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Chapter 1

Overview

Il y a dans le cerveau humain environ 100 sillons corticaux, et plus de 100 milliards de
faisceaux de matière blanche. Si le nombre, la configuration et la fonction de ces deux
structures anatomiques diffèrent, elles possèdent toutefois une propriété géométrique
commune: ce sont des courbes ouvertes continues. Cette thèse propose d’étudier com-
ment les caractéristiques des courbes ouvertes peuvent être exploitées afin d’analyser
quantitativement les sillons corticaux et les faisceaux de matière blanche.

Les quatre caractéristiques d’une courbe ouverte–forme, taille, orientation et position–
ont des propriétés différentes, si bien que l’approche usuelle est de traiter chacune sé-
parément á l’aide d’une métrique ad hoc. Nous introduisons un cadre riemannien adapté
dans lequel il est possible de fusionner les espaces de caractéristiques afin d’analyser con-
jointement plusieurs caractéristiques. Cette approche permet d’apparier et de comparer
des courbes suivant des distances géodésiques. Les correspondances entre courbes sont
établies automatiquement en utilisant une métrique élastique.

Dans cette thèse, nous validerons les métriques introduites et nous montrerons leurs
applications pratiques, entre autres dans le cadre de plusieurs problèmes cliniques im-
portants.

Nous commençons par considérer une courbe ouverte. Dans cette fenêtre, la vue
pose des difficultés particulières, fait apparaître des problèmes et des possibilités.

Le choix de la représentation restreint notre analyse aux sillons et aux fibres de la
matière blanche, les deux structures anatomiques modélisables par des courbes ouvertes
en 3D. La figure 2.1 illustre la relation entre l‘anatomie et un ensemble des courbes. Une
courbe ouverte est une des moyens les plus simples de représenter mathématiquement
un sillon ou une fibre de matière blanche. On pourrait également utiliser une surface
(ouverte), mais celle-ci est plus difficile à modéliser et implanter.

Une courbe ouverte peut être représentée dans un espace euclidien ou riemannien.
Nous utilisons les deux dans notre analyse. Dans un espace euclidien, un spline (une
courbe paramétrisée définie par morceaux par des polynômes) peut être une bonne
approximation de formes de courbes complexes. La distance L2 que nous calculons
entre deux splines peut être utilisée pour le regroupement ou tout autre classification.
L’avantage principal de cette approche est sa facilité d’implantation, et le fait que des
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6 Overview

méthodes existantes provenant de l’apprentissage automatique et des statistiques peu-
vent être intégrées telles quelles dans l’analyse. Dans l’analyse riemannienne, la courbe
ouverte est représentée par un point dans l’espace des fonctions continues. Cet espace de
fonctions est de dimension infinie et non linéaire, et des méthodes avancées comme celles
provenant de l’analyse fonctionnelle, la géométrie différentielle ou la théorie des groupes
est nécessaire pour représenter et analyser les courbes. L’avantage de la représentation
riemannienne est que nous pouvons nous appuyer la géométrie intrinsèque (rieman-
nienne) de l’espace pour calculer la distance entre deux points (courbes). Les courbes
ouvertes sont essentiellement des structures non linéaires. L’espace des courbes ouvertes
est également non linéaire. Dans de tels espaces, les mesures linéaires ne sont pas bien
définies et les résultats pourraient être incohérents.

1.1 Organisation de cette thèse

Cette thèse est composée de deux parties : la première est consacrée à l’analyse des
sillons; la seconde, à l’analyse d’une fibre de matière blanche. Ces deux structures
anatomiques sont traitées séparément car elles posent des problèmes particuliers : les
sillons ont une grande variabilité , et la tractographie des fibres de matière blanche
produit de grandes quantités de données. Chaque structure nécessite une approche
adaptée.

De plus des applications associées à ces deux structures anatomiques font apparaître
des résultats différents. Un ensemble classique d’outils mathématiques sont utilisés à
la fois dans les parties I et II. Le chapitre 3 est un aperçu d’un framework riemannien
complet pour l’analyse de courbes ouvertes.

1.1.1 Partie I

Les discussions dans la partie I se rapportent à la tâche difficile de l’ etiquetage des
sillons. Le chapitre 4 présente de l’étiquetage en reliant chacun de ces deux mots par
des caractéristiques innée aux sillons. L’étiquetage ou l’identification est l’application
la plus importante liée aux sillons. Le chapitre 5 propose une solution partielle à ce
problème difficile.

1.1.2 Partie II

Dans notre travail, nous considérons des métriques basées sur la forme, l’échelle, l’orientation
et la position: des caractéristiques physiques associées à une fibre. Ces caractéristiques
ont des propriétés différentes, de sorte que la méthode habituelle a été de concevoir dif-
férentes métriques et des espaces pour les traiter individuellement. Dans le chapitre 3,
nous avons décrit un cadre Riemannien global où les espaces de caractéristiques jointes
permettent une analyse de combinaisons de caractéristiques. Nous pouvons comparer
les courbes et les recaler en utilisant les formules pour les métriques et géodésiques
données. Les correspondances entre les courbes sont automatiquement estimées grâce
à l’utilisation d’une métrique élastique.
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Nous commençons par une discussion sur le regroupement (clustering), une étape
importante et nécessaire dans l’analyse de la matière blanche. Le clustering nous aide
à organiser le grand volume de fibres obtenu par IRM de diffusion (DTI) et dans la
première phase de notre travail, nous avons étudié les méthodes et les métriques exis-
tantes afin de développer des distances pour nos propres études. Le chapitre 7 décrit
ces travaux.

Dans les trois chapitres suivants, nous montrons comment les outils et les métriques
fournis par le cadre riemannien peuvent être efficaces dans le contexte de l’analyse de
la matière blanche. Dans le chapitre 8, nous utilisons les configurations spécifiques des
fibres dans le corps calleux pour montrer comment les résultats de clustering varient en
fonction des différentes métriques. Cela plaide pour le choix judicieux de métriques en
fonction des applications.

Ce cadre fournit également des outils pour le calcul de statistiques sur des courbes.
Ces statistiques sont un premier pas vers une analyse statistique rendant possible des
tâches d’inférence telles que l’estimation de paramètres et les tests d’hypothèses pour
les comparaisons de groupes. Pour l’analyse des fibres de la matière blanche, en raison
du nombre important de fibres concernées, il est également pratique de commencer par
représenter un ensemble de fibres par une moyenne et une variance qui décrivent les
caractéristiques essentielles du faisceau de fibres. Le chapitre 9 traite de ce sujet plus
en détail.

L’étude de maladies de la matière blanche est l’un des principaux objectifs de
l’analyse de la matière blanche. Dans le chapitre 10, nous montrons comment les
distances caractéristiques décrites dans le chapitre 3 peuvent être utilisées pour dé-
tecter des changements morphologiques dûs à une maladie dégénérative. Puisque c’est
la première fois que de telles mesures de distance sont utilisées pour traiter ce problème,
notre approche peut être considérée comme nouvelle.

1.1.3 L’étiquetage des sillons utilisant une échelle multidimension-
nelle

Au cours des 15 dernières années, deux idées ont émergé pour traiter le probléme de
la variabilité des sillons pour leur étiquetage et leur identification. La première est
l’utilisation d’un large ensemble de descripteurs. Nous fondons cette étude sur la
seconde idée, celle de filtrage relationnel que nous mettons en œuvre dans un cadre
d’apprentissage supervisé. Nous utilisons une mise à l’échelle multi-dimensionnelle
(MDS) afin de recriéer les relations structurelles dans notre sous-espace. Les sillons
non étiquetés sont projetés dans ce même sous-espace, et on leur attribue ensuite une
classe par la méthode des plus proches voisins (NN). Nous adoptons une approche heuris-
tique pour le choix de la mesure de distance, qui est au centre de toutes les méthodes
à base de graphe. Dans un travail préliminaire, nous avons constaté qu’une distance
basée uniquement sur la forme ne permettait pas de différencier les sillons de manière
adéquate. Les distances basées sur des caractéristiques spatiales ont toutefois donné
des résultats encourageants. Nous avons donc évalué trois distances spatiales conçues
pour permettre de comparer différentes configurations de sillons. Dans des expériences
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utilisant une stratégie leave-one-out, 90% des 180 sillons provenant de 10 classes de
sillons sont classés avec succès comme le sont ceux de 6 patients atteints de tumeurs
corticales.

Avec ce système d’apprentissage supervisé, nous offrons une solution simple et intu-
itive à un problème difficile. L’utilisation de l’appariement relationnel nous donne la sou-
plesse nécessaire pour tenir compte des variations normales dans les sillons. Nous pou-
vons aussi, dans une certaine mesure, classer des sillons issus de données pathologiques
ou partiellement segmentés, qui sont différents de l’ensemble d’apprentissage.

1.2 Contributions de cette thèse

Nous avons etudié l’analyse des courbes ouvertes dans deux contextes très différents , les
sillons et les fibres de matière blanche. Les sillons sont peu nombreux et variables. Les
fibres, d’autre part, sont nombreuses, mais homogènes au sein d’un faisceau de fibres.

Le problème clé dans l’analyse des sillons est l’étiquetage. Les experts en neu-
roanatomie eux mémes ont parfois des difficultés pour réaliser cette tâche. Leur niveau
de performance constituera donc la limite supérieur à atteindre pour les methodes
d’étiquetage automatique.

Nous abordons le problème de l’étiquetage automatique en limitant tout d’abord
la portée du problème aux sillons primaires. Ce probléme est alors bien défini et nous
lui apportons une solution simple et facile à implémenter. Nous proposons ensuite de
formuler des solutions en considérant ce problème comme un problème d’appariement
de graphes.

Le coeur du problème dans l’analyze des fibres de matière blanche (obtenues en DTI
ou HARDI) est de gérer de façon efficace l’importante quantité de fibres. Ceci peut être
réalisé par regroupement de fibres, par regroupement en utilisant des approximations
comme la méthode Nyström , par échantillonnage des données du faisceau de fibres ou
en calculant une moyenne représentative comme nous le faisons dans le chapitre 10.
Les méthodes basées sur le volume éludent cette question en traitant un structure de
la matière blanche comme une seule unité anatomique. En tractographie cependant
analyser les fibres au niveau individuel est généralement indispensable. Tractographie
et algorithmes de classification ont tendu ceci possible. Des améliorations sont néces-
saires, mais je suis d’avis que l’optimisation du pipeline de pré-traitement est un travail
d’ingénierie.

Bien que la lourdeur de tailements soit un inconvénient, méthodes basée sur la
tractographie offrent la possibilité d’ étudier des paramètres locaux le long des fibres.
Ceci est important dans l’étude de maladies de la substance blanche et, à ce stade, c’est
ici que les contributions les plus importantes peuvent être aportées à la communauté
médicale.

Dans cet esprit, nous introduisons une nouvelle série de méthodes géométriques pour
l’analyse des faisceaux de fibres. Ces outils étendent les méthodes d’analyse de forme
des fibres en proposant une analyse plus globale combinant les quatre caractéristiques
physiques des fibres–forme, orientation, échelle et position– quand elles sont , modélisées
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sous forme du courbes. Nous motivons l’utilisation de ces outils avec deux exemples:
Dans le premier cas, nous montrons comment nous pouvons améliorer les résultats
de clustering en sélectionnant les métriques de distance appropriées en fonction des
problèmes rencontrés. Nous pouvons personnaliser les solutions de cette façon car nous
travailler avec un plus grand choix d’outils.

Nous avons aussi montré du façon convaincante, à travers un exemple clinique, que
ces mesures utilisées de concert avec permettent de détecter des changements physiques
dus à une maladie (sclérose en plaque (SEP) dans ce cas). Jusqu’ici l’analyse de ce
problème a été limitée à l’utilisation d’ACP ou de variantes de celle-ci. Les paramètres
de distance que nous utilisons offrent différentes façons de mesurer les changements et
les expériences que nous menons à partir de cette méthode permettent de regarder le
problème sous un nouveau jour. En fait, cette étude est sans doute le premier exemple
d’analyse géométrique de ce type dans le contexte de l’analyse d’images médicales. Avec
des études plus poursées cette méthode pourrait être utilisée pour calibrer les stades de
la maladie. Ceci permettra aux médecins de cibler le traitement à administrer de plus
efficace.
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Figure 1.1: Les courbes des sillons sont labellisées en se basant sur leurs dependances
spatiales avec les autres sillons.

The relative placement of sulcal curves is used to label them. We can identify the
superior frontal sulcus (top panel, in red) by locating the precentral sulcus (center
panel, blue), which is perpendicular to it, and the inferior frontal sulcus (bottom panel,
blue) which runs parallel to it.



Chapter 2

Introduction

There are about a hundred sulci in the human brain and over a hundred billion white
matter fibers. These two anatomical structures differ in many respects but they share
a common geometric description: they are both open continuous curves. This thesis is
a study of how the physical attributes of open curves can be used to advantage in the
many varied quantitative applications of white matter fibers and sulci.

We begin by considering the open curve. The brain imaging landscape from this
window has its own particular challenges, open problems and possibilities. The view
offers the following:

Related to the representation

The choice of representation restricts our analysis to sulci, white matter fibers and the
veins and arteries of the vascular system in the brain. These three anatomical structures
can be modeled by open curves in 3D but we will limit the discussions in this thesis
to sulci and white matter fibers. Figure 2.1 illustrates the relationship between the
anatomy and a set of curves.

An open curve is one of the simplest ways to mathematically represent an individual
sulcus or white mater fiber tract. An (open) surface, which may also be used, is more
difficult to model and implement. The closed curve is a third option, but it is once again
a mathematically more complex representation. Anatomical structures are not easy
abstractions of geometrical primitives. Were this the case, a closed curve representation
of a square or circle would be the right choice.

The details of the mathematical modeling aside, for the purposes of analysis (of sulci
or white matter fibers), an open curve is the more useful representation. In the case of
sulci, the fact that they are highly variable in shape and structure (see Chapter 4), also
means that there is no additional information in a surface representation. The bottom
curve (the section of the sulcus closest to the inner cortex– see Figure 2.1b) is the most
stable part of a sulcus and this is what we use in our analysis. For white matter fiber
analysis too, a curve model enables us to analyze individual tracts and, as we discuss
in Chapter 6, there are benefits to this analysis over a volume-based one.

An open curve may be represented in a Euclidean or Riemannian space. We use both

11
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in our work. In a Euclidean space, a spline (a parameterized curve defined piecewise
by polynomials) can easily approximate shapes of complex curves. The L2 distance we
compute between two such curves can be used for clustering or other classification tasks.
The main advantage with this approach is the ease of implementation and the fact that
existing methods from machine learning and statistics can be readily incorporated into
the analysis.
In the Riemannian analysis, the open curve is represented as a point in the space of
continuous functions. This space of functions is infinite dimensional and nonlinear
and advanced methods such as those from functional analysis, differential geometry
and group theory are needed to represent and analyze curves. The advantage of a
Riemannian representation is that we can use the intrinsic (Riemannian) geometry of
the space to compute distances between two points (curves). Open curves are essentially
nonlinear structures. The space of open curves is also nonlinear. Linear measurements
in such non-Euclidean spaces are not well-defined and the results may not be consistent.

Related to the geometrical analysis

The open curve is a geometric structure and we use it in analysis in this context.
Geometrical analysis in medical imaging is most commonly a shape study although the
term itself covers other possibilities. We use a mathematical model for open curves that
allows us to incorporate shape, orientation, scale and position, the physical features
associated with the curve. We expect to be able to apply this mathematical model to
new kinds of problems or to reinterpret old ones.

One such new study design is the investigation of the morphological changes in
the corpus callosum in Chapter 10. For the purposes of studying shape changes in its
midsagittal profile, the corpus callosum is usually represented as a volume (comprised of
thousands of individual curves) or is skeletonized. By measuring shape and orientation
distances between individual curves, we have been able to detect changes in the callosal
profile due to the progression of multiple sclerosis. These results have not been shown
before for multiple sclerosis and potentially links atrophy, the mechanism believed to
cause the changes, to the local white matter of the corpus callosum.

Sulci, on the other hand, are not easily interpreted in a geometrical study. This is
due to the variability, which then translates to a problem of selecting a set of features
that is unique to a class of sulci. The possibility of shape analysis has been explored
before and in Chapter 5 and Appendix A we present some of our findings. Sulcal
variability, as it relates to identification and labeling is, as we show in Chapter 5, better
addressed by a graph pattern matching paradigm.

Organization of the Thesis

This thesis is divided into two parts: the first part is devoted to the analysis of sulci;
the second, to white matter fiber analysis. We discuss these two anatomical structures
separately because we encounter different problems with them: Sulci are highly variable;
the white matter fiber tractography output, which is how these fibers are made available
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for image analysis, constitute a very large data set. Each structure requires a differ-
ent approach. Furthermore, useful applications associated with these two anatomies
emphasize different results.

A common set of mathematical tools are used for analysis in both Part I and II.
Chapter 3 is an overview of a comprehensive Riemannian framework for the analysis of
open curves [1]. This is a flexible mathematical framework: different combinations of
features define joint Riemannian manifolds; the distances between curves in these man-
ifolds quantify their differences. We have constructed this thesis around the idea that
analysis outcomes and possibilities can be improved by using the full set of geometrical
features associated with the open curve. This framework facilitates this and in doing
so broadens the scope of geometrical analysis.

The discussions in Part I relate to the difficult task of labeling sulci. Chapter 4
introduces the labeling problem by linking each of these two words with characteristics
that are innate to sulci. Labeling or identification is the most important application
related to sulci. Chapter 5 offers a partial solution to this hard problem.

In Part II we focus on white matter fibers. Chapter 6 traces the historical devel-
opment of quantitative white matter fiber analysis and supplies an important context
for tract-based analysis. Tract-based studies offer the potential to analyze the length
profiles of fiber bundles but there are few studies of this kind. A tract-based geometrical
analysis of fiber tracts is a good application of the tools we use and in Chapter 10 we
demonstrate how such studies are designed. A synopsis of the individual chapters of
Part II can also be found at the end of Chapter 6.

In Chapter 11 we conclude by listing some of the contributions of the work presented
in this document.
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(a) reconstructed sulcal surface (b) top (blue) and bottom (green) curves

(c) DTI fibers of the arcuate fasciculus (d) DTI fiber modeled as a curve

Figure 2.1: Sulcal curves or white matter fiber tracts (from DTI or HARDI sources)
can be modeled as 3D open, continuous curves.



Chapter 3

Comprehensive Riemannian
Framework for Open Curves

The underlying theme in this thesis is the use of the full set of physical features –
shape, scale, orientation, and position – in open curve analysis. This information can
significantly aid the clustering, classifying, labeling and data analysis of open curves.
In this chapter, we describe a flexible Riemannian framework for open curves which
defines joint feature spaces or manifolds to study combinations of these features in a
consistent way.

3.1 Introduction

White matter fibers reconstructed from DT-MRI images can be described as 3-dimensional
open, continuous curves. Sulci can also be reconstructed to give a similar geometric de-
scription (Figure 2.1). A physical description of these structures would involve shape,
scale, orientation, and position, the physical features associated with the curves. Of
these features, shape is most commonly used in medical image analysis.

Several recent papers have proposed the use of a formal Riemannian framework
for shape analysis of continuous curves [2, 3]. This type of framework has many ad-
vantages: (i) It provides techniques for comparing, matching, and deforming shapes of
curves under the chosen metric. The correspondences for these tasks are established au-
tomatically. (ii) It also provides tools for defining and computing statistical summaries
of sample shapes for different shape classes [4].

The Riemannian framework for open curves described in this chapter uses the same
core ideas that were developed for elastic shape analysis of continuous closed curves.
With this framework, we can compare and quantify differences between open curves in a
coherent way. These comparisons are based on different feature combinations and each
such combination constitutes a manifold. The five feature combinations we consider
are:

1. Shape, orientation, scale and position: S1

15
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2. Shape, orientation, scale: S2

3. Shape and scale: S3

4. Shape and orientation: S4

5. Shape: S5

These manifolds are united by a set of considerations and mathematical techniques;
we describe this common methodology in Section 3.2. We then give mathematical
descriptions for each of these manifolds (Sections 3.3.1–3.3.5).

This chapter serves as a mathematical background for the discussions in later chap-
ters, particularly those in Part II of this thesis. The material presented is based directly
on Mani et al. [1]. The methodology was developed by Anuj Srivastava and his collabo-
rators; their publications, in particular those on Riemannian analysis of elastic curves,
are other reference sources [3, 5, 6, 7, 8]. Concepts from differential geometry and group
theory are discussed informally. For a more formal and complete treatment, the reader
is referred to do Carmo [9, 10] for differential geometry and Rotman [11] for group
theory.

3.2 General Methodology

The mathematical framework we describe draws from ideas in differential geometry,
algebra and functional analysis and is an extension of the mathematical techniques
developed for elastic shape analysis of continuous closed curves. Joshi et al. [3, 5, 12]
introduced the square-root velocity function (SRVF) for the analysis of closed curves
and Balov et al. [6] describe the analysis of open curves using the square-root function
(SRF). The same general principles presented in these papers, i.e. the use of an elastic
metric for shape analysis and a path-straightening approach to construct geodesics,
apply here. The elastic metric, which is a Riemannian metric originally proposed by
Younes [13], allows a curve to stretch and bend as it deforms along a geodesic. The
path-straightening method [14] uses an arbitrary path to initialize the geodesic between
two curves; the geodesic is iteratively computed using variational methods.

The mathematical tools we use enable us to define a representation space for open
curves, ensure that the curves are invariant to certain shape-preserving transforma-
tions and compute geodesic distances between two curves. Each space defined uses a
unique combination of features and, by extension, invariances but they share common
procedural steps. These are outlined below:

1. Each fiber or sulcal curve is represented as an open continuous parameterized
curve, β, as seen in Figure 3.1.

2. In order to compare curves we use elastic curve matching and for this the pa-
rameterized curve β is represented by a function. With the choice of function
representation we can make the curve invariant to translation. We can also, at
this stage, make the curve invariant to scale by manually scaling it.
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3. The representation space described above (2) is a preshape space, C, because many
curves that are rotated and reparameterized versions of each other can actually be
different elements. To unify these different representations of the same curve, one
defines an equivalence class of functions. The set of all these equivalence classes
is called the shape space S.
(Note that the terms preshape space and shape space are used in a general sense
for the representation spaces in manifolds S1−S5. The methodology we use is an
extension of work done in shape analysis where these terms were first applied and
for consistency we use the same nomenclature for all the feature spaces.)

4. A Riemannian structure is imposed on S and curves are compared by computing
geodesics between their representations in S. The geodesic length is a quan-
tification of the difference between two curves in the joint feature space under
consideration. The geodesics are computed using numerical algorithms.

We detail these steps describing the representations, the invariances and the computa-
tion of distances in the sections below. Figure 3.3 illustrates these steps and Figure 3.4
the relationship between the manifolds.

3.2.1 Representation Space

The curve is represented in an L2 space of square integrable functions first in a preshape
space and then in a shape space which is a quotient space of the preshape space. There
are thus two levels of representation. In this section, we will discuss the representation
space under four headings: the curve representation, the function representation, the
preshape space and the shape space.

3.2.1.1 Curve Representation

Let β : [0, 1] → R3 be an open continuous parameterized curve such that its speed
‖β̇(t)‖ is non-zero everywhere. The parameterization determines the rate at which the

curve is traversed. The norm ‖β‖ =
√∫ 1

0 ‖β(t)‖2dt is a square-integrable function so
we can refer to the space of all such curves as L2([0, 1],R3) or more simply L2.

An advantage to using continuous curves instead of landmarks which are reference
points along the curve is that we avoid the problems associated with the selection of
these points which many of the existing approaches to shape analysis have to contend
with. As a trade-off, tools from functional analysis are needed.

3.2.1.2 Function Representation

The curve β is represented either by the square-root velocity function (SRVF) or the
square-root function (SRF). These two function representations are important for the
following reasons: First, the use of the L2 metric on the space of SRVFs and SRFs
generates an elastic metric and a framework for elastic shape comparisons; Second,
these functions preserve the L2 metric under reparameterization (see Section 3.2.3);
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Lastly, a versatile framework can be built around these representations–the shape space
can be easily modified and different combinations of features included.

Figure 3.1: β : [0, 1] → R3 is an open continuous parameterized curve. A sulcal curve
or white matter fiber can be described as an open curve β.

SRVF The square-root velocity function of the curve β is

q(t) =
β̇(t)√
‖β̇(t)‖

, q : [0, 1]→ R3 . (3.1)

From Eqn. 3.1 we see that q is only dependant on the velocity term β̇. It is therefore
called the square root velocity function and the norm ||q|| is the square root of
the instantaneous speed along the curve β. It is possible to recover the original curve
β, within a translation, using β(t) =

∫ t
0 ||q(s)||q(s)ds. The function q is invariant to

translation in R3. By manually scaling the curves to the same length we can also remove
the scale information at this stage.

SRF The square-root function is defined thus:

h(t) =

√
‖β̇(t)‖β(t) , h : [0, 1]→ R3 . (3.2)

Since h is dependant on β, the full set of attributes of the open curve, including global

translation, are incorporated in the expression. The
√
‖β̇(t)‖ term is a scalar that

ensures invariance to reparameterization.
It is not easy to recover the curve β from the SRF because this involves solving

a higher-order ordinary differential equation. Consequently, we cannot draw geodesic
paths between two curves or compute sample statistics, though we can still compute
distances between the curves. Because of this limitation, we only apply the SRF to
cases where we want to include position as a feature; for all other cases, we use the
SRVF.
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3.2.1.3 Preshape Space

The space of all square-root or square-root velocity representations of curves C is an
infinite dimensional vector space of all functions in L2([0, 1],R3). It has the form:

C = {f : [0, 1]→ L2([0, 1],R3)},

where f is the function representation of the curve.
An inner product can be defined on Tf (C), the tangent space of C at the point f :

〈w1, w2〉 =

∫ 1

0
〈w1(t), w2(t)〉 dt, w1, w2 ∈ Tf (C).

This metric, defined infinitesimally using elements of the tangent space at a point, is the
Riemannian metric. The use of the L2 metric on the space of square-root velocity
representations generates an elastic metric; the Riemannian metric is therefore an elastic
metric in this space.

The differentiable manifold C with this Riemannian metric is a Riemannian man-
ifold. With this Riemannian structure we can derive the following: (i) geodesic paths
between curves; (ii) the exponential map; (iii) the inverse exponential map.

The elements of C do not represent the shape of a curve uniquely. A reparametriza-
tion of β, using an element γ ∈ Γ, where Γ is the group of diffeomorphisms (a smooth
bijective map with smooth inverses) from [0, 1] to itself, results in a different square-root
velocity function while preserving its shape. Similarly, any rigid rotation of β changes q
but not its shape. Since C has many elements of the same shape, we call it the preshape
space of open curves. (As noted before, we use the term preshape space in a general
sense; it applies to the preshape space of S1 − S4, as well as to S5.)

In this framework, the three different preshape spaces we use are:

1. C1 = {h : R3 → R3}. This is the preshape space for the S1 manifold. The
h-function (SRF) is used here.

2. C2 = {q : R3 → R3}. This is the preshape space for the S2 and S3 manifolds. The
q-function (SRVF) is used since the space is invariant to translation.

3. C3 = {q : [0, 1]→ R3|
∫ 1

0 ‖q(t)‖2dt = 1}. This is the space of all unit-length, open,
elastic curves and is the preshape space for S4 and S5. The q-function is used
and the curves are scaled to remove variability due to scale. The space is thus
invariant to translation and uniform scaling.

3.2.1.4 Shape Space

To unify all the different representations of the same curve, we define an equivalence
class or orbit of functions. In cases where invariance to reparameterization and orien-
tation is sought, the orbit has the form

[f ] = {(γ,Of)|γ ∈ Γ, O ∈ SO(3)}.
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Here f is the function representation, i.e., the h-function or the q-function; Γ is the
reparameterization group; SO(3) is the 3-dimensional rotation group and (γ,Of) is the
reparameterized and rotated curve. Equivalence relations are a by-product of group
operations. Group actions with which we achieve invariance to reparameterization or
orientation are more fully described in Section 3.2.2.

The elements of the orbit are considered equivalent, but the orbits themselves are
distinct and do not intersect; collectively they define a disjoint set which is the shape
space: S = C/(Γ× SO(3)). This is now a quotient space of the preshape space C and
has unique elements.
(As with preshape space, the term shape space is generic to all five feature spaces, S1−S5.
These manifolds, discussed in Sections 3.3.1–3.3.5, are differentiated by the preshape
spaces and equivalence classes that define them; only S5 is an actual shape space).

There is a second type of equivalence class we are interested in. For manifolds S1, S2

and S4, invariance to reparameterization but not to orientation is desired. The orbit in
this case has the form

[f ] = {(γ, f)|γ ∈ Γ}

and the corresponding quotient space is S = C/Γ.
Since the shape space S is a quotient space of the preshape space C, it inherits the

Riemannian metric from C. With this structure, we can compute a geodesic distance in
S between two orbits [f1] and [f2]. More details on geodesic distance computations are
provided in Section 3.2.3.

3.2.2 Invariances, Equivalence Relationships

Since the shape of an object does not change when it is translated, scaled or rotated, an
important requirement in shape analysis is that metrics be invariant to these transfor-
mations. Parameterized curves require an additional invariance. A reparameterization
only changes the speed with which a curve is traversed, not its shape. Reparameteriza-
tion is thus another shape preserving transformation. Metrics should be invariant to it
as well.

There are two ways in which invariances to transformations are achieved. The first
comes directly from the function representation. With the choice of function we can
remove translation or scale information. In the S2 and S3 manifolds, for instance, we
remove translation and in the S4 and S5 manifolds we remove both translation and scale.
The second way to achieve invariance to transformations is by establishing equivalence
classes. We elaborate on this in Sections 3.2.2.3 and 3.2.2.4.

We apply the four transformations, translation, nonrigid uniform scaling, rigid ro-
tation and reparameterization to the shape manifold, S5. These transformations are
discussed below. The invariance requirements for the four other manifolds, S1−S4, are
different but they are dealt with in a similar manner.
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3.2.2.1 Translation

The shape+orientation+scale+position manifold, S1, includes position information and
so we want the function representation we use to reflect this. For this manifold, the
value of the function is designed to change with the translation or the change in position
of the curve.
The four other manifolds, S2 − S5, do not include position as a feature and are invari-
ant to translation. The function representation, q, used in those cases, is expressed
exclusively in terms of the time derivative of the curve, β, and does not have a position
component.

3.2.2.2 Scale

In order to remove the influence of the scales of curves in the quantitative analysis,
we can rescale them to be of the same length. The rescaling, which is done with
the preshape representation, leaves the function representation, q, and the Riemannian
metric unchanged. The preshape space, however, is reduced. It is computationally
convenient to scale the curve, β, to unit length;

∫ 1
0 ||β̇(t)||dt =

∫ 1
0 ||f(t)||2dt = 1 then

holds. Since they have unit norm, the set of all functions associated with curves of
length one are elements of a hypersphere in L2. The differential geometry of a sphere
is well-known and because of this, analysis and computations in subsequent steps is
greatly simplified.

Two of the manifolds we consider, shape, S5, and shape+orientation, S4, are invariant
to scale and receive this treatment. The shape attribute is by definition invariant to
scale. In the case of the shape+orientation space, orientation, not scale, is added to
the shape representation. Thus, this manifold retains the scale invariance of the shape
space.

3.2.2.3 Reparameterization

The curve β is parameterized. This parameterization introduces an additional source
of variability since arbitrary parameterizations are included in the representation. For
any two curves, β1 and β2, different parameterizations, in general, result in different
distances between them. We account for this variability by applying ideas from group
theory. The shape of the curve does not change due to reparameterization so we would
like to treat this mapping as we do rigid rotations and other shape-preserving trans-
formations. We define a reparameterization group (i.e. the set of all reparameterized
curves) and the action of this group on the preshape space results in reparameterization
orbits. The elements of these orbits are equivalent. This enables us to compare orbits
of curves, a comparison that is now independent of parameterization.

Γ, as noted before, is the set of all orientation-preserving diffeomorphisms (i.e., the
direction at different points along the curve do not change due to the diffeomorphism).
For the SRVF, i.e. the q-function, the map, C × Γ→ C, is a group action defined by:

(q, γ)→
√
γ̇(qoγ).
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The new function (q, γ) is the reparameterized curve and its distance from the original
function q, is, in general, non-zero. We define two elements q1 and q2 as equivalent (i.e.
q1 ∼ q2) if for some γ ∈ Γ, q2 = (q1, γ). A set of equivalent elements constitute an
equivalence class:

[q] = {(q, γ)|γ ∈ Γ}.
We see that the equivalence class, which is obtained as a result of the group action Γ
on C, enables us to achieve invariance to reparameterization. The equivalence classes
partition C into disjoint sets. The quotient space that results is S = C/Γ.

For the SRF, i.e. the h-function, the group action C × Γ→ C is defined by:

(h, γ)→
√
γ̇(hoγ).

Since the parameterized curve, β, is the starting point for all the manifolds, S1−S5,
we need to ensure invariance to reparameterization for each one of them.

3.2.2.4 Orientation

Let O ∈ SO(3) be a rotation matrix and let SO(3), the set of all possible rotations in R3,
act isometrically (i.e., it is a distance-preserving map) on C as follows: SO(3)×C → C.
(O, q) = {Oq(t)|t ∈ [0, 1]} is the rotated curve that results from this group action. In
cases where we want the analysis to be invariant to this group action we define the orbit
of q under SO(3) as

[q]o = {(Oq)|O ∈ SO(3)} ⊂ C.
The elements of [q]o are equivalent; they are rotated versions of each other.

The action of SO(3) is combined with the action of Γ since, as noted in Sec-
tion 3.2.2.4, the quotient spaces S1−S5, need to also be invariant to reparameterization.
The joint action of Γ and SO(3) gives the larger orbit

[q] = {(γ,Oq)|γ ∈ Γ, O ∈ SO(3)} ⊂ C. (3.3)

The corresponding quotient space is S = C/(Γ× SO(3)). We will consider how the two
group actions, Γ and SO(3), interact next.

3.2.2.5 The Product Group (Γ× SO(3))

There are two important properties associated with the product group (Γ× SO(3)):

1. The actions of SO(3) and Γ on C commute. It is due to this that we can form an
equivalence class (Eqn. 3.3) and define the action of the product group. We also
make use of this property when we find distances and need to optimize iteratively
(see Section 3.2.3.1).

2. The joint action of (Γ×SO(3)) on C is by isometries with respect to the distance
metric. This implies that the inner product on T[q], the tangent space to S, is
independent of the choice of q̃ ∈ [q]. The geodesic distance between two points in
S is given by:

dS([q]0, [q]1) = min
q̃1∈[q1]

dC(q0, q̃1). (3.4)
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3.2.3 Geodesics and Distances

We can compare curves by quantifying their differences using a distance function. The
standard L2 metric, often used in quantitative analysis of fibers, is given by

‖β1 − β2‖2 =

√∫ 1

0
‖β1(t)− β2(t)‖2dt.

This metric is not, in general, invariant to reparameterizations, i.e.

‖β1 ◦ γ − β2 ◦ γ‖ 6= ‖β1 − β2‖.

Since we require invariance to reparameterization, we solve this issue by introducing the
SRF and the SRVF representations. These functions preserve the L2 distance under
reparameterization so that for any two curves β1, β2, with the corresponding functions
f1 and f2, and any γ ∈ Γ, we have that ‖(f1, γ) − (f2, γ)‖2 = ‖f1 − f2‖2. Because of
this equality, we are able to define the distance between the two curves as

d(β1, β2) = γ∗ = argmin
γ∈Γ

(‖f1 − (f2, γ)‖2) . (3.5)

The minimization is performed by taking the path-straightening approach and using
the standard dynamic programming algorithm for the computations. This is described
in Section 3.2.3.1.

For the S3 and S5 manifolds, invariance to orientation is sought. Since we need to
take the variability due to reparameterization also into account, the distance function
now becomes

d(β1, β2) = γ∗ = argmin
γ∈Γ,O∈SO(3)

‖f1 −O(f2, γ)‖2 . (3.6)

We solve this with a joint optimization described in Section 3.2.3.1.
In our open curve analysis, we are interested in the distance function in S, the shape

space. This distance function is inherited from C. The distance between two curves β1

and β2 is the distance between their orbits [β1] and [β2] and is the pairwise shortest
distance between elements in these two orbits. Once the optimal reparametrization
and/or orientation of f2 are obtained, we can compute the geodesic path between the
orbits [f1] and [f2]. Figure 3.2 shows the geodesic path between two curves in the S2−S5

manifolds.

3.2.3.1 Optimization

The optimal distance is obtained by minimizing the cost function. For optimization
over reparameterization, Γ, we use dynamic programming or gradient descent. When
we need to optimize over both orientation and reparameterization, we perform a joint
optimization; the optimal Γ is obtained by dynamic programming and the optimal
orientation over SO(3) is computed using Procrustes alignment. We briefly describe
these procedures in this section.
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Dynamic Programming Dynamic programming (DP) is a numerical optimization
algorithm where we obtain an optimal path by solving the problem sequentially. At each
stage we select an optimal trajectory from all the possible trajectories by optimizing
(minimizing) the cost function. For this analysis, the cost function is the distance
function (Eqns. 3.5 and 3.6) that matches the point f2(γ(t)) with the point f1(t). Since
the cost function is defined by the L2 norm, it is additive over the path (t, γ(t)) and
can be cast as a DP problem. The algorithm forms a graph from (0, 0) to (1, 1) in R2

and searches over all the paths on that grid, such that the slope of the graph is strictly
between 0o and 90o. This constraint is placed so that 0 < γ̇∗ < ∞. The cumulative
cost over the entire grid gives us an approximation to γ∗. The DP algorithm gives an
exact solution.

A gradient-based optimization is an alternative to DP. The gradient-descent gives
a local solution. Its estimate for γ∗ is less accurate than DP but, as a trade-off, it is
computationally less expensive.

Joint Optimization Consider the optimization problem:

(γ∗, O∗) = argmin
γ∈Γ,O∈SO(3)

‖f1 −
√
γ̇Of2(γ)‖2 . (3.7)

We encounter this problem with the S3 and S5 manifolds where the curves are invariant
to both orientation and reparameterization and it requires a joint optimization solution.
The individual solutions for optimal orientation and registration are given below:

1. Optimal Rotation: For a fixed γ ∈ Γ, the optimization problem over SO(3)
in Eqn. 3.7 is solved by Procrustes alignment. We find O∗ = UV T where O∗

is the optimal rotation for aligning two curves and USV T is the singular valued
decomposition of A =

∫ 1
0 f1(t)(

√
γ̇f2(γ(t)))Tdt. (In cases where the determinant

of A is negative, one needs to modify V by multiplying the last column by −1.
We have O∗ = UṼ T in this case. This is a known result from rigid alignment of
objects when the points across objects are already registered.)

2. Optimal Registration: For a fixed O, the optimization problem in Eqn. 3.7
over Γ can be solved using the DP algorithm described above. The cost function
is defined by the L2 norm and, thus, is additive over the path (t, γ(t)). The
algorithm forms a finite-dimensional grid in [0, 1]2 and searches over all the paths
on that grid, satisfying the required constraints, to obtain an approximation to
γ∗.

Since we have algorithms for optimizing over the two components individually, we can
go back and forth between the two steps till convergence is reached.
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S2: shape+orientation+scale S3: shape+scale

S4: shape+orientation S5: shape

Figure 3.2: Evolution of one curve into another along the geodesic path. The
two curves are DTI fibers that vary in shape, scale and orientation as seen in the S2

manifold. The reparameterization allows for bending and stretching of curves. This
elastic matching results for a smooth and natural transition between curves. In S3, the
two curves are oriented similarly so we see the evolution of the shape and scale. In S4,
they have the same scale so we see the transformation of shape and orientation. The
two curves have the same orientation and scale in S5, and so we see one shape transform
into the other. Figure credit: Anuj Srivastava/FSU.
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Figure 3.3: Relationship between manifolds S1 − S5. There is a hierarchy of steps
that takes us from the curve β to its representation in the shape space. S4 and S5, for
instance, follow the same mathematical procedures but the S5 space is in addition also
invariant to orientation.

3.3 Description of the Riemannian Manifolds, S1 − S5

In this section, we present five Riemannian manifolds which capture five different com-
binations of the physical features of interest. We also provide metrics for comparing
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Figure 3.4: Manifolds S1 − S5 and the invariances associated with them. The
comprehensive Riemannian framework allows for flexible feature combinations. Each
of these constitute a Riemannian manifold and is associated with a subset of the four
shape-preserving invariances: translation, orientation, scale and reparameterization. To
visualize this, translation, orientation and scale are superimposed on an xyz-coordinate
system. In the figure, which is multiperspective, since S1 includes position (translation),
orientation and scale as features along with a SRF representation, it is located on the
−ve side of the x−, y− and z−axes. S2, which is invariant to translation and uses the
SRVF representation, is on the +ve side of the x−axis. S3, invariant to translation
and orientation, is on the +ve x−y quadrant; S4, invariant to translation and scale, is
on the +ve x−z quadrant. Finally S5, the shape manifold, is invariant to translation,
orientation and scale and has +ve x, y, z values.

curves based on these features. In particular, for each manifold we provide: (i) a geodesic
distance between curves that depends only on selected features (and is independent of
the parameterization of curves), and (ii) a geodesic path between the two curves. We
begin with S1, a space where all the features are utilized. Each subsequent manifold
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is restricted to fewer features and S5, the last of these, uses only shape. Table 3.1 is a
helpful summary of the manifolds and their preshape spaces and shape spaces.

3.3.1 Shape, orientation, scale and position, S1

We start by considering a situation where we are interested in comparing curves using
all the four physical features – shape, scale, position and orientation. This might be
useful when one of the four feature vectors (say position) predominates and the other
three features are used to fine-tune the classification of curves. We shall see an example
of this in Appendix A where we attempt to cluster and label sulci.

Preshape space: In this feature space, we use the square-root function (SRF) to
represent the curve β:

h(t) =

√
‖β̇(t)‖β(t) , h : [0, 1]→ R3 .

The SRFs are elements of the full L2 space so the preshape space is:

C1 = {h ∈ L2([0, 1],R3)}.

Shape space: Since orientation, scale and translation are included in the representa-
tion, the only computation we need consider is invariance to reparametrization. The
shape space is thus, S1 = C1/Γ.

When comparing two curves, we look at the difference between their SRFs in the
shape space. For a curve β, the curve β̃(t) ≡ β(γ(t)) is simply the old curve with a
new parameterization. For this reparameterized curve β̃, the SRF is given by h̃(t) =√
γ̇(t)h(γ(t)). We use (h, γ) to denote this reparameterized SRF. Now, it can be shown

that for any two curves, β1, β2, with the corresponding SRFs, h1 and h2, and any γ ∈ Γ,
we have that ‖(h1, γ)− (h2, γ)‖2 = ‖h1 − h2‖2. Because of this equality, we can define
a distance between the two curves as:

d1(β1, β2) = min
γ∈Γ

(‖h1 − (h2, γ)‖2) . (3.8)

This minimization is performed using the standard dynamic programming (DP) algo-
rithm, and it results in a quantification of differences in curves that is associated with
the aforementioned four features. The geodesic path between the curves is the straight
line:

ψ(τ) = (1− τ)h1 + τ(h2, γ
∗) , (3.9)

where γ∗ is the optimal reparameterization obtained earlier in minimization using DP.

3.3.2 Shape, orientation and scale, S2

Here we consider the case where we compare curves using all the feature information
except position. The need for such computations which use shape, scale and orientation
distances may arise when the focus of our study is a localized section of brain anatomy.
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Preshape space: For this feature space we use the q-function to represent β:

q(t) =
β̇(t)√
‖β̇(t)‖

, q : [0, 1]→ R3 .

This function is different from the square-root function used in Section 3.3.1 in that
this definition is based only on the velocity function β̇. Thus we call it the square-root
velocity function (SRVF) [3]. Since this function is invariant to a global translation of
β, analysis based on it will not depend on the global coordinates of the curves. The
SRVFs are elements of the full space but since we use q instead of h we define a new
preshape space:

C2 = {q ∈ L2([0, 1],R3)}.

Shape space: Since we want to include orientation and scale in the computations, the
only invariance we need to consider is reparameterization. The shape space is thus,
S2 = C2/Γ.

The SRVF of the reparameterized curve is given by (q, γ) ≡
√
γ̇(t)q(γ(t)), where q

is the SRVF of the original curve. As before, it can be shown that for any two curves
β1, β2, with the corresponding SRVFs q1 and q2, and for any γ ∈ Γ, we have that
‖(q1, γ)− (q2, γ)‖2 = ‖q1 − q2‖2. Once again, we can define a distance between the two
curves as:

d2(β1, β2) = min
γ∈Γ
‖q1 − (q2, γ)‖2 . (3.10)

This minimization is performed using the DP algorithm, and it results in a quantification
in differences in curves based on the three features–shape, orientation, and scale. The
geodesic path between the two curves is a straight line given by:

ψ(τ) = (1− τ)q1 + τ(q2, γ
∗) , (3.11)

where γ∗ is the optimal reparameterization obtained by DP.

3.3.3 Shape and scale, S3

This combination of features allows us to compare curves based on their shapes and
scales. For WM analysis, we note that the lengths of WM tracts are determined by
the brain regions they connect. Two prominent fiber bundles, the inferior longitudinal
fasciculus (ilf) and inferior fronto-occipital fasciculus (ifo) are both long. They connect
the occipital lobe to the temporal lobe in the first case and to the frontal lobe in the
second case and can be separated from each other by their shape. Short association
fibers connecting adjacent gyri intermingle with these fiber bundles but can be separated
out because of their length. Sulcal curves also come in different lengths; the central
sulcus, which is a primary sulcus, is long, the tertiary sulci are much shorter. Being
able to discriminate sulci and fibers on the basis of their shape and length is important.

Preshape space: For the shape+scale manifold, S3, we use the same SRVF represen-
tation as the S2 (shape+orientation+scale) manifold. Since the SRVFs are elements of
the full space the preshape space is once again C2 = {q ∈ L2([0, 1],R3)}.
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Shape space: Curves in the S3 feature space are invariant to orientation. To remove
the rigid motions from the S2 representation, we rotate the curve β by a rotation matrix
O ∈ SO(3), where SO(3) the set of all possible rotations in R3. The shape space in
this case is S3 = C2/(Γ× SO(3)).

The SRVF of the rotated curve is given by Oq where q is the SRVF of the original
curve. We also need to ensure invariance to reparameterization. Consequently, the
SRVF of a rotated and reparameterized curve is given by

√
γ̇(t)Oq(γ(t)). The distance

function is a joint optimization over SO(3) and the group of orientation preserving
diffeomorphisms, Γ. It is given by:

d3(β1, β2) = min
γ∈Γ,O∈SO(3)

‖q1 −O(q2, γ)‖2 . (3.12)

Let γ∗ and O∗ be the reparameterization and the rotation that minimize the right side
in this equation. Then, the geodesic path between any two curves, which once again is
a straight line, is:

ψ(τ) = (1− τ)q1 + τ(O∗q2, γ
∗) . (3.13)

3.3.4 Shape and orientation, S4

The short U-fibers–white matter that connect adjacent gyri–are similar in shape but
have different orientation. There are other structures that are identical in most respects
but because of the bilateral symmetry in the brain, are oppositely oriented. Orientation
is thus an important feature in brain image analysis.

We describe shape+orientation distances in this section. In Chapter 10, we use these
distances along with shape distances to detect changes in the curvature of the corpus
callosum along the median plane.

Preshape space: For the shape+orientation manifold, S4, we begin with the SRVF of
the S2 (shape+orientation+scale) manifold and remove the scale component. To do this,
we manually rescale the curves to be of the same length as described in Section 3.2.2.2.
The mathematical representation of the SRVF remains the same as in S2 but the space
of SRVFs, reduces from the full L2 space to a hypersphere as a result. This preshape
space, the space of all unit-length (the curves are usually scaled to unit length) elastic
curves, is defined as C3 = {q : [0, 1]→ R3 |

∫ 1
0 ||q(t)||2dt = 1}.

The advantage of using a sphere is that the differential geometry is well-known and
analytical expressions can be found for exponential maps, inverse exponential maps and
geodesic paths. For example, if q1 and q2 are two elements of a unit hypersphere, the
geodesic distance between them is given by the length of the shortest arc connecting
them on the sphere. This length is dC3 = cos−1(

∫ 1
0 〈q1(t), q2(t)〉 dt).

Shape space: As with the S1, S2, and S3 manifolds, invariance to reparameterization
is achieved by the action of the group of diffeomorphisms, Γ, on C3. We shall denote

this by (q, γ) =

√
˙γ(t)q(γ(t)) and define the equivalence class of q as [q] = {(q, γ) | q ∈

S∞, γ ∈ Γ}. The shape space is S4 = C3/(Γ). Note that we do not remove the SO(3)
group action on C3.
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The distance between two curves does not depend on the reparameterization of the
curves, i.e., for any q1, q2 and γ,

cos−1(

∫ 1

0
〈q1(t), q2(t)〉 dt) = cos−1(

∫ 1

0
〈(q1, γ)(t), (q2, γ)(t)〉 dt).

This leads to the definition of a distance between two curves which depends only on
their shapes and orientations. The geodesic distance is calculated by minimizing the
following:

d4(β1, β2) = min
γ∈Γ

(
cos−1(

∫ 1

0
〈(q1, γ)(t), (q2, γ)(t)〉 dt)

)
. (3.14)

S4 is a sphere so the geodesic or shortest path between the two curves is a great circle.
It can be specified analytically by:

ψ(τ) =
1

sin(θ)
[sin(θ − τθ)q1 + sin(τθ)(q2, γ

∗)] , (3.15)

where θ = d4(β1, β2).

3.3.5 Shape manifold, S5

White matter fiber bundles have a well-defined shape and structure which is determined
by the regions they connect and the constraints of the surrounding anatomy. Shape
analysis of white matter fibers is an active area of study and is a starting point for our
investigations in geometric modeling.

Preshape space: If we are interested in analyzing only the shape of 3-dimensional open
curves, we must achieve invariance to translation, scaling, rotation and reparametriza-
tion. Since the q-function is defined in its entirety by the derivative of β, translational
invariance is automatically removed. In order to achieve scale invariance, we manu-
ally scale all curves to be of unit length. This allows us to define the preshape space,
C3 = {q : [0, 1] → R3|

∫ 1
0 ||q(t)||2dt = 1}. This is the space of all unit length, elastic

curves. We define a Riemannian metric and the tangent space on this manifold.

Shape space: We define the shape space to be:

S5 = C3/(Γ× SO(3)).

The elements of S5 are the orbits of the type:

[q] = {
√
γ̇Oq(γ)|q ∈ S∞, γ ∈ Γ, O ∈ SO(3)} .

The shape space S5 inherits a Riemannian structure from the preshape space C3. The
geodesic distance between any two orbits [q1] and [q2] is given by:

d5(β1, β2) = dS5([q1], [q2]) = min
γ∈Γ,O∈SO(3)

dC3(q1,
√
γ̇Oq2(γ)) , (3.16)
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Table 3.1: Summary of the Comprehensive Riemannian Framework Manifolds

Manifold function preshape quotient
representation space space

shape +

h(t) =
√
‖β̇(t)‖β(t) S1 = C1/(Γ)

orientation + C1

scale + L2 space
position
shape +

q(t) = β̇(t)√
‖β̇(t)‖

C2

L2 space
S2 = C2/(Γ)orientation +

scale
shape +

q(t) = β̇(t)√
‖β̇(t)‖

C2 S3 = C2/(Γ× SO(3))scale L2 space
shape +

q(t) = β̇(t)√
‖β̇(t)‖

C3 S4 = C3/(Γ)orientation hypersphere

shape q(t) = β̇(t)√
‖β̇(t)‖

C3 S5 = C3/(Γ× SO(3))hypersphere

The manifolds, S1–S5, are quotient spaces that result when the reparameterization
group, Γ, or the product group, (Γ×SO(3)), are removed from the respective preshape
spaces. The optimizations are done using DP and Procrustes alignment. C1 and C2 are
different L2 spaces since the curves have different function representations. C3 is a unit
hypersphere because the curves have been scaled to unit length to remove the effects of
scale.

where dC3 is the distance in the preshape space. A closer look at that distance function
reveals the following:

argmin
γ∈Γ,O∈SO(3)

cos−1
〈
q1,
√
γ̇Oq2(γ)

〉
= argmin

γ∈Γ,O∈SO(3)
‖q1 −

√
γ̇Oq2(γ)‖2 , (3.17)

where the ||.|| is simply the L2 norm on the representation space. This equality implies
that minimizing the arc length on a unit sphere is the same as minimizing the chord
length. If one is minimized then so is the other. We can therefore use the L2 norm since
it is computationally more efficient.
The actual geodesic between [q1] and [q2] in S5 is given by [ψt], where ψt is the geodesic
in C3 between q1 and

√
γ̇∗O∗q2(γ∗). Here (O∗, γ∗) are the optimal transformations of

q2 that minimize the right side in Eqn. 3.16. For θ = d5(β1, β2), the geodesic path is a
great circle given by:

ψ(τ) =
1

sin(θ)
[sin(θ − τθ)q1 + sin(τθ)(O∗q2, γ

∗)] .
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Chapter 4

The Sulcal Labeling Problem

The cortical surface is characterized by alternating ridges and furrows. The sulci (singu-
lar sulcus), as the Latin suggests, are the fissures or grooves; they serve as counterpoint
to the raised gyri (see Figure 4.1). The sulci, in a sense, exist because they do not exist.
Their utility derives from this fact as demonstrated by the following:

• In neurosurgery they function as channels which give a surgeon access to parts
of the brain even deep within the subcortex. As the noted neurosurgeon M.G.
Yaşargil writes in his foreword to the Ono atlas [15]: "any point within the cranium
can be reached by following the corridors of the sulci". Tissue damage from
incisions is thus minimized.

• They also serve as orienting landmarks in neurosurgery. The major sulci, in addi-
tion, partition important functional areas of the brain. This information reinforces
their usefulness as landmarks. The central sulcus, for instance, demarcates the
sensory-motor cortex. The sylvian fissure, one of the most identifiable cortical
features, is the locus of language cortex. Both these sulci are important reference
points in a variety of contexts and applications.

• The sulcal grooves are filled with cerebrospinal fluid (CSF) which make them easy
to identify in T1-weighted images (where CSF is dark in contrast to the brighter
gray/white matter).

To be useful in the neurosurgical applications described, we first need to identify
and label the sulci. There are other applications that would also benefit from a reliable
labeling scheme. Internal changes in the brain, either due to aging or pathology, for
instance, alter the cortical surface. Labeling is the first step in a systematic study that
allows us to quantify these changes for the differential diagnosis of disease.

Just as there is a need to have a scheme to identify sulci, it is equally desirable that
it be implemented as an automatic labeling scheme. The reasons for this are obvious:
manual labeling is tedious and the assessments are subjective. The problems associated
with a manual procedure are brought to the fore when we work with large databases.

The labeling of sulci is a challenging problem. This is because, cortical sulci are
highly variable. Sulci vary not just across individuals but even between the hemispheres
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of a single brain [15]. They vary in shape, scale, placement and branching morphology.
They may be continuous (present as one uninterrupted segment) in some individuals,
fragmented (exist as multiple segments) in others and altogether absent in yet others.
This poses a problem for feature selection and classification. Figure 4.3 illustrates how
the variability can make feature selection difficult.

19th century illustrations such as those from Horsley [16], trace the wide variations
along a sulcal fold. A whole nomenclature has developed since then to account for the
branch variations possible along a single sulcus. (An example from the Ono atlas is
illustrative–see Figure 4.2). For this reason, there is no gold standard in sulcal labeling;
one neuroanatomist may disagree with another.

While accurate sulcal identification can be a challenge even for expert neuroanatomists,
there are sulci that are to some degree more consistent, and for which anatomical cor-
respondence can be established across subjects. These are the larger primary sulci
(Figure 4.1(a)). The localization of these sulci allows us to generate a probabilistic
map which can be used to label candidate sulci. A graph can also be constructed and
unlabeled sulci (or the more variable secondary and tertiary sulci) can be identified
against this reference. These two ideas have been incorporated into automated and
semi-automated labeling methods in various ways.

A straightforward implementation of the probabilistic atlas paradigm can be seen
in Le Goualher et al. [17, 18]. Statistical probabilistic anatomical maps (SPAM) [19]
give the probability for each sulcal class so that at any given location, unlabeled sulci
are assigned the most probable label for that location. A different spatial distribution
model is used by Lohmann et al. [20]. A point distribution model [21] computes the
shape of sulcal basins across a training set. Any unlabeled sulcus can be expressed as a
linear combination of the eigenvalues generated from the PCA of this shape covariance
matrix; an optimization over the linear function would give the best label.

Spatial distribution models give spatial bounds but this is not adequate to discrim-
inate between the sulci in a local region. They are usually combined with graphs which
model connections between sulci thus giving local context. In the combined strategy,
the spatial information is used to supply spatial priors [22, 23], localization constraints
or to narrow the search space in an optimization or matching process [24].

An example of a graph approach, where a model graph is matched to a random
graph of sulci from a test subject, is presented in Rivière et al. [25]. Sulcal features,
represented as the node attributes and neighborhood relations modeled as the edges
of a graph are matched by training a set of neural networks to optimize the potential
function at each graph node. Yang et al. [24] also apply graph matching to labeling.
A similarity function that uses statistical information about spatial extent, orientation,
shape and neighborhood structure is optimized using a genetic algorithm.

Mechouche et al. [26] use graph-matching in a very different way. An atlas rep-
resented via a semantic ontology is matched to pre-segmented candidate brains using
descriptive logic. The main engine for the matching is a constraint solver (CSP), soft-
ware that uses advanced numerical techniques that are computationally expensive.

Distinct from these matching approaches, deformable atlas matching [27], a method
widely used in brain imaging to deform a template to a candidate brain, has been
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applied to sulcal labeling as well [28, 29]. The automatic surface registration presented
in Vaillant et al. [28] is a hierarchical procedure guided by sulcal and gyral spatial
probability constraints. In Jaume et al. [29], a multi-resolution strategy is used to match
the lengths of sulci at different scales. The labels of the final match are successfully
propagated to patient brains, but, it should be noted, to corresponding sulcal regions
rather than to individual sulci. Elastic or fluid deformation algorithms [30] in general
ensure a close match to local regions, but, with complex cortical folding patterns that
vary from subject to subject, the matching process may give many local optima [25].
The application of these algorithms to this problem has been questioned in many other
papers as well [17, 20, 31].

Graph and other learning-based matching approaches typically use large feature sets
or computationally expensive algorithms. In [32], 8000 features at different scales are
used to learn likelihoods to generate a probability map. Under a Bayesian formula-
tion, the best curve is computed by dynamic programming using the probability map
and shape priors. In [33], a large sample space of candidate curves is generated to
learn shape priors which are used to define the potential functions of a graphical model.
In [25], once again, a large number of training features are generated by oversampling
the sulcal segments to be identified. Yang et al. [24] set up graph matching as a com-
putationally expensive combinatorial optimization problem.

In Chapter 5 we present a simpler approach that retains the idea of a graph, but as
a global representation of sulcal class data. Structural motifs of a distance graph act as
a reference against which unlabeled sulci can be matched.
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(a)

(b)

Figure 4.1: (a) Sulci are the grooves on the cortical surface. Five primary sulci of the
left hemisphere (in color) are shown. (b) Sulcal curves (in blue) form a complex and
widely varying pattern on the cortex.
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Figure 4.2: Sulcal patterns for the posterior end of the superior frontal sulcus. Types
A, B, C, D, are possible variations for this sulcus (for the 25 postmortem brains exam-
ined, 4 variations were found). The pattern in the two hemispheres of a single subject
may differ; the left may be Type B and the right may be Type C. The lengths of the
small segments and the connections made to other sulci also vary. Reproduced from
Ono et al. [15].

(a) length boxplot (b) depth boxplot

Figure 4.3: The variability in sulcal features is seen here in the length and depth
boxplots for 18 subjects. Of the 10 types of sulci shown, only the sylvian fissure (in
violet, see (b)) can be identified by a single feature, its depth measurement. This is
not surprising since the deep sylvian fissure is one of the most easily identifiable parts
of the cortical surface. The other classes of sulci cannot be separated out solely on a
length or depth measurement.
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Chapter 5

Labeling Sulci: The Relational
Pattern Matching Solution

In the last 15 years, two ideas have emerged to address the variability of sulci in labeling
and identification problems. The first is the use of a spatial distribution model of sulci
to match candidate brains. The second is the explicit or implicit use of graphs to
match the linkages between sulci. We base the work presented in this chapter on the
second idea, which, we have implemented in a supervised learning framework. We use
multidimensional scaling (MDS) to recreate the structural relationship in an embedded
space. Unlabeled sulci, projected into the same space using an out-of-sample procedure,
are given class designations based on nearest neighbor (NN) search. We take a heuristic
approach in selecting the distance measure, which is central to all graph-based methods.
In preliminary work, we found that a pure shape feature distance could not discriminate
sulci adequately. Distances based on spatial features, however, gave encouraging results.
Based on this ad hoc assessment, we evaluate 3 spatial distances designed to measure
a (variable) sulcal graph structure. In experiments using a leave-one-out strategy, 90%
of the 180 sulci drawn from 10 sulcal classes are successfully classified as are data from
5 out of 6 patients with cortical tumors.

With this supervised learning scheme, we offer a simple and intuitive solution to a
challenging problem. The use of relational matching gives us the flexibility to accom-
modate normal variation in the sulci. We can also, to some extent, classify sulci such
as pathological or partially segmented data, that are different from the training set.

This chapter is organized as follows: In Section 5.1 we explain our classification
method which uses MDS and NN for labeling the major sulci. In Section 5.2, we describe
the distance measures used. Section 5.3 has the experimental details and results. In
the discussion that follows, Section 5.4, we consider the performance on both healthy
and pathological data and offer insights on the success of our classification scheme.
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(a) (b)

(c) (d)

Figure 5.1: (a) The five major sulci of the right hemisphere used in this study. (b) An
individual sulcus. The top or superficial curve, which points in the direction of the outer
cortex, is in blue. The bottom curve is in green. (c) The ten sulci used in this study
and their spatial relation (anterior coronal view). (d) Graph representation where the
distances are the edges and the sulci are the nodes.

5.1 Methods

In Chapter 4 we discussed some of methods proposed to label sulci. Here we present
a simpler approach that retains the idea of a graph, but as a global representation of
sulcal class data. Structural patterns of a distance graph act as a reference against
which unlabeled sulci can be matched. An example of a distance graph is shown in
Figure 5.1(d). Multidimensional scaling (MDS) is a natural choice for this implementa-
tion. It gives a geometric interpretation which can be used to reproduce the structural
relationships between sulci in a low dimensional space. We can thus build a reference
atlas against which unlabeled sulci, using the same relational constraints, can be identi-
fied using nearest neighbor criterion (NN). The approach we take to classify unlabeled
sulci, falls under the ambit of supervised learning. The steps are as follows:
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1. First, using multidimensional scaling, we embed a map using dissimilarity
data computed from a database of labeled sulci.

2. Next, once again using MDS, unlabeled sulci are introduced into the embed-
ded space. Since this is an out-of-sample procedure, the original embedding
remains unchanged.

3. Finally, the unlabeled points are assigned using nearest neighbor classifi-
cation.

In describing this combination of steps as supervised learning, we would like to
emphasize two points: First, each of the labeled nodes in the embedded space represents
a class average rather than the individual data points of a class. MDS is not used as
a precursor to clustering, but only to provide a common space to place labeled and
unlabeled points. Second, the reference MDS map is generated solely from labeled sulci
and not from a combination of labeled and unlabeled sulci as is done in semi-supervised
learning. Each of the components of the labeling scheme is discussed below.

5.1.1 Classical Multidimensional Scaling (CMDS)

Multidimensional scaling is a method that allows us to compute an optimal configura-
tion, X, for a set of n observations using only their interpoint distances. If ∆ = [δij ]
is a non-negative, symmetric matrix of dissimilarities computed from a set of (hidden)
coordinates, Xd of rank d, with MDS, we can represent Xd as Xp, p ≤ d, such that
the distance matrix D computed from it is close to ∆. An intermediate step would be
to derive the scalar product matrix, B = XXT , from the squared dissimilarities by
double centering. An eigen decomposition, B = ΓΛΓT , gives us Λ, a diagonal matrix
of eigenvalues, and Γ, a matrix of orthonormal eigenvectors. X, the square root of
XXT , is then ΓΛ

1
2 . Since B is of rank p, X is also of rank p. Thus, we see that in

CMDS, the coordinates, X, of the embedded configuration are implicit and need to be
extracted from the Euclidean inner product matrix B. The eigenvalue problem solves
the optimization:

min
xi∈Rp

n∑

i=2

i−1∑

j=1

(‖xi − xj‖2 − δ2
ij). (5.1)

5.1.2 Out-of-sample Embedding

For classification, our objective is to introduce k unlabeled sulci, y1,. . . ,yk, without
disturbing an existing configuration. Using CMDS to embed n+k points, however, gives
an entirely new map computed from inner products which are centered with respect to
the centroid of the n+ k points. The optimization we seek instead is:

min
y∈Rd

2

n∑

i=1

k∑

j=1

(‖xi − yj‖ − ai(n+j))
2 +

k∑

i=1

k∑

j=1

(‖yi − yj‖ − a(n+i)(n+j))
2, (5.2)
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where A = [aij ] is the augmented (n + k) × (n + k) dissimilarity matrix. We can
get yi, the coordinates for the k points with this while the original labeled points, xi,
which were previously computed, remain fixed. This is an exact solution for the out-
of-sample problem for CMDS but it is a nonlinear optimization problem. If, though,
the second term of the objective function above is dropped, the resulting function is
convex. Solutions to this give an approximate out-of-sample embedding. The treatment
is detailed in Trosset et al. [34].
We use Equation 5.2 later, in the context of a leave-one-out strategy to assess the
utility of different data features in terms of generalisation error (as assessed with cross
validation). In this instance the x correspond to the training set and the y the test set.

5.1.3 Nearest Neighbor Classification

For unclassified points, embedded in the out-of-sample step described above, class mem-
bership is determined based on their proximity to the class nodes. A minimum euclidean
distance criterion is used.

In the nearest neighbor framework, we can also compute, as a confidence measure,
the relative probability of an unlabeled sulcus being assigned to a class. Let us consider
the entire embedded space as a Voronoi tesselation with a training node at the center
of each cell. A softmin function over distances in this space will give a continuous
probability that decreases the further a point is from a node. If d is the euclidean
distance between an unlabeled point i and a node j, for n classes, the relative probability
with which an unlabeled point selects a labeled node as its nearest neighbor is:

pij =
e

−d2ij
σ2

∑n
k=1 e

−d2
ik

σ2

. (5.3)

The variance, σ, can be heuristically determined from training set data. Such compu-
tations cannot be made through a spectral embedding alone.

5.2 Feature Set

An important consideration with graph-based methods such as MDS, is the distance
measure. In preliminary work [35] we used a geometric shape representation for open
curves. The results indicate that shape distance, i.e. the geodesic distance between
sulcal curves, is not a good feature for our classification scheme. A pure shape feature
is obtained after removing rotation, translation and scaling. As part of our heuristic
approach, we looked at each of these three components separately to determine their
effects. We found that the position-based feature, which complements the spatial struc-
ture inherent in our pattern matching approach, gave very promising results. Here, we
extend this study to three distance measures based on the position distance.
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Figure 5.2: The set of n minimum distances from Ci to Cj used in the mean and median
closest point computation. This is a directed distance; the symmetric distance is used
in the distance matrix computations.

5.2.1 Distance Measures Evaluated

We evaluate three pairwise spatial distance measures between individual sulci. Since
there are many different configurations to consider, with curves at various angles and
of varying length, a measure that is robust to this variability will give the best results.

1. Distance from midpoint: The distance was computed from the mid-point of
each sulcal curve.

2. Mean closest point (MCP):

dMCP = mean(dm(Ci, Cj), dm(Cj , Ci))

where dm(Ci, Cj) = meani∈Ci minj∈Cjd(i, j)

This distance (dMCP ) is described in [36, 37]. For each of n equally spaced points
along curve Ci, the minimum distance to a point in curve Cj is measured. dm
is the mean of the set of these minimum distances. Since this is a directed dis-
tance, dm(Ci, Cj) 6= dm(Cj , Ci) in general. The symmetric distance is found by
computing the average of dm(Ci, Cj) and dm(Cj , Ci). See Figure 5.2.

3. Median closest point (NCP): This is similar to the mean closest point, but
we compute a median for the set of minimum distances instead of a mean.

5.2.2 Preliminary Features Evaluated

In our preliminary evaluation [35], in addition to the position feature, we used four other
descriptors, pure shape, mean depth, length and orientation. These contain physical
information not captured by the relative position of a 3D sulcal curve alone. The fea-
tures, their class averages and the distances between the class averages are summarized
below. It is these distances that we used as the distance feature in our characterization.
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1. Elastic Shape of a Curve: We use the square-root velocity description for
shapes of 3D sulcal curves: q(t) = β̇(t)√

‖β̇(t)‖
where β : [0, 1] → R3 is a unit-length,

parameterized curve such that its speed ‖β̇(t)‖ is non-zero everywhere.

2. Mean Depth: The depth profile for each sulcus was first obtained by resampling
100 points along the length of the sulcus and computing the distance between
points on the top sulcal curve with corresponding points on the bottom curve.
The mean depth was then calculated by averaging these. The top and bottom
curve are shown in Figure 5.1b.

3. Length: The length of a sulcus was computed using
∫ 1

0 ‖β̇(t)‖dt, the length of
the parameterized open curve β. β is defined in Chapter 3.

4. Orientation: Using singular value decomposition (SVD), the relative orienta-
tions, O, between sulcal curves were computed for each subject.

Class Averages
The class average for each of these descriptors was calculated by averaging across the
subjects. For the relative orientation, the average was obtained by computing a SVD
of
∑

iOi. The Karcher mean gave us the mean shape.

Distances
The distance matrix was computed using the feature distances between two sulci. For
position we computed a euclidean distance. For depth and length, we used an absolute
distance. For orientation, we used do =

‖ log(O1OT2 )‖√
2

, where ‖.‖ is the Frobenius norm.
For shapes, the geodesic distance was used.
The composite distance between any two sulci was also computed by using a combination
of the scaled distances, d = w1ds + w2dp + w3dd + w4dl + w5do, where the wi could be
chosen by trial and error.

Table 5.1: Feature set used in preliminary analysis

Descriptors Class Averages Distance features

1 Spatial Position euclidean distance
2 Shape Karcher mean geodesic distance
3 Orientation SVD(

∑
iOi)

‖ log(O1OT2 )‖√
(2)

4 Length |l1 − l2|
5 Mean Depth |d̄1 − d̄2|
(1) Training set represented by class averages
(2) Individual unlabeled sulci constitute test sulci
(3) Distance matrix computed using feature distances between two sulci
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5.3 Data Analysis

To assess the capability, i.e. the performance and limitations of the method we propose,
we evaluated the following:
1) Preliminary analysis of spatial position, shape, orientation, length and depth
2) Evaluation of spatial position distances
3) Evaluation of spatial position distances with a larger data set
4) Partial sulci, i.e., sulci that are split into segments
5) Tumor data
Clustering, an alternative method, has also been used to group the data (see Ap-
pendix A). The results of the two approaches are discussed in Section 5.4.

5.3.1 Data and Initial Processing

Subjects: We used a database of 18 T1-MR 3D SPGR brain images of healthy subjects,
matched for sex (male), handedness (right), and age (35± 10 years).
Sulci used: Five major sulci, the central, postcentral, superior frontal, sylvian fissure
and superior temporal, (shown in Figure 5.1a), were extracted from each hemisphere.
This gave us 18× 10 = 180 sulci for classification.
Segmentation: The sulci were extracted using the active ribbon method [18, 38]. A
1D curve, skeletonized on the superior surface of the sulcal groove, evolves through the
depth of the groove tracing out a 2D median surface in the process. This algorithm has
been adapted from the active contour model [39].
Final form of the data: Performance was evaluated on two separate classifiers, one
constructed with the top sulcal line and the other with the bottom line of a sulcus (see
Figure 5.1b).

5.3.2 Evaluating Dimensionality, Assessing Fit

MDS reproduces a high dimensional input in a lower dimensional space. In Figure 5.3,
an elbow in the scree plot at d = 3, represents the optimal dimension beyond which
only minor reductions in stress are acheived. The Shepard diagram, which plots the
scaled MDS distances against the original dissimilarity data, was then used to assess fit
for 2 and 3D data. A good fit is indicated by a minimal spread in the scatter plot and
evidence of a monotonically ascending relation. A comparison between the two Shepard
plots, shows that the output distances are highly correlated to the input dissimilarities
for the 3D data. As a final test, the MDS map we obtain, reflects the actual arrangement
of sulci in the brain.

5.3.3 Classification

Our goal was to label pre-segmented sulci without making assumptions about prede-
fined relationships or using semantic information. For this we designed a 10-class MDS
classifier. We evaluated the classification using leave-one-out (LOO) cross-validation.
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Figure 5.3: Evaluating the number of dimensions required to represent the data. The
scree plot (left), shows that 3 dimensions is adequate for the MDS map. The Shepard
plot for 2D data (middle) shows more spread than the corresponding 3D plot (right).

The 18 sulci for each of the 10 sulcal classes were split 17:1 into a training set and a
testing set.
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5.3.3.1 Preliminary Characterization

The best results for the 18 LOO iterations were obtained when spatial distances were
used for the dissimilarities. Classification was also done for shape, using geodesic paths
for distances, and for scaled combinations of shape, position, length, depth and orien-
tation. The shape classifier labeled all the central sulci, which are very regular, but
was less successful with the other classes. Combining the features did not improve the
success rate. Rather, the results achieved by the spatial distance classifier were compro-
mised (Figure 5.4). The depth and length classifiers could not discriminate right and
left brain sulci, and while the orientation information improved results in cases where
the orientations of the sulci differed, these were offset by the errors introduced using an
average orientation as a feature.

5.3.3.2 Spatial Distances

For the distance measured from the mid-point of the sulcal curve, we got an overall true
positive rate of 90% and 90.6% for the top and bottom sulcal classifiers respectively
(Table 5.2), and were able to correctly label all the superior frontal sulci (100%). The
central and postcentral sulci run parallel to each other as do the sylvian fissure and
superior temporal sulcus. These were sometimes misclassified, one for the other.

The results for the mean (dMCP ) and median (dNCP ) closest point distance clas-
sifiers were 86% and 84% respectively (Figure 5.5). The MCP and NCP calculations
underestimate distances when two sulci are perpendicular. It is perhaps because of this
uneven application of distances that we got poorer results.

5.3.3.3 Partial Sulci

While the central sulcus and sylvian fissure are highly continuous [15], some of the other
large sulci are interrupted by buried gyri or split into 2 or 3 pieces as an artifact of the
segmentation. To simulate this, we split the test sulci into two at the mid-point. Of
the 180× 2 = 360 pieces tested using LOO cross-validation with the mid-point distance
classifier, 77% were correctly labeled. This is in line with published results [25]. The
MCP and NCP classifiers performed poorly here.

5.3.3.4 Tumor Data

The algorithm was tested on data from 6 patients with medium to large tumors (see
Figure 5.7). The lesions had displaced sulci or had otherwise altered the arrangement
of the surrounding cortical tissue. The sulci in the unaffected regions were successfully
labeled, i.e. they had the same error rate as for the healthy subjects. The value in our
method lies in the fact that we were also able to classify sulci in the region surrounding
the tumor.
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5.4 Discussion

Our supervised MDS spatial distance classifier offers several advantages.
First, it is a fast and lightweight implementation of CMDS and NN search. CMDS

is an O(N3) time algorithm. For NN, we need to search through the entire training set
to classify each new point. Both of these operations are computationally intensive. By
computing class averages in the feature space, we get a compact representation of the
training data, thereby significantly reducing the computational load.
Also, because we use an out-of-sample strategy, we further limit the number of com-
putations. For the training distance matrix, we need only make n(n−1)

2 one-time mea-
surements, where n is the number of classes. These, along with the MDS reference map
are computed off-line. The only runtime computations are those that involve unlabeled
sulci.

Second, our results suggest that we can very quickly assign a given sulcus to a small
region of the left or right hemisphere. 179 out of 180 sulci were correctly identified when
we relaxed the classification criteria to include the second nearest sulcus. For most of
the misclassifications, the first and second nearest sulci had almost the same probability
of being assigned to the correct class (see Section 5.1.3).

As an alternative to our method, we consider clustering, a method which is also
often combined with MDS. When we tried to group the sulci using spectral clustering,
121/180 (67%) sulci were correctly classified (see Figure A.1). Clustering may not be
the best choice for sulcal data since distance-based clustering algorithms do not use
the structural pattern information from the graphs. The post- and precentral sulci, for
instance, both equidistant and parallel to the central sulcus but on opposite sides, group
together. Also, relying solely on distances when the data is inherently noisy could also
lead to incorrect grouping. Some of the results from spectral clustering are presented
in Appendix A.

Spectral clustering has been successfully applied to DTI data [37], for which, the
large number of fibers warrant the use of an unsupervised or semi-supervised approach.
Sulci, by contrast, are orders of magnitude fewer in number.

Third, the classifier is robust to normal population variation. The results we ob-
tained, were for data that had not been spatially normalized and thus representative of
the full sample variation. Also, the results for both the variable top and stable bottom
sulci, each independently classified, were comparable (Table 5.2).

The relational paradigm allows us to identify anatomical regions for which, because
of inherent variability, a feature set is difficult to select. We were even able to correctly
identify displaced and distended sulci, taken from tumor patients. The preliminary
success with labeling tumor datasets strongly suggests that we can design a general-
purpose tool, i.e. one that can be used to identify both normal and pathological sulcal
data. In general, diagnostic tools seek to differentiate healthy tissue from disease–tumor
detection being an example. Here, we have demonstrated a method which can unify
class data for applications where it is important to do so.

The classifier works best when only a small number of well separated sulcal classes
are used in the training set. We saw the performance degrade from 90.6% to 84.3%
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when two additional classes, the left and right precentral sulcus were added (Figure 5.6).
This is a limitation of the current design. There are ways to extend the classification
however. We can, for instance, train with different sets of small, well-separated sulcal
classes. There are many ways in which these individual results can be combined to
influence the final solution.

5.5 Concluding Remarks

In this chapter, we describe a novel scheme to label sulci which uses MDS in a super-
vised learning framework. Our method is conceptually simple and easy to implement,
using for the most part standard, off-the-shelf algorithms. It is computationally fast
because we use a compact representation of data and an out-of-sample procedure. It
also requires no registration allowing us to use standalone sulci from a database. We
considered several distance measures in the preliminary evaluation; some, like the scale
distance, have not been widely used in medical imaging applications. Our method has
the flexibility to be used both for healthy and diseased data. While there is a need for
such an application, the conventional approach has been to design tools to differentiate
rather than unify anatomy on the basis of group differences. Finally, our method gives
impressive results, accurately labeling 91% of the 180 sulci we tested.

By training with different sets of sulci, we can extend the classification and this will
be the direction for future work. Another direction for future work is to apply this
classification tool in different contexts using it to label white matter fibers bundles and
other anatomical structures.
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Table 5.2: Confusion Table for Spatial Distance (midpoint) LOOCV.
The true positive rate (blue), gives the % of the sulci correctly identified in 18 LOO
tests. The off-diagonal terms (red) give the % of false negatives.

Top Sulcal Curve

True Label 1 2 3 4 5 6 7 8 9 10

T
es
t
La

be
l

Left central 1 94.5 16
L. postcentral 2 5.5 84
L. sup. frontal 3 100
L. sylvian fissure 4 78 11
L. sup. temporal 5 22 89
Right central 6 94.5 22
R. postcentral 7 5.5 78
R. sup. frontal 8 100
R. sylvian fissure 9 84 16
R. sup. temporal 10 16 84

Bottom Sulcal Curve

True Label 1 2 3 4 5 6 7 8 9 10

T
es
t
La

be
l

Left central 1 89 16
L. postcentral 2 11 84
L. sup. frontal 3 100
L. sylvian fissure 4 84 11
L. sup. temporal 5 16 89
Right central 6 94.5 22
R. postcentral 7 5.5 78
R. sup. frontal 8 100
R. sylvian fissure 9 94.5 5.5
R. sup. temporal 10 5.5 94.5
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Figure 5.4: Confusion map for classification: the shape distance results (left) improve
considerably when the shape and spatial distances (middle) are combined; the spatial
distance alone (right) gives the best perfomance.

Figure 5.5: Confusion map for spatial distance classification: the midpoint distance
classifier (left) gave the best results. The MCP (middle) and NCP (right) classifiers
gave roughly similar results.

(a) 10 sulcal classes (b) 12 sulcal classes

Figure 5.6: Labeling 10 vs 12 classes: The results for the spatial distance deteriorated
when the two precentral sulci were added, increasing the number of classes to 12. The
precentral sulcus was sometimes miscategorized as the adjacent sylvian fissure, the
central or superior frontal sulcus.



Supervised Labeling of Brain Sulci
using Multidimensional Scaling

Problem Statement

To label a database of pre-segmented sulci. These share a common
referential system but are not spatially normalized.

We make no assumptions about:
I predefined relationships between the sulci
I semantic information
I (desideratum) the kinds of subjects they

come from

The Sulcal Labeling Problem

1. Large feature variation in the population (feature selection problem)
2. Convolutions vary from subject to subject and across hemispheres (template

matching problem)

Variability in Length Complexity of Patterns

Expert Annotation–The Graph Approach

In manual annotation,
neuroanatomists identify
sulci by looking at their
relation to other sulci

Classical Multidimensional Scaling

MDS gives a physical map with which we can reproduce the structural
relationships between sulci. The eigenvalue problem solves the optimization:

min
xi∈Rp

n∑

i=2

i−1∑

j=1

(‖xi − xj‖ − δij)
2

For the Out-of-Sample Extension†:
The objective is to introduce k unlabeled sulci, y1,. . . ,yk , without disturbing
an existing configuration. The exact solution is:

min
x∈Rd

(2
n∑

i=1

k∑

j=1

(‖xi − yj‖ − ai(n+j))
2 +

k∑

i=1

k∑

j=1

(‖yi − yj‖ − a(n+i)(n+j))
2)

If we drop the second term, the resulting convex expression can be solved
numerically to give an approximate out-of-sample embedding.
†Trosset, M.W., Priebe, C.E., “The Out-of-Sample Problem for Classical Multidimensional
Scaling,” Comp. Stat. & Data Anal. 52(10), (200 8): 4635-4642.

Classification with MDS

1. Compute a distance matrix for the class averages of a set of
training sulci

2. Generate a reference MDS map
3. Introduce unlabeled sulci to the existing map by expanding the

distance matrix and obtain an out-of-sample embedding
4. Membership is assigned using the nearest-neighbor criterion
5. The classification can be evaluated using leave-one-out

crossvalidation (LOOCV)

Feature Set

Descriptors Class Averages Distance features
1 Spatial Position† euclidean distance
2 Shape‡ Karcher mean geodesic distance
3 Orientation SVD(

∑
i Oi)

‖ log(O1OT
2 )‖√

(2)

4 Length |l1 − l2|
5 Mean Depth |d̄1 − d̄2|

?Training set represented by class averages
?Individual unlabeled sulci constitute test sulci
?Distance matrix computed using feature distances between two sulci
†3 different position distances evaluated-midpoint, mean closest point, median closest point
‡joint work with Anuj Srivastava, Department of Statistics, Florida State University

Results

I 18 T1-MR 3D SPGR images of healthy subjects
I sex (male)
I handedness (right)
I age (35 ± 10 years)

I 10 major sulci/subject
I left, right central sulcus
I left, right postcentral sulcus
I left, right superior frontal sulcus
I left, right sylvian fissure
I left, right superior temporal sulcus

18x10 = 180 sulci

MDS Spatial Position Distance LOOCV

1 2 3 4 5 6 7 8 9 10
L.central 89 16
L.postcentral 11 84
L.sup. frontal 100
L.sylvian fiss. 84 11
L.sup. temp. 16 89
R.central 94.5 22
R.postcentral 5.5 78
R.sup. front. 100
R.sylvian fiss. 94.5 5.5
R.sup. temp. 5.5 94.5

The % of the sulci correctly identified in 18 LOO tests (blue).
The off-diagonal terms (red) give the % of false negatives.
10 classes, 18 tests/class = 180 tests. Success rate = 163/180 = 90.6%

Labeling Tumor Data

The labeling error for 4 patients in the unaffected cortical regions is the same
as for the healthy subjects. In the affected regions(shaded boxes), the sulci
are correctly labeled in 3 cases. The sulcus does not exist in the last case.

Advantages of the MDS spatial distance classifier

1. Quickly assign a sulcus to a small region of the left or right hemisphere
I 180

180 sulci correctly identified when classification criteria
is relaxed to nearest or next-nearest neighbor

2. Classifier robust to normal population variation
I both top and bottom sulci gave comparable results
I even identify sulci displaced by large tumors (use as a general purpose tool)

3. Fast, lightweight
I CMDS and NN search performed on group averaged data
I Small feature set–only need n(n−1)

2 (i.e. 45 for n = 10) one-time distance measurements to
construct a reference map

4. Easy to implement using off-the-shelf algorithms
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(a)right superior frontal sulcus (b) displaced sulcus identified

(c)left superior frontal & central (d) displaced sulci identified

(e)right central & superior frontal (f) displaced sulcus identified

(g)right superior temporal (h) no sulcus due to tumor

(i)displaced sulcus misidentified (j) deep tumor, sulcus unaffected

Figure 5.7: Labeling sulci displaced by tumors for 6 subjects. The affected sulci
are shown on the left; the labeling results, on the right and bottom. The labeling error
rate in the unaffected cortical regions is the same as for the healthy subjects. In the
affected regions (shaded boxes), the sulci are correctly labeled (mauve) or do not exist
(grey) in 5/6 cases. It is misidentified in only one case, (i) (yellow).
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Chapter 6

Quantitative Analysis of White
Matter Fibers

White matter (WM) is a part of the central nervous system. It is comprised primarily
of myelinated axons which give it its whitish appearance. The axons are long extensions
of nerve cells, the nerve cell bodies themselves being embedded in the gray matter of
the brain. This architecture equips the WM to serve as a communication link between
the gray matter and the rest of the body.

A WM fiber can be modeled as an open curve, the geometrical structure which is
the focus of the investigations in this thesis. Part II of this document is devoted to the
quantitative analysis of WM fibers. To frame the discussions which follow in the next
four chapters, we begin this chapter with an abbreviated history.

6.1 A short history

The modern scientific study of white matter has its roots in the 19th century when links
were being established between mental dysfunction and neuroanatomy. Correlations
made between postmortem abnormalities in the brains of mental patients and clinical
evaluations while they were living led to important discoveries. The identification of
the arcuate fasciculus (AF) as a language pathway that connected the two language
centers, the Broca and Wernicke regions, is one famous example. In that case, Carl
Wernicke, who was developing language network models, made the association between
lesions in the AF and the various aphasias he had observed.

The impetus from these findings crossed over to other developments. Theodor Meyn-
ert, a reputed neuroanatomist of that period, had classified prominent white matter
tracts–or fasciculi as they were then called–based on the kinds of connections they
made. Burdach and Déjérine published postmortem atlases and both prominently fea-
tured white matter dissections. New techniques for histopathological analysis were
introduced. Notable among these was Golgi’s staining method and Santiago Ramón y
Cajal’s use of it in his histolgical studies of nerve fibers. Quantitative investigations in
white matter fiber analysis benefited from these cumulative efforts which made studies in
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fiber thinning, demyelination and microstuctural damage possible. Today, postmortem
dissections still give the most precise quantitative assessments.

With the advent of soft tissue imaging technology–computed tomography (CT) in
1972 and magnetic resonance imaging (MRI) in 1977–it was possible to examine living
brains. In 1982, physicians observed multiple sclerosis (MS) lesions (see Figure 6.1 for
lesions) in a living patient for the first time. Since then, clinicians have increasingly
relied on brain scans for diagnosis and treatment. With this in vivo technology, disease
progression in patients could be tracked by physicians and researchers, either individu-
ally, or as part of a longitudinal study of cohorts. This has led to a better understanding
of white matter degenerative disease and has improved treatment options.

The MR signal can be assessed in different ways and the 1990s saw the emergence of
two important MRI modalities. The first, Seiji Ogawa’s 1990 proposal to use contrasts
in blood oxygen response to map changes in brain activity [40], led to the development
of functional magnetic resonance imaging (fMRI). The ability to view brain function
in real time was a big step forward and is responsible for the widespread use of fMRI
among clinical neurologists, behavioral scientists, neuroscientists and others.

Diffusion tensor magnetic resonance imaging (DTI) was the second important MRI
modality introduced. Water constitutes a big part of living tissue–WM is 72% wa-
ter [41]–and the physical flow of fluid is described by a diffusion process. In 1994, Peter
Basser, James Matiello and Denis Le Bihan, in a landmark paper, proposed a tensor
model for diffusion where the flow of water was described by the magnitude and di-
rection of the principal eigenvector [42] at each image voxel. White matter fibers are
inherently anisotropic and the first applications of DTI were studies of neural connec-
tivity where fibers were tracked from end to end. Since the resolution of DTI is at the
cellular level, it was also possible to detect disease–through indices such as fractional
anisotropy (FA)–before it appeared in conventional MRI scans. Normal appearing white
matter (NAWM) in MS is one example where compromised integrity manifests through
lower average FA values.

A second-order tensor model is adequate for DTI reproductions of coherent fiber
tracks but in cases where fibers meet or cross, only one of these directions is retained.
DTI tractography of callosal fibers, where the lateral projections are attenuated, is il-
lustrative of this limitation. To overcome this shortcoming, high angular resolution
diffusion imaging (HARDI) images acquired in several spatially uniform directions are
used. An orientation distribution function (ODF) that can model multiple maxima rep-
resenting the different fiber directions replaces the simple tensor model at each voxel.
HARDI datasets offer better resolution for important DTI applications such as connec-
tivity studies and preoperative investigations.

6.2 Quantitative white matter analysis

It has been three decades since the introduction of the first MRI scans and there is large
body of literature on quantitative white matter studies. It is useful to classify these
efforts as volume-based or tract-based. The preprocessing path flows and possibilities
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Figure 6.1: MRI scan shows MS le-
sions in a patient (circled in red).

Figure 6.2: Tracts of the arcuate fas-
ciculus that connect the Broca, Wer-
nicke and Geschwind areas visualized
through DTI. Tractography can aid
connectivity studies.
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for data interpretation differ in these two approaches.

Volume-based Anatomical structures or regions of interest are treated as volumes
and quantitative information is smoothed or averaged in such a way that the local
variation in individual tracts is not preserved. The white matter structures are
usually segmented by thresholding FA maps though fiber tracts have also been
used. Group-wise registration for population studies may be done at the voxel
level or across individual volumes. A voxel-based coordinate system is used in the
first case and a structure-based coordinate system in the second.

Tract-based The emphasis is on fiber tracts and parameters that vary along a fiber or
anatomically defined bundle. Diffusion indices such as FA and physical descriptors
such as shape are typically studied to assess fiber integrity or changes due to
disease.

Tract-based image analysis was made possible after the first tractography algorithms
were introduced in the late 90s. We devote the next section to developments in this
area.

6.3 Tract-based white matter analysis

In 1999, Mori et al. ushered in tract-based image analysis by reconstructing fiber
pathways in a rat brain [43]. Improvements to the basic tractography algorithm and
work in clustering paved the way for data analysis. These three stages of what is a
developing field are summarized below.

6.3.1 Tractography

Tractography or fiber tracking, as the name suggests, is a way to follow the direc-
tion of the local white matter diffusion from voxel to voxel. For DTI, the simplest
algorithms follow the direction of the principal diffusion tensor eigenvector in a deter-
ministic fashion. The reconstruction process, which includes curvature thresholds and
other termination criteria, generates a tract or streamline (see Figure 6.3). More sophis-
ticated approaches include interpolations for smoother pathways, the use of anatomical
and topological constraints to guide the tracking and ways to deal with the uncertainty
at each voxel due to noise and registration errors.

Streamline tractography is also used in conjunction with high angular resolution
methods. HARDI acquisitions, which measure diffusion along several uniform direc-
tions in a sphere, are used to estimate orientation distribution functions. ODFs give
the probability of diffusion for complex fiber architectures where there are multiple di-
rections in a voxel. Q-ball imaging or spherical harmonic basis functions may be used
to approximate the ODF. Higher order tensors may also be used to fit HARDI signals.
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(a) (b)

Figure 6.3: Fiber tracking using the FACT algorithm. (a) The arrows at each voxel
represent the direction of the principal eigenvector. A streamline connects the arrows.
Reproduced from Xue et al. [44]. (b) FA thresholds and curvature thresholds serve as
termination criteria. (Figure modified from the original in (a).)

6.3.2 Clustering

The mass of DTI fibers rendered is not immediately available for analysis. To organize
and pare them down into meaningful fiber tracts, clustering is used and this has led to
a study of these methods.

6.3.3 Mathematical frameworks

There are three steps in data analysis: pre-processing, modeling and statistical analysis.
The pre-processing may involve registration, tractography segmentation or clustering
and the information contained in these results is often incorporated into the data anal-
ysis model. FA is one such artifact and the analysis of FA profiles along tracts is usually
included in most studies. The quantitative frameworks use both simple ideas such as
the alignment of fibers for statistical analysis and more advanced mathematical con-
cepts such as currents or techniques in Riemannian geometry. The methods listed below
supply a context for the work presented in this thesis.

Fiber-tract oriented statistics This model by Corouge et al. [45, 46] is a prototype
for computing statistics along a fiber bundle. The core idea was to give a compact
description of the geometry and diffusion properties of a fiber bundle along its
length profile. Corresponding points for a set of fibers are aligned and averages
of DTI indices along the cross-section are computed. This can be done with
linear or nonlinear Riemannian spaces. This basic idea has also been extended
to a population atlas where information contained in tractography results [47] or
registration results [48] are evaluated along a tract-based coordinate system.

Statistical modeling and EM clustering of WM fiber bundles Individual fibers
are parameterized and aligned with the goal of performing tract-oriented analy-
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sis over a population. A statistical model of pre-segmented fiber bundles is then
calculated which serves as a prior for mixture model clustering. The Expectation-
Maximization algorithm is used to infer membership probabilities and cluster
parameters. Atlas guided clustering gives anatomically meaningful bundles. This
is work by Maddah et al. [49].

Statistical model of WM fiber bundles based on currents This is a flexible frame-
work where fiber bundles are modeled as currents. The space of currents is a
vector space equipped with an inner product and norm which defines the distance
between two bundles. This is a global distance that does not use point-wise cor-
respondences [50]. Durrleman et al. [51] give a statistical model for a fiber bundle
atlas and it variability in a population.

Comprehensive Riemannian framework In this framework, Mani et al. [1] use var-
ious combinations of shape, scale, orientation and position, the physical features
associated with white matter fibers, to define Riemannian feature spaces. This
is useful since applications have different objectives and often need different sets
of tools and metrics for optimal results. For each joint manifold, a (geodesic)
distance metric that quantifies differences between fibers as well as tools for com-
puting statistical summaries of samples are defined. Correspondences between
fibers are implicitly established during these pairwise comparisons. The frame-
work may be extended to accomodate features such as scalar diffusion indices [7].

Statistical mapping of medial models of WM tracts Yushkevich et al. [52] use
a different geometric model by giving major fiber tracts a medial representation.
While this is strictly not a tract-based model, it is included here because local
statistics of tensor-based features can be computed.

6.3.4 Tract-based analysis in this thesis

This thesis is motivated by the premise that the many varied applications of white
matter fiber analysis, differential diagnosis of white matter diseases and neurosurgery
being two of them, would benefit from the availability of metrics and methods that
optimize the results sought.

6.4 Organization of Part II

In our work, we consider metrics based on shape, scale, orientation and position, the
physical features associated with a fiber. These features have different properties so the
usual approach has been to design different metrics and spaces to treat them individ-
ually. In Chapter 3, we described a comprehensive Riemannian framework where joint
feature spaces allow for analysis of combinations of features. We can match and compare
curves using the formulas for distance metrics and geodesics given. Correspondences
between curves are automatically established through the use of an elastic metric.
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We begin with a discussion of clustering, an important and necessary step in WM
analysis. Clustering helps us organize the large volume of fibers obtained through DTI
tractography and in the early phase, we reviewed existing methods and distance metrics
in order to develop metrics for our own studies. Chapter 7 describes these efforts.

In the three chapters that follow, we demonstrate how the tools and metrics provided
by the Riemannian framework can be effective in the context of WM analysis. In
Chapter 8, we use specific tract configurations in the corpus callosum to show how
clustering results vary with the different distance metrics. This nicely argues for the
judicious selection of metrics in various applications.

The framework also provides tools for computing statistical summaries of curves.
These summaries are a first step in statistical analysis enabling tasks of inference such
as parameter estimation and hypothesis testing for group comparisons. For white matter
fiber analysis, because of the large number of fibers involved, it is also convenient to
first represent a set of fibers with a mean and variance that describes the essential
characteristics of the fiber bundle. Chapter 9 covers this topic in more detail.

The study of WM disease is one of the primary objectives in WM analysis. In
Chapter 10, we show how the feature distances described in Chapter 3 can be used to
detect changes in morphology due to degenerative disease. Since this is the first time
such distance measures have been used in addressing this problem, our approach may
be considered novel.
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Chapter 7

Clustering of White Matter Fibers

Clustering is an unsupervised method that assigns a set of data to subsets called clusters.
The elements of a cluster are similar in some sense and the similarity is determined
by similarity distances. For white matter fibers, the clusters are fiber bundles and the
similarity criteria is used to ensure that the bundles correspond to anatomical structures.

Clustering is an important technique in white matter fiber analysis. Tractography
algorithms help us visualize fibers and were naturally the first methods to be developed.
Clustering followed soon after. A method was needed to organize the tractography
output, which, for whole brain tractography can be several thousands of fibers. In
this sense, tractography and clustering together constitute the pre-processing stages
of quantitative analysis. The combined process has been referred to as tractography
segmentation by O’Donnell et al. [37].

The primary goal of clustering is to partition the fibers into bundles that correspond
to anatomical structures. Connectivity studies can be most directly related to both
clustering and tractography but there are other applications. In preoperative surgical
planning, a knowledge of tract locations, some of which may have been displaced due
to lesions or injury, is needed. This is used to guide the surgery.

Quantitative frameworks built around a clustering algorithm can also be used to
achieve a broader set of objectives. Maddah et al. [49, 53], for instance, obtain statistical
parameters, and use a labeled atlas as a prior to label new bundles. O’Donnell et al. [37]
also construct an atlas. By leveraging the Nyström method described in Section 7.1.2,
only a fraction of the pairwise distance computations required for multiple subjects are
made. They then apply an out-of-sample scheme to label new subjects.

Ding et al. [54] published some of the earliest work on DTI fiber clustering. There
has been substantial progress since then. Both hierarchical [55] and spectral cluster-
ing [37, 56, 57] methods have been tried. The distance measures used can be broadly
classified as feature-based or point-correspondence based. An example of a feature-based
implementation is by Brun et al. [56] where a 9-dimensional vector that captures fea-
tures such as shape, position and the start and termination points of a fiber, was used.
We have also evaluated feature distances which we discuss in Section 7.2.3. Point-
correspondence distances like the Hausdorff-style Mean Closest Point distance match
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points along fibers [36, 37, 54]
In this chapter we report on our own efforts to group DTI tracts. We regard this

procedure as an important preprocessing step for subsequent quantitative analysis. We
choose spectral clustering because of its ease of implementation and the fact that it is
robust. We carry out experiments with the algorithm parameters and distance metrics.
Spectral clustering is reviewed in Section 7.1.1.

7.1 Spectral Clustering

Spectral clustering is relatively new but popular algorithm to cluster data. The method,
as the name suggests, uses eigenvectors of data matrices to cluster points. The first
spectral clustering algorithm to appear was by Shi and Malik [58] in 1997. They used
normalized cuts (NCut) for graph partitioning and applied it to an image segmentation
problem. Spectral clustering methods are now used in diverse domains. Brun et al. [56]
were the first to adapt the method to cluster DTI fibers.

7.1.1 The Normalized Cut Algorithm

Spectral graph partitioning methods can be applied to clustering. For this we con-
struct a weighted graph, G(V,E), in which the data points are the vertices, V , and the
distances between them, the edges, E.

A graph can be partitioned into two or more sets by removing the edges. This is
called a cut (see Figure 7.1). Optimal partitions are obtained by minimizing the cut.
The normalized cut is a kind of graph cut that takes the number of connections at each
vertex into account. Outliers, which are poorly connected, are less likely to form unique
partitions. The normalized cut is given by:

NCut(A,B) =
cut(A,B)

V ol(A)
+
cut(B,A)

V ol(B)
.

A and B are two disjoint subsets (A ∪ B = V , A ∩ B = 0) and V ol(X) is the total
connection from nodes in X to all the nodes in the graph (here X is A or B). Since
the minimization of the NCut is NP-hard, we relax the criteria. The solution to this
semi-optimal cut is the Fiedler vector, which is the second eigenvector of the graph’s
Laplacian.

There are two basic approaches to partitioning the graph with NCut: The first is
a bipartition [58] where only a single eigenvector is used. The algorithm is applied
recursively to obtain k smaller clusters. The multiway algorithms [59, 60] provide a
second option. They use k eigenvectors to directly split the points into k clusters. The
method by Ng et al. [60], which uses k eigenvectors simultaneously, is described next.
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Let S = {s1, s2, . . . , sn}, S ∈ Rl. To group these n points into k clusters:

1. Compute pairwise distances, d, between the elements of S. This is an n× n
matrix.

2. Construct the affinity matrix K ∈ Rn×n such that Kij = exp(−d2
ij/2σ

2) if
i 6= j; Kii = 0.

3. Construct the matrix L = D−1/2KD−1/2. This is a form of the Laplacian.
D is the diagonal matrix (the (i, i)th element is

∑
iAij).

4. After spectral decomposition, find the k largest eigenvectors of L. The re-
sulting matrix is X = [x1, x2, ...xk] ∈ Rn×k.

5. Renormalize X so that each row has unit length. Each row is a point in Rk.

6. Apply the K-means algorithm to obtain k clusters.

7. Assign the original data points si to a cluster point.

This algorithm is versatile and can be applied to a range of situations. The distance,
d, can be a Euclidean distance between points, some other similarity measure or even a
nonlinear function; K is a gaussian kernel though another radial basis function can be
used; σ is the scaling parameter which controls the affinity between points–the larger
the distance between two points, the smaller the affinity.

Figure 7.1: The graph repesentation of data. The graph can be partitioned with a cut.
Reproduced from Arik Azran/Spectral clustering talk (www.videolectures.net).
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7.1.2 Nyström Approximation

The singular value decomposition (SVD) of K, which is at the heart of every spectral
method, requires O(n3) operations. When n is large, the time required to factor K
makes it unfeasible and the matrix itself becomes too large to be stored in memory.
This presents a practical problem when clustering a large data set such as the DTI
tractography output.

One solution is to sample from the data, using a small subset to approximate the
entire affinity matrix K. The Nyström method, which is a numerical approximation
to an eigenfunction problem, was introduced into the machine learning community for
this purpose. It can be incorporated into the NCut algorithm to give an approximate
solution for the eigenvectors associated with the data points [61].

The method was originally proposed by E.J. Nyström in the late 1920s, as an ap-
proximation to the integral equation [62]:

∫ b

a
K(x, y)φ(y)dy = λφ(x). (7.1)

Using the same notation as in [61], K is a symmetric positive definite (SPD) kernel and
(φ, λ) are eigenfunction-eigenvalue pairs. We can discretize this equation by applying a
quadrature rule over the interval [a, b]. The original problem can now be reinterpreted
as a discrete matrix eigenvalue problem:

KΦ̂ = nΦ̂Λ,

whereK is the Gram matrix, Φ̂ are the approximate eigenvectors and Λ, the correspond-
ing eigenvalues. We extend these eigenvectors by getting estimates of eigenfunctions.
We have solved a simpler eigen problem due to the discretization step. We then use
this solution to extend the eigenvectors, this time using the full kernel.

The matrix form of the Nyström estimation is to write K as a Gram matrix K =
ZTZ for z1...zp. We can then use a subset of the vectors zi and their correlations with
all the other vectors to find a low rank approximation K̂.

We partition the Gram matrix K ∈ Rp×p into submatrices A,B and C:

K =

[
A B
BT C

]
. (7.2)

A ∈ Rn×n is a square, symmetric matrixr; B ∈ Rn×m and C ∈ Rm×m (see Figure 7.2).
Noting that the matrix K is positive definite, we can write: K = ZTZ. We then
partition Z so that Z = [X Y ], X ∈ Rp×n and Y ∈ Rp×m. This expansion of K gives:

K = ZTZ =

[
XTX XTY
Y TX Y TY

]
.

A can be diagonalized (A = UΛUT ) and with some matrix manipulation we get:

K̂ =

[
A B
BT BTA−1B

]
. (7.3)
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ComparingK (Eqn. 7.2) and K̂ (Eqn. 7.3), we see that the submatrix C is approximated
by BTA−1B. This implies that it is only necessary to compute A and B. The error
associated with the approximation is given by ||C − BTA−1B||, which is the norm of
the Schur complement.

7.1.2.1 Practical Application of the NCut-Nyström Method

In order to cluster data points (the DTI fibers) using the NCut-Nyström algorithm,
we partition the affinity matrix K into submatrices A, B and C. For A, we compute
affinities of a random sample of n data points. B represents the affinities between those
n points and the rest of the data matrix. The submatrix C, which is much larger, is
approximated by the Nyström algorithm. The partitioning of the matrix K is shown in
Figure 7.2.

Figure 7.2: The affinity matrix K can be partitioned into submatrices A, B and C.
A ∈ Rn×n < B ∈ Rn×m � C ∈ Rm×m.

There are two issues to be considered for the practical implementation:
(i) The calculation of A and B, depending on the size and distance metric used, could
be computationally intensive. The diagonalizations that are required could also be
expensive.
(ii) There is a tradeoff between the size of A and the spectral reconstruction error.
For small A, there are fewer computations; for larger A, the reconstruction accuracy is
better. The improvement in accuracy as A increases, however, reaches a plateau and so
we can find an optimal partition for A and B.

7.2 Clustering the Corpus Callosum

The corpus callosum (CC) is both easy to identify in MRI scans and easy to segment.
This may be one reason why it is the brain structure of choice in the published literature
on clustering algorithms. The extensive use of the CC makes it a baseline against which
to measure results. We use the CC in our own experiments, in part, for this reason.
The main motivation for our choice is the fact that in our projects, the applications
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are specific to the CC ( in Chapters 8, 9, 10). To facilitate this work, we first establish
optimal clustering parameters and distances. In this section, we present these results.

To evaluate the distance metrics, we look at: (i) the Mean Closest Point distance
(many authors, e.g. [36, 37], have used this to cluster DTI data); (ii) a barycenter
distance; and (iii) the Riemannian distance metrics for the open curve described in
Chapter 3. For each of these, tests over an extensive matrix where σ and k are varied,
have been performed. σ, the scaling parameter, and k, the input of the k-means algo-
rithm specifying the number of clusters desired, are the two inputs to the basic spectral
clustering algorithm.

Figure 7.3: Clusters of the corpus callosum. The three clusters correspond to three
fiber bundles: the splenium (left); the rostrum (center); and corpus (right). The MCP
distance was used.

7.2.1 Mean Closest Point (MCP) Distance

The mean closest point distance is described in Chapter 5. We evaluated the following
test matrix for 12 same-sex normal controls:

k = 4 k = 6 k = 8 k = 10 k = 12 k = 14

σ = 20 mm x x x
σ = 30 mm x x x x x x
σ = 60 mm x x x x x x
† x (in bold text) represents the most frequent clustering parameters tested.

A histogram of the distance matrix which shows the distribution of pairwise distances
guided the initial selection of the σ values. The DTI tractography output is large
(>10,000 fibers) so a random sample of 1000 fibers from the CC was used instead. The
distance matrix was computed in two blocks: A = 250× 250 and B = 250× 750 fibers
since the Nyström version of the NCut algorithm was used.

Good clusters that corresponded to anatomical structures, in particular, the sple-
nium, genu, tapetum and cingulam (which is not part of the CC but is often segmented
along with it), were obtained for σ = 30 mm and k = 10, 12 and 14. With these input
parameters, we were able to reproduce the results across 12 subjects, getting similar-
looking clusters in each case. The clusters for two subjects are shown in Figure 7.4.
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7.2.2 Barycenter Distance

The barycenter distance is the distance between the barycenters (centroid) of two fibers.
The barycenter is computed using:

C =

∑n
i=1 xi
n

where x1, x2, . . . , xn are the points used to represent the discretized version of the con-
tinuous curve.

Clustering experiments, over a test matrix, were performed in this case too. Since
the barycenter metric has a different distance distribution, new σ values were selected
from the distance matrix histogram. The number of points on each fiber used for the
barycenter distance computation was n = 15. Affinity matrices A and B were computed
for data from two normal subjects.

For both these subjects, the clusters obtained were cleaner compared to the results
for the MCP distance on the same two subjects (see Figure 7.5). This assessment was
based on external visual judgment. A sagittal view of the clustering (Figure 8.1) shows
the clean divisions which correspond to a ground truth of anatomically defined bundles.

These results we see may be explained by the physical arrangement of fibers in the
CC. For a successful clustering, fibers adjacent to each other should be grouped together.
The barycenter distance calculates small distances for fibers that are very similar to
each other along their entire length so that adjacent fibers are grouped together into a
cohesive cluster. At the same time, the barycenter computation penalizes fibers that
vary somewhere along their length. The MCP distance accommodates more variability.
A fiber may have approximately the same pairwise distance for different fibers with
different configurations.

Data from the distance matrix we compute for the two distance metrics also support
the explanation put forth here. The σ values for the MCP were an order of magnitude
larger than the σ values for the barycenter distance matrix.

7.2.3 Riemannian Distance Metrics

The Riemannian distance metrics defined in Chapter 3 were also evaluated over an ex-
tensive test matrix. The distances were:
1. Shape + orientation + scale + position distance: d1

2. Shape + orientation + scale distance: d2

3. Shape + scale distance: d3

4. Shape + orientation distance: d4

5. Shape distance: d5

Experiment 1: For each of these 5 distances, we constructed a distance matrix. The
effect of the σ and k was tested over several runs. These feature distances, in particu-
lar the shape distance, were not able to separate the CC into the clusters we desired.
Figure 7.6 shows the results for the shape distance.
To explain the clustering results on the CC, we consider the following:
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i) Most of CC fiber tracts rendered by DTI tractography have the same U -shape. A
shape feature distance will not be able to separate tracts which have the same shape.
ii)The tractography is terminated after a specified length so the length of fibers is not
a very useful feature.
iii) Fibers in the corpus, the long middle section of the CC, have approximately the
same orientation. The orientation changes only for fibers at the anterior and posterior
ends of the CC.
iv) Position is the only feature that changes across the length of the CC.

Experiment 2: A second set of runs were evaluated by combining each of these 5
distances with the MCP and the barycenter distance (e.g. shape + MCP distance,
shape + barycenter distance). With the addition of a position distance, the clustering
results were almost as good as the results with the MCP or barycenter distance alone.

7.3 Conclusion and Future Direction

We are interested in clustering the corpus callosum into anatomically defined bundles
which will be used for quantitative analysis. We looked at different distance metrics in
addition to the Mean Closest Point distance used by O’Donnell et al. [37] and some other
authors. Through extensive experiments, we have determined that the distance best
suited for partitioning the corpus callosum into smaller fiber bundles is the barycenter
distance. The clusters we obtained corresponded with anatomical tracts. The splenium
bundles, the genu, the corpus and the cingulum are easier to separate and we got good
clusters. We were also able to separate the isthmus which is harder to separate from
the posterior corpus (see Fig. 8.1).

In addition to the CC, we have successfully used this distance to cluster the arcuate
fasciculi, the genu and splenium of the CC and the corticospinal tract.

The Riemannian feature distances performed poorly because, as discussed in Sec-
tion 7.2.3, the CC is not the best anatomical structure to apply shape or scale distances.
In Chapter 8, we apply these same distances to the CC. We target sections of the CC
(rather than cluster the entire structure) and demonstrate the utility of these metrics in
a specific context. There is a high computational cost associated with the Riemannian
distance metrics so their use should be limited to problems where the number of fibers
is small.

One aspect of the Nyström-NCut algorithm that would be useful to study is the
optimal partition of the A and B matrices. Experiments by various authors in the
machine-learning literature suggest that the error associated with the spectral recon-
struction (i.e. the accuracy of the estimated matrix C) is influenced by the size of A.
There is an optimal size for A beyond which the accuracy does not improve [61, 63]. In
these experiments we choose A = 250 which is 25% of the full set of 1000 fibers used
in the experiments. By finding the optimal A (which is smaller) we would be able to
leverage the full efficiency of the Nyström procedure.
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σ = 30 mm, k = 12

Figure 7.4: Clustering the CC with the MCP distance (σ = 30mm, k = 12). The top
panel shows the CC of one subject partitioned into k = 12 clusters. The bottom panel
shows the clustering results for a second subject. There was a correspondence between
the bundles for the two subjects shown here, as well as for the data from the 10 other
subjects.
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σ = 1, k = 12

Figure 7.5: Clustering using the barycenter distance (σ = 1, k = 12). The CC of
one subject is partitioned into k = 12 clusters.
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σ = 0.5, k = 10

Figure 7.6: Clustering using the Riemannian shape distance. The CC of one subject
is partitioned into k = 10 clusters. CC fiber tracts rendered by DTI tractography have
a similar U-shape, so some of the clusters are indistinguishable. Clusters in the first
two rows, for instance, are examples of oversegmentation. Only the cingulam bundle
(bottom left) has a distinct shape and forms a separate cluster.
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σ = 0.5, k = 6

σ = 0.5, k = 12

Figure 7.7: More examples of oversegmentation with the shape distance for k = 6
and k = 12.



Chapter 8

Clustering Corpus Callosal Fibers

Each of the distances derived in Chapter 3 are based on a different combination of
features and so we expect different outcomes in applications such as clustering. In
this chapter, we demonstrate this with fibers of the corpus callosum (CC henceforth),
showing how some distances are better suited for clustering a given configuration than
others.

8.1 Clustering the Corpus Callosum

The CC is the largest white matter fiber bundle in the brain (Figure 8.1). It is centered
along the midsagittal plane with radiations that extend to the prefrontal and frontal
cortex in the anterior brain, the sensory-motor cortex in the middle and the parietal
and occipital lobes in the posterior brain. The fibers vary not just in topography but
also in composition. Thin, lightly myelinated, densely packed fibers predominate in the
genu at the anterior end, and to a lesser extent, in the splenium, at posterior end. The
mid-corpus, on the other hand, has thicker, longer fibers [64]. Due to this heterogeneity,
pathologies such as multiple sclerosis [65] and schizophrenia [66] selectively affect specific
sections of the CC and so there is interest in parcellating the different regions for study.

Clustering CC fibers is made difficult due to the lack of obvious landmarks and
also because a limitation in DT-MRI tractography [67] renders fibers that are similar
in shape and scale along the length of the CC.

8.1.1 Method used in the Experiments

We used spectral clustering for our experiments. The distance functions were Rieman-
nian metrics defined in Chapter 3. For the benefit of the reader, we list these distances
below:

1. d1: the shape, orientation, scale and position distance defined in S1

2. d2: the shape, orientation and scale distance defined in S2

3. d3: the shape and scale distance defined in S3
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Figure 8.1: A midsagittal view of the corpus callosum. The rostrum and genu (blue),
rostral body (cyan), anterior corpus (red), posterior corpus (black), isthmus (magenta),
tapetum (yellow) and splenium (green) subdivisions are based on the Witelson [68]
classification.

4. d4: the shape and orientation distance defined in S4

5. d5: the shape distance defined in S5

The CC was rendered by DTI tractography using a second-order Runge-Kutta algo-
rithm. The data came from a healthy male subject in the 20-30 year old age bracket.
The partitions were made a priori using guidelines from the Wittelson [68] classification
(see Figure 8.1).

8.1.2 Clustering Results

It is usually the case that the combined shape, orientation and scale information is richer
and gives better discrimination than shape information alone. In the case of the CC,
the genu (blue) and splenium (green) are at opposite ends and are easily grouped using
the joint shape, orientation and scale metric, d2 (Figure 8.4). They differ in orientation
and scale but have similar shape (see Figures 8.2 and 8.3), so using shape distances, d5,
alone results in poor clustering. The results for shape clustering (using d5) are shown
in Figure 8.4 for comparison.

There are instances, however, where a combination of shape, orientation and scale
do not yield the best results. When the arrangement is altered slightly to include a
third bundle, the anterior section of the corpus (red), the joint shape and orientation
distance, d4, consistently gives better results than the d2 metric (Figure 8.5). This can
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be explained by the fact that the genu (blue) and corpus (red) have roughly the same
scale and tend to cluster together with a d2 metric. The three bundles, however, are
oriented in different directions (approximately 0◦, 90◦, 180◦ in relation to each other)
and so the d4 metric, which does not include scale, provides better discrimination.

A second example is the clustering of the isthmus (magenta) and the splenium
(green) at the posterior end of the CC (Figure 8.6). The scale parameter, similar for
the two groups, dominates the clustering and using either the shape and scale, d3, or the
d2 distance gives poor results. The d4 metric, which does not include scale information,
gives the best results (Figure 8.6).

From these examples, we see that the choice of distance metric can affect clustering
results even when small changes in configuration are made. A broader range of prob-
lems in white matter fiber analysis can similarly benefit from the judicious selection of
distance metrics.

Figure 8.2: The genu (blue), corpus (red)
and splenium (green) are oriented in differ-
ent directions.

Figure 8.3: The genu (blue) and splenium
(green) have different scale (top) but are
similar in shape (bottom).
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(a) shape+orientation+scale (d2) (b) shape (d5)

Figure 8.4: Clustering the genu and splenium at the anterior and posterior of the CC
respectively. Here, shape information alone (b) is not adequate for clustering.

(a) shape+orientation (d4) (b) shape+orientation+scale (d2)

Figure 8.5: Clustering of the genu, corpus and splenium located in the anterior, middle
and posterior sections of the CC. Including the scale information results in poorer
clustering (b).

(a) shape+orientation (d4) (b) shape+scale (d3)

Figure 8.6: Clustering the isthmus and splenium, both at the posterior end of the CC.



Chapter 9

Statistical Summaries of White
Matter Fibers

A key concept in medical image analysis is the idea of a mean template, i.e., a statistical
average around which deviations can be assessed. In the context of white matter fibers,
we seek to represent an anatomically defined fiber bundle with a mean and variance
that describes its essential characteristics. The mean is of interest in this analysis for
the following reasons:

1. There are a large number of fibers involved in white matter fiber analysis. The
CC has 300 million fibers alone; the whole brain, over 100 billion [67]. The
tractography output which is some fraction of this can still be several thousand
fibers. Due to this large volume, a practical first step in any study, and one that
is advocated by the author, is to compute a representative mean of a fiber bundle.

2. The tractography output is subject to error. Noise, imperfections in the image
and the presence of regions of low anisotropy due to fiber crossings all contribute
to this. In order to make the streamline output more robust we can average over
the fiber bundle. This strategy is also useful when a representative bundle is
sought and there are discontinuities and other fiber damage due to disease.

3. To facilitate statistical analysis for population studies where the underlying prob-
lem is one of assigning membership to a group.

Means may be computed for the following situations:

(i) for a group of fibers within a fiber bundle

(ii) for an intra- or inter-subject collection of fibers from many bundles

(iii) for an intra- or inter-subject collection of means of fiber bundles

The computation of statistical summaries is usually included in any framework for
white matter fiber analysis. These mathematical frameworks were briefly summarized
in Chapter 6.3.3. Maddah et al. [49, 53], for instance, compute clusters and their mean
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trajectories as follows: A fiber trajectory is treated as an ordered set of points, each
of which is a cluster center. Points from other fiber trajectories, similarly sampled,
are assigned to these cluster centers. The mean curve can be reconstructed from these
updated cluster centers. This is one example of a mean computation.

In the case of the manifolds defined in Chapter 3, Riemannian structures on these
spaces enable us to compute means and variances and thus construct statistical models
that capture the variability of the white matter fiber configurations under study. In
this chapter we show how means are computed in a nonlinear Riemannian manifold. A
procedure for computing the means of fiber bundles is described in Section 9.1.1 The
mean for a given fiber bundle in the shape manifold, S5, is the mean shape. The means
computed in S1, S2, S3, and S4 can similarly be described by the combination of features
used. We compute means for some of these manifolds. These are then used in analyses
such as the study of morphological changes in the CC in Chapter 10.

9.1 Means in a Nonlinear Manifold

In a Euclidean space, for a set of k points, x1, x2 . . . xk, the sample mean is:

x̄k =
1

k

k∑

i=1

xi, xi ∈ Rn. (9.1)

In a nonlinear manifold, a simple summation is no longer possible. We can, however,
make an extrinsic computation by embedding the manifold in a vector space, computing
the Euclidean mean and projecting the result back into the manifold. A disadvantage
is that the mean computed depends on the choice of embedding.

A second possibility is an intrinsic computation, i.e., one where we use intrinsic
manifold computations to compute the mean.

9.1.1 Karcher Means of Fiber Bundles

To compute an intrinsic mean within a manifold, S, we use the concept of the mean
as the centroid of a density. This idea was put forward by Fréchet [69] to calculate
means in a Riemanniann manifold. The computation involved a minimization but the
existence and uniqueness of the resulting mean could not be guaranteed (see [70] for
details). Karcher’s proposal that a local instead of a global mean be used [71], led to a
practical implementation. We shall henceforth refer to this local mean as the Karcher
Mean.

For a given collection of fibers {β1, β2, . . . , βn}, with function representations
{f1, f2, . . . , fn}, the Karcher mean is defined as:

µ̄n = argmin
f∈S

n∑

i=1

ds(f, fi)
2 . (9.2)

A gradient approach such as the gradient descent algorithm we employ, is used to find
the local minimum of the cost function. The steps for the shape manifold, S5, are
outlined below.
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1. Initial Condition: In the shape manifold, S5, we represent the fibers with
the SRVF (i.e the q-function) (see Chapter 3, Eqn. 3.1). Since the qi’s are
elements of a hypersphere, we can use their extrinsic mean in (L2[0, 1])3 to
initialize the gradient algorithm. We use the classical average:

µ(t) =
1

n

n∑

i=1

qi(t), t ∈ [0, 1] ,

followed by the normalization µ 7→ µ/‖µ‖, as the initial value for the gradient
search.

2. Iterative Update: Let µ be the current estimate of the Karcher mean. We
find the tangent vectors, vi ∈ Tµ(S), i = 1, 2, . . . , n, such that the geodesic
starting from µ with the initial velocity vi, reaches qi in unit time. (In
practice, we first find the optimal rotations and reparameterizations of qi to
best match µ, and then use the inverse exponential map to compute vis.)
Next, the average direction, v̄ = 1

n

∑n
i=1 vi, is computed. The average vector

v̄ is actually the negative gradient of the cost function given in Eqn. 9.2. We
update µ with the Riemannian exponential map, expµ(εv̄), which provides a
means of travel on the manifold. Here, ε is a small positive number. Repeated
application of these steps leads to a local minimizer of cost function. A local
minimum is found by repeating these steps.

Since the gradient method does not guarantee a globally optimal solution, the final
result is dependent on the starting condition. A heterogeneous set of fibers will give
different means for different starting points. The shapes of white matter fiber bundles,
however, are anatomically determined by the regions they connect and occupy. They
are thus homogeneous and computing the Karcher mean of a fiber bundle does not
usually give inconsistent results.

9.1.2 Karcher Means for the S1, S2, S3, and S4 Manifolds

The explicit exponential and inverse exponential maps in the S1, S2, S3, and S4 man-
ifolds are different, but the Karcher means can otherwise be handled similarly. In
Figures 9.1 and 9.2, we show the Karcher means for a genu and splenium bundle re-
spectively. These computations were done in the shape, S5, and shape+orientation, S4,
spaces. (The mean curves in these two manifolds are similar because the individual
fibers do not vary greatly in orientation in this small sample set.)

9.1.3 Statistical Modeling of Fibers

We can construct parametric and nonparametric statistical models for different classes
of fiber bundles. We first need to adapt the probability models to a nonlinear mani-
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fold. Using hypothesis tests such as the likelihood ratio test, we can then answer such
questions as whether a fiber bundle belongs to a population.

9.2 Measures of Dispersion

The Karcher mean is the local minimum of the variance function [70, 69] and so com-
puting the mean of a fiber bundle also gives us a value for the variance. The variance
function V : S → R is defined as

V (µ) =
1

n

n∑

i=1

ds(µ, qi)
2 . (9.3)

The iterative gradient procedure converges to the Karcher mean which can then be used
to calculate the geodesic lengths in the variance computation.
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Figure 9.1: Top row: axial, coronal and sagittal views of a fiber bundle extracted from
the genu; second row: mean curve in the shape manifold; third row: mean curve in
the shape+orientation manifold; bottom row: decrease in cost function using gradient
iterations for the shape(left) and shape+orientation(right) manifolds.
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Figure 9.2: Top row: axial, coronal and sagittal views of a fiber bundle extracted from
the splenium; second row: mean curve in the shape manifold; third row: mean curve in
the shape+orientation manifold; bottom row: decrease in cost function using gradient
iterations for the shape(left) and shape+orientation(right) manifolds.
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Figure 9.3: Mean curves of the mid-splenium for 6 control subjects. These
are used to construct an atlas. Top row: shape manifold (axial, coronal, sagittal views);
bottom row: shape+orientation manifold. In both manifolds, the curves are scaled to
unit length so registration beyond the initial alignment to a common reference frame is
not required.

splenium fiber bundle mean curve for fiber bundle

mean curves for 6 controls population average

Figure 9.4: Computing population means for fiber bundles. Top row: the mean
curve for a single splenium fiber bundle. Bottom row: Mean curves for 6 subjects are
computed. The mean of these is the population average curve for the splenium.
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Chapter 10

Morphological Changes in the
Corpus Callosum

The corpus callosum (CC) connects the two brain hemispheres and thus plays a vital
role in interhemispheric communication. Consequently, changes to its shape or struc-
ture, which occur because of aging [72, 73] or degenerative disease [74, 75, 76], is the
subject of active study. There is an interest in linking these physical changes to neu-
rological impairment [77]. There is also an interest in linking the different stages of a
degenerative disease such as multiple sclerosis (MS), schizophrenia or Alzheimer, with
physical alterations [78, 79].

One of the underlying mechanisms for these topographical changes is atrophy. In
the case of MS, a degenerative disease associated with atrophy, whole brain grey matter
volume loss occurs even in the earliest stages of the disease. What is not as well
understood is the nature and extent of white matter volume loss [80]. The CC is an
ideal brain structure to study atrophy in MS subjects. It has the largest concentration
of white matter tracts and a high prevalence of compacted fibers and we expect it to
be disproportionately affected by the mechanisms that result in atrophy.

The study of morphological changes in the CC, which falls under the purview of
shape analysis, can be categorized as volume-based or tract-based. With volume-based
analysis, two broad approaches have been followed in the literature. The first approach
has been to present the CC as an abstraction using a geometric representation such
as a fixed topology skeleton or a medial axis description. Classification using a linear
discriminant method such as support vector machine (SVM) is then performed [81, 82].
In other studies, different principal component analysis (PCA) techniques have been
used to study the modes of local and global variation [83]. The second set of approaches,
more common in clinical studies, has been to divide the CC into well-defined partitions
and to analyze quantitive parameters such as the width (dorsal-to-ventral) and thickness
(anterior-to-posterior) [78, 84] of these sections.

With tract-based analysis, the research emphasis has been on the evaluation of
microstructure functions such as fractional anisotropy (FA) and mean diffusivity (MD)
along the lengths of tracts. Correspondence and averaging methods have been applied
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to preserve the FA function for bundles and atlases of prominent CC tracts like the genu
and splenium [45, 48]. Classification based on the geometrical shapes of fiber tracts has
received less attention. Adluru et al. [85], in a recent paper, did a classification based
on the shape histograms of fiber tracts but this is the only example of a tract-based
shape study we know of to date.

In this chapter, we present new tract-based methods to assess fiber integrity. We
use the Riemannian metrics described in Chapter 3 to look at changes in the shape
and alignment of fibers or tracts and through a case-control study of MS subjects,
demonstrate the feasibility of our methods. In particular, we look at the anterior CC
which when viewed along the midsagittal plane forms a deep arc. We expect that
atrophy would result in a straightening of this arc as the results in [83] suggest. We
also expect that the distances computed in the shape and shape+orientation manifold,
when considered together, are well suited to detect such changes.

10.0.1 Data

To study shape changes in the genu, DTI data from 20 subjects, 10 normal controls
(NC) and 10 MS patients were used. The MS subjects had a mean age of 44 ± 12 years
and the mean disease duration was 10 ± 10 years. Registration of the data set is not
required (other than an alignment to a common coordinate system) but was performed
in this case. To obtain the DTI fiber tracts, anatomical regions corresponding to the
genu and rostrum were seeded and streamline tractography with fourth order Runge-
Kutta integration was performed. A few fibers from the posterior-most section of the
genu and another small set from the mid-section of the genu, were used to compute
two average curves, one for each section. The Karcher mean algorithm, described in
Chapter 9, was used for this. We shall refer to these two curves, shown in Figure 10.1,
as the lower curve (LC) and the upper curve (UC) respectively. A total of 40 curves (2
curves/subject × 10 subjects/group × 2 groups) were used in this study. To maintain
consistency, the entire dataset was post-processed by a single individual over a short
period of time.

10.0.2 Distance Maps

Distance matrices of the NC and MS populations are used to look at LC-LC, UC-UC
and LC-UC distances. The layout of such a map is shown in Figure 10.2. The first
quadrant shows LC-LC distances of the 10 LC fibers in the group; the fourth quadrant
shows the UC-UC distances of the 10 UC fibers; the second and third quadrants show
the LC-UC distances between 20 fibers. We represent both shape and shape+orientation
distances in this way. The distances have a common scale so comparisons can easily be
made.

Distance maps are an efficient way to make intra- and interpopulation comparisons.
We can study 3 distribution profiles–the LC-LC, UC-UC and LC-UC distances–within
the NC population, the MS population and also between the NC-MS population. In
principle, this gives us 9 (3× 3 = 9) distributions to analyze.
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Since we can make the same 9 comparisons for each of the distance measures used,
for the two distances (shape and shape+orientation) that we use in this chapter, there
are 18 (9 + 9 = 18) distance distributions to study. We may also study intrapopulation
differences for the LC-LC, UC-UC and LC-UC distances between the distance maps.
In total, comparing the intra- and interpopulation differences between the shape and
shape+orientation distances gives us 24 (9 + 9 + 3 + 3 = 24) distributions to study.

10.0.2.1 Shape Distances

The intrapopulation shape differences are small for the LC-LC and UC-UC comparisons.
The LC-UC distances are only slightly greater. This pattern is observed in both the
control and MS populations with the MS group having slightly larger differences. This
suggests that the shapes of the two curves within a population are similar, with the
MS population showing more variation. The variances in Table 10.1 computed for the
shape manifold further support this visual summary.

10.0.2.2 Shape+orientation Distances

The shape distances are a baseline. With the additive orientation distances in the
shape+orientation manifold, we expect the LC-UC distances to be greater since the
two curves are differently oriented. This is what we observe in the control group with
large distances in the second and third quadrants (see Figure 10.4). The striking visual
showing the second quadrant differences between the two manifolds is further supported
by the Wilcoxon signed-rank statistic. This is a nonparametric hypothesis test between
paired dependent samples. The p-value of 0 that we get for both the NC and MS popu-
lations strongly indicates that the median distances are different for the two manifolds.

Figure 10.4 also shows that the second quadrant LC-UC distances in the shape+orientation
manifold are both smaller and more variable for MS patients. (The LC-UC distances
for each individual subject are plotted in Figure 10.5). The LC-UC variance for the
MS subjects in Table 10.1 in fact shows that they are the most variable group. Be-
cause of the heterogeneity in variance between the NC and MS groups, a nonparametric
rank-based test to compare populations was not performed.

Overall, the data suggests that the relative LC and UC orientation differences be-
come smaller for the MS group as the disease progresses.
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Figure 10.1: Two curves, the LC in red and the UC in blue, are used to determine
changes in the curvature of the anterior CC. The LC is extracted from the mid-rostrum
where the tractography is more reliable. The UC is extracted from the mid-genu.

Figure 10.2: Distance map layout. Quadrant I represents the pair-wise distances of
the 10 LCs. Same subject distances fall on the diagonal and are zero. The colormap
variation shows intra-population variability. Quadrant IV, likewise, displays the UC
distances. Quadrants II/III show the LC-UC/UC-LC distances. Each row displays the
distance between the LC of one subject and the 10 UCs.
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(a) NC (b) MS

Figure 10.3: Raw curve data. (a) Population of NC curves with the LC in red and
UC in blue. (b) Curves from MS subjects.
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Figure 10.4: Distance maps. The LC-LC, UC-UC and LC-UC shape differences are
small for the NC and MS populations. The LC-UC shape+orientation distances are
large (quadrants II & III are orange) for the NC population. These distances are both
smaller and more variable, by contrast, in the MS group. A common color scale enables
us to compare groups.
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Figure 10.5: Distance between the LC and the corresponding UC in 10 subjects. The
shape+orientation distance (red) is greater than the baseline shape distance (blue) as
expected. The difference in these two distances is greater in the control population
(top) and more consistent. The MS population (bottom) is more variable.

Table 10.1: Within-group variance for distance distributions

NC MS
LC-LC UC-UC LC-UC LC-LC UC-UC LC-UC

shape 0.0026 0.0048 0.0030 0.0089 0.0039 0.0089
shape+orientation 0.0032 0.0043 0.0040 0.0080 0.0108 0.0176
† Distances between the same curve (d = 0) were not included in the variance computation
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10.0.3 Discussion/Contribution

Distance measures betweeen two fibers, visually represented as distance matrices or
maps, can be used for both intra- and interpopulation comparisons. In a comparative
study of NC and MS subjects, the shape+orientation distance color maps have different
signatures for the two populations with the MS group showing more variability.

This variability is suggestive of alterations to callosal shape that accompany illness
progression. The genu curvature may either be getting more pronounced or straighten-
ing out. PCA models of shape changes in the CC indicate that the CC flattens out [83].
We can confirm this by designing an experiment with 3 curves from 3 different locations
in the anterior CC. More expensive longitudinal studies that follow a patient over time,
can also verify this.

The Riemannian framework can be extended to include additional features such
as a fractional anisotropy (FA) or mean diffusivity (MD) function along the fiber [7].
Incorporating this information into our analysis will provide interesting insights into
the links between shape changes, atrophy and FA.

Using only 10 MS subjects and 10 NC for comparison, we have demonstrated an
effective new design that uses shape distances in tandem with shape+orientation dis-
tances to study shape, morphology and changes to these. Our feasibility study needs to
be repeated on a larger sample matched for age, gender and handedness, factors that
are known to affect callosal size and shape [68, 72]. The broader context of this work is
to develop methods to identify and track progressive white matter disease. We envision
that tools such as this will improve the clinical evaluation of patients suffering from MS
and other similar kinds of degenerative disease.
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Chapter 11

Conclusion

We have explored the analysis of open curves in two very different contexts, sulci and
white matter fibers. Sulci are few and variable. DTI fibers, on the other hand, are
numerous but somewhat homogeneous within a fiber bundle.

A hard problem in sulcal analysis is labeling. The difficulty expert neuroanatomists
sometimes have with this task sets the upper parameters for the performance we can
expect from automatic labeling. We address the automatic labeling problem by first
limiting the scope of the problem to the primary sulci. This now becomes a well-defined
problem for which we give a simple, lightweight, easy-to-implement solution. The insight
we offer is that solutions can be found by treating this as a graph pattern matching
problem.

One difficult problem in white matter fiber analysis is the practical matter of effi-
ciently handling the large volume of fibers (obtained from DTI or HARDI). This may be
achieved by clustering the fibers, by clustering using approximations such as the Nys-
tröm method, by sampling from the data in a fiber bundle or computing representative
means as we do in Chapter 10. Volume-based methods side-step this issue by treating
a white matter structure as a single anatomical unit. With tract-based analysis, how-
ever, processing individual fibers is usually a requirement. Tractography and clustering
algorithms have made this possible. Improvements are needed but it is my view that
making the pre-processing pipeline more efficient is an engineering effort.

While tedious processing is a disadvantage, tract-based methods offer the potential
to study local parameters along a tract. This is important in the study of white matter
disease and, at this juncture, it is here that the maximum contributions to the medical
community can be made.

With this in mind, we introduce a new set of methods for the geometrical analysis
of fiber tracts. These tools extend the shape analysis of fiber tracts to a more inclusive
analysis: that of combinations of the four physical features–shape, orientation, scale
and position– associated with a fiber when it is modeled as a curve. We motivate the
use of these tools with two examples: In the first case, we show how we can improve
clustering results by selecting appropriate distance metrics for the different problem
configurations presented. We can customize solutions in this way because we work with
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a wider selection of tools.
In the second example, we convincingly show, through a clinical example, that these

metrics used in concert with each other, can detect physical changes due to disease (MS
in this case). Analysis of this problem has been limited to PCA or some variant of it.
The distance metrics we use offer different ways to measure changes and the experiments
we design around them are a way to look at the problem anew. In fact, this may be
the first example of geometrical analysis of this kind in medical image analysis. With
extensive experiments this method could potentially be used to calibrate the stages of
disease. This will enable physicians to target treatment more effectively.

In summary, the contributions of this thesis are as follows:

1. Graph pattern matching is an important strategy for labeling sulci. This
insight takes its inspiration from manual labeling where the relative place-
ment of sulci are cues for correct identification. The relational pattern
design compensates for the variability in sulcal patterns across subjects.
We can identify both normal sulci (tested for 10 classes of primary sulci)
and displaced sulci to a high degree of accuracy. Furthermore, as a sec-
ondary benefit, atlases may be constructed without registering the sulci to
a common template.

2. The graph pattern matching solution implemented as an out-of-sample
MDS procedure, is fast, light-weight and easy to put-together.

3. We evaluate the use of combinations of the four physical features–shape,
orientation, scale and position– for sulcal and DTI fiber applications.

4. Several distance metrics have been proposed for clustering white matter
tracts. The Mean Closest Point distance has been mentioned in some
papers as the distance of choice. We propose a barycentric distance for
parcellating the CC. This gives cleaner clusters based on visual evaluation.

5. With the computation of statistical summaries, we demonstrate two things:
(i) how to compute representative means of fiber bundles and (ii) how
means might be used in the statistical analysis of a population. In the
first case, the mean is a preliminary step which makes subsequent analysis
easy. It can be used in different kinds of analyses such as the problem, in
Chapter 10, where we compare two regions of the CC by looking at their
mean curves.

6. The changes in shape that the corpus callosum undergoes as disease pro-
gresses is a problem that lends itself to geometrical analysis. We identify
this problem, introduce new mathematical methods to study this, design a
method–comparing curves from different sections of the CC–to detect these
changes and finally present the results through effective visualization.



Appendix A

Clustering of Sulci

We have made extensive use of clustering to organize DTI fibers in our projects. In this
appendix, we report on our efforts to cluster sulci.

A.1 Clustering Applied to the Sulcal Labeling Problem

Clustering algorithms are optimized to group like data. As applied to the problem of
labeling sulci, we wish to partition a database of sulci into categories which can then be
labeled. The specific task we are interested in is to cluster 180 sulci from 18 subjects
into 10 classes (this is the same database used in Chapter 5). We use spectral clustering,
described in Chapter 7, for this purpose. The primary motive for these experiments is
to compare the performance of a simple clustering procedure to the labeling method we
have devised.

A.1.1 Clustering with the Position Distance

As we saw in Chapter 5, the position distance is the most useful feature for labeling sulci
using the out-of-sample MDS and nearest neighbor procedure. We compared clustering
performance with this labeling algorithm. The midpoint distance, defined in Section 5.2
was used in both cases.

Figure A.1 displays the clustering results on the left (a). The columns of the con-
fusion matrix correspond to known classes; the rows, the cluster results. This is the
convention we follow in the rest of this chapter. 121/180 (67%) sulci were correctly
grouped into clusters that corresponded with their known categories. The results of
the labeling method are shown on the right (b). 163/180 (91%) sulci were correctly
classified in that case.

Clustering uses distance information whereas our labeling algorithm uses both dis-
tance and structural pattern information. We see in the figure (a), that the left post-
central sulci (second column) were classified as the central suclus (first row) which is
adjacent to it; some of the right central sulci (sixth column) were identified as the right
postcentral sulcus (seventh row); the right postcentral sulcus (seventh column) was also
classified as the left postcentral sulcus (second row). In another experiment, we were
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unable to separate the post and precentral sulci, both of which are equidistant to the
central sulcus but on opposite sides of it. In general, the clustering algorithm had
greater difficulty in separating sulci that are oriented in the same direction.

A.1.2 Clustering with Riemannian distance metrics

In Chapter 5, we had evaluated the labeling performance for each of the five features–
shape, mean depth, orientation, length/scale and position– individually. Position, as
noted in Section A.1.1, gave the best results. To gain a better understanding of the
interactions between shape, scale, orientation and position, we used the Riemannian
distance metrics (defined in Chapter 3) to cluster the sulci. The distances are:

1. Shape + orientation + scale + position distance: d1

2. Shape + orientation + scale distance: d2

3. Shape + scale distance: d3

4. Shape + orientation distance: d4

5. Shape distance: d5

For each of these five distances, we constructed a distance matrix. The effect of the
scale parameter, σ, on the clustering results was tested over several runs, while k, the
number of clusters, was fixed at 10. The clustering results for the best of these runs
(shown in Figure A.2) are discussed below:

1. Shape distance: The shape of sulci are oftentimes indeterminate. The central
sulcus is the most consistent of the sulci and we see marginally better results for
this class (row 1; columns 1 and 6). The left and right central sulcus (columns 1
and 6 respectively) cluster in one group (row 1) since orientation is not preserved
in the shape information.

2. Shape + scale distance: The addition of scale information does not enhance
the clustering results. The distribution of the lengths for each class of sulci for the
unregistered, raw data, can be seen in Figure 4.3(a). We see that only the central
sulcus, which has a narrow length distribution, can be reasonably identified by
the combined shape and length parameter.

3. Shape + orientation + scale distance: When orientation is also included in
the distance metric, the results improve. Once again, the results are better for
the central sulci, which due to the orientation information, now separate into left
and right clusters.

4. Shape + orientation distance: When the scale is removed, leaving us with just
shape and orientation information, the results improve further. We have already
seen (in 2 above) that adding scale to the distance metric does not help the cluster
results.

5. Shape + orientation + scale + position distance: Adding position so that
the full feature information of the sulcal curve is used, gives the best results.
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In summary, results improve when orientation is added to the distance metric. Re-
sults improve further when position is also included. The scale distance does not con-
tribute to better clustering and results improve when it is removed from the compre-
hensive distance metric. These clustering results support our findings for the feature
evaluation of the labeling algorithm in Chapter 5. There, we saw that the shape dis-
tance results improve considerably when shape and position distances are combined;
but that position distances alone give the best results.
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(a) Clustering algorithm (b) Labeling algorithm

Figure A.1: Clustering vs Labeling performance evaluated using (the midpoint)
position distance. There are 10 classes, each with 18 sulci. A total of 18 × 10 = 180
sulci are used in the experiments. The columns of the confusion matrix represent the
ground truth/true labels (the column sum is 18); the rows are the clusters/test labels.
The cluster labels were assigned based on the majority vote.
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Table A.1: Confusion Tables for the Clustering and Labeling algorithms. The
diagonal terms (in blue) give the number of sulci that were correctly identified (18 =
100%; this table is the raw data for the confusion matrix in Fig. A.1)

Clustering method

True Label 1 2 3 4 5 6 7 8 9 10

C
lu
st
er

re
su
lt
s

Left central 1 15 14
L. postcentral 2 3 7 2 1
L. sup. frontal 3 16
L. sylvian fissure 4 2 2 2 16 4
L. sup. temporal 5 1 2 2 13
Right central 6 9 3
R. postcentral 7 6 8
R. sup. frontal 8 16
R. sylvian fissure 9 1 2 14 3
R. sup. temporal 10 2 14

Labeling method

True Label 1 2 3 4 5 6 7 8 9 10

T
es
t
La

be
l

Left central 1 16 3
L. postcentral 2 2 15
L. sup. frontal 3 18
L. sylvian fissure 4 15 2
L. sup. temporal 5 3 16
Right central 6 17 4
R. postcentral 7 1 14
R. sup. frontal 8 18
R. sylvian fissure 9 17 1
R. sup. temporal 10 1 17
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1. Shape distance: d5

σ = 0.8 σ = 1.0
2. Shape + scale distance: d3

σ = 6 σ = 10
3. Shape + orientation + scale distance: d2

σ = 10 σ = 20
4. Shape + orientation distance: d4

σ = 1.2 σ = 1.5
5. Shape + orientation + scale + position distance: d1

σ = 1200 σ = 1500

Figure A.2: Clustering sulci using Riemannian feature distance metrics. The
shape distance (1 above) has the worst clustering results. The left and right central
sulcus (columns 1 and 6 respectively) cluster in one group (row 1). Including orientation
in the distance metric (3 above) rectifies this. With the addition of position (5 above),
we get the best results.



Glossary

Comprehensive Riemannian Framework terms
Γ the set of all orientation-preserving diffeomorphisms
SO(3) the set of all possible rotations in R3

SRF square root function (the h-function)
SRVF square root velocity function (the q-function)
equivalence class pg. 19
orbit pg. 19
quotient space pg. 20
Riemannian metric pg. 19
Riemannian manifold pg. 19
preshape space pg. 19
shape space pg. 19
DP dynamic programming, pg. 24

White matter fiber analysis terms
AF arcuate fasciculus
CC corpus callosum
CT computed tomography
DTI diffusion tensor imaging
FA fractional anisotropy
fMRI functional magnetic resonance imaging
HARDI high angular resolution diffusion imaging
MRI magnetic resonance imaging
MD mean diffusivity
MS multiple sclerosis
NAWM normal appearing white matter
ODF orientation distribution function
PCA principal component analysis
WM white matter
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Résumé

Il y a dans le cerveau humain environ 100 sillons corticaux, et plus de 100 milliards de
faisceaux de matière blanche. Si le nombre, la configuration et la fonction de ces deux
structures anatomiques diffèrent, elles possèdent toutefois une propriété géométrique
commune: ce sont des courbes ouvertes continues. Cette thèse se propose d’étudier
comment les caractéristiques des courbes ouvertes peuvent être exploitées afin d’analyser
quantitativement les sillons corticaux et les faisceaux de matière blanche.

Les quatre caractéristiques d’une courbe ouverte–forme, taille, orientation et position–
ont des propriétés différentes, si bien que l’approche usuelle est de traiter chacune sé-
parément à l’aide d’une métrique ad hoc. Nous introduisons un cadre riemannien adapté
dans lequel il est possible de fusionner les espaces de caractéristiques afin d’analyser con-
jointement plusieurs caractéristiques. Cette approche permet d’apparier et de comparer
des courbes suivant des distances géodésiques. Les correspondances entre courbes sont
établies automatiquement en utilisant une métrique élastique.

Dans cette thèse, nous validerons les métriques introduites et nous montrerons leurs
applications pratiques, entre autres dans le cadre de plusieurs problèmes cliniques im-
portants. Dans un premier temps, nous étudierons spécifiquement les fibres du corps
calleux, afin de montrer comment le choix de la métrique influe sur le résultat du
clustering. Nous proposons ensuite des outils permettant de calculer des statistiques
sommaires sur les courbes, ce qui est un premier pas vers leur analyse statistique. Nous
représentons les groupes de faisceaux par la moyenne et la variance de leurs principales
caractéristiques, ce qui permet de réduire le volume des données dans l’analyse des
faisceaux de matière blanche. Ensuite, nous présentons des méthodes permettant de
détecter les changements morphologiques et les atteintes de la matière blanche.

Quant aux sillons corticaux, nous nous intéressons au problème de leur labellisation.

Mots clés: imagerie cérébrale, analyse des sillons, anomalie de la matière blanche,
analyse de formes, regroupement, courbes ouvertes, variété riemanniene



Abstract

There are about a hundred sulci in the human brain and over a hundred billion white
matter fibers. These two anatomical structures differ in their number, their physical
arrangements and in the function they serve but they do share a common geometric
description: they are both open continuous curves. This thesis is a study of how the
physical attributes of open curves can be used to advantage in the many varied quan-
titative applications of sulci and white matter fibers.

Shape, scale, orientation and position, the four physical features associated with
open curves, have different properties so the usual approach has been to design different
metrics and spaces to treat them individually. We take an alternative approach using
a comprehensive Riemannian framework where joint feature spaces allow for analysis
of combinations of features. We can compare curves by using geodesic distances which
quantify their differences.

We validate the metrics we use, demonstrate practical uses and apply the tools to
important clinical problems. To begin, specific tract configurations in the corpus cal-
losum are used to showcase clustering results that depend on the Riemannian distance
metric used. This nicely argues for the judicious selection of metrics in various applica-
tions, a central premise in our work. The framework also provides tools for computing
statistical summaries of curves. We represent fiber bundles with a mean and variance
which describes their essential characteristics. This is both a convenient way to work
with a large volume of fibers and is a first step towards statistical analysis. Next, we
design and implement methods to detect morphological changes which can potentially
track progressive white matter disease.

With sulci, we address the specific problem of labeling. An evaluation of physical
features and methods such as clustering leads us to a pattern matching solution in which
the sulcal configuration itself is the best feature.

Keywords: brain image analysis, white matter fiber analysis, sulcal analysis, white
matter pathologies, shape analysis, clustering, open curves, Riemannian manifolds.


