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Abstract

Unsupervised data clustering remains a crucial step in many recent multimedia

retrieval approaches, including for instance, visual objects discovery, multimedia doc-

uments suggestion or event’s detection across different media. However, the perfor-

mance and applicability of many classical data clustering approaches often force par-

ticular choices of data representation and similarity measures. Such assumptions are

particularly problematic in a multimedia context that usually involves heterogeneous

data and similarity measures. This thesis investigates new clustering paradigms and al-

gorithms based on shared nearest-neighbours (SNN), i.e. any two items are considered

to be well-associated not by virtue of their pairwise similarity value, but by the de-

gree to which their neighbourhoods resemble one another. As most other graph-based

clustering approaches, SNN methods are actually well suited to deal with data com-

plexity, heterogeneity and high-dimensionality. But unlike to state-of-the-art graph

partitioning algorithms they do not attempt to minimize a global cost function based

on pairwise similarities. Rather, they consider local optimizations in the neighbour-

hood of each item based on ranking considerations.

The first contribution of the thesis is to revisit existing shared neighbours methods in

two points. We first introduce a new SNN formalism based on the theory of a con-

trario decision. This allows us to derive more reliable connectivity scores of candidate

clusters and a more intuitive interpretation of locally optimum neighbourhoods. We

also propose a new factorization algorithm for speeding-up the intensive computation

of the required shared neighbours matrices.

The second contribution of the thesis is a generalization of the SNN clustering ap-

proach to the multi-source case, i.e. each input object is associated with a set of top-

k lists coming from different sources instead of a single list of nearest neighbours.

Whereas SNN methods appear to be ideally suited to sets of heterogeneous informa-

tion sources, this multi-source problem was surprisingly not addressed in the literature

beforehand. The main originality of our approach is that we introduce an information

source selection step in the computation of the candidate cluster scores. Any arbitrary

7
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item’s set is thus associated with its own optimal subset of modalities maximizing

a normalized multi-source significance measure. As shown in the experiments, this

source selection step makes our approach widely robust to the presence of locally out-

lier sources, i.e. sources producing non relevant nearest neighbours (e.g. close to ran-

dom) for some input objects or clusters. This new method is applied to a wide range of

problems including multi-modal structuring of image collections and subspace-based

clustering based on random projections.

The third contribution of the thesis is an attempt to extend SNN methods to the context

of bipartite k-NN graphs, i.e. when the neighbours of each item to be clustered lie in

a disjoint set. We introduce new SNN relevance measures revisited for this asymmet-

ric context and show that they can be used to select locally optimal bipartite clusters.

Accordingly, we propose a new bipartite SNN clustering algorithm that is applied to

visual object’s discovery based on a randomly precomputed matching graph. Experi-

ments show that this new method outperform state-of-the-art object mining results on

the Oxford Building dataset. Based on the objects discovered, we also introduce a

new visual search paradigm, i.e. object-based visual query suggestion. The idea is to

suggest to the user some relevant objects to be queried as they are the most frequent to

appear in the full dataset or in a subset filtered by previous queries.
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Chapter 1

Introduction

1.1 General introduction and contributions

With the steady growth of the Internet and the falling price of storage devices, the

amount of data continues to increase. Finding tools to manipulate large repositories of

digital information is becoming a necessity. Who has never come back from holiday

and found himself with a large set of pictures taken during the stay in different places

and with different people? Keeping pictures in a single repository makes browsing

very long and particularly when we are looking for pictures of a specific place or spe-

cific people. Structuring similar pictures in a set of groups makes visiting the collection

very friendly and efficient. But, personal photo collections is not the only application

that requires a structuring of data : scientific images collections (satellites, plants, med-

ical) also have a great need for discovering patterns, clustering, summarizing, mining

and even recommending.

Despite 40 years of research on data clustering, there is still no agreement on which

clustering is the best solution. Each clustering method represents some advan-

tages/limitations and is applied for limited problems and data. For that reason, there

are as many solutions as problems, and as clustering methods. Users have multiple

clustering algorithms but do not know which one is the most suitable. There is no

generic tool that can be applied for any application, or any data, using any modality.

The heterogeneity of the data from one application to another is one of the causes of

this problem. Even in a single application, we can find heterogeneous information

sources that can be explored to take advantage from each one. In some cases, the het-

erogeneity of the data and the use of different modalities lead to the use of different

similarity functions, which is not very convenient. However, some clustering algo-

rithms need adhoc parameters to produce relevant results which can be very difficult
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for the user to tune when he uses different databases. Some others produce specific

shapes of clusters and cannot deal, for example, with clusters of different densities.

All these constraints make the user lost in his choice of the right clustering method.

Shared neighbours clustering strategy appears to be promising and deal with the above

problems. Shared neighbours information seems to be suitable to deal with different

natures of the data, different similarity functions, and diverse modalities.

This PhD builds upon this idea. We propose a novel theoretical shared nearest neigh-

bours clustering framework based on the a contrario approach. Thanks to the selection

of the optimal neighbourhood of each item, we show by using synthetic data how our

method is robust against outliers and noisy neighbours. To accelerate the calculation

of shared neighbours, we propose a new factorisation algorithm based on the recursion

of the calculation. The proposed method is compared to spectral clustering and we

show by experiment that our method is more robust to the size of the graph.

The next challenge addressed in this work is the extension of our method to a multi-

source shared neighbours clustering. Each object in this case is not associated with

a single ordered list of nearest neighbours but a set of lists from different sources of

information. The availability of different sources of information in some applications

are not always operated properly.

We suggest a generic multi-source shared neighbours method that can be applied to

any multimedia sources including text, image, videos and audio documents. The fact

that only nearest neighbours lists are used as input of our clustering method makes this

possible. Whereas SNN methods appear to be ideally suited to sets of heterogeneous

information sources, this multi-source problem was surprisingly not addressed in the

literature beforehand. Our contribution concerns two points. First, we introduce an

information source selection step in the computation of the candidate cluster scores.

Any arbitrary item’s set is thus associated with its own optimal subset of modalities

maximizing a normalized multi-source significance measure. As shown in the exper-

iments, this source selection step makes our approach widely robust to the presence

of locally outlier sources, i.e. sources producing non relevant nearest neighbours (e.g.

close to random) for some input objects or clusters.

Second, in this multi-source case, we propose, applying the reshaping step of the clus-

ters during the construction of candidate clusters. Missing items are not recovered

only during the elimination of redundant clusters as is done in the mono-source case,

but also from the other available lists of K-nearest neighbours belonging to the opti-

mal selected sources of each cluster. Thanks to the synthetic data, we demonstrate the

effectiveness and the robustness of our method against noisy sources. Our proposed
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multi-source shared neighbours clustering method is applied to multi-modal search

results clustering, visual object mining and image clustering based on multiple ran-

domized visual subspaces.

Finally, we investigate the case where the nearest neighbours of an item belong to an-

other another set. In this bipartite case, the similarity of two objects is evaluated by

their shared nearest neighbours belonging to a disjoint set. We propose a new bipartite

shared nearest neighbours clustering method and we apply it to object-based visual

query suggestion. We aim to resolve user perception issues by applying our bipar-

tite framework to object’s seeds to group visual object’s instances of the same object.

We address the problem of suggesting only the object’s queries that actually contain

relevant matches in a dataset. Experiments show that this new method outperforms

state-of-the-art object mining and retrieval results on the Oxford Building dataset. We

also describe two object-based visual query suggestion scenarios using the proposed

framework.

1.2 Thesis outline

This thesis is organized in three parts. The first part reviews some past and current

methods in clustering and in visual content structuring and mining.

The chapter 2 explains the clustering problem and reviews some existing clustering

methods. We focus particularly on graph-based clustering methods because they are

related to our contributions in this PhD. Open problems and latest trends in data clus-

tering are also presented.

Chapter 3 explores the state-of-the-art in visual content structuring and mining as they

use generally the clustering techniques.

The second part covers the contributions we propose, including a Chapter on the sug-

gested shared neighbours clustering method based on the a contrario approach, a sec-

ond Chapter on the multi-source version and a last Chapter on the bipartite case. Chap-

ter 4 presents our proposed shared nearest neighbours clustering framework and chap-

ters 5 and 6 extend our proposed method respectively to the multi-source case and the

bipartite case.

Finally, the third part presents some applications in structuring visual contents with

multi-source shared-neighbours clustering and with bipartite shared-neighbours clus-

tering.

Chapters 7 and 8 describe the application of our methods to visual content structuring.
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In particular, the first presents some experiments including multi-modal search results

clustering, visual object mining and image clustering based on multiple randomized

visual subspaces. The second presents an application of our proposed bipartite shared-

neighbours clustering to object-based visual query suggestion.

Finally, Chapter 9 summarizes our contributions, sets out the major conclusions and

suggests some possible perspectives.
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Part I

State-of-the-art





Chapter 2

Clustering Methods

2.1 The Clustering problem

Clustering is used in a wide variety of scientific fields and applications : image

segmentation for instance can be formulated as a clustering problem [146], Connell et

al. [29] use clustering to discover subclasses in a handwritten character recognition

application, where a search engine clusters the search results for a better visualiza-

tion. Biologist have applied clustering to analyse large amounts of genetic information

and find groups of genes that have similar functions [176]. In the business domain,

clustering can be used to segment customers into groups for additional analysis and

marketing activities [2]. Clustering therefore relates to techniques from different dis-

ciplines including mathematics, statistics, computer science, artificial intelligence and

databases.

In addition to the growth of the amount of data and applications, the variety of avail-

able data (text, image and video) has also increased. The Web and digital devices such

as Tablet PCs, PDAs (personal digital assistants), and Smart Phones (cell phones with

PDA capabilities) create new data every day, many of them are unstructured, which

makes them difficult to analyse. Automatically understanding, processing and sum-

marizing this data is one of the biggest challenge of the modern computer sciences.

Organizing data into natural groupings is a fundamental mode of understanding and

learning. The absence of categories of information (class labels) distinguishes data

clustering (unsupervised learning) from classification or discriminant analysis (super-

vised learning). The aim of clustering is to group data into classes or clusters, in such a

way that objects within a cluster have a high similarity in comparison with each other

but are dissimilar to objects in other clusters [66]. It can be used to extract models

describing large data classes or to predict categorical labels [41]. Such analysis can
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help us to achieve a better understanding of the data because cluster analysis provides

an abstraction from individual data objects to the clusters.

In many applications, the notion of a cluster is unfortunately not well defined. In fact,

the definition of a cluster depends on the nature of the data, the desired results and the

goal of the application. Not surprisingly, there are several different notions of clusters

[157]:

– Well-separated : A set of clusters is said to be well-separated when each object

in a cluster is closer to every other object in the same cluster than to any object

belonging to the other clusters. This idealistic definition of a cluster is satisfied

when the data contains natural clusters (regardless of the shape) that are far from

each other. However, in many sets of data, a point on the edge of a cluster may

be closer (or more similar) to some objects in another cluster.

– Prototype-based : Some clustering techniques represent each cluster by a rep-

resentative object called a cluster prototype [182] which is used as the basis for

data processing techniques (summarization, compression, etc). For data with

continuous attributes, the prototype of a cluster is often a centroid (the average

of all the points in the cluster). In the case of categorical attributes, the pro-

totype is often a medoid (the most representative point of all the objects in a

cluster). Not surprisingly, such clusters tend to be spheric because they focus on

the cluster’s centers (the cluster surrounds the center).

– Graph based : If the data is represented by a graph where the nodes are the

objects and the edges represent the similarity between them, a cluster can be

defined as a connected component: a group of objects that are connected to one

another but that have no connection to objects outside the group [144]. In some

clustering techniques, a cluster is defined as a clique : a set of nodes in a graph

that are completely connected to each other. Like prototype-based clusters, such

clusters tend to be globular.

– Density-based : In density-based clustering methods, a cluster is defined as a

dense region of objects that is surrounded by a region of low density. This defi-

nition of a cluster makes it robust to the presence of noise and outliers [46].

– Shared-property : In this case, a cluster is defined as a set of objects that share

some property. For instance, a shared-neighbours cluster contains objects that

share their nearest neighbours [44]. Objects in a center-based cluster share the

property that they are all closest to the same centroid or medoid. This definition

encompasses all the previous definition of a cluster.



2.2. Clustering evaluation 11

The diversity of cluster definitions is not the only cause of the increasing number of

clustering methods. Features representing the different measures of the properties of

an object are not appropriate for all types of data. The better the choice of the feature,

the more compact the clusters are and a simple clustering algorithm such as K-means

[67] can be used to find them. Unfortunately, no universally appropriate features

seem to exist, the choice of the feature must be related to the domain knowledge, the

purpose of the clustering and the nature of the data set to be clustered.

2.2 Clustering evaluation

How to evaluate the relevance of a clustering result is a central point in any clus-

tering method. For the case of unsupervised clustering, a standard evaluation can be

made when a ground truth is available. The evaluation measure depends on the goal of

the application. While it is possible to develop various numerical measures to assess

the different aspects of the cluster’s validity, there are a number of issues: i) a measure

of cluster validity may be quite limited in the scope of its applicability, ii) we need a

framework to interpret any measure.

A variety of different evaluation measures have been suggested recently in [19, 30]:

– F-measures: introduced by Larsen et al. [101] and combines the precision and

recall measures. It considers that each cluster is the result of a query and that

each class is the desired answer to that query.

– Rand Index: proposed by Hubert et al. [75] to compare two partitions. It can be

used to compare the resulting partition of a clustering algorithm with the ground

truth classes or to compare two partitions resulting from different clusterings.

– Purity: proposed by Zhao et al. [187] to measure the percentage of objects in

a cluster that belong to the largest class of objects in this cluster. The larger the

value of the purity, the better the clustering solution is.

– Cosine Measure: used by [73] and combines the precision and the recall of

each cluster. A low precision score of clustering is an indication of cluster fu-

sion, which often occurs when too few clusters are produced, whereas a low

recall indicates cluster fragmentation, which occurs when too many clusters are

generated. A high cosine measure value can be interpreted that the clustering

avoids extremes fusion and cluster fragmentation, and that the number and sizes

of the clusters roughly conform with those of the classes.
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All these measures will be described in detail in Section 4.6.1. Recently, a different

way to evaluate clusters has been proposed. Cao et al. [20] present a measure of

the meaningfulness of clusters. This measure is derived from a background model

assuming no class structure in the data. It provides a way to compare clusters, and

leads to a cluster validity criterion. This criterion, inspired by the a contrario approach,

is applied to every cluster. The Helmholtz principle [36] states that if an observed

arrangement of objects is highly unlikely, the occurrence of such an arrangement is

significant and the objects should be grouped together into a single structure. Hence,

clusters are detected a contrario to a null hypothesis or background model (no class

structure in the data). This notion will be used in this PhD to compute the a contrario

significance measures of clusters.

2.3 Data clustering methods

As mentioned above, so many clustering algorithms have been proposed in the lit-

erature, in many different scientific fields and applications, that is would be extremely

difficult to review all the proposed methods. These methods differ in the choice of

data, the objective function, heuristics and hypotheses.

Here, we will not detail all the existing clustering methods. In the next Section 2.3.1,

we present an overview of some clustering methods and the particular properties of

each one. Thereafter in Section 2.3.2, we review some open problems and recent

trends in data clustering. Finally, in Section 2.4, we focus particularly on graph based

methods and especially on spectral clustering and shared nearest neighbours cluster-

ing methods SNN. Our contributions are related to SNN methods and we use spectral

clustering for comparison and positioning.

2.3.1 Overview

Comprehensive surveys on clustering have been published, such as the well-known

papers by Jain et al. [9], Jian et al. [82] and Xu et al. [179] where a large variety of

algorithms are detailed.

One of the most important points that can be helpful in selecting a clustering algorithm

is the nature of the data and the nature of the desired clusters. Data dimensionality and

the size of the dataset are also important criteria since no stable clustering algorithm

exists [47] and might be restricted to low dimensionality [1, 155].

Traditionally, clustering methods are divided into hierarchical and partitioning tech-
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niques. While hierarchical algorithms are subdivided into agglomerative and divisive,

partitioning algorithms are subdivided into 2 types : i) methods that tend to build

clusters of proper convex shape and look how items fit into their clusters (K-medoid,

K-means, probabilistic clustering), ii) density based methods that define clusters as

high density regions in the feature space separated by low density regions.

The density-based algorithm DBSCAN [46] introduced a frequency count within the

neighbourhood to define a concept of a core point. In fact, while density-based meth-

ods are attractive because of their ability to deal with arbitrarily shaped clusters and

are less sensitive to outliers, they have limitations in handling high-dimensional data.

They are usually used with low-dimensional data of numerical attributes because the

feature space is usually sparse when the data is high-dimensional. This is due to the

fact that it is difficult to distinguish high-density regions from low-density regions in

high-dimension.

To overcome this limitation, subspace clustering algorithms such as CLIQUE [3] try to

find clusters embedded in low-dimensional subspaces of the given high-dimensional

data. When the dimension grows, a problem arises from the decrease in metric sepa-

ration ( curse of dimensionality). Two solutions exist : either reducing the dimension

by transforming the attributes (PCA [128], wavelets [93], Discrete Fourier Transform

DFT [94]) or using clustering techniques for high dimensional data (subspace cluster-

ing [126], multi-clustering techniques [137]).

When the data points are represented by nodes in a weighted graph and the weight

of the edges connecting the nodes represents the pair-wise similarity, the clustering is

referred to graph clustering. The most popular graph clustering is spectral clustering.

The main idea of such clustering is to partition the nodes into subsets such that the sum

of the weights assigned to the edges connecting two subsets is minimized. We detail

spectral clustering techniques in Section 2.4.

2.3.2 Open problems and latest trends in data clustering

While new clustering algorithms continue to be developed, some issues still have

to be resolved. Some problems and research directions as pointed by [76] have to be

addressed:

– There is a need to achieve tighter integration between clustering algorithms and

application requirements. Each application has its own requirements: some of

them just need a global partition of the data while others need to have the best

partition with great precision. Generally, in mining applications, the goal is
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not to provide all the clusters of the search results but a summarized list of the

different topics of the query. Users can after easily figure out what they are

exactly searching for by selecting the target topic. Showing images from the

target category in which the user is truly interested is much more effective and

efficient than returning all the clusters or all the mixed images.

– There is a need for clustering algorithms that lead to computationally efficient

solutions for large scale data. Not all clustering algorithms can deal with large

scale issues.

– There is a need for stable and robust clustering algorithms that lead to stable

solutions even in the presence of noisy data.

– There is a need to use any available a priori information concerning the nature

of the dataset and the goal/domain of the application in order to decide which

data representation is the most suitable and which clustering method is the most

appropriate.

– There is a need to have generic clustering that can be applied for any type of

data.

– There is a need for benchmark data with available ground truths and diverse data

sets from various domains to evaluate any kind of clustering algorithm because

current benchmarks are limited to a small dataset that can be applied only for a

limited choice of clustering methods.

As said above, the growing amount of data leads to diverse data (both structured

and unstructured). Raw images, text, video are considered as unstructured data be-

cause they do not follow a specific format, in contrast to structured data where there is

a semantic relationship between objects. Generally, clustering approaches are applied

without taking into account the structure of the data. It is precisely for these reasons,

that new algorithms are being developed. Recently, [76] presents an overview of clus-

tering techniques and highlights some emerging, and useful, trends in data clustering,

some of which are presented below :

– Clustering ensembles [58] : The idea here is that by combining multiple parti-

tions (clustering ensembles) of the same data, we can obtain a better data par-

titioning. For example, we can obtain a set of clustering ensembles by taking a

different value of K in a K-means clustering with each time a random initializa-

tion, and then, combining these partitions using a co-occurrence matrix which

results in a good separation of the clusters, as was done in [56]. Applying the

same clustering algorithm with different parameter values is not the only way to

generate a clustering ensemble. We can apply different clustering algorithms on
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the same data which leads to different clusters or even use different data repre-

sentations of the data with different clustering algorithms.

– Large scale clustering : A number of clustering algorithms have been developed

to handle large size dataset. Some of them are based on efficient nearest neigh-

bours search and use trees as in [119] or random projections as in [16]. Some

others first, try to summarize a large data set into small subset and then apply the

clustering algorithms to the summarized dataset as with the BIRCH algorithm

[186] in contrast to sampling based methods like CURE algorithm [64] which

sub-sample a large dataset selectively and perform clustering over the small set,

which is later transferred to the larger dataset.

– Multi-way clustering [18] When a set of objects to be clustered is formed by a

combination of heterogeneous components, a classical clustering method leads

to poor performances. Co-clustering treats this problem, and has been success-

fully applied to document clustering (clustering both documents and words be-

longing to documents at the same time [38]). This Co-clustering framework was

extended to multi-way clustering in [7] to cluster a set of objects by simultane-

ously clustering their heterogeneous components.

2.4 Graph-based clustering methods

A graph is classically defined by a set of nodes or vertices and a set of edges link-

ing some pairs of nodes. Graphs are a nice way to represent the data when we do no

have more information than the similarity between objects. In this case, the weight

associated to the edge connecting two nodes is equal to the similarity between these

nodes. Graph clustering tends to group vertices of a given input graph into clusters

taking into consideration the edge structure of the graph. Vertices belonging to the the

same group are connected by high weight while edges between different groups have

very low weights.

As the field of graph clustering has become quite popular, the number of clustering

algorithms as well as the number of applications have become high. Graph clustering

algorithms serve as a tool for analysis, model and predict in many different domains

[144]. In social networks for instance, groups of people (such as friends or families)

can be connected by means of their profile as done in collaborative filtering recom-

mendation systems [145].

Representing data by a graph also helps in the biological domain to study for example
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the spread of epidemics. Newman [120] studied susceptible, infective and recovered

type epidemic processes and found that clustering decreases the size of epidemics.

Generally, the goal of graph based clustering is to group items into clusters such that

connected or similar items are assigned to a same cluster. But each application defines

its own desirable cluster properties. In some applications, the density of edges within

the cluster is more important than the edges with the rest of the graph [86]. Some graph

structures are hierarchical and other graphs can simply computed by flat clustering.

Different kinds of graphs can be computed from a given unstructured set of data items:

– The fully connected graph: Every pair of distinct vertices is connected by a

unique edge. As the goal is to model the local neighbourhood relationships

between items, the edges have to be weighted. The similarity plays the role to

detect partitions with high weights. The choice of the similarity function, used

to compute the weights between objects, is very important for this kind of graph

since all pairs are connected and only the edge weights are discriminant.

– The ε-neighbourhood graph: Only vertices whose dissimilarity is smaller than

ε are connected. The difficulty lies in choosing this parameter. The produced

graph and the resulting clustering are actually very sensitive to the choice of

ε . To determine the smallest value of this parameter, we can consider it as the

length of the longest edge in a minimal spanning tree of the fully connected

graph of the data items. The disadvantage of this method of determining ε is

that if the data contains outliers, this leads to choosing a larger ε , so that some

vertices will be connected even if they are dissimilar.

– The k-nearest neighbours graph: A vertex is only connected to its k-nearest

neighbours. The resulting graph is directed as the nearest neighbour relation is

not a symmetric one, i.e., if an item q is among the k-nearest neighbours of a

point p, this does necessarily mean that p is a nearest neighbour of q. To make

the graph undirected, we can consider that two points are connected if one of the

pair is among the k-nearest neighbours of the other and we ignore the direction

of the edge. A second way is to connect a pair of items only if they are among

the k-nearest neighbours of each other. By this restrictive method, we obtain a

mutual k-nearest neighbour graph which has the property of connecting nodes

within regions of constant density as well as points within different scale of den-

sity. When the clusters are from different densities, this kind of graph is very

useful.

The choice of k is crucial in order to achieve good performances. A small k

makes the graph too sparse or disconnected. On the other hand, by choosing a
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large k, dissimilar points are related on the graph. The advantage of this kind of

graph is that points belonging to different level of density can be connected. The

similarity function is only used to connect the points to their k nearest neigh-

bours in the graph. [14] suggests guaranteeing the good connectivity of this

graph by choosing k in the order of log(n) with n being the number of the data

items. As for the mutual k-nearest neighbour graph [124], the number of edges

is more limited than for the standard k-nearest neighbour graph and this sug-

gests choosing a large value of k. No theoretical study has clearly resolved the

problem.

– The Bipartite graph: The set of vertices is divided into two subsets and all the

edges lie between these two subsets [177]. Such graphs are natural for many

applications involving 2 types of objects such as documents and words. A word

belongs to a set of documents and at the same time, a document contains a set of

words. The motivation can be to regroup documents having common words. To

achieve this, we simultaneously obtain the clustering of words and of documents.

To evaluate the similarity of two vertices of the same side of the graph can be

done only by evaluating the overlap of their neighbourhood on the other side and

vice versa.

Over the years, there has been a huge amount of work on graph-based clustering [54,

91]. Rather than giving an exhaustive description of all the methods, we focus on two

widely used divisive categories of graph-based methods: “spectral clustering” that is

probably the most well-known one and “shared nearest neighbours clustering” that is

related to our work.

2.4.1 Spectral clustering

Graph-based divisive clustering [51] is a class of hierarchical methods that tends

to divide the graph recursively into clusters in a top-down manner. The division should

not break a natural cluster but rather separate connected clusters from other clusters.

Among this type of clustering, we find the spectral clustering [110] that is very popular

and used extensively in many studies.

The main idea of this clustering is that by computing the eigenvectors corresponding

to the second smallest eigenvalue of the normalised Laplacian, the clustering can be

determined by using the eigenvector as vertex-similarity values.

The success of spectral clustering is mainly based on the fact that it does not need to

have assumptions on the form of the clusters unlike the popular K-means algorithm
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for example which leads to a convex form of clusters. However, spectral clustering

depends on the choice of similarity graph (choosing the right parameter of connectivity

of the graph representation of items).

A comprehensive tutorial on spectral clustering was given by Ulrike Von Luxburg

[110] and a broad overview of the different methods is available in [166] where an

evaluation of what features make a spectral clustering more valuable is provided.

Spectral clustering as a graph partitioning approach

The goal of graph clustering is to divide data into some clusters such that the el-

ements in the same cluster are highly connected and the edges between the different

clusters have low weights. This means that we aim to separate groups of elements

from each other with the minimum of cuts (often called the min-cut problem) [89].

The clustering problem is then configured as a graph cut problem where an appropriate

objective function has to be optimized.

Let us define by C1,C2, ...,Ck the partition of a data set on k groups that we want to

achieve with the minimum of cuts.

As the objective function that has to be minimized, we can find the normalized asso-

ciation [146], the conductance [87], or the ratio cut [37]. But the most widely used is

the normalized cut (Ncut) [146]:

Ncut(C1,C2, ...,Ck) =
k

∑
i=1

cut(Ci,C̄i)

vol(Ci)
. (2.1)

where C̄i is the complement of Ci and vol(Ci) is the sum over the weights of all the

edges attached to vertices in Ci.

Because spectral clustering techniques have a strong connection with Laplacian Eigen-

maps [8], spectral concepts and graph analysis is the way to solve the relaxed version

of this NP hard problem of the min-cut problem [167, 146].

This relaxation can be formulated by introducing the Laplacian matrix [28]. The re-

sulting balanced groups with low edges between them have another property : a ran-

dom walk (jumping randomly from one vertex to another [107]) on a group stays long

before jumping to another groups. By this property, spectral clustering can also be

interpreted as trying to find a partition that random walks have more chance of staying

on the same cluster than jumping to another cluster. [112] analyse the relation with

the Normalized cut (NCut) and the random walk: when we minimize the Ncut, we are

actually looking for the partition with a frequent random walk within the clusters and
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hardly from Ci to C̄i.

The most popular spectral clustering algorithms are those of [121] and [146]. The core

of these algorithms is the eigenvalue decomposition of the Laplacian matrix L of the

weighted graph obtained from data to solve the relaxed problem of objective functions

like the Ncut. In fact, the second smallest eigenvalue of L is related to the graph cut

[50] and the corresponding eigenvector can cluster together similar items [13, 28, 146].

The main difference between [146] and [121] is the way the normalized graph Lapla-

cian is used.

In the next Section, we describe these two algorithms and some relative properties of

each.

Normalized spectral clustering according to Shi and Malik [146]

This spectral clustering was initially proposed for image segmentation problems

[146]. In the original framework each node is a pixel and the definition of adjacency

between them is suitable for image segmentation purposes. Each pixel of the image

is considered as a point having a feature vector which takes into account several of its

attributes (e.g. intensity, color and texture information). The goal is to regroup similar

pixels describing a same region.

Given a set of points x1,x2, ...,xn of size n, by using the similarity matrix S, we want

to cluster the data into k groups. To do so:

1. construct the affinity matrix A (also called the adjacency matrix) defined by Ai j =

exp(−‖si−s j‖2

2σ2 ) for i �= j and Aii = 0.

2. form the degree matrix D as the diagonal matrix defined by Dii = ∑n
j=1 Ai j.

3. compute the unnormalized Laplacian matrix L = D−A.

4. compute the first k eigenvectors v1,v2, ...,vk of the generalized eigen problem

Lv = λDv.

5. form the matrix V containing the eigenvectors as columns elements.

6. consider each row i of V as a point yi and apply K-means algorithm on Y.

7. assign each point xi to cluster j if yi was assigned to the cluster j.

Note that this algorithm uses the generalized eigenvectors of L, hence is called normal-

ized spectral clustering. The next algorithm also uses a normalized Laplacian. As we

will see, this algorithm needs to introduce an additional row normalization step which

is not needed in the other algorithms [110].
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Normalized spectral clustering according to Ng, Jordan and Weiss [121]

Given a set of points x1,x2, ...,xn of size n, by using the similarity matrix S, we

want to cluster the data to k groups. To do so:

1. construct the affinity matrix A defined by Ai j = exp(−‖si−s j‖2

2σ2 ) for i �= j and

Aii = 0.

2. form the degree matrix D as the diagonal matrix defined by Dii = ∑n
j=1 Ai j.

3. compute the normalized Laplacian matrix L = D−0.5AD−0.5.

4. find the first k eigenvectors v1,v2, ...,vk of L

5. form the matrix V by letting as columns the eigenvectors.

6. form the matrix Y from V by normalizing each row to have unit length i.e. Yi j =
Vi j

(∑ j V
2
i j)

.

7. consider each row of Y as a point and cluster into k clusters them via K-means.

8. assign each point xi to cluster j if the row i of Y was assigned to the cluster j.

The two algorithms given above look rather similar, apart from the fact that they use

two different graph Laplacians. If the graph is regular and most vertices have approx-

imately the same degree, then all the Laplacians are very similar to each other, and

will work equally well for clustering. The main trick is to change the representation

of the abstract data items xi to feature vector yi ∈ Rk. This change of representation

enhances the cluster-properties in the data, so that clusters can be trivially detected

in the new representation. In particular, the simple K-means clustering algorithm has

no difficulty detecting the clusters in this new representation [110]. Note that there is

nothing principled about using the K-means algorithm in this step. In fact, this step

should be very simple if the data contains well-expressed clusters and the Euclidean

distance between the points yi is meaningful enough .

Bipartite spectral graph partitioning

This kind of spectral graph partitioning is applied on bipartite graphs. By mod-

elling a document collection, for example, as a bipartite graph with the two sets

documents and words, we want to have a document clustering and at the same time

a word clustering [177, 38]. This problem is called dual clustering or co-clustering

[104]. Most existing algorithms handle each one separately. By using bipartite spec-

tral graph partitioning, the similarity between two documents is computed by using
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their corresponding words, and the similarity between two words is computed by us-

ing the information of documents in which they occur.

Failing to take into consideration the similarity of the words they contain leads to

some problems when we cluster documents and vice-versa: two documents d1 and d2

are considered to be similar because they share a set of words Sw but it can happen that

the words in Sw are never clustered together.

Dhillon [38] proposed a spectral approach to approximate the optimal normalised cut

of a bipartite graph, which was applied for document clustering. This involved com-

puting a truncated singular value decomposition (SVD) of a suitably normalised term-

document matrix, constructing an embedding of both terms and documents, and ap-

plying K-means to this embedding to produce a simultaneous k-way partitioning of

both documents and terms. The usefulness of this approach was however limited and

[97] proposed an adapted bipartite spectral graph partitioning approach to successfully

cluster micro array data simultaneously in clusters of genes and conditions.

Wieling et al. [173] proposed applying a bipartite spectral graph partitioning to a new

sort of data, namely dialect pronunciation data to recognize groups of varieties in this

sort of data while simultaneously characterizing the linguistic basis of the group. Such

a study demonstrates that spectral clustering gives sensible clustering results in the ge-

ographical domain as well as for the concomitant linguistic basis.

Is is not necessarily to have different kind of objects to form a bipartite graph. Si-

multaneous inputs of data from two sensory modalities can be modelled by a bipartite

graph [34]. Each sensory modality is considered as a view and a spectral clustering is

applied to cluster each side while taking the other side into account with the goal of

minimizing the disagreement between the clusterings.

To get a better idea of the principle of bipartite spectral graph partitioning algorithm,

we present here the first one proposed by [38] to cluster documents and words: Given a

set of documents D = d1,d2, ...,dn and a set of words W =w1,w2, ...,wm. We construct

the bipartite graph G = (D,W,E) where E is the set of edges di,wj : di ∈ D,wj ∈W .

By considering the m×n word-by-document matrix A such as Ai j is equal to the edge-

weight Ei j, we want to have a set of word-document dual clusters C = C1,C2, ...,Ck

such that the cut of k-partitioning the bipartite graph is minimized. Minimizing the

normalized-cut is equivalent to maximizing the proportion of edge weights that lie

within each partition such as [146] and [121]. Finding a globally optimal solution to

such bipartite graph partitioning is NP-complete but by using the left and right singular

vectors, we can relax the discrete optimization problem and find an optimal solution.

We present here the bipartite spectral clustering algorithm proposed by Dhillon [38] :
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1. calculate the diagonal matrices Dw and the Dd of A defined by Dw(i, i)=∑n
j=1 Ai j

and Dd( j, j) = ∑m
i=1 Ai j

2. form the new normalized matrix of A denoted An = Dw
−0.5ADd

−0.5.

3. perform SVD (Singular Value Decomposition) operation on An to obtain the left

and the right k singular vectors Lw and Rd and combine the transformed row and

column vectors to create a new projection matrix Z.

4. run a clustering algorithm as K-means on the Z matrix and return the co-clusters

Cj = (wj,d j), j = 1, ...,k.

Discussion

The main advantage of spectral clustering is that it can transform any graph-based

problem into a linearly separable problem that can be easily solved by an algorithm

such as K-means. Its success is essentially based on the fact that it does not need

strong assumptions on the form of clusters as opposed to K-means where the resulting

clusters have a convex form. Because it is easy to implement and avoids having a

local minima, spectral clustering represents a powerful tool to produce good results.

On the other hand, one drawback of spectral clustering is that it depends on the

type of the graph. [111] demonstrate theoretically and through practical examples

that minimising NCut on a k-nearest neighbour graph leads to different results than

minimising the NCut on a ε-neighbourhood graph. This means that by using a given

data and an spectral clustering algorithm, we obtain different results if we construct

the underlying graph differently and we use different neighbourhood size.

Another critical parameter that has to be fixed is the number of clusters as in most

clustering problems. Guidelines are proposed in the literature such as the ratio of

the intra/inter cluster similarity and many other adhoc measures [100, 55] but there

is a particular one used for spectral clustering based on the eigen-gap heuristic.

Justifications based on spectral graph theory and perturbation theory allow us to

conclude that there is a large gap between the k-th eigenvector and the k + 1-th

eigenvector, which is not the case between the first k eigenvectors where the gap is

very small. In the presence of noise or overlaps between clusters, this heuristic is less

effective: the gap is not significant and the k-th eigenvector cannot be found precisely.

We can conclude that to achieve good results by using spectral clustering, some

parameters have to be considered carefully: the number of clusters, the choice of

graph, and the parameter of connectivity on the graph. Each of these parameters
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influence consistently the clustering results and is a potential source of instability.

2.4.2 Shared nearest neighbours clustering methods

In this Section, we focus on another kind of graph-based clustering i.e shared near-

est neighbours clustering methods. In these methods, the edge between two nodes rep-

resents the rank of a node in the nearest neighbours list of another node. The rank is

computed using a primary similarity measure that will be discussed in the next para-

graph. Unlike spectral clustering, the goal is not necessarily a global graph cuts op-

timization but a local optimization cut. The use of a similarity based on the shared

nearest neighbours makes the graph less sensitive to the different parameters seen in

the previous section. Let us begin by presenting the effects of high data dimensionality

on a range of popular distance measures and explain why a shared nearest neighbours

measure is more appropriate.

Shared nearest neighbours measure

To support clustering, a measure of similarity or a distance is needed between

data objects but clustering then depends critically on density and similarity. These

concepts become more difficult to define when dimensionality increases. Similarity

measures based on distances are sensitive to variations within a data distribution or the

dimensionality of a data space. These variations can limit the quality of the clustering

solution.

In low dimensions, the most common distance metric used is the Euclidean distance or

the L2 norm. While it is useful in low dimension, it does not work well in high dimen-

sions. One of the reasons is that the Euclidean distance considers missing attributes

to be as important as the present attributes. Often, in high dimensions, data points are

actually sparse vectors and the presence of an attribute has to be more important than

the absence of an attribute.

Even the traditional Euclidean notion of density, which is the number of points per

unit volume, in high dimensional data is meaningless. As the number of dimensions

increases, the volume increases rapidly and if the number of points does not grow

exponentially with the number of dimensions, the density tends to 0. Thus, in high

dimensions, we cannot differentiate between high density regions and low density re-

gions.

To solve this problem, the cosine measure and the Jaccard coefficient were suggested.
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The cosine similarity between two data points is equal to the dot product of the two

vectors divided by the norm of each vector. The Jaccard coefficient is equal to the

number of intersecting attributes (if the attributes are binary of course) divided by the

number of spanned attributes by the two vectors.

Even if cosine and Jaccard measures can provide relevant similarity measures, they

cannot handle high dimensionality well: there are cases where using such measures

still does not eliminate all the problems of similarity in high dimensions [139]. This

problem is not due to the lack of a good similarity measure but to the fact that in high

dimensions direct similarity cannot be trusted when the similarity between pairs of

points is very low [44].

In fact, [10] demonstrates that in high dimensions, the proportional difference between

the farthest point distance and the closest point distance tends to be equal to 0. As the

dimension increases, the contrast of distance between data points decreases: this is one

of the aspects of the so-called curse of dimensionality [40]. The distance measure does

not become discriminant unless the data is composed of natural well-separated clus-

ters, each one following its own distribution. This is a fundamental problem studied in

detail in [1, 69].

An interesting alternative to direct similarity is to define a secondary measure based on

the rankings induced by a specified primary measure. This primary similarity measure

can be any function that determines a ranking of the data objects relative to the query.

The most basic form of a secondary measure is the similarity between pairs of points

in terms of their shared nearest neighbours SNN.

While we cannot rely on the absolute values of the distance because the curse of di-

mensionality, it is still viable to use distance values to derive a ranking of data objects.

By using a ranking of the nearest neighbours, we are not dependent on the value of

similarity but we retrieve the top k-nearest neighbours independently of their absolute

distance values. In some cases, when dimensionality increases, the ranking improves

significantly [10]. [74] demonstrate that the quality of the ranking may not necessarily

depend on the data dimensionality but on the number of relevant attributes in the data

set. In other words, if the dimensionality increases but the number of relevant attributes

is high, the relative contrast between points tends to decrease but the separation among

different clusters can increase. But if the data dimensionality is high and the number

of relevant dimensions is low, the curse of dimensionality comes into effect. In the

same study, an evaluation of the performance of a secondary similarity measure based

on SNN information is done empirically and compared to the primary distances from

which the rankings were derived. The experiments suggest that using an SNN simi-
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larity measure can significantly boost the quality of the ranking compared to the use

of the primary distance measure alone. In particular, the secondary distance performs

very well at high dimensionality, and is robust if we respect the neighbourhood size :

for two points from a common cluster, if we consider their neighbourhoods of a large

size but always lower than the real size of the class, the overlap will increase. But if we

use neighbourhoods larger than the size of the class, many others objects from different

groups will be contained in the neighbourhoods of the two points and the performance

of the secondary measure will become less predictable.

Shared nearest neighbours based algorithms

For high dimensional data clustering, traditional clustering algorithms like K-

means, for example, show their limitations to deal with outliers and do not work well

when the clusters are of different sizes, shapes and densities. Agglomerative hierarchi-

cal clustering, known to be better than K-means for low-dimensional data, also has the

same problems. To solve this problem, an alternative similarity based on shared near-

est neighbours was first proposed by Jarvis and Patrick [77]. A similar idea was later

presented in the hierarchical algorithm ROCK [139]. In Jarvis and Patrick’s clustering

method, a graph is constructed as follows: a link is created between a pair of items x

and y if and only if x and y belong to their respective closest k nearest neighbours lists.

The weight of the link can represent the number of shared neighbours between x and y

or a weighted version that takes into account the ordering of the neighbours. All edges

with weights less than a user predefined threshold are removed and all the connected

components in the resulting graph are the final clusters. Defining this threshold is the

major drawback of this method : if the threshold is too high, two distinct sets of points

can be merged into the same group even if there is one link between them. On the other

hand, if the threshold is too small, then natural clusters can be split into many small

clusters. Despite this drawback, this algorithm presents some advantages: noise points

and outliers will have their link broken because they are not in the nearest neighbours

lists of their own neighbours. Uniform regions will keep their links until transition

regions break the ones (we can say that the graph is independent of the density of the

regions, only links are important).

For low to medium dimensional data, density-based algorithms such as DBSCAN [46]

have been proposed to find clusters of different sizes and shapes but not of different

densities. This method introduced the idea of representative or core points that be-

come the origin of the clusters. In DBSCAN, the density associated with a point is
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obtained by counting the number of points in a region of a specified radius around the

point. Points with a density higher than a specified threshold are considered as core

points and clusters will grow around these points. In this way, this method can find

clusters of different shapes but not of different densities. For this reason, an SNN clus-

tering algorithm [44] was proposed to deal with this problem by using a density based

approach to find core points: by computing the sum of links strengths for every point

in the SNN graph, points that have high total link strength then become candidates for

the representative core points, while the others become noise points.

It is not difficult to see that there are many disadvantages of this method: the defini-

tion of thresholds for core points and outliers is not clearly provided (core points may

belong to identical clusters while core points had better be as disperse as possible).

The performance of the SNN greatly depends on the tuning of several non-intuitive

parameters specified by the user and it is difficult to determine their appropriate values

on real datasets.

In conclusion, a common need of the previous shared neighbours algorithms is that a

fixed neighbourhood size (in terms of the number of neighbours k as in Jarvis-Patrick

and SNN or in terms of the radius r of the neighbourhood in ROCK or DBSCAN) has

to be chosen in advance by the user and applied equally to all items of the dataset to

cluster which leads to bias in the clustering process.

Recently, an SNN-based clustering method was proposed by Houle [73] that allows the

variation of the neighbourhood size. The Relevant Set Correlation (RSC) model de-

fines the relevance of the data point x to a cluster C in terms of the correlation between

items in C with the |C|−nearest neighbours set of x. The model does not require the

user to choose the neighbourhood size or to specify a target number of clusters. The

clustering process is not guided by a global optimization criterion but by only a local

criterion for the formation of cluster candidates. For each item, an optimal radius that

maximizes the quality of the cluster is selected. A greedy strategy is then applied to

keep the clusters according to their qualities and their overlap with the other clusters.

In this work, we provide several contributions and insights into SNN clustering by

firstly revisiting shared nearest neighbours metrics using the a contrario approach, then

we extend SNN approach to the multi-source case and finally to the bipartite case. For

each case, theoretical contributions and experimental applications are provided. We

will focus particularly on visual content which seems an interesting application of our

method. For this reason, in the next Chapter, we provide a short overview of visual

content structuring and mining techniques.
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Visual Content Structuring and
Mining

The steady growth of the Internet, the falling price of storage devices and an in-

creasing pool of available computing power make it necessary and possible to ma-

nipulate very large repositories of digital information efficiently. Analysing this huge

amount of multimedia data to discover useful knowledge or even just browse is a chal-

lenging problem. The task of developing data mining methods and tools is to discover

hidden knowledge in unstructured multimedia data. The data is often the result of

different outputs from various kinds of information sources, each one with its own

modality. The fact of organizing, searching, managing, clustering and more generally

structuring helps to improve decision making. These tools have been applied in dif-

ferent domains such as medical data, news, consumer purchasers of a store as well as

user generated contents (UGC).

The typical data mining process consists of several stages and the overall process is

inherently interactive and iterative. The main stages of the data mining process are

[48]: (1) Domain understanding; (2) Data selection; (3) Data preprocessing, cleaning

and transformation; (4) Discovering patterns; (5) Interpretations; and (6) Reporting

and using discovered knowledge [127].

At the heart of the entire data mining process lies pattern discovery. This includes

clustering, classification and visualization. Summarizing a huge amount of data so as

to be able to browse it is not a trivial task.

Many intelligence agencies and low enforcement bodies now employ this technology

to fight against child pornography, the trafficking of cultural objects and counterfeit-

ing. Various fields ranging from Commercial to Military want to analyse data in an

efficient and fast manner.
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In this PhD, we particularly interested in “visual contents mining” which is a complex

domain with different challenges that are sometimes specific to images [95]. Visual

mining is not just an extension of data mining to image domain. It deals with the ex-

traction of hidden knowledge, image data relationships, or other patterns not explicitly

stored in the images. The goal is to determine how low-level pixel representations

can be processed to identify high-level objects and relationships. For example, many

pictures of various persons once stored and mined can reveal interesting images of

the same music concert because some patterns have been detected and shared in these

collections of data. Clearly, visual contents mining does not aim to extract and/or to

understand features from images but to discover and to extract significant visual pat-

terns in a collection of visual documents such as images, videos, etc.

We will not review all the problems here but focus on the following issues related to

the applicative experiments of our work in this PhD: (1) Browsing and summariza-

tion; (2) Building visual vocabularies; (3) Visual object discovery; (4) Multi-cue and

multi-modal image clustering.

3.1 Browsing and summarization

There has been a wide variety of innovative ways to browse and summarize multi-

media information from the visual content. The first idea was to cluster visually simi-

lar images in the same cluster and then convert image clusters to a video in sequential

order based on their inter-cluster similarities. Image cluster contents can be viewed

separately by selecting an index frame from the global overview and by showing a

video loop of cluster frames in a minimum variance order [154]. Hari Sundaram et al.

[156] presented a novel framework for condensing computable scenes. The solution

consists in analysing visual complexity and film syntax, then robust audio segmenta-

tion and significant phrase detection via SVM’s and finally determining the duration

of the video and audio segments via a constrained utility maximization. The aim is to

make the user able to have an abstract of the story in video format.

For summarising video, Snoek et al. [153] propose grouping by categories and brows-

ing by category and in time. [175] group similar images and explore the use of a

nearest neighbour network to facilitate interaction with the users.

All these solutions, at some point require a clustering phase based on different visual or

multi-modal features. For more details, the readers can refer to the interesting survey

[103].
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3.2 Building visual vocabularies

The visual vocabulary is a strategy issued from the text retrieval community. A

document is a distribution of words and all the different tasks related to a document

such as indexing, retrieving documents in which a query word exists, can be done with

relevant results. By considering an image as a visual document, we can consider local

features descriptors as visual words. A feature vector can be expressed in terms of the

region of the feature space to which it belongs. Each visual document is represented

by a distribution of visual words (BOW) over a fixed vocabulary. Work on object based

image retrieval [151] has imitated simple text-retrieval systems using the analogy of

“visual words”.

The building of a standard visual vocabulary consists in:

– Collecting a corpus of images and selecting a set of features: The most accurate

results are generally obtained when using the same data to create the vocabulary.

Generally, the goal is to construct a generative vocabulary with a corpus and this

vocabulary has to deal with any other data and not be an application-specific

vocabulary. For this purpose, [125] proposed collecting images from WWW

clustering them and eliminating irrelevant ones.

– Clustering the sampled features in order to quantize the space into a discrete

number of visual words. Usually, a simple K-means clustering is used [88]. The

number of clusters has to be given as user-supplied parameter and the centers

of the clusters represent the visual words. The problem is that the size of the

data essentially rules out methods such as mean-shift, spectral and agglomera-

tive clustering. It is true that K-means clustering is effective but it is difficult

to scale to large vocabularies. Some work [42] has been done on accelerat-

ing the k-means but it requires O(K2) extra storage, where K is the number of

cluster centers, rendering it impractical. More recent work has used cluster hi-

erarchies [115] and greatly increased the visual-word vocabulary size by using

them. [122] generates a “vocabulary tree” using a hierarchical K-means cluster-

ing scheme where a branching factor and number of levels are chosen and then

hierarchical K-means is used to recursively subdivide the feature space. Philbin

et al. [132] propose scaling K-means to a large vocabulary using of approximate

nearest neighbour methods. The method has similar complexity to the vocabu-

lary tree, but far superior performance.

Another problem to take into account is the size of the vocabulary. It has been
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observed in [31, 85, 129] that even with databases containing a limited number

of categories, the best performances are obtained with a large vocabulary. Be-

cause the cost of histogram computations depends on the size of the vocabulary,

one way to reduce the computational cost is to have a more compact vocabulary.

Winn et al. [174] studied the problem of defining and estimating descriptive

and compact visual models of object classes for efficient object class recogni-

tion. They proposed an approach based on the information bottleneck principle

(a technique introduced to find the best trade-off between accuracy and com-

plexity) [159]. A vocabulary inatially containing several thousand words was

reduced to 200 words without any lose of performance. A tree structure, as the

Extremely Randomized Clustering Forests, was also proposed in [117] to organ-

ise the vocabulary with the goal of reducing the computational cost.

In short, building a visual vocabulary depends on the type of visual features, the input

set of features, the number of words to be selected and the type of clustering algorithm.

The lack of geometry in BOW can be both an advantage or a disadvantage. By count-

ing only the occurrence of visual words and not considering the relative geometry,

we obtain a flexibility to variation (view point, pose changes). At the same time,

the geometry between features can represent a discriminant factor. Furthermore, by

incorporating a post processing spatial verification step [132] or by considering the

neighbourhood of words, one can achieve a better representation of the geometry.

Given a new image, each local feature region is assigned to the nearest visual word.

Thus, the image is represented with a list of words number. Such representations are

equivalent to standard vector-space models in text information retrieval allowing to

efficiently measure the similarity between items with classical operators. Such simi-

larities only consider global statistics of the image which is a problem when the goal

is to discover very small objects representing a small part of an image.

When dealing with small objects, the solution is to use a method based on probing

local query regions. Many studies [132, 78] use this second type of strategy and con-

sider each local feature of an image independently. Joly et al. [84] show that using

each local feature is effective in retrieving small objects, such as trademark logos.

The disadvantage of this accurate local description of image strategy is that the number

of candidate local regions can be huge. Even with the most efficient indexing struc-

tures that drastically reduce the computational costs, the overall complexity remains

expensive.

Chum et al. [27] propose automatically selecting Regions Of Interest (ROI) with a

very low computational cost. Their method combines BOW models with a geometric
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Min-Hash [15] and can be considered as a trade-off between global and local strate-

gies.

Adopting another solution to avoid querying all possible regions of interest while keep-

ing a good coverage of the contents, Letessier et al. [102] propose a weighted and

adaptive sampling strategy aiming at selecting the most relevant query regions. A

concept of consistent visual words is proposed and the experiments demonstrate that

these consistent visual words largely overcome the usual visual words and are very

effective to describe and retrieve local visual contents. To generate consistent visual

words (CVW), they developed a framework based on Adaptive Sampling and Priors.

The core idea is that the visual vocabulary produced by an adaptive sampling method

might be adapted to what the user is searching for. A CVW is a set of image patches.

These patches are described by local feature sets. A CVW models a small rigid object,

or a piece of a bigger object and is defined by the geometric consistency between the

feature points of the patches considered. In Section 8.1, we propose a visual objects

discovery and object-based visual query suggestion based on this method.

While there are studies on supervised refinement of visuals words [113, 118], Ron-

grong et al. [81] propose using correlative semantics labels to guide the quantizer in

building more semantically discriminative codewords. By using Hidden Markov Ran-

dom Field, they generatively model the relationships between correlative Flicker labels

and the local image patches to build a supervised vocabulary.

Concerning the multi-modal side of a vocabulary, very little work has been carried out

on multi-modal or multi-cue vocabularies [106]. Shared nearest neighbours methods

introduced in this PhD could help to build such vocabularies.

3.3 Visual object discovery

The success of data mining techniques in semi-structured data (e.g. xml data) has

generated interest in applying them to many computer vision tasks : object retrieval

[149], categorization [168], object discovery [135, 160]. To discover visual objects,

tools from the statistical text analysis community have been borrowed [150]. All the

methods using these tools generally start from the same image representation: they ex-

tract some local visual primitives (interest points [109] or regions [114]) and consider

their “visual words” as input to text-based data mining. The image is then described

in terms of a set of quantized local image patch descriptors. The images are treated as

documents, each image being represented by a “bag of words”.
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One major issue highlighted by [138], is that “visual words” are not always as descrip-

tive as their text counterparts. Visual words do capture high-level object parts as well

as many others encoding simple oriented corners. Consequently, there is ambiguity

regarding two aspects: synonym and polysemy. A synonymous visual word describ-

ing the same object or object part, and, more problematically, the polysemous visual

word mean different things in different contexts. One way to reduce the ambiguity of

polysemous visual words is to consider the spatial context. Indeed, all visual words in

an image are generally embedded into a single histogram, losing all spatial and neigh-

bourhood relationships. This could provide further improvement. We revisit this later.

Probably, the first work that studied the problem of object discovery is [172]. They

presented ideas for learning mixture models of objects from unhomogeneous training

images in an unsupervised setting. In their work, distinctive features of the object class

are selected automatically and the joint probability density function encoding the ob-

ject’s appearance is learnt. This allows the automatic construction of an object detector

which seems robust to clutter and occlusion.

Thereafter, probabilistic models interested several authors. Sivic et al. [147] proposed

a model developed in the statistical text literature: probabilistic Latent Semantic Anal-

ysis (pLSA) [71]. In text analysis, this is used to discover topics in a corpus using

the bag-of-words document representation but in the context of images, they consider

object categories as topics. Thus, an image containing instances of several categories

is described as a mixture of topics like a term-document occurrence matrix with clas-

sical models used in text-based information retrieval. [105] extend the PLSA model

with the integration of a temporal model to discover objects in a video. Others such as

[12, 158, 170] use another Latent Topic Models : Latent Dirichlet Allocation (LDA)

or hierarchical LDA [148].

The idea underlying these methods is to use common Bags-of-visual-Words models

(BOW) and to analyze the resulting term-document occurrence matrix with classical

models used in text-based information retrieval. Some object discovery methods such

as [170, 161] started by including spatial information to improve their results. Also,

the method of [133] makes a step forward by augmenting the topics of the LDA model

with the spatial position of the visual words. Latent topic models are a favourite choice

for object category recognition and retrieval. But their generalization ability is rather

a disadvantage when searching for particular object instances. The underlying models

tend to be dense rather than sparse and fail to discover accurate clusters of object in-

stances.

Most other methods rely on graph-based clustering methods. The majority of these
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methods are based on two steps: matching graph construction, and analysing this

graph.

To build a matching graph, they need to discover an object’s seeds, i.e. spatially stable

image regions in the collection. Nodes of the matching graph typically represent im-

ages whereas edges correspond to common matching regions between the images.

A method that combines BOW models with a Min-Hash hashing scheme [15] is pro-

posed by [26, 27] and has a very low computational cost. The MinHash scheme may

be seen as an instance of locality sensitive hashing, a collection of techniques for using

hash functions to map large sets of objects down to smaller hash values in such a way

that, when two objects have a small distance to each other, their hash values are likely

to be the same. Applied on visual words, it can efficiently discover very discriminant

candidate visual sketches that are likely to be parts of more reliable objects.

The drawback of this method is that it does not deal with small objects, as pointed out

by [25] who proposed a new Min-Hash based strategy called Geometric Min-Hash.

This version is able to discover more relevant local sketches and is therefore a very

efficient way to discover candidate query regions that are likely to contain object in-

stances.

Once the matching graph has been constructed, graph-based object mining methods

differ in the way they analyse or post-process the graph. One of the simplest operations

for splitting a graph is to find connected components as proposed in [134, 24, 4]. How-

ever, as pointed by [134], the main problem is that many disjoint objects are grouped

in the same component due to under-segmentation.

Grauman et al. [63] propose a method based on spectral clustering. They aim to sep-

arate the objects from the background and propose a semi-supervised extension. A

great disadvantage of spectral clustering is the need to specify the number of clusters,

whereas in some cases it is impossible to know a priori how many objects could be

found.

More recently, [134] also used a spectral clustering approach but in the context of spa-

tially verified objects. They automatically estimate the optimal number of clusters by

performing multiple clustering, leading to a consistent cost overhead. Furthermore, the

clusters produced suffer from over-segmentation and therefore require some additional

heuristics to merge them into consistent clusters.

Tuytelaars et al. [163] evaluated the performance of different unsupervised methods

of object discovery based on bag-of-visual words image representation. The authors

conclude that to maximize the performance, it is important to select the right image

representation (interest points, dense patches, or both). They also conclude that cor-
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rectly normalizing the bag-of-words histograms is also important in order to improve

results. Moreover, these design choices are different for latent variables models than

for spectral clustering based methods.

In this PhD, we introduce an alternative object discovery method based on our shared

nearest neighbours clustering algorithm and consistent visual words [102].

3.4 Mono-source, multi-cue and multi-modal image
clustering

3.4.1 Web image clustering

In the beginning, clustering and classification received less attention than feature

extraction and similarity computation of images. With the explosion in the growth

of the World Wide Web, the public has been able to gain access to massive amounts

of information, and the need for practical systems to manage this data has become

crucial. For example, in response to the user’s query, current image search engines

return a ranked list of images and present them as a sorted thumbnail grid (up to 1

million images).

For this reason, it is usually difficult to identify the specific images which the user is

interested in. Users are forced to sift through a long list of images. Moreover, internal

relationships among the images in the visual search result are rarely presented and

are left up to the user. One of the alternative approaches is to automatically group

the search results into thematic groups (clusters). The display groups similar images,

enabling users to quickly scan for the most relevant images. This visualization allows

users to exploit the location of images and to use thumbnails to preview potentially

relevant images.

The problem is the same when a user has a personalized collection of heterogeneous

images that he wants to structure into groups of similar images which facilitates

archiving and retrieval of large image repositories. Browsing and the searching

become easier and more efficient.

Web images have received particular attention from the multimedia community, and

the reader may refer to these studies for comprehensive reviews: [171, 57, 17, 32].

Classifying images with complex scenes is a challenging task because of the variabil-

ity of illuminations, scale condition, geometric transformation, etc. The availability of

image annotations makes them advantageous compared to unlabelled images.

In [61], the authors discuss how to apply appropriate processing to different types of
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images (landmark images and images coming from webcams) and to decide which

clustering and classification approaches are appropriate.

3.4.2 Multi-cue and multi-modal image clustering

There are different kinds of media on the WWW, including text, images, videos,

and audio. Unfortunately, most existing search engines support only one type of

media, and little work has been done on integrating different kinds of media in

the same framework. In 2006, among the major research challenges cited in the

state-of-the-art and challenges of content-based multimedia information retrieval of

[103] (and declared before in 2004 in [95] as an issue to be studied), we can quote:

“Multi-modal analysis and retrieval algorithms especially towards exploiting the

synergy between the various media including text and context information”.

An image has many properties which are quite different from one information source

to another. Relying purely on the keywords around the images produces a lot of noise

in the search result. One possible solution is to benefit from all available sources of

information which might help to have more meaningful information concerning the

images. By considering all information sources as simple oracles returning ranked

lists of relevant objects, we can carry out a multi-modal analysis and clustering

towards exploiting the above-mentioned synergy between the various media including

text and visual information or between any other sources of information.

Multi-modal mining tends to combine different features or to generate more semanti-

cally meaningful features.

The healthcare industry, for example, is producing massive amounts of multi-modal

data : Wang et al. [168] present a new multi-modal mining-based clinical decision

support system that brings together patient data captured in various way to provide a

holistic presentation of a patient’s exam data, diseases, and medications. In addition, it

offers a disease-specific similarity search based on various data modalities to assemble

statistically similar patient cohorts summarizing possible diagnoses, their associated

medications,and other demographic information. The key idea explored is that by

finding similar patients based on a disease-specific analysis of their raw data, they can

make inferences about similarities in their diagnosis and hence their treatments and

outcomes.

[33] is an overview of technologies that support media retrieval in a way that is

complementary to visual analysis. Authors aim to emphasize that technology based
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on linguistic and contextual sources can bring more than basic keyword search in

collateral text. They illustrate how linguistic, knowledge-based, and visual resources

can be combined to detect high-level concepts, and how contextual information can

improve retrieval results obtained via visual analysis.

The issue for multi-modal data mining is how to merge the different features. The

classifiers can run either on concatenated feature vectors coming from the different

available modalities or by combining the result of multiple classifiers on each modality

to make a final decision. The first option is usually not recommended due to the curse

of dimensionality, there is a need for an efficient way to apply mining techniques on

multi-modal data while keeping the correlation among different modalities intact. The

second option has to apply a relevant fusion in order to have a successful result. In

this approach, by processing each modality separately, we discard the inherent associ-

ations between different modalities. [143] demonstrate the effectiveness of combining

three multi-modal classifiers. They model the problem of combining classifiers as

a reclassification of the judgement made by each classifier. The experiments show

that they obtain better results than the traditional approaches like “majority voting” or

“linear interpolation” because these two methods ignore generally the relative quality

among the classifiers.

The problem of combining different classifiers, each one with its own modality, is that

generally the synergy between the modalities is not exploited as done in [180] where

common sources of spam images are revealed by a two-level clustering algorithm. At

the first level, they calculate visual similarities between images and similar images

are grouped into some clusters. At the second level, the textual similarities between

images is calculated to refine the clustering results from the first level. Exploiting

some mining algorithm based on association rule could enhance the effectiveness of

the results obtained [11].

Chen et al. [23] propose a decision tree-based multi-modal data mining framework for

soccer goal detection from soccer videos because different modalities have different

contributions to the soccer goal detection application domain.

In [116], the authors propose a method for extracting meaningful and representative

clusters that is based on a shared nearest neighbours (SNN) approach. They treat

both content-based features and textual descriptions (tags) but they produce two sets

of clusters (an image could be an element of a tag-based cluster and a content-based

cluster). By displaying the two cluster sets with their representative form, users can

browse a cluster and switch from one cluster set to another. When they combine the

two clusterings (by a simply summing the visual and textual similarity matrix), they
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lose the particularities of each modality and produce clusters that are more ambiguous

and hardly understandable by a user.

[17] propose three representations of web images (visual, textual and link information)

and apply spectral techniques to cluster the search results into different semantic

categories. In [141], the authors address the problem of web image clustering by

simultaneous integration of visual and textual features from a graph partitioning per-

spective. They propose a CIHC (Consistent Isoperimetric High Order Co-clustering)

framework. More recently, [39] have organized image search results by a hierarchical

clustering based navigation. First, the K-lines based semantic clustering organization

is applied. Second, the resulting images corresponding to each phrase are clustered

with the Bregman Bubble Clustering (BBC) algorithm. Bekkerman et al. [7] develop

an effective multi-modal clustering using the Combinatorial Markov Random Field.

They allow more flexibility in their approach (the modalities are not fixed, there is

no limitation in the number of modalities and they take into account other modalities

which do not have to be clustered).

Sabrina Tollari et al. [162] studied how to automatically exploit visual concepts in

an image retrieval task. Authors use Forest of Fuzzy Decision Trees (FFDTs) to

automatically annotate images with visual concepts and show that automatic learning

of visual concepts and then its exploitation, by filtering of text-based image retrieval

is effective.

Recently, Young-Min et al. [96] proposed a new multi-view clustering method

which uses clustering results obtained on each view as a voting pattern in order to

construct a new set of multi-view clusters. The proposed approach is an incremental

algorithm which first groups documents having the same voting patterns assigned by

view-specific PLSA (Probabilistic Latent Semantic Analysis) models [72]. Working

in the concatenated feature spaces, the remaining unclustered documents are then

assigned to the groups using a constrained PLSA model.

Generally in the state-of-the-art of multimedia data mining, studies do not pay

attention to the accuracy of sources. In some cases, a feature of a modality can be

extracted with some errors due to the semantic gap or to the breakdown of the source

of the information that produces the feature. We need a way to make multi-modal

fusion accurate and robust against noisy or near random source of information.

Most previous work on multimedia clustering has focused on specific modalities but

not on the genericity and the robustness of the clustering algorithm itself when it is

used in a multi-source approach.



38 Chapter 3. Visual Content Structuring and Mining



Part II

Contributions to shared nearest
neighbours clustering





Chapter 4

Revisiting shared nearest neighbours
clustering

4.1 Introduction

Unsupervised data clustering remains a crucial step of many recent multimedia re-

trieval approaches, e.g. web objects and events mining [136], search results clustering

[92] or visual query suggestion [185]. However, the performance and applicability of

many classical data clustering approaches often force particular choices of data rep-

resentation and similarity measures. Some methods, such as k-means and its variants

[90], require the use of Lp metrics or other specific measures of data similarity; others,

such as the hierarchical methods BIRCH [186] and CURE [64], pay a prohibitive com-

putational cost when the representational dimension is high, due to their reliance on

data structures that depend heavily upon the data representation. Such assumptions are

particularly problematic in a multimedia context that usually involves heterogeneous

data and similarity measures.

An interesting alternative approach to clustering that requires only comparative tests

of similarity values is the use of so-called shared-neighbours information [77, 70, 181,

45, 139, 73] as discussed in chapter 2. Here, we present our first contribution to the

clustering paradigm : we introduce a new SNN formalism based on the theory of a

contrario decision. This allows us to derive more reliable connectivity scores of the

candidate clusters and a more intuitive interpretation of locally optimum neighbour-

hoods.
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4.2 Basic principles, Notations and Definitions

The basic principle of SNN clustering methods is to consider that a perfect cluster

is composed of items that have their all neighbours in the same cluster. Two elements

are considered involved, not in relation to their similarity value but rather by the degree

of similarity of their respective neighbours. This means that if two elements have a

high proportion of neighbours in common, it is reasonable to put them in the same

group. The advantage is that no hypothesis is made on the shape, density or metric.

Figure 4.1 illustrates this in the Euclidean space. It shows four clusters of different

size, density and shape. With most clustering methods, these clusters would have

different significance measures but according to the principles of shared neighbours

clustering methods, all the clusters are considered to be perfect clusters. Every item in

each cluster has its all neighbours in the same cluster. Let us consider in the following,

Figure 4.1: Four clusters of different size, shape and density considered as perfect
clusters in shared neighbours clustering

a set X of N items from some domain D. The feature of these elements can be of any

type. We assume the existence of a function FK that associates to any item x from X its

K nearest neighbours with respect to some similarity or distance measure. Notice that

this metric might be totally unknown. Only the ranking it produces is known.

Let us denote as nnk(x) ∈ X the k-th nearest neighbours of x ∈ X with respect to some

distance metric. The Fk is defined as:

Definition 1. K-nearest neighbours function FK:
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FK(x) = {nnk(x)|0 < k ≤ K}
For any i < j , the item nni(x) is more relevant or similar to x than nn j(x).

We sometimes refer to FK as an oracle or an information source that returns a

ranked list of relevant items to a query. During this work, we will consider a few

different kinds of oracles. Since no hypothesis is made on the nature of the items or the

similarity metric used to compare items between each other, we define the similarity

between a pair of items x1 and x2 in terms of their shared nearest neighbours. That is

the intersection between their K-NN :

Sim(x1,x2) = |FK(x1)∩FK(x2)|. (4.1)

But though the initial metric and the shared neighbours similarity are both used for

similarity assessment, they do not share the same fundamental properties. Metrics

(sometimes called distance function or simply distance) satisfy four basic properties:

– non-negativity: d(x,y) ≥ 0

– identity: d(x,y) = 0 if and only if x = y

– symmetry: d(x,y) = d(y,x)

– triangle inequality: d(x,z) = d(x, y) + d(y, z)

Shared neighbours similarity is non-negative and symmetric, however it does not re-

quire to satisfy the triangle inequality. In addition, the fact that two items x1 and x2

have elements in common, does not necessarily mean that x1 belongs to the K-NN of

x2 and vice versa.

4.3 a contrario SNN significance measures

4.3.1 Raw SNN measures

The primary shared neighbours similarity measure of any set A ⊂ X is defined

similarly to [73] as :

Definition 2. Intra-significance measure :

I(A) =
1
|A| ∑

x∈A

(A∩F|A|(x))

=
1
|A| ∑

x∈A

IA(x) (4.2)
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Intuitively, I(A) measures the average number of common neighbours between

A and the |A| nearest neighbours of any of its items. Unfortunately it has the

disadvantage of a bias related to the size of the set. When the size of the set is large,

it is much easier to achieve a high value by chance than when the size of the set is

small. This can be easily illustrated by a short synthetic experiment. Let us consider

an initial set of 100 items denoted as x100. We produce 10000 random subsets of items

of different sizes from x100 and we use a random oracle to produce a random list of

nearest neighbours in x100 for each item of the subsets.

As this notion of random oracle will be re-used many times in this PhD, we define it

here formally.

Definition 3. Random Oracle :

Given a dataset X composed of N items , we define a random oracle RK(x) as a function

returning K items selected uniformly at random from X for each item x.

Figure 4.2: Illustration of the intra-significance measure I(A)

Figure 4.2 shows how the intra-significance measure increases when the size of the

cluster increases. When the size of the cluster size approaches that of the dataset (100

items) the intra-significance measure reaches its maximum value and is equal to the

size of the cluster.

To compare two sets with different sizes, we need to find a way to remove this bias.
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4.3.2 a contrario normalization

To remove the bias of the raw measure, we propose using the a contrario principle

[35]. Such a contrario normalization has already been proposed for clustering

[20, 165], but not for SNN. The a contrario approach is a mathematical formalization

of a perceptual grouping principle. The more a set of objects is highly unlikely, the

more the occurrence of such an arrangement is significant and the more the objects

should be grouped together into a single group. Clusters are detected a contrario to

a null hypothesis or background model. The meaningfulness of a group of objects is

measured by the number of false alarms (N f a) that would have been produced under

the null hypothesis. The lower the N f a is, the more significant the group is considered

to be. This measure is used for example in [20] to rank clusters and to decide whether

a cluster is a natural group in which outliers have been discarded.

Let us call H a null hypothesis where a list of neighbours is produced by a random

oracle, i.e. generated by means of uniform random selection from the available items.

Under this null hypothesis, the number of shared neighbours IA(x) between a set A ⊂ X

and the |A| nearest neighbours of an item x selected uniformly at random from X is a

hypergeometrically distributed random variable with expectation:

E[IA(x)] =
|A|2
N

(4.3)

and variance:

Var[IA(x)] =
|A|2(|N|− |A|)2

N2(N −1)
(4.4)

Deriving the formal distribution of the intra-significance measure I(A) is unfortunately

a tricky task. But we can approximate it thanks to the central limit theorem. This theo-

rem says that the mean of a sufficiently large number of independent random variables,

each with finite mean and variance, will be approximately normally distributed [142].

By applying this theorem, we can assume that the measure I(A) follows a normal dis-

tribution N (μA,σ 2
A) with:

μA = E[I(A)] = E[IA(x)]

=
|A|2
N

(4.5)
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and

σ 2
A = Var[I(A)] =

|A|
|A|2 Var[IA(x))]

=
|A|(N −|A|)2

N2(N −1)
(4.6)

As it is possible to relate all normal random variables to a standard normal, we can

standardize the normal distribution I(A) to a normal distribution function with expec-

tation 0 and variance 1.

We can therefore define a new shared-neighbour measure Z as:

Z(A) =
I(A)−E[I(A)]√

Var[I(A)]

=

√
N2(N −1)√

|A|(N −|A|)2
(I(A)− |A|2

N
)

=
√
|A|(N −1)

N
|A|(N −A)

(I(A)− |A|2
N

) (4.7)

With expectation:

E[Z(A)] =
√
|A|(N −1)

N
|A|(N −A)

(E[I(A)]− |A|2
N

)

= 0

and variance:

Var[Z(A)] = Var[
√
|A|(N −1)

N
|A|(N −A)

(I(A)− |A|2
N

)]

= (
√
|A|(N −1)

N
|A|(N −A)

)2Var[I(A)]

= 1

Directly using this standardized measure rather than the I measure would be equiva-

lent to what Houle [73] called a ”standard score” expressed in terms of the Pearson

correlation:

ZHoule(A) =
√
|A|(N −1)SR1(A) = Z(A) (4.8)

Where SR1(A) is the expected correlation between A and the relevant set of size |A|
based at randomly selected items of A:

SR1(A) =
1
|A| ∑

x∈A

RHoule(A,F|A|(x)) (4.9)
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and a normalised set correlation R defined as:

RHoule(A,B) =
| A∩B | −|A||B|

N√
| A || B | (1− |A|

N )(1− |B|
N )

(4.10)

It is in favour of this method that the same result can be obtained from another method-

ology (a contrario). But, we can still go a step further in our a contrario model.

Now that we have estimated the distribution of our intra-significance measure Z under

the null hypothesis H, we can estimate the precision score a contrario to H as follows:

PZ(A)(z) =
∫ z

−∞

1√
2Π

e−
t2
2 dt

= 1−φ(z) (4.11)

Where φ() is the cumulative distribution function of the standard normal distribution

that describes probabilities for a random variable to fall within the interval ]−∞,z].

PZ(A)(z) is the probability that Z(A) does not exceed a threshold z under the null hy-

pothesis H. So that , P f a(z) = 1−PZ(A)(z) is the likelihood that A is not a false alarm

(i.e the likelihood that the subset A was not generated by a random oracle).

P f a(z) can also be expressed in terms of the error function erf as follows:

P f a(z) =
1
2
− 1

2
erf(

z√
2
) (4.12)

Having this likelihood of a false alarm under the null hypothesis, we can now

determine our a contrario significance score as the complement of the P f a :

Definition 4. a contrario significance:

S(A) = 1−P f a(z)

= 1−φ(z)

=
1
2
+

1
2

erf(
z√
2
) (4.13)

Looking closely at S line according to Z given in Figure 4.3, we can see that for

intra-significance score Z = 0, the a contrario significance score is equal to 0.5.

Let us considerer a set of Nc clusters all having a score above a threshold z. The

expected number of clusters under the null hypothesis H is P f a(z)×Nc so we can

estimate the precision of our cluster set A as Nc−(P f a(z)×Nc)
Nc

= S(A).
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Figure 4.3: Illustration of the a contrario significance measure S and the standard
Zscore Z

Figure 4.4: Illustration of the a contrario significance measure S and the standard
Zscore Z according to the size

Figure 4.4 shows that the standard normal score Z and the a contrario significance

score S are not biased relative to the size of the cluster. We carried out this experiment

with the same data used for the experiment illustrated in Figure 4.2.

After showing in Figure 4.4 that the a contrario precision score S is not biased

relative to the size of the clusters, we illustrate in Figure 4.5 that the number of clusters
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Figure 4.5: Number of clusters Vs a contrario precision score of 10000 random clus-
ters (S ≥ x)

is equally distributed for each value of a contrario precision score S: 5000 clusters

from 10000 clusters have a contrario precision score S more than 0.5. We can see also

that 2000 clusters have S more than 0.8.

The advantage of using this a contrario significance score S rather than simply staying

with the standard score Z, as done in [73], is two folds:

1. our score is bounded in [0,1]

2. our score is more interpretable

Let us discuss a few values:

– S(A) = 1 means a perfect cluster.It is not possible that it has been generated

randomly.

– S(A) = 0.5 means that the cluster with such a score is likely to be random.

– S(A)> 0.5 means that the number of shared neighbours within A is larger than

would be expected randomly. Therefore A is potentially a cluster.

– 0 < S(A)< 0.5 means that there are abnormally few intersections between A and

the neighbours of its elements. Therefore A is composed of dispersed items.

– S(A)� 0 means that it is a perfectly unclustered set of items.

To illustrate this, Table 4.1 on the left gives some a contrario significance score values

of the ground truth clusters of Holidays database [79]. This database is composed of

1491 images and 500 groups. Some images from this base are presented in Figure

4.6. We use two different features: a bag-of-words constructed from SIFT [108] (L1
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distance), and a HSV Histogram [49].

On the right of the same Table 4.1, we illustrate the result for 500 random clusters

built from the 1491 images with a random size for each cluster.

The a contrario score somehow measures the difficulty to cluster a dataset. If, on

the true clusters, the a contrario score for HSV histogram is on average equal to 0.86,

it means that one cannot expect results better than this in a clustering result using the

same feature. So that, 14 of discovered clusters might be random ones. At the same

time, the results can not be worse on average than those of the random clusters using

the same feature (0.55).

Figure 4.6: Some images from Holidays database [79]

We can conclude that for those clusters and for this experiment, the HSV feature

is more structuring than the Bag of words feature.

Ground truth clusters Min Max Avg

Bow 0.55 1 0.71
HSV Histogramme 0.67 1 0.86976

Random clusters Min Max Avg

Bow 0.51 0.6 0.56
HSV Histogramme 0.53 0.57 0.55

Table 4.1: Holidays Database’s a contrario significance scores of the ground truth
clusters (left) and of random clusters (right) by using bag-of words and HSV histogram
features.

Out of curiosity, we do the same experiment with another database: Corel1000
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database [169]. The database contains 10 image classes with 100 images each. The

classes are: Africa, beach, buildings, buses, dinosaurs, flowers, elephants, horses, food

and mountains. This database was used in various scientific articles in the past for

content-based image retrieval systems. For this experiment, we use the HSV histogram

and the local feature SIFT. We present the a contrario score in Table 4.2.

For the ground truth clusters, the average of the a contrario score is equal to 0.98,

which means that, by using HSV histogram, this database is easier to cluster than the

Holidays database which is coherent with the fact that this dataset is known to be

“easy” for CBIR (Content-Based Image Retrieval) methods . Note that, by demon-

strating these two experiments, we do not claim in any way to say that HSV histogram

is better than Bow or SIFT. We rather want to show that having a target database and

a set of features, by means of computing the a contrario scores, we can select the

more structuring feature and having an idea about the difficulty of the database to be

clustered using the selected features.

Ground truth clusters Min Max Avg

Sift 0.81 1 0.78
HSV Histogram 0.96 1 0.98

Random Clusters Min Max Avg

Sift 0.56 0.84 0.66
HSV Histogram 0.53 0.79 0.68

Table 4.2: Corel1000 Database’s a contrario significance scores of the ground truth
clusters (left) and of random clusters (right) by using SIFT and HSV histogram fea-
tures.

4.3.3 Partial contributions to a set

Now that we have a normalised measure S(A) to qualify any set A, how would this

measure behave if a new element xi joins A? An item xi can have a greater contribution

to improve the quality of a cluster. Two cases are possible:

– if (S(A∪ xi)−S(A)> 0) then the contribution of the item xi increases the intra-

significance measure of the cluster, this means that this item is relevant to the

cluster and should be added to it. We call this Cluster reshaping.

– if (S(A∪ xi)− S(A) < 0) then the item is not relevant to the cluster. It has not

improved the quality of the cluster A.

However, recomputing the whole score S(A) for any new item xi would be inefficient

in a clustering framework. Fortunately S(A∪ xi) can be computed more efficiently

from S(A). We first show it with the intra-significance measure and the other measures
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as Z(A) and S(A) will be calculated as seen in Section 4.3.2.

I(A∪ xi)− I(A) =
1

|A+1| ∑
x∈(A∪xi)

|(A∪ xi)∩F|A+1|(x)|

− 1
|A| ∑

x∈A

|A∩F|A|(x)|

=
1

|A+1| [∑x∈A

|A∪ xi)∩F|A+1|(x)|

+|(A∪ xi)∩F|A+1|(xi)|]
− 1
|A| ∑

x∈A

|A∩F|A|(x)|

=
1

|A+1| [∑x∈A

|(A∪ xi)∩F|A+1|(x)|

+|(A∪ xi)∩F|A+1|(xi)|]
− 1
|A| ∑

x∈A

|A∩F|A|(x)|

=
1

|A+1| [∑x∈A

|A∩F|A|(x)|

+ ∑
x∈A

|(A∪ xi)∩nn|A+1|(x)|

+|(A∪ xi)∩F|A+1|(xi)|]
− 1
|A| ∑

x∈A

|A∩F|A|(x)|

= [
1

|A+1| −
1
|A| ] ∑x∈A

|A∩F|A|(x)|

+
1

|A+1| [∑x∈A

|(A∪ xi)∩nn|A+1|(x)|

+|(A∪ xi)∩F|A+1|(xi)|] (4.14)

If we denote:

I1(A) = [
1

|A+1| −
1
|A| ] ∑x∈A

(A∩F|A|(x)) (4.15)

and

I2(A,xi) =
1

|A+1| [∑x∈A

((A∪ xi)∩nn|A+1|(x))

+((A∪ xi)∩F|A+1|(xi))] (4.16)

Then, the difference of intra-significance scores will be expressed as:

I(A∪ xi)− I(A) = I1(A)+ I2(A,xi) (4.17)



4.4. An efficient algorithm for building the shared-neighbours matrix 53

We do not recalculate all terms when adding a new item xi. The term I1(A) has al-

ready been calculated earlier and it only remains to calculate the second term I2(A)

which is very easy and fast to calculate. Thanks to this development, we avoid a time-

consuming computation.

4.3.4 Optimal neighbourhood

As we will see later, selecting the optimal neighbourhood of an item is an im-

portant step in our clustering algorithm. It can be done by running through all the

k-nearest neighbours from 1 to K and selecting the optimal rank kopt that maximizes

the a contrario score of the neighbourhood:

kopt(x) = argmax
k

S(Fk(x)) (4.18)

By this, we select only relevant neighbours among the k-NN list and we make our

method robust against noisy neighbours.

4.4 An efficient algorithm for building the shared-
neighbours matrix

During the computation of the intra-significance measure, the most costly part

is calculating the number of shared neighbours between pairs of items for every

k = [1..K] to select the best neighbourhood. Therefore, we need an efficient way to

compute and to save the shared neighbours matrix (SNN Matrix) for any k.

The naive way would be to compute the intersection of K-NN of the entire set for

every k = [1..K]. This approach is time consuming and cannot be applied for most

applications due to its high complexity.

We propose a new factorisation algorithm to accelerate the calculation of shared neigh-

bours based on the same optimisation of the cluster reshaping computing as seen in the

previous section. As nnp(x) is the p-th nearest neighbour of an item x and Fk(x) is the

set of the k-nearest neighbours of x, we can define the intra-significance measure of a
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neighbourhood Fk(xi) of an item xi as:

I(Fk(x)) =
1
k ∑

x j∈Fk(x)

|Fk(x)∩Fk(x j)|

=
1
k
[ ∑
x j∈Fk−1(x)

|Fk−1(x)∩Fk−1(x j)|

+ ∑
x j∈Fk−1(x)

|nnk(x j)∩nnk(x)|

+|Fk(x)∩Fk(nnk(x))|]
=

1
k
[I(Fk−1(x))

+ ∑
x j∈Fk−1(x)

|nnk(x j)∩nnk(x)|

+|Fk(x)∩Fk(nnk(x))|] (4.19)

Computing I(Fk(x)) for k = [1..K] is very time consuming, and the key idea of our

algorithm is to compute it recursively. We remark here that in Equation 4.19 that the

intra-significance measure of a neighbourhood Fk(x) of size k can be computed from

the previous intra-significance measure of the neighbourhood of x of size |k− 1| and

it only remains to compute the rest, which is very simple.

The final shared neighbours algorithm can be summarized in:

Input:the K-nearest neighbours matrix of size (N ×K).

Init: T = Zeros(N), I = zeros(N,K).

Output: I(Fk(x))

Algorithm 1 Fast shared neighbours of a variable neighbourhood from k = 1toK

for x = 1 to N do
for k = 1 to K do

for p = 1 to k do
T (nnp(nnk(x)))+ = 1

end for
for p = 1 to k−1 do

T (nnp(nnk(x)))+ = 1
end for
for q = 1 to k do

I(Fk(x))+ = T (nnq(x))
end for

end for
end for
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4.5 Clustering framework

4.5.1 Possible scenarios

The main goal of clustering is to identify distinct groups in a dataset. However, in

some applications, user wants to have the control in some aspects of groups. The num-

ber of distinct groups Nc in the data is a parameter that the user in some cases want to

fix as a prior. For most applications, this parameter is unknown, the clustering method

has to determine by itself the number of clusters by several strategies. Our proposed

clustering method is able to work in both cases.

Resulting clusters can present some intersection between them. Some clustering meth-

ods [183] of the state-of-the-art allow the overlap between clusters (soft clustering)

but others like [88] require elements to belong to a single cluster (hard clustering).

The maximum allowed overlap between two clusters is fixed by a parameter θOverlap.

Typically clusters sharing more than θOverlap elements, are considered redundant and

have to be merged efficiently.

In some cases, the quality of resulting clusters is limited to a minimum allowed thresh-

old θQuality. Clusters having less than θQuality are not accepted in the final list of clus-

ters. In our clustering method, the user can set this parameter θQuality of minimum a

contrario score of a cluster from the beginning. If this parameter has no importance

for the user, θQuality will be equal to 0.

In summary, we dispose of 3 optional parameters (Nc, θOverlap and θQuality) that lead

to different scenarios of clustering. Thanks to the a contrario score, the rate of quality

allowed is rather interpretable which facilitates the task of the user to fix it. The impact

of these parameters and their impact on the clustering result will be described in the

next Section.

4.5.2 Clustering method

Now that we have defined our new shared neighbours significance measures based

on the a contrario approach, we can describe our clustering. The goal is to find the

optimal clusters that maximize the a contrario scores.

This combinatorial problem cannot be solved exactly. In practice, we use a greedy

solution to reduce the number of solution by first considering each item as the center

of a candidate cluster. The following steps depend on the scenario that the user selects.

Our clustering algorithm is based on two main steps, candidate cluster construction

and final clusters selection. The first step is shared by the 3 scenarios and only the
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second step depends on which parameter is fixed or not.

Our proposed shared neighbours clustering is as follows:

– Candidate cluster construction: Each item x ∈ X is considered as a candidate

cluster center and an optimal candidate cluster C(x) needs to be computed for it.

We first compute an optimal neighbourhood Fkopt (x) by varying the neighbour-

hood size k from 1 to K and selecting the neighbourhood size that maximizes

our new a contrario score S (Eq.4.13):

kopt(x) = argmax
k

S(Fk(x))

Among the K neighbours of the item x, we finally keep the candidate cluster

Copt(x) which has the maximum S score:

Copt(x) = Fkopt (x)

We obtain N candidate clusters of different qualities.

– Final clusters selection: After the candidate cluster selection, we obtain some

potentially relevant clusters for each item but many of these clusters are still very

similar because close items might generate approximately the same candidate

cluster. Therefore, redundant clusters have to be eliminated and only different

seeds have to be selected.

For this step, we use a simple heuristic based on the overlap between candidate

clusters. The parameter θOverlap is generally used for this step. For that, first,

we sort all candidate clusters in decreasing order of their a contrario score and

then iterate on them. If an encountered cluster has an overlap (on percentage)

less than θOverlap with at least one of the previously retained clusters, it is added

to the final list of clusters.

If not, the encountered cluster is considered as similar to the retained cluster and

has to be used to reshape the retained cluster. For this: the contribution of all

items of both clusters to the retained cluster is computed (see Section4.3.3) and

sorted in decreasing order. The final retained cluster will be built from items that

increase the quality of the original retained cluster. This reshaping step is useful

because some relevant items from the original retained cluster may be greater

than others. It replaces poor associated items by other more strongly associated

items in order to yield a new improved retained cluster.
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If the parameter θOverlap is equal to zero, then a cluster is retained only if it

doesn’t share any item with the other retained clusters. Similar clusters are af-

fected to these different retained clusters and used to reshaping them. Note that,

in this case, an item is only assigned to one cluster.

In addition, for each retained cluster, we have its a contrario score in [0,1]. If the

user had limited the minimum allowed a contrario score to θQuality, all clusters

having less than θQuality will be eliminated from this list of final clusters.

In the case of knowing the number of clusters NC in advance, when iterating on

cluster to retain different clusters, we stop when achieving the target number of

clusters. The rest of clusters are assigned to one of the NC clusters according to

their intersection of them. They are used to reshape the NC retained clusters.

Overall, we remark here that our clustering framework requires essentially to know the

parameter θOverlap to decide if two clusters are similar which can be fixed by default

or done by the user. It can be chosen in a natural way with no knowledge of the nature

of the data set or its distribution. The other parameters are optional and used only if

the user has prior knowledge.

4.6 Experiments

4.6.1 Evaluation metrics

As discussed in Chapter 2, the choice of an evaluation metric depends on the goal

of the clustering experiment. In some applications, we evaluate the ability of the clus-

tering algorithm to discover the true categories (in a data mining perspective) whereas

in other application, we evaluate the quality of the clusters produced.

The metrics used in the experiments are as follows:

– AvgPurity: To measure the quality of the clusters produced, we measure the

Average Purity of all returned clusters. The Purity of a cluster C is defined

according to [22] by

Purity(C) =
1

|C |max |Ch |

where Ch are the sub clusters composed of all the items of C coming from the

same ground truth category. max | Ch | is thus the dominant category of the

cluster.

– F1 measure: To measure the ability of the clustering algorithm to retrieve the
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initial categories, we define the F1 measure by:

F1 = 2∗ PREC×REC
PREC+REC

with

PREC =
#ofdistinctclusters

#ofretrievedclusters

and

REC =
#distinctclusters

#ofClasses

Two clusters are considered to be distinct if their dominant categories differ.

– AvgCM: we measure the overall effectiveness of the clustering with the average

cosine measure (AvgCM) of all returning clusters based on the usual precision

and recall measures. To assess the quality of the clustering, we treat every center

q of a cluster C as a query returning the cluster and we compare it to the unique

class G of the ground-truth to which it belongs. The Cosine Measure CM of a

cluster in terms of its center q is defined by :

CM(q) =
√

Prec(q).Recall(q)

with

Prec(q) =
| G∩C |
| G |

and

Recall(q) =
| G∩C |
|C |

– The Rand index or Rand measure is a measure of the similarity between two

data clusterings : the ground truth clusters that we denote as X and the resulting

clusters that we denote as Y . We define :

– a, the number of pairs of elements that are in the same set in X and in the

same set in Y

– b, the number of pairs of elements that are in different sets in X and in different

sets in Y

– c, the number of pairs of elements that are in the same set in X and in different

sets in Y

– d, the number of pairs of elements that are in different sets in X and in the

same set in Y

The Rand index, R, is:

R = (a+b)/(a+b+ c+d)
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The Rand index has a value between 0 and 1, with 0 indicating that the two data

clusters do not agree on any pair of points and 1 indicating that the data clusters

are exactly the same.

4.6.2 Synthetic oracles definitions

Using synthetic data allows us to study individual effects separately, whereas using

real data sets usually makes it more difficult to isolate the various influences. In Section

4.3.1, we introduced one synthetic oracle i.e the random oracles. Here, we already

introduce other synthetic oracles attempting to model real systems in a generic way

(independently from metrics):

Definition 5. Perfect oracle:

Given a dataset X composed of N items, we define a perfect oracle as a function

returning the true K relevant nearest neighbours for each item.

Definition 6. No-perfect oracle:

Given a dataset X composed of N items, we define a no-perfect oracle as a function

returning, for each item x, r% of the true K nearest neighbours and (1− r)% of K

are items selected uniformly at random from X. All of the perfect neighbours and the

random neighbours are mixed together.

We define also an alternative of the no-perfect oracle that we call the Best first

oracle and which we define as follows:

Definition 7. Best first oracle:

Given a dataset X composed of N items, we define a best first oracle as a function

returning, for each item x, r% of the true K nearest neighbours and (1− r)% of K are

items selected uniformly at random from X.

Unlike the no-perfect oracle, perfect neighbours are returned first, followed by the

random neighbours.

Definition 8. Unstable oracle:

Given a dataset X composed of N items, we define an unstable oracle as a function

returning random neighbours for the (1− t)% of items. For the other t% of items, it

returns the true K-nearest neighbours.

Definition 9. No-perfect and unstable oracle:

Given a dataset X composed of N items, we define a no-perfect and unstable oracle
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as a function returning random neighbours for (1− t)% of the items. For the other t%

of items, it returns r% of the true K nearest neighbours and (1− r)% of K are items

selected uniformly at random from X.

Note that with t=0 and/or r=0, we get a random oracle and with with t=1 and r=1,

we get a perfect oracle.

4.6.3 Synthetic oracles experiments: impact of parameters r and t

We built a synthetic set of 5000 items clustered in 30 categories with category sizes

varying between 20 and 260 items. In the rest of this thesis, we refer to this dataset

as X5000. In this experiment, we study the influence of parameters r and t. With each

value of the couple (r, t), we use a no-perfect and unstable oracle to generate a set

of K nearest neighbours for all the items and we compute the a contrario score of the

clusters returned by our method. We repeat that 150 times for each value of (r, t) and

take the average at the end. The a contrario score of clusters is equal to 0.5 only when

the cluster is likely to be random items that do not represent any correlation between

them. When the a contrario score is greater than 0.5, it means that the cluster contains

elements that represent a certain correlation between them (i.e that shares more neigh-

bours than a random oracle).

We can see in Table 4.3 that even for very noisy oracles (t = 8%,r = 40%), our result-

ing clusters are not completely random sets of items.

Tables 4.4, 4.5 and 4.6 demonstrate the impact of the parameters r and t on average

purity AvgPurity, F1 measure and AvgCM on the resulting clusters of our proposed

clustering algorithm. For a fixed r, when t increases the number of items having their

true nearest neighbours increases and consequently the ability to return true classes

increases (i.e F1 measure increases). On the other side, for a fixed t, when r increases

this means that the quantity of true nearest neighbours for the t percent items increases

and the number of random neighbours decreases. So the quality of clusters is improved

when the parameter r increases.

Globally, the results show that our method is likely to be highly robust to the

two kinds of noise considered ( unstability and noise in the items returned by an or-

acle). For example, with (t = 8%,r = 60%), excellent scores are obtained: F1=0.94,

AvgPurity=0.92, AvgCM=0.70.
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,

t=8% t=10% t=12% t=20% t=40% t=60% t=80%

r=20% 0.5 0.5 0.5 0.5 0.5 0.5 0.51
r=40% 0.7 0.79 0.81 0.87 0.88 0.92 0.97
r=60% 0.92 0.95 0.96 0.97 0.98 0.99 1
r=80% 0.97 1 1 1 1 1 1

r=100% 1 1 1 1 1 1 1

Table 4.3: Impact of r and t noise parameters on the a contrario score of the resulting
clusters.

,

t=8% t=10% t=12% t=20% t=40% t=60% t=80%

r=20% 0.44 0.50 0.54 0.78 0.92 0.95 0.99
r=40% 0.68 0.76 0.78 0.85 0.94 0.98 1
r=60% 0.92 0.94 0.95 0.97 0.98 1 1
r=80% 0.98 0.99 1 1 1 1 1

r=100% 1 1 1 1 1 1 1

Table 4.4: Impact of r and t noise parameters on the AvgPurity measure of the resulting
clusters

,

t=8% t=10% t=12% t=20% t=40% t=60% t=80%

r=20% 0.42 0.44 0.48 0.49 0.52 0.56 0.60
r=40% 0.74 0.79 0.8 0.86 0.87 0.91 0.95
r=60% 0.94 0.95 0.96 0.97 0.97 0.98 0.99
r=80% 0.98 1 1 1 1 1 1

r=100% 0.99 1 1 1 1 1 1

Table 4.5: Impact of r and t noise parameters on the F1 measure of the resulting clusters

,

t=8% t=10% t=12% t=20% t=40% t=60% t=80%

r=20% 0.07 0.09 0.11 0.21 0.37 0.41 0.42
r=40% 0.30 0.40 0.42 0. 48 0.50 0.53 0.64
r=60% 0.70 0.71 0.72 0.73 0.74 0.75 0.80
r=80% 0.86 0.88 0.89 0.9 0.92 0.96 0.99

r=100% 0.99 0.99 1 1 1 1 1

Table 4.6: Impact of r and t noise parameters on the AvgCM measure of the resulting
clusters
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4.6.4 Optimal radius for computing candidate clusters

To validate that our approach tends to select the optimal neighbourhood of any

candidate clusters, we use the same dataset X5000 from the previous experiment and

the best first oracle with parameters (r = 80%, t = 100%) to generate the K-nearest

neighbours. This means, that each item xi has as its neighbours r = 80% of the cluster

C(xi) to which it belongs and the rest is a set of items selected uniformly at random of

X5000 −C(xi). It is important to note that items from the r = 80% of the cluster C(xi)

are also selected randomly, so two items from the same cluster may not have the same

neighbours.

In the Candidate cluster construction step of our clustering framework, we obtain

for each item xi, the optimal neighbourhood size kopt (see Section 4.5) equal to the

r = 80% of the cluster to which xi belongs. This confirms that only relevant items are

selected when looking for the optimal neighbourhood size.

After this step, for each item , we obtain a candidate cluster containing only relevant

items from the cluster to which it belongs. By using the second step of our clustering

framework i.e. final clusters selection, we obtain at the end 30 different clusters that

represent all the categories of the ground truth and we eliminate redundant clusters.

4.6.5 Impact of the overlap parameter

The overlap parameter is the only parameter that the user has to fix in our algo-

rithm. To evaluate the impact of this parameter, we use the same dataset X5000 and

a no-perfect and unstable oracle to generate two lists of K nearest neighbours of

items. The first one is computed with (r = 40%, t = 8%) and the second one with

(r = 60%, t = 8%). We vary the parameter of overlap θOverlap when eliminating the

redundant clusters and we compute the F1 measure and the AvgCM of resulting final

clusters. Figure 4.7 shows how the F1 measure remains stable until a particular value

(40% for the square and triangle lines and 50% for dots and crosses lines). When the

θOverlap increases, we allow more overlap between clusters so the number of clusters

considered as different increases which decreases the F1 measure. In the case of a

small value of θOverlap, we select the most different clusters which represent the initial

classes. When the goal of a user is to have the more representative clusters of a dataset,

we recommend to choose a small value of θOverlap. We generally fix this parameter to

50% when no constraints are required.

On the other hand, we can see that the AvgCM measure is not very sensitive to the

overlap parameter because we use a greedy strategy to eliminate redundant clusters in
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our clustering algorithm so that selected clusters are always the best clusters of our

clustering.

Generally, the eliminated clusters are those of poor quality. As we do not keep all the

candidate clusters (θOverlap < 100%), we can say that the resulting clusters represent

the best clusters among the candidate clusters.

Figure 4.7: Impact of the overlap parameter θOverlap on F1 and AvgCM measures.

4.6.6 Comparison with spectral clustering

Qualitative comparison

Graph-based clustering algorithms are particularly suited for dealing with data

that do not come from a Gaussian or a spherical distribution. In particular, spectral

clustering can deal with arbitrary distribution datasets and metric. Compared to

our approach, they are however more sensitive to variations of cluster density. The

parameters must be selected cautiously. From spectral clustering algorithm, we can

see that two parameters influence the final clustering result: the scale parameter σ in

the affinity function and the number of clusters.

Because the use of the K-means step in the spectral clustering (any other clustering

can be applied but generally K-means is used for its simplicity), the results can be

different from one iteration to another according to the initialisation. The results

depend on the initial clusters, it is common to run it multiple times with different

starting condition to have stable results.

The main idea of the spectral clustering is to optimize the overall cut of the graph
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while in our proposed SNN method, we aim to select an optimal neighbourhood for

each item and to merge redundant clusters by simple heuristics.

In spectral clustering, the choice of the graph, as described in Section 2.4, influences

the results [111]. If a K-nearest neighbour graph is chosen, the parameter K is critical

and has to be fixed carefully: if K is very limited, some relevant neighbours are

disconnected, whereas if K is very large, outliers are connected to relevant neighbours.

In our proposed clustering method, note that thanks to the selection of the optimal

neighbourhood even if K is large, only relevant nearest neighbours that maximize the

quality of the neighbourhood are selected: outliers are ignored and not considered as

relevant neighbours even if the parameter K has allowed it to be connected to the item.

In the case of a limited K, thanks to the reshaping step, we recover the elements that

we missed.

Another difference with spectral clustering is that in our method, an item can belong

to different clusters, whereas spectral clustering is generally a hard clustering, because

ultimately K-means selects one cluster for each item.

Although some recent works [180, 21] propose methods to tune the scale parameter

and the number of clusters automatically, the results remain sensitive to the choice of

the method or the heuristic whereas in our method the number of clusters is produced

automatically and the only predefined overlap threshold can be determined without

any knowledge of the data to cluster.

A last difference with spectral clustering is the robustness of our method. If the source

that produce the K nearest neighbours of an item is noisy or contains some errors,

the spectral clustering will take the generated graph as it is and look for the optimal

cut, which obligatory lead to irrelevant results. In our case, thanks to the selection of

the optimal neighbourhood and the reshaping steps, irrelevant neighbours, even those

having a low rank by mistake, will not be considered as relevant because by including

them, they did not improve the quality of the cluster.

Quantitative comparison

To compare our proposed clustering method to spectral clustering algorithms, we

choose the two standard versions described in the state-of-the-art (see Section 2.4.1):

the normalized spectral clustering according to Shi and Malik [146] and the normalized

spectral clustering according to Ng, Jordan and Weiss [121].

For this, we use two common datasets: the Iris Plants Database [53] and the Wine
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dataset usually used in papers dealing with spectral clustering issues. Iris Dataset is

perhaps the best known database to be found in the pattern recognition literature. It

can be download on 1. The data set contains 3 classes of 50 instances each, where each

class refers to a type of iris plant. One class is linearly separable from the other 2;

the two others are not linearly separable from each other. The Number of Attributes is

equal to 4 numeric predictive attributes and the class:

– sepal length in cm

– sepal width in cm

– petal length in cm

– petal width in cm

– classes: Iris Setosa, Iris Versicolour, Iris Virginica

The scope of “Wine Data Set” is related to chemical analysis. The task consists

in regrouping 178 items from the same origin of wines in 3 classes. Created by [164]

and available on 2, this dataset is the results of a chemical analysis of wines grown

in the same region in Italy but derived from three different cultivators. The analysis

determined the quantities of 13 constituents found in each of the three types of wines.

All attributes are continuous:

– Alcohol

– Malic acid

– Ash

– Alcalinity of ash

– Magnesium

– Total phenols

– Flavanoids

– Nonflavanoid phenols

– Proanthocyanins

– Color intensity

– Hue

– OD280/OD315 of diluted wines

– Proline

The number of instances per class is respectively : 59, 71, 48. For all methods, the

Euclidean distance was used as a pairwise similarity measure. For tested spectral clus-

tering methods , the number of clusters is given as input whereas our method finds by

itself automatically the right number of clusters for the two data sets. We can say that

1. http://archive.ics.uci.edu/ml/datasets/Iris
2. http://archive.ics.uci.edu/ml/datasets/Wine
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in this experimentation, the spectral clustering has more advantages than our method

from the start.

Concerning the scale parameter σ needed in the spectral clustering, we use the method

proposed by [146]. They gave a range of the scale parameter as:

σ = c× (max(dist)−min(dist)) (4.20)

with c ∈ [0.1,0.2].

For the overlap parameter of our proposed shared nearest neighbours clustering, we

fix it to 50% as discussed earlier in Section 4.5. We remember that this parameter is

the maximum overlap allowed between two clusters to be considered as two different

clusters. If the overlap exceeds 50%, the two clusters are considered as similar and

have to be grouped on a relevant single cluster by reshaping.

For the evaluation, we use two metrics : the Rand Index [140] and the Average Purity

(see Section 4.6.1). The results of the two datasets are reported in Tables 4.7and 4.8.

Note that as spectral clustering use K-means the results differ from an iteration to

another, we iterate 50 times and take the average.

Ng, Jordan and Weiss Shi and Malik Our SNN clustering

Rand index 0.87 0.75 0.83
Avg Purity 0.9 0.8 0.87

Table 4.7: The Iris Plants Database clustering results

Ng, Jordan and Weiss Shi and Malik Our SNN clustering

Rand index 0.62 0.48 0.72
Avg Purity 0.81 0.78 0.70

Table 4.8: The Wine Database clustering results

Through this experimentation, we want to show that the performances our SNN

clustering results do not differ greatly from those of the two spectral clustering meth-

ods tested here although that we did not give any a priori information to our clustering

(i.e the number of clusters). By keeping the overlap threshold to 50% which can be

kept for all experiments in this PhD. Our clustering method finds automatically the

right number of clusters and the results are very promising. For standard spectral

clustering that we tested, it was necessary to give the number of clusters as input, com-

puting the best value of the scale parameter for the affinity matrix and finally iterating
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several times to have stable results.

We then studied the impact of the neighbourhood size on our SNN clustering compared

to the spectral clustering of Ng, Jordan and Weiss. For this, we used the synthetic data

X5000 build from 5000 items clustered in 30 categories with different size between 20

and 260 items. We vary the value of the k nearest neighbours and we compute the

AvgPurity and the Rand Index. Results are reported in Figures 4.8 and 4.9.

For spectral clustering [121], we can denote that by increasing the neighbourhood size,

the average purity and the rand index values increase smoothly for the spectral cluster-

ing with the best tuning (the right number of clusters is done and we take the best scale

parameter). For k = 50, the used spectral algorithm diverges : items are disconnected

and the algorithm cannot find the 30 categories. This is why we had to begin with

K = 100 in the experiment.

This is not the case for our proposed clustering, which deals with a small neighbour-

hood (for k = 50,AvgPurity= 1 and RandIndex = 0,98). Thanks to the reshaping step

during the elimination of the redundant clusters, even with small neighbourhood, our

clustering adds relevant missing items to their relative clusters.

By this experiment, we can conclude that our SNN clustering is robust and less sen-

sitive to the neighbourhood size than the spectral clustering [121]. It also shows, that

our method is globally more robust to the kind of noises considered in this experiment

(unstability and noisy returned items).

Figure 4.8: Impact of the neighbourhood size on the AvgPurity and the Rand Index
values when using the spectral clustering [121]
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Figure 4.9: Impact of the neighbourhood size on the AvgPurity and the Rand Index
values when using our proposed SNN clustering

4.7 Conclusion

In this chapter, we revisited an existing shared neighbours methods in two points.

We first introduced a new SNN formalism based on the theory of a contrario decision.

This allows us to derive more reliable connectivity scores of candidate clusters and a

more intuitive interpretation of locally optimum neighbourhoods. We also proposed a

new factorization algorithm for speeding-up the intensive computation of the required

shared neighbours matrices. We compared our proposed method to a spectral cluster-

ing [121]. We showed that our method is globally more robust to the kind of noises

considered in the experiment (unstability and noisy returned items).

This chapter is the basis for the second and the third contributions of this work.



Chapter 5

Multi-source shared nearest
neighbours clustering

5.1 The multi-source SN problem

The increasing availability of devices (laptops, smart phones, camera) has led to

an explosion in the amount of information that user must confront in order to use them

efficiently. We are often given unsupervised data originating from different sources.

For example, images have many properties (color, texture, etc) and meta-data (textual

annotation, EXIF, etc) which are quite different from one source of information to an-

other. The goal is to benefit from all available sources of information so as to be able

to have more meaningful information concerning the images. To harness the strengths

of that, multi-modality processing has become an attractive strategy.

It is known that processing data from a single irrelevant information source will con-

tribute to the creation of a bad result. Does the use of multiple data sources had more

chance to improve the result? How can we deal with sources when some of them are

characterized uncertain information ? We need an efficient combination of sources and

not just a trivial fusion. An effective combination is crucial.

In order to deal with uncertainty in the available data, we propose to determine a clus-

tering that is consistent not with all sources but with the optimal subset of sources.

For each cluster, we need to select relevant information sources and ignore irrelevant

ones. In this way, noise can be reduced by combining sources effectively and can over-

come the bad quality of sources by correcting the errors produced by each individual

source. Imagine that a search engine asks M decentralized servers to return the K first

responses to a user’s query and it merges the M lists to produce a final ranking of re-

sults. What happens if one or multiple servers return junk results ? Will the search
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engine find that one source of information returns results with no significance ? This

can be avoided if we merge not only the results of all available sources but we select

the optimal subset of sources ? We will try to answer these questions in this Chapter.

A second problem is how to group observations that belong to different physical spaces

with different dimensionalities, e.g., how to group visual data with textual data ? To do

this, shared neighbours clustering seems appropriate because even in heterogeneous

contexts in which underlying features and similarity values do not have a straight-

forward unique interpretation, two items having a high proportion of neighbours in

common can be assigned to the same group. Two items are considered to be well-

associated not by virtue of their pairwise similarity value, but by the degree to which

their neighbourhoods resemble one another.

Shared nearest neighbours (SNN) methods thus appear to be ideally suited to multi-

modal clustering. Because they are based on conexity information only and not on

densities or metrics in some feature spaces, heterogeneous information sources can be

embedded identically and easily compared or fused. SNN method, as stated before,

are able to overcome several shortcomings of traditional clustering approaches: they

do not suffer from the curse of dimensionality, they are robust to noisy data, they do not

need to initially fix the number of clusters, and, last but not least, they do not require

any explicit knowledge of the nature or representation of the data. These properties

make them widely generic for multimedia mining or structuring purposes, whatever

the targeted objects and the required similarity measures.

In this chapter, we introduce, a new generic multi-source SNN framework including

new multi-source measures for arbitrary object sets and information sources. The main

originality of our approach is that we introduce an information source selection step

in the computation of these measures thanks to an a contrario standardization of the

sum of the individual SNN scores. In addition to a usual conexity score, any arbitrary

object set is thus associated with its own optimal subset of modalities maximizing the

multi-source a contrario score. All resulting clusters do not necessarily have the same

selected sources in contrast to other previous work.

5.2 A contrario multi-source SNN significance mea-
sures

To generalize a shared neighbours clustering to a multi-source environment, several

issues have to be solved. Whereas in a single source model, each item of the dataset
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X = {xi}i=[1..N] to be clustered is associated with a single nearest neighbours list, in

the multi-source environment, each item is associated with m nearest neighbours lists

where m corresponds to the number of sources. In the following, we denote as O the set

of available information sources and m = |O| the number of sources. Any information

source o ∈ O is defined only by its nearest neighbours response function FK(x,o):

FK(x,o) = {nno
k}k∈[1,K]

where x represents any item of the whole dataset X to be clustered and nno
k ∈ X the

k-th nearest neighbour of the item x according to the source o.

5.2.1 Raw multi-source SNN significance measures

We first generalise the intra-significance measure (Equation 4.2) seen in Chapter

4.3 to the multi-source case, by measuring the expectation of the inter-set correlation

between a set A and the nearest neighbours set of an item x selected uniformly at

random from A according to an information source o selected uniformly at random

from O.

As a primary multi-source intra-set significance measure for any set A ⊂ X , we have:

Definition: Multi-source intra-significance measure

I(A,O) =
1

|A||O| ∑
o∈O

∑
x∈A

(A∩F|A|(x,o))

=
1

|A||O| ∑
o∈O

∑
x∈A

IA(x,o) (5.1)

Comparing the multi-source intra-set significance measure of sets of different sizes

and different amounts of information sources is biased. It is not only regarding the

size as in the mono-source case (see the section 4.2) but also concerning the number

of sources. How can we normalize this measure to be able to compare and sort the sets

of items regardless of their size and their selected sources ?

5.2.2 A contrario normalization

As in the mono-source case, we propose to remove the bias of the raw measure

by the a contrario principle. Let us call H ′ the null hypothesis that all sources are

i.i.d and uniformly distributed, i.e. each source returns nearest neighbours selected

uniformly at random from X (all sources are independent random Oracles). Under

the hypothesis H ′, the multi-source intra-significance measure is normally distributed
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and the IA(x,o) is a hypergeometrically distributed random variable with expectation :

E[IA(x,o)] =
|A|2
N

(5.2)

and variance :

Var[IA(x,o)] =
|A|2(|N|− |A|)2

N2(N −1)
(5.3)

by using the central limit theorem, we can conclude that I(A,O) is assumed to follow

a normal distribution N (μA,σ 2
A) with:

μA = E[I(A,O] = E[IA(x,o)]

=
|A|2
N

(5.4)

Because of the independence of IA(x,o) variables, we obtain for the variance:

σ 2
A = Var[I(A,O)] =

Var[IA(x,o)]
|O||A|

=
|A|(N −|A|)2

|O|N2(N −1)
(5.5)

Note that in Equation 5.5, for a fixed size set |A|, the more sources we have, the smaller

the variance is. I(A,O) can therefore be standardized to a multi-source standard normal

distribution Z(A,O) with parameters N (0,1) under the hypothesis H ′ as follows:

Z(A,O) =
I(A,O)−E[I(A,O)]√

Var[I(A,O)]

=
√
|O| |A|(N −|A|)2

N2(N −1)
(I(A,O)−E[I(A,O)])

=
√
|O|[ I(A,O)−E[I(A)]√

Var[I(A)]
]

=
√
|O|[

1
|O| ∑|O|

o=1 I(A,o)−E[I(A)]√
Var[I(A)]

] (5.6)

As we have now a multi-source standard significance measure Z under the null hy-

pothesis H ′, we can estimate the precision score a contrario to H ′ as follows:

PZ(A,O)(z) =

∫ z

−∞

1√
2Π

e−
t2
2 dt

= 1−φ(z) (5.7)
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where φ()is the cumulative distribution function of the standard normal distribution

that describes probabilities for a random variable to fall within the interval ]−∞,z].

PZ(A,O)(z) is the probability that the multi-source standard significance measure

Z(A,O) does not exceed a threshold z under the null hypothesis H ′ in the multi-

source case.

So that , P f a(z) = 1−PZ(A,O)(z) is the likelihood that A is not a false alarm (i.e the

likelihood that the subset A was not generated by a subset of random oracles).

P f a(z) can also be expressed in terms of the error function erf as follows:

P f a(z) =
1
2
− 1

2
erf(

z√
2
) (5.8)

Having the probability of a false alarm under the null hypothesis, we can now deter-

mine our multi-source a contrario significance score as the complement of the P f a :

Definition Multi-source a contrario significance score:

S(A,O) = 1−P f a(Z(A,O))

= 1−φ(Z(A,0))

=
1
2
+

1
2

erf(
Z(A,O)√

2
) (5.9)

5.3 Cluster-centric selection of optimal sources

Now that we have a precision score that is unbiased relative to the number of infor-

mation sources, we can describe our approach to select the optimal subset of sources

of any input set A. If we denote as θ ⊆ O an arbitrary subset of sources, then we are
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searching for the optimal subset θopt(A)⊆ O maximizing S(A,θ):

θopt(A) = argmax
θ⊆O

(S(A,θ))

= argmax
θ⊆O

(
1
2
+

1
2

erf(
Z(A,θ)√

2

)
= argmax

θ⊆O
Z(A,θ)

= argmax
θ⊆O

[
I(A,θ)−E[I(A,θ)]√

Var[I(A,θ)]
]

= argmax
θ⊆O

√
|θ |[ 1

|θ | ∑
o∈θ

I(A,o)]

= argmax
θ⊆O

1√|θ | ∑
o∈θ

I(A,o)

= argmax
i<|O|

argmax
θ⊆O\|θ |=i

1√|θ | ∑
o∈θ

I(A,o)

= argmax
i

1√
i
argmax
θ\|θ |=i

∑
o∈θ

I(A,o)

= argmax
i

1√
i
∑

o∈θ̂i

I(A,o) (5.10)

In this way, we are not only seeking the best number of sources i but also selecting the

best combination of sources of size i . θ̂i is the optimal combination of sources of size

i.

What seemed at first glance to be a combinatorial problem can indeed be solved ex-

tremely easily by pre-sorting single-sources intra-significances in decreasing order and

finding the optimal number of top sources θopt .

Our final selected-source intra-significance measure of any arbitrary set A is finally

given by:

Iopt(A,θopt(A)) =
1√|θopt| ∑

oi∈θopt(A)

I(A,oi) (5.11)

This indicates that if the intra-significance measures for A are available with respect

to individual oracles and have been presorted from highest to lowest, then the most

significant sub collection of oracles describing A, over a desired range of sub collection

sizes, can be determined in linear time.

In the same way, the optimal multi-source a contrario score Ŝ can be computed by

combining the individual a contrario scores according to the optimal subset of sources
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θopt :

Ŝ(A,θ) = S(A,θopt(A)) (5.12)

The goal of selecting the optimal subset of sources is to avoid outlier sources in O. Un-

like methods that use all available sources to compute the significance of a set whatever

the quality of the information sources, we only select sources that maximize the quality

of the set A and ignore the rest.

5.4 Clustering framework

Now that we have defined our new multi-source shared nearest neighbours

significance measures we can describe our multi-source clustering procedure. It is

based on three main steps, unlike the mono-source case which was based in only two

steps. The three steps are: candidate cluster construction, candidate cluster reshaping

and final clusters selection.

– Candidate cluster construction: Each item x ∈ X is considered as a candidate

cluster center and an optimal candidate cluster C(x) needs to be computed

for it. For each source oi ∈ O , every item has a list of K-NN. For that, we

have to select the optimal neighbourhood in each K-NN that maximizes our

multi-source a contrario score S (Equation 5.9).

Note that an optimal source selection is performed for each iteration on the

neighbourhood size k and the selected subset θopt(Fk(x,oi)) of sources may

differ from one value of k to another.

The optimal neighbourhood k̂oi(x,O) for the item x according to the source

oi ∈ O is defined by:

k̂oi(x,O) = argmax
k

Ŝ(Fk(x,oi),O)

= argmax
k

S(Fk(x,oi),θopt(Fk(x,oi))) (5.13)

Unlike the mono-source case, where each item is represented by a single neigh-

bourhood, in the multi-source case, for each source oi ∈O, we obtain the optimal

neighbourhood. Among the m list of optimal neighbourhoods k̂oi(x,O) of the

item x according the each single source oi, we finally keep as a candidate cluster
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Copt(x) the neighbourhood of the source o j that has the maximum multi-source

a contrario score S:

Copt(x) = Fk̂(x,θopt(Fk̂(x,o j))

Each candidate cluster is defined by its own optimal subset of sources that are

the most relevant for it.

– candidate cluster reshaping: After selecting the single optimal neighbour-

hood with its own optimal subset of sources, some neighbours provided by each

source of the selected sources may be more relevant to Copt(x). The candidate

cluster Copt(x) is the best set of K-NN provided by a source o j because it has the

maximum multi-source a contrario score. By selecting just one neighbourhood,

some other relevant neighbours provided from the other sources (selected in the

optimal subset of sources) may be missing. The contribution of some relevant

items from the other neighbours of x can improve the quality of Copt(x).

For this reason, each candidate cluster Copt(x) has to be reshaped by adding only

the strongly associated items provided from the remaining optimized neighbour-

hoods, those from sources included in the selected subset θopt(x,o j) of sources.

We denote these items as K ′-NN. For each item y in K′-NN, we compute its own

contribution c(y,Copt(x)\θopt(x,o j)) to the candidate cluster Copt(x) centred on

x and provided by the source o j. This contribution is based on the selected opti-

mal subset of sources θopt(x,o j) as described in the following equation:

c(y,Copt(x)\θopt(x,o j)) =
1

|Copt(x)||θopt(x,o j)|
∑

o∈θopt(x,o j)

|(Copt(x)∩F|Copt(x)|(y,o)|

(5.14)

We sort in decreasing order the contribution of each y in K ′-NN to C(x) and

we select those who decrease the quality of the candidate cluster Copt(x) i.e

that maximize the final multi-source precision score S(Copt(x,θopt)) as seen in
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Section 4.3.3 but in multi-source case:

I(Copt(x)∪ y)− I(Copt(x)) =
1

|θopt(x,o j)|
(

[
1

|Copt(x)+1| −
1

|Copt(x)| ]

∑
o∈θopt (x,o j)

∑
x∈Copt(x)

|Copt(x)∩F|Copt(x)|(x,o)|

+
1

|Copt(x)+1| [

∑
o∈θopt (x,o j)

∑
x∈Copt(x)

|(Copt(x)∪ y)∩nn|Copt(x)+1|(x)|

+ ∑
o∈θopt (x,o j)

|(Copt(x)∪ xi)∩F|Copt(x)+1|(y,o)|]
)

(5.15)

– Final clusters selection: After the candidate cluster selection and the reshaping

step, we obtain potentially relevant clusters. However, some of them are similar

because close items will have approximately the same candidate cluster which

leads to redundant clusters. Therefore we use the same technique as that used in

the Final clusters selection of the mono-source schema ( see Section 4.5). The

only difference is that for each final cluster, we also have the information of the

optimal subset of sources selected for this cluster. This information can generate

knowledge about the sources: a source that is never selected for any cluster can

be considered as irrelevant.

5.5 Synthetic oracles experiments

In this section, we use the synthetic oracles defined in section 4.6.2.

5.5.1 Impact of outlier sources

Our first experiment consists in combining one perfect oracle as described in the

section 4.6.2 with m non-perfect and unstable sources with parameters (r = 0 and

t = 0) as described in Section 4.6.2, to validate the robustness of our source selection

algorithm. We used these sources and the X5000 dataset. As theoretically expected,

our method is fully invariant to the inclusion of random outlier sources and both F1

measure and AvgPurity are equal to 1.0 whatever the value of m.
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5.5.2 Impact of source precision and stability parameters

Our second experiment is to study the influence of parameters t and r when com-

bining several non-perfect and unstable information sources. For this experiment,

we used m = 4 oracles and we varied the value of r and t. We use the same dataset

X5000 described in 4.6.3 but the difference of this experiment relative to the experiment

done in 4.6.3 is that here we are evaluating the a contrario score, the F1 measure,

the AvgPurity and the AvgCM of our resulting clusters in a multi-source case. By

this experiment, we aim to show the interest of using multiple sources even if they

are non-perfect and unstable. The results of the F1 measure and the average cosine

measure (AvgCM) in multi-sources case are reported in Tables 5.2 and 5.3, the a

contrario scores of clusters are reported in 5.1.

Note that thanks to the oracle selection and the reshaping steps, all produced clusters

present AvgPurity = 1, this means that only relevant items are kept in clusters.

The a contrario scores even with low quality of K-nearest neighbours of cluster’s

items (r = 20%, t = 8%) still relevant clusters (a contrario score=0.97) which means

that the clusters are far from random sets. Compared to the mono-source case (Table

4.3), the score has almost doubled.

Tables 5.2 and 5.3 show that our method is robust to both kinds of noise, i.e im-

precision and unstability. Compared to the results showed in the mono-source case

described in the section 4.6.3, we can see how results are improved by combining

4 non-perfect and unstable oracles. For example, even with low quality of nearest

neighbours (r = 40% and t = 8%), the F1 measure increases from 0.74 in the

mono-source case to 0.99 in the multi-source case. For the same parameters, the

AvgCM increases from 0.30 to 0.62 by using 4 sources. That means that our method is

able to compensate the weak quality of very noisy independent sources by combining

them effectively even with only 4 sources.

Note that all these results could be more improved if we had used more sources as

done in the next section.

5.5.3 Impact of the number of sources

We study the impact of the number of sources on the effectiveness of our method.

For this experiment we fixed r and t and we varied the number of unstable and

no-perfect oracles from 1 to 14. We do that by using a couple of parameters

(r = 40%, t = 10%). The results are provided in Figure 5.1. It shows that increas-
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,

t=8% t=10% t=12% t=20% t=40% t=60% t=80%

r=20% 0.97 0.98 1 1 1 1 1
r=40% 0.98 0.99 1 1 1 1 1
r=60% 1 1 1 1 1 1 1
r=80% 1 1 1 1 1 1 1

r=100% 1 1 1 1 1 1 1

Table 5.1: Impact of r and t noise parameters on the a contrario scores of our resulting
clusters in the multi-sources case (4 sources).

,

t=8% t=10% t=12% t=20% t=40% t=60% t=80%

r=20% 0.64 0.81 1 1 1 1 1
r=40% 0.98 0.99 1 1 1 1 1
r=60% 0.99 1 1 1 1 1 1
r=80% 1 1 1 1 1 1 1

r=100% 1 1 1 1 1 1 1

Table 5.2: Multi-sources case: impact of r and t noise parameters on the F1 measure
of resulting clusters.

,

t=8% t=10% t=12% t=20% t=40% t=60% t=80%

r=20% 0.43 0.58 0.85 0.96 1 1 1
r=40% 0.62 0.72 0.93 0.98 1 1 1
r=60% 0.76 0.81 0.97 0.99 1 1 1
r=80% 0.89 0.95 0.99 1 1 1 1

r=100% 0.99 1 1 1 1 1 1

Table 5.3: Multi-sources case : impact of r and t noise parameters on the AvgCM
measure of resulting clusters.

ing the number of sources is always profitable, which is a very consistent result for

our multi-source shared nearest neighbours method. The errors induced by each indi-

vidual source are very well compensated by combining the information sources.

We can conclude that by combining more sources, the AvgCM is more improved

thanks to the reshaping steps that add relevant items from the selected optimal sources.

So the more the number of sources increases, the more the quality of clusters is im-

proved.

The AvgPurity is still good thanks to the optimal selection of neighbourhood that al-

ways selects homogeneous and correlated items of a same clusters. The reshaping

steps support the quality of clusters.
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Finally, the F1 measure is still also good thanks to the correlated steps: the elimination

of redundant clusters and the use of poor clusters to reshape relevant ones.

Figure 5.1: Impact of the information sources number on AvgPurity, F1 measure and
the AvgCM.

5.5.4 Computational time analysis

Finally, we study the time execution of the fast shared neighbours computation

step and the candidate cluster selection (including the first reshaping). We use the

synthetic data X5000 and we vary some parameters: the number of oracles and the size

of the dataset. Results in Figure 5.2 show that the greatest amount of time is consumed

by the fast shared neighbours computation step when the number of oracles increases

from 2 to 20. The execution time of the candidate cluster selection and reshaping step,

even if we compute the cluster candidate for every source and reshape according to

the oracle selection, is still linear. The fast shared neighbours computation time is

quadratic for the number of oracles.

When we vary the size of the dataset for a fixed number of oracles (5 oracles) and

a fixed number of nearest neighbours allowed (Kmax), the time of the fast shared

neighbours computation is linear in dataset, as it is shown in Figure 5.3. To decrease

the time of the candidate cluster selection, the size of the dataset to be clustered has to

be limited, so we can apply it on on-line applications.
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Figure 5.2: Running time in seconds vs. number of oracles for the fast nearest shared
neighbours computation, the candidate cluster selection using Kmax=200 for the syn-
thetic data set X5000.

Figure 5.3: Running time in seconds vs. the dataset size or the fast shared neighbours
computation , the candidate cluster selection using 5 oracles and Kmax=30 for the
synthetic data set X5000

5.6 Conclusion

Shared Nearest Neighbours (SNN) techniques are well known to overcome several

shortcomings of traditional clustering approaches, notably high dimensionality and

metric limitations. However, previous methods were limited to a single information
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source in spite of such methods appear to be very well suited for heterogeneous data,

typically in multi-modal contexts. In this chapter, we introduced a new multi-source

shared neighbours scheme applied to multi-modal image clustering. We first extend

the existing SNN-based similarity measures to the case of multiple sources and we

introduced an original automatic source selection step when building candidate clus-

ters. The key point is that each resulting cluster is built with its own optimal subset of

modalities which improves the robustness to noisy or outlier information sources. We

experimented our method with synthetic data involving different information sources.

We demonstrated the effectiveness and the robustness to noisy sources of our proposed

method.
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Bipartite shared-neighbours clustering

6.1 The bipartite SNN problem

In this section, we are interested in the bipartite graph in which the nodes are not

considered as a single group but are divided into two groups. The k-nearest neighbours

of a set A of items to be structured belong to a second disjoint set B. Nodes from the

same group are not connected to each other, only edges between nodes from different

groups are connected. The relation between the nodes of the same group is expressed

by the number of shared nodes in the second group.

In [98], bipartite graphs are employed to capture the relationship between users

and their interests, the users and their queries, the page and ads and the photo and

tags. They developed an algorithm to compute the connected components of the k-

neighbourhood graph and hence a K-neighbour connectivity plot called KNC-plot that

is used to understand the macroscopic properties of the graph. On the other hand, in

this thesis, we are interested in the clustering aspect of such graphs. We study the bi-

partite graph clustering by Shared Nearest Neighbours (SNN) clustering methods. The

principle of SNN algorithms is to group items not by virtue of their pairwise similarity,

but by the degree to which their neighbourhoods resemble one another. This property

is suitable for our bipartite graph clustering problem. To the best of our knowledge,

SNN clustering methods have not yet been studied in the case of bipartite nearest

neighbours graphs, as done in this thesis.

As we do not have more information than connection with rank between data points of

the two different groups, given a bipartite graph, the intuitive goal of clustering is to

divide the data nodes into several groups such that nodes in the same group are similar

and nodes in different groups are dissimilar to each other as illustrated by an example

in Figure 6.1.
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Figure 6.1: An example of bipartite graph with two perfect bipartite clusters.

Such graph are natural for many application such as documents and words. A word

belong to a set of documents and in the same time, a document contains a set of words.

The motivation can be to regroup documents having common words.

Another example of bipartite graph is a job matching problem. Suppose we have a set

P of people and a set J of jobs. We can model this as a bipartite graph. If a person px

is suitable for a job jy, there is an edge between px and jy in the graph. The clustering

of this bipartite graph provides groups of persons who can possibly work on a group

of jobs. This structuring can help considerably a recruiter’s job who received person’s

applications for a list of jobs.

6.2 Notations

We denote as G(X ,X ′;E) a bipartite graph composed of two different sets of nodes

X and X ′ and a set E of directed edges ei, j with a starting point in X , an endpoint in

X ′ and a weight wi, j corresponding to a matching score (wi, j = 0 means that no edge

connects item xi to item x′j).
Any bipartite set (A,A′) in (X ,X ′) is composed of an extension set A ∈ X and an

intention set A′ ∈ X ′. The size of X is denoted N and the one of X ′ as N′. Note that

A∩A′ = /0 which means that there are no duplicated items.

We define the norm of a bipartite cluster (A,A′) as:

– |(A,A′)| = |A||A′|. It quantifies the number of possible connections between all
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items of A and A′.
– (A,A′)∩(B,B′) = (A∩B,A′ ∩B′). It denotes the intersection between two bipar-

tite clusters.

– |(A,A′)∩ (B,B′)| = |(A∩B,A′ ∩B′)| = |A∩B|.|A′ ∩B′|. It quantifies the inter-

section between two bipartite clusters.

We define the bipartite function Fk(xi) as the nearest neighbouring set of items in X ′

of size k connected to the item xi ∈ X :

Fk(xi) = {x′ j = nn j(xi),∀ j ∈ [1..k]} where x′ j ∈ X ′.

Note that the reverse nearest neighbours in X ′ of an item x′j is denoted by :

F̄k(x′j) = {xi|x′j ∈ Fk(xi)} where xi ∈ X .

The advantage of this bipartite representation is that it allows us to formulate our clus-

tering objective as a co-clustering problem (or dual subset clustering [178]).

Indeed we aim to find clusters C = (A,A′). An ideal dual cluster (A,A′) is one in which

the reverse neighbours of all items in A′ match all the items in A and in the same time

the neighbours of items in A belong to A′:
– F|A′|(xi) = A′,∀xi ∈ A i.e the nearest neighbours of items in A match A′.
– F̄|k|(x′j) = A,∀x′j ∈ A′ i.e the reverse nearest neighbours of items in A′ match A.

6.3 Bipartite shared nearest neighbours significance
measures

6.3.1 bipartite a contrario significance measures

As primary bipartite shared neighbours similarity measure for any dual cluster

(A,A′), we define the bipartite intra-significance measure as:

I(A/A′) =
1

|A||A′| ∑
x∈A

∑
x′∈A′

|(F|A′|(x), F̄|A|(x′))∩ (A,A′)| (6.1)

=
1

|A||A′| ∑
x∈A

∑
x′∈A′

|F|A′|(x)∩A′|
|A′| .

|F̄|A|(x′)∩A|
|A|

=
1

|A||A′| ∑
x∈A

∑
x′∈A′

IA,A′(x,x′)
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where

IA,A′(x,x′) =
|F|A′|(x)∩A′|

|A′| .
|F̄|A|(x′)∩A|

|A|

For a perfect cluster, ∀x,x′ ∈ (A,A′),(F|A′|(x), F̄|A|(x′)) = (A′,A). This means that all

shared neighbours of each x ∈ A matches with the set A′ and , all reverse shared neigh-

bours of each item x′ ∈ A′ matches with the set A. The bipartite intra-significance

measure is equal to:

I(A/A′) =
1

|A||A′| ∑
x∈A

∑
x′∈A′

|(F|A′|(x), F̄|A|(x′))∩ (A,A′)| (6.2)

=
1

|A||A′| ∑
x∈A

∑
x′∈A′

|(A,A′)∩ (A,A′)|

=
1

|A||A′| ∑
x∈A

∑
x′∈A′

|A′|.|A|

= |(A,A′)|

Note that this result is similar to I(A) = |A| in the mono-source case.

Under the null hypothesis H where a list of neighbours is produced by a random or-

acle i.e. generated by means of uniform random selection from the available items,

the number of shared items between the |A′| nearest neighbours of x and A′ is selected

uniformly at random from X ′ and in the same time the number of shared items between

the |A| reverse shared neighbours of x′ and A is selected uniformly at random from X .

Intuitively, the intersection measure IAA′(x,x′) is the product of two random indepen-

dent variables and it follows the hypergeometric distribution with parameters :

E[IAA′(x,x′)] = E[IA′(x)].E[IA(x
′)] (6.3)

=
|A|2|A′|2

NN′
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and the variance of their product is given by [60]:

Var[IAA′(x,x′)] = Var[IA′(x).IA(x
′)] (6.4)

= E[IA′(x)]2.Var[IA(x
′)]+E[IA(x

′)]2.Var[IA′(x)]

+ Var[IA(x
′)].Var[IA′(x)]

=
|A′|2
N′ .

|A|2(N −|A|)2

N2(N −1)

+
|A|2
N

.
|A′|2(N′ − |A′|)2

N′2(N′ −1)

+
|A′|2(N′ − |A′|)2

N′2(N′ −1)
.
|A|2(N −|A|)2

N2(N −1)

=
|A|2.|A′|2

NN′ [
(N −|A|)2

N(N −1)
+

(N′ − |A′|)2

N′(N′ −1)

+
(N −|A|)(N′ − |A′|)
NN′(N′ −1)(N −1)

]

By using the central limit theorem, we can conclude that the measure I(A/A′) could

be approximated by a normal distribution N (μAA′,σ 2
AA′) defined by the expectation :

μAA′ = E[I(A/A′)] =
1

|A||A′| ∑
x∈A

∑
x′∈A′

E[IA,A′(x,x′)]

=
(|A||A′|)2

NN′ (6.5)

and the variance

σ 2
AA′ = Var[I(A/A′)]

= Var[
1

|A||A′| ∑
x∈A

∑
x′∈A′

IA,A′(x,x′)]

=
1

|A|2|A′|2 Var[IA,A′(x,x′)]

=
1

|A|2|A′|2 .[
|A|2.|A′|2

NN′ (
(N −|A|)2

N(N −1)

+
(N′ − |A′|)2

N′(N′ −1)
+

(N −|A|)(N′ − |A′|)
NN′(N′ −1)(N −1)

)]

=
1

NN′ [
(N −|A|)2

N(N −1)

+
(N′ − |A′|)2

N′(N′ −1)
+

(N −|A|)(N′ − |A′|)
NN′(N′ −1)(N −1)

] (6.6)
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As it is possible to relate all normal random variables to a standard normal, we can

standardize the normally distributed variable I(A/A′) to a normal distribution function

with expectation 0 and variance 1. The standard normal distribution Z will be defined

by :

Z(A/A′) =
I(A/A′)−E[I(A/A′)]√

Var[I(A/A′)]

=
1√

Var[I(A/A′)]
(I(A/A′)− |A|2|A′|2

NN′ ) (6.7)

With expectation :

E[Z(A/A′)] =
1√

Var[I(A/A′)]
(E[I(A/A′)]− |A|2|A′|2

NN′ )

= 0 (6.8)

And variance :

Var[Z(A/A′)] = Var[
1√

Var[I(A/A′)]
(I(A/A′)− |A|2|A′|2

NN′ )]

= (
1√

Var[I(A/A′)]
)2Var[I(A/A′)]

= 1 (6.9)

Now that we have estimated the distribution of our intra-significance measure Z un-

der the null hypothesis H , we can estimate the precision score a contrario to H as

follows :

PZ(A,A′)(z) =

∫ z

−∞

1√
2Π

e−
t2
2 dt

= 1−φ(z) (6.10)

Where φ() is the cumulative distribution function of the standard normal distribution

that describes probabilities for a random variable to fall within the interval ]−∞,z].

PZ(A,A′)(z) is the probability that Z(A,A′) does not exceed a threshold z under the null

hypothesis H . So that , P f a(z) = 1−PZ(A,A′)(z) is the likelihood that A and A′ are

not a false alarms (i.e the likelihood that the subset A and A′ were not generated by a

random oracle).

P f a(z) can also be expressed in terms of the error function erf as follows:

P f a(z) =
1
2
− 1

2
erf(

z√
2
) (6.11)
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Having this likelihood of a false alarm under the null hypothesis, we can now de-

termine our bipartite a contrario significance score as the complement of the P f a :

Definition Bipartite a contrario significance :

S(A,A′) = 1−P f a(Z(A,A′))

= 1−φ(Z(A,A′))

=
1
2
+

1
2

erf(
Z(A,A′)√

2
) (6.12)

6.4 Clustering framework

Now that we have defined our extend significance measures for a bipartite graph,

we can describe our clustering procedure. It is based on two main steps, candidate

cluster creation and redundant clusters merging.

– Candidate object cluster creation: Any item xi ∈ X is considered as a candi-

date cluster center . For each item xi selected as a candidate center, we would

like to build a relevant bipartite candidate cluster Ci from the set of neighbouring

items having at least one match in F|k|(xi), i.e all the reverse shared neighbours of

Fk(xi). Let us first denote as Rk(xi) this full set of candidate neighboring seeds:

Rk(xi) =
{

x j ∈ X | Fk(xi)∩Fk(x j) �= /0
}

(6.13)

All these items in Rk(xi) matched on X ′ at least once as xi, it is meaningful to

consider them as candidate items for the object’s cluster. However, many of

them might match more to other items in X ′ than Fk(xi). We therefore would

like to build the candidate cluster Ci as the optimal subset of Rk(xi) maximizing

the significance measure. For that, we use an increasing value of k. By this,

we begin by selecting the more efficient x′j that maximize the bipartite a con-

trario significance. This means that in the same time, we progress one by one

in Fk(xi) and for each one, first, not all items in F̄k(x′1) will be considered, but

only the ones for which x′1 belong to their F1. If xi belongs afterwards to a candi-

date cluster |Ci|, we will consider items if we select only its |Ci| reverse nearest

neighbours. This way, for example, if xi match x′1 as F̄k(x′1) for which x′1 belongs

to their F|Ci|.
This is unfortunately a combinatorial problem that cannot be solved efficiently.

We therefore propose to relax this objective by a greedy heuristic that locally

selects optimal subsets of X when iterating on the neighbouring in X ′.
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For this, all neighbours in Fk(xi) are first ranked in decreasing order of their

matching score wi, j. The candidate cluster Ci is initialized by the central candi-

date seed xi, i.e C0
i = xi. The algorithm then iterates on the ranked items Fk(xi)

by means of a counter t ′ from 1 to k and build locally the optimal cluster of a

progressive size t as:

Ct
i =Ct−1

i ∪ argmax
Ci⊂Rk(xi)

1√
|Ct−1

i |
∑

xh∈F̄t−1(∀x′j∈Ft′(xi))

SI(xh,C
t−1
i /Ft ′(xi)) (6.14)

where the contribution SI is equal to:

SI(xh,C
t−1
i /Ft ′(xi)) =

√
X −1

t ∑
x j∈Ct−1

i

(Ft ′(x j)∩Ft ′(xh)) (6.15)

Intuitively, each step simply selects the optimal set of xh that matched in their

Ft ′ on Ft ′(xi) as xi. The full algorithm stops when Ct
i = Ct−1

i meaning that no

improving items have been found from the ones matching the t ′-th x′j in Ft ′(xi).

At this step, any item xi ∈ X is associated with an approximate optimal clus-

ter Ci. Candidate clusters are however still highly redundant since all similar

items might produce very similar clusters. Next step is aimed at merging these

candidate clusters.

– Redundant object clusters merging: For this step, we use a greedy strategy

similar to the one in [73]. First, we sort all candidate clusters Ci by decreasing

order of their bipartite a contrario significance score S(Ci,Ft ′(xi)) ( Equation

6.12) and then iterate on them. If an encountered cluster has an intersection

greater than a user-defined threshold with one of the previous clusters, it is

merged with it. If not, it is considered as a new object cluster. To improve the

quality of the final cluster when an encountered cluster has to be merged, we

use a reshaping strategy: only the items of the new cluster that increase the

intra-significance of the resulting cluster are kept as new items.

6.5 Contribution to the cluster : fast computing

In the mono-source shared neighbours clustering, when selecting the optimal

neighbourhood, we needed to introduce a fast shared neighbours algorithm to compute

the sum of intersection between an item and its variable neighbours from k = [1..K].
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In the bipartite case, the neighbours x′1,x
′2, ...,x′N of an item xi belong to another dis-

joint set X ′. During the clustering, we need to compute the contribution of an item xh

to the cluster Ci having as center the item xi and this when iterating in the t ′ nearest

neighbours in X ′ :

SI(xh,Ci/Ft ′(xi)) =

√
X −1
|Ci| ∑

x j∈Ci

(Ft ′(x j)∩Ft ′(xh))

We have to take into consideration the intersection of x j with each item in the cluster

Ci according to their nearest neighbours of size t ′ = [1..k]. The size of the cluster can

increase as the size of nearest neighbours, when an item improve the quality of the

cluster.

To avoid the repetitive computation of the intersection of an item to another item

belonging to a cluster, we propose a new factorisation to accelerate the calculation of

shared neighbours based on the same optimisation done in Section 4.4.

By this, the shared neighbours of two items for a variable size of neighbours from 1 to

k is available and can be pre-computed once and used for the different experimenta-

tions with the same dataset.

Let us consider a bipartite graph (X ,X ′) of size respectively N and N′. Each item

x ∈ X has list of K nearest neighbours in X ′. The final shared neighbours algorithm

can be summarized in :

Input:NN: the K-nearest matrix of size (N ×K).

Init: SNN = zeros(N,N,K).

Output: SNN
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Algorithm 2 Fast shared neighbours from k = 1 to K

for xi = 1 to N do
for x j = 1 to N do

T = Zeros(N′)
for k = 1 to K do

SNN(xi,x j,k) = SNN(xi,x j,k−1) { Initialisation from the k−1 iteration}
T (NN(xi,k))+ = 1
T (NN(xj,k))+ = 1
if (NN(xi,k)! = NN(xj,k)) then

if (T (NN(xi,k)) == 2) then
SNN(xi,x j,k)+ = 1

end if
if (T (NN(xj,k)) == 2) then

SNN(xi,x j,k)+ = 1
end if

else
if (T (NN(xi,k)) == 2) then

SNN(xi,x j,k)+ = 1
end if

end if
end for

end for
end for

We can remark that by using the recursion, we have just to compute the occurrence

of the neighbours of the current rank.

6.6 Synthetic data experiments

In this experiment, we use synthetic data to illustrate the potential of our method

compared to a spectral bipartite method from the state-of-the-art. Experiments on real

data will be done in Section 8.1.

We built a synthetic bipartite graph G(X ,X ′;E). The set X is composed of 1500 items

clustered in 10 classes , each one composed of 150 items. In the other side, X ′ is com-

posed of 1000 items, each item xi ∈ X match 100 items in X ′.
To evaluate our bipartite shared neighbours clustering, we decided to compare it to

another bipartite clustering algorithm. For this, we have chosen the well-known bi-

partite spectral graph partitioning algorithm of Dhillon [38]. The author studied the

problem of clustering documents and words simultaneously. To solve the partitioning
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problem, a spectral co-clustering algorithm is proposed that uses the second left and

right singular vectors of an appropriately scaled word-document matrix to yield good

bi-partitionings.

To understand more effectively, the impact of the neighbourhood size and quality on

the two bipartite methods, we study the influence of parameters r and t. With each

value of the couple (r, t), we use a no-perfect and unstable oracle to generate a set of

K nearest neighbours for all the items.

We use θOverlap equal to 50% for our method. The number of classes is given to the

used bipartite spectral clustering.

We compared the produced clusters with F1, AvgPurity and AvgCM applied on the

extension parts of the bipartite clusters. We repeat the experiment several times for

each value of (r, t) and take the average of evaluation measures at the end. Results are

described respectively on Table 6.1, Table 6.2 and Table 6.3.

Our proposed bipartite shared nearest neighbours clustering returns automatically 10

clusters whereas this information is given as input for the bipartite spectral clustering

method.

We can note that for each couple of (r, t), our bipartite SNN clustering outperforms the

spectral clustering of Dhillon [38]. We can conclude that our method is more robust

against noisy and unstable K-NN.

Even with (r = 100%, t = 100%), this spectral clustering cannot find the perfect clus-

ters whereas in with our bipartite SNN clustering, we obtained an optimal neighbour-

hood for each item. This confirms that only relevant items are selected when looking

for the optimal neighbourhood. By eliminating redundant candidate clusters, we ob-

tained all the classes.

t=40% t=60% t=80 % t=100 %

r=40% 0.39 0.48 0.87 1
r=60% 0.50 0.83 0.96 1
r=80% 0.68 0.91 0.98 1

r=100% 0.73 0.96 0.99 1

t=40% t=60% t=80 % t=100 %

r=40% 0.24 0.3 0.38 0.55
r=60 % 0.29 0.5 0.52 0.93
r=80 % 0.58 0.67 0.73 0.95

r=100 % 0.65 0.79 0.83 0.96

Table 6.1: AvgPurity measures of our bipartite SNN clustering (left) and of spectral
bipartite clustering (right) on synthetic data.

6.7 Conclusion

In this chapter, we extend SNN methods to the context of bipartite k-NN graphs,

i.e. when the neighbours of each item to be clustered lie in a disjoint set. We intro-
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t=40% t=60% t=80 % t=100 %

r=40% 0.33 0.54 0.91 1
r=60 % 0.6 0.91 1 1
r=80 % 0.83 1 1 1

r=100 % 0.88 0.96 1 1

t=40% t=60% t=80 % t=100 %

r=40% 0.33 0.4 0.42 0.6
r=60 % 0.37 0.54 0.61 0.83
r=80 % 0.53 0.60 0.8 0.86

r=100 % 0.73 0.8 0.82 0.93

Table 6.2: F1 measures of our bipartite SNN clustering (left) and of spectral bipartite
clustering (right) on synthetic data.

t=40% t=60% t=80 % t=100 %

r=40% 0.3 0.38 0.71 0.91
r=60 % 0.39 0.66 0.86 1
r=80 % 0.48 0.7 0.88 1

r=100 % 0.51 0.74 0.89 1

t=40% t=60% t=80 % t=100 %

r=40% 0.23 0.28 0.35 0.52
r=60 % 0.25 0.43 0.46 0.86
r=80 % 0.39 0.51 0.71 0.88

r=100 % 0.49 0.66 0.74 0.94

Table 6.3: AvgCM measures of our bipartite SNN clustering (left) and of spectral
bipartite clustering (right) on synthetic data.

duce new SNN relevance measures revisited for this asymmetric context and show that

they can be used to select locally optimal bipartite clusters. By using synthetic data,

we compared our method to a the well-known bipartite spectral clustering [38]. We

demonstrated that our method is more robust against noisy and unstable K-NN.

This contribution is still prospective and we believe it possible to find better algorithms

for building optimal bipartite neighbourhoods for any item x. This would improve the

intention part of our bipartite cluster.
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Part III

Applications to visual content
structuring





Chapter 7

Structuring visual contents with
multi-source shared-neighbours
clustering

7.1 Why use multi-source shared neighbours cluster-
ing ?

Exploiting the relationships of items according to an ensemble of modalities is

very interesting : Two items can be closely related according to a specific source and

completely disconnected according to another source. By using a multi-source shared

neighbours representation, we can take advantage of these relationships on the same

time and not by combining different classifiers. Our proposed multi-source shared

neighbours clustering considers each modality as an oracle. These oracles are like a

black box producing for each item its K nearest neighbours according to the feature and

similarity measure of the oracle. The advantage of our multi-source SNN clustering

algorithm is that the only input needed is these lists of neighbours without the need

of knowing any information about the modality used. This point makes the clustering

very useful whatever the modality. The interpretation of the result is another advantage

of our clustering. By analysing the selected sources for each cluster, we can understand

why a group of items is put together. By this, we can determine which sources are the

mostly selected and which sources are discarded of the optimal selection of sources for

each cluster. The relevancy of sources is then determined and can be used as a priori

to eliminate or to keep it.

In the following section, we experiment our multi-source shared neighbours clustering

in different applications to show how it can be used to structure items by using the



100
Chapter 7. Structuring visual contents with multi-source shared-neighbours

clustering

available sources of information.

7.2 Tree leaves Experiments

7.2.1 Motivation

To enable the accurate description and the identification of a plant species, one of

the work of botanists for centuries is to observe and study the morphology of plants.

They typically aim at finding visual elements characteristic of a group of plants to

regroup them and separate them from other groups of plants at different levels of a

taxonomic hierarchy (species, genus, family). Once these morphological categories

are established, each species can be described as a composition of character states,

including some memberships to morphological categories. The main goal of this ex-

periment is to assist the construction of these characters and later to help building new

identification keys or methods (e.g a sketch (robot portrait) 1).

Discriminant botanical characters are generally difficult to define because they are

very diverse (Figure 7.1). Indeed, they may concern different organs or parts of the

plants: sometimes it is the bark that can be characteristic like the white trunk that is

very marked of a birch, or rather the appearance of flowers such as the huge flowers

of the Magnolias. These features can be sometimes very remarkable as for example

the constant number 4 petals for all species of the family Brassicaceae. However, in

some cases, the characteristic elements are much more difficult to be accessible for the

novice such as cutting hair in an oak leaf pubescent to distinguish from other species

of oak in the same form lobed leaf. In addition, when a group of botanist enters a

new flora, such as trees of Guyana, we cannot know in advance what is the number

and nature of morphological categories involved in the characterisation of these plants.

For example, it is not relevant to distinguish a range of categories of types of teeth of

leaf edges for a flora that is mostly not toothed edges. Note that botanists may miss

relevant morphological characters that are not yet formalized.

The biggest difficulty is related to the amount of data to be analysed. Our proposed

multi-source shared nearest neighbours clustering may reveal unsupervised classes

considered as homogeneous in a completely automatic way, thereby assisting the

botanists to identify and formalize the useful morphological categories to distinguish

species. By using different visual sources, we aim to take advantage from each modal-

ity and to combine them efficiently to produce clusters. We do not use a concatenation

1. http://idao.cirad.fr/home
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of features as done generally to cluster leaves but we look for homogeneous leaves

groups that share some morphological properties. Each cluster represents correlated

leaves thanks to an optimal subset of available sources.

7.2.2 Data and annotations

To illustrate the interest of our approach to this botanical problem, we were

interested in the study of tree leaves, common in France. Leaves have several

advantages to help identify a plant because they are often in large numbers on a plant

for a long period of years, they are easy to pick, and are often flat which allows to

acquire images in a controlled manner for instance with a scanner.

The advantage of studying the common trees of the French flora is that it has been

well described for several centuries, and the main morphological categories can be

used as ground truth for evaluating our method. Morphological attributes typically

affect the overall shape of the leaves (round, elliptical, ovoid ...) as the shape of a sub

part of the leaves (top, base, edges ...), or also the analysis of the rib, size, color,..,

[43]. The purpose of this experiment is to see if we are able to find automatically

the same categories established by botanists and this by unsupervised analysis of the

visual content of leaves scans. If this experiment is successful, then we can consider

replicating our approach on other flora, other organs.

The data used for this experiment comes from the PlantLeaves dataset [59], built

Figure 7.1: Example of categories sharing some morphological characters

collaboratively in the research project in computer-Botanical Pl@ntNet [5], and
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used in the plant identification task organized within the international competition

ImageCLEF2011. Initially, this dataset is dedicated to content-based identification

of plant species but we benefit here only from the provided data. Morphological

attributes of the leaves were actually not provided. We thus collaborate with some

botanists to describe the morphological attributes of each species.

This experiment focuses on a sub part of the base PlantLeaves, more precisely the

part containing only scans of leaves of 55 species and total number of 2228 images.

Scans of leaves were collected over two seasons, between June and September, in

2009 and 2010, thanks to the work of active contributors from Tela Botanica social

networks, which introduces a significant degree of morphological variability related to

the different collection sites, like whose contributors have scanned the leaves, related

to different devices, etc.

To assess the relevance of the results produced by our proposed method, we asked

professional botanists to establish a ground truth focusing on the morphological

aspects of the 55 species. They produce a state table of characters (0 or 1) under

different aspect of a leaf. For example, a leaf of Judea is simple, non-toothed margin

smooth, orbicular, not lobed, etc. The leaves of the same species may belong to

several sub categories, especially in the case of single sheets or rather it expresses a

range of possible states, even on the same tree such as leaves of laurel which leaves

are from elliptic shape to lanceolate shape. The hierarchical list of the morphological

aspects are described in the annexe Section 10.1.

7.2.3 Visual features

We use 5 different visual features to describe the scan of leaves, none of them

being specialised for plant leaves recognition. We actually want to demonstrate that

even without knowledge concerning the morphological attributes, we want to discover

if our multi-source SNN clustering is able to produce meaningful categories from a

botanical point of view.

Concretely, we used different types of local features:

– DIPOLE: refers to dissociated dipoles [83] around Harris points:It is mostly used

in near duplicate search applications and is robust to many image distortions

including partially affine transformation.

– SURF on Harris points: a successful state-of-the-art descriptor used in object

recognition [6]. The source code of SURF was provided by the OpenSURF
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library 2 on Harris point.

– SURF on SURF points: SURF is used for interest point detector and descriptor

(By using a Hessian matrix-based measure for the detector, and a distribution-

based for the descriptor).

– Differential invariant descriptor on Harris points: This feature is based on a

characterization of the points of interest based on the differential invariants of

Hilbert, with the color information. It involves the invariants first order and only

two invariants specific color to ensure the invariance in translation and in rotation

and a certain numerical stability [62].

– A concatenation of three standard histograms, usually used globally but used

here locally: EOH, Fourier and Hough [49]. The Hough feature is a 16 dimen-

sional histogram based on ideas inspired from the Hough transform and is used

to represent simple shapes in an image. The Fourier feature is a Fourier his-

togram used as a texture descriptor describing the distribution of the spectral

power density within the complex frequency plane. It can differentiate between

the low, middle and high frequencies and between different angles the salient

features have in a patch. Eoh feature is a 8 dimensional classical Edge Orien-

tation Histogram used for describing shapes in images and gives here the distri-

bution of gradients on 8 directions in a patch. They are extracted around each

Harris point from an image patch oriented according to the principal orientation

and scaled according to the resolution at which the Harris corner was detected.

These features are computed in a fixed window size 65 centred with respect to

interest points extracted using the Harris detector.

7.2.4 Matching schema and SNN parameters

Once the candidate features have been matched to their similar features in the

database, we perform a geometric matching between the candidate image and the re-

trieved images. The parameters of a geometric transformation model are estimated

for each retrieved image and the final similarity measure is computed by counting the

number of matches that respect this model. The choice of the model characterizes

the tolerated transformations. In this experiment, we considered resize, rotation, and

translation for the spatial transformations. The parameters of this model are estimated

for each retrieved image thanks to a random sample consensus algorithm (RANSAC

[52]). Concerning the SNN clustering parameters, we used as maximum overlap be-

2. http://www.chrisevansdev.com/computer-vision-opensurf.html
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tween clusters θOverlap = 20% to have the more disjoint clusters representing the more

representative categories in the base.

7.2.5 Results

The visual result 7.2 represent the 14 resulting clusters formed automatically with

our clustering method. We show some scans of leaves in each cluster and we link them

to the categories of ground truth. In green are indicated the states identified in the

ground truth. In red, we suggested that states were not expressed in the ground truth

in the goal to offer which would be visually remarkable and that would distinguish the

clusters C11, C10, C0 and C4.

Some clusters contain many species, other single species. One can note a certain

homogeneity at a first glance to each cluster. The organization as hierarchical tree

is not computed automatically by our method but the one produced by the botanists

themselves. We provide it only to show that the clusters produced by our method

correspond to leaf-nodes of this tree.

It is important to note that all images of a cluster do not meet 100% of the indicated

state, the majority state is used. For example, the cluster number 4 (C4) contains 13

composed leaves and 255 simple leaves, which allows us to associate this cluster to the

branch simple leaves in the visualization of results.

It was interesting groupings of species: maple leaf lobes are associated with the plane,

which is quite consistent in terms of botany (a species of maple acer also called pseudo-

Platanus, an another Acer platanoides). The morphological attribute trees for the clus-

ter C4 and C2 are represented respectively in 7.3 and 7.4.

This experiment allows us to advance the interests of our clustering method for multi-

modal analysis of morphological categories of plants. We have shown that by the

analysis of multi-modal proximities of the visual content, we can find by totally un-

supervised and fully automatic way the categories formalized by botanists gradually

over the centuries.

During the clustering, each cluster selects the optimal combination of sources. By

analysing the selected sources for each cluster, we discover the following result:

– The source 1 ( the DIPOLE feature ) is selected 13 times.

– The source 2 ( the SURF feature on Harris points ) is selected 14 times.

– The source 3 ( the SURF feature on SURF points ) is selected 14 times.

– The source 4 ( the Differential invariant descriptor on Harris points ) is selected

4 times.
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Figure 7.2: Hierarchical tree organization of the clusters produced by our SNN clus-
tering method

– The source 5 ( the concatenation of three standard histograms ) is selected 14

times.

We can remark that the source 4 is selected only 4 times which is very low compared

to the rest of sources. Two causes are possible :

– the source 4 is a redundant source and selecting it adds nothing to the cluster.

The source is then ignored.

– the source 4 is irrelevant when is combined with the other sources and selecting

it decreases the quality of the cluster. The source is discarded.

The approach requires additional validation of a larger amount of data, including

more species in the goal of producing a finer division of the large amount of existing

morphological categories. Ultimately, this approach could be integrated into a helper



106
Chapter 7. Structuring visual contents with multi-source shared-neighbours

clustering

application to the analysis and into the establishment of morphological categories of

flora, including the flora being found in the tropics where a large number of species

remains to discover.

A second perspective would be to integrate this clustering method in an identification

system of species. The idea is to build as many binary classifiers as there are clusters

estimated by the clustering method. An image to be identified would be associated

with a set of outcomes. Afterwards each classifier measures the membership of the

image to the morphological categories. The following results could then be exploited

to develop a list of species most likely, those sharing the greatest number of similar

morphological categories.
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Figure 7.3: This cluster brought together mostly these species : Celtis australis
species(54), Corylus avellana species(53), Castanea sativa species(44), Carpinus be-
tulus species(33), Betula pendula species(14) because they shared essentially these
morphological attributes ( simple, not lobed, toothed, serrulated, apex accumulate, not
crenellated).
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Figure 7.4: This cluster brought together mostly these species : Olea europaea species
(131), Nerium oleander species (68), Pittosporum tobira (49) because they shared es-
sentially these morphological attributes (simple, not lobed, non-toothed smoothed, lin-
eare to oboval).

7.3 Multi-modal search result clustering

In this experiment, we suppose that a multi-modal search engine has m search

services to which we can submit query objects, without any knowledge on underlying

methods. The predominant method for image search results browsing is ranking-based

list presentation. Due to the unsatisfactory performance of current ranking algorithm,

it is time-consuming process for users to find images of interest in the returned garbage

of images. Images can be re-organised and automatically structured into different clus-

ters and presented to the user. In this manner, user is allowed to view the search results
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through a few clusters rather than mixed images. Such re-organisation is very effective

for browsing the search results. In the multi-modal case, images have a lot of proper-

ties which are quite different from a source of information to another. The goal is to

benefit from all available sources of information which helps to have more meaningful

information concerning the images. By considering all search services (information

sources) as simple oracles returning ranked lists of relevant objects, we can do a multi-

modal analysis and clustering especially towards exploiting the synergy between the

various media including text and visual information or between any other sources of

information.

Clustering approaches applied on different features have been studied severely before

but the originality of our work is the use of the shared neighbourhood clustering that

presents a lot of advantages (see Section 2.4.2) compared to the other clustering meth-

ods in a multi-source case where all the sources of information are tested with the

intention of selecting the optimal combination of sources for each cluster. All result-

ing clusters have not necessarily contrary to other previous work the same selected

sources. Figure 7.5 is an illustration of a multi-modal search clustering using only two

sources of information : visual and textual services.

Because it is difficult to have ground truth on real search engine, we simulate the

multi-modal clustering on the Wikipedia image dataset of ImageClef 2009 3. Initially,

this dataset is dedicated to multi-modal retrieval evaluations but we benefit here from

the provided annotations to build a text-image search results clustering task.

Among the full 150K images dataset, we keep only the images that have been effec-

tively annotated during the pooling procedure, i.e the images that have been manually

controlled as positive for at least one of the 44 query topics. The resulting dataset is

composed of 1582 images categorized in 44 clusters. Each image is associated with

textual information extracted from the initial Wikipedia web page (title, description,

etc).

We used two information sources, one textual information source based on the TF/IDF

similarity measure of PF/Tijah system [68]. One visual information source based on 5

global visual features (HSV Histogram [49], Hough histogram [49], Fourier histogram

[49], edge orientation histogram [49] and probability weighted RGB histogram) and

L1 metric as similarity measure.

We used the same F1 and AvgPurity metric as described before. Results are given

in Table 7.1. Using visual source, the clustering return more relevant categories than

3. http://www.imageclef.org/2009/wiki
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Figure 7.5: Illustration of a multi-modal search result clustering using visual and tex-
tual sources of information.

using textual source but clusters are less coherent. However, by combining the two

modalities, the F1 measure and the average purity increase. The source selection step

during the clustering process makes the results better than each single source. Clus-

ters produced by selecting both of visual and textual sources are more semantically

and visually coherent. The remaining clusters that select the visual source are visually

coherent but not semantically while clusters using textual source are visually hetero-

geneous but semantically relevant.

Figure 7.6 is a part of the clustering result (the first four clusters) ranked in decreasing

order quality. The oracle selection step opt for the optimal sources for every cluster.

As it is shown, the first cluster (a) is semantically and visually coherent. For the second

cluster (b), the textual source is selected because it is considered better than the combi-

nation with the visual source. Images are visually different but refer all to the keyword

“Stamp”. However, the third cluster (c) is visually consistent by semantically have a

little sense. In the last cluster (d), images refer to the word “Dog” but are visually very
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heterogeneous.

Visual and Textual sources Textual source Visual source

F1 0.63 0.30 0.62
AvgPurity 0.55 0.51 0.35

Table 7.1: F1 and AvgPurity measures for the Sub set of Wikipedia ImageClef 2009.

7.4 Visual object mining

Keyword queries are usually ambiguous especially when they are short. This am-

biguity often leads to unsatisfying search results. Many queries like “apple” covers

several different topics: fruit, computer, smart-phone,and so on. In some cases, users

prefers to have a list of the different categories returned in the search result than a

mixed images with divers categories. The goal in this application is not to provide all

clusters of the search results but a summarized list of the different topics of the query.

Users can after easily figure out what they are exactly searching by selecting the target

topic. Showing image from the target category in which the user is truly interested is

much more effective and efficient than returning all clusters or all mixed images.

We performed a visual object mining experiment based on Caltech256 dataset. Ini-

tially, this dataset was dedicated to supervised objects classification so that unsuper-

vised clustering over the 256 classes provides too weak results for consistent analysis.

We thus used this dataset in a different way to evaluate visual objects discovery in small

image sets. This experiment is a simulation of a visual object mining and the goal is to

evaluate the ability of our method to retrieve the categories. We collected 5 subsets of

the Caltech256 dataset. Each subset is constructed from 10 random categories and 20

random images selected from the whole database. Each subset is typically like images

that we could get from a previous textual search. The size of each subset is respectively

1792, 1581, 1221, 2098 and 1390 images. We used the same 5 global visual features as

described in the previous experiment. Table 7.2 shows the performance comparison of

our method and each visual feature. By combining the global visual features together,

the F1 measure is better than that of each source. The “Fourier Histogram” performs

better than the others mono-sources but remains lower than multi-source case.

The average selection of each visual global feature is reported in Table 7.3. As it is

shown, the “HSV Histogram feature” is the most selected feature on average in this

experiment. However, the “Prob-weighted Histogram RGB” feature is never selected
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(a) Cluster Number 1: Oracle selection = Textual and visual sources ,
SSI(C1,F)= 328.936

(b) Cluster Number 2: Oracle selection = Textual source

(c) Cluster Number 3: Oracle selection = visual source

(d) Cluster Number 4: Oracle selection = Textual source

Figure 7.6: First four Clusters of the Wikipedia’s subset clustering using visual and
textual sources .
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when it is combined with all the visual features because it provides no more relevance

to the clusters.

DB1 DB2 DB3 DB4 DB5 Avg

Multi-source 0.38 0.37 0.56 0.27 0.57 0.43
HSV Histogram 0.36 0.21 0.42 0.13 0.53 0.33

Hough Histogram 0.36 0.24 0.31 0.22 0.47 0.32
Fourier Histogram 0.35 0.34 0.54 0.24 0.50 0.39

Edge Orientation Histogram 0.35 0.24 0.35 0.15 0.54 0.32
Prob-weighted Histogram RGB 0.36 0.21 0.42 0.13 0.46 0.31

Table 7.2: Clustering results on F1 measure for the Sub sets of Caltech256.

Visual global feature Average selection

HSV Histogram 0.56
Hough Histogram 0.26
Fourier Histogram 0.14

Edge Orientation Histogram 0.17
Prob-weighted Histogram RGB 0

Table 7.3: Average selection of each global visual feature in the Caltech Experiment.

7.5 Image clustering based on multiple randomized vi-
sual subspaces

7.5.1 Proposed method

Recently, researchers have begun paying attention to combine a set of individual

classifiers in order to improve the overall classification accuracy. An ensemble of clas-

sifiers must be both diverse and accurate in order to improve the accuracy of the whole.

Most of them use a simple vote from the output of each classifier to decide the final

result. However, in our case, we combine the lists of K-NN and apply our single clas-

sifier once.

The idea of our method is to determine multiple K-NN lists. Every K nearest neigh-

bours list is based on a random subset features selection. Then our oracle selection

step selects the best K nearest neighbours among the available list of K-NN and thanks

to the reshaping operation increases the accuracy of the class prediction.

We select the random subset of features by sampling from the original set of features.

Each of the nearest neighbours list is computed using the same number of features,

has access to all the patterns in the original training set but only to a random subset of
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features.

Selecting different feature subsets is an attempt to make different and hopefully un-

correlated errors. However, there is no guarantee that using different features sets will

decorrelate the error because in high dimensional data, many of the dimensions are of-

ten irrelevant. These irrelevant dimensions can confuse clustering algorithms by hiding

clusters in noisy data but we think that our oracle selection step will make irrelevant

sources less selected than relevant ones which increase cluster’s quality.

In contrast to other dimensionality reduction techniques, like those based on projection

(e.g. principal component analysis) or compression (e.g. using information theory),

feature selection techniques do not alter the original representation of the variables,

but merely select a subset of them. Thus, they preserve the original semantics of the

variables, hence, offering the advantage of interpretation by a domain expert.

By using multiple subsets of features, our clustering approach tries to find clusters that

exist in multiple possibly overlapping subspaces. The corresponding sources of clus-

ters would indicate the key concept of the domain (keywords that are relevant for each

cluster). This information can be very useful for the user and help him to have an idea

of the cluster’s category.

Generate K-NN on a high-dimensional feature tends to be computationally complex.

For this reason, we search for a multiple K-NN on a subset of features instead of

searching the K-NN on all the features. A high-dimensional feature like Bag-Of-

Features allows to represent every image as a set of visual words, hence making it

possible to describe them with a weighted vector. We choose this high-dimensional

feature to experiment our method. The oracle selection and reshaping steps combine

neighbours from multiple subset features to build the best K-NN in order to increase

the quality of the candidate cluster. The redundant clusters elimination is then applied

on the final K-NN lists to produce final clusters. Each cluster is constructed according

to its optimal subset of features.

7.5.2 Experiment

We tested our proposed multiple random subset features clustering on a small sub-

set of the large hand-labelled ImageNet dataset. ImageNet is an image dataset orga-

nized according to the WordNet hierarchy. Each meaningful concept in WordNet, is

described by multiple words or word phrases. It is used on “PASCAL Visual Object

Classes Challenge 2010” (VOC2010) 4.

4. http://www.image-net.org/challenges/LSVRC/2010/index
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We use bag of visual words as features for our experiment. We extract 30 random

subset features of the bag-of-words. Each subspace represents 10% of the full space.

We use a sampling with replacement (a feature can be selected more than once). We

then compute the k-nearest neighbours of each image according to the corresponding

subset of features. Each K-NN according to a random subset feature is considered as

a source of information.

We extract from the validation database of ImageNet (that consists of 200,000 pho-

tographs, collected from flickr and other search engines, hand labelled with the pres-

ence or absence of 1000 object categories) 500 items clustered in 10 categories

Table 7.4 reports the clustering results using on the one hand the full space and on

the other hand a multiple random subset features varying from 2 to 30 sources. The

results demonstrate that using multiple subset features is better than using the whole

high dimensional feature. By using a number of sources at least equal to nearly 4

sources, the F1 measure, the average purity and the cosine measure exceed those of

full space. As expected the performance of our method greatly increase by combining

different source of information even if they are produced from the same feature. The

reshaping step improves the quality of clusters by adding other elements from other

sources. With 30 subspaces, The F1 measure, the average purity measure and the Av-

erage Cosine (F1=0.66, AvgPurity=0.26, AvgCosine = 0.33) increase and particularly

the F1 measure was approximately doubled compared respectively to F1 measure of

the full space (F1=0.30).

F1 AvgPurity AvgCosine Measure

Full Space 0.30 0.23 0.20
2 sources 0.17 0.17 0.16
4 sources 0.32 0.19 0.21
6 sources 0.54 0.21 0.23
8 sources 0.53 0.20 0.25

10 sources 0.66 0.21 0.28
20 sources 0.66 0.23 0.29
30 sources 0.66 0.26 0.33

Table 7.4: Multiple Random Subset features clustering result on ImageNet subset
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Chapter 8

Structuring visual content with
bipartite shared-neighbours clustering

8.1 Visual objects Discovery and Object-based Visual
Query Suggestion

8.1.1 Introduction

State-of-the-art visual search systems allow to retrieve efficiently small rigid ob-

jects in very large datasets. They are usually based on the query-by-window paradigm:

a user selects any image region containing an object of interest and the system returns

a ranked list of images that are likely to contain other instances of the query object.

User’s perception of these tools is however affected by the fact that many submitted

queries actually return nothing or only junk results (complex non-rigid objects, higher-

level visual concepts, etc).

In this chapter, we address the problem of suggesting only the object’s queries that

actually contain relevant matches in the dataset. This requires to first discover accu-

rate object’s clusters in the dataset (as an off-line process); and then to select the most

relevant objects according to user’s intent (as an on-line process). We therefore intro-

duce a new object’s instances clustering framework based on a major contribution: a

bipartite shared-neighbours clustering algorithm that is used to gather object’s seeds

discovered by matching adaptive and weighted sampling. We study a bipartite graph in

the context of object’s discovery. Experiments show that this new method outperforms

state-of-the-art object mining and retrieval results on the Oxford Building dataset. We

finally describe two object-based visual query suggestion scenarios using the proposed

framework and show examples of suggested object queries.
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8.1.2 New visual query suggestion paradigm

Large-scale object retrieval systems have demonstrated impressive performance in

the last few years. The underlying methods, based on local visual features and effi-

cient indexing models, can retrieve accurately small rigid objects such as logos, build-

ings or manufactured objects, under varying view pose and illumination conditions

[131, 130, 80, 99, 132, 25, 84]. Therefore online object retrieval is now achievable up

to 1 M images with a state-of-the-art computer [80].

From the usage point of view, these methods are usually combined with a query-by-

window search paradigm. The user can freely select a region of interest in any image,

and the system returns a ranked list of images that are the most likely to contain an

instance of the targeted object of interest [132]. This paradigm has however several

limitations related to user’s perception: (i) When no (or very few) other instances of

the query object exist in the dataset, the system mostly returns false positives making

the user uncomfortable with the results. Indeed, he does not know if there are actually

no other instances of the query object or if the system did not work correctly. (ii) When

the user selects a deformable or complex object that the system is actually not able to

retrieve, the system mostly returns false positives as well. As the user can freely select

any object, this appears very frequently leaving the user with a bad impression of the

effectiveness of the tool.

The second remark is even more critical if the user believes that the system can re-

trieve any semantically similar objects (e.g. object categories or visual concepts such

as cats or cars). We do not argue here that such queries will never be solved effectively

in the future. We just emphasize that bridging the gap between user’s understanding

of the system and the actual capabilities of the underlying tools is essential to make

it successful in a real world search engine. A first possible solution to address these

limitations would be to use some adaptive thresholding method, allowing only rele-

vant results to be filtered, and possibly returning no results if none are found. The a

contrario method of [84], for instance, allows the actual false alarm rate of rigid object

instances retrieval to be controlled very accurately. But still, as the user can select any

region of interest, the system might return no results in many cases and leave the user

disappointed.

We propose to solve these user perception issues by a new visual query suggestion

paradigm. Rather than letting the user select any region of interest, the system will

suggest only visual query regions that actually contain relevant matches in the dataset.

By mining offline object instances in the dataset, it is indeed possible to suggest to
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the user only query objects having at least a prefixed number of instances in the col-

lection. Figure 8.1 illustrates such suggested objects in several images. When a user

clicks on a highlighted region, the system returns only the images containing other

object instances of the same discovered cluster. From a user perception point of view,

the proposed paradigm is very different to the window query paradigm. Indeed, since

all suggested objects mostly return correct results, the user might rather perceive them

as visual links (or hyper-visual links by analogy to hypertext links). To the best of

our knowledge, this is the first work to detail a method for object-based visual query

suggestion. Unlike existing approaches, the links produced by our method are not sim-

ilarity links between images, but rather links between automatically localized images

containing instances of the same rigid object. These object-based visual links can be

used in many different retrieval paradigms. In this paper, we focus on two visual query

suggestion scenarios showing the potential of the proposed method :

Mouse-over visual objects suggestion: when the user moves or hovers the mouse

cursor over a particular image, the system suggests object queries by highlighting the

object instances present in the image. The suggested objects do not depend on the

preliminary textual query but are guaranteed to match some other instances in the col-

lection (when the user clicks on one of them).

Text-aware visual objects suggestion: After a user submits a text query, the most

frequent visual items discovered in the result list are suggested as new object-based

visual queries (typically displayed as some clickable thumbnails on top of the result

GUI). Images containing other instances of the suggested object are returned if the

user clicks one.

Simple as it seems to be, moving from the free window-query paradigm to the object’s

suggestion paradigm is not trivial. Indeed, it first requires to discover accurate object’s

clusters in the dataset (typically as an off-line process), without any supervision and

without knowledge on the location and the extent of the objects.

Therefore, this chapter introduces a new object’s instances clustering framework based

on two main steps:

Object’s seeds discovery with adaptive weighted sampling: this step, proposed in

[102], allows to discover small and rigid repeated patterns in the collection by ran-

domly querying small image patches with an efficient geometric matching. In the next

section 8.1.4, we summarize the work done by [102] and we use their result as input

for our experimentations.

Bipartite shared-neighbours clustering: This proposed algorithm allows building

full object’s models by clustering the previously discovered object’s seeds (Section
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8.1.4).

Object’s clusters will be used for the object-based visual query suggestion and for the

object retrieval. Note that shared neighbours clustering methods were never been stud-

ied before in the case of bipartite graph and never been applied to object’s discovery

either.

Figure 8.1: Discovered visual objects are displayed as links on which the user clicks
to focus the retrieval on this specific object represented by a link-object.

8.1.3 Proposed visual query suggestion

Visual Query Suggestion was originally suggested in [184] by extension to Textual

Query Suggestion methods that are now used in most existing search engines. The

claim of the authors was that text-based predictive suggestion methods might some-

times not accurately express the intent of the users. By adding to the textual sug-

gestion a set of representative pictures, the user can express his specific search intent

more clearly. Their method was mainly based on global visual similarities using a

joint text-image re-ranking for the retrieval. Our method differs in two main points:

(i) we suggest purely visual queries (although the suggested queries can be computed

according to the results of a textual query) (ii) the suggested visual queries represent

object(s) in images and not global visual concepts associated to each image.

Beyond large-scale object retrieval methods discussed in the introduction [131, 130,

80, 99, 132, 25, 84], our work is more related to object-based image clustering and

unsupervised object mining techniques [24, 133, 134, 163]. Object-based image clus-
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tering attempts to cluster images that contain instances of the same object. Our ob-

jective differs in that we do not attempt to build image clusters but rather clusters of

image regions containing instances of the same object. The problem to be solved is

more challenging since the image regions to be clustered are not predefined entities (as

images are). Therefore, image regions need to be segmented and clustered at the same

time. This is basically what object mining methods are aimed at.

Many objects discovery method rely on graph-based clustering methods. They usually

include a preliminary step allowing to discover object’s seeds, i.e. spatially stable im-

age regions in the collection. The main objective of this step is to build a matching

graph that will be processed afterwards to cluster images or discover object instances.

Similarly to some works using graph-based object mining mentioned in Section 3.3,

our framework rely on two main steps: (i) building a matching graph by mining spa-

tially consistent object seeds by using the method of [102] and (ii) post-processing the

graph to build clusters of object’s instances. But contrary to these methods, we for-

mulate the problem as a bipartite graph clustering issue. Images are indeed considered

as a first set of nodes, while object’s seeds form a second disjoint one. Next section

details the method used to discover object seeds and build the matching graph.

8.1.4 Building a matching graph and mining visual object seeds

As stated before, state-of-the-art large-scale object retrieval systems usually com-

bine efficient indexing models with a spatial verification re-ranking stage to improve

query performance [84, 130]. In the method that we used [102], authors suggested to

use a such accurate two-stage matching strategy for building the input matching graph.

The problem then rather becomes a sampling issue: how to effectively and efficiently

select relevant query regions while minimizing the number of tentative probes. For

this, they introduced an adaptive weighted sampling strategy.

Sampling is a statistical paradigm concerned with the selection of a subset of indi-

vidual observations within a population of objects intended to yield some knowledge

about the population without surveying it entirely. If all items have the same proba-

bility to be selected, the problem is known as uniform random sampling. In weighted

sampling methods [123], the items might be weighted individually and the probabil-

ity of each item to be selected is determined by its relative weight. In conventional

sampling designs, either uniform or weighted, the selection for a sampling unit does

not depend on the observations made during previous surveys. On the other hand,

Adaptive sampling [152] is an alternative strategy aiming at selecting more relevant
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sampling regions based on the results observed during the previous surveys.

The object seeds discovery method that we used is composed of three main stages

processed at each iteration: Adaptive Sampling of a query image region, Search of the

selected local query region and Decision of whether this query region might be con-

sidered as an object seed in the final output matching graph. The full algorithm repeats

these 3 steps T times until a fixed number of seeds has been found.

More formally, let Ω be an input dataset of N images Ii, i ∈ 1, ...,N.

Each image Ii is represented by a set of Ni local visual features fi, j (typically SIFT

[108]) localized by their position Pi, j. N f = ∑N
i=1 Ni is the total number of features fi, j.

Each local feature fi, j is associated with a fixed candidate query region Ri, j defined as

the bounding box centred around Pi, j, with height Hi, j and width Wi, j.

Finally, after T tentative probes, the algorithm outputs a set S of |S| ≤ T seeds S j. Each

seed corresponds to a spatially verified frequent visual pattern. A seed is associated

with a query image region R j
q and a set of Mj matching regions R j

m, m ∈ 1, ...,Mj.

The more the number of tentative probes is, the more a frequent object is likely to be

considered as a seed. As this step of building matching graph is not our contribution,

we will not detail more. See [102] for further explanation.

Although the discovered seeds correspond to consistent repeated patterns in the

collection, they can still not be considered as full objects: (i) by construction, a seed

usually covers only a subpart of an object instance with a loose localization, (ii) fur-

thermore, due to the imperfect recall of the retrieval, a discovered seed matches only a

subset of all instances in the dataset, (iii) finally, the more frequent an object is in the

collection, the more redundant the discovered seeds are. Building accurate and com-

plete object’s model therefore requires to group all seeds belonging to the same object.

This cannot be done according to the visual content of the seeds, since two seeds with

distinct visual contents might still be two subparts of the same object. A more intuitive

alternative is to group seeds that are matching correlated contents in the dataset, which

can be formulated as a bipartite clustering problem. Figure 8.2 illustrates our proposed

method to group seeds representing the same object.

Let us denote as G = (X ;E) = (I,S;E) the bipartite matching graph resulting from the

object’s seeds discovery, with

I = {Ii}i∈[1,N]

the vertex set representing the images of the collection,

S =
{

S j
}

j∈[1,|S|]
the vertex set of the discovered seeds, X = I ∪ S and I ∩ S = /0. Each directed edge
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S1 S2 S3 S4 S5 S6 S7 S8 S9 …

I1 0.96 0 0.14 0.67 0.45 0 0.78 0 0.58 ...

I2 0 0.5 0.34 0 0.26 0.79 0.63 0.24 0 …

I3 0.19 0.24 0 0.56 0 0 0 0.82 0.74 ...

I4 0.41 0 0.52 0.53 0 0.75 0.69 0 0.21 ...

I5 0.33 0.09 0 0.39 0 0.44 0 0.22 0 ...

I6 0 0.66 0 0 0.75 0 0.67 0 0.9 ...

… … … … … … … … … ... ...

… … … … … … … … … … ...

Object seeds
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I2 0 0.5 0.34 0 0.26 0.79 0.63 0.24 0 …

I3 0.19 0.24 0 0.56 0 0 0 0.82 0.74 ...

I4 0.41 0 0.52 0.53 0 0.75 0.69 0 0.21 ...

I5 0.33 0.09 0 0.39 0 0.44 0 0.22 0 ...

I6 0 0.66 0 0 0.75 0 0.67 0 0.9 ...
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Figure 8.2: Illustration of the proposed method to suggest object-based visual queries
in the image I4. S2,S5 and S9 belong to the cluster representig the same object by using
the bipartite clustering. S3,S6 and S8 represent seeds belonging to the second object in
the image I4.

ei, j ∈ E has a starting point in S, an endpoint in I and a weight wi, j corresponding to

the matching score returned by the a contrario normalization method (wi, j = 0 means

that no edge connects seeds S j to image Ii). The advantage of this bipartite represen-

tation it to allow formulating our seeds clustering objective as a co-clustering problem

(or dual subset clustering [178]).

We indeed aim to find object clusters On = (Sn, In) with Sn ⊂ S being the subset of

seeds modelling a given object and In ⊂ I being the subset of images containing in-
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stances of the object. An ideal object cluster is the one whose seeds are matching on

the same images. It is important to notice the advantage over previous object mining

methods using a single image-oriented matching graph [134, 24, 4, 63]: a given image

can be accurately affected to several object clusters (when it contains instances of dis-

tinct objects). Furthermore, each object cluster is composed of a unique set of seeds

associated with localized matching regions. As discussed in the next subsection, this

will be useful for display purposes within our visual query suggestion scenarios.

Solving the bipartite clustering problem is not a trivial task. Some previous works

proposed using spectral based techniques in the context of text documents clustering

[177, 178]. These methods are useful to partition bipartite graphs in a prefixed number

of balanced clusters but are not appropriated to our problem. The number of objects

to be discovered as well as the number of seeds to be grouped within each object can

indeed be highly variable. In addition, the results are very sensitive to the parameters

used by these methods. This is why we proposed to use our new bipartite clustering

algorithm described in Chapter 6 and inspired by Shared Nearest Neighbors (SNN)

clustering methods [73, 65, 139].

The principle of our method as well as SNN algorithms in general is to group items not

by virtue of their pairwise similarity but by the degree to which their neighbourhoods

resemble one another. They are well known to overcome several shortcomings of

classical clustering methods, notably high-dimensionality and similarity metrics limi-

tation.

8.1.5 Object-based visual query suggestion

For each of the two visual query suggestion paradigms described in the introduc-

tion, we answer the following questions: What do we suggest? How do we display the

suggestions? What do we return when the user clicks on a suggested object?

– Mouseover visual objects suggestion : For any image I j ∈ I, we suggest

queries. The number of these queries is equal to the number of clusters having

I j in their dual image set. Each cluster is represented by a rectangular window

computed from the set of all regions that have been matched by the seeds of

the cluster. Taking the bounding box of all matching regions would however be

affected by outlier matches. We rather keep the bounding box of all pixels that

are covered by at least 2 matching regions, as illustrated in Figure 8.3. When

the user clicks on one of the suggested objects, we return a ranked list of images

according to their intersection to the selected object (i.e. the number of seeds
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matching with it or the sum of the corresponding matching weights).

Figure 8.3: Steps to obtain the suggested visual object on an image from BelgaLogos:
i) selecting the bounding box, ii) intersection of bounding box , iii) keeping only the
region that have been covered by at least two bounding box. The final result is the
suggested object.

– Text-aware visual objects suggestion: We suppose that an external text-based

search did already return a subset Ix ⊂ I of images. We then select as suggested

query objects the top M clusters of the dataset having the greatest intersection

between the images in their dual representation and the text-based result list (i.e.

the clusters representing the most frequent objects in the result list). Each sug-

gested query object is displayed at the top of the search interface by a single

representative thumbnail. This is done by first seeking the image that has the

most intersection with the cluster (by mean of the number of seeds matching it)

and then by cropping the object of interest in this image with the same procedure

as the one described in the previous mouseover scenario. An illustration of re-

sulting visual queries is given in Figure 8.4 for Oxford Buildings dataset. When

the user clicks on one of the suggested object, we return as before a ranked list

of images according to their intersection to the object.

8.2 Experiments

8.2.1 Experimental setup

Our method is demonstrated on three databases:

– Oxford Buildings: This dataset is described in 1 and consists of 5062 images of

buildings from Oxford and miscellaneous images all retrieved from Flicker. A

ground-truth is provided for 55 queries (11 different landmarks in Oxford). We

describe the corpus with 30 million SIFT [108] features.

1. http://www.robots.ox.ac.uk/ vgg/data/oxbuildings/
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Figure 8.4: Some object clusters discovered in the Oxford Buildings Dataset. The top
4 rows clusters are in the ground truth. The fifth first columns are seeds examples of
the cluster and the last column represents the suggested query object of each cluster.

– BelgaLogos: This dataset 2 is composed of 10,000 images. The images have

been manually annotated for 26 logos. A given image can contain one or several

2. http://www-rocq.inria.fr/imedia/belga-logo.html
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logos or no logo at all. We described this corpus with 38 millions of SIFT.

– GoogleCrawl: To illustrate the text-aware visual objects suggestion paradigm,

we created a small dataset crawled from Google Image search engine using the

five following queries: Metallica Concert, Green Peace, Disney, Khadafi, and

World Cup. We described this dataset with 12 millions of SIFT.

For all experiments, the number of | S | of seeds was set to 5K. Note that this vocabulary

size is strongly lower than the sizes used by common bag-of-visual-word methods

applied on Oxford Buildings dataset.

8.2.2 Clustering Performance evaluation

We first compared our clustering method to state-of-the-art objects mining methods

[134, 24] on Oxford Buildings dataset. We used the same evaluation protocol as [134]

and [24]: for each landmark, we found the cluster containing the most positive (Good

and OK) images of that landmark and computed the fraction of positive ground truth

images in this cluster.

Table 8.1 summarizes the results of our method and reproduces the results reported by

Philbin et al. [134] and Chum et al. [24]. It shows that our method gives on average

better performances than these two methods. It is clear that the overall gain of our

method relies mainly on the two categories “Ashmolean” and “Magdalen” where other

methods do not achieve good results. For “Ashmolean”, we scored a MAP of 0.9095

which is high compared to the best score (MAP= 0.68) of both Philbin et al. [134] and

Chum et al. [24]. For “Magdalen” category, we scored a MAP of 0.7634 which is 3

times the score found by the best result (MAP =0.204 ) of both compared methods.

The worst result we found is equal to 0.5847 for the “Balliol” category while the worst

one for Philbin et al. [134] is equal to 0.204 and for Chum et al. [24] is equal to 0.0556

for the same category “Magdalen”.

This can be explained by the fact that these two methods combine bag-of-words in-

dexing models with spatial verification re-ranking stage to improve query performance

which gives a bad result if the initial results returned by the bag-of-words method are

very bad while in our case we discover spatially verified visual words. The geometric

consistency of the features points between patches make them consistent. So even if

the building takes a small part in the image, by using small consistent objects, we can

have cluster images that can be globally different but all containing the same object.
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GroundTruth Object Philbin et al. [134] Chum et al. [24] Our Proposed Method

All Souls 0.937 0.9744 0.9187
Ashmolean 0.627 0.68 0.9095
Balliol 0.333 0.3333 0.5847
Bodleian 0.612 0.9583 0.663
Christ Church 0.676 0.8974 0.599
Cornmarket 0.651 0.6667 0.7449
Heterford 0.705 0.9630 0.957
Keble 0.937 0.8571 1
Magdalen 0.204 0.0556 0.7634
Pitt Rivers 1 1 1
RadCliffe Camera 0.973 0.9864 0.9087

Average 0.696 0.7611 0.8226

Table 8.1: A comparison of the MAP clustering’s results for the 5K Oxford Buildings
dataset.

8.2.3 Retrieval performance evaluation

To evaluate the accuracy of our visual query suggestion method in terms of retrieval

performances, we computed different MAP on Oxford Buildings dataset. We first

evaluated the retrieval only for the common 55 queries, provided with their bounding

boxes. We therefore select only the object’s clusters discovered by our method that

have one of the 55 image queries in their dual image set (as if the mouseover query

suggestion scenario was applied to these images). In the first case, we considered as

clicked queries only the object’s clusters having a match within the bounding box. We

then returned the list of matching images sorted by decreasing order of the matching

score (i.e. the sum of weights wi, j over all seeds belonging to the selected clusters).

Detailed results for each landmark are presented in Table 8.2. We also give in Table

8.3 the MAP over all queries compared to the retrieval results reported in Jegou et al.

[80] and Philbin [130]. The results show that our method outperforms both methods.

To demonstrate that our proposed method is not only good for the common 55

queries but for any image, we then evaluated the retrieval in all images annotated to 1 in

the groundtruth. Since we do not have bounding box with these images, we considered

as clicked queries all objects suggested in these images. We also did the same for the

55 common queries for fair comparison. Results are reported in Table 8.4. They show

that the MAP remains very good whereas some of the images belonging to the full

groundtruth contain very small instances of the building, more partial views and more
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GroundTruth Object MAP

All Souls 0.967
Ashmolean 0.9045

Balliol 0.5594
Bodleian 0.922

Christ Church 0.8821
Cornmarket 0.7449
Heterford 0.9631

Keble 0.8736
Magdalen 0.7603
Pitt Rivers 1

RadCliffe Camera 0.9172

Average 0.8631

Table 8.2: Detailed MAP for the 12 landmarks of Oxford Buildings

Jegou [80] Philbin [134] Our method

MAP 0.74 0.82 0.86

Table 8.3: A comparison of the MAP retrieval’s results for the 5K Oxford.

complex view points. That is important in the sense that it proves the feasibility of our

new object’s suggestion paradigm. Whatever the object and the image in which we

suggest a query, the returned results will be as good as if the user had selected himself

one of the 55 windows queries.

55 queries (with
bounding box)

55 queries
(without

bounding box)

All images in
ground truth

MAP 0.86 0.84 0.836

Table 8.4: MAP retrieval’s results of the 55 queries compared to all images annotated
to 1 of the ground truth. This means that whatever the object and the image in which
we suggest a query, the returned results will be as good as if the user had selected
himself one of the 55 windows queries

We finally computed some statistics on the produced clusters to evaluate the com-

pleteness of the suggested visual queries. Figure 8.5 gives the percentage of images
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having equal or more than a number of suggested query objects denoted as m, for in-

creasing values of m. It shows that when using only 5K seeds, 42 percent of the images

have at least one suggested visual query. Remember that the number of seeds being a

parameter of the method a more complete coverage can be simply obtained by running

the seed’s discovery algorithm longer. But, more we iterate, more we discover smaller

and no frequent objects.
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Figure 8.5: Histogram of the percentage of images that have more than m suggested
query objects.



8.2. Experiments 131

8.2.4 Visual query suggestion illustration

To illustrate qualitatively our suggested visual queries on other dataset, we used

the BelgaLogos and GoogleCrawl datasets. The text-aware visual objects suggestion

scenario is illustrated using the GoogleCrawl dataset. Figure 8.6 shows the top 3 sug-

gested objects for each of the 5 text queries. To better understand what is behind such

suggested objects we also provide in Figure 8.7, for 4 suggested queries, the top 3

images returned when the user clicks on them.

Figure 8.8 illustrates the Mouseover visual objects suggestion scenario on BelgaL-

ogos dataset. The two first images are illustrations of images having two visual queries.

The three last ones illustrate 3 other images with only one suggested visual query. The

right column gives the top 3 returned images for each suggested query.

Metallica
concert

Greenpeace

Disney

Khadafi

World Cup

Figure 8.6: Some Suggested visual queries for each of the text-queries in the set of
images crawled from Google Images.
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Figure 8.7: Some suggested queries and the top three images returned for each one.

8.3 Conclusion

As future work, we plan to study the influence of the size and shape of the query

region in the object seeds generation. Moreover, we plan to study the impact of the

size of discovered seeds on the performance and accuracy of our approach.
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Figure 8.8: Some discovered object clusters in BelgaLogos.
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Part IV

Conclusion and perspectives





Chapter 9

Conclusion

9.1 Synthesis and conclusion

This thesis address the problem of content structuring and mining by using shared

nearest neighbours clustering. Our motivation was that most classical data cluster-

ing often force particular choice of data representation and similarity measures. Such

assumptions are particularly problematic in multimedia context that usually involves

heterogeneous data and similarity measures. For this reason, we investigate new

clustering paradigms and algorithms based on the principle of shared nearest neigh-

bours (SNN) that are suitable to overcome data complexity, heterogeneity and high-

dimensionality.

First, we proposed to revisit existing state-of-the-art shared neighbours methods in two

points. We first introduce a new SNN formalism based on the theory of a contrario de-

cision. This allows us to derive more reliable connectivity score that is used to select

the optimum neighbourhoods. The advantage of using this a contrario significance

score is that it not biased to the size of the clusters and it is interpretable. The idea is

to select the best neighbourhood for each item and then to eliminate redundant candi-

date clusters by using a greedy strategy (beginning by the best ones) and a reshaping

step that allows to add relevant items to final clusters from the deleted ones. We also

proposed a new factorization algorithm for speeding-up the intensive computation of

the required shared neighbours matrices. By using synthetic data, we demonstrated

that our proposed method is able to select the best neighbourhood in presence of noisy

source of K-nearest neighbours. Compared to the popular spectral clustering of Ng,

Jordan and Weiss [121], we showed that our method is more robust and less sensitive

to the size of the input graph.

The second contribution of this thesis is a generalisation of the proposed SNN cluster-
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ing approach to the multi-source case. The main originality of our approach is that we

introduced an information source selection step in the computation of the candidate

cluster scores. Any arbitrary item set is thus associated with its own optimal subset of

modalities maximizing a normalized multi-source significance measure. As shown in

the synthetic data experiments, this source selection step makes our approach not only

widely robust to the presence of locally outlier sources but also improves the quality

of the clusters. We concluded that efficiently combining sources can compensate the

weak quality of very noisy independent sources.

We applied our proposed multi-source shared nearest neighbours clustering to visual

content structuring in different applications. In the tree leaves experiment, we aimed

to help botanists to identify and formalize the useful morphological categories to dis-

tinguish species. The goal of our second multi-source application was to structure a

content search results. By considering the visual and the textual informations of im-

ages, we obtained clusters that selected both of visual and textual sources and they

were semantically and visually coherent. The remaining clusters that selected the vi-

sual source were visually coherent but not semantically while clusters using textual

source were visually heterogeneous but semantically relevant. Such re-organisation is

very effective for browsing the search results and very meaningful for users that has

the information why images are grouped together. In the third experiment “visual ob-

ject mining”, we demonstrated that thanks to our source selection step, we can have

some statistics about the used sources which can help users to select the best ones.

Finally, we focused our work to how extend SNN clustering to the context of bipartite

k-NN graphs i.e. when the neighbours of each item to be clustered lie in a disjoint

set. We introduced new SNN relevance measures revisited for this asymmetric context

and showed that they can be used to select locally optimal bipartite clusters. By using

synthetic data, we demonstrated that our bipartite SNN clustering performs the bipar-

tite spectral clustering by selecting relevant items during the candidate object cluster

creation. We applied our bipartite SNN clustering to visual object’s discovery based

on a randomly precomputed matching graph.

In comparison to recent work, experiments show that our method succeeds in increas-

ing the clustering and the retrieval effectiveness by discovering frequent consistent vi-

sual objects seeds and grouping those that matched on the same images in the dataset.

Based on the discovered objects, we also introduced a new visual search paradigm, i.e.

object-based visual query suggestion. The idea is to suggest to the user some relevant

objects to be queried as being the most frequent appearing in the full dataset or in a

subset filtered by previous queries. Rather than letting the user select any region of in-
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terest, the system will suggest only visual query regions that actually contain relevant

matches in the dataset.

Along all these different applications in this PhD, we showed how the shared neigh-

bours information has the potential to be used on different data representation and

modalities and how our proposed methods whatever the context can deal with noisy

data and produces relevant clusters.

9.2 Perspectives

As our shared nearest methods proposed in this PhD demonstrated their potential

to select the optimal neighbourhood for each item, we plan to use these neighbourhood

to construct the input graph for spectral clustering. By these way, we produce a graph

easy to cluster and we improve the robustness of spectral method against noisy K-NN.

Such optimal neighbourhood could be used in many application such as recommen-

dation systems involving collaborative filtering or content-based filtering. P2P (peer

to peer) recommendation systems could, for instance, allow to maintain efficiently the

SNN graph through gossip-based operations.

In our next work, we will carry out more in-depth contribution on scalability which is

the main limit of our proposed SNN method. We plan to test two idea : the first is to

use hierarchical approach which deal with this problem and the second is to propose

a shared neighbour sensitive hashing. The main idea is to use a hash function chosen

such that points that share neighbours in the original space have a high probability of

having the same hash value.

Finally, we want to extend our SNN method to supervised classification. Using SNN

similarities might provide better performance than classical K-NN classifier, especially

in multi-source context.
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Chapter 10

Annexes

10.1 Hierarchical organisation of morphological prop-
erties of leaves

– margin

– non-toothed and smooth

– toothed

– serrated

– serrulated

– crenellated

– Form sheet or leaflet

– Elliptical

– Orbicular

– obovate

– Linear

– Lanceolate

– Asymmetric

– Lobed

– lobed form

– not lobed

– palmate

– pinnate

– lobed

– Color dark/clear

– Matt/gloss surface
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– Presence of thorns

– Ribs

– primary

– secondary

– Apex

– right

– convex

– acuminated

– emarginated

– lobed

– Base

– right or Cune

– concave

– convex

– concavo-convex

– complex

– decurrent

– roped

– lobed

– runcinated

– auriculated
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