
HAL Id: tel-00850705
https://theses.hal.science/tel-00850705

Submitted on 8 Aug 2013

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Models and algorithms for metabolic networks:
elementary modes and precursor sets

Vicente Acuña

To cite this version:
Vicente Acuña. Models and algorithms for metabolic networks: elementary modes and precursor
sets. Algorithme et structure de données [cs.DS]. Université Claude Bernard - Lyon I, 2010. Français.
�NNT : �. �tel-00850705�

https://theses.hal.science/tel-00850705
https://hal.archives-ouvertes.fr

No d’ordre: 218-2008 Année 2009

Thèse

Présentée

devant l’Université Claude Bernard - Lyon 1

pour l’obtention

du Diplôme de Doctorat
(arrêté du 7 août 2006)

et soutenue publiquement le
4 Juin 2010

par

Vicente Acuña

Models and algorithms for metabolic networks:
elementary modes and precursor sets

Directrice de thèse: Marie-France Sagot
Co-directeur de thèse: Christian Gautier

Jury: Pierluigi Crescenzi, Rapporteur
Khaled Elbassioni, Rapporteur
Christian Gautier, Directeur
Dominique Perrin, Examinateur
Marie-France Sagot, Directrice
Alain Viari, Président

UNIVERSITÉ CLAUDE BERNARD-LYON 1

Président de l’Université M. le Professeur L. COLLET
Vice-Président du Conseil Scientifique M. le Professeur J. F. MORNEX
Vice-Président du Conseil d’Administration M. le Professeur G. ANNAT
Vice-Président du Conseil des Etudes et M. le Professeur D. SIMON
de la Vie Universitaire
Secrétaire Général M. G. GAY

COMPOSANTES SANTÉ

UFR de Médecine Lyon-Est – Claude Bernard Directeur: M. le Professeur J. ETIENNE
UFR de Médecine Lyon-Sud – Charles Mérieux Directeur: M. le Professeur F-N. GILLY
UFR d’Ontologie Directeur: M. le professeur D. BOURGEOIS
Institut des Sciences Pharmaceutiques et Bi-
ologiques

Directeur: M. le Professeur F. LOCHER

Institut des Sciences et Techniques de Réadapta-
tion

Directeur: M. le Professeur Y. MATILLON

Département de Formation et Centre de Recherche
en Biologie Humaine

Directeur: M. le Professeur P. FARGE

COMPOSANTES SCIENCES ET TECHNOLOGIE

Faculté des Sciences et Technologies Directeur: M. le Professeur F. GIERES
UFR Sciences et Techniques des Activités
Physiques et Sportives

Directeur: M. C. Collignon

Observatoire de Lyon Directeur: M. B. Guiderdoni
Institut des Sciences et des Techniques de
l’Ingénieur de Lyon

Directeur: M. le Professeur J. LIETO

Institut Universitaire de Technologie A Directeur: M. le Professeur C. COULET
Institut Universitaire de Technologie B Directeur: M. le Professeur R. LAMARTINE
Institut de Science Financière et d’Assurances Directeur: M. le Professeur J-C. AUGROS

Abstract

In this PhD, we present some algorithms and complexity results for two general prob-
lems that arise in the analysis of a metabolic network: the search for elementary modes
of a network and the search for minimal precursors sets.

Elementary modes is a common tool in the study of the cellular characteristic of
a metabolic network. An elementary mode can be seen as a minimal set of reactions
that can work in steady state independently of the rest of the network. It has there-
fore served as a mathematical model for the possible metabolic pathways of a cell.
Their computation is not trivial and poses computational challenges. We show that
some problems, like checking consistency of a network, finding one elementary mode or
checking that a set of reactions constitutes a cut are easy problems, giving polynomial
algorithms based on LP formulations. We also prove the hardness of central problems
like finding a minimum size elementary mode, finding an elementary mode containing
two given reactions, counting the number of elementary modes or finding a minimum
reaction cut. On the enumeration problem, we show that enumerating all reactions
containing one given reaction cannot be done in polynomial total time unless P=NP.
This result provides some idea about the complexity of enumerating all the elementary
modes.

The search for precursor sets is motivated by discovering which external metabolites
are sufficient to allow the production of a given set of target metabolites. In contrast
with previous proposals, we present a new approach which is the first to formally
consider the use of cycles in the way to produce the target. We present a polynomial
algorithm to decide whether a set is a precursor set of a given target. We also show
that, given a target set, finding a minimal precursor set is easy but finding a precursor
set of minimum size is NP-hard. We further show that finding a solution with minimum
size internal supply is NP-hard. We give a simple characterisation of precursors sets
by the existence of hyperpaths between the solutions and the target. If we consider
the enumeration of all the minimal precursor sets of a given target, we find that this
problem cannot be solved in polynomial total time unless P=NP. Despite this result,
we present two algorithms that have good performance for medium-size networks.

6

Contents

Introduction 11

1 Some Basic Mathematical Definitions 19
1.1 Graphs, digraphs and hypergraphs . 19

1.1.1 Graph and digraph definitions 20
1.1.2 Graphical representation and labels 20
1.1.3 Walks, paths, cycles and hamiltonian cycles 20
1.1.4 Adjacency and incidence matrix 21
1.1.5 Induced subgraph, bipartite graphs and trees 21
1.1.6 Directed hypergraphs . 22

1.2 Hitting set . 23
1.3 Boolean functions . 24

1.3.1 Monotone Boolean functions . 25

2 Basic Concepts of Time Complexity Analysis 27
2.1 Defining a problem . 28

2.1.1 Decision problems . 28
2.1.2 Optimisation problems . 29
2.1.3 Enumeration and counting problems 29

2.2 Analysis of algorithms . 30
2.2.1 Input size . 31
2.2.2 Worst case analysis . 31
2.2.3 Asymptotic analysis . 31

2.3 Complexity classes of decision problems 32
2.3.1 The class P . 32
2.3.2 The class Np . 32
2.3.3 Reducibility among problems 33
2.3.4 Np-complete problems . 33

2.4 Complexity classes of optimisation problems 34
2.4.1 The classes Po and Npo . 34
2.4.2 Np-hard optimisation problems 35
2.4.3 Approximation algorithms . 35
2.4.4 The classes Apx and Apx-hard 36

2.5 Complexity of counting solutions . 36

8 CONTENTS

2.5.1 ♯P and ♯P-complete . 36
2.6 Complexity of enumerating all the solutions 37

2.6.1 Time delay, incremental time and total time 37

3 Metabolic Networks 39
3.1 Entities involved in metabolism . 40

3.1.1 Biochemical reactions and metabolites 40
3.1.2 Enzymes and genes . 41
3.1.3 Metabolism regulation . 41
3.1.4 Reconstructing a metabolic network 42

3.2 Modelling metabolic networks . 43
3.2.1 Graph and hypergraphs models 43
3.2.2 Including stoichiometry . 44
3.2.3 Assuming steady state . 44

4 Complexity of Computing Elementary Modes 47
4.1 Modelling metabolic network in steady state 48

4.1.1 Definitions . 48
4.1.2 Relation between elementary modes and extreme rays 50
4.1.3 Reversibility of reactions . 50

4.2 Checking consistency of the stoichiometric matrix 51
4.3 Finding elementary modes . 53

4.3.1 Finding an elementary mode . 53
4.3.2 Finding elementary modes with support containing a given set

of reactions . 54
4.3.3 Finding the shortest elementary modes 56

4.4 Counting elementary modes . 59
4.5 Enumerating elementary modes . 60

4.5.1 Enumerating elementary modes with a given reaction in its support 61
4.5.2 Analysis of the complexity result 61
4.5.3 Case when all reactions are reversible 62

4.6 Reaction cuts . 62
4.6.1 Finding minimal and minimum reaction cuts 63

4.7 Proof of Theorem 4.11 and Theorem 4.15 65

5 Modelling Precursor Sets in Metabolic Networks 71
5.1 Definitions and Characterisations . 71

5.1.1 Modelling a metabolic network 71
5.1.2 Forward propagation . 72
5.1.3 Definition of precursor sets considering cycles 73
5.1.4 Alternative characterisation of precursor set 74
5.1.5 Maximal target . 75
5.1.6 Hyperpaths from sources to the target 76
5.1.7 Precursor cut set . 77

CONTENTS 9

5.2 Complexity results . 77
5.2.1 Deciding if a set of sources is a precursor set 78
5.2.2 Finding a minimal and a minimum precursor sets 78
5.2.3 Enumerating all minimal precursor sets 81

6 Algorithms to Enumerate All Minimal Precursor Sets 85
6.1 Preprocessing the network . 85
6.2 The replacement tree . 87
6.3 Enumerating precursor sets by searching for HP-subtrees 91
6.4 Enumerating precursor sets by merging reactions 93

6.4.1 Reaction replacement . 94
6.4.2 Algorithm compacting hyperpaths 95

6.5 Performance analysis . 97
6.6 Some extensions . 99

6.6.1 Enumerating hyperpaths from sources to the target set 99
6.6.2 Discarding trivial cycles . 100

Conclusion and Perspectives 101

Bibliography 105

Introduction

The principal aim of this work is a computational study of two problems appearing in

the research on metabolism. The model used to address these problems considers the

set of all biochemical reactions which can occur in a given organism. The links between

those reactions and the compounds (or metabolites) that are used/produced by such

reactions constitute the metabolic network of the organism. Modelling the whole set

of reactions represents a more general approach in comparison to the research that

had been done until now on metabolism. Indeed, traditionally biologists and early

computational biologists generally concentrated attention on the the study of only a

subset of reactions which are able to perform a given task of the cell. This gave rise to

the informally defined concept of metabolic pathways. Despite its great interest, this

approach may fail to explain some more complex behaviours, that emerge only when

the system is analysed as a whole.

In fact, the metabolic network of an organism defined as its set of reactions and

compounds correspond to one level of the complex network of interactions that occur

in metabolism. Of course, analysing metabolism only at this level without regard to

regulation and other types of relations may be insufficient to describe the mechanisms

governing the real processes. Indeed, various approaches in what is called systems

biology intend to predict the behaviour of metabolism by modelling all kinds of inter-

actions occurring in it. There are some reasons however that justify our choice of a

simpler model without considering such other interactions:

• Insufficient knowledge of the process and lack of data available for other kinds of

interactions make difficult to test the accuracy of more complex models.

• A simple model allows a deeper mathematical theory than considering more het-

erogeneous classes of relations.

• The suitability of a model to predict the behaviour of metabolism will strongly

12 Introduction

depend on the biological question posed.

• The problems and solutions proposed can be considered as stepping stones in

more general and ambitious analysis that integrates other kinds of data.

Considering thus the metabolic network of an organism as a set of reactions and

metabolites, we focused our attention on two problems defined on such set:

• the search for elementary modes that correspond to minimal sets of reactions

which can work together in steady state independently of the rest of the reactions;

and

• the search for precursors sets, which are sets of external source compounds whose

presence allows the organism to produce a given target metabolite.

The first concept is commonly used in the analysis of metabolism and has indeed been

proposed as a formal definition of metabolic pathway. Several algorithms to enumerate

elementary modes could be found in the literature but despite the popularity of the

problem, no systematic analysis of its complexity had been done until now. For the

second problem, we introduce a new approach which is the first that formally considers

cycles in the production of the target compounds by the precursor sets. We then

give some useful alternative mathematical characterisations and we analyse the time

complexity of finding and enumerating precursor sets.

Analysing the time complexity of these problems gives us a notion about the lim-

itations of the algorithms we can aspire to obtain. This serves as a guide on how to

continue approaching the problem. For instance, we can know if there is some “hope”

of having considerably faster algorithms which find exact solutions or at least a good

approximation of them. Or if exact or good solutions were provably hard to find, this

would give a good justification to try the use of heuristics.

We show that some of the problems are easy to solve, providing in such cases a

polynomial algorithm. Despite the simplicity of the models used, we show that some

basic questions are already computationally hard to solve, meaning that finding exact

solutions can only be done for small networks under currently believed complexity

assumptions. We also show that despite this hardness, in some cases the theoretically

slow algorithms run in a reasonable time for real metabolic networks.

We briefly introduce below the two topics covered in this work, including their

biological motivation and a summary of our contributions.

Introduction 13

Finding and enumerating elementary modes

Studying the dynamics of metabolic networks is usually performed using models based

on differential equations whereas structural analyses are mainly based on graph-related

formalisms or, as far as metabolism is concerned, on a constraint-based modelling.

The latter term is commonly employed in the bioinformatics community following

two papers by Palsson (Palsson, 2000; Covert et Palsson, 2003). In the constraint-

based framework, the network may still be modelled as an edge-labelled hypergraph,

but several types of constraints (stoichiometric, thermodynamic and in some cases

regulatory) are added to restrict the possible fluxes through the network. The choice

of a particular model heavily depends on the type of question one wishes to address

(structural or dynamic) but also on the type of data that is available (qualitative

or quantitative). Another type of criterion that may be taken into account is the

computational cost of a given analysis, and therefore its scalability to large datasets

(such as genome-scale metabolic networks).

In a constraint-based approach, only admissible flux distributions are of interest.

An admissible flux distribution corresponds to a set of reactions, which, when taken

together in given proportions, perform the transformation of available substrates into

removable products with the special property that all intermediate compounds are bal-

anced (steady-state assumption) and irreversible reactions are taken in the appropriate

direction (thermodynamic constraint). Such an admissible flux distribution is called a

mode.

Even though each mode is potentially interesting, not all of them are generally

considered. Classically, two major sub-problems have been introduced. The first one

is known as flux balance analysis. It consists in searching for a mode that optimises a

given objective function. Examples of objective functions include biomass (usually rep-

resented as a pseudo-reaction of the network, in general determined from experimental

data) or ATP production. This optimisation problem has several applications (Ed-

wards et al., 2001; Fong et Palsson, 2004) and can be solved using linear programming

(LP).

The second sub-problem is the one we discuss in this thesis. In the case where no

particular function is to be optimised, all modes are equally interesting. A sensible

strategy is then to try to find a set that could generate them all. Such a generating

set has been proposed and called the set of elementary modes (Schuster et Hilgetag,

1994), EM for short. Intuitively, an elementary mode is a special mode that has the

property of not containing any other mode.

14 Introduction

Elementary modes have been said to represent a formalised definition of a biological

pathway. Indeed, a biological interpretation can be given to such flux vectors: a mode

is a set of enzymes that operate together at steady state (Schuster et al., 2000) and a

mode is elementary when the removal of one enzyme causes it to fail.

Another concept we study here is closely related to the notion of elementary mode.

This is the concept of a reaction cut set, recently introduced in Klamt et Gilles (2004).

In order to avoid any confusion with other types of cuts in graphs or hypergraphs

that may be found in the literature (see e.g. Seymour, 1977), we explicitly choose

here to use the term reaction cut. An elementary mode may be seen as a set of

reactions that, when used together, perform a given task while a minimal reaction

cut set is a set of reactions one needs to inhibit to prevent a given task, also called

target reaction, from being performed. As mentioned in Klamt (2006), the task to be

silenced can be a combination of reactions. Reaction cut sets have been operationally

defined as corresponding to a set of reactions whose deletion from the network stops

each elementary mode that contains the target reaction(s).

Previous Work

Surprisingly few results have been established on the complexity of problems concerning

detection, counting and enumeration of elementary modes. In Klamt et Stelling (2002),

the authors mainly focus on finding an upper bound on the number of elementary

modes.

In fact, as mentioned in Fukuda et Prodon (1996), the complexity of the general

problem, that is, given a description of a cone (or polytope) in terms of its facets

(inequalities), find a description in terms of (enumerate all) its extreme rays (vertices)

as a function of the length of the output (number of rays or vertices), is a long-standing

open question in computational geometry.

Summary of the main results

The main contribution of this part of our work is in giving a systematic overview of

the complexity of optimisation problems related to modes. We first establish results

regarding network consistency (Section 4.2). Most consistency problems can be solved

in polynomial time (are easy). Most, if not all, of these results have been stated before

in the literature. It is in fact easy to formulate these problems as LP-problems, which

has the side advantage that computer packages are available to solve them.

We then establish the complexity of finding and enumerating elementary modes

Introduction 15

(Sections 4.3 and 4.4). We show in particular that finding one elementary mode is easy

but that this task becomes hard when an elementary mode containing two specified

reactions is sought. We also examine a number of EM related problems and establish

their complexity. We emphasize that the easy problems can be solved by existing

software.

Other complexity results show that it is not possible to generate, in polynomial

total time, all elementary modes that pass through a given reaction unless P=NP.

This result can have biotechnological relevance. Indeed, by knocking-out enzymes

and analysing the effect this has on metabolic behaviour, one can identify whether

and where a metabolic network is robust or fragile, and ultimately arrive at a better

understanding of cellular phenotypes and of their link with the genotype. Enumerating

all elementary modes that pass through a given reaction would thus allow determining

all possible steady-state behaviours this reaction enables to block.

We also analyse the computational complexity of problems concerning reaction

cuts. We prove that finding a minimum reaction cut set, one that contains a minimum

number of reactions, is hard.

Finding and enumerating precursor sets

The metabolic capacities of an organism are directly defined by the set of its possible

biochemical reactions. Once the metabolic network of an organism has been defined,

the question of how are produced the essential metabolites for the organism arises. In

particular, it is important to know which are the metabolites that the organism needs

to obtain from its environment to produce those essential metabolites.

One way to answer this question is to manually inspect the metabolic pathways

defined as present in the organism. This is determined by comparing the set of reac-

tions of a reconstructed metabolic network with the set of reactions in the reference

metabolic pathways contained in metabolic databases such as metacyc from the bio-

cyc database collection (Caspi et al., 2006) or kegg (Kanehisa et al., 2006). However,

each reference metabolic pathway represents a very small part of the whole network and

does not consider what occurs upstream of the pathway, nor whether some alternative

organism-specific pathways exist.

With the aim to better understand the relationship between an organism and its

environment, we propose a model that allows determining which nutrients an organism

requires from its environment in order to produce some metabolic compounds that are

16 Introduction

essential for its survival.

In particular, the environment could be another living system. This is the case

of what is called endosymbiosis where an organism lives within the body or cells of

another organism. This concerns mostly bacteria that may inhabit their host intra- or

extra-cellularly. Even in the intra-cellular case, a host often accomodates more than

one bacterium so that the environment of an endosymbiont is the cell of its host, but

also other endosymbionts that may share among them metabolic functions very much

like members of a family (should) share chores.

This understanding is in turn important for getting a clearer comprehension of the

genotype-phenotype relationship, and ultimately also of the origin of life. Indeed, as is

now accepted, one particular endosymbiotic bacterium is the ancestor of an organelle,

the mitochondrion, while another evolved into the chloroplast of plants. Understanding

how these essential events took place in the course of evolution may be greatly helped

by understanding the metabolic dialog between an organism and its living or inanimate

environment, what is exchanged between the different partners and how this exchange

may evolve through time.

Exploring all the possible ways of producing some metabolic compounds from ex-

ternal metabolites may be important also for bioengineering purposes, where the goal

is in this case to directly manipulate the environment so that the controlled organism

produces what is desired.

Previous work

The capacity to make progress on these questions has been boosted tremendously in

the last few years, and this trend will only intensify in the coming decades, by the huge

number of sequencing projects, and by our greater ability to now reconstruct whole

metabolic networks from such genomic data (see Francke et al., 2005, for an overview of

such metabolic data reconstruction processes). Surprisingly though, the problem of sys-

tematically determining all possible routes from a set of externally acquired metabolites

(sources) to the internally produced compounds of interest, henceforth called targets,

has not attracted a big literature as is the case for other bioinformatics questions. The

issue was first addressed with the purpose to improve the whole network reconstruc-

tions by Romero and Karp in the early years of this century (Romero et Karp, 2001),

but it is only in 2008 that the first two papers on identifying the sets of metabolites

required by an organism to produce some target sets appeared, one by Handorf et al.

(Handorf et al., 2007) that relied on a previous related work (Handorf et al., 2005),

Introduction 17

and our own that was presented at WABI in 2008 (Cottret et al., 2008).

Summary of the main results

An important issue that was not formally treated in the papers of either Romero et al.

or Handorf et al. concerned internal cycles in the network. How some of those cycles

could be fired off or maintained was not clear, and indeed the problem was addressed

in an ad-hoc manner. One of the main contributions of our work is to mathematically

address this problem considering cyclic production of some metabolites, which can have

also biological sense.

We further address various important complexity questions related to the search

for these precursor sets. This concerns in particular the complexity of enumerating all

the minimal ones, for which we provide a proof that the problem is indeed hard, in fact

it cannot be solved in polynomial total time unless P = NP . We however also show

an intriguing relationship with the problem of enumerating the minimal precursor cut

sets that can be considered dual of this one and, using a previous elegant result of

Gurvich and Khachiyan, prove that the two problems taken together can be solved in

quasy-polynomial total time.

Despite its theoretical hardness, two algorithms are proposed for enumerating all

minimal set of precursor sets of a given target. Both algorithms are based on the

enumeration of paths on the hypergraph or hyperpaths backtracking from the target

to the source. This way to travel the hypergraph defines the replacement tree of the

network, which was just alluded to in Cottret et al. (2008). The first algorithm for-

malises the manipulation that was done to this structure avoiding to maintaining in

memory more than a branch of it. Moreover, this algorithm performs some important

ideas to prune this structure and thus economise on space and on the number of op-

erations without loosing any solution. A second algorithm effects some manipulation

and transformation directly on the input network to go much further on the number

of redundant operations that is saved. Experimental results show that, in comparison

with the previous version (Cottret et al., 2008), the gain in space and in time can be

dramatic.

Structure of the manuscript

Chapter 1 gives some of basic mathematical concepts used in the model. It includes

a very succinct introduction to graphs and hypergraphs which are used all along the

18 Introduction

manuscript. It also introduces the concept of hitting set which appears recurrently

in the problems studied. Finally monotone boolean functions are presented which are

also important in some of the theoretical results on complexity.

Chapter 2 is dedicated to introduce some basic concepts of computational com-

plexity. This is restricted only to the time complexity, which is the main interest in

our work. In particular, we give some definitions to properly measure time complexity

when we want to enumerate all the solutions of certain problems and the number of

such solutions can be exponential in the size of the instance.

Chapter 3 presents a brief summary of the biological concepts concerning the

metabolism of the cell. We also present some ideas to model metabolic networks from

whole set of reactions and metabolites. The models presented in this chapter are used

to model the two problems presented in this PhD.

Chapter 4 deals with problems related to the search for elementary modes and

reaction cuts. We present algorithms and analyse the complexity of finding and enu-

merating these minimal sets of reactions, and present a relation between this problem

and a fundamental open question in computational geometry.

Chapter 5 presents our new approach to model precursor sets. It gives different

characterisations of such sets and shows the relation with hyperpaths. We also define

the related concept of precursor cuts. Finally, in this chapter, we present also our

results regarding the time complexity of finding and enumerating precursor sets and

precursor cuts of a given target.

Chapter 6 presents two methods to enumerate all the precursor sets of a given

target. This includes the algorithmic concept of a replacement tree, which is the main

structure used to enumerate the solutions. A brief analysis of the performance of such

enumeration is presented as well as some extensions to related problems.

Chapter 1

Some Basic Mathematical Definitions

Contents
1.1 Graphs, digraphs and hypergraphs 19

1.1.1 Graph and digraph definitions 20

1.1.2 Graphical representation and labels 20

1.1.3 Walks, paths, cycles and hamiltonian cycles 20

1.1.4 Adjacency and incidence matrix 21

1.1.5 Induced subgraph, bipartite graphs and trees 21

1.1.6 Directed hypergraphs . 22

1.2 Hitting set . 23

1.3 Boolean functions . 24

1.3.1 Monotone Boolean functions 25

This chapter presents a concise introduction to the mathematical concepts used in

this work. It does not pretend to be an exhaustive introduction to the topics raised but

provides instead the minimum necessary definitions to understand the models presented

in the following chapters. For a more detailed description and further theory, see the

references given in each section.

1.1 Graphs, digraphs and hypergraphs

In this section, we give a short introduction to graph theory and its extension to

hypergraphs. For a more extensive theory, see Diestel (2006), Bang-Jensen et Gutin

(2008) and Gallo et al. (1993).

20 Chapter 1. Some Basic Mathematical Definitions

1.1.1 Graph and digraph definitions

A graph G is a pair G = (V , E), where V is a finite set and E is a set whose elements

are subsets of V of cardinality two, that is, E ⊆ P2(V). The elements of V are called

vertices or nodes, and the elements of E are called edges.

If G = (V , E) is a graph and e = {v1, v2} ∈ E , then we say that v1 and v2 are the

ends of e. The degree of a vertex v is the number of edges having v as an end.

A directed graph or digraph is a a pair D = (V ,A) such that V is a finite set and A

is a set of ordered pairs of different elements of V , that is, A ⊆ {(u, v) ∈ V×V | u 6= v}.

The elements of V are also called vertices, and the ordered pair of vertices in A are

called arcs.

If D = (V ,A) is a digraph and a = (v1, v2) ∈ A, then we say that a is an arc from

v1 to v2. The vertices v1 and v2 are called, respectively, the tail and the head of a, and

both are called the ends of e. The indegree of a vertex v is the number of arcs having

v as head, and the outdegree of v is the number of arcs having v as tail.

1.1.2 Graphical representation and labels

The sets V and E (or A) represent the basic structure that defines G (or D). In general,

this topology can be graphically represented by the set of elements in V connected by

lines (or arrows for digraphs) between the related pairs (see Figure 1.1 cases (a) and

(b)).

Depending on what we are modelling, we can also add some extra information to

the vertices or edges (arcs) of G (D). This information is included as functions called

labels. For instance, vertices can have colours depending on some classification given

to them, and edges/arcs can have weights or costs associated to them.

1.1.3 Walks, paths, cycles and hamiltonian cycles

A walk in a graph G = (V , E) is a sequence of vertices p = (v1, v2, . . . , vk) with k ≥ 1,

such that [vj, vj+1] ∈ E for j = 1, . . . , k − 1. The walk is closed if k > 1 and v1 = vk. A

walk without any repeated nodes in it is called a path. A closed walk with no repeated

nodes other than its first and last ones is called a circuit or cycle.

A directed walk in a digraph D = (V ,A) is a sequence of vertices p = (v1, v2, . . . , vk)

with k ≥ 1, such that (vj, vj+1) ∈ E for j = 1, . . . , k − 1. A directed walk is closed

if k > 1 and v1 = vk. A directed walk without any repeated nodes in it is called a

1.1 Graphs, digraphs and hypergraphs 21

directed path. A closed walk with no repeated nodes other than its first and last one is

called a directed circuit or directed cycle.

A hamiltonian (directed) cycle is a (directed) cycle that visits each vertex (see

Figure 1.1 (a)).

In general, we can also identify paths and cycles by the set of edges (or arcs)

connecting the successive vertices they contain.

1.1.4 Adjacency and incidence matrix

For a given order of the elements of V = {v1, . . . , vn} and of E = {e1, . . . , em}, a graph

G = (V , E) can be represented by its adjacency matrix M ∈ Rn×n. This matrix is

such that Mij = 1 if (vi, vj) ∈ E and Mij = 0 otherwise. Hence M is symmetric. We

can define in the same way the adjacency matrix of a digraph, although in this case it

is not necessarily symmetric.

A graph G can also be represented by the incidence matrix I ∈ Rn×m. This matrix

is such that Iij = 1 if vi is an end of ej and Iij = 0 otherwise. In a similar way, we

define the incidence matrix I ∈ Rn×m of a digraph D as a matrix such that Iij = −1

if vi is the tail of aj, Iij = 1 if vi is the head of aj and Iij = 0 otherwise.

1.1.5 Induced subgraph, bipartite graphs and trees

Given two graphs G = (V , E) and G′ = (V ′, E ′), we say that G′ is a subgraph of G if

V ′ ⊆ V and E ′ ⊆ E . We say that G′ is an induced subgraph of G if V ′ ⊆ V and E ′

contains all the edges of E connecting vertices of V ′.

A graph G = (V , E) is called a bipartite graph if the set of vertices V can be

partitioned into two sets U and W , and each edge in E has one end in U and the other

end in W (see Figure 1.1 (c)). It is easy to see that a graph is bipartite if and only

if it has no cycle of odd length. A matching of a bipartite graph is a subset of edges

E ⊆ E such that any pair of edges in E have no ends in common.

Another interesting class of graphs is the class of trees. A graph is connected if for

any two nodes in it there is a path between them. A graph T = (V , E) is a tree if it

is a connected graph without cycles (see Figure 1.1 (b)). Any vertex of T with degree

one is called a leaf. Sometimes we define a vertex of the tree as the root of the tree,

indicating that there is a relevant meaning for the paths between this node and the

leaves of the tree. In this case, we say that T is rooted. Each vertex other than the

root has as parent the next vertex on the path to the root. A child of a vertex u is a

22 Chapter 1. Some Basic Mathematical Definitions

a b

c d e

1

1

1

0

2

0

(a) (b)

(c) (d)

a b

c d

e

Figure 1.1: Examples of graphs, digraphs and hypergraphs. (a) A digraph con-
taining the hamiltonian directed cycle (a, c, d, e, b, a). (b) A tree coloured hav-
ing five leaves. If it is rooted at the black vertex, the depth of the tree
is three. (c) A bipartite graph where edges are labelled by weights. Edges
with weight one forms a matching. (d) A directed hypergraph with hyperarcs
(∅, {e}), ({e}, ∅), ({a}, {b, e}), ({b}, {a}), ({b, e}, {c}), ({c, e}, {d}) and ({d}, {b}).

vertex v such that v is the parent of u. Therefore, leaves are the only vertices without

children. The depth of the tree is the length of the longest path between a leaf and

the root.

1.1.6 Directed hypergraphs

We present a generalisation of the definition of digraphs to the case where arcs, here

called hyperarcs, are defined from a set of vertices to another set of vertices.

A directed hypergraph H is a pair H = (C,R), where C is a finite set of vertices

and R ⊆ P(C) × P(C) is a set of hyperarcs. Each hyperarc r ∈ R is an ordered

pair of disjoint sets r = (Tail(r), Head(r)), both subsets of C (see Figure 1.1 (d) for a

graphical representation). For any hyperarc r, one of the sets Tail(r) or Head(r) can

be empty but not both. For a given order of the elements of C = {c1, . . . , cn} and of

1.2 Hitting set 23

R = {r1, . . . , rm}, a hypergraph H = (C,R) can be represented by its incidence matrix

I ∈ Rn×m. This matrix is such that Iij = −1 if ci ∈ Tail(rj), Iij = 1 if ci ∈ Head(rj)

and Iij = 0 otherwise.

1.2 Hitting set

A concept very often used in this work is that of the hitting set of a collection. Given

a finite set U and a collection I = {I1, . . . , In} of subsets of U (that is, Ii ⊆ U for

all i = 1, . . . , n), we say that a set H ⊆ U is a hitting set of I if Ii ∩ H 6= ∅ for all

i = 1, . . . , n. In other words if H intersects all the sets in the collection.

The set H is a minimal hitting set of I if H is a hitting set of I and for any H ′ ⊂ H,

H ′ is not a hitting set of I (H does not contain other hitting sets of I). There is an

interesting property of symmetry between the collection I and the collection of all

minimal hitting sets of I (see e.g. Berge, 1989).

Property 1.1. Let I = {I1, . . . , In} be a collection of subsets where Ii is not a subset

of Ij for any i 6= j (no set of I is contained in another set of I). Let H be the collection

of all minimal hitting sets of the collection I. Then, I is the collection of all minimal

hitting sets of H.

Proof. Let I ∈ I. We show that I is a hitting set of the collection H. Let H be in H.

Since H is a hitting set of I, H and I are not disjoint sets. Therefore, I is a hitting

set of H.

For the minimality, take I ′ a subset of I. By hypothesis, for any i ∈ {1, . . . , n} the

set Ii of the collection is not contained in I ′ and therefore Ii \ I ′ is not empty. Consider

the set H ′ = ∪i∈{1,...,n}Ii \ I ′. Clearly H ′ is a hitting set of I. Therefore, there exists

H ′′ ⊆ H ′ in the collection H. Since I ′ does not intersect H ′′, we conclude that I ′ is not

a hitting set of H and then I is a minimal hitting set.

Now we show that any minimal hitting set of H belongs to I. Let J be a minimal

hitting set of H. Suppose, by contradiction, that J is not in I. In this case J do not

contain any Ii (because J and Ii are both minimal hitting sets of H). The set Ii \ J

is not empty for any i ∈ {1, . . . , n}. The set H ′ = ∪i∈{1,...,n}Ii \ J is a hitting set of I.

Therefore, there exists H ′′ ⊆ H ′ in the collection H. Since J does not intersect H ′′, we

conclude that J is not a hitting set of H which is a contradiction. We conclude that J

is a set of the collection I.

24 Chapter 1. Some Basic Mathematical Definitions

1.3 Boolean functions

A Boolean function is a function of the form f : {0, 1}k → {0, 1}, where k is a positive

integer called the arity of f . For example, the function f1 : {0, 1}3 → {0, 1} defined by

f1(x) = x1(1 − x2) + x2x3 is Boolean. Alternatively, the set {0, 1} is also represented

by the set {false, true}.

A propositional formula or Boolean expression in k Boolean variables is a well-

formed expression that uses: variables x1, . . . , xk, conjunctions (represented by and or

∧), disjunctions (represented by or or ∨) and negations (represented by not or ¬)

and parentheses. For instance, the following are Boolean expressions:

(i) (x1 ∧ ¬x2) ∨ (x2 ∧ x3)

(ii) (x1 ∨ x2) ∧ (x1 ∨ x3) ∧ (¬x2 ∨ x3)

(iii) ¬(¬x1 ∨ x2) ∨ (x2 ∧ x3)

Every Boolean function of arity k can be expressed as a propositional formula in

k variables (for instance, the Boolean function f1 defined above, can be expressed as

the propositional formula (i)). Two Boolean expressions are logically equivalent if and

only if they express the same Boolean function (in the example expressions (i), (ii) and

(iii) are all equivalent). We say that a propositional formula is satisfiable if there exists

an assignment of true and false values to the variables such that the propositional

formula evaluates true. For instance, the expressions (i), (ii) and (iii) are satisfiable

for x2 = x3 = true.

Given a propositional formula, we define some of its parts. A literal is either a

variable or the negation of a variable. A clause is a disjunction of literals and a term

is a conjunction of literals. For instance, expression (iii) contains the clause: ¬x1 ∨ x2

and the term x2 ∧ x3.

We say that a propositional formula is in conjunctive normal form (CNF) if it is

a conjunction of clauses. An important result states that any Boolean function can

be expressed as a logically equivalent CNF (for instance, expression (ii) is a CNF of

function f1). We say that a propositional formula is in disjunctive normal form (DNF)

if it is a disjunction of terms. Again, any Boolean function can be expressed as a

logically equivalent DNF (for instance, expression (i) is a DNF of function f1).

1.3 Boolean functions 25

1.3.1 Monotone Boolean functions

We say that a Boolean function f : {0, 1}k → {0, 1} is monotone if for any pair

x, y ∈ {0, 1}k such that xi ≤ yi for all i ∈ {1, . . . , k} we have that f(x) ≤ f(y).

For example the function f2(x) : {0, 1}3 → {0, 1} defined by

f2(x) =

{

1 if x1(x1 + x2 + x3) > 1

0 otherwise

is a monotone Boolean function.

A propositional formula is called a ∧,∨-formula if it does not contain any negation.

Any monotone Boolean function can be expressed as a ∧,∨-formula, that is, it can be

expressed using variables, conjunctions, disjunctions and parentheses. For instance, f2

can be expressed by

f2(x) = (x1 ∧ x2) ∨ (x1 ∧ x3).

Let f be a monotone Boolean function. A prime implicant of f is a minimal set of

variables such that if they are all true then f has to be also true. A prime implicate

of f is a minimal set of variables such that if they are all false then f has to be also

false. In the example, {x1, x2} and {x1, x3} are the prime implicants of f2; and the

sets {x1} and {x2, x3} are the prime implicates of f2.

Any monotone Boolean function f can be expressed as a CNF where the clauses

correspond exactly to the set of prime implicants. Any monotone Boolean function f

can also be expressed as a DNF where the terms correspond exactly to the set of prime

implicates. In the example, f2 can be expressed in CNF and DNF:

f2(x) = (x1 ∧ x2) ∨ (x1 ∧ x3) = x1 ∧ (x2 ∨ x3).

Finally, it is easy to see that a prime implicate has to contain at least one variable

of each prime implicant. In other words, a prime implicate is a minimal hitting set

of the collection of prime implicates. Considering Property 1.1, we have the following

relation:

Property 1.2. Given a Boolean function f , the collection of its prime implicants

corresponds to the minimal hitting sets of its prime implicates, and vice versa.

26 Chapter 1. Some Basic Mathematical Definitions

Chapter 2

Basic Concepts of Time Complexity

Analysis

Contents
2.1 Defining a problem . 28

2.1.1 Decision problems . 28

2.1.2 Optimisation problems . 29

2.1.3 Enumeration and counting problems 29

2.2 Analysis of algorithms . 30

2.2.1 Input size . 31

2.2.2 Worst case analysis . 31

2.2.3 Asymptotic analysis . 31

2.3 Complexity classes of decision problems 32

2.3.1 The class P . 32

2.3.2 The class Np . 32

2.3.3 Reducibility among problems 33

2.3.4 Np-complete problems . 33

2.4 Complexity classes of optimisation problems 34

2.4.1 The classes Po and Npo . 34

2.4.2 Np-hard optimisation problems 35

2.4.3 Approximation algorithms . 35

2.4.4 The classes Apx and Apx-hard 36

2.5 Complexity of counting solutions 36

2.5.1 ♯P and ♯P-complete . 36

2.6 Complexity of enumerating all the solutions 37

2.6.1 Time delay, incremental time and total time 37

28 Chapter 2. Basic Concepts of Time Complexity Analysis

In this chapter, we introduce the reader to some basic concepts in the theory of

computational complexity. We restrict the analysis to time complexity, although similar

concepts are also defined for space complexity. For further theory, see Papadimitriou

(1994); Ausiello et al. (1999).

2.1 Defining a problem

We define a problem as a relation P ⊆ IP×SP , where IP is the set of problem instances

and SP is the set of problem solutions. The set of instances represents the particular

cases of the generic problem. If (x, y) ∈ P, we say that y is a solution of x.

For a given instance x ∈ IP of a problem P , we are interested in finding one or

several solutions of x. We can classify a problem depending on the characteristics of

the sets IP and SP and depending on which solutions we want to find.

2.1.1 Decision problems

A decision problem is a problem P such that:

1. SP = {no, yes} (or SP = {0, 1})

2. For each x ∈ IP there exists one and only one y ∈ {no, yes} such that (x, y) ∈ P

That is, in a decision problem we want to determine if a given instance x satisfies

some condition. In this case, the set of instances can be partitioned into IP = YP ∪NP

such that x ∈ YP if and only if (x,yes) ∈ P. Therefore, we are interested to know

whether x belongs to the set YP .

We present some examples of decision problems. Some of them are classical exam-

ples used in this field and some are important for the complexity analyses presented in

the next chapters.

• Hitting Set: Given a set of integers I and a collection of subsets I1, . . . , In,

does there exist a hitting set of I1, . . . , In of size at most k?

• Satisfability (Sat): Given a Boolean expression f , does there exist some

assignment to the Boolean variables such that f evaluates true?

• st-Path: Given a digraph D and two vertices s and t, does D contain a directed

path from s to t?

2.1 Defining a problem 29

• Directed Hamiltonian Cycle (DHC): Given a digraph D, does D contain a

Hamiltonian cycle, i.e. a directed cycle that visit each vertex of D exactly once?

• Perfect Matching: Given a bipartite graph G = (V , E), does E contain a

subset E ′ of edges such that all vertices of the subgraph G′ = (V , E ′) have degree

one?

2.1.2 Optimisation problems

In some cases, although an instance of a problem can have many solutions, there are

some that are better than others. In an optimisation problem P , there is a function

m : IP × SP → R which measures, for an instance x ∈ IP the cost or benefit of a

solution y of x. We are interested in finding the “best” solution(s) which minimise or

maximise m or at least a good approximation to it.

Some examples of optimisation problems are:

• Minimum Hitting Set (minHS): Given a set of integers I and a collection of

subsets I1, . . . , In, find a set H ⊆ I of minimum size, such that Ii ∩H 6= ∅ for all

i = 1, . . . , n.

• Linear Programming (LP): Given matrices A ∈ R
m×n, b ∈ R

m and c ∈ R
n,

find a vector x ∈ R
n such that it satisfies Ax ≤ b and maximises a linear objective

function cT x.

• Travelling Salesman (TSP): Given a complete graph G with distances on

its edges, find a Hamiltonian cycle of minimum total distance.

• Vertex Cover: Given a graph G = (V , E), find a set C ⊆ V of minimum size,

such that each edge of G is incident to at least one vertex in C.

2.1.3 Enumeration and counting problems

For a given P , we are interested in finding not one but all solutions of a given instance

x ∈ IP , that is, we want to enumerate all the solutions y ∈ SP such that (x, y) ∈ P.

Some examples of enumeration problems are:

• All Minimal Hitting Sets (AllHS): Given a set of integers I and a collection

of subsets I1, . . . , In, find all minimal sets H ⊆ I, such that Ii ∩ H 6= ∅ for all

i = 1, . . . , n.

30 Chapter 2. Basic Concepts of Time Complexity Analysis

• All Prime Implicants: Given a Boolean ∧,∨-formula f , find all prime impli-

cants of f .

• All Negative Directed Cycles: Given a digraph D, with integer weights

on its arcs, find all negative cycles of D.

In some cases we are interested in counting the number of solutions of a given

instance x. In other words, for a given x ∈ IP , we want to obtain k = |{y ∈ SP | (x, y) ∈

P}|. This is the case of the following example:

• Count Perfect Matchings: Given a bipartite graph G, how many perfect

matchings does G contain?

2.2 Analysis of algorithms

We give only an intuitive definition of what is an algorithm. For a rigourous definition,

we would need to introduce the concept of a Turing machine. This would be out of the

scope of this introduction. We thus just say that an algorithm A for a problem P is a

sequence of well-defined instructions such that for any instance x ∈ IP given as input,

it executes a list of basic operations in order to return one or more solutions of x.

Given a decision problem P , we say that an algorithm A decides P if for any instance

x ∈ IP , A(x) returns yes if and only if x ∈ YP . In other words, A computes correctly

if x satisfies the condition defined by P . Turing showed that there exists some decision

problems for which there is no algorithm that can give the correct answer for all the

instances of the problem (for example see the halting problem). We say that a decision

problem P is decidable if there exists an algorithm that decides P .

Of course, most of the “real problems” that we face are decidable, although this

does not mean that the problem will be “easy” to be solved. In general, it is not

difficult to find, for a given problem P , an algorithm that finds a desirable solution

by checking all possible solutions for the given input. For example, we can solve the

problem st-Path by checking all the possible directed walks from s in the digraph until

a path to t is found or decide that such path does not exist. However, this method is

in general impracticable, since it will take an enormous amount of time, specially when

the digraph has a considerable size.

In general, for a given problem, we want to have a good algorithm in the sense that

it does not take too much time in finding a desirable solution. However, there are many

famous problems for which, despite years of work, the best known algorithms to solve

2.2 Analysis of algorithms 31

them still take an “exponential amount of time”. This concerns algorithms that for

some (or all) possible inputs, need to do an exponential number (in terms of the size

of the instance) of basic operations to output the solution. Thus, they are methods

that can be used only for very small instances of the problem. A natural question

that arises in this case is: does there exist an algorithm that solves P in a polynomial

number of steps or is P intrinsically “hard”? Can we classify each problem in terms of

its intrinsic “complexity”?

With the aim of giving a coherent theory to try to answer this question, we introduce

some basic concepts.

2.2.1 Input size

Since problems can be defined over a very dissimilar variety of data, we suppose that

the input and the output of an algorithm are encoded as sequences of bits. In other

words, if we define the set {0, 1}∗ as the set of all finite sequences of 0’s and 1’s, we

suppose that IP ⊆ {0, 1}∗ and SP ⊆ {0, 1}∗.

For a given instance x ∈ IP , we define the size of x, denoted by |x|, to be the length

of the sequence x.

We suppose that the way of encoding is reasonable in the sense that it does not

introduce an artificially redundant information. In general, we can also suppose that

for two different reasonable ways of encoding a problem and for any instance x, the

size of both codifications of x are not too different (the length of the sequences are

polynomially related).

2.2.2 Worst case analysis

Given an algorithm A for a problem P and an instance x ∈ IP of size |x| = n, we

want to measure, in terms of n, the time that A(x) takes to stop. Of course, this time

should depend not only on the size of x but on x itself. A way to be conservative, is

to consider the worst case, that is, we consider the maximum time that A takes for all

the inputs of size n.

2.2.3 Asymptotic analysis

Clearly, the real running time of an algorithm depends on the technology of the ma-

chine. Therefore, if we want to have a measure independent of the machine, we should

avoid to consider the time used in executing each basic operation. We can do this

32 Chapter 2. Basic Concepts of Time Complexity Analysis

by defining a class of functions that expresses the time asymptotically in terms of the

input, independent of the technological characteristics of the machine.

Let A be an algorithm whose running time, in the worst case, is tA(n) (where n is

the size of the input). Let g : N → N be a function. We say that the running time of

A is O(g(n)), if there exist constants c and n0 such that, for all n ≥ n0

tA(n) ≤ cg(n).

2.3 Complexity classes of decision problems

2.3.1 The class P

Let P be a decision problem. We say that P belongs to the complexity class P, if P

can be decided in polynomial time. In other words, there exists an algorithm A such

that P is decided by A and the running time of A is O(nk) for some constant k ∈ N.

Basically to show that a problem is in P, we just need to find a polynomial algorithm

which solves it. For example, the problems st-Path and Perfect Matching are

known to be in P since there are polynomial algorithms that solve them.

2.3.2 The class Np

There are many important problems for which we do not know whether they belong

to P. Can we define a class of decision problems such that we could still have a hope

that they belong to P? In effect, most of the problems that we do not know whether

they belong to P have at least the property to be easy to check. This means that given

an instance x of P such that x ∈ YP and a mathematical object c called certificate of

x, we can verify in polynomial time that x ∈ YP . For instance, consider the problem

Directed Hamiltonian Cycle (DHC). We can easily check that a digraph has

a Hamiltonian cycle by showing as certificate c the set of arcs that forms the cycle.

Indeed, we can easily verify that c effectively corresponds to a Hamiltonian cycle.

Problems that, given a certificate, are easily checkable form the class Np. Formally,

a problem P belongs to the complexity class Np, if there exists a polynomial time

algorithm A (the verifier) such that:

• For each instance x ∈ YP , there exists a certificate c(x) (of polynomial size with

respect to x) such that A(x, c(x)) = 1

2.3 Complexity classes of decision problems 33

• For each instance x ∈ NP , we have A(x, c) = 0 for any certificate c.

Clearly, any problem in P is also in Np since a verifier is just an algorithm that

solves the problem without need to use the certificate. Hence P ⊆ Np.

Apart from DHC and the P problems st-Path and Perfect Matching, other

examples of problems in Np are Hitting Set and Sat. All of them are easily checkable

by an appropriate certificate.

Note that we said that P ⊆ Np and not P ⊂ Np. Indeed, we cannot discard the

possibility that the two sets are equal since there is no proof that there exists a problem

in Np which cannot be solved in polynomial time.

2.3.3 Reducibility among problems

A very useful idea when we analyse the complexity of problems, is the reducibility

among them. Let P1 and P2 be two decision problems with IP1
and IP2

the respective

sets of instances. We say that P1 is reducible to P2 if there is a way to transform

(reduce) any instance x of P1 to an instance R(x) of P2 such that x ∈ YP1
if and only

if R(x) ∈ YP2
.

This concept is applied to show that, if R is an algorithm that reduces in polynomial

time any instance of P1 to an instance of P2, we have that if P2 is in the class P then

P1 is also in the class P. In effect, since there is an algorithm A that solves P2 in

polynomial time, then we can construct an algorithm A′ which solves P1 in polynomial

time by applying R and A.

2.3.4 Np-complete problems

Stephen Cook showed (Cook, 1971) that the problem Sat has the interesting property

that any other problem in Np is polynomial time reducible to it. Hence, if Sat can

be solved in polynomial time, then any other Np problem can be solved in polynomial

time. This motivates the following definition: A problem P in the class Np is called

Np-complete if any other problem in Np is polynomial time reducible to P .

Note that, given a problem P1 in Np and an Np-complete problem P2, if P2 can

be reduced in polynomial time to P1, then P1 is also Np-complete. Using this fact,

many problems have been shown to be Np-complete. Apart from Sat, the problems

Hitting Set and DHC are other examples of Np-complete problems.

Np-complete problems are considered the hardest problems in the class Np. Indeed,

if we are able to find a polynomial algorithm that solves one Np-complete problem,

34 Chapter 2. Basic Concepts of Time Complexity Analysis

then all the problems in Np can be solved in polynomial time, that is, NP = P .

However, despite many years of research, nobody has found an algorithm that solves

any single Np-complete problem in polynomial time.

The interest of this concept is that, if we are studying a problem P such that we are

not able to find a polynomial time algorithm that solves it, we can alternatively try to

find a polynomial time reduction of one Np-complete problem to P . We can then show

that P is a new Np-complete problem and therefore, considering all the unsuccessful

work spent through the years, that finding a polynomial algorithm to solve it should

be very unlikely.

2.4 Complexity classes of optimisation problems

In an optimisation problem, for a given instance x ∈ IP , the set f(x) of feasible solutions

of x is the set of all possible solutions y of x, that is, f(x) = {y ∈ SP | (x, y) ∈ P}.

As we said before, in an optimisation problem P we have an additional function m :

IP × SP → R that indicates the cost (or benefit) of a given solution of x. For a

given instance x ∈ IP , we call optimal solution any solution y that minimises the cost

(maximises the benefit), and optimal value the measure of an optimal solution. We

are therefore interested in finding a feasible solution y that is an optimal solution or at

least that approximates the value of an optimal one.

2.4.1 The classes Po and Npo

Similar to Np for decision problems whose certificates can be checked in polynomial

time, for optimisation problems also we can define the class Npo of problems that

satisfy some minimal conditions to be considered tractable. Without giving a formal

definition, we can say that Npo consists of all the optimisation problems for which there

exists a constant k > 0 such that: the instances x can be recognised in polynomial time,

the size of any feasible solution y of x is O(|x|k), the cost function can be computed in

polynomial time, and for any instance x and sequence y of size O(|x|k) we can decide

in polynomial time if (x, y) ∈ P.

As for decision problems, we can define the subclass of optimisation problems that

are easy to be solved. Given a problem P in the class Npo, we say that P is in the class

Po if there exists a polynomial time algorithm A such that, for any instance x ∈ IP ,

it returns an optimal solution ȳ and the optimal value c(x, ȳ).

2.4 Complexity classes of optimisation problems 35

Examples of problems in Npo are Minimum Hitting Set, Travelling Sales-

man and Linear Programming. In particular, we know that Linear Programing

can be solved in polynomial time, hence it is in Po.

2.4.2 Np-hard optimisation problems

As for decision problems, there are many important Npo problems for which we do

not know whether there exists a polynomial algorithm. Moreover, many of them are

Np-hard in the sense that if they were in Po, then any decision problem in Np could be

solved in polynomial time, that is P = Np. Indeed, it has been proved that Po = Npo

if and only if P = Np. Therefore, to find a polynomial algorithm that exactly solves

an Np-hard optimisation problem should be extremely difficult if not impossible.

One way to prove that an optimisation problem is Np-hard is to consider the de-

cision version of the problem. Indeed, we can transform the question of “given x, find

a solution with maximum m(x)” into “given x and k, decide if there exists a feasible

solution of x with m(x) greater than k". If the latter problem is Np-complete, then

the optimisation problem is clearly Np-hard. Problems Vertex Cover, Minimum

Hitting Set and Travelling Salesman are examples of Np-hard optimisation

problems.

2.4.3 Approximation algorithms

Despite the difficulty in finding exact solutions, many Np-hard optimisation problems

have polynomial algorithms that, although they cannot give an optimal solution, guar-

antee a feasible solution close to the optimal one.

Let ȳ be any optimal solution of an optimisation problem P . We say that A is an

ε(x)-approximation algorithm for some ε(x) > 0 if and only if

|c(x, A(x)) − c(x, ȳ)|

c(x, ȳ)
≤ ε(x)

for any instance x ∈ IP . The value ε(x) is called the approximation ratio.

This definition gives some measure about the accuracy of an algorithm to approach

the optimal solution. For instance, we know that Minimum Hitting Set has an

O(log n)-approximation where n is the number of sets.

36 Chapter 2. Basic Concepts of Time Complexity Analysis

2.4.4 The classes Apx and Apx-hard

Some classes of problems have been defined depending on the existence and charac-

teristics of the approximation algorithms that can solve them. For instance, Apx is

the class of optimisation problems for which there exists an ε-approximation algorithm

for some fixed (independent of the input) ε > 0. For example, Vertex Cover has

a 2-approximation algorithm, and therefore it is in Apx. Unfortunately, Minimum

Hitting Set and Travelling Salesman are not in Apx unless P = Np.

The class Apx-hard corresponds to the problems whose approximability is bounded

unless P = Np. In other words, a problem is Apx-hard if, under the assumption that

P 6= Np, there is b > 0 such that there is no polynomial ε-approximation algorithm

for any ε < b. Of course, Minimum Hitting Set and Travelling Salesman are

Apx-hard, but also Vertex Cover is Apx-hard. Indeed, it is not approximable

within a factor of 1.3606 unless P = Np.

2.5 Complexity of counting solutions

2.5.1 ♯P and ♯P-complete

Suppose that, for a given instance x of a problem P , we want to count the number

of solutions y of x. Again, we restrict the problems to those having some minimum

conditions. Therefore, we define ♯P to be the set of counting problems such for any

instance x ∈ IP and sequence y ∈ {0, 1}∗, we can decide in polynomial time if (x, y) ∈

P .

The complexity class ♯P contains the counting problems associated with decisions

problems in Np: for instance, counting the number of Hamiltonian cycles in a digraph

is in ♯P. Since if we can count objects, we can decide the existence of at least one of

them, a counting problem in ♯P must be at least as hard as the corresponding decision

problem. Like the class Np, also ♯P has complete problems, the hardest problems

within the class. Solving any of the ♯P-complete problems in polynomial time would

prove that any problem in ♯P can be solved in polynomial time, and therefore that

P = Np.

There are some ♯P-complete problems that corresponds to some easy decision prob-

lems. For instance, although Perfect Matching is in P, the problem Count Per-

fect Matchings is ♯P-complete (Valiant, 1979).

2.6 Complexity of enumerating all the solutions 37

2.6 Complexity of enumerating all the solutions

Given a problem P , we study the time complexity of enumerating all the solutions

of any instance x ∈ IP (we suppose that the number of solutions of any x is finite).

However, we must redefine how we measure the time. Indeed, consider, for example,

the problem of enumerating all the Hamiltonian cycles of a graph. Note that, in the

worst case, the number of solutions can grow exponentially in terms of the size of the

graph (consider, for instance, the complete graph that has (n−1)!
2

Hamiltonian cycles).

Then, if we measure the running time of some algorithm A for enumerating all the

solutions, although A can find each solution in polynomial time, it will be exponential

only because it needs exponential time to print all the solutions. For that reason, it is

natural to analyse the complexity of enumeration problems with respect to the size of

the input and the output.

Moreover, we can consider how an algorithm A that solves P returns the set of

solutions. Algorithm A could have the ability of finding one solution and then of

repeating the process to find another one, (in which case we can already have some

solutions before the end of the complete process) or it may need to compute the total

set of solutions at the same time.

Taking into account these considerations, we can classify an enumeration problem

P depending on the existence of efficient algorithms that solve it.

2.6.1 Time delay, incremental time and total time

We define three time complexity classes of enumeration problems that have been pro-

posed in Johnson et al. (1988).

• An enumeration problem can be solved with polynomial delay if given a set of

elements already enumerated, the time needed for generating another element or

asserting that no other element exists can be done within a time bounded by a

polynomial function of the input size only. We call this class of problems Pd.

• An enumeration problem can be solved in incremental polynomial time if given

a set of elements already enumerated, the time needed for generating another

element or asserting that no other element exists can be done within a time

bounded by a polynomial function of the input size and the number of already

enumerated elements. We call this class of problems Pi.

38 Chapter 2. Basic Concepts of Time Complexity Analysis

• An enumeration problem can be solved in polynomial total time if an algorithm

exists with running time bounded by a polynomial function of the combined size

of the input and the output. We call this class of problems Pt.

It is easy to show that Pd ⊆ Pi ⊆ Pt.

Concerning the enumeration problems introduced, Gurvich et Khachiyan (1999)

showed that All Prime Implicants is not in PT unless P=Np. Khachiyan et al.

(2008) showed the same result for the All Negative Directed Cycles enumeration

problem. Therefore, these two problems are hard to enumerate.

On the other hand, concerning the All Minimal Hitting Sets enumeration

problem, Gurvich et Khachiyan (1999) showed, from a result of Fredman et Khachiyan

(1996), that given a subset of solutions of this problem (that is, minimal hitting sets),

we can compute a new solution (or asserting that no other minimal hitting set exists) in

time o(k3) + ko(logk) with k the combined size of the input and the already enumerated

solutions. Therefore, All Minimal Hitting Sets can be enumerated in incremental

quasi-polynomial time.

Chapter 3

Metabolic Networks

Contents
3.1 Entities involved in metabolism 40

3.1.1 Biochemical reactions and metabolites 40

3.1.2 Enzymes and genes . 41

3.1.3 Metabolism regulation . 41

3.1.4 Reconstructing a metabolic network 42

3.2 Modelling metabolic networks 43

3.2.1 Graph and hypergraphs models 43

3.2.2 Including stoichiometry . 44

3.2.3 Assuming steady state . 44

In this chapter we present the biological concepts that motivate the mathematical

model adopted.

According to Webster’s Unabridged Dictionary, Metabolism can be defined as “the

sum of the physical and chemical processes in an organism by which its material sub-

stance is produced, maintained, and destroyed, and by which energy is made available”.

In other words, metabolism corresponds to the set of processes and transformations

occurring in living organisms in order to maintain life. This comprises, among oth-

ers, obtaining energy from the degradation of nutrients (Catabolism) and producing

the molecules needed to accomplish specific cellular functions (Anabolism). The set

of all biochemical reactions and of all biochemical compounds that are consumed and

produced by these reactions forms a network of relations which is called a metabolic

network.

Understanding how the metabolic network of an organism performs the needed

transformations is not an easy task. Indeed, the set of reactions are also regulated by

40 Chapter 3. Metabolic Networks

the cell in order to obtain what it needs for each given particular condition. Thus,

a metabolic network is just one level of a very complex and heterogeneous network

of relations between the set of entities involved in metabolism. We present a brief

description of the main entities and levels of interactions, which are defined depending

on their general functions and on the nature that each one has.

3.1 Entities involved in metabolism

3.1.1 Biochemical reactions and metabolites

The reactions are the basic transformations of the metabolism. They transform a

set of chemical compounds by reordering the atoms that compose them. The set of

compounds involved in the reactions are called metabolites. Each reaction transforms

a set of metabolites called substrates into another set of metabolites called products

of the reaction. For instance, the synthesis of acetolactate transforms the substrate

C3H4O3 to produce C5H8O4 and CO2.

Stoichiometry

Sometimes we need to consider not only which compounds are transformed by the re-

action but also the amount of each metabolite that is consumed and produced. We call

stoichiometry of a reaction the quantitative relations between the metabolites involved.

We can add the stoichiometric values to the reaction representation. For instance,

2C3H4O3 → C5H8O4 + CO2

indicates that two molecules of the substrate C3H4O3 are needed to produce a molecule

of C5H8O4 and a molecule of CO2.

Reversibility of reactions

In theory, all reactions can occur in both directions but many of them are considered

irreversible when the transformation represented by the reaction happens exclusively

or preferentially in only one direction. If a reaction can occur in both directions, we

say that it is reversible and a double arrow (↔) is used to represent it. Depending

on the kind of analysis, the two directions of a reversible reaction can be considered

3.1 Entities involved in metabolism 41

as two different reactions. In this way, we avoid confusion on which compounds are

defined as substrates or products of it.

3.1.2 Enzymes and genes

Almost all the reactions in the cell need the presence of some proteins called enzymes

to occur at a significant rate (amount of metabolites reacting in a unit of time). Each

enzyme acts as a catalyser of a reaction, decreasing its activation energy and thus

providing the necessary conditions to accelerate dramatically its rate up to a million

times.

Although there is great specificity in the relation between enzymes and reactions,

this is not a general rule. A single enzyme may catalyse several reactions and one

reaction may be catalysed by several enzymes. Since enzymes are not modified during

the reaction, they are not considered as a substrate or product in the equation of a

given reaction.

The genome of a living organism contains all the information about the hereditary

characteristics of an organism including the codification of all the machinery for life.

It is composed of one or more chromosomes that correspond to chains of nucleotides of

four types (a, c, g, t). These long sequences contain the elementary units of information

called genes.

Genes correspond among others to the coded sequence of each protein of the organ-

ism and the mechanisms to regulate the protein production. In particular, the protein

or protein complex that forms each enzyme is coded by one or more genes.

3.1.3 Metabolism regulation

Not all the possible reactions that an organism can perform occur at any time or in

any cell of the organism. Many factors of different nature can control and modulate

the possible reactions according to the particular needs of the cell. This mechanism of

regulation is essential in giving to the cell its adaptability to the different conditions of

the medium and, in the case of multicellular organisms, it allows cellular differentiation

and morphogenesis.

We mention succinctly two ways of regulation:

42 Chapter 3. Metabolic Networks

Regulation of gene expression

The rate at which a protein is produced is called gene expression. Regulation of gene

expression is modulated at each step between copying the gene information and pro-

ducing the enzyme. The mechanisms are varied and complex and in general not very

well-known.

Regulation of enzyme concentration through regulation of gene expression is essen-

tial in metabolism since the presence and absence of the enzymes in a given time period

can define the capacities of the metabolic network.

Presence of cofactors

The catalysis of a reaction by enzymes sometimes is affected by the presence of some

small molecules, called cofactors. By binding the enzyme, cofactors can enhance or

decrease the activity of the enzyme. Depending on the effect produced, they are called

allosteric activators or allosteric inhibitors.

3.1.4 Reconstructing a metabolic network

Reconstructing the metabolic network of a particular organism consists in inferring the

relations between genes, proteins (enzymes), and reactions in a given metabolic system.

It is principally done by sequencing its genome and using comparative genomics, that

is, identifying the enzymes coded in it by comparing the genome sequence with the

databases of coded enzymes of other organisms. In recent years, this process has been

highly automated, although it still requires a slow manual expert validation supported

by carefully collected data from the literature.

The quality of the reconstruction by comparative genomics depends highly on the

quality of this annotation and, to a lesser extent, on the taxonomic position of the

organism. Thus, for instance, the reconstruction for organisms closer to E.coli, for

which the relation between genes and metabolic functions are well known, are highly

likely to be of better quality.

A metabolic reconstruction can be also complemented by using metabolomic data,

consisting in inferring data about the type and quantity of metabolites present in the

metabolism of the organism.

Other kinds of metabolic relations, like for instance allosteric effects on enzymes,

may be more difficult to study and therefore are in general not considered in the

metabolic reconstruction of an organism.

3.2 Modelling metabolic networks 43

3.2 Modelling metabolic networks

When we consider a set of reactions and metabolites as the input data, the most

classical mathematical models used to describe a metabolic network are graphs (or hy-

pergraphs), constraint-based methods and differential equations (Stelling, 2004). The

last is mainly used for describing the dynamic of the network (Szallasi et al., 2006). We

shall focus on the first two models, since they describe the metabolic network from its

structural characteristics and are the framework of the results presented in this thesis.

Of course, the choice of the appropriate model to use depends mainly on the kind of

questions that we are interested in answering.

3.2.1 Graph and hypergraphs models

We present a brief description of the most commonly used graphs to model a metabolic

network (Lacroix et al., 2008):

1. Compound graph: Nodes correspond to compounds and there is an edge between

two compounds if there is a reaction where one is a substrate and the other is a

product.

2. Reaction graph: Nodes correspond to reactions and there is an edge between two

reactions if there exists a compound that is produced by one and consumed by

the other.

3. Reaction-compound bipartite graph: The set of nodes is divided into the set of

compounds and the set of reactions. There is an edge between a compound and

a reaction if the compound is substrate or product of the reaction.

Note that all these models are ambiguous in the sense that two different sets of

reactions could be represented by the same graph. In other words, they do not maintain

all the information given by the reaction set. These ambiguities can be solved by adding

appropriate labels to the edges and/or nodes (Lacroix et al., 2008).

In particular, the direction of the irreversible reactions are not represented in these

graphs. In the case where all reactions are irreversible (or when reversible reactions

are represented by two irreversible reactions of opposite direction), we can consider

the same representations but using digraphs, that is, we can use arcs instead of edges

according to the direction of the reactions involved.

44 Chapter 3. Metabolic Networks

It is easy to see that, regardless of the stoichiometric values, the only representa-

tion which maintains complete information on how the compounds are involved in the

reactions is the reaction-compound bipartite digraph.

Directed hypergraph modelling

Directed hypergraphs are an alternative representation equivalent to the reaction-

compound bipartite digraph presented above. Indeed, directed hypergraphs seem to

be a very natural object to represent metabolic networks where all reactions are irre-

versible: nodes correspond to compounds and hyperarcs correspond to reactions.

3.2.2 Including stoichiometry

Stoichiometric values can be added as numerical labels in graph and hypergraph rep-

resentations (Lacroix et al., 2008). For instance, in the reaction-compound bipartite

graph, we can add the stoichiometric values to the edges of the graph. Moreover, we

can use positive and negative values to indicate if the compounds are, respectively,

produced or consumed. In this case, the signs made unnecessary the use of directed

edges.

If we number from 1 to |C| the set of metabolites and from 1 to |R| the set of

reactions, then we can define a stoichiometric matrix S with |C| rows and |R| columns

containing all the stoichiometric values of the network. In other words, S is defined by

Sa,r =

k if r produces k units of a

−k if r consumes k units of a

0 otherwise

3.2.3 Assuming steady state

In constraint-based modelling, the aim is to analyse the distribution of mass fluxes

through the reactions when the system is in steady state. This means that the amount

produced of every metabolite in one unit of time is equivalent to the amount of it

that is consumed. In order to analyse the dynamics of a network, we consider: a) the

vector c of concentrations of each metabolite and b) the flux vector v of fluxes of each

reaction (how many times each reaction happens in one unit of time). Note that we

allow negative fluxes for reversible reactions, meaning that the transformation is done

in the opposite direction (from products to substrates). Clearly we have the following

3.2 Modelling metabolic networks 45

relation:

dv/dt = Sv

Assuming that the system has reached a steady state, that is the concentration of each

metabolite remains constant, the vector v of rates satisfies the equation Sv = 0. That

is, the flux vector v belongs to the nullspace of S. However, not any vector in the

nullspace is a feasible flux of the system since it may violate the irreversibility of some

reactions.

The two constraints define a portion of the flux space represented by a convex

polyhedral cone containing all admissible flux vectors. Given this framework, two

main problems have been addressed. The first is called Flux Balance Analysis (FBA)

and is concerned with finding an admissible flux vector that optimises a given objective

function like, for instance, biomass or ATP production. FBA has been shown to have a

good phenotypic predictive power (Edwards et Palsson, 2000) and can also be applied

to predict the phenotypic effect of a perturbation of the system, like gene deletions.

When all the admissible flux vectors are of interest, we can try to find a subset of the

vectors able to generate all of them. Several approaches have been presented having in

common the fact that they are descriptions of the flux cone. The most widely used, in

the context of metabolic networks, are the concepts of elementary modes and extreme

pathways (Schilling et al., 2000). Recently, minimal behaviours have been introduced

(Larhlimi et Bockmayr, 2009) as an alternative description of the flux cone.

1. Elementary (flux) modes: They correspond to the smallest set of reactions that

can function together in steady state. Any flux of the steady state flux cone can

be decomposed as the sum of elementary modes. They also have been proposed

as a formal definition of a metabolic pathway.

2. Extreme pathways: Very similar to elementary modes, extreme pathways are a

subset of them. Again, any flux of the cone can be decomposed as a sum of

extreme pathways. The difference is that, unlike elementary modes, this decom-

position is always unique.

3. Minimal behaviours: Instead of being an inner description of the steady state flux

cone by a set of generating fluxes (like elementary modes and extreme pathways),

minimal behaviours correspond to an outer description of the cone by a set of

non-negativity constraints. This description is more compact than the previously

presented ones, although biological interpretation of the corresponding objects

has not yet been clearly established.

46 Chapter 3. Metabolic Networks

The concepts of elementary modes and extreme pathways only differ in the way

reversible reactions are treated. In fact, if the set of reversible reactions is empty, both

notions coincide. In particular, they are the same notion in the case where reversible

reactions are considered as two different reactions. For a detailed comparison of both

approaches, see Klamt et Stelling (2003).

As outlined in Schuster et al. (2002b), the concept of minimal T-invariants used in

Petri Nets is also closely related to the concept of elementary modes. Both notions

coincide in the case where all reactions are irreversible. For completeness sake, we

can also mention that the extreme currents defined by Bruce Clarke (Clarke, 1981)

coincide with elementary modes in the irreversible case. Unlike extreme pathways and

elementary modes, minimal T-invariants and extreme currents have only been defined

in the case of a network of irreversible reactions.

Because of its easy biological interpretation, we focus only on elementary modes as

a model of the dynamics of a metabolic network in steady state. Moreover, we assume

that all reactions are irreversible, and therefore the results are valid for most of the

concepts.

Chapter 4

Complexity of Computing Elementary

Modes

Contents
4.1 Modelling metabolic network in steady state 48

4.1.1 Definitions . 48

4.1.2 Relation between elementary modes and extreme rays 50

4.1.3 Reversibility of reactions . 50

4.2 Checking consistency of the stoichiometric matrix 51

4.3 Finding elementary modes 53

4.3.1 Finding an elementary mode 53

4.3.2 Finding elementary modes with support containing a given

set of reactions . 54

4.3.3 Finding the shortest elementary modes 56

4.4 Counting elementary modes 59

4.5 Enumerating elementary modes 60

4.5.1 Enumerating elementary modes with a given reaction in its

support . 61

4.5.2 Analysis of the complexity result 61

4.5.3 Case when all reactions are reversible 62

4.6 Reaction cuts . 62

4.6.1 Finding minimal and minimum reaction cuts 63

4.7 Proof of Theorem 4.11 and Theorem 4.15 65

48 Chapter 4. Complexity of Computing Elementary Modes

4.1 Modelling metabolic network in steady state

4.1.1 Definitions

A metabolic network is modelled as a set C of metabolites (also called compounds) and

a set R of reactions. Each reaction transforms a subset of metabolites, the substrates,

into another set of metabolites, the products of the reaction. The set of reactions is

partitioned into two subsets: Rev and Irrev, which correspond to the sets of reversible

and irreversible reactions, respectively. The matrix S contains the stoichiometric values

of the reactions.

Assuming that the system has reached a steady state, any flux vector v satisfies

the equation Sv = 0 and the thermodynamic constraints (positive flux in irreversible

reactions). The vectors v in the nullspace that satisfy these constraints form the set of

the a priori possible modes of a metabolic network.

Definition 4.1. A mode is a vector v ∈ R
m such that:

1. Sv = 0

2. vj ≥ 0 ∀j ∈ Irrev

In other words, the modes of a system cover the set of feasible flux vectors that

maintains the system in steady state.

Given a mode v 6= 0, we define R(v) the support of v as the set R(v) = {j | vj 6= 0},

i.e., the set of reactions participating (with non-zero flux) in v.

In a similar way that any vector v of the nullspace can be described as a linear

combination of vectors of a basis of the nullspace, we can describe the set of modes of

S as a positive combination of modes called elementary modes.

Definition 4.2. We say that a mode v 6= 0 is an elementary mode if its support is

minimal, that is, if there is no other mode w 6= 0 such that: R(w) ⊂ R(v).

Note that if v is an elementary mode (EM) then αv is also an EM for any real α > 0.

We consider that they correspond to the same EM (they are identical up to scaling).

If two EMs differ by a negative factor then they are considered different since they

correspond to fluxes of opposite directions that should represent different biological

functions.

Property 4.3. If two elementary modes v and w have the same support R(v) = R(w),

then there exists α 6= 0 such that v = αw (i.e. they are collinear vectors).

4.1 Modelling metabolic network in steady state 49

Pyruvate

Acetyl-CoA

Oxaloacetate Citrate

Isocitrate

alpha-
Ketoglutarate

Succinyl-
CoA

Succinate

Fumarate

Malate

Glyoxylate

Figure 4.1: An example of elementary modes analysis. Left: A simplified model of
the Citric Acid Cycle (including some anaplerotic reactions and the glyoxylate cycle).
Some ubiquitous compounds were excluded from the model. The stoichiometric matrix
has values −1, 1 and 0. Right: The eight elementary modes of this metabolic network
(trivial cycles of two reactions are excluded).

Proof. By contradiction, suppose that R(v) = R(w) and v and w are not collinear

vectors. Let k be such that
vk

wk

= max
i∈R(v)

vi

wi

.

Then the flux

u =
vk

wk

w − v

is such that Su = 0. Since v and w are not collinear, u 6= 0. Moreover, uℓ ≥ 0 for any

irreversible reaction ℓ in R(v). In effect,

uℓ =
vk

wk

wℓ − vℓ = (
vk

wk

−
vℓ

wℓ

)wℓ ≥ 0

Therefore u is a mode such that R(u) ⊂ R(v) which contradicts the fact that v is

an EM. We conclude that v and w are collinear vectors. Therefore they correspond to

the same EM or they correspond to the two opposite directions of a reversible flux.

Corollary 4.4. If all reactions are irreversible, then an elementary mode is completely

defined by its support.

50 Chapter 4. Complexity of Computing Elementary Modes

4.1.2 Relation between elementary modes and extreme rays

Modes and elementary modes can be given a geometrical interpretation. Indeed, the

set of vectors {v ≥ 0 | Sv = 0} defines a convex polyhedral cone in the flux space.

When all reactions are irreversible, the EMs exactly correspond to the extreme rays of

this cone (Schuster et Hilgetag, 1994). An extreme ray is a ray of the cone that can

not be expressed as a convex combination of other rays of the cone.

Lemma 4.5. If all reactions are irreversible, then the set of EMs corresponds one-to-

one to the set of extreme rays of the cone {v ≥ 0 | Sv = 0}.

Proof. Clearly the definition of an EM implies that it is an extreme ray of the cone. To

see that it is also the other way round, suppose we have two vectors v ≥ 0 and w ≥ 0

with Sv = 0 and Sw = 0 such that R(v) ⊂ R(w). Then clearly w is not an EM and

we show that w is not either an extreme ray of the cone.

Let k be such that
vk

wk

= max
i∈R(v)

vi

wi

.

Then the flux

u =
vk

wk

w − v ≥ 0 and Su = 0.

Thus u is a mode. Moreover, R(u) ⊂ R(w) and uk = 0 and most importantly,

vk

wk

w = v + u,

proving the claim.

4.1.3 Reversibility of reactions

In the particular case when all reactions are reversible (Irrev = ∅), an elementary mode

corresponds to a minimally dependent set of columns of the stoichiometric matrix.

Hence the EMs are exactly the circuits of a linear matroid (for definitions of matroids

and circuits we refer to Oxley, 1992; Schrijver, 2003).

In the more general case when there are some irreversible reactions, Gagneur et

Klamt (2004) observed that we can define a pointed cone in a higher dimensional space

by representing each reversible reaction by two irreversible reactions in the obvious

way: suppose the reaction r is represented in S by the column sr, then we add the

column s←−r = −sr to S, yielding S+, and require both vr and v←−r to be non-negative.

4.2 Checking consistency of the stoichiometric matrix 51

The cone defined by the matrix S+ has extreme rays that consist of those of S and

the vectors v with vr = v←−r = 1 and vi = 0 otherwise, corresponding to length-2 cycles

consisting of the two reactions making up for a reversible reaction. We can easily detect

and simply ignore these length-2 cycles. A consequence of this observation is that all

the complexity results and the proposed algorithms for the irreversible case

can be extended to the general case.

From now on we assume that all reactions are irreversible unless explicitly stated

otherwise.

4.2 Checking consistency of the stoichiometric matrix

One of the applications of constraint-based modelling is in checking the consistency

of reconstructed metabolic networks (Schuster et al., 2000). A network is said to be

consistent if each reaction belongs to at least one elementary mode, or equivalently,

there exists a mode such that all reactions belong to it. When a network is consistent,

we say equivalently that its stoichiometric matrix is consistent: the stoichiometric

matrix S is consistent if Sv = 0 has a solution with vj > 0 ∀j.

We give an overview of some problems related to the consistency of stoichiometric

matrices. If a matrix S is not consistent, this may indicate a case of incomplete

modelling of the metabolic network. In that sense, detecting inconsistency is a valuable

tool for finding deficiencies in the metabolic network description.

In the following theorems, we explicitly state that the problems can be solved using

LP. Since the LP-formulations have a size that is bounded by a polynomial function

of the stoichiometric matrix, we implicitly state that these problems are easy (in P).

We choose for stating solvability through LP to emphasize that they are not only

theoretically tractable but that in fact off-the-shelf computer packages can be used to

solve the problems.

Theorem 4.6. Given a stoichiometric matrix S, checking the consistency of S can be

done using LP.

Proof. Consider the following LP, where we insert a bound on the sum of the values of

52 Chapter 4. Complexity of Computing Elementary Modes

the vj’s to avoid unboundedness of the problem.

max z

s.t. vj ≥ z ∀j (4.1)

Sv = 0
∑

j vj ≤ 1

S is consistent if the optimal value is strictly positive, otherwise it is not.

In case of inconsistency, it is also easy to find a consistent submatrix containing a

maximum number of reactions.

Theorem 4.7. Given a stoichiometric matrix S, detecting a minimum number of

reactions to be deleted to make S consistent can be done using LP.

Proof. For each reaction h, solve the LP

max vh

s.t. Sv = 0
∑

j vj ≤ 1

v ≥ 0

If for reaction h, the optimal value is strictly positive, then h is part of some mode,

and one such mode is given by the optimal solution. Otherwise there is no mode in

which reaction h appears and it must be deleted to make S consistent. This is a safe

operation: since h belongs to no mode, eliminating h will not eliminate any existing

mode. For the same reason, the order of elimination is indifferent.

Unfortunately, a problem complementary to the previous one is hard.

Theorem 4.8. Given a stoichiometric matrix S, and some other set of reactions rep-

resented by a stoichiometric matrix S ′, find a subset of reactions of S ′ of minimum

cardinality such that the corresponding submatrix added to S yields a consistent matrix

is Np-hard.

This is of practical interest as in general, when a stoichiometric matrix is not con-

sistent, it is because some enzymes, and therefore some reactions, were not detected

as present due to the lack of a strong enough similarity with the enzymes in a known

4.3 Finding elementary modes 53

network, usually that of Escherichia coli, from which the one for a newly sequenced

organism was inferred.

Proof. Taking as S an empty matrix and as S ′ the stoichiometric matrix of the network,

the problem is a special case of finding an elementary mode with a minimum number

of reactions in its support. Np-hardness of the latter problem will be established in

Theorem 4.12.

4.3 Finding elementary modes

4.3.1 Finding an elementary mode

As observed already in Klamt et al. (2005), just by substitution we can check that

Sv = 0 in order to decide if v ≥ 0 is a mode. It is also easy to decide if a given mode

v ≥ 0 is an elementary mode by calculating the rank of the submatrix of S consisting

of the reactions in the support of v. If this is equal to the number of reactions in

the support of v minus 1, then vector v represents an elementary mode (Klamt et al.,

2005). Finding one EM is also easy.

Theorem 4.9. Given a stoichiometric matrix S, an elementary mode can be found in

polynomial time.

Proof. We “slice” the cone {v ≥ 0 | Sv = 0} by the inequality
∑

j vj ≤ 1 and solve the

LP for an arbitrary reaction h:

max vh

s.t. Sv = 0 (4.2)
∑

j vj ≤ 1

v ≥ 0.

In case of a consistent matrix, there is an optimal solution which is a non-all-0 vertex

of the polytope {v ≥ 0 | Sv = 0,
∑

j vj ≤ 1} satisfying the inequality
∑

j vj ≤ 1 with

equality. Let v∗h be the optimal solution value.

Using interior point methods to find an optimal solution does not necessarily yield

a vertex of the polytope. However, if a vertex is not found, the objective function is

set equal to the optimal value, vh = v∗h, and is added as a constraint. As an auxiliary

objective, maximisation of one of the decision variables (other than vh) is chosen.

54 Chapter 4. Complexity of Computing Elementary Modes

In this way, iteratively applying an interior point method, in each such iteration the

dimension of the optimal solution set is diminished by at least one. Thus, after a

number of iterations less than the number of variables a vertex will be obtained, and

we conclude that an elementary mode can be found in polynomial time.

Of course, we can use also any simplex method-based LP-package for solving LP

(4.2), since, although this is not in the worst-case a polynomial time method, it is very

fast in practice. Moreover, it has the advantage that it will always produce directly a

non-all-0 vertex of the polytope as an optimal solution.

4.3.2 Finding elementary modes with support containing a given

set of reactions

An optimal solution of the LP in the proof of Theorem 4.9 gives an elementary mode

that contains reaction h. In general, it is easy to detect if there exists a mode whose

support contains a given set of reactions TIN , and does not contain any of the reactions

of another set TOUT : simply add the restrictions:

vj = 0 ∀j ∈ TOUT (4.3)

to LP (4.1), replace the first restriction of LP (4.1) by:

vj ≥ z ∀j ∈ TIN ,

and check if the optimal solution is positive or 0.

The existence of an elementary mode with the same properties for any set TIN is

Np-complete in general, which may (partly) explain the difficulties we encounter in

enumerating EMs.

Theorem 4.10. Given a stoichiometric matrix S, sets of reactions TIN and TOUT ,

deciding if an elementary mode v exists that has positive value in all its coordinates

corresponding to TIN , and has value 0 in all its coordinates corresponding to the set

TOUT is Np-complete.

Proof. We start by observing that this decision problem is in Np because, if we give a

flux vector as certificate, we can check in polynomial time if it is an elementary mode

with the desired properties. We observe also that the set TOUT has no influence on

4.3 Finding elementary modes 55

Figure 4.2: Graphical illustration of the DHC reduction.

the complexity of the problem. Indeed, we just need to delete from S the columns

corresponding to the reactions in TOUT and solve the problem on the reduced matrix.

Np-completeness is proved by a reduction from the Directed Hamiltonian Cy-

cle problem (DHC). The intuition behind the proof is to build, in polynomial time,

from a general DHC instance, a specific instance of our problem, that is a network,

with the following characteristic: each elementary mode in the network that contains

all reactions in TIN corresponds to a hamiltonian cycle in the directed graph and vice

versa. A solution to our problem therefore provides a solution to the Np-complete

problem DHC.

Given a directed graph G that is a general DHC instance, for each vertex u in G,

create two compounds u1, u2 and create a reaction from u1 to u2. For each edge (u, w)

of G, create a reaction from u2 to w1 (see Figure 4.2). Let H be this network that can

be built in linear time from G. The corresponding stoichiometric matrix is simply the

{−1, 0, +1} incidence matrix of this directed bipartite graph. Choose TIN to be the

set of all reactions corresponding to (derived from) vertices in G and TOUT = ∅.

Notice that any directed cycle C in H corresponds to an elementary mode: just

setting all values for the reactions corresponding to the arcs in C equal to 1 and the rest

to 0 gives a mode. It is clear that no subset of the arcs can give rise to a mode, hence

it must be an EM. Notice also that because of the absence of outputs in this network,

any mode in H has to contain a directed cycle in its support. However, a directed

cycle is, in fact, the support of an EM and therefore any EM must be a single directed

cycle of H. Since directed cycles in H and G have a one-to-one correspondence, any

EM corresponds to a directed cycle in G and vice versa.

56 Chapter 4. Complexity of Computing Elementary Modes

In particular, there is a one-to-one correspondence between elementary modes of

H that contain all of TIN and directed cycles in G that contain all vertices of G, i.e.,

hamiltonian cycles.

Although we showed the hardness of finding an elementary mode with support in

TIN in the general case, this does not solve the question for a fixed size of TIN . Clearly,

the problem is easy if |TIN | = 1. Indeed, the proof follows from selecting h in the

LP (4.2) as the only reaction in TIN . On the other hand, we can observe that it

becomes trivial when |TIN | > rank(S) + 1. Indeed, according to Lemma 4 in Schuster

et al. (2002a), no EM can have as many non-zero elements. This leaves an interesting

and rather fundamental question: what is the complexity of the problem if |TIN | = k

for any fixed k, 1 < k ≤ rank(S)+1? In fact, we can show that it is Np-hard already for

the case k = 2. This result is a corollary of Theorem 4.26 presented in Section 4.7. In

that section, some complexity results are presented by establishing a relation between

the extreme rays of a cone (and therefore EMs) and the cycles in directed weighted

graphs.

Theorem 4.11. Given two reactions ri and rj, deciding if there exists an elementary

mode that has both ri and rj in its support is Np-complete.

Proof. This is a direct consequence of Theorem 4.26 of Section 4.7.

Note that the complexity is the same for the problem of deciding if there is an

elementary mode that passes through two given compounds (or through a given com-

pound and a given reaction) instead of two given reactions. Indeed, both problems

are equivalent: we can reduce one formulation to the other by just breaking the given

reactions (respectively compound) in two steps and putting an extra compound (re-

spectively reaction) connecting both. Analogously, deciding if there is an EM that

passes through a given compound and a given reaction is also Np-hard.

4.3.3 Finding the shortest elementary modes

We present the next result about the complexity of detecting elementary modes with

a support of small size.

Theorem 4.12. Given a matrix S and a number k, deciding the existence of an ele-

mentary mode with at most k reactions in its support is Np-complete.

4.3 Finding elementary modes 57

Proof. Clearly this decision problem is in Np because, if we give a flux vector as

certificate, we can check in polynomial time if it is an elementary mode with at most k

reactions in its support. The proof of the hardness is a reduction from the Np-complete

3-Dimensional Matching problem (3DM) (see Garey et Johnson, 1979): Given a

set of elements X = {x1, . . . , x3n} partitioned into three sets of n elements each, and

given a collection of 3-element subsets S = {S1, . . . , Sm} each subset containing exactly

one element from each set of the partition, does there exist a subcollection of S of n

subsets that covers all elements of X?

The reduction is depicted in Figure 4.3. For each element and each 3-element set of

the 3DM instance, a compound vertex is created. The first reaction is an input reaction

that has as output all elements of the 3DM instance, the grey vertices in Figure 4.3; i.e.,

the first column of the stoichiometric matrix has 1-entries at all element compounds

and 0 at all element set compounds. For each 3-element set of the 3DM instance a

reaction is created with input the compounds corresponding to the three elements of

the set and output the compound corresponding to the 3-element set, the si-nodes in

Figure 4.3; i.e., a column in the stoichiometric matrix with −1-entries at the three

element compounds, 1 at the element set compound and 0’s elsewhere. For each 3-

element set there is also an output reaction that has the 3-element set compound as

its only input. Finally we choose k = 2n + 1.

The vector of reactions which has a 1 at the positions of the first reaction and the

two reactions corresponding to each 3-element set of any 3-dimensional matching and

0’s elsewhere, clearly forms an elementary mode with 2n + 1 reactions in its support.

On the other hand, any mode must contain the first reaction. Hence, any EM must

have a positive value in the first position, and therefore has as output exactly one

copy of each element, all of which must have the same value. For every 3-element-set-

reaction that we choose, we have to add the corresponding output reaction. Thus to

cover all 3n elements from the first reaction, we have to choose exactly n reactions that

correspond to 3-element sets. Such a set of reactions corresponds to a 3-dimensional

matching.

This theorem shows that finding a shortest elementary mode (one with a minimum

number of reactions) is Np-hard. Observe that in the theorem, k is considered to be

part of the input. For fixed values of k, the problem is trivially solvable in polynomial

time by complete enumeration. In practice, enumerating EMs with at most k reactions

may therefore be possible for small values of k. To the best of our knowledge, there

is no current application of short EMs, but it should become interesting if size were

58 Chapter 4. Complexity of Computing Elementary Modes

S1

S2

S3

S4

0

0

-1

-1

0

0

-1

0

0

1

0

0

0

1

1

1

1

1

1

1

1

1

0

0

0

0

0

-1

0

0

0

-1

0

0

-1

0

0

0

1

-1

0

0

0

-1

0

0

-1

0

0

1

0

0

-1

0

0

0

-1

0

0

0

-1

0

0

1

0

0

0

0

0

0

0

0

0

0

-1

0

0

0

0

0

0

0

0

0

0

0

0

0

-1

0

0

0

0

0

0

0

0

0

0

0

0

0

0

-1

0

0

0

0

0

0

0

0

0

0

0

-1

0

a

b

c

d

e

f

g

h

i

a

b

c

d

e

f

g

h

i

a

b

c

d

e

f

g

h

i
S1
S2
S3
S4

(

((a) (b)

(c)

Figure 4.3: Graphical illustration of the 3DM reduction. (a) An instance of 3DM with
X = {a, b, c, d, e, f, g, h, i} partitioned in three sets {a, b, c}, {d, e, f} and {g, h, i}.
The collection S contains four 3-element-subset. (b) The stoichiometric matrix of the
reduction. (c) Graphical representation of the network. Every EM with at most 7
reactions (for instance, the EM containing the input reaction and the reactions using
the compounds S1, S2 and S4) corresponds to a 3-dimensional matching.

4.4 Counting elementary modes 59

considered as a relevant criterion to classify EMs. Short EMs may also be seen as

good seeds for a motif detection algorithm such as in Lacroix et al. (2006): two (or

more) short EMs that represent connected sets of equivalent chemical transformations

(equivalent enzymatic functions) may help to understand how metabolism evolved. In

any case, Theorem 4.12 is also interesting in itself for the further insight it provides in

the hardness of elementary mode computations.

As a final example to illustrate the intricacies in detecting elementary modes, we

define the notion of a simple elementary mode as an EM v such that ∀j, vj ∈ {0, 1}.

The reduction in the proof of Theorem 4.12 shows that it is hard to find simple EMs.

Though it is unlikely that any biological relevance will ever be found for the notion of

simple EM, this result shows again the subtlety of EM computations, all the more so

as the hardness can be extended to any fixed interval of integers.

Corollary 4.13. Given a matrix S, deciding the existence of a simple elementary mode

is Np-complete.

4.4 Counting elementary modes

System biologists are interested in enumerating all elementary modes of a metabolic

network. Before turning to that problem, we show that merely counting EMs is hard.

In Klamt et Stelling (2002) the authors show that the number of EMs can be bounded

by
(

m
n+1

)

, but they did not give the complexity of computing the exact number.

Counting elementary modes is essentially a problem of counting the rays of a poly-

hedral cone, which in its turn is equivalent to a problem of counting vertices of a

polytope, which is known to be ♯P-complete (Dyer, 1983)1 in general.

Not surprisingly, given its connection with the extreme rays of a convex cone,

counting elementary modes turns out to be also ♯P-complete.

Theorem 4.14. Given a matrix S counting the number of elementary modes is ♯P-

complete.

Proof. The proof follows by a reduction from the ♯P-complete problem Count Per-

fect Matchings, that is, counting perfect matchings in a bipartite graph (Valiant,

1979). Given a bipartite graph G = (U, V,E) with two colour classes U and V , each of

size n, we construct the following hypergraph H. First, we create an input compound

vertex s, which we connect with one hyperedge rs to all vertices in U , and direct this

1In fact, Dyer (1983) only claims Np-hardness, but the proof establishes #P-completeness.

60 Chapter 4. Complexity of Computing Elementary Modes

hyperedge from s into U . We direct all edges of E from U to V . Finally, we create

an output compound vertex t which we connect with one hyperedge rt to all vertices

of V , and direct this hyperedge from V into t. This relates in the obvious way to a

{−1, 0, +1}-stoichiometric matrix.

Clearly any perfect matching in G corresponds to an EM. In fact, this relation is

one-to-one. In effect, let x be an elementary mode with R(x) its support. Clearly the

flux over the reaction rs is equal to the flux over rt and w.l.o.g we can suppose this flux

equal to one. For any set Ū ⊆ U we define the set Rx(Ū) of reactions in the support

of x that consume compounds of Ū , that is,

Rx(Ū) = {r ∈ R(x) | r = ({u}, {v}) and u ∈ Ū}.

For the set Ū we also define the set Nx(Ū) ⊆ V of compounds produced by Rx(Ū).

If we prove that for any set Ū we have that |Nx(Ū)| ≥ |Ū | then we prove that R(x)

contains a perfect matching between U and V (see Hall (1935)). Thus, by minimality

of elementary modes, we conclude that R(x) corresponds exactly to a perfect matching

plus the reactions rs and rt.

We show that |Nx(Ū)| ≥ |Ū |. Since the flux over rs is equal to one, the sum of the

fluxes over reactions in Rx(Ū) must be exactly |Ū |. Then, by the stoichiometric values,

the total production of these reactions (that is, the total production of the compounds

Nx(Ū) by the reactions in Rx(Ū)) is also equal to |Ū |. But the production of each

compound in Nx(Ū) cannot be more than one (since the flux over rt is equal to one).

Therefore we conclude that |Nx(Ū)| ≥ |Ū |.

4.5 Enumerating elementary modes

Enumerating the elementary modes of a metabolic network with stoichiometric matrix

A for some m×n matrix A, corresponds exactly to enumerating the extreme rays of the

cone {x ∈ R
n | Ax = 0, x ≥ 0}. An extreme ray of a cone is a vector of the cone that

cannot be expressed as a convex combination of any two other vectors of the cone. The

cone is pointed in the origin 0 of R
n. Therefore, its extreme rays correspond one-to-one

to the vertices of the bounded polyhedron {x ∈ R
n | Ax = 0, 1T x = 1, x ≥ 0}, with

1 denoting the all-1 vector in R
n. As a result, enumerating the extreme rays of the

cone is not harder than enumerating the vertices of a bounded polyhedron (polytope).

Since the number of objects to be enumerated can be exponential in the size of the

4.5 Enumerating elementary modes 61

input, the complexity in terms of running time is measured as a function of the size of

the input and of the output.

4.5.1 Enumerating elementary modes with a given reaction in

its support

The complexity of enumerating vertices of polytopes is a famous and long-standing

open question (see e.g., Dyer et Proll, 1977). We do not solve this question but present

an intriguing related result: Given a coordinate i, enumerating all extreme rays r of

the cone that have ri > 0 cannot be done in polynomial total time (that is, polynomial

in the size of the input and of the output) unless P = Np. This in terms of elementary

modes, can be written as:

Theorem 4.15. Given a reaction r, enumerating all elementary modes that have r in

the support cannot be done in polynomial total time unless P=Np.

Proof. This is a direct consequence of Theorem 4.25 of Section 4.7.

Clearly, the complexity of this problem remains the same if we consider enumera-

tion of elementary modes passing through a given compound instead of reaction (both

problems are equivalent).

4.5.2 Analysis of the complexity result

It may seem strange that enumerating the elementary modes passing through a given

reaction is hard while the complexity of enumerating all elementary modes remains

unknown. This apparent contradiction comes from the fact that time is measured in

terms of the output size. Given the “normalisation” effect introduced by this, enumer-

ating a smaller subset of objects could therefore be harder than enumerating the whole

set. Nevertheless, the hardness of enumerating a specific subset of the elementary

modes gives some intuition on the difficulty of enumerating the whole set of them.

This result is in fact rather surprising. Although nobody has enough confidence to

call it a conjecture, most people who have done theoretical research in this field guess

that enumerating vertices of polytopes should be achievable in polynomial total time

(see for a definition Section 2.6). If, contrary to this guess, enumerating vertices of

polytopes will appear to be hard, it will be caused by degeneracy, since enumerating

vertices of non-degenerate polytopes can be done in polynomial total time by a Local

Reverse Search method (Dyer, 1983). Cones corresponding to real-life stoichiometric

62 Chapter 4. Complexity of Computing Elementary Modes

matrices appear to be highly degenerate (see Terzer, 2009). Therefore, for enumerating

extreme rays of the cone, variations of the double description method of Motzkin et al.

(1953) are the most popular ones in the analysis of stoichiometric metabolic networks

(Terzer, 2009). Where local reverse search methods suffer from degeneracy, double

description methods suffer from generating intermediate (candidate) vectors that do

not appear in the output.

4.5.3 Case when all reactions are reversible

Despite the difficulty of establishing the complexity of enumerating elementary modes

for the general case, there is a positive result in the particular case when all reactions

are reversible. Indeed, in this case an elementary mode corresponds to a minimally

dependent set of columns of the stoichiometric matrix. Hence the elementary modes

are exactly the circuits of a linear matroid (for definitions of matroids and circuits we

refer to Oxley (1992) or Schrijver (2003)). It was shown in Khachiyan et al. (2005)

that k circuits of a matroid (with k no greater than the total number of circuits) can

be computed in polynomial time in k and n, with n the number of elements in the

ground set of the matroid; in our case the number of reactions, that is, columns of

the stoichiometric matrix. As a result, elementary modes of a completely reversible

network, can be enumerated in incremental polynomial time.

Theorem 4.16. In case all reactions in a metabolic network are reversible, the ele-

mentary modes can be enumerated in incremental polynomial time.

4.6 Reaction cuts

In this section, we focus on Reaction Cut Sets. The notion of minimal cut sets in

a metabolic network represented as a hypergraph was first introduced by Klamt et

Gilles (2004). The motivation is to study so-called “failure modes” that render the

functioning of a given target reaction rt impossible. A minimal cut set is a set of

reactions that must be cut (removed) in order to prevent a flux through the target

reaction rt. Operationally, this has been defined as a set of reactions whose deletion

from the network stops each elementary mode that contains rt.

Before proceeding we mention that the notion of a s, t-cut of a hypergraph, i.e., a cut

that separates nodes s and t, has been proposed and studied for directed hypergraphs.

In Gallo et al. (1998), it was observed that finding s, t-cuts in unweighted directed

4.6 Reaction cuts 63

hypergraphs can be done in polynomial time if all hyperedges are defined by a subset

of input nodes and a single destination node; in the context of metabolic networks this

would model the situation in which each reaction is irreversible and produces a single

metabolite. We also refer to Ausiello et al. (2001) for a survey of related results on

directed hypergraphs.

In what follows, we study two problems: finding a reaction cut of minimum cardi-

nality, which we call Min Reaction Cut, and enumerating all minimal reaction cuts.

We prove that Min Reaction Cut cannot be approximated within any constant

approximation ratio unless P = Np.

4.6.1 Finding minimal and minimum reaction cuts

The first basic problem about reaction cuts is recognising them.

Theorem 4.17. Given a stoichiometric matrix S, some target reaction rt, and a subset

F of reactions, deciding if F is a reaction cut of rt can be done using LP.

Proof. Consider the following LP:

max vrt

s.t. Sv = 0

vj = 0 ∀j ∈ F
∑

j vj ≤ 1

vj ≥ 0 ∀j /∈ F ∪ rt.

The optimal solution value is positive if and only if F is not a reaction cut of rt.

Finding an optimal cut is a lot more difficult.

Theorem 4.18. Min Reaction Cut is Np-hard.

Proof. We prove Np-completeness of the decision version of Min Reaction Cut.

By the previous theorem this problem is in Np. Completeness is proved through a

reduction from Hitting set: Given a set of elements X = {x1, . . . , xn}, a collection

of subsets S = {S1, . . . , Sm}, and an integer K, does there exist a subset Y ⊂ X of at

most k elements such that Si

⋂

Y 6= ∅ ∀i = 1, . . . ,m.

We construct a metabolic network whose stoichiometric matrix contains only entries

with values −1,0, or +1. For each element xj and for each set Si, we create a compound

64 Chapter 4. Complexity of Computing Elementary Modes

vertex, which we also denote by xj and Si, respectively. We create three additional

compounds s, t and t′. The compounds s and t′ are considered as external and we

create the reaction (t → t′) as the target reaction rt. For each xj, we create a reaction

(s → xj). Similarly, for each set Si = {xi1 , . . . , xik}, we create a reaction (Si → t)

and another with multiple input compounds xi1 , . . . , xik and output compound Si. We

select for the decision version of Min Reaction Cut the same integer K as in the

Hitting Set instance.

To each set Si = {xi1 , . . . , xik} corresponds an elementary mode consisting of the

reactions (s → xi1), . . . , (s → xik), (xi1 , . . . , xik → Si), (Si → t), (t → t′). Indeed, it

is easy to check that the vector that assigns a 1 to each of these reactions and a 0

otherwise is indeed a mode. Removing any reaction from this set gives a submatrix

which does not have any mode.

Moreover, suppose that some mode contains reactions corresponding to two sets,

that is, v(Si → t) = ai > 0, v(Sj → t) = aj > 0 and v(Sl → t) = 0 ∀l /∈ {i, j} . Then

this mode should also have v(xi1 , . . . , xik → Si) = ai and v(xj1 , . . . , xjl
→ Sj) = aj,

and also v(t → t′) = ai + aj and v(s → xℓ) = ai ∀xℓ ∈ (Si\Sj), v(s → xℓ) = aj

∀xℓ ∈ (Sj\Si), v(s → xℓ) = ai + aj ∀xℓ ∈ (Si ∩ Sj), and v(s → xℓ) = 0 otherwise.

Hence this is the linear combination of two elementary modes of the above type, and

therefore by itself not an elementary mode. Clearly, the same reasoning holds if a mode

were to correspond to more than two sets. If we suppose the existence of an elementary

mode containing k set nodes, with 2 < k ≤ m, we can similarly show that it can be

written as a linear combination of the k corresponding elementary modes of the above

type.

Thus, the elementary modes corresponding to the sets of S are exactly all the

elementary modes, and from each of them some reaction must be selected in the reaction

cut. Selecting (s → xℓ) cuts all the elementary modes whose corresponding set contains

xℓ. This immediately implies that given a hitting set of size at most K, the reactions

from s to the x’s of this hitting set cut all elementary modes and therefore form a

reaction cut of size at most K.

On the other hand, any reaction (xi1 , . . . , xik → Si) or (Si → t) in a reaction cut

can be replaced by one reaction (s → xj) (with xj ∈ Si), giving another reaction cut.

Thus for any reaction cut of size at most K, there exists a reaction cut of the same

size consisting only of reactions of type (s → xj), hence corresponding to a hitting set

of size at most K.

The above reduction yields a one-to-one correspondence between minimal reaction

4.7 Proof of Theorem 4.11 and Theorem 4.15 65

cuts of size K and hitting sets of size K. Therefore it is approximation preserving (see

for a precise definition of an approximation preserving reduction e.g. Ausiello et al.,

1999). Because of its equivalence to SetCover in which elements have to be covered

by sets, no polynomial time algorithm for HittingSet can have approximation ratio

O(log n) unless P = Np (Raz et Safra, 1997), with n the number of elements. The

following inapproximability result follows directly.

Theorem 4.19. Any polynomial time approximation algorithm for Min Reaction

Cut cannot have approximation ratio o(log n), with n the number of reactions, unless

P = Np.

4.7 Proof of Theorem 4.11 and Theorem 4.15

Both results are based on a reduction to the decision problem on the existence of neg-

ative simple cycles in directed graphs and are inspired by the work of Khachiyan et al.

(2008), who proved that enumerating vertices of any (possibly unbounded) polyhedron

cannot be achieved in polynomial total time unless P=Np. Of course, Khachiyan et

al.’s result does not apply to polytopes, which could still be easier than the general case.

Given a directed graph, or network, G = (V, E), each column of its node-arc inci-

dence matrix M corresponds to an arc (u, v) ∈ E and contains exactly one −1 in the

row of its tail-node u, and exactly one +1 in the row of its head-node v, and otherwise

0 entries. We call a cycle simple if it does not contain subcycles.

Lemma 4.20. Let G = (V, E) be a directed graph with the node-arc incidence matrix

M , then the extreme rays of the cone {x ∈ R
|E| | Mx = 0, x ≥ 0} correspond one-to-one

to the directed simple cycles of G.

Proof. In graph optimisation, a vector x ≥ 0 that satisfies Mx = 0 is called a flow

circulation. The flow decomposition lemma (see e.g. Schrijver, 1986) states that any

such vector x can be written as a positive linear combination of characteristic vectors

of directed simple cycles of G. Thus, the set of all characteristic vectors of directed

simple cycles of G contains all extreme rays of the cone. It is also obvious that the char-

acteristic vector of any simple cycle cannot be written as a positive linear combination

of vectors of other simple cycles.

In a weighted directed graph, a function w : E → R assigns weights to arcs. The

total weight of a set of arcs is the sum of the weights of the arcs. We say that a cycle

66 Chapter 4. Complexity of Computing Elementary Modes

C is negative if its total weight is negative. We create a matrix M ′ by appending

an extra row to the node-incidence matrix M of G. In the column corresponding

to arc e ∈ E, the entry in the extra row is w(e). The extra row could be seen as

corresponding to a dummy node d, and a column as representing a directed hyperarc

with a weight on the extra node. In terms of stoichiometry, this would correspond

to a reaction transforming 1 molecule of compound u into 1 molecule of compound v

and w(u, v) molecules of compound d in case w(u, v) > 0, or transforming 1 molecule

of compound u and w(u, v) molecules of compound d into 1 molecule of compound v

in case w(u, v) < 0. We append two extra columns to M ′: the first one is the unit

vector of the dummy node and the second is its negative. In stoichiometric terms, these

can be regarded, respectively, as a reaction that produces 1 molecule of compound d

from external nutrients and a reaction that excretes 1 molecule of compound d. To

facilitate the exposition, we denote the two arcs between the dummy node and “some

invisible external node”, respectively, e+ and e−. We call the resulting matrix M+. In

Figure 4.4, we present an example of the matrix M+.

Figure 4.4: Transformation of a weighted directed graph into a metabolic network
with stoichiometry. Left: A weighted directed graph G. Center: The matrix M+ of G.
Right: The set of reactions that represent the stoichiometric matrix M+ (stoichiometry
is not shown).

Given a vector x we denote by R(x) its support, i.e., the set of non-zero coordinates

of x. As observed by many researchers, the extreme rays of the cone {x ∈ R
n | Ax =

0, x ≥ 0} are exactly the vectors in the cone with minimal support and they are

uniquely characterised by their support, up to a positive scalar multiplication.

In the context of the cone related to directed graphs, we index the coordinates of

the vectors by the arcs to which they correspond and write the support of a vector as

a subset of arcs. The following relations exist between directed simple cycles of G and

extreme rays of the cone Γ =: {x ∈ R
|E|+2 | M+x = 0, x ≥ 0}.

4.7 Proof of Theorem 4.11 and Theorem 4.15 67

Lemma 4.21. Let G = (V, E,w) be a directed weighted graph. For every extreme ray

x of the cone Γ, either R(x) = {e+, e−}, or R(x) \ {e+, e−} is the union of simple

directed cycles of G.

Proof. Let x be an extreme ray of the cone Γ such that R(x) 6= {e+, e−}. Let x′ ∈ R
|E|

be the truncated vector x without the values corresponding to the arcs e+ and e−.

Then, x′ 6= 0 and Mx′ = 0 where M is the node-arc incidence matrix of G. The vector

x′ belongs to the cone {x ∈ R
|E| | Mx = 0, x ≥ 0} and therefore x′ 6= 0 is a positive

linear combination of extreme rays of this cone. By Lemma 4.20, the support of x′ is

the union of simple directed cycles of G. Therefore, R(x) \ {e+, e−} is the union of

simple directed cycles of G.

Lemma 4.22. Let G = (V, E,w) be a directed weighted graph. Let C be a directed

simple cycle.

• if C is negative then C ∪ {e−} is the support of an extreme ray of Γ;

• if C is positive then C ∪ {e+} is the support of an extreme ray of Γ;

• otherwise C is the support of an extreme ray of Γ.

Proof. If C is negative, that is w(C) =
∑

e∈C w(e) < 0, we consider the vector x defined

by

xi =

1 if i ∈ C

−w(C) if i = e−

0 otherwise

Clearly, x is in the cone Γ =: {x ∈ R
|E|+2 | M+x = 0, x ≥ 0} and has support

R(x) = C ∪{e−}. We show that x is an extreme ray of Γ. Suppose it is not. Then it is

a positive linear combination of extreme rays of Γ. Thus, there must exist an extreme

ray x′ such that R(x′) ⊆ R(x) and R(x′) ∋ e−. By Lemma 4.21, R(x′) \ {e−} is the

union of directed simple cycles of G. But R(x′) \ {e−} ⊆ R(x) \ {e−} = C, a directed

simple cycle C. We conclude that R(x′) = R(x) = C ∪ {e−}. The proof is analogous

for the case that C is positive.

Now, if the cycle has weight 0, then we choose in Γ(G) the vector x defined as

xi =

{

1 if i ∈ C;

0 otherwise

Arguing in a similar way as in the previous case, we conclude that x is an extreme ray

of Γ with R(x) = C.

68 Chapter 4. Complexity of Computing Elementary Modes

Lemma 4.23. Let G = (V, E,w) be a directed weighted graph. Let x be an extreme

ray of Γ. Then exactly one of the following possibilities is true:

• R(x) = {e+, e−};

• R(x) is a union of directed simple cycles;

• R(x) = C ∪ {e−} where C is a negative directed simple cycle of G;

• R(x) = C ∪ {e+} where C is a positive directed simple cycle of G.

Proof. If R(x) contains both e+ and e− then, because of minimality of support, R(x) =

{e+, e−}. If R(x) and {e+, e−} are disjoint sets, then by Lemma 4.21 the set R(x) is a

union of simple cycles.

Suppose that R(x) contains e− but does not contain e+. Let us consider F =

R(x) \ {e−}. By Lemma 4.21, R(x) \ {e−} is a union of simple cycles. Let C be one of

them. We show that C is negative and C = R(x) \ {e−}.

If not and C has weight 0, then by Lemma 4.22, C is the support of an extreme

ray that does not contain e−. This contradicts the fact that x is an extreme ray.

If not and C is positive, C ∪ {e+} is the support of an extreme ray, say x′. Let

α = x′e+ > 0 be the value of the coordinate e+ of x′. Let β = xe− > 0 be the value of

the coordinate e− of x. Let z ∈ R
|E|+2 be the vector such that zi = 1 if i ∈ {e−, e+}

and zi = 0 otherwise. The vector y = (1/α)x′ + (1/β)x − z is non-negative and

M+y = 0. Therefore, y ∈ Γ and R(y) = C ⊆ R(x) \ {e−}. This contradicts the fact

that x is an extreme ray. We conclude that C is a negative simple cycle and therefore

C ∪ {e−} = R(x).

Analogously, if R(x) contains e+ but does not contain e−, then the support of x is

C ∪ {e+} for some positive simple cycle C.

As a corollary, we obtain the following crucial observation for our results.

Theorem 4.24. Let G = (V, E,w) be a directed weighted graph and let F ⊂ E. Then

the following two statements are equivalent:

• F is a negative simple directed cycle;

• F ∪ {e−} is the support of an extreme ray of Γ.

Our first result follows directly from this theorem in combination with a result from

Khachiyan et al. (2008).

4.7 Proof of Theorem 4.11 and Theorem 4.15 69

Theorem 4.25. Given a cone {x ∈ R
n | Ax = 0, x ≥ 0} and a coordinate i, enumer-

ating all extreme rays that contain i in their support is not in PT unless P=Np.

Proof. Khachiyan et al. (2008) showed that enumerating negative cycles of a weighted

directed graph G is not in PT unless P=Np. By Theorem 4.24, searching for negative

cycles in G is equivalent to searching for extreme rays of Γ having e− in their support.

Since, given G, we can construct Γ in polynomial time, the theorem follows.

The proof of the hardness of enumerating all negative cycles in a directed weighted

graph made by Khachiyan et al. (2008) is done by a reduction from the CNF satisfi-

ability problem. The proof also shows (this is not explicitly mentioned in the paper)

that the problem of deciding if there exists a negative cycle that uses a given arc u is

Np-hard. In fact, from an instance φ of the CNF satisfiability problem, the authors

construct a weighted directed graph G such that there is a one-to-one correspondence

between a positive assignment of φ and a negative cycle that uses a particular arc of

G (called (um+n, u0) in the proof). We use this result to prove the following theorem.

Theorem 4.26. Given a cone {x ∈ R
n | Ax = 0, x ≥ 0} and two coordinates i and j,

deciding if there exists an extreme ray of the cone that has both i and j in its support

is Np-complete.

Proof. Verifying that a vector x ∈ R
n is an extreme ray can be done in polynomial

time, hence the problem is in Np. On the other hand, we know from Khachiyan et al.

(2008) that the problem of deciding if there exists a negative cycle in a graph that uses

a given arc u is Np-hard. By Theorem 4.24, this is equivalent to deciding if there

exists an extreme ray of Γ that contains e− and u in its support. Since, given G, we

can construct Γ in polynomial time, the theorem follows.

70 Chapter 4. Complexity of Computing Elementary Modes

Chapter 5

Modelling Precursor Sets in Metabolic

Networks

Contents
5.1 Definitions and Characterisations 71

5.1.1 Modelling a metabolic network 71

5.1.2 Forward propagation . 72

5.1.3 Definition of precursor sets considering cycles 73

5.1.4 Alternative characterisation of precursor set 74

5.1.5 Maximal target . 75

5.1.6 Hyperpaths from sources to the target 76

5.1.7 Precursor cut set . 77

5.2 Complexity results . 77

5.2.1 Deciding if a set of sources is a precursor set 78

5.2.2 Finding a minimal and a minimum precursor sets 78

5.2.3 Enumerating all minimal precursor sets 81

5.1 Definitions and Characterisations

5.1.1 Modelling a metabolic network

As seen in Chapter 3, a metabolic network is modelled as a directed hypergraph G =

(C,R) with C the set of vertices corresponding to metabolites and R the set of hy-

perarcs corresponding to reactions. Again, reactions are supposed to be irreversible:

each originally reversible reaction is therefore considered as two different irreversible

reactions of opposite direction.

72 Chapter 5. Modelling Precursor Sets in Metabolic Networks

The set S denotes a particular subset of the compounds, called sources, that are

potentially available in infinite supply (for instance, from the environment). Sources

used as substrates of reactions produce other metabolites, thereby increasing the set

of available ones. On the other hand, set T denotes the target set, that is a set of

compounds that it is interesting to produce.

Given a specific target set T of metabolites, the aim is to find a subset of the

sources, which is able to produce all the metabolites of T .

5.1.2 Forward propagation

We want to define which metabolites become available when a subset of the sources

is available. To this aim, we introduce first the notion of next available compounds

that corresponds to the set of all compounds that can be produced from a set M of

metabolites using one reaction. For any set S we use P(S) to denote its power set.

Definition 5.1. (Next available compounds) Given M ∈ P(C) a set of metabolites,

the next available compounds from M , denoted by Next(M) ∈ P(C), is the set of all

metabolites y for which there exists r ∈ R with Subs(r) ⊆ M and y ∈ Prod(r).

Let f be a function f : P(C) → P(C). We say that f is order-preserving if, for any

pair of sets A, B ∈ P(C) such that A ⊆ B we have f(A) ⊆ f(B). We say that f is

increasing (resp. decreasing) if for all A ∈ P(C), f(A) ⊇ A (resp. f(A) ⊆ A). We say

that f is monotone if it is increasing or decreasing.

Given a monotone function f : P(C) → P(C), we define the function fk(M) =

f(fk−1(M)) (with f 1(M) = f(M)). We define f ∗ as the successive application of f until

a fixed point is reached, that is, f ∗(M) = fk(M) for any k such that fk(M) = fk+1(M).

Definition 5.2. (Forward propagation) Given M ∈ P(C), a set of metabolites,

and the monotone increasing function f such that f(M) = M ∪Next(M) ∈ P(C), the

forward propagation of M is defined as FP (M) = f ∗(M), that is, as the successive

application of f until a fixed point is reached.

For instance, in the network of Figure 5.1, the forward propagation of the sets

{A, B, C} and {B, C, D} are FP ({A, B, C}) = {A, B, C, E, H, I, T} and FP ({B, C, D})

= {B, C, D, E}.

5.1 Definitions and Characterisations 73

5.1.3 Definition of precursor sets considering cycles

Using the definition of forward propagation, Romero and Karp considered a subset

X of the sources S as a precursor set of a target T , when T ⊆ FP (X) (Romero et

Karp, 2001). This iterative way to calculate what is available from X may however

not be enough to model the real process. Indeed, the network could have cycles whose

metabolites need to be consumed and produced all at the same time. These cycles will

not be reached using the forward propagation definition.

Let us consider the network of Figure 5.1 with A, B, C and D as sources and

T = {T} as target set. The set {A, B, C} is a precursor set of T because if A, B and

C are available, then T can be produced by the iterative use of reactions r4, r5 and

r6. However, in the restricted definition given initially, the set {C, D} is not able to

generate T. Indeed, reaction r1 needs also the unavailable metabolite F to produce

G. In the new model we propose, the set {C, D} is considered as a precursor set of

the target {T} because they are able to fire off the cycle r1, r2, maintaining F and G

available as long as C and D are, and producing successively H and T.

F

G
H T

I

C

D

AB

E

1

2

7

4
5

6
3

Figure 5.1: A metabolic network G with set of metabolites C =
{A, B, C, D, E, F, G, H, I, T} and set of reactions R = {r1, r2, r3, r4, r5, r6, r7}

One way to formulate this notion is to consider that some set Z of metabolites not

in X (for instance Z = {F} in the example of Figure 5.1), are available at the beginning

of the process. Then, we check if with this extra supply, the target is produced and Z

regenerated (to maintain the cycles working). In other words, the forward propagation

of X with Z needs to produce T and Z. To regenerate Z means, in terms of the

concept as defined, that Z ⊆ Next(FP (X ∪ Z)). If it does and T ⊆ FP (X ∪ Z) (or

74 Chapter 5. Modelling Precursor Sets in Metabolic Networks

equivalently T ⊆ X ∪ Next(FP (X ∪ Z))), then X is a precursor set of the target and

we call Z an internal supply of the solution.

Definition 5.3. (Precursor set) A set of sources X ∈ P(S) is a precursor set of

T ∈ P(C) if and only if there exists a set Z ∈ P(C) such that

T ∪ Z ⊆ X ∪ Next(FP (X ∪ Z))

In that case, we call Z an internal supply of the precursor set X.

In the network of Figure 5.1, if X = {C, D} and Z = {F}, then FP (X ∪ Z) =

{C, D, F, G, E, H, I, T} and Next(FP (X ∪ Z)) = {F, G, E, H, I, T}. Since this last set

contains T and Z, then X is a precursor set of T .

We call attention to the fact that this definition leads to a larger number of precursor

sets of T than those identified by the methods available in the literature which do not

allow for the possibility of an internal supply. Of course, the internal supply may not

be unique for a given precursor set. In Figure 5.1, we may verify that both Z = {F}

and Z = {G} are internal supplies for the precursor set X = {C, D} of target {T}. To

identify a set of precursors as being a precursor set of a given target set, it suffices to

find one set of internal supplies.

5.1.4 Alternative characterisation of precursor set

There is a simpler way to characterise a precursor set of T . Indeed, if Z is contained in

the set X ∪ Next(FP (X ∪ Z)), then the whole set FP (X ∪ Z) is also contained in it.

This motivates the next property that gives an alternative and equivalent definition of

precursor set which will be useful for simplifying several arguments in the sequel.

Lemma 5.4. A set of sources X ∈ P(S) is a precursor set of T ∈ P(C) if and only if

there exists a set A ∈ P(C) such that

T ⊆ A ⊆ X ∪ Next(A).

Proof. Note that for any set C ∈ P(C), we have that FP (C) = C ∪ Next(FP (C)).

If X is a precursor set of T , then by definition there exists Z such that T ∪ Z ⊆

X ∪ Next(FP (X ∪ Z)). Let A = FP (X ∪ Z), then A is a superset of X and of

Next(FP (X ∪ Z)), hence A is a superset of T . Since, by definition of FP , A =

(X ∪ Z) ∪ Next(A) and since Z ⊆ Next(A) ∪ X we have A ⊆ X ∪ Next(A).

5.1 Definitions and Characterisations 75

Conversely, suppose that there is a set A such that T ⊆ A ⊆ X ∪ Next(A). Since

Next is order-preserving and FP is order-preserving and monotone increasing, then if

there is a set A such that T ⊆ A ⊆ X ∪ Next(A) then

T ∪ A = A ⊆ X ∪ Next(A) ⊆ X ∪ Next(FP (A)) ⊆ X ∪ Next(FP (A ∪ X)).

In the example of Figure 5.1, the set A = {C, D, F, G, H, T} is such that A ⊆

{C, D}∪Next(A). Since A contains the target {T}, the set X = {C, D} is a precursor

set of {T}. Intuitively, A has to contain all metabolites in the path used from X and

Z to produce T and regenerate Z.

5.1.5 Maximal target

Clearly, a set of sources X that is a precursor set of T , is also a precursor set of any

subset of T . Moreover, if X is also a precursor set of another target T ′, then it is

precursor set of T ∪ T ′. Thus, it is easy to see that, given X, there exists a maximal

target set Tmax(X), such that X is precursor of any target T if and only if T is contained

in Tmax(X).

Definition 5.5. (Maximal target) Given a set of sources X ∈ P(S), Tmax(X) ∈

P(C) is the set of all metabolites t for which X is a precursor set of {t}.

For instance, in the network of Figure 5.1, the maximal target of {C, D} is the set

Tmax({C, D}) = {C, D, E, F, G, H, I, T}.

Given X, if a set A is such that A ⊆ X ∪ Next(A), then X is a precursor set of

any subset T of A. Thus, A has to be included in Tmax(X). Therefore Tmax(X) is

exactly the maximal set that satisfies this property. The next lemma is useful to find

this maximal set.

Lemma 5.6. Given X ∈ P(S) a set of sources and given the monotone decreasing

function gX defined by gX(M) = M ∩ (X ∪ Next(M)), the set g∗X(C) is exactly the

maximal target of X.

Proof. Clearly gX(M) ⊆ M and therefore gX is, indeed, monotone decreasing. Then

g∗X is well-defined. By definition, g∗X(C) = g∗X(C) ∩ (X ∪ Next(g∗X(C))) or equivalently

g∗X(C) ⊆ X ∪ Next(g∗X(C)). We show that it is the maximal set that satisfies this

property. Let A such that A ⊆ X ∪Next(A). Then A ⊆ A∩ (X ∪Next(A)) = gX(A).

76 Chapter 5. Modelling Precursor Sets in Metabolic Networks

Since gX is order-preserving, we can apply gX to each side obtaining gX(A) ⊆ g2
X(A).

But gX is monotone decreasing, therefore gX(A) = g2
X(A) = g∗X(A). Since g∗X is order-

preserving, we conclude that A ⊆ g∗X(A).

5.1.6 Hyperpaths from sources to the target

Computing the maximal target of X gives an easy test to check if X is a precursor set

of T . However, it is less useful for finding precursor sets of a given target. Therefore

we adopted a different approach that takes advantage of the topology of the network.

Indeed, if X is a precursor set of T , then there is a path of reactions, or hyperpath from

X to T . To search for precursors of T , we therefore backtrack along hyperpaths from

T to the sources.

Given H ⊆ R, we define the sets Subs(H) =
⋃

r∈H Subs(r) and Prod(H) =
⋃

r∈H Prod(r). We now provide a formal definition of the notion of hyperpath.

Definition 5.7. (Hyperpath) Let X ⊆ C and T ⊆ C be two sets of metabolites of a

network G. A set of reactions H ⊆ R is called a hyperpath from X to T , if

T ∪ Subs(H) ⊆ X ∪ Prod(H)

and no other subset of H satisfies this condition (H is minimal). In this case, if

(T ∪ Subs(H)) \ Prod(H) = X, then we say that H is a precise hyperpath from X to

T .

Note that the minimality condition is over the set of reactions, not over the set

X. In the network example of Figure 5.1 for the target set T = {T}, the set H =

{r1, r2, r7, r5, r6} is a precise hyperpath from {A, C, D} to T and the set H ′ = {r1, r2, r3, r6}

is a precise hyperpath from {C, D} to T . Of course, H ′ is also a hyperpath from

{A, C, D} to T but it is not a precise hyperpath from this set of sources. Finally, the

set H ′′ = {r1, r2, r3, r7, r5, r6} is not a hyperpath from {A, C, D} to T since it is not

minimal.

Lemma 5.8. A set of sources X ⊆ S is a precursor set of T if and only if there exists

a hyperpath H from X to T .

Proof. If X is a precursor set of T , then T ⊆ Tmax(X). Consider the set W = {r ∈

R | Subs(r) ⊆ Tmax(X)}. Hence, Subs(W) ⊆ Tmax(X). Since Tmax(X) ⊆ X ∪

Next(Tmax(X)), we have that T ∪ Subs(W) ⊆ X ∪ Next(Tmax(X)) = X ∪ Prod(W)

5.2 Complexity results 77

and therefore W satisfies the first condition of the hyperpath definition. Any minimal

subset of W that satisfies this condition is a hyperpath from X to T .

For the reverse direction, let H be a hyperpath from X to T . Then, the set

Subs(H) ∪ T is such that Subs(H) ∪ T ⊆ X ∪ Prod(H) ⊆ X ∪ Next(Subs(H) ∪ T).

By Lemma 5.4, we conclude that X is a precursor set of T .

Corollary 5.9. If a set of sources X ⊆ S is a minimal precursor set of T , then there

exists a precise hyperpath H from X to T .

5.1.7 Precursor cut set

We defined the concept of precursor set as a set of sources that is able to produce

the target. Suppose now that the target is a set of compounds whose production we

want to avoid. In this case, we can define a precursor cut set, that is, a subset X of

sources such that, if they are not present, then the target cannot be produced by any

combination of the remaining of the sources. This concept has a biological application,

for instance, in the case where we want a bacterium to avoid producing some given

compound while providing it with a maximal set of resources that enables it to continue

doing its specific tasks.

Definition 5.10. A set of sources X ∈ P(S) is a precursor cut set of T ∈ P(C) if and

only if the set S \ X is not a precursor of T .

5.2 Complexity results

In this part, we address the theoretical complexity of three problems related to the

search for precursor sets:

Problem minimal-PS(G,S, T): given a metabolic network G = (C,R)

with S ⊂ C the set of sources and T ⊆ C the set of target metabolites, find

a minimal precursor set X ⊆ S of T in G.

Problem minimum-PS(G,S, T): given a metabolic network G = (C,R)

with S ⊆ C the set of sources and T ⊆ C the set of target metabolites, find

a minimum size precursor set X ⊆ S of T in G.

Problem allminimal-PS(G,S, T): given a metabolic network G = (C,R)

with S ⊆ C the set of sources and T ⊆ C the set of target metabolites, enu-

merate all minimal precursor sets X ⊆ S of T in G.

78 Chapter 5. Modelling Precursor Sets in Metabolic Networks

Given the network of Figure 5.1, let T = {T} be the target set and S = {A, B, C, D}

the sources. A solution to the minimal-PS(G, P, T) problem is X1 = {A, B, C} or

X2 = {C, D}, whereas the precursor set X3 = {A, C, D} is not a solution because it is

not minimal. The solution to the minimum-PS(G, P, T) problem is {C, D}. Finally,

the solution to the allminimal-PS(G, P, T) problem is given by {A, B, C} and {C, D}.

5.2.1 Deciding if a set of sources is a precursor set

We present an algorithm to find the maximal target of a set of sources X by computing

g∗X(C). We introduce the notation kmax := maxr∈R(|Subs(r)| + |Prod(r)|).

Gstar(X, M):

Starting from S := M , iterate the following steps:

Compute Snext := S ∩ (X ∪ Next(S));

If Snext ⊇ S then stop and return S;

Otherwise, reset S := Snext and iterate.

Lemma 5.11. Given a metabolic network G and a subset X of the sources S, the

algorithm Gstar(X, C) produces the maximal target of X in time O(|C|2 + |C||R|kmax).

Proof. Clearly Gstar(X, C) computes g∗X(C), the set that results from the iterative

application of the function gX to C. The algorithm iterates at most |C| − |Tmax(X)|

times. Computing S ∩ (X ∪Next(X ∪S)) takes O(|C|+ |R|kmax) time. Therefore, the

running time of the whole procedure is O(|C|2 + |C||R|kmax).

By Lemma 5.6, it is possible to check in polynomial time if a subset X of the sources

is a precursor set of T .

Corollary 5.12. Given a metabolic network G, a subset X of the sources S and target

T , we can decide in time O(|C|2 + |C||R|kmax) whether X is a precursor set of T .

5.2.2 Finding a minimal and a minimum precursor sets

Theorem 5.13. Given a metabolic network G, set of sources S and target set T , the

problem minimal-PS(G,S, T) can be solved in time O(|C|2|S| + |C||R||S|kmax).

Proof. Using the procedure Gstar(S, C), we determine whether S is a precursor set

of T . If the answer is negative, then there is clearly no precursor set and we stop.

Otherwise, we set X := S and all compounds in S as unmarked. For each compound

u ∈ S in some fixed but arbitrary order, the algorithm sets X ′ = X − {u}. Using

5.2 Complexity results 79

Gstar(X ′, C), we determine whether X ′ is a precursor set of T . If not, then u remains

in X and it is marked, and we continue with the next compound in S. Otherwise, there

exists at least one precursor set that does not contain u, and therefore u is deleted from

X and we proceed with the next compound in S. Since, at the end, there are only

marked compounds left in X and these are all essential for the obtained precursor set,

they form a minimal precursor set of T in G.

If there is no precursor set then this method gives the answer in O(|C|2+|C||R|kmax)

by the previous lemma. Otherwise, the algorithm requires to check for |S| sets if

they are precursor sets. Therefore, the running time of this algorithm is O(|C|2|S| +

|C||R||S|kmax).

The running time of the algorithm can be improved slightly by eliminating some

unnecessary iterations in the procedure Gstar. Instead of calling Gstar(X ′, C) for

X ′ = X − {u}, we can call Gstar(X ′, Tmax(X)). The time in this case is O(|C|2|X̂| +

|C||R||X̂|kmax) where X̂ is the minimal precursor set found (if there are no minimal

precursor sets, the time remains O(|C|2 + |C||R|kmax)). The complexity is therefore

reduced in the mean case, although in the worst case, it remains the same.

The following result is proved by a reduction from the NP-complete problem Hit-

ting set: given a set of elements H = {1, . . . ,m} and a collection of subsets I =

{I1, . . . , In} of H, find a minimum cardinality subset of elements Y ⊆ H such that

Ii

⋂

Y 6= ∅, ∀i = 1, . . . , n.

Theorem 5.14. minimum-PS(G,S, T) is NP-hard.

Proof. We show hardness by proving completeness of the decision version, where we

ask if a precursor set of size at most k exists. Corollary 5.12 implies that the decision

version is in NP.

We make a reduction from the decision version of Hitting Set, asking if there

exists a hitting set of size at most k. Consider a hitting set instance with H =

{1, . . . ,m}, I = {I1, . . . , In} and k. For each element h in H, we create a vertex h

in C, and for each set Ij in I, we create a vertex Ij in C. We create an extra vertex t in

C. For each h ∈ Ij, we create in R an arc rhj going from h to Ij. Moreover, we create

the hyperarc rt having Subs(rt) = {I1, . . . , In} and Prod(rt) = t. We define t to be

the only target compound, and we define the vertices corresponding to the elements of

H as the sources S of G. See Figure 5.2. The transformation clearly takes polynomial

time.

Clearly, if H ′ ⊆ H is a hitting set then the set of vertices corresponding to H ′ is a

precursor set of t, since all Ij, j = 1, . . . , n can be produced. Conversely, suppose that

80 Chapter 5. Modelling Precursor Sets in Metabolic Networks

b

a

c

e

d

I2

I1

I3

a

b

c

d

e

I2

I2

I2

t

Figure 5.2: Reduction of an instance of the hitting set problem. Each hitting set of
I = {I1, I2, I3} corresponds to a precursor set of {t} (and vice versa).

G has X ⊂ S as precursor set of t. Then, each Ij has to be in X ∪Next(FP (X ∪Z)).

Since vertex Ij does not belong to the sources, it must be generated by some reaction

rhj, with h ∈ Ij and vertex h ∈ X ∪ Next(FP (X ∪ Z)). Since there is no vertex

producing h, it has to belong to X. Therefore, for each set Ij, there exists h ∈ Ij with

h ∈ X. Hence X corresponds to a hitting set.

We observe that in the above transformation there is a one-to-one relation between

hitting sets and precursor sets, and a related pair is of the same size. This immediately

implies that minimum-PS is as hard to approximate in polynomial time as Hitting

Set, which is known to be APX-hard (see Ausiello et al., 1999). Specifically, under

the assumption that P 6= NP, no polynomial time algorithm for minimum-PS can have

approximation ratio o(log n) (see Raz et Safra (1997) for the Set-Cover problem, an

equivalent version of Hitting Set).

A similar reduction shows NP-hardness of the problem of searching for a minimum

precursor cut set. Indeed, we need in this case to consider the same reduction as in the

proof of Theorem 5.14, but with two modifications: (a) replace the hyperarc rt (from

{I1, . . . , In} to t) by n separated reactions, from each Ij to t, for j ∈ {1, . . . , n} and (b)

replace, for each Ij the set of reactions producing Ij by a single reaction rj, producing

Ij from the whole set of elements of Ij. In this case, each hitting set corresponds to a

precursor cut set. Therefore, finding a minimum size precursor cut is NP-hard.

Another NP-hard minimisation problem emerges from our definition of precursor

set, though this is arguably less interesting from a biological point of view.

5.2 Complexity results 81

Proposition 5.15. Given a precursor set X of T , to find a minimum cardinality set

Z such that T ∪ Z ⊆ X ∪ Next(FP (X ∪ Z)) is NP-hard.

Proof. Consider the same reduction of the hitting set problem presented in the proof

of Theorem 5.14, with a slightly different hypergraph construction: For each element h

in H, we create another extra vertex h′ in C and two reactions rhh′ and rh′h from h to

h′ and from h′ to h respectively. The rest of the construction remains the same. Now

we define S = ∅. We show that for any minimum hitting set of size k, there exists a

minimum cardinality set Z such that T ∪ Z ⊆ Next(FP (∅ ∪ Z)) ∪ ∅ and |Z| = k, and

viceversa.

If H ′ is a hitting set, we consider X = ∅ and the set Z of vertices h corresponding

to H ′. Clearly t can be produced and Z regenerated, that is T ∪ Z ⊆ Next(FP (Z))

and |Z| = |H ′|. Conversely, if Z is a minimum cardinality set such that T ∪ Z ⊆

Next(FP (Z)), then each Ij has to be in Next(FP (Z)). For each Ij, there is h ∈ Ij

such that at least one of the two vertices h and h′ belongs to Z. Therefore, the set

H ′ = {h ∈ H | h ∈ Z or h′ ∈ Z} is a hitting set with |H ′| ≤ |Z|. By the previous part,

there exists Z ′ satisfying the condition with |Z ′| = |H ′| ≤ |Z|. Since Z is a minimum

cardinality set, then |Z| = |H ′|.

5.2.3 Enumerating all minimal precursor sets

We know that minimal-PS(G,S, T) can be solved in polynomial time with respect to

the size of the input. Nevertheless, if we are interested in finding all minimal precursor

sets of T , the number of solutions can grow exponentially. We are therefore interested

in knowing whether allminimal-PS can be solved in polynomial total time, that is,

in time proportional to the size of the input and output (Johnson et al., 1988).

Theorem 5.16. The enumeration problem allminimal-PS cannot be solved in poly-

nomial total time unless P=NP .

Proof. Let F be the class of all boolean ∧,∨-formulae. Given a formula f ∈ F ,

enumerating the set of all prime implicants of f cannot be done in polynomial total

unless P=NP (Gurvich et Khachiyan, 1999). We show that this problem can be

easily reduced to the problem of enumerating minimal precursor sets. Let f ∈ F be

a ∧,∨-formula. We can construct (see Figure 5.3) a hypergraph Gf , with sources S

corresponding to the set of variables of f and a target set T , such that a set I of

variables is a prime implicant of f if and only if I is a minimal precursor set of T . The

set C of metabolites corresponds to the set of variables plus one metabolite for each

82 Chapter 5. Modelling Precursor Sets in Metabolic Networks

conjunction and disjunction inside the formula (in the given example, C contains eight

metabolites: p, q, r, s, p ∨ q, p ∧ s, r ∨ (p ∧ s) and (p ∨ q) ∧ (r ∨ (p ∧ s)) ∧ s). The set

of hyperarcs is composed as follows: for each metabolite representing a conjunction c

in f there is a single hyperarc from the clauses of c to the metabolite c, and for each

metabolite representing a disjunction d there are reactions from each term of d to the

metabolite d. The target set is a singleton containing the metabolite representing f

(the most external conjunction or disjunction). Clearly, a minimal precursor set of T

in Gf corresponds to a prime implicant of f and vice versa.

q p s r

r ^(p s)^

p q^ p s^

(p q)^ s^ (r

^)(p s)^ ^

Figure 5.3: Graphical representation of the reduction

This result shows that enumerating all precursor sets in polynomial total time is

NP -hard even in the case of networks without cycles (for any reasonable definition of

cycle).

Again, this result is also valid if we consider the enumeration of all minimal precur-

sor cut sets of T . Indeed, in the reduction of the proof of Theorem 5.16, the minimal

precursor cut sets correspond exactly to the set of prime implicates of the boolean

function f . As for prime implicants, enumerating the set of prime implicates cannot

be done in polynomial total time unless P=NP (Gurvich et Khachiyan, 1999).

Although enumeration of minimal precursor sets and enumeration of minimal pre-

cursor cut sets are both hard problems, we can show a more positive result if we consider

the enumeration of both problems simultaneously. Indeed, enumeration of all minimal

precursor cut sets is dual to allminimal-PS in the following sense: the collection of

all minimal precursor cut sets of T corresponds to the collection of all minimal hitting

5.2 Complexity results 83

sets of the collection of minimal precursors sets of T and vice versa. Given a collection

X of subsets of S, we denote by mhs(X) the collection of all minimal hitting sets of X.

Lemma 5.17. Let P
T
min be the collection of all minimal precursor sets of T and C

T
min

the collection of all minimal precursor cut sets of T . We have

P
T
min = mhs(CT

min).

Proof. Let X ∈ P
T
min be a precursor set of T . We show that X is a hitting set of the

collection C
T
min. Let Y be in C

T
min. By contradiction, suppose that Y and X are disjoint

sets. Therefore, X ⊆ S \Y , that is, a precursor set of T is subset of a non-precursor set

of T which is contradictory. We conclude that X is a hitting set of C
T
min. Now take any

hitting set X of mhs(CT
min). We show that X is a precursor set of T . By contradiction,

if X is not a precursor set, then S \X is a precursor cut set which contains a minimal

precursor cut set, say Y ′, that belongs to C
T
min. Since X ∩ Y ′ = ∅ then X ′ is not a

hitting set of C
T
min which is contradictory. We conclude that X is a precursor set of T .

Therefore, the collection of precursor sets is exactly the collection of hitting set of

C
T
min. Taking the minimal sets we conclude that P

T
min = mhs(CT

min).

Consider X ⊆ S a set of sources. We can represent X as a vector of {0, 1}|S| that

we still denote by X. We define the function F : {0, 1}|S| → {0, 1} as F (X) = 1

if X is a precursor set of T and F (X) = 0 otherwise. Clearly, F is a monotone

boolean function (although it is not explicitly expressed as conjunction and disjunction

of literals). Moreover, it is easy to see that the collection P
T
min corresponds to the set

of all prime implicants of F and, by Lemma 5.17, the collection C
T
min corresponds to

the set of all prime implicates of F .

In Gurvich et Khachiyan (1999), the authors show that for any monotone boolean

functions, enumerating both prime implicants and prime implicates simultaneously

can be, in some sense, easier than enumerating only one set of them. They prove the

following result:

Theorem 5.18. (Gurvich and Khachiyan, 1999). Let f : {0, 1}|S| → {0, 1} be a

monotone boolean function whose value at any point x ∈ {0, 1}|S| can be determined

in time t, and let C and D be the sets of, respectively, prime implicates and prime

implicants of f . Given two subsets C0 ⊆ C and D0 ⊆ D of total size m = |C0|+ |D0| <

|C| + |D|, a new element in (C \ C0) ∪ [(D \ D0) can be found in time O(n(t + n)) +

mO(logm).

84 Chapter 5. Modelling Precursor Sets in Metabolic Networks

We know, by Lemma 5.12 that for any X ⊆ S, we can compute F (X) in time

O(|C|2 + |C||R|kmax). Therefore, applying Theorem 5.18, there is an algorithm that,

given a solution of P
T
min and C

T
min, provides a new solution in P

T
min ∪ C

T
min in time

O(|S||C|2 + |S||C||R|kmax + |S|2)+mO(logm) where m is the number of solutions already

found.

Corollary 5.19. The collections P
T
min and C

T
min can be jointly enumerated in quasi-

polynomial incremental (and hence total) time.

Chapter 6

Algorithms to Enumerate All Minimal

Precursor Sets

Contents
6.1 Preprocessing the network 85

6.2 The replacement tree . 87

6.3 Enumerating precursor sets by searching for HP-subtrees 91

6.4 Enumerating precursor sets by merging reactions 93

6.4.1 Reaction replacement . 94

6.4.2 Algorithm compacting hyperpaths 95

6.5 Performance analysis . 97

6.6 Some extensions . 99

6.6.1 Enumerating hyperpaths from sources to the target set 99

6.6.2 Discarding trivial cycles . 100

In this chapter, we present two algorithms that compute the collection of minimal

precursor sets of a target set T .

6.1 Preprocessing the network

To facilitate the exposition, we suppose that the metabolic network has the following

properties: (a) the target set is a singleton set {t}, (b) each source x ∈ S is not the

product of any reaction, and (c) each compound belongs to the maximal target of S.

We can pre-process any network in order to satisfy these conditions without changing

the collection of precursor sets of T :

86 Chapter 6. Algorithms to Enumerate All Minimal Precursor Sets

(a) Singleton target: Add a new reaction to R with substrate the metabolites in T and

producing a new metabolite {t}. Then redefine the target as T := {t}.

(b) Sources are not products: Rename as x′ each x in S that is the product of at least

one reaction. Then, add a new reaction with substrate a new compound labelled

x and product x′. The set of sources continues to be S.

(c) All compounds in the maximal target of S: Compute Tmax(S) and remove all

compounds in the complement. Remove all reactions having had their substrates

or products removed.

It is not difficult to see that if X is (or is not) a precursor set of T , then it will

remain so after these transformations.

a

t
a

e

p

b
x

d

c f

az
y

qq

g

Figure 6.1: Example of network. Black node correspond to the target. Grey nodes
correspond to the sources.

In order to find precursor sets that can produce the target t, the algorithm searches

for hyperpaths from source sets to t but starting at t and using the reactions of G in

reverse direction. Enumerating the hyperpaths obtained we get, by Lemma 5.8, the

minimal precursor sets of t.

6.2 The replacement tree 87

6.2 The replacement tree

In order to explain how the algorithm traverses the hypergraph, we represent all the

hyperpaths arriving at t in an equivalent tree structure, which we call the replacement

tree. This tree is such that, if X is a minimal precursor set of t, then there is a subtree

(satisfying some conditions) from some leaves labelled by X to the root labelled t.

The replacement tree is rooted. Each node different from the root has as parent the

next node on the path towards the root. Therefore, nodes (except for the root) have

only one parent, whereas they can have several children. An ancestor of a node is any

other node on the path towards the root.

Nodes of the tree are labelled either by a metabolite or by a reaction, and are called,

respectively, metabolite nodes and reaction nodes. We denote by α(m) the label of a

metabolite node m and ρ(u) the label of a reaction node u. The children of a metabolite

node are reaction nodes labelled by those reactions that produce the metabolite while

the children of a reaction node are metabolite nodes labelled by the substrates of the

reaction.

Given the network G, the target t and the set of sourcesS, we define Rt the replace-

ment tree of G by the following construction. The root is a metabolite node root which

is labelled t (that is, α(root) = t). For each reaction producing this metabolite, we

create a reaction node, which has as parent the root, and as children new metabolite

nodes labelled by its substrates. In this way, we obtain a tree (of depth 2) whose leaves

are metabolites. This process is then iterated for each new metabolite node.

For any metabolite node m, we define the cover set of m to be the set of substrates

and products of all the reaction nodes ancestor of m, that is,

Cover(m) =
⋃

v ancestor
reaction

node of m

Prod(ρ(v)) ∪ Subs(ρ(v))

Let n be a newly created metabolite node. If α(n) is in the cover set of its grand-

parent (i.e. α(n) is a substrate or product of an ancestor reaction of n which is not its

parent) then we say that n is repeated. Along any branch of the tree, the process of

expanding the tree stops at n when at least one of the following two conditions holds:

1. n is repeated

2. α(n) is a source (α(n) ∈ S).

88 Chapter 6. Algorithms to Enumerate All Minimal Precursor Sets

t

e

b

ayx c a

p

f

c

z

aye

b p

b

d c b

ayx c a d c

q

q

g

g

g

Figure 6.2: Replacement tree of network presented in Figure 6.1

We show that each hyperpath from subsets of S to t is represented by a special

subtree of Rt called HP-tree.

Definition 6.1. Let Rt be the replacement tree of a metabolic network G with target

{t}. Let m be metabolite node of Rt. A subtree πm of Rt is called a HP-subtree

rooted in m, if all the following conditions are satisfied:

1. πm is a tree rooted at m (m is ancestor of all the other nodes);

2. the set of leaves of πm is a subset of the leaves of Rt;

3. if a metabolite node belongs to πm and is not a leaf, then only one of its (reaction)

children in Rt also belongs to πm.

4. if a reaction node belongs to πm then all its (metabolite) children in Rt also belong

to πm.

6.2 The replacement tree 89

If the root m is the root of Rt then we say that πm is a HP-tree and we denote it

simply by π.

We introduce some notation. We denote by L(πm) to the set of labels of the leaves

of πm (therefore L(πm) ⊆ C). For any subgraph A of Rt, we denote α(A) the set

of labels of metabolite nodes of A and ρ(A) the set of labels of reaction nodes of A

(therefore α(A) ⊆ C and ρ(A) ⊆ R).

Lemma 6.2. A set X ∈ P(S) is a precursor set of {t} if and only if Rt contains a

HP-tree π such that α(π) ∩ S ⊆ X.

Proof. Let π be a HP-tree of Rt with α(π)∩S ⊆ X. We show that the set of reactions

ρ(π) satisfies the first condition to be a hyperpath from X to t, that is, T∪Subs(ρ(π)) ⊆

X ∪ Prod(ρ(π)). In effect, any substrate a of a reaction in ρ(π) has two possibilities:

a is the label of a non-leaf metabolite node (and therefore is a product of a reaction

in ρ(π)) or a is the label of a leaf of π. We show that in this last case a is in X or it

is a product of a reaction in ρ(π). In effect, suppose that a is the label of a leaf. If

a ∈ S, then by hypothesis a ∈ X. By contrary if a is not a source, it is the label of a

repeated metabolite node m. Therefore a is a product or substrate of ρ(u) with u an

ancestor reaction of the grandparent of m (w.l.o.g we take the closest to the root). If

a is a product of ρ(u) then clearly a ∈ Prod(ρ(π)). If a is a substrate of ρ(u), then

a is the label of a child n of u that is not repeated, hence n is not a leaf. Therefore

a ∈ Prod(ρ(π)). We conclude that ρ(π) satisfies the first condition in the hyperpath

definition. Any minimal subset of ρ(π) that satisfies the same condition is a hyperpath

from X to T . Hence, X is a precursor set of T .

For the reverse direction, if X is a precursor set of t, then there exists a hyperpath

H from X to t in G. Consider the set Rt|H obtained from Rt by eliminating from

Rt all the reaction nodes labelled with reactions not belonging to H and taking the

connected component that contains the root of Rt. Each reaction node in Rt|H has the

same children as in Rt. Since Subs(H) \ X ⊆ Prod(H), each metabolite node in Rt|H

that is not a leaf of Rt, has at least one reaction child in Rt|H . Then, the leaves of

Rt|H are a subset of the leaves of Rt. Moreover, a source leaf of Rt|H is not produced

by any reaction, it thus has to be in X. Clearly any HP-tree π of the tree Rt|H is an

HP-tree of Rt such that its sources belong to X.

Given a reaction node u of Rt, we call Chnr(u) the set of all (metabolite) children

of u that are not repeated, that is, the children not in the cover set of the parent of u.

90 Chapter 6. Algorithms to Enumerate All Minimal Precursor Sets

Lemma 6.3. Given a metabolic network G with Rt its replacement tree rooted at t,

let m be a metabolite node of Rt. Let u and u′ be two reaction nodes children of m

such that Chnr(u) ⊆ Chnr(u′). Then, for any HP-tree π′ containing u′, there exists

an HP-tree π containing u, such that α(π) ∩ S ⊆ α(π′) ∩ S.

Proof. Let π′ be a HP-tree containing u′. First we show that Subs(ρ(u))∩S ⊆ α(π′)∩S.

Let a ∈ Subs(ρ(u)) ∩ S. There is a metabolite node n child of u with α(n) = a. If

n ∈ Chnr(u), then there is a metabolite node n′ child of u′ with α(n′) = a. Therefore

a ∈ α(π′) ∩ S. If n /∈ Chnr(u), then a = α(n) is the label of a child of an ancestor of

u and therefore ancestor of u′. Therefore a ∈ α(π′) ∩ S.

Now, if we have a HP-tree π containing u such that ρ(π) ⊆ ρ(π′) ∪ ρ(u), we can

conclude

α(π) ∩ S = Subs(ρ(π)) ∩ S ⊆ (Subs(ρ(π′)) ∩ S) ∪ (Subs(ρ(u)) ∩ S) = α(π′) ∩ S.

We build therefore a HP-tree π containing u such that ρ(π) ⊆ ρ(π′)∪ρ(u). Clearly π

contains all the reaction nodes ancestor of m (that are also in π′). Let n be a metabolite

node of Chnr(u). By hypothesis, there exists n′ ∈ Chnr(u′) such that α(n) = α(n′).

Therefore, π′ contains n′ and also one reaction node v′ child of n′. Therefore, for each

metabolite node n ∈ Chnr(u) we include in π the reaction node v child of n such that

ρ(v) = ρ(v′).

Note that, since ρ(u) 6= ρ(u′), the cover set of n is not necessarily equal to the cover

set of n′. This makes more tricky the selection of the reactions in the next levels. Let p

be a metabolite node of Chnr(v). There exists p′ children of v′ such that α(p) = α(p′).

If p′ ∈ Chnr(v′), we can include in π the reaction node child of p with the same label of

the child of p′ that belong to π′. On the other hand, if p′ /∈ Chnr(v′) then necessarily

α(p′) ∈ Prod(u′) ∪ Subs(u′). We analyse the different cases. If α(p′) is in Prod(u′),

we choose the reaction labelled ρ(u) child of p. If α(p′) is in Subs(u′), there exists a

metabolite q ∈ Chnr(u′) with α(q) = α(p). We choose the reaction child of p labelled

as the child of q that belongs to π′. Repeating this process we obtain a π that contains,

except for u, a subset of the reactions of π′.

The result above offers the possibility of pruning branches of the replacement tree

without losing solutions. Actually, since the replacement tree provides in fact a repre-

sentation of the order in which the reactions are analysed and we can locally test the

conditions required, such pruning allows us to avoid traversing the network by paths

that do not lead to any new solutions.

6.3 Enumerating precursor sets by searching for HP-subtrees 91

6.3 Enumerating precursor sets by searching for HP-

subtrees

We present our first algorithm to enumerate all precursor sets of t. We define the

collection Sm of subsets of S as

Sm = {α(πm) ∩ S | πm is a HP-subtree rooted at m}.

In other words, Sm is the collection of all sets of sources of HP-subtrees rooted at m.

Clearly, any HP-subtree πm rooted at m (with m not a leaf) can be decomposed as:

• m itself,

• a reaction node child of m, say u, and

• some HP-subtrees πn1
, . . . , πnk

where n1, . . . , nk are the children of u.

With this decomposition in mind, we propose an algorithm that searches for the

collection S = Sroot of all sets of sources of HP-trees of Rt. We know, by Lemma 6.2,

that this collection contains all the minimal precursor sets of t. The main idea is

to compute the collection Sm by computing, for each child u of m, the collection S
u
m

corresponding to all sets of sources of HP-subtrees rooted at m that contain u. Clearly

Sm =
⋃

u child of m

S
u
m.

We can compute each set X ∈ S
u
m by taking all possible unions of sets X1, . . . , Xk

belonging respectively to the collections Sn1
, . . . , Snk

, where n1, . . . , nk are the children

of u.

Before explaining the details of the algorithm, note that we are interested only in

the minimal sets of S and therefore, in order of improving the running time and the

space used, we can avoid computing, in each Sm, the sets that are already not minimal.

Moreover, we have the following property: Given m a metabolite node of Rt (which

is not a leaf) and a subtree πm rooted at m, if u is the child node of m in πm, then

any HP-tree π that contains πm has as sources at least all the sources children of

reaction nodes ancestors of m. We are therefore interested in finding the minimal sets

considering only the new sources of HP-subtrees rooted at m, that is, those sources

that do not belong to the cover set of m.

92 Chapter 6. Algorithms to Enumerate All Minimal Precursor Sets

Considering these remarks, we can define the collection S̄m of subsets of new sources

as

S̄m = {(α(πm) ∩ S) \ Cover(m) | πm is a HP-subtree rooted at m}

Redefining the collection Sm by taking the minimal sets:

Sm = {X ∈ S̄m | there are no Y ∈ S̄m such that Y ⊂ X}

In this way, we decrease the collection of sets of sources to compute, improving the

running time of the algorithm.

Although the algorithm searches for HP-subtrees in the replacement tree Rt, this

structure is not maintained in memory. Instead, the algorithm works directly on the

network G, saving only the necessary information to identify the leaves of Rt (i.e. the

stop conditions in the construction of Rt). Indeed, each branch of the tree is built and

the information about its leaves recovered at the same time, avoiding to maintain in

memory more than the branch being analysed.

We present a recursive version of the algorithm. It requires two inputs: the label

a of a metabolite node m of Rt being analysed and the cover set of m. It returns a

collection of minimal sets of sources, each set being the sources not in Cover(m) of an

HP-subtree rooted at m. Therefore, the collection of all precursor sets of t is obtained

by calling MinSourcesHPsubtrees(t, {t}).

MinSourcesHPsubtrees(a [label of m], Cover [cover set of m]);

Sm := {};

For each reaction r producing a, with minimal Subs(r) \ Cover do

NewCover := Cover ∪ Subs(r) ∪ Prod(r);

S
u
m := {{}};

For each metabolite b ∈ Subs(r) \ Cover do

If b is in Sources then

Sn := {{b}};

else

Sn :=MinSourcesHPsubtrees(b, NewCover);

S
u
m := CartesianUnions(Su

m, Sn);

Sm := Sm ∪ S
u
m;

return MinimalSets(Sm);

6.4 Enumerating precursor sets by merging reactions 93

The subroutines used are formally defined as: CartesianUnions that gives, for two

given collections of sets, the collection of all the unions of pairs of sets, one for each

collection, that is, CartesianUnions(S1, S2) = {X1 ∪ X2 | X1 ∈ S1, X2 ∈ S2}, and

MinimalSets(S) that removes from a collection S the sets that are not minimal, that is

MinimalSets(S) = {X ∈ S | there are no Y ∈ S such that Y ⊂ X}.

We describe in detail the algorithm proposed. Let m be a metabolite node of Rt

with label a that is not a leaf, and Cover the cover set of m. We want to obtain the

collection Sm of minimal sets of new sources (i.e. that are not in Cover) of all HP-

subtrees rooted at m. For each reaction node u child of m not pruned (i.e. discarding,

by Lemma 6.3, the reactions with Chnr(u) not minimal), we compute S
u
m the collection

of sets of new sources of HP-subtrees rooted at m that contains u.

The set S
u
m will contain unions of valid combinations of these sets of sources, where

by valid combination is meant one and only one set for each metabolite child of u.

These particular unions are called the cartesian unions of the collections of sources

given by each metabolite child of u. Computing, for each reaction node u child of m,

the collection S
u
m of source sets, we return the total collection Sm that contains the

union of all the collections, discarding those sets that are not minimal.

To obtain the collection S
u
m of a particular reaction node u child of m, we consider

each metabolite node n child of u that is not in Cover. For each n, we compute the

new sources of all the HP-subtrees rooted at n. Let b be the label of n. Two cases are

possible: (a) if b is itself a source, then the only set of new sources is the singleton {b}

and therefore b will be included in all the sets of sources of S
u
m, (b) if b is not a source,

we compute, for all HP-subtrees rooted at n, the set of sources not in Cover(m) but

also not in Subs(u), since these sources were already included in case (a). Therefore,

we call recursively the algorithm for the metabolite node b and the cover set actualised.

Corollary 6.4. Given the set of sources S, the collection of subsets of S given by S =

MinSourcesHPsubtrees(t, {t}) is exactly the collection of all minimal precursor sets of

t.

6.4 Enumerating precursor sets by merging reactions

The replacement tree used to search hyperpaths (by enumerating HP-subtrees) in the

previous algorithm, reduces the computing time when some hyperpaths share reactions

“near” the target. However, the work spent to find minimal sources along one branch

of the replacement tree is not considered in any other branch, even when they share

94 Chapter 6. Algorithms to Enumerate All Minimal Precursor Sets

almost all reactions (except for those near to the root). In some sense, one branch

cannot “see” what was already done for a previously analysed branch.

In order to take advantage of the HP-subtrees already found, we can include in the

hypergraph the HP-subtrees already covered in the form of new pseudo-reactions. In

this way, instead of looking again the reactions in a HP-subtree already visited, we

look at the pseudo-reactions added in a previous step.

These ideas motivated some modifications to the previous algorithm to enumerate

precursor sets of t, that correspond to adding in the network G the information about

the HP-subtrees already found. This is done by replacing some reactions of G in such

a way that the collection of precursor sets is not modified.

Let H be a hyperpath from a set X ⊆ S to {t}. Let rb be a reaction of H and let

a be a substrate of rb which is not a source (a ∈ Subs(r) \ S). We want to replace rb

in H by a new reaction that does not use a as substrate. Since a is not a source, there

exists ra ∈ H producing a. We can therefore create a new reaction rab that produces

the same than rb but consuming (Subs(ra)∪Subs(rb)) \ (Prod(ra)∪Prod(rb)). In this

way we can replace rb by rab, avoiding the consumption of a by one reaction of the new

hyperpath H. Repeating this process for all reactions in H having substrates that are

not sources, we obtain a a final hyperpath composed by a single reaction rH producing

t and consuming only metabolites of S. Therefore, its substrates are a precursor set of

{t}.

Of course, this process seems not useful if we already know H. In fact, we make

this procedure without having computed H but only a branch of the replacement tree

Rt. Moreover, it is done in such a way that rb is replaced in all hyperpath that contains

it. In effect rb is replaced in the network, hence in each reaction node of Rt having rb

as label.

6.4.1 Reaction replacement

Consider a reaction r and a metabolite a substrate of r not belonging to the sources

(i.e. a ∈ Subs(r) \ S). We present below a procedure Replace(r,a) that replaces r by

a set of reactions that do not change the precursor sets of t.

Replace(r ∈ R, a ∈ Subs(r) \ S)

Compute Ra the set of reactions ra such that a ∈ Prod(ra);

For each reaction ra of Ra

NewSubs := (Subs(ra) \ Prod(r)) ∪ (Subs(r) \ Prod(ra));

NewProd := Prod(r) ∪ Prod(ra);

6.4 Enumerating precursor sets by merging reactions 95

Add new reaction (NewSubs,NewProd) to R.

Remove r from R;

Lemma 6.5. Let r ∈ R be a reaction of G and let a ∈ Subs(r) \ S be a substrate of

r that is not a source. Let G′ be the network that results from applying the procedure

Replace(r, a). Then, X is a precursor set of t in G if and only if X is precursor set of

t in G′.

Proof. Let X be a precursor set of t in G. Therefore, there exists a hyperpath H from

X to t in G. Consider two cases: If H does not contain r, then clearly H is also

a hyperpath from X to t in G′. If H contains r, then it has to contain at least one

reaction ra of Ra (the set of all reactions in R that produce a). Let rnew be the reaction

that results from merging r and ra. Therefore, in G′, the set H ′ = (H \ {r}) ∪ {rnew}

clearly satisfies the first condition of the definition of hyperpath, and therefore contains

a hyperpath from X to t.

For the reverse direction, let H ′ be a hyperpath from X to T in G′. Let Rnew be

the set of reactions of H ′ that are not in G, and Rold the set of reactions of Ra that

were merged to produce Rnew. Therefore, in G, the set of reactions H = (H ′ \Rnew)∪

Rold ∪ {r} contains a hyperpath from X to t.

Note that the replacement as defined, replaces a hyperpath H containing r by a

new hyperpath of size at most |H|.

6.4.2 Algorithm compacting hyperpaths

Note that, although this safe replacement of reactions increases the number of reac-

tions in the network, it mantains or reduces the size of the hyperpaths producing t.

Therefore, we can do successive reaction replacements in G, until the network contains

only reactions consuming only metabolites in S. For example, we can replace for a

metabolite a not in the sources, all the reactions that have a as substrate. Clearly the

network obtained does not contain any reaction consuming a. Repeating this for all

the metabolites not belonging to S, we obtain the aimed network. In this modified

network we can easily find the minimal precursor sets of t.

However, many of those replacements could be unnecessary. Indeed, some of the

reactions could not be part of the replacement tree, because they are below the stop

conditions or because they are pruned by Lemma 6.3 or simply because the reaction

96 Chapter 6. Algorithms to Enumerate All Minimal Precursor Sets

replacement disconnected them of the target. Considering this, we do the replacement

of reactions in G following the structure of the replacement tree.

Moreover, the order in which we choose the reactions to be replaced is relevant:

we start by merging the reactions near the leaves of the replacement tree. Indeed,

given any metabolite node m whose metabolite grandchildren are leaves of the tree, we

replace the reaction node u parent of m by merging it with each reaction node child of

m (that is, we apply Replace(ρ(u), α(m))). In this way, if u is one of the new reaction

nodes added to the replacement tree, the set Chnr(u) should be small (because the

cover set of the parent of u is the greatest possible), and will contain only metabolites

in the sources S. We can thus easily discard, by Lemma 6.3, those new reactions nodes

whose Chnr set of children is not minimal. This allows having some control on the

amount of new reaction nodes added to the replacement tree.

Again, the algorithm does not build the replacement tree, but works directly on the

network. We present a recursive version of the algorithm, which is basically the same

as MinSourcesHPsubtrees but doing the reaction replacement instead of the cartesian

union. The procedure CompactHyperpaths takes as input the label a of the metabolite

m been analysed and the cover set of m. We suppose that m is not a leaf. It makes

the necessary replacements until m has only reaction children whose own children are

leaves. Calling CompactHyperpaths(t, {t}) and taking the source leaves of the reaction

children of the root gives the sources of all hyperpaths to t. Therefore, those sets that

are minimal will correspond to the minimal precursor sets of t.

The algorithm takes each reaction r producing a except those that, because of

Lemma 6.3, do not need to be considered. Since new reactions producing a can be

added during the course of the iterations, this selection is done dynamically by marking

the reactions already analysed (we start, of course, with all reactions unmarked).

If reaction r has a child s which is not a leaf, then s is recursively transformed into

a metabolite node with only leaves as grandchildren. Then, the set of reaction children

of s are merged with r and the latter is removed. Each new (and therefore unmarked)

reaction added produces a, and will thus be considered in the next iterations of the

cycle until all its children are leaves.

CompactHyperpaths(a [label of m], Cover [cover set of m]);

While there exists an unmarked reaction producing a do

Choose r producing a with minimal Subs(r) \ Cover;

Mark any reaction r̄ producing a with Subs(r̄) \ Cover ⊇ Subs(r) \ Cover;

NewCover := Cover ∪ Subs(r) ∪ Prod(r);

6.5 Performance analysis 97

If exists some metabolite s substrate of r not in Cover ∪ S do

CompactHyperpaths(s, NewCover);

Replace(r,s).

Corollary 6.6. Applying the procedure CompactHyperpaths(t, {t}) over the network

G gives a new network G′ such that a set X is a precursor set of {t} if and only if

there exists a reaction r in G′ with X ⊆ Subs(r).

6.5 Performance analysis

Some benchmarks have been done in order to measure the performance of five differ-

ent algorithms over some real metabolic networks. These algorithms were compared

for several different singleton target sets (p.e, aminoacids, compounds related to the

synthesis of cell wall, DNA, RNA, membranes, etc.) in four networks of different size

and topology. Table 6.1 presents an extract of these results for those targets that spent

more time to obtain the minimal precursor sets. The table shows for each network the

size of the set of compounds and reactions and for each target the number of the pre-

cursor sets found and the time in seconds that each algorithm spent. The algorithms

analysed are:

• The original PITUFO version, originally published in the WABI 2008 paper

Cottret et al. (2008), which builds the replacement tree in order to find the

minimal precursor sets (refered as Tree in the table).

• Two different implementations of the algorithm MinSourcesHPsubtrees that finds

the HP-subtrees directly on the network without building the tree (refered as

HP-subtree in the table). The first one analyses all possible hyperpaths from

the targets to the sources and a second version that applies a test of minimality

between alternative paths in order to avoid going further on directions that can

not produce a minimal precursor set (according to Lemma 6.3).

• Two versions of the CompactHyperpaths algorithm (refered as Merge in the table)

with the same variation described earlier to avoid go through all reactions.

All algorithms have been implemented in Java 6 and the running times were col-

lected under a machine with a Intel 2.66 GHz processor and 4GB RAM memory from

which 1GB was dedicated to the programs execution.

98 Chapter 6. Algorithms to Enumerate All Minimal Precursor Sets

As expected, the algorithm that has the worst behaviour in almost all cases is the

one that builds the replacement tree. This is the only version that has memory issues

even for networks not specially large like the one of Buchnera aphidicola (418 com-

pounds and 304 reactions). In the original work Cottret et al. (2008) this method was

applied only after a compression of the network performed for a forward propagation

step using as seeds glucose and some other nutrients, a pre-process not applied in our

benchmark. The newer versions that works directly on the network does not have

memory issues for the networks analysed

However, as can be observed in the Escheria coli results, it makes a huge difference

to avoid going through all reactions. In effect, the HP-subtree version without this test

did not finished processing in 24 hours of execution for none of the targets tested. The

merge version finished but taking very long time compared to the version that checks

the minimality. For instance, for the E. coli network and the compound GLY as target

the variation was from 200 minutes to less than 1 second.

Comparing only the minimal reaction version of HP-subtree and Merge algorithms

and the Replacement Tree version it is possible to make the following analysis. For the

smaller network (S. muelleri) all implementations finished in less than 1 second and

despite of some variations they are equivalent. For the network of B. cicadellinicola,

which is almost four times bigger, the replacement tree version took more than one

second for some cases (HEME-O and CPD-9454 target sets) but the time was still

very fast. Note that for these instances the number of solutions is not greater than 2

precursor sets.

For the first three networks, both HP-subtree and Merge obtained the best perfor-

mances for different target sets. However, for the bigger network E. coli, the Merge

algorithm starts to have a considerably better performance for all targets presented.

This result can be explained by the fact that this last algorithm has a cost in doing

the merge of reactions, which is more advantageous when there are more hyperpaths

from sources to the target sharing more reactions (since the merge of reactions avoid

repeating part of the work already done). Of course, this have more chance to happen

when the size of the network is greater, which could explain the better performance

of this algorithm. It is difficult, tough, to detect exactly what are the variations that

make one or the other version be better since it depends not only on the size of the

network but also on the target set chosen and on the topology of the network.

6.6 Some extensions 99

Network |C|/|R| Target # Prec. Tree HP-subtree Merge

Sets All Minimal All Minimal

S. muelleri

78 / 64 TRP 1 0.005 0.002 0.002 0.005 0.007
LYS 1 0.010 0.003 0.002 0.003 0.003
ARG 1 0.014 0.002 0.003 0.001 0.002

B. cicadellinicola

249 / 230 HEME-O 1 1.677 0.148 0.112 0.018 0.006
CPD-9454 1 1.300 0.064 0.079 0.015 0.003
ERYTHROSE-4P 1 0.006 0.002 0.002 0.082 0.006
6-PYRUVOYL... 2 0.032 0.011 0.009 0.006 0.068

B. aphidicola

418 / 304 NAcMur-Peptide... 8 * 0.559 0.072 0.249 21.169
GTP 5 * 1.100 0.007 0.006 1.013
DGTP 1 * 1.135 0.011 1.622 0.001
MET 4 * 1.217 0.002 10.183 0.004

E. coli

887 / 861 GLY 5 * - 7.151 12,018.173 0.024
NAcMur-Peptide.. 16 * - 78.170 0.493 0.104
L-ALPHA-ALANINE 6 * - 50.031 442.246 0.019
KDO 1 * - 26.432 17.717 0.003

Table 6.1: Runtime for computing precursor sets for some targets in 4 different net-
works, using a Pentium 4 2.66 GHz processor and 1GB RAM available for the JVM.
In cases marked ’-’ the algorithm did not finish within 24 hours while in cases marked
’*’ it ran out of memory. Runtime is rounded up to seconds. The targets with their
names abbreviated are 6-PYRUVOYL-5678-TETRAHYDROPTERIN and NAcMur-
Peptide-NAcGlc-Undecaprenols.

6.6 Some extensions

6.6.1 Enumerating hyperpaths from sources to the target set

In some cases we are interested not only in finding which set of sources are able to

produce the target, but how the target set is produced from them. Given a minimal

set of sources, it is easy to find one hyperpath just by computing the maximal target of

the sources and successively removing reactions of the network that do not eliminate

the target from the new maximal target.

We can enumerate all the hyperpaths from each minimal set of sources to the target

by introducing some modifications to the algorithms proposed. Indeed, the information

about the reactions contained in each HP-subtree or new reaction can be easily saved

and additional tests of minimality of the set of reactions in the HP-subtrees can be

applied (since minimality of reactions is required in the Definition 5.7 of hyperpaths).

Also, if we want to enumerate all sets of sources (not necessarily of minimal) such that

there exists a precise hyperpath from it to the target, we just need to remove the test

of minimality of the sources, and discard repeated solutions (since the same solution

can be obtained by different ways).

If we consider any method that enumerates the precursor sets of T , then we can

introduce some modifications to the network in order to enumerate all the hyperpaths

100 Chapter 6. Algorithms to Enumerate All Minimal Precursor Sets

from sets of sources to T . This requires just adding, for each reaction r, a fake substrate

sr and including sr to the set of sources S. Each set of sources given as solution

will contain the real sources in the precursor set plus the fake sources indicating the

reactions used. The minimality of the sources implies that the reactions used are

minimal although the precursor set is not necessarily minimal.

6.6.2 Discarding trivial cycles

The model proposed implies that some precursor sets found cannot produce the tar-

get when stoichiometry information is added to the reactions. Indeed, the amounts of

metabolites consumed and produced in some cycles involved might not be possible to

maintain. In particular the trivial cycles composed by the two directions of a same

reversible reaction are obviously not real cycles, however their metabolites are consid-

ered as available in the model. Clearly, these cycles are not realistic and should be

discarded as a possible way of producing the target.

We present a way to discard any solution that, in order to produce the target,

requires using both directions of a same reversible reaction. One method is, like before,

to save the direction of the reversible reactions that participate in the HP-subtrees

or new reactions that are computed, discarding those that use the same reaction in

opposite direction.

For a general method that enumerates the precursor sets of T , we can modify the

network in a similar way as before. For each direction r+ and r− of any reversible

reaction, we introduce a fake substrate for each direction sr+ and sr−. We then add a

new fake reaction pr with substrates sr+ and sr− and products the metabolites of the

target T . In other words, we force the set {sr+, sr−} to be a precursor set. Therefore,

the method gives those sets as solutions as well as all precursor sets that do not contain

both compounds sr+ and sr−. Discarding the fake solutions and removing the fake

compounds of the rest of solution, we obtain a collection of precursors that are not

necessarily minimal. We need just to discard the non minimal sets to obtain the

collection of all minimal precursor sets using the reactions in only one direction.

Conclusion and Perspectives

In this PhD, we presented some algorithms and complexity results for two general

problems that arise in the analysis of a metabolic network: the search for elementary

modes of a network and the search for minimal precursors sets.

Searching for elementary modes of a network

Elementary modes and minimal reaction cuts are common tools in the study of the

cellular characteristic of a metabolic network. An elementary mode can be seen as a

minimal set of reactions that can work in steady state independently of the rest of the

network. It has therefore served as a mathematical model for the possible metabolic

pathways of a cell. Their computation is not trivial and poses computational challenges.

Some algorithms have been proposed based on variations of the double description

method. Despite the algorithms proposed, no systematic complexity analysis had been

carried out.

We showed that some problems, like checking consistency of a network, finding one

elementary mode or checking that a set of reactions constitutes a cut are easy problems,

giving polynomial algorithms based on LP formulations. In this way, we showed that

they can be solved using existing LP software.

We also proved the hardness of central problems like finding a minimum size ele-

mentary mode, finding an elementary mode containing two given reactions, counting

the number of elementary modes or finding a minimum reaction cut.

On the enumeration problem, we showed that enumerating all elementary modes

containing one given reaction cannot be done in polynomial total time unless P=NP.

This result provides some idea about the complexity of enumerating all the elemen-

tary modes. Although we did not solve the question whether the complexity of this

enumeration problem can be done in polynomial total time, the result given in this

102 Conclusion and Perspectives

work can provide some insights about which strategies could be useful to answer this

question. Indeed, this is a major open issue, which corresponds to a particular case of

the enumeration of vertices of a bounded polyhedron, whose complexity is, in its turn,

one of the major open questions in computational geometry.

Beyond that, Schwartz et Kanehisa (2006) have shown that all elementary modes

are not equal contributors to physiological cellular states. It remains an open biological

question how to identify elementary modes that are physiologically relevant to which

Schwartz and Kanehisa (2006) provide some pointers. Once this is fully answered, it

will then become an open question whether such subsets of all elementary modes can

be more efficiently enumerated.

Searching for minimal precursors sets

The search for precursor sets is motivated by discovering which external metabolites

are sufficient to allow the production of a given set of target metabolites. In contrast

with previous proposals, we presented a new approach which is the first to formally

consider the use of cycles in the way to produce the target.

In our definition, we introduce the concept of internal supplies as compounds that

can be used in the forward propagation subject to be regenerated by the same process.

Such compounds can also have a biological importance in the sense of representing

necessary supplies to start a process but that can be discarded once the process is

ongoing.

We presented also an alternative characterisation of precursor sets which does not

require the previous search of internal supplies and which allows to compute the max-

imal target of a set of sources. With this maximal target, we present a polynomial

algorithm to decide whether a set is a precursor set of a given target. We also show

that, given a target set, finding a minimal precursor set is easy but finding a precursor

set of minimum size is NP-hard. We further show that finding a solution with minimum

size internal supply is NP-hard.

We give a simple characterisation of precursors sets by the existence of hyperpaths

between the solutions and the target. The definition of hyperpaths could be a useful

concept not only to model precursor sets but also for other processes occurring in

the network. Indeed, hyperpaths could help in giving a more formal definition to the

biological concept of metabolic pathway.

If we consider the enumeration of all the minimal precursor sets of a given target,

Conclusion and Perspectives 103

we found that this problem cannot be solved in polynomial total time unless P=NP.

Despite this negative theoretical result, we presented two algorithms that have good

performance for medium-size networks. Both algorithms enumerate all the minimal

hyperpaths between the sources to the target by traversing, starting from the target,

the network in reverse order. By a comparative test, some hyperpaths that are not part

of the solution can be discarded in early iterations. A future work on this algorithm

should improve or add new tests that allow avoiding traversing reactions that cannot

lead to minimal solutions.

The second algorithm works in a similar way but modifies in each step the network

in order to “remember” the solutions already found. This extra process can increase

the time by iteration, but can decrease considerably the total time of the process when

minimal hyperpaths have many reactions in common. It could be interesting to have

an algorithm combining the two algorithms presented, that evaluates applying this

modification to the network only if a reaction has a high probability of belonging to

many hyperpaths. Improvements of both algorithms should also go on the direction of

including stoichiometry that could be checked by some simple LP formulations in each

iteration.

We also defined the concept of precursor cut set, that is a useful way to avoid

producing a given compound of the network. We showed for this problem similar

results of complexity: it is easy to find a minimal cut but it is NP-hard to find a cut

of minimum size. We also show that this problem is hard to enumerate in polynomial

total time. In a more theoretical perspective, we show that enumerating all minimal

precursor sets of a target is dual to the problem of enumerating all the minimal cut

sets of the same target. Moreover, using a result of Gurvich et Khachiyan (1999), we

showed that enumeration of both at the same time can be done in quasi-polynomial

total time.

104 Conclusion and Perspectives

Bibliography

Ausiello, G., Crescenzi, P., Gambosi, G., Kann, V., Marchetti-Spaccamela,
A. et Protasi, M. (1999). Complexity and approximation – Combinatorial opti-
mization problems and their approximability properties. Springer-Verlag, Berlin.

Ausiello, G., Franciosa, P. G. et Frigioni, D. (2001). Directed hypergraphs:
Problems, algorithmic results, and a novel decremental approach. In Restivo, A.,
Rocca, S. R. D. et Roversi, L., éditeurs : ICTCS, volume 2202 de Lecture Notes
in Computer Science, pages 312–327. Springer.

Bang-Jensen, J. et Gutin, G. (2008). Digraphs: Theory, Algorithms and Applica-
tions‚Äé. Springer-Verlag, London.

Berge, C. (1989). Hypergraphs, Combinatorics of Finite Sets. North-Holland.

Caspi, R. et al. (2006). MetaCyc: a multiorganism database of metabolic pathways
and enzymes. Nucleic Acids Res, 34(Database issue):D511–D516.

Clarke, B. L. (1981). Complete set of steady states for the general stoichiometric
dynamical system. J. Chem. Phys., 75:4970–4979.

Cook, S. A. (1971). The complexity of theorem-proving procedures. STOC ’71:
Proceedings of the third annual ACM symposium on Theory of computing, pages
151–158.

Cottret, L., Milreu, P., Acuña, V., Marchetti-Spaccamela, A., Martinez,
F. V., Sagot, M.-F. et Stougie, L. (2008). Enumerating precursor sets of target
metabolites in a metabolic network. In Workshop on Algorithms in Bioinformat-
ics (WABI), volume 5251 de Lecture Notes in Computer Science, pages 233–244.
Springer.

Covert, M. W. et Palsson, B. O. (2003). Constraints-based models: Regulation of
gene expression reduces the steady-state solution space. J. Theor. Biol., 221:309–325.

Diestel, R. (2006). Graph theory. Springer-Verlag, New York.

Dyer, M. (1983). The complexity of vertex enumeration methods. Mathematics of
Operations Research, 8(3):381–402.

106 Bibliography

Dyer, M. et Proll, L. (1977). An algorithm for determining all extreme points of a
convex polytope. Mathematical Programming, 12:81–96.

Edwards, J. S., Ibarra, R. U. et Palsson, B. O. (2001). In silico predictions of
Escherichia coli metabolic capabilities are consistent with experimental data. Nat.
Biotechnol., 19(2):125–130.

Edwards, J. S. et Palsson, B. O. (2000). Robustness analysis of the escherichia coli
metabolic network. Biotechnol Prog, 16(6):927–939.

Fong, S. S. et Palsson, B. O. (2004). Metabolic gene-deletion strains of escherichia
coli evolve to computationally predicted growth phenotypes. Nat. Genet., 36(10):
1056–1058.

Francke, C., Siezen, R. J. et Teusink, B. (2005). Reconstructing the metabolic
network of a bacterium from its genome. Trends Microbiol, 13(11):550–558.

Fredman, M. et Khachiyan, L. (1996). On the complexity of dualization of monotone
disjunctive normal forms. Journal of Algorithms.

Fukuda, K. et Prodon, A. (1996). Double description method revisited. In Combi-
natorics and Computer Science, volume 1120 de Lecture Notes in Computer Science,
pages 91–111. Springer.

Gagneur, J. et Klamt, S. (2004). Computation of elementary modes: a unifying
framework and the new binary approach. BMC Bioinformatics, 5:175.

Gallo, G., Gentile, C., Pretolani, D. et Rago, G. (1998). Max Horn SAT and
the minimum cut problem in directed hypergraphs. Math. Program., 80:213–237.

Gallo, G., Longo, G., Nguyen, S. et Pallottino, S. (1993). Directed hypergraphs
and applications. Citeseer.

Garey, M. R. et Johnson, D. S. (1979). Computers and Intractability. A Guide to
the Theory of NP-Completeness. Freeman.

Gurvich, V. et Khachiyan, L. (1999). On generating the irredundant conjunctive
and disjunctive normal forms of monotone boolean functions. Discrete Applied Math-
ematics.

Hall, P. (1935). On representatives of subsets. J. London Math. Soc., s1–10(1):26–30.

Handorf, T., Christian, N., Ebenhöh, O. et Kahn, D. (2007). An environmental
perspective on metabolism. J Theor Biol.

Handorf, T., Ebenhöh, O. et Heinrich, R. (2005). Expanding metabolic networks:
scopes of compounds, robustness, and evolution. J Mol Evol, 61(4):498–512.

Bibliography 107

Johnson, D., Yannakakis, M. et Papadimitriou, C. (1988). On generating all
maximal independent sets. Information Processing Letters, 27(3):119–123.

Kanehisa, M. et al. (2006). From genomics to chemical genomics: new developments
in KEGG. Nucleic Acids Res, 34(Database issue):D354–D357.

Khachiyan, L., Boros, E., Borys, K., Elbassioni, K. et Gurvich, V. (2008). Gen-
erating all vertices of a polyhedron is hard. Discrete and Computational Geometry,
39:174–190.

Khachiyan, L., Boros, E., Elbassioni, K., Gurvich, V. et Makino, K. (2005).
On the complexity of some enumeration problems for matroids. SIAM Journal on
Discrete Mathematics, 19(4):966–984.

Klamt, S. (2006). Generalized concept of minimal cut sets in biochemical networks.
Biosystems, 83(2-3):233–247.

Klamt, S., Gagneur, J. et von Kamp, A. (2005). Algorithmic approaches for com-
puting elementary modes in large biochemical reaction networks. IEE Proc.-Syst.
Biol., 152(4):249–255.

Klamt, S. et Gilles, E. D. (2004). Minimal cut sets in biochemical reaction networks.
Bioinformatics, 20(2):226–234.

Klamt, S. et Stelling, J. (2002). Combinatorial complexity of pathway analysis in
metabolic networks. Mol. Biol. Rep., 29(1-2):233–236.

Klamt, S. et Stelling, J. (2003). Two approaches for metabolic pathway analysis?
Trends Biotechnol., 21(2):64–69.

Lacroix, V., Cottret, L., Thébault, P. et Sagot, M.-F. (2008). An introduction
to metabolic networks and their structural analysis. IEEE/ACM Trans. Comput.
Biol. Bioinformatics, 5(4):594–617.

Lacroix, V., Fernandes, C. G. et Sagot, M.-F. (2006). Motif search in graphs:
application to metabolic networks. IEEE/ACM Trans. Comput. Biol. Bioinform.,
3(4):360–368.

Larhlimi, A. et Bockmayr, A. (2009). A new constraint-based description of the
steady-state flux cone of metabolic networks. Discrete Applied Mathematics, 157(10):
2257–2266.

Motzkin, T., Raiffa, H., Thompson, G. et Thrall, R. (1953). The double descrip-
tion method. In Kuhn, H. et Tucker, A., éditeurs : Contributions to the Theory
of Games, volume II, pages 51–73. Princeton University Press.

Oxley, J. G. (1992). Matroid theory. Oxford Science Publications. The Clarendon
Press Oxford University Press, New York.

108 Bibliography

Palsson, B. O. (2000). The challenges of in silico biology. Nat. Biotechnol., 18:1147–
1150.

Papadimitriou, C. H. (1994). Computational complexity. Addison-Wesley.

Raz, R. et Safra, S. (1997). A sub-constant error-probability low-degree test, and
a sub-constant error-probability PCP characterization of NP. In Proceedings of the
Twenty-Ninth Annual ACM Symposium on Theory of Computing (STOC), pages
475–484.

Romero, P. R. et Karp, P. (2001). Nutrient-related analysis of pathway/genome
databases. Pac Symp Biocomput, pages 471–482.

Schilling, C. H., Letscher, D. et Palsson, B. O. (2000). Theory for the systemic
definition of metabolic pathways and their use in interpreting metabolic function
from a pathway-oriented perspective. J. Theor. Biol., 203(3):229–248.

Schrijver, A. (1986). Theory of Linear and Integer Programming. John Wiley &
Sons.

Schrijver, A. (2003). Combinatorial optimization: Polyhedra and Efficiency, vol-
ume 24 de Algorithms and Combinatorics. Springer-Verlag, Berlin.

Schuster, S., Fell, D. A. et Dandekar, T. (2000). A general definition of metabolic
pathways useful for systematic organization and analysis of complex metabolic net-
works. Nat. Biotechnol., 18(3):326–332.

Schuster, S. et Hilgetag, C. (1994). On elementary flux modes in biochemical
reaction systems at steady state. J. Biol. Syst., 2:165–182.

Schuster, S., Hilgetag, C., Woods, J. H. et Fell, D. A. (2002a). Reaction
routes in biochemical reaction systems: algebraic properties, validated calculation
procedure and example from nucleotide metabolism. J. Math. Biol., 45(2):153–181.

Schuster, S., Pfeiffer, T., Moldenhauer, F., Koch, I. et Dandekar, T.
(2002b). Exploring the pathway structure of metabolism: decomposition into subnet-
works and application to mycoplasma pneumoniae. Bioinformatics, 18(2):351–361.

Schwartz, J. et Kanehisa, M. (2006). Quantitative elementary mode analysis of
metabolic pathways: the example of yeast glycolysis. BMC Bioinformatics, 7:186.

Seymour, P. D. (1977). The matroids with the max-flow min-cut property. J. Comb.
Theory Ser. B, 23(7):189–222.

Stelling, J. (2004). Mathematical models in microbial systems biology. Current
opinion in microbiology.

Szallasi, Z., Stelling, J. et Periwal, V. (2006). System Modeling in Cellular
Biology: From Concepts to Nuts and Bolts. The MIT Press.

Bibliography 109

Terzer, M. (2009). Large Scale Methods to Enumerate Extreme Rays and Elementary
Modes. PhD-Thesis, ETH Zürich.

Valiant, L. G. (1979). The complexity of computing the permanent. Theor. Comp.
Sci., 8:189–201.

	Introduction
	Some Basic Mathematical Definitions
	Graphs, digraphs and hypergraphs
	Graph and digraph definitions
	Graphical representation and labels
	Walks, paths, cycles and hamiltonian cycles
	Adjacency and incidence matrix
	Induced subgraph, bipartite graphs and trees
	Directed hypergraphs

	Hitting set
	Boolean functions
	Monotone Boolean functions

	Basic Concepts of Time Complexity Analysis
	Defining a problem
	Decision problems
	Optimisation problems
	Enumeration and counting problems

	Analysis of algorithms
	Input size
	Worst case analysis
	Asymptotic analysis

	Complexity classes of decision problems
	The class P
	The class Np
	Reducibility among problems
	Np-complete problems

	Complexity classes of optimisation problems
	The classes Po and Npo
	Np-hard optimisation problems
	Approximation algorithms
	The classes Apx and Apx-hard

	Complexity of counting solutions
	P and P-complete

	Complexity of enumerating all the solutions
	Time delay, incremental time and total time

	Metabolic Networks
	Entities involved in metabolism
	Biochemical reactions and metabolites
	Enzymes and genes
	Metabolism regulation
	Reconstructing a metabolic network

	Modelling metabolic networks
	Graph and hypergraphs models
	Including stoichiometry
	Assuming steady state

	Complexity of Computing Elementary Modes
	Modelling metabolic network in steady state
	Definitions
	Relation between elementary modes and extreme rays
	Reversibility of reactions

	Checking consistency of the stoichiometric matrix
	Finding elementary modes
	Finding an elementary mode
	Finding elementary modes with support containing a given set of reactions
	Finding the shortest elementary modes

	Counting elementary modes
	Enumerating elementary modes
	Enumerating elementary modes with a given reaction in its support
	Analysis of the complexity result
	Case when all reactions are reversible

	Reaction cuts
	Finding minimal and minimum reaction cuts

	Proof of Theorem 4.11 and Theorem 4.15

	Modelling Precursor Sets in Metabolic Networks
	Definitions and Characterisations
	Modelling a metabolic network
	Forward propagation
	Definition of precursor sets considering cycles
	Alternative characterisation of precursor set
	Maximal target
	Hyperpaths from sources to the target
	Precursor cut set

	Complexity results
	Deciding if a set of sources is a precursor set
	Finding a minimal and a minimum precursor sets
	Enumerating all minimal precursor sets

	Algorithms to Enumerate All Minimal Precursor Sets
	Preprocessing the network
	The replacement tree
	Enumerating precursor sets by searching for HP-subtrees
	Enumerating precursor sets by merging reactions
	Reaction replacement
	Algorithm compacting hyperpaths

	Performance analysis
	Some extensions
	Enumerating hyperpaths from sources to the target set
	Discarding trivial cycles

	Conclusion and Perspectives
	Bibliography

