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Motivations (1): Analysis of FMRIs for coma patients

Scientific questions
Detect level of activation through regularity of
signals.

Find connections between regions of interest.

Objective: develop models and
methodologies to deal with
characteristics of FMRI time series

1 long memory, fractal, self-similar
properties.

2 non stationary artefacts, outliers, additive
noise.

3 strong spatial dependence.
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Motivations (2): Arrangement of geometrical objects

(Hurtut, Landes, Thollot, Gousseau, Drouilhet, C.’09.)

Computer Graphics Problem
simulation at large scale of a

pattern drawn in a small window

by an artist.

Statistical Problem
learn the complex spatial structure of the point pattern given

by the centers of the objetcs (independence or interaction?

regular or clustered distribution?).
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Common objective: develop methodologies and obtain
asymptotic results in particular

I. Fractional processes II. Spatial point processes

Data Continuous stoch. Set of locations
discr. at times i = 0, . . . , n − 1 observed in Λn ⊂ R

d

X = (X(0), . . . ,X(n − 1)) {x1, . . . , xn}

Asymptotic n→ +∞ Λn → R
d

Main result θ̂
a.s.
→ θ? and

√
vn(̂θ − θ?)

d
→ N(0,Σ(θ?))

where
√

vn =
√

n
√
|Λn|
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To avoid a technical presention . . .

. . . in the following
such a result could
be summarized by
the following
figure . . .
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To avoid a technical presention . . .

. . . or by following
one . . .

. . . an estimate θ̂
with nice properties
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Part I. Inference for fractional processes
1. Fractional models: FBM, MBM and MFBM.
2. Identification of models via filtering techniques.
3. Perspectives.

8 Papers (Int. Journ.)
Journ. Stat. Soft.’00
Stat. Inf. Stoch. Proc. ’01
Stat. Prob. Lett.’01,’08
Bernoulli’05
Ann. Stat.’08
Stat. Surv.’10
Sém. Cong. SMF’10

+ 2 Preprints subm.

Collaborators
S. Achard
P.O. Amblard
J. Istas
F. Lavancier
A. Philippe
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Some models and properties

Fractional Brownian motion

Definition: unique centered Gaussian process with stationary and
self-similar increments with parameters (H, σ) ∈ (0, 1) × R+, with
covariance function

E[X(s)X(t)] = σ2

2 (|s|2H + |t|2H − |t − s|2H)
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Fractional Brownian motion

Definition: unique centered Gaussian process with stationary and
self-similar increments with parameters (H, σ) ∈ (0, 1) × R+, with
covariance function

E[X(s)X(t)] = σ2

2 (|s|2H + |t|2H − |t − s|2H)

Properties: (1) Self-similarity: X(λt)
f .d.
= λHX(t)
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Some models and properties

Fractional Brownian motion

Definition: unique centered Gaussian process with stationary and
self-similar increments with parameters (H, σ) ∈ (0, 1) × R+, with
covariance function

E[X(s)X(t)] = σ2

2 (|s|2H + |t|2H − |t − s|2H)

Properties: (2) Hausdorff dimension: 2 − H
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Some models and properties

Fractional Brownian motion

Definition: unique centered Gaussian process with stationary and
self-similar increments with parameters (H, σ) ∈ (0, 1) × R+, with
covariance function

E[X(s)X(t)] = σ2

2 (|s|2H + |t|2H − |t − s|2H)

Properties: (3) let γ(·) be the ACF γ(k) = O(|k|2H−2)
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Some models and properties

Multifractional Brownian motion (MBM)

Extension of the FBM allowing the regularity to vary with time
[PLV’94,BCI’98] .

Intuitive definition: replace parameters by function of time (in
stochastic representation integrals).

E[X(s)X(t)] = fs,t (|s|Hs,t + |t|Hs,t − |t − s|Hs,t ),

where Hs,t = H(s) + H(t) and fs,t = f (H(s),H(t), σ(s), σ(t).

locally self-similar and stationary increments.
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Some models and properties

Multivariate fractional Brownian motion (MFBM)

Recent Extension [LPS’10,DP’10] of the FBM to the multivariate case
(could be used for modelling FMRIs time series)

Centered Gaussian process with stationary and self-similar increments(
X1(λt), . . . ,Xp(λt)

) f .d.
=

(
λH1 X1(t), . . . , λHp Xp(t)

)
The cross-covariances are necessarily written as (if Hi + Hj , 1)
[LPS’10] [ACLP’10]

E[Xi(s)Xj(t)] =
σiσj

2

{
(ρi,j + ηi,jsign(s))|s|Hi+Hj + (ρi,j − ηi,jsign(t))|t|Hi+Hj

−(ρi,j − ηi,jsign(t − s))|t − s|Hi+Hj
}
,

where Hi ∈ (0, 1), σi > 0, ρi,j = ρj,i = E[Xi(1)Xj(1)] ∈ (−1, 1) and
ηi,j = −ηj,i ∈ R.
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Some models and properties

A few properties of the MFBM

[ACLP’10,CAA’10]

The cross-covariance (spectrum, wavelet transform,. . . ) “behaves” like
a FGN with parameter Hi+Hj

2 . For example, γi,j(k) = O(|k|Hi+Hj−2).

Existence conditions: E[Xi(s)Xj(t)] is a
covariance function iif the matrix with entries
Γ(Hi,j + 1)

(
ρi,j sin

(
π
2 Hi,j

)
− i ηi,j cos

(
π
2 Hi,j

))
, where

Hi,j = Hi + Hj, is Hermitian.
p = 2, set of (ρ, η) described by an ellipse.

Exact simulation can be done using general
embedding circulant matrix method [WC’97] .
Example: p = 20, Hj ∈ [0.7, 0.8], ρi,j = 0.7,
ηi,j = 0.
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Identification of fractional processes

Identifcation using filtering techniques: a few notation

X = (X(0), . . . ,X(n − 1)) sample of a fBm.

a filter with p zero moments,
i.e.

∑
q aqqr = 0, r = 0, . . . , p − 1

(ex: increments, Daubechies,. . . )

am filter a dilated m times

Xam
: vector X filtered with am.

Xa(i) = X(i) − 2X(i + 1) + X(i + 2) Xa2
(i) = X(i) − 2X(i + 2) + X(i + 4)
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Identification of fractional processes

Applications to the estimation of a fBm

Idea
Self-similarity property of Xam

: E[Xam
(i)2] = m2H σ2E[Xa(i)2]︸        ︷︷        ︸

:=γ

Let S2(m) be the sample variance of Xam

log(S2(m)) ' 2H log m + log(γ)

Remarks
H can be estimated by a simple linear regression.
Ĥ independent of scaling factor, quick procedure.
Interest of filtering: γam

(k) = O(|k|2H−2p)

⇒ standard results on subordinated Gaussian stationary
sequences [T’79,BM’83] ensure nice asymptotic properties [C’01]

Same rate of convergence as the Cramèr-Rao-Bounds [CI’01].
The method can be ”localized” to estimate the regularity
function H(·) of a MBM [C’05].
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Identification of fractional processes

Robustness to outliers

Previous Procedure sensitive to outliers.

(parameters: 500 samples, n = 1000,H = .8, σ2 = 1, SNR = −30 Db)
Method Emp. Bias (Std Dev.)
No outliers 0.801 (0.021)
With outliers 0.329 (0.162)

Idea: replace S2(m) by the empirical median of (Xam
)2. Indeed,

Med(Xam
(i)2) = m2H γMed(χ2

1)︸     ︷︷     ︸
:=γ′

⇒ log M̂ed((Xam
)2) ' 2H log(m)+ log(γ′)

methodology can be extended to trimmed-means,. . .
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Identification of fractional processes

Robustness to outliers

Previous Procedure sensitive to outliers.

(parameters: 500 samples, n = 1000,H = .8, σ2 = 1, SNR = −30 Db)
Method Emp. Bias (Std Dev.)
No outliers 0.801 (0.021)
With outliers 0.329 (0.162)
Median based procedure 0.798 (0.047)

Idea: replace S2(m) by the empirical median of (Xam
)2. Indeed,

Med(Xam
(i)2) = m2H γMed(χ2

1)︸     ︷︷     ︸
:=γ′

⇒ log M̂ed((Xam
)2) ' 2H log(m)+ log(γ′)

methodology can be extended to trimmed-means,. . .
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Identification of fractional processes

Robustness to outliers (2)

Nature of quantiles⇒ results are more complicated to establish.

Key-ingredient: (nice) Bahadur representation of sample quantiles for
subordinated Gaussian stationary sequences.

g(Y) := (g(Y(1), . . . , g(Y(n)) where Y is a Gaussian centered stationary
sequence with variance 1, let p ∈ (0, 1) and ξ̂(p) be the emp. quantile of
order p

ξ̂(p) − ξ(p) =
F̂(ξ(p)) − F(ξ(p))

f (ξ(p))
+ rn,

where rn → 0 (in a certain sense). For example, if g(Y) is short
memory,

rn =

{
Oa.s.(n−3/4 log(n)3/4) [C’08a] under C2-type assumption on g
OP(n−1/2) [C’08b] under mild assumption on g

Based on this representation . . . [C’08a]
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order p
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Identification of fractional processes

Robustness to additive noise

Standard procedure sensitive to an additive noise.
Assume X(i) = BH(i) + σ2

νZ(i), where σν > 0 and Z(i) i.i.d N(0, 1)

(parameters n = 1000,H = .8, σ2 = 1, SNR = 0 Db)
Method Emp. Bias (Std Dev.)
No noise 0.801 (0.021)
With noise 0.543 (0.047)

Why? E[Xam
(i)2] = m2Hγ + σ2

ν

∑
q(aq)2

Idea to correct: E
[
Xa2m

(i)2] − E
[
Xam

(i)2] = m2H

:=γ′︷       ︸︸       ︷(
22H − 1

)
γ

⇒ log |S2(2m) − S2(m)| ' 2H log(m) + log γ′

[AC’10]: other type of contaminations (Brownian drift, outliers +

noise,. . . ) can be undertaken using similar techniques; partial
asymptotic results
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Identification of fractional processes

A first recent application to FMRI time series [AC et al’10]

20 healty patients
(boxplots)

3 coma patients
(•, •, •).

90 regions of interest
(left and right
hemisphere)
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Ongoing works and perspectives

Some ongoing works and perspectives

[BC’10] Confidence interval for the Hurst parameter, based on
concentration inequalities for subordinated Gaussian processes
(alternative approach to asmyptotic confidence intervals)

Use of the Multivariate FBM for FMRI time series:
Joint estimation of the parameters Hi, ρi,j, . . ., and asymptotic
results [AC’11].
Construction of connectivity graphs based on correlations, partial
correlations, mutual information,. . .

Develop models for FMRI time series with stimuli (cognitive or
visual task,. . . )

Exact simulation of multivariate Gaussian time series,
multivariate multifractional processes, . . .

. . .
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Part II. Inference for spatial Gibbs point processes
1. Definition of Gibbs models and examples

2. Estimation and validation of Gibbs models

3 Papers (Int. Journ.)
Elect. Journ. Stat.’08,’10
Scand. Journ. Stat.’10 (in rev.)
+ 1 Preprint subm.

1 Proceedings

NPAR’09

Collaborators
(method. papers)
J.M. Billiot
D. Dereudre
R. Drouilhet
F. Lavancier
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Type of data and a few notation

Data: configuration of marked points, i.e. set ϕ := {xm1
1 , . . . , xmn

n }, where
n := |ϕ| is not known in advance.

xmi
i = (xi,mi) is a marked points

xi ∈ R
d: location (tree, ant,. . . ), mi ∈ M: associated mark (diameter of a

treeM = [0,K], ant speciesM = {1, 2},. . . ).

ϕΛ is the restriction of ϕ on Λ, that is ϕ ∩ Λ.
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Stationary Gibbs models in Rd in one slide!

Reference model= homogeneous Poisson point process with
intensity θ: ∀ Λ,Λ′ b Rd, Λ ∩ Λ′ = ∅

|ΦΛ| ∼ P(θ|Λ|), |ΦΛ| and |ΦΛ′ | are independent.

Gibbs pp in Λ: admits a density with respect to a Ppp with unit rate of
the form

fΛ(ϕ; θ) = ZΛ(θ)−1 e−VΛ(ϕ;θ)

ZΛ(θ) =
∑
k≥0

1
k!

∫
Λ

. . .

∫
Λ

e−VΛ({x1,...,xk};θ)dx1 . . . dxk

intractable normalizing constant called partition function.
VΛ(ϕ; θ) = measures the energy of a configuration of points ϕ.

Stationary Gibbs models in Rd:
Defined via conditional specifications
essential for asymptotic properties; technical conditions on (VΛ)Λ

for existence of stationary Gibbs measures: [R’69,BBD’94,D’08,DDG’10] .

definition of marked Gpp follows similar developments.
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Definitions and examples

Poisson point process,M = {0}
VΛ(ϕ; θ) = θ1|ϕΛ|
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Definitions and examples

Strauss marked point process,M = {r, b}

VΛ(ϕ; θ) = θ11|ϕ
r
Λ| + θ12|ϕ

b
Λ|

+ θ21

∑
(xr ,yr)

1||yr−xr ||<10 + θ22

∑
(xb,yb)

1||yb−xb ||<10 + θ23

∑
(xb,yr)

1||yr−xb ||<10
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Definitions and examples

Multi-Strauss point process,M = {0} on a planar structured graph

VΛ(ϕ; θ) = θ1|ϕΛ| +
∑

{x,y}∈G2(ϕ)

{
θ21[‖y − x‖ ≤ 20 + θ3120≤‖y−x‖≤80

}
θ = (1, 2, 4)

G2(ϕ) = P2(ϕ) G2(ϕ) = Del2(ϕ)



Preliminaries Fractional processes Spatial Gibbs point processes Conclusion

Definitions and examples

Lennard-Jones model

VΛ (ϕ; θ) := θ1|ϕΛ| + 4θ2

∑
{x,y}∈P2(ϕ)

( θ3

‖y − x‖

)12

−

(
θ3

‖y − x‖

)6
with θ = (θ1, θ2, θ3) ∈ R × (R+)2.

θ2 = 0 θ2 = 0.1 θ2 = 2
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Definitions and examples

Gibbs Voronoi tessellation

VΛ(ϕ) =
∑

C∈ Vor(ϕ)
C∩Λ,∅

V1(C) +
∑

C,C′∈ Vor(ϕ)
C and C′are neighbors

(C∪C′)∩Λ,∅

V2(C,C′)

V1(C): deals with the shape of the cell and V2(C,C′) = θ d(vol(C), vol(C′)).

θ > 0 θ < 0
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Definitions and examples

Quermass modelM = [0,R]

For finite configuration ϕ

V (ϕ; θ) = θ1|ϕ| + θ2 P(Γ) + θ3 A(Γ) + θ4 E(Γ) where Γ =
⋃

(x,R)∈ϕ

B(x,R)

where P(Γ),A(Γ) and E(Γ) respectively denote the perimeter, the volume
and the Euler-Poincaré characteristic of Γ.

Simulation for aU([0, 2]) on the radius; θ1 constant [MH’10]

(θ2, θ3, θ4) = (0, 0.2, 0) (θ2, θ3, θ4) = (0, 0, 1)
(θ2, θ3, θ4) = (−1,−1, 0)
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Definitions and examples

Examples with different characteristics
Examples Interaction Linearity Local Hereditary? Observed

on of V in θ? stability? points?
1 (Multi-)Strauss Marked P2(ϕ)

√ √ √ √

2 Structured Multi-Strauss Del2(ϕ)
√ √ √ √

3 Lennard-Jones P2(ϕ) × ×
√ √

4 Tesselation Voronoı̈ cells
√ √

×
√

5 Quermass f(Γ)
√ √ √

×

Local stability: V(xm|ϕ; θ) := V(ϕ ∪ xm) − V(ϕ) ≥ −K.

Hereditary: f (ϕ) > 0⇒ f (ψ) > 0 ∀ϕ ⊂ ψ.

Aim: asymptotic results encompassing all these examples.



Preliminaries Fractional processes Spatial Gibbs point processes Conclusion

Identification and validation

Maximum Likelihood estimation

Examples Interaction Linearity Local Hereditary? Observed
on of V in θ? stability? points?

1 (Multi-)Strauss Marked P2(ϕ)
√ √ √ √

2 Structured Multi-Strauss Del2(ϕ)
√ √ √ √

3 Lennard-Jones P2(ϕ) × ×
√ √

4 Tesselation Voronoı̈ cells
√ √

×
√

5 Quermass f(Γ)
√ √ √

×

Defined as: ArgmaxΘ ZΛn (θ)−1e−V(ϕ;θ)

theoretically unfeasible.

practically (almost always) feasible with intensive MC simulations to
approximate the partition function [M’07] .

few theoretical results (general consistency?)
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Identification and validation

Maximum Pseudo-Likelihood estimation
Examples Interaction Linearity Local Hereditary? Observed

on of V in θ? stability? points?
1 (Multi-)Strauss Marked P2(ϕ)

√ √ √ √

2 Structured Multi-Strauss Del2(ϕ)
√ √ √ √

3 Lennard-Jones P2(ϕ) × ×
√ √

4 Tesselation Voronoı̈ cells
√ √

×
√

5 Quermass f(Γ)
√ √ √

×

On the lattice [B’68] : consider the product of the conditional densities in
each site conditionally on the other ones.

Extended by [JM’91] for p.p.:

LPLΛn (ϕ; θ) = −

∫
Λn×M

e−V(xm |ϕ;θ)dxm −
∑

xm∈ϕΛn

V (xm|ϕ \ xm; θ) .

‘quick” and computable
estimator and asymptotic
results (as Λn → R

d) . . .

are valid for a large class of models
[BCD’08]: 1,2, [CD’10] 3, [DL’09] 4
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Identification and validation
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Identification and validation

Takacs-Fiksel method (1)

Theorem (Georgii-Nguyen-Zessin)

For any h(·, ·; θ) : S ×Ω→ R, for any θ ∈ Θ,

Eθ?

∑
xm∈ϕ

h (xm, ϕ \ xm; θ)

 = Eθ?

(∫
Rd×M

h (xm, ϕ; θ) e−V(xm |ϕ;θ?)dxm
)

Define

IΛ(ϕ; h, θ) =

∫
Λ×M

h (xm, ϕ; θ) e−V(xm |ϕ;θ)dxm −
∑

xm∈ϕΛ

h (xm, ϕ \ xm; θ) .

Idea of TF method: ergodic theorem and GNZ formula⇒ IΛn (ϕ; θ?) ' 0.

Let us give K test functions hk(·, ·; θ) : S ×Ω→ R (for k = 1, . . . ,K).

θ̂TF(ϕ) := arg min
θ∈Θ

K∑
k=1

IΛn (ϕ; hk, θ)2,
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Identification and validation

Takacs-Fiksel method (2)

θ̂TF(ϕ) := arg min
θ∈Θ

K∑
k=1

∫
Λn×M

hk
(
xm, ϕ; θ

)
e−V(xm |ϕ;θ)dxm −

∑
xm∈ϕΛn

hk
(
xm, ϕ \ xm; θ

)
2

Remarks and interest of the TF method:

when h = V(1), θ̂TF(ϕ) = θ̂MPLE(ϕ).

quick estimator: for example hk(xm, ϕ; θ) := 1B(0,rk)(‖x‖)eV(xm |ϕ;θ?).

[CDDL’10]: allows the identification of the Quermass model with a
pertinent choice of test functions.

[CDDL’10] Asymptotic results may be obtained (covering 1→ 5) but . . .

The contrast limit
is not necessarily concave!

=⇒
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Identification and validation
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Identification and validation

Validation through residuals

Strategy proposed by [BTMH’05,BMP’08] :
1 Let us give a parametric model with true parameter θ?

2 compute an estimate θ̂ of θ? (MLE,MPLE,TF,. . . ).
3 Define the h-residuals, RΛn(ϕ; h) = IΛn(ϕ; h, θ̂) as a diagnostic

tool

RΛn(ϕ; h) =

∫
Λ×M

h
(
xm, ϕ; θ̂

)
e−V

(
xm |ϕ;̂θ

)
dxm−

∑
xm∈ϕΛ

h
(
xm, ϕ \ xm; θ̂

)
.

Indeed, if the model is true (i.e. Φ ∼ Pθ?) , then one may expect that

RΛn(ϕ; h) ' IΛn(ϕ; h, θ?) ' 0 by the GNZ formula.

[CL’10]⇒ investigate h-residuals for constructing several families of
(asymptotic) gof tests
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Identification and validation

Family of gof test based on quadrats

Fix some test function h (ex: h = 1) and split Λn = ∪j∈JΛj

1 compute the h-residuals in each Λj

2 construct ‖R1‖
2 where

R1 :=
(
RΛj (ϕ, h, θ̂n)

)
j∈J

.

Based on a CLT for triangular arrays for spatial Markov random fields [CL’10]:

|Λ0,n|
−1 λ̂−1 ‖R1(Φ; h) − R1(Φ; h)‖2

d
−→ χ2

|J|−1,

where R1(Φ; h) = 1
|J|

∑
j RΛj (ϕ, h, θ̂n) and where λ̂ = V̂ar(I∆(h,Φ; θ?)).

When h = 1⇒ generalization of the dispersion test for Poisson point processes.
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A few perspectives

Further Work

Simpler expressions for variance estimators (MPLE,
Takacs-Fiksel) and variance of residuals.

Simulation study to assess the efficiency and power of the
proposed gof tests.

Asymptotic results for MLE for general Gibbs points processes.

Avoiding the finite range assumption in the CLT, results for
non-stationary point processes.

Nonparametric estimation of a pairwise interaction function
(interaction on P2(ϕ), Del2(ϕ),. . . )

Current IXXI project (11-): spatio-temporal point process
modelling of sunspots

. . .
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Summary

Contributions
in modelling and inference for dependent data
(I. 1D fractional processes, II. spatial point processes)
in applied statistics (III)

13 papers in international journals (published/accepted/in rev.):
[8 (I) + 3 (II) + 2 (III)]

3 Arxiv preprints.

22 (inter)national conferences/proceedings/techn. rep. (not submitted)

2 Phd co-supervisions.

7 grants/contracts (2 current: ANR InfoNetComaBrain / IXXI Project Sunspots).

Development of procedures in R libraries (I, III): SimEstFBM,dvfbm,asympTest
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Current IXXI project: bridge between Parts I and II?

IXXI Project Sunspots (P.O. Amblard, N. Le Bihan, J. Lilenstein)

Goal: statistical modelling of sunspots by a spatio-temporal point
process on the sphere

Daily sunspots observations:
March 2001→ April 2001
http://sohowww.nascom.nasa.gov/

Thank you for your attention
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Characteristics of the data

cyclostationary LRD time
series of the sunspot
number.

Complex spatial structure
and complex evolution
with time.

Spherical data (Geodesic
Gaussian distribution on
the circle, sphere [CLB’11])
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