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Abstract

The main problem evaluated in this manuscript is the stabilization of periodic orbits of

non-linear dynamical systems by use of feedback control. The goal of the control methods

proposed in this work is to achieve a stable periodic oscillation. These control methods

are applied to systems that present unstable periodic orbits in the state space, and the

latter are the orbits to be stabilized.

The methods proposed here are such that the resulting stable oscillation is obtained

with low control effort, and the control signal is designed to converge to zero when the

trajectory tends to the stabilized orbit. Local stability of the periodic orbits is analyzed

by studying the stability of some linear time-periodic systems, using the Floquet stability

theory. These linear systems are obtained by linearizing the trajectories in the vicinity of

the periodic orbits.

The control methods used for stabilization of periodic orbits here are the proportional

feedback control, the delayed feedback control and the prediction-based feedback control.

These methods are applied to discrete and continuous-time systems with the necessary

modifications. The main contributions of the thesis are related to these methods, propos-

ing an alternative control gain design, a new control law and related results.

Keywords : Control of chaos, Stabilization of periodic orbits, Prediction-based

control, Delayed feedback control, Proportional feedback control, Floquet

multipliers



Résumé

Le problème principalement étudié dans ce manuscrit est la stabilisation d’orbites

périodiques de systèmes dynamiques non linéaires à l’aide d’une commande de rétroaction

(feedback). Le but des méthodes de contrôle proposées ici est d’obtenir une oscillation

périodique stable. Ces méthodes de contrôle sont appliquées à des systèmes présentant

des orbites périodiques instables dans l’espace d’état, et ces dernières sont les orbites

destinées à être stabilisées.

Les méthodes proposées ici sont telles que l’oscillation stable qui en résulte est obtenue

avec un effort de contrôle faible, et que la valeur de la commande tend vers zéro lorsque

la trajectoire tend vers l’orbite stabilisée. La stabilité locale des orbites périodiques est

analysée par l’étude de la stabilité des systèmes linéaires périodiques à l’aide de la théorie

de Floquet. Ces systèmes linéaires sont obtenus par linéarisation des trajectoires au

voisinage de l’orbite périodique.

Les méthodes de contrôle utilisées ici pour la stabilisation des orbites périodiques sont

une loi de commande proportionnelle, une loi de commande de rétroaction retardée et une

loi de commande de rétroaction basée sur une prédiction. Ces méthodes sont appliquées

aux systèmes en temps discret et aux systèmes en temps continu avec les modifications

nécessaires. Les contributions principales de cette thèse sont associées à ces méthodes,

proposant une méthode alternative de design de gain, une nouvelle loi de commande et

des résultats associés.

Mots-clés : Contrôle du chaos, Stabilisation d’orbites périodiques,

Prediction-based control, Delayed feedback control, Proportional feedback

control, Multiplicateurs de Floquet



Resumo

O principal problema avaliado neste manuscrito é a estabilização de órbitas periódicas

em sistemas dinâmicos não-lineares utilizando controle por realimentação. O objetivo dos

métodos de controle propostos neste trabalho é obter uma oscilação periódica estável.

Estes métodos de controle são aplicados a sistemas que apresentam órbitas periódicas

instáveis no espaço de estados, estas são as órbitas a serem estabilizadas.

Os métodos propostos aqui são tais que a oscilação periódica estável resultante é

obtida utilizando um baixo esforço de controle, e o sinal de controle é projetado de forma

a convergir para zero quanto a trajetória tende à órbita estabilizada. A estabilidade local

de órbitas periódicas é analisada através do estudo da estabilidade de alguns sistemas

lineares periódicos no tempo, utilizando a teoria de estabilidade de Floquet. Estes sistemas

lineares são obtidos por linearização das trajetórias na vizinhança da órbita periódica.

Os métodos de controle utilizados aqui para estabilização de órbitas periódicas são

o proportional feedback control, o delayed feedback control e o prediction-based feedback

control (controle por realimentação baseado em predição). Estes métodos são aplicados

a sistemas de tempo discreto e de tempo cont́ınuo, com as modificações necessárias. As

principais contribuições da tese são relacionadas a esses métodos, propondo um projeto

de ganho de controle alternativo, uma nova lei de controle e resultados relacionados.

Palavras-chave: Control de caos, Estabilização de órbitas periódicas,

Prediction-based control, Delayed feedback control, Proportional feedback

control, Multiplicadores de Floquet
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F Résumé étendu 234

F.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 234
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F.3.2 Méthodes de contrôle des orbites périodiques . . . . . . . . . . . . . 246

F.3.3 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 253

Bibliography 254

v



List of Figures

4.1 xk and uk(xk) for the Logistic map using the CL 3. . . . . . . . . . . . . . 43

4.2 Comparison among the control effort transient of controlled orbits for the

Logistic map. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45

4.3 Basins of attraction of period-2 orbits of the closed-loop Logistic map. . . . 46

4.4 Basins of attraction of period-3 orbits of the closed-loop Logistic map. . . . 47

4.5 Basins of attraction of stabilized periodic orbits of the Logistic map using

the CL 3. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48
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Chapter 1

Introduction

The main problem tackled in this manuscript is the stabilization of periodic orbits of non-

linear dynamical systems, using state or output feedback control. The aim of the control

methods proposed in this work is a stable periodic oscillation, something which differs

from the most common goal in control systems, which is a stable equilibrium point.

This thesis is motivated by the study of oscillatory systems, in particular, alterna-

tive control methods that ensure the containment of the system state within a prescribed

bounded region of the state-space with low control effort. Persistent oscillations are ob-

served in many engineering problems, for example, attitude control in aerospace engi-

neering, flutter1 in aeronautical engineering, shimmy2 in automotive and aeronautics en-

gineering, power electronics in electrical engineering and physiological oscillations (heart-

beating, for example) in biomedical engineering. Oscillations are also observed in other

areas, for example, ecology and economy.

The control methods considered here are applied to systems that present unstable

periodic orbits (UPOs) in the state space and these UPOs are the orbits to be stabilized.

The methods were proposed such that the resulting stable oscillation is obtained with low

control effort, and the control signal is designed to converge to zero when the trajectory

tends to the stabilized orbit. This property is achieved if the control methods only change

the stability of the target orbit.

1Self-sustained oscillations of airplane wings and control surfaces [30]
2Angular self-sustained oscillations in carriage wheels [105]
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The control methods used for stabilization of periodic orbits here are the proportional

feedback control (PFC), the delayed feedback control (DFC) and the prediction-based feed-

back control (PBC) and the main difference between them is the reference used to form

the control signal. The PFC uses as reference the target UPO itself, which is found before

application. The DFC uses as reference the state delayed by the period of the target UPO

and only its period is required for application. The PBC uses as reference the predicted

state one period of the target orbit ahead of trajectories of the free system response and

requires the system model for application.

Another motivation of the work is contributing with the literature on periodic sta-

bilization methods, for example, reducing the dependence of previous knowledge about

the target UPO, proposing alternatives to the DFC due to its limitations, proposing new

methods for control gain design and contributing for the application of this type of control.

The aim of the thesis is the proposition of new methods, control laws or control gain

design for stabilization of periodic orbits in discrete and continuous-time systems aiming

at increasing the knowledge on the theme and solving some questions observed in the

literature, in particular some limitations of the existing methods.

The stabilization of a periodic orbit of a non-linear system can be simplified to the

stabilization of a linear time-periodic system. This linear system is obtained linearising

the trajectories in the close vicinity of the periodic orbit and its stability analysis can

be performed using the Floquet stability theory. Thus, the local stability of the periodic

orbit of the non-linear system is defined by the stability of the associated linear system.

Notice that the stabilized orbits shown in this manuscript are all associated to chaotic

sets, but the stabilizing methods developed can be applied to any existing periodic orbit

of an autonomous/non-autonomous system.
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Chapter 1 1.1 Main contributions

1.1 Main contributions

1.1.1 Presentation of the contributions

New control laws for the PBC applied to discrete-time systems. One contribu-

tion of the thesis is the proposition of a method to define the PBC gain on discrete-time

systems resulting in a new control law (see Section 3.4 and [12]). This control law, ap-

plied to the PBC proposed by Ushio and Yamamoto [91], is based on improving stability

conditions for periodic orbits using Floquet theory and results in a dead-beat controller

that does not need previous information about the orbit to be stabilized.

This new control law requires an invertible input matrix, something that implies some

practical limitations. Another contribution, following the results presented in [12], is the

proposition of a modified control law that can be applied to systems with non-invertible

input matrix. This new control law does not require previous knowledge about the orbit

to be stabilized and leads to zero Floquet multipliers for the linearized system around the

periodic orbit. The condition for its application is presented in Section 3.4.3.

On numerical results, the main contributions are the comparison of the proposed

control law with the DFC and a brief numerical analysis on the robustness of the method

subjected to a parametric uncertainty (see Section 4.3).

The theoretical results were obtained with Professors Pierre-Alexandre Bliman and

Karl H. Kienitz, while the numerical essays on DFC used tools previously developed with

Prof. Erico L. Rempel.

New method for numerical design of DFC constant gain. Another contribution

of the thesis is the application of the method proposed in [10, 23, 51] to approximate the

monodromy matrix of periodic orbits of systems with a single constant delay and modeled

by delay differential equations to the numerical design of a DFC constant gain (see Section

7.4.2). The main advantage of the method is the reduction of the problem of computing

the monodromy matrix of an orbit controlled by the DFC to matrix algebra only. The

consequence is the reduction of the closed-loop Floquet multipliers computation time.
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The computation time reduction encompassed by the method allows the numerical

design of a DFC constant control gain by optimization using as cost function the largest

magnitude Floquet multiplier of the orbit to be stabilized, as a function of the DFC control

gain. This optimization process and a comparison with the PFC applied to the van der

Pol oscillator is presented in the numerical results of Section 8.3 and in [14].

The corresponding results have been worked out with Prof. Erico L. Rempel. The

results on the orthogonal collocation method used here were obtained with Prof. Pierre-

Alexandre Bliman.

New control method for stabilizing periodic orbits in continuous-time systems.

A new control method for stabilizing periodic orbits in continuous-time systems inspired

by the PBC, originally applied for discrete-time systems, is proposed (see Section 7.3.3

and [13]). The new method uses the predicted state of the trajectory one period of the

target orbit ahead, computed along trajectories of the free system using an implicit Runge-

Kutta method. The PBC structure with the implicit Runge-Kutta method is solved using

an estimator, resulting in an extended set of ordinary differential equations solved with

any numerical integrator method. Due to the estimation of the futures states we call this

new method approximate prediction-based control (aPBC).

Numerical results (see Section 8.4) using the aPBC on a non-autonomous system show

that this method can stabilize orbits that are not stabilized by the DFC. An example of

one orbit of an autonomous system stabilized by the aPBC is presented in Section 8.5.

A numerical evaluation of the controller performance reducing the estimator precision is

presented in Sections 8.4 and 8.5.

The corresponding results have been worked out with Professors Pierre-Alexandre

Bliman and Karl H. Kienitz.

1.1.2 Chronology of the contributions and the work performed

This PhD thesis has been achieved in cooperation between Inria and ITA, through funding

from the CAPES-COFECUB project Ma624/09 “Oscillatory systems in control: reduced

modeling, analysis, identification and design”.
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Chapter 1 1.2 Organization of the manuscript

In parallel with the Master course (from February 2006 to October 2007), I began

attending the Ph.D. technical disciplines in August 2007 and working with Prof. Erico L.

Rempel on synchronization of chaos, characterization of chaotic attractors using periodic

orbits, control of chaos on hybrid systems and improvements on control of chaos methods

until August 2009. From December 2008 it was decided with Professors Karl H. Kienitz

and Erico L. Rempel to work on improvements on the DFC control gain design and

comparisons between DFC and PFC. It was also proposed a doctoral internship at Inria

research center located at Rocquencourt, France, with Prof. Pierre-Alexandre Bliman who

suggested improvements on robustness of the DFC method.

Then, in September 2009, I moved to Inria where I worked during one year with Prof.

Pierre-Alexandre Bliman on improvements on the discrete-time PBC and the mathemat-

ical foundations of the new continuous-time PBC using orthogonal collocation method.

Prof. Karl Heinz Kienitz visited us at Inria for one week. During this period I continued

working on the improvements on DFC control gain design and comparison with the PFC

for one week of January 2010 at the University of Cambridge (DAMTP) with Prof. Erico

L. Rempel (the travel was funded by Inria).

In September 2010 I returned to ITA where I presented the results obtained for a board

composed by two ITA professors and all my advisors as “Qualification Exam” (required

by ITA). From October 2010 I finished the mathematical foundations and implemented

the numerical simulations of the continuous-time PBC. In my return to ITA I used the

knowledge learned on orthogonal collocation method to finish the improvements on the

DFC control gain design. Finally, I obtained a position at University Estadual de Santa

Cruz (UESC) in July 2011 and achieved the writing of two papers and my PhD thesis

during the free time (UESC funded six months at ITA to finish the details of the thesis

and initiate its writing).

1.2 Organization of the manuscript

The manuscript is divided in two parts. Part I is devoted to discrete-time systems and

Part II to continuous-time systems. Both parts can be read separately and with the
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Chapter 1 1.2 Organization of the manuscript

Appendices constitute two self-contained works. Each part is divided as follows

in introduction, stability analysis of periodic orbits, stabilization of linear time-periodic

systems, control methods for periodic orbits, stabilization of periodic orbits, numerical

results and conclusions.

Introduction. Both parts initiate with an introduction (Chapters 2 and 6) containing

the mathematical description of the periodic orbit stabilization problem, review of the

literature and an introduction about the control methods to be applied.

Stability analysis of periodic orbits. A review about stability analysis of periodic

orbits using both Floquet and Lyapunov theories is presented (Sections 3.1 and 7.1)

showing that the problem of stabilizing periodic orbit of non-linear systems can be reduced

to stabilization of linear time-periodic systems.

Stabilization of linear time-periodic systems. Methods for stabilization of linear

time-periodic systems are presented in Sections 3.2 and 7.2. These methods are not applied

directly in this work, but, for discrete-time systems it is shown that the new control law

proposed for the PBC is an special case of the deadbeat control proposed for linear time-

periodic systems. These methods also indicate that some control gain design techniques,

for example pole placement, can be used to improve the performance of periodic orbit

stabilization methods.

Control methods for periodic orbits. The methods used to stabilize periodic orbits

are presented in Sections 3.3 and 7.3. It is shown that these methods use the existence

of unstable periodic orbits to achieve stable periodic orbits with ideally zero steady state

control effort. The three control methods used in this manuscript are presented in details

with a review of some of the literature results that are interesting to this work. The aPBC

is proposed in Section 7.3.

Stabilization of periodic orbits. After the presentation of the control methods we

discuss how to apply them to the stabilization of periodic orbits in Sections 3.4 and 7.4.
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In the discrete-time case (Section 3.4) we focus on the PBC and develop the proposed

new control law and its stability proof. The control gain design for the continuous-time

controllers are presented in Section 7.4, in special, the proposed design method applied

to the DFC.

Numerical results. The numerical results contained in the manuscript are presented

in Chapter 4 for the discrete-time case and in Chapter 8 for the continuous-time case.

Conclusions. The partial conclusions are presented in Chapters 5 and 9. The global

conclusions are in Chapter 10.
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Discrete-time systems
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Chapter 2

Introduction

Stabilization of periodic orbits consists in changing the stability of an existing unstable

periodic solution of a dynamical system, in this chapter, a discrete-time dynamical system.

The stabilizing methods take advantage of the existing unstable solution to obtain a

stable periodic solution using low feedback control effort. The methods can be applied to

oscillatory systems where one of the performance requirements is a periodic oscillation.

Consider the following discrete-time dynamical system:

xk+1 = f(k, xk, uk), x0 given (2.1)

where x : N → Rn, u : N → Rm, k,m, n ∈ N and f : N × Rn × Rm → Rn is a p-periodic

function with respect to time k, that is, by definition

∀k ∈ N, ∀x ∈ R
n, ∀u ∈ R

m, f(k + p, x, u) = f(k, x, u). (2.2)

We assume moreover the existence of a p-periodic solution x∗k to the free system (2.1),

that is, the system obtained by setting uk = 0, k ≥ 0. In other words

∀k ∈ N, x∗k+p = x∗k (2.3)
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and

∀k ∈ N, x∗k+1 = f(k, x∗k, 0m). (2.4)

We assume that this periodic solution is unstable (the stability analysis of periodic

orbits in discrete-time systems is discussed in Section 3.1). Our ultimate objective in this

part is to synthesize periodic feedback laws uk(xk) that stabilize it, that is, such that

∀k ∈ N, ∀x ∈ R
n, uk+p(x) = uk(x)

and such that x∗ is a stable solution of the closed-loop system

xk+1 = f(k, xk, uk(xk)) (2.5)

with u : N × Rn → Rm defined latter. Notice that, when the open-loop system (2.1)

and the feedback are periodic with respect to time k, the same is true for the closed-loop

system (2.5).

The control signal u used in this work has to verify ideally,

uk(x
∗
k) = 0, k ≥ 0. (2.6)

That is, on the periodic orbit the control effort is zero and the unstable periodic solution

x∗k of f(k, xk, 0) is a stable periodic solution of f(k, xk, uk(xk)).

Non-linear systems with chaotic sets in their state space are examples of dynamical

systems that present unstable periodic orbits (UPO). In fact, if there is a chaotic set in

the n-dimensional state space formed by xk, it is known that the chaotic set is composed

by an infinite number of UPOs [1, 24] and the number of UPOs per period p increases

exponentially with p [20, 29].

Ott et al. [67] proposed to stabilize the UPOs embedded in the chaotic sets by small

time-dependent parametric perturbations. Stabilizing such UPOs is known as chaos con-

trol. Chaos control aims at eliminating chaotic behaviour in non-linear dynamical systems

by stabilizing one of the UPOs embedded in a chaotic set with low control effort. The

10
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method proposed in [67] specifically uses chaos basic characteristics among which are the

sensitive dependence on initial conditions and the infinite number of unstable periodic

orbits embedded in the chaotic sets [20, 24].

Another characteristic of chaotic behaviour is that trajectories on chaotic attractors

come arbitrarily close to any of the embedded UPOs due to ergodicity [24]. Specific

control applications where long transient times are accepted (in return for a low control

effort necessity, for example) can take advantage of this characteristics by applying the

control signal only when the free system trajectory is in the vicinity of the target UPO.

In the present work the ergodicity property of chaos is not used because we are interested

in reducing the transient time.

The most common application of stabilization of periodic orbits by state-feedback

satisfying condition (2.6) is the control method introduced by Pyragas [70]. Pyragas

proposed two different feedback methods, initially for continuous-time systems, namely

proportional feedback control and delayed feedback control. We present rapidly these

methods in the sequel.

Proportional feedback control (PFC). This method uses the target UPO as ref-

erence signal for the control signal in order that, for the closed-loop system (2.5), x∗k is

stable and condition (2.6) is satisfied. The necessity to determine and to store the values

of the solution on the entire UPO is the principal disadvantage for application of the PFC

method, specially in the case of large p or for high dimensional discrete-time systems with

complex dynamics.

Details about the method and a review of the literature are in Section 3.3.1.

Delayed feedback control (DFC). This method uses the state of the system delayed

by the period p of the target UPO as reference for a control signal that satisfies condition

(2.6). The application of the DFC depends only upon the ability of recording the past p

delayed states resulting in an easily implementable control method. Note that, as will be

seen in Section 3.3.2, the analytic design of the control gain depends upon the previous

knowledge of the entire UPO.
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The DFC has known limitations, one of them is the odd number limitation (see Sec-

tion 3.3.2). Some modification on the original method proposed by Pyragas [70] where

developed to overcome these limitations. One of these methods, proposed to overcome

the odd number limitation, is the prediction-based control.

Details about the DFC, its application, control gain design, modifications on the con-

trol law and review of the literature are presented in Section 3.3.2.

We now introduce a third method, central to our contribution.

Prediction based control (PBC). This method, proposed by Ushio and Yamamoto

[91], uses the value of the state one period ahead, computed along the trajectories of the

free system response as reference for the control signal. This control signal also satisfies

condition (2.6). Details about the method and review of the literature is presented in

Section 3.3.3.

A first contribution of this work is the proposition of a method to define the PBC

gain, more specifically, a method that does not need previous knowledge about the UPO

position. The results were initially published in [12]. Details about the definition of the

control gain and stabilization of periodic orbits with the PBC are presented in Section

3.4.

A comparison between the DFC and the PBC is performed in Section 4.2. These

results were originally published in [11]. Other numerical analysis used to clarify the

characteristics of the PBC with the proposed control laws are presented in Section 4.

Organization of Part I. Stabilization of periodic orbits using the methods presented

in this chapter is performed through stabilization of the linearised time-periodic system

that governs the perturbed trajectories in the close vicinity of the target UPO. We thus

recall the basic notions on stability analysis of periodic orbits by its linearised dynamics

using the Floquet and the Lyapunov theories in Section 3.1, the stabilization of linear

time-periodic systems (LTP) in Section 3.2 and the control methods for stabilization

of periodic orbits in non-linear systems in Section 3.3. We then study stabilization of

periodic orbits using the PBC and present the contributions of Part I in Section 3.4. In
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the latter section we provide a sufficient stability condition for periodic orbits and use

this condition for the development of the proposed control laws for the PBC. Numerical

examples exploring the characteristics of the PBC method using the new control laws and

a comparison with the DFC are presented in Chapter 4. The conclusions of Part I are in

Chapter 5.
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Feedback stabilization of unstable

periodic orbits

3.1 Stability analysis of periodic orbits

In this section we present two methods for stability analysis of linear difference periodic

systems (see Appendix A). Both methods can be used for the stability analysis of periodic

orbits of non-linear system by studying the behaviour of a perturbed trajectory governed

by the linearised system in the vicinity of the periodic solution.

First we introduce the Floquet stability theory, the method used in this work, and then

we introduce the Lyapunov stability theory that can also be used for the same purpose.

3.1.1 Floquet stability theory

Here we present the concepts on the stability of linear periodic discrete-time dynamical

systems based on the Floquet theory and these results are applied to the local stability

of periodic orbits of non-linear discrete-time dynamical systems.

14
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Linear systems

Let us consider a linear discrete-time dynamical system described by the difference equa-

tion

xk+1 = Akxk, (3.1)

where k ∈ N, x : N → Rn is a column vector and A : N → Rn×n (see Appendix A).

Assume that Ak is a p-periodic state matrix, that is

Ak = Ak+p, ∀k ∈ N. (3.2)

The stability of linear periodic systems according to the Floquet theory [5] depends on

the eigenvalues of the monodromy matrix (Appendix A), called the Floquet characteristic

multipliers µi ∈ C, i = 1, . . . , n:

Proposition 3.1 (see Proposition 3.3 in [5]). (i) The system (3.1) is asymptotically stable

if and only if the characteristic multipliers of Ak have absolute value lower than 1. (ii)

The system (3.1) is stable if and only if the characteristic multipliers of Ak have absolute

value lower than or equal to 1 and those characteristic multipliers with absolute value

equal to 1 are simple roots of the minimal polynomial of the monodromy matrix Ψk.

See Appendix B for stability definitions.

The state transition matrix or the matrix evolution operator Φ(k + q, k), q ∈ N (see

Appendix A), of (3.1) is calculated as follows

Φ(k + q, k) =

q−1
∏

l=0

Ak+l (3.3)

where, here and in the sequel, the matrices in the product are ordered from the right to

the left for increasing l.

The monodromy matrix Ψk is calculated as the state transition matrix over a period

[k, k + p] [5]:

Ψk = Φ(k + p, k) =

p−1
∏

l=0

Ak+l (3.4)
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and thus any solution of (3.1) also fulfils:

xk+p = Ψkxk. (3.5)

Note that Ψk is a p-periodic matrix, but the characteristic multipliers are constant for

all k [5].

The Floquet theory can be used to analyse the stability of periodic orbits of non-linear

systems by studying the convergence/divergence of a perturbation, governed by a linear

periodic difference system, in the vicinity of the periodic orbit [3, 40].

Application to non-linear systems

Consider a non-linear discrete-time dynamical system described by the difference equation

(2.5) with the p-periodic solution x∗k for uk(xk) = 0 indicated in (2.2). Here we study the

behaviour of a trajectory in the vicinity of x∗k.

Proposition 3.2 (Stability of periodic orbits of discrete-time systems). A periodic orbit

x∗k of the recursive dynamical system (2.5) is locally asymptotically stable if the linear

dynamical system that describes the evolution of a perturbed trajectory in the close vicinity

of x∗k is asymptotically stable.

Proof. Consider a perturbation δx0 : N× R
n → R

n applied to the periodic state x∗0. The

initial condition of (2.5), x0, is defined by

x0 = x∗0 + δx0. (3.6)

The discrete-time evolution δxk of the initial perturbation δx0 for uk(xk) = 0 is ob-

tained substituting the perturbed trajectory (3.6) in (2.5),

x∗k+1 + δxk+1 = f(k, x∗k + δxk, 0).

Expanding f(k, x∗k + δxk, 0) around x
∗
k for δxk sufficiently small we obtain

f(k, x∗k + δxk) ≈ f(k, x∗k, 0) + ∇xf(k, x, 0)|x=x∗

k

δxk,
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δxk+1 ≈ ∇xf(k, x, 0)|x=x∗

k

δxk. (3.7)

∇xf(k, x, 0) ∈ Rn×n is the Jacobian matrix of the system, here a time-periodic matrix

due to the periodicity of f(k, x∗k, 0). The stability of x∗ is analysed according to the

convergence/divergence of δxk governed by (3.7), reducing the problem to the stability

analysis of the linear periodic system (3.1).

Once obtained the equation that governs the perturbation it is possible to define a

discrete-time monodromy matrix Ψk ∈ Rn×n for the periodic orbit x∗k:

δxk+p = Ψkδxk. (3.8)

We calculate the monodromy matrix according to (3.3) using (3.7)

Ψk =

p−1
∏

l=0

∇xf(k + l, x, 0)|x=x∗

k+l

. (3.9)

The eigenvalues of Ψk (Floquet multipliers) are calculated to analyse the stability of the

linear system (3.7). If it is asymptotically stable, then δxk → 0 and f(k, x0, 0) → x∗k as

k →∞.

3.1.2 Lyapunov stability theory

The Lyapunov stability theory for linear periodic system is presented here. For more

details see [5]. For simplicity this theory will not be extended to the stability analysis of

periodic orbits of non-linear system, but this subject can be performed directly using the

formulation of the previous subsection.

Proposition 3.3 (Periodic Lyapunov Lemma, adapted from Proposition 3.5 in [5]). The

system (3.1) with the p-periodic matrix Ak is asymptotically stable if and only if there

exist p-periodic positive definite matrices Pk, k = 0, 1, . . . , p− 1, such that:

AkPkA
′
k − Pk+1 < 0, (3.10)
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Chapter 3 3.1 Stability analysis of periodic orbits

where P : N→ Rn×n.

Consider the following Lyapunov function for the system (3.1):

V (k, x) = x′kP
−1
k xk. (3.11)

A Lyapunov function for system (3.1) is any function V : N× Rn → R such that

• V (k, x) is continuous in x, ∀x 6= 0;

• V (k, x) > 0, ∀k, ∀x 6= 0;

• V (k, 0) = 0, ∀k;

• V (k + 1, xk+1)− V (k, xk) < 0, ∀k, ∀xk ∈ Rn.

From the last condition we obtain exactly (3.10) with V defined by (3.11).

By subsequent iteration of the inequality (3.10), one obtains

Pk+1 > AkPkA
′
k

Pk+2 > Ak+1 (AkPkA
′
k)A

′
k+1

· · ·

Pk+p > ΨkPkΨ
′
k.

Considering a p-periodic solution of (3.1) we have Pk+p = Pk and

Pk > ΨkPkΨ
′
k. (3.12)

Condition (3.12) thus relates the Floquet theory presented in the previous subsection to

the Lyapunov theory presented here resulting in Proposition 3.3. If Pk is positive definite,

Ψk is contractive (Floquet multipliers inside the unit circle) and (3.1) is asymptotically

stable.
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Chapter 3 3.2 Stabilization of linear time-periodic systems

3.2 Stabilization of linear time-periodic systems

This section follows the statements presented in [5] aiming at present basic facts about

the subject. Expansions on the theme can be obtained on this reference.

Consider a linear p-periodic discrete-time dynamical system described by the following

difference equation

xk+1 = Akxk +Bkuk (3.13)

with the feedback control law and output

uk(xk) = Kkxk, (3.14a)

yk(xk) = Ckxk, (3.14b)

respectively. x : N → Rn is the state vector, A : N → Rn×n is the state matrix,

B : N→ Rn×m is the input matrix, u : N× Rn → Rm is the input vector, K : N→ Rm×n

is the gain matrix, C : N→ Rg×n is the output matrix and y : N×Rn → Rg is the output

vector, n,m, g ∈ N.

The periodicity is verified by Ak+p = Ak and Bk+p = Bk, p ∈ N.

Definition 3.4 (Stabilization of discrete-time linear periodic systems by state feedback).

Choose the matrix Kk (possibly p-periodic) such that the system (3.13) with control law

(3.14a) is asymptotically stable, that is, the monodromy matrix (3.4) of the closed-loop

system (3.15) has all the eigenvalues inside the unit cycle.

xk+1 = (Ak +BkKk) xk (3.15)

The existence of a stabilizing Kk depends upon the controllability of (3.13). Control-

lability is concerned with the problem of driving a state point to any other state point by

feeding the system (3.13) with a suitable input sequence. For the mathematical develop-

ments, it is advisable to articulate the necessary definitions in a formal way as follows [5].
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Chapter 3 3.2 Stabilization of linear time-periodic systems

Definition 3.5 (Controllability of linear systems, adapted from [85]). (i) System (3.13)

is controllable on the time interval [k1, k2] if, for each value of x1, x2 ∈ Rn, there exists

an input uk, k1 ≤ k < k2, such that for xk1 = x1, one has xk2 = x2. (ii) For any integer

τ ≥ 0, system (3.13) is controllable in time τ if, for each value of x1, x2 ∈ R
n, there exist

time instants k1, k2, k2 = k1+ τ and an input uk, k1 ≤ k < k2, such that for xk1 = x1, one

has xk2 = x2. (iii) System (3.13) is controllable if, for each value of x1, x2 ∈ Rn, there

exist time instants k1, k2, k2 > k1 and an input uk, k1 ≤ k < k2, such that for xk1 = x1,

one has xk2 = x2.

The Definition 3.5 is valid only for linear systems where the definition of controllable

and reachable states are equivalent. For controllability for nonlinear system see [85].

The controllability of linear time-invariant systems is a special case of Definition 3.5

for Ak = A and Bk = B, constant matrices in (3.13). The controllability of

xk+1 = Axk +Buk (3.16)

can be characterized in terms of the pair (A,B).

For the linear system (3.16), or equivalently the pair (A, B), all three properties in

Definition 3.5 are verified.

Another important concept for control problems is reconstructability, associated with

the possibility of distinguishing two past measurements of the output variable states from

the observation of the corresponding output signals when the system is subject to the

same input function [5].

Definition 3.6 (Reconstructability of linear systems, adapted from Definition 4.3 in [5]).

(i) The state x ∈ Rn of system (3.13) is unreconstructable over [k1, k2], if there exists a

free motion (uk = 0) ending in xk = x which results in the output yk(xk) = 0 of (3.14b),

∀k ∈ [k1, k2 − 1]. (ii) System (3.13) is reconstructable over [k1, k2] if any non-zero state

is not unreconstructable over [k1, k2]. (iii) System (3.13) is reconstructable at time k1 if

there exists a time k2 > k1 such that it is reconstructable on [k1, k2]. (iv) System (3.13)

is reconstructable if it is reconstructable at any time instant.
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Chapter 3 3.2 Stabilization of linear time-periodic systems

See [85] for general definitions of observable and reconstructable states and observabil-

ity applied to nonlinear systems.

Here are the main approaches to synthesize stabilizing gainKk that have been explored

in the literature [5]:

• Stabilization by Lyapunov method: Find a periodic feedback gain in such a way

that the closed-loop system is stable (any Kk meeting such a requirement is named

stabilizing gain). This problem can be solved using the Lyapunov stability theory

shown in Section 3.1.2 satisfying the condition (3.10).

• Pole assignment: Find a periodic feedback gain so as to position the closed-loop

characteristic multipliers in given locations in the complex plane. This problem can

be solved using the Floquet stability theory shown in Section 3.1.1 finding a Kk

such that the eigenvalues of the closed-loop monodromy matrix are set as required.

• Optimal control: Find a periodic feedback gain so as to minimize the quadratic

performance index

J =
+∞
∑

k=0

z′kzk,

where zk is the “performance evaluation variable”. A typical choice is to assume a

linear dependence of zk upon xk and uk:

zτ = Eτxτ +Nτuτ .

• Invariantization: Find a feedback control law so that the closed-loop system is time-

invariant up to a periodic state space coordinate change. Note that this method

does not directly lead to stabilization, it is a tool used to reduce the stabilization of

linear periodic systems to the stabilization of linear time-invariant systems.

Here we focus on the pole assignment/placement problem and its relation to the in-

variantization problem. We also provide shortly the stabilization by Lyapunov direct

method.
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Chapter 3 3.2 Stabilization of linear time-periodic systems

3.2.1 Stabilization by direct Lyapunov method

The choice of a stabilizing periodic control gain for the periodic system (3.13) with control

signal (3.14a) using the direct Lyapunov method is given by

Proposition 3.7 (Direct Lyapunov method, see Proposition 13.1 in [5]). All stabilizing

p-periodic gains Kk are given by

Kk =W ′
kP

−1
k ,

where Wk and Pk > 0 are p-periodic solutions of the linear matrix inequality (3.17).





−Pk+1 BkW
′
k + AkPk

WkB
′
k + PkA

′
k −Pk



 < 0 (3.17)

Proof. The linear matrix inequality (3.17) is obtained using the result of Lemma 3.8 and

the Proposition 3.3 applied to the closed loop system (3.15).

Lemma 3.8 (Schur complement Lemma, see Lemma 3.1 in [5]). Consider the partitioned

matrix:

R =





E F

F ′ H





with E = E ′ and H = H ′. Then,

• Matrix R is negative definite if and only if

H < 0, E − FH−1F ′ < 0.

• Matrix R is negative semi-definite if and only if

H ≤ 0, E − FH†F ′ ≤ 0, F (I −HH†) = 0.

where † denotes the Moore-Penrose pseudo-inverse.
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Chapter 3 3.2 Stabilization of linear time-periodic systems

Proposition 3.3 applied to (3.15) The closed-loop version of (3.10) is:

Pk+1 > (Ak +BkKk)Pk (Ak +BkKk)
′ . (3.18)

Using (3.18) multiplying Pk by PkP
−1
k , on the left, and P−1

k Pk, on the right, with the

control gain defined in the statement of Proposition 3.7 we obtain

− Pk+1 + (AkPk +BkW
′
k)P

−1
k (AkPk +BkW

′
k)

′
< 0. (3.19)

The linear matrix inequality of Proposition 3.7 is obtained by direct application of

Lemma 3.8 to (3.19). This achieves the proof of Proposition 3.7.

3.2.2 Eigenvalue assignment by state feedback

Definition 3.9 (Periodic eigenvalue assignment problem, adapted from page 1565 in [87]).

Given the linear time-periodic closed-loop system (3.15), let (Ak, Bk) be a controllable

periodic pair. Find periodic m× n matrices Kk such that

Λ(Ψk) = Γ,

where Ψk ∈ Rn×n is the monodromy matrix of (3.15), Λ(Ψk) ∈ Cn is the set of eigenvalues

of Ψk and Γ ∈ Cn is an arbitrary set of n complex conjugate numbers.

Two strategies for pole assignment in linear time-periodic systems are presented, the

sampled feedback and the instantaneous feedback [5, 18, 19, 87]. A specific case of pole

placement via instantaneous feedback control is the dead-beat control, where Λ(Ψk) = 0n.

These three cases are discussed as follows.
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Eigenvalue assignment via sampled feedback

This strategy consists in applying the state feedback using only one sampled state per

cycle and operate in open loop in the inter-period instants. The control signal is defined

by

uk(xl) = K̄kxl, k ∈
[

l, l + p− 1
]

, l = ip + τ, i, τ ∈ N, (3.20)

where the gain K̄k is a p-periodic function suitable designed and τ is a fixed lag time.

The closed-loop system with the previous control signal for one period p is

xl+p =

[

Φ(l + p, l) +

l+p
∑

j=l+1

Φ(l + p, j)Bj−1K̄j−1

]

xl = (Fl +GlMl)xl (3.21)

where Φ(k2, k1), is the free system state transition matrix, Fl = Φ(l+p, l), Gl =
[

G1 · · · Gp

]

,

Gj = Φ(l + p, l + j)Bl+j−1 and Ml =
[

K̄ ′
l+0 K̄ ′

l+1 · · · K̄ ′
l+p−1

]′

.

The equation (3.21) is named the time-invariant reformulation of (3.13) [5, 18, 19, 87].

This problem can be expressed as follows.

Definition 3.10 (Eigenvalue assignment via sampled feedback). Chose a matrix Ml of

the closed-loop system (3.21) obtained by the time-invariant reformulation of (3.13) using

the control signal (3.20) such that Λ(Fl +GlMl) = Γ.

The pole assignment via sampled feedback is solved in [87] using the Schur decomposi-

tion on the pair (Ak, Bk), which uses only unitary transformations and promotes numerical

stability in algorithms.

Note that the existence of a solution for the problem of Definition 3.10 depends on the

Lemma 3.11.

Lemma 3.11 (adapted from Lemma 1 in [18]). The pair (Ak, Bk) of system (3.13) with

control signal (3.20) is controllable if and only if the pair (Fl, Gl) of system (3.21) is

controllable.
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Chapter 3 3.2 Stabilization of linear time-periodic systems

Eigenvalue assignment via instantaneous feedback

For the instantaneous feedback case the control signal is defined as in (3.14a) and the

problem is defined as in Definition 3.4.

The closed-loop system with control signal (3.14a) for one period p is

xk+p =

k+p−1
∏

j=k

(Aj +BjKj)xk. (3.22)

The solution of the problem of Definition 3.9 is suggested in [5] by relating the instan-

taneous feedback case with the sampled feedback case by using

Kk+i = K̄k+i

[

k+i−1
∏

j=k

(Aj +BjK̄j)

]−1

, i = 0, 1, · · · , p− 1. (3.23)

The solution of the pole assignment problem is done choosing, among all possible K̄k

which assign the prescribed characteristic multipliers of (3.22), any choice for which the

invertibility of Ak +BkK̄k is met for all k. However, finding an algorithm of wide appli-

cability which exploits the time-invariant view point is still an open question [5].

Dead-beat control via state feedback

Definition 3.12 (State dead-beat control, see page 1092 in [32]). Find a (possibly dy-

namic) linear controller for system (3.13) such that the state of the closed-loop system

is driven to the origin in a finite interval of time, for any initial state and any initial

time.

According to Theorem 3.13, the dead-beat control is a specific case of the eigenvalue

assignment via instantaneous feedback.

Theorem 3.13 (see Theorem 1 in [32]). If Ck = In (3.14b), the state dead-beat control

problem admits a solution of the form (3.14a) if and only if system (3.13) is controllable.

Moreover, the matrix Kk in (3.14a) can be chosen periodic of period p.
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For the state dead-beat control we set Λ(Ψk) = Γ = {0} [87] and the time interval to

the convergence of the trajectory to the origin is limited by the following theorem:

Theorem 3.14 (see Theorem 2 in [32]). If Ck = In and the system (3.13) is controllable,

then the control law (3.14a) can be chosen so that, for any initial time, the system is

driven to the origin within an interval of time not greater than np, with Kk periodic of

period p.

When Ck has rank < n, the dead-beat controller can be applied if the pair (Ak, Ck)

is reconstructable by using a state observer. In [32] it is described a state dead-beat

observer and the association with the dead-beat controller for stabilization of controllable

and reconstructable systems.

3.3 Control methods for periodic orbits

Here we detail the principal feedback control methods for stabilization of periodic orbits.

3.3.1 Proportional feedback control (PFC)

This method uses as reference signal the target UPO itself and the control signal is defined

by

uk(xk) = Kk(xk) (x
∗
k − xk) . (3.24)

Kk(xk) ∈ N×Rn → Rm×n may be a time-varying control gain that depends on the system

state such that x∗k is stable and condition (2.6) is satisfied. The application of the PFC

method depends on the previous knowledge of the target UPO and this is the principal

disadvantage of the method. Application of PFC to discrete-time system with constant

gain K is exemplified in [38].
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3.3.2 Delayed feedback control (DFC)

This method uses the state of the system delayed by the period p of the target UPO as

reference. The control signal for the DFC is thus defined

uk(xk) = Kk(xk) (xk−p − xk) . (3.25)

where Kk(xk) ∈ N×Rn → Rn×n is a (possibly time-varying and state-dependent) control

gain.

Pyragas [70] initially proposed a constant scalar control gain K that could be tuned

experimentally. The controlled system with a constant K appears as having dimension

n(1 + p), once the delayed states are included as components of state for the closed loop

system.

The study of the DFC for discrete-time dynamical systems with K constant is done in

[15,61,62,81,90,99,100,103]. In these references, the analytical proposition of a stabilizing

K depends on the previous knowledge of x∗k. Most of the references define the problem

for equilibrium states (p = 1).

A DFC method with a time-varying control gain dependent upon the system state

(Kk(xk)) received the name adaptive DFC [78]. In this method, the control gain is defined

as

Kk+1(xk) = Kk(xk−1)−
ε

2

∂‖xk−1 − xk‖
2

∂K

∣

∣

∣

∣

K=Kk(xk−1)

.

The gain Kk+1(xk), defined for equilibrium states, is adjusted at each time k in such a

way that the error between xk−1 and xk decreases in time. The update of K is based

on a gradient descent of the squared error Ek(xk) = 1
2
‖xk−1 − xk‖

2, where E implicitly

depends on K through x. The derivative of E with respect to K increases the state of

the original system by n+ d(1 + 2n) variables (see Equation (4) in [78]), d is the number

of elements of the control gain.

The great advantage of this method is the non dependence on the previous knowledge

of x∗k for the calculation of Kk+1(xk). The choice of ε was not detailed. Its convergence

rate is similar to the original DFC.
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Two limitations were identified from the analysis of the initially proposed DFC: the

first is the impossibility to control orbits with longer periods [103], i.e., more unstable [20];

the second is the impossibility to control orbits with an odd number of Floquet multipliers

[5] real and greater than +1 (odd number limitation) [90, 99, 100, 103].

The first limitation can be overcome with the extended delayed feedback control or

generalized feedback control [53, 89, 104]. This method uses not only one delayed state

(xk−p − xk) as in (3.25), but the sum of the, ideally infinite, terms (xk−mp − xk), m =

1, 2, . . . ,+∞, with each term in the sum multiplied by its own constant control gain

defined by proper rule.

The second limitation (the odd number limitation) can be overcome using the dynamic

delayed feedback control. This method presents the control signal, uk(xk), as the output

of a new dynamical system. Another method derived by the DFC, that satisfies the

condition (2.6) and does not present the odd number limitation is the prediction-based

control, described in the next section. Note that the adaptive DFC also presents the odd

number limitation.

3.3.3 Prediction based control (PBC)

This method, proposed by Ushio and Yamamoto [91] with extension in [40] and later

studied in [63], uses a control signal defined by

uk(xk) = Kk(xk) (ϕ(k + p, k, xk, 0)− xk) , (3.26)

where ϕ(k1, k0, x, 0) is the value at time k1 of the state of (2.5) with xk0 = x and uk = 0,

k0 ≤ k ≤ k1. In other words, ϕ(k1, k0, x, 0) is the value at time k1 of the state along the

trajectory departing from x at time k0 of the free system (uk ≡ 0).

The PBC does not extend the original system state as the DFC, but it necessitates

the prediction of the state one period ahead, computed along the trajectories of the free

system response.
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A constant control gain K, defined in terms of x∗k, for the PBC is used in [7, 63, 91].

The principal advantage with respect to the DFC is the non existence of the odd number

limitation.

A time varying control gain defined for the target UPO, Kk(x
∗
k), was defined in [40].

In this reference the authors exemplify the application of the PBC leading all the Floquet

multipliers of the controlled system to zero, something which is characteristic of the dead-

beat controllers [32].

The contribution of the present work in the domain of discrete-time systems is the

proposition of a method to define the PBC gain (Section 3.4). The results were initially

published in [12]. The control scheme shown here is based on improved sufficient stability

conditions and leads to stabilizing gains. Three control laws are proposed for p-periodic

orbits:

• The first, CL 1, is based on linear time-invariant gain K, whose determination

depends upon prior UPO knowledge;

• The second, CL 2, is based on time-periodic state-dependent gain Kk(x
∗
k), whose

determination also depends on the UPO knowledge;

• The third, CL 3, is based on non-linear time-variant state dependent Kk(xk) and

does not depend on prior knowledge on the UPO position, only its period is necessary.

The three control laws lead to different behaviours in terms of convergence rate and size

of basin of attraction (Section 4.1), although, all the Floquet multipliers of the controlled

orbit are fixed on the origin. The third control law (CL 3) has the clear advantage of not

requiring the exact knowledge of the UPO position.

The control laws proposed here are inspired from dead-beat controllers designed for

linear periodic systems [32]. They are applied to stabilization of periodic orbits of chaotic

non-linear systems using the feedback control input (3.26).

A comparison between the DFC, with a gain matrix obtained by minimization of the

Floquet multipliers of the controlled orbit [44], and the PBC, with the control law 3, is

performed in Section 4.2. These results were originally published in [11]. The basins
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of attraction and the control effort are calculated numerically for some periodic orbits

controlled by both methods. These results are used to compare the stability and the

convergence rate of the trajectories controlled by both methods.

The chaos control methods studied in literature consider that all the states of the

controlled dynamical system are directly accessible by the controller using an input ma-

trix equal to the identity. Here, the control method is initially applied considering this

characteristic, restricting the design to invertible input matrices (Section 3.4.2). However,

a subsequent design of the PBC for a non-invertible input matrix is also done (Section

3.4.3 and numerical results in Section 4.4).

We complete the analysis on the method applying the PBC subject to parameters

uncertainty in Section 4.3. We consider a situation where one parameter of the prediction

model is different from the application model (system). This analysis is of special interest

because the control laws proposed here depend on the cancellation of the linear dynamics

of a trajectory in the vicinity of the controlled orbit.

3.4 Stabilization of periodic orbits

The previous sections were a review of results presented on literature. From now on we

present the new results provided by this work.

It was shown previously that the stabilization of periodic orbits of non-linear systems

can be studied as stabilization of the linearised system around the periodic orbit. The

stabilization processes departs from the definition of the closed-loop monodromy matrix

and the calculation of a control gain that makes the system stable. The stabilization can

be performed by different methods of stabilization of linear periodic systems, all of them

aiming at setting all the Floquet multipliers inside the unit cycle.

The application of the methods shown in Section 3.2 in stabilizing periodic orbits of

non-linear systems does not have, a priori, any restriction, although, none of them consider

an ideally zero control effort when the trajectory is on the target UPO (2.6), the principal

advantage of chaos control methods.
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Consider the non-linear discrete-time dynamical system described by (2.5) and the

existence of the hyperbolic periodic orbit x∗ of period p ∈ N.

The goal here is stabilizing the UPO x∗ of (2.1) subjected to the control restriction

(2.6). The transition from xk to xk+p of (2.5) is defined by the closed-loop state transition

map

xk+p = ϕ(k + p, k, xk, uk(xk)). (3.27)

On the periodic orbit, the condition (2.6) guarantees that any p-periodic orbit that

satisfies (2.2) is also a p-periodic orbit of (3.27). Then,

x∗k+p = x∗k = ϕ(k + p, k, x∗k, uk(x
∗
k)) = ϕ(k + p, k, x∗k, 0). (3.28)

The matrix

Ψk = ∇xϕ(k + p, k, x, uk(x))|x=x∗

k

is the monodromy matrix associated to the orbit x∗ of the closed-loop discrete-time system

(2.5). The stability of the periodic orbit of system (2.5) is related to the spectrum of the

monodromy matrix, being stable if all the eigenvalues (Floquet characteristic multipliers

[5]) have modulus less than or equal to 1 (Proposition 3.1).

In the following we describe the calculation of the monodromy matrix and propose the

control laws based on sufficient stability conditions for UPOs controlled by the PBC [12].

The PBC is the focus of this chapter and in this section we define the stabilization of

periodic orbits using it. For that, we use the PBC with the control signal defined by

(3.26).

3.4.1 Stabilization by the prediction-based control

A sufficient stability condition for periodic orbits of discrete-time dynamical systems con-

trolled by the PBC is defined in this section based on the spectrum of Ψk. The result

obtained in Theorem 3.16 (end of the section) enables the development of stabilizing

control laws for UPO’s using the PBC.
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According to (2.5) and (3.26), the closed-loop discrete-time dynamical system con-

trolled using the PBC is defined by

xk+1 = ϕ(k + 1, k, xk, uk(xk)) = f(k, xk, Kk(xk)(ϕ(k + p, k, xk, 0)− xk)). (3.29)

In the sequel, for any x ∈ Rn and K ∈ Rq×n, q ∈ N, we use the notation

ψ(k, x,K)
.
= f(k, x, uk(x))

uk(x) = K(ϕ(k + p, k, x, 0)− x).
(3.30)

The first step for the definition of the sufficient stability condition for periodic orbits

is to obtain Ψk. This matrix, for the closed-loop system, is calculated according to the

proposed Lemma 3.15.

Lemma 3.15. For any p-periodic point x∗k, k, p ∈ N, of the trajectory x∗ of the closed-loop

system (3.29), one has

Ψk =

p−1
∏

l=0

∇xψ(k + l, x,Kk+l(x
∗
k+l))

∣

∣

x=x∗

k+l

(3.31)

and the matrices in the product are ordered from right to left for increasing indices l.

The interest of formula (3.31) is that no derivative of Kk(xk) with respect to xk appears

in the right-hand side. Thus, Lemma 3.15 provides a simplification in the computation

of the monodromy matrix spectrum: as indicated by (3.31), the dependence of the gain

with respect to the state does not modify the Jacobian ∇xψ(k, x,Kk(x)) in the points of

the periodic orbit.

Proof. Expanding the result of equation (3.9), the monodromy matrix of the closed-loop

system is calculated as follows,

Ψk =

p−1
∏

l=0

∇xψ(k + l, x,Kk+l(x))|x=x∗

k+l

.
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Now, using the definition of ψ(k, x,K), (3.30), we compute the derivative using the

general chain rule [49]

∇xψ(k, x,Kk(x)) = ∇xf(k, x, uk(xk)) +∇uf(k, xk, u)Kk(xk)∇x(ϕ(k + p, k, x, 0)− x)+

∇uf(k, xk, u)∇xKk(x)(ϕ(k + p, k, xk, 0)− xk)

and apply x = xk = x∗k, resulting in

∇xψ(k, x,Kk(x))|x=x∗

k

= ∇xψ(k, x,Kk(x
∗
k))|x=x∗

k

+

∇uf(k, x
∗
k, u) ∇xKk(x)|x=x∗

k

(ϕ(k + p, k, x∗k, 0)− x
∗
k).

On the periodic orbit, we have ϕ(k + p, k, x∗k, 0) = x∗k, and the term containing ∇xKk(x)

is zero. This provides the desired result.

Observe that, for any k ∈ Z, the (i, j)-th component of the product of the tensor

∂Kk(x)
∂x

∣

∣

∣

x=x∗

k

by the vector (ϕ(k + p, k, x∗k, 0)− x
∗
k) can be computed using the following

sum
n
∑

j
′=1

(

∂Kk,ij
′ (x)

∂xj

∣

∣

∣

∣

x=x∗

k

· (ϕ(k + p, k, x∗k, 0)− x
∗
k)j′

)

.

This sum illustrates the dimensional consistence on the matrices multiplications shown in

the proof of the lemma.

The simplification provided by the Lemma 3.15 is used in the Theorem 3.16 to define

a sufficient stability condition for a periodic orbit of (3.29).

Theorem 3.16. Assume the Jacobian ∇xψ(k, x,Kk(x
∗
k))
∣

∣

x=x∗

k
of the system (3.29) is

zero at least for one point of the periodic orbit x∗k. Then, the periodic orbit x∗ is locally

exponentially stable.

Proof. The proof is obtained by direct observation of the result in Lemma 3.15: under

the conditions of the statement, Ψk = 0n, which yields stability of the associated fixed

point, and thus stability of the periodic cycle.
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Chapter 3 3.4 Stabilization of periodic orbits

Theorem 3.16 reduces the problem of the stabilization of periodic orbits of discrete-

time dynamical system controlled by the PBC to the problem of leading the Jacobian of

one point of the orbit to zero (matrix composed by zeros) with the simplification provided

by Lemma 3.15. The next step is to define a gain matrix Kk(xk) that leads to the desired

result.

Note that the result shown in the Theorem 3.16 sets not only the eigenvalues of

the monodromy matrix equal zero, but the entire matrix is equal to zero. This results

in the cancellation of the linearized dynamics around the periodic orbit. Setting all the

eigenvalues of the monodromy matrix to zero is characteristic of dead-beat controllers and

leads do finite-time convergence for linear dynamics. However, applying this result, as we

do here, to the linearized dynamics around the periodic orbit does not ensure finite-time

convergence of the trajectories of the nonlinear system towards the latter.

3.4.2 Stabilizing control laws: The invertible input matrix case

Theorem 3.17. If ∇uf(k, x, u) is an invertible matrix for x = x∗k and u = uk(x
∗
k) and

the linear map that describes the evolution of a perturbation in the close vicinity of a

trajectory of system (3.29) for uk(xk) = 0 is hyperbolic, then there exists a control gain

Kk(xk) that satisfies Theorem 3.16 .

Invertible ∇uf(k, x, u) matrix is typically the case for systems such that

xk+1 = g(k, xk) + uk, (3.32)

where x and u are vectors of the same dimension and the systems can be fully actuated.

Proof. From Lemma 3.15,

∇xψ(k, x,Kk(x))|x=x∗

k

= 0n

is equivalent to

∇xf(k, x, uk(x
∗
k))|x=x∗

k

+ [∇uf(k, x, u)Kk(x)(∇xϕ(k + p, k, x, 0)− In)]x=x∗

k
,u=uk(x

∗

k
) = 0n.

(3.33)
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If ∇uf(k, x, u) and (∇xϕ(k+ p, k, x, 0)− In) are invertible for x = x∗k and u = uk(x
∗
k),

Kk(xk) can be isolated in the right side of (3.33). This is the case if ∇xϕ(k+ p, k, x, 0) is

hyperbolic (eigenvalues different from one, see Appendix A).

The values of Kk(xk) selected in the sequel will be shown to fulfill Theorem 3.17.

• Control law CL 1. K(x∗0) is a constant matrix defined by:

K(x∗0) = −(∇uf(0, x
∗
0, u)|u=u0(x∗

0
))

−1 ∇xf(0, x, u0(x
∗
0))|x=x∗

0
(∇xϕ(p, 0, x, 0)− In)

−1
∣

∣

x=x∗

0

.

(3.34)

This results in a linear time-invariant control law whose determination also depends

upon the UPO knowledge.

• Control law CL 2. Kk(x
∗
k) is a time-varying matrix defined for each time k ∈ Z by:

Kk(x
∗
k) =

− (∇uf(k, x
∗
k, u)|u=uk(x

∗

k
))

−1 ∇xf(k, x, uk(x
∗
k))|x=x∗

k

(∇xϕ(k + p, k, x, 0)− In)
−1
∣

∣

x=x∗

k

,

(3.35)

This results in a linear time-periodic control law whose determination depends also

upon the UPO knowledge.

Application of CL 1 or CL 2 necessitates to define which of the orbit points is the

point x∗0. A possible choice is to take x∗0 as the point of the cycle minimizing the distance

from x0.

Both control laws explicitly use the target UPO to obtain the control gain. The design

of the controllers follows the same requirements of the PFC, the exact knowledge of the

UPO for the definition of the control gain.

A similar control law for dimension-1 discrete-time systems is applied in [40], here the

CL1 and CL2 are provided for n-dimensional systems.
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• Control law CL 3. Kk(xk) is given as

Kk(xk) =

− (∇uf(k, xk, u)|u=uk(xk)
)−1 ∇xf(k, x, uk(xk))|x=xk

(∇xϕ(k + p, k, x, 0)− In)
−1
∣

∣

x=xk

.

(3.36)

Contrary to CL 1 and CL 2, the choice CL 3 does not require any knowledge on the

UPO (except the period p). The calculus of Kk(xk) depends only on the actual state of

the trajectory.

One advantage of CL 3 is the fact that it avoids the necessity of finding the UPO

before stabilizing it. Another advantage is that, when designing the control gain for CL

1 or CL 2 (or any other control method that depends on the UPO position), errors in

the UPO approximation lead to less accurate control gains. The PBC with CL 3 can be

applied to find (or refine, for inaccurate approximations) UPOs when using other control

methods.

Putting the term (3.36) in (3.29) reminds the Newton-Raphson method [68] applied to

the iterative search for zeros of the map (ϕ(k+ p, k, x, 0)− x), which uses the adjustment

law x← x+∆, ∆ = −(∇xϕ(k+p, k, x, 0)−In)
−1(ϕ(k+p, k, x, 0)−x). The difference here

is that the adjustment is done on f(k, xk, uk(xk)), the map that defines the state dynamics

and not on the state itself. Note that the Newton-Raphson method is commonly used to

find UPOs [68].

The three control laws satisfy the condition of Theorem 3.17, this implies that the

control laws proposed in this work result in the suppression of the linearised dynamics

(perturbation) around the periodic orbit (Ψk = 0n). This is done cancelling the linearised

dynamics at, at least, one point of the orbit (∇xψ(k, x,Kk(x
∗
k))|x=x∗

k

= 0n) and depends

on the exact knowledge of f(k, xk, uk(xk)) for the calculation of ∇xf(k, x, uk(xk)) and the

future state. Model discrepancy with respect to the application system makes Ψk 6= 0n.

A brief robustness analysis of the control method is done by simulations in the numerical

results presented in Section 4.3.
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3.4.3 Stabilizing control laws: The non-invertible input matrix

case

The control laws proposed in the Section 3.4.2 are limited to systems (3.29) that present

an invertible input matrix ∇uf(k, xk, u). Here we provide alternatives for a non-invertible

∇uf(k, xk, u) : N× Rn × Rm → Rn×m with Kk(xk) : N× Rn → Rm×n in the special case

of single input systems. We thus take

m = 1.

Notice that the condition (3.33) may be impossible to satisfy for the new ∇uf(k, xk, u)

and the Theorem 3.16 is not applicable (Lemma 3.15 is still valid).

For the cases where the condition (3.33) can not be satisfied we provide the control

law (3.39) below with a non-linear time-varying control gain Kk(xk) that may be applied

making the Floquet multipliers of the controlled orbit equal to zero. The monodromy

matrix is not necessarily 0n, but this control law is equivalent to CL 3, in the sense that

the Floquet multipliers are equal to 0, while no previous knowledge about the UPO is

required. The main requirement to apply the result we are about to state (Theorem 3.19

below) is the existence of a given change of basis transforming, at any frozen time, the

system linearised around the periodic orbit in its controllable canonical form.

Theorem 3.18 (Controllable canonical form, adapted from Theorem 5.1 in [54]). Let the

state equations of a linear time-invariant system be described by (3.16) in the scalar input

case (m = 1). If the matrix function

Q =
[

B AB A2B · · · An−1B
]

is nonsingular, then there exists a nonsingular transformation

zk = Txk or xk = T−1zk
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which transforms (3.16) to the controllable canonical form (CCF):

zk+1 = Aczk +Bcuk (3.37)

where Ac = TAT−1 and Bc = TBk are

Ac =





























0 1 0 0 · · · 0

0 0 1 0 · · · 0

0 0 0 1 · · · 0
...

...
...

...
. . .

...

0 0 0 0 · · · 1

−a1 −a2 −a3 −a4 · · · −an





























Bc =





























0

0

0
...

0

1





























.

The transforming matrix T is given by

T =

















P

PA
...

PAn−1

















(3.38)

where

P =
[

0 0 · · · 1
]

Q−1.

Notice that there exist different controllable canonical representations of the system

(3.16). These representations are obtained by using a transformation matrix defined

differently from (3.38).

Theorem 3.19. Assume that the unstable p-periodic orbit of system (2.1) is hyperbolic

and that, for any k ≥ 0 and for any xk, the pair
(

Ak(xk), Bk(xk)
)

is controllable, where

Ak(xk) = ∇xf(k, x, uk(xk))|x=xk

Bk(xk) = ∇uf(k, xk, u)|u=uk(xk)
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are associated to the closed-loop system (3.30) with scalar input signal uk(xk).

Assume that there exists a constant (with respect to k) change-of-basis matrix T that

transforms
(

Ak(xk), Bk(xk)
)

into the controllable canonical form
(

TAk(xk)T
−1, TBk(xk)

)

of Theorem 3.18. Then it is possible to set to zero all the Floquet multipliers of the closed-

loop system (3.30) using the time-varying control gain vector Kk(xk) defined by

Kk(xk) =
[

01×n−1 1
]

(

T−1NT − ∇xf(k, x, uk(xk))|x=xk

) (

∇xϕ(k + p, k, x, 0)|x=xk
− In

)−1
(3.39)

where N is the nilpotent matrix defined as

Ni,j =







1, if j = i+ 1,

0, otherwise.
(3.40)

Proof. Using Lemma 3.15 we calculate the Jacobian matrix of the closed-loop system

(3.30) in the CCF of Theorem 3.18 as

∇xψ(k, x, kk(x
∗
k))|x=x∗

k

=

T
[

Ak(x
∗
k) +Bk(x

∗
k)Kk(x

∗
k)
(

∇xϕ(k + p, k, x, 0)|x=x∗

k

− In

)]

T−1.

and for each time k = 0, 1, . . . , p we want to guarantee

T
[

Ak(x
∗
k) +Bk(x

∗
k)Kk(x

∗
k)
(

∇xϕ(k + p, k, x, 0)|x=x∗

k

− In

)]

T−1 = N (3.41)

where N ∈ Rn×n is the nilpotent matrix (3.40). If we manage to realize (3.41), then from

(3.31) we have that

Ψk =

p−1
∏

0

T−1NT = T−1NpT (3.42)

has all its eigenvalues equal to zero due to similarity between N and T−1NT . For p ≥ n,

we obtain the special case Ψk = 0n.
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We attempt now to solve equation (3.41) for the gain value Kk(x
∗
k). From (3.41) we

deduce

TBk(x
∗
k)Kk(x

∗
k) =

(

N − TAk(x
∗
k)T

−1
)

T
(

∇xϕ(k + p, k, x, 0)|x=x∗

k

− In

)−1

(3.43)

where, using the fact that the pair
(

TAk(xk)T
−1, TBk(xk)

)

is in the CCF and we are

using scalar input function, one gets

TBk(x
∗
k)Kk(x

∗
k) =





0(n−1)×n

Kk(x
∗
k)



 . (3.44)

The defined N implies that (N − TAk(x
∗
k)T

−1) has the first n−1 lines equal to 0(n−1)×n

guaranteeing the identity for the (n− 1) first lines of (3.43).

From (3.40), (3.43) and (3.44) we obtain

Kk(x
∗
k) =

[

01×n−1 1
]

(

T−1NT −Ak(x
∗
k)
)

(

∇xϕ(k + p, k, x, 0)|x=x∗

k

− In

)−1

. (3.45)

Notice that:

• Applying (3.45) for k ≥ 0 at any state xk we have (3.39) and local stability of x∗k is

guaranteed by (3.41) and (3.42);

• If it is not possible to obtain a constant matrix T using (3.38) then (3.42) is not

verified and zero eigenvalues are not guaranteed. However stability of x∗k may be

achieved by using others control laws.

General results for multi input systems can be obtained with (3.38) defined for general

input matrices. This can be done in future works.
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Numerical results

The numerical examples are divided in four parts. We compare the three control laws

proposed for the PBC shown in the Section 3.4.2 using the Logistic map as case study in

the first part (Section 4.1). We compare the PBC with the proposed CL 3 with the DFC

using as case study the Hénon map in the second part (Section 4.2). The DFC gain is

tuned minimizing the modulus of the Floquet multipliers of the controlled orbits. A brief

numerical robustness analysis of the PBC with the CL 3, and the DFC for the system

subject to parametric uncertainty is done in the third part (Section 4.3). The fourth part

is dedicated to the non-invertible input matrix case (Section 4.4).

4.1 Comparison among the prediction-based control

laws

The proposed control laws for the PBC are applied to the Logistic map. The proposed

laws were developed for n-dimensional discrete-time systems, but a system of dimension

n = 1 simplifies the numerical analysis and the comparison among the three control laws.

The Logistic map The closed-loop Logistic map is given by

xk+1 = g(xk) + uk(xk), (4.1)
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where x : N→ R and u : N× R→ R. The function g is given by

g(x) = rx(1− x), (4.2)

for a given parameter r ∈ R. The control signal is

uk(x) = Kk(x)(ϕ(k + p, k, x, 0)− x) (4.3)

where here ϕ(k + p, k, x, 0) = gp(x) and K : N× R→ R.

4.1.1 Applying CL 3 and finding UPOs

The first step is applying the CL 3 because there is not the necessity of any knowledge

about the target UPO position. We use the CL 3 to find the UPO’s and the CL 1 and

CL 2 gains. Note that UPOs of the Logistic map can be found apolitically, but the CL 3

simplifies the search.

The CL 3 applied to different values of the parameter r, initial condition x0 and UPO

of period p of the Logistic map is shown in Figure 4.1. In Figure 4.1(a) a 2-periodic

orbit is stabilized for r = 4 and initial condition x0 = 0.48 resulting in Kk(x
∗
k) shown in

Table 4.1. In Figure 4.1(b) a 3-periodic orbit is stabilized for r = 4 and initial condition

x0 = 0.69 resulting in Kk(x
∗
k) shown in Table 4.2. In Figure 4.1(c) a 5-periodic orbit is

stabilized for r = 4 and initial condition x0 = 0.57 resulting in Kk(x
∗
k) shown in Table

4.3. In Figure 4.1(d) a 6-periodic orbit is stabilized for r = 3.65 and initial condition

x0 = 0.52 resulting in Kk(x
∗
k) shown in Table 4.4. The figure shows the evolution of the

state xk and the control effort uk(xk).

The first characteristic observed in the proposed scheme is the fast convergence of the

trajectory to the vicinity of the target UPO. We consider that the UPO is stabilized when

|uk(xk)| < 10−10, remaining below this threshold for the following k. The Figure 4.1(d)

can be compared to [63, Fig. 5], where the convergence is achieved for k between 100 and

200 and using a larger control effort for the same conditions.
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Figure 4.1: Example of the evolution of the state xk and the control effort uk(xk) for the
Logistic map controlled using the CL 3: (a) r = 4, x0 = 0.48 and p = 2; (b) r = 4,
x0 = 0.69 and p = 3; (c) r = 4, x0 = 0.57 and p = 5; (d) r = 3.65, x0 = 0.52 and p = 6.

Table 4.1: Points and respective values of the control gain for the stabilized UPO of Figure
4.1(a).

Time k k + 1
x∗k 0.90451 0.34549
Kk(x

∗
k) -0.64721 0.24721

Table 4.2: Points and respective values of the control gain for the stabilized UPO of Figure
4.1(b).

Time k k + 1 k + 2
x∗k 0.18826 0.61126 0.95048
Kk(x

∗
k) -0.35628 0.12716 0.51484
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Table 4.3: Points and respective values of the control gain for the stabilized UPO of Figure
4.1(c).
Time k k + 1 k + 2 k + 3 k + 4
x∗k 0.57116 0.97975 0.79373×10−1 0.29229 0.82743
Kk(x

∗
k) -0.17250×10−1 -0.11630 0.10197 0.50353 ×10−1 -0.79377×10−1

Table 4.4: Points and respective values of the control gain for the stabilized UPO of Figure
4.1(d).

Time k k + 1 k + 2 k + 3 k + 4 k + 5
x∗k 0.90983 0.29944 0.76568 0.65486 0.82497 0.52704
Kk(x

∗
k) -0.54423 0.26633 -0.35281 -0.20564 -0.43154 -0.35909 ×10−1

4.1.2 Comparing the three control laws by convergence rate and

control effort

The transient of uk(xk) for trajectories converging to the target UPOs for the three control

laws are compared on Figure 4.2. The examples refer only to stabilized orbits of period p,

as there are control gains that make trajectories controlled by the CL 1 and CL 2 diverge

to the infinity or converge to fixed points or periodic orbits that do not correspond to

a solution of the free system (4.1) (situation that also occurs for the DFC)1. In Figure

4.2(a) a 2-periodic orbit is stabilized for x0 = 0.48, the control gain used for the CL 2

is the one obtained in the simulation of Figure 4.1(a) and the control gain used for CL

1 is K = 0.24721. In Figure 4.2(b) a 5-periodic orbit is stabilized for x0 = 0.6469, the

control gain used for the CL 2 is the one obtained in the simulation of Figure 4.1(c) and

the control gain used for CL 1 is K = −0.17250× 10−1.

The trajectories shown in the Figure 4.2 make explicit the fact that, if the stabilization

succeeds, the convergence for the CL 3 is faster than the convergence for the other two

control laws. This is better evidenced for trajectories with initial conditions farther from

the target UPO.

1Notice that p-periodic orbits of the closed-loop system may exist that are not p-periodic orbits of the
free system. However, the occurrence of this phenomena is investigated by uk(xk) not converging to zero.
This contrasts with the DFC, where p-periodic orbits of the closed-loop and the free system are exactly
the same.

44



Chapter 4 4.1 Comparison among the prediction-based control laws

0 5 10 15 20

−0.1

−0.05

0

0.05

0.1

k

u
k
(x

k
)

 

 

CL3
CL2
CL1

(a)

0 10 20 30 40 50
−0.1

−0.05

0

0.05

0.1

k

u
k
(x

k
)

 

 

CL3
CL2
CL1

(b)

Figure 4.2: Comparison among the control effort uk(xk) transient of trajectories converg-
ing to stabilized orbits of the Logistic map using the three control laws (legend in the
figure) for r = 4: (a) x0 = 0.48 and p = 2; (b) x0 = 0.6469 and p = 5.

Table 4.5: Points and respective values of the control gain for one of the stabilized UPO
of Figure 4.4.

Time k k + 1 k + 2
x∗k 0.41318 0.96985 0.11698
Kk(x

∗
k) 0.77177 ×10−1 -0.41764 0.34046

4.1.3 Comparing the three control laws by basins of attraction

The comparison among the control laws is completed by the size of the basins of attraction

(BA) of the stabilized orbits. The BAs here are the set of initial conditions that converge

to a specific periodic orbit of the closed-loop system. The BAs of stabilized period-2

orbits are shown in the Figure 4.3 and period-3 are shown in the Figure 4.4. The different

control laws are represented in the sub-figures (a), (b) or (c) of each figure. In Figures

4.3(c), 4.4(b) and 4.4(c), the BAs obtained for different control gains are divided in the

vertical axis. The Logistic map has only one period-2 orbit for r = 4 and the control gain

on the orbit was obtained in the simulation of Figure 4.1(a). This results in two different

gains for the CL 1. There exists two period-3 orbits for r = 4 with two different values

of Kk(x
∗
k) (two sets of control gains for the CL 2), the first is the one obtained in the

simulation of Figure 4.1(b) (Table 4.2) and the other is Kk(x
∗
k) shown in Table 4.5. This

results in six different control gains for the CL 1.
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The basins of attraction of the fixed points (FP: period-1 orbits) are shown for p = 2

and p = 3 when using the CL 3, the other control laws do not stabilize fixed points when

applying p 6= 1. The BAs of the orbit with period divisor of p decrease in length for

higher values of p. Another phenomenon observed when increasing p (see Figure 4.5) is

that more orbits are stabilized, decreasing their individual BAs, but increasing the length

of the set of the BAs of all stabilized orbits. This occurs due to the exponential growth

of the UPO quantity by period and the local stability of the orbits achieved for the orbits

of the closed-loop system.
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Figure 4.3: Basins of attraction (BAs) of stabilized period-2 orbits of the Logistic map
controlled with the three different control laws for r = 4. FP1 and FP2 are fixed points
and FP1, specifically, does not belong to the chaotic attractor.

The comparison of previous results shows that the CL 3 leads to faster convergence of

trajectories to the target UPO while the CL 1 leads to slower convergence. The comparison

of the BAs shows that the CL 3 leads to smaller BAs (when analysing a specific orbit)

and different initial conditions may lead to different stabilized orbits. Specific values of

the control gain for the CL 1 lead to the largest BAs. In both cases, the CL 2 leads
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Figure 4.4: Basins of attraction (BAs) of stabilized period-3 orbits of the Logistic map
controlled with the three different control laws for r = 4. FP1 and FP2 are fixed points
and FP1, specifically, does not belong to the chaotic attractor.

to intermediate results. The greatest advantage of CL 3 is that its application is much

simpler than the others, it can be also used to find the UPOs or the stabilizing gains of

the other control laws.

4.2 Comparison between prediction-based and delayed

feedback control

We now compare the PBC and DFC using the closed-loop Hénon map (4.4) as a case study.

We chose CL 3 because only the period of the UPO is needed for tuning the controller

gain. We wish to reduce the implementation complexity finding the UPOs using the CL

3.
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Figure 4.5: Basins of attraction (BAs) of stabilized periodic orbits of the Logistic map
using the CL 3 with p = 5 and r = 4.

The Hénon map

xk+1 = g(xk) + uk(xk), (4.4)

where x : N→ R2 and u : N× R2 → R2. The function g is given by

g(xk) =





a− x21,k + bx2,k

x1,k



 , (4.5)

for given parameters a, b ∈ R. For the PBC we have

uk(xk) = Kk(xk)(ϕ(k + p, k, xk, 0)− xk), (4.6)

where ϕ(k + p, k, x, 0) = gp(x) and K : N× R2 → R2×2.

For the DFC we have

u(xk) = K(xk−p − xk), (4.7)

where u : R2 × R2 and K ∈ R2×2.

We use the bifurcation digram of Figure 4.6 to identify chaos and its infinite number

of UPOs. The diagram was generated plotting 500 points of x1,k after discarding the

transient for 0 ≤ k ≤ 500 using b = 0.3 and 0 ≤ a ≤ 2. A stable solution is not found for

a > 1.428. In the sequel a = 1.4 and b = 0.3.
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Figure 4.6: Bifurcation diagram of the Hénon map for b = 0.3.

Table 4.6: UPOs with period up to 6 of the Hénon map.
UPO FP1.1 FP1.2 P2 P4 P6.1 P6.2
Period 1 1 2 4 6 6
Free system
eigenvalues

[-1.9237,
0.1559]

[3.2598,
-0.0920]

[-3.0101,
-0.0299]

[-8.6394,
-0.0009]

[-27.5147,
−2×10−5]

[28.1250,
2×10−5]

4.2.1 Applying CL 3 and finding UPOs

The first step is finding the target UPOs. This is a simple task when studying the Hénon

map and these orbits can be easily found analytically. However, the PBC with the CL

3 can be used to systematize the process for this simple example or even more complex

systems. It is possible to make a grid of initial conditions on the region of the state space

that contains the chaotic set, apply the CL 3 for one value of p, for a large k and for each

initial condition, collect the points of the stabilized orbits and identify the period-p orbits.

The points of the identified orbits are used to design the control gains for the DFC.

A list of UPOs with period up to 6 is shown in the Table 4.6 with their period and

eigenvalues for the free system. There is no orbits of period 3 and 5 for the chosen a and

b.

4.2.2 Designing the DFC control gain by optimization

The design of the control gain for the DFC is done by choosing a constant matrix K that

minimizes the largest, in modulus, Floquet multiplier |µ|max of the controlled orbit. The
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Table 4.7: DFC control gain K; largest, in modulus, Floquet multipliers (|µ|max); Floquet
multipliers (µ) of the stabilized orbits of the Hénon map.

UPO FP1.1 P2 P4

K

[

−0.75420 0.01369
−0.28878 −0.00023

] [

−0.16542 0.00675
−1.98560 0.31435

] [

−0.62885 −0.18505
0.19533 −0.19424

]

|µ|max 0.25346 0.5904 0.79702
µ -0.2534 ±0.0046i -0.5901 ±0.0190i -0.7954 ±0.0509i

minimization is performed using the MATLABr routine fminsearch that implements the

Nelder-Med simplex direct-search method [55]. The initial condition of the elements of

the matrix K were scanned between −1 and 1. The matrix Ψk and its eigenvalues were

computed for each K and the local minima of the largest eigenvalue in modulus were

obtained (see Appendix C for the DFC monodromy matrix calculation). In Table 4.7 we

summarise the best stabilizing K and the respective largest eigenvalue of the controlled

orbit and its modulus.

After several tests, adjusting the convergence parameters and initial conditions, no

matrix gain was found that stabilizes the period-6 orbits and the fixed point FP1.2 with

the DFC. It is not proved here that these orbits can not be stabilized with the DFC, but

these results are in agreement with the literature, since orbits of higher periods and orbits

with an odd number of real Floquet multipliers larger than +1 (odd-number limitation)

are not stabilized by the DFC [89,90,103,104]. Observing the Table 4.7 we see that |µ|max

increases when increasing the period of the controlled orbit, resulting in |µ|max > 1 for

the orbit P6.1. The orbits FP1.2 and P6.2 have one Floquet multiplier real and larger

than +1, characteristic of orbits originated from saddle-node bifurcations [1]. The other

orbits are originated by period-doubling bifurcations.

4.2.3 Comparing PBC and DFC by basins of attraction

The basis of attraction of the orbits controlled by the DFC are shown in the Figure 4.7.

The initial condition of the delayed states was set on the target UPO, this results in 2

and 4 simulations for each basins of attraction for the orbits P2 and P4, respectively. The

initial condition was set varying the initial point of the orbit and consequently the order
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of the points xk−1 . . . xk−p in these cases. The basin of attraction of the orbit P4, locally

stable when controlled by the DFC, is not shown here. A scan with a step of 0.005 in x1,0

and x2,0 was not sufficient to find a point that converges to the orbit and we conclude

that its basin of attraction is limited to a very small vicinity of the orbit. In the Figure

4.7(b), the colours blue and green were used to separate the BA of the P2 in two parts,

according to the initial condition of the delayed states.

(a)

−2 −1 0 1 2

−2

−1

0

1

2

x1,0

x
2
,0

(b)

Figure 4.7: Basins of attraction of the orbits controlled by the DFC for the Hénon map.
(a) FP1.1 (+), (b) P2 (⋆)

The basins of attraction of the orbits controlled by the PBC are shown in the Figure

4.8. We observe that all the orbits of period p and its divisors are controlled for the same

value of p used in the control laws. This results in more than one BA represented in each

figure. The basins of FP1.1 and FP1.2 are also shown in the Figures 4.8(b) and 4.8(c),

this suggests that the basins of the orbits with period divisor of p reduce the size when

increasing p. The basin of the orbit P2 was not included in the Figure 4.8(c), the same

choice was adopted for the BAs of the orbits FP1.1, FP1.2 and P2 in the Figure 4.8(d).

The orbit FP1.2 does not pertain to the chaotic attractor of the Hénon map for the chosen

a and b, however it was also stabilized.

Comparing Figures 4.7 and 4.8 we observe that the PBC with the proposed control

law not only stabilizes orbits that the DFC does not stabilize, but also leads to larger

basins of attractions. Although, as verified for the Logistic map when applying the CL 3,

different orbits are stabilized with the PBC, the orbits of period-p and its divisors.
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(a) (b)

(c) (d)

Figure 4.8: Basins of attraction of the orbits controlled by the PBC for the Hénon map.
(a) p = 1, FP1.1 (+) and its BA blue and FP1.2 (×) and its BA in green; (b) p = 2, P2
(⋆) and its BA in blue and the BAs of the fixed points in green; (c) p = 4, P4 (⋆) and its
BA in blue and the BAs of the fixed points in green; (d) p = 6, P6.1 (×) and its BA in
green, P6.2(+) and its BA in blue.

A characteristic better observed in this bi-dimensional example (notably in Figures

4.8(c) and 4.8(d)) is the apparent fractal boundary between the basins [1].

4.2.4 Comparing PBC and DFC by convergence rate and con-

trol effort

Figure 4.9 shows the sum of the modulus of the control effort in both directions to control

the orbits P2 and P4 using the DFC and the PBC. The vertical axis is in logarithmic

scale to better compare the convergence rate to the UPO using each method, the control
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effort is represented for ‖uk(xk)|‖1 > 10−10, ‖ · ‖1 is the norm-1. The data corresponding

to the DFC in the Figure 4.9(b) are plotted at each ten points. The convergence rate of

the trajectory in both cases is faster for the PBC, this happens even with the extended

states of the DFC initially set on the target UPO and using as xk−1 the point of x
∗
k closer

to x0. The trajectory controlled with the PBC presents lower control effort amplitude

compared to the DFC for the tests performed.
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Figure 4.9: Time series of the control effort applied to stabilize periodic orbits of the Hénon
map using the DFC and PBC. (a) p = 2, x0 = [−0.5; 1]; (b) p = 4, x0 = [0.305; 0.893].

We verified that the PBC does not present the known limitations of the DFC related

to the odd-number limitation and to high periods. The basins of attraction and the

convergence rate of the trajectories of the orbits stabilized by the PBC are larger than for

the DFC, with a lower control effort.

The PBC depends on a free system prediction model when applied, but the DFC

can be applied without model, it is only necessary to record the delayed states. This

characteristic favours the DFC, but its control gain design depends on a model and on

the target UPO for an analytical or numerical tuning. The PBC with the proposed control

law has the advantage of being independent of previous knowledge about the target UPO

position and it is useful for applications where the orbit is unknown.

The choice of the cost function for the optimization of the DFC control gain favours

the local stability of the controlled orbit, however it does not guarantee a maximum for
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the basin of attraction size. The possibility of better results than the ones presented in

the comparison between methods is not to be excluded.

4.3 A brief robustness analysis on the prediction-

based control

Here we evaluate the robustness of the PBC using the CL 3 for a system subjected to

parametric uncertainties and compare the results for the DFC under the same conditions.

4.3.1 Defining the uncertainties

The PBC case. For the PBC we consider a parametric error between the real free

system f(k, xk, 0) and the free system prediction model, here named f̂(k, xk, 0). In the

sequel, ·̂ refers to the prediction model. We apply the CL 3 (3.36) on the closed-loop

system

ψ(k, x,K)
.
= f(k, x, uk(x))

uk(x) = K(ϕ̂(k + p, k, x, 0)− x),
(4.8)

where ϕ̂(k + p, k, x, 0) is defined for f̂(k, x, 0).

Note that the Lemma 3.15 is not (necessarily) valid now because x∗k is not (neces-

sarily) a periodic orbit of ψ(k, xk, Kk(xk)) with uk(xk) defined in (4.8), namely x̂∗k. The

monodromy matrix of this new orbit is given by

Ψk =

p−1
∏

l=0

∇xψ(k + l, x,Kk+l(x))|x=x̂∗(k+l) , (4.9)

with

∇xψ(k, x,Kk(x)) = ∇xf(k, x, uk(xk)) +∇uf̂(k, xk, u)Kk(xk)∇x(ϕ̂(k + p, k, x, 0)− x)+

∇uf̂(k, xk, u)∇xKk(x)(ϕ̂(k + p, k, xk, 0)− xk).
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The DFC case. For the DFC we use

uk(xk) = K(x(k − p)− xk)

where K is the optimal gain used to stabilize x̂∗k.

4.3.2 Comparing PBC and DFC

The robustness analysis is performed using the Hénon map (4.4) as case study for the

comparison between methods.

We define â = 1.4 and b̂ = 0.3 for f̂(k, xk, 0), b = 0.3 and vary a for f(k, xk, 0).

We try to stabilize the orbit P2 with both methods for 0.91 < a < 2, where the limit

a = 0.91 refers to the bifurcation that originates the UPO P2 and a = 2 was used to

apply the control schemes in a system without stable solutions. Here, ∇uf̂(k, xk, u) =

∇uf(k, xk, u) = B = In.

Comparison criteria. The comparison is performed using the maximum, in modulus,

Floquet multiplier |µ|max of the controlled orbit, x̂∗k, and the control effort for one cycle

of the steady state trajectory, υ, defined as

υ = limk→+∞

p
∑

l=1

‖uk+l(xk+l)‖1

‖ · ‖1 is the norm-1 used to measure the total external effort necessary to stabilization.

Results and analysis The results are shown in Figure 4.10 and x̂∗1 is shown in Figure

4.11 using as initial condition the points of P2 for a = 1.4, including the delayed states

for the DFC.

Figure 4.10(a) shows that the orbit controlled by the PBC is more stable than the

orbit controlled by the DFC. For a = â = 1.4, as expected, |µ|max ≈ 0 for the PBC and

this point is not represented in the figure due to the logarithmic scale.
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Figure 4.10: Comparison between the PBC with the CL 3 and the DFC stabilizing the
x̂∗k for b = 0.3. (a) the maximum, in modulus, Floquet multiplier; (b) the control effort
for one cycle of the steady state system.

Figure 4.10(b) shows that the orbit controlled by the DFC presents a steady state

control effort approximately equal to zero (not shown due to logarithm scale). The point

in red shown in the figure is obtained for a value of a where |µ|max ≈ 1 and the convergence

is slow. For the PBC we have υ ≈ 0 for a = â = 1.4 and a larger control effort for other

values.

Figure 4.11 shows the stabilized orbit for both control methods. The analysis of the

Figures 4.10 and 4.11 allows to conclude that PBC method is applicable for a larger

interval of a, including values where there is not a stable solution for the free system (a >

1.428), the controlled orbit is more stable, but the control effort is larger in comparison

with the DFC. The choice of the method to be used depends on the performance criteria

of the control problem.

4.4 Prediction-based control for non-invertible input

matrix

Here we use the PBC to stabilize periodic orbits of the Hénon map (4.4) for a non-

invertible input matrix ∇uf(k, xk, u) = B with a control law similar to CL 3 with no need

of previous knowledge about the UPO position.
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Figure 4.11: Stabilized x̂∗k using the PBC (blue) and the DFC (red) on the bifurcation
diagram (black) of the Hénon map for b = 0.3. The orbit x∗k of the free system is in green

.

Here, the matrices B and Kk(xk) are given by

B =





1

0



 , Kk(xk) =
[

k1,k(xk) k2,k(xk)
]

.

In this case we have a scalar control signal (3.26), u : N× R2 → R.

The matrix ∇xf(k, x, uk(xk)) for the Hénon map is

∇xf(k, x, uk(xk)) =





−2x1,k b

1 0





and the matrix ∇xϕ(k + p, k, x, 0) is written as

∇xϕ(k + p, k, x, 0) =





fp11,k(xk) fp12,k(xk)

fp21,k(xk) fp22,k(xk)





.

Solving (3.39) for

T =





0 1

1 0
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we obtain

k1,k(xk) =
−bfp21,k(xk) + 2x1,k − 2fp22,k(xk)x1,k

fp11,k(xk) + fp22,k(xk)− fp11,k(xk)fp22,k(xk) + fp12,k(xk)fp21,k(xk)− 1

k2,k(xk) =
bfp11,k(xk) + 2fp12,k(xk)x1,k − b

fp11,k(xk) + fp22,k(xk)− fp11,k(xk)fp22,k(xk) + fp12,k(xk)fp21,k(xk)− 1
.

In this case, the matrices ∇xf(k, x, uk(xk)) and ∇uf(k, xk, u) are already in a con-

trollable canonical form. This allows to obtain a constant T and a matrix Kk(xk). For

B = [0 1]′, Tk(xk) is not constant and it is necessary to calculate a control gain using the

previous knowledge of x∗k, similar to CL 1 and CL 2.

A numerical example is shown in the Figure 4.12. This example can be compared to

the results of Figure 4.9 showing that the convergence rate for the PBC applied for a

non-invertible input matrix case has the same magnitude of the convergence rate for the

invertible input matrix case. It is also faster than the DFC applied to the invertible input

matrix case.
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Figure 4.12: Time series of the control effort and state variables of stabilized periodic
orbits of the Hénon map using the PBC for a non-invertible input matrix B = [1 0]′. (a)
p = 2, x0 = [−0.5; 1]; (b) p = 4, x0 = [0.305; 0.893].
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Conclusions

In Section 3.4.1, Theorem 3.16 and Lemma 3.15, it was formulated a stability condition for

periodic orbits controlled by the PBC in discrete-time systems. This stability condition

is used for the formulation of three different control laws in Section 3.4.2. These control

laws lead to all Floquet multipliers equal zero and are summarized as:

CL 1: A linear time-invariant control law which depends on the previous knowledge of

UPO position;

CL 2: A linear time-varying control law which depends on the previous knowledge of the

UPO position;

CL 3: A non-linear time-varying control law which does not depend on the previous knowl-

edge of the UPO position, only its period p;

These control laws are compared using numerical examples in Section 4.1. First of

all it is verified that the CL 3 can be applied to find UPOs and its position is used

to define the control gain of the CL 1 and CL 2. It was verified that the convergence

rate of trajectories to the stabilized orbit is faster for the CL 3 compared to the others

control laws. Comparing the basins of attraction it was verified that they are smaller for

a periodic orbit stabilized by CL 3. It was verified that when the CL 3 is applied not only

one specific orbit is stabilized, but also all the orbits of period integer divisor of p.
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The control law 3 is used for a comparison between the PBC and the DFC in Section

4.2. Is is verified that the PBC has a faster convergence rate of trajectories to the stabilized

orbit, it has larger basins of attraction, and it stabilizes orbits that are not stabilized by

the DFC due to the odd-number limitation and large period.

In Section 4.4 it was numerically tested the robustness of the PBC and the DFC to

parametric uncertainties. It was verified that the PBC is much more robust than the DFC

using as comparison criterion the range of the parameter error (with respect to the value of

the parameter used to design the controllers) for which a stable orbit is achieved. However,

it is less robust when using as comparison criterion the variation of the larger magnitude

Floquet multiplier and the steady state control effort in the range of the parameter error

where both methods leads to stabilization.

The CL 3 was proposed for system with invertible input matrix. In Section 3.4.3 it

was proposed a control law that leads the Floquet multipliers to zero without previous

knowledge of the UPO position and is applicable to systems with non-invertible input

matrix. The condition where this control law can be used is specified in Theorem 3.19.

It was verified in Section 4.4 that the convergence rate of this control law is comparable

to the CL 3 and faster than the DFC.
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Continuous-time systems
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Introduction

In the present chapter we discuss stabilization of periodic orbits of continuous-time sys-

tems. Similarly to Chapter 3, the stabilization methods obtained here use low control

effort.

Consider the following continuous-time dynamical system:

ẋ(t) = f(t, x(t), u(t)), x(0) given (6.1)

where t ∈ R
+, x : R+ → R

n, u : R+ → R
m, n,m ∈ N and f : R+ × R

n × R
m → R

n is a

T -periodic function with respect to time t, that is, by definition

∀t ∈ R
+, ∀x ∈ R

n, ∀u ∈ R
m, f(t+ T, x, u) = f(t, x, u). (6.2)

Moreover, we assume the existence of a T -periodic solution x∗(t) to the free system

(6.1), which is the system obtained by setting u(t) = 0, t ≥ 0. In other words,

∀t ∈ R
+, x∗(t + T ) = x∗(t) (6.3)

and

∀t ∈ R, ẋ∗(t) = f(t, x∗(t), 0m). (6.4)
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We assume that this periodic solution is unstable (the stability analysis of periodic

orbits is discussed in Section 7.1). Our ultimate goal in this chapter is to synthesize

periodic feedback laws u(t, x(t)) that stabilize it, that is, such that

∀t ∈ R
+, ∀x ∈ R

n, u(t+ T, x) = u(t, x)

and such that x∗ is a stable solution of the closed-loop system

ẋ(t) = f(t, x(t), u(t, x(t)) (6.5)

with u : R+×Rn → Rm defined later. Alternatively, we are also interested in simple ways

of stabilizing an orbit close to the UPO x∗ of (6.1).

When the open-loop system (6.1) and the feedback are periodic with respect to time

t, the same is true for the closed-loop system (6.5).

The control signal u used in this work has to verify ideally,

u(t, x∗(t)) = 0 t ≥ 0. (6.6)

The condition (6.6) ensures zero control effort when the trajectory is on the unstable

periodic solution x∗ of the free system. Regarding the stabilization of trajectories to

nearby orbits, this will not be the case. As a matter of fact, in this case x∗ will not be a

periodic solution of the controlled system.

Non-linear systems with chaotic sets in their state space are examples of dynamical

systems that present unstable periodic orbits (UPO). In fact, if there is a chaotic set in

the n-dimensional state space formed by x(t), it is known that the chaotic set is composed

by an infinite number of UPOs [1, 24]. The number of p-periodic UPOs, defined for the

discretized system on the Poincaré map (Appendix A), increases exponentially with p [20].

The stabilization of UPOs embedded in chaotic sets is called chaos control. Chaos

control aims at eliminating chaotic behaviour from a system that presents a chaotic set,

in general, by obtaining stable periodic solutions with low control effort. It may use chaos’s
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basic characteristics, among which are the sensitive dependence on initial conditions and

the infinite number of UPOs embedded in chaotic sets [20, 24].

Another characteristic of chaotic behaviour is that trajectories on chaotic attractors

come arbitrarily close to any of the embedded UPOs due to ergodicity [24]. Specific

control applications where long transient times are accepted (in return for a low control

effort necessity, for example) can take advantage of this characteristics by applying the

control signal only when the free system trajectory is in the vicinity of the target UPO.

In the present work the ergodicity property of chaos is not used because we are interested

in reducing the transient time.

The first idea of stabilizing periodic orbits of chaotic sets in continuous-time dynamical

systems was proposed by Pyragas [70]. Pyragas proposed two different continuous-time

feedback methods namely proportional feedback control and delayed feedback control.

Proportional feedback control (PFC) This method uses the target UPO itself in

the control signal u(t, x(t)) and its application depends upon the previous knowledge of

the entire target UPO. This is the principal disadvantage of the method and it is more

evident in continuous-time systems.

This method will be studied in Section 7.3.1 and the stability properties and design

will be discussed in Section 7.4.1.

Delayed feedback control (DFC) This method uses the state of the system delayed

by the period T of the target UPO as reference in the control signal. This delayed term

makes the closed-loop system a delay differential equation (DDE) with infinite dimension

[36].

Different from the PFC, the DFC does not need the knowledge of the entire UPO to

be used as reference signal, it is only necessary to know the value of the period and to

record the past states. This characteristic contributes to practical applications and to the

popularity of the method [74].

Tuning the parameter of the control signal (specifically, the control gain design) can

be done experimentally [70]. However a precise analytical stability analysis and design
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depends upon the knowledge of the target UPO and is based on the stability properties

of DDEs.

A first contribution of this chapter is to apply the method proposed by [10, 23, 51] for

stability analysis of DDEs with one fixed delay to the design of a stabilizing control gain for

the DFC method. This method simplifies the design because it is based on matrix algebra

only (in contrast with previous design methods that use integration of high dimensional

differential equations).

The characteristics of the method and a review on the literature is shown in Section

7.3.2. The control gain design is studied in Section 7.4.2.

One topic related to the DFC and commonly discussed in the literature is the odd

number limitation (discussed in Section 7.3.2). This limitation stimulated alternative

methods based on the DFC scheme, one of those methods is the prediction-based control.

Prediction-based control (PBC) and approximate prediction-based control

(aPBC) A second contribution of this chapter is the development of a continuous-time

stabilization method inspired by the PBC 1. Up to our knowledge, no work has been done

based on this approach2.

The PBC method, initially proposed by Ushio and Yamamoto [91] for discrete-time

systems, is based on the prediction of the state one period of the target UPO ahead,

computed along the trajectories of the free system. This predicted state is used to compute

the control signal.

Computing the future state requires to solve at each time t the free system ODE: this

makes the PBC method hardly implementable for continuous-time models. Instead, we

introduce the approximate prediction-based control method (aPBC), as follows. Comput-

ing the predicted state can be achieved (approximately) by using an implicit Rung-Kutta

method [35], which is formulated as a differential algebraic equation (DAE). However, the

solution of this DAE has to be computed instantaneously. What we do instead is to build

1formulation and initial results have been presented in [13].
2A method claiming to stabilize equilibrium points in continuous-time non-linear systems presenting

a chaotic set based on predicted states is presented in [6] in a very special case of impulsive control.
Stabilization of periodic orbits using some prediction is considered in [82], the predicted value being
obtained through a neural network.

65



Chapter 6

an estimator along time of the solution of the implicit Runge-Kutta method, resulting in

an ODE with extended dimension.

Overall, the method we propose introduces a dynamical feedback whose state has a

dimension equal to the number of points of the Runge-Kutta method adopted, multiplied

by the dimension of the initial system to be controlled. The detailed method is presented

in Section 7.3.3. Stability analysis and control gain design is done in Section 7.4.3.

Organization of the chapter Stabilization of a periodic orbit for the non-linear system

(6.5) using any method studied in this chapter is performed by stabilizing the linear time-

periodic (LTP) system that governs the evolution of a perturbed trajectory in the close

vicinity of x∗(t). We thus first recall in Section 7.1 basic concepts on the stability analysis

of a periodic orbit by its linearised dynamics using Floquet and Lyapunov theories (with

special interest to the Floquet theory and monodromy matrices [5]). Stabilization of LTP

is thus discussed in Section 7.2. The control laws mentioned before are then extensively

presented in Section 7.3. Gain design issues are treated in Section 7.4.

The application and numerical results of the methods are left to Chapter 8. The

conclusions are in Chapter 9.
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Feedback stabilization of unstable

periodic orbits

7.1 Stability analysis of periodic orbits

In this section we present the Floquet and Lyapunov theories for stability analysis of

linear periodic continuous-time systems (see Appendix A).

First we introduce the stability analysis of linear systems in terms of the monodromy

matrix and Floquet multipliers. We apply this theory to the stability analysis of periodic

orbits of non-linear system by studying the behaviour of a perturbed trajectory governed

by the linearised system in the vicinity of the periodic solution. We also introduce the

Floquet-Lyapunov transformation and the stability analysis in terms of the Floquet ex-

ponents.

The Lyapunov direct method is also studied and related to the Floquet stability anal-

ysis.

7.1.1 Floquet stability theory

Here we present the concepts on the stability of linear periodic continuous-time dynamical

systems based on the Floquet theory and these results are applied to the local stability

of periodic orbits of non-linear continuous-time dynamical systems.
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Linear systems

Let us consider a linear continuous-time dynamical system described by the differential

equation
dx(t)

dt
= A(t)x(t), (7.1)

where t ∈ R+, x : R+ → Rn is a column vector and A : R+ → Rn×n (see Appendix A).

Assume that A(t) is a periodic state matrix of period T that satisfies

A(t) = A(t+ T ), T ∈ R, ∀t. (7.2)

The stability of linear periodic systems according to the Floquet theory depends on the

eigenvalues of the monodromy matrix (see Appendix A), called the Floquet characteristic

multipliers µi ∈ C:

Proposition 7.1 (adapted from Theorems 4.1 and 4.2 in [77]). (i) The system (7.1) is

asymptotically stable if and only if the characteristic multipliers of A(t) have absolute value

smaller than 1. (ii) The system (7.1) is stable if and only if the characteristic multipliers

of A(t) have absolute value smaller than or equal to 1 and those characteristic multipliers

with unit-modulus are simple roots of the minimal polynomial of the monodromy matrix

Ψ(t).

See Appendix B for stability definitions.

The state transition matrix or the matrix evolution operator Φ(t, t0), t, t0 ∈ R of (7.1)

is calculated according to the fundamental matrix definition (see Appendix A and [98])

as follows
dΦ(t, t0)

dt
= A(t)Φ(t, t0)

Φ(t0, t0) = In.

(7.3)

The monodromy matrix Ψ(t) is the state transition matrix over a period [t, t+T ] [98]:

Ψ(t) = Φ(t + T, t) (7.4)
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and thus any solution of (7.1) also fulfils:

x(t+ T ) = Ψ(t)x(t). (7.5)

Note that Ψ(t) is a periodic matrix with period T , but the characteristic multipliers are

constant for all t [5].

The Floquet theory can be used to analyse the stability of periodic orbits of non-linear

systems by studying the convergence/divergence of a perturbation, governed by a linear

periodic continuous-time system, in the vicinity of the periodic orbit [3, 40].

Application to non-linear systems

Consider a non-linear continuous-time dynamical system described by the differential

equation (6.5) with a periodic solution x∗(t) of period T for u(t, x(t)) = 0 indicated in

(6.2). Here we study the behaviour of a trajectory in the vicinity of x∗(t).

Proposition 7.2 (Stability of periodic orbits of continuous-time systems). A periodic

orbit x∗(t) of the continuous-time dynamical system (6.5) is locally asymptotically stable

if the linear dynamical system that describes the evolution of a perturbed trajectory in the

close vicinity of x∗(t) is asymptotically stable.

Proof. Consider a perturbation δx(0) : R× Rn → Rn applied to the periodic state x∗(0).

The initial condition of (6.5), x(0), is defined by

x(0) = x∗(0) + δx(0). (7.6)

The continuous-time evolution δx(t) of the initial perturbation δx(0) for u(t, x(t)) = 0

is obtained substituting the perturbed trajectory (7.6) in (6.5),

dx∗(t)

dt
+
dδx(t)

dt
= f(t, x∗(t) + δx(t), 0).
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Expanding f(t, x∗(t) + δx(t), 0) around x∗(t) for δx(t) sufficiently small we obtain

f(t, x∗(t) + δx(t), 0) ≈ f(t, x∗(t), 0) + ∇xf(t, x, 0)|x=x∗(t) δx(t)

dδx(t)

dt
≈ ∇xf(t, x, 0)|x=x∗(t) δx(t). (7.7)

∇xf(t, x, 0) ∈ Rn×n is the Jacobian matrix of the system, here a time-periodic matrix due

to the periodicity of ∇xf(t, x, 0)|x=x∗(t). The stability of x∗(t) is analysed according to the

convergence/divergence of δx(t) governed by (7.7), reducing the problem to the stability

analysis of the linear periodic system (7.1).

Once the equation that governs the perturbation is obtained it is possible to define a

continuous-time monodromy matrix Ψ(t) ∈ Rn×n related to the periodic orbit x∗(t):

δx(t+ T ) = Ψ(t)δx(t). (7.8)

We calculate the monodromy matrix according to (7.3) and (7.4) using (7.7)

Ψ(t) = Φ(t + T, t)

dΦ(τ, t)

dτ
= ∇xf(τ, x, 0)|x=x∗(τ) Φ(τ, t), τ ∈ [t, t+ T ]

Φ(t, t) = In.

(7.9)

The eigenvalues of Ψ(t) (Floquet multipliers) are computed to analyse the stability of the

linear system (7.7). If it is asymptotically stable, then δx(t) → 0 and x(0) → x∗(t) as

t→∞.

7.1.2 Floquet-Lyapunov transformation and Floquet exponents

In this section we present the Floquet characteristic exponents defined by the Floquet-

Lyapunov transformation and used for stability analysis of linear time-periodic systems.

The Floquet-Lyapunov transformation is applied to time-periodic systems obtaining a

time-invariant representation.
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The results on the Floquet-Lyapunov transformation presented in this section are

transcribed from [5]. The application to stability of periodic orbits can be obtained

applying the same methodology used in Section 7.1.1.

These exponents are presented here only for continuous-time systems, but there is an

equivalent representation for discrete-time systems (see Appendix B). This transforma-

tion relates the stability of linear continuous-time invariant systems (determined by the

eigenvalues of the state matrix) to the stability of linear periodic continuous-time systems.

Proposition 7.3 (adapted from Theorem 4.1 in [77]). The system (7.1) is asymptotically

stable if and only if the characteristic exponents, λi ∈ C, i = 1, . . . , n, of A(t) have

negative real part.

Take S(t), a T -periodic invertible space-space transformation,

x̂(t) = S(t)x(t)

then, the state matrix of (7.1) in the new coordinates is given by

Â(t) = S(t)A(t)S−1(t) + Ṡ(t)S−1(t). (7.10)

It is assumed that S(t) and S−1(t) are continuously differentiable.

The Floquet problem is then to find S(t) (if any) in order to obtain a constant matrix

Â(t) = Â.

From (7.10) it follows that, if Â(t) = Â then the transformation S(t) must satisfy

Ṡ(t) = ÂS(t)− S(t)A(t). (7.11)

This is a matrix differential equation. Considering t0 as initial time point and S(t0) as

initial condition, the solution is given by (see intermediate steps in [5, pg. 10])

S(t) = eÂ(t−t0)S(t0)Φ(t0, t). (7.12)

71



Chapter 7 7.1 Stability analysis of periodic orbits

Take now t = t0+T and impose the periodicity condition S(t0+T ) = S(t0) to (7.12):

S(t0) = eÂTS(t0)Φ(t0, t0 + T ).

Thus, the Floquet problem amounts to finding a pair of constant matrices Â and Ŝ

solving the algebraic equation

Ŝ = eÂT ŜΨ−1(t0). (7.13)

The system of algebraic equations (7.13) admits infinitely many solutions (Ŝ, Â). Tak-

ing Ŝ = In, then Â can be obtained from condition

eÂT = Ψ(t0). (7.14)

The eigenvalues of Ψ(t0) are the Floquet multipliers µ and the eigenvalues of Â are

the Floquet exponents λ. These values are related according to

eλiT = µi, i = 1, . . . , n. (7.15)

The equivalence between Proposition 7.1 (i) and Proposition 7.3 is verified by (7.15).

7.1.3 Lyapunov stability theory

In this section we present some results on the stability analysis of linear periodic continuous-

time systems (7.1) using the Lyapunov direct method.

The stability condition will be presented in terms of a Lyapunov inequality used for

time-varying systems. This method is not easily applicable and it was not found a reference

in literature that relates it with the Floquet theory as done in Section 3.1.2 for discrete-

time systems.

An alternative is to use (7.5) to discretize (7.1) and apply the stability condition

presented in Section 3.1.2 for discrete-time systems. This methodology allows to relate

the Floquet stability theory with the Lyapunov stability theory.
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Stability by a continuous-time Lyapunov inequality

Considering the periodicity of A(t) in (7.1) we have:

Proposition 7.4 (see page 17 in [5]). The linear periodic continuous-time system (7.1)

is asymptotically stable if and only if the Lyapunov inequality

Ṗ (t) > A(t)P (t) + P (t)A′(t) (7.16)

admits a periodic positive definite solution P (t) = P (t + T ), P : R → Rn×n and P (t)

symmetric.

The Lyapunov inequality (7.16), valid for time-varying systems, results from the Lya-

punov function (7.17) and Theorem 7.5, given below.

We define the stability of time-varying systems in terms of a time-varying Lyapunov

function

V (t, x) = x′(t)P−1(t)x(t), (7.17)

where V : R× Rn → R.

Theorem 7.5 (Adapted from Theorem 2.4 in [94]). The continuous-time linear system

(7.1) is asymptotically stable if a scalar function V (t, x) with continuous partial derivatives

exists and if the following conditions are met:

• V (t, 0) = 0, ∀t;

• V (t, x) > 0, ∀t 6= 0, ∀x 6= 0;

• V̇ (t, x) < 0, ∀t 6= 0, ∀x 6= 0;

• V (t1, x(t1)) < V (t0, x(t0)), t1 > t0, and V (t0, x(t0)) > 0, ∀x ∈ Rn.

The stability condition of Proposition 7.4 implies the integration of the Lyapunov

inequality (7.16) for one period T to verify if a suggested P (t) satisfies the established

condition. This reduces the applicability of the proposition. Besides, the relation between

the Floquet theory and the Lyapunov direct method is not evident.

73



Chapter 7 7.1 Stability analysis of periodic orbits

An alternative to the Lyapunov inequality (7.16) is the periodic Lyapunov differential

equation (7.18), here T -periodic due to P (t) = P (t+ T ) and Q(t) = Q(t+ T ) [5].

Ṗ (t) = P (t)A′(t) + A(t)P (t) +Q(t) (7.18)

Q(t) a positive definite matrix.

Stability through discrete-time Lyapunov inequality applied to the monodromy

matrix

The relation between the Floquet stability and Lyapunov stability is established in Propo-

sition 7.6.

Proposition 7.6. The origin of the linear periodic continuous-time system (7.1) is asymp-

totically stable if and only if for any τ ∈ R the invariant discrete-time Lyapunov inequality

P > Ψ(τ)PΨ′(τ) (7.19)

admits a positive definite solution P ∈ Rn×n, or equivalently, if and only if the eigenvalues

(Floquet multipliers) of Ψ(τ) (monodromy matrix) have modulus less than 1.

We emphasize that the stability notion mentioned in Proposition 7.6 is global, as is

always the case for linear systems. On the contrary, use of this result on the linearized

system obtained in the neighborhood of a given trajectory of a nonlinear system, only

ensures local stability in general.

Proof. Given the monodromy matrix Ψ(τ) of the linear periodic system (7.1), according

to (7.5) we have

x(τ + (k + 1)T ) = Ψ(τ)x(τ + kT ),

and A(τ + (k + 1)T ) = A(τ + kT ) ∀k ∈ N.

The exact discretized version of (7.7) for a sample time T (one period) is given by:

xk+1 = Axk
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where xk = x(τ + kT ), k ∈ N and A = Ψ(τ).

Applying the Lyapunov inequality for linear invariant discrete-time systems

P > APA′, P ∈ R
n×n,

and substituting A by Ψ(τ) we have (7.19).

Ψ(t) is a time-varying matrix with constant eigenvalues, thus the eigenvalues of Ψ(t)

are equal to the eigenvalues of Ψ(τ).

7.2 Stabilization of linear time-periodic systems

Consider a linear periodic continuous-time dynamical system described by the following

differential equation
dx(t)

dt
= A(t)x(t) +B(t)u(t), (7.20)

with feedback control law

u(t) = K(t)x(t), (7.21)

x : R+ → Rn is the state vector, A : R+ → Rn×n is the state matrix, B : R+ → Rn×m is

the input matrix, u : R+ → Rm is the input vector and K : R+×Rm×n is the control gain

matrix, n,m ∈ R.

The periodicity is verified by A(t + T ) = A(t) and B(t + T ) = B(t), T ∈ R.

Definition 7.7 (Stabilization of linear periodic continuous-time systems by state feed-

back). Chose a matrix K(t) (possibly periodic of period T ) such that the system (7.20)

with control law (7.21) is asymptotically stable, that is, the monodromy matrix (7.4) of

the closed-loop system (7.22) has all the eigenvalues inside the unit cycle.

dx(t)

dt
= (A(t) +B(t)K(t))x(t) (7.22)

The existence of a stabilizing K(t) depends upon the controllability of (7.20). Control-

lability is concerned with the problem of driving a state point to any other state point by
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feeding the system (7.20) with a suitable input signal. Controllability is defined formally

as follows

Definition 7.8 (Controllability of linear systems, adapted from [85]). (i) System (7.20),

or equivalently the pair (A(t), B(t)), is controllable on the time interval [t1, t2] if, for each

value of x1, x2 ∈ Rn, there exists an input u(t), t1 ≤ t < t2, such that for x(t1) = x1,

one has x(t2) = x2. (ii) For any real τ ≥ 0, system (7.20), or equivalently the pair

(A(t), B(t)), is controllable in time τ if, for each value of x1, x2 ∈ Rn, there exist time

instants t1, t2, t2 = t1 + τ and an input u(t), t1 ≤ t < t2, such that for x(t1) = x1, one

has x(t2) = x2. (iii) System (7.20), or equivalently the pair (A(t), B(t)), is controllable

if, for each value of x1, x2 ∈ Rn, there exist time instants t1, t2, t2 > t1 and an input

u(t), t1 ≤ t < t2, such that for x(t1) = x1, one has x(t2) = x2.

The Definition 7.8 is valid only for linear systems where the definition of controllable

and reachable states are equivalent. For controllability for nonlinear system see [85].

The design of the control gain K(t) for stabilization of linear periodic continuous-

time systems is studied in several references, for example [22, 47, 59, 60, 92, 102]. Here we

focus on an optimal K(t) designed using the Lyapunov stability theory [92, 102] or the

assignment of the characteristic multipliers of the closed-loop system using the Floquet

stability theory [47, 59, 60].

7.2.1 Stabilization by direct Lyapunov method

The problem of stabilization of continuous-time periodic linear systems by the Lyapunov

direct method is resumed in Proposition 7.9 following Proposition 7.4.

Definition 7.9 (Asymptotic stabilization by direct Lyapunov method). Design a con-

trol gain matrix K(t) of a controllable closed-loop continuous-time linear periodic system

described by (7.22) that leads to a periodic positive definite symmetric matrix P (t) =

P (t+ T ), P : R+ → Rn×n, solution of the Lyapunov inequality

Ṗ (t) > (A(t) +B(t)K(t))P (t) + P (t)(A(t) +B(t)K(t))′.
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A control gain matrix K(t) that satisfies the condition of Definition 7.9 and also

minimizes the index function (7.23) is presented in [102].

J(u(t)) =

∫ T

0

(x′(t)γ(t)P (t)x(t) + u′(t)R(t)u(t)) dt (7.23)

γ : R+ → R and R : R→ Rn×n are T -periodic continuous functions.

Proposition 7.10 (adapted from [102]). If K(t) = −R−1(t)B′(t)P (t), P (t) and R(t) are

T -periodic matrices obtained by the periodic Lyapunov differential equation

Ẇ (t) =W (t)A′
n(t) + An(t)W (t)− S(t), (7.24)

P (t) = W−1(t), S(t) = B(t)R−1(t)B′(t), An(t) = A(t) + (1/2)γ(t)In, where In is the

identity matrix of order n and γ a T -periodic scalar function that satisfies

∫ T

0

γ(t)dt > − ln (min |µ|) ,

where µi, i = 1, . . . , n, are the characteristic multipliers of (7.1), then a controllable

closed-loop continuous-time linear periodic system described by (7.22) is asymptotically

stable.

Observe that the control law of Proposition 7.10 depends upon the solution of the

periodic Lyapunov differential equation (7.24) for each time t. Another optimal control

method based on the periodic Lyapunov differential equation that leads to a possible

constant control gain matrix is presented in [92].

7.2.2 Eigenvalue assignment by state feedback

Definition 7.11 (Periodic eigenvalue assignment problem). Consider the continuous-time

linear periodic closed-loop system (7.22) and let (A(t), B(t)) be controllable. Find periodic

m× n matrices K(t) such that

Λ(Ψ(t)) = Γ,
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where Ψ(t) ∈ Rn×n is the monodromy matrix of (7.22), Λ(Ψ(t)) ∈ Cn is the set of

eigenvalues of Ψ(t) and Γ ∈ Cn is an arbitrary set of n complex conjugate numbers.

Different strategies for eigenvalues assignment by state feedback of continuous-time

linear periodic systems are presented in [22, 47, 59, 60]. A historical review about the

theme and other references are presented in [59]. Here we focus on the initial sampled

feedback idea presented in [47] and the instantaneous feedback idea presented in [60]. The

latter is the most general instantaneous feedback method found in literature.

Eigenvalue assignment via sampled feedback

A methodology for eigenvalue assignment via sampled feedback, called sampled state pe-

riodic hold, is proposed in [47].

Consider the system (7.20), (A(t), B(t)) controllable, with control signal u(t) defined

in (7.25) with the state x(t) sampled at each period T .

u(t) = K(t)x(iT ), t ∈ [iT, (i+ 1)T ], (7.25)

K : R+ → Rm×n, a piecewise and bounded T -periodic function.

More than an eigenvalue assignment, this method allows a whole closed-loop mon-

odromy matrix (Ψ(t)) assignment by defining the control gain K(t) as follows

K(t) = B′(t)Φ′(T, t)W−1(T, 0)[Ψ(0)− Φ(T, 0)]

where Ψ(0) is the desired monodromy matrix at time 0 (remember that the characteristic

multipliers are constant), Φ(t2, t1) is the state transition matrix of (7.1) and

W (t2, t1) =

∫ t2

t1

Φ(t2, τ)B(τ)B′(τ)Φ′(t2, τ)dτ. (7.26)

The main problem of this method is that the state variables are measured only once

per cycle. This means that the control law is more sensible to unexpected behaviour

between cycles than others with continuous measurement of the state variables.
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Eigenvalue assignment via continuous feedback

In this section we exemplify a control method via a continuous feedback control law, as

(7.21), for eigenvalue assignment of the controllable closed-loop continuous-time linear

periodic system (7.20). The chosen method was proposed in [60] and can assign the entire

closed-loop monodromy matrix. The authors claim that the method “can in principle

be applied to any continuous-time linear periodic system because it only relies upon

properties derived from the Floquet-Lyapunov theory”. Other control laws are presented

in [22, 59] and references therein.

Before present a resume of the method it is necessary to define the controllability

index.

Definition 7.12 (Controllability index, see Definition 6 in [60]). Given two n × n and

n× r constant matrices M and N , let:

Uk =
[

N MN . . . MkN
]

.

The controllability index of the pair {M,N} is the smallest integer k0 such that Uk0−1 has

rank n.

The method is summarised in the following steps, details are available in the original

reference.

1- Assign a new period TK for the closed-loop system such that

det[W (TK , 0)] 6= 0.

W (t2, t1) defined as in (7.26), TK = νT and ν is the controllability index of the pair

{Φ(T, 0),W (T, 0)}. Φ(T, 0) is the monodromy matrix of (7.1).

2- Assign the desired monodromy matrix ΦK(TK , 0) of the closed-loop system (7.22)

satisfying the relation

det[ΦK(TK , 0)] > 0.
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3- Choose a pair {Y, F} such that

Y ΦK(TK , 0) = eTKF ,

Y, F ∈ Rn×n.

4- Solve the boundary value problem

d

dt
[L−1(t)] = −L−1(t)[A(t) + FL−1(t)− B(t)B′(t)Φ′

K(TK , t)KcL
−1(t)]

L−1(0) = In, L−1(TK) = Y

to compute L−1(t). Kc ∈ Rn×n and L : R+ → Rn×n is kTK-periodic (k ∈ Z),

non-singular for all t and continuous with a piecewise continuous derivative.

5- Compute the control gain

K(t) = B′(t)Φ′(TK , t)KcL
−1(t).

Kc is guaranteed to exist due to controllability.

7.3 Control methods for periodic orbits

Here we detail the control methods studied for stabilization of periodic orbits of continuous-

time systems and review the literature about them.

We first explain the PFC, then we explain the DFC and present a review on its

principal modifications since proposed by Pyragas [70]. Last we detail the application of

the continuous-time PBC, an original contribution of this work.

7.3.1 Proportional feedback control (PFC)

This method uses as reference signal the target UPO itself and the control signal is defined

by

u(t, x(t)) = K(t, x(t)) (x∗(t)− x(t)) . (7.27)
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K : R+ × Rn → Rm×n may be a time-varying control gain that depends on the sys-

tem state such that x∗(t) is stable and condition (6.6) is satisfied. The application of

the PFC method depends on the previous knowledge of the target UPO and this is the

principal disadvantage of the method. This problem is more evident in continuous-time

systems where continuous orbits, not only the discrete p points, should be identified and

reconstructed.

Examples of the application of the PFC with a constant scalar control gain K adjusted

experimentally are found in [70,97]. In [97] it is suggested that an approximation of x∗(t)

can be obtained experimentally from time series by the methods proposed in [56, 83].

A matrix gain K is used in [4] to stabilize periodic orbits in noisy systems. The

gain K is designed by optimization aiming to find the control gain that makes the orbit

more stable. An approximation of one point of the periodic orbit is found by minimizing

|x(T )− x(0)|2 varying x(0) and T .

Analytical design of the control gain and stability analysis for the PFC can be per-

formed if the system model is available [79, 80]. In this case, an approximation of one

point of the UPO can be found using the Newton-Raphson method [68] to find a zero of

(x(tp)− x(0)) with adjustable parameter x(0). x(tp) is the value of the state at the p-th

intersection of x(t) with the Poincaré section (Appendix A) defined on x(0).

The design of the PFC control gain in this work is done integrating the variational

equation (see [68] and Section 7.4.1) of the closed-loop system around x∗(t) to obtain

the monodromy matrix for a value of K. We chose a K that leads to a minimum of the

Floquet multiplier with largest magnitude (Section 7.1.1).

7.3.2 Delayed feedback control (DFC)

This method uses the state of the system delayed by the period T of the target UPO as

reference. The control signal for the DFC is thus defined

u(t, x(t)) = K(t, x(t)) (x(t− T )− x(t)) (7.28)
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and satisfies condition (6.6). K : R+ × Rn → Rm×n is a (possibly time-varying and

state-dependent) control gain. The delayed term in the control signal makes (6.5) a delay

differential equation with infinite dimension [36].

The application of the DFC depends only upon the ability of recording the value of

the past (measured) state variables over a period T of the target UPO. This characteristic

makes the method easily applicable.

Experimental constant control gain design. Pyragas [70] initially proposed a con-

stant scalar control gain K. This control gain and an approximation of the period T of

the target orbit could be tuned experimentally achieving a stable periodic orbit without

a mathematical model. u(t, x(t)) does not necessarily go to zero in this case, since T is

not accurate.

The practical aspects of the DFC method contributed for its popularity [74]. Appli-

cation of the DFC with constant gain in practical experiments and theoretical models

can be found in review references [73, 79, 80]. In general, a scalar gain K is chosen using

the largest Lyapunov exponent, which, on periodic orbits, correspond to the real part of

the Floquet exponent (Appendix B). The largest Lyapunov exponent can be estimated

numerically from the output time series of a dynamical system or using its mathematical

model [95, 101].

Model based constant control gain design. Analytical design of a stabilizing control

gain K for the DFC can be performed calculating it as a function of the control gain used

to stabilize the same orbit with the PFC [73, 79, 80]. In this case, both the target UPO

and a system model should be available.

The design of a DFC constant control gain for systems with a mathematical model

available can be performed calculating the closed-loop monodromy matrix. This matrix

can be obtained integrating the variational equation of a finite dimensional system around

the target periodic orbit for one period of the orbit (see Section 7.1.1 and [68]). For

infinite dimensional systems it is necessary to approximate their state by a finite number

of variables. In the case of systems controlled with the DFC, the delayed states are
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discretized by n×N , N ∈ N, state variables resulting in a system of dimension n(1+N).

This discretization can be done using the finite element method [9, 21, 86, 88], spectral

element methods [9,23,51] and collocation methods with different types of approximating

polynomials [10, 51], for example.

One of the contributions of this work on the DFC is the application of the method

proposed by [10,23,51] to the design of a constant control gain by approximating the closed-

loop monodromy matrix using only matrix algebra. The approximation of the monodromy

matrix by the integration of the variational equation of the discretized system is time

consuming because it is necessary to integrate a system of [n(1 +N)]2 equations for one

period of the target orbit [68]. An alternative method for stability analysis of periodic

delay differential equations with one constant time-delay was proposed in [10,23,51]. This

method reduces the approximation of the monodromy matrix of a known UPO to matrix

algebra applying the discretization of the delayed states, reducing the computational time

and simplifying the numerical stability analysis. The details are discussed in Section 7.4.2

and numerical results in Chapter 8, these results were published in [14].

Adapting DFC. Adapting DFC methods for unknown T were developed in [39, 52].

These methods automatically adjust the value of the time-delay until it matches the period

of a periodic orbit, if u(t, x(t)) leads to stability. Recently, a novel adapting method based

on gradient descendent for applications where the knowledge about T is not precise was

developed in [75]. This method is also useful in cases where the system parameters changes

in time, leading to changes in the orbit period. The authors claim that this method does

not require any complex on-line computation and does not changes the period or position

in the state space of the target periodic orbit (only stability).

A method where both, control gain and time-delay, are functions of the system output

is presented in [57]. This method is applicable when the system model is unknown and
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does not require, a priory, any knowledge about the target UPO. The control signal in [57]

is

u(t, y(t)) = K(t, y(t))[y(t− τ(t, y(t)))− y(t)]

dτ(t, y(t))

dt
= −r1[y(t− τ(t, y(t)))− y(t)]

dK(t, y(t))

dt
= r2[y(t− τ(t, y(t)))− y(t)]

2,

r1, r2 ∈ R are constants to be tuned and y : R+ → R is an accessible state variable. The

control signal is based on the assumption that the trajectories of the controlled system are

bounded, which is not guaranteed for typical systems, requiring that u(t, y(t)) is forcibly

limited (saturated) in applications.

Extended DFC. A popular method derived from the DFC is the extended delayed

feedback control, proposed to stabilize orbits with larger periods and larger Floquet mul-

tipliers which are not stabilizable by the original DFC [71,73,79,80,84]. This method uses

not only one delayed state x(t−T ) as in (7.28), but the sum of the, ideally infinite, terms

x(t−mT ), m = 1, 2, . . . ,+∞, with each term in the sum multiplied by its own constant

weight defined by a proper rule. The control signal for the extended DFC is

u(t, y(t)) = K

[

(1− r)

∞
∑

m=1

rm−1y(t−mT )− y(t)

]

, (7.29)

where K, r ∈ R, |r| < 1, and y : R+ → R is an accessible state variable.

Odd-number limitation. The most studied limitation of the DFC is the odd-number

limitation, defined initially for discrete-time dynamical systems (see Chapter 3, Section

3.3.2) and later to continuous-time dynamical systems in [45, 64, 65, 90]. This limitation

refers to orbits with an odd number of real Floquet multipliers grater than +1, initially

said to be impossible to stabilize with the original DFC and also a wider class of its

modifications.

This limitation was contested by a counter example in [26,27,46]. It is stressed in [79,

pg. 139] that the proof presented in [64] is valid for non-autonomous systems while the

example presented in [26] refers to an autonomous system. Moreover, the experience with
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autonomous systems shows that many of them suffer from this limitation, making this

subject still unclear. A recent article [42] treats the limitation on autonomous systems

departing from the results obtained in [64]. The analysis results in a more complete

formulation of the odd-number limitation that justifies the counter-example presented

in [26, 27, 46].

A methodology to stabilize orbits with the odd-number limitation with the extended

delayed feedback control was proposed in [72]. The limitation is overcome introducing

into the feedback loop an additional unstable degree of freedom. The result is a system

with an even number of real Floquet multipliers larger than +1 to be stabilized by an

additional term in the shape of the extended DFC. The control signal for the so called

extended unstable DFC [72] is

u(t, y(t)) = Kw(t, y(t))− ue(t, y(t)),

dw(t, y(t))

dt
= (λ∞c − λ

0
c)ue(t, y(t))− λ

0
cw(t, y(t)),

w : R+ × R → R, λ0c , λ
∞
c ∈ R, λ0c > 0 and λ∞c < 0, and ue(t, y(t)) is defined as u(t, y(t))

in (7.29).

Another method proposed to overcome the odd-number limitation of the DFC and its

modifications is the prediction-based control.

7.3.3 Prediction-based (PBC) and approximate prediction-based

(aPBC) control

Here we detail the new continuous-time control methods.

Principles and general formulation of the prediction-based control

The PBC is based on the prediction of the state one period of the target UPO ahead,

computed along the trajectories of the free system response. The control signal of the

continuous-time PBC is defined as

u(t, x(t)) = K(t, x(t)) (ϕ(t+ T, t, x(t), 0)− x(t)) , (7.30)
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where ϕ(t1, t0, x, 0) is the value at time t1 of the state of (6.5) with x(t0) = x and u(t) = 0,

t0 ≤ t ≤ t1. In other words, ϕ(t1, t0, x, 0) is the value at time t1 of the state along the

trajectory departing from x at time t0 of the free system (u(t) ≡ 0). K : R+×Rn → Rm×n

is the control gain. The issue of designing constant control gain K to stabilize a target

UPO x∗(t) is treated in Section 7.4.3.

The general formulation of the PBC method is as follows. The solution of system (6.5)

with control signal (7.30) is the solution of the following PDE

∂X(t, 0)

∂t
= f(t, X(t, 0), K(t, X(t, 0)) (X(t, T )−X(t, 0)) , t ≥ 0 (7.31a)

∂X(t, T s)

∂s
= Tf(t+ Ts,X(t, T s), 0), t ≥ 0, s ∈ [0, 1] (7.31b)

X(0, 0) = x(0).

The function X : R+ × [0, T ] → R
n is such that X(t, 0) = x(t) and X(t, T ) = ϕ(t +

T, t, x(t), 0).

Clearly, real-time application of the control structure proposed here depends on the

ability to compute ϕ(t + T, t, x(t), 0).

Principles of the approximate prediction-based control method (aPBC)

Apart and before the question of finding a stabilizing gain for PBC method, is the issue

of implementing in real time the value of the predicted state ϕ(t + T, t, x(t), 0). Com-

puting the future state ϕ(t + T, t, x(t), 0) requires solving at each time t the free system

ODE from time t to t + T . This can not be done exactly in real-time. This is why we

introduce an approximation of this quantity that can be computed in real time. We call

the corresponding feedback law, based on the difference between the present state and

the approximate predicted state, approximate prediction-based control.

An important difference compared with the previous methods is the following. While

the initial UPO was a solution (with null feedback) of the closed-loop system obtained

with PFC, DFC or ”exact” (non-implementable) PBC, this is not true any more. In fact,
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we have in mind stabilization to a new orbit of the controlled system, close to the UPO

of the uncontrolled system.

Approximation of the prediction term - 1st step. The first step consists in approx-

imating the solution of (7.31b) by an implicit Runge-Kutta ODE integration method [35],

in order to estimate the prediction term, that is, the terminal value

X(t, T ) = x+ T

∫ 1

0

f (t + Ts,X(t, T s), 0)ds, x given. (7.32)

To estimate X(t, T ) given by (7.32), the state transition map of the free system

ϕ(t2, t1, x, 0) is first approximated by the operator z defined by

z(t+ T, t, x) = x+ T
N
∑

i=1

cili(t) (7.33a)

li(t) = f

(

t+ Tsi, x+ T

N
∑

j=1

aijlj(t), 0

)

, (7.33b)

where i = 1, . . . , N , lj : R × Rn → Rn and aij , ci ∈ R are weights chosen according to

the implicit method used [35]. The approximation z(t + T, t, x(t)) of X(t, T s), s ∈ [0, 1],

is calculated at the discretization points s = si, i = 1, . . . , N .

For simplicity, (7.33b) is written in the vector form (7.34).

L(t) = FT (t, x, L(t)), (7.34)

where

∀t ≥ 0, L(t) =











l1(t)
...

lN(t)











∈ R
nN ,
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and FT : R× Rn × RnN → RnN is defined by:

FT (t, x, L) =











f(t+ Ts1, x+
∑N

j=1 a1jlj , 0)
...

f(t+ TsN , x+
∑N

j=1 aNjlj , 0),











, ∀x ∈ R
n, ∀L ∈ R

nN .

To compute z(t+ T, t, x) through (7.33a), it is necessary to solve the algebraic system

of equations (7.34) with unknown L(t) ∈ R
N . Writing

C =
[

c1 . . . cN

]

and closing equation (6.5) by

u(t, x(t)) = K(t, x(t))(z(t+ T, t, x(t))− x(t)) = TK(t, x(t))CL(t)

yields the differential algebraic equation (DAE),

ẋ(t) = f(t, x(t), TK(t, x(t))CL(t)), x(0) = x0 (7.35a)

L(t) = FT (t, x(t), L(t)). (7.35b)

The real time solution of the DAE (7.35) requires the computation of L(t), its algebraic

term, at each time t — a complicated task indeed. We therefore introduce an observer

equation in the sequel, to transform the controlled system into a system of ODEs.

Approximation of the prediction term - 2nd step. We now approximate (7.35b) by

solving the nN -dimensional ODE (7.36) whose solution L̂(t) is an estimation of L(t). The

initial value L̂(0) is intended to be (precisely) computed off-line to provide good tracking

quality for L(t).

d

dt

(

L̂(t)− FT (t, x(t), L̂(t))
)

+ ko

(

L̂(t)− FT (t, x(t), L̂(t))
)

= 0, L̂(0) given. (7.36)
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The scalar gain ko is chosen positive in order that L̂(t) of (7.36) tends asymptotically

towards the solution L(t) of (7.35b) when t→ +∞, and typically such that the estimator

dynamics is faster than the controlled system dynamics. If indeed the evolution of L̂(t)

may be chosen in order to fulfil (7.36), convergence does occur.

From (7.36) we obtain:

˙̂
L(t)−

[

∂1FT (t, x(t), L̂(t)) + ∂2FT (t, x(t), L̂(t))(1N ⊗ f(t, x(t), 0))+

∂3FT (t, x(t), L̂(t))
(

T (A⊗ In)
˙̂
L(t)

)]

+ ko

(

L̂(t)− FT (t, x(t), L̂(t))
)

= 0, (7.37)

where A = (aij) and ∂i the partial derivative with respect to the i-th variable. In is the

n×n identity matrix and 1N is the column vector of dimension N with all elements equal

to 1. ⊗ is the Kronecker product.

By determining
˙̂
L(t) from (7.37) we get (7.38).

˙̂
L(t) =

[

InN − T∂3FT (t, x(t), L̂(t))(A⊗ In)
]−1

[

∂1FT (t, x(t), L̂(t)) + ∂2FT (t, x(t), L̂(t))(1N ⊗ f(t, x(t), 0))− ko

(

L̂(t)− FT (t, x(t), L̂(t))
)]

.

(7.38)

Clearly, solving (7.38), in order to obtain (7.36), requires inversibility of the first factor.

We now define GT : Rn × Rn × RnN → RnN ,

GT (t, x, L̂) =
[

InN − T∂3FT (t, x, L̂)(A⊗ In)
]−1

[

∂1FT (t, x, L̂) + ∂2FT (t, x, L̂)(1N ⊗ f(t, x, 0))− ko

(

L̂− FT (t, x, L̂)
)]

. (7.39)

From (7.35), (7.36), (7.39) and denoting l̂i(t) the components of L̂(t), the control law

we propose yields the following closed-loop system of ODEs:





ẋ(t)

˙̂
L(t)



 =





f
(

t, x(t), K(t, x(t))TCL̂(t)
)

GT

(

t, x(t), L̂(t)
)



 x(0) = x0, L̂(0) = L(0). (7.40)
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The solution of (7.40) is an approximation of the solution of the PDE given in (7.31).

The ODE (7.40) has two types of state components, corresponding to the controlled

system dynamics and to the dynamical state controller. Once L̂(t) stands for a set of

unmeasured state variable components, equation (7.36) can be interpreted as a state

observer. Notice that this estimator introduces a dynamical feedback whose state has a

dimension equal to the number of points of the Runge-Kutta method adopted, multiplied

by the dimension of the initial system to be controlled.

In summary, the closed-loop system (6.5)-(7.30) has first been rewritten as the PDE

(7.31). The latter provides the possibility of computing the controlled state and the free

system response at a future time simultaneously. An approximated solution of the PDE is

then calculated computing the future state along the trajectories of the free system using

a Runge-Kutta implicit method leading to the DAE (7.35). Instead, of solving this DAE,

we prefer to approximate it by the extended ODE (7.40) for real time application.

As mentioned earlier, due to the use of an approximate value of the predicted state,

we can only expect approximate stabilization of the initial orbit, or rather, stabilization

to an orbit close to the initial one.

Implementation issues

The implicit Runge-Kutta method given in (7.33) is a general formulation used for the

integration of differential equations, whose application depends on the choice of a specific

implementation. Here we choose the orthogonal collocation [28,35,93] as implicit Runge-

Kutta method, but there’s no doubt other implementations should be experimented.

Collocation methods amount to approximate the prediction term by z(t + T, t, x(t)),

where z(t+ Ts, t, x(t)) is defined on the whole interval s ∈ [0, 1] by

z(t + Ts, t, x(t)) =
N
∑

j=1

wj(s)mj(t), m1(t) = x(t), s ∈ [0, 1], t ≥ 0 (7.41)
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where mj : R+ → Rn, j = 1, . . . , N , is a column vector. The functions wj(s) are the

Lagrange polynomials

wj(s) =
N
∏

i=1,i 6=j

s− si
sj − si

, j = 1, . . . , N (7.42)

attached to the choice of the points 0 = s1 < s2 < · · · < sN−1 < sN = 1. For simplicity,

we choose here Lagrange polynomials but other ones, like Chebyshev or Legendre, could

be used.

The link with the implicit Runge-Kutta method is as follows.

Theorem 7.13 (Adapted from Theorem 7.7 in [35] ( [34,96] are cited by [35] as original

references)). The collocation method (7.41) with Lagrange polynomials wj(s) is equivalent

to the N-stage implicit Runge-Kutta method (7.33) with coefficients

aij =

∫ si

0

wj(s)ds, cj =

∫ 1

0

wj(s)ds, i, j = 1, . . . , N (7.43)

It is possible to choose the collocation points in order to fulfill the orthogonality

relations:
∫ 1

0

(1− s)s wi(s)wj(s) ds = 0, i, j = 2, . . . , N − 1, i 6= j. (7.44)

Note that for each j = 1, . . . , N , ϕ(t + Tsj, t, x(t), 0) ≈ z(t + Tsj, t, x(t)) = mj(t) as

wj(si) = δij (with δ
i
j , the Kronecker symbol). A characteristic of the orthogonal collocation

method is that each mj(t) is an approximation of the state that differs from the lj(t) in

(7.33), which are the derivatives.

Equation (7.40) is obtained applying the substitutions provided by (7.41) and Theorem

7.13 with interpolating times sj obtained by solving (7.44).
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7.4 Analysis methods for stabilization of periodic or-

bits

The discussion of Section 7.1.1 shows that the stability of a periodic orbit is defined by

the stability analysis of the linear time-periodic system that governs the dynamics in its

vicinity. In particular, the stability of the periodic orbit is defined by the eigenvalues of

the monodromy matrix of the linearised system, being asymptotically stable if they have

modulus less the one.

Following this, the stabilization of a periodic orbit of the non-linear system (6.5) is

performed by stabilizing the linear time-varying system (7.45) that governs the evolution

of a perturbed trajectory δx(t) : R+ × Rn → Rn in the close vicinity of x∗(t) with initial

condition x(0) = x∗(0) + δx(0).

dδx(t)

dt
=
(

∇xf(t, x, u(t, x(t)))|x=x(t) + ∇uf(t, x(t), u)|u=u(t,x(t)) ∇xu(t, x)|x=x(t)

)

δx(t),

δx(0) given.

(7.45)

For x(t) = x∗(t), system (7.45) is linear time-periodic and the stabilization of this

continuous-time system by state-feedback was studied in Section 7.2.

Here we intend to stabilize a T -periodic orbit x∗(t) of (6.5) by applying a control

signal u(t, x(t)) that stabilizes the linear system (7.45) and satisfies condition (6.6). The

methods for stabilization of linear time-periodic systems exemplified in Section 7.2 do not

consider (directly) the characteristics of the non-linear system and condition (6.6).

Three control methods for stabilization of periodic orbits were presented in Section 7.3:

PFC with u(t, x(t)) defined in (7.27), DFC with u(t, x(t)) defined in (7.28) and PBC with

u(t, x(t)) defined in (7.27). In this section we present the methodology for computation

of the closed-loop monodromy matrix for each method, in special for the DFC, where

we simplify this computation using the method prosed in [10, 23, 51] for general delayed

systems with one constant time delay. A constant control gain for each method will be

chosen such that all the Floquet multipliers have modulus less then one.
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7.4.1 Stabilization by proportional feedback control

Here we discuss the computation of the closed-loop monodromy matrix as a function of a

constant control gain K. A value K is chosen by calculating the monodromy matrix for

each K and choosing the one that leads to the more adequate Floquet multipliers.

The purpose is stabilizing x∗(t) in (6.5) by using the feedback control signal (7.27)

with a constant control gain K ∈ Rn×n.

The computation of the monodromy matrix is done by integrating (7.46) for one cycle

T .

dΦ(t, 0)

dt
= [∇xf(t, x, u)−∇uf(t, x, u)K]x=x∗(t) Φ(t, 0), t ∈ [0, T ], Φ(0, 0) = In.

(7.46)

K is chosen such that all the eigenvalues of the monodromy matrix obtained by (7.46)

have modulus less then one.

7.4.2 Stabilization by delayed feedback control

Here we use the method proposed by [10,23,51] to approximate the monodromy matrix of

DDEs with one constant time delay to approximate the monodromy matrix of the system

controlled with the DFC. This approximation uses only matrix algebra and simplifies the

design of a constant control gain.

The aim is to provide an approximation of the monodromy matrix of x∗(t) for (6.5)

with the feedback control signal (7.28) and constant control gain K ∈ Rn×n.

The design of the control gain K for an infinite dimensional system, and specially the

computation of the monodromy matrix, implies on the discretization of the past states in

time. This results in an ODE of high dimension whose stability analysis and monodromy

matrix approximates the same for the original DDE.

Closed-loop monodromy matrix approximation. A finite-dimensional version of

the system state is considered by representing it as a vector composed by a discrete-time
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approximation of the trajectory from x(t − T ) to x(t). This extended state X(t) can be

represented as

X(t) =

















x(t− s1T )

x(t− s2T )
...

x(t− sNT )

















, (7.47)

where s1 = 0, si < si+1, i = 1, 2, . . . , N , and sN = 1.

The si values will be determined by a discretization method and the number of samples

N depends on the system dynamics and the value of T . It is now possible to re–write

(6.5) for the DFC method as a function of X(t), resulting in:

dX(t)

dt
= F (t, X(t), (IN ⊗K) (X(t− T )−X(t))) , (7.48)

where K ∈ Rn is the control gain, from now constant, IN is the identity matrix of order

N , ⊗ is the Kronecker product and

F (t, X(t), U(t, X(t))) =

















f(t− s1T, x(t− s1T ), K(x(t− (1 + s1)T )− x(t− s1T ))

f(t− s2T, x(t− s2T ), K(x(t− (1 + s2)T )− x(t− s2T ))
...

f(t− sNT, x(t− sNT ), K(x(t− (1 + sN)T )− x(t− sNT ))

















,

(7.49)

F : R+ × RnN × RmN → RnN .

Consider a perturbation δX(0) on the periodic state X∗(0) resulting in

X(0) = X∗(0) + δX(0),

where X , X∗, and δX are defined as in (7.47). The evolution δX(t) of the initial pertur-

bation δX(0) is obtained by substituting the perturbed trajectory in (7.48),

dX∗(t)

dt
+
dδX(t)

dt
= F (t, X∗(t) + δX(t), U(t, X∗(t) + δX(t)).
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Expanding F (t, X∗(t)+δX(t), U(t, X∗(t)+δX(t)) around X∗(t) for δX(0) sufficiently

small, we obtain

dδX(t)

dt
= ∇XF (t, X, U(t, X

∗(t)))|X=X∗(t) δX(t)+

∇UF (t, X
∗(t), U)|U=U(t,X∗(t)) (IN ⊗K) (δX(t− T )− δX(t)). (7.50)

We adopt a numerical approximation for dδX(t)/dt, including the delayed states, in

the form

dδX(t)

dt
≈ (D ⊗ In)δX(t), (7.51)

whereD ∈ R
N×N is a differentiation matrix with constant coefficients that can be obtained

using finite difference methods [9, 21, 86, 88], spectral methods [9, 23, 51] or a collocation

method with different types of approximating polynomials [10, 51].

Substituting (7.51) in (7.50) leads to

MDδX(t) =MAδX(t) +MK(δX(t− T )− δX(t)), (7.52)

where

MD =





Dij ⊗ In

0n×nN In



 , (7.53a)

MA =























A(t− s1T ) 0n×n · · · 0n×n 0n×n

0n×n A(t− s2T ) · · · 0n×n 0n×n

...
...

. . .
...

...

0n×n 0n×n · · · A(t− sN−1T ) 0n×n

In 0n×n · · · 0n×n 0n×n























, (7.53b)

95



Chapter 7 7.4 Analysis methods for stabilization of periodic orbits

MK =























B(t− s1T )K 0n×n · · · 0n×n 0n×n

0n×n B(t− s2T )K · · · 0n×n 0n×n

...
...

. . .
...

...

0n×n 0n×n · · · B(t− sN−1T )K 0n×n

In 0n×n · · · 0n×n 0n×n























, (7.53c)

with i = 1, . . . , N −1, j = 1, . . . , N , A(t− siT ) = ∇xf(t− siT, x, u)|x=x∗(t−siT ) and B(t−

siT ) = ∇uf(t− siT, x, u)|u=u∗(t−siT,x∗(t−siT )). The last lines of the matrices guarantee the

periodicity [51].

Now, we define the closed-loop monodromy matrix ΨX(t) as the state transition matrix

on X∗(t), from δX(t− T ) to δX(t) given by

δX(t) = ΨX(t)δX(t− T ), (7.54)

where ΨX(t) ∈ RnN×nN .

By equating (7.52) and (7.54) one obtains

ΨX(t) = (MD −MA +MK)
−1MK . (7.55)

Once an approximation for x∗(t) is obtained, the computation of the monodromy

matrix is done by matrix algebra operations only. This method reduces considerably the

computational effort to approximate the monodromy matrix since it is not necessary to in-

tegrate the variational equation (7.46). For the DFC, ∇xf(t, x,K(x(t− T )− x(t))|x=x∗(t)

in (7.46) is infinite dimensional because of the delayed states, in practice it is a large

matrix obtained by discretization of the delayed states.

In Chapter 8 we will discuss an optimization process to design K using (7.55) [14].

Implementation issues

Here we present a method to implement the differentiation matrix D used on the ap-

proximation (7.51). We chose the orthogonal collocation method presented in Section

7.3.3.
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The collocation method is used here to approximate the past states x(t−Ts), defined

on the whole interval s ∈ [0, 1] by

x(t− Ts) ≈

N
∑

j=1

wj(s)mj(t), m1(t) = x(t), s ∈ [0, 1], t ≥ 0 (7.56)

where mj : R+ → Rn, j = 1, . . . , N , is a column vector. The functions wj(s) are the

Lagrange polynomials defined in (7.42) attached to the choice of the collocation points

0 = s1 < s2 < · · · < sN−1 < sN = 1 calculated according to (7.44).

Here, for each j = 1, . . . , N , x(t − Tsj) ≈ mj(t) as wj(si) = δij and their derivative

with respect to s is given by

∂x(t − Ts)

∂s

∣

∣

∣

∣

s=si

≈
N
∑

j=1

∂wj(s)

∂s

∣

∣

∣

∣

s=si

mj(t), i = 1, . . . , N. (7.57)

Note that

∂x(t − Ts)

∂s

∣

∣

∣

∣

s=si

=
∂(t− Ts)

∂s

∂x(t− Ts)

∂(t − Ts)

∣

∣

∣

∣

s=si

=

− Tf(t− Tsi, x(t− Tsi), u(t− Tsi, x(t− Tsi)), i = 1, . . . , N. (7.58)

Equations (7.57) and (7.58) lead to

f(t− Tsi, x(t− Tsi), u(t− Tsi, x(t− Tsi)) ≈ −
1

T

N
∑

j=1

∂wj(s)

∂s

∣

∣

∣

∣

s=si

x(t− Tsi),

and D ∈ RN×N , in (7.51), is computed as

Dij = −
1

T

N
∑

j=1

∂wj(s)

∂s

∣

∣

∣

∣

s=si

. (7.59)

An example of how to compute the matrix D is in [14] (attached in the Appendix D).
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7.4.3 Stabilization by prediction-based control

Once the feedback method has been described in Section 7.3.3, we provide a method to

design the control gainK(t, x(t)) of system (7.40). It is applied for a constant control gain

K and it depends upon the ability of computing the closed-loop monodromy matrix of

x∗(t). The computation of this matrix requires the integration of the closed-loop system

and its variational equation along a trajectory in the vicinity of x∗(t) (7.60) [68, Appendix

B]. To integrate this trajectory, the initial condition is chosen close to x∗(0). Integrating

(7.60) over a period yields the corresponding closed-loop monodromy matrix Ψ(t) = Φ(t+

T, t).

dΦ(t, 0)

dt
= ∇xf (t, x,K(ϕ(t+ T, t, x, 0)− x))|x=x∗(t) Φ(t, 0), t ∈ [0, T ], Φ(0, 0) = In,

(7.60)

where

∇xf (t, x,K(ϕ(t+ T, t, x, 0)− x)) =

∇xf(t, x, u) +K∇uf(t, x, u)(∇xϕ(t+ T, t, x, 0)− In). (7.61)

∇xϕ(t+ T, t, x, 0) is the free system monodromy matrix calculated as in (7.9).

Using (7.60) and (7.61) we compute the closed-loop monodromy matrix of x∗(t) given

gain K. The Floquet multipliers are calculated to measure the local stability of the

controlled orbit for the chosen K. If the system is controllable, then there is a control

gain K that asymptotically stabilizes it.

In practice, we fix K, compute the monodromy matrix by integrating (7.60) with an

explicit Runge-Kutta method and ϕ(t + T, t, x∗(t), 0) is calculated integrating the free

system over a period T at each step of the integration of (7.60). After that we obtain the

corresponding Floquet multipliers of the closed-loop system. Other methods, such that

eigenvalue assignment method could be applied. This is the subject of future works.
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Alternative time-varying control law

Here we provide the formulation of a time-varying control law, a continuous-time version

of control law 3 (CL 3) presented in Section 3.4.2. For now, this control law is not

applicable due to the necessity of exact computation of the free system state transition

matrix from time t to t+T computed at each time t. The development of this control law

may be studied in future works using an approximation of the free system state transition

matrix adapting, for example, the method shown in [8].

Theorem 7.14. Assume that there exists a hyperbolic periodic orbit x∗(t) that is a solution

of system (6.5) with ∇uf(t, x(t), u)|u=u(t,x(t)) invertible for all t ≥ 0. If the feedback control

signal u(t, x(t)), defined in (7.30) with K(t, x(t)) given by

K(t, x(t)) =
(

∇uf(t, x(t), u)|u=u(t,x(t))

)−1

(

Θ− ∇xf(t, x, u(t, x(t)))|x=x(t)

)(

∇xϕ(t+ T, t, x, 0)|x=x(t) − In

)−1

, (7.62)

is applied to (6.5), then the monodromy matrix of x∗(t) is assigned as Ψ(t) = eΘT , Θ ∈

Rn×n.

Proof. Consider the Jacobian matrix of the closed-loop system (6.5) with control signal

(7.30) calculated on the periodic orbit x∗(t)

∇xf (t, x,K(t, x∗(t))(ϕ(t+ T, t, x, 0)− x))|x=x∗(t) =

∇xf(t, x, u)|x=x∗(t)+∇uf(t, x(t), u)|u=u(t,x∗(t))K(t, x∗(t))(∇xϕ(t + T, t, x, 0)|x=x∗(t)−In).

(7.63)

The derivative of K(t, x(t)) on the periodic orbit does not change the calculus of the

Jacobian matrix, see the proof of Lemma 3.15 for the arguments on discrete-time systems

(easily adaptable for continuous-time systems).

We aim at making

∇xf (t, x,K(t, x∗(t))(ϕ(t+ T, t, x, 0)− x))|x=x∗(t) = Θ, (7.64)
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where Θ ∈ Rn×n is a constant matrix. If (7.64) is ensured we can calculate the state

transition matrix from time t to time t+ T as

Φ̇(t+ T, t) = ΘΦ(t+ T, t), Φ(t, t) = In

with solution

Φ(t + T, t) = Ψ(t) = eΘT .

Using (7.63) and (7.64) for an invertible ∇uf(t, x(t), u)|u=u(t,x∗(t)) and a hyperbolic

x∗(t) we have

K(t, x(t)) =
(

∇uf(t, x(t), u)|u=u(t,x∗(t))

)−1

(

Θ− ∇xf(t, x, u(t, x(t)))|x=x∗(t)

)(

∇xϕ(t+ T, t, x, 0)|x=x∗(t) − In

)−1

. (7.65)

Applying (7.65) at any state x(t) we achieve (7.62).
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Chapter 8

Numerical results

8.1 Introduction

Numerical results on the stabilization of periodic orbits using the proportional feedback

control (PFC, see Section 7.3.1), delayed feedback control (DFC, see Section (7.3.2)) and

prediction-based control (PBC, see Section 7.3.3) in continuous-time systems are presented

in this chapter. For practical reasons, the approximate prediction-based control (aPBC,

see Section 7.3.3) is applied instead of the PBC. The numerical simulations are chosen in

order to evaluate the main characteristics of the methods.

Initially we use a non-autonomous system, the forced van der Pol (vdP) oscillator,

characterized on Section 8.2. We also use the Rössler system on Section 8.5, an au-

tonomous system, in order to evaluate the performance of the proposed continuous-time

PBC in this case.

The numerical results were obtained using Fortran when characterizing the forced van

der Pol oscillator, due to high numerical integration precision and computational effort

requirements, and MatlabR© when applying feedback control, due to existing functions

that facilitate the implementation and possibility of reduction of the numerical integra-

tion precision. The reduction of the numerical precision on feedback control systems is

related to the fact that they are less sensible to noise, external disturbance and parameters

uncertainties [54].
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The characteristics of the DFC and PFC are compared using as case study the forced

van der Pol oscillator on Section 8.3. The DFC gain is designed using the stability analysis

method shown in Section 7.4.2. We first evaluate both control methods for a period p = 1

orbit stabilized by both controllers on Section 8.3.2. Then we perform a brief robustness

analyses comparing the DFC and PFC for the case of parameters uncertainties on Section

8.3.2. Two situations where the orbits are stabilized by the PFC and are not stabilized

by the DFC are shown on Section 8.3.3.

The characteristics of the aPBC are evaluated on Section 8.4. We first apply the aPBC

with a large number of collocation points (see Section 7.3.3), the parameters for aPBC

are chosen in Section 8.4.1. The aPBC and the DFC are compared in Section 8.4.2. On

Section 8.4.3 a situation where an orbit is stabilized by the aPBC and is not stabilized

with the DFC is shown. We analyse the behaviour of the aPBC for different numbers of

collocation points on Section 8.4.4. On Section 8.5 we stabilize one orbit of the Rössler

system using the aPBC and analyse the behaviour of the method for different numbers of

collocation points.

8.2 Bifurcation diagram for the forced vdP oscillator

and target UPO selection

The forced vdP oscillator is described by the system of ODEs (8.1a).

Forced vdP oscillator

ẋ(t) = f(t, x(t)) + u(t, x(t)), (8.1a)

f(t, x(t)) =





x2(t)

a sin(ωt)− η (x21(t)− 1)x2(t)− x1(t)



 , (8.1b)

where x : R+ → R2 and f : R+ × R2 → R2. We follow [16, 17] and choose ω = 0.45 and

η = 1 and use a as an adjustable parameter. The control signal u(t, x(t)) is defined on

Section 7.3 for each control method (PFC - (7.27); DFC - (7.28); PBC - (7.30)).
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Bifurcation diagram. The system dynamic is characterized by a bifurcation diagram

(see, for example, Figure 8.1). The bifurcation diagram is composed by the asymptotic

behaviour, on the Poincaré map, of one state variable (for example, x2(tk)) when one

parameter of the system is changed in an interval of interest (for example, 0.982 ≤ a ≤

0.989) [68].

For non-autonomous systems, the Poincaré sections are hyperplanes crossed by the

trajectory at a constant sampling time. This Poincaré map is also called stroboscopic

map. Denoting as tk the time of the k-th intersection of the Poincaré section by the

trajectory, the discretized period of a periodic orbit x∗ with period T = tk+p − tk is

p ∈ N. Observe that for non-autonomous systems there is a fixed ratio between p and T

something which is not valid for autonomous systems where there is a possibility of orbits

with different T and the same p. Here, T = tk+p − tk = p 2π
0.45

.

Once constructed, the bifurcation diagram can be used for finding chaotic attractors

and chaotic saddles (non attracting chaotic sets [43,48]), which are invariant sets composed

by an infinite number of UPO’s.

Figure 8.1 shows a bifurcation diagram of (8.1a) for u ≡ 0 depicting a periodic window

(region for 0.9832 < a < 0.98765). The black points represent attracting chaotic sets to

the left and to the right of the window. They are obtained by plotting 200 Poincaré

map points for each value of a after dropping the initial transient. The beginning of the

periodic window is at a pair of saddle-node bifurcations (SNB) [1] at a = 0.9832, where

two period-1 (p = 1) attractors are simultaneously created. Attractor A1 is represented by

blue points and attractor A2 by green points. Both attractors undergo a period-doubling

cascade that leads to chaos. At a = 0.98765 a global bifurcation occurs, the merging

crises (MC) [1], where a single enlarged chaotic attractor is recovered (black points to the

right of MC).

At the SNB, the original chaotic attractor loses stability and becomes the surrounding

chaotic saddle (SCS), in light gray. The SCS is numerically obtained by the PIM triple

method [66, 76]. At the MC the two chaotic attractors originated from A1 and A2 lose

stability and become band chaotic saddles (BCS1 and BCS2). Many other SNB’s are

originated inside the periodic window (not represented here). After bifurcations, the
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Figure 8.1: Bifurcation diagram of the vdP oscillator using the Poincaré map.

periodic attractors originated by the others SNB’s become chaotic attractors and after

the MC also become band chaotic saddles. The chaotic attractor (black), after the crises,

is composed by the SCS and the BCS originated from the periodic window, specially the

BCS1 and BCS2.

More details about the bifurcations diagram are exposed on [16, 17].

8.2.1 Finding the target UPO

The choice of the target UPO depends on performance criteria previously defined in

a control project. Some of these criteria can be period, position in the state space,

amplitude of oscillation and others. The focus of this work is the stabilization of an

existing periodic orbit, specially those that compose a chaotic set. Then, a necessary

step is finding a periodic orbit of the free system (u ≡ 0), among the existing ones, with

desired characteristics. We are interested in orbits with short period and that exists (and

are unstable) for the larger interval of a in the bifurcation diagram of Figure 8.1
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The application of the DFC depends on the period of the target UPO. The project of

the DFC and the PFC and the application of the PFC depend on the target UPO itself.

Then, again, there is the necessity of finding UPO’s and their periods.

The method used here to find UPOs is the Newton-Raphson method [68,76], a classical

method used to find zeros of functions. In this work, the method is used on the Poincaré

map to solve

ϕ(tp, t0, x(t0), 0)− x(t0) = 0, p ∈ N, tp ∈ R. (8.2)

If condition (8.2) is satisfied then we have an orbit x∗ with discrete-time period p and

continuous-time period T = tp − t0.

The Newton-Raphson method is an iterative method, the idea is to adjust an initial

guess of x(t0), close to x
∗, until (8.2) is satisfied with some error (∆x(t0)) tolerance. That

is, at each iteration the following steps are executed:

∆x(t0) = −(Φ(tp, t0)− I)
−1(x(tp)− x(t0)),

x(t0)← x(t0) + ∆x(t0),

where Φ(tp, t0) is the state transition matrix of the linearized system around x(t0) for

u ≡ 0.

The method gives one point x∗(t0), the entire orbit is approximated by the solution of

(8.1a) with x(0) = x∗(t0).

The UPOs of interest are represented in the Poincaré map in Figure 8.1 for the second

state variable. In red dots we have a period-1 orbit (TUPO1) originated from a period-

doubling bifurcation which has no real Floquet multiplier grater than +1. The orange

dashed line represents a period-1 orbit (TUPO2) originated from a saddle-node bifurcation

and with one real Floquet multiplier grater than +1. The light blue dashed line represents

a period-7 orbit (TUPO3) with no real Floquet multiplier greater than +1. Among all

the orbits that we found, the TUPO3 is the one with smallest period that exists in the

entire bifurcation diagram.

Figure 8.2 presents the state space of the target periodic orbits embedded in the chaotic

attractor in continuous-time (line) and Poincaré map (∗) (left column) and their time
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Table 8.1: Floquet multipliers and one Poincaré map point for a = 0.988 of the three
target periodic orbits of the vdP oscillator.

TUPO1 TUPO2 TUPO3
µ [-1.872, -0.048] [4.627, 0.147] [-25.446, -9×10−16]

x∗(t0) [0.1588445, -0.1106056] [0.0771541, 1.6893651] [0.0439776, 1.8139795]

series (right column) for a = 0.988 for the TUPO1, TUPO2 and TUPO3, respectively.

The values of the Floquet multipliers computed for this value of a and one point of the

orbit (at the Poincaré map) are in Table 8.1.

8.3 Tuning the DFC gain by optimization and com-

parison with the PFC

In this section, an optimization routine is used for tuning the DFC gain applied to the

forced vdP oscillator and the results are compared with the ones obtained using the PFC

according to [14]. The control signal u(t, x(t)) in (8.1a) is defined as (7.27) for the PFC

u(t, x(t)) = K(x∗(t)− x(t)),

and (7.28) for the DFC

u(t, x(t)) = K(x(t− T )− x(t)).

In both cases we use a constant control gain K. The monodromy matrices are computed

following the methods shown in Section 7.4 and the Floquet multipliers and exponents

are obtained from this matrix (see Section 7.1 and Appendix B).

The optimization is applied to find a control gain K that minimizes the largest, in

modulus, Floquet multiplier |µ|max of the target UPO. The value of |µ|max is obtained

through the solution of the non-linear system (8.1a) and is considered as a scalar cost

function. A simplex algorithm [55] is used to solve this optimization problem through the

fminsearch routine of the Matlab R©. A similar optimization process was applied to the

PFC in [4].
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Figure 8.2: Target UPOs (TUPO) 1, 2 and 3 embedded in the chaotic attractor (CA) in
the state space (left column) and time series (right column). The time series of TUPOs 1
and 2 are shown for three cycles. The points of the target UPOs and the chaotic attractor
in the Poincaré map (PM) are represented by ∗.
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Finding a K that minimizes |µ|max is equivalent to finding a K that makes the orbit

more stable (for |µ|max < 1) with faster convergence or less unstable (for |µ|max > 1).

Thus, the optimization criterion and the choice of the control gain are related to the

stability of the target periodic orbit. Two more parameters are used for the comparison

between the DFC and the PFC. The steady state error d is the distance (Euclidean norm)

between a reference signal r(t) (which is x∗(t) for the PFC and x(t−T ) for the DFC) and

x(t) (the current state) for an entire cycle in the close vicinity of the target UPO,

d = lim
t→+∞

∫ t+T

t

‖r(τ)− x(τ)‖2dτ. (8.3)

The steady state control effort υ is the measure of the total external effort (norm-1)

necessary to keep the trajectory on the close vicinity around one cycle of the target

periodic orbit,

υ = lim
t→+∞

∫ t+T

t

‖u(τ)‖1dτ. (8.4)

Both d and υ are defined for ideally infinity t over one period of the target orbit. For

numerical analysis a convergence criterion is applied to obtain a limited and large enough

time t. It is defined as the relative difference between d at the current cycle and at the

M ∈ N past cycles,
∣

∣

∣

∣

∣

1−

∫ t−T

t−MT
‖r(τ)− x(τ)‖2dτ

M
∫ t

t−T
‖r(τ)− x(τ)‖2dτ

∣

∣

∣

∣

∣

< ǫ (8.5)

where ǫ > 0 is chosen according to the desired precision.

The values of d and υ are zero for a stabilized orbit using DFC, it will be shown that

they are not necessarily zero for orbits stabilized with the PFC and aPBC.

8.3.1 Approximating the monodromy matrix for the DFC

For the DFC method, it is necessary to define the number of samples or delayed states

N , which is also the number of collocation points used to approximate the monodromy

matrix (see Section 7.4.2). An increase in the number of collocation points results in

greater accuracy at the expense of computational time.
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Figure 8.3: Relation between the number of collocation points N and the largest magni-
tude Floquet multiplier |µ|max of the TUPO1 stabilized with the DFC and a scalar control
gain for a = 0.988.

Figure 8.3 plots |µ|max × N for a = 0.988 and three different values of control gain k

for the DFC applied to the TUPO1. N is the number of discretization points and k is a

constant scalar using the control gain K, in (7.28) and (7.53c), as1

K =





k 0

0 0



 , k ∈ R. (8.6)

Notice that u : R+ × R
2 → R

2 and the control signal may be applied directly to the

derivative of each state variable. However, in general, only the first component of the

control signal vector is different from zero in this section and the system is not fully

actuated.

Observing Figure 8.3 one can notice a considerable reduction on the variation of |µ|max

when increasing N for N > 82. We adopt N = 102 in the following results on the DFC.

8.3.2 Stabilizing the TUPO1

The first orbit to be stabilized is the TUPO1 for a = 0.988 (see Figures 8.2(a) and 8.2(b))

with Floquet multipliers for u ≡ 0 shown in Table 8.1. UPOs with short periods are less

1The control structure proposed with such choice of gain K amounts to applying the control signal to
the derivative of the first state variable. Considering a mechanical system (oscillator), this means applying
the external input to velocity instead of acceleration. This point is critical for practical applications, here
we compare numerically control methods and the controlled state variable is less relevant.
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unstable [20, 29] and, in general, easier to stabilize with the DFC. Another characteristic

that favours the stabilization of the TUPO1 with the DFC is that there is not real Floquet

multipliers grater than +1. See Section 7.3.2 for a review on the limitations of the DFC.

The PFC does not have these limitations.

Before comparing the PFC and the DFC methods, a good approximation for the target

UPO is needed, since it leads to more precise results for the PFC (r(t) closer to x∗(t) in

(8.3) and (8.4)). We adopt the following procedure:

• A Poincaré point of the orbit is obtained for the free system (u ≡ 0) with the

Newton-Raphson method. This point is shown in Table 8.1;

• The ODE is integrated from this point during one period to obtain an initial ap-

proximation of the whole orbit;

• This first approximation is used to compute the monodromy matrix for the DFC.

At this stage it is necessary to search for a control gain k which makes |µ|max < 1;

• With such k, the DFC method is used to control the TUPO1 until the convergence

criterion (8.5) be satisfied for ǫ = 10−10. This last step is used to obtain a better

approximation of the whole orbit and not just one Poincaré point.

In what follows, the resulting orbit will be denoted by x∗(t) and used in the DFC/PFC

optimization processes.

Alternatively, one may obtain a good approximation of x∗(t) by directly applying

the DFC while searching for the proper x(0) and k values. But that would require the

simultaneous search of x(0) and k and the integration of the trajectory using a DDE

integrator. This simultaneous search is much slower than using the suggested procedure.

In practical situations where the model equations might not be known, it may be necessary

to first use a standard method to estimate the UPO from a time series (e.g., [83]), then

apply the DFC to obtain the desired convergence.

Figure 8.4 illustrates the method for finding the scalar control gain k. The magnitude

of the Floquet multipliers of the TUPO1 are plotted against k for the DFC (solid lines) and

PFC (dashed lines) methods. For the DFC, only the six Floquet multipliers with largest
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Figure 8.4: (a) Magnitude of the Floquet multipliers of the TUPO1 at a = 0.988 using
DFC (solid lines) and PFC (dashed lines). The Floquet multipliers of the orbit for u ≡ 0
are represented by × and the local minima for the stabilized orbit by ∗. (b) is the same
as (a) in log-linear scale.

magnitude are plotted. There are two real and four complex conjugate multipliers for

k . 0.076, while there are three complex conjugate multipliers for k & 0.076. Therefore,

only three solid lines are visible in the plot of |µ| in Figure 8.4(a) for most values of k.

For the PFC method, there are only two real multipliers. Figure 8.4(b) is the same as

Figure 8.4(a), but in log-linear scale.

The stars (∗) in Figure 8.4 refer to the values of k found by an optimization process.

After plotting |µ| for several values of k by a scanning process, the optimization method is

applied by using as initial conditions the approximated values of k where the local minima

of |µ|max are found. The optimization results are summarized in Table 8.2. From Figure

8.4 and Table 8.2 we observe that the PFC leads to smaller values of |µ|max, even when a

diagonal matrix gain K is applied for the DFC with the values obtained by optimization.

The diagonal K obtained is a local minimum, no global minimum study has been achieved

in this case. This shows that if more elements of matrix (8.6) are not set equal to zero,

better results can be obtained for the DFC while the |µ|max ≈ 0.6 × 10−10 shows that a

scalar gain leads to very small (close to zero) Floquet multipliers for the PFC in this case.

The crosses (×) in Figure 8.4 are the values of |µ| of the TUPO1 for the free system.

The UPO is stabilized when |µ|max < 1, which occurs for 0.053 . k . 1.031 for the DFC
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Table 8.2: Summary of the optimal results on |µ|max according to the gain matrix K and
the control method for TUPO1.

DFC PFC

K
[

0.07632510479 0
0 0

]

[

−0.003168 0

0 0.0674015

]

[

0.92619140625 0
0 0

] [

3.2105712890625 0
0 0

]

|µ|max 0.4395116372 0.1565149475 0.4666610×10−3 0.6× 10−10

and for k & 0.1 for the PFC. For the DFC, it can be shown that the values of |µ| tend to

one when k → +∞.

Figure 8.4 shows that the range of k for controlling the TUPO1 is larger for the

PFC than for the DFC. The DFC method has a slight advantage since u(t, x(t)) → 0

for a stabilized orbit even if the orbit is not completely known (only its period) but a

stabilizing gain k is found. Notwithstanding, the orbit stabilized with the PFC is more

stable, since smaller values of |µ|max are found.

The results of stabilization of the TUPO1 for a = 0.988 are shown in Figure 8.5(a) for

the DFC with the optimal value k = 0.07632510479, Figure 8.5(b) for the PFC with the

optimal value k = 0.92619140625 and Figure 8.5(c) for the PFC with the optimal value

k = 3.2105712890625. The initial condition is set on x(0) = [−0.5; 0.5] (for the DFC, all

the delayed states are on x∗), the perturbations decay after an initial transient and the

system converges to the periodic regime corresponding to the TUPO1. Figure 8.6 shows

the time series of the norm-1 of the control signal u(t, x(t)) in a log-linear scale. The

initial transients are shorter for PFC than DFC due to |µ|max, but the PFC presents an

initial peak on ‖u(t, x(t))‖1 that represents a short-time high external effort.

The real (Re) and imaginary (Im) parts of the Floquet multipliers (µ) and exponents

(λ) for the DFC can be seen in the root locus chart in Figure 8.7. The crosses (×)

are µ (Figure 8.7(a)) and λ (Figure 8.7(b)) for k = 0 and the stars (∗) are the optimal

values (minimum of |µ|max or Re(λ)max). The evolution of the six Floquet multipliers and

exponents with largest magnitude are represented by the six branches, where the arrows

show the flow for increasing k. The dashed circle in Figure 8.7(a) is the unity circle. It is

clear that µ→ +1 and λ→ 0 as k → +∞.

The relation between the steady state error (d) and k is presented in Figure 8.8(a), This

Figure is computed by integrating an initial condition very close to x∗(t) while applying
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Figure 8.5: Time series of x2(t) showing the stabilization of the TUPO1 of the vdP system
for a = 0.988 using (a) DFC with k = 0.07632510479; (b) PFC with k = 0.92619140625
and (c) PFC with k = 3.2105712890625.
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Figure 8.6: Time series of ‖u(t, x(t))‖1 of the TUPO1 of the vdP system for a = 0.988
using DFC with k = 0.07632510479 (black line), PFC with k = 0.92619140625 (green
line) and PFC with k = 3.2105712890625 (blue line).
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Figure 8.7: Root locus chart of the TUPO1 controlled by DFC. (a) Floquet multipliers
(µ), (b) Floquet exponents (λ).
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the DFC/PFC control methods with a relative and absolute integration tolerances equal

to 10−10. After convergence of d is reached, we compute one more cycle and plot the

final value of d. Note that for the PFC (dashed line) the steady state error is low for all

k & 0.1, as expected from Figure 8.4, which shows that |µ|max < 1 in this region. As for

the DFC (solid line), the steady state error is low for 0.053 . k . 1. This is close to

the point where |µ|max becomes greater than one in Figure 8.4. If |µ|max ≈ 1, the target

UPO is marginally stable/unstable and perturbed trajectories take long time to converge

to (or diverge from) it. This is the case of the DFC for k & 1, where |µ|max & 1 according

to Figure 8.4(a). Therefore, in Figure 8.8(a), d is not plotted for k > 1.5 for the DFC

method, since the divergence time is very long. Figure 8.8(b) is the same as Figure 8.8(a),

but for the control effort υ.

Notice from Figure 8.8 that when the orbit is stabilized with the DFC, both the steady

state error and control effort tend to zero when t→ +∞ (they are close to the integration

tolerances). The same is not valid for the PFC where, even with a good approximation

of x∗(t) we observe an increase on d and υ when increasing k. Figure 8.9 is used to

explain this fact for the PFC. We observe in Figure 8.9(a) that for k = 0.92619140625 the

stabilized trajectory is very close to the TUPO1 while it becomes more distant when using

k = 3.2105712890625, Figure 8.9(c). The steady state control signal k = 0.92619140625

in Figure 8.9(b) is much smaller than for k = 3.2105712890625, Figure 8.9(d). These

figures contribute to illustrate the increase of d and υ. For the PFC with large (scalar)

control gain we observe that the control signal does not change the stability of x∗, a new

stable orbit is created in its vicinity. Similar results were obtained in [4].

The observation of Figures 8.4 and 8.8 shows that the method presented in Section

7.4.2 to compute the monodromy matrix for the DFC is adequate. Given a value of the

control gain k, instability/stability are coherent in both figures.

One of the main advantages of a chaos control technique is the small control effort

required [67,70], and in that sense the DFC method provides slightly better results since

the control effort always tends to zero as t → +∞ for a stabilizing k. Since the PFC

method requires knowledge of the target UPO position, errors in its estimation always

lead to finite d and υ. The errors tend to be larger for longer period UPOs.
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Figure 8.8: (a) Steady state error d as a function of k for the DFC (solid line) and PFC
(dashed line) methods applied to the vdP oscillator with a = 0.988; (b) same as (a), but
for the control effort υ. for DFC and PFC controlling the TUPO1.

A brief robustness analysis of DFC and PFC

In the previous sections, the driver amplitude was set to a = 0.988, where the UPO was

found and the control methods applied. In the present section, the TUPO1 is found for

a = 0.988, but the controllers are applied for a ∈
[

0.9855 0.994
]

.

Figures 8.10(a) and 8.10(c) show d and υ for the DFC when a is changed. As observed,

while the orbit is stabilized, both quantities remain close to the integrator’s error tolerance.

The values of the six largest magnitude Floquet multipliers |µ| of the orbit stabilized by

the DFC are presented in Figure 8.10(e). These results are obtained by integrating the

initial condition until convergence of d is observed. After that, the last T time units of

the simulation are used to compute de monodromy matrix and the Floquet multipliers.

In all cases, the optimal value k ≈ 0.076325 is used. Note that the DFC adapts well to

parameter changes because the reference r(t) = x(t− T ) does not depend upon a system

model, it consists of only recorded state values. This characteristic reduces the controller’s

stability, but increases its robustness to parametric uncertainties.

For the PFC, we test the two values of k where the local minima of |µ|max are found

in Figure 8.4, i. e., k = 0.92619140625 and k = 3.2105712890625. Figures 8.10(b) and

8.10(d) show the steady state error and the control effort as a function of a. The sudden

change in d and υ around a = 0.988 is due to the proximity of r(t), in (8.3), to the target
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Figure 8.9: TUPO1 stabilized with the PFC. (a) State space trajectory and (b) control
signal for k = 0.92619140625. (c) State space trajectory and (d) control signal for k =
3.2105712890625.
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UPO x∗(t). Since in the PFC method r(t) does not self–adapt to changes in the system

parameter, the steady state error and control effort are much higher for a 6= 0.988. Figure

8.10(f) reveals that |µ|max is very sensitive to variations in a for k = 3.2105712890625,

whereas |µ|max is kept almost constant for k = 0.92619140625. Overall, the orbit stabilized

with k = 3.2105712890625 is more stable, except for large values of a.

As shown in Figure 8.10, even with perturbations in a, the TUPO1 is more stable

when controlled with the PFC than the DFC. However, the DFC has a much lower steady

state error and control effort for a 6= 0.988.

8.3.3 Controlling the TUPO2 and TUPO3

The limitations of the DFC were discussed in Section 7.3.2. Here the orbits TUPO2 and

TUPO3 are used to exemplify situations where a constant control gain K for the DFC

that stabilizes the target UPO was not found. As shown in Section 8.2.1, the TUPO2 has

one real Floquet multiplier grater than +1 and the TUPO3 has a discrete period equal to

7 (long period).

Stabilizing the TUPO2. The Floquet multipliers of the TUPO2 for u ≡ 0 and one

point of the orbit on the Poincaré map are shown in Table 8.1. This orbit is not stabilized

using the DFC with a scalar gain according to the root locus chart of Figure 8.11. Notice

that it was shown in the previous example (TUPO1, Figure 8.7(a)) that all the Floquet

multipliers of the orbit tend to +1 when increasing the DFC scalar gain k. The same

occurs for the TUPO2 as shown in Figure 8.11. The real Floquet multiplier greater than

+1 goes straight to +1 through the real axis when increasing k. The corresponding branch

of the root locus does not enter the unit circle.

A matrix gain was tried with values obtained by the previous optimization process

using the Matlabr routines fminsearch and fmincon [31,37,58,69]. A scan process varying

all the values of the matrix gain was also tried. The final try was using a matrix gain

composed by a rotational matrix (composed by sines and cosines) multiplied by a real

scalar gain equivalent to the gain used in [26, 27, 46]. After varying both the rotation

angle and the gain, a matrix control gain that stabilizes the TUPO2 was not found.
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Figure 8.10: The steady state error (a), control effort (c) and magnitude of Floquet mul-
tipliers (e) as a function of a for the DFC with k = 0.07632510479 stabilizing the TUPO1.
The steady state error (b), control effort (d) and magnitude of Floquet multipliers (f) as
a function of a for the PFC stabilizing the TUPO1.
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Figure 8.11: Root locus chart of the four largest magnitude Floquet multipliers of the
TUPO2 using the DFC. The Floquet multipliers of the free system orbit are represented
by (×).

The same orbit is stabilized using the PFC and the modulus of the Floquet multipliers

are shown in Figure 8.12 for an interval of k. The orbit used to compute the monodromy

matrix was obtained integrating the Poincaré map point for one cycle of the free system

once the DFC can not be used to refine its approximation.

Stabilizing the TUPO3. The Floquet multipliers of the TUPO3 for u ≡ 0 and one

point of the orbit on the Poincaré map are shown in Table 8.1. The root locus chart of

the two largest, in modulus, Floquet multipliers of this orbit controlled by a scalar gain

with DFC is shown in Figure 8.13. Observe that the branches of the root locus never

enter the unity circle, independently of the gain value. A matrix gain that stabilizes the

TUPO3 was not found using the optimization proposed. The fmincon Matlabr routine

was also tried resulting in an unstable orbit.

Comparing the absolute value of the Floquet multiplier in Table 8.1, the TUPO7

is over ten times more unstable then the TUPO1. This does not prove that the orbit is

uncontrollable with the DFC, but the result is in agreement with the literature. A possible

method that can be used to stabilize this orbit using delayed states is the Extended DFC

shown in Section 7.3.2.
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Figure 8.12: Modulus of the Floquet multipliers of the TUPO2 using the PFC. The
Floquet multipliers of the free system orbit are represented by (×).
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Figure 8.13: Root locus chart of the two largest, in modulus, Floquet multipliers of the
TUPO3 controlled by the DFC. The Floquet multipliers of the orbit without control are
represented by (×) and a local minimum is represented by (∗).
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Figure 8.14: Modulus of the Floquet multipliers of the TUPO3 controlled using the PFC.
The Floquet multipliers of the orbit without control are represented by (×).

When computing the monodromy matrix of the TUPO3 controlled by the DFC we

used the same N = 102 collocation points s to discretize each cycle of the forcing term

( 2π
0.45

). The monodromy matrix of the complete p = 7 orbit was computed using pN

collocation points.

The same orbit is stabilized using the PFC resulting in very small, in modulus, Floquet

multipliers. The results on the relation between the modulus of the Floquet multipliers

and the control gain are presented in Figure 8.14.

The results of this section exemplify orbits that could no be stabilized by the DFC

with a real constant gain. The two situations show characteristic limitations of the DFC

that do not affect the performance of the PFC. The only observation on the results using

the PFC is that the Floquet multipliers of the TUPO3, the more unstable orbit studied,

were changed to very small values and the stabilized orbit became the more stable one.
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8.4 Numerical results on the aPBC applied to a non-

autonomous system

In this section we provide numerical results on the approximated prediction-based control

(aPBC) (see Section 7.3.3) applied to the van der Pol oscillator (8.1b) using the control

scheme (8.1a).

The control signal u(t, x(t)) for the PBC is defined in (7.30) as

u(t, x(t)) = K(t, x(t)) (ϕ(t+ T, t, x(t), 0)− x(t)) .

The state transition map ϕ(t + Tsj, t, x(t), 0) is approximated by an implicit Runge-

Kutta method using the operator z(t+Tsj, t, x(t)) in the sj , j = 1, 2, . . . , N discretization

points. The implicit Runge-Kutta method is solved using the estimator (7.36) resulting

in the aPBC (7.40) (see Section 7.3.3 for details).

Here, we apply the aPBC using the orthogonal collocation method (see Section 7.3.3),

obtaining z(t+Tsj, t, x(t)) = mj(t), and the estimator (7.36) that leads to mj(t) ≈ m̂j(t).

The control signal of the closed-loop control method (7.40) applied to the system (8.1b)

is

u(t, x(t)) = K (m̂N(t)− x(t)) (8.7)

with the constant control gain

K =





k 0

0 0



 , k ∈ R. (8.8)

As done in Section 8.3, u : R+ × R2 → R2 is defined with the same dimension of the free

system, but only the first component of the control signal vector is different from zero

and the system is not fully actuated.

The control signal is designed by approximating the feedback term, leading to the

closed-loop system (7.40). The solution of the latter depends on the choice of three

parameters: the control gain k, the observer gain ko and the number of discretization
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points for the orthogonal collocation method N . The values ko and N are directly related

to the estimation quality and these two parameters will be tuned first.

8.4.1 Tuning the parameters ko and N

To evaluate the future state estimation, whose characteristics are related to the parameters

ko and N , we first set k = 0. We used as the initial condition x(0) = [−0.75, 0.75]′.

The system is integrated for t ∈ [0, T ] and the points m̂N(t + jT/999), j = 0, . . . , 999,

are collected for different values of ko and N . One then assesses the convergence by

comparison with the solution obtained with N = 152 and ko = 50, by computing (8.9),

ε(N, ko) =
‖m̂

(152,50)
N,2 (·)− m̂

(N,ko)
N,2 (·)‖L1(0,T )

‖m̂
(152,50)
N,2 (·)‖L1(0,T )

. (8.9)

The superscript on m̂
(N,ko)
N,2 (t) indicates the value of N and ko used in the estimation and

the number 2 in subscript refers to the second value of the 2-dimensional vector m̂N (t),

the one used in the control signal (8.7) due to the control gain (8.8).

Figure 8.15(a) shows ε(N, 50) for different values of N . Note that the collocation

parameters si and ωj are previously computed for each N tested. The computation of

ωj for large N requires intense off-line computational burden and reduces the number of

values N tested. These values are computed once for all and are independent of f(t, x(t)).

The values of N < 72 lead to integration instability and are not computed, this instability

is exemplified in Figure 8.31 when analysing the effect of small N on stabilization.

Repeating the same process, we evaluate ε(152, ko) for different values of ko, see Figure

8.15(b). Increasing N and ko results in larger computation effort and trade-off between

estimation quality and computation effort should be considered.

Due to the error level shown in Figure 8.15 for N = 102 and ko = 10, we adopt these

values in the sequel. In Figure 8.16 it is shown x2(t) and m̂N,2(t−T ) (beware the time shift

here). In this case it is expected that x(t) = ϕ(t, t−T, x(t−T ), 0) ≈ z(t, t−T, x(t−T )) ≈

m̂
(102,50)
N (t − T ) and the proximity of both time-series in Figure 8.16 allows to use mj(t)

instead of m̂
(102,50)
j (t).
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Figure 8.15: Relative error of the estimated free system response future value using dif-
ferent (a) N and (b) ko.
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Figure 8.16: Current time and shifted future time trajectory of the system for k = 0,
ko = 10 and N = 102.
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Figure 8.17: Modulus of the Floquet multipliers for different values of k for the TUPO1
controlled by the aPBC.

8.4.2 Stabilizing TUPO1

Once obtained the values of N and ko we now stabilize the TUPO1. The control gain k

is tuned to stabilize the orbit and the results are compared with the one obtained for the

DFC.

Tuning of k

Now we tune the feedback gain k. We use (7.60), with x∗(0) = [0.15884454118, 0.110605560432]′,

to obtain a value k that stabilizes the orbit of (7.31). Note that, the estimation with

N = 102 and ko = 10 being precise, we expect that a stabilizing k for (7.31) will yield

stability for a slightly perturbed cycle of (8.1a) with the control signal (8.7).

Figure 8.17 shows the modulus of the two Floquet multipliers |µ| for different values

of k. The stability is achieved when |µ| ≤ 1. We choose k = 0.25, which results in

|µ| ≈ 0.01213. All the Floquet multipliers in this case are real numbers.

Comparison with the Delayed Feedback Control

A stabilized trajectory (TUPO1) for k = 0.25, ko = 10, N = 102 and x(0) = [−1.5, 1.0]′

is shown in the state space in Figure 8.18. The time series of the controlled orbit is shown

in Figure 8.19(a) and 8.19(b) for the first and second state variables, respectively.
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Figure 8.18: Stabilized TUPO1 in the state space for k = 0.25.
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Figure 8.19: Time series for the (a) first and (b) second state variables of the stabilized
TUPO1 with k = 0.25.

The control effort applied to stabilize the target orbit is shown in Figure 8.20. The

control effort tending to zero and x(t) tending to mN(t) ensure that the orbit is stabilized.

These results exemplify a successful application of the aPBC to a continuous-time

dynamical system using a real-time estimation of the future state dynamics.

The DFC is used here as a classical reference for comparison with the proposed method.

From Section 8.3, Table 8.2, we the optimal value k ≈ 0.07632510479 for the DFC control

gain which leads to |µ| ≈ 0.43951. Here we observe the first advantage of the proposed

method, the largest Floquet multiplier is smaller than the one obtained for the DFC, re-
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Figure 8.20: Time series of the control effort of the stabilized TUPO1 for kc = 0.25 and
x(0) = [−1.5, 1.0]′.

sulting in a more stable orbit. Notice that better results are expected for the PBC refining

the scan in Figure 8.18 or applying optimization. Here the aim is to show applications of

the aPBC and compare it with the DFC.

The TUPO1 with x(0) = [−1.5, 1.0]′ controlled by the DFC in the state space is shown

in Figure 8.21(a) and the time series of the control effort is shown in Figure 8.21(b).

Comparing these figures with Figures 8.18 and 8.20, respectively, we observe that the

convergence of the trajectory to the controlled orbit by the proposed method is much

faster than the one controlled by the DFC. This result is in agreement with the calculated

|µ|.

A trajectory in state space stabilized by both aPBC and DFC with initial condition

x(0) = [−0.5, 0.5]′ are presented in Figure 8.22. Here we use a different initial condition

to show the faster convergence of the aPBC. Although, Figure 8.23, with the norm-1 of

the aPBC control effort in a log-linear scale, shows that the DFC control effort shown in

Figure 8.6 (same initial condition) is much smaller in steady state. In comparison with

the PFC (using optimization), we observe that the aPBC has a similar convergence rate

but a larger steady state control effort.
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Figure 8.21: Trajectory with x(0) = [−1.5, 1.0]′ controlled using the DFC with k ≈
0.07632510479. (a) State space and (b) time series of the control effort.
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Figure 8.22: Trajectory with x(0) = [−0.5, 0.5]′ controlled using (a) aPBC with k = 0.25
and (b) DFC with k ≈ 0.07632510479.
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Figure 8.23: Time series of the control effort of the stabilized TUPO1 for kc = 0.25 and
x(0) = [−0.5, 0.5]′.

8.4.3 Stabilizing TUPO2 and TUPO3

In Section 8.3.3 it was shown that the TUPO2 and TUPO3 are not stabilized with the

DFC with a constant scalar gain and it was not found a constant matrix gain that stabilizes

them. It was also shown that the PFC stabilizes both orbits. Now we evaluate the aPBC

controlling both orbits.

stabilizing TUPO2. Figure 8.24 shows the modulus of the Floquet multipliers as a

function of the control gain k for the TUPO2 applying the aPBC. It is noticed that the

aPBC stabilizes orbits with an odd number of real Floquet multipliers larger than +1.

One detail is relevant here, the stabilization is achieved only for negative values of the

gain k. Positive values of k make the largest magnitude Floquet multiplier increases and

the orbit becomes more unstable.

The TUPO2 stabilized by the aPBC with k = −0.125 and initial condition x(0) =

[0.1, 1.8]′ is shown in the state space in Figure 8.25(a). The time series of the control

signal is presented in Figure 8.25(b) with u2(t)→ 0 as t→ +∞ indicating stabilization.

stabilizing TUPO3 Figure 8.26 shows the modulus of the Floquet multipliers as a

function of the control gain k for the TUPO3 applying the PBC for five different values
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Figure 8.24: Modulus of the Floquet multipliers for different values of k for the TUPO2
controlled by the aPBC.
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Figure 8.25: TUPO2 stabilized using the aPBC with k = −0.125 and x(0) = [0.1, 1.8]′.
(a) State space and (b) time series of the control effort.
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Figure 8.26: Modulus of the Floquet multipliers for different values of k for the TUPO3
controlled by the PBC.

of k. It is noticed that the PBC can stabilize an orbit that is not stabilized by the DFC

with the same type o gain due to large period.

From Section 7.4.3 it is noticed that the computation of the Floquet multipliers is

done obtaining ϕ(t+ T, t, x(t), 0) by an explicit Runge-Kutta integration method at each

time step. The obtained |µ|max < 1 indicates that there is no theoretical limitation on

the PBC on stabilizing the TUPO3.

However, there is a practical aspect that renders difficult the stabilization of the

TUPO3 by the aPBC. When applying the aPBC to a system represented by a set of

n ∈ N ODEs, the dimension of the closed-loop system is represented by a set of nN ∈ N

ODEs. Here we are using N = 102 for each cycle of the forcing term, which means a

set of 7nN = 1428 ODEs to be solved. For the DFC, which leads to an infinite dimen-

sional closed-loop system, the computational cost comes, predominantly, from memory to

record the past states for a delay-time T . For the aPBC the computational cost comes

from processing with reasonable error tolerance the set of 7nN ODEs.

Two possibilities are considered here:

• Using an implicit Runge-Kutta method that uses less discretization points to pre-

cisely approximate ϕ(t+ T, t, x(t), 0) than the orthogonal collocation method. This
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alternative is not evaluated in this manuscript and is considered a relevant future

work on the theme;

• Reduce the number of collocation points N and evaluate the characteristics of the

controlled orbit when applying the implicit Runge-Kutta method with less precision.

This alternative will be studied following.

8.4.4 Applying the aPBC for a low N

In the previous sections the aPBC was applied using N = 102 collocation points per cycle

of the forcing term (t = 2π
0.45

). In this section we evaluate the characteristics of the TUPO1

stabilized by the aPBC with N < 102, ko = 10 and k = 0.25. The results are relevant

when studying practical aspects of the aPBC.

From Figure 8.15(a) it is observed an increase of ǫ(N, 50) when decreasing N for k = 0.

This value means the relative difference between the predicted state m̂N,2(t) and the actual

state x(t) for one cycle of a trajectory in the chaotic attractor of the free system. Now

we are interested in the characteristics of the closed-loop system, in special the value of d

(see (8.3), with r(t) = m̂N (t)) and υ (see (8.4)) as a function of N .

Figure 8.27(a) shows υ when stabilizing the TUPO1 applying the aPBC for different

values of N with k = 0.25 and ko = 10. The same for d is shown in Figure 8.27(b).

Comparing Figure 8.27 with Figure 8.8 it is observed that for any stabilizing k for the

DFC/PFC, the steady state error and control effort are smaller than for the aPBC with

k = 0.25 for different N . These relatively high values for the aPBC are justified by

the estimation error of the predicted state and this error decreases exponentially when

increasing N .

It is observed in Figure 8.27 that even for a reduction on the number of collocation

points, stability of TUPO1 is achieved for N ≥ 67. The TUPO1 stabilized with the

aPBC for N = 82 and N = 67 and x(0) = [−1.5, 1.0]′ is shown in Figures 8.28 and 8.29,

respectively. Figures 8.28(e) and 8.29(e) show the initial value of the predicted states

mj(0), j = 1, 2, . . . , N and ϕ(T, 0, x(0), 0). It is observed that mj(0) is relatively close to

ϕ(T, 0, x(0), 0).
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Figure 8.27: (a) d and (b) υ applying aPBC to the TUPO1 for different N with k = 0.25
and ko = 10. The bottom dashed line is the value of (a) d and (b) υ computed with
N = 152 and ko = 50 used as reference.

The high values observed on Figure 8.27 for N = 3 are explained in Figure 8.30. It

exemplifies a situation where a stable orbit different from TUPO1 is achieved due to the

reduced N . The high amplitude periodic control signal in Figure 8.30(b) indicates that

this stabilized orbit is not an orbit of the original free system. Figure 8.30(e) shows that

N = 3 leads to mj(0) almost unrelated with ϕ(T, 0, x(0), 0) and consequently u2(t) =

k(m̂N,2(t) − x2(t)) is a high amplitude control signal. According to Figure 8.30(a), a

trajectory with initial condition x(0) on the TUPO1 (Poincaré point) diverges from it

showing that it becomes unstable in this case.

It is noticed from the time-series of the trajectories in Figures 8.28(c), 8.28(d), 8.29(c)

and 8.29(d) that in some torsions of the trajectory of the system controlled by the aPBC

there is an oscillation on m̂N (t). This oscillation is generated because small N leads to

instability on the predicted state and it reflects in the time-series of the control signal in

Figures 8.28(b) and 8.29(b) and the value of υ and d in Figure 8.27.

Another consequence on reducing N is the complete loss of stability of m̂N(t) and

the consequent interruption on the numerical integration of the trajectories. This phe-

nomenon, exemplified in Figures 8.31 and 8.32, occurs even after increasing or reducing

the error tolerances of the explicit Runge-Kutta integrator2. One of the reasons for this

2The simulations present in this work were performed using the Matlab R© integration routine ode45
and, in this specific case, it was tested also the routines ode113 and ode15s.
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Figure 8.28: aPBC applied with N = 82, k = 0.25 and ko = 10. (a) Trajectory in
state space; (b) time-series of the control signal; (c) and (d) time-series of the actual
and predicted state variables; (e) time-series of ϕ(T, 0, x(0), 0) and the initial value of the
predicted states mj(0).

135



Chapter 8 8.4 Numerical results on the aPBC applied to a non-autonomous system

−2 −1 0 1 2

−2

0

2

x1(t)

x
2
(t

)

 

 

x(t)

x(0)

(a)

0 10 20 30 40 50
−0.6

−0.4

−0.2

0

0.2

t

u
1
(t

)
(b)

0 10 20 30 40 50

−2

−1

0

1

2

t

 

 

x1(t) m̂N,1(t)

(c)

0 10 20 30 40 50

−2

0

2

t

 

 

x2(t) m̂N,2(t)

(d)

0 5 10
−2

0

2

4

t

 

 

mj,1(0)

mj,2(0)

ϕ1(T, 0, x(0), 0)

ϕ2(T, 0, x(0), 0)

(e)

Figure 8.29: aPBC applied with N = 67, k = 0.25 and ko = 10. (a) Trajectory in
state space; (b) time-series of the control signal; (c) and (d) time-series of the actual
and predicted state variables; (e) time-series of ϕ(T, 0, x(0), 0) and the initial value of the
predicted states mj(0).
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Figure 8.30: aPBC applied with N = 03, k = 0.25 and ko = 10. (a) Trajectory in
state space; (b) time-series of the control signal; (c) and (d) time-series of the actual
and predicted state variables; (e) time-series of ϕ(T, 0, x(0), 0) and the initial value of the
predicted states mj(0).
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loss of stability is that N is the parameter that rules the implicit Runge-Kutta inte-

gration error and Figures 8.31(d), 8.31(e) and 8.32(d) show that mN(0) is diverging from

ϕ(T, 0, x(0), 0) at time T . Another reason is the multiple set ofmj(t) that can be obtained

solving (7.35b) (mj(t) is the special case of lj(t) when using orthogonal collocation). Two

different sets of mj(0) are exemplified in Figures 8.31(d) and 8.31(e) for N = 5. This

means that there are, at least, two different solutions for m̂j(t) and a possible jump of

the trajectory from the vicinity of one solution to the other leads to the loss of stability

of the estimator. This loss of stability should be investigated in future works.

8.5 Numerical results on the aPBC applied to an au-

tonomous system

In this section we provide numerical results on the approximated prediction-based control

(aPBC) (see Section 7.3.3) applied to the Rössler system using the control scheme (8.1a).

The goals are (i) to show that the method is applicable to autonomous systems without

any modification and (ii) to compare the effect of different numbers of collocation points

N on stabilization.

The Rössler system is described by the system of ODEs (8.10).

8.5.1 The Rössler system

ẋ(t) = f(t, x(t)) + u(t, x(t)), (8.10a)

f(t, x(t)) =











−x2(t)− x3(t)

x1(t) + β1x2(t)

β2 + x1(t)x3(t)− β3x3(t)











, (8.10b)

where x : R+ → R
3 and f : R+ × R

3 → R
3. We follow [4] and choose β1 = 0.2, β2 = 0.2

and β3 = 4.5.
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Figure 8.31: Time-series of a trajectory when applying the aPBC with N = 05 and (a)
k = 0 and ko = 10; (b) k = 0.25 and ko = 10; (c) k = 0.25 and ko = 1000; (d) and (e)
time-series of ϕ(T, 0, x(0), 0) and the initial value of the predicted states mj(0).
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Figure 8.32: Time-series of a trajectory when applying the aPBC with N = 62 and (a)
k = 0 and ko = 10; (b) k = 0.25 and ko = 10; (c) k = 0.25 and ko = 1000; (d) time-series
of ϕ(T, 0, x(0), 0) and the initial value of the predicted states mj(0).
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Table 8.3: Poincaré map point x(t0), period T and Floquet multipliers µ of a periodic
orbit (TUPO4) of the Rössler system.

TUPO4

x(t0)
[

0 5.0206004746 1.6806432235
]′

T 5.8439698764

µ
[

−1.9182862735 1 −1.8655159319× 10−11
]

Target period orbit. Following Section 8.2 we should qualitatively analyse the Rössler

system in order to find UPOs to stabilize. The first step would be to plot a bifurcation

diagram of the system by varying one parameter βi to find a chaotic attractor and the

second step would be finding embedded UPOs. Both steps are avoided once the parameters

βi that lead to chaotic behaviour and one UPO of the chaotic attractor are presented in [4].

A Poincaré section S is defined as

S = {s = (x1, x2, x3) ∈ R
3 : x1 = 0 and x2 ≥ 0}.

We apply the Newton-Raphson method to refine the position and period of the orbit and

call it TUPO4. Its period T and Floquet multipliers µ are presented in Table 8.3.

The chaotic attractor of the Rössler system in the state space for the chosen parameters

and its Poincaré map are presented in Figure 8.33. The TUPO4 in the state space is

presented in Figure 8.34(a) and its time series for the three state variables in Figure

8.34(b).

8.5.2 Stabilizing TUPO4

The control signal u(t, x(t)) for the aPBC was shown in Section 7.3.3 and its application

discussed in Section 8.4 for non-autonomous systems. Here we apply it using the control

signal (8.7) with the constant control gain

K =











0 0 0

0 0 0

0 0 k











, k ∈ R. (8.11)
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Figure 8.33: Rössler chaotic attractor for β1 = 0.2, β2 = 0.2 and β3 = 4.5 with 200
Poincaré map points (⋆).
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Figure 8.34: TUPO4 of the Rössler system for β1 = 0.2, β2 = 0.2 and β3 = 4.5. (a) State
space with Poincaré map (⋆) and (b) time-series of the state variables.
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Figure 8.35: Relative error of the estimated free system response future value using dif-
ferent (a) N and (b) ko.

Notice that u : R+ × R
3 → R

3 and the control signal may be applied to the derivative of

each state variable resulting in fully actuated system. However, in this section, only the

third component of the control signal vector is different from zero according to the choice

of the matrix control gain 8.11.

First, the quality of the estimator is evaluated for different values of the observer gain

ko and the number of discretization points for the orthogonal collocation method N for

the control gain k = 0. Second, the control gain k is tuned using ko and N that leads to

a good estimation quality. Third, the control method is applied for different N and the

steady state control effort υ and error d are computed for one cycle of the orbit.

Tuning the parameters ko and N

The procedure shown in Section 8.4.1 is repeated here to characterize the performance of

the estimator for different values of the parameters ko and N for k = 0. We used as the

initial condition x(0) = [0, − 6, 0.0375]′ to compute ε(N, ko) in (8.9). The results are

shown in Figure 8.35 for different values of (a) N with ko = 50 (ε(N, 50)) and (b) ko with

N = 152 (ε(152, ko)).

The values of N < 32 leads to numerical integration instability, except N = 3, and

are not computed. Here we notice that less collocation points are necessary to obtain

estimation quality equivalent to the one obtained for the vdP oscillator (see Figure 8.15).
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Figure 8.36: Current time and shifted future time trajectory of the Rössler system for
k = 0, ko = 10 and N = 102.

We see that for the vdP we have ε(102, 50) ≈ 4.4× 10−4 while, for the Rössler system we

have ε(52, 50) ≈ 4.4×10−4. The values of ε(152, ko) for ko large of the chosen trajectory of

the Rössler system also stabilize to a value much smaller than for the vdP oscillator. Notice

that T = 5.8439698764 (the period of the TUPO4) for Rössler system while T = 2π/0.45

for the vdP oscillator, but these values of ε(152, ko) are much more related with the

behaviour of the trajectories than the period itself because the collocation points si are

computed for a normalized time between 0 and 1.

In Figure 8.36 it is shown x2(t) and m̂N,2(t − T ) (beware the time shift here) for the

Rössler system, which can be compared with Figure 8.16.

Tuning of k

Now we tune the feedback gain k that stabilizes the TUPO4. As done in Section 8.4.2,

we use N = 102 and ko = 10 which leads to an adequate estimation of the future state.

Figure 8.37 shows the modulus of the three Floquet multipliers |µ| for different values

of k. The stability is achieved when |µ| ≤ 1 and the value µ = 1 is characteristic of

autonomous system trajectories. We choose k = 1.85, which results in |µ| ≈ 0.299×10−2.

All the Floquet multipliers in this case are real numbers.
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Figure 8.37: Modulus of the Floquet multipliers for different values of k for the TUPO4
controlled by the aPBC.

Applying the aPBC for different values of N

In this section we evaluate the characteristics of the aPBC for different values of N applied

to the stabilization of the TUPO4. Here we use N ≤ 102, ko = 10 and k = 1.85.

From Figure 8.35(a) an increase of ǫ(N, 50) is observed when decreasing N for k = 0.

This value means the relative difference between the predicted state m̂N,2(t) and the actual

state x(t) for one cycle of a trajectory in the chaotic attractor of the free system. Now we

are interested in the characteristics of the closed-loop system, in special the value of d (see

(8.3), with r(t) = m̂N(t)) and υ (see (8.4)) as a function of N for the TUPO4 stabilized

by the aPBC.

Figure 8.38(a) shows υ for different values of N ≥ 32 with k = 1.85 and ko = 10. The

same for d is shown in Figure 8.38(b). Values of 3 < N < 32 where not computed because

of numerical integration instabilities, the same observed in Section 8.4.4.

Here we observe that N ≥ 102 leads to a precise estimation once there is a convergence

of υ to the value computed using N = 152 and ko = 50 (dashed line). Comparing Figure

8.38 with Figure 8.27 it is observed a great reduction on υ and d for the control method

applied to the Rössler system, which is in accordance with what was observed for ε(N, 50).

In fact, N between 47 and 52 leads to a value of d equivalent to the value obtained for

N = 102 for the vdP oscillator. For the υ this reduction is more significant, with N = 37

leading to a value of υ close to the value obtained for N = 102 for the vdP. This result is
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Figure 8.38: (a) d and (b) υ applying aPBC to the TUPO4 for different N with k = 1.85
and ko = 10. The bottom dashed line is the value of (a) d and (b) υ computed with
N = 152 and ko = 50 used as reference.

important for practical aspects because it shows that, for some systems, the augmented

state of the closed-loop system controlled with the aPBC can be reduced significantly (in

comparison with the initial results shown for the vdP oscillator).

It is observed in Figure 8.38 that stability of TUPO4 is achieved for N ≥ 32. The

TUPO4 stabilized with the aPBC for N = 102, N = 82, N = 52 and N = 32 is shown in

Figures 8.39, 8.40, 8.41 and 8.42, respectively, using x(0) = [0, − 6, 0.0375]′. Deviation

of m̂N,2(t) from x2(t) is observed in Figure 8.42(d), this deviation reflects the numerical

integration instabilities for N < 32. The aPBC applied for N = 3 with the same initial

condition is shown in Figure 8.43. We verify that stabilization is not achieved for N = 3,

which leads to the high values of υ and d observed in Figure 8.38.

By applying k = 1, k0 = 10 and x(0) on the Poincaré map point of the TUPO4

for N = 3 we have the stable orbit shown in Figure 8.44(a), different from TUPO4 in

position, continuous-time period (T ≈ 35.2) and discrete-time (Poincaré) period (p = 6).

Figure 8.44(b) shows that the stabilized orbit is not a periodic orbit of the free system

(relatively high control effort) and this is confirmed by integrating the free Rössler system

for 0 ≤ t ≤ 35.2) with initial condition on the stabilized orbit and verifying that it does

not close in state space.
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Figure 8.39: aPBC applied with N = 102, k = 1.85 and ko = 10. (a) Trajectory in
state space; (b) time-series of the control signal; (c), (d) and (e) time-series of the actual
and predicted state variables; (f) time-series of ϕ(T, 0, x(0), 0) and the initial value of the
predicted states mj(0).
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Figure 8.40: aPBC applied with N = 82, k = 1.85 and ko = 10. (a) Trajectory in
state space; (b) time-series of the control signal; (c), (d) and (e) time-series of the actual
and predicted state variables; (f) time-series of ϕ(T, 0, x(0), 0) and the initial value of the
predicted states mj(0).
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Figure 8.41: aPBC applied with N = 52, k = 1.85 and ko = 10. (a) Trajectory in
state space; (b) time-series of the control signal; (c), (d) and (e) time-series of the actual
and predicted state variables; (f) time-series of ϕ(T, 0, x(0), 0) and the initial value of the
predicted states mj(0).
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Figure 8.42: aPBC applied with N = 32, k = 1.85 and ko = 10. (a) Trajectory in
state space; (b) time-series of the control signal; (c), (d) and (e) time-series of the actual
and predicted state variables; (f) time-series of ϕ(T, 0, x(0), 0) and the initial value of the
predicted states mj(0).
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Figure 8.43: aPBC applied with N = 03, k = 1.85 and ko = 10. (a) Trajectory in state
space; (b) time-series of the control signal; (c) time-series of ϕ(T, 0, x(0), 0) and the initial
value of the predicted states mj(0).
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Figure 8.44: aPBC applied with N = 03, k = 1 and ko = 10. (a) Trajectory in state space
with 0 ≤ t1 ≤ 7 and 7 ≤ t2 ≤ 293; (b) time-series of the control signal; (c) time-series of
ϕ(T, 0, x(0), 0) and the initial value of the predicted states mj(0).
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Conclusions

In Part II the stabilization of existing periodic orbits of continuous-time systems using

feedback control was studied. The interest is in control methods whose control signal

ideally vanishes when the trajectory is on the stabilized periodic orbit. This ideal condi-

tion is achieved when the stable periodic orbit is exactly the same (position and period)

unstable periodic orbit of the free system. Considering future practical applications of the

methods in real systems, we are also interested in a stable periodic orbit in the vicinity

of the target UPO.

The proportional feedback control (PFC), delayed feedback control (DFC) and prediction-

based feedback control (PBC) were studied to stabilize periodic orbits. The PFC was pre-

sented in Section 7.3.1. The DFC was presented in Section 7.3.2 and a method to simplify

the stability analysis of closed-loop periodic orbits approximating their monodromy ma-

trices by matrix algebra only was presented in Section 7.4.2. This simplification reduced

the computational time to verify the stability of the closed-loop orbit given a control gain

and made feasible the application of optimization to control gain design of the continuous-

time DFC in Section 8.3. The continuous-time PBC was presented in Section 7.3.3, but

its application on continuous and real-time systems is not allowed due to the necessity to

compute the future state of the free system trajectories one period ahead at the current

time. This problem was solved with the proposition of the approximated prediction-
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based control (aPBC) in Section 7.3.3. The aPBC uses an estimator based on implicit

Runge-Kutta methods to approximate the free system future states in real-time.

The three methods were compared using a non-autonomous system (forced van der

Pol oscillator) in Chapter 8 using three different target UPOs. One orbit (TUPO1) of

discrete period 1 without odd number of real Floquet multipliers larger than +1, one

orbit (TUPO2) of discrete period 1 with one real Floquet multipliers larger than +1 and

one orbit (TUPO3) with discrete period 7, considered a large period. The DFC and

PFC control gains were designed using optimization with the largest magnitude Floquet

multiplier as a cost function.

Stabilizing TUPO1 of the vdP oscillator. The three methods (PFC, DFC and

aPBC) achieved the stabilization of TUPO1 and for this example we can do some affir-

mations.

Comparing the stability by the largest magnitude Floquet multiplier (Figures 8.4 and

8.17) we observed that the range of stabilizing control gain is larger for the PFC and

smaller for the aPBC. The smaller value of the largest Floquet multiplier was obtained

using the PFC and the larger with the DFC. A comparison criterion also related with the

Floquet multipliers is the convergence rate of nearby trajectories to the stable solution. In

this case (Figures 8.6 and 8.23), the best results (faster convergence rate) were obtained

for the PFC and the worst for the DFC. We conclude that considering Floquet multipliers

and their associated performance characteristics (stability and convergence rate) the best

results were obtained for the PFC, the aPBC is in an intermediate situation and the DFC

leaded to the worst results.

Comparing the steady state error and control effort (Figures 8.8 and 8.27) we observe

that for small control gains the DFC and PFC present similar results. The best result

obtained for the aPBC (k = 0.25, ko = 50 and N = 150 - dashed line in Figure 8.27) is

significantly (approximately 106 times) worse compared to the DFC and PFC. This result

is clearly expected because of the estimation approximations used with the aPBC.

A numerical robustness analysis to one parameter uncertainty comparing the DFC and

PFC is shown in Figure 8.10. One may observe that the DFC is more robust to variations
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on the forcing term amplitude (a) than the PFC. This is justified by the fact that the

PFC depends upon the exact knowledge of the target UPO which changes when a system

parameter is modified. The steady state error and control effort increase considerably for

a 6= 0.988 when using the PFC and this is the main weakness of the method once the

exact orbit is never found in real systems. Notwithstanding, the closed-loop stable orbit

obtained for the PFC is more stable than the stabilized orbit obtained for the DFC for

all tested values of a.

This robustness analysis was not performed for the aPBC (results will be shown in

future works), although, the results of Part I and the knowledge about the characteristics

of the method can be used for some conclusions. Figures 4.10 and 4.11 show that the PBC

has robustness characteristics similar to the PFC, that is, variations on a system parameter

increase the steady state control effort and Floquet multipliers of the closed-loop stable

orbit. The PBC depends on the system model to predict the free system future states and

differences between this model and the real system degrade the closed-loop performance.

The aPBC is a new method for stabilization of periodic orbits proposed in this work

and there are still many open questions about it. Several of these questions are outlined

in Chapter 10. The numerical simulations were performed to show that it works, that it

has some advantages comparing to other methods and evaluate some basic characteristics.

The most important characteristic for application of the method is the necessity of the

enlarged equation (7.40) composed by the n(N − 1) discretized states used for estimation

of future states (n is the state-space and N is the number of discretization points). The

method used in the numerical examples as implicit Runge-Kutta method is the orthogonal

collocation. We concluded that a large N is necessary to obtain a stable solution. Small

N leads to numerical integration errors. The relation between steady state error and

control effort with the value of N is exponential, that is, reducing N the performance of

the controller degrades exponentially.

Stabilizing TUPO2 and TUPO3 of the vdP oscillator. The TUPO2 and TUPO3

were chosen as examples of orbits that can not be stabilized by the DFC. There is not any

theoretical limitation for the PFC and PBC on stabilizing them, but there is a practical

155



Chapter 9

limitation for the aPBC. When stabilizing TUPO3 with the aPBC it would be necessary

a huge number of discretization points N and this clearly shows the necessity of reducing

N , for example, using a different implicit Runge-Kutta method.

Applying the aPBC to an autonomous system Finishing the examples, an au-

tonomous system was used as case study for the aPBC. Basically it was not found any

limitation in applying the method for these systems. It was verified again that the steady

state error and control effort increase exponentially when decreasing N .

It was shown that for one periodic orbit of the Rössler system it was necessary less

discretization points than for periodic orbits of the vdP oscillator to obtain values of d

and υ equivalent. This is related to the smoother folds of the Rössler periodic orbit,

parts of trajectories with sharp folds require more precise numerical integration. In the

case of the implicit Runge-Kutta method the numerical integration precision is directly

proportional to N . It is evident in Figure 8.29(c) that on some folds of the TUPO1 of the

vdP oscillator the predicted trajectory oscillates around the expected value.

Implementation and discretization issues. For real-time applications, the imple-

mentation of the aPBC depends on the ability of computing the control signal between

sample times of the sensor measurement. That is, the data should be read by the sensor,

it should be processed, the value of the control signal should be computed and delivered

to the actuator at the next sample time. A larger number of discretization points N

used to predict the future values of the state and consequently a larger dimension of the

closed-loop system implies higher computational effort.

When measurement is discrete, use of piecewise constant control is natural and yields

to discrete-time system - just as studied in Part I. Due to the future state prediction,

the right-hand side of the latter system corresponds to an approximation of the map

associated to the (open-loop) continuous-time system with constant input, which maps

x(t) to x(t+ T ). Thus, the analysis provided for discrete-time systems should be related,

and to verify this claim is a point for further studies.
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Final comments and suggestions for

future research

In this work, local stability of periodic orbits were studied using Floquet theory analyzing

the linearized system in the close vicinity of the periodic orbit. It was shown that alter-

native results can be obtained using Lyapunov stability, although, this method was not

applied. The linearized system in the closed vicinity of the periodic orbit is described by a

linear time-periodic system, then the stabilization of periodic orbits of non-linear system

is reduced to stabilization of this type of linear system. Basically is was shown that these

linear systems can be stabilized via eigenvalues assignment using state feedback control

methods. However, once the unstable periodic orbit already exists on the non-linear sys-

tem, this characteristic can be used to stabilize them with ideal zero steady-state control

effort.

Three stabilization methods which are ideally capable of achieving stabilization with

zero steady state control effort were studied, proportional feedback control (PFC), de-

layed feedback control (DFC) and prediction-based feedback control (PBC). We are also

interested in stable periodic orbits in the close vicinity of the target UPO, which leads to

small steady state control effort.

The main contributions of the thesis are development of a new control law for the

discrete-time PBC, a new design method for the continuous-time DFC and a new control
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method based on the PBC applied to continuous-time system and are summarized in

Section 1.1. All the methods studied and proposed were compared by numerical examples

in Sections 4 and 8.

Results were provided in discrete and continuous-time systems. For continuous-time

systems most of the effort was dedicated to the implementation of the PBC (or aPBC)

and the approximation of the closed-loop monodromy matrix for the DFC. The prediction

of the future state in the discrete-time case can be done numerically by computing the

recursive evolution equation of the system at each time step; this computation is fast and

the time between successive steps will be sufficient in most cases. For continuous-time

systems the future state shall be obtained in real-time and this may not be done integrating

the differential equation with an explicit integration method at each time instant.

Another problem related to the differential equation used to model the continuous-time

system dynamics is the computation of the monodromy matrix, necessary for stability

analysis and control gain design. This problem is explicitly solved in the case of the

DFC, where the closed-loop system is represented by a DDE and has infinite dimension,

requiring the discretization of past states to approximate the monodromy matrix. The

computation of the monodromy matrix also affects the PBC, notice that for the discrete-

time proposed control laws the free system monodromy matrix (or state-transition matrix)

is required and readily computed. An equivalent control law for continuous-time systems

was proposed, but the requirement of the free system monodromy matrix limited its

implementation.

Considerations done in Chapters 5 and 8 allow to affirm that if the DFC method

locally stabilizes the target UPO and satisfies the closed-loop system requirements (for

example, size of basins of attraction, convergence rate, etc.) due to application simplicity

(only necessitates to record past states) and low steady state control effort this method is

indicated for stabilization of periodic orbits. Comparing robustness to parameter uncer-

tainties, it was shown that, for a certain interval of the parameter variation, the DFC is

the more robust method. Although, it was shown that the DFC has some limitations, not

stabilizing certain types of orbits that are stabilized by the other methods. It was also

shown that the DFC presents the smaller basins of attraction (at least for the discrete-

158



Chapter 10

time systems), slower convergence rate and leads to the less stable orbits. Then, there are

cases where the PFC or PBC/aPBC should be applied.

Comparing the PFC and the PBC/aPBC results in the question: what is the most

feasible, to obtain an approximation of the target periodic orbit or to obtain the model of

the non-linear system? Even if the orbit can be roughly approximated from time series of

the system output, the system model or some control method is necessary to refine this

approximation. It is known how to obtain UPOs if the system model is available using

Newton-Raphson method. If the periodic orbit is stabilized by the DFC it can be recorded

and used with the PFC, this was performed in the numerical simulations of Section 8.3.2

to refine the target orbit approximation. It should be evidenced that the control gain

design, generally, requires the system model. Once the system model is obtained, it is

possible to increase the control system robustness to parameters uncertainties and it is

also possible to adjust the model when a parameter change identified. Resuming, in cases

where the DFC does not satisfy the closed-loop system requirements, the PBC/aPBC is

a feasible alternative.

Future works and open questions

Use of other techniques to control gain design applied to the methods. It was

applied optimization using as cost function the largest magnitude Floquet multiplier to the

DFC control gain design and it was proposed a deadbeat controller for the PBC applied to

discrete-time systems. For continuous-time systems the PFC and PBC control gain design

was performed in a non usual sense. We gave the control gain and computed the Floquet

multipliers, then we chose the control gain that leaded to the smaller largest magnitude

Floquet multiplier. It would be interesting to apply the direct Lyapunov method or

eigenvalues assignment technique studied in Sections 3.2 and 7.2 to the linearized dynamic

of the closed-loop system when using DFC, PFC of PBC. These methods may enable that,

given the desired Floquet multiplier, the control gain is designed;
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Control law for the non-invertible input matrix case applying PBC to discrete-

time systems. A control law that does not necessitate previous knowledge about the

target UPO and is applicable to discrete-time systems with a non-invertible input matrix

was presented in Section 3.4.3. Theorem 3.19 was used to define mathematically the

condition for application of the control law. However it is an open question the type of

real system that satisfies the theorem and if this type of system is usual in engineering

problems. Another open question is the expansion of the theorem to multi input systems;

Robustness analysis of the control methods. Both for discrete and continuous-

time systems a numerical robustness analysis to parameters uncertainties of some control

methods was performed. Although, it is necessary to do a similar analysis for the aPBC

to compare with the other continuous-time controllers. It would be interesting also to

analytically discuss the robustness of the aPBC and suggest methodologies to increase it

since the prediction model will be subjected to uncertainties in real application;

Analysis of the PBC/aPBC subjected to noise. The prediction of the future state

for the PBC/aPBC is based on the evolution in time of the actual value of the state

variables. In practical applications this value is affected by noise, for example, the noise

associated to the sensors used to measure the state outputs. The implication of this noise

should be studied in future works because it decreases the estimation quality and can

lead to the instability of the target UPO. Moreover, the proposed control laws for the

discrete-time system depends on the cancellation of the linearized dynamics, which will

not occur if the system is subjected to noise and this topic should be analyzed;

Design the aPBC control gain. The control gain used with the aPBC was designed

for the PBC (for off-line continuous-time systems) and it was shown numerically that it is

applicable to the aPBC for large N . That is, for a good estimation of the future state, the

PBC control gain can be applied to the aPBC with satisfactory results. But the control

gain design directly applied to the aPBC, and that consider the number of discretization

points necessary to the approximation of the predicted state, is suggested as future work;
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Reducing the number of discretization points for the aPBC. It was pointed as

a weakness of the aPBC using orthogonal collocation with Lagrange polynomials that

lots of collocation points are necessary to obtain stabilization and this number is related

exponentially to the reduction of steady state error and control effort. But, considering

future applications the worst point is that it is directly proportional to the number of

extended states of the closed-loop system. A necessary future work is applying other

methods to reduce N , for example using orthogonal collocation with Chebyshev polyno-

mial or finite elements (maybe associated with orthogonal collocation) or other methods

contained in the literature. Another question to be studied is why numerical integration

becomes unstable when reducing N , this can be an important point aiming its reduction;

Apply alternative control laws to the aPBC avoiding dependence of previ-

ous knowledge of the target UPO. It was proposed in Section 7.4.3 an alternative

method for stabilization of periodic orbits using the aPBC without previous knowledge of

the target orbit. The suggested method was not applied due to necessity of estimation of

the free-system state transition matrix along one period of the target UPO. This estima-

tion and other control laws that do not require previous knowledge about the UPO are

suggested as future work;

Basins of attraction for continuous-time systems. The basins of attraction of the

stabilized orbits in continuous-time systems were not computed due to computational

limitations. These basins of attraction are important for comparison between methods

and are expected in future works;

Increase robustness to period uncertainties. Both DFC and aPBC require the

previous knowledge of the target orbit period. For non-autonomous systems with forcing

term this period is exactly known, however for other systems this is not necessarily true.

For example, when applying the Newton-Raphson method it is obtained one point of the

target UPO and its period with great precision. In other situations, for example obtaining

UPOs from time series, the computed period might be a poor approximation of the real
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period. Then, it would be interesting to increase the robustness of the method to this

uncertainty, using for example some averaging methods.
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Appendix A

Dynamical systems - Definitions

The definitions of dynamical systems are presented in this appendix. Only the principal

definitions are transcribed here, for a complete text on the subject see [41].

A.1 General concepts of dynamical systems

Definition A.1 (Dynamical system, see Definition 2.1.1 in [41]). A structure

Σ = (T, U,U , X, Y, ϕ, η) is said to be a dynamical system or state space system with

time domain T , input value space U , input function space U , state space X, output value

space Y , state transition map ϕ, and output map η, if T , U , U , X, Y are non void sets,

T ⊂ R, U ⊂ UT , and η : T × X × U → Y , ϕ : Dϕ → X (where Dϕ ⊂ T 2 ×X × U) are

functions such that the following axioms hold.

Axiom 1 (Interval). For every t0 ∈ T , x
0 ∈ X, u(·) ∈ U the life span of ϕ(·, t0, x

0, u(·))

Tt0,x0,u(·) = {t ∈ T ; (t, t0, x
0, u(·)) ∈ Dϕ}

is an interval in T containing t0.

Axiom 2 (Consistency). For every t0 ∈ T , x
0 ∈ X, u(·) ∈ U

ϕ(t0, t0, x
0, u(·)) = x0.
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Axiom 3 (Causality). For all t0 ∈ T , x
0 ∈ X, u(·), v(·) ∈ U , t1 ∈ Tt0,x0,u(·) ∩ Tt0,x0,v(·)

(∀t ∈ [t0, t1) : u(t) = v(t)) ⇒ ϕ(t1, t0, x
0, u(·)) = ϕ(t1, t0, x

0, v(·)).

Axiom 4 (Co-cycle property). If t1 ∈ Tt0,x0,u(·) and x
1 = ϕ(t1, t0, x

0, u(·)) for some t0 ∈ T ,

x0 ∈ X, u(·) ∈ U then Tt1,x1,u(·) ⊂ Tt0,x0,u(·) and

ϕ(t, t0, x
0, u(·)) = ϕ(t, t1, x

1, u(·)), t ∈ Tt1,x1,u(·).

UT denotes the set of all functions u(·) : T → U . U ⊂ UT is the set of admissible

input functions, in general, it is not possible to admit arbitrary functions u(·) ∈ UT . We

distinguish the notations between input values u ∈ U and input functions u(·) ∈ U . Dϕ

is called the domain of definition of ϕ.

See [25] for supplementary reference on dynamical systems.

Definition A.2 (Differentiable system, see Definition 2.1.12 in [41]). A dynamical system

Σ = (T, U,U , X, Y, ϕ, η) is called differentiable if the following conditions are satisfied.

• T ⊂ R is an open interval.

• U , Y are subsets of Km and Kp, X is an open subset of Kn.

• There exists a function f : T × X × U → Kn such that for all t0 ∈ T , x0 ∈ X,

u(·) ∈ U the initial value problem

ẋ(t) = f(t, x(t), u(t)), t ≥ t0, t ∈ T

x(t0) = x0
(A.1)
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has a unique solution x(·) on a maximal open time interval I satisfying I = Tt0,x0,u(·)

and x(t) = ϕ(t, t0, x
0, u(·)), t ∈ I.

• η : T ×X × U → Y is continuous.

K is an arbitrary field, either R or C.

Definition A.3 (Recursive system, see Example 2.1.23 in [41]). Let U , X, Y be non-

empty sets, T = N or Z and

f : T ×X × U → X, η : T ×X × U → Y

be two arbitrary mappings. For any u(·) ∈ U = UT , t0 ∈ T , x
0 ∈ X let ϕ(t, t0, x

0, u(·)),

t ∈ T , t ≥ t0 be the unique solution of the recursive (or difference) equation

x(t+ 1) = f(t, x(t), u(t)) (A.2)

with initial value x(t0) = x0. Then Σ = (T, U,U , X, Y, ϕ, η) is a discrete-time dynamical

system.

Definition A.4 (Time-periodic function). If f(t + τ, x, u) = f(t, x, u), for any t ∈ T ,

x ∈ X and u ∈ U , then f(t, x, u) is called a time-periodic function with minimal period

τ .

Definition A.5 (Poincaré map). Let Σ = (T, U,U , X, Y, ϕ, η) be a differentiable dynam-

ical system defined by a time-periodic function f(t, x, u) with period τp for x = x∗(t). A

hyperplane S ⊂ X defined such that x∗(0) ∈ S and x(t) crosses S transversally in the close

vicinity of x∗(0) is called Poincaré section. The Poincaré map P (x) : S → S is defined

by P k(x∗(0)) = {x∗(τk) ∈ S : x∗(τk) = ϕ(τk, 0, x
∗(0), 0)}. τk ∈ T is the time necessary for

ϕ(t, 0, x∗(0), 0) to cross S k ∈ N times. The discrete period p ∈ N is the minimal k such

that P p(x∗(0)) = x∗(0) = x∗(τp).
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A.2 Linear systems

Definition A.6 (Linear system, see Definition 2.1.26 in [41]). Let K be an arbitrary field.

A dynamical system Σ is said to be K-linear if

• U , U , X, Y are vector spaces over K,

• the maps

ϕ(t, t0, ·, ·) : X × U → X and η(t, ·, ·) : X × U → Y

are K-linear for all t, t0 ∈ T , t ≥ t0.

The second condition implies that

ϕ(t, t0, 0X , 0U) = 0X , t, t0 ∈ T, t ≥ t0

where 0X is the origin in X and 0U the origin in U (zero function). This means that 0X

is an equilibrium state of Σ under the control 0U whenever Σ is linear.

Remark A.7 (Superposition principle, see page 100 in [41]). Let K be an arbitrary field

and Σ = (T, U,U , X, Y, ϕ, η) a K-linear system, then for every t0, t ∈ T , t ≥ t0 and

λi ∈ K, xi ∈ X, ui ∈ U , ui(·) ∈ U , i = 1, . . . , k we have

ϕ(t, t0,

k
∑

i=1

λixi,

k
∑

i=1

λiui(·)) =

k
∑

i=1

λiϕ(t, t0, xi, ui(·))

η(t,

k
∑

i=1

λixi,

k
∑

i=1

λiui) =

k
∑

i=1

λiη(t, xi, ui).

A special case of the superposition principle is the decomposition principle:

ϕ(t, t0, x
0, u(·)) = ϕ(t, t0, x

0, 0U) + ϕ(t, t0, 0X , u(·)).
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The decomposition law leads us to introduce the following two families of linear maps.

For any pair of times (t, t0) ∈ T
2, t ≥ t0, we define the evolution operator Φ(t, t0) : X → X

by

Φ(t, t0)x = ϕ(t, t0, x, 0U), x ∈ X (A.3)

and the input-to-state map Θ(t, t0) : U → X by

Θ(t, t0)u(·) = ϕ(t, t0, 0x, u(·)), u(·) ∈ U . (A.4)

The Axioms 2 and 4 of a state transition map imply the following basic equations

Φ(t, t) = IX , t ∈ T

Φ(t2, t1) ◦ Φ(t1, t0) = Φ(t2, t0), t0, t1, t2 ∈ T, t0 ≤ t1 ≤ t2.
(A.5)

Let Lq
loc(T,X) be the space of q-integrable functions x : T → X and PC(T,X) be a

space of piecewise continuous functions x : T → X .

Definition A.8 (Linear hyperbolic map, see Definition 1.2.5 in [50]). A linear map of K

is called hyperbolic if all of its eigenvalues have absolute values different from one.

Definition A.9 (Linear differentiable systems, see Example 2.2.1 in [41]). Let T ⊂ R

be an interval, X = Kn, U = Km, Y = Kp, U any linear subspace of L1
loc
(T,Km), e.g.

U = PC(T,Km) and A(·) ∈ PC(T,Kn×n), B(·) ∈ PC(T,Kn×m), C(·) ∈ PC(T,Kp×n),

D(·) ∈ PC(T,Kp×m). Σ = (T, U,U , X, Y, ϕ, η) is a linear differentiable system defined by

the matrix-valued functions A(·), B(·), C(·), D(·) with state transition map

ϕ(t, t0, x
0, u(·)) = X(t, t0)x

0 +

∫ t

t0

X(t, s)B(s)u(s) ds, t ∈ T. (A.6)

and output map

η(t, x, u) = C(t)x+D(t)u.
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X(t, t0) is the fundamental matrix associated with the initial value problem with unique

solution [41, Corollary 2.1.20]

ẋ(t) = A(t)x(t) +B(t)u(t), t ∈ T

x(t0) = x0
(A.7)

for all u(·) ∈ U , t0 ∈ T , x0 ∈ X. By definition, X(t, t0) is the solution of the matrix

differential equation
dX(t, t0)

dt
= A(t)X(t, t0), t ∈ T

X(t0, t0) = In,

where In is the identity matrix of order n.

Let us now determine the linear operators Φ(t, t0), Θ(t, t0) associated with Σ. As an

immediate consequence of (A.3) and (A.6) we obtain for all t0, t ∈ T

Φ(t, t0)x = X(t, t0)x.

So the fundamental matrix of (A.7) is just the matrix representation of the evolution

operator Φ(t, t0) with respect to the standard basis of Kn. We use the same notation

Φ(t, t0) for both the linear operators and their matrix representations, called state tran-

sition matrix [33]. Since Φ(t, t0)Φ(t0, t) = In (A.5), the operators Φ(t, t0), t, t0 ∈ T are

invertible. From (A.4) and (A.6) we obtain for all t0, t ∈ T

Θ(t, t0)u(·) =

∫ t

t0

Φ(t, s)B(s)u(s) ds, u(·) ∈ U .

This specifies the relation between the input-to-state operators Θ(t, t0) and the evolution

operator Φ(t, s) for the system Σ.
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Definition A.10 (Periodic linear differentiable system, adapted from page 12 in [2]). If

A(t) = A(t+ τ) and B(t) = B(t+ τ), ∀t ∈ T , then the linear differentiable system (A.7)

assumes the form

ẋ(t) = A(t)x(t) +B(t)u(t), t+ τ ∈ Tt,x,u(·). (A.8)

We call such an equation a linear periodic differentiable system with period τ .

Definition A.11 (Linear difference systems, see Example 2.2.2 in [41]). Let K be an

arbitrary field, U = Km, X = Kn, Y = Kp, T ⊂ Z a time-domain satisfying t ∈ T ⇒

t + 1 ∈ T , U = UT , and A(·) = (A(t))t∈T , B(·) = ((B(t))t∈T , C(·) = (C(t))t∈T , D(·) =

(D(t))t∈T sequences of n×n, n×m, p×n, p×m matrices over K. Σ = (T, U,U , X, Y, ϕ, η)

is a linear difference system defined by the matrix-valued functions A(·), B(·), C(·), D(·)

with state transition map

ϕ(t, t0, x
0, u(·)) = Φ(t, t0)x

0 +

t−1
∑

s=t0

Φ(t, s+ 1)B(s)u(s), t ∈ Tt0

and output map

η(t, x, u) = C(t)x+D(t)u.

Φ(t, t0) is the fundamental matrix associated with the initial value problem with unique

solution

x(t + 1) = A(t)x(t) +B(t)u(t), t ∈ T

x(t0) = x0.
(A.9)

for all u(·) ∈ U , t0 ∈ T , x0 ∈ X. By definition, Φ(t, t0) is the solution of the matrix

product

Φ(t, t0) = A(t− 1)A(t− 2) . . .A(t0), t, t0 ∈ T,t0 < t.

and Φ(t0, t0) = In for all t0 ∈ T .
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As done for the linear differentiable system, we call the matrix representation of the

evolution operator Φ(t, t0) as state transition matrix. The associated input-to-state oper-

ator Θ(t, t0) can again be expressed in terms of the evolution operator Φ(t, s),

Θ(t, t0)u(·) =

t−1
∑

s=t0

Φ(t, s+ 1)B(s)u(s), u(·) ∈ U ,t0, t ∈ T, t0 < t.

Definition A.12 (Periodic linear difference system, adapted from page 62 in [2]). If

A(t) = A(t + τ) and B(t) = B(t + τ), ∀t ∈ T , then the linear difference system (A.9)

assumes the form

x(t + 1) = A(t)x(t) +B(t)u(t) = A(t+ τ)x(t) +B(t + τ)u(t), t+ τ ∈ Tt,x,u(·). (A.10)

We call such an equation a linear periodic difference system with period τ .

Definition A.13 (Monodromy matrix, adapted from page 74 in [5]). The linear evolution

operator matrix of (A.8) or (A.10) over one period τ

Ψ(t) = Φ(t + τ, t), ∀t ∈ T,

is defined as monodromy matrix at time t.
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Appendix B

Stability of dynamical systems

The definitions of stability are presented in this appendix as a complement to the defi-

nitions on dynamical systems shown in Appendix A. Only the main definitions are tran-

scribed here, for a complete text on the subject see e.g. [41].

We introduce the basic notations of stability for local flows F = (T,X, ϕ) on a metric

space (X, d). Consider time domains T which are unbounded to the right and assume that

the control ū(·) ∈ U is fixed and neglect the output. We study the local flow F = (T,X, ϕ)

determined by the fixed control ū(·)

ϕ(t, t0, x
0) = ϕ(t, t0, x

0, ū(·)), t ∈ Tt0(x
0) := Tt0,x0,ū(·), (t0, x

0) ∈ T ×X.

Definition B.1 (Local flow, see Definition 3.1.1 in [41]). F = (T,X, ϕ) is said to be a local

flow with time domain T ⊂ R and state transition function ϕ on a metric space (X, d),

if for every (t0, x
0) ∈ T × X there exists t+(t0, x

0) ∈ (t0,∞] such that ϕ(t, t0, x
0) ∈ X

is defined for all t ∈ Tt0(x
0) = T ∩ [t0, t+(t0, x

0)) and satisfies for all (t0, x
0) ∈ T × X,

t, t1 ∈ Tt0(x
0), t ≥ t1

• ϕ(t0, t0, x
0) = x0.

• Tt1(ϕ(t1, t0, x
0)) = Tt1 ∩ Tt0(x

0) and ϕ(t, t0, x
0) = ϕ(t, t1, ϕ(t1, t0, x

0)).
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• The map (t, s, x) 7→ ϕ(t, s, x) is continuous in the sense: If (tk, sk, x
k) converges in

T × T × X to (t, s, x) where t ∈ Ts(x), t > s, then tk ∈ Tsk(x
k) for k sufficiently

large and limk→∞ ϕ(tk, sk, x
k) = ϕ(t, s, x).

F = (T,X, ϕ) is called a global flow if additionally t+(t0, x
0) = ∞ for all (t0, x

0) ∈

T ×X .

Recall that in any metric space (X, d) the distance between a point x ∈ X and a

subset S ⊂ X is defined by

dist(x, S) = inf{d(x, y); y ∈ S}.

For every t0, the set of initial states x0 ∈ X which generate, at time t0, trajectories

with infinite life span is denoted by

X∞(t0) = {x
0 ∈ X ; t+(t0, x

0) =∞}.

B.1 Stability of an equilibrium state

Suppose that x̄ is an equilibrium state of a local flow F , i.e. ϕ(t, t0, x̄) = x̄ for all t ∈ Tt0 ,

t0 ∈ T .

Definition B.2 (Open ball). The open ball of radius δ > 0 and centre x̄ ∈ X, is defined

by

B(x̄, δ) = {x ∈ X ; d(x̄, x) < δ}.

Definition B.3 (Stability of equilibrium state, see Definition 3.1.8 in [41]). An equilibrium

state x̄ of a local flow F is stable at time t0 ∈ T if for all ǫ > 0 there exists δ = δ(ǫ, t0)

such that B(x̄, δ) ⊂ X∞(t0) and

x0 ∈ B(x̄, δ)⇒ ϕ(t, t0, x
0) ∈ B(x̄, ǫ), t ∈ Tt0 .

Definition B.4 (Asymptotic stability of an equilibrium state, see Definition 3.1.9 in [41]).
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• An equilibrium state x̄ of a local flow F is called attractive at time t0 if there exists

ρ = ρ(t0) > 0 such that B(x̄, ρ) ⊂ X∞(t0) and

x0 ∈ B(x̄, ρ)⇒ lim
t→∞

ϕ(t, t0, x
0) = x̄.

• x̄ is said to be asymptotically stable at time t0, if it is stable and attractive at time

t0.

• If x̄ is attractive the basin of attraction of x̄ at time t0 is given by

A(t0, x̄) =
{

x0 ∈ X∞(t0); lim
t→∞

ϕ(t, t0, x
0) = x̄

}

.

x̄ is said to be globally attractive at time t0 if A(t0, x̄) = X.

Definition B.5 (Exponential stability of an equilibrium state, see Definition 3.2.19

in [41]). An equilibrium point x̄ of the non-linear system (A.1) or (A.2) is said to be

exponentially stable at time t0 if it is stable and exponentially attractive at time t0, i.e.

there are δ = δ(t0) > 0, M = M(t0) > 0, ω = ω(t0) < 0, such that ϕ(t, t0, x
0) exists for

all t ∈ Tt0 and

‖x0 − x̄‖ < δ ⇒ ‖ϕ(t, t0, x
0)− x̄‖ ≤Meω(t−t0), t ∈ Tt0 . (B.1)

If x̄ is uniformly stable and (B.1) holds with constants δ, M , ω independent of t0 then x̄

is said to be uniformly exponentially stable.

B.2 Stability of a trajectory

Definition B.6 (Stability of a trajectory, see Definition 3.1.6 in [41]). A trajectory t 7→

ϕ(t, t0, x̄), x̄ ∈ X∞(t0) of a local flow F is said to be stable at time t0 ∈ T if for all ǫ > 0,

there exists δ = δ(ǫ, t0) > 0 such that B(x̄, δ) ⊂ X∞(t0) and for all x0 ∈ B(x̄, δ)

d(ϕ(t, t0, x
0), ϕ(t, t0, x̄)) < ǫ, t ∈ Tt0 .
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Definition B.7 (Asymptotic stability of a trajectory, see Definition 3.1.7 in [41]). A

trajectory t 7→ ϕ(t, t0, x̄), x̄ ∈ X∞(t0) is said to be asymptotically stable at time t0 ∈ T if

it is stable at time t0 and there exists ρ = ρ(t0) > 0 such that B(x̄, ρ) ⊂ X∞(t0) and for

all x0 ∈ B(x̄, ρ)

lim
t→∞

d(ϕ(t, t0, x
0), ϕ(t, t0, x̄)) = 0, t ∈ Tt0 . (B.2)

The trajectory ϕ(t, t0, x
0) is called uniformly stable or uniformly asymptotically stable

if in the previous definitions δ, ρ do not depend on t0 and the limit in (B.2) is uniform in t0.

If F is time-invariant then (asymptotic) stability implies uniform (asymptotic) stability.

B.3 Stability of an invariant set

To describe the asymptotic behaviour of more complicated systems the stability concepts

for equilibrium states have to be extended to arbitrary closed1 invariant subsets of the

state space.

Definition B.8 (Invariant set, see Definition 3.1.4 in [41]). A non-empty subset S ⊂ X is

said to be weakly invariant for F if (t0, x) ∈ T×S implies ϕ(t, t0, x) ∈ S for all t ∈ Tt0(x).

It is said to be invariant for F if in addition S ⊂ X∞(t0) for all t0 ∈ T .

Definition B.9 (Stable invariant set, adapted from Definition 3.1.25 in [41]). A closed

invariant subset Ω ⊂ X is said to be stable at time t0 if every neighbourhood W of Ω there

exists a neighbourhood V of Ω such that V ⊂ X∞(t0) and, for each x
0 ∈ V , ϕ(t, t0, x

0) ∈ W

for all t ∈ Tt0 .

Definition B.10 (Attractor, adapted from Definition 3.1.25 in [41]). A closed invariant

subset Ω ⊂ X is called an attractor at time t0 if there exists a neighbourhood V of Ω such

that V ⊂ X∞(t0) and ϕ(t, t0, x
0)→ Ω as t→∞ for every x0 ∈ V .

The basin of attraction of an attractor Ω at time t0 is given by

A(t0,Ω) = {x ∈ X∞(t0);ϕ(t, t0, x)→ Ω as t→∞} .

1We recall that the closed set of a metric space is any set which contains all the limits of its converging
sequences.
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B.3.1 Stability of a periodic orbit

Definition B.11 (Periodic orbit). A closed invariant subset P ⊂ X of F is said to be a

periodic orbit of period τ if ϕ(t+ τ, t, x∗) = x∗ for all x∗ ∈ P .

Definition B.12 (Asymptotically stable periodic orbit). A closed invariant subset P ⊂ X

is said to be an asymptotically stable periodic orbit if P is a periodic orbit and P is an

attractor.

B.4 Stability of linear systems

We consider systems of the form

ẋ(t) = Ax(t), t ∈ T, (resp. x(t + 1) = Ax(t), t ∈ T ) (B.3)

where A ∈ Kn×n and T = R+ (resp. T = N). The following result relates growth

properties of x(t) to the spectrum of A, σ(A).

Lemma B.13 (see Lemma 3.3.19 in [41]). Given A ∈ Kn×n and ω ∈ R. If

α(A) = max{Reλ;λ ∈ σ(A)} < ω, (resp. ̺(A) = max{|λ|;λ ∈ σ(A)} < eω)

then there exists M , depending on ω such that

‖eAt‖ ≤Meωt, t ∈ R+, (resp. ‖At‖ ≤Meωt, t ∈ N).

Theorem B.14 (see Theorem 3.3.20 in [41]). The system (B.3) is asymptotically (or,

equivalently, exponentially) stable if and only if Reλ < 0, in the continuous-time case, or

|λ| < 1, in the discrete-time case, λ ∈ σ(A).

The stability of the linear homogeneous systems (B.4a) and (B.4b), derived from (A.7)

and (A.9) respectively, with A(t) τ -periodic is determined according to Proposition B.15.

ẋ(t) = A(t)x(t), t ∈ T ⊂ R (B.4a)
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x(t + 1) = A(t)x(t), t ∈ T ⊂ Z (B.4b)

with x(t0) = x0.

Proposition B.15 (see Proposition 3.3.6 in [41]). Suppose the generators A(·) of (B.4)

are periodic with period τ ∈ T , T = R or Z, τ > 0 : A(t+τ) = A(t), t ∈ T . Then (B.4) is

uniformly stable (uniformly asymptotically stable) if and only if the time-invariant discrete

time system

x̂(k + τ) = Φ(τ, 0)x̂(k), k ∈ N

is stable (asymptotically stable) where Φ is the evolution operator generated by (B.4).

Remark B.16. According to Definition A.13, the evolution operator Φ(τ, 0) on Proposi-

tion B.15 is called monodromy matrix.

Remark B.17. The eigenvalues of the monodromy matrix are called Floquet character-

istic multipliers or characteristic multipliers or Floquet multipliers µ ∈ C of system (B.4)

and it is uniformly asymptotically stable if all the Floquet multipliers are inside the open

unity circle.

Remark B.18. The Floquet characteristic exponents or characteristic exponents or Flo-

quet exponents λ ∈ C are calculated as

µ =







eλτ , in the case of (B.4a)

λτ , in the case of (B.4b)

and system (B.4a) (or (B.4b)) is uniformly asymptotically stable if for all λ associated to

all eigenvalues µ of the monodromy matrix, Re(λ) < 0 (or |λ| < 1).
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Appendix C

Monodromy matrix for discrete-time

delayed feedback control

In this appendix we provide the necessary equations to the calculus of the monodromy

matrix for the system controlled by the DFC with a constant gain matrix K (C.1).

xk+1 = f(k, xk, K(xk−p − xk)) (C.1)

x : N→ Rn, K ∈ Rn×n, f : N× Rn × Rn → Rn and k, p, n ∈ N.

The state vector xk is not sufficient to represent the dynamics of the closed-loop system

with the DFC. We define an extended state vector Xk and control signal Uk as follows:

Xk =

















xk

xk−1

...

xk−p

















∈ R
n(1+p), Uk =

















uk

uk−1

...

uk−p

















∈ R
n(1+p).

The map ϕest is defined as in (3.27) using the extended vector state. Observe that xk

and xk−p are the first and last n states of Xk, respectively:

Xk+p = ϕest(k + p, k,Xk, Uk(Xk)).
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The monodromy matrix for the periodic orbit of the extended system is obtained

directly from (3.31). We define a new function (C.2), an extension of (3.30) for the DFC,

and its Jacobian matrix for each point of the orbit is given by (C.3).

ψest(X,K)
.
=





0n×np 0n×n

Inp×np 0np×n



X+











f
(

k,
[

In×n 0n×np

]

X
)

+K
[

−In×n 0n×n(p−1) In×n

]

X

−−−−−−−−−−−−−−−−−−−−−−−−−

0np×1











(C.2)

∇Xψest(X,K)
∣

∣

X=X∗

k
=





0n×np 0n×n

Inp×np 0np×n



+











∇xf(k, x)
∣

∣

x=x∗

k
+K

[

−In×n 0n×n(p−1) In×n

]

−−−−−−−−−−−−−−−−−−−−

0np×n(1+p)











(C.3)
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Abstract: In this note a gain tuning scheme for prediction-based chaos control of discrete-
time systems is proposed, extending previous work by T. Ushio and S. Yamamoto. The derived
control laws are proved to be stabilizing. Three different time-invariant or time-varying laws
are proposed, leading to different convergence rates and sizes for the basins of attraction. The
results are illustrated by numerical simulations. A parallel between finding unstable periodic
orbits and chaos control is done.

Keywords: Nonlinear systems, Discrete time systems, Prediction-based chaos control, Stability
condition, Stabilization, Unstable periodic orbits.

1. INTRODUCTION

Chaos control, originally proposed by Ott et al. [10], aims
at eliminating chaotic behavior in nonlinear dynamical
systems. It specifically uses chaos basic characteristics
[3] to obtain stable periodic solutions with small control
effort. These characteristics are related to the infinite
number of unstable periodic orbits (UPO) embedded in
the chaotic sets [2] and these UPOs are the target of the
chaos control methods.

Two characteristics of the UPOs proved to be of interest
when applying chaos control. The first is the relation
period vs. stability and the second is the relation period
vs. number of periodic orbits [2, 4]. It is known that the
instability (measured, for example, by an unstable Floquet
exponent [5]) and the quantity of periodic orbits grow
exponentially with period, being more difficult to stabilize
longer orbits.

A quite popular chaos control method, discovered by
Pyragas, is the Delayed Feedback Control (DFC), see [13]
and extensions in [16]. The method is based on ensuring
zero error between the actual state and the state delayed
by the period of the target UPO. The error is multiplied
by a constant and scalar gain properly tuned to take it
to zero. The DFC method has the advantage that it does
not presuppose prior knowledge of the periodic orbit to be
stabilized (except the value of the period itself). It is also
known that the DFC, as first proposed, cannot stabilize
long periodic orbits [15].

Alternative prediction-based ideas for chaos control has
been presented by Ushio and Yamamoto [17], using com-
parison of the actual state with the future state distant

1 Support is acknowledged from CAPES in Brazil and COFECUB in
France, through the CAPES/COFECUB project “Systèmes oscilla-
toires en Automatique: modélisation, réduite, analyse, identification
et synthèse de commande”, n Ma 624/09.

from the period of the UPO under consideration, com-
puted along the trajectories of the open-loop system. This
provides simple ways for developing gain tuning methods
[9], see also interesting extension in [12].

The present paper proposes a method to define the gain
used in the structure presented in [17]. The difference
is that, here, the control scheme is based on improved
sufficient stability conditions and leads to stabilizing gains.
Three control laws are proposed. They lead to different be-
haviors in terms of convergence rate and size of attraction
basin. One of them (the “third one” below) does not need
prior knowledge of the target UPO.

In Section 2 of this note analytical results for a sufficient
stability condition of periodic orbits are described. In
Section 3 the control laws are proposed. In Section 4
numerical results using the Logistic and Henon maps
show the control laws characteristics. The conclusions are
presented in Section 5.

2. SUFFICIENT STABILITY CONDITION FOR
PERIODIC ORBITS

Consider the nonlinear discrete time dynamical system
described by

x(k + 1) = φ(x(k)), x(k) ∈ R
n, k, n ∈ N. (1)

We assume the existence of a hyperbolic periodic orbit x∗

of period p ∈ N of (1), that orbit x∗ satisfies:

x∗(k + p) = x∗(k), ∀k ∈ N. (2)

If there is a chaotic set in the n-dimensional state space
formed by x(k), it is known that the chaotic set is com-
posed by an infinite number of UPOs [1, 3] and the number
of UPOs per period p increases exponentially with p [2, 4].

Ushio and Yamamoto [17] proposed a control scheme
to stabilize UPOs embedded in a chaotic set, which is
described by

Preprints of the 8th IFAC Symposium on Nonlinear Control Systems
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x(k + 1) = φ(x(k)) +K(φp(x(k))− x(k)). (3)

Here K ∈ R
n×n is a constant gain matrix, p is the period

of the target UPO, and φp is defined recursively by the
composition: φ1 = φ, φq+1 = φq ◦ φ, q ∈ N. In the sequel,
for any x ∈ R

n,K ∈ R
n×n, we use the notation

ψ(x,K)
.
= φ(x) +K(φp(x)− x). (4)

Clearly, any p-periodic orbit of the open-loop system (1)
is also a p-periodic orbit of the closed-loop system (3).
The main characteristic of this control scheme is the use
of the error between the future state at k + p computed
on the open-loop system and the actual state at k. Similar
ideas, using the future state, are also used in [17] (constant
matrix gains) and in [12] (constant scalar gains, that
can be rendered arbitrarily small by using (φm+p(x(k))−
φm(x(k))) in (3) instead of (φp(x(k)) − x(k)), for large
enough integer m).

The control law we propose in the sequel (the precise
definitions are stated in Section 3) are improvements of
(3) based on non-constant gains. The new control scheme
is defined by

x(k + 1) = ψ(x(k),K(x(k), k)), (5)

for gain K(x(k), k) ∈ R
n×n depending a priori both

on time and actual state. We will only consider in the
remaining the gains K that are differentiable with respect
to x. Let us define Ψ, the transition from x(k) to x(k+p),
by the following map:

x(k + p) = Ψ(x(k), k). (6)

By definition, Ψ(x(k), k) is defined recursively as:

yk = x(k)

yk+l+1 = ψ(yk+l,K(yk+l, k + l)), l = 0, . . . , p− 1

Ψ(x, k) = yk+p.

Lemma 1. For any point x∗(k), k ∈ N, of the trajectory
x∗ of the closed-loop system (5), one has

∇xΨ(x, k)
∣

∣

x=x∗(k) =

p−1
∏

l=0

∇xψ(x,K(x∗(k+l), k+l))
∣

∣

x=x∗(k+l)

(7)
where, in (7) and in the sequel, the matrices in the product
are ordered from right to left for increasing indices l. ✷

The interest of formula (7) is that no derivative with
respect to K appears in the right-hand side. Thus, Lemma
1 provides a simplification in the computation of the
Jacobian spectrum: as indicated by (7), the dependence
of the gain with respect to the state does not modify the
Jacobian in the points of the periodic orbit.

Proof. Computation of the derivative can be made by the
general chain rule [8]. By recursion,

∇xΨ(x, k)
∣

∣

x=x∗(k) =

p−1
∏

l=0

∇xψ(x,K(x, k + l))
∣

∣

x=x∗(k+l) .

Now, using the definition of ψ, see (4), one sees that, for
any k ∈ N, the (i, j)-th component of

∇xψ(x,K(x, k))
∣

∣

x=x∗(k) −∇xψ(x,K(x∗(k), k))
∣

∣

x=x∗(k)

is equal to

n
∑

j
′=1

(

∂Kij
′ (x, k)

∂xj

∣

∣

∣

∣

x=x∗(k)

· (φp(x∗(k))− x∗(k))j′

)

.

As x∗(k) is located on the periodic orbit, we have
φp(x∗(k)) = x∗(k), and the last term of the sum is zero.
This provides the desired result. ✷

The UPO x∗ of system (1) verifies

x∗(k + p) = x∗(k) = Ψ(x∗(k), k). (8)

When the gain K(k) is p-periodic, then ∇xΨ(x∗(k), k) is
the monodromy matrix associated to the orbit x∗ of the
closed-loop system (6). In general, the stability of the pe-
riodic orbit of system (6) is related to the spectrum of the
Jacobian. More precisely, a sufficient stability condition is
that the modulus of the eigenvalues are less the 1. Here, our
idea is to place all the eigenvalues at zero, with the aim of
ensuring fast convergence in the vicinity of the controlled
orbit.

Theorem 1. Assume the Jacobian ∇xψ(x,K(x∗(k), k))
∣

∣

x=x∗(k)

is zero at least for one point x∗(k) of the orbit. Then,
the periodic orbit x∗ is locally orbitally exponentially sta-
ble. ✷

Proof. The proof is obtained by direct observation of the
result in Lemma 1: under the conditions of the statement,
∇xΨ(x, k)

∣

∣

x=x∗(k) = 0n×n, which yields stability of the
associated fixed point, and thus stability of the periodic
cycle. ✷

3. STABILIZING CONTROL LAWS

The gain K(x(k), k) will be defined in such a way that the
sufficient condition for stability of Theorem 1 is satisfied.
As mentioned previously, it will even be imposed that the
Jacobian matrix defined for x∗(k) equals zero for each k.
As a matter of fact, from Lemma 1,

∇xψ(x,K(x, k))
∣

∣

x=x∗(k) = 0n×n

is equivalent to

∇xφ(x)
∣

∣

x=x∗(k) +K(x, k)(∇xφ
p(x)− I)

∣

∣

x=x∗(k) = 0n×n.

(9)

The values of K(x∗(k), k) selected in the sequel will be
shown to fulfill (9).

• Control law CL 1. K is a constant matrix defined by:

K = −∇xφ(x)
∣

∣

x=x∗(0) (∇xφ
p(x)− I)−1

∣

∣

x=x∗(0) . (10)

• Control law CL 2. K(k) is a time-varying matrix de-
fined for each time k ∈ N by:

K(k) = −∇xφ(x)
∣

∣

x=x∗(k) (∇xφ
p(x)− I)−1

∣

∣

x=x∗(k) .

(11)

Application of CL 1 or CL 2 necessitates to define which
of the orbit point is the point x∗(0). A possible choice
is to take x∗(0) as the point of the cycle minimizing the
distance from x(0). On the other hand, these two control
laws are not intended to be used in practice, as they require
prior exact knowledge on the UPO (both explicitly use the
target UPO as a reference for the controller; see similar
idea for DFC in [13]).
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• Control law CL 3. K(x(k)) is given as

K(x(k)) = −∇xφ(x)
∣

∣

x=x(k) (∇xφ
p(x)− I)−1

∣

∣

x=x(k) .

(12)

Contrary to CL 1 and CL 2, the choice CL 3 does not
require any knowledge on the UPO — except period p.
Putting the term (12) in (5) reminds of the Newton-
Raphson method [11] applied to the iterative search for
zeros of the map (φp(x) − x), which uses the adjustment
law x← x+∆, ∆ = −(∇xφ

p(x)− I)−1(φp(x)− x).

4. NUMERICAL EXAMPLES

The previous laws are now applied to two classical systems.

4.1 Logistic map

The Logistic map is used as a first example for the
application of the suggested method. Although the pro-
posed scheme was developed for n-dimensional maps, a 1-
dimensional system simplifies the numerical analysis and
the comparison between the three control laws. The Lo-
gistic map is given by

x(k + 1) = rx(k)(1− x(k)). (13)

CL 3 is used first, because it does not requires any
knowledge on the UPOs. As a matter of fact, it is also used
here to find out the latter, and then to find adequate values
for CL 1 and CL 2. Figure 1 shows the evolution of the
state x(k) and of the control effort u(k) = K(φp(x(k)) −
x(k)) for specific values of the parameter r of the system,
initial condition x(0) and the parameter p of the controller.
The main characteristic of the proposed control scheme is
that few iteration steps are sufficient to stabilize an UPO.
Figure 1 (d) may be compared with [9, Fig. 5], where
the obtained convergence is much slower (same initial
conditions yield 100 to 200 iterations) with larger control
effort. Notice that persistent zero value for u indicates
convergence to a UPO of the open-loop system.

Transient iterations of the controlled system using each
of the three control laws are compared in Figure 2. The
comparison is done using the control effort u(k). The
examples shown are limited to trajectories that converge
to a period-p orbit, the cases where the trajectory diverges
to infinity or converges to a periodic orbit (including
fixed points) not corresponding to the uncontrolled system
(special situations occurring for CL 1 and CL 2, but also
for DFC) are not shown 2 . For the trajectories shown in
Figure 2 it is clear that, provided it yields convergence,
CL 3 yields faster convergence than the other two. This is
specially valid for initial conditions more distant from the
period-p UPO.

After comparing the duration of the transients, the size of
the basins of attraction (BA) is considered. The BA rep-
resents the set of initial conditions that can be stabilized
2 Notice that system (5) may possess periodic orbits of period
p which are not periodic orbits of the uncontrolled system (1).
However, inspecting the values of u allows to conclude whether this
is the case or not. This is in contrast with DFC methods, for which
the periodic solutions of period p are exactly the periodic solutions
of period p of the uncontrolled system.
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CL3

CL2

CL1

Fig. 2. Comparison of transient steps using the control
effort u(k) for the three control laws (legend in figure)
studied using the Logistic map with r = 4: (a) x(0) =
0.48 and p = 2; (b) x(0) = 0.57 and p = 5.

to a given orbit by the controller. The basins of attraction
are shown according to their period (2 for Figure 3 (a) and
3 for (b)), to the type of control gain (the lines of the table
of graphics) and to the UPOs (grayscale of the basins of
attraction for the same gain).

The BAs of the fixed points (FP : period-1 orbits) can
be observed for p = 2 and p = 3. Notice that the BAs
of the orbits of periods divisors of p decrease in area for
larger values of p. Another observation is that, due to the
exponential increase of the quantity of orbits by period and
the characteristic of the control law of being valid in the
vicinity of the UPO, for larger values of p, more periodic
orbits appear and they have smaller BAs, but the space,
occupied in the state space by all such BAs is larger. This
can be observed in Figure 4.

4.2 Henon map

The Henon map is used to provide an example with
dimension grater than 1. In this subsection only CL 3 is
analyzed. The Henon map is written

x1(k + 1) = a− x21(k) + bx2(k) (14)

x2(k + 1) = x1(k) (15)

Figure 5 shows the BAs for p equal to 2, 4 and 7,
respectively. As before, the decrease of the size of the BAs
referent to the FPs can be observed from Figure 5 (a)
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Fig. 1. Example of state x(k) and control effort u(k) evolution for the Logistic map controlled using the gain of CL 3:
(a) r = 4, x(0) = 0.48 and p = 2; (b) r = 4, x(0) = 0.69 and p = 3; (c) r = 4, x(0) = 0.57 and p = 5; (d) r = 3.65,
x(0) = 0.52 and p = 6.
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x
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BA of 5−PO4

BA of 5−PO5

BA of 5−PO6

Fig. 4. Basins of attraction (BA) of the Logistic map for
CL 3, period p = 5 and r = 4.

to (b) and, when increasing the value of p the number of
attractors increase, the size of each BA decreases and the
global size of all the BAs of the set of period-p attractors
increase in the state space.

A characteristic better observed in the 2-dimensional ex-
ample (Figure 5 (b) and (c)) is the fractal basins boundary
[1] that suggests that the chaotic attractor of φ(x(k))
became a chaotic saddle [6, 7]. This was expected, as the
control term stabilizes periodic orbits whose period is a
divisor of p, while there is no reason why the stability of
the other UPOs would be modified, composing thus the
non attracting chaotic set.

Some examples of the evolution of the state variables and
the control effort can be seen in Figure 6. The initial
conditions were selected using Figure 5, choosing the ones
far from the attractor and in the fractal basin boundaries.
Even in these more difficult situations, the number of
iterations to get convergence is remarkably small.

5. CONCLUSION

In this paper, a chaos control scheme based on predic-
tion of future states of the system has been proposed,
extending some ideas previous formulated by T. Ushio and
S. Yamamoto. Based on sufficient stability criterion, the
third control law (CL 3), which does not necessitate prior
knowledge of the UPO, yields remarkably fast convergence.
The method can be used for control purposes, but also
directly to find UPOs of the uncontrolled system. The
control method developed here can be seen as an appli-
cation of the Newton-Raphson method to the search for
UPOs. Various tests (shown here for periods up to 7, but
other simulations, not presented here, have shown similar
behavior for larger values) have been conducted, providing
large sets of UPOs. The comparison of the present method
with the DFC for discrete time systems will be published
in a future paper and extension to continuous time systems
is in progress.
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Fig. 3. Basins of attraction (BA) for each control law for periods 2 and 3 of the Logistic map with r = 4: (a) (first
column) p = 2; (b) (second column) p = 3. P1 indicates FP and 0 is another FP of the system that does not belong
to the chaotic attractor.
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Fig. 6. Example of state x(k) and control effort u(k)
evolution for the Henon map controlled using CL 3
with a = 1.4 and b = 0.3: (a) x(0) = (−0.4,−2)
and p = 2; (b) x(0) = (−0.605, 2) and p = 4; (c)
x(0) = (1.33,−2.045) and p = 7.
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Abstract— In this note a comparison between prediction-based chaos control and delayed feedback control
is presented for discrete-time systems. Both controllers are tuned using the Floquet multipliers of the unstable
periodic orbits. For the prediction-based chaos control a new control law is proposed which leads to a time-
varying gain. The comparison is carried out using the size of the basins of attraction of the controlled orbits and
the rate of convergence obtained by numerical simulation.

Keywords— Nonlinear systems, Discrete-time systems, Prediction-based chaos control, Delayed feedback con-
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Resumo— Neste trabalho é feita uma comparação entre dois métodos de controle de caos, um utilizando rea-
limentação com predição dos estados futuros (prediction-based chaos control) e outro utilizando realimentação de
estados atrasados (delayed feedback control). Ambos os controladores são sintonizados considerando os multipli-
cadores de Floquet das órbitas periódicas instáveis. Uma nova lei de controle é proposta para o prediction-based

chaos control utilizando um ganho variante no tempo. Como critério de comparação é usado o tamanho das
bacias de atração das órbitas controladas e a velocidade de convergência obtidos por simulação numérica.

Palavras-chave— Sistemas não-lineares, Sistemas discretos, Controle de caos, Estabilização, Órbitas periódi-
cas instáveis

1 Introdução

Controle de caos, originalmente proposto por Ott
et al. (1990), tem como objetivo comporta-
mento periódico em sistemas originalmente caó-
ticos. Este tipo de controle utiliza caracteŕısti-
cas básicas de sistemas caóticos (Devaney, 1992)
para obter soluções periódicas estáveis utilizando
baixo esforço de controle. Estas caracteŕısti-
cas estão relacionadas ao número infinito de ór-
bitas periódicas instáveis (UPO - unstable pe-

riodic orbits) que compõem os conjuntos caóti-
cos (Cvitanović, 1988). Métodos de controle de
caos visam estabilizar estas UPOs.

Duas caracteŕısticas das UPOs são de inte-
resse em aplicações de controle de caos. A pri-
meira é a relação peŕıodo vs. estabilidade e a
segunda é a relação peŕıodo vs. número de ór-
bitas periódicas (Cvitanović, 1988; Franceschini
et al., 1993). Sabe-se que a instabilidade (medida,
por exemplo, pelos multiplicadores ou pelos expo-
entes de Floquet (Bittanti and Colaneri, 2008)) e
a quantidade de UPOs cresce exponencialmente
com o peŕıodo, sendo órbitas de peŕıodo mais
longo mais dif́ıceis de serem controladas.

Um método de controle de caos muito es-
tudado é o controle por realimentação com
atraso (DFC - Delayed Feedback Control) proposto
por Pyragas (1992) e suas extensões podem ser
vistas em Pyragas (2006). Este método baseia-se

em garantir um erro nulo entre o estado atual e
o estado atrasado pelo peŕıodo da UPO de inte-
resse. O erro é multiplicado por um ganho que,
quando adequado, o leva a zero. O DFC, como
originalmente proposto, não controla órbitas de
peŕıodo elevado (Pyragas, 2006). Outra limitação
do método é não controlar órbitas que possuam
um número ı́mpar de multiplicadores de Floquet
reais e maiores que 1 (Ushio, 1996; Pyragas, 2006).

Ushio and Yamamoto (1999) propuseram uma
alternativa ao DFC utilizando o erro entre o es-
tado atual e o estado em um tempo futuro igual
ao peŕıodo da UPO a ser controlada, obtido atra-

vés da predição da trajetória para o sistema em

malha aberta. Este erro, assim como no DFC, é
multiplicado por um ganho, porém, neste caso o
desenvolvimento de procedimentos de sintoniza-
ção é mais simples (Morgül, 2009; Polyak, 2005)
e este não apresenta a limitação do número ı́mpar
de multiplicadores de Floquet reais e maiores que
1. Este método é denominado Prediction-based

chaos control (PBCC).

Neste trabalho é feita uma comparação entre
o DFC e o PBCC. Os ganhos de ambos os contro-
ladores são obtidos de forma a minimizar o maior,
em módulo, multiplicador de Floquet da órbita a
ser controlada (Huijberts et al., 2009). Em espe-
cial, para o PBCC, é proposta uma lei de con-
trole que leva a um ganho variante no tempo e
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é baseada em uma condição suficiente para esta-
bilização. Através desta lei de controle obtém-se
todos os multiplicadores de Floquet iguais a zero,
seu valor mı́nimo (Chagas et al., 2010). Através
de simulações numéricas são obtidas as bacias de
atração para cada controlador e gráficos de esforço
de controle utilizados para controlar algumas ór-
bitas, desta forma pode-se comparar estabilidade
e velocidade de convergência para cada método.

Na Seção 2 deste artigo são apresentadas as
condições gerais de estabilidade para as órbitas
periódicas utilizando o PBCC. Na Seção 3 é apre-
sentada a lei de controle para o PBCC. Na Seção
4 é apresentada a condição para estabilidade a ser
utilizada na sintonização do DFC. Na Seção 5 são
apresentados os resultados da otimização para sin-
tonização do DFC e também exemplos numéricos
para comparação entre os métodos. As conclusões
são apresentadas na Seção 6.

2 Estabilidade de órbitas periódicas

Nesta seção são apresentadas condições gerais
para estabilização de órbitas utilizando realimen-
tação com predição do estado futuro (PBCC).
Dada uma função φ : Rn → R

n, n ∈ N, considere
o sistema dinâmico não-linear no tempo discreto
descrito por

x(k + 1) = φ(x(k)), x(k) ∈ R
n, k ∈ N. (1)

Assume-se a existência de uma órbita perió-
dica hiperbólica instável (UPO) de peŕıodo p ∈ N

de (1); assim, a trajetória x∗ verifica:

x∗(k + p) = x∗(k), ∀k ∈ N. (2)

Caso exista um conjunto caótico no espaço de
estados n-dimensional formado por x(k), sabe-se
que este conjunto caótico é formado por um nú-
mero infinito de UPOs (Alligood et al., 1996; De-
vaney, 1992) e que o número de UPOs por peŕıodo
p cresce exponencialmente com p (Cvitanović,
1988; Franceschini et al., 1993).

O objetivo aqui é estabilizar a UPO x∗. Para
isso, considere uma lei de controle do tipo

x(k + 1) = φ(x(k)) +K(k)(r(k)− x(k)). (3)

Aqui, o sinal r(k) representa o estado predito
φp(x(k)), computado para o sistema em malha

aberta. K(k) ∈ R
n×n são matrizes de ganho e φp é

definido recursivamente pela composição: φ1 = φ,
φq+1 = φq ◦ φ, q ∈ N.

Observa-se que qualquer órbita p-periódica de
(1) é também uma órbita p-periódica de (3), pois,
sobre a órbita periódica r(k) = x∗(k).

A transição de x(k) a x(k+ p) é definida pelo
mapeamento Ψ a seguir:

x(k + p) = Ψ(x(k), k), (4)

onde Ψ(x(k), k) é definido recursivamente como:

yk = x(k)
yk+l+1 = φ(yk+l) +Kk+l(rk+l − yk+l)
Ψ(x, k) = yk+p,

(5)

para l = 0, . . . , p − 1. Observe que a UPO x∗ do
sistema (1) satisfaz

x∗(k + p) = x∗(k) = Ψ(x∗(k), k) (6)

e sua estabilidade, em geral, é definida pelos au-
tovalores da matriz Jacobiana ∇xΨ(x, k)

∣

∣

x=x∗(k) ,
sendo estável se todos apresentarem módulo me-
nor ou igual a 1. Estes autovalores são os multipli-
cadores de Floquet (Bittanti and Colaneri, 2008).

3 Definição da lei de controle para o

PBCC

A lei de controle apresentada a seguir é definida
a partir de uma condição suficiente para estabili-
zação de UPO (Chagas et al., 2010). Aqui aloca-
se todos os autovalores de ∇xΨ(x, k)

∣

∣

x=x∗(k) em
zero. Em (3), o ganho passa a ser dependente do
estado atual, K(x(k), k).

Para qualquer x ∈ R
n e K(x(k), k) ∈ R

n×n,
utiliza-se a seguinte notação

ψ(x,K)
.
= φ(x) +K(x)(φp(x)− x) (7)

e o sistema dinâmico no tempo discreto em ma-
lha fechada (3), controlado utilizando o PBCC, é
definido por

x(k + 1) = ψ(x(k),K(x(k), k)). (8)

Para definição da lei de controle, primeiro
deve-se obter ∇xΨ(x, k)

∣

∣

x=x∗(k) para o PBCC.

Lema 1 Em qualquer ponto x∗(k), k ∈ N, da
trajetória x∗ em malha fechada (8), tem-se que,

∇xΨ(x, k)
∣

∣

x=x∗(k) =
∏p−1

l=0 ∇xψ(x,K(x∗(k + l), k + l))
∣

∣

x=x∗(k+l)

(9)
onde, em (9) e no restante do trabalho, as matri-
zes no produtório são ordenadas da direita para

esquerda com o incremento do ı́ndice l. �

Para demonstração do Lema 1, consultar o
Anexo. O objetivo da fórmula (9) é mostrar que a
derivada de K(x(k), k) em relação à x(k) não apa-
rece no lado direito da equação. Assim, o Lema
1 proporciona uma simplificação no cálculo do es-
pectro de autovalores da Jacobiana: como indica
(9), a dependência do ganho em relação ao estado
não modifica a Jacobiana nos pontos da órbita pe-
riódica.

Neste trabalho busca-se obter o espectro de
autovalores de ∇xΨ(x, k)

∣

∣

x=x∗(k) igual a zero e
uma posśıvel solução é dada pelo Teorema 2.
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Teorema 2 Assume-se que a Jacobiana
∇xψ(x,K(x∗(k), k))

∣

∣

x=x∗(k) é igual a zero
ao menos em um ponto x∗(k) da órbita periódica.
Então, ∇xΨ(x, k)

∣

∣

x=x∗(k) = 0 para qualquer
k ∈ N, e a órbita periódica x∗ é localmente
orbitalmente exponencialmente estável. �

Ver demonstração do Teorema 2 em Anexo.
O ganho K(x(k), k) será definido de forma que a
condição suficiente para estabilidade do Teorema
2 seja satisfeita. Será imposto que a Jacobiana
definida para x∗(k) seja igual a zero para cada k.
A hipótese do Teorema 2 é equivalente a 0n×n =
∇xφ(x)

∣

∣

x=x∗(k) +K(x, k)(∇xφ
p(x)− I)

∣

∣

x=x∗(k) .
Por consequência, de acordo com Chagas et al.

(2010), escolhe-se:

K(x(k), k) =

−∇xφ(x)
∣

∣

x=x(k) (∇xφ
p(x)− I)−1

∣

∣

x=x(k) .

(10)

Resumindo, a lei de controle PBCC traz um
comportamento em malha fechada definido pelas
equações (3) a (10), com r(k) = φp(x(k)). Esse
sistema verifica a hipótese do Teorema 2: com a
escolha da realimentação (10), a UPO x∗ é lo-
calmente orbitalmente exponencialmente estável.
Observa-se que a lei de realimentação (10) não
pressupõe conhecimento da UPO x∗ (exceto o pe-
ŕıodo p) e que o sistema (7)-(10) é autônomo.

4 Sintonia do ganho para o DFC

Para aplicação do DFC, em (3), r(k) é substitúıdo
por x(k − p), porém, a mesma análise realizada
na Seção 3 não é válida para o DFC devido à
utilização do estado atrasado na realimentação.
Além disso, o vetor de estados x(k) não é sufici-
ente para representar completamente a dinâmica
do sistema controlado. Neste caso será utilizado
o vetor de estados estendido definido por z(k) =
(

x(k)′ x(k − 1)′ . . . x(k − p)′
)′

∈ R
n(1+p).

O objetivo nesta seção é encontrar a matriz
cujos autovalores são os multiplicadores de Flo-
quet considerando o vetor de estados estendido da
órbita controlada utilizando o DFC.

O mapeamento Ψest é defino como em (4) e
(5) utilizando o vetor de estados estendidos. Ob-
serve que x(k) (resp. r(k)) é representado pelos n
primeiros (resp. últimos) estados de z(k):

z(k + p) = Ψest(z(k), k)

A derivada de Ψest(z(k), k) em relação a z,
cujos autovalores são os multiplicadores de Flo-
quet desejados, pode ser obtida diretamente de
(9). Para isso defini-se uma nova função (11),
sendo este uma extensão de (7), e sua Jacobiana
para cada ponto da órbita é dada por (12) (ver
página seguinte).

5 Exemplos numéricos

Como estudo de caso será utilizado o mapa de
Henon descrito por

x1(k + 1) = a− x21(k) + bx2(k)
x2(k + 1) = x1(k).

(13)

O primeiro passo para comparação entre os
métodos é encontrar as UPOs de interesse para
aplicar um método de otimização e obter um va-
lor adequado de K para o DFC. Aqui observa-se
a primeira vantagem do PBCC utilizando a lei de
controle proposta na Seção 3, este método tam-
bém pode ser utilizado para encontrar UPOs em
conjuntos caóticos (Chagas et al., 2010). Órbitas
de baixo peŕıodo podem ser facilmente encontra-
das analiticamente no sistema em questão, porém,
a lei de controle proposta para o PBCC automa-
tiza o processo.

Na Tabela 1 é apresentada uma lista de UPOs
de peŕıodo até 6, nela constam o seu peŕıodo e seus
autovalores para o sistema sem controle. Neste
trabalho, em (13), foi utilizado a = 1.4 e b = 0.3
e não existem órbitas de peŕıodo 3 e 5 para esses
valores de parâmetros.

Para aplicar a otimização para o DFC foi uti-
lizada a função fminsearch do MATLABr com
condições iniciais para os elementos da matriz K
entre -1 e 1. Foi feito o cálculo dos autovalores
de ∇zΨest(z,K)

∣

∣

z=z∗(k) , obtido seus módulos e
utilizado como custo o maior desses autovalores
em módulo. Os valores para a matriz K e o maior
autovalor de cada órbita controlada são mostrados
na Tabela 2.

Para as órbitas de peŕıodo 6 e o ponto fixo
P1.2 não foi encontrado um ganho K que as es-
tabilize red com o DFC. Além disso, observa-se
que o módulo do maior autovalor para a órbita
P4 é próximo de 1. Este fato está de acordo com
as limitações do DFC apresentadas na literatura,
órbitas de peŕıodo elevado e órbitas com um nú-
mero ı́mpar de multiplicadores de Floquet reais e
maiores que 1 não são controláveis utilizando este
método. Sabe-se que órbitas com expoente de Flo-
quet real e maior que 1 são originadas a partir de
bifurcações sela-nó, sendo o caso das órbitas P1.2
e P6.2. As outras UPOs apresentadas originam-se
de bifurcações de duplicação de peŕıodo.

Na Figura 1 são mostradas as bacias de atra-
ção das órbitas periódicas controladas com o DFC.
Como condição inicial para os estados atrasados
foi utilizada a posição da órbita a ser controlada,
sendo que no caso da P2 e P4 foram realizadas,
respectivamente, 2 e 4 simulações para cada bacia,
variando a ordem dos valores de x(k−1) . . . x(k−
p) para cada simulação. A bacia de atração da
órbita P4 não foi mostrada porque, em uma var-
redura de valores iniciais de x com um passo de
0.005, nenhuma das condições inicias tendeu à ór-
bita. Mesmo sendo esta estável, sua bacia de atra-
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UPO P1.1 P1.2 P2 P4 P6.1 P6.2
Peŕıodo 1 1 2 4 6 6
Autovalores [-1.9237,

0.1559]
[3.2598,
-0.0920]

[-3.0101,
-0.0299]

[-8.6394,
-0.0009]

[-27.5147,
−2×10−5]

[28.1250,
2× 10−5]

Tabela 1: UPOs de peŕıodo até 6 para o mapa de Henon.

UPO P1.1 P2 P4
K [-0.46897 0.42973;

0.39570 -0.40845]
[0.60000 -0.20000;
0.60000 -0.31394]

[-0.75154 0.08726;
-1.16867 -0.21465]

Maior Autovalor -0.0940 ± 0.3713i -0.5380 ± 0.3745i -0.6849 ± 0.6612i

Tabela 2: Ganho K e maior, em módulo, autovalor para UPOs do mapa de Henon controladas por DFC.

−2 −1 0 1 2

−2

−1

0

1

2

(b)

x
1

x
2

Figura 1: Bacias de atração das órbitas controla-
das com o DFC para o mapa de Henon. (a) P1.1
(+), (b) P2 (⋆)

ção se limita à uma vizinhança muito pequena da
órbita. Na Figura 1 (b), para cada condição ini-
cial dos estados estendidos foi utilizada uma cor
(azul ou verde) para a bacia de atração de P2.

As bacias de atração para o PBCC são apre-
sentadas na Figura 2. Observa-se que com este
método todas as órbitas de peŕıodo p e seus divi-
sores são controladas para um mesmo valor de p
utilizado na lei de controle. Por isso, para cada
figura apresentada há mais de uma bacia. As ba-
cias de P1.1 e P1.2 são mostradas nas Figuras 2
(b) e (c) sugerindo que cada bacia das órbitas di-
visoras de p perdem tamanho com o incremento
de p. A bacia da órbita P2 não foi inclúıda na fi-
gura 2 (c), assim como as bacias das órbitas P1.1,
P1.2 e P2 não foram inclúıdas na Figura 2 (d). A
órbita P1.2 não compõe o atrator caótico presente
no mapa de Henon para a = 1.4 e b = 0.3, porém
esta também foi controlada.

Com o aumento do peŕıodo aumenta-se ex-
ponencialmente o número de órbitas que com-
põem o conjunto caótico e estas, em geral, são
mais instáveis que as órbitas de menor peŕıodo
(Cvitanović, 1988; Franceschini et al., 1993). Por
isso, a bacia de cada órbita de peŕıodo p dimi-
nui com o aumento do peŕıodo, porém, o espaço
ocupado pelo conjunto das bacias de órbitas de
mesmo peŕıodo aumenta no espaço de estados.

Na Figura 3 é mostrado o somatório do mó-
dulo do esforço em cada direção para contro-
lar as órbitas P2 e P4 utilizando o DFC e o
PBCC. O esforço de controle é definido por u(k) =
K(k)(r(k) − x(k)) e a convergência para a UPO
de interesse é indicada por u(k) < 10−10 (pre-

ψest(z,K)
.
=

[

0n×np 0n×n

Inp×np 0np×n

]

z +





φ
([

In×n 0n×np

]

z
)

+K
[

−In×n 0n×n(p−1) In×n

]

z

−−−−−−−−−−−−−−−−−−−−−−−−−−−
0np×1



 (11)

∇zψest(z,K)
∣

∣

z=z∗(k) =

[

0n×np 0n×n

Inp×np 0np×n

]

+





∇xφ(x)
∣

∣

x=x∗(k) −K 0n×n(p−1) K

−−−−−−−−−−−−−−−−−
0np×n(1+p)



 (12)
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Figura 2: Bacias de atração para órbitas controladas do mapa de Henon utilizando o PBCC. (a) p = 1,
P1.1 (+) e sua bacia em azul e P1.2 (×) e sua bacia em verde; (b) p = 2, P2 (⋆) e sua bacia em azul e
as bacias dos pontos fixos em verde; (c) p = 4, P4 (⋆) e sua bacia em azul e as bacias dos pontos fixos
em verde; (d) p = 6, P6.1 (×) e sua bacia em verde e P6.2(+) e sua bacia em azul.

cisão máxima utilizada para visualização dos da-
dos). Foi utilizada uma escala logaŕıtmica no eixo
vertical para uma melhor comparação da veloci-
dade de convergência para a UPO utilizando cada
um dos métodos, por isso, apenas são mostrados
os pontos relativos ao esforço de controle onde
|u1(k)| + |u2(k)| > 10−10. Para melhor visuali-
zação dos resultados, na Figura 3 (b) os dados
relativos ao DFC foram mostrados a cada 10 pon-
tos. Observa-se que em ambos os casos a trajetó-
ria controlada com o PBCC converge mais rapi-
damente para o atrator. Isto ocorre mesmo com
os estados estendidos do DFC sendo inicializados
de acordo com o ponto da órbita mais próximo
da condição inicial de x. Verifica-se também que
o esforço de controle quando utilizado o PBCC
apresenta menor amplitude que quando utilizado
o DFC.

6 Conclusões

Neste trabalho foi apresentada uma comparação
entre o Predictive-based chaos control (PBCC) e
o Delayed feedback control (DFC). Para o PBCC
foi proposta uma nova lei de controle com um ga-
nho variante no tempo e calculado para cada valor

do estado durante a evolução da trajetória contro-
lada. O ganho do controlador DFC foi sintonizado
buscando-se um mı́nimo para o maior, em módulo,
multiplicador de Floquet para a órbita controlada.

Verificou-se que o PBCC não apresenta as li-
mitações conhecidas para o DFC, são elas: não
controlar órbitas que apresentem um número ı́m-
par de multiplicadores de Floquet reais e maio-
res que 1 e não controlar órbitas de peŕıodo ele-
vado. Além disso, as bacias de atração das ór-
bitas controladas e a velocidade de convergência
para o atrator são maiores quando utilizado o
PBCC quando comparadas com o DFC, necessi-
tando também de um menor esforço de controle.

Para a aplicação do PBCC é necessária a pre-
dição do estado futuro do sistema sem controle,
isto torna o método dependente do modelo para
aplicação. Já o DFC pode ser aplicado sem a ne-
cessidade de um modelo, pois, depende apenas dos
estados atrasados. Esta caracteŕıstica é favorável
ao DFC, porém, uma sintonização adequada do
ganho do controlador depende de um modelo para
uma formulação anaĺıtica ou para sintonização por
métodos numéricos. Em relação ao conhecimento
prévio da dinâmica do sistema, o PBCC, com a lei
de controle proposta, apresenta a caracteŕıstica de

1783

XVIII Congresso Brasileiro de Automática  / 12 a 16-setembro-2010, Bonito-MS



0 50 100 150 200

10
−10

10
−5

10
0

k

|u
1
(k

)|
 +

 |
u

2
(k

)|

(a)

 

 

DFC

PBCC

0 200 400 600 800 1000

10
−10

10
−5

10
0

k

|u
1
(k

)|
 +

 |
u

2
(k

)|

(b)

 

 

DFC

PBCC

Figura 3: Esforço utilizado para controlar órbitas
do mapa de Henon utilizando o DFC e o PBCC.
(a) p = 2, x0=[-0.42; 1.25]; (b) p = 4, x0=[0.304;
0.893].

não depender da posição da órbita a ser contro-
lada, sendo útil para aplicações onde estas órbitas
não são conhecidas.

A escolha da função custo para otimização do
ganho do DFC favorece a estabilidade local da ór-
bita controlada, porém, não garante um máximo
para o tamanho da sua bacia de atração. Desta
forma, não é exclúıda a possibilidade de serem ob-
tidos resultados melhores que os apresentados na
comparação.
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Anexo

Demonstração do Lema 1: O cálculo da de-
rivada é feito através da forma geral da regra
da cadeia. Por recursão, ∇xΨ(x, k)

∣

∣

x=x∗(k) =
∏p−1

l=0 ∇xψ(x,K(x, k + l))
∣

∣

x=x∗(k+l) .
Utilizando a definição de ψ em (7), percebe-

se que, para qualquer k ∈ N, o (i, j)-
ésimo componente de ∇xψ(x,K(x, k))

∣

∣

x=x∗(k) −
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∇xψ(x,K(x∗(k), k))
∣

∣

x=x∗(k) , com i = 1, . . . , n, é
igual a

n
∑

j
′=1

(

∂Kij
′ (x, k)

∂xj

∣

∣

∣

∣

x=x∗(k)

· (φp(x∗(k))− x∗(k))j′

)

.

O somatório acima visa simplificar o produto do

tensor ∂K(x,k)
∂x

∣

∣

∣

x=x∗(k)
pelo vetor (φp(x∗(k)) −

x∗(k)).
Como x∗(k) está localizado sobre a órbita

periódica, tem-se φp(x∗(k)) = x∗(k) e o último
termo dentro do somatório é zero. Tem-se então
o resultado desejado.

Demonstração do Teorema 2: A demons-
tração é obtida por uma observação direta do
Lema 1: sob a condição do Teorema 2 tem-se
∇xΨ(x, k)

∣

∣

x=x∗(k) = 0n×n, o que garante a es-
tabilidade do ponto fixo associado e obtêm-se a
estabilidade da órbita periódica.
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A new method for stabilizing unstable periodic orbits of

continuous-time systems. Application to control of chaos

Thiago P. Chagas, Pierre-Alexandre Bliman and Karl H. Kienitz

Abstract— This work presents a new method of stabilization
for unstable periodic orbits of continuous-time dynamical
systems. The principle of this method is to use feedback term
based on the difference between the actual state value and
the future state value computed along the trajectories of the
uncontrolled system. To compute the value of the latter, an
implicit Runge-Kutta ODE integration method is used, giving
rise to a time-varying dynamical controller. The stability of the
control method is defined in terms of the Floquet theory and
the conditions for calculation of the monodromy matrix are
presented. Numerical results are obtained using the forced Van
der Pol oscillator as case study and the orthogonal collocation
method as implicit Runge-Kutta method.

I. INTRODUCTION

The erratic nature of chaotic systems is an undesired

characteristic in many engineering applications, however,

some properties of chaotic sets favour applications where

the desired behaviour is a periodic oscillation. The sensitive

dependence on initial conditions and the presence of a dense

set of unstable periodic orbits (UPOs) embedded in chaotic

sets [1] are characteristics of chaotic sets that lead to the

concept of chaos control [2]. The sensitive dependence on

initial conditions allows that small perturbations are sufficient

to stabilize one of the many existent periodic solutions. The

fact that the periodic orbit is already a solution of the system

contributes to a very low control effort, and this appears as a

realistic way to confine the evolution of the system to certain

restricted part of the state space.

A variety of numerical evaluations of chaos control have

been conducted since the introduction of the concept by

Ott et al. [2]. For a review, see [3]. Pyragas [4] proposed

a continuous-time feedback chaos control based on the

difference between the current time system state and the time

delayed system state, the Delayed Feedback Control (DFC).

Apart from its attractive simplicity, this method became

popular because of its practical aspects [5]. Its limitations

(see ” [6]–[9] but also [10]) stimulated the development

of alternative feedback methods, e.g. the Prediction-Based

Chaos Control (PBCC) [11].

The PBCC, originally proposed for discrete-time dynam-

ical systems, uses the difference between the current time

system state and the state computed at a time located one

This project has been funded by CAPES-COFECUB (project Ma
624/09), FAPESP (grant 2011/17610-0) and Université Paris-Sud Or-
say. T.P. Chagas is with Universidade Estadual de Santa Cruz (UESC),
45662-900 Ilhéus-BA, Brazil; Instituto Tecnológico de Aeronáutica (ITA),
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cedex, France, thchagas@gmail.com. P.-A. Bliman is with Inria,
pierre-alexandre.bliman@inria.fr. K.H. Kienitz is with
ITA, kienitz@ieee.org

period ahead of the current time, along the free system trajec-

tories. This control scheme does not present the limitations

of DFC and its stability characteristics are easier to define

[12]–[14].

While the present paper is mainly interested by control of

chaos, we want to stress that both DFC and PBCC are control

methods that may be used in principle for stabilization of any

discrete-time system having unstable periodic orbits.

Here we develop a continuous-time PBCC, using feedback

term based on the future state of the uncontrolled system.

The method proposed to compute the latter is based on

an implicit Runge-Kutta integration method [15], and the

controlled system is an ODE system. More precisely, or-

thogonal collocation method [15]–[17] is used, resulting in

tight prediction of the future state. Control gain synthesis is

based on Floquet theory and Floquet multipliers [13], [18].

These ideas are successfully applied numerically to the Van

der Pol (VdP) oscillator as case study, and comparison with

DFC is achieved.

The paper is structured as follows. Section II presents the

principles and general formulation of the proposed method.

Section III is dedicated to the orthogonal collocation method

applied to the general formulation. The method to calculate

the stabilizing control gain is presented in Section IV. The

numerical results are presented in Section V and conclusions

are given in Section VI.

II. PRINCIPLES AND GENERAL FORMULATION

Consider the following continuous-time dynamical system

ẋ(t) = f(t, x(t)), t ≥ 0 (1)

where x : [0,+∞) → R
n and f : [0,+∞) × R

n → R
n

are column vectors and n ∈ N. The function f is assumed

T -periodic with respect to the time variable, for given T > 0.

We assume the existence of an unstable periodic orbit

(UPO) as solution of (1). Thus, there is a trajectory x∗ that

satisfies

x∗(t+ T ) = x∗(t), ∀t ∈ R. (2)

We attempt here to stabilize the UPO x∗ by use of

a continuous-time version of the Prediction-Based Chaos

Control (PBCC) presented in [11], [13]. The feedback control

term is applied as indicated in (3)

ẋ(t) = f(t, x(t)) +Bu(t), x(0) = x0. (3)

Our contribution is to compute u(t) as a dynamical state-

feedback defined as

u(t) = Kc (x(t+ T, t, x(t))− x(t)) . (4)
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x : [0,+∞) → R
n is the state of the system to be stabilized

and, by definition, for any x ∈ R
n, any t′ ≥ t, x(t′, t, x)

is the value at time t′ of the solution of the free system (1)

departing at time t from x. x(t′, t, x) is the state transition

map of (1) [19]. B ∈ R
n×q is the input matrix and Kc ∈

R
q×n is the control gain matrix. Observe that the UPO x∗(t)

of (1) is also a periodic orbit of (3)-(4) that we intend to

stabilize using adequate control gain Kc.

The coupled system is solution of the following PDE

∂X(t, 0)

∂t
= f(t,X(t, 0))+BKc (X(t, T )−X(t, 0)) , t ≥ 0

(5a)
∂X(t, T s)

∂s
= Tf(t+ Ts,X(t, T s)), t ≥ 0, s ∈ [0, 1] (5b)

X(0, 0) = x0.

The function X : [0,+∞) × [0, T ] → R
n is such that

X(t, 0) = x(t) and X(t, T ) = x(t+ T, t, x(t)).

Real-time application of the control structure proposed

here depends on the ability to compute x(t+ t, t, x(t)). The

first step consists in approximating the solution of (5b) by an

implicit Runge-Kutta ODE integration method [15], in order

to estimate the terminal value

X(t, T ) = x+ T

∫ 1

0

f (t+ Ts,X(t, T s)) ds, x given (6)

For this, the operator x is first approximated by the operator

y defined by

y(t+ T, t, x) = x+ T
N
∑

i=1

cili(t) (7a)

li(t) = f



t+ Tsi, x+ T

N
∑

j=1

aij lj(t)



 , (7b)

where i = 1, . . . , N , lj : [0,+∞)×R
n → R

n and aij , ci ∈
R are weights chosen according to the implicit method used.

The approximation y(t+T, t, x(t)) of X(t, T s), s ∈ [0, 1], is

calculated at the discretization points s = si, i = 1, . . . , N .

For simplicity, equation (7b) is written with the vector

unknown L(t) =
[

l1(t)
′ . . . lN (t)′

]′
∈ R

nN :

L(t) = FT (t, x, L(t)), t ≥ 0 (8)

where FT : [0,+∞)×R
n ×R

nN → R
nN is defined in (9).

To compute y(t+ T, t, x) through (7a), it is necessary to

solve the algebraic system of equations (8) with unknown

L(t) ∈ R
N . Writing C =

(

c1 . . . cN
)

and closing

equation (3) by u(t) = Kc(y(t+ T, t, x(t))− x(t)) yields a

differential algebraic equation (DAE), namely:

ẋ(t) = f(t, x(t)) + TBKcCL(t), x(0) = x0 (10a)

L(t) = FT (t, x(t), L(t)). (10b)

We propose now to approximate (10b) by solving the nN -

dimensional ODE (11). The initial value L̂(0) is intended to

be (precisely) computed off-line.

d

dt

(

L̂(t)− FT (t, x(t), L̂(t))
)

+

ko

(

L̂(t)− FT (t, x(t), L̂(t))
)

= 0, (11)

Provided ko > 0 and (10b) possesses a unique solu-

tion L(t) for any t, x0, the solution of (11), if it exists,

tends asymptotically towards L(t) when t → +∞. Writing

A = (aij); ∂i the partial derivative with respect to the i-th
variable; In the identity matrix; 1N the vector with elements

equal to 1 and ⊗ the Kronecker product, (11) writes as (12),

with GT : R×R
n ×R

nN → R
nN . Introducing (11) instead

of (10b) in (10a) finally yields
[

ẋ(t)
˙̂
L(t)

]

=

[

f(t, x(t)) + TBKcCL̂(t)

GT (t, x(t), L̂(t))

]

, x(0) = x0 (13)

The ODE (13) has two types of state components, cor-

responding to the controlled system dynamics and to the

dynamical state controller. The solution of (13) is an ap-

proximation of the solution of (5).

III. APPROXIMATION AND IMPLEMENTATION

The implicit Runge-Kutta method given in (7) is a general

formulation used for the integration of differential equations,

whose application depends on the choice of a specific imple-

mentation. Here we take the orthogonal collocation [15]–[17]

as implicit Runge-Kutta method, but there’s no doubt other

implementations should be experimented.

A. Orthogonal collocation method

Now, y(t+T, t, x) in (7) is replaced by z(t+T, t, x), with

z(t+ T, t, x) defined on the whole interval [t, t+ T ] by:

z(t+Ts, t, x) = w0(s)x+
N+1
∑

i=1

wi(s)mi(t), s ∈ [0, 1], t ≥ 0

(14)

where mi : [0,+∞) → R
n, i = 1, . . . , N + 1, is a

column vector. The choice of the weight polynomials wi(s),
i = 0, . . . , N +1 gives different properties to the collocation

method. We choose here Lagrange polynomials:

wi(s) =

N+1
∏

j=0,j 6=i

s− sj
si − sj

, i = 0, . . . , N + 1. (15)

but other ones, like Chebyshev or Legendre, could be used.

The collocation points verify 0 = s0 < s1 < · · · < sN <
sN+1 = 1, and are taken in order to fulfil the orthogonality

relations:
∫ 1

0

(1−s)s wi(s)wj(s) ds = 0, i, j = 1, . . . , N, i 6= j. (16)

Note that the state for each time t + Tsi is approximated

as z(t + Tsi, t, x) ≈ mi(t) for any i = 0, . . . , N + 1, as

wi(sj) = δji (with δji , the Kronecker symbol). A character-

istic of the orthogonal collocation method is that each mi(t)
is an approximation of the state that differs from the li(t) in
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FT (t, x, L) =
[

f(t+ Ts1, x+
∑N

j=1 a1j lj)
′ . . . f(t+ TsN , x+

∑N
j=1 aNj lj)

′
]′

, x ∈ R
n, L ∈ R

nN (9)

˙̂
L(t) =

[

InN − T∂3FT (t, x(t), L̂(t))(A⊗ In)
]−1 [

∂1FT (t, x(t), L̂(t)) + ∂2FT (t, x(t), L̂(t))(1N ⊗ f(t, x(t)))

−ko

(

L̂(t)− FT (t, x(t), L̂(t))
)]

:= GT (t, x(t), L̂(t)) (12)

∂z(t+ Ts, t, x)

∂s

∣

∣

∣

∣

s=sj

≈
∂w0(s)

∂s

∣

∣

∣

∣

s=sj

x+

N+1
∑

i=1

∂wi(s)

∂s

∣

∣

∣

∣

∣

s=sj

mi(t) ≈ Tf(t+ Tsj ,mj(t)). (17)

(7), which are the derivatives. The derivative
∂z(t+Ts,t,x)

∂s
at

sj , j = 1, . . . , N + 1 verifies formula (17).

From this is deduced the following matrix equation with

unknown M(t), which parallels (10b):

(W0 ⊗ In)x(t) + (W ⊗ In)M(t) = HT (t,M(t)) (18)

where w(s) = [w1(s) . . . wN+1(s)]
′

and

W0 =

[

∂w0(s)
∂s

∣

∣

∣

s=s1
· · · ∂w0(s)

∂s

∣

∣

∣

s=sN+1

]′

,

W =

[

∂w(s)
∂s

∣

∣

∣

s=s1
· · · ∂w(s)

∂s

∣

∣

∣

s=sN+1

]′

,

M(t) =
[

m1(t) · · · mN+1(t)
]′
,

HT (t,M) =







Tf(t+ Ts1,m1)
...

Tf(t+ TsN+1,mN+1)






.

Here, W0 ∈ R
(N+1), W ∈ R

(N+1)×(N+1), M : R →
R

n(N+1), HT : R × R
n(N+1) → R

n(N+1). HT depends

on the choice of the si, i = 1, . . . , N , but, for simplicity,

this dependence is not explicit here.

B. Solution of the orthogonal collocation method using the

observer

The solution of the algebraic equation (18) is done using

the observer (11) resulting in (19) which can be written in

turn as (20). With an appropriate choice of M̂(0) and ko,

the state M̂(t) converges to the solution of (18).

Following equation (13), the feedback term effectively

implemented yields the closed-loop system
[

ẋ(t)
˙̂
M(t)

]

=

[

f(t, x(t)) +BKc [m̂N+1(t)− x(t)]

QT (t, x(t), M̂(t))

]

, x(0) = x0.

(21)

Equation (21), the equivalent of (13) for the orthogonal

collocation implementation, gives an approximate solution

of (3)-(4).

IV. CONTROL GAIN DESIGN

Now that the feedback method has been exposed, we

provide a method to design the control gain Kc. It depends

upon the ability of calculating the closed-loop monodromy

matrix of x∗(t). The calculus of this matrix requires the

integration of the closed-loop system and its variational

equation along a trajectory in the vicinity of x∗(t) [20,

Appendix B]. To integrate this trajectory, initial condition is

chosen as close as possible to x∗(0). Integrating over a period

yields the corresponding monodromy matrix. The Floquet

multipliers, the eigenvalues of the monodromy matrix, are

used to analyze the orbit stability [18]. Computation of the

monodromy matrix using an implicit Runge-Kutta method

was not studied.

For illustration purposes, a special structure for B and

Kc will be used. This structure results on a scalar gain

that reduces the calculus complexity and enables to evaluate

numerically the relation between the Floquet multipliers and

the control gain.

B =
[

0 · · · 0 1
]′
, Kc = kc

[

0 · · · 0 1
]

The integration of the variational equation depends on the

Jacobian matrix at x∗(t), obtained by linearising (3)-(4), i.e.:

{∇xf(t, x(t)) +BKc [φ(t+ T, t)− In]}x(t)=x∗(t) (22)

where φ(t+ T, t)|x(t)=x∗(t), the monodromy matrix of x∗(t)
for the free system (1), is calculated for each integration

step of (3)-(4). Using (22) we compute the closed-loop

monodromy matrix of x∗(t) given gain kc. The Floquet

multipliers are calculated to measure the local stability of

the controlled orbit for the chosen kc. In practice, we fix kc
and obtain the corresponding Floquet multipliers.

V. NUMERICAL RESULTS

In this section we apply the proposed solution to the forced

Van der Pol (VdP) oscillator. The function f(t, x) in (1) is

given by

f(t, x) =

[

x2

a sin(ωt)− µ(x2
1 − 1)x2 − x1

]

. (23)

In this example the parameters a = 0.988, ω = 0.45 and

µ = 1 were chosen such that a chaotic attractor exists [21]

and consequently a infinite number of UPOs [22].

The control scheme (3) is applied, with u(t) defined in

(4) B = [0 1]′ and Kc = kc[0 1], resulting in
[

ẋ1(t)
ẋ2(t))

]

= f(t, x(t)) +

[

0
kc [x2(t+ T, t, x(t))− x2(t)]

]

(24)

The period of the forcing term is taken here as T = 2π
0.45 .

Each periodic orbit of system (23) has period multiple of

T . The target UPO x∗(t) chosen here is an orbit of period

T . This simplifies the analysis, but this does not reduce the

generality of the method.

The feedback designed by approximating the feedback

term, leading to the closed-loop system (21). The solution
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d

dt

[

(W ⊗ In)M̂(t) + (W0 ⊗ In)z(t)−HT (t, M̂(t))
]

+ ko

[

(W ⊗ In)M̂(t) + (W0 ⊗ In)x(t)−HT (t, M̂(t))
]

= 0 (19)

˙̂
M(t) =

[

(W ⊗ In)− ∂2HT (t, M̂(t))
]−1 {

∂1HT (t, M̂(t))− (W0 ⊗ In)f(t, x(t))

−ko

[

(W ⊗ In)M̂(t) + (W0 ⊗ In)x(t)−HT (t, M̂(t))
]}

:= QT (t, x(t), M̂(t)) (20)

of the latter depends on the choice of three parameters: the

control gain kc, the observer gain ko and the number of inter-

mediate discretization points for the orthogonal collocation

method N . The values ko and N are directly related to the

estimation quality and these two parameters will be tuned

first.

A. Tuning the parameters ko and N

To evaluate the future state estimation, whose characteris-

tics are related to the parameters ko and N , we first set kc =
0. We used as the initial condition x0 = [−0.75, 0.75]′. The

system is integrated for t ∈ [0, T ] and the points m̂N+1(t+
jT/999), j = 0, . . . , 999, are collected for different values of

ko and N . One then assesses the convergence by comparison

with the solution obtained with N = 150 and ko = 50, by

computing (25), where the superscript on z
(N,ko)
2 indicates

the value of N and ko used in the estimation. In Figure 1(a)

is given ε(N, 50) for different values of N .

Note that the collocation parameters si, W0 and W are

previously calculated for each N tested. The computation of

large matrices W0 and W requires intense off-line computa-

tional burden and reduces the number of values N tested, but

these matrices are calculated once for all and are independent

of f .

Repeating the same process, we evaluate ε(150, ko) for

different values of ko, see Figure 1(b). Increasing N and

ko results in larger computation effort and trade-off between

estimation quality and computation effort should be consid-

ered.

Due to the error level shown in Figure 1 for N = 100 and

ko = 10, we adopt these values in the sequel. In Figure 2

is shown x2(t) and z2(t, t − T, x(t − T )) (beware the time

shift here). In this case it is expected that x(t) = x(t, t −
T, x(t−T )) and the proximity of both time series in Figure

2 allows to use x instead of z.

B. Tuning of kc

Now we tune the feedback gain. We use (22), with

x∗(0) = [0.15884454118, 0.110605560432]′, to obtain a

value kc that stabilizes the orbit of (5). Note that, the

estimation with N = 100 and ko = 10 being precise, we

expect that a stabilizing kc for (5) will yield stable slightly

perturbed cycle for (21).

Figure 3 shows the modulus of the two Floquet multipliers

|µ| for different values of kc. The stability is achieved when

|µ| ≤ 1. We chose kc = 0.5, which results in |µ| ≈ 0.315×
10−2.

Stabilized trajectory for kc = 0.5, ko = 10, N = 100 and

x0 = [−0.75, 0.75]′ is shown in the state space in Figure 4.
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o
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Fig. 1. Error between the estimated free system response future value
using different values of (a) N and (b) ko.

The time series of the controlled orbit is shown in Figure 5(a)

and 5(b) for the first and second state variables, respectively.

The control effort applied to stabilize the target orbit is

shown in Figure 6. The control effort tending to zero and x(t)
tending to x(t+T, t, x(t)) ensure that the orbit is stabilized.

These results exemplify a successful application of the

PBCC to a continuous-time dynamical system using a real-

time estimation of the future state dynamics.

C. Comparison with the Delayed Feedback Control

The DFC will be used here as a classical reference for

comparison with the proposed method. The control signal to

be applied on (3), with B = [0 1]′, for the DFC is defined

as

u(t) = Kd (x(t− T )− x(t)) . (26)

where the matrix Kd = [0 kd] is chosen, kd ∈ R.

The value kd ≈ 0.061992542246 is obtained by optimiza-

tion using as cost function the largest Floquet multiplier in

modulus [23], resulting in |µ| ≈ 0.3535. Here we observe the

first advantage of the proposed method, the largest Floquet
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ε(N, ko) =
‖z

(150,50)
2 (., 0, x(0))− z

(N,ko)
2 (., 0, x(0))‖L1(0,T )

‖z
(150,50)
2 (., 0, x(0))‖L1(0,T )

(25)
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Fig. 2. Current time and shifted future time trajectory of the system for
kc = 0, ko = 10 and N = 100.
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Fig. 3. Modulus of the Floquet multipliers for different values of kc.

multiplier is closer to zero than the one obtained for the DFC,

resulting in a more stable orbit.

The trajectory with x0 = [−0.75, 0.75]′ controlled by

the DFC in the state space is shown in Figure 7(a) and the

time series of the control effort is shown in Figure 7(b).

Comparing these figures with Figures 4 and 6, respectively,

we observe that the convergence of the trajectory to the

controlled orbit by the proposed method is much faster than

the one controlled by the DFC. This result is in agreement

with the calculated |µ|.

VI. CONCLUSIONS

A new stabilization method for unstable periodic orbits

of continuous-time dynamical systems has been presented.

The principle of this method is to use a feedback term

based on the difference between the actual state value and

the future state value computed along the trajectories of the

uncontrolled system.

The method consists in approximating the predicted free

system response by use of an implicit Runge-Kutta method,

resulting in a closed-loop DAE. The algebraic equation is

solved using an observer which leads to an extended ODE.

The orthogonal collocation method was used as implicit

Runge-Kutta method and was applied to the forced Van der
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Fig. 4. Stabilized orbit in the state space for kc = 0.5.
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Fig. 5. Time series for the (a) first and (b) second state variables of a
stabilized orbit with kc = 0.5.

Pol oscillator. The results shown here were obtained with

N = 100 collocation points to guarantee good estimation,

although stabilization of the periodic orbit was obtained for

N ≥ 70.

To predict trajectories of chaotic systems requires spe-

cial care, due to the sensitive dependence on initial con-

ditions, and this explains the large values employed here.

Nevertheless, the large closed-loop ODE system obtained

induces high computational effort. Reducing the number of

collocation points by using different implicit Runge-Kutta
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Fig. 6. Time series of the control effort of a stabilized orbit for kc = 0.5.
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Fig. 7. Trajectory controlled using the DFC with kd ≈ 0.061992542246.
(a) State space and (b) time series of the control effort.

methods (based e.g. on Chebyshev polynomials or finite

element method) certainly needs to be the object of future

research in order to arrive to satisfying implementation of

the new control principle proposed here.

The real-time estimation of the future state of the free

system response can be used in regular systems where

periodic orbits or fixed points are to be controlled with dif-

ferent control structures. Modifications of the method can be

applied, for example, in model-based predictive controllers.

The observer software can be embedded in a dedicated

processor and used in parallel with the measurement of the

system outputs in practical systems applications.

A method for the control gain determination was also

presented based on the Floquet theory. The linearized system,

which is a requisite for the monodromy matrix computation,

was presented and a stabilizing control gain calculated. A

controlled orbit was exemplified and comparison with the

DFC was done evidencing the advantages of the proposed

method.
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[3] E. Schöll and H. G. Schuster, Handbook of Chaos Control. John

Wiley & Sons, 2008.
[4] K. Pyragas, “Continuous control of chaos by self-controlling feed-

back,” Physics Letters A, vol. 170, pp. 421–428, Nov. 1992.
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the Odd-Number Limitation of Time-Delayed Feedback Control,”
Physical Review Letters, vol. 16, p. 114101, Mar. 2007.

[11] T. Ushio and S. Yamamoto, “Prediction-based control of chaos,”
Physics Letters A, vol. 264, pp. 30–35, Dec. 1999.
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realimentação de estados atrasados e uma nova lei utilizando estados
preditos,” in XVIII Congresso Brasileiro de Automática, Bonito, Brazil,
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a b s t r a c t

A simple feedback control strategy for chaotic systems is investigated using the forced van

der Pol system as an example. The strategy regards chaos control as an optimization prob-

lem, where the maximum magnitude Floquet multiplier of a target unstable periodic orbit

(UPO) is used as a cost function that needs to be minimized. Thus, the method obtains the

optimal control gain in terms of the stability of the target UPO. This strategy was recently

proposed for the proportional feedback control (PFC) method. Here, it is extended to

the highly popular delayed feedback control (DFC) method. Since the DFC method treats

the system as a delay-differential equation whose phase space is infinite-dimensional,

the characteristic multipliers are found through a truncation in the number of delayed

states. Control of a target UPO is achieved for several values of the forcing amplitude.

We compare the DFC and PFC methods in terms of stability of the controlled orbit, steady

state error and control effort.

� 2012 Elsevier Ltd. All rights reserved.

1. Introduction

The erratic nature of chaotic systems may be an unde-

sired characteristic in many applications, where one usu-

ally expects the system to behave in a predictable way.

However, some properties of chaotic sets favor applica-

tions where the desired behavior is a periodic oscillation.

The sensitive dependence on initial conditions and the

presence of a dense set of unstable periodic orbits (UPOs)

embedded in chaotic sets leads to the concept of chaos

control, where small perturbations are sufficient to stabi-

lize one of the many unstable periodic states. Moreover,

since trajectories on chaotic attractors come arbitrarily

close to any of the embedded UPOs due to ergodicity, there

is no need to apply external forces to drive the system to

the proximity of the desired state and the control effort

from then on is ideally very low, constrained by the noise

level. A wealth of numerical and experimental applications

of chaos control have been conducted since the introduc-

tion of the concept by Ott et al. [1]. For a review, see San-

juán and Grebogi [2].

Pyragas [3] proposed two chaos control methods based

on state feedback control. These control schemes became

an alternative to the well known OGY method [1], which

is based on small time-dependent perturbations to an

accessible system parameter to stabilize different UPOs.

The methods proposed by Pyragas became popular be-

cause of their practical aspects [4], in particular, for being

continuous-time control schemes and depending on per-

turbations of a state variable, in contrast to the OGY meth-

od, which depends on the existence of a system parameter

that should be constantly changed and is based on
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Poincaré maps, so the parameter perturbations become

time-discrete. This leads to restrictions when applying

the OGY method to systems with noise [4].

The two methods proposed by Pyragas [3] are the pro-

portional feedback control (PFC) and the delayed feedback

control (DFC). The PFC uses a control signal based on the

difference between the coordinates of the current state

and the target UPO in the phase space. The DFC uses a feed-

back control signal based on the difference between the

system state at a time t (current state) and the state at a

time t � T (delayed state), where T is the period of the orbit

that must be stabilized (target UPO). Although simpler to

implement experimentally, the DFC method has some

known limitations to control UPOs with long periods [5],

as well as UPOs with an odd number of real Floquet multi-

pliers greater than unity [6]. The long-period limitation

could be overcome by using, for example, the extended de-

layed feedback control [5]. The odd number limitation can

be treated with the addition of an unstable degree of free-

dom to the system [7]. Note that even for the original DFC

method, the odd number limitation has been contested

with a counter example [8].

This work proposes a feedback control strategy

through a case study of the forced van der Pol system,

which is a widely studied nonlinear oscillator with appli-

cations to electrical circuits [9], biology [10], and econ-

omy [11], to name a few. We follow Asenjo et al. [12]

and regard the control task as an optimization problem,

which allows us to obtain the control gain that minimizes

the largest magnitude Floquet multiplier of an unstable

periodic orbit. Previously, Fouladi and Valdivia [13] had

introduced a similar control method based on optimiza-

tion. Asenjo et al. [12] investigated the optimal control

strategy for the PFC method. Here, we extend their strat-

egy to the DFC and compare it to the PFC, considering

important aspects for real systems, such as steady state

error and steady state control effort. A difficulty arises

when computing the Floquet multipliers for the DFC

method. The control law for this method leads to a de-

lay-differential equation (DDE), whose phase space is

infinite-dimensional. Hence, we compute the spectrum

of Floquet multipliers by assuming an approximation

where the continuous infinite-dimensional system is rep-

resented by a finite number of delayed states. We also

evaluate the robustness of the controllers by considering

parametric uncertainties.

In Section 2, the feedback control problem is defined

and the PFC and DFC methods are described. This section,

together with Appendices A,B,C describe the practical de-

tails employed to study the stability of the controlled peri-

odic solutions. Section 3 describes our control strategy

based on stability, steady state error, and control effort.

The numerical results comparing the PFC and DFC are re-

ported for the van der Pol system. The conclusions are gi-

ven in Section 4.

2. Problem definition

Consider a continuous-time n-dimensional dynamical

system described by the following system of differential

equations

dxðtÞ

dt
¼ fðt;xðtÞÞ; xð0Þ ¼ x0; ð1Þ

where t 2 R; x 2 R
n and f : R� R

n ! R
n is a smooth func-

tion. Let x⁄(t) be an unstable periodic orbit of Eq. (1).

Our goal is to stabilize the target UPO x⁄(t) using the fol-

lowing control structure

dxðtÞ

dt
¼ fðt;xðtÞÞ þ BuðtÞ; ð2Þ

where uðtÞ 2 R
n is a column vector representing the con-

trol signal and B 2 R
n�n is the input matrix, a coupling con-

trol coefficient. Here, we use B = In, where In is the identity

matrix of order n. The control signal is defined as

uðtÞ ¼ KcðrðtÞ � xðtÞÞ; ð3Þ

where rðtÞ 2 R
n is a reference signal that depends on the

control method and Kc 2 R
n�n is a gain matrix that must

be carefully chosen to stabilize x⁄(t).

2.1. Proportional feedback control

The proportional feedback control is a method that uses

the target orbit x⁄(t) as reference. For this control scheme

the value of r(t) in Eq. (3) is substituted by x⁄(t), so u(t)

is defined by

uðtÞ ¼ Kcðx
�ðtÞ � xðtÞÞ:

The stability of the controlled orbit can be studied from the

n � nmonodromy matrix of the system, Ux� ðtÞ, obtained by

the usual method of integrating the variational equation

(4) from time 0 to T,

d/xðt;0Þ

dt
¼ rx fðt; xðtÞÞ þ Kcðx

�ðtÞ � xðtÞÞ½ �xðtÞ¼x�ðtÞ/xðt;0Þ;

ð4Þ

where /x(t, t0) is the state transition matrix, with

/x(0,0) = In, and Ux� ¼ /xðT;0Þ, where T is the period of

the target orbit, x⁄(0) = x⁄(T) [14]. The eigenvalues of the

monodromy matrix are the Floquet multipliers and de-

scribe how a perturbation in the periodic orbit grows with

time. Orbits with at least one Floquet multiplier with mag-

nitude greater than one are unstable.

2.2. Delayed feedback control

The delayed feedback control (DFC) is a method to sta-

bilize UPOs based on reducing the error between the state

of the controlled system at time t and its state at the de-

layed time t � T. For the DFC method, r(t) = x(t � T) in Eq.

(3), that is, the reference signal is the delayed state. Thus,

u(t) is defined by

uðtÞ ¼ Kcðxðt � TÞ � xðtÞÞ: ð5Þ

The controlled system, Eq. (2), with u(t) given by Eq. (5)

is a delay-differential equation (DDE). The state of this kind

of dynamical system is represented by an infinite number

of state variables representing the trajectory from x(t � T)

to x(t). This implies that the phase space is infinite

dimensional.
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A finite-dimensional version of the system state is con-

sidered by representing it as a vector composed by a dis-

crete-time approximation of the trajectory from x(t � T)

to x(t). This extended state X(t) is necessary for the stability

analysis of the UPO and for estimating an optimal value for

the control gain Kc, and can be represented as

XðtÞ ¼

xðt � s0TÞ

xðt � s1TÞ

.

.

.

xðt � sNTÞ

xðt � sNþ1TÞ

2

6

6

6

6

6

6

6

6

6

6

6

6

4

3

7

7

7

7

7

7

7

7

7

7

7

7

5

; ð6Þ

where s0 = 0, si < si+1, i = 0,1, . . . ,N, and sN+1 = 1. The si values

are determined by the discretization method, which in our

case is the orthogonal collocation method, described in

Appendix B. The number of samples N depends on the sys-

tem dynamics and the value of T. It is now possible to re-

write Eq. (2) for the DFC method as a function of X(t)

resulting in:

dXðtÞ

dt
¼ Fðt;XðtÞÞ þ ðINþ2 � BKcÞðXðt � TÞ � XðtÞÞ; ð7Þ

where IN+2 is the identity matrix of order N + 2, � is the

Kronecker product and

Fðt;XðtÞÞ ¼

fðt � s0T;xðt � s0TÞÞ

fðt � s1T;xðt � s1TÞÞ

.

.

.

fðt � sNT;xðt � sNTÞÞ

fðt � sNþ1T;xðt � sNþ1TÞÞ
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: ð8Þ

By using the discrete approximation of the delayed

states X(t) and their derivatives (dX(t)/dt = DX(t), see

Appendices B and C) it is possible to obtain a monodromy

matrix of the controlled UPO. Since stability must be

achieved also for the delayed states, the monodromy ma-

trix has order n(N + 2) for the DFC method. In this case,

the variational equation constitutes a system with

[n(N + 2)]2 equations, and its integration is time consum-

ing. For this reason, we calculate the monodromy matrix

according to the method introduced in Refs. [15,16],

whereby UX�ðtÞ is obtained by matrix algebra operations

only. The method is described in Appendix A.

Unlike the PFC method, which requires prior knowledge

of the position of the target UPO in the phase space, appli-

cation of the DFC method requires only the period of the

UPO. Nonetheless, the position of the UPO x⁄(t) is used to

compute the monodromy matrix employed in the stability

analysis and control gain design (see Eq. (A.12) in Appen-

dix A). In practice, one can use the DFC method itself with

an arbitrary choice of Kc to control/find x⁄(t). One could

even use x(t) instead of x⁄(t) in the monodromy matrix

to find Kc, when x(t) is close to x⁄(t), i.e., small

jx(t) � x(t � T)j2. These ideas will be explored somewhere

else.

We adopt a scalar control gain, so that the gain matrix

Kc is

Kc ¼
kc ½0�1;j

½0�i;1 ½0�i;j

" #

; kc 2 R; i; j ¼ 2; . . . ;n� 1 ð9Þ

and is represented by kc hereafter.

3. Numerical results

In this section the DFC and PFC methods are applied to

the forced van der Pol (vdP) oscillator, described by the fol-

lowing system of ODEs

_x1ðtÞ ¼ x2ðtÞ;

_x2ðtÞ ¼ a sinðxtÞ � g x21ðtÞ � 1
� �

x2ðtÞ � x1ðtÞ:
ð10Þ

We follow Chian et al. [17] and choose x = 0.45, g = 1

and use a as the only adjustable parameter. All simulations

are performed with Matlab’s dde23 integrator with a local

error tolerance equal to 10�10. This integrator can be used

for both ODEs and DDEs [18].

Since we are working with a periodically driven system,

the natural choice of Poincaré map is a stroboscopic map

P : xðtÞ ! xðt þ T1Þ; ð11Þ

where T1 is the driver period.

Unstable periodic orbits of discrete-time period p in

the Poincaré map (in contrast to continuous-time period

T) are found as fixed points of the p-th iteration of the

Poincaré map, Pp(x(t)), with the secant method, by

solving

xðtÞ � PpðxðtÞÞ ¼ 0; n 2 N; ð12Þ

which returns one Poincaré point of a period-p UPO, x⁄. The

entire trajectory is approximated by solving Eq. (1) with

x0 = x⁄(0).

The target UPO can also be found by an optimization

routine, minimizing kx(T) � x0k
2, with x(T) obtained by

integrating equation (1), as done in Asenjo et al. [12], in

which case the minimization is over x0 and T. Alternatively,

the DFC method can be used to find the UPO, as mentioned

in the previous section.

To choose the control gain kc, three characteristics of

the controlled orbit can be analyzed: its stability, the stea-

dy state error and the steady state control effort.

The stability analysis is done by using the Floquet mul-

tipliers (l), which are the roots of the polynomial

det lInðNþ2Þ �Ux�
� �

¼ 0, where Ux� is the monodromy ma-

trix and In(N+2) the identity matrix.

The steady state error dcl is the distance (Euclidean

norm) between r(t) (the reference signal) and x(t) (the cur-

rent state) for an entire cycle of the target UPO,

dcl ¼

Z tþT

t

krðsÞ � xðsÞkds: ð13Þ

Successful control implies that dcl? 0 as t?1. In prac-

tice, t has a finite value and a convergence criterion for dcl
is defined as the relative difference between dcl at the cur-

rent cycle (dcl0 ) and at the Ncl past cycles dcl�i
, i = 1,2, . . . ,Ncl,
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Ncldcl0 �
PNcl

i¼1dcl�i

�

�

�

�

�

�

jNcldcl0 j
< �: ð14Þ

The steady state control effort, the measure of the effort

necessary to keep the trajectory on the close vicinity of the

target periodic orbit, is given by the integral of ku(t)k, as

defined in Eq. (3), along the orbit,

ucl ¼

Z tþT

t

kuðsÞkds: ð15Þ

Therefore, successful control implies that ucl? 0 as t?1.

With the above definitions, the control gain kc is chosen

according to the performance criteria and optimization.

We chose as our target orbit a p-1 UPO which, for

a = 0.988, has Floquet multipliers l1 � � 1.872 and

l2 � � 0.048. Fig. 1(a) shows a projection of the phase-

space trajectory of the target UPO at a = 0.988 and

Fig. 1(b) shows the time-series of x2(t).

3.1. Adjusting the number of collocation points

For the DFC method, it is necessary to define the num-

ber of samples or delayed states N, which is also the num-

ber of collocation points used to approximate the matrix D,

which is the differential operator used in the stability anal-

ysis of the controlled UPO (see Eq. (A.4) in Appendix A). An

increase in the number of collocation points results in

greater accuracy at the expense of computational time.

Fig. 2 plots jljmax � N for a = 0.988 and three different val-

ues of kc, where jljmax is the largest magnitude Floquet

multiplier of the p-1 UPO. Fig. 2 suggests that N > 80 is ade-

quate for this work. We adopt N = 100 in all the following

results.

3.2. Controlling the target orbit

Before comparing the PFC and DFC methods, a good

approximation for the target UPO is needed, since it is

necessary for the PFC method. We adopt the following

procedure. First, a Poincaré point of the orbit is obtained

for the uncontrolled system (kc = 0) with the secant

method. For the target UPO at a = 0.988 we obtain

(x1,x2) = (0.15884454118,�0.110605560432). Next, this

point is integrated for one period to obtain an initial

approximation for the whole orbit. Then, this orbit is used

to compute the monodromy matrix for the DFC method. At

this stage it is necessary to search for a control gain kc that

stabilizes the target UPO. We search for any kc which

makes jljmax < 1. With such kc, the DFC method is used to

control the UPO until the convergence criteria of Eq. (14)

is satisfied for � = 10�10. This last step is necessary to ob-

tain a good approximation for the whole orbit and not just

one Poincaré point, as in the case of the secant method. In

what follows, the resulting orbit will be denoted by x⁄(t)

and used in the DFC/PFC optimization process. Alterna-

tively, one may obtain x⁄(t) by skipping the secant method

step and directly applying the DFC while searching for the

proper x(0) and kc values, but that would require a search

in the (x(0) � kc) space using a DDE integrator with de-

layed states, which is much slower than using the secant

method to find the initial point in the x(t) space using Eq.

(1) and without delayed states. In practical situations

where the model equations might not be known, it may

be necessary to first use a standard method to estimate

the UPO from a time series (e.g., Ref. [19]), then apply

the DFC to obtain the desired convergence.

Fig. 1. (a) Projection of the phase-space trajectory of the period-1 target

UPO at a = 0.988; (b) the time-series of the x2 component of the target

UPO.

Fig. 2. Relation between the number of collocation points N and the

largest magnitude Floquet multiplier of the target UPO, jljmax, for

a = 0.988.
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Fig. 3 illustrates the method for finding kc. The magni-

tude of the Floquet multipliers of the target UPO are plot-

ted against kc for the DFC (solid lines) and PFC (dashed

lines) methods. For the DFC, only the six Floquet multipli-

ers with largest magnitude are plotted. There are two real

and four complex conjugate multipliers for kc[ 0.076,

while there are three complex conjugate multipliers for

kc J 0.076. Therefore, only three solid lines are visible in

the plot of jlj in most of Fig. 3(a). For the PFC method,

there are only two real multipliers. Fig. 3(b) is the same

as Fig. 3(a), but in log-linear scale.

The stars (⁄) in Fig. 3 refer to the values of kc found by

an optimization process. After plotting jlj for several val-

ues of kc by a scanning process, an optimization method

is applied by using as initial conditions the approximated

values of kc where the local minima of jljmax are found,

and using the largest magnitude Floquet multiplier as a

cost function [12]. We use the simplex search method

[20] and find one minimum for the DFC at

kc = 0.07632510479 (jljmax � 0.4395) and two minima for

the PFC, at kc = 0.92619140625 (jljmax � 0.4667 � 10�3)

and kc = 3.2105712890625 (jljmax � 0.5532 � 10�10). The

crosses (�) in Fig. 3 represent the values of jlj for the tar-

get UPO without control (kc = 0). The UPO is stabilized

when jljmax < 1, which occurs for 0.053[ kc[ 1.031 for

the DFC and for kc J 0.1 for the PFC. For the DFC, it can

be shown that the values of l tend to one when kc?1.

Fig. 3 shows that the range of kc for controlling the tar-

get UPO is larger for the PFC than for the DFC. However,

this may not be an advantage in practice, since one usually

hopes to obtain control by applying small perturbations to

the system. In that case, the DFC method has a slight

advantage, reducing the control effort. Notwithstanding,

the orbit controlled with the PFC is more stable, since

smaller values of jljmax are found. The results of stabiliza-

tion of the target UPO of the vdP system for a = 0.988 are

shown in Fig. 4 for (a) the DFC with the optimal value

kc = 0.07632510479, (b) the PFC with kc = 0.92619140625

and (c) the PFC with kc = 3.2105712890625. The initial con-

dition is set on (x1,x2) = (�0.5,0.5) (for the DFC, all the de-

layed states are on the x⁄(t)), the perturbations decay after

an initial transient and the system converges to the peri-

odic regime corresponding to the target UPO. Fig. 5 shows

the time series of the magnitude of the control signal u(t)

Fig. 3. (a) Magnitude of the Floquet multipliers of the target UPO at

a = 0.988 using DFC (solid line) and PFC (dashed line). The Floquet

multipliers of the orbit without control are represented by (�) and their

local minima for the controlled orbit by (⁄) and (b) the same as (a), but in

log-linear scale.

Fig. 4. Time series of the controlled x2(t) showing the stabilization of the

target UPO of the vdP system for a = 0.988 using (a) DFC with

kc = 0.07632510479, (b) PFC with kc = 0.92619140625 and (c) PFC with

kc = 3.2105712890625.
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in log-linear scale. The initial transients are shorter for PFC

than for DFC in these particular examples, but the PFC pre-

sents an initial peak on ku(t)k that represents a short-time

high external effort.

The real and imaginary parts of the Floquet multipliers

(l) for the DFC can be seen in the root locus chart in Fig. 6.

The cross (�) represents l for kc = 0 and the star (⁄) repre-

sents the optimal value (minimum of jljmax). The evolution

of the six Floquet multipliers with largest magnitude are

represented by the six branches, where the arrows show

the flow for increasing kc. The dashed circle in Fig. 6 is

the unity circle. It is clear that l? + 1 as kc?1.

The relation between the steady state error (dcl) and kc
is presented in Fig. 7(a). This figure is computed by inte-

grating an initial condition on x⁄(t) while applying the

DFC/PFC control method. After convergence of dcl is

reached, we compute one more cycle and plot the final va-

lue of dcl. Note that for the PFC (dashed line) the steady

state error is low for all kc J 0.1, as expected from Fig. 3,

which shows that jljmax < 1 in this region. As for the DFC

(solid line), the steady state error is low for

0.053[ kc[ 1. This is close to the point where jljmax be-

comes greater than one in Fig. 3. If jljmax � 1, the target

UPO is marginally stable/unstable and perturbed trajecto-

ries take a long time to converge to (or diverge from) it.

This is the case of the DFC for kc J 1, where jljmax J 1

according to Fig. 3(a). Therefore, in Fig. 7, dcl is not plotted

for kc > 1.5 for the DFC method, since the divergence time

is very long. Fig. 7(b) is the same as Fig. 7(a), but for the

control effort ucl.

One of the main advantages of a chaos control tech-

nique, is the small control effort required [1,3], and in that

sense the DFC method provides slightly better results,

since for small values of kc it generates smaller steady state

error dcl and control effort ucl. In fact, supposing that it is

possible to find some kc which is able to control the UPO,

in the DFC method the control effort always tends to zero

as t? +1, as opposed to the PFC method that requires ex-

act knowledge of the target UPO position. Errors in its esti-

mation always lead to finite dcl and ucl, and the errors tend

to be larger for longer period UPOs.

3.3. A brief robustness analysis of DFC and PFC

A control method is usually limited by parametric

uncertainties when applied to real systems. The source of

these uncertainties can be a parametric error between

the model used to project the controller and the real sys-

tem where it will be applied. Furthermore, changes in the

parameter of a real system, due to work cycles, for exam-

ple, are also sources of parametric error. In the previous

sections, the driver amplitude was set to a = 0.988, where

the UPO was found and the control methods applied. In

the present section, the target UPO x⁄(t) is found for

a = 0.988, but the controller is applied for a 2

[0.9855,0.994].

Fig. 8(a) and (b) show dcl and ucl for the DFC when a is

changed. As observed, while the orbit is controlled, both

quantities remain close to the integrator’s error tolerance.

Fig. 5. Time series of the magnitude of the control signal u(t) of the target

UPO of the vdP system for a = 0.988 using DFC with kc = 0.07632510479

(black line), PFC with kc = 0.92619140625 (green line) and PFC with

kc = 3.2105712890625 (blue line). (For interpretation of the references to

colour in this figure legend, the reader is referred to the web version of

this article.)

Fig. 6. Root locus chart of the target UPO controlled by the DFC with the

Floquet multipliers.

Fig. 7. (a) Steady state error dcl as a function of kc for the DFC (solid line)

and PFC (dashed line) methods; (b) same as (a), but for the control effort

ucl. The control parameter is a = 0.988.
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The values of the six largest magnitude Floquet multipliers

jlj of the system controlled with the DFC are presented in

Fig. 8(c). These results are obtained by integrating the ini-

tial condition until convergence of dcl is observed. After

that, the last T time units of the simulation are used to cal-

culate the monodromy matrix and the Floquet multipliers.

In all cases, the optimal value kc � 0.076325 is used. Note

that the DFC adapts well to parameter changes because

the reference r(t) is changed accordingly. This characteris-

tic reduces the controller’s stability, but increases its

robustness to parametric uncertainties.

For the PFC, we test the two values of kc where the local

minima of jljmax are found in Fig. 3, i.e., kc =

0.92619140625 and kc = 3.2105712890625. Fig. 9(a) and

(b) show the steady state error and the control effort as a

function of a. The sudden change in dcl and ucl around

a = 0.988 is due to the proximity of the target UPO, r(t), de-

fined by Eq. (3). Since in the PFC method r(t) does not self-

adapt to changes in the control parameter, the steady state

error and control effort are much higher for a– 0.988.

Fig. 9(c) reveals that jljmax is very sensitive to variations

in a for kc = 3.2105712890625, whereas jljmax is kept al-

most constant for kc = 0.92619140625. Overall, the orbit

controlled with kc = 3.2105712890625 is more stable, ex-

cept for large values of a.

As shown in Figs. 8 and 9, even with perturbations in a,

the p-1 UPO is more stable for the PFC method than for the

DFC method. However, the DFC has a much lower steady

state error and control effort.

4. Conclusions

Chaos control of the forced van der Pol system was

studied using proportional feedback control (PFC) and de-

layed feedback control (DFC). We devise a control strategy

whereby the target unstable periodic orbit (UPO) is chosen

according to its stability properties. Then the optimal con-

trol gain is found by minimizing the stability (Floquet)

multipliers of the target UPO. We adopt the optimization

strategy proposed by Asenjo et al. [12] and extend it to

the DFC method. Since the computation of the monodromy

matrix for the DFC method through the integration of the

variational equation is highly expensive, we propose the

use of the method introduced by Deshmukh et al. [15],

whereby the monodromy matrix can be readily obtained

using algebraic operations only.

Our results reveal that the magnitude of the Floquet

multipliers of the UPO controlled by the PFC method are

much smaller than when the DFC method is employed.

The PFC also shows a wider range of the control gain for

which the UPO can be controlled. In spite of that, the DFC

method results in smaller control effort, specially under

parametric uncertainties, and this is a highly desired prop-

erty in real applications. Even small perturbations in the

control parameter result in a control effort ucl of the order

of 10�1 or 100 for the PFC (Fig. 9(b)), whereas for the DFC,

ucl is of the order of the integrator’s error tolerance, 10�10

(Fig. 8(b)). An experimental realization of the DFC method

is simpler than the PFC, since the latter requires the use of

Fig. 9. The steady state error (a), control effort (b) and magnitude of

Floquet multipliers (c) as a function of a for the PFC.

Fig. 8. The steady state error (a), control effort (b) and magnitude of

Floquet multipliers (c) as a function of a for the DFC.
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a specially designed periodic oscillator for the control sig-

nal. In applications where the model equations are not

known and the PFC is to be used due to its stability prop-

erties, an approximation of the target UPO can be found

from time series analysis and/or the DFC method itself.

Besides the previously mentioned applications on elec-

trical circuits [9], biology [10] and economy [11], control of

the van der Pol equation is also relevant for fusion plasmas

[21]. Recently, the extended time-delayed feedback control

method was applied to a natural cardiac pacemaker

described by a modified Van der Pol equation, where chaos

must be avoided to prevent behavior associated with crit-

ical cardiac pathologies [22]. The analysis described in the

present paper can be readily applied to those systems.
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Appendix A. Stability analysis for the DFC method

This appendix describes a method to study the stability

of unstable periodic solutions of Eq. (7), reproduced below

dXðtÞ

dt
¼ Fðt;XðtÞÞ þ ðINþ2 � BKcÞðXðt � TÞ � XðtÞÞ; ðA:1Þ

where T is the period of the orbit, B 2 R
n�n is a matrix of

coupling control coefficients, Kc 2 R
n�n is the control gain

matrix, IN+2 is the identity matrix of order N + 2, � is the

Kronecker product and

XðtÞ ¼

xðt � s0TÞ

xðt � s1TÞ

.

.

.

xðt � sNTÞ

xðt � sNþ1TÞ
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5

ðA:2Þ

and

Fðt;XðtÞÞ ¼

fðt � s0T;xðt � s0TÞÞ

fðt � s1T;xðt � s1TÞÞ

.

.

.

fðt � sNT;xðt � sNTÞÞ
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; ðA:3Þ

where x 2 R
n; f : R� R

n ! R
n, s0 = 0, si < si+1, i = 0,1, . . . ,N,

and sN+1 = 1.

First, we adopt a numerical approximation for dX(t)/dt,

including the delayed states, in the form

dXðtÞ

dt
¼ DXðtÞ; ðA:4Þ

where D 2 R
nðNþ2Þ�nðNþ2Þ is a differential operator matrix

that can be obtained using finite difference methods [23],

spectral methods [23,15] or a collocation method with dif-

ferent types of approximating polynomials [16]. For sim-

plicity, we employ the orthogonal collocation method

with the Lagrange polynomial [24,25]. The method is de-

scribed in Appendix B and exemplified in Appendix C.

Having defined X(t) and dX(t)/dt = DX(t), we obtain the

monodromy matrix of the periodic orbit X⁄(t) of period T

using the method introduced in Refs. [15,16].

Consider a perturbation Y(0) on the periodic state X⁄(0)

resulting in

Xð0Þ ¼ X�ð0Þ þ Yð0Þ; ðA:5Þ

where X, X⁄, and Y are defined as in Eq. (A.2). The evolution

Y(t) of the initial perturbation Y(0) is obtained by substitut-

ing the perturbed trajectory in Eq. (A.1),

dX
�
ðtÞ

dt
þ
dYðtÞ

dt
¼ Fðt;X�ðtÞ þ YðtÞÞ þ ðINþ2 � BKcÞ

� ðYðt � TÞ � YðtÞÞ: ðA:6Þ

By expanding F(t,X⁄(t) + Y(t)) around X⁄(t) for Y(0) suffi-

ciently small, we obtain

dYðtÞ

dt
¼ rXFðt;XðtÞÞjXðtÞ¼X�ðtÞYðtÞ þ ðINþ2 � BKcÞðYðt

� TÞ � YðtÞÞ: ðA:7Þ

We use Eq. (A.4) to approximate dY/dt

dYðtÞ

dt
¼ DYðtÞ: ðA:8Þ

Substituting (A.8) in (A.7) leads to

MDYðtÞ ¼ MAYðtÞ þMKc ðYðt � TÞ � YðtÞÞ; ðA:9Þ

where

MD¼
Dj;i

0n�nðNþ1Þ In

� �

;

MA¼

Aðt�s0TÞ 0n�n � � � 0n�n 0n�n

0n�n Aðt�s1TÞ ��� 0n�n 0n�n
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.
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;

MKc ¼

BKc 0n�n � � � 0n�n 0n�n

0n�n BKc � � � 0n�n 0n�n
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0n�n 0n�n � � � BKc 0n�n

In 0n�n � � � 0n�n 0n�n

2

6

6

6

6

6

6

6

4

3

7

7

7

7

7

7

7

5

;

ðA:10Þ

with i = 1,2, . . . ,n(N + 2), j = 1,2, . . . ,n(N + 1), and

Aðt � siTÞ ¼ rxfðt � siT;xðt � siTÞÞjxðt�siTÞ¼x�ðt�siTÞ
. The last

lines of the matrices guarantee the periodicity [16].

Now, define the monodromy matrix UX� as the state

transition matrix on X⁄(t), from Y(t � T) to Y(t) given by

YðtÞ ¼ UX�ðtÞYðt � TÞ; ðA:11Þ

where UX�ðtÞ 2 R
nðNþ2Þ�nðNþ2Þ.

By equating (A.9) and (A.11) one readily obtains
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UX�ðtÞ ¼ ðMD �MA þMKc Þ
�1MKc : ðA:12Þ

Appendix B. Orthogonal collocation method

This appendix describes the use of the orthogonal collo-

cation method to obtain the differential operator matrix D

used in Eq. (A.4) of Appendix A.

Consider the system of differential equations given by

dxðtÞ

dt
¼ fðt; xðtÞÞ; ðB:1Þ

where x : ½0;þ1Þ ! R
n and f : ½0;þ1Þ � R

n ! R
n are col-

umn vectors. The solution of Eq. (B.1) at time TP 0, for

an initial condition x(t0), is

xðt0 þ TÞ ¼ xðt0Þ þ

Z t0þT

t0

fðs; xðsÞÞds: ðB:2Þ

The solution (B.2) of (B.1) can be approximated using

the collocation method by

xðt0 þ TÞ � w0ðsÞxðt0Þ þ
X

Nþ1

i¼1

wiðsÞmiðt0Þ; ðB:3Þ

where s 2 R, wi(s) are weight polynomials, and

mi � x(t0 + Tsi) represent the state vector for each time

t0 + Tsi, where si 2 ½0 1 � are the collocation points, includ-

ing s0 = 0 and sN+1 = 1, which are used to discretize the

solution time interval from t0 + Ts0 to t0 + TsN+1. The quality

of the approximation (B.3) is proportional to N.

The choice of wi(s) provides different properties for the

collocation method. In this work we adopt the Lagrange

polynomials

wiðsÞ ¼
Y

Nþ1

j¼0;j–i

s� sj
si � sj

; i ¼ 0; . . . ;N þ 1: ðB:4Þ

For the orthogonal collocation method, the values of si
are obtained in such a way as to ensure the orthogonality

of the polynomials wi [24], and are given by the solutions

of

Z 1

0

wiðsÞwjðsÞ½1� s�sds ¼ 0; i; j ¼ 1; . . . ;N; i– j: ðB:5Þ

The derivative @x(t0 + Ts)/@s at each collocation point sj
is

@xðt0þTsÞ

@s

�

�

�

�

s¼sj

�
@w0ðsÞ

@s

�

�

�

�

s¼sj

xðt0Þþ
X

Nþ1

i¼1

@wiðsÞ

@s

�

�

�

�

�

s¼sj

miðt0Þ; ðB:6Þ

with

@xðt0 þ TsÞ

@s

�

�

�

�

s¼sj

¼
@ðt0 þ TsÞ

@s
�
@xðt0 þ TsÞ

@ðt0 þ TsÞ

�

�

�

�

s¼sj

� Tfðt0 þ Tsj;mjðt0ÞÞ: ðB:7Þ

Eqs. (B.6) and (B.7) form the matrix equation

HTðt0;Xðt0ÞÞ ¼ ðW1 � InÞxðt0Þ þ ðW2 � InÞXðt0Þ; ðB:8Þ

where In is a n � n identity matrix,� is the Kronecker prod-

uct and

W1 ¼

@w0ðsÞ
@s

�

�

�

s¼s1

.

.

.

@w0ðsÞ
@s

�

�

�

s¼sNþ1

2

6

6

6

6

4

3

7

7

7

7

5

2 R
ðNþ1Þ;

Xðt0Þ ¼

m1ðt0Þ

.

.

.

mNþ1ðt0Þ

2

6

6

4

3

7

7

5

2 R
nðNþ1Þ;

W2 ¼

@wðsÞ
@s

�

�

�

s¼s1

.

.

.

@wðsÞ
@s

�

�

�

s¼sNþ1

2

6

6

6

6

6

6

6

6

6

4

3

7

7

7

7

7

7

7

7

7

5

2 R
ðNþ1Þ�ðNþ1Þ;

HTðt0;XÞ ¼

Tfðt0 þ Ts1;m1Þ

.

.

.

Tfðt0 þ TsNþ1;mNþ1Þ

2

6

6

6

6

6

6

6

4

3

7

7

7

7

7

7

7

5

:

Here w(s) = (w1(s), . . . ,wN+1(s)) and HT : R
nðNþ1Þ ! R

nðNþ1Þ

depends on the choice of the discrete times t0 + Ts1, . . . , t0 +

TsN+1, but, for simplicity, this dependence is not explicit

here.

The solution of (B.8) with unknown Xðt0Þ 2 R
nðNþ1Þ is an

approximated solution of

dxðt0 þ TsÞ

dðt0 þ TsÞ

�

�

�

�

s¼sj

¼ f ðt0 þ Tsj;xðt0 þ TsjÞÞ; j ¼ 1; . . . ;N þ 1

with unknown x(t0 + Tsj), given x(t0).

By including the state at time t0 + Ts0 in Eq. (B.8) one

obtains

Tfðt0þTs0;xðt0ÞÞ

HTðt0;XÞ

2

6

4

3

7

5
¼

@w0ðsÞ
@s

�

�

�

s¼s0

@wðsÞ
@s

�

�

�

s¼s0

W1 W2

2

6

6

4

3

7

7

5

� In

0

B

B

@

1

C

C

A

xðt0Þ

Xðt0Þ

2

6

4

3

7

5
:

ðB:9Þ

Eq. (B.9) represents

dxðt0þTs0Þ
dðt0þTsÞ

.

.

.

dxðt0þTsNþ1Þ

dðt0þTsÞ

2

6

6

6

6

6

6

6

6

4

3

7

7

7

7

7

7

7

7

5

� D

xðt0 þ Ts0Þ

.

.

.

xðt0 þ TsNþ1Þ

2

6

6

6

6

6

6

4

3

7

7

7

7

7

7

5

;

with

D ¼
1

T

@w0ðsÞ
@s

�

�

�

s¼s0

@wðsÞ
@s

�

�

�

s¼s0

W1 W2

2

6

4

3

7

5
� In 2 R

nðNþ2Þ�nðNþ2Þ; ðB:10Þ
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the differential matrix operator generated using the

orthogonal collocation method.

Appendix C. Example of calculation of D

Here we show an example of the calculation of the dif-

ferential operator matrix D, described in Appendix B, for

N = 3.

The wj(s) polynomials, j = 0, . . .N + 1, are calculated

using Eq. (B.4) and defining s0 = 0 and s4 = 1,

w0ðsÞ ¼
ðs� s1Þðs� s2Þðs� s3Þðs� 1Þ

s1s2s3
;

w1ðsÞ ¼
sðs� s2Þðs� s3Þðs� 1Þ

s1ðs1 � s2Þðs1 � s3Þðs1 � 1Þ
;

w2ðsÞ ¼
�sðs� s1Þðs� s3Þðs� 1Þ

s2ðs1 � s2Þðs2 � s3Þðs2 � 1Þ
;

w3ðsÞ ¼
sðs� s1Þðs� s2Þðs� 1Þ

s3ðs1 � s3Þðs2 � s3Þðs3 � 1Þ
;

w4ðsÞ ¼
�sðs� s1Þðs� s2Þðs� s3Þ

ðs1 � 1Þðs2 � 1Þðs3 � 1Þ
:

Using the above expressions for w1(s), w2(s) and w3(s),

the values of s1, s2 and s3 are found by a numerical solution

of Eq. (B.5). By using the simplex search method [20] to

minimize the error function
R 1

0
w1ðsÞw2ðsÞ½1� s�sds

�

�

�

�

�

�þ

R 1

0 w1ðsÞw3ðsÞ½1� s�sds
�

�

�

�

�

�þ
R 1

0 w2ðsÞw3ðsÞ½1� s�sds
�

�

�

�

�

�, we

found s1 � 0.17267, s2 = 0.5 and s3 � 0.82733. These si val-

ues are substituted in the wj(s) polynomials and they are

differentiated with respect to s,

@w0ðsÞ

@s
¼ 56s3 � 105s2 þ 60s� 10;

@w1ðsÞ

@s
�

�392s3

3
þ 228:0780s2 � 113:7447sþ 13:5130;

@w2ðsÞ

@s
¼

448s3

3
� 224s2 þ

256s

3
�
16

3
;

@w3ðsÞ

@s
�

�392s3

3
þ 163:9220s2 � 49:5886sþ 2:8203;

@w4ðsÞ

@s
¼ 56s3 � 63s2 þ 18s� 1:

Using these values in Eq. (B.10) for N = 3 leads to

D�
1

T

�10:0000 13:5130 �5:3333 2:8203 �1:0000

�2:4820 �0:0000 3:4915 �1:5275 0:5180

0:7500 �2:6732 0 2:6732 �0:7500

�0:5180 1:5275 �3:4915 0:0000 2:4820

1:0000 �2:8203 5:3333 �13:5130 10:0000

2

6

6

6

6

6

6

4

3

7

7

7

7

7

7

5

� In:
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Appendix E

Resumo estendido

E.1 Introdução

O principal problema avaliado neste trabalho é a estabilização de órbitas periódicas de

sistemas dinâmicos não-lineares utilizando controle por realimentação de estados ou por

realimentação de sáıda. O objetivo dos métodos de controle propostos é uma oscilação

periódica estável, o que difere do objetivo mais usual em sistemas de controle que é um

ponto de equiĺıbrio estável.

Os métodos de controle aqui considerados são aplicados a sistemas que apresentam

órbitas periódicos instáveis (UPOs - unstable periodic orbits) no espaço de estado e estas

UPOs são as órbitas a serem estabilizadas. Os métodos foram propostos de forma que a

oscilação estável resultante seja obtida com baixo esforço de controle, uma vez que o sinal

de controle é projetado de modo a tender para zero quando a trajetória tende à órbita

estabilizada.

Os métodos de controle utilizados para estabilização das órbitas periódicas são propor-

tional feedback control (PFC), delayed feedback control (DFC) e prediction-based control

(PBC) e a principal diferença entre eles é a referência usada para compor o sinal de

controle. O PFC, proposto por Pyragas [70], utiliza como referência a própria UPO alvo

(órbita a ser estabilizada). Esta órbita é encontrada antes da aplicação e imprecisões na

sua aproximação implicam maior esforço de controle. O DFC, proposto por Pyragas [70],
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utiliza como referência o estado atrasado pelo peŕıodo da UPO alvo e apenas o seu peŕıodo

é necessário para a aplicação. O PBC utiliza como referência o estado predito um peŕıodo

da órbita alvo à frente de trajetórias da resposta livre do sistema e exige um modelo do

sistema para a aplicação.

A estabilização de uma órbita periódica de um sistema não-linear pode ser simplificada

para a estabilização de um sistema linear periódico no tempo. Este sistema linear é

obtido pela linearização das trajetórias na vizinhança da órbita periódica e sua análise

de estabilidade pode ser realizada utilizando a teoria da estabilidade Floquet. Assim, a

estabilidade local da órbita periódica do sistema não-linear é definida pela estabilidade do

sistema linear associado.

O trabalho é divido em duas partes, a primeira dedicada a sistemas de tempo discreto

e a segunda a sistemas de tempo cont́ınuo. Nos caṕıtulos seguintes deste resumo serão

abordadas as principais contribuições de cada parte, a proposição dos problemas de con-

trole a serem abordados e a teoria necessária para a sua compreensão. Para sistemas de

tempo discreto as principais contribuições são referentes ao PBC e apenas este método

é abordado no resumo. Para sistemas de tempo cont́ınuo as principais contribuições são

referentes ao DFC e ao PBC e apenas estes métodos são abordados no resumo.

E.2 Sistemas de tempo discreto

Considere o seguinte sistema dinâmico de tempo discreto:

xk+1 = f(k, xk, uk), x0 dado (E.1)

onde x : N → Rn, u : N → Rm, k,m, n ∈ N e f : N × Rn × Rm → Rn é uma função

p-periódica no tempo k, isto é, por definição

∀k ∈ N, ∀x ∈ R
n, ∀u ∈ R

m, f(k + p, x, u) = f(k, x, u). (E.2)
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Assume-se ainda a existência de uma solução p-periódica x∗k da resposta livre do sis-

tema (E.1), isto é, o sistema obtido fazendo uk = 0, k ≥ 0. Em outras palavras

∀k ∈ N, x∗k+p = x∗k (E.3)

e

∀k ∈ N, x∗k+1 = f(k, x∗k, 0m). (E.4)

Assume-se que esta solução periódica é instável. O principal objetivo aqui é projetar

leis de controle com realimentação p-periódica uk(xk) que estabilizem esta órbita, tal que

∀k ∈ N, ∀x ∈ R
n, uk+p(x) = uk(x)

e tal que x∗ seja uma solução estável do sistema em malha fechada

xk+1 = f(k, xk, uk(xk)). (E.5)

O objetivo desta parte é a proposição de diferentes formas adequadas de definir u : N×

Rn → Rm.

O sinal de controle u utilizado neste trabalho deve, idealmente, verificar,

uk(x
∗

k) = 0, k ≥ 0. (E.6)

Isto é, sobre a órbita periódica o esforço de controle é nulo e a solução periódica instável

x∗k de f(k, xk, 0) é uma solução periódica estável de (E.5).

A Seção E.2.1 é dedicada à análise de estabilidade de órbitas periódica utilizando a

teoria de Floquet. A Seção E.2.2 é dedicada à nova lei de controle proposta para o PBC,

a qual será utilizada para estabilizar x∗k.
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E.2.1 Teoria de estabilidade de Floquet

Nesta seção serão apresentados os conceitos de estabilidade de sistemas dinâmicos lineares

periódicos de tempo discreto baseados na teoria de Floquet e estes resultados são aplicados

para análise de estabilidade local de órbitas periódicas de sistemas dinâmicos não-lineares

em tempo discreto.

Sistemas Lineares

Considere um sistema dinâmico linear de tempo discreto descrito pela equação a diferenças

xk+1 = Akxk, (E.7)

onde k ∈ N, x : N → Rn é um vetor coluna e A : N → Rn×n. Assume-se que Ak é uma

matriz de estados p-periódica, isto é

Ak = Ak+p, ∀k ∈ N. (E.8)

A estabilidade de sistemas periódicos lineares de acordo com a teoria de Floquet [5]

depende dos autovalores da matriz de monodromia (detalhes no Appendix A), chamados

de multiplicadores caracteŕısticos de Floquet µi ∈ C, i = 1, . . . , n:

Proposição E.1 (consultar Proposition 3.1). (i) O sistema (E.7) é assintoticamente

estável se e somente se os multiplicadores caracteŕısticos de Ak têm valor absoluto menor

que 1. (ii) O sistema (E.7) é estável se e somente se os multiplicadores caracteŕısticos de

Ak têm valor absoluto menor ou igual a 1 e os multiplicadores caracteŕısticos com valor

absoluto iguais a 1 são ráızes simples do polinômio mı́nimo da matriz de monodromia

Ψk.

Consultar Appendix B para as definições de estabilidade.

A matriz de monodromia Ψk é calculada como a seguir:

Ψk =

p−1
∏

l=0

Ak+l (E.9)
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com as matŕızes no produtório ordenadas da direita para a esquerda com o aumento de l.

A teoria de Floquet pode ser utilizada para analisar a estabilidade de órbitas periódi-

cas de sistemas não-lineares estudando a convergência/divergência de uma perturbação,

governada pelo sistema linear, na vizinhança da órbita periódica [3, 40].

Aplicação em sistemas não-lineares

Considere o sistema dinâmico não-linear de tempo discreto descrito pela equação a difer-

enças (E.5) com solução p-periódica x∗k para uk(xk) = 0 indicada em (E.2). Aqui é

estudado o comportamento de uma trajetória na vizinhança de x∗k.

Proposição E.2 (Estabilidade de órbitas periódicas de sistemas de tempo discreto -

consultar Proposition 3.2). Uma órbita periódica x∗k do sistema dinâmico recursivo (E.5)

é localmente assintoticamente estável se o sistema dinâmico linear que descreve a evolução

de uma trajetória perturbada na vizinhança de x∗k for assintoticamente estável.

E.2.2 Estabilização utilizando prediction-based control

Prediction-based control ou controle baseado em prediç ao. Este método, pro-

posto por Ushio e Yamamoto [91], utiliza um sinal de controle definido por

uk(xk) = Kk(xk) (ϕ(k + p, k, xk, 0)− xk) , (E.10)

onde ϕ(k1, k0, x, 0) é o valor do estado de (E.5) no tempo k1 com xk0 = x e uk = 0,

k0 ≤ k ≤ k1. Em outras palavras, ϕ(k1, k0, x, 0) é o valor no tempo k1 do estado ao longo

da trajetória partindo de x no tempo k0 da resposta livre do sistema (uk ≡ 0).

A contribuição do presente trabalho no domı́nio de sistemas de tempo-discreto é a

proposição de um método para definir o ganho do PBC. Os resultados foram inicialmente

publicados em [12]. O esquema de controle mostrado aqui é baseado em uma condição

suficiente para estabilidade e leva à proposição de ganhos para o controlador.

Condição suficiente de estabilidade Uma condição suficiente para a estabilidade de

órbitas periódicas de sistemas diâmicos de tempo discreto controlados pelo PBC é definida
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baseada no espectro de Ψk. O resultado obtido no Teorema E.4 a seguir possibilita o

desenvolvimento de leis de controle para a estabilização de UPOs utilizando o PBC.

De acordo com (E.5) e (E.10), o sistema dinâmico de tempo discreto em malha fechada

controlado utilizando o PBC é definido por

xk+1 = ϕ(k + 1, k, xk, uk(xk)) = f(k, xk, Kk(xk)(ϕ(k + p, k, xk, 0)− xk)). (E.11)

Na sequência, para quaisquer x ∈ R
n e K ∈ R

q×n, q ∈ N, utiliza-se a notação

ψ(k, x,K)
.
= f(k, x, uk(x))

uk(x) = K(ϕ(k + p, k, x, 0)− x).
(E.12)

O primeiro passo para a definição da condição suficiente para estabilidade de órbitas

periódicas é obter a matriz de monodromia Ψk correspondente ao sistema (E.12). Esta

matriz, para o sistema em malha fechada, é calculada de acordo com o Lema proposto

E.3.

Lema E.3 (consultar Lemma 3.15). Para qualquer ponto p-periódico x∗k, k ∈ N, da

trajetória x∗ do sistema em malha fechada (E.11), tem-se

Ψk =

p−1
∏

l=0

∇xψ(k + l, x,Kk+l(x
∗

k+l))
∣

∣

x=x∗

k+l

(E.13)

e as matrizes do produtório são ordenadas da direita para a esquerda aumentando o ı́ndice

l.

O interesse na fórmula (E.13) é que nenhuma derivada de Kk(xk) relativa a xk aparece

no lado direito da equação. Assim, o Lema E.3 possibilita uma simplificação na com-

putação do espectro da matriz de monodromia: como indicado por (E.13), a dependência

do ganho em relação ao estado não modifica a matriz Jacobiana ∇xψ(k, x,Kk(x)) nos

pontos da órbita periódica.

A simplificação obtida do Lema E.3 é utilizada no Teorema E.4 para definir uma

condição suficiente para estabilidade de uma órbita periódica de (E.11).
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Teorema E.4 (consultar Theorem 3.16). Assumindo que a matriz Jacobiana

∇xψ(k, x,Kk(x
∗

k))
∣

∣

x=x∗

k
do sistema (E.11) é zero em pelo menos um ponto da órbita per-

iódica x∗k. Então, a órbita periódica x∗ é localmente assintoticamente exponencialmente

estável.

O Teorema E.4 reduz o problema de estabilização de órbitas periódicas de sistemas

dinâmicos de tempo discreto controlados pelo PBC ao problema de fazer todos os ele-

mentos da matriz Jacobiana da órbita iguais a zero em um ponto da órbita (utilizando

a simplificação proposta no Lema E.3). O próximo passo é definir uma matriz de ganho

Kk(xk) que leve ao resultado desejado.

Leis de controle. Serão apresentadas aqui leis de controle para estabilizar UPOs uti-

lizando PBC propostas para sistemas dinâmicos de tempo discreto cuja matriz de entrada

seja inverśıvel.

Teorema E.5 (Consultar Theorem 3.17). Se ∇uf(k, x, u) for uma matriz inverśıvel para

x = x∗k, u = uk(x
∗

k) e para cada k ∈ N e o mapa linear que descreve a evolução de

uma perturbação na vizinhança de uma trajetória do sistema (E.11) para uk(xk) = 0 for

hiperbólico, então existe um ganho de controle Kk(xk) que satisfaz o Teorema E.4.

Do Lema E.3 e de (E.12),

∇xψ(k, x,Kk(x))|x=x∗

k

= 0n

é equivalente a

∇xf(k, x, uk(x
∗

k))|x=x∗

k

+ [∇uf(k, x, u)Kk(x)(∇xϕ(k + p, k, x, 0)− In)]x=x∗

k
,u=uk(x

∗

k
) = 0n.

(E.14)

Se ∇uf(k, x, u) e (∇xϕ(k + p, k, x, 0)− In) forem inverśıveis para x = x∗k, u = uk(x
∗

k)

e cada valor de k ∈ N, Kk(xk) pode ser isolada no lado direito da equação (E.14). Este é

o caso se ∇xϕ(k + p, k, x, 0) for hiperbólico (consultar Appendix A).

Os valores de Kk(xk) escolhidos em seguida satisfazem o Teorema E.5.
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• Lei de controle LC 1. K(x∗0) uma matriz constante definida por:

K(x∗0) = −(∇uf(0, x
∗

0, u)|u=u0(x∗

0
))

−1 ∇xf(0, x, u0(x
∗

0))|x=x∗

0
(∇xϕ(p, 0, x, 0)− In)

−1
∣

∣

x=x∗

0

.

(E.15)

Este ganho resulta em uma lei de controle linear e invariante no tempo cuja determi-

nação depende do conhecimento da UPO a ser estabilizada.

• Lei de controle LC 2. Kk(x
∗

k) é uma matriz variante no tempo definida para tempo

k ∈ Z por:

Kk(x
∗

k) =

− (∇uf(k, x
∗

k, u)|u=uk(x
∗

k
))

−1 ∇xf(k, x, uk(x
∗

k))|x=x∗

k

(∇xϕ(k + p, k, x, 0)− In)
−1
∣

∣

x=x∗

k

,

(E.16)

Este ganho resulta em uma lei de controle linear periódica cuja determinação também

depende do conhecimento da UPO a ser estabilizada.

• Lei de controle LC 3. Kk(xk) é dado como

Kk(xk) =

− (∇uf(k, xk, u)|u=uk(xk)
)−1 ∇xf(k, x, uk(xk))|x=xk

(∇xϕ(k + p, k, x, 0)− In)
−1
∣

∣

x=xk

.

(E.17)

Ao contrário da LC 1 e da LC 2, a escolha da LC 3 não requer conhecimento prévio

da UPO (exceto o peŕıodo p). O cálculo de Kk(xk) depende apenas do estado atual da

trajetória.

Uma vantagem da LC 3 é não ser necessário encontrar a UPO antes de estabiliza-

la. Outra vantagem é que, durante o projeto do ganho do controlador para LC 1 ou
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LC 2 (ou qualquer outro método de controle que depende da posição da UPO), erros

na aproximação da UPO levam a ganhos do controlador menos precisos. O PBC com a

LC 3 pode ser aplicado para encontrar (ou refinar, para aproximações imprecisas) UPOs

quando utilizando outros métodos de controle.

E.2.3 Outros resultados

Outros resultados e revisão da literatura são encontrados na Part I do texto. Destaca-se

a proposição de uma lei de controle para o caso de um sistema com matriz de entrada não

inverśıvel (Section 3.4.3) e os resultados numéricos (Chapter 4).

Nos resultados numéricos foi feita uma comparação entre as leis de controle para o

caso da matriz de entrada inverśıvel, uma comparação entre o PBC utilizando a LC 3

e o DFC, uma breve análise de robustez a incertezas paramétricas comparando o PBC

utilizando a LC 3 e o DFC e também foi mostrada uma aplicação para o PBC no caso do

sistema que não apresenta uma matriz de entrada inverśıvel.

E.2.4 Conclusões

As conclusões apresentadas para a Part I (Chapter 5) foram obtidas para resultados

numéricos realizados e resumidas a seguir:

• A LC 3 pode ser aplicada para encontrar UPOs. Uma vez encontrada a UPO, sua

posição é utilizada para definir o ganho para as LC 1 e LC 2;

• Caso as três leis de controle estabilizem uma UPO, a LC 3 é a que apresenta a maior

velocidade de convergência das trajetórias à vizinhança da órbita e a menor bacia

de atração;

• Comparando-se o PBC utilizando a LC 3 e o DFC, verifica-se que o primeiro ap-

resenta maior velocidade de convergência das trajetórias à vizinhança da órbita

estabilizada, maior bacia de atração e estabiliza órbitas não estabilizáveis com o

DFC;
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• Verificou-se que o PBC é mais robusto que o DFC utilizando como critério de com-

paração o intervalo de erro paramétrico (erro em relação ao valor do parâmetro

utilizado para projetar os controladores) para o qual uma órbita estável é obtida.

No entanto, é menos robusto quando utilizando como critério de comparação a

variação do multiplicador Floquet de maior magnitude e o esforço de controle em

regime permanente para o intervalo de erro paramétrico em que ambos os métodos

conduzem à estabilização;

• Foi verificado que a velocidade de convergência de trajetórias para a órbita estabi-

lizada para a lei de controle proposta para o PBC para o caso da matriz de entrada

não inverśıvel é próxima à obtida utilizando a LC 3.

E.3 Sistemas de tempo cont́ınuo

Considere o seguinte sistema dinâmico de tempo cont́ınuo:

ẋ(t) = f(t, x(t), u(t)), x(0) dado (E.18)

onde t ∈ R+, x : R+ → Rn, u : R+ → Rm, n,m ∈ N e f : R+ × Rn × Rm → Rn é uma

função T -periódica em relação ao tempo t, isto é, por definição

∀t ∈ R
+, ∀x ∈ R

n, ∀u ∈ R
m, f(t+ T, x, u) = f(t, x, u). (E.19)

Assume-se ainda a existência de uma solução T -periódica x∗(t) da resposta livre do

sistema (E.18), isto é, o sistema obtido fazendo u(t) = 0, t ≥ 0. Em outras palavras,

∀t ∈ R
+, x∗(t + T ) = x∗(t) (E.20)

e

∀t ∈ R, ẋ∗(t) = f(t, x∗(t), 0m). (E.21)
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Assume-se que esta solução periódica é instável. O principal objetivo aqui é projetar

leis de controle com realimentação periódicas u(t, x(t)) que estabilizem esta órbita, isto é,

tal que

∀t ∈ R
+, ∀x ∈ R

n, u(t+ T, x) = u(t, x)

e tal que x∗ seja uma solução estável do sistema em malha fechada correspondente. Há

também o interesse em formas simples de estabilizar uma órbita próxima à UPO x∗ de

(E.18).

O sinal de controle u utilizado neste trabalho deve, idealmente, satisfazer,

u(t, x∗(t)) = 0 t ≥ 0. (E.22)

A condição (E.22) garante esforço de controle nulo quando a trajetória está sobre a solução

periódica instável x∗ da resposta livre do sistema. Para o caso de estabilização sobre uma

órbita na vizinhança da órbita inicial x∗ esta condição não é satisfeita. Entretanto, o

esforço de controle permanecerá pequeno na vizinhança deste novo atrator.

A Seção E.3.1 é dedicada à análise de estabilidade de órbitas periódicas utilizando a

teoria de Floquet. A Seção E.3.2 é dedicada aos métodos de controle DFC e PBC e às

principais contribuições do trabalho para sistemas de tempo cont́ınuo.

E.3.1 Teoria de estabilidade de Floquet

Nesta seção serão apresentados os conceitos de estabilidade de sistemas dinâmicos

lineares periódicos de tempo cont́ınuo baseados na teoria de Floquet e estes resultados são

aplicados para análise de estabilidade local de órbitas periódicas de sistemas dinâmicos

não-lineares em tempo cont́ınuo.

Sistemas Lineares

Considere um sistema dinâmico linear de tempo cont́ınuo descrito pela equação diferencial

dx(t)

dt
= A(t)x(t), (E.23)
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onde t ∈ R+, x : R+ → Rn é um vetor coluna e A : R+ → Rn×n. Assume-se que A(t) é

uma matriz de estados periódica de peŕıodo T

A(t) = A(t+ T ), T ∈ R, ∀t. (E.24)

A estabilidade de sistemas lineares periódicos de acordo com a teoria de Floquet de-

pende dos autovalores da matriz de monodromia (detalhes no Appendix A), chamados de

multiplicadores caracteŕısticos de Floquet µi ∈ C:

Proposição E.6 (consultar Proposition 7.1). (i) O sistema (E.23) é assintoticamente

estv́el se e somente se os multiplicadores caracteŕısticos de A(t) possúırem valor abso-

luto menor que 1. (ii) O sistema (E.23) é estável se e somente se os multiplicadores

caracteŕısticos de A(t) possúırem valor absoluto menor ou igual a 1 e os multiplicadores

caracteŕısticos com valor absoluto iguais a 1 são ráızes simples do polinômio mı́nimo da

matriz de monodromia Ψ(t).

Consultar Appendix B para definições de estabilidade.

A matriz de transição de estados Φ(t, t0), t, t0 ∈ R de (E.23) é calculada como a seguir

(consultar Appendix A)
dΦ(t, t0)

dt
= A(t)Φ(t, t0)

Φ(t0, t0) = In.

(E.25)

A matriz de monodromia Ψ(t) é definida como

Ψ(t) = Φ(t+ T, t). (E.26)

A teoria de Floquet pode ser utilizada para analisar a estabilidade de órbitas periódi-

cas de sistemas não-lineares estudando a convergência/divergência de uma perturbação,

governada pelo sistema linear, na vizinhança da órbita periódica [3, 40].
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Aplicação a sistemas não-lineares

Considere um sistema dinâmico não-linear de tempo cont́ınuo descrito pela equação difer-

encial (E.18) com solução periódica x∗(t) de peŕıodo T para u(t, x(t)) = 0 indicada em

(E.19). Aqui é estudado o comportamento de uma trajetória na vizinhança de x∗(t).

Proposição E.7 (Estabilidade de órbitas periódicas de sistemas de tempo cont́ınuo -

consultar Proposition 7.2). Uma órbita periódica x∗(t) do sistema dinâmico de tempo

cont́ınuo (E.18) é localmente assintoticamente estável se o sistema dinâmico linear que

descreve a evolução de uma trajetória perturbada na vizinhança de x∗(t) for assintotica-

mente estável.

E.3.2 Métodos de controle para órbitas periódicas

Serão descritas aqui as principais contribuições do trabalho para o DFC e o PBC, em

especial a proposição do approximate prediction-based control (aPBC). O PFC é utilizado

para comparação.

Delayed feedback control (DFC)

Este método utiliza o estado do sistema atrasado do peŕıodo T da UPO alvo como

referência para compor u(t, x(t)). O sinal de controle para o DFC é então definido como

em [70]

u(t, x(t)) = K(t, x(t)) (x(t− T )− x(t)) (E.27)

e satisfaz a condição (E.22). K(t, x(t)) ∈ R+ × Rn → Rn×n é o ganho do controlador. O

termo atrasado no sinal de controle faz de (E.18) uma equação diferencial com atraso, de

dimensão infinita [36].

A aplicação do DFC requer apenas armazenamento dos valores passados das variáveis

de estado durante um peŕıodo T da UPO alvo. Esta caracteŕıstica faz o método facilmente

aplicável.

Uma das contribuições contida na tese é a aplicação do método proposto em [10,23,51]

para o projeto numérico de um ganho constante para o DFC. A principal vantagem do
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método é a redução do problema de cálculo da matriz de monodromia de uma órbita con-

trolada utilizando DFC a apenas álgebra matricial. Como consequência tem-se a redução

no tempo de computação dos multiplicadores de Floquet para o sistema em malha fechada.

A redução do tempo de computação promovida pelo método permite o projeto numérico

do ganho constante para o DFC utilizando otimização. Como função de custo utiliza-se

o multiplicador Floquet de maior magnitude da órbita a ser estabilizada em função do

ganho do DFC.

Este método proposto é descrito a seguir.

Aproximação da matriz de monodromia de uma órbita para o sistema con-

trolado utilizando o DFC. Neste resumo serão apresentados apenas os passos para

se obter a matriz de monodromia utilizando o método proposto. Detalhes e justificativas

estão dispońıveis na Seção 7.4.2.

A matriz de monodromia ΨX(t) ∈ RnN×nN é aproximada utilizando E.28:

ΨX(t) = (MD −MA +MK)
−1MK . (E.28)

onde n ∈ N é a dimensão do sistema a ser controlado e N ∈ N é a quantidade de pontos

de discretização si, com s1 = 0, si < si+1, i = 1, 2, . . . , N , e sN = 1, utilizados para

aproximar os estados atrasados x(t − siT ). A matriz de monodromia é computada para

um novo sistema cujo estado é dado por (detalhes na Seção 7.4.2):

X(t) =

















x(t− s1T )

x(t− s2T )
...

x(t− sNT )

















, (E.29)

Considere o sistema linear que descreve a evolução de uma trajetória perturbada δX(t)

na vizinhança de X∗(t) (órbita periódica descrita utilizando (E.29)):

226



dδX(t)

dt
= ∇XF (t, X, U(t, X

∗(t)))|X=X∗(t) δX(t)+

∇UF (t, X
∗(t), U)|U=U(t,X∗(t)) (IN ⊗K) (δX(t− T )− δX(t)), (E.30)

com

F (t, X(t), U(t, X(t))) =

















f(t− s1T, x(t− s1T ), K(x(t− (1 + s1)T )− x(t− s1T ))

f(t− s2T, x(t− s2T ), K(x(t− (1 + s2)T )− x(t− s2T ))
...

f(t− sNT, x(t− sNT ), K(x(t− (1 + sN)T )− x(t− sNT ))

















.

Adota-se uma aproximação numérica para dδX(t)/dt na forma

dδX(t)

dt
≈ (D ⊗ In)δX(t), (E.31)

onde D ∈ RN×N é uma matriz de diferenciação com coeficientes constantes que reflete

a forma de discretizar os estados atrasados utilizados para computar a matriz de mon-

odromia. A matriz D pode ser obtida utilizando diferenças finitas [9, 21, 86, 88], métodos

espectrais [9, 23, 51] ou método da colocação com diferentes tipos de polinômios [10, 51].

Substituindo (E.31) em (E.30) tem-se

MDδX(t) =MAδX(t) +MK(δX(t− T )− δX(t)), (E.32)

onde

MD =





Dij ⊗ In

0n×nN In



 ,
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MA =























A(t− s1T ) 0n×n · · · 0n×n 0n×n

0n×n A(t− s2T ) · · · 0n×n 0n×n

...
...

. . .
...

...

0n×n 0n×n · · · A(t− sN−1T ) 0n×n

In 0n×n · · · 0n×n 0n×n























,

MK =























B(t− s1T )K 0n×n · · · 0n×n 0n×n

0n×n B(t− s2T )K · · · 0n×n 0n×n

...
...

. . .
...

...

0n×n 0n×n · · · B(t− sN−1T )K 0n×n

In 0n×n · · · 0n×n 0n×n























,

com i = 1, . . . , N − 1, j = 1, . . . , N , A(t − siT ) = ∇xf(t− siT, x, u)|x=x∗(t−siT ) e B(t −

siT ) = ∇uf(t− siT, x, u)|u=u∗(t−siT,x∗(t−siT )). As últimas linhas das matrizes garantem a

periodicidade [51].

Define-se a matriz de monodromia em malha fechada ΨX(t) como a matriz de transição

de estados em X∗(t), de δX(t− T ) a δX(t), dada por

δX(t) = ΨX(t)δX(t− T ), (E.34)

onde ΨX(t) ∈ RnN×nN .

A equação (E.28) é obtida de (E.32) e (E.34).

Prediction-based control (PBC)

O PBC é baseado na predição dos estados um peŕıodo da UPO alvo a frente, computada

através de trajetórias da resposta livre do sistema. O sinal de controle para o PBC de

tempo cont́ınuo é definido como

u(t, x(t)) = K(t, x(t)) (ϕ(t+ T, t, x(t), 0)− x(t)) , (E.35)
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onde ϕ(t1, t0, x, 0) é o valor no tempo t1 do estado de (E.18) com x(t0) = x e u(t) = 0,

t0 ≤ t ≤ t1. K(t, x(t)) é o ganho do controlador.

A solução do sistema (E.18) com sinal de controle (E.35) é solução da seguinte EDP

∂X(t, 0)

∂t
= f(t, X(t, 0), K(t, X(t, 0))) (X(t, T )−X(t, 0)) , t ≥ 0 (E.36a)

∂X(t, T s)

∂s
= Tf(t+ Ts,X(t, T s), 0), t ≥ 0, s ∈ [0, 1] (E.36b)

X(0, 0) = x(0).

A função X : R+ × [0, T ] → Rn é tal que X(t, 0) = x(t) e X(t, T ) = ϕ(t+ T, t, x(t), 0).

Claramente, a aplicação em tempo real da estrutura de controle aqui proposta depende

da possibilidade de computar ϕ(t+ T, t, x(t), 0).

Prinćıpios do método approximate prediction-based control (aPBC)

Computar o estado futuro ϕ(t + T, t, x(t), 0) requer obter a solução a cada tempo t da

resposta livre da EDO do sistema (E.18) (u ≡ 0) do tempo t ao t + T . Isto não pode ser

feito de forma exata em tempo real e por isso é introduzida uma aproximação desse valor.

Aqui é proposto um novo método de controle realimentado baseado na diferença entre o

estado no tempo atual e uma aproximação do estado predito, o approximate prediction-

based control (aPBC).

Devido à aproximação utilizada, da aplicação do aPBC é esperada a estabilização de

uma nova órbita do sistema controlado, próxima à UPO do sistema sem controle.

Passo 1: Aproximação do termo predito. O primeiro passo consiste em aproximar a

solução de (E.36b) por um método impĺıcito de Runge-Kutta para integração de EDOs [35]

para estimar o termo predito, isto é, o valor final de

X(t, T ) = x+ T

∫ 1

0

f (t + Ts,X(t, T s), 0)ds, x dado. (E.37)
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Para aproximar X(t, T ) dado por (E.37), o mapa de transição de estados da resposta

livre do sistema ϕ(t2, t1, x, 0) é primeiro aproximado pelo operador y definido por

y(t+ T, t, x) = x+ T

N
∑

i=1

cili(t) (E.38a)

li(t) = f

(

t+ Tsi, x+ T
N
∑

j=1

aijlj(t), 0

)

, (E.38b)

onde i = 1, . . . , N , lj : R × Rn → Rn e aij , ci ∈ R são pesos escolhidos de acordo com o

método impĺıcito utilizado [35]. A aproximação y(t + T, t, x(t)) de X(t, T s), s ∈ [0, 1], é

calculada nos pontos de discretização s = si, i = 1, . . . , N .

Por simplicidade, (E.38b) é escrita na forma do vetor (E.39).

L(t) = FT (t, x, L(t)), (E.39)

onde

∀t ≥ 0, L(t) =











l1(t)
...

lN(t)











∈ R
nN ,

e FT : R× Rn × RnN → RnN é definida por:

FT (t, x, L) =











f(t+ Ts1, x+
∑N

j=1 a1jlj , 0)
...

f(t+ TsN , x+
∑N

j=1 aNjlj , 0),











, ∀x ∈ R
n, ∀L ∈ R

nN .

Para computar y(t + T, t, x) utilizando (E.38a) é necessário resolver o sistema de

equações algébricas (E.38b) com incógnita L(t) ∈ RN . Escrevendo

C =
[

c1 . . . cN

]

230



e fechando a malha de (E.18) utilizando

u(t, x(t)) = K(t, x(t))(y(t + T, t, x(t))− x(t)) = TK(t, x(t))CL(t)

resulta na equação algébrico-diferencial (EAD),

ẋ(t) = f(t, x(t), TK(t, x(t))CL(t)), x(0) = x0 (E.40a)

L(t) = FT (t, x(t), L(t)). (E.40b)

A solução em tempo real da EAD (E.40) requer que L(t), sua parte algébrica, seja

computada a cada tempo t. É então proposta a introdução do observador a seguir para

transformar o sistema controlado em um sistema de EDOs.

Passo 2: Aproximação do termo de predição. Agora (E.40b) é aproximada resol-

vendo a EDO de dimensão nN (E.41) cuja solução L̂(t) é uma estimação de L(t). O valor

inicial L̂(0) deve ser previamente (e precisamente) computado para possibilitar uma boa

qualidade de rastreio para L(t).

d

dt

(

L̂(t)− FT (t, x(t), L̂(t))
)

+ ko

(

L̂(t)− FT (t, x(t), L̂(t))
)

= 0, L̂(0) dado. (E.41)

O ganho escalar ko é escolhido positivo de forma que L̂(t) de (E.41) tenda assintoti-

camente à solução L(t) de (E.40b) quando t→ +∞, e tipicamente tal que a dinâmica do

estimador seja mais rápida que a dinâmica do sistema controlado. Se de fato a evolução

de L̂(t) for escolhida de forma a satisfazer (E.41), será verificada a convergência.

De (E.41) é obtido:

˙̂
L(t) =

[

InN − T∂3FT (t, x(t), L̂(t))(A⊗ In)
]

−1

[

∂1FT (t, x(t), L̂(t)) + ∂2FT (t, x(t), L̂(t))(1N ⊗ f(t, x(t), 0))− ko

(

L̂(t)− FT (t, x(t), L̂(t))
)]

.

(E.42)
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onde A = (aij) e ∂i é a derivada parcial relativa à i-ésima variável. In é a matriz identidade

n × n e 1N é o vetor coluna de dimensão N com todos os elementos iguais a 1. ⊗ é o

produto de Kronecker.

A solução de (E.42), para se obter (E.41), requer a inversibilidade do primeiro fator.

GT : Rn × Rn × RnN → RnN d́efinida como,

GT (t, x, L̂) =
[

InN − T∂3FT (t, x, L̂)(A⊗ In)
]

−1

[

∂1FT (t, x, L̂) + ∂2FT (t, x, L̂)(1N ⊗ f(t, x, 0))− ko

(

L̂− FT (t, x, L̂)
)]

. (E.43)

De (E.40), (E.41), (E.43) e denotando l̂i(t) como os componentes de L̂(t), a lei de

controle proposta resulta no seguinte sistema de EDOs em malha fechada:





ẋ(t)

˙̂
L(t)



 =





f
(

t, x(t), K(t, x(t))TCL̂(t)
)

GT

(

t, x(t), L̂(t)
)



 x(0) = x0, L̂(0) = L(0). (E.44)

A solução de (E.44) é uma aproximação da solução da EAD dada em (E.40).

E.3.3 Conclusões

As conclusões apresentadas para a Part II (Chapter 9) foram obtidas dos resultados

numéricos comparando o PFC, DFC e PBC/aPBC e resumidas a seguir:

• Considerando os multiplicadores de Floquet e as caracteŕısticas de desempenho a

eles associadas (estabilidade e velocidade de convergência de trajetórias à solução

estabilizada), os melhores resultados foram obtidos para o PFC, o aPBC apresentou

resultados intermediários e o DFC os piores resultados;

• Considerando o erro e esforço de controle em regime os resultados obtidos com o

aPBC foram significativamente inferiores comparados com os outros métodos;

• O DFC foi o método que apresentou maior robustez a erros paramétricos dentre os

métodos testados;
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• Não foram encontradas limitações teóricas para o PFC e o PBC/aPBC, ao contrário

do DFC que possui limitações descritas na literatura;

• Foi identificada uma limitação prática para o aPBC. Para o sistema em malha

fechada, devido à necessidade de estender o estado em relação ao estado do sistema

sem controle, a predição do estado futuro para órbitas de peŕıodo longo necessita

de um alto esforço computacional. Este ponto deverá ser foco de esforços futuros,

com a experimentação de novas leis de controle;

• Caso o DFC estabilize a órbita alvo e satisfaça as especificações de desempenho,

este é o método mais indicado para aplicação devido à sua simplicidade. Caso seja

necessário utilizar outro método de controle, o aPBC é o mais indicado por utilizar

um modelo do sistema para obter o estado futuro e compor o sinal de controle. Isto

é considerado uma vantagem em relação à necessidade da órbita alvo para o PFC.
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Appendix F

Résumé étendu

F.1 Introduction

Le principal problème étudié dans ce travail est la stabilisation des orbites périodiques de

systèmes dynamiques à l’aide de contrôle non linéaire par rétroaction (feedback) d’état ou

de sortie. L’objectif des méthodes de contrôle proposées est de stabiliser le système sur

une solution périodique stable, ce qui diffère de l’objectif des problèmes de contrôle plus

habituels de stabilisation sur un point d’équilibre stable.

Les méthodes de contrôle considérées ici sont appliquées aux systèmes présentant des

orbites périodiques instables (UPOs - unstable periodic orbits) dans l’espace d’état et ces

UPOs sont les orbites à stabiliser. Les méthodes proposées sont telles que l’oscillation

stable résultante est obtenue avec un effort de contrôle faible, car le signal de contrôle est

conçu de façon à tendre vers zéro lorsque la trajectoire tend vers l’orbite stabilisée.

Les méthodes de contrôle utilisées ici pour la stabilisation des orbites périodiques sont

la commande proportionnelle proportional feedback control (PFC), la commande retardée

delayed feedback control (DFC) et la commande à base de prédiction prediction-based con-

trol (PBC). La principale différence entre elles est la référence utilisée pour définir le signal

de contrôle. La PFC, proposée par [70], utilise comme référence l’orbite à stabiliser. Cette

orbite doit être trouvée avant l’application de la loi de commande et des inexactitudes

dans sa détermination induisent un plus grand effort de contrôle. La DFC, proposée par
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Pyragas [70], utilise comme référence l’état retardé d’une période, et seule la période doit

être onnue pour son application. La PBC utilise comme référence un état prédit une péri-

ode en avance, le long des trajectoires de la réponse du système libre, et la connaissance

d’un modèle du système est nécessaire pour l’implémentation.

La stabilisation de l’orbite périodique d’un système non linéaire peut être simplifiée

pour la stabilisation d’un certain système linéaire périodique en temps. Ce système linéaire

est obtenu par linéarisation des trajectoires au voisinage de l’orbite périodique et l’analyse

de sa stabilité peut être effectuée à l’aide de la théorie de stabilité de Floquet. La stabilité

locale de l’orbite périodique du système non linéaire est déduite de la stabilité du système

linéaire associé.

Le manuscrit est divisé en deux parties, la première consacrée aux systèmes en temps

discret et la deuxième aux systèmes en temps continu. Dans les paragraphes suivant le

présent résumé seront discutées les principales contributions de chaque partie, les prob-

lèmes de contrôle à traiter et la théorie nécessaire à leur compréhension. Pour les systèmes

en temps discret les principales contributions sont liées au PBC et seule cette méthode est

discutée dans ce résumé. Pour les systèmes en temps continu les principales contributions

sont liées au DFC et au PBC et seules ces méthodes sont discutées dans ce résumé.

F.2 Systèmes en temps discret

On considère le système dynamique en temps discret:

xk+1 = f(k, xk, uk), x0 donnée (F.1)

où x : N → Rn, u : N → Rm, k,m, n ∈ N et f : N × Rn × Rm → Rn est une fonction

p-périodique dans le temps k, c’est-à-dire, par définition

∀k ∈ N, ∀x ∈ R
n, ∀u ∈ R

m, f(k + p, x, u) = f(k, x, u). (F.2)
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On suppose l’existence d’une solution p-périodique x∗k de la réponse libre du système

(F.1), à savoir, le système obtenu en faisant uk = 0, k ≥ 0. En d’autres termes

∀k ∈ N, x∗k+p = x∗k (F.3)

et

∀k ∈ N, x∗k+1 = f(k, x∗k, 0m). (F.4)

On suppose que cette solution périodique est instable. L’objectif principal est ici de

concevoir des lois de rétroaction uk(xk) qui stabilisent cette orbite, c’est à dire, telles que

∀k ∈ N, ∀x ∈ R
n, uk+p(x) = uk(x)

et telles que x∗ est une solution stable du système en boucle fermée

xk+1 = f(k, xk, uk(xk)) (F.5)

avec u : N× Rn → Rm définie dans les sections suivantes.

Le signal de contrôle u utilisée dans ce travail devrait idéalement vérifier

uk(x
∗

k) = 0, k ≥ 0. (F.6)

Sur l’orbite périodique l’effort de contrôle est ainsi égal à zéro, et la solution périodique

instable x∗k de f(k, xk, 0) est une solution périodique stable de (F.5).

La Section F.2.1 est consacrée à l’analyse de la stabilité des orbites périodiques en

utilisant la théorie de Floquet. La Section F.2.2 est consacrée à la nouvelle loi de contrôle

proposée pour le PBC, qui sera utilisée pour stabiliser x∗k.

F.2.1 Théorie de la stabilité de Floquet

Cette section présente les concepts de stabilité des systèmes dynamiques linéaires à temps

discret périodiques, basés sur la théorie de Floquet, et ces résultats sont appliqués à
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l’analyse de la stabilité locale des orbites périodiques de systèmes dynamiques non linéaires

à temps discret.

Systèmes linéaires

On considère un système dynamique linéaire décrit par l’équation suivante.

xk+1 = Akxk, (F.7)

où k ∈ N, x : N → Rn est un vecteur colonne et A : N → Rn×n. On suppose que Ak est

une matrice d’état p-périodique, à savoir

Ak = Ak+p, ∀k ∈ N. (F.8)

La stabilité des systèmes périodiques linéaires selon la théorie de Floquet [5] dépend

des valeurs propres de la matrice de monodromie (détails dans l’Annexe A), appelé mul-

tiplicateurs caractéristique Floquet µi ∈ C, i = 1, . . . , n:

Proposition F.1 (voir la Proposition 3.1). (i) Le système (F.7) est asymptotiquement

stable si et seulement si les multiplicateurs caractéristiques de Ak ont une valeur absolue

inférieure à 1. (ii) Le système (F.7) est stable si et seulement si les multiplicateurs car-

actéristiques de Ak ont une valeur absolue inférieure ou égale à 1 et si les multiplicateurs

caractéristiques avec une valeur absolue égale à 1 sont des racines simples du polynôme

minimal de la matrice de monodromie Ψk.

Se reporter à l’Annexe B pour la définition de la stabilité. La matrice de monodromie

Ψk est calculée comme suit:

Ψk =

p−1
∏

l=0

Ak+l (F.9)

où les matrices dans le multiplicande sont ordonnées de droite à gauche lorsque l crôıt.

La théorie de Floquet peut être utilisée pour analyser la stabilité des orbites périodiques

de systèmes non linéaires par l’étude de la convergence / divergence d’une perturbation,

régie par un système linéaire, aux alentours de l’orbite périodique [3, 40].
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Application aux systèmes non linéaires

On considère le système dynamique non linéaire à temps discret décrit par l’équation aux

différences (F.5) avec une solution p-périodique x∗k par uk(xk) = 0 indiquée en (F.2). On

étudie ici le comportement d’une trajectoire aux alentours de x∗k.

Proposition F.2 (Stabilité des orbites périodiques de systèmes en temps discret -

se reporter à la Proposition 3.2). Une orbite périodique x∗k du système dynamique récur-

sif (F.5) est localement asymptotiquement stable si le système dynamique linéaire qui

décrit l’évolution d’une trajectoire perturbée dans le voisinage de x∗k est asymptotique-

ment stable.

F.2.2 Stabilisation par prediction-based control (PBC)

Prediction-based control. La méthode proposée par Ushio et Yamamoto [91] utilise

un signal de contrôle défini par

uk(xk) = Kk(xk) (ϕ(k + p, k, xk, 0)− xk) , (F.10)

où ϕ(k1, k0, x, 0) est la valeur de l’état de (F.5) à l’instant k1 avec xk0 = x et uk = 0.

En d’autres termes, ϕ(k1, k0, x, 0) est la valeur de l’état au temps k1 calculé le long de la

trajectoire de la réponse libre du système (uk ≡ 0) partant de x à l’instant k0.

La contribution de ce travail dans le domaine des systèmes en temps discret est de

proposer une méthode pour régler le gain du PBC. Les résultats ont été publiés à l’origine

en [12]. Le système de contrôle représenté ici est basé sur une condition suffisante pour

la stabilité et conduit à la proposition de gains pour le contrôleur.

Condition suffisante de stabilité Une condition suffisante de stabilité des orbites

périodiques des systèmes dynamiques en temps discret contrôlé par PBC est définie,

basée sur le spectre de Ψk. Le résultat obtenu au Théorème F.4 ci-dessous permet le

développement de lois de contrôle pour la stabilisation des UPOs par PBC.
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Selon (F.5) et (F.10), le système dynamique à temps discret contrôlé par PBC est

défini par

xk+1 = ϕ(k + 1, k, xk, uk(xk)) = f(k, xk, Kk(xk)(ϕ(k + p, k, xk, 0)− xk)). (F.11)

Pour tout x ∈ Rn et K ∈ Rq×n, q ∈ N, nous utilisons la notation

ψ(k, x,K)
.
= f(k, x, uk(x))

uk(x) = K(ϕ(k + p, k, x, 0)− x).
(F.12)

La première étape pour définir la condition suffisante de stabilité des orbites péri-

odiques est d’obtenir Ψk. Cette matrice pour le système en boucle fermée, est calculée

d’après le Lemme F.3.

Lemme F.3 (se reporter au Lemma 3.15). Pour n’importe quel point p-périodique x∗k,

k, p ∈ N, de la trajectoire x∗ du système en boucle fermée (F.11), on a

Ψk =

p−1
∏

l=0

∇xψ(k + l, x,Kk+l(x
∗

k+l))
∣

∣

x=x∗

k+l

(F.13)

et les matrices du multiplicande sont ordonnés de droite à gauche lorsque l’indice l crôıt.

L’intérêt de la formule (F.13) est qu’aucune dérivée de Kk(xk) par rapport à xk

n’apparâıt du côté droit de l’équation. Ainsi, le Lemme F.3 permet une simplification dans

le calcul du spectre de la matrice de monodromie: comme indiqué par (F.13), la dépen-

dance du gain par rapport à l’état ne modifie pas la matrice Jacobienne ∇xψ(k, x,Kk(x))

aux points de l’orbite périodique.

La simplification obtenu du Lemme F.3 est utilisée dans le Théorème F.4 pour définir

la condition suffisante de stabilité d’une orbite périodique de (F.11).

Théorème F.4 (se reporter au Theorem 3.16). On suppose que la matrice Jacobienne

∇xψ(k, x,Kk(x
∗

k))
∣

∣

x=x∗

k
du système (F.11) est nulle sur au moins un point de l’orbite

périodique x∗k. Alors, l’orbite périodique x∗ est localement exponentiellement stable.
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Grâce au Théorème F.4, on peut par exemple réduire le problème de la stabilisation

des orbites périodiques des systèmes dynamiques en temps discret contrôlées par le PBC

à la question de rendre tous les éléments de la matrice Jacobienne de l’orbite égale à zéro

en un point de l’orbite (en utilisant la simplification proposée en Lemme F.3). L’étape

suivante consiste à définir une matrice de gain Kk(xk) qui conduit au résultat désiré.

Lois de contrôle. Seront présentés ici des lois de contrôle pour stabiliser les UPOs,

utilisant le PBC proposé pour les systèmes dynamiques en temps discret dont la matrice

d’entrée est inversible.

Théorème F.5 (se reporter au Theorem 3.17). Si ∇uf(k, x, u) est une matrice inversible

et l’application linéaire qui décrit l’évolution d’une perturbation dans le voisinage d’une

trajectoire du système (F.11) pour uk(xk) = 0 est hyperbolique, alors il existe un gain

Kk(xk) satisfaisant le Théorème F.4.

Du Lemme F.3, la condition

∇xψ(k, x,Kk(x))|x=x∗

k

= 0n

est équivalente à

∇xf(k, x, uk(x
∗

k))|x=x∗

k

+ [∇uf(k, x, u)Kk(x)(∇xϕ(k + p, k, x, 0)− In)]x=x∗

k

= 0n. (F.14)

Si ∇uf(k, x, u) et (∇xϕ(k+ p, k, x, 0)− In) sont inversibles, Kk(xk) peut être isolé sur

le côté droit de l’équation (F.14). C’est le cas si ∇xϕ(k + p, k, x, 0) est hyperbolique (se

reporter à l’Annexe A).

Les valeurs Kk(xk) choisies par la suite satisfont le Théorème F.5.

• Loi de contrôle LC 1. K(x∗0) une matrice constante définie par:

K(x∗0) = −(∇uf(0, x
∗

0, u)|u=u0(x∗

0
))

−1 ∇xf(0, x, u0(x
∗

0))|x=x∗

0
(∇xϕ(p, 0, x, 0)− In)

−1
∣

∣

x=x∗

0

.

(F.15)
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Ce gain résulte d’une loi de contrôle linéaire invariant dans le temps dont la détermi-

nation dépend de la connaissance de l’UPO à stabiliser.

• Loi de contrôle LC 2. Kk(x
∗

k) est une matrice variable dans le temps k ∈ Z définie

par:

Kk(x
∗

k) =

− (∇uf(k, x
∗

k, u)|u=uk(x
∗

k
))

−1 ∇xf(k, x, uk(x
∗

k))|x=x∗

k

(∇xϕ(k + p, k, x, 0)− In)
−1
∣

∣

x=x∗

k

,

(F.16)

Ce gain se traduit par une loi de contrôle périodique linéaire dont la détermination

dépend aussi de la connaissance de l’UPO à stabiliser.

• Loi de contrôle LC 3. Kk(xk) est donné par

Kk(xk) =

− (∇uf(k, xk, u)|u=uk(xk)
)−1 ∇xf(k, x, uk(xk))|x=xk

(∇xϕ(k + p, k, x, 0)− In)
−1
∣

∣

x=xk

.

(F.17)

Contrairement à LC 1 et LC 2, le choix de LC 3 ne nécessite aucune connaissance

préalable de l’UPO (à l’exception de la période p). Le calcul de Kk(xk) ne dépend que de

l’état actuel de la trajectoire.

Un avantage de LC 3 est qu’il n’est pas nécessaire de trouver l’UPO avant de le

stabiliser. Un autre avantage est que, lors de la conception du gain du contrôleur pour

LC 1 ou LC 2 (ou toute autre méthode de contrôle qui dépend de la position de l’UPO),

les erreurs d’approximation de l’UPO conduisent à des gains du contrôleur moins précis.

Le PBC avec LC 3 peut être appliqué pour trouver (ou pour affiner des approximations

inexactes) des UPOs lors de l’utilisation d’autres méthodes de contrôle.
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F.2.3 Autres résultats

D’autres résultats et une revue de la littérature se trouvent dans la partie Part I du texte.

On peut en particulier noter la proposition d’une loi de contrôle dans le cas d’un système

avec matrice d’entrée non inversible (Section 3.4.3) et des résultats numériques (Chapter

4).

Dans les résultats numériques une comparaison a été faite entre les lois de contrôle

dans le cas d’une matrice d’entrée inversible; une comparaison entre le PBC avec LC 3 et

DFC; une brève analyse de la robustesse aux incertitudes paramétriques comparant PBC

avec LC 3 et DFC; ainsi qu’une application du PBC dans le cas où le système ne possède

pas une matrice d’entrée inversible.

F.2.4 Conclusions

Les résultats présentés dans la Part I (Chapter 5) ont été obtenus à partir des résultats

numériques et sont résumés ci-dessous:

• Le LC 3 peut être appliqué pour trouver les UPOs et pour définir le gain pour LC

1 et 2;

• Si les trois lois de contrôle stabilisent une UPO, le LC 3 est celui qui a la plus grande

vitesse de convergence des trajectoires à proximité de l’orbite et le plus petit bassin

d’attraction;

• En comparant le PBC avec LC 3 et DFC, il semble que le premier ait une convergence

plus rapide des trajectoires à proximité de l’orbite stabilisée, le plus grand bassin

d’attraction et la capacité de stabiliser des orbites non stabilisables par DFC;

• Il a été constaté que le PBC est plus robuste que le DFC, en utilisant comme critère

de comparaison la marge d’erreur paramétrique (l’erreur sur la valeur du paramètre

utilisé pour concevoir des contrôleurs) pour lequel une orbite stable est obtenu.

Cependant, il est moins robuste en utilisant comme critère de comparaison, la vari-

ation du multiplicateur de Floquet de plus grande magnitude et l’effort de contrôle
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en régime permanent, en fonction de l’intervalle d’erreur paramétrique préservant

la stabilisation;

• Il a été constaté que le taux de convergence des trajectoires vers l’orbite stabilisée

pour la loi de contrôle proposée par PBC au cas de la matrice d’entrée non inversible

est proche de celle obtenue en utilisant la LC 3.

F.3 Systèmes en temps continu

On considère le système dynamique en temps continu suivant:

ẋ(t) = f(t, x(t), u(t)), x(0) donné (F.18)

où t ∈ R+, x : R+ → Rn, u : R+ → Rm, n,m ∈ N et f : R+ × Rn × Rm → Rn est une

fonction T -périodique en temps, c’est-à-dire, par définition

∀t ∈ R
+, ∀x ∈ R

n, ∀u ∈ R
m, f(t+ T, x, u) = f(t, x, u). (F.19)

On suppose l’existence d’une solution T -périodique de la réponse libre du système

(F.18), obtenu pour u(t) = 0, t ≥ 0. En d’autres termes,

∀t ∈ R
+, x∗(t + T ) = x∗(t) (F.20)

et

∀t ∈ R, ẋ∗(t) = f(t, x∗(t), 0m). (F.21)

On suppose que cette solution périodique est instable. L’objectif principal ici est de

concevoir des lois de rétroaction de contrôle périodique u(t, x(t)) qui stabilisent cette

orbite, c’est-à-dire telles que

∀t ∈ R
+, ∀x ∈ R

n, u(t+ T, x) = u(t, x)
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et que x∗ soit une solution stable du système en boucle fermée

ẋ(t) = f(t, x(t), u(t, x(t)) (F.22)

avec u : R+ × Rn → Rm définie dans les sections suivantes. Il est aussi intéressant de

stabiliser par des moyens simples une orbite proche de l’UPO x∗ de (F.18).

Le signal de contrôle u utilisé dans ce travail devrait idéalement vérifier,

u(t, x∗(t)) = 0 t ≥ 0. (F.23)

La condition (F.23) assure un effort de contrôle nul lorsque la trajectoire est sur la solution

périodique instable x∗ de la réponse libre du système. Dans le cas de la stabilisation sur

une orbite dans le voisinage de l’orbite initiale x∗ cette condition n’est pas satisfaite.

Cependant, l’effort de contrôle restera faible au voisinage de ce nouvel attracteur.

La Section F.3.1 est dédiée à l’analyse de la stabilité des orbites périodiques en utilisant

la théorie de Floquet. La Section F.3.2 est consacrée aux méthodes de contrôle DFC et

PBC et aux principales contributions de ce travail à des systèmes en temps continu.

F.3.1 Théorie de la stabilité de Floquet

Cette section présente les concepts de stabilité des systèmes dynamiques linéaires péri-

odiques en temps continu, basés sur la théorie de Floquet et ces résultats sont appliqués à

l’analyse de la stabilité locale des orbites périodiques de systèmes dynamiques non linéaires

à temps continu.

Systèmes linéaires

On considère un système dynamique linéaire décrit par l’équation différentielle en temps

continu
dx(t)

dt
= A(t)x(t), (F.24)
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où t ∈ R+, x : R+ → Rn est un vecteur colonne et A : R+ → Rn×n. On suppose que A(t)

est une matrice d’état périodique de période T > 0, qui satisfait donc

A(t) = A(t + T ), ∀t. (F.25)

La stabilité des systèmes périodiques linéaires selon la théorie de Floquet dépend

des valeurs propres de la matrice de monodromie (détails dans l’Annexe A), appelées

multiplicateurs caractéristiques de Floquet µi ∈ C, i = 1, . . . , n:

Proposition F.6 (voir la Proposition 7.1). (i) Le système (F.24) est asymptotiquement

stable si et seulement si les multiplicateurs caractéristiques de A(t) ont un valeur absolue

inférieure à 1. (ii) Le système (F.24) est stable si et seulement si les multiplicateurs car-

actéristiques de A(t) ont une valeur absolue inférieure ou égale à 1 et si les multiplicateurs

caractéristique avec une valeur absolue égale à 1 sont des racines simples du polynôme

minimal de la matrice de monodromie Ψ(t).

Se reporter à l’Annexe B pour la définition de la stabilité.

La matrice de transition d’état Φ(t, t0), t, t0 ∈ R de (F.24) est calculée comme suit:

(Se reporter à l’Annexe A)
dΦ(t, t0)

dt
= A(t)Φ(t, t0)

Φ(t0, t0) = In.

(F.26)

La matrice de monodromie Ψ(t) est définie comme suit

Ψ(t) = Φ(t+ T, t). (F.27)

La théorie de Floquet peut être utilisée pour analyser la stabilité des orbites périodiques

de systèmes non linéaires par l’étude de la convergence / divergence d’une perturbation,

régie par le système linéaire, aux alentours de l’orbite périodique [3, 40].
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Application aux systèmes non linéaires

On considère le système dynamique non linéaire à temps continu décrit par l’équation

différentielle (F.22) avec une solution périodique x∗(t) de période T par u(t, x(t)) = 0

indiquée en (F.19). On étudie ici le comportement d’une trajectoire aux alentours de

x∗(t).

Proposition F.7 (Stabilité des orbites périodiques de systèmes en temps continu -

se reporter à la Proposition 7.2). Une orbite périodique x∗(t) d’un système dynamique

à temps continu (F.22) est localement asymptotiquement stable si le système dynamique

linéaire qui décrit l’évolution d’une trajectoire perturbée dans le voisinage de x∗(t) est

asymptotiquement stable.

F.3.2 Méthodes de contrôle des orbites périodiques

Seront décrites ici les principales contributions au DFC et au PBC, en particulier la

proposition de commande basée sur une prédiction approchée approximate prediction-

based control (aPBC). La PFC est utilisée comme comparaison, mais n’est pas décrite

dans le présent résumé.

Delayed feedback control (DFC)

Cette méthode utilise comme référence l’état du système retardé de la période T de l’UPO.

Le signal de contrôle pour le DFC est alors défini comme suit

u(t, x(t)) = K(t, x(t)) (x(t− T )− x(t)) (F.28)

et satisfait la condition (F.23). K(t, x(t)) ∈ R+ × Rn → Rn×n est le gain du contrôleur.

Le terme retardé dans le signal de contrôle fait de (F.22) une équation différentielle avec

retard de dimension infinie [36].

L’application de la commande DFC ne nécessite que le stockage des valeurs passées

des variables d’état sur une période T de l’UPO objectif. Cette caractéristique rend la

méthode facile à appliquer.
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Une des contributions contenues dans cette thèse est l’application de la méthode pro-

posée en [10, 23, 51] pour la conception numérique d’un gain constant pour le DFC. Le

principal avantage de la méthode est de réduire le problème du calcul de la matrice de

monodromie d’une orbite contrôlée en utilisant DFC à un problème d’algèbre matriciel.

En conséquence, on a observé une réduction du temps de calcul des multiplicateurs de

Floquet pour le système en boucle fermée.

La réduction du temps de calcul induite par la méthode permet le calcul d’un gain

constant pour le DFC en utilisant une méthode d’optimisation. La fonction-coût utilisée

est le multiplicateur de Floquet de plus grande magnitude de l’orbite à stabiliser en

fonction du gain du DFC.

Les résultats sur la commande DFC sont publiés en [14].

Approximation de la matrice de monodromie d’une orbite du système con-

trôlé en utilisant la DFC. Dans ce résumé seront présentées les étapes nécessaires à

l’obtention de la matrice de monodromie en utilisant la méthode proposée. Les détails et

les justifications sont disponibles dans la section 7.4.2.

La matrice de monodromie ΨX(t) ∈ R
nN×nN est approchée en utilisant F.29:

ΨX(t) = (MD −MA +MK)
−1MK . (F.29)

où n ∈ N est la dimension du système à contrôler et N ∈ N est le nombre de points de

discrétisation si, avec s1 = 0, si < si+1, i = 1, 2, . . . , N , et sN = 1, utilisé pour estimer les

états retardé x(t−siT ). La matrice de monodromie est calculée pour un nouveau système

dont l’état est donné par (détail dans la Section 7.4.2):

X(t) =

















x(t− s1T )

x(t− s2T )
...

x(t− sNT )

















, (F.30)
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Considérons le système linéaire qui décrit l’évolution d’une trajectoire perturbée δX(t)

dans le voisinage de X∗(t) (orbite périodique décrite en utilisant (F.30)):

dδX(t)

dt
= ∇XF (t, X, U(t, X

∗(t)))|X=X∗(t) δX(t)+

∇UF (t, X
∗(t), U)|U=U(t,X∗(t)) (IN ⊗K) (δX(t− T )− δX(t)), (F.31)

avec

F (t, X(t), U(t, X(t))) =

















f(t− s1T, x(t− s1T ), K(x(t− (1 + s1)T )− x(t− s1T ))

f(t− s2T, x(t− s2T ), K(x(t− (1 + s2)T )− x(t− s2T ))
...

f(t− sNT, x(t− sNT ), K(x(t− (1 + sN)T )− x(t− sNT ))

















.

On adopte une approximation numérique de dδX(t)/dt sous la forme

dδX(t)

dt
≈ (D ⊗ In)δX(t), (F.32)

où D ∈ RN×N est une matrice de différenciation à coefficients constants qui peut être

obtenue en utilisant des différences finies [9, 21, 86, 88], des méthodes spectrales [9, 23, 51]

ou la méthode de collocation avec différents types de polynômes [10, 51].

En remplaçant (F.32) dans (F.31), nous avons:

MDδX(t) =MAδX(t) +MK(δX(t− T )− δX(t)), (F.33)

où

MD =





Dij ⊗ In

0n×nN In



 ,
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MA =























A(t− s1T ) 0n×n · · · 0n×n 0n×n

0n×n A(t− s2T ) · · · 0n×n 0n×n

...
...

. . .
...

...

0n×n 0n×n · · · A(t− sN−1T ) 0n×n

In 0n×n · · · 0n×n 0n×n























,

MK =























B(t− s1T )K 0n×n · · · 0n×n 0n×n

0n×n B(t− s2T )K · · · 0n×n 0n×n

...
...

. . .
...

...

0n×n 0n×n · · · B(t− sN−1T )K 0n×n

In 0n×n · · · 0n×n 0n×n























,

avec i = 1, . . . , N − 1, j = 1, . . . , N , A(t − siT ) = ∇xf(t− siT, x, u)|x=x∗(t−siT ) e B(t −

siT ) = ∇uf(t− siT, x, u)|u=u∗(t−siT,x∗(t−siT )). Les dernières lignes des matrices assurent

la périodicité [51].

La matrice de monodromie en boucle fermée ΨX(t) est définie comme étant la matrice

de transition d’état en X∗(t), de δX(t− T ) à δX(t), donnée par:

δX(t) = ΨX(t)δX(t− T ), (F.35)

où ΨX(t) ∈ RnN×nN .

L’équation (F.29) est obtenue à partir de (F.33) et (F.35).

Prediction-based control (PBC)

La commande PBC est basée sur la prédiction de l’état du système une période en avance,

le long des trajectoires de la réponse libre du système. Le signal de contrôle pour le PBC

à temps continu est défini comme

u(t, x(t)) = K(t, x(t)) (ϕ(t+ T, t, x(t), 0)− x(t)) , (F.36)
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Chapter F F.3 Systèmes en temps continu

où ϕ(t1, t0, x, 0) est la valeur au temps t1 de l’état de (F.22) avec x(t0) = x et u(t) = 0,

t0 ≤ t ≤ t1. K(t, x(t)) est le gain du contrôleur.

La solution du système (F.22) avec le signal de contrôle (F.36) est la solution de l’EDP

∂X(t, 0)

∂t
= f(t, X(t, 0), K(t, X(t, 0)) (X(t, T )−X(t, 0)) , t ≥ 0 (F.37a)

∂X(t, T s)

∂s
= Tf(t+ Ts,X(t, T s), 0), t ≥ 0, s ∈ [0, 1] (F.37b)

X(0, 0) = x(0).

La fonction X : R+ × [0, T ] → Rn est telle que X(t, 0) = x(t) et X(t, T ) = ϕ(t +

T, t, x(t), 0).

La possibilité effective d’appliquer cette structure de contrôle en temps réel dépend de

la possibilité de calculer ϕ(t+ T, t, x(t), 0).

Les résultats sur la commande PBC sont publiés en [13].

Principes de la commande approximate prediction-based control (aPBC)

Calculer l’état futur ϕ(t+T, t, x(t), 0) exige de calculer à chaque instant t la réponse libre

de l’EDO du système (F.22), du temps t au t + T . Cela ne peut être fait exactement

en temps réel et une approximation de cette valeur est donc introduite. Nous proposons

ici une nouvelle méthode de contrôle de rétroaction basée sur la différence entre l’état

à l’instant courant et une approximation de l’état prédit, méthode que nous appelons

approximate prediction-based control (aPBC).

En raison de l’approximation utilisée, on prévoit, pat application du aPBC, la sta-

bilisation d’une nouvelle orbite du système contrôlé, proche de l’UPO du système non

contrôlé.
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étape 1: Approximation du terme prédit. La première étape consiste à approcher

la solution de (F.37b). Ceci est fait ici par une méthode d’intégration de Runge-Kutta

implicite de EDOs [35], afin d’estimer le terme prédit, c’est-à-dire, la valeur finale

X(t, T ) = x+ T

∫ 1

0

f (t+ Ts,X(t, T s), 0)ds, x donné. (F.38)

Pour approcher X(t, T ) défini par (F.38), ϕ(t2, t1, x, 0) est d’abord approximé par

l’opérateur y défini par

y(t+ T, t, x) = x+ T

N
∑

i=1

cili(t) (F.39a)

li(t) = f

(

t+ Tsi, x+ T

N
∑

j=1

aijlj(t), 0

)

, (F.39b)

où i = 1, . . . , N , lj : R×Rn → Rn e aij , ci ∈ R sont les coefficients de pondération choisis

selon la méthode implicite utilisée [35]. L’approximation y(t + T, t, x(t)) de X(t, T s),

s ∈ [0, 1], est calculée aux points de discrétisation s = si, i = 1, . . . , N .

Pour simplifier, (F.39b) est écrit sous forme vectorielle (F.40).

L(t) = FT (t, x, L(t)), (F.40)

où

∀t ≥ 0, L(t) =











l1(t)
...

lN(t)











∈ R
nN ,

et FT : R× R
n × R

nN → R
nN est défini par:

FT (t, x, L) =











f(t+ Ts1, x+
∑N

j=1 a1jlj , 0)
...

f(t+ TsN , x+
∑N

j=1 aNjlj , 0),











, ∀x ∈ R
n, ∀L ∈ R

nN .
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Pour calculer y(t + T, t, x) avec (F.39a), il est nécessaire de résoudre le système

d’équations algébriques (F.39b) en l’inconnue L(t) ∈ RN . En écrivant

C =
[

c1 . . . cN

]

et en fermant la boucle (F.22) par

u(t, x(t)) = K(t, x(t))(y(t + T, t, x(t))− x(t)) = TK(t, x(t))CL(t)

on obtient l’équation différentielle algébrique (EDA),

ẋ(t) = f(t, x(t), TK(t, x(t))CL(t)), x(0) = x0 (F.41a)

L(t) = FT (t, x(t), L(t)). (F.41b)

La solution en temps réel de l’EDA (F.41) exige que L(t), sa partie algébrique, soit

calculée à chaque instant t. De façon alternative, il est proposé par la suite d’introduire

un observateur pour transformer le système contrôlé en un système d’EDOs.

étape 2: Approximation du terme de prédiction. On approche maintenant (F.41b)

par la résolution de l’EDO de dimension nN (F.42) dont la solution L̂(t) est une estima-

tion de L(t). La valeur initiale de L̂(0) doit être préalablement (et précisément) calculée

pour permettre un suivi du L(t) de bonne qualité.

d

dt

(

L̂(t)− FT (t, x(t), L̂(t))
)

+ko

(

L̂(t)− FT (t, x(t), L̂(t))
)

= 0, L̂(0) donné. (F.42)

Le gain scalaire ko est choisi positif, de telle sorte que la solution L̂(t) de (F.42) tende

asymptotiquement vers la solution L(t) de (F.41b) quand t → +∞, et typiquement de

sorte que la dynamique du estimateur soit plus rapide que la dynamique du système

contrôlé. Si effectivement l’évolution de L̂(t) est choisie de façon à satisfaire (F.42), la

convergence sera obtenue.
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De (F.42) on obtient:

˙̂
L(t) =

[

InN − T∂3FT (t, x(t), L̂(t))(A⊗ In)
]

−1

[

∂1FT (t, x(t), L̂(t)) + ∂2FT (t, x(t), L̂(t))(1N ⊗ f(t, x(t), 0))− ko

(

L̂(t)− FT (t, x(t), L̂(t))
)]

.

(F.43)

où A = (aij) et ∂i est la dérivée partielle par rapport à la i-ème variable. In est la matrice

d’identité n×n et 1N est le vecteur colonne de dimension N avec tous les éléments égaux

à 1. ⊗ est le produit de Kronecker.

L’obtention de (F.43) à partir de (F.42) exige l’inversibilité du premier facteur.

GT : Rn × Rn × RnN → RnN est défini comme,

GT (t, x, L̂) =
[

InN − T∂3FT (t, x, L̂)(A⊗ In)
]

−1

[

∂1FT (t, x, L̂) + ∂2FT (t, x, L̂)(1N ⊗ f(t, x, 0))− ko

(

L̂− FT (t, x, L̂)
)]

. (F.44)

De (F.41), (F.42), (F.44) et dénotant l̂i(t) les composantes de L̂(t), la loi de contrôle

proposée se traduit par le système d’EDOs suivant en boucle fermée:





ẋ(t)

˙̂
L(t)



 =





f
(

t, x(t), K(t, x(t))TCL̂(t)
)

GT

(

t, x(t), L̂(t)
)



 x(0) = x0, L̂(0) = L(0). (F.45)

La solution de (F.45) est une approximation de la solution de l’EDP donnée dans (F.37).

F.3.3 Conclusions

Les conclusions présentées pour la Part II (Chapter 9) ont été obtenues à partir des résul-

tats numériques comparant les commandes PFC, DFC et PBC/aAPBC et sont résumées

ci-dessous:

• En considérant les multiplicateurs de Floquet et les caractéristiques de performance

qui leur sont associées (stabilité et vitesse de convergence des trajectoires vers la
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solution stabilisée), les meilleurs résultats ont été obtenus pour la commande PFC,

aPBC présentant des résultats intermédiaires et DFC les pires résultats;

• En considérant l’erreur et l’effort de contrôle en régime, les résultats obtenus avec

la commande aPBC sont significativement plus faibles qu’avec d’autres méthodes;

• La commande DFC est la méthode qui a montré une meilleure robustesse aux erreurs

paramétriques entre les méthodes testés;

• Il n’y a pas de limite théorique au PFC et au PBC/aPBC, contrairement au DFC

qui a des limites décrites dans la littérature;

• Une limite pratique au aPBC a été identifiée. Pour le système en boucle fermée,

en raison de la nécessité d’étendre l’état concernant l’état du système sans contrôle,

prédire l’état futur pour les orbites de longue période nécessite un effort de calcul

élevé;

• Si la commande DFC stabilise l’orbite et répond aux spécifications de performance,

c’est la meilleure méthode pour une application en raison de sa simplicité. S’il est

nécessaire d’utiliser une autre méthode de contrôle, la commande aPBC est la plus

appropriée car elle utilise un modèle de système pour estimer l’état futur et calculer

le signal de commande. Ceci est considéré comme un avantage par rapport à la

nécessité pour la commande PFC de connâıtre intégralement l’orbite.
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Sep. 2010.

[12] ——, “New feedback laws for stabilization of unstable periodic orbits,” in 8th IFAC

Symposium on Nonlinear Control Systems, Bologna, Italy, Set. 2010.

[13] ——, “A new method for stabilizing unstable periodic orbits of continuous-time

systems. application to control of chaos,” in 51st IEEE Conference on Decision and

Control, Maui, USA, Dec. 2012.

[14] T. P. Chagas, B. A. Toledo, E. L. Rempel, A. C.-L. Chian, and J. A. Valdivia,

“Optimal feedback control of the forced van der pol system,” Chaos, Solitons &

Fractals, vol. 45, no. 9-10, pp. 1147 – 1156, 2012.

[15] J.-H. Chen, “Controlling chaos and chaotification in the chen-lee system by multiple

time delays,” Chaos, Solitons and Fractals, vol. 36, pp. 843–852, Oct 2008.

[16] A. C.-L. Chian, F. A. Borotto, E. L. Rempel, and C. Rogers, “Attractor merging

crisis in chaotic business cycles,”Chaos, Solitons and Fractals, vol. 24, pp. 869–875,

2005.

256



Chapter F BIBLIOGRAPHY

[17] A. C.-L. Chian, E. L. Rempel, and C. Rogers, “Complex economic dynamics:

Chaotic saddle, crisis and intermittency,” Chaos, Solitons and Fractals, vol. 29,

pp. 1194–1218, 2006.

[18] P. Colaneri, “Zero-error regulation of discrete-time linear periodic-systems,”Systems

& Control Letters, vol. 15, no. 2, pp. 161–167, Aug 1990.

[19] ——, “Output stabilization via pole placement of discrete-time linear periodic-

systems,” IEEE Transactions on Automatic Control, vol. 36, no. 6, pp. 739–742,

Jun 1991.
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