ∨ x5 ∨ x9: the dashed arcs are in the FAS

Now suppose that G′ is a maximal DAG with sources S and targets T . Clearly, for each
clause Ci, the arc (ti, si) is not in G′. Maximality of G′ implies that for each variable xj ,
exactly one of (pj , nj) and (nj , pj) is in G′. All other arcs are included in G′. Let τ be a
truth-assignment defined as follows: for each variable xj , τ(xj) = true if and only if (pj , nj)
is in G′. We prove that this assignment satisfies ϕ. Suppose, to the contrary, that there exists
an unsatisfied clause Ci. Wlog we may assume that Ci = x1 ∨ x2 ∨ x3 (see Figure 3.8). Then
the three cycles containing the arc (ti, si) are broken both by this arc and by the three arcs
(nj , pj), j = 1, 2, 3 not in G′. Hence, G′ is not maximal since the arc (ti, si) can be added to
G′ without creating any new cycle. This contradicts the hypothesis on G′.

p1 n1 p2 n2 p3 n3

ps1

pt1 ns1
nt1

pt2
ps2

ns2
nt2

pt3
ps3

ns3
nt9

si ti

Figure 3.8: A directed acyclic subgraph (the dashed arcs are in the FAS) corresponding to the truth assignment

τ(x2) = true, τ(x5) = false, and τ(x9) = false that does not satisfy the clause C7 = ¬x2 ∨ x5 ∨ x9: the DAG is not

maximal since the arc (t7, s7) can be taken out from the FAS.

It is easy to modify the previous reduction in order to prove that the same result holds
even if we specify only the set of sources or only the set of targets.

3.4.3 Enumerating stories by enumerating FASs

We already noticed that there exist graphs for which the set S(G) of minimal SASs and
the set F(G) of minimal FASs are not comparable in terms of the inclusion relation. In this
section, we show that, for some particular cases, S(G) is contained in F(G).

3.4 Algorithms and complexity for finding and enumerating stories 38

A white node v ∈W is called bad if, for any predecessor p of v and for any successor s of
v, there exists a cycle containing the arcs (p, v) and (v, s) (see Figure 3.9).

a
b

c d

x

Figure 3.9: Example of a bad node. The minimal SAS {(a, x), (b, x), (x, c), (x, d)} is not a minimal FAS.

Proposition 1. If G does not include any bad node, then any minimal SAS is a minimal
FAS.

Proof. By absurdum, assume that S is a minimal SAS which is not a minimal FAS. Then,
there exists an arc e = (u, v) ∈ S such that S∪{e} is a FAS but not a SAS, that is, in GS−,e+
either u is a white source or v is a white target. We can restrict ourselves to consider the
latter case, since the former one can be dealt with in a similar way. According to the results
of the previous section, we can assume that the in-degree and the out-degree of v are both
greater than 1. Since in GS−,e+ v is a white target, we have that all arcs incident to v are in
S. Moreover, since v is not bad, there exists a predecessor p and a successor s such that (p, v)
and (v, s) are not included in the same cycle. Let S0 = S−{(p, v), (v, s)}. In GS−0 the node v
is neither a source nor a target. Moreover, GS−0 is acyclic. Indeed, any cycle including (p, v)

(respectively, (v, s)) is hit by an arc outgoing from (respectively, incoming to) v different from
(v, s) (respectively, (p, v)). However, it might be that either p is now a source or s is a now
a target. Let us analyse the first case (since the the other case can be analysed in a similar
way). According to the results of the previous section, we can assume that there exists a path
pk, pk−1, . . . , p1, p with k ≥ 1 such that pk is black and pi is white, for any i with 1 ≤ i < k.
Let j be the minimum i with 1 ≤ i < k such that pi is not isolated in GS−0 : if no such j exists,
then we define j = k. We show that S′ = S0−{(pj , pj−1), . . . , (p1, p)} is a SAS, thus proving
that S is not minimal. Clearly, no white node in GS′− is a source or a target. Moreover, if
(ph, ph−1) belongs to a cycle, then either another arc of this cycle incident to ph−1 belongs to
S′ or (ph−1, ph−2) belongs to the same cycle. Inductively, we have that either this cycle is hit
by an arc in S′ or it includes (p, v): in this latter case, the cycle is hit by another arc in S′

outgoing from v.

Proposition 2. Any v ∈W, which is not bad, belongs to every story.

Proof. Consider a pitch P not containing v. As v is not bad, it has a predecessor p and a suc-
cessor s such that there exists no cycle containing the arcs (p, v) and (v, s). By simplification
rule 2, there exists a path pk, pk−1, . . . , p1 = p with k ≥ 1 such that pk ∈ B and pi ∈ W, for
any i with i < k. Let j be the minimum i < k such that pi ∈ P : if no such j exists, then we
define j = k. Similarly a path s = s1, . . . , s`−1, s` ending in a black node exists, and let sj′
be the first node on that path belonging to P , or sj′ = s` if no such node exists.

3.4 Algorithms and complexity for finding and enumerating stories 39

Then P ′ = P ∪{(pj , pj−1), . . . , (p, v), (v, s), . . . , (sj′−1, sj′)} has no white source nor target
as pj and sj′ are not white sources or targets in P . Moreover, P ′ is acyclic as P is acyclic and
any cycle containing the additional path would contradict the fact that v is not a bad node.
Thus any pitch not containing v is not maximal, hence not a story.

Corollary 1. If G does not include any bad node, then any minimal SAS is a minimal FAS.

Proof. By absurdum, assume that A is a minimal SAS which is not a minimal FAS. Then,
there exists an arc e = (u, v) ∈ A such that A \ {e} is a FAS but not a SAS. This implies
that in G(A\e)− , either u is a white target or v is a white source. We restrict ourselves to
consider the latter case, since the former one can be dealt with similarly. Since v is a white
source in G(A\e)− , and it is not in GA− , all arcs incident to v are in A. In other words, the
story corresponding to A does not contain v, which contradicts Proposition 2.

The previous proposition and its corollary state that, in a graph with no bad nodes, each
story corresponds to a minimal FAS. This suggests that for such graphs, we could enumerate
all stories by enumerating all the minimal FASs and by checking for each of them whether
the resulting graph is a story (which can be done by checking that no white node is source or
target). Unfortunately, there are graphs with no bad nodes in which the number of minimal
FASs is exponentially larger than the number of minimal SASs. An example is given in
Figure 3.10.

· · ·

Figure 3.10: Graph with no bad node and in which the number of minimal FASs is 2n and the number of minimal

SASs is 2.

3.4.4 Enumerating stories by enumerating permutations

We previously presented a method for enumerating all stories in the case of graphs with
no bad nodes. Unfortunately, many graphs arising from the biological application briefly
described in the introduction of this chapter contain a huge number of bad nodes. The rule,
indeed, is that bad nodes are very common instead of being rare. For instance, any white
node which is present in a strongly connected component of the input graph containing at
least five nodes is a bad node. The simplification rules previously described not only reduce
the size of the input graph but also make it much more dense than the input graph and in
the transformed graphs all remaining white nodes are usually bad nodes.

We thus need a method for enumerating stories which is able to deal with these cases.
Remember how we can find a single story as explained in the proof of Theorem 3. Consider

the following two simple operations, clean and consistent_arcs. For any graph G(B ∪
W, E), and for any total order π of the nodes:

G′(B ∪ W, E′) ≡ consistent_arcs(G, π): for each arc (u, v) ∈ E, (u, v) ∈ E′ if
π(u) < π(v);

G′(B ∪W′, E′) ≡ clean(G): recursively remove white nodes that are sources, targets
or isolated in G.

3.5 Alternative definition of a story 40

We can thus define the composed operation

pitch(G, π) = clean(consistent_arcs(G, π)).

pitch produces a pitch since the resulting graph G′ contains only arcs that respect the order
π and therefore is acyclic. Moreover, due to the cleaning step, G′ is guaranteed to have neither
white sources nor white targets.

Theorem 5. For any story S, there exists a permutation π such that pitch(G, π) = S.

Proof. It is enough to show that, for any story S of G = (B ∪W, E) and for any topological
order π of V (S), pitch(G, π) = S. Because of the maximality of a story, it suffices to show
that S ⊆ pitch(G, π). Given an arc (u, v) of S, we have π(u) < π(v). Therefore (u, v) is
in consistent_arcs(G, π). Since (u, v) is an arc of S, there exists a path p in S between
two black nodes containing u and v. Then p is also in consistent_arcs(G, π), and thus
u and v are both black or, if one or both of them is white, then they are neither source nor
target in consistent_arcs(G, π). Since clean(consistent_arcs(G, π)) removes neither
black nor white nodes that are neither source nor target, we conclude that (u, v) is also in
clean(consistent_arcs(G, π)) = pitch(G, π).

This theorem together with Theorem 3 suggest an approach to enumerate stories which
simply consists in generating all permutations π of the nodes of G and computing P =
pitch(G, π): if P is not a story, then we use complete_pitch to grow it into a story, like
illustrated in Figure 3.11.

Orders FAS

minimal
SAS

PITCH

C
O
M
P
L
E
T
E

P
I
T
C
H

Figure 3.11: Illustration of the enumeration algorithm based on sampling the space of orders of the nodes and

computing a pitch through the procedures clean and consistent_arcs. This procedure is guaranteed to produce all

storiesaccordingly with Theorem 5. For practical purposes only, in the cases where the pitch do not correspond to a

story we maximalize it into one for the algorithm to produce a story for all orders explored, even if the story produced

may be not unique.

3.5 Alternative definition of a story

It is clear that, according to our definition of a story, no white node can be either source
or target in the original graph, since otherwise such a white node would not belong to any
story. This implies that the original graph can be seen as the union of a finite set P of directed

3.5 Alternative definition of a story 41

paths between black nodes: in particular, if P includes all paths between every pair of black
nodes, then it is easy to verify that a story is a maximal subset S of P such that the graph
defined as the union of the paths in S is acyclic and there exists no path p in P − S that
can be added to S while preserving acyclicity. Let us call this alternative definition of story
a path-story. A minimal number of paths to be removed from P such that the union of the
remaining paths is a path-story is called a feedback path set.

A natural question is whether the problem changes when a set P is given as input, and
the graph GP is defined by the union of the paths of P, where the endpoints of the paths in P
form the set of black nodes of GP . Clearly, since P may not contain all paths between every
pair of black nodes in GP , the set of path-stories of GP is different from the set of stories of
GP (see for an example Figure 3.12). We will prove that enumerating path-stories is at least
as hard as enumerating hitting sets, which is a well-known enumeration problem (for a survey,
we refer to Eiter et al. (2008)) with its computational complexity still open, after more than
28 years.

Moreover, another important observation is that even if the original problem is a special
case of the path-story problem, we cannot simply state that this new definition is a gener-
alisation of the previous one. The case in which the two problems are equivalent is when S
contains all possible paths between the black nodes. However, transforming the input of the
original problem into the equivalent case of the second demands the computation of all paths
between the black nodes. The sizes of the two inputs are therefore not polynomially bounded.
For this reason the path-stories problem is not a generalisation of the stories problem.

a b

dc

Figure 3.12: Graph obtained by two paths (a, b, d, c) and (b, a, c, d). According to the alternative definition, this

graph clearly contains only two stories, which correspond to the two paths. According to the original definition, instead,

the graph contains the following four minimal SAS: {(a, b), (c, d)}, {(a, b), (d, c)}, {(b, a), (c, d)}, and {(b, a), (d, c)}. Note
that these four minimal SAS originated four stories which are all different from the two stories obtained according to

the second definition.

Theorem 6. Enumerating path-stories is at least as hard as enumerating minimal hitting
sets.

Proof. Hitting Set. Let C be a collection of subsets of a domain set X. H ⊂ X is a hitting
set of C if for any C ∈ C, H ∩ C 6= ∅.

We reduce C to a collection P of paths, such that there is a bijective correspondence
between (minimal) hitting sets of C and (minimal) feedback path sets of P and, hence, between
hitting sets of C and path-stories of P.

We order all sets of C and all elements of X. Within any set of C the elements are ordered.
For each element in each set, we create a vertex of the graph GP . For each set Ci ∈ C

3.6 Biological application 42

A1

B1

C1

D1 C2

D2

E1

A2

B2

E2

A3 D3

F1G1

Figure 3.13: An example of reduction: C1 = {A,B,C,D}, C2 = {C,D,E}, C3 = {A,B,E}, and C4 = {A,D, F,G}.

with Ci = {xi1 , . . . , xiki}, create a cycle by introducing the arcs (xi` , xi`+1
), ` = 1, . . . , ki and

(xiki , xi1). We call this cycle also Ci. Moreover, suppose that xi` = xj is the h-th occurrence
of xj and xrt the next occurrence, then we introduce an arc (xi`+1

, xrt), i.e., there is a path
of two arcs between any two consecutive occurrences of the same element. Let us call the
latter set of arcs the element-arcs and the set of arcs on the cycles the set-arcs. Notice that
the element arcs are not in any cycle.

Now for each element xj , we define a path Pj ∈ P, by starting in the vertex of the first
occurrence of xj , and every time selecting the two arcs connecting it to the next occurrence
vertex, until we arrive at the last occurrence vertex.

The graph induced by P contains all the edges just introduced. In particular it contains all
the cycles corresponding to the sets in C. An example of the reduction is shown in Figure 3.13.

It is easy to see that a path Pj cuts cycle Ci if and only if xj hits the set Ci. Hence there
is a one-to-one correspondence between a minimal path set of P and a minimal hitting set of
C. This proves the theorem.

For the practical part of the work, we have mainly focused our attention on the first
definition of stories, since we cannot define a priori which paths should be examined in a real
application, moving back to the case in which all possible paths between black nodes must be
considered. In such a case, there is an equivalence between stories and path-stories.

3.6 Biological application

In this section, we present some illustrations on how to explore metabolic stories enu-
meration for studying metabolic networks. The software developed to compute metabolic
stories, called Gobbolino, has as input a metabolic network and a list of black nodes and
is presented in more detail in the Appendix. Currently, the accepted format of the metabolic
network is the SBML format which describes in an XML document all the metabolites and
chemical reactions of a given organism (Hucka et al. (2004)). This input data is then trans-

3.6 Biological application 43

formed into the internally defined format of a metabolic network with black nodes. This
internal format is called the NEL format, for node-edge-list, and is a simple text file listing in
the following order: the black nodes, the complete list of nodes and the list of arcs. There are
two consecutive simplifications that are applied to the NEL input file. First we compute the
lightest path network which will contain a union of all lightest paths between all pairs of black
nodes, according to the rationale explained in Section 3.4. After that, a compressed network
is computed by applying the four simplification operations described previously: forward and
backward bottleneck removal, self-loop removal and white source/target removal. Finally,
the metabolic stories are enumerated on this simplified network. To analyse the results, it
may be useful to group the best classified stories, if a meaningful classification function may
be applied, into a single object, that we call an anthology, highlighting the frequency with
which each of the arcs are present inside the selection. An anthology may be useful to show
which sets of arcs form the backbone of the grouped stories and which arcs correspond to less
used alternatives. This schema is shown in Figure 6.5.

Figure 3.14: Successive steps needed to compute stories and the anthology using the software Gobbolino.

One first application is the original motivation for developing the method which is the
study of metabolomics experiments. We focus here on a real study performed with the aim
of better understanding which metabolic pathway yeast employs for the detoxification of
cadmium, which is a heavy metal. To this purpose, we first produce a compressed network
that provides a very compact representation of the interactions between the nodes identified
in the experiment. In a second step, we compute metabolic stories, classify them according
to how they fit to the experimental data and group the best ones in an anthology.

A second application is to use the metabolic stories enumeration to automatically iden-
tify metabolic pathways (Section 1.1 provides a brief introduction to metabolic network and

3.6 Biological application 44

metabolic pathways). To this purpose, we selected as black nodes the sources and targets
of 69 annotated yeast metabolic pathways downloaded from MetaCyc (Caspi et al. (2010)).
Using a different classification function that prefers stories that respect a given order of the
metabolites, i.e., that preserves the orientation of the metabolic pathway we are supposed to
recover, we compare the obtained best stories with the original metabolic pathway.

3.6.1 Enumerating stories for interpreting metabolomics experiments

This is the original motivation for the development of the method. A widely studied
metabolic pathway in Saccharomyces cerevisiae is the one responsible for glutathione biosyn-
thesis, since it is related to the detoxification process of the cell when exposed to high concen-
trations of the heavy metal cadmium (Fauchon et al. (2002); Lafaye et al. (2005); Madalinski
et al. (2008)). Previous studies demonstrated that the presence of such a metal in the environ-
ment induces a huge impact in terms of gene expression and metabolism, showing that there
is a strong response both at the metabolomic and proteomic levels. Basically, glutathione
needs to be produced because it is a thiol-metabolite linked to the detoxification of cadmium
through a process called chelation (Li et al. (1997)). Plants are the natural biotope of S.
cerevisiae and it is known that they are able to tolerate cadmium and other metals up to 1%
of their dry weight, which is believed to provide defense against herbivores and pathogenic
microorganisms (Fauchon et al. (2002)). This exposition to cadmium in natural conditions
provides a reason for yeast cells to keep a detoxification pathway. However, biosynthesis of
glutathione requires high quantities of sulfur. In order to save sulfur, there is a replacement
of sulfur-dependent enzymes related to other metabolic processes by isozymes that are sulfur
free, i.e., other enzymes that have the same function but a different chemical composition.
More specifically, protein PDC1P is replaced by its isozyme PDC6P in order to save sulfured
amino acids and two other isozymes are employed in order to save both energy and sulfur
demanded in the glutathione pathway (Fauchon et al. (2002)). Another adjustment is that
sulfur metabolism is normally directed to produce methionine and cysteine but under the
presence of cadmium is redirected to glutathione synthesis. All these adjustments affect a big
portion of the metabolic network and collectively constitute the mechanisms used by the cell
to survive under this specific stress condition. A schema of the known glutathione biosynthesis
metabolic pathway is presented in Figure 3.15.

More recently, a metabolomics experiment was performed to measure the metabolites
whose concentration significantly change in yeast cells under cadmium exposition (Madalin-
ski et al. (2008)). The experiment was performed using the strain s288c of Saccharomyces
cerevisiae, whose metabolic reconstruction is available in MetExplore (Cottret et al. (2010a)).
This metabolic network contains 600 metabolites and 949 arcs. The authors identified a list
of 24 metabolites whose concentration significantly changed, shown in Table 3.1.

We decided to perform two experiments in order to use our method to explore the effect on
Saccharomyces cerevisiae cells of exposition to the nonessential heavy metal cadmium (Cd2+).
We first enumerated metabolic stories using a set of black nodes restricted to the measured
metabolites that are known to participate to the biosynthesis of glutathione. The idea is to
check whether our method is able to recover one or more stories that correspond to the known
metabolic pathway. In a second step, we enumerated metabolic stories using the entire list of
24 interesting compounds identified in the metabolomics experiments. The idea is that this
will allow a comparative approach that may give insights on possible alternative pathways for
glutathione synthesis or enable to better understand side effects of cadmium exposition.

3.6 Biological application 45

Figure 3.15: Glutathione biosynthetic pathway. Source: Adapted from Figure 1 in Lafaye et al. (2005)

First experiment: black nodes from the biosynthetic pathway of glutathione

We first consider the previously mentioned metabolic pathway directly involved in cad-
mium detoxification, namely the glutathione biosynthetic pathway, in order to enumerate
stories and check whether we are able to recover a story that fits current knowledge on the bi-
ological process. We thus selected as black nodes for this first experiment only the metabolites
that were measured in the experiment (Madalinski et al. (2008)) and also that are known to
participate in the glutathione biosynthetic pathway (Fauchon et al. (2002)). These compounds
are the 8 ones presented in Table 3.1 with the third column marked as “yes": glutathione,
O-acetylhomoserine, methionine, glutamate, glutamylcysteine, serine, glycine and cystathio-
nine.

Working with a small set of black nodes produces a small compressed network and, conse-
quently, not so many metabolic stories. The compressed network obtained for the reduced set
of black nodes contains 10 nodes and 25 arcs, i.e., represents more than 98% of compression
in terms of nodes and more than 97% in terms of arcs, with respect to the original input
size of S. cerevisiae metabolic network. The resulting compressed network is shown in Figure
3.16. For this experiment, we set the two stop conditions for Gobbolino: producing half a
million stories or not producing a new story after one minute of computation. The algorithm
reached the second stop condition and the computation stopped after one minute in which no
new story was found. In total, 222 metabolic stories were identified. It is expected that the
total number of stories is not much bigger than that since this stop condition indicates that
the space of orderings of the nodes is well explored.

From a formal point of view, there is no qualitative difference between any two stories.
In this sense, whether a given interesting compound is a source, an intermediate node or a
target in a story is indifferent for the enumeration process since all possible scenarios sat-
isfying the three properties given by the definition, namely maximality of paths, acyclicity
and source/target constraint, have to be computed. This is not true from a biological point
of view, since we may use a priori knowledge on the chemicals identified as interesting com-
pounds, or on the experiment under study in order to distinguish the stories. In fact, in the

3.6 Biological application 46

Table 3.1: List of interesting compounds for the Saccharomyces cerevisiae cell
exposed to cadmium

Metabolite ID intensity ratio Present in the pathway
arginine 1.9 no

reduced glutathione 33.9 yes
O-acetylhomoserine (*) 0.5 yes
2-aminoadipate (*) 0.5 no
niacinamide (*) 4.8 no

pyridine-3-aldoxime (*) 4.8 no
pyrroline-hydroxy-carboxylate 0.7 no

methionine 0.3 yes
citrulline (*) 0.7 no
threonine 0.6 no
homoserine 0.6 no
glutamine 0.7 no
glutamate 0.8 yes

glutamylcysteine 192.2 yes
5-methylthioadenosine 11.0 no

serine 0.2 yes
glycine (*) 0.3 yes

cystathionine 50.5 yes
lysine 0.7 no

cysteinylglycine (*) 35.9 no
leucine/isoleucine 1.2 no

tyrosine 2.9 no
histidine 1.2 no
alanine 0.8 no

List of 24 metabolites from the yeast metabolic network whose concentration significantly varied under cadmium

exposed. The intensity ratio column presents the ratio from the stress condition to the control. The 3rd column

indicates whether the compound is present in the glutathione biosynthetic pathway (Fig 3.15) or not. Metabolites

identified with an (*) after their names needed further validation to be confirmed in the list.

specific case of yeast cells exposed to cadmium, we may define a score function using the data
from the observed concentration changes in the experiment in order to identify the stories
that best fit the data. This score function is then computed for each story, assigning to each
a value that reflects its agreement with the global flow of mass observed.

Using additional information such as the concentration of the interesting compound in the
metabolomics experiment allows us to differentiate between interesting compounds that have
their concentration increased or decreased during cadmium exposure, i.e., to explore also the
data in the second column of Table 3.1 in order to identify the stories where the interesting
compounds whose concentration increased (ratio greater than 1), such as reduced glutathione,
cysteinylglycine, cystathionine and glutamylcysteine, are preferentially produced and, on the
other hand, stories where the interesting compounds whose concentration decreased (ratio
smaller than 1) such as methionine, homoserine, serine and glycine, are preferentially con-
sumed. To differentiate these two sets of black nodes, let us distinguish again as green nodes
the group of metabolites whose concentration increased and red nodes the group of metabo-

3.6 Biological application 47

GLYCINE

O-ACETYL-HOMOSERINE

LCYSTATHIONINE

GLUTATHIONE

OXALACETIC ACID

HOMO-CYSTEINE

L-GAMMA-GLUTAMYLCYSTEINE

GLUTAMATE

SERINE

METHIONINE

Figure 3.16: The compressed network computed considering as black nodes the 8 compounds of Table 3.1 marked

as present in the glutathione biosynthetic pathway.

lites whose concentration decreased. The other nodes in the network will continue to be called
white nodes.

Table 3.2: Weights for the different kinds of interactions between nodes in a story

Outgoing arcs
To Red To Green To White

From Red 0.0 1.0 1.0
From Green −1.0 0.0 −1.0
From White −1.0 1.0 0.0

Table exhibiting the weights for interactions between green, red and white nodes used for computing the score of a

story in the context of a metabolomics experiment.

The idea of the score function is to capture the relationship between green, red and white
nodes inside a story. It is computed in the following way: s(S) =

∑
v∈V (S) ni(v) × af(v),

where the score s(S) of a story S is the sum of the normalized intensity ni times the adjacency
factor af of each node v in the story. The normalized intensity ni(v) of a node v is its intensity
(i.e., the relative variation of its concentration) divided by the maximum intensity observed
in the experiment (if v is a green node) or the minimum intensity observed in the experiment
divided by the intensity of the node (if v is a red node). The adjacency factor af(v) of a node
v is the sum of the values presented in Table 3.2 corresponding to the adjacency of the node,
capturing all possible interactions between nodes and weighting them with values representing
the normal expected behaviour of the system, i.e., positive weights for arcs producing green
nodes or consuming red nodes, and corresponding negative weights for the opposite case, i.e.,
arcs representing consumption of green nodes or production of red nodes. The remaining arcs
have a weight of zero. White nodes are also assumed to have a zero intensity, since they were
not measured in the metabolomics experiment. Figure 3.17 presents a small story containing
4 black nodes and 1 white node and its associated score.

Using this score function to assign values to the 222 stories computed in our experiment
we found that only one story appeared at the top of the ranking with a score of 4.067. This
highest score story is shown in Figure 3.18, and it is interesting to compare it with the original
metabolic pathway shown in Figure 3.15, since it corresponds quite well, as expected, to the

3.6 Biological application 48

serine

oxalacetic-acid

O-acetyl-L-homoserine

glycine

cystathione0.2

0.3

0.5

50.5

ni:1
af:2

ni:0
af:-1

ni:1
af:2

ni:0.4
af:0 ni:0.66

af:-2

Score = 2 + 2 - 1,32 + 0 + 0 = 2.68

Figure 3.17: Considering the story with 5 nodes presented we may compute its score as 2.68. The minimum

concentration observed in the story for the red nodes is 0.2 and the maximum concentration observed for a green

node is 50.5. Therefore, we may compute the following node intensities: ni(serine) = 0.2/0.2 = 1, ni(cystathione) =

50.5/50.5 = 1, ni(glycine) = 0.2/0.3 = 0.66 and ni(O − acetyl − L − homoserine) = 0.2/0.5 = 0.4. The adjacency

factors are af(serine) = 2, counting the two arcs producing a green and a white node, af(cystathione) = 2, counting

the two arcs producing a green node, af(glycine) = −2 since it is a red node being produced by two different arcs and

af(O− acetyl−L− homoserine) = 0 since it is a red node that is being produced (-1 factor) but is also being used to

produce a green node (+1 factor). White nodes have no intensity, since they were not measured in the experiment and

therefore they are assumed to have zero intensity and they do not contribute to the global score of the story.

flow of matter there observed. The story agrees with the biological conclusion of the paper with
the metabolomics experiment from where the data was taken (Madalinski et al. (2008)), i.e., to
the metabolic flux corresponding to the detoxification of cadmium by glutathione, explaining
that the levels of metabolites involved in the glutathione biosynthesis pathway (homocysteine,
cystathionine, Glu-Cys and glutathione itself) were increased following cadmium exposure.

Second experiment: black nodes from the metabolomics experiment

For the second experiment, all 24 black nodes were considered. One of them, pyrroline-
hydroxy-carboxylate, was eliminated when computing the lightest paths between all pairs of
black nodes since it was part of a small disconnected component of the original input graph,
most probably due to missing information in the metabolic network reconstruction as the
metabolite was present in the metabolome of the strain. The computed compressed network
contains 34 nodes and 76 arcs, i.e., a compression of 94% in terms of nodes and 92% in terms
of arcs. The resulting compressed network is shown in Figure 3.19.

For this experiment, we set the same two stop conditions for Gobbolino: producing half
a million stories or not producing a new story after one minute of computation. The algorithm
stopped after reaching the first condition, which strongly indicates that the space of solutions
was under-explored and that the total number of stories must be much greater than that.
However, for the purpose of our analysis, we decided to proceed with the stories produced so
far. As an example of the result, we present in Figure 3.20 the first two metabolic stories out
of the 500000 that we enumerated.

Using our score function for assigning values to the computed stories, we can restrict our
analysis to the ones with the highest values, allowing us to focus on the stories that best fit
the experimental data. For instance, only 7 out of the half a million stories computed have

3.6 Biological application 49

GLYCINE

L-GAMMA-GLUTAMYLCYSTEINE

METHIONINE

O-ACETYL-HOMOSERINE

GLUTAMATE

OXALACETIC ACID

GLUTATHIONE

L-CYSTATHIONINE

SERINE

Figure 3.18: The best story generated for our experiment taking into account only the intersection between the

metabolites measured in the metabolomics experiment and the ones known to be present in the glutathione biosynthesis.

The set of black nodes is coloured in the following way: yellow nodes denote sources of a story, orange nodes are targets

and blue nodes are intermediate. The white nodes are white.

the highest computed score of 19.556. Figure 3.21 presents an histogram of the distribution
of the scores over the whole set of computed stories. Gobbolino may display each story
individually for analysis, allowing one to investigate in detail the differences between each of
the 7 stories with the highest score, or any of the sub-optimal ones. Again, an alternative
way to perform the analysis is to compute an anthology, which is a collection of stories. One
may generate the anthology of the 7 highest score stories (shown in Figure 3.22) or include
sub-optimal solutions, such as all stories whose score is at most 0.5 points below the optimum.
As an anthology is a collection of two or more stories, it will contain cycles and the roles of
the nodes as source or target may not be so clear anymore. In order to help the analysis, we
draw an anthology giving a size to the nodes that corresponds to their concentration change,
red ones being those whose concentration decreased and green ones those whose concentration
increased. The thickness of the arcs corresponds to the frequency with which each arc appears
in the stories grouped in the anthology.

Comparing the two experiments

With the goal of contrasting the smaller and more local sets of stories against the bigger
and more global anthology produced for the second experiment, we computed an anthology
for the results of our first experiment, grouping the 6 stories that were close to the best one,
i.e., whose difference in the score was not bigger than an arbitrarily chosen 0.5 points range.

3.6 Biological application 50

L-CITRULLINE

ARG;

L-GAMMA_-GLUTAMYLCYSTEINE

GLUTAMINE;GLUTAMATE

ADENYLO-SUCCINATE

AMP

L_-ARGININO-SUCCINATE

OXALACETIC_ACID

SUCCINATE

GLYCINE

FUMARATE

L-CYSTEYNILGLYCINE;GLUTATHIONE-

L_-ALPHA-ALANINE

LEUCINE

ISOLEUCINE

THREONINE

2-OXOBUTANOATE

TYROSINE

HOMO-SERINE

SERINE

L-CYSTATHIONINE
PYRUVATE

ACETATE

METHIONINE

HOMO-CYSTEINE

S-ADENOSYLMETHIONINE
NAD

NIACINAMIDE
HISTIDINE

O-ACETYL-HOMOSERINE

L-2-AMINOADIPATE

LYSINE

5-_METHYLTHIOADENOSINE

SACCHAROPINE

L-ORNITHINE

Figure 3.19: The compressed network computed for the whole list of interesting compounds of Table 3.1 and the

metabolic network of the yeast strain s288c.

This anthology is shown in Figure 3.23. The backbone still corresponds quite well to the
known pathway but now some variations may also be observed. This is a strong point of our
method since it allows exploring alternative but close scenarios through the analysis of these
and other high-scoring stories, which might provide new insights on the underlying processes
that took place under the given conditions.

For ease of analysis, we produced a new drawing of the anthology considering the whole
list of black nodes, highlighting the 8 nodes known to be part of the glutathione biosynthetic
pathway, as shown in Figure 3.24. We may therefore try to analyse what portion of the anthol-
ogy may be explained by the sulfur redirections that are known to be part of the response of
yeast cells to cadmium (Fauchon et al. (2002); Lafaye et al. (2005); Madalinski et al. (2008));
and which portion may be seen as an indirect consequences of such response. Among the 27
metabolites present in the anthology, 8 have sulfur in their chemical structure: S-adenosyl-
L-methionine, L-gamma-glutamylcysteine, S-methyl-adenosine, O-acetyl-L-homoserine, cys-
teinylglycine, glutathione, cystathionine and L-methionine. Among these sulfured metabo-
lites, the only one which is not involved in the glutathione biosynthesis is S-methyl-adenosine,
and is instead involved in the methionine salvage pathway. Notice also that serine, which
is one of the precursors in the glutathione biosynthesis, is involved in many other processes,
specially involving amino acids such as alanine, leucine, isoleucine, tyrosine, glutamate, glu-
tamine and arginine, but also in the synthesis of a vitamin, niacinamide. Interestingly, the
compounds involved in the methyl cycle, which is part of the glutathione biosynthesis pathway
(see Figure 3.15), were not recovered in the highest score story found in our first experiment.
The reason is that the lightest path found between methionine and cystathione in that ex-
periment passed through the reversible reaction homocysteine S-methyltransferase. In the
second experiment, when the whole list of interesting compounds was considered, the com-

3.6 Biological application 51

a) Story 1 (score: 7.104) b) Story 2 (score: 17.741)
THREONINE METHIONINE

GLYCINE

L-2-AMINOADIPATE

GLUTAMINE S-ADENOSYLMETHIONINE

HISTIDINE ISOLEUCINE

NIACINAMIDE

ACETATE

5-METHYLTHIOADENOSINE

L-CYSTATHIONINE

L-CYSTEYNILGLYCINE

L-CITRULLINE

LYSINE

SUCCINATE

ARGININE

L-GAMMA-GLUTAMYLCYSTEINE

TYROSINE

HOMO-SERINE L-ALPHA-ALANINE

SERINELEUCINE

O-ACETYL-HOMOSERINE

Figure 3.20: The first two random stories generated for our experiment taking into account the whole list of black

nodes. The set of black nodes is coloured in the following way: yellow nodes denote sources of a story, orange nodes are

targets and blue nodes are intermediate. The white nodes are white.

pounds in the methyl cycle are recovered, with the white node S-adenosylmethionine present
in the anthology and the metabolites S-adenosyl-homocysteine and homocysteine compressed
into the arc from S-adenosylmethionine to cystathionine. The role, if any, of the other white
nodes recovered in this anthology such as adenylo-succinate, succinate, acetate and adenosine
monophosphate (AMP), need more detailed analysis to check if their presence may be related
to the response of the yeast cells to cadmium or if they are side effects related to some other
metabolic processes.

3.6.2 Enumerating stories for recovering metabolic pathways

Although established for dealing with metabolomics experiments, our definition of metabolic
stories in terms of a subgraph extraction problem is general and may thus prove useful in dif-
ferent contexts than the original one. In the previous application on interpreting metabolomics
experimental data, we started by showing how we could recover a story that corresponded
well to the known metabolic pathway of glutathione biosynthesis. We now propose to apply
the enumeration of metabolic stories outside of the context of metabolomics and try to gen-
eralise the result obtained before, i.e., apply the method for metabolic pathway automatic
discovering. A metabolic pathway is a chain of reactions that explains how a set of source
metabolites is transformed into a set of target metabolites. The idea behind this experiment
is that among the stories enumerated, one of them will correspond to the traditionally defined
metabolic pathway, and the others will correspond to possible alternatives. To validate this
idea, we set up an experiment in which we used a collection of known metabolic pathways
of Saccharomyces cerevisiae, but in this case the IMM904 strain which has been extensively
curated recently and is also available in MetExplore (Cottret et al. (2010a)). A collection of
69 metabolic pathways annotated in S. cerevisiae were used as our benchmark. This data was
taken from MetaCyc (Caspi et al. (2010)), version 15. For this second experiment, the set of
black nodes was selected specifically for each of the metabolic pathways by manually identify-
ing through visual inspection of the pathways the main source and target metabolites of each

3.6 Biological application 52

Figure 3.21: Distribution of the scores over the 500000 computed stories.

pathway, i.e., the metabolites that are involved in the first and last steps of the metabolic
pathway. Side compounds and compounds that are not involved in carbon metabolism were
also filtered out (such as water, proton, ATP, ADP, etc.). Table 3.3, put at the end of the
section, presents the list of metabolic pathways used in the experiment as well as the black
nodes chosen for each of them.

The experiment consisted in enumerating metabolic stories for each metabolic pathway
and their corresponding sets of black nodes. After this, we wanted to compare the stories
found with the original pathways, measuring the specificity and sensitivity of our method to
recover in the set of computed metabolic stories one that corresponded to the known chain of
reactions of the pathway while, in parallel, providing alternative metabolic pathways for the
same set of black nodes.

Since this experiment differs from the previous one also in the sense that, in this case it did
not originate from a metabolomics experiment, we have to design a different score function
that does not use data on metabolites concentration. For the metabolic pathway retrieval
experiment, we defined a score function based on a partial order of the nodes, which prefers
stories where some ordering of the metabolites is preserved, namely the metabolites involved
in the starting (respectively, ending) point of the original metabolic pathway should preferably
be sources (resp., targets) of the story. This score function needs as input a set of ordered
pairs of metabolites indicating their preferable order and assigns a value to the final story
according to how many of these orderings are respected. For example, Figure 3.25 presents
one of the 69 metabolic pathways used in our experiment, namely the superpathway of glucose
fermentation. The nodes selected to be the black nodes in this example are glucose, ethanol
and acetate. The secondary input file with partial order information will have two entries:
(glucose,ethanol) and (glucose,acetate). This indicates that stories in which glucose comes
before ethanol and acetate should have higher scores than the ones in which these orderings
are not preserved. Notice that this function may be useful in different contexts for which no

3.6 Biological application 53

100

57,14

100

100

100

100

100

100

100

100
100

100

100

100
42,86

100

100

71,43

85,71
100

100
100

100

100

100

100

28,57

100

100

100

100

100

71,43

100

100

100

100
100

100100

71,43

100

100

100

100

100

100

100

100

L-CITRULLINE

LYSINE

ISOLEUCINE

L-CYSTEYNILGLYCINE;GLUTATHIONE

L-ORNITHINE

GLUTAMINE;GLUTAMATE
ARGININE

HOMO-SERINE

TYROSINE

ADENYLO-SUCCINATE

L-ALPHA-ALANINE SERINE
LEUCINE

S-ADENOSYLMETHIONINE

5-METHYLTHIOADENOSINE

O-ACETYL-HOMOSERINE

THREONINE

L-CYSTATHIONINE

SUCCINATE

ACETATE

HISTIDINE

AMP

L-GAMMA-GLUTAMYLCYSTEINE

METHIONINE
NIACINAMIDEL-2-AMINOADIPATE

GLYCINE

Figure 3.22: Anthology corresponding to the 7 highest scored stories computed for the experiment on the yeast

s288c exposed to cadmium. Red nodes correspond to interesting compounds whose concentration decreased and green

nodes correspond to those whose concentration increased in the metabolomics experiment. The thickness of the arc

represent the frequency of the arc among the stories in the anthology.

concentration or other quantitative information is available but there exists some knowledge
on the metabolic process or on the chemical transformations under study.

The experiment consisted in two steps. The first one was to enumerate stories for the
69 metabolic pathways and their sets of black nodes. If the number of black nodes was
below 8, we can guarantee that we found all stories. Above, we used the previously described
randomized approach with the same stop conditions: half a million stories computed or one
minute of computation with no new story produced. The second step is to compare the set of
solutions with the original metabolic pathways and to measure the specificity and sensitivity
of the method to recover them. Notice that the stories are computed on a compound graph
representation of the metabolic network, where there is no direct correspondence between
reactions and arcs/nodes.

In order to be able to compare our stories with the reference metabolic pathways, we
used the compound graph representation of the reference metabolic pathway considering only
the lightest paths connecting its black nodes, i.e., exactly the same preprocessing done for
computing stories. The comparison is then based on the sets of arcs of both graphs by
following this simple rule: given an arc u → v in a story if the exact same arc is present in
the pathway then we have a true positive prediction (TP), otherwise we have a false positive
prediction (FP). On the other hand, if there is an arc u→ v in the reference pathway that is
not present in the story we have a false negative prediction (FN). To compute the quality of
the method for pathway recovery purposes, we use the same accuracy metric as in a similar
metabolic pathway recovery method (Faust et al. (2010)), that is

√
Sn ∗ PPV , where Sn is

3.6 Biological application 54

100

100

100
16,67

16,67

16,67

16,67

100

33,33

5033,33

33,33

100

100

100

100

33,33

66,67

16,67

50

100

100

100

GLUTATHIONE

OXALACETIC-ACID

SERINE

METHIONINE

O-ACETYL-HOMOSERINE

GLYCINE

L-CYSTATHIONINE

GLUTAMATE

L-GAMMA-GLUTAMYLCYSTEINE

Figure 3.23: Anthology corresponding to the 6 highest scored stories computed for the experiment on the yeast

s288c exposed to cadmium using only nodes known to be involved in the glutathione biosynthesis as black nodes. Red

nodes correspond to interesting compounds whose concentration decreased and green nodes correspond to those whose

concentration increased in the metabolomics experiment. The thickness of the arc represent the frequency of the arc

among the stories in the anthology.

the sensitivity measured as the ratio of correctly inferred nodes versus all reference nodes
(TP/(FP + FN)) and PPV , or Positive Predictive Value, is the ratio of correctly inferred
nodes versus all inferred nodes (TP/(TP + FP)). Table 3.3 presents the complete list of
metabolic pathways, chosen black nodes and the accuracy measures.

On average, 62.72% of the reference metabolic pathways could be recovered using the
stories enumerator, which is lower but similar to the results presented in Faust et al. (2010),
where they compared four different methods specifically designed for metabolic pathway re-
trieval in directed graphs. However, it is interesting to notice that our method outperformed
in accuracy some of the methods shown in Faust et al. (2010). This is unexpected since
the methods they examined are specifically taylored to pathway recovery while ours has a
different and more general purpose, which is to extract all interactions between a set of inter-
esting compounds using an enumeration approach. However, there are two main differences
that make the comparison of our experiments with the ones performed in Faust et al. (2010)
hard. The first one is their use of a reaction graph instead of the compound graph. The
second is the fact that our algorithm runs once for each pathway and set of black nodes and

3.6 Biological application 55

100 100

100

100

100

100

100

100

100

100

100

100

71,43

100

71,43

28,57

100

100

100

100 100

100

71,43

100
100

57,14

100

42,86

100

100 100

100 100

100

100

100

100

100

100

100

100

100

100100

100

85,71

100

100

100

L-CITRULLINE
ARGININE

ADENYLO-SUCCINATE

SUCCINATE

GLYCINE

ACETATE

THREONINE

GLUTAMINE;GLUTAMATE

L-ORNITHINE 5-METHYLTHIOADENOSINE

NIACINAMIDE

TYROSINE

L-GAMMA-GLUTAMYLCYSTEINE

L-CYSTEYNILGLYCINE;GLUTATHIONE

S-ADENOSYLMETHIONINE ISOLEUCINE

AMP

LYSINEHISTIDINE
LEUCINE

L-2-AMINOADIPATE

L-ALPHA-ALANINE

METHIONINE

SERINE

L-CYSTATHIONINE

HOMO-SERINE

O-ACETYL-HOMOSERINE

Figure 3.24: Same anthology presented in Figure 3.22 but with highlighting the nodes present in the anthology

shown in Figure 3.23.

inspects the accuracy obtained by each of the stories found, selecting the best one, while in
their experiments the authors report the average accuracy obtained after running the exam-
ined algorithms for some iterations. In more detail, in Faust et al. (2010) each experiment
starts with an initial set of nodes, that is increased at each iteration with a random selected
node among the internal nodes of the metabolic pathway. The experiment finishes when all
reactions of the pathway are found. What is reported is then the mean accuracy over all
iterations. Ideally, we should then compare our results with the first iteration of each of their
methods, which was not done for this thesis but is planned for a near future. The practical
effect is that this increasing set of black nodes makes their accuracy higher than ours since at
each run the algorithm uses more information on the reference metabolic pathways in order
to recover them.

The best accuracy obtained in the 110 experiments for 7 different methods and 3 differ-
ent weight policies performed in Faust et al. (2010) was of 76,81% by an hybrid approach
combining both Takahashi-Matsuyama (Takahashi and Matsuyama (1980)) and random k-
Walks (Dupont et al. (2006)) algorithms. The first algorithm, Takahashi-Matsuayma, starts
with a network containing one randomly selected interesting node. It proceeds by iteratively
merging to the current network a lightest-path between any of the remaining nodes and any
of the nodes already in the network. It finishes when all interesting nodes are connected to
the network. The second algorithm, random k-Walks, consists in building a subgraph that
connects the interesting nodes through a set of the most relevant arcs. The relevance of an arc
is measured as the expected number of times it is visited along random walks connecting the
interesting nodes. A subgraph is obtained by applying a threshold on the relevance, which in
the experiments performed in Faust et al. (2010) was automatically set as the value such that

3.6 Biological application 56

Figure 3.25: Superpathway of glucose fermentation in Saccharomyces cerevisiae. Source: Metacyc.

the graph induced by the selected arcs is weakly connected. In the combined approach, first
a subnetwork was computed using the random k-Walks algorithm and then this network was
used as an input for the Takahashi-Matsuyama algorithm. The fact that the difference be-
tween this hybrid algorithm and ours is around 10% and considering that we did not perform
the previously mentioned procedure of increasing the set of interesting compounds during
several iterations allow us to believe that our method is comparable to algorithms specifically
designed for pathway recovery and that it may be worth developing and adapting it in this
direction. Moreover, our method was designed to be more sensitive than specific, since stories
are maximal subgraphs and this could be a relevant difference in favour of our method in the
context of metabolic pathway recovery, since we may be able not only to recover the known
metabolic pathway but also to propose alternative pathways involving the same interesting
compounds.

Interestingly, in 12 cases (chorismate biosynthesis, lysine degradation, non-oxidative branch
of the pentose phosphate pathway, pyridoxal 5’-phosphate salvage pathway, ubiquinone biosyn-
thesis from 4-hydroxybenzoate, phosphatidylinositol phosphate biosynthesis, superpathway of
methionine salvage pathway, methionine salvage pathway, de novo biosynthesis of pyrimidine
ribonucleotide, tryptophan biosynthesis, tryptophan degradation via kynurenine and galac-
tose degradation), a story corresponded exactly (100% accuracy) to the reference metabolic
pathway and, further, the accuracy was greater or equal to 80% in 25 cases (36%). On
the other hand, for 7 cases (allantoin degradation, lipid-linked oligosaccharide biosynthesis,
glycolysis, lysine biosynthesis, de novo NAD biosynthesis, superpathway of TCA cycle and
glyoxylate cycle and TCA cycle aerobic respiration), the correspondence between the stories
and the pathway was 0% and the accuracy was smaller or equal to 20% in 8 cases (12%). The

3.6 Biological application 57

average accuracy was 62,72%.
Significantly, all the cases for which there is no correspondence between the stories and

the reference pathway occurred when the computed lightest-path graph connecting the black
nodes, which is the first step of our method, did not contain the reference pathway. This
means that our method had no chance to find the correct metabolic pathway since it tried
to find it in a network where this pathway was not present. This observation highlights
the fact that computing the lightest path between metabolites using the degree of the nodes
as weights may avoid passing through pool metabolites but is not guaranteed to cover all
biologically valid transformations since some known metabolic pathways do not correspond
to lightest paths between their terminals. For instance, the lightest path from allantoin to
carbon-dioxide has only one step through urate and does not correspond at all to the reference
allantoin degradation pathway. Another example concerns glycolysis, where the computed
lightest path between glucose and pyruvate is through proton which is a lighter path than
the chain passing through glc-6p, fructose-6p, fructose 1,6 diphosphate, gap, dpg, g3p, 2pg
and phospho-enol-pyruvate. Finally, the lightest path between pyruvate and malate is a
direct connection between them through the reversible reaction oxaloacetate decarboxylating
(NADP+). The fact that this was the selected path between these two nodes explains the
0% accuracy obtained for the superpathway of TCA cycle and glyoxylate cycle and the TCA
cycle aerobic respiration pathways, since both of them have exactly pyruvate and malate as
black nodes.

The issue of selecting wrong candidates between pairs of compounds has a direct impact in
the cases where there are linear pathways and, thus, only two black nodes to connect because
the method may simply ignore from the start the pathway that it should recover. Notice, for
instance, that all the 0% cases have two black nodes. However, this issue also affects the results
for more complicated topologies. For instance in the de novo NAD biosynthesis, the lightest
path between TRP and NAD is wrongly inferred, passing through indole-pyruvate and indole
acetaldehyde instead of the known reference reactions. As a result we have a 0% accuracy for
this pathway, but for the superpathway of NAD biosynthesis (accuracy of 29,8%) the same
pair of metabolites is present and the same error appears, even if the subpathway between
nicotinade riboside and NAD is entirely recovered. This specific pathway also indicates that
the maximality feature of the stories definition makes the number of false positive predictions
very high, in this case presenting alternative connections between nicotinamide ribose and
nicotinate riboside and TRP, which are not part of the reference pathway. This may be
not good for the accuracy measure but is a nice way of proposing composed scenarios or
superpathways in which different alternative transformations are analysed together, i.e., for
the chosen metrics our method is not so good in specificity since stories are maximal but we
have a good sensitivity and we are able to include alternative pathways.

The observation that the main factor inducing a decrease in accuracy of our method is
the absence of the reference pathway in the lightest-path network strongly indicates that our
method would benefit from replacing this approach by some atom mapping routing approach
(Boyer and Viari (2003); Arita (2004); Blum and Kohlbacher (2008)), since this will guaran-
tee that chains of reactions will correspond to exchange of carbon atoms at each step and,
therefore, are more likely to correspond to the metabolic pathways even in the cases in which
they do not correspond to any shortest/lightest path.

3.6 Biological application 58

Table 3.3: List of metabolic pathways from Saccharomyces cerevisiae used in the
pathway retrieval experiment.

Pathway nodes arcs Black nodes TP FP FN Acc.
1 ALL-CHORISMATE 36 43 GTP 37 44 6 62,7%

superpathway of choris-
mate

ERYTHROSE-4P

THF
TYR
PHE
TRP
7-8-
DIHYDROPTEROATE
5-METHYL-THF

2 ALLANTOINDEG 5 4 ALLANTOIN 0 4 4 0%
allantoin degradation CARBON-DIOXIDE

3 ARGDEG-YEAST 3 2 ARG 2 1 0 81,6%
arginine degradation
(aerobic)

GLT

4 ARO 3 2 ERYTHROSE-4P 2 0 0 100%
chorismate biosynthesis CHORISMATE

5 BRANCHED-CHAIN-
AA-SYN

17 24 PYRUVATE 21 7 3 81%

superpathway of leucine,
isoleucine

VAL

and valine biosynthesis LEU
ILE

6 COMPLETE-ARO 19 21 ERYTHROSE-4P 18 16 3 67,4%
superpathway of pheny-
lalanine, tyrosine

TYR

and tryptophan biosyn-
thesis

PHE

TRP
7 DENOVOPURINE3 18 18 PRPP 3 8 15 21,3%

de novo biosynthesis of
purine nucleotides

ATP

dGTP
dATP

8 ERGOSTEROL-SYN 18 19 ACETOACETYL-COA 12 13 7 55,1%
superpathway of ergos-
terol biosynthesis

ACETYL-COA

CO-A
ERGOSTEROL

9 FASYN-ELONG2 8 9 ACYL-ACP 7 2 2 77,8%
fatty acid elongation OH-ACYL-ACP

PALMITOYL-ACP
PALMITYL-COA
ACP

continued on next page

3.6 Biological application 59

Table 3.3: continuation

Pathway nodes arcs Black nodes TP FP FN Acc.
10 FASYN-INITIAL 11 11 BCCP-BIOTIN 8 4 3 69,6%

fatty acid biosynthesis,
initial steps

ACETYL-COA

|R-3-Hydroxypalmitoyl-
ACPs|
BUTRYL-ACP

11 FOLSYN 14 13 CHORISMATE 11 4 2 78,8%
folate biosynthesis GTP

5-METHYL-THF
12 GLUCFERMEN 6 5 GLC 1 15 4 11,2%

superpathway of glucose
fermentation

ETOH

ACET
13 GLUCONEO 11 11 MAL 4 7 7 36,4%

gluconeogenesis GLC-6-P
DIHYDROXY-
ACETONE-
PHOSPHATE

14 GLUCOSE-
MANNOSYL-CHITO-
DOLICHOL

15 14 DOLICHOLP 0 2 14 0%

lipid-linked oligosaccha-
ride biosynthesis

CPD3O-410

15 GLYCOLYSIS 4 3 GLC-6-P 0 8 3 0%
glycolysis PYRUVATE

16 GLYOXYLATE-
BYPASS

7 7 MAL 7 12 0 60,7%

glyoxylate cycle SUC
GLYOX

17 HEXPPSYN 7 6 DI-CH3-ALLYL-PPI 6 1 0 92,6%
hexaprenyl diphosphate
biosynthesis

DELTA3-
ISOPENTENYL-PP
HEXAPRENYL-
DIPHOSPHATE

18 HISTSYN 13 12 ATP 12 3 0 89,4%
histidine biosynthesis HIS

AICAR
PRPP

19 ILEUSYN 6 5 THR 5 1 0 91,3%
isoleucine biosynthesis ILE

20 IPPSYN 8 7 CO-A 7 4 0 79,8%
mevalonate pathway ACETYL-COA

DI-CH3-ALLYL-PPI
21 LYSDEGII 7 6 LYS 6 0 0 100%

lysine degradation GLUTARATE
22 LYSINE-AMINOAD 9 8 LYS 0 14 0 0%

continued on next page

3.6 Biological application 60

Table 3.3: continuation

Pathway nodes arcs Black nodes TP FP FN Acc.
lysine biosynthesis 2-KETOGLUTARATE

23 NADSYN 10 9 TRP 0 3 9 0%
de novo NAD biosynthe-
sis

NAD

24 NONOXIPENT 3 2 GAP 2 0 0 100%
non-oxidative branch of
the

RIBULOSE-5P

pentose phosphate path-
way

25 P4 10 9 HS 8 6 1 71,3%
superpathway of threo-
nine and

MET

methionine biosynthesis THR
L-ASPARTATE

26 PANTOSYN2 12 11 CO-A 8 7 3 62,3%
pantothenate and coen-
zyme A biosynthesis

SPERMINE

2-KETO-
ISOVALERATE

27 PENTOSE-P 7 7 GAP 1 1 6 26,7%
pentose phosphate path-
way

GLC-6-P

FRUCTOSE-6P
28 PHOS 21 22 SER 20 21 2 66,6%

superpathway of phos-
phatidic acid

GLYCEROL

and phospholipid biosyn-
thesis

CHOLINE

CDPDIACYLGLYCEROL
CARDIOLIPIN
PHOSPHATIDYLCHOLINE-
CMPD
DIHYDROXY-
ACETONE-
PHOSPHATE
1-ACYL-
DIHYDROXYACETONE-
PHOSPHATE
DIACYLGLYCEROL

29 PHOSLIPSYN2 12 11 SER 11 17 0 62,7%
phospholipid biosynthe-
sis

GLYCEROL

CDPDIACYLGLYCEROL
CARDIOLIPIN
GLYCEROL-3P
PHOSPHATIDYLCHOLINE-
CMPD

continued on next page

3.6 Biological application 61

Table 3.3: continuation

Pathway nodes arcs Black nodes TP FP FN Acc.
30 PLPSAL 6 5 PYRIDOXAL 5 0 0 100%

pyridoxal 5’-phosphate
salvage pathway

PYRIDOXINE

PYRIDOXAMINE
PYRIDOXAL-
PHOSPHATE

31 PRPP 31 37 GLN 25 17 12 63,4%
superpathway of histi-
dine, purine

CTP

and pyrimidine biosyn-
thesis

HIS

RIBOSE-5P
DGTP
ATP
DATP

32 PWY-2201 6 9 THF 7 0 2 88,2%
folate transformations 5-FORMYL-THF

5-METHYL-THF
METHYLENE-THF

33 PWY-821 15 17 CYS 9 24 8 38%
superpathway of sulfur
amino acid biosynthesis

SULFATE

L-ASPARTATE
S-
ADENOSYLMETHIONINE

34 PWY3O-1 10 8 GMP 5 6 3 53,3%
salvage pathways of
purines and their
nucleosides

IMP

GUANINE
XANTHOSINE-5-
PHOSPHATE
INOSINE
ADENINE
ADENOSINE

35 PWY3O-1109 8 7 TYR 7 3 0 83,7%
p-hydroxybenzoate
biosynthesis

CHORISMATE

|4-hydroxybenzoate|
36 PWY3O-19 10 9 UBIQUINONE-6 9 0 0 100%

ubiquinone biosynthesis
from 4-hydroxybenzoate

|4-hydroxybenzoate|

37 PWY3O-2 20 19 SER 19 34 0 59,9%
superpathway of phos-
pholipid biosynthesis

CHOLINE

GLYCEROL-3P
continued on next page

3.6 Biological application 62

Table 3.3: continuation

Pathway nodes arcs Black nodes TP FP FN Acc.
CARDIOLIPIN
GLYCEROL
MYO-INOSITOL
CPD-482
CDPDIACYLGLYCEROL
ETHANOL-AMINE
PHOSPHATIDYLCHOLINE-
CMPD

38 PWY3O-20 6 6 5-METHYL-THF 4 4 2 57,7%
folate polyglutamylation 10-FORMYL-THF

7-8-
DIHYDROPTEROATE

39 PWY3O-2220 6 5 IMP 2 4 3 36,5%
salvage pathways of ade-
nine, hypoxanthine

INOSINE

and their nucleosides ADENINE
ADENOSINE

40 PWY3O-242 5 8 CPD-482 8 0 0 100%
phosphatidylinositol
phosphate biosynthesis

PHOSPHATIDYL-
MYO-INOSITOL-45-
BISPHOSPHA
1-PHOSPHATIDYL-
1D-MYO-INOSITOL-
35-BISPH

41 PWY3O-261 7 6 G3P 6 11 0 59,4%
superpathway of serine
and glycine biosynthesis

THR

GLYOX
SER

42 PWY3O-285 16 20 ATP 11 31 9 38%
superpathway of purine
biosynthesis

DGTP

and salvage pathways PRPP
GUANINE
DATP
ADENINE
ADENOSINE

43 PWY3O-351 3 2 SPERMINE 2 0 0 100%
superpathway of methio-
nine salvage pathway

SPERMIDINE

PUTRESCINE
44 PWY3O-402 11 12 CPD3O-768 12 1 0 96,1%

inositol phosphate
biosynthesis

PHOSPHATIDYL-
MYO-INOSITOL-45-
BISPHOSPHA

continued on next page

3.6 Biological application 63

Table 3.3: continuation

Pathway nodes arcs Black nodes TP FP FN Acc.
DIPHOSPHO-1D-
MYO-INOSITOL-
TETRAKISPHOSPH

45 PWY3O-4107 5 5 NAD 1 0 4 44,7%
NAD salvage pathway DEAMIDO-NAD

46 PWY3O-4158 13 12 NAD 4 11 8 29,8%
superpathway of NAD
biosynthesis

TRP

CPD-8259
NICOTINAMIDE-
RIBOSE

47 PWY3O-45 12 11 GTP 11 3 0 88,6%
folate biosynthesis II THF

CHORISMATE
48 PWY3O-64 7 6 MET 6 0 0 100%

methionine salvage path-
way

5-
METHYLTHIOADENOSINE

49 PWY3O-69 12 11 GLY 11 2 0 92%
superpathway of heme
and siroheme biosynthe-
sis

SIROHEME

PROTOHEME
50 PWY3O-697 4 4 5-METHYL-THF 1 1 3 35,4%

folate interconversions THF
10-FORMYL-THF

51 PWY3O-7 8 7 PYRUVATE 3 2 4 50,7%
superpathway of threo-
nine biosynthesis

THR

52 PWY3O-862 24 23 TYR 23 10 0 83,5%
superpathway of
ubiquinone biosynthesis

CHORISMATE

UBIQUINONE-6
DI-CH3-ALLYL-PPI
DELTA3-
ISOPENTENYL-PP

53 PWY3O-94 7 6 PYRUVATE 0 1 6 0%
superpathway of TCA
cycle and glyoxylate cy-
cle

MAL

54 PWY3O-954 8 7 HS 6 3 1 75,6%
superpathway of methio-
nine biosynthesis

MET

L-ASPARTATE
55 PWY3O-981 3 2 PYRUVATE 2 1 0 81,6%

continued on next page

3.6 Biological application 64

Table 3.3: continuation

Pathway nodes arcs Black nodes TP FP FN Acc.
superpathway of acetoin
and butanediol biosyn-
thesis

BUTANEDIOL

56 PYRIMID-RNTSYN 2 1 GLN 1 0 0 100%
de novo biosynthesis
of pyrimidine ribonu-
cleotides

CTP

57 SPHINGOLIPID-SYN 12 11 MIP2C 11 4 0 85,6%
sphingolipid metabolism SER

PALMITALDEHYDE
PHOSPHORYL-
ETHANOLAMINE

58 TCA-EUK 5 4 PYRUVATE 0 1 4 0%
TCA cycle, aerobic res-
piration

MAL

59 THREOCAT2 15 17 GLY 12 16 5 55%
threonine degradation THR

1-AMINO-PROPAN-2-
OL
METHYL-GLYOXAL
HOMO-SER
CYSTATHIONINE
O-SUCCINYL-L-
HOMOSERINE
PROPIONATE

60 TRIGLSYN 6 5 ACYL-ACP 3 7 2 42,4%
triglyceride biosynthesis GLYCEROL-3P

TRIACYLGLYCEROL
61 TRPSYN 6 5 CHORISMATE 5 0 0 100%

tryptophan biosynthesis TRP
62 TRYPTOPHAN-

DEGRADATION-1
8 7 NICOTINATE-

NUCLEOTIDE
7 0 0 100%

tryptophan degradation
via kynurenine

TRP

63 YEAST-ARG-SYN 5 4 GLT 2 3 2 44,7%
arginine biosynthesis ARG

64 YEAST-DE-NOVO-
PYRMID-DNT

11 10 CDP 10 8 0 74,5%

de novo biosynthesis of
pyrimidine deoxyribonu-
cleotides

UDP

DCMP
DUMP
TTP

65 YEAST-FAO 6 5 ACYL-COA 3 2 2 60%
fatty acid oxidation
pathway

|Fatty-Acids|

continued on next page

3.7 Open problems and perspectives 65

Table 3.3: continuation

Pathway nodes arcs Black nodes TP FP FN Acc.
CIS-DELTA3-ENOYL-
COA

66 YEAST-GALACT-
METAB

5 4 GLC-6-P 4 0 0 100%

galactose degradation GALACTOSE
67 YEAST-RIBOSYN 10 9 GTP 5 7 4 48,1%

riboflavin, FMN and
FAD biosynthesis

FAD

RIBULOSE-5P
68 YEAST-RNT-SALV 6 5 UMP 5 4 0 74,5%

salvage pathways of
pyrimidine ribonu-
cleotides

CTP

CYTIDINE
69 YEAST-SALV-

PYRMID-DNTP
8 7 TMP 4 10 3 40,4%

salvage pathways of
pyrimidine deoxyribonu-
cleotides

DUMP

DEOXYCYTIDINE
CYTOSINE
DCMP

Average 10 9,8 7,1 6,61 2,74 62,72%

3.7 Open problems and perspectives

From a practical point of view, for some graphs, the number of stories found is extremely
large and therefore the analysis of the results is compromised without the use of some classi-
fication approach like the score functions we used in both of our biological applications.

One possible way to explore the spectrum of solutions is to group stories based on their sets
of sources and targets. Unfortunately, in our experiments, when using this approach almost
all possible combinations of such sets were highly represented and the number of stories in
each group was large and close to a uniform distribution.

Instead of using approaches that intend to classify or to group the numerous solutions,
an alternative way to proceed is to add more constraints to the model to be able to filter a
priori the set of solutions. This observation led us to consider the problem from a modelling
point of view. For instance, the acyclicity constraint could be relaxed allowing cycles between
white nodes. An even less strict approach would be to allow “intermediate" cycles even if
intermediate black nodes participate in such cycles, but with some reasonable rule to define
the frontier between the top/bottom level of a story in which black nodes should be sources
and targets, and the middle part of a story where cycles are allowed.

Another alternative is to consider integrated models, adding to the metabolic network
other sources of information such as regulation, or taking the stoichiometry of the reactions
into account. Stoichiometry should be explored in a different way than simply filtering out
stories that are not stoichiometrically valid, because stories are in general stoichiometrically

3.7 Open problems and perspectives 66

valid if the input metabolic network have mass-consistent reactions, which is expected to be
the case. Indeed, as stories are acyclic, we may assume that they are consistent in the sense
that it is possible to find a flux over the reaction set that reaches the steady-state, assuming
that the inputs and outputs do not need to be balanced. A potentially interesting idea to
follow would be to work with an alternative definition of a story exploring the stoichiometric
coefficients in order to allow cycles that keep the reaction set balanced. However, considering
stoichiometry in such a way cannot be handled with a compound graph representation of
the metabolic network and, therefore, we should move to a bipartite graph or, ideally, to a
hypergraph representation of the network.

We could consider the definition of a hyperstory which is a set of hyperarcs such that the
induced hypergraph is maximal (with respect to hyperarcs), acyclic and contains no white
source-set or white target-set. This would be the equivalent in terms of hypergraphs of our
current definition. Basically, as an hyperarc a in a directed hypergraph is divided in two sets
in(a) and out(a), a white source-set is a set in(a) for some hyperarc that contains only white
nodes and equivalently a white target-set is a set out(a) for some hyperarc a that contains
only white nodes. This alternative definition of a story in terms of a set of hyperarcs may
also be a future direction of the current work.

Finally, a current challenge in metabolomics is to correctly predict which are the metabo-
lites corresponding to the peaks in the spectrum and whether the changes in concentration
are actually significant, which suggests that the model should also account for noisy data
corresponding to an incertitude on the red/green/white labels assigned to the nodes. The
presence in the input of such “grey" nodes that could play the role of either a white or a black
one is another interesting variation of the original problem. Considering even more details
on the metabolomics experiments, it could also be interesting to integrate in the modelling
experiments in which we have a time series, i.e., a collection of linked measurements per-
formed in different moments. Finally, it could also be taken into account the fact that some
metabolites are not possible to be measured experimentally, which is a yet different kind of
“grey" node.

From a theoretical point of view, the complexity of the stories enumeration problem is
unknown. The enumeration algorithm we proposed, even if it works well in practice, gives
no guarantee on the delay between the output of two consecutive solutions. Notice that any
change in the definition might imply a revision of the formal results presented here.

Chapter 4

Precursor Sets

Contents
4.1 Introduction . 67
4.2 Definitions . 69
4.3 Complexity results . 72
4.4 Algorithms for precursor sets enumeration 75
4.5 Performance analysis . 84
4.6 Biological application . 86
4.7 Open problems and perspectives 91

4.1 Introduction

The results presented in this chapter are strongly based on three papers we published on
the enumeration of minimal precursor sets and its applications (Cottret et al. (2008, 2010a);
Acuña et al. (2012b)). In Cottret et al. (2008), we formalised the concept of a minimal pre-
cursor set which corresponds to a set of metabolites that an organism may obtain from its
environment and that enables it to produce a set of metabolic targets of interest. In this
model, we proposed the first definition of precursor set that takes into account the fact that
metabolic networks contain many cycles and that the solutions are expected to pass through
them. In both of our first two papers (Cottret et al. (2008, 2010a)) on this subject, we ap-
plied our method to enumerate all minimal precursor sets for a given set of targets in order
to validate the usefulness of the algorithm for a metabolic analysis, including the study of a
relatively complex symbiotic system (Cottret et al. (2010a)). In this case, the environment
is represented by an insect, Homalodisca coagulata, which hosts within its cells two bacteria,
respectively Baumannia cicadellinicola and Sulcia muelleri. The identification of the pre-
cursor sets for the sets of metabolites each bacterium gives to the symbiotic system (host
and co-resident endocytobiont) enabled to refine the analysis that had been done previously
(McCutcheon and Moran, 2007) of the complementarity between the metabolisms of the two
bacteria and their host. It also suggested that both B. cicadellinicola and S. muelleri might
be completely independent of the metabolites output by the co-resident endocytobiont to
produce the carbon backbone of the metabolites provided to the symbiotic system. More
recently, two new algorithms were proposed that are faster and have an improved memory
usage than the original version of the algorithm, allowing it to be applied to genome-wide
metabolic network reconstruction (Acuña et al. (2012b)).

4.1 Introduction 68

A current limitation of our definition of precursor sets is the fact we do not consider the
stoichiometry of reactions. However, the values that are currently obtained for the stoichio-
metric coefficients may often be not accurate. For instance, 51% of the reactions in KEGG
were considered to be unbalanced in 2004 (Feist et al., 2009) and solving these cases may
become challenging for more complex reactions (Thiele and Palsson, 2010). Our definition
proposes a model based only on the topology of a metabolic network, that is, that considers
the set of substrates and products of each reaction without considering the amounts of each
molecule that are involved in such a reaction. The collection of precursor sets thus defined
should therefore be considered as potential/candidate solutions which could be confirmed or
discarded a posteriori by other sources of information.

While some results were achieved with the first algorithm we proposed (Cottret et al.
(2008, 2010a)), the method suffered of a memory consumption problem due to the necessity
to construct and store in memory a data structure – called the replacement tree - which
could be exponentially larger than the input metabolic network. Moreover, the enumeration
procedure explored such a tree and it was, therefore, not the most efficient way to enumerate
all minimal precursor sets. For small networks (less than 250 nodes), the previous method
runs in an acceptable time, but for bigger networks, it usually runs out of memory. This
limitation restricted the analysis basically to organisms with a very small metabolic network,
which makes it difficult to use it out of the context of endosymbiosis, for which usually the
organisms have undergone a large genomic reduction due to its stable and rich environment
in the host cell, which implies smaller and specialised metabolic networks. More recently,
we presented new algorithms for enumerating all minimal precursor sets that address both
memory requirements and time efficiency (Acuña et al. (2012b)), enabling the method to be
applied also to large metabolic networks such as the human one.

a

b

cz1

z2

r1

r2

r3

Figure 4.1: A metabolic network containing 3 reactions and 5 metabolites. Considering c as a target metabolite,

previous methods could not identify a precursor set for c. Our formal definition of precursor sets that explicitly deals

with cycles allows us to identify the set {a, b} as a candidate solution, provided that an initial amount of z1 or z2 are

available. The algorithm must also guarantee that any internal metabolite used in the synthesis of the target may be

regenerated.

The two main contributions of our methods are the formal definition of a minimal precursor
set and the fact that this formalism takes cycles into account. Before our paper (Cottret et al.
(2008)), previous methods related to the identification of precursor sets lacked in formalism
(Romero and Karp (2001)) or were not able to deal with cycles in the network (Handorf et al.
(2008)). Considering only the topology of a hypergraph, hypercycles like the one shown in
Figure 4.1 may be identified in real metabolic networks and, previously to our first method,
the target c had no precursor set, since it needs z1 that could not be produced due to the
mutual dependance with z2 in the cycle formed by reactions r1 and r2. However, assuming
that either z1 or z2 are present in the cell, then the use of the precursors a and b may produce
c and also reproduce z1 or z2, since they are involved in their own synthesis. Considering
this kind of autocatalytic compounds in the definition of precursor sets allowed us to explore
solutions that were not taken into account before.

4.2 Definitions 69

With the objective of detecting inconsistencies in EcoCyc (the database inside BioCyc
that is dedicated to the bacterium Escherichia coli), Romero and Karp (Romero and Karp
(2001)) used a whole-network approach to find precursors. They defined and used an iterative
process, called forward propagation, that will be presented in more detail later. Basically,
it consists in starting with a set of available metabolites and increasing it, iteratively, by
adding the products of any reaction whose substrates are available (i.e., are present inside the
set). Considering topological sources as potential precursor sets and computing the forward
propagation on this set produces a sub-network, that was later called the scope (Handorf
et al. (2005)) of the initial set. Inspection of the essential metabolites that were not produced
(not present in the scope) allowed them to identify missing nutrients (possibly missing trans-
port reactions) or reactions whose reversibility was not correctly identified in the annotation
process, as well as other kinds of errors in the metabolic network reconstruction.

More recently, a method to identify minimal precursor sets required by an organism to
produce all metabolites contained in a target set was proposed but it also did not consider
cycles in its procedure (Handorf et al. (2008)). The algorithm consisted in starting with an
ordered list of all metabolites that are not in the target set. If the scope of this list produces the
targets, the list corresponds to a precursor set of the target set. The algorithm then proceeds
by minimalising the list, iteratively checking whether the removal of a metabolite from the list
makes one of the metabolites in the target set not be produced anymore. If this is the case, the
metabolite is put back into the list, otherwise the metabolite is identified as not necessary for
target production and is definitively removed from the list. The solution obtained may change
depending on the order in which the metabolites are considered. Computing all the solutions
would require to compute the scope of all possible orderings of the metabolites, which is not
computationally realistic. In order to get an approximation of the solution space, several
random orderings of the metabolites are computed. Even though the method was applied to
more than 400 organisms in order to predict their nutrient requirements, the solutions cannot
be considered minimal precursor sets since cyclic solutions were not taken into account.

This led to the idea of introducing the biologically well-founded concept of “self-regenerating”
metabolites, that will be internally supplied by the cell itself. Those are metabolites one can-
not consider as available in infinite supply, as is the case for precursors, which are provided
by the environment. Such metabolites therefore need to be continuously regenerated, but
they have the ability to participate, in one or more steps, to their own regeneration, and to
the subsequent generation of other metabolites. Self-regenerating metabolites will be part
of at least one cycle. They represent the metabolites that one may consider as continuously
available in the network even though they are not in infinite supply as the precursors are
assumed to be. In Romero and Karp (2001), the authors very informally define what they
called bootstrapping compounds that may be related to our self-regenerating metabolites.

In this chapter, we will cover the evolution of the three proposed algorithms, highlighting
their differences and key features, as well as a time comparison analysis between them after
running the different algorithms for several combinations of metabolic networks and target
sets. We will also provide full proofs of the complexity results of the problem and present
some biological applications of the method. We also refer to the appendix for details on the
implementation of these algorithms and how to use the developed methods.

4.2 Definitions

A metabolic network is modelled as a directed hypergraph G = (M,R) with M the set
of vertices corresponding to metabolites (also called compounds) and R the set of hyperarcs

4.2 Definitions 70

F

G

H
T

I

C

D

AB

E

1

2

7

4
5

6
3

Figure 4.2: A metabolic network. Nodes represent metabolites and hyperarcs represent reactions. Grey nodes are

sources while the black node is the target.

corresponding to reactions. A directed hyperarc of a reaction r ∈ R is an ordered pair of
metabolite sets r =

(
Subs(r),Prod(r)

)
where Subs(r) is the set of substrates of r and Prod(r)

is the set of products of r. Reactions are supposed to be irreversible: each originally reversible
reaction is replaced by two irreversible reactions of opposite direction.

We consider also a set of sources S ⊆M representing the metabolites that are potentially
available in infinite external supply. Sources used as substrates of reactions produce other
metabolites, thereby increasing the set of available ones. In addition, the set T ⊆M denotes
the target set, that is a set of metabolites for which we are interested in inspecting the
alternative ways the cell has to produce them. Given a source set S and a target set T
of metabolites, the aim is to find subsets of S which are able to produce all metabolites of
T . We need now to formally define the meaning of: being able to produce the target. When
stoichiometric information is missing or not (fully) reliable, two definitions have been proposed
to model this concept that can give different solutions to a particular instance.

Before comparing the two approaches, we introduce some notation. Let C be a set of
metabolites ofM . We define RC as the set of reactions that can be fired when the metabolites
in C are present. In other words, RC = {r ∈ R | Subs(r) ⊆ C}. For a given set of reactions
H ⊆ R, we define the sets Subs(H) = ∪r∈HSubs(r) and Prod(H) = ∪r∈HProd(r).

Sequential production of the target

The forward propagation of C, denoted by Fwd(C), is the set of metabolites successively
produced from C using the reactions of the network. Formally, Fwd(C) is the result of the
recursion Ci+1 = C ∪ Prod(RCi) starting from C0 = C and until a fixed point is reached.
For instance, in the network of Figure 4.2, if C0 = {a, b, c} then C1 = {a, b, c, e}, C2 =
{a, b, c, e, h}, and so on until the fixed point {a, b, c, e, h, i, t} is reached. Thus, Fwd({a, b, c}) =
{a, b, c, e, h, i, t}. A pseudocode for the forward propagation algorithm is presented below.

Romero and Karp considered a subset X of the sources S as a precursor set of a target set
T , when T ⊆ Fwd(X) (Romero and Karp, 2001). For instance, the set of sources X = {a, b, c}
is a precursor set of the target set T = {t} since Fwd({a, b, c}) contains t. This iterative way
to calculate what is available from X may however not be enough to model some real cases.
Indeed, the network could have cycles whose metabolites need to be consumed and produced
all at the same time. For instance, in Figure 4.2 reactions r1 and r2 form a cycle that consumes
metabolites c and d to produce f and g. However Fwd({c, d}) = {c, d}, that is, it contains
neither f nor g.

4.2 Definitions 71

Algorithm Fwd(C)

Require: Implicitly, a metabolic network represented as a hypergraph G = (M,R) and a set C ⊆ M of available
metabolites;

Ensure: a set X of metabolites that can be reached from C.

X ← C
newMetabolite ← TRUE
while newMetabolite = TRUE do

for all r ∈ RX , N ←
⋃
prod(r)

if N ⊆ X then
newMetabolite ← FALSE

else
X ← X ∪N

return X

Considering cycles in the target production

In Cottret et al. (2008), we proposed a model which defines a precursor set using a different
approach. Instead of starting the propagation from a subset of the sources, the use of other
metabolites (called internal supply) is allowed, provided such metabolites are produced by
some reaction in a future step of the forward propagation (in addition to the production of
the target). Formally, we define FwdZ(C), the forward propagation of C with Z (as internal
supply), as the result of the recursion Ci+1 = C ∪ Prod(RCi∪Z) starting from C0 = C and
until a fixed point is reached. A subset X of the sources is a precursor set of T if T and Z
are both included in FwdZ(X). For instance, in the network of Figure 4.2, Fwd{f}({c, d}) =
{c, d, f, g, e, h, i, t}. Thus, it produces t but also re-produces f to keep the cycle working.

We define a set of sources X ⊆ S to be a precursor set of T ⊆ M if there exists a set
Z ⊆M such that T ∪ Z ⊆ FwdZ(X). In this case, we say that Z is an internal supply of the
precursor set X.

Of course, the internal supply may be not unique for a given precursor set. In Figure 4.2,
both Z = {f} and Z = {g} are internal supplies for the precursor set X = {c, d}. Observe
also that any set of metabolites which is a precursor set by the Romero and Karp definition
will continue to be a precursor set for this definition just considering Z = ∅.

Precursor cut set

Suppose now that the target is a set of metabolites whose production we want to avoid.
In this case, we can define the notion of a precursor cut set or simply cut set, that is, a
subset X of sources such that, if they are not present, then the target cannot be produced
by any combination of the remaining sources. This concept has a biological application, for
instance, in the case where we want a bacterium to avoid producing some given metabolite
while providing it with a maximal set of resources that enables it to continue doing its other
specific tasks. Notice that in practice, a precursor cut set corresponds to restrictions imposed
directly to the environment (for instance, a controlled environment where some nutrients are
missing) or to block the transport reactions associated with the precursors in the cut set, in
order to avoid the cell to retrieve it from the environment. As an example, in Figure 4.2, the
set {a, d} is a cut set of {t}. Formally, we define a set of sources X ⊆ S to be a precursor
cut set of T ⊆M if and only if the set S \X is not a precursor set of T .

If the target contains more than one metabolite, a cut will avoid the production of the
whole target set but could still produce some of their elements (a strict subset of T). If we
want to block each element of the target, we can slightly modify the network in the following
way: given T = {t1, . . . , t`}, we can define a new target metabolite ttarget and reactions

4.3 Complexity results 72

rt1 , . . . , rt` with Subs(rti) = {ti} and Prod(rti) = {ttarget}. Clearly, a cut set of the new target
set T ′ = {ttarget} must block the production of each metabolite in T .

Factories of metabolites

We give now a simpler and more natural way to grasp the characterisation of a precursor
set X of T by considering, instead of metabolites, a set of reactions F ⊆ R that connects X
with T . Clearly the reactions must verify these two properties:

1. (Feasibility of reactions) Each substrate of the reactions in F is contained in X or is
produced by some reaction in F ;

2. (Production of target) Each metabolite in the target set T (which is not inX) is produced
by some reaction in F .

These two conditions can be summarised in one: T ∪ Subs(F) ⊆ X ∪ Prod(F). In this
case, we say that F is a factory from X to T .

Theorem 7. A set of sources X ⊆ S is a precursor set of T ⊆M if and only if there exists
a factory from X to T .

Proof. If X is a precursor set of T , there exists Z ⊆ M such that T ∪ Z ⊆ FwdZ(X) =
X ∪ Prod(RFwdZ(X)). The set of reactions F = RFwdZ(X) is such that T ⊆ X ∪ Prod(F) and
Subs(F) ⊆ FwdZ(X) ⊆ X ∪Prod(F). Therefore, F is a factory from X to T . Inversely, let F
be a set of reactions such that T ∪ Subs(F) ⊆ X ∪ Prod(F). Defining Z = Subs(F), we have
FwdZ(X) = X ∪ Prod(RFwdZ(X)∪Subs(F))) which clearly contains X ∪ Prod(F). Therefore,
T ∪ Z ⊆ FwdZ(X).

In the example of Figure 4.2, the set {c, d} is a precursor set of {t}, since the set of
reactions F = {r1, r2, r3, r6} is such that {t} ∪ {c, d, f, g, h} ⊆ {c, d} ∪ {f, g, h, i, t}. So F is a
factory from {c, d} to {t}.

4.3 Complexity results

Given a metabolic network G = (M,R) with S ⊆M a set of sources and T ⊆M a set of
target metabolites, we address the theoretical complexity of the following three problems:

MinimalPS(T): find a minimal precursor set X ⊆ S of T .
MinSizePS(T): find a minimum size precursor set X ⊆ S of T .
AllPS(T): enumerate all minimal precursor sets X ⊆ S of T .

We also consider the analogous problems where what is searched are precursor cut sets:
MinimalPCS, MinSizePCS and AllPCS.

Finding a minimal precursor set and a minimal cut set

Given a set X ⊆ S of sources, we can compute the maximal set of reactions Fmax that
satisfy the first condition of the factory definition (feasibility of reactions). Thus, to decide
whether X is a precursor set of a given T , we can compute Fmax of X and check whether T is
included in the products of Fmax. To obtain this set, we use the following recursion: starting

4.3 Complexity results 73

from the whole set of reactions F0 = R, compute the set Fi+1 = RX∪Prod(Fi) until a fixed
point is reached. Defining K = maxr∈R(|Subs(r)|+ |Prod(r)|), we have the following result.

Theorem 8. Given a subset X ⊆ S of sources and a target set T ⊆ M , we can decide in
polynomial time O(|M ||R|+ |R|2K) whether X is a precursor set of T .

Proof. We show the maximality of Fmax. Let F ′ be another set of reactions such that
Subs(F ′) ⊆ X ∪ Prod(F ′). Clearly if F ′ ⊆ Fi then F ′ ⊆ RX∪Prod(F ′) ⊆ RX∪Prod(Fi) = Fi+1.
Since we start with F0 = R, we conclude that F ′ ⊆ Fmax.

The algorithm iterates at most |R| − |Fmax| times. Computing Fi takes O(|M | + |R|K)
time. Therefore, the running time of the whole procedure is O(|M ||R|+ |R|2K).

This method provides also a way to find a minimal precursor set of T . Starting from
X = S, we successively check if when removing a metabolite of X, the targets are still
produced, maintaining in X only those that are needed to produce T . We obtain a minimal
precursor set in |S| iterations. A similar procedure is also valid to find a minimal cut set
starting from X ′ = ∅ and adding sources while the target set is not produced. The set
X = S \X ′ is a minimal cut set.

Corollary 2. Both MinimalPS(T) and MinimalPCS(T) can be solved in polynomial time
O(|M ||R||S|+ |R|2|S|K).

Minimum size precursor set and cut set

Although finding one minimal precursor set of a target set is easy, obtaining a (minimal)
precursor set of minimum size is NP-hard. This result is proved by a reduction from the
NP-complete problem HittingSet (Garey and Johnson, 1990): given a finite set of elements
U and a collection of subsets I = {I1, . . . , In} of U , find a minimum cardinality subset of
elements H ⊆ U such that H intersects all the subsets in I.

b

a

c

e

d

I2

I1

I3

a

b

c

d

e

I2

I1

I3

t

Figure 4.3: Reduction of an instance of the hitting set problem. Each hitting set of I = {I1, I2, I3} corresponds to
a precursor set of {t} (and vice versa).

Theorem 9. The problem MinSizePS(T) is NP-hard.

Proof. We show hardness by proving completeness of the decision version where we ask if a
precursor set of size at most k exists. Theorem 8 implies that this decision version is in NP.

We make a polynomial time reduction from the decision version of HittingSet, asking
if there exists a hitting set of size at most k. Consider H, I and k a hitting set instance with
I = {I1, . . . , In}. For each element h in H, we create a vertex h inM , and for each set Ij in I,
we create a vertex Ij inM (see Figure 4.3). We create an extra vertex t inM . For each h ∈ Ij ,

4.3 Complexity results 74

we create in R an arc rhj going from h to Ij . Moreover, we create the hyperarc rt having
Subs(rt) = {I1, . . . , In} and Prod(rt) = {t}. We define t to be the only target metabolite, and
we define the vertices corresponding to the elements of H as the sources S of G.

Observe that in the above reduction, there is a one-to-one relation between hitting sets and
precursor sets, and a related pair is of the same size. This implies that MinSizePS is as hard
to approximate in polynomial time as HittingSet, which is known to be APX-hard (Ausiello
et al., 1999). Namely, no polynomial time algorithm for MinSizePS can have approximation
ratio o(log n) unless P=NP (Raz and Safra, 1997).

A similar proof shows NP-hardness for the problem of finding a minimum size cut set.
We consider in this case the same reduction but with two modifications (Figure 4.4, left): (a)
replace the hyperarc rt (from {I1, . . . , In} to t) by n separate reactions, from each Ij to t,
for j ∈ {1, . . . , n} and (b) replace, for each Ij , the set of reactions producing Ij by a single
reaction rj producing Ij from the whole set of elements of Ij . In this case, each hitting set
corresponds to a cut set. Therefore, MinSizePCS(T) is NP-hard and APX-hard.

a

b

c

d

e

I2

I1

I3

a

b

c

d

e

I2

I1

I3

t

a'

b'

c'

d'

e'

t

Figure 4.4: Modification of the hitting set reduction to the proof of hardness of MinSizePCS (left) and to the proof

of Proposition. 3 (right).

Related hardness results are as follows:

Proposition 3. Given a precursor set X of T , the following two problems are NP-hard:
1. Find a minimum cardinality set of metabolites Z such that Z is an internal supply

of X.
2. Find a minimum cardinality set of reactions F such that F is a factory from X to T .

Proof. We modify the reduction presented in the proof of Theorem 9 as follows (Figure 4.4,
right): for each element h in H, we create another extra vertex h′ in M , and two reactions
rhh′ and rh′h from h to h′ and from h′ to h respectively, the set of sources S is empty and
the remaining of the construction stays the same. It is easy to see that the only minimal
precursor set of T is the empty set. Using similar arguments as in the previous reduction, we
have that any possible set Z corresponds to a hitting set. Analogously, any possible factory
F corresponds also to a hitting set.

Enumerating all minimal precursor sets and cut sets

We showed that MinimalPS(G,S, T) can be solved in polynomial time. Nevertheless,
if we are interested in finding all minimal precursor sets of T , the number of solutions can
grow exponentially. We are therefore interested in knowing whether AllPS can be solved in
polynomial total time, that is, polynomial in the size of the input and output (Johnson et al.,
1988).

4.4 Algorithms for precursor sets enumeration 75

Given a boolean ∧,∨-formula f (that is, with no negation), a prime implicant is a minimal
set of variables such that if they are all true then f is true (for instance, {p, s} is a prime
implicant of f = (p ∨ q) ∧ (r ∨ (p ∧ s)) ∧ s). Enumerating the set of all prime implicants of f
cannot be done in polynomial total time unless P=NP (Gurvich and Khachiyan, 1999). We
show that this problem can be reduced to AllPS.

Theorem 10. The enumeration problem AllPS cannot be solved in polynomial total time
unless P=NP.

Proof. Let f be an ∧,∨-formula. The setM of metabolites corresponds to the set of variables
plus one metabolite for each conjunction and disjunction inside the formula (see Figure 4.5).
The sources are the metabolites corresponding to each single variable. The set of hyperarcs
is as follows: for each metabolite representing a conjunction c in f , there is a single hyperarc
from the clauses of c to the metabolite c, and for each metabolite representing a disjunction d,
there are arcs from each term of d to the metabolite d. The target set is a singleton containing
the metabolite representing f . Clearly, a minimal precursor set of T corresponds to a prime
implicant of f and vice versa.

r

^

(p s)^

p q

^

p s^ (p q)

^

s^ (r

^

)(p s)^ ^

q

p

s

r

Figure 4.5: Graphical representation of the reduction presented in Theorem 10.

Observe that the reduction holds even in the case of networks without cycles (for any
reasonable definition of cycle). This result is also valid if we consider the enumeration of all
minimal precursor cut sets of T . Indeed, in the reduction of Theorem 10, a minimal cut set
corresponds exactly to a prime implicate of the boolean function f , that is, to a minimal set of
variables such that if all are false then f is false. As for prime implicants, enumerating the
set of prime implicates cannot be done in polynomial total time unless P=NP (Gurvich and
Khachiyan, 1999). Thus, the enumeration problem AllPCS cannot be solved in polynomial
total time unless P=NP.

4.4 Algorithms for precursor sets enumeration

In this section, we present our three methods for computing minimal precursor sets for
a target set T . To facilitate the exposition, we suppose that the metabolic network has the
following properties: (a) each source x ∈ S is not produced by any reaction, (b) each reaction
belongs to at least one factory from the sources to the target, and (c) the target set is a
singleton. It is not difficult to see that by applying the following preprocessing steps, we
transform any network in order to satisfy these conditions without changing the collection of
precursor sets of a target T :

(a) Sources are not products: Rename as x′ each x in S that is the product of at least one
reaction. Then, add a new reaction with substrate a new metabolite labelled x and product
x′. The set of sources continues to be S.

4.4 Algorithms for precursor sets enumeration 76

(b) All reactions in a factory: Compute the maximal factory (see proof of Theorem 8)
and remove all reactions in the complement. Remove all unconnected metabolites.

(c) Singleton target set: If T is not a singleton, add an extra metabolite t and an extra
reaction Rt such that Subs(Rt) = T and Prod(Rt) = t. The minimal precursor sets of t are
the minimal precursor sets to all substrates of Rt, i.e., to the original target set T .

There are two key features that are common to the three algorithms we proposed for
precursor sets enumeration. The first one is that we always do a backtracking from the single
target, performing a sort of reversed depth-first search on the hypergraph by using reactions in
their opposite direction. In this way, the factories that produce T starting from any minimal
source sets are covered.

The second key feature of the three algorithms is the decomposition into subproblems,
where each subproblem has a set M as target set. Starting from M := T , two kinds of
subproblem decompositions are successively applied:

(a) Target decomposition: Given a target set M = {m1, . . . ,mk} and X a precursor set of
M , then X can be written as X = ∪ki=1Xi where each Xi is a precursor set of Mi = {mi}.
Thus, we can enumerate PM by enumerating P{m} (the minimal precursor sets of {m}) for
each metabolite m ∈ M and taking all the corresponding cross-unions of solution sets (one
set from each collection).

(b) Reaction decomposition: If the target is a singleton M = {m} and {r1, . . . , r`} is the
set of all reactions producingm (which is not empty ifm is not a source), thenX is a precursor
set of M if and only if X is a precursor set of some Mi = Subs(ri) with i ∈ {1, . . . , `}. Thus,
to enumerate P{m}, we can enumerate PSubs(r) for all the reactions r that produce m, and
then take the union of the collections.

In both decompositions, solutions are obtained after discarding the possible non-minimal
sets obtained. Successively alternating these decompositions, the aim is to have subproblems
where the target is a singleton source {s}, which has the set {s} itself as the only precursor
set, that is, P{s} =

{
{s}
}
.

Algorithm Pitufo: Replacement Tree

Our first approach to the problem (Cottret et al. (2008)) was the algorithm pitufo that
enumerates all minimal precursor sets by building a replacement tree, which represents all
paths obtained going from T to the sources by using the reactions in reverse order. The idea
of this data structure is that in any two consecutive levels of the tree, we replace a compound
at the top level by all the sets of metabolites that produce it at the bottom level, as exemplified
in Figure 4.6 that shows a metabolic network and its corresponding replacement tree. This
data structure shows exactly the application of a target decomposition followed by as many
reaction decompositions as needed.

The replacement tree may be seen as a materialisation of the backtracking and decom-
position into a subproblem approach. This hierarchical bipartite tree data structure has two
kinds of nodes: metabolites, drawn as circles in Figure 4.6, and reactions, drawn as squares.
The root of the tree is the target metabolite and is the only node in the first level of the
tree. At the second level, there are as many reaction nodes as there are reactions in the
network producing the target, and at the 3rd level there are metabolite nodes corresponding
to the substrates of each of such reaction, each one of them connected to their corresponding
reaction node. We recall that the idea is that any of these sets of substrates is able to produce
the target and, in this sense, we replace the production of the target by the presence of all of
such substrates. The structure continues to be built in a recursive manner, with each of the

4.4 Algorithms for precursor sets enumeration 77

t

e

b

ayx c a

p

f

c

z

aye

b p

b

d c b

ayx c a d c

q

q

g

g

g
a

t
a

e

p

b
x

d

c f

z
y

qq

g

a) metabolic network b) replacement tree

Figure 4.6: Example of a replacement tree (b) corresponding to a metabolic network (a) for the target set T = {t}.
Circles represent metabolites and squares represent reactions. At each level, one metabolite is replaced by the substrates

of the reactions that produce it. The target is presented in black, precursors are grey and the remaining metabolites

are white. Metabolites identified as internal supply are denoted by an underlying bar. Notice that on the left branch,

second reaction producing b, the metabolite a is marked as repeated even if it seems that it does not appear in this

branch of the replacement tree but, in fact, a is one of the products of the reaction e→ a+ t. Finally, notice that the

set of substrates {d, c, g} of the 3rd reaction producing b does not need to be analysed since it is not minimal compared

to the set of non-repeated substrates of the 2nd reaction, which contains only the metabolite c.

substrates playing the role of the target at each new recursive call. There are two stop condi-
tions for this recursion: finding a precursor or finding a metabolite that is already present on
a given branch up to the target. Precursors are naturally expected to be the leaves of such a
tree and represent a natural stop condition while repeated metabolites identify a cycle in the
network. The metabolites that belong to such cycles are the candidates to be internal supply
metabolites and thus are automatically identified by the algorithm. Notice that in Figure 4.6,
the precursors are identified in grey while the internal supply metabolites are annotated with
an underlying bar.

Finally, it is important to make a distinction between the or relationship between a
metabolite node and the list of possible reactions that are able to produce it and the and
relationship between a reaction node and its substrates, since for the reaction to take place all
of such substrates must be present. The algorithm basically consists in building recursively
the replacement tree and, in a second step, compacting it from the sources to the target until
it reaches depth 2, where the solutions are easily recovered as demonstrated in figure 4.7. As
the solutions are minimal, there are several steps in which intermediate solutions are elimi-
nated due to non-minimality. For instance, notice that while doing the compression from the
replacement tree shown in Figure 4.7(c) to the replacement tree shown in Figure 4.7(d), the
reaction x+ y+ q → c is not minimal with respect to y+ q → c, and therefore is not added to
the final tree obtained after the compression. The main problem of this method is the huge
amount of memory needed to build the replacement tree, which made the algorithm useful
only for small networks.

4.4 Algorithms for precursor sets enumeration 78

t

e

b

ayx c a

p

f

c

z

aye

b p

b

d c b

ayx c a d c

q

q

g

g

g

t

e

b

ayx c a

p

f

c

z

aye

b p

b

d c b

ayx c a d c

q

q

g

g

g

t

e

b

ayx a

p

f

c

z

ayp

b

ayx c a d c

qq

g

g

t

e

b

ayx a

p

f

c

z

ayp

b

ayx c a d c

qq

g

g

a) b)

t

e

yx p

f

c

z

ayp

b

ayx c c

q

q
g

g

t

e

x p

f

c

z

ayp

b

ayx c c

q

q
g

g

c)

pp

t

yx p
f

cz

p q

q

t

x p
f

cz

y q

q

d)

pp

qq

e)
t

yx p
f

z p q

q

t

x p
f

z y q

qpp

qq zz

f)
t

yx p qq

t

x p y qqpp zz

Figure 4.7: Example of the compression steps in which a replacement tree is compressed from bottom to up until

the minimal precursor sets are directly connected to the target node.

Including the available metabolites

Before presenting the two newer algorithms, let us explore in more detail the topological
information given by the replacement tree, that highlights structural properties of the mini-
mal precursor set enumeration problem, such as the stop condition based on cycles and the
possibility of pruning branches due to the expected minimality of the solutions.

One important step of the pitufo algorithm is to identify a set of metabolites that are
in the same branch up to the target in order to identify cycles. For this reason, we must
explicitly include in the input of the subproblems the set of available metabolites, that is, the
metabolites already analysed in previous steps of the algorithm. In this way, we can avoid
continuing the search for precursor sets of these metabolites.

Thus, given a set A of available metabolites, we conveniently consider the following gen-
eralisation of the precursor set definition: given a set of sources S, a target set M and a set A
of available metabolites, we say that a set X ⊆ S is a precursor set of M when A is available
if there is a factory from X ∪A to M .

4.4 Algorithms for precursor sets enumeration 79

Observe that, if PM (A) denotes the collection of all precursor sets ofM when A is available,
then PT (∅) is exactly the collection of all minimal precursor sets of T . Thus, starting from
T and having A = ∅ available, we successively apply the target and reaction decompositions
increasing, at each step, the set of available metabolites. The recursion continues solving the
subproblems P{m}(A) until one of these two base cases appears:

• (a) m is available: if m is in A, then P{m}(A) contains only the empty set as element,
i.e. P{m}(A) =

{
∅
}
,

• (b) m is not available but is a source: if m ∈ S \A, then P{m}(A) =
{
{m}

}
.

We show how the set of available metabolites can be increased in each subproblem de-
composition. Observe that increasing the set A of available metabolites is not only necessary
to avoid cycling. The bigger is this set, the shorter are the factories that produce the given
target when A is available, that is, we can arrive faster to the base case (a). Thus, in each
decomposition, we try to maximise the set of available metabolites that can be added without
changing the solution of the original problem.

As mentioned before, to enumerate the collection PM (A), we can enumerate the collections
P{mi}(A) for each mi ∈ M and compute all possible cross-unions of its elements (one from
each collection). In fact, in the enumeration of the solutions of P{mi}(A), we can include as
available any other metabolite inM different frommi, that is, P{mi}

(
A∪(M \{mi})

)
. Indeed,

we know that these metabolites will be produced by the precursor sets given by the other
parallel subproblem solutions. In the next lemma, for a given collection of sets X, minimal[X]
is the collection of all sets of X that are not supersets of any other set of X.

Lemma 3. Given the sets M = {m1, . . . ,m`} ⊆ M and A ⊆ M , we have the following
relation:

PM (A) = minimal
[{ ⋃̀

i=1

Xi s.t. Xi ∈ P{mi}
(
A ∪ (M \ {mi})

)}]
Proof. Given X ∈ PM (A), there is a factory F such that M ∪ Subs(F) ⊆ X ∪ A ∪ Prod(F).
Therefore, {mi} ∪ Subs(F) ⊆ X ∪ A ∪ Prod(F) for all mi ∈ M . Adding (M \ {mi}) to the
right side, we conclude that F is a factory from X ∪ (M \ {mi})∪A to {mi} for all mi ∈M .

Conversely, given for all mi ∈M the sets Xi ∈ P{mi}((M \ {mi})∪A), there exist sets Fi
such that {mi}∪Subs(Fi) ⊆ Xi∪ (M \{mi})∪A∪Prod(Fi) for all mi ∈M . This implies that
mi ∈ Xi∪A∪Prod(Fi), and also implies thatM ∪Subs(F) ⊆ X∪M ∪A∪Prod(F) where F =
∪iFi and X = ∪iXi. These two relations in turn imply M ∪ Subs(F) ⊆ X ∪A∪Prod(F).

In the case of reaction decomposition, computation of P{m}(A) (when we are not in one of
the base cases) requires to compute PSubs(r)(A) for any reaction r producing m. Clearly, since
r produces m, we can include m as available in the subproblems, that is PSubs(r)(A ∪ {m})
(which avoids getting into an endless loop). Furthermore, we can also include any other
product of r, that is PSubs(r)(A ∪ Prod(r)).

Lemma 4. Given m ∈M and A ⊆M , if m /∈ S ∪A, then we have the following relation:

P{m}(A) = minimal
[⋃
∀r producing m

PSubs(r)
(
A ∪ Prod(r)

)]

4.4 Algorithms for precursor sets enumeration 80

Proof. Consider X ∈ S and F ⊆ R such that Subs(r)∪Subs(F) ⊆ A∪Prod(r)∪X ∪Prod(F).
Since m ∈ Prod(r), we have {m} ∪ Subs({r} ∪ F) ⊆ A ∪X ∪ Prod({r} ∪ F). Hence, {r} ∪ F
is a factory from A ∪ X to {m}. Conversely, consider X ∈ S and F ⊆ R a factory from
X ∪ A to the target {m}. Then F must contain a reaction r that produces m. Therefore,
Subs(r) ∪ Subs(F) = Subs(F) ⊆ A ∪X ∪ Prod(F) ⊆ A ∪ Prod(r) ∪X ∪ Prod(F). F is also a
factory from X ∪A ∪ Prod(r) to Subs(r).

Hence, the collection of sets X having a factory from X ∪A to the target {m} is the same
as the collection of sets of X having a factory from X ∪ Prod(r) ∪ A to Subs(r) for any r
producing m. By considering minimality on each side, we conclude the proof.

Pruning solutions by minimality

While performing reaction decomposition, there might exist reactions that can be a priori
discarded because they do not give any minimal solution. Indeed, if r and r′ produce m, and
furthermore if the set of substrates of r that are not in A is a subset of the set of substrates
of r′ that are not in A, then for any solution to the subproblem defined on Subs(r′), we
have a solution smaller or equal on Subs(r). In other words, any solution given by r′ is
not minimal or is included in the solutions given by r. Therefore, we can avoid computing
PSubs(r′)(Prod(r′) ∪A) without losing minimal precursor sets.

Lemma 5. Let r and r′ be two reactions producing m such that Subs(r) \ A ⊆ Subs(r′) \ A.
Then for any solution X ′ ∈ P

(
Subs(r′),Prod(r′)∪A

)
, there is a solution X ∈ P

(
Subs(r),Prod(r)∪

A
)
such that X ⊆ X ′.

Proof. Since X ′ ∈ PSubs(r′)(Prod(r′) ∪ A), there exists X ′ such that Subs(r′) ∪ Subs(F) ⊆
Prod(r′) ∪ A ∪X ′ ∪ Prod(F). Therefore Subs(F ∪ {r′}) ∪ A ⊆ A ∪X ′ ∪ Prod(F ∪ {r′}). By
hypothesis, Subs(r) ⊆ Subs(r′)∪A, and then we can add Subs(r) to the left side of the previous
equation: Subs(r)∪Subs(F ∪{r′})∪A ⊆ A∪X ′∪Prod(F ∪{r′}). By removing the union of A
on the left and adding the union of Prod(r) on the right, we obtain Subs(r)∪Subs(F ∪{r′}) ⊆
A∪Prod(r)∪X ′∪Prod(F ∪{r′}). In other words, F ∪{r′} is a factory from A∪Prod(r)∪X ′
to Subs(r). We conclude that there exists X ⊆ X ′ such that X ∈ PSubs(r)(Prod(r) ∪A).

Thus, if we compute the solutions of P{m}(A) by using Lemma 4, we can first compute
Subs(r) \A for all reactions r producing m and not consider those reactions where this set is
not minimal.

Algorithm Pitufina: Target-Reaction Decomposition

Our second algorithm, called Pitufina, consists in successively applying target and reac-
tion decompositions using the procedures TargetDecomp and ReactionDecomp defined below
until reaching the base cases. The first method uses the subroutine CrossUnions(U, Pm) that
computes the collection of all unions of one set of U and one set of Pm. The idea is exactly
the same as the one explored by Pitufo but avoiding to build the replacement tree, i.e.,
now the algorithm traverses directly the metabolic network, keeping track of the path from
the target to the sources. Running TargetDecomp(M ,A), we obtain exactly all the minimal
precursor sets of M when A is available. Therefore, Pitufina algorithm is simply given by
the execution of TargetDecomp(T ,∅).

The idea of the TargetDecomp procedure is to find all minimal precursor sets that produce
all metabolites contained in the set M , considering that the metabolites in the set A are
available. For each metabolite m ∈ M , the algorithm first checks if m ∈ A or if m ∈ S

4.4 Algorithms for precursor sets enumeration 81

Algorithm TargetDecomp(M ⊆M , A ⊆M)
Require: A set M of metabolites and a set A of available metabolites.
Ensure: Minimal precursor sets that produces M .

U :=
[
{}
]

for all metabolite m ∈M do
if m is in A then

Pm :=
[
{}
]

else
if m is in S then

Pm :=
[
{m}

]
else

Pm :=ReactionDecomp(m, A ∪ (M \ {m}))
U := CrossUnions(U, Pm)

return minimal(U)

because these are the two stop conditions. In the first case, a cycle involving m was identified
and in the second case m is a precursor set. If both checks fail, then the algorithm has to
dig deeper to find the minimal precursor sets that allow the production of m and it calls the
procedure ReactionDecomp to obtain such a response, updating the set of available metabolites
by adding the siblings of m in the set M . The algorithm finishes by returning a cross union
of the solutions obtained for each m ∈ M , i.e., the minimal precursor sets for producing the
whole set M of metabolites.

Algorithm ReactionDecomp(m ∈M , A ⊆M)
Require: A target metabolite m and set A of available metabolites.
Ensure: Minimal precursor sets that produce m.

P :=
[]

;
for all reaction r producing m with Subs(r) \A minimal do

Ur :=TargetDecomp(Subs(r), A ∪ Prod(r))
P := P ∪ Ur

return minimal(P)

The procedure ReactionDecomp, on its turn, has to solve the problem of finding the min-
imal precursor sets for one metabolite m, considering that the metabolites in the set A are
available. The algorithm consists in identifying the reactions r that are able to produce m
and to filter out the ones that are not minimal. An important remark is that the minimality
test is made considering only non-available metabolites, i.e., ignoring the ones contained in
the set A. For each reaction r producing m, as all its substrates also need to be produced for
the reaction to take place and for m to be produced, we have a new instance for the TargetDe-
comp algorithm considering Subs(r) as the setM of target metabolites and including Prod(r)
in the set A of available metabolites. The procedure finishes by returning the minimal sets
obtained after processing all of such reactions.

Algorithm Papa Pitufo: Including factories as pseudo-reactions

A limitation of Pitufina is its dependency on the procedure ReactionDecomp(m,A), that
outputs all precursor sets of {m} when A is available. Therefore, if X is a set included in
the output, we know that there exists a factory from X ∪ A to {m}. This dependency is a
problem in the cases where ReactionDecomp is called more than once for the same metabolite
m and with a similar (or equal) set of available metabolites A′. Indeed, then most of the
successive decompositions will be repeated again until the base cases are reached and a result
very similar (or equal) to X will be produced as output. In this sense, the algorithm has no
memory about the factories previously computed.

4.4 Algorithms for precursor sets enumeration 82

We propose a new algorithm that, each time that a decomposition is finished, includes this
information in the network by adding pseudo-reactions representing the previously computed
factories. For instance, if in the network, there is a factory from X ∪ A to {m} given by
reactions r1 and r2, then we include a pseudo-reaction r̄1+2 with Subs(r̄1+2) = X ∪ A and
Prod(r̄1+2) = {m}. Clearly this operation is safe: the precursor sets of T do not change.

Moreover, we do not want to lose the information about the remaining of the metabolites
produced by the factory, which are used to increment the set A of available metabolites. For
this reason, we associate to each pseudo-reaction r̄ a set Int(r̄) of internal available metabolites
which contains any metabolite produced by the reactions represented by r̄. Thus, if we use
this reaction in a future decomposition, we can include the metabolites in this set in the
current set A of available metabolites. If we define Int(r) = Prod(r) for any original reaction
r of the network, then we do not need to distinguish between reactions and pseudo-reactions.
In the previous example, we have then that Int(r̄1+2) = Int(r1) ∪ Int(r2).

Adding new pseudo-reactions to the network decreases the number of reactions of the
factories from X to {m}, since it creates shortcuts that come directly from the sources to m.
However, to really decrease the execution time, we need to ensure that the algorithm will not
consider again the original factory. Otherwise, if m is revisited, the algorithm would analyse
both the original factory and the new one containing the new added reactions. To avoid this,
we delete the original reaction producing m. Of course this operation must be done in a way
that guarantees that the collection of minimal precursor sets of T is maintained.

Suppose that we want to delete a reaction r producing m. Notice that any factory from
X to m that contains r must also contain at least one reaction producing each substrate of
r (except the sources). Thus, if r is merged with each set of such reactions, then r can be
removed without modifying the minimal precursor sets.

More formally, given a reaction r, we say that a set of reactions R is a predecessor reaction
set of r, if R produces all the substrates of r that are not sources, that is, Prod(R) ⊇ Subs(r)\S.
Let Rmin(r) be the collection of all minimal predecessor reaction sets of r. Clearly, any factory
containing r must also contain a set R ∈ Rmin(r). The method Replace(r), shown below,
explains how to remove reaction r and add pseudo-reactions corresponding to the merge of
r with every reaction set R ∈ Rmin(r). Figure 4.8 provides an example of how the Replace
method works.

Algorithm Replace(r ∈ R)
Require: A reaction r to be replaced.
Ensure: Removal of r and its replacement by pseudo-reactions that merge r with reactions producing Subs(r).

Compute Rmin(r) = min{M ⊆ R | Prod(M) ⊇ Subs(r) \ S}
for all set M ∈ Rmin do

Add a new reaction r̄M to the network
Prod(r̄M) := Prod(r)
Int(r̄M) := Int(M) ∪ Int(r)
Subs(r̄M) := (Subs(M) ∪ Subs(r)) \ Int(r̄M)

Remove r from the network

Lemma 6. Let r ∈ R be a reaction of the network G and let G′ be the network that results
from applying the procedure Replace(r). Then, X is a precursor set of T in G if and only if
X is a precursor set of T in G′.

Proof. The factories in G which do not include r are factories also in G′. Let F ⊆ R be a
factory from X to T in G which contains r. Clearly, F must contain a set R ∈ Rmin(r). Thus,
the set F ′ = F ∪{r̄R} \ {r} is a factory from X to T in G′. Conversely, if F ′ is a factory from

4.4 Algorithms for precursor sets enumeration 83

m

b

m,f

0r

c

a,e

1r

a

f

b

3r

d

a

2r

e

s

m

a,b,m,f,e

013r
a,b,m,f

023r

b

c

a,e

1r

a

f

b

3r

d

a

2r

e

s

Figure 4.8: Example of the application of Replace to reaction r0. Left: Reaction r0 has internal production m and

f (enclosed in a rectangle). The substrates of r0 are s (which is a source), a and b. The collection Rmin(r0) contains

the minimal sets of reactions that produce a and b, that is, Rmin(r0) = [{r1, r3}, {r2, r3}]. Right: We replace r0 by

new reactions corresponding to the merge of r0 to each set of reactions of Rmin(r0). Thus, reaction r0 is replaced by

reactions r̄013 and r̄023. Notice that the substrates of r̄013 do not include substrates of r3 since they are internally

produced by r1 and r0.

X to T in G′ containing the set Rnew = {r̄R1 , . . . , r̄Rk
} of new reactions added by Replace(r),

then F = (F ′ \Rnew) ∪ {r} ∪
⋃k
i=1Ri is a factory from X to T in G.

We define a new algorithm Papa Pitufo to compute all precursor sets of a target T
based on the idea of reaction replacement. The following preprocessing of the network is
required: a new metabolite t and a new reaction rt are created, such that Subs(rt) = T and
Prod(rt) = {t}. Clearly, the minimal precursor sets of {t} are exactly the minimal precursor
sets of T .

Starting from r := rt, Papa Pitufo traverses the network in the same way that Pitufina
does. However, instead of computing the minimal solutions at each step down, Papa Pitufo
goes deep in the recursion until finding a reaction r satisfying the following two conditions:
(a) not all substrates of r are in the base cases, and (b) all substrates of all reactions in the
next level of the recursion are in the base cases.

When such a reaction is found, then it is replaced by new reactions. Successively removing
and adding reactions in this way, we decrease the size of the factories from S to {t}. Finally,
the last reaction removed is rt which is replaced by new reactions producing t and having only
sources as substrates, in a process very similar to the compression of the replacement tree
data structure. The substrates of each reaction correspond exactly to a minimal precursor set
of {t}.

Running Papa Pitufo(rt, ∅) we obtain a network where the minimal precursor sets are
exactly the substrate sets of all the reactions that produce t. The network can also contain
many other reactions, but they are not even connected to t.

4.5 Performance analysis 84

Algorithm PapaPitufo(r0 ∈ R,A ⊆M)
Require: A reaction r producing the target and a set A of available metabolites.
Ensure: All factories from X to t will replace r0, thus the minimal precursor sets of t may be easily recovered.

M := Subs(r0)
if M contains a metabolite not in A ∪ S then

for all metabolite m ∈M \ (A ∪ S) do
NewA := A ∪ (M \ {m})
for all r producing m with Subs(r) \NewA minimal do

PapaPitufo(r, NewA ∪ Int(r))
Replace(r0)

4.5 Performance analysis

Extensive tests were performed in order to measure the performance of the different al-
gorithms on real metabolic networks. These algorithms were compared for several different
singleton target sets (for instance, amino-acids, metabolites related to the synthesis of the cell
wall, DNA, RNA, membranes, etc.) in 7 networks of different sizes and topologies downloaded
from MetExplore (Cottret et al., 2010b). Ubiquitous metabolites were filtered out and the
split reactions using pairs of co-factors option was chosen.

We adopted an automatic process to define the set of sources based on the topology of the
network. A metabolite m is considered a source if it satisfies one of these two conditions: (a)
m is not the product of any reaction, or (b) m is involved in only two reactions corresponding
to both directions of an originally reversible reaction (i.e. m is substrate in one and product in
the other). The target sets were chosen based on their role: amino-acids, metabolites related
to the synthesis of the cell wall or DNA, etc.

Removing void cycles

There are some cycles that we know a priori that are not realistic since they are able to
produce compounds outside the cycle without the need of any input. In particular, the two
directions of an originally reversible reaction form a cycle which can produce its metabolites
without using any external source. These void cycles must be avoided in factories since they
may create fake solutions in which an empty set of metabolites produces the target.

In order to avoid void cycles in factories, we preprocess the input network breaking this
kind of cycles by removing some reactions. Specifically, starting from a set M of metabolites
containing only the target and an empty set R of reactions, we include in R a randomly
chosen reaction producing a metabolite of M unless its inclusion generates a void cycle. The
substrates of the added reactions are included in M . Successively repeating this process we
obtain a network with no void cycles. Notice that this process corresponds to a heuristic
whose result depends on the order in which reactions are chosen to be included in R.

Benchmarks

Table 4.1 presents an extract of the results for pitufo, Pitufina and Papa Pitufo. For
the two last ones, we also tried a variation turning on and off a minimality test that had a
cost to be checked but that could save effort on processing by pruning non-minimal branches.
The targets presented are those for which finding the minimal precursor sets required more
time considering the times obtained by Pitufina and Papa Pitufo with the minimality
test turned on. The table shows, for each network, the size of the sets of metabolites and
reactions, and for each target, the size of the preprocessed network, the number of precursor

4.5 Performance analysis 85

sets found and the time in seconds that each algorithm spent.
All algorithms have been implemented in Java, more details on the modelling and coding

aspects will be given in the Appendix, and the running times were collected using a cluster
for the computation and setting a limit of 1GB of RAM memory for each process. Although
pitufo may be fast for small networks, its use is limited since, as the size of the networks
grows, the method takes a long time to finish, and for some targets it does not finish in the
given time limit of 24 hours. This already justifies the other two methods, since they do not
present the same behaviour for larger networks.

Table 4.1: Runtime (in seconds) for computing minimal precursor sets of three singleton targets in 7 different networks

using 5 methods: pitufo, Pitufina without and with the minimality pruning (resp. All and Min) and Papa Pitufo

without and with the minimality pruning (resp. All and Min). All methods were applied to the same preprocessed

network on each target. Notice that the same instance (and not a random one) was used for collecting running time for

the different methods.

Network (|M |/|R|) pitufo Pitufina Papa Pitufo
Target (|M |/|R| after preprocess) All Min All Min
S. muelleri (75 / 65)
L-Arginine (33/22) 0.017 0.062 0.02 0.015 0.018
L-Isoleucine (32/21) 0.008 0.069 0.02 0.015 0.016
L-Lysine (31/20) 0.014 0.084 0.019 0.021 0.016
Carsonella Ruddii (114/126)
L-Leucine (86/56) 0.005 0.106 0.046 0.035 0.047
L-Isoleucine (83/49) 0.055 0.105 0.032 0.036 0.040
L-Valine (83/49) 0.037 0.091 0.030 0.028 0.035
B. cicadellinicola (236/229)
Octapremyl diphos. (149/160) 0.726 0.283 0.209 0.221 0.195
Tetrahydrofolate (148/149) 0.337 0.227 0.170 0.237 0.179
Heme-O (150 / 161) 1.164 0.319 0.208 0.217 0.172
B. aphidicola (396/338)
Pyruvate (219/87) 0.082 0.131 0.105 0.105 0.104
dGTP (206/76) 0.099 0.138 0.126 0.118 0.101
UTP (219/87) 0.113 0.117 0.099 0.148 0.104
Yeast (703/1010)
FADH2 (444/314) * 14.39 5.55 7.27 14.55
L-Histidine (415/269) * 5.55 4.80 5.02 6.62
L-Aspartate (410/ 274) 176.40 4.53 4.65 4.82 4.66
Human (997/1225)
L-Alanine (710/359) 5,058.27 5.15 3.34 10.76 10.78
Seriapterine (698/329) * 3.19 2.96 6.85 2.88
L-Cysteina (150/161) 5,579.85 3.32 3.32 4.22 3.17
E. coli (1010/1164)
L-Aspartate (714/507) * 2,139.01 3.32 10.57 47.72
L-Metionine (737/545) * 632.20 13.62 14.08 14.17
Glycine (706/503) * 553.21 11.55 11.01 13.90
In the cases marked ’*’, the algorithm did not finish within 24 hours.

For each target, the number of metabolites and reactions after void cycle deletion is indicated.

4.6 Biological application 86

Concerning the minimality check, we may observe that it is not necessarily true that it
improves the running time. In some cases, doing the check may even lead to worse results (ex:
Yeast, target FADH2, Papa Pitufo method), while in others it may have a strong positive
impact on the execution time of the algorithm which becomes 700 times faster (ex: E. coli,
target L-aspartate, Pitufina method).

Notice also that as the size and complexity of the networks increase, the number of different
minimal precursor sets found increases also, and it does this at a rate faster than the increase
of the time needed to compute them.

Computing solutions for several preprocessed networks

As mentioned before, the network free of void cycles that is given by the heuristic proposed
depends on the order in which reactions are added to R. Thus, different orders can generate
different minimal precursor sets. To recover as many solutions as possible, we can repeat the
search for precursors on several different results of the preprocessing part. In order to analyse
the effect of this heuristic on the algorithms, we successively repeated this random process
while computing, at each repetition, the number of new precursor sets obtained. The process
stops when no new precursor set is recovered in 10 consecutive repetitions. Analysing the
results for three different targets of E. coli, this convergence criterium was reached in less
than 100 iterations. In the three cases, more than 50% of the solutions were recovered in the
first 6 repetitions and more than 80% in the first 50 iterations (see Table 4.2).

Table 4.2: Computation of minimal precursor sets of the E. coli network for three targets,
using several different preprocessed networks .

Convergency Prec. Iteration reaching X% of Prec. sets
Target Iteration Time (sec) Sets 25% 50% 80% 95%

L-Aspartate 71 3128 267 1 6 49 57
L-Metionine 94 2738 399 1 5 46 80

Glycine 73 2693 242 1 4 19 56
Each iteration corresponds to repeating the heuristical random preprocessing and computing the minimal precursor

sets using Pitufina with minimality. For each target, we show the iteration where the convergence is reached, the time

required, the total number of different minimal precursor sets, and the iterations in which a given percentage of the

total number of solutions are recovered.

4.6 Biological application

There are illustrations on how to apply our algorithms to enumerate precursor sets both
in Cottret et al. (2008) and Cottret et al. (2010a). We will here focus on briefly covering the
results presented in the latter publication as we consider it is a more appealing example and
is more illustrative of the potential the methods have.

Endocytobiont bacteria from different species are bacteria that live permanently inside
the cells of a pluricellular organism and often bring an adaptative advantage to their host
by synthetising compounds that cannot be produced or are not found in the diet of the host
(Charles and Nardon (1999); Bourtzis and Miller (2008)). In such cases, many metabolic
functions of the bacterium are provided by the host and, inversely, the metabolism of the
endocytobiont appears specialised into functions that are absent in the metabolism of the

4.6 Biological application 87

host. The presence of one or more bacteria inside the cells of a host leads to the idea that
metabolic exchanges happen in such a system both between the host and the bacteria, and
between the different bacteria.

In order to better understand the metabolites that are good candidates for such exchanges,
we chose a symbiotic system for which metabolic network reconstructions of the endocyto-
bionts were available, namely Sulcia muelleri and Baumannia cicadellinicola, that live inside
specific cells of the sharpshooter Homalodisca coagulata. Both metabolic networks were ob-
tained from the MaGe database (Vallenet et al. (2006)). The downloaded versions of these
networks were initial drafts and a manual curation was performed in order to improve the
quality of the analysis. In this process, disconnected reactions or reactions connected to the
network only through co-factors were removed, metabolic pathways predicted to be present in
the metabolism of the organisms led to the inclusion of missing reactions that filled the gaps
for the complete pathway to be present, and the reversibility of some reactions was corrected,
among other modifications that are explained in detail in Cottret et al. (2010a). Once the
metabolic network reconstruction of the two symbionts was complete, we applied some filters
since our goal was to study the metabolism involving transfers of carbon atoms and to concen-
trate only on the small molecules. First, the metabolites that do not exchange carbon atoms,
called side compounds, were removed. Inorganic compounds such as water, proton, ammonia
and oxygen were also eliminated. Finally, reactions that do not imply a transfer of carbon
atoms were filtered out. A complete description of the filtered reactions and metabolites, as
well as the final datasets obtained are described in Cottret et al. (2010a).

The complete genome annotation of the two endocytobionts revealed that their metabolic
capacities are broadly complementary (Wu et al. (2006); McCutcheon and Moran (2007)).
The metabolism of B. cicadellinicola is globally devoted to cofactor and vitamin biosynthesis
whereas the metabolism of S. muelleri is specialised in the biosynthesis of essential amino
acids that the sharpshooter cannot produce nor find in its diet. Nevertheless, the partition
of these metabolic roles is not so perfect: B. cicadellinicola produces two essential amino
acids, methionine and histidine, that S. muelleri cannot produce while the latter appears to
be able to synthesise menaquinone, a vitamin. Moreover, the complementarity between the
two metabolisms also concerns the biosynthesis of some metabolites not needed by the insect
host, such as the fatty acid biosynthesis pathway, supplied by B. cicadellinicola, except for
one step which is provided by S. muelleri (McCutcheon and Moran (2007)). However, these
previous analyses were essentially manually performed by comparing the lists of annotated
metabolic genes. Even if the size of the networks is not so big, these metabolic networks are
complex enough to discourage manual approaches.

Figure 4.9 presents a schema we used to study the possible metabolic exchanges be-
tween the host and its two endocytobionts. Basically, we automatically determined the set
of metabolites potentially exogenously acquired (potential precursor sets or seeds) for both
metabolic networks using a topological approach for identifying strongly connected compo-
nents that have no incoming arcs of the graph representation of the metabolic network (Boren-
stein et al. (2008)). Then we selected as target sets essential compounds that must be pro-
duced for each of the bacteria and computed their minimal precursor sets. By analysing the
intersection between the seed sets and minimal precursor sets, it is possible to infer possible
metabolic exchanges between the two endocytobionts. Considering additional information on
the host diet allows us to eliminate some of the candidates since some precursor sets were
more probably supplied directly by the host.

The first step of the experiment is the automatic identification of the seeds. After this, we
may observe that both bacteria work on a very reduced number of seeds, which indicates that

4.6 Biological application 88

Figure 4.9: Identification of the metabolic exchanges in the symbiotic system involving the two endo-
cytobionts B. cicadellinicola, S. muelleri and their insect host, the sharpshooter Homalodisca coagulata.
Seeds are identified in the metabolic network of each bacterium (red sets). By comparing with the metabolites produced
in the metabolic network of the other bacterium (green sets), we determined which metabolites are potentially provided
by the cosymbiont or by the insect host. From the identified seeds, we determined which sets of seeds (precursor sets,
blue sets) lead to the synthesis of metabolites important in the symbiotic association (yellow points). Obs: Figure
extracted from Cottret et al. (2010a).

their metabolism has been highly reduced, as is usually the case with endocytobionts (Brinza
et al. (2009)). By comparing the sets of seeds of both networks, we may see that the small
intersection (only three metabolites) indicates a high complementary of the two metabolisms.
The analysis also indicates that the carbon metabolism of S. muelleri may be completely
independent on the metabolic network of B. cicadellinicola. On the contrary, the carbon
metabolism of the latter appears dependent on the metabolism of S. muelleri, at least for two
essential amino acids, threonine and lysine. Figure 4.10 displays the set of seeds identified
in the metabolic network for each bacterium. Coloured arrows mark those produced in the
metabolic network of the co-endocytobiont and those potentially provided by the insect host
according to the literature. Seeds that correspond to annotated transport reactions are also
tagged.

The next step in the analysis was to identify which subsets of the seeds (potential precur-
sor sets) are sufficient to produce the metabolites chosen as target. We first put as targets

4.6 Biological application 89

Figure 4.10: Seeds identified in the metabolic graph of B. cicadellinicola and S. muelleri. Obs: Figure

extracted from Cottret et al. (2010a).

the metabolites reported as involved in the symbiotic association by McCutcheon et al. (Mc-
Cutcheon and Moran (2007)). We then added erythrose-4-phosphate, phosphoenolpyruvate,
oxaloacetate and ribose-5-phosphate to the list of target compounds for B. cicadellinicola
because of their presence both in its metabolic network and in the precursor sets identified
for S. muelleri. These additional targets are particularly interesting since they could directly
correspond to metabolic pathways shared between the two metabolic networks. For the same
reasons, we added homoserine and 2-ketovaline to the list of target compounds for S. muel-
leri. To compute the minimal precursor sets, we used Pitufo, which was the only of our
algorithms available at the time the study was done and that works well for the size of the
studied networks. The complete list of targets and the minimal precursor sets identified to
produce them are presented in Figures 4.11 and 4.12 for S. muelleri and B. cicadellinicola,
respectively.

For S. muelleri, apart from menaquinone, all targets are amino acids, which explains
the uniformity of the results.Two seeds are present in all minimal precursor sets computed
for these amino acids (except homoserine): erythrose-4-phosphate and phosphoenolpyruvate.
Both are potentially provided by B. cicadellinicola. We found oxaloacetate and aspartate as
alternative precursors for the synthesis of isoleucine and lysine. Indeed, each one can produce
the other by the same reversible reaction in the metabolic network of S. muelleri. On the one
hand, aspartate is one of the primary components of the food source of the host and it is thus
reasonable to think that this compound should be provided by the host. On the other hand,
aspartate is involved in other reactions that in particular participate in the synthesis of other
amino acids in the metabolic network of S. muelleri. Since S. muelleri is able to produce
aspartate from oxaloacetate, and since the former is not used in other reactions, the import of
oxaloacetate by S. muelleri seems to be more realistic than the import of aspartate. Moreover,
B. cicadellinicola could provide oxaloacetate while the bacterium is able to synthesise it from

4.6 Biological application 90

aspartate (see Figure 4.12).

Figure 4.11: Precursor sets of important metabolites in the metabolic network of S. muelleri.

Rows correspond to target metabolites and columns to seeds. Column P indicates the total number of precursors

and column S the total number of solutions for the corresponding target. A black square means that a seed is

present in a solution. LEU: L-leucine; ILE: L-isoleucine; HSER: homoserine; KVAL: 2-ketovaline; LYS:L-lysine;

PHE:L-phenylalanine; TRP:L-tryptophane; VAL:L-valine; MEN:menaquinone; ASP:L-aspartate; E4P:erythrose-

4-phosphate; PEP:phosphoenolpyruvate; OXA:oxaloacetate; R5P:ribose-5-phosphate; OPP:octaprenyl-diphosphate;

SER: serine; DHN:1,4-dihydroxy-2-naphthoate. Obs: Figure extracted from Cottret et al. (2010a).

Some seeds appear as obligatory in the synthesis of several targets in B. cicadellinicola.
Glucose and aspartate, reported as provided by the insect cell, thus appear as obligatory for
the synthesis of, respectively, twelve and five target compounds. Serine, glycine and threonine
have been detected as alternative seeds by the Borenstein method (Borenstein et al. (2008))
and they appear in the minimal precursor sets for methionine, coenzyme A, glutathione
and thiamine. McCutcheon et al. suggested that homoserine and 2-ketovaline, potentially
provided by S. muelleri, could be precursors of metabolites supplied by B. cicadellinicola.
Homoserine was reported as a precursor of methionine and 2-ketovaline as a precursor of
coenzyme A (McCutcheon and Moran (2007)). Our results confirm these hypotheses. For
methionine, our method adds precision by indicating also the alternative precursors serine-
glycine-threonine. For coenzyme A, our method further suggests this triplet and also β-alanine
as obligatory precursors. Interestingly, we observed that only methionine and coenzyme-A
require metabolites provided by S. muelleri. Moreover, the metabolites needed by the other
targets could be all potentially acquired from the host cell by B.cicadellinicola.

The precursor sets identified in both bacteria could be made available by the insect host
and our results suggest both B. cicadellinicola and S. muelleri may be completely independent

4.7 Open problems and perspectives 91

Figure 4.12: Precursor sets of important metabolites in the metabolic network of B. cicadellini-

cola. Rows correspond to target metabolites and columns to seeds. Column P indicates the total number of pre-

cursors and column S the total number of solutions for the corresponding target. A black square means that a seed

is present in a solution. HIS:L-histidine; MET:L-methionine; COA:coenzyme A; BIO:biotin; PYRP:pyridoxal-

5’-phosphate; RIBO:riboflavin; GLUT:glutathione; THI:thiamine; THF:tetrahydrofolate; BH4 p:BH4 pre-

cursor; E4P:erythrose-4-phosphate; R5P:ribose-5-phosphate; OXA:oxaloaceatate; PEP:phosphoenolpyruvate;

OPP:octaprenyl-diphosphate; GLC:glucose; ASP:L-aspartate; ALA:L-alpha-alanine; SER:serine; GLY:glycine;

THR:threonine; HSER:homoserine; KVAL:2-ketovaline; B-ALA:Beta-alanine; DNP:dihydroneopterin. Obs: Figure

extracted from Cottret et al. (2010a).

of the metabolites provided by the co-resident endocytobiont to produce the carbon backbone
of the metabolites provided to the symbiotic system. However, notice that the two essential
amino acids (threonine and lysine) identified as seeds for B. cicadellinicola are certainly not
produced by the insect host nor present in its diet and must be provided by S. muelleri.
There is thus a dependence of the carbon metabolism of B. cicadellinicola on the metabolism
of S. muelleri, but threonine and lysine seem to be exploited by B. cicadellinicola to produce
its proteins and not to provide metabolites to the symbiotic system.

4.7 Open problems and perspectives

There are two main open modelling problems concerning the enumeration of minimal
precursor sets for a set of target metabolites. The first one is that the current formal definition
does not deal explicitly with void cycles and, for this reason, the three proposed algorithms are
subject to finding the empty set as a solution, which is not biologically meaningful. The second
one is that the method explores the topology of the metabolic network but not quantitative
aspects that could be integrated, namely the stoichiometric coefficients of the metabolites in
the reactions. Indeed, the factories from a subset of the sources to the targets are expected to

4.7 Open problems and perspectives 92

correspond to a feasible state of the cell and, in this sense, an approach considering steady-
state factories is desirable. Both directions are interesting and, ideally, they may be managed
together to design a model and an algorithm that fit even better the biological needs.

Recently, Carbonell et al. (2012) proposed two methods for the enumeration of minimal
metabolic pathways, with a metabolic network also modelled as a hypergraph and a minimal
metabolic pathway as a minimal hyperpath according to the definition of Nielsen et al. (2005).
Even if the biological application of finding all possible ways of producing target metabolites
is almost the same, the mathematical problem and the models used differ considerably. Their
definition of a minimal hyperpath is close to our definition of reaction factories, but they
impose an ordering of the reactions in the definition of hyperpaths that makes it difficult to
deal with cycles, which in fact is something they do not do. Instead of using the internal
supply metabolites directly in the definition of their minimal hyperpaths, the authors propose
to do a pre-processing step to identify the set of internal supply compounds, that they call
supplements, and to add them to the set of sources. However, it is not clear how minimality of
the solutions is kept after this addition. For instance, observe Figure 4.13, which is basically
the same as Figure 4.1 with the addition of a new reaction, r4, that produces c from a. Notice
that z1 and z2 are internal supply metabolites and {a, b, z1} or {a, b, z2} are precursor sets of
the target c. However, now they are not minimal since {a} alone is able to produce c through
reaction r4, which is therefore a minimal factory. It is not clear how Carbonell et al. (2012)
deal with this imaginary situation, since z1 and z2 are going to be identified as supplements by
their pre-processing step starting from the source set {a, b}. The source set is then increased
to be {a, b, z1, z2} and the reaction r3 that produces c through z1 is now considered a minimal
hyperpath producing the target.

a

b

cz1

z2

r1

r2

r3

r4

Figure 4.13: A metabolic network containing 4 reactions and 5 metabolites. Considering c as a target metabolite,

the only minimal precursor set is {a} and the only minimal factory is {r4}.

Finding precursor sets or minimal factories adding the stoichiometry coefficients to the
topological procedure is a nice and natural follow up of the work done. Figure 4.14 shows
an example in which the same topology of a cyclic network may be feasible or not depending
on the stoichiometric coefficients. In that same paper (Carbonell et al. (2012)), the authors
introduce an approach to find minimal hyperpaths taking stoichiometry into account. The idea
is to find minimal hyperpaths connecting the target to subsets of the sources that satisfy the
steady-state assumption, i.e., the internal metabolites in the hyperpath must be balanced. To
address the problem, they include artificial input reactions to produce the sources and artificial
output reactions to consume the targets, and compute the set of elementary modes for this
modified network. For their definition of hyperpaths, the solutions will be a subset of the
elementary modes, for instance they are interested in acyclic elementary modes. In practice,
their results show that this approach is slower than the topological one for enumerating

4.7 Open problems and perspectives 93

minimal hyperpaths, and this is probably due to the fact that the number of elementary
modes is much bigger than the number of acyclic hyperpaths they are interested in. Another
related method is the one proposed in (Urbanczik and Wagner (2005)) to enumerate so-called
elementary conversions, which correspond to the extreme rays of a cone of concentration
distributions in stationary state, which can be seen as sets of inputs and outputs of the
network that are co-related through one or more elementary mode connecting them. In fact,
this seems to be a possible strategy, with some small adaptations, to enumerate minimal
precursor sets taking stoichiometry into account, but most probably a method like ours, that
also considers the topology of the network, could provide much better running times.

a

b

cz1

z2

r1

r2

r3

d

1

1

1

1

1

1

1

1 1 a

b

cz1

z2

r1

r2

r3

d

1

1

1

2

1

1

1

1 1

a) infeasible cycle b) feasible cycle

Figure 4.14: a) The cycle involving reactions r1 and r2 is infeasible as a precursor set of c, since the regeneration of

z1 is enough to keep the cycle running but not for the production of c. b) Considering that the stoichiometric coefficient

of the production of z1 in r2 is 2 the cycle is now able to keep running and to produce the target c at the same time.

For our enumeration problem, it is also true that elementary modes correspond to factories,
however it is not clear how to explore a similar approach in order to efficiently solve the
problem of enumerating minimal precursor sets since different factories may correspond to
exactly the same precursor set. Nevertheless, we started addressing the problems and we had
some preliminary ideas that however need to be further investigated. Our current approach to
the problem of adding stoichiometry to the model was simply to proceed with our topological
approach working directly on the network (Pitufina), and every time a stop condition of the
recursive algorithm is reached (because we reach a cycle or a precursor), to validate the branch
from the identified precursor set to the target. A first idea to validate it, was to explore the fact
that unbalanced fluxes would be produced only in the case a cycle is present, since precursors
are assumed to be in infinite supply. We could therefore simply verify if the amount needed
of internal supply compounds is enough to keep the cycle running, with some leftover for the
production of the target. This corresponds simply to checking if the production coefficient is
bigger than the consumption one. Unfortunately, this idea does not work as exemplified in
Figure 4.15, in which two branches of the traversal should be combined to identify that the
cycle is viable. Indeed, this simple validation fails, in this example, because the consumption
of a in both branches is 1 and its production is also 1, suggesting that the cycle may not run
while using a to produce t at the same time. Notice, however, that both branches use reaction
r2 to produce compound b and that, in this case, combining the two branches would consume
only one molecule of a to produce 2 molecules of b, allowing in the end the production of
2 molecules of a instead of 1, which is enough to say that the cycle may run and produce
t. This example illustrates a major difference between the topological and the stoichiometric
approaches, since in the first case only one reaction producing any compound in the hyperpath
was chosen while now that we need to satisfy production/consumption constraints, we may
have to combine more than one reaction producing the same metabolite, as is the case for

4.7 Open problems and perspectives 94

compound a in the example. Currently, we are adapting a different validation step that seems
promising. The idea is to validate through a linear-programming formulation whether the
cycle on the identified branch from the precursor sets to the target is feasible. For this goal
we may impose a positive flux on the reactions consuming the identified precursors or cyclic
compounds and also a positive flux on the reaction producing the target. The validation is
then performed by checking if a feasible flux distribution is possible assuming the system to be
in steady-state or growing-state, i.e., with the internal accumulation of compounds allowed.
For instance, in the example of Figure 4.15, a positive flux over r1 and r2 is imposed once the
recursion is finished and a valid flux distribution may be found, which validates the precursor
set {p} as a stoichiometric valid precursor set of t with the use of {a} as internal supply.

c

p

ta

b

r1

r2

r3

d

1

1

1

1

2

1

1

1 1

a) metabolic network b) Pitufina traversal

2

1 1

1

t

r4

r5

a

d c

b

pa

b

pa
1

111

1

Figure 4.15: a) A simple network with 5 reactions and 6 compounds. Compound t is a target and compound p is a

potential precursor. b) A traversal of the network by Pitufina corresponds to the shown replacement tree rooted in t.

Chapter 5

Chemical Organisations

Contents
5.1 Introduction . 95
5.2 Definitions . 97
5.3 Chemical organisations in consistent networks 99
5.4 Enumerating chemical organisations 102
5.5 Hitting set approach to enumerate organisations 104
5.6 Open problems and perspectives 107

5.1 Introduction

The results presented in this chapter are strongly based on our paper Milreu et al. (2010).
Until recently, metabolism was analysed via the pathways composing it, which were tradi-
tionally established in a non automatic way by experts interested in some specific function
(glycolysis for instance, or anaerobic respiration). The pathways were studied independently
from each other, even though molecules could be shared. The advent of full genome sequences
now enables to infer genome-scale metabolic networks, as briefly explained in Section 1.2. The
study of these networks has revealed extensive cross-talk between traditionally defined path-
ways, as well as the use by different organisms of alternative pathways, that is, different
metabolic routes to a same final overall product goal. While the notion of a metabolic path-
way remains useful as a reference definition of functional modules, the exact frontiers between
pathways can now be questioned, and other definitions of the concept of a metabolic module
can be proposed. While several formal definitions have already been suggested, none of them
is able to capture all the expert knowledge that led to the first pathways while at the same
time providing an insight into alternative functional ones. The context of this work is there-
fore the same as the one in Chapter 3. The motivation of this chapter, however, is to explore
another model for metabolic modules called chemical organisations, both in terms of the com-
plexity of enumerating such modules and of exact algorithms for performing the enumeration.
The results obtained constitute a solid algorithmic ground for the study of chemical organi-
sations, a necessary first step to widen the use of this notion for the computational analysis
of metabolic networks.

Several formal definitions of pathways and modules can be found in the literature on
metabolism, the best known of which may be elementary modes (Schuster and Hilgetag

5.1 Introduction 96

(1994)) or any of its close cousins (see Lacroix et al. (2008); Papin et al. (2004) for sur-
veys). Elementary modes may be informally described as metabolic subnetworks that can
function at steady state, meaning that all internal metabolites are produced and consumed in
equal rates (that is, nothing accumulates internally). This is a fine definition, but has at least
one drawback: it is restricted to the analysis of the system at steady state and does not allow
to describe states of the system where metabolites can accumulate. However, such states are
relevant as they could correspond to intermediary steps in the evolution of metabolism, or
temporary states in the dynamics of metabolism.

A relatively recent model called chemical organisations was introduced in 2005 by Peter
Dittrich and his group (Dittrich and di Fenizio (2007)) and is able to deal with the growing
states of a network. The concept was introduced, building on earlier work by Fontana and
Buss (Fontana and Buss (1994)) and can be used not only for metabolism, but also for any
kind of reaction system, including regulatory networks.

Chemical organisations are sets of molecules that are self-maintaining and closed (we use
the terms metabolite and molecule with no distinction). Informally, a self-maintaining set is
a set where molecules can accumulate – the feature we were seeking – provided no molecule
vanishes, i.e., its abundance goes to zero. A set is closed if all metabolites produced from
reactions for which all the inputs are present in the set will also be present and thus part of
the set. By convention, this includes all reactions that take their input from the environment,
i.e. are external. All external inputs are therefore considered as being available and used.
This introduces a second contrast with elementary modes (EMs). Indeed, EMs may use only
part of the externally available inputs. More generally, EMs are not closed. Intuitively, the
concept of a chemical organisation may be illustrated by means of the following experiment.
Suppose one put a set of metabolites into a vessel. If these set of metabolites is a chemical
organisation, at any time one look again to the vessel, none of the original metabolites put
into the vessel vanished (self-maintaining) and no new metabolite appeared (closed). These
two properties do not guarantee that no change on the metabolites will happen, even because
accumulation is allowed, but the lack of one of them is enough to say that changes on the
original set will occur, at least if one waits long enough. The usefulness of such a concept
for biological problems has been illustrated in studies of sugar metabolism in Escherichia
coli (Centler et al. (2007)) and for the curation of metabolic network reconstructions (Kaleta
et al. (2009)). In addition, the relation with elementary modes was established (Kaleta et al.
(2006)).

Finally, as we have already said, the theory of chemical organisations has been proposed
for general reaction systems. Its application to metabolic networks raises new specific ques-
tions, as the networks have specific properties. They are indeed expected to be flux-consistent
(each reaction belongs to at least one elementary mode) and also mass-consistent (the trans-
formations imposed by the set of reactions should respect conservation of mass).

In this chapter, we will first revisit chemical organisations in the context of mass- and
flux-consistent networks. In particular, finding a chemical organisation was shown to be hard
in Centler et al. (2008). A legitimate and non-trivial question is whether this remains true
in biologically more realistic mass- and flux-consistent networks. Section 5.2 presents the
main definitions of chemical organisations and consistency of networks. Section 5.3 shows
that even for consistent networks the enumeration problem is hard. We go however further
by identifying the specific structural properties of the network that account for this hardness.
Those are discussed in Section 5.4, while Section 5.5 describes a new algorithm that takes
advantage of such properties to obtain an exact method that is in all cases theoretically more
efficient for consistent networks than the enumeration algorithms presented in Centler et al.

5.2 Definitions 97

(2008) because, at best, a smaller part of the solution space needs to be explored.

5.2 Definitions

A metabolic network may be modelled as a weighted directed hypergraph G = (M,R)
with M the set of vertices corresponding to the metabolites and R the set of hyperarcs
corresponding to the reactions. A directed hyperarc (i.e. a reaction) r ∈ R is an ordered
pair of sets of vertices (i.e. metabolites) r = (subs(r), prod(r)) where subs(r) is the set of
substrates of r and prod(r) is the set of products of r. For each x in subs(r) (in prod(r))
the weight of x with respect to r denotes the stoichiometric coefficient of x in r, that is, the
number of units of x consumed (or produced) when r fires. Notice that x can belong to both
subs(r) and prod(r); in this case there are two weights associated to x w.r.t. r. Observe also
that, according to the above definitions, the set of substrates of a reaction r can be empty:
in this case, we say that the metabolites in prod(r) are inputs of the network.

Metabolic networks have also been often modelled using matrices (e.g., Schuster et al.
(1999)). The stoichiometric matrix S has |M | rows and |R| columns where Si,j is the sto-
ichiometric coefficient of molecule i in reaction j. Si,j is negative if i is consumed and is
positive if i is produced. We notice here that while the stoichiometric matrix can always be
derived from the weighted hypergraph, the reverse is not true. Indeed, metabolites involved as
substrates and products of the same reaction cannot be handled in the matrix representation.

For some of the results presented, we also use the concept of the underlying graph of G,
which is a directed graph with the same set of vertices of G and arcs x→ y for every pair of
vertices x, y for which there is an hyperarc r such that x ∈ subs(r) and y ∈ prod(r). A reaction
is said to be in a path/cycle of the underlying directed graph if any of its (substrate,product)-
pairs is an arc of the path/cycle. Notice that the defined underlying graph corresponds exactly
to the compound graph introduced in Chapter 2.

In the context of metabolic networks, we say that a flux over the network is the rate at
which each reaction occurs. A flux can be represented as a flux vector v ∈ R|R| with v[i]
denoting the rate of reaction i. We also define a mass vector m ∈ R|M | with m[j] denoting
the mass of metabolite j.

A metabolic network is flux-consistent if there exists a flux vector v > 0, i.e. ∀i ∈ R
the flux v[i] > 0 is such that Sv = 0 (Acuña et al. (2009)). This is the same as saying that
every reaction of the network belongs to at least one elementary mode, thus checking for the
usefulness of each reaction. For more information on elementary modes, we refer to Schuster
and Hilgetag (1994) and Schuster et al. (1999).

A metabolic network ismass-consistent if there exists a mass vectorm > 0, i.e. ∀i ∈M ,
m[i] > 0, such that mTS = 0, where mT denotes the transposed vector. This is the same as
saying that there exists some mass distribution for all metabolites such that the whole set of
reactions is mass balanced.

An example of a network with two reactions r1 : a+ c→ b and r2 : b+ d→ d+ c that is
not mass-consistent is shown in Figure 5.3. Since reaction r2 requires that b and c have the
same mass, then the mass of a in r1 has to be 0, which is inconsistent. If we replace r1 by
r′1 : a+ c→ 2b, then the system becomes mass-consistent (indeed, every positive mass vector
with equal components is consistent).

We denote by RA ⊆ R the subset of reactions that can be fired when the metabolites in
the set A ⊆M are present, i.e., RA = {r ∈ R|subs(r) ⊆ A}.

A set C ⊆ M is said to be closed (Dittrich and di Fenizio (2007)) if, for all reactions
r ∈ RC , prod(r) ⊆ C. Moreover, given a set C ⊆ M , the closure of C, denoted by ClC , is

5.2 Definitions 98

a
b

c
d

r1

r2

Figure 5.1: Metabolic network whose mass-consistence depends on the stoichiometric coefficients of the first reaction.

the smallest closed set H that contains C. Notice that if C is a closed set of molecules, then
C must contain all inputs of the network (since the empty set is a subset of C, the inputs of
the network must belong to RC). In particular, the closure of the empty set will contain all
inputs and whatever can be produced from them.

A set C ⊆ M is said to be self-maintaining (Dittrich and di Fenizio (2007)) if there is
a flux vector v such that:

1. for all reactions r ∈ RC , v[r] > 0;

2. for all reactions r 6∈ RC , v[r] = 0;

3. for all molecules i ∈ C, the production rate (Sv)[i] ≥ 0.

A set of molecules is self-maintaining if there exists a flux vector such that the molecules
present in the set can accumulate ((Sv)[i] > 0) or be consumed and produced at the same rate
((Sv)[i] = 0)(first and second conditions) but none of them may disappear (third condition).
Conditions 1 and 2 basically specify that all reactions that can fire with molecules from the
set will fire. In particular, reactions which produce molecules outside the set will also fire. A
self-maintaining set is therefore really self-maintaining, even in the presence of “leaks”.

Finally, a set of molecules O ⊆M is said to be an organisation (Dittrich and di Fenizio
(2007)) if it is both closed and self-maintaining. O is said to be reactive connected if:

• (reactive) each metabolite in O takes part as substrate or product in at least one reaction
inside RO;

• (connected) for any two molecules x and y in O, there is a path from x to y in the
underlying undirected graph.

We present a network in Figure 5.2 that has 3 connected components and 8 organisations
but only 2 of them are reactive connected organisations. The others are just combinations of
organisations which cannot directly interact among them. Notice also that some sets are not
organisations, such as for instance the sets {s, p} and {b, c, d}, since they are not closed, or the
sets {s, q, r} and {c, d} that are neither closed nor self-maintaining. On the other hand, the
closure of the empty set is {s} and it is an organisation. This organisation must be present in
all organisations even if there is no possible interaction between their molecules as in the case
of organisation {s, a}. Clearly, any set of disconnected nodes will form an organisation, as long
as we consider its union with the closure of the empty set. In the following, we shall ignore
such organisations and focus on organisations where the molecules interact among them. This
is our motivation to find only reactive connected organisations.

For this reason, from now on we restrict our networks to have only one connected compo-
nent and some input and output metabolites. For general networks, indeed, we can without

5.3 Chemical organisations in consistent networks 99

s r

p

q

a

b

c

d

Figure 5.2: A metabolic network with (a) 3 connected components, (b) 8 organisations:

{{s}, {s, p, q, r}, {s, a}, {s, b, c, d}, {s, a, b, c, d}, {s, a, p, q, r}, {s, b, c, d, p, q, r}, {s, a, b, c, d, p, q, r}}, and (c) 2 reac-

tive connected organisations: {{s}, {s, p, q, r}}.

loss of generality work on each connected component separately and then combine the re-
sults. In order to compute closures of sets of metabolites, we recall the forward propagation
algorithm (Romero and Karp (2001)) that was already presented in Chapter 4 on precursor
sets. Informally, it consists in starting from a set C, adding prod(r) for every r ∈ RC , and
repeating this procedure until no new metabolites are added to C.

As already mentioned, all inputs of the network need to be considered together in order to
compute organisations. This is a modelling choice that implies that if one wished to compute
organisations for different subsets of the inputs, then it would be necessary to edit the network
and recompute the organisations for the subsets of interest.

5.3 Chemical organisations in consistent networks

It was shown that deciding whether a network contains at least one organisation is NP-
complete (Centler et al. (2008)). However the proof was based on a network that was not
mass- and flux-consistent. We now characterise organisations in consistent networks. First of
all, we observe that it is easy to check whether a set C is an organisation by inspecting the
reaction rules to check closure and to check self-maintenance using linear programming.

The following theorem indicates how to compute two possible organisations.

Theorem 11. If a network is flux-consistent then the whole network and the closure of the
empty set are organisations.

Proof. The whole network is always closed. By definition of flux-consistency, we have a flux
vector v that covers the whole network, satisfying the condition of self-maintenance. Therefore
the whole network is an organisation. Analogously, if the closure of the empty set produces
the whole network then it is an organisation. Otherwise, since every metabolite is produced
from the empty set, we can easily obtain a valid flux vector v satisfying the condition of
self-maintenance.

Notice that the closure of the empty set is the smallest possible organisation since it has
to be contained in all other organisations. In the following, we say that the whole network
and the closure of the empty set are trivial organisations. Observe also that the closure of
the empty set may not always produce the whole network. An example is given in Figure 5.3
since the closure of the empty set for that network is {a}.

Theorem 12. If the network is flux-consistent and acyclic, i.e. the underlying directed graph
of the hypergraph is acyclic, then the whole network is the only organisation.

5.3 Chemical organisations in consistent networks 100

a
b

c
d

r1

r2

Figure 5.3: Network in which the closure of the empty set does not produce the whole network.

Proof. The smallest organisation is given by the closure of the empty set, which can be
obtained by applying the forward propagation algorithm to the empty set. As the network
is flux-consistent and acyclic, from the inputs any metabolite can be reached, i.e., produced.
Hence, the closure of the empty set is the entire network. From the flux-consistency of
the network and from Theorem 11, it follows that the smallest organisation is the whole
network.

Notice that both previous theorems hold considering that the network is flux-consistent
only. The next result shows that the problem of finding a non-trivial organisation in a mass-
and flux-consistent network is NP-hard. The proof is based on a reduction from the 3-SAT
problem, which is an appropriate modification of the original reduction given in Centler et al.
(2008), that showed that finding a reactive organisation in a general reaction system is NP-
hard.

Theorem 13. Deciding if a mass- and flux-consistent network contains a non-trivial organi-
sation is NP-hard.

Proof. We reduce our problem from 3-SAT. Given a boolean formula F in 3-CNF with n
boolean variables and ` clauses, we construct a mass- and flux-consistent reaction network
for which the existence of a non-trivial reactive (connected) organisation implies a positive
answer to the 3-SAT and vice-versa.

In the reaction network we define the 2n literal metabolites x1, x2, ..., xn, ¬x1, ¬x2,
. . . ,¬xn (¬x is the negation of x), clause metabolites C1, C2, ..., C` and additional metabolites
key, a, input. The hyperarcs (reactions) are defined as:

• Influx: A reaction ∅ → input

• Clause reactions: For each clause Ch = (A1 ∨ A2 ∨ A3), we introduce 3 reactions:
key +Aj → Ch +Aj , j = 1, 2, 3.

• Key reaction: C1 + C2 + ...+ Cl + input→ (l + 1) key.

• Key outflux: A reaction key → ∅

• Variable reactions of two types: For each variable xj , we introduce a type 1 reaction
xj + ¬xj → a, and a type 2 reaction a+ input→ xj + ¬xj + key, j = 1, . . . , n.

An illustration of this transformation is given in Figure 5.4. The transformation can
obviously be done in polynomial time.

Let us first prove that the network is mass- and flux-consistent. To prove the latter, we
construct a flux vector v > 0 such that Sv = 0 (Acuña et al. (2009)).

5.3 Chemical organisations in consistent networks 101

x1

1

n

n

...a

C1

Cl

key

input

..

.

key

key

input

n+1

n+1

1/3

1/3

1/3

1/3

...

...

...

1

1

1

1

1

n+1

1/3

1/3

x

x

x

Figure 5.4: Finding a non-trivial reactive (connected) organisation is NP-hard. The key and input metabolites are

presented more than once in the figure for convenience. Edge labels do not stand for stoichiometries but fluxes for a

valid flux distribution that covers the whole network.

1. Setting the flux for each of the 2n variable reactions to 1, all literal metabolites and a
are balanced, n of the metabolites input are consumed and n of key are produced.

2. Next we set the flux through each of the 3` clause reactions to 1/3, producing 1 of each
clause metabolite, and consuming ` of key.

3. These clause metabolites are balanced by setting the flux of the key reaction to 1, while
consuming 1 of input and producing `+ 1 units of key.

4. The last step is to balance the input and key metabolites, by setting the flux of the
influx and outflux reactions both to n+ 1.

The balanced flux distribution v constructed has positive flux on every reaction of the network.
Mass-consistency of the network is easily verified by the mass vector that has mass 1 for

all metabolites except for a, for which the mass is 2.
Suppose we have a satisfying truth assignment to F . Let K be the set of literals that are

true, then we claim that the set containing all metabolites corresponding to K, all clauses,
input and key is a non-trivial organisation. Closedness is easily verified. We now show self-
maintenance. Let ki be the number of true literals in Ci, i = 1, . . . , `. For each true literal
in Ci we set a flux of 1/ki on the corresponding clause reaction. Together with a flux of at
least 1 in the key reaction, the influx and outflux secure self-maintenance.

Reversely, suppose we have a non-trivial reactive (connected) organisation O. First, notice
that {input} (the closure of ∅) is a trivial organisation and that it is part of every organisation,
hence input ∈ O. As we now explain, this implies that if any organisation contains both xi
and ¬xi for any i, then it must contain the whole network, and hence be trivial. The presence
of xi and ¬xi triggers a variable type 1 reaction, producing a, which on its turn triggers all
variable type 2 reactions producing all literal metabolites and key. All clause reactions are

5.4 Enumerating chemical organisations 102

therefore triggered and henceforth the key reaction and the outflux reaction. Hence, O does
not contain both literals corresponding to the same variable, and none of the variable reactions
will have positive flux.

Since O is reactive, input must be the substrate of some active reaction, hence the key
reaction must be active, implying that key ∈ O. Because of self-maintenance, all clause
metabolites must be produced. To produce a clause metabolite, at least one of its three
clause reactions must be fired. Let K be the set of literal metabolites that are part of our
reactive (connected) organisation. By closure, they are able to produce all clause metabolites,
hence setting their value to true yields a satisfying truth assignment for F .

5.4 Enumerating chemical organisations

Theorem 13 immediately implies that it is not possible to enumerate all organisations in
a mass- and flux-consistent network in polynomial-time-delay in the size of the network.

We now observe that Theorem 12 indicates that for flux-consistent networks, the difficulty
of finding non-trivial organisations comes from the presence of cycles in the network. Indeed,
as shown in Figure 5.5(b), cycles may interrupt the forward propagation procedure if there
exists a reaction that can produce a new metabolite a but needs for this a metabolite b which
is not available and therefore blocks the reaction.

FP
INP

INP

b

a ccFP
INP

INP

b

a

(a) non-blocking cycle (b) blocking cycle

Figure 5.5: (a) Non blocking cycle that will be traversed by the forward propagation procedure. (b) Forward

propagation blocked by a unreached metabolite b.

In order to find the reactive connected organisations, we need to process cycles every time
the forward propagation procedure stops. This simple observation gives an upper bound of
2k on the number of reactive connected organisations in flux-consistent networks, where k
is the number of cycles in the network. In order to proceed, we formally define a cycle in
the metabolic network as a simple directed cycle in the underlying graph. Self-loops are also
considered as cycles. We also define a hitting set of a set of cycles as a set of metabolites
such that each cycle contains at least one element of the hitting set.

Theorem 14. Let H be a hitting set of all the cycles of a directed hypergraph. The set of all
reactive connected organisations, denoted by O, is such that

O ⊆
⋃
C⊆H
{ClC}

Proof. It is sufficient to show that if A is a reactive connected organisation then A = ClC ,
where C = A ∩H.

First observe that, since A is closed and C is a subset of its metabolites, it follows that
ClC ⊆ A.

5.4 Enumerating chemical organisations 103

Let us suppose that A contains vertices which are not in ClC . We colour these vertices
white and the vertices of ClC black. Consider any white metabolite a1. Since A is an
organisation, a1 cannot be vanishing. Moreover, it is not an input of the network as otherwise
it would be black. Therefore, there exists a reaction r fired by A that has a1 as product and
has a white substrate a2, a2 6= a1, otherwise a1 would again be black by closure.

By iterating the above reasoning, it follows that the subgraph of the underlying directed
graph induced by white vertices has minimum in-degree at least 1 and contains a directed
cycle. This contradicts the fact that H hits all the cycles. The set of white vertices is therefore
empty and A = ClC .

The bound of the previous theorem is tight. Indeed, an example where the number of
organisations reaches 2|H| is given in Figure 5.6 where from the input, k metabolites are
produced by k independent reactions and all of them are blocked by cycles. Any combination
of these independent paths can be de-blocked and produce a new organisation, and therefore
we have 2k organisations.

...

1

2

k

b1

b2

bk

Figure 5.6: Example with k parallel blocking cycles and 2k organisations.

However, some cycles never interrupt the forward propagation procedure as illustrated in
Figure 5.5(a). Other cycles, on the other hand, exhibit structural properties that may lead to
a blocking situation. Such cycles are called potentially blocking cycles. A basic solution
to find all organisations is to know how to unblock all cycles of the network. However, for
cycles which are non blocking it is a waste of time. Therefore, instead of finding a hitting set
for all cycles of the network, it is enough to break all potentially blocking cycles to compute
all reactive connected organisations. In order to prove this, we first introduce a more formal
definition of potentially blocking cycle.

A potentially blocking cycle is a cycle such that there exists a reaction r = ({s1, . . . , sh},
{p1, . . . , pk}) in the network satisfying the following two conditions: (1) there exists i and j
such that (si, pj) is an edge of the cycle, and (2) there exists ` such that s` is not in the cycle.

A potentially blocking cycle may or may not interrupt the forward propagation depending
on the metabolites that were produced by the procedure once the cycle is reached. Figure
5.7(a) shows an example in which the cycle will be traversed, while Figure 5.7(b) shows an
example in which it will block the forward propagation algorithm.

Theorem 15. Let H be a hitting set of all the potentially blocking cycles of a directed hyper-
graph. The set of all reactive connected organisations, denoted by O, is such that

O ⊆
⋃
C⊆H
{ClC}

5.5 Hitting set approach to enumerate organisations 104

FP
INP

INP

ba

c

FP
INP

INP

ba

c

(a) (b)

Figure 5.7: Example of a potentially blocking cycle formed by the vertices a and c and reactions a + b → c and

c→ a+ b (note that vertices b and c also form a symmetric cycle). If the forward propagation procedure (FP) reaches

the cycle through c, the cycle is traversed, but if it reaches it through a, it is blocked.

Proof. As in the proof of Theorem 14, it is sufficient to show that, given a reactive connected
organisation A, A = ClC , where C = A∩H (in the following, all paths and cycles are meant
directed in the underlying directed graph). Once again, it is easy to see that ClC ⊆ A. Let
us then suppose that A contains vertices which are not in ClC and let us colour them white
and those of ClC black.

Let ai (i = 1, 2, . . . , k) be the set of white vertices such that there exists a reaction ri
having ai as product and at least one black substrate. Then ri has also at least one white
substrate, which we denote by wi, as otherwise ai would be black by closure. Notice that a
white vertex does not have to belong to the set of the ai’s, but that this set is not empty as
the organisation is connected and the set of white vertices is not empty.

If wi = ai, the self-loop induced by ri is a potentially blocking cycle that contains no
vertex of H, leading to a contradiction. Thus we may assume that wi is distinct from ai.

For 1 ≤ i ≤ k, define Ti as follows: a vertex w is in Ti if either w = wi or there exists
a white path starting from w and ending in wi. Up to a reordering, we may assume that
|T1| ≤ |Ti| for 2 ≤ i ≤ k. As T1 is not empty, it has to contain at least one vertex that is a
product of a reaction having a black substrate. If that vertex is a1, there exists a path from a1

to w1, which yields a white cycle with the edge (w1, a1). That cycle is a potentially blocking
cycle (because of the reaction r1) which contains no vertex in H, leading to a contradiction.

In other words, T1 contains a vertex among (a2, . . . , ak), say a2. This implies that every
path ending in w2 can be extended to a path ending in w1 and thus T2 ⊆ T1. Therefore, by
minimality of T1, T1 = T2.

This implies that w1 ∈ T2: hence, there exists a white path from w1 to w2. As a2 ∈ T1,
there also exists a white path from a2 to w1. Thus, we can construct a white path from a2 to
w2. Considering the edge (w2, a2), we again obtain a white cycle, which is potentially blocking
(because of the reaction r2) and contains no vertex in H, leading to a contradiction.

Thus, the set of white vertices is empty and A ⊆ ClC .

Even in the case of the previous theorem, the bound is tight. Indeed, an example where
the number of organisations is 2|H| is, once again, given in Figure 5.6, since all cycles presented
in the example are potentially blocking.

5.5 Hitting set approach to enumerate organisations

Two exact algorithms were proposed in Centler et al. (2008) to enumerate organisa-
tions. The first one consisted in enumerating all closed sets and then checking for their

5.5 Hitting set approach to enumerate organisations 105

self-maintenance, while the second one consisted in enumerating all self-maintaining sets and
then checking linear combinations of them in order to obtain closed sets. A third approach was
also proposed that was based on the second one but avoided enumerating all self-maintaining
sets. This algorithm however was a heuristic not guaranteed to find all self-maintaining sets
(and thus organisations). Finally, a variation of the first algorithm was proposed in order
to enumerate only reactive connected organisations. This algorithm comes closer to the one
we describe later and works as follows. First, the forward propagation of the empty set is
computed. Once the procedure is blocked, all possible combinations of metabolites that are
connected to the produced set X are considered for addition in order to obtain further closed
sets that include X. At this point, the algorithm recursively continues.

Observe that in the above procedures, no concept of blocking cycles has been formally
identified and used. Now that we know that the hardness comes from such cycles, two different
approaches can be applied in mass- and flux-consistent networks. In fact, this approach
may be used in general, i.e., even in networks that do not fulfill the consistency features,
since its idea is a general approach for enumerating closed sets. The first idea is to find a
global hitting set for all cycles of the network and then, following Theorem 14, to apply the
forward propagation procedure on each subset of the hitting set to produce closed sets which
together form all candidate organisations and, finally, to check through linear programming
(LP) techniques if the candidates are self-maintaining. However, the problem of finding a
minimum hitting set for all cycles of a directed graph is NP-hard as indeed it corresponds
to the feedback vertex set (FVS) problem Karp (1972). Nevertheless approximation
algorithms such as the one described in Seymour (1995) can be used in order to perform this
step.

A second possibility is to find a local hitting set. According to Theorem 15, only
potentially blocking cycles need to be considered. This is a superset of the blocking cycles
that can be identified when the forward propagation procedure stops because it is at this
moment that we know we are dealing with actually blocking cycles. A more efficient algorithm
to enumerate reactive connected organisations is thus the following one: apply the forward
propagation algorithm and once blocked, identify the set B of metabolites that are blocking
the closure and find a hitting set that unblocks only the cycles which directly or indirectly
involve these blocking metabolites.

In Even et al. (1998), the authors presented an approximation algorithm to a generalisation
of the FVS problem, called SUBSET-FVS, in which only a subset of the directed cycles in
the graph is considered interesting, more specifically the ones that intersect a set of special
vertices. In our case, the set of special vertices would be the blocking metabolites locally
identified as described in the previous paragraph. The authors in Even et al. (1998) gave
two approximation algorithms for the SUBSET-FVS problem. The first algorithm achieves
an approximation factor of O

(
log2 |B|

)
. The second achieves an approximation factor of

O (min{log T log log T, log n log log n}), where T is the value of the optimum fractional solution
of the problem at hand, and n is the number of vertices in the graph.

Before proving that this idea can be correctly used to exactly solve our problem, we need
to define the concept of a blocking cycle in relation to a given set C of metabolites. Let C be
a set of metabolites. A C-blocking cycle is a cycle of vertices which are not in C such that
there exists a reaction r in the cycle whose set of substrates contains at least one metabolite in
C. Hence, C-blocking cycles correspond to those which actually stop the forward propagation
procedure.

Theorem 16. Let C be a closed set and H a hitting set of the C-blocking cycles of a metabolic
network. Let A be a reactive connected organisation whose metabolites contain C. Then either

5.5 Hitting set approach to enumerate organisations 106

C = A or there exists a non empty subset B of H such that the closure of C ∪ B is still a
subset of A.

Proof. Let A be a reactive connected organisation containing C as a subset of its metabolites
and let B = A ∩H. Let us suppose that C 6= A. To prove the theorem, it is then sufficient
to prove that B = A ∩H is not empty.

We colour the vertices of A \ C in white and those of C in black. Since A is a reactive
connected organisation, there exist edges between the white and the black metabolites, and
some of them go from a black to a white vertex, as otherwise, white vertices would be van-
ishing. Let (a1, . . . , ak) be the set of white vertices reached by at least one edge coming from
a black vertex.

The same argument of the proof of Theorem 15 can now be applied, showing that, as the
set of white vertices is not empty, it contains a white C-blocking cycle. Therefore, B is not
empty.

Corollary 3. Every reactive connected organisation is included in the set CO returned by the
procedure given in Algorithm CCO.

Proof. Let A be a reactive connected organisation. It has to contain C0 as every organisation
contains the closure of the empty set. Let C be maximum among the elements of CO which
are subsets of A. Then Theorem 16 implies, by maximality of C, that A = C.

Algorithm CCO(G)
Require: a metabolic network represented as a hypergraph G = (M,R);
Ensure: the set CO of all candidates for being organisations.
CO ← {C0} where C0 is the closure of the empty set (Cl{})
for all elements C in CO which have not been treated before do

Compute a hitting set H of the C-blocking cycles
for every B ⊂ H do

Compute ClC∪B and add it to CO if it was not present already
return CO

Notice that the size of the hitting set computed by the algorithm is never greater than the
number of blocking metabolites. Thus we can guarantee that our algorithm is theoretically
better than existing algorithms which consider all blocking metabolites and then test all sub-
sets. An illustration of the local hitting set approach is given in Figure 5.8. In this example,
the forward propagation procedure produces the set C and is blocked by two metabolites, w1

and w2. The goal is to find a hitting set that intersects the blocking cycles for these metabo-
lites. In this case, the hitting set has size 1 which is better than checking the combination of
C with each of the blocking metabolites.

5.6 Open problems and perspectives 107

metabolic network

w1

a1

a2

w2
blocking compounds

Hitting set

C

C-blocking cycle

R1

inputs

R2

Figure 5.8: How a local hitting set approach for the blocking metabolites may improve the efficiency of an algorithm

to enumerate closed sets. In the example, the forward propagation procedure started from the inputs and possibly other

metabolites in the set C until it blocked. Two reactions r1 and r2 are in the border of C, i.e., need a metabolite outside

C in order to proceed. The metabolites w1 and w2 that may unblock these reactions must be involved in some cycle.

In this case, a single cycle unblocks both reactions and this may be done by adding to C a metabolite on the hitting

set of the cycles involving w1 and w2.

5.6 Open problems and perspectives

The algorithms presented in this work for the enumeration of reactive connected organ-
isations are based on the enumeration of closed sets as potential chemical organisations. A
different approach is to focus first on the enumeration of self-maintaining sets and then check
if these candidates are closed. As far as we know, such an approach has not been done for the
cases of mass- and flux-consistent metabolic networks. Indeed, not even the algorithms here
presented take any specific advantage of the fact that the network should be mass-consistent,
and exploiting this might lead to better algorithms for enumerating self-maintaining sets.

Another consideration is that these results are mainly theoretical since they are based on
an approximation algorithm to solve the SUBSET-FVS subproblem that, in practice, is not
so useful since it uses an sphere-growing algorithmic technique that hides a fractional multicut
problem and complex data structures to keep track of the solution space yet analysed that
would lead to difficult implementation problems. Since there are several possible applications
for the enumeration of chemical organisations in metabolic networks, proposing practical
algorithms for such networks is an important task and, therefore, this is an interesting open
problem.

One yet not well-defined but interesting perspective is to further investigate a possible
biological role that the blocking compounds identified for our enumeration algorithm may
have. In the context of the evolution of metabolic networks, a possibility is that they could
correspond to nutrients that the organism could not yet deal with and that could be linked
to the acquisition of new enzymatic capabilities which may improve its metabolic functions
and possibly enable it to explore new biological environments.

Conclusion

In this thesis, we presented three different methods for enumerating special subnetworks
contained in a metabolic network: metabolic stories, minimal precursor sets and chemical
organisations. For each of the three methods, we gave theoretical results, and for the two first
ones, we further provided an illustration on how to apply them in order to study the metabolic
behaviour of living organisms. At the end of each chapter, open problems and perspectives
were discussed, providing the reader with some of our ideas for following up on the developed
methods and also for potential biological applications in the case of chemical organisations.

As concerns metabolic stories, we covered the work from its original motivation raised by
the need to treat metabolomics experimental data to an actual analysis of a metabolomics
experiment concerning yeast cells exposed to the heavy metal cadmium applying the method
developed during the thesis. We also presented all intermediate results which included the
modelling aspects, formal definition of the computational problem, proposed algorithms both
to find one story and to enumerate them all, as well as theoretical results for related problems.
We showed a polynomial algorithm to find one story based on growing a more simple structure,
that we called a pitch, that can be easily obtained through a total ordering of the nodes of
the input graph. We then described how to explore the relationship between total orderings
of the nodes and pitches to propose an algorithm that enumerates all stories. We also showed
that the related problem of finding one story with a fixed set of sources and targets is NP-
complete and that the enumeration of path-stories is probably hard, since it is as hard as the
enumeration of minimal hitting sets, which is an important problem in computer science whose
theoretical complexity has been open since long. Nevertheless, we used our method, called
Gobbolino, to try both to interpret the outcome of metabolomics data and to automatically
recover metabolic pathways, which represented an application of the method in a different
context than the one it was designed for. In the future, we believe that the method as it is
may be further explored in the context of metabolomics analyses, and that it may be also
very useful in the alternative context of automatic metabolic pathway inference, in particular
our method proposes alternative pathways. A simple first idea of improvement which is
not directly related to our method and that would benefit both applications is to replace
the computation of lightest paths by an atom mapping route approach, which may enable to
identify more realistic reaction chains between the pairs of black nodes, and thus lead to better
results in biological terms. As future perspectives for the topic, we believe that a first step is to
review the formal definition of a story in a way that internal cycles may be considered, which
will have as consequence a decrease in the quantity of stories found. A second important point
to be introduced in the definition of a story is some degree of incertitude on the black/white
node status, since a strict dichotomy does not always appear as clear in the results of the
experiments.

As concerns minimal precursor sets, we also covered the work from the original motivation
of providing a formal definition for the problem that included cyclic solutions to the application

Conclusion 109

of the developed method in which the possible metabolic exchanges in a symbiotic systems
were studied. We presented a first algorithm called Pitufo based on the creation of a data
structure called a replacement tree, then we moved to Pitufina which is an improved version
that completely avoids building this memory-consuming structure while keeping the basic
recursive algorithm which backtracks from the target to the minimal precursor sets and, finally,
we described the Papa Pitufo algorithm that through local modifications in the network
can “save" solutions in a branch in a way that enables those to be reused by other branches
with similar chemical dependencies. Theoretical results were provided on the problems of
finding minimum precursor sets or cut sets, as well as on enumerating all minimal precursor
sets. The two first were shown to be NP-Complete while the enumeration problem cannot be
solved in polynomial total time unless P=NP. As a main future improvement, we may cite
the introduction of a stoichiometric validation on the algorithm.

As concerns now chemical organisations, we considered the complexity of finding and
enumerating such objects considering their use in the context of metabolic networks which
are expected to be both mass and flux-consistent. We could prove that for such a class of
networks, there always exist two chemical organisations corresponding to the closure of the
empty set (that in this model are all the inputs of the network) and the whole network. We
called these two chemical organisations trivial and we also showed that finding non-trivial
organisations is NP-hard. We presented an algorithm to perform the enumeration of closed
sets based on finding local hitting sets of so-called blocking compounds. These closed sets are
a superset of the chemical organisations and we may filter them through linear programming
by checking whether they are self-maintaining or not. The mentioned blocking compounds
play a key role in the algorithm and in the computational complexity of the problem, and we
believe that they may also play an important biological role. In this sense, we believe that it
will be interesting to try to analyse them in a network evolution perspective, trying to identify
if they may be linked to the acquisition of new enzymes or to the adaptation of an organism
to different niches in which some new metabolites are present.

From a biological perspective, we believe that the developed methods may be useful for
investigating metabolic properties in several different ways, as we tried to illustrate in this
work. All softwares developed are publicly available and their application is immediate for
problems such as analysing metabolomics data and identifying nutrient-related metabolic re-
quirements. From a computer science perspective, we believe that at least the formal problem
defined by the metabolic stories is general enough to be applied and studied in different con-
texts, probably even outside of biology, since it is a natural generalisation of the problem
of enumerating minimal feedback arc sets, or their complement, namely maximal directed
acyclic subgraphs.

Bibliography

Acuña, V., Chierichetti, F., Lacroix, V., Marchetti-Spaccamela, A., Sagot, M.-F., and Stougie,
L. (2009). Modes and cuts in metabolic networks: Complexity and algorithms. Biosystems,
95(1):51–60.

Acuña, V., Birmelé, E., Cottret, L., Crescenzi, P., Jourdan, F., Lacroix, V., Marchetti-
Spaccamela, A., Marino, A., Milreu, P. V., Sagot, M.-F., and Stougie, L. (2012a). Telling
stories: Enumerating maximal directed acyclic graphs with a constrained set of sources and
targets. Theoretical Computer Science, 457(0):1–9.

Acuña, V., Milreu, P. V., Cottret, L., Marchetti-Spaccamela, A., Stougie, L., and Sagot, M.-F.
(2012b). Algorithms and complexity of enumerating minimal precursor sets in genome-wide
metabolic networks. Bioinformatics.

Antonov, A. V., Dietmann, S., Wong, P., and Mewes, H. W. (2009). Ticl – a web tool for
network-based interpretation of compound lists inferred by high-throughput metabolomics.
FEBS Journal, 276(7):2084–2094.

Arita, M. (2004). The metabolic world of Escherichia coli is not small. Proc Natl Acad Sci U
S A, 101(6):1543–1547.

Ausiello, G., Crescenzi, P., Gambosi, G., Kann, V., Marchetti-Spaccamela, A., and Protasi, M.
(1999). Complexity and Approximation: Combinatorial Optimization Problems and Their
Approximability Properties. Springer, Berlin.

Ausiello, G., Franciosa, P., and Frigioni, D. (2001). Directed hypergraphs: Problems, algorith-
mic results, and a novel decremental approach. In Theoretical Computer Science, volume
2202 of Lecture Notes in Computer Science, pages 312–328. Springer Berlin Heidelberg.

Bang-Jensen, J. and Gutin, G. (2010). Digraphs: Theory, Algorithms and Applications.
Springer Monographs in Mathematics. Springer.

Barve, A., Rodrigues, J. F. M., and Wagner, A. (2012). Superessential reactions in metabolic
networks. Proceedings of the National Academy of Sciences.

Berge, C. (1976). Graphs and Hypergraphs. North-Holland Mathematical Library. North-
Holland Publishing Company.

Betzler, N. (2005). Steiner tree problems in the analysis of biological networks. Master’s
Thesis, Universitat Tubingen, Germany.

Blum, T. and Kohlbacher, O. (2008). Using Atom Mapping Rules for an Improved Detection
of Relevant Routes in Weighted Metabolic Networks . Journal of Computational Biology,
15(6):565–576.

Bibliography 111

Bondy, J. and Murty, U. (1976). Graph theory with applications. American Elsevier Pub. Co.

Borenstein, E., Kupiec, M., Feldman, M. W., and Ruppin, E. (2008). Large-scale recon-
struction and phylogenetic analysis of metabolic environments. Proc Natl Acad Sci U S A,
105(38):14482–14487.

Bourtzis, K. and Miller, T. A., editors (2008). Insect Symbiosis, volume 3. CRC Press.

Boyer, F. and Viari, A. (2003). Ab initio reconstruction of metabolic pathways. In ECCB,
pages 26–34.

Boyle, N. and Morgan, J. (2009). Flux balance analysis of primary metabolism in chlamy-
domonas reinhardtii. BMC Systems Biology, 3(1):4.

Brinza, L., Viñuelas, J., Cottret, L., Calevro, F., Rahbé, Y., Febvay, G., Duport, G., Colella,
S., Rabatel, A., Gautier, C., Fayard, J.-M., Sagot, M.-F., and Charles, H. (2009). Systemic
analysis of the symbiotic function of Buchnera aphidicola, the primary endosymbiont of the
pea aphid Acyrthosiphon pisum. C R Biol, 332(11):1034–1049.

Carbonell, P., Fichera, D., Pandit, S., and Faulon, J.-L. (2012). Enumerating metabolic
pathways for the production of heterologous target chemicals in chassis organisms. BMC
Systems Biology, 6(1):10.

Caspi, R., Altman, T., Dale, J. M., Dreher, K., Fulcher, C. A., Gilham, F., Kaipa, P.,
Karthikeyan, A. S., Kothari, A., Krummenacker, M., Latendresse, M., Mueller, L. A., Paley,
S., Popescu, L., Pujar, A., Shearer, A. G., Zhang, P., and Karp, P. D. (2010). The metacyc
database of metabolic pathways and enzymes and the biocyc collection of pathway/genome
databases. Nucleic Acids Research, 38(suppl 1):D473–D479.

Centler, F., Fenizio, P. S. d., Matsumaru, N., and Dittrich, P. (2007). Chemical organizations
in the central sugar metabolism of escherichia coli. In Deutsch, A., Brusch, L., Byrne,
H., Vries, G. d., and Herzel, H., editors, Mathematical Modeling of Biological Systems,
Volume I, Modeling and Simulation in Science, Engineering and Technology, pages 105–
119. Birkhauser Boston.

Centler, F., Kaleta, C., di Fenizio, P. S., and Dittrich, P. (2008). Computing chemical orga-
nizations in biological networks. Bioinformatics, 24(14):1611–1618.

Charles, H. and Nardon, P. (1999). Enigmatic Microorganisms and Life in Extreme Envi-
ronments, volume 1 of Cellular Origin and Life in Extreme Habitats, chapter Intracellular
symbiotic bacteria within insects, pages 651–660. Kluwer Academic Publishers, Dordrecht,
Netherlands.

Consortium, T. U. (2009). The universal protein resource (uniprot) 2009. Nucleic Acids
Research, 37(suppl 1):D169–D174.

Cormen, T., Leiserson, C., Rivest, R., and Stein, C. (2001). Introduction To Algorithms. MIT
Press.

Cottret, L., Milreu, P. V., Acuña, V., Marchetti-Spaccamela, A., Martinez, F. V., Sagot,
M. F., and Stougie, L. (2008). Enumerating Precursor Sets of Target Metabolites in a
Metabolic Network. In WABI’2008, pages 233–244.

Bibliography 112

Cottret, L., Milreu, P. V., Acuña, V., Marchetti-Spaccamela, A., Stougie, L., Charles, H.,
and Sagot, M.-F. (2010a). Graph-based analysis of the metabolic exchanges between two
co-resident intracellular symbionts, aumannia cicadellinicola and sulcia muelleri, with their
insect host, homalodisca coagulata. PLoS Comput Biol, 6(9):e1000904.

Cottret, L., Wildridge, D., Vinson, F., Barrett, M. P., Charles, H., Sagot, M.-F., and Jourdan,
F. (2010b). Metexplore: a web server to link metabolomic experiments and genome-scale
metabolic networks. Nucleic Acids Research, 38(suppl 2):W132–W137.

Croes, D., Couche, F., Wodak, S. J., and van Helden, J. (2006). Inferring meaningful pathways
in weighted metabolic networks. Journal of Molecular Biology, 356(1):222 – 236.

Deitel, H. M. and Deitel, P. J. (2007). Java How to Program. Prentice Hall PTR, Upper
Saddle River, NJ, USA, 7th edition.

Dittrich, M. T., Klau, G. W., Rosenwald, A., Dandekar, T., and Muller, T. (2008). Identifying
functional modules in protein-protein interaction networks: an integrated exact approach.
Bioinformatics, 24(13):i223–i231.

Dittrich, P. and di Fenizio, P. S. (2007). Chemical organisation theory. Bull. Math. Biol.,
69(4):1199–1231.

Dupont, P., Callut, J., Dooms, G., Monette, J.-N., and Deville, Y. (2006). Relevant subgraph
extraction from random walks in a graph. Research Report RR 380167, 2006-07(2006-07).

Eiter, T., Makino, K., and Gottlob, G. (2008). Computational aspects of monotone dualiza-
tion: A brief survey. Discrete Appl. Math., 156:2035–2049.

Elliott, W. H. and Elliott, D. C. (2001). Biochemistry and Molecular Biology. Oxford Uni-
versity Press, Oxford, 2001, 2 edition.

Even, G., Naor, J., Schieber, B., and Sudan, M. (1998). Approximating minimum feedback
sets and multicuts in directed graphs. Algorithmica, 20:151–174.

Fauchon, M., Lagniel, G., Aude, J.-C., Lombardia, L., Soularue, P., Petat, C., Marguerie, G.,
Sentenac, A., Werner, M., and Labarre, J. (2002). Sulfur sparing in the yeast proteome in
response to sulfur demand. Molecular Cell, 9(4):713–723.

Faust, K., Dupont, P., Callut, J., and van Helden, J. (2010). Pathway discovery in metabolic
networks by subgraph extraction. Bioinformatics, 26(9):1211–1218.

Feist, A. and Palsson, B. (2010). The biomass objective function. Current Opinion in Micro-
biology, 13(3):344 – 349.

Feist, A. M., Herrgard, M. J., Thiele, I., Reed, J. L., and Palsson, B. O. (2009). Reconstruction
of biochemical networks in microorganisms. Nat Rev Micro, 7(2):129–143.

Fong, S. S., Burgard, A. P., Herring, C. D., Knight, E. M., Blattner, F. R., Maranas, C. D.,
and Palsson, B. O. (2005). In silico design and adaptive evolution of escherichia coli for
production of lactic acid. Biotechnology and Bioengineering, 91(5):643–648.

Fontana, W. and Buss, L. (1994). The Arrival of the fittest: towards a theory of biological
organization. Bull. Math. Biol., 56:1–64.

Bibliography 113

Gabaldon, T., Pereto, J., Montero, F., Gil, R., Latorre, A., and Moya, A. (2007). Structural
analyses of a hypothetical minimal metabolism. Philosophical Transactions of the Royal
Society B: Biological Sciences, 362(1486):1751–1762.

Gagneur, J., Krause, R., Bouwmeester, T., and Casari, G. (2004). Modular decomposition of
protein-protein interaction networks. Genome Biology, 5(8):R57.

Garey, M. R. and Johnson, D. S. (1990). Computers and Intractability; A Guide to the Theory
of NP-Completeness. W. H. Freeman & Co., New York, NY, USA.

Gevorgyan, A., Poolman, M. G., and Fell, D. A. (2008). Detection of stoichiometric inconsis-
tencies in biomolecular models. Bioinformatics, 24(19):2245–2251.

Gurvich, V. and Khachiyan, L. (1999). On generating the irredundant conjunctive and disjunc-
tive normal forms of monotone boolean functions. Discrete Applied Mathematics, 96-97:363
– 373.

Handorf, T., Christian, N., Ebenhˆh, O., and Kahn, D. (2008). An environmental perspective
on metabolism. J Theor Biol, 252(3):530–537.

Handorf, T., Ebenhöh, O., and Heinrich, R. (2005). Expanding metabolic networks: scopes
of compounds, robustness, and evolution. J Mol Evol, 61(4):498–512.

Holme, P., Huss, M., and Jeong, H. (2003). Subnetwork hierarchies of biochemical pathways.
Bioinformatics, 19(4):532–538.

Hucka, M., Finney, A., Bornstein, B. J., Keating, S. M., Shapiro, B. E., Matthews, J., Kovitz,
B. L., Schilstra, M. J., Funahashi, A., Doyle, J. C., and Kitano, H. (2004). Evolving
a lingua franca and associated software infrastructure for computational systems biology:
the systems biology markup language (sbml) project. Systems Biology, 1(1):41–53.

Jacobson, I., Booch, G., and Rumbaugh, J. (2012). The Unified Software Development Process.
Addison-Wesley Object Technology. Pearson Education, Limited.

Johnson, D. S., Yannakakis, M., and Papadimitriou, C. H. (1988). On generating all maximal
independent sets. Information Processing Letters, 27(3):119 – 123.

Joyce, A. R. and Palsson, B. O. (2008). Predicting gene essentiality using genome-scale in
silico models. In Osterman, A. L. and Gerdes, S. Y., editors, Microbial Gene Essentiality:
Protocols and Bioinformatics, volume 416 of Methods in Molecular Biology, pages 433–457.
Humana Press.

Kaleta, C., Centler, F., and Dittrich, P. (2006). Analyzing molecular reaction networks. Mol.
Biotechnology, 34(2):117–123.

Kaleta, C., Richter, S., and Dittrich, P. (2009). Using chemical organization theory for model
checking. Bioinformatics, 25(15):1915–1922.

Kanehisa, M., Araki, M., Goto, S., Hattori, M., Hirakawa, M., Itoh, M., Katayama, T.,
Kawashima, S., Okuda, S., Tokimatsu, T., and Yamanishi, Y. (2008). Kegg for linking
genomes to life and the environment. Nucleic Acids Research, pages 480–484.

Bibliography 114

Karp, R. M. (1972). Reducibility among combinatorial problems. In Miller, R. E. and
Thatcher, J. W., editors, Complexity of Computer Computations, pages 85–103. Plenum
Press.

Kauffman, K. J., Prakash, P., and Edwards, J. S. (2003). Advances in flux balance analysis.
Current Opinion in Biotechnology, 14(5):491 – 496.

Klamt, S., Haus, U.-U., and Theis, F. (2009). Hypergraphs and cellular networks. PLoS
Comput Biol, 5(5):e1000385.

Klein, C., Cottret, L., Kielbassa, J., Charles, H., Gautier, C., Vasconcelos, A. T., Lacroix, V.,
and Sagot, M.-F. (2012a). Exploration of the core metabolism of symbiotic bacteria. BMC
Genomics, 13(1):438.

Klein, C., Marino, A., Sagot, M.-F., Vieira Milreu, P., and Brilli, M. (2012b). Structural and
dynamical analysis of biological networks. Briefings in Functional Genomics.

Koschutzki, D. and Schreiber, F. (2008). Centrality analysis methods for biological networks
and their application to gene regulatory networks. Gene Regulation and Systems Biology,
2:193–201.

Lacroix, V., Cottret, L., Thébault, P., and Sagot, M. F. (2008). An Introduction to Metabolic
Networks and Their Structural Analysis. TCBB, 5(4):594–617.

Lafaye, A., Junot, C., Pereira, Y., Lagniel, G., Tabet, J.-C., Ezan, E., and Labarre, J. (2005).
Combined proteome and metabolite-profiling analyses reveal surprising insights into yeast
sulfur metabolism. Journal of Biological Chemistry, 280(26):24723–24730.

Larhlimi, A. and Bockmayr, A. (2009). A new constraint-based description of the steady-state
flux cone of metabolic networks. Discrete Applied Mathematics, 157(10):2257 – 2266.

Leader, D. P., Burgess, K., Creek, D., and Barrett, M. P. (2011). Pathos: A web facility that
uses metabolic maps to display experimental changes in metabolites identified by mass
spectrometry. Rapid Communications in Mass Spectrometry, 25(22):3422–3426.

Li, Z.-S., Lu, Y.-P., Zhen, R.-G., Szczypka, M., Thiele, D. J., and Rea, P. A. (1997). A new
pathway for vacuolar cadmium sequestration in saccharomyces cerevisiae: Ycf1-catalyzed
transport of glutathionato cadmium. PNAS, 94(1).

Madalinski, G., Godat, E., Alves, S., Lesage, D., Genin, E., Levi, P., Labarre, J., Tabet,
J.-C., Ezan, E., and Junot, C. (2008). Direct introduction of biological samples into a
ltq-orbitrap hybrid mass spectrometer as a tool for fast metabolome analysis. Analytical
Chemistry, 80(9):3291–3303.

Marashi, S.-A. and Bockmayr, A. (2011). Flux coupling analysis of metabolic networks is
sensitive to missing reactions. Biosystems, 103(1):57 – 66.

Mason, O. and Verwoerd, M. (2007). Graph theory and networks in biology. In IET Systems
Biology, 1:89 – 119, pages 89–119.

McCutcheon, J. P. and Moran, N. A. (2007). Parallel genomic evolution and metabolic
interdependence in an ancient symbiosis. Proc Natl Acad Sci U S A, 104(49):19392–19397.

Bibliography 115

Milreu, P., Acuña, V., Birmelé, E., Crescenzi, P., Marchetti-Spaccamela, A., Sagot, M.-F.,
Stougie, L., and Lacroix, V. (2010). Enumerating chemical organisations in consistent
metabolic networks: Complexity and algorithms. In Moulton, V. and Singh, M., editors,
Algorithms in Bioinformatics, volume 6293 of Lecture Notes in Computer Science, pages
226–237. Springer Berlin / Heidelberg.

Nielsen, L. R., Andersen, K. A., and Pretolani, D. (2005). Finding the k shortest hyperpaths.
Comput. Oper. Res., 32(6):1477–1497.

Orth, J. D. and Palsson, B. (2010). Systematizing the generation of missing metabolic knowl-
edge. Biotechnol. Bioeng., 107(3):403–412.

Papin, J. A., Stelling, J., Price, N. D., Klamt, S., Schuster, S., and Palsson, B. O. (2004). Com-
parison of network-based pathway analysis methods. Trends in Biotechnology, 22(8):400 –
405.

Pavlopoulos, G., Secrier, M., Moschopoulos, C., Soldatos, T., Kossida, S., Aerts, J., Schneider,
R., and Bagos, P. (2011). Using graph theory to analyze biological networks. BioData
Mining, 4(1):10.

Pharkya, P., Burgard, A. P., and Maranas, C. D. (2004). Optstrain: A computational frame-
work for redesign of microbial production systems. Genome Research, 14(11):2367–2376.

Poolman, M. G., Sebu, C., Pidcock, M. K., and Fell, D. A. (2007). Modular decomposition
of metabolic systems via null-space analysis. Journal of Theoretical Biology, 249(4):691 –
705.

Price, N. D., Papin, J. A., Schilling, C. H., and Palsson, B. O. (2003). Genome-scale microbial
in silico models: the constraints-based approach. Trends in Biotechnology, 21(4):162 – 169.

Raz, R. and Safra, S. (1997). A sub-constant error-probability low-degree test, and a sub-
constant error-probability pcp characterization of np. In Proceedings of the twenty-ninth
annual ACM symposium on Theory of computing, STOC ’97, pages 475–484, New York,
NY, USA. ACM.

Reed, J. L., Famili, I., Thiele, I., and Palsson, B. O. (2006). Towards multidimensional genome
annotation. Nat Rev Genet, 7(2):130–141.

Romero, P. R. and Karp, P. (2001). Nutrient-related analysis of pathway/genome databases.
Pac Symp Biocomput, pages 471–482.

Satish Kumar, V., Dasika, M., and Maranas, C. (2007a). Optimization based automated
curation of metabolic reconstructions. BMC Bioinformatics, 8(1):212.

Satish Kumar, V., Dasika, M., and Maranas, C. (2007b). Optimization based automated
curation of metabolic reconstructions. BMC Bioinformatics, 8(1):212.

Scheer, M., Grote, A., Chang, A., Schomburg, I., Munaretto, C., Rother, M., Sohngen, C.,
Stelzer, M., Thiele, J., and Schomburg, D. (2011). Brenda, the enzyme information system
in 2011. Nucleic Acids Research, 39(suppl 1):D670–D676.

Schilling, C. H., Letscher, D., and Palsson, B. O. (2000). Theory for the systemic definition
of metabolic pathways and their use in interpreting metabolic function from a pathway-
oriented perspective. Journal of Theoretical Biology, 203(3):229 – 248.

Bibliography 116

Schmidt, J. (2009). Enumeration: algorithms and complexity. Research report, Université de
la Méditerranée.

Schuster, S., Dandekar, T., and Fell, D. A. (1999). Detection of elementary flux modes in
biochemical networks: a promising tool for pathway analysis and metabolic engineering.
Trends in Biotechnology, 17(2):53–60.

Schuster, S. and Hilgetag, C. (1994). On elementary flux modes in biochemical reaction
systems at steady state. J. Biol. Syst., 2(2):165–182.

Schwikowski, B. and Speckenmeyer, E. (2002). On enumerating all minimal solutions of
feedback problems. Discrete Applied Mathematics, 117(1-3):253 – 265.

Scott, M. S., Perkins, T., Bunnell, S., Pepin, F., Thomas, D. Y., and Hallett, M. (2005).
Identifying regulatory subnetworks for a set of genes. Molecular and Cellular Proteomics,
4(5):683–692.

Seymour, P. D. (1995). Packing directed circuits fractionally. Combinatorica, 15(2):281–288.

Stelling, J. (2004). Mathematical models in microbial systems biology. Current Opinion in
Microbiology, 7(5):513 – 518.

Suthers, P. F., Zomorrodi, A., and Maranas, C. D. (2009). Genome-scale gene/reaction
essentiality and synthetic lethality analysis. Mol Syst Biol, 5.

Takahashi, H. and Matsuyama, A. (1980). An approximate solution for the steiner problem
in graphs. Math Japan, 24:573–577.

Thiele, I. and Palsson, B. O. (2010). A protocol for generating a high-quality genome-scale
metabolic reconstruction. Nat. Protocols, 5(1):93–121.

Urbanczik, R. and Wagner, C. (2005). Functional stoichiometric analysis of metabolic net-
works. Bioinformatics, 21(22):4176–4180.

Vallenet, D., Labarre, L., Rouy, Z., Barbe, V., Bocs, S., Cruveiller, S., Lajus, A., Pascal,
G., Scarpelli, C., and Médigue, C. (2006). Mage: a microbial genome annotation system
supported by synteny results. Nucleic Acids Res, 34(1):53–65.

van Helden, J., Wernisch, L., Gilbert, D., and Wodak, S. J. (2002). Graph-based analysis of
metabolic networks. Ernst Schering Res Found Workshop, 38:245–74.

Varma, A. and Palsson, B. O. (1994a). Metabolic flux balancing: Basic concepts, scientific
and practical use. Nat Biotech, 12(10):994–998.

Varma, A. and Palsson, B. O. (1994b). Stoichiometric flux balance models quantitatively
predict growth and metabolic by-product secretion in wild-type escherichia coli w3110.
Applied and Environmental Microbiology, 60(10):3724–3731.

Verwoerd, W. (2011). A new computational method to split large biochemical networks into
coherent subnets. BMC Systems Biology, 5(1):25.

Wu, D., Daugherty, S. C., Aken, S. E. V., Pai, G. H., Watkins, K. L., Khouri, H., Tallon,
L. J., Zaborsky, J. M., Dunbar, H. E., Tran, P. L., Moran, N. A., and Eisen, J. A. (2006).
Metabolic complementarity and genomics of the dual bacterial symbiosis of sharpshooters.
PLoS Biol, 4(6):e188.

Bibliography 117

Yoon, J., Si, Y., Nolan, R., and Lee, K. (2007). Modular decomposition of metabolic reaction
networks based on flux analysis and pathway projection. Bioinformatics, 23(18):2433–2440.

Appendix: Metabolic Network
Software Library

The purposes of this appendix are twofold: first to concentrate on a documentation of the
code done to address the studied problems covered in this work, and second to highlight the
general features that were carefully designed to allow this code to be extended in order to
possibly address different problems than the original ones for which it was developed. In this
work, we have used Java to code our algorithms. For an introduction to the Java language, we
refer to Deitel and Deitel (2007). Java uses the object-oriented paradigm, which means that
the code is written as classes of objects that have attributes and that may perform some tasks,
called methods. Programs in object-oriented languages may be seen as a natural interaction
between objects of these classes, that exchange messages in order to accomplish some task.

We may divide the software engineering results of this work into three libraries i.e., col-
lection of classes: MetNetwork, Pitufoland and Gobbolino. The first one contains all
the classes developed to deal with some of the different ways there exists to store data of
a metabolic network in a computer. The MetNetwork library contains classes that allow to
deal with a metabolic network as a compound graph, reaction graph, or hypergraph, and to
extract its stoichiometric matrix. More interestingly, the classes are able to deal with the
common SBML format in which metabolic network data are usually available but are general
enough to allow extensions dealing with different formats. Pitufoland contains the classes
responsible for implementing the three methods proposed for the enumeration of minimal
precursor sets, namely the Pitufo, Pitufina and Papa Pitufo algorithms. Gobbolino contains
the classes responsible for implementing our algorithm for enumeration of metabolic stories
based on sampling the space of orderings of the vertices of the graph. Both Pitufoland and
Gobbolino have application classes designed for providing to the final user command-line set-
tings for exploring several different possibilities of parameterisation. Gobbolino provides also
a Cytoscape plug-in in which users have access to a visual representation of the metabolic
network, its compressed version and the complete list of metabolic stories.

Unified Modelling Language (UML)

Before introducing the software engineering aspects of the three above-mentioned libraries,
we first provide a short introduction to the Unified Modelling Language (UML) that
has been proposed during the 90s in order to unify the existing modelling languages that
proliferated at that time. UML has been successful in its goal and now it has become the
most used language to describe object-oriented models, such as a Java program. For a more
comprehensive guide to UML, we refer to Jacobson et al. (2012).

Basically, UML is a collection of diagrams describing different aspects of an object-oriented
model. The main entities that are part of such a model are the classes of an object-oriented

Appendix 119

software and their relationships. There are three classes of diagrams in UML: Structural
diagrams, such as the Class diagram, Behaviour diagrams, such as the Use Case diagram,
and Interaction diagrams, such as the Sequence diagram. These three cited diagrams are the
three most used from the whole collection of diagrams described by the UML Language. In
this work, we will use only Class diagrams to explore our libraries, as indeed this is the main
building block of any object-oriented model.

In object-oriented languages, a class represents a set of objects that share the same
attributes, behaviour and relationships. Classes are drawn, in a Class diagram, as a rectangle
divided in three parts: name, set of attributes and set of methods. Classes may have different
relationships with other classes. An association is a binary relationship that models a static
association between objects of a class. For instance, we may think that buildings have flats
and flats have rooms. These are examples of associations between classes of objects. A special
kind of association is an aggregation which models a “whole-part” relationship, that happens
when an object of a class is made of objects of other classes, that in their turn exist to be part
of the first object. As an example, a Vehicle class that is an aggregation of Chassis, Wheels,
and so on. Another kind of association is the composition relationship, which may be seen
as an ownership relationship. It is like an aggregation with the additional information that the
objects share the same life-cycle, i.e., the owned object usually does not exist out of the scope
of the owner. The Room object, for instance, makes sense only when inside some building
or house, there is no “room” on its own. All kinds of association may be annotated with a
multiplicity that tells us how many objects are possibly involved in that relationship, with
possible values zero, one, or indeterminately many objects (denoted by an asterisk or by the
letter n). Finally, there are hierarchical relationships between classes that specify the richer
aspects of an object-oriented model. A class may be part of a generalization-specialization
relationship, that models the fact that one class is a descendent of another, sharing with its
ancestral class all of its attributes and methods but possibly providing additional ones or even
modifying the original parent behaviour. An example of a simple UML model capturing all
these properties is shown in Figure 6.1.

Notice, in Figure 6.1, that classes Residence and Room have their names written in italic.
This is the case because they are abstract classes. Abstract classes represent a generic concept,
with description purposes only and they are not instantiated. In other words, there exist no
objects of such classes but only of their descendants and, thus, abstract classes must be
specialized by more specific concrete classes that derive from them. Another entity that UML
introduces to deal with abstract and description purposes are Interfaces, which define a list
of methods that should be further implemented by some class. An interface basically defines
a contract or protocol, specifying how a class may interact with any other class that agrees
with the contract.

Moving a bit to the Software Engineering aspect of an object-oriented language, a nice
feature of both abstract classes and interfaces is that this allows a natural extension of a set
of classes in such a way that implementation details of a class are not needed. This eases the
task of collaborative programming, integration and extension of software, among several other
advantages. Plug-in developments that allow programmers to extend softwares by integrating
their own code to them is possible mainly due to the right use of interfaces. Once defined
what is the protocol to interact with the software, i.e., what is the possible information you
may recover or provide to it, it becomes possible to extend it by plugging in your own piece
of code.

Appendix 120

Figure 6.1: UML class diagram with classes Person, Residence, Building, Flat, House, Room, Garden, Living Room,

Bed Room and Kitchen. Examples of attributes are the name of a person or the price of a residence. An example of

an operation is the recalculatePrice method that updates the price of the residence. A person has an association with

a residence with the name “lives in a", modelling the fact that people live in residences. The multiplicity of such a

relationship is 1 . . . ∗ at the Person endpoint and 1 at the Residence endpoint, considering that one or more persons may

live in one residence. Building has an aggregation association with Flat, denoting that a building is made of several

flats. Flat and House are specializations of Residence, i.e., both of them are different kinds of residences. Residence

has a composition relationship with Room, that is a generalization of Living Room, Kitchen and Bed Room. A house

may or may not have a Garden.

MetNetwork Library

In this section, we will present the MetNetwork library. First we present the UML Class
diagram, then the main role of each class and an example of utilisation.

UML diagram

Let us now focus on the classes we have developed for dealing with metabolic networks:
the MetNetwork library. A UML Class diagram for the classes related to a metabolic net-
work representation are shown in Figure 6.2. A chemical compound and a chemical reaction
are basically modelled by its name and a unique identifier for the classes Compound and
Reaction, respectively. Reaction objects also have a boolean variable to indicate if they are
reversible or not. A Stoichiometry class is introduced to store the stoichiometric coefficients
of the compounds in the reactions. Notice that a Stoichiometry object is associated with
a Compound object in a “has a” relationship. A Reaction, on its turn, is composed of two

Appendix 121

lists of Stoichiometry objects, one for its substrates and the other for its products. Reaction
provides also methods for inclusion, deletion and retrieval of products and substrates as well
as information on their consumption or production stoichiometric coefficients. The Metabolic
Network interface lists some common operations one may be interested in for a metabolic
network object, such as: loading a network from a file, modifying the network by adding
and removing compounds and reactions, recovering its list of compounds and reactions, get-
ting the list of reactions that consume or produce a given compound, computing an induced
subnetwork from a list of compounds or reactions, or computing the union of two networks.
There are three concrete classes that implement the Metabolic Network interface: Compound
Network, Reaction Network and Hypergraph. They are also specializations of DefaultDirect-
edGraph, for the first two mentioned classes, and SetHypergraph, for the third one. These are
two classes from the JGraphT open source project that provide a large library of Java code
to build graph and hypergraph objects.

Figure 6.2: UML class diagram for the MetNetwork library with the main classes: Metabolic Network, Compound

Network, Reaction Network, Hypergraph, Compound, Reaction and Stoichiometry.

Description of the classes

• – Class Compound: Represents a compound of the metabolic network.

– Attributes: Compound objects have only two string attributes: the id and the
name of the chemical compound.

• – Class Stoichiometry: Represents the stoichiometric coefficient of each compound
participating in a reaction. Therefore, it is an intermediate class to link reaction

Appendix 122

objects to compound objects.

– Attributes: The single object is a float number to store the stoichiometry of a
compound.

• – Class Reaction: Represents a reaction of the metabolic network.

– Attributes: Reaction objects have three simple attributes. Two strings to store
their id and name and a boolean value to indicate whether the reaction is reversible
or not. Reaction objects have also two one-to-many associations with the class
Stoichiometry, to store a list of its substrates and a list of its products.

– Methods: The Reaction class provides service methods to add and remove com-
pounds from its list of substrates and products. There are also methods to answer
if a given compound is a product or a substrate of the reaction and methods to get
their stoichiometric coefficients.

• – Interface Metabolic Network: Defines a list of services that metabolic networks
are expected to provide, independent of their internal representations.

– Methods: Any metabolic network object should be able to be loaded (from a file,
a memory stream, an URL, etc.) by means of an object of the class Metabolic-
NetworkReader, that will not be detailed in the context of this appendix. The
parameter duplicateRR indicates whether the metabolic network should duplicate
a reversible reaction in two or if it should keep only one object. The class also intro-
duces several utilitary methods for adding and removing compounds and reactions,
and to get a list of the reactions that consume or produce a given compound. There
are some methods that return another metabolic network object. SubgraphFrom-
Reactions and subgraphFromCompounds extract and return a metabolic network
which is a subgraph induced by a list of reactions or compounds, respectively. Fi-
nally, the union method computes the union between a metabolic network and a
second one passed as parameter, returning a new metabolic network corresponding
to this union.

• – Class Compound Network: This class is a compound graph representation of
a metabolic network. It is implemented as a directed graph (class DefaultDirected-
Graph from the jGraphT library) whose nodes are compound objects and arcs are
reaction objects.

– Methods: This class is an implementation of the Metabolic Network interface and
thus provides implementations for all the methods defined in the interface. No
specific methods are added.

• – Class Reaction Network: This class is a reaction graph representation of a
metabolic network. It is implemented as a directed graph (class DefaultDirected-
Graph from the jGraphT library) whose nodes are reaction objects and arcs are
instances of the DefaultEdge class defined in the jGraphT library, which corre-
sponds to a simple relationship between two reactions.

– Methods: This class is an implementation of the Metabolic Network interface and
thus provides implementations for all the methods defined in the interface. No
specific methods are added.

Appendix 123

• – Class Hypergraph: This class is a hypergraph representation of a metabolic
network. It is implemented as a hypergraph (class SetHypergraph from the jGraphT
library) whose nodes are compound objects and hyperarcs are reaction objects.

– Methods: This class is an implementation of the Metabolic Network interface
and thus provides implementations for all the methods defined in the interface.
A new getStoichiometricMatrix method is provided that returns a float matrix
corresponding to the stoichiometric matrix representation of the metabolic network.

Pitufoland Library

In this section, we will present the Pitufoland library. First we present the UML Class
diagram, then the main role of each class and an example of utilisation.

UML diagram

Let us now focus on the classes we have developed for finding minimal precursor sets for
a given set of target compounds in a metabolic network, the Pitufoland library. A UML
Class diagram for the classes related to this task are shown in Figure 6.3. The main class is
PrecursorFinder that is a generalization for any class solving the problem of finding minimal
precursor sets for a given target set. We provide three different specializations of such a class:
Pitufo, Pitufina and Papa Pitufo that correspond to the three methods presented in Chapter
4.

Figure 6.3: UML class diagram for the Pitufoland library with the main classes: PrecursorSet, PrecursorFinder,

Pitufo, Pitufina, Papa Pitufo and ReplacemenTree.

Description of the classes

• – Class PrecursorSet: represents a solution of the problem, i.e., a list of com-
pounds that are the minimal precursor sets to produce a given target.

Appendix 124

– Attributes: A list of compounds representing the precursors and a list of boot-
strap compounds representing the metabolites that are internally supplied and are
further recycled by the cell.

– Class Main: Represents the user interface. A main object is needed for dealing
with the command-line arguments, reading the input data and calling the appro-
priate methods for finding the solution and printing it out to the user.

– Methods: The main method is the starting point of the application. It basically
parses the command-line options and calls the appropriate method to deal with
the input problem. Next subsection explains the main options available for using
the Pitufoland library. Two parameters are mandatory: the name of a metabolic
network input file (currently, it must be in the SBML format) and the name of
an input file containing the list of targets and, optionally, the list of user-defined
potential precursors (also a XML format defined by our library). The method
preprocessNetwork does the preprocessing steps described in Section 4.4, such as
transforming user-defined precursors into topological precursors, and also the pre-
processing steps described in Section 4.5, namely the removal of void cycles.

• – Class PrecursorFinder: represents a generic class to solve the problem of finding
all minimal precursor sets for a given set of target metabolites.

– Attributes: The single attribute of this class is the metabolic network for which
the enumeration of minimal precursor sets will be performed.

– Methods: The main method is findPrecursorsInNetwork that has as parameter
a collection of Compound objects representing the targets and returns the list of
precursor sets found to produce these targets. There are some support methods
that are useful for descendant classes: createArtificialTargetCompound implements
the singleton target set preprocessing step described in Section 4.4; findReaction-
ThatProduce, findMinimalReactionThatProduce and findReactionsThatProduce are
used to recover a reaction (the first two methods) or a list of reactions (the third
one) that produces a given compound considering that a list of other compounds is
available; the method precursorSetCartesianUnion computes and returns the carte-
sian union of two lists of precursor sets and is important for intermediate steps of
both Pitufina and Papa Pitufo; finally, the method reduceToMinimalPrecur-
sorSet extracts and returns the minimal precursor sets among the ones passed as
argument to the method.

• – Class Pitufo: Implements the Pitufo method for finding minimal precursor sets
building a secondary structure called a ReplacementTree.

– Methods: The unique method of this class is findPrecursorSetsWithReplacement-
Tree, that gets a list of Compound objects as parameter and returns a list of minimal
precursor sets that are able to produce them. For finding the solutions, it builds
a ReplacementTree object for the singleton target compound (if there are more
than one target compound in the argument, an artificial one is created using the
createArtificialTargetCompound method defined in the parent class) and inspecting
the leaves of the tree once the building process is finished.

• – Class ReplacementTree: Represents the replacement tree object described in
Section 4.4.

Appendix 125

– Methods: The main methods of this class are build and replace. The method build
is the starting point that creates a TreeCompoundNode for the target parameter and
then calls recursively the method replace in order to replace it by the substrates of
the reactions that are able to produce the target. The method compressReactions
is used to compress reactions once the recursion stopped, moving the leaves closer
to the root of the replacement tree.

• – Class Pitufina: Implements the Pitufina method for finding minimal precursor
sets through a recursive traversal of the metabolic network, backtracking from the
singleton target to the minimal precursor sets.

– Methods: The main method of this class is minSourcesHyperpaths that is an im-
plementation of the Algorithm ReactionDecomp, presented in Section 4.4, i.e.,
it is a reaction decomposition recursive approach used by Pitufina to traverse the
network from the target metabolite to the minimal precursor sets. The method
findPrecursorsInNetworkForTarget defined in the parent class is overwritten in or-
der to call minSourcesHyperpaths for the singleton target compound (if there are
more than one target compound in the argument, an artificial one is created using
the createArtificialTargetCompound method defined in the parent class). Notice
that the boolean parameter minimality changes the behaviour of the method, since
a true value will restrict the selection of reactions to the minimal ones.

• – Class Papa Pitufo: Implements the Papa Pitufo method for finding mini-
mal precursor sets through local modifications of the metabolic network, creating
shortcuts in the form of artificial reactions.

– Methods: The main method of this class is compactInNetworkFrom that is an
implementation of the Algorithm PapaPitufo, presented in Section 4.4, i.e., it is
a reaction decomposition recursive approach used by Papa Pitufo to traverse from
the target metabolite to the minimal precursor sets and, once the recursion stops,
to include an artificial reaction creating a shortcut from precursor sets to local
target metabolites. The method findPrecursorsInNetworkForTarget defined in the
parent class is overwritten in order to call compactInNetworkFrom for the singleton
target compound (if there are more than one target compound in the argument, an
artificial one is created using the createArtificialTargetCompound method defined
in the parent class). Notice that the boolean parameter minimality changes the
behaviour of the method, since a true value will restrict the selection of reactions
to the minimal ones. Finally, the method createShortcut is an implementation of
the Algorithm Replace also presented in Section 4.4.

Example of utilisation

The list of arguments that the user has to explore the Pitufoland library are:

• -s=filename: Metabolic network file in the SBML format.

• -i=filename: Input file in a XML application-defined format containing the list of targets
and an optional list of user-defined potential precursor compounds.

• -o: Look separately at each target compound, instead of dealing with them as a set.

• -mT: Use the PITUFO method.

Appendix 126

• -mP: Use the PITUFINA method.

• -mPP: Use the PAPAPITUFO method.

• -mPMin: Use the PITUFINA method with the minimality condition for choosing the
reactions at each step.

• -mPPMin: Use the PAPAPITUFO method with the minimality condition for choosing
the reactions at each step.

• -ecc: Eliminate void cycles from the network as a preprocessing step.

• -random=off: By default, the -ecc option uses a randomized approach to find the void
cycles. This feature may be turned off, mainly for debugging purposes if one wants to
repeat the same choices at each run.

As an example of a XML input file for the program, we present Figure 6.4 that shows
an input file that specifies L-aspartate as a target compound and glucose as a user-defined
potential precursor. Suppose that this file is called input.xml and that a SBML metabolic
network input file called network.xml is also available. Suppose also that the Pitufoland
library is packaged in a pitufoland.jar Java file. In this case, a command-line to compute the
minimal precursor sets is: java -jar pitufoland.jar -s="network.xml" -i="input.xml".

Figure 6.4: Example of the XML input file for defining the targets and the potential precursors.

Project URL

The Pitufoland source code is available at the following URL: http://pitufo.gforge.inria.fr/.

Gobbolino Library

In this section, we will present the Gobbolino library. First we present the UML Class
diagram, then the main role of each class and an example of utilisation.

UML diagram

Let us now focus on the classes we have developed for enumerating metabolic stories given a
set of black nodes in a metabolic network, the Gobbolino library. A UML Class diagram for the
classes related to this task are shown in Figure 6.5. As the number of classes in this package
is large, we preferred to put less details on the diagram. In the figure, we do not include
the attributes and methods for the class to highlight mainly the relationships between the
classes of the library. The main class for the enumeration process is OrderBasedEnumerator

Appendix 127

that implements our metabolic stories enumeration algorithm presented in Chapter 3. The
library also includes the class ComputeBlackNodeScenario that is able to transform the input
metabolic network in the SBML format into the internally defined NEL format (stored in a
NELNetwork object) and to apply the simplification preprocessing steps introduced in Section
3.4. The class RandomBNSimulation runs the enumeration algorithm without the need of
supplying a list of black nodes, because it selects randomly a user-defined number of black
nodes. This class was designed mainly for statistical analysis and was used to measure the
efficiency of the preprocessing steps. The class PathwayCoveringSimulation implements the
second biological application described in Section 3.6, namely the application of metabolic
stories for automatic pathway recovery. The general purpose class ComputeStatistics, that
was originally designed for computing statistics both on the input file and the output files
of the enumeration process, was further adapted to produce an anthology (union of several
stories) while reading the output file.

Figure 6.5: UML class diagram for the Gobbolino library with the main classes: ComputeBlackNodeScenario,

ComputeStories, ComputeStatistics, PathwayCoveringSimulation and RandomBNSimulation.

Description of the classes

• – Class NELNetwork: represents a directed graph stored as an adjacency matrix
with additional information on which ones among the vertices are the black nodes.

– Attributes: The main attributes of this class is adjacency that is a boolean matrix
of nn dimension, where nn is the number of nodes in the graph. There are two
integer value vectors of nn dimension, to store the in-degree and the out-degree
of the nodes, and a boolean vector of the same size that stores the information
whether the node is black or not.

– Methods: The main method of this class is readFile that reads an input file in
the NEL format and builds an NELNetwork object.

Appendix 128

• – Class NELWithALNetwork: represents a directed graph stored as an adjacency
list. It fulfills the same purpose of the NELNetwork class but with a different
internal storage.

– Class Main: Represents the user interface. A main object is needed for dealing
with the command-line arguments, reading the input data files and calling the
appropriate methods for enumerating stories or using the other operation modes
available: compression of the SBML input file into a lightest-path simplified NEL
file, computing statistics both on the input and output files, generating random
simulations or performing the metabolic pathway automatic recovery.

– Methods: The main method is the starting point of the application. It basically
parses the command-line options and calls the appropriate method to deal with
the input problem. Next subsection explains the main options available for using
the Gobbolino library.

– Class ComputeBlackNodeScenario: This class is responsible for dealing with
the basic input file, a metabolic network in the SBML format, and preprocessing it
to generate a NEL file containing the union of all lightest paths between the black
nodes and applying all preprocessing steps as specified in Section 3.4. For perform-
ing these tasks, it makes use of the class XML2NEL, that converts the SBML input
file into the NEL format; the LightestPathCreator class that computes all lightest
paths between the black nodes and generates the corresponding network; and the
GraphSimplifier class that applies the simplification operations and generates the
final compressed network.

– Class ComputeStories: This class is responsible for calling the enumeration of
metabolic stories according with the user-defined parameters. To this goal, an
object of the class OrderBasedEnumerator is created.

– Class OrderBasedEnumerator: This class is responsible for actually enumer-
ating the metabolic stories.

– Attributes: This class is a specialization of NELWithALNetwork, inheriting its
attributes. Therefore, this class is a network built from the input file. Additional
attributes are: control, a RaceControl object used to decide if the enumeration
should continue or be interrupted; orderGenerator, an OrderGenerator object used
to generate the next total ordering of the nodes; score, a ComputeScore object
used to assign a value to each story computed; sasSet, which is a map containing
all stories generated so far, storing the minimal story arc set corresponding to the
story as its identifier in the map.

– Methods: The main method is run, that is called by a ComputerStories object.
This method contains a main loop that generates a new ordering of the nodes
through the orderGenerator object, computes a new story based on this ordering
through the method computeSAS and then checks the stop conditions. A first stop
condition may be reached by the control object, that is called after each new story
is generated, if the control does not stop the computation, the method checks that
the maximum number of stories to be generated is already reached. If this is not
the case, the method checks if all permutations of the nodes were explored. If none
of these stop conditions is reached, the computation of stories continues.

Appendix 129

– Class ComputeStatistics: This class is responsible for computing statistics on
the input and output files. For the output file, an anthology with the same name
of the output file with an additional suffix "-anthology" is generated, containing
the highest scoring stories.

– Class PathwayCoveringSimulation: This class is responsible for performing
the experiment of metabolic pathway automatic recovery.

– Methods: The main method is run, that is called by a PathwaySimulation object
(class not presented in the diagram). This method iterates over the input metabolic
pathway files and for each one of them, computes a compressed network and enu-
merates metabolic stories. At the end of the processing, the method performs an
analysis of the results and prints the accuracy obtained by the best story for each
metabolic pathway.

– Class RandomBNSimulation: This class is responsible for enumerating metabolic
stories through random selection of black nodes.

– Methods: The main method is run, that is called by a Simulation object (class
not presented in the diagram). This method runs from a minimum to a maximum
user-defined value that corresponds to the number of black nodes to be randomly
selected. Once the list of black nodes is chosen, the method computes a compressed
network and enumerates metabolic stories, outputting text files containing detailed
information on the compression rates at each step of the processing.

Example of utilisation

The list of arguments that the user has to explore the Gobbolino library are divided in
five different modes of operation. The first one, called BNS, is used to generate a compressed
network. It consists in (optionally) converting a SBML (XML) metabolic network into a NEL
graph format file, selecting (all/shortest/lightest) paths between black nodes and, finally,
compacting the network by applying the compression rules (bottleneck removals/dead-end
removals/self-loop removals) described in Section 3.4. The second operation mode, called
STORIES, is the default one and is used to enumerate metabolic stories. The third operation
mode, called STAT, is used to compute statistics both on the input network and on the output
file containing the enumerated stories, as well as to generate an anthology of stories that have
a score close or equal to the best score in the output file. The fourth mode, called RANDOM,
computes stories for all networks contained in a given directory by choosing black nodes
randomly. Finally, the last operation mode, called PATHWAY, that is used for enumerating
stories for a given set of metabolic pathways and one metabolic network from which these
pathways were extracted. Individual input files with the list of black nodes for each metabolic
pathway are required. The user can select in which of the five operations mode he/she wants
to operate by using the -mode=NAME option, where name is a string with the name of the
mode. The mode parameter is optional and if not provided, the STORIES mode is assumed.

The parameters of Gobbolino for the BNS mode are:

• -n=filename: Input file name with no extension. If there is a XML file, it will be
first converted to the NEL format. Then the lightest paths are going to be extracted
(generating a file filename-LP.NEL) and simplified (generating a file filename-LP-S).

Appendix 130

• -paths=all | shortest | LIGHTEST: Select the paths between black nodes to be preserved.
The options are all paths, only the shortest paths (weight of arcs all equal to one) or
only the lightest paths (weight of arcs equal to the out-degree of the target node), which
is the default option.

• -reversibility=ON | off: The user may choose to ignore the reversibility of the reactions.

The parameters of Gobbolino for the STORIES mode are:

• -n=filename: Input file name with no extension (NEL format is assumed).

• -o=filename: Output file that will contain the stories generated. This parameter is
optional and the filename "./output/stories/stories.sto" is the default output.

• -q= 10 | all: Maximum number of stories to be generated. 10 is the default value for
this parameter. The value all indicates that there is no limit on the number of stories
to be generated.

• -order=RANDOM | all. Chooses between randomly inspecting the space of orders or
to generate all orders in a deterministic way. The randomized approach is the default
option.

• -score=EDGESUM | partialOrder | metabolomics: Chooses the score function to be used:
sum of edge weights, partial order (needs an additional file with the preferred partial
orders) and metabolomics intensities (needs an additional information on the black nodes
file with the concentrations of black nodes). Scores may be combined using semicolon
(;) as a separator. For instance, the option -score=METABOLOMICS;EDGESUM will
use two score functions to classify the stories.

• -scoreFile=filename: Input filename for the score functions that need additional data.

• -maxScore: Outputs only the maximum scored stories. Default is to output all of them.

• -orderFile=filename: Input filename containing total order of the nodes (1 per line, node
ids separated with 1 space) to be used before passing to the random enumeration.

• -stop=MAXSTORIES | bernouilli | time: By default the enumeration of stories stops
only when all stories are computed or the defined maximum number of stories is reached.
Two other options available are to stop based on a time limit (specified in minutes) or
on statistical measurements of the number of new stories generated trying to estimate
the number of new stories still to be found.

• -stopTime=10: Sets how many minutes the enumeration should run. By default, the
time stop condition is set to 10 minutes.

• -stopSampleSize=10000. Parameter for the Bernouilli stop condition, specifying the size
of the sample after which each estimation of how well the space of solutions is explored
is performed. By default, the sample size is set to 10000.");

All input files are searched in the input folder and the generated stories are saved in the
output/stories folder.

The parameters of Gobbolino for the STAT mode are:

Appendix 131

• -n=filename: Input file name with no extension (NEL format is assumed). If the file is
present, several statistics will be performed.

• -o=filename: Output file containing the stories generated. This parameter is optional
and the filename "./output/stories/stories.sto" is the default output. If the file is
present, several statistical analyses will be performed. An anthology will also be gener-
ated.

The parameters of Gobbolino for the RANDOM mode are the same ones defined for the
STORIES mode, with the addition of the following parameters:

• -rbnMin=5: Minimum number of random black nodes to be chosen.

• -rbnMax=15: Maximum number of random black nodes to be chosen.

• -rbnIncrement=5: Sets the Increment at each iteration from the minimum to the max-
imum number of black nodes specified.

• -rbnMode=PERCENT | absolut: Defines how the minimum and maximum parameters
are going to be interpreted. The default is to treat them as percentages of the number
of nodes of the network, i.e., a value of 5 will be interpreted as an order to select 5%
of the nodes of the network as black nodes. The value absolut changes the behaviour so
that it will be interpreted as an order to select 5 black nodes.

The parameters of Gobbolino for the PATHWAY mode are the same ones defined for
the STORIES mode. An important difference, however, is that here the input file must
be the original one (SBML format), since several metabolic pathway-specific NEL files will
be generated in the process. The metabolic pathway files also in the SBML format are
expected to be found in the input/pathway/pathways folder. The input files containing, for
each metabolic pathway, the list of corresponding black nodes are expected to be found in
the folder input/pathway/BNs and to have the same name as the metabolic pathway file, but
using a BN extension instead of XML. The score function automatically associated with the
PATHWAY option is the partial ordering score and the input files describing the preferred
orders for each pathway are expected to be found in the folder input/pathway/score and to
have the same name as the metabolic pathway file, but using an order extension instead of
XML. The additional parameters specific to the PATHWAY computation mode are:

• -autoBN=sourceTarget | borensteinAll | borensteinOne | borensteinRG: By default, the
system will use the black nodes defined in the predefined folders. The user may want
also to automatically choose black nodes using the autoBN option. The first option,
sourceTarget, corresponds to choosing as black nodes the topological source/targets
of the metabolic pathway. The other 3 options apply the Borenstein et. al method
(Borenstein et al. (2008)) identifying source/target strongly connected components. The
first one takes all compounds inside a strongly connected component as black nodes,
the second one chooses one compound to represent the strongly connected component
while the third applies the method on a reaction graph representation of the network,
choosing as black nodes the compounds involved in the source/target reaction nodes.

• -tas=10: Defines a threshold on the number of black nodes. For pathways with less
than tas black nodes, all stories are going to be computed (avoiding the randomized
approach). For the others, the maximum number of stories defined (with the selected
stop condition) is searched.

Figure 6.6: Example of the input file for defining the black nodes for the metabolic stories enumeration.

As an example of a black nodes input file, we present Figure 6.6 that shows the input file
containing the whole list of black nodes used in our first biological application, described in
Section 3.6. Suppose that this file is called yeast-s288c.bn and that a SBML metabolic network
input file called yeast-s288c.xml is also available. Suppose also that the Gobbolino library is
packaged in a gobbolino.jar Java file. In this case, a command-line to compute the compressed
network is: java -jar gobbolino.jar -mode=BNS -n="yeast-s288c" and it will generate, in the
input folder, a file named yeast-s288c-LP-S.NEL. In order to perform the same experiment
we have described in Section 3.6, the command-line is: java -jar gobbolino.jar -n="yeast-
s288c-LP-S" -o="stories-yeast-s288c-wholeList.sto" -q=500000 -score=METABOLOMICS -
scoreFile="yeast-s288c.bn" -stop=TIME -stopTime=1.

Project URL

TheGobbolino source code is available at the following URL: http://gobbolino.gforge.inria.fr.

TITRE en français

Énumération de Sous-Structures Fonctionnelle dans des Réseaux Métaboliques Complets: His-
toires Métaboliques, Précurseurs et Organisations Chimiques

RÉSUMÉ en français

Dans cette thèse, nous avons présenté trois méthodes différentes pour l’énumération de sous-
réseaux particuliers d’un réseau métabolique: les histoires métaboliques, les ensembles minimaux de
précurseurs et les organisations chimiques. Pour chacune de ces trois méthodes, nous avons présenté
des résultats théoriques, et pour les deux premières, nous avons en outre fourni une illustration sur
comment les appliquer afin d’étudier le comportement métabolique des organismes vivants. Les his-
toires métaboliques sont définies comme des graphes acycliques dirigés maximaux dont les ensembles
de sources et de cibles sont limités à un sous-ensemble des nœuds. La motivation initiale de cette déf-
inition était d’analyser des données expérimentales de métabolomique, mais la méthode a également
été explorée dans un contexte différent. Les ensembles de précurseurs métaboliques sont des ensembles
minimaux de nutriments qui permettent de produire des métabolites d’intérêt. Nous présentons trois
méthodes différentes pour l’énumération de tels ensembles minimaux de précurseurs, et nous illustrons
leur application dans une étude des échanges métaboliques dans un système symbiotique. Les organ-
isations chimiques sont des ensembles de métabolites qui à la fois sont fermés et s’auto-maintiennent,
ce qui reflète des caractéristiques de stabilité dans le sens où aucun nouveau métabolite ne peut être
produit et qu’aucun des métabolites déjà présents dans le système ne peut disparaître.

MOTS-CLEFS en français
algorithme; complexité; graphes; exact exponentiel; randomisation; biologie computationelle; sym-
biose; métabolisme; réseau métabolique; énumération; ensemble d’arcs de rétroaction; graphe acy-
clique dirigé maximal; histoire métabolique; ensemble de précurseurs; organisation chimique

TITRE en anglais

Enumerating Functional Substructures of Genome-Scale Metabolic Networks: Stories, Precursors
and Organisations

RÉSUMÉ en anglais

In this thesis, we presented three different methods for enumerating special subnetworks contained
in a metabolic network: metabolic stories, minimal precursor sets and chemical organisations. For
each of the three methods, we gave theoretical results, and for the two first ones, we further provided
an illustration on how to apply them in order to study the metabolic behaviour of living organisms.
Metabolic stories are defined as maximal directed acyclic graphs whose sets of sources and targets are
restricted to a subset of the nodes. The initial motivation of this definition was to analyse metabolomics
experimental data, but the method was also explored in a different context. Metabolic precursor sets
are minimal sets of nutrients that are able to produce metabolites of interest. We present three
different methods for enumerating minimal precursor sets and we illustrate the application in a study
of the metabolic exchanges in a symbiotic system. Chemical organisations are sets of metabolites that
are simultaneously closed and self-maintaining, which captures some stability feature in the sense that
no new metabolite may be produced and that none of the present metabolites vanishes.

MOTS-CLEFS en anglais

algorithm; complexity; graphs; exact exponential; randomisation; computational biology; symbio-
sis; metabolism; metabolic network; graph; enumeration; feedback arc set; maximal directed acyclic
graph; metabolic story; precursor set; chemical organisation

	Introduction
	Biological Concepts
	Metabolic network
	Metabolic network reconstructions

	Mathematical Concepts
	Graphs and hypergraphs
	Modelling metabolic networks
	Analysing structural properties of metabolic networks
	Algorithm complexity analysis
	Algorithms on graphs
	Complexity analysis of algorithms
	Enumeration problems

	Metabolic Stories
	Introduction
	Modelling metabolic stories
	Definitions
	Algorithms and complexity for finding and enumerating stories
	Preprocessing the graph
	Finding single stories
	Enumerating stories by enumerating FASs
	Enumerating stories by enumerating permutations

	Alternative definition of a story
	Biological application
	Enumerating stories for interpreting metabolomics experiments
	Enumerating stories for recovering metabolic pathways

	Open problems and perspectives

	Precursor Sets
	Introduction
	Definitions
	Complexity results
	Algorithms for precursor sets enumeration
	Performance analysis
	Biological application
	Open problems and perspectives

	Chemical Organisations
	Introduction
	Definitions
	Chemical organisations in consistent networks
	Enumerating chemical organisations
	Hitting set approach to enumerate organisations
	Open problems and perspectives

	Conclusion
	Bibliography
	Appendix: Metabolic Network Software Library

