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UNIVERSITÉ PARIS-SUD
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Résumé
Cette thèse porte sur les relations entre les processus SLE, les ensembles CLE et le champ libre
Gaussien. Dans le chapitre 2, nous donnons une construction des processus SLEκ(ρ) à partir des
boucles des CLEκ et d’échantillons de restriction chordale. Sheffield et Werner ont prouvé que les
CLEκ peuvent être construits à partir des processus d’exploration symétriques des SLEκ(κ − 6).
Nous montrons dans le chapitre 3 que la configuration des boucles construites à partir du processus
d’exploration asymétrique des SLEκ(κ−6) donne la même loi CLEκ . Le processus SLE4 peut être
considéré comme les lignes de niveau du champ libre Gaussien et l’ensemble CLE4 correspond à
la collection des lignes de niveau de ce champ libre Gaussien. Dans la deuxième partie du chapitre
3, nous définissons un paramètre de temps invariant conforme pour chaque boucle appartenant à
CLE4 et nous donnons ensuite dans le chapitre 4 un couplage entre le champ libre Gaussien et
l’ensemble CLE4 à l’aide du paramètre de temps. Les processus SLEκ peuvent être considérés
comme les lignes de flot du champ libre Gaussien. Nous explicitons la dimension de Hausdorff de
l’intersection de deux lignes de flot du champ libre Gaussien. Cela nous permet d’obtenir la dimen-
sion de l’ensemble des points de coupure et des points doubles de la courbe SLE, voir le chapitre
5. Dans le chapitre 6, nous définissons la mesure de restriction radiale, prouvons la caractérisation
de ces mesures, et montrons la condition nécessaire et suffisante de l’existence des mesures de re-
striction radiale.
Mots clés: SLE (Schramm Loewner Evolution), CLE (Conformal Loop Ensemble), champ libre
Gaussien, invariance conforme, propriété de Markov.

∼∼∼∼∼∼∼∼∼∼∼∼∼∼∼∼

On the relations between SLE, CLE, GFF, and the consequences
∼∼∼∼∼∼∼∼∼∼∼∼∼∼∼∼

Abstract
This thesis focuses on various relations between SLE, CLE and GFF. In Chapter 2, we give a
construction of SLEκ(ρ) processes from CLEκ loop configuration and chordal restriction sam-
ples. Sheffield and Werner has proved that CLEκ can be constructed from symmetric SLEκ(κ−6)
exploration processes. We prove in Chapter 3 that the loop configuration constructed from the
asymmetric SLEκ(κ−6) exploration processes also give the same law CLEκ . SLE4 can be viewed
as level lines of GFF and CLE4 can be viewed as the collection of level lines of GFF. We define
a conformally invariant time parameter for each loop in CLE4 in the second part of Chapter 3 and
then give a coupling between GFF and CLE4 with time parameter in Chapter 4. SLEκ can be
viewed as flow lines of GFF. We derive the Hausdorff dimension of the intersection of two flow
lines in GFF. Then, from there, we obtain the dimension of the cut and double point set of SLE
curve in Chapter 5. In Chapter 6, we define the radial restriction measure, prove the characteriza-
tion of these measures, and show the if and only if condition for the existence of radial restriction
measure.
Key words: SLE (Schramm Loewner Evolution), CLE (Conformal Loop Ensemble), GFF (Gaus-
sian Free Field), conformal invariance, domain Markov property.

AMS classification: 60G55, 60J67, 60K35, 28A80.
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Chapter 1

General Introduction

1.1 General Introduction in English

1.1.1 Introduction
Statistical physicists and probabilists often try to understand the macroscopic behavior of systems
consisting of many microscopic random inputs, which can give rise to interfaces between two
phases at a critical temperature, such as water and ice at 0 degree celsius. This can be modeled via
the scaling limit behavior (macroscopic behavior) of discrete lattice models (microscopic inputs).
In most cases (i.e. ranges of the parameter of the model that can play the role of temperature), the
limits of these discrete models become deterministic (in the spirit of Law of Large Number); and
in some critical cases (i.e. at the critical temperature), the limits can remain random, which is of
particular interest.

The simplest example is fair simple random walk, that behaves (in the appropriately rescaled
way) like Brownian motion in the scaling limit (and one can observe that Brownian motion is in a
way more universal than random walk, since it is the scaling limit whatever fair random walk one
considers).

In planar discrete models (in dimension two), curves appear naturally as interfaces between
phases, level lines of random surfaces etc. In fact, these curves often provide a way to fully describe
the random configuration. It has been noted that Brownian motion is in general not a sufficient tool
to describe the complexity of these interfaces in the scaling limit, when they are random, and it
has been predicted by theoretical physicists – and since then proved in a number of occasions –
that these curves should be conformally invariant in this continuous scaling limit (this is a way to
formulate these curves in terms of some of the axioms of Conformal Field Theory, see for instance
the book [Car10] and the references therein).

Oded Schramm’s SLE (Stochastic Loewner Evolution) processes [Sch00] have led mathemati-
cians and physicists to a clean and novel understanding of the scaling limits of discrete models
in two dimensions. Oded Schramm has realized that Loewner’s coding of planar curves via itera-
tions of conformal maps were exactly suited to the domain Markov property corresponding to the
fact that one can explore interfaces progressively and describe the conditional distribution of the re-
maining configurations. A chordal SLE is a random non-self-traversing curve in a simply connected
domain, joining two prescribed boundary points of the domain. And it is the only one-parameter
family (usually indexed by a positive real number κ) of random planar curves that satisfies confor-
mal invariance and (curve-configuration’s) domain Markov property (the precise meaning of these
two properties will be given after we precisely introduce SLE curves). SLE processes have already
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12 CHAPTER 1. GENERAL INTRODUCTION

been proved to be the scaling limits of many discrete models: SLE2 is the limit of loop-erased ran-
dom walk [LSW04], SLE3 is the limit of the interface of critical Ising model [CS12, CDCH+12],
SLE4 is the scaling limit of the level line of DGFF [SS09], SLE16/3 is the limit of the interface
of critical FK model [CS12, CDCH+12], SLE6 is the limit of the interface of critical percolation
[CN07], and SLE8 is the scaling limit of uniform spanning tree [LSW04].

CLE (Conformal Loop Ensemble) is the limit geometric object when one tries to consider the
“entire” scaling limit of discrete model (in contrast with only one interface which turns out to be
the SLE process). A simple CLE [She09, SW12] can be viewed as a random countable collection
of disjoint simple loops in the unit disk that are non-nested. It is the only one-parameter family that
satisfies conformal invariance and (loops-configuration’s) domain Markov property. It is proved
(or almost proved) that CLE3 is the limit of the collection of interfaces in critical Ising model, that
CLE4 is the collection of level lines of GFF (see [MS13a]), and CLE6 is the limit of the collection
of interfaces in critical percolation (see [CN06], note that this collection of loops is not a “simple
CLE” because the loops have double points and are not disjoint). As one can somehow expect,
each loop in CLE is a loop whose geometry is a SLE-type loop, with the same parameter κ .

The GFF (Gaussian Free Field) is a natural two-dimensional time analog of Brownian motion
[She07], that has been used extensively as a basic building block in Quantum Field Theories. Like
Brownian motion, it is a simple random object of widespread application and great intrinsic beau-
ty. It plays an important role in statistical physics, the theory of random surfaces, and quantum
field theory. The geometry of the two-dimensional Gaussian Free Field, i.e. the fact that it was
possible to describe geometric lines in this very irregular distribution, has been discovered recently
[SS12, SS09, MS13a, Dub09b, She11], and let to a number of recent developments. The GFF also
corresponds to the scaling limit of simple discrete models (for instance the height function of dimer
models, see [Ken08]).

SLE, CLE and GFF are three important related planar random structures and the present thesis
will explore aspects of these three objects and of the relation between them. The present introduc-
tion is structured as follows: In the next section, we recall in a little more detail the definitions of
SLE, CLE and GFF as well as some recent results. Then, we describe very briefly our contributions.

The corresponding papers that form the main body of the present thesis will form the subsequent
five chapters.

1.1.2 Background
SLE

Suppose (Wt , t ≥ 0) is a real-valued continuous function. For each z∈H, define gt(z) as the solution
to the chordal Loewner ODE:

∂tgt(z) =
2

gt(z)−Wt
, g0(z) = z. (1.1.1)

Write τ(z) = sup{t ≥ 0 : infs∈[0,t] |gs(z)−Ws| > 0} and Kt = {z ∈ H : τ(z) ≤ t}. Then gt is the
conformal map from Ht := H \Kt onto H such that (gt(z)− z)z→ 2t as z→ ∞. And (gt , t ≥ 0) is
called the chordal Loewner chain generated by the driving function (Wt , t ≥ 0).

A chordal SLEκ is defined by the random family of chordal conformal maps gt when W =
√

κB
where B is a standard one-dimensional Brownian motion. It is proved that there exists a.s. a
continuous curve γ in H connecting 0 to ∞ such that for each t ≥ 0, Ht is the unbounded connected
component of H\ γ([0, t]) and gt is the conformal map from Ht onto H (see [RS05]). SLE curves
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are the only curves that satisfy both conformal invariance–(Φ(γ(t)), t ≥ 0) has the same law as
γ for any Möbius transformation Φ of H that preserves 0 and ∞–and domain Markov property–
for any t > 0, ft(γ([t,∞))) has the same law as γ where ft = gt −Wt (see Figure 1.1.1). From
the conformal invariance, we can define SLE curves in any simply connected domain D with two
distinct boundary points a,b : SLE curves in D from a to b are the image of γ in H from 0 to ∞

under any conformal map from H onto D that sends 0,∞ to a,b respectively.

D
ϕ(D)

a

b

ϕ(b)

ϕ(a)

γ

ϕ(γ)
ϕ

(a) Conformal Invariance: γ is an SLE curve in D from a to b, ϕ is a conformal map, then ϕ(γ) has the same
law as an SLE curves in ϕ(D) from ϕ(a) to ϕ(b).

D

a b
γ[0, t]

γ[t,∞)

γ(t)

(b) Domain Markov Property: γ is an SLE curve in D from a to b, given γ([0, t]), γ([t,∞)) has the same law
as SLE curves in D\Kt from γ(t) to b.

Figure 1.1.1: Characterization of SLE.

A number of properties of SLE curves are now known (see [Law05]): When κ ∈ [0,4], SLEκ

curves are simple curves.When κ ∈ (4,8), the curves are self-touching. And when κ ≥ 8, the curves
become space-filling. SLEκ curve has almost sure Hausdorff dimension (1+ κ/8)∧ 2 [Bef08].
When κ ∈ (4,8), the SLE process hits the real line, and the intersection of the curve with this real
line forms a Cantor set of dimension between 0 and 1. It is proved in [AS08] that this dimension is
equal to 2−8/κ .

It turns out to be rather difficult to derive rigorously the dimensions of the set of other natural
simple subsets of SLE curves (such as the set of cut-points or of double-points) even if the conjec-
tured relation between lattice models and SLE give a way to guess what these dimensions are (via
the various arm exponents). Note also that the corresponding sets of corresponding times (in the
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Loewner equation parametrization) are easier to study (see [Bef04]), but that this does not help in
deriving the “spatial” dimensions of these sets of points.

For certain values of κ , SLE curves exhibit striking properties. For example, SLE8/3 satisfies
“chordal restriction property” [LSW03] (we will recall this property in a few paragraphs), and this
property leads to conjecture that SLE8/3 is the scaling limit of self-avoiding random walk which
also satisfies chordal restriction property in the discrete setting (when properly defined). SLE6
satisfies “locality property” which is the property satisfied by the interface in critical percolation
[LSW01a]. SLE2 satisfies the property that if we add to SLE2 curve with an independent Poisson
point process of Brownian loops, then the obtained set has the “same” law as a Brownian excursion.
This property is reminiscent of loop erased random walk [LW04].

Two other important properties of SLE curves are the following: reversibility–SLE curves in
D from a to b viewed as set has the same law as SLE curve in D from b to a–and duality–the
outer boundary of SLEκ ′ curve are variants of SLEκ curves where κ ′ ≥ 4,κ = 16/κ ′ ≤ 4. These
two properties are natural properties for discrete physics models and they are not obvious from the
definition through Equation (1.1.1) [Zha08b, Dub09a, MS12a].

The chordal SLEκ(ρ
L;ρR) process is a variant of chordal SLEκ in which one keeps track of

multiple additional points, which we refer to as force points. Suppose xL = (xl,L < · · ·< x1,L ≤ 0)
and xR = (0 ≤ x1,R < · · · < xr,R) are our force points. Associated with each force point xi,q,q ∈
{L,R}, there is a weight ρ i,q ∈ R,q ∈ {L,R}. An SLEκ(ρ

L;ρR) process with force points (xL;xR)
is the random family of chordal conformal maps gt with Wt replaced by the solution to the system
of SDEs:

Wt =
√

κBt +
l

∑
i=1

∫ t

0

ρ i,Lds

Ws−V i,L
s

+
r

∑
i=1

∫ t

0

ρ i,Rds

Ws−V i,R
s

,

V i,q
t = xi,q +

∫ t

0

2ds

V i,q
s −Ws

, i ∈ N, q ∈ {L,R}.
(1.1.2)

For all κ > 0, there is a unique solution to (1.1.2) up until the continuation threshold is hit–the first
time t for which either

∑
i:V i,L

t =Wt

ρ
i,L ≤−2 or ∑

i:V i,R
t =Wt

ρ
i,R ≤−2.

For κ > 0, the compact hull associated to the process up to the continuation threshold is generated
by a continuous curve (see [MS12a]).

The chordal SLE curves are curves in simply connected domain connecting two boundary
points and it is also possible to define SLE curves connecting one boundary point to one interi-
or point–the radial SLE curves. Suppose (Wt , t ≥ 0) is a real-valued continuous function. For each
z ∈ U, define gt(z) as the solution to the radial Loewner ODE:

∂tgt(z) = gt(z)
eiWt +gt(z)
eiWt −gt(z)

, g0(z) = z. (1.1.3)

Write τ(z) = sup{t ≥ 0 : infs∈[0,t] |gs(z)− eiWs| > 0} and Kt = {z ∈ U : τ(z) ≤ t}. Then gt is the
conformal map from U \Kt onto U such that gt(0) = 0,g′t(0) = et . And (gt , t ≥ 0) is called the
radial Loewner chain generated by the driving function (Wt , t ≥ 0).

A radial SLEκ is defined by the random family of radial conformal maps gt when W =
√

κB
where B is a standard one-dimensional Brownian motion. It is proved that there exists a.s. a
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continuous curve γ such that for each t ≥ 0, U \Kt is the connected component of U \ γ([0, t])
containing the origin.

Radial SLE curves are “locally” the same as chordal SLE curves thus some of chordal SLE
properties are also true for radial curves, say their Hausdorff dimension.

CLE

In [SW12], a CLE is a collection Γ of non-nested disjoint simple loops (γ j, j∈ J) in H that possesses
a particular conformal restriction property. In fact, this property that we will now recall, does
characterize these simple CLEs (see Figure 1.1.2):

• (Conformal Invariance) For any Möbius transformation Φ of H onto itself, the laws of Γ and
Φ(Γ) are the same. This makes it possible to define, for any simply connected domain D
(that is not the entire plane – and can therefore be viewed as the conformal image of H via
some map Φ̃), the law of the CLE in D as the distribution of Φ̃(Γ) (because this distribution
does then not depend on the actual choice of conformal map Φ̃ from H onto D).

• (Domain Markov Propety) For any simply connected domain H ⊂ H, define the set H̃ =
H̃(H,Γ) obtained by removing from H all the loops (and their interiors) of Γ that do not
entirely lie in H. Then, conditionally on H̃, and for each connected component U of H̃, the
law of those loops of Γ that do stay in U is exactly that of a CLE in U .

It turns out that the loops in a given CLE are SLEκ type loops for some value of κ ∈ (8/3,4] (and
they look locally like SLEκ curves). In fact for each such value of κ , there exists exactly one CLE
distribution that has SLEκ type loops. As explained in [SW12], a construction of these particular
families of loops can be given in terms of outer boundaries of outmost clusters of the Brownian
loops in a Brownian loop-soup with subcritical intensity c (and each value of c corresponds to a
value of κ).

In the earlier paper [She09], Sheffield had pointed out a way to construct a number of random
collections of loops, using variants of SLEκ(κ − 6) processes. In particular, for any κ ∈ [0,8], he
has shown how to construct random collections of SLEκ -type loops that should be the only possible
candidates for the conformally invariant scaling limit of various discrete models, or of level lines
of certain continuous models. Roughly speaking, one chooses some boundary point x on the unit
circle (“the root”) and launches from there a branching exploration tree of SLEκ(κ−6) processes
that will trace some loops along the way, that one keeps track of. For each κ and x, there are in
fact several ways to do this. One particular way is to impose certain “left-right” symmetry in the
law of the exploration tree, but several other natural options are described in [She09]. Hence, for
each κ , the exploration tree is defined via the choice of the root x and the exploration “strategy”
that describes how “left-right” asymmetric the exploration is. These exploration strategies are
particularly natural, because they are invariant under all conformal transformations that preserve x.
So to sum up, once κ , x and a given strategy are chosen, the Loewner differential equation enables
to construct a random family of quasi-loops in the unit disc (and the law of this family a priori
depends on κ , on x and on the chosen strategy).

GFF

We will briefly recall the definition of GFF, in the Gaussian Hilbert space framework (as in [She07]
for instance): Consider the space Hs(D) of smooth, real-valued functions on C that are supported
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D
ϕ(D)

ϕ

(a) Conformal Invariance: Γ = (γ j, j ∈ J) is a CLE in D, ϕ is a conformal map, then (ϕ(γ j), j ∈ J) has the
same law as CLE in ϕ(D).

D

(b) Domain Markov Property: Γ is a CLE in D, U is a deterministic subset of D, then given the loops
intersecting U , the remaining loops has the same law as CLE in the remaining domain.

Figure 1.1.2: Characterization of CLE.

on a compact subset of a domain D⊂ C (so that, in particular, their first derivatives are in L2(D)).
This space can be endowed with a Dirichlet inner product defined by

( f1, f2)∇ =
∫

D
dx(∇ f1 ·∇ f2)

It is immediate to see that the Dirichlet inner product is invariant under conformal transformation.
Denote by H(D) the Hilbert space completion of Hs(D). The quantity ( f , f )∇ is called the Dirichlet
energy of f .

A Gaussian Free Field is any Gaussian Hilbert space G (D) of random variables denoted by
“(h, f )∇”—one variable for each f ∈ H(D)—that inherits the Dirichlet inner product structure of
H(D), i.e.,

E[(h,a)∇(h,b)∇] = (a,b)∇.

In other words, the map from f to the random variable (h, f )∇ is an inner product preserving map
from H(D) to G (D). The reason for this notation is that it is possible to view h as a random linear
operator, but we will not need this approach. We also view (h,ρ) as being well defined for all
ρ ∈ (−4)H(D) (if ρ =−4 f for some f ∈ H(D), then we denote (h,ρ) = (h, f )∇).

When ρ1 and ρ2 are in Hs(D), the covariance of (h,ρ1) and (h,ρ2) can be written as

(−4−1
ρ1,−4−1

ρ2)∇ = (ρ1,−∆
−1

ρ2) = (−∆
−1

ρ1,ρ2).
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Since −∆−1ρ can be written using the Green’s function, we may also write:

Cov[(h,ρ1),(h,ρ2)] =
1
2

∫∫
dxdy GD(x,y)ρ1(x)ρ2(y).

Both the Dirichlet inner product and the Gaussian Free Field inherit naturally conformal invariance
properties from the conformal invariance of the Green’s function.

It turns out that the GFF is very closely related to SLE4 and to CLE4. Indeed, from [SS09,
SS12, Dub09b], one can view SLE4 as a level-line of the GFF. More precisely, let γ be an SLE4
in H from 0 to ∞ and denote H−,H+ as the two connected components of H\ γ . Sample GFF h−
(resp. h+) in H− (resp. H+) with mean value −λ (resp. +λ ) where λ = π/2. The fields h−,h+
are sampled in the way that they are independent of γ and they are independent of each other given
γ . Then the sum h = h−+ h+ has the same law as a GFF in H and in this coupling (γ,h), γ is a
deterministic function of h. From these facts, we say that SLE4 is the level-line of the GFF.

Building on this fact and on the construction of CLE4 (such for instance as provided by [SW12]),
it is possible to couple the GFF with zero boundary condition with a CLE4 as follows [MS13a].
Let L be a CLE4 collection of loops. Given L , we sample Bernoulli signs εL for each loop L ∈L
and all these signs are sampled in the way that they are independent of L and they are independent
of each other given L . For each loop L ∈L , sample a GFF hL inside L with mean value εL×2λ .
All these GFFs are sampled in the way that they are independent of L and they are independent
of each other given L . Then the sum h = ∑L∈L hL has the same law as a GFF with zero boundary
value and in this coupling (L ,h), the loop configuration L is a deterministic function of h.

More generally, one can associate a number of other SLE-type curves with a GFF ([SS09, SS12,
MS12a]). Fix

κ ∈ (0,8), λ =
π√
κ
, χ =

2√
κ
−
√

κ

2

and let γ be the curve associated to SLEκ(ρ
L;ρR) process with force points (xL;xR) and K be the

corresponding compact hulls. Let h be the GFF on H with zero boundary value. There exists a
coupling (γ,h) such that the following is true. Suppose τ is any finite stopping time less than the
continuation threshold for γ. Let η0

t be the function which is harmonic in H with boundary values
{
−λ (1+ρ

j,L) if x ∈ ( ft(x j+1,L), ft(x j,L))

λ (1+ρ
j,R) if x ∈ ( ft(x j,R), ft(x j+1,R))

Let
ηt(z) = η

0
t ( ft(z))−χ arg f ′t (z). (1.1.4)

Then the conditional law of h+η0|H\Kτ
given Kτ is equal to the law of h ◦ fτ +ητ . In this cou-

pling, the curve γ is almost surely determined by the field h, and we can view γ as the flow line
(respectively level line) of h+η0 if κ ∈ (0,4)∪ (4,8) (respectively κ = 4).

Chordal restriction

An important role in the present PhD thesis will also be played by the collection of random sets that
satisfy a certain conformal restriction property, and have been studied and classified in [LSW03].
Let us now briefly recall the definition and some of the results of that paper. A chordal restriction
sample is a closed random subset K of H such that
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• K is connected, C\K is simply connected, K∩R= {0}, and K is unbounded.

• For any closed subset A of H such that A = H∩A, H\A is simply connected, A is bounded
and 0 6∈ A, the law of ΨA(K) conditioned on (K ∩A = /0) is equal to the law of K where ΨA
is any conformal map from H\A onto H that preserves 0 and ∞.

It is proved in [LSW03] that there exists a one-parameter family Qβ of chordal restriction measures
such that

Qβ (K∩A = /0) = Ψ
′
A(0)

β

where ΨA is the conformal map from H\A onto H that preserves 0 and ΨA(z)/z→ 1 as z→∞ (see
[LSW03]). The chordal conformal restriction measure Qβ exists if and only if β ≥ 5/8. Note that
Q1 can be easily constructed by filling the loops of Brownian excursion in H from 0 to ∞.

A right-sided chordal restriction sample is a closed random subset K of H such that

• K is connected, C\K is connected, K∩R= (−∞,0].

• For any closed subset A of H such that A = H∩A, H\A is simply connected, A is bounded
and A∩R ⊂ (0,∞), the law of ΨA(K) conditioned on (K ∩A = /0) is equal to the law of K
where ΨA is any conformal map from H\A onto H that preserves 0 and ∞.

It is clear that the right boundary of chordal restriction sample is a right-sided restriction sample.
In fact, there exists a one-parameter family Q+

β
such that

Q+
β
(K∩A = /0) = Ψ

′
A(0)

β

where ΨA is the conformal map from H \A onto H that preserves 0 and ΨA(z)/z→ 1 as z→ ∞.
Q+

β
exists if and only if β ≥ 0. We usually ignore the trivial case β = 0 where K = R−.
One example of right-sided restriction sample is given by SLE8/3(ρ) process with force point

0−. Fix ρ > −2. Let γ be an SLE8/3(ρ) process in H from 0 to ∞. Let K be the closure of the
union of domains between γ and R−. Then K is a right-sided restriction sample with exponent β =
(ρ + 2)(3ρ + 10)/32. Conversely, let K be a right-sided restriction sample with exponent β > 0,
then the right boundary of K is an SLE8/3(ρ) process with ρ = ρ(β ) = 2(

√
24β +1− 1)/3− 2.

From these properties, one sees that the outer boundary of Brownian excursion are variants of
SLE8/3 curves.

1.1.3 Our contributions
From CLE to SLE

Chapter 2 (corresponding to the joint paper [WW13a] with Wendelin Werner) presents a way to
construct SLEκ(ρ) processes using a CLE and an independent restriction sample: Define indepen-
dently, in a simply connected domain D with two marked boundary points a and b, the following
two random objects: A CLEκ (for some κ ∈ (8/3,4]) that we call Γ and a right-sided restriction
path γ from a to b with restriction exponent α . Then, we define the set obtained by attaching to γ

all the loops of Γ that it intersects. Finally, we take the right-most boundary of this set. This turns
out to be again a simple curve from a to b in D that we call η (see Figure 1.1.3) and most of η

will consist of parts of CLE loops. We prove in Chapter 2 that this curve η is in fact an SLEκ(ρ)
process where ρ >−2 and is related to α via

α =
(ρ +2)(ρ +6−κ)

4κ
.
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γ
Γ η

b

a a

b

Figure 1.1.3: Construction of η out of γ and Γ.

From this construction of SLE processes, we have an interesting immediate consequence that
provides alternative simple proofs of non-trivial results ([Zha08b, Zha10b, MS12b]): the reversibil-
ity of SLEκ(ρ) process with κ ∈ [8/3,4],ρ >−2. Another consequence is the two-point estimate
of the intersection of SLEκ(ρ) with the boundary which in turn gives a simple proof of the Haus-
dorff dimension of this intersection.

From SLE to CLE

CLEs have first been defined by Scott Sheffield in [She09] via branching variants of SLE curves. In
fact, in that paper, he provides several constructions of these branching SLE trees and conjectures
that they should all correspond to the same random collection of loops. This has then been proved to
hold for the symmetric exploration trees in [SW12]. The first main result of Chapter 3 (joint paper
[WW13b] with Wendelin Werner) can be summarized as follows: For each κ ∈ (8/3,4], all the
random collections of SLEκ -type quasi-loops constructed via Sheffield’s asymmetric exploration
trees in [She09] have the same law. They all are the CLEκ families of loops constructed in [SW12].
To this end, we first precisely define SLEκ(κ−6) process when κ ∈ (8/3,4] (note that in this case
κ − 6 ≤ −2 which is no longer well-defined through Equation (1.1.2)) through Bessel processes.
And then compare the asymmetric exploration structure to the symmetric case which has been
studied in detail in [SW12].

Conformally invariant growing mechanism in CLE4

The second main point of Chapter 3 is to highlight something specific to CLE4 (recall that this is
the CLE that is most directly related to the Gaussian Free Field, see [SS12, SS09, MS13a, Dub09b,
She11]). In this particular case, it is possible to define a conformally invariant and unrooted (one
does not need to even choose a starting point) growing mechanism of loops. Roughly speaking,
the growth process that progressively discovers loops is growing “uniformly” from the boundary
(even if it is a Poisson point process and each loop is discovered at once) and does not require to
choose a root. The fact that such a conformally invariant non-local growth mechanism exists at
all is quite surprising (and the fact that its time-parametrization as seen from different points does
exactly coincide even more so).
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From this growing mechanism in CLE4, we can associate in a conformally invariant way a
positive time parameter uL to each loop L in the loop configuration L , which is the time in the
growing mechanism at which the loop has been discovered. We define a Markov process on do-
mains (Du,u ≥ 0) : at time u = 0, it is the upper half plane; and at time u > 0, it is the remaining
domain that we remove all the loops with time parameter smaller than u. From the conformally
invariant growing mechanism, we know that (Du,u ≥ 0) and (Φ(Du),u ≥ 0) are identically dis-
tributed for any conformal transformation Φ from H onto itself.

Coupling between GFF and CLE4 with time parameter

As we have recalled above, SLE4 curves are level lines of GFF and CLE4 is a collection of level
lines of GFF [MS13a], in the sense that one can couple a GFF h and a CLE4 L in such a way
that loops in L are outmost level lines of h of heights ±λ and the signs of the expected value of
h inside the loop are give by i.i.d coin tosses independently of the CLE4. In this coupling, one can
actually prove that the CLE4 loop configuration is deterministic function of h.

In Chapter 4, we provide a second and new coupling between GFF and CLE4, making use of
the time parameters defined in Chapter 3. More precisely, we couple a GFF h with zero boundary
value with CLE4 with time parameter ((L,uL),L ∈L ) in such a way that for each loop L, it is a
level line of h and the expected value of h inside L is 2λ − 2λuL. In other words, the jump from
the outside to the inside of a loop is always a positive jump of the GFF (as opposed to the previous
case where one tosses a coin to decide if it was an upward or an downward jump). We further prove
that, in this coupling, both the CLE4 loop configuration and the time parameter are deterministic
functions of h.

L

±2λ

(a) First coupling

(L, uL)

2λ− 2λuL

(b) Second coupling

Figure 1.1.4: Relation between the two couplings.

These two couplings are reminiscent of the two constructions of one-dimensional Brownian
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motion from Brownian excursions: given a Poisson point process of Brownian excursions, the first
way to construct a Brownian motion is to set each excursion positive or negative independently with
equal probability 1/2 and then to concatenate these signed excursions, the obtained process has the
same law as a Brownian motion. The second way is to concatenate all the positive excursions
(which we denote by (Yt , t ≥ 0)) and then define the local time L for Y , the process (Yt −Lt , t ≥ 0)
also has the same law as a Brownian motion. After recall these two constructions of Brownian
motion and the fact that GFF is in fact a two-dimension analogue of Brownian motion, we see that
our time parameter in CLE4 in the second coupling is somewhat the GFF counterpart of the local
time.

The results of Chapter 4 form part of a paper in preparation with Scott Sheffield and Sam
Watson, where we also plan and hope to prove that, in ((L,uL),L ∈L ), the time parameter is a
deterministic function of the loop configuration L .

From GFF to SLE and intersections of SLE paths

The main result of Chapter 5 is the determination of the Hausdorff dimension of the sets of double
points and of the sets of cut points of SLE curves. Let us now state some of these results. Let
κ ′ ∈ (4,8) and γ ′ be an SLEκ ′ process. The cut point set of γ ′ is defined as K = {γ ′(t) : t ∈
(0,∞),γ ′(0, t)∩ γ ′(t,∞) = /0}. We prove that, almost surely,

dimH(K ) = 3− 3κ ′

8
. (1.1.5)

Let D denote the set of all double points of γ ′, we prove that, almost surely,

dimH(D) = 2− (12−κ ′)(4+κ ′)
8κ ′

. (1.1.6)

We derive these two results building on the coupling between GFF and SLE that describes SLE
curves as flow lines of GFF. On the way, we will in fact also derive further properties of SLEκ(ρ)-
type processes.

Let us very briefly describe the type of arguments and results we use and obtain: Fix

κ
′ > 4, κ =

16
κ ′
∈ (0,4), λ =

π√
κ
, χ =

2√
κ
−
√

κ

2
.

First, consider only one single flow line. For κ ∈ (0,4),ρ > −2, let γ be an SLEκ(ρ) process
and it can be viewed as the flow line of GFF with boundary value −λ on R− and λ (1+ρ) on R+.
We get that, almost surely,

dimH(γ ∩R) = 1− 1
κ
(ρ +2)(ρ +4− κ

2
). (1.1.7)

Next, we consider two flow lines simultaneously. Let GFF have boundary value λ on R+ and
−λ on R−. Fix θ2 > θ1. Let γθi be the flow line of the field with angle θi for i = 1,2. From the
Imaginary Geometry introduced in [MS12a], we know that γθ2 almost surely stays to the left of γθ1

(see Figure 1.1.5). And given γθ2 , the conditional law of γθ1 is SLEκ(ρ;θ1χ/λ ) where

ρ =
(θ2−θ1)χ

λ
−2.
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γθ2

γθ1
−λ′−θ2χ
:::::::::

λ′−θ2χ
:::::::

−λ′−θ1χ
:::::::::

λ′−θ1χ
:::::::

ϕ

λ−θ2χ

ϕ(γθ1)

−λ′−θ1χ
:::::::::

λ′−θ1χ
:::::::

ϕ(γθ2)

λ−λ λ

Figure 1.1.5: The flow line γθ2 almost surely stays to the left of γθ1 . Given γθ2 , the conditional law
of γθ1 is SLEκ((θ2−θ1)χ/λ −2;θ1χ/λ ).

Combine this fact and (1.1.7), we get that, almost surely,

dimH(γθ1 ∩ γθ2 ∩H) = 2− 1
2κ

(
ρ +

κ

2
+2
)(

ρ− κ

2
+6
)

(1.1.8)

From (1.1.8), we derive (1.1.5) by duality of SLE curves: Let γ ′ be an SLEκ ′ process from ∞

to 0 in H, then the left boundary and right boundary of γ ′ are flow lines of the field with angle π/2
and −π/2 respectively. Thus (1.1.5) is the case of (1.1.8) when the angle difference is θcut = π .

To derive (1.1.6), we use the path decomposition of SLEκ ′(κ
′/2− 4;κ ′/2− 4) process intro-

duced in [MS12c]. Then explain that the double points of SLEκ ′ correspond to the intersection of
two flow lines of the field with angle difference

θdouble = π

(
κ−2
2− κ

2

)
.

Radial conformal restriction

The final chapter is devoted to the study of the radial counterpart of the chordal restriction samples.
These are random sets whose boundaries are all of SLE8/3 type. More precisely, consider the unit
disc U and we fix a boundary point 1 and an interior point the origin. A radial restriction sample is
a closed random subsets K of U such that:

• K is connected, C\K is connected, K∩∂U= {1}, 0 ∈ K.

• For any closed subset A of U such that A = U∩A, U \A is simply connected, contains the
origin and has 1 on the boundary, the law of ΦA(K) conditioned on (K ∩A = /0) is equal to
the law of K where ΦA is the conformal map from U \A onto U that preserves 1 and the
origin (see Figure 1.1.6).

We prove in Chapter 6 that the radial restriction measure is characterized by a pair of real
numbers (α,β ) such that

P(K∩A = /0) = |Φ′A(0)|αΦ
′
A(1)

β

where A is any closed subset of U such that A = U∩A, U \A is simply connected, contains the
origin and has 1 on the boundary, and ΦA is the conformal map from U\A onto U that preserves 0
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K ΦA(K)

ΦA

A

Figure 1.1.6: ΦA is the conformal map from U \A onto U that preserves 0 and 1. Conditioned on
(K∩A = /0), ΦA(K) has the same law as K.

and 1. The corresponding radial restriction measure is denoted by P(α,β ). Then P(α,β ) exists if
and only if

β ≥ 5
8
, α ≤ ξ (β ) =

1
48

(
(
√

24β +1−1)2−4
)
.

For β ≥ 5/8, if K is sampled according to P(ξ (β ),β ), then the right boundary of K is a radial
SLE8/3(ρ) with ρ = ρ(β ) = 2(

√
24β +1−1)/3−2.

This is therefore the radial counterpart of the classification of chordal restriction samples in
[LSW03].

1.2 Introduction Générale en français

Les physiciens-statisticiens et probabilistes essayent souvent de comprendre le comportement macro-
scopique de systèmes comprenant de nombreuses entrées aléatoires microscopiques, qui peuvent
donner lieu à des interfaces entre deux phases à une température critique, comme par exemple l’eau
et la glace à 0 degré Celsius. Cela peut être modélisé par le comportement à la limite d’échelle
(comportement macroscopique) des modèles de réseaux discrets (entrées microscopiques). Dans la
plupart des cas (i.e. dans le champ des valeurs du paramètre du modèle qui peuvent jouer le rôle de
la température), les limites de ces modèles discrets deviennent déterministes (dans l’esprit de la loi
des grands nombres) et, dans certains cas critiques (c’est à dire pour la température critique), les
limites peuvent rester aléatoires, ce qui les rend particulièrement intéressantes.

L’exemple le plus simple est celui de la marche aléatoire simple qui se comporte (lorsqu’elle est
correctement renormalisée) comme le mouvement brownien dans sa limite d’échelle. Notons que
le mouvement brownien dans un certain sens est plus universel que la marche aléatoire, puisque
c’est la limite d’échelle de n’importe quelle marche aléatoire simple.

Dans les modèles planaires (en dimension deux) discrets, certaines courbes apparaissent na-
turellement comme interfaces entre des phases, lignes de niveau de surfaces aléatoires etc. En fait,
ces courbes permettent souvent de décrire la configuration aléatoire tout entière. Le mouvement
brownien ne suffit pas en général à décrire la complexité de ces interfaces dans la limite d’échelle,
lorsqu’elles sont aléatoires, et il a été prédit par les physiciens théoriques – et depuis prouvé dans
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plusieurs cas – que ces courbes devraient être conformément invariantes dans cette limite d’échelle
continue.

Les processus SLE (Stochastic Loewner Evolution) d’Oded Schramm ont conduit les mathématiciens
et les physiciens à une compréhension nouvelle et approfondie des limites d’échelle des modèles
discrets en dimension deux. Oded Schramm a réalisé que le codage de Loewner des courbes planes
par itérations de transformations conformes s’adaptait exactement à la propriété spatiale de Markov
qui correspond au fait que l’on peut explorer les interfaces progressivement et décrire la loi con-
ditionnelle des configurations restantes. Un SLE chordal est une courbe ne pouvant se croiser elle
même dans un domaine simplement connexe, joignant deux points fixés du bord du domaine. Et
c’est la seule famille à un paramètre (souvent indexée par un nombre réel positif κ) de courbes
planes aléatoires qui satisfasse l’invariance conforme et la propriété spatiale de Markov. Il est
maintenant prouvé que les processus SLE sont les limites d’échelle de nombreux modèles discret-
s: SLE2 est la limite de la marche aléatoire à boucles effacées [LSW04]; SLE3 est la limite de
l’interface du modèle d’Ising critique [CS12, CDCH+12]; SLE4 est la limite de la ligne de niveau
du champ libre Gaussien discret [SS09]; SLE16/3 est la limite de l’interface du modèle FK critique
[CS12, CDCH+12]; SLE6 est la limite de l’interface du modèle de la percolation critique [CN07];
SLE8 est la limite de la courbe d’exploration d’un arbre couvrant uniforme [LSW04]. L’ensemble
CLE (Conformal Loop Ensemble) est l’objet limite géométrique qui apparaı̂t lorsque l’on con-
sidère la limite d’échelle du modèle discret tout entier (à la différence d’une seule interface, pour
le processus SLE). Un CLE [She09, SW12] peut être considéré comme un ensemble dénombrable
aléatoire de boucles simples disjointes dans le disque unité qui ne sont pas emboı̂tées. C’est la
seule famille à un paramètre qui satisfait l’invariance conforme et la propriété spatiale de Markov
(version de configuration des boucles). Il est prouvé (ou presque prouvé) que le CLE3 est la limite
de la collection des interfaces dans le modèle d’Ising critique; le CLE4 est l’ensemble des lignes
de niveau du champ libre Gaussien [MS13a], et le CLE6 est la limite de la collection des interfaces
dans la percolation critique [CN06]. Comme l’on peut s’y attendre, chaque boucle de CLE est une
boucle de type SLE, avec le même paramètre κ .

Le champ libre Gaussien est l’analogue naturel du mouvement brownien ayant un temps deux-
dimensionnel [She07], et il a été largement utilisé comme outil fondateur de la théorie quantique
des champs. Tout comme le mouvement brownien, c’est un objet aléatoire simple qui a de très
nombreuses applications et qui est d’une grande beauté intrinsèque. La géométrie du champ li-
bre Gaussien, c’est à dire le fait qu’il soit possible de décrire des lignes géométriques dans cette
distribution très irrégulière, a été découvert récemment [SS12, SS09, MS13a, Dub09b, She11], et
a donné plusieurs développements récents. Le champ libre Gaussien correspond également à la
limite d’échelle de modèles discrets simples (par exemple la fonction de hauteur des modèles de
dimères [Ken08]).

Les SLEs, CLEs et le champ libre Gaussien sont trois importantes structures planaires aléatoires
reliées et cette thèse va explorer les aspects de ces trois objets et des relations existant entre eux.

De l’ensemble CLE au processus SLE
Le chapitre 2 (article en collaboration avec Wendelin Werner [WW13a]) présente un moyen de
construire les processus SLEκ(ρ) utilisant un CLE et un échantillon de restriction indépendant:
Définissons de façon indépendante, dans un domaine simplement connexe D avec deux points du
bord fixés a et b, les deux objets aléatoires suivants: Un CLEκ (κ ∈ (8/3,4]) que nous appelons
Γ et une courbe de restriction chordale γ de a à b avec l’exposant de restriction α . Ensuite, nous
construisons l’ensemble obtenu en joignant à γ toutes les boucles de Γ qu’elle croise. Enfin, nous
prenons la frontière la plus à droite de cet ensemble. Elle constitue encore une courbe simple de a
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à b dans D que nous appelons η (voir Figure 1.1.3). Nous montrons dans le chapitre 2 que cette
courbe η est un processus SLEκ(ρ) avec

α =
(ρ +2)(ρ +6−κ)

4κ
.

De cette construction des SLEs, nous déduisons une conséquence immédiate intéressante qui
fournit une preuve alternative simple d’un résultat non trivial ([Zha08b, Zha10b, MS12b]): la
réversibilité des processus SLEκ(ρ) avec κ ∈ [8/3,4],ρ >−2. Une autre conséquence est l’estimée
à deux points de l’intersection de SLEκ(ρ) avec la frontière qui à son tour donne une preuve simple
de la dimension de Hausdorff de cette intersection.

De SLE à CLE
Les ensembles CLE ont d’abord été définis par Scott Sheffield dans [She09] via des variantes bran-
chantes des courbes SLE. En effet, dans [She09], il fournit plusieurs constructions de ces arbres
d’exploration des SLE et il conjecture qu’ils correspondent tous à la même collection aléatoire
de boucles. Ceci a été ensuite prouvé dans le cas des arbres d’exploration symétriques dans
[SW12]. Le premier résultat principal du chapitre 3 (article en collaboration avec Wendelin W-
erner [WW13b]) peut être résumé comme suit: Pour chaque κ ∈ (8/3,4], toutes les collections
aléatoires des SLEκ de type quasi-boucles construites par les arbres d’exploration asymétriques de
Sheffield dans [She09] ont la même loi. Ils correspondent tous à des CLEκ , familles de boucles
construites dans [SW12].

Mécanisme de croissance invariant conforme de CLE4
Le deuxième résultat principal du chapitre 3 souligne une propriété spécifique de l’ensemble CLE4
(notons qu’il correspond au CLE qui est le plus directement relié au champ libre Gaussien [SS12,
SS09, MS13a, Dub09b, She11]). Dans ce cas particulier, il est possible de définir un mécanisme de
croissance de boucles invariant conforme et non enraciné. Grosso modo, le processus de croissance
qui découvre progressivement les boucles se forme “uniformément” sur la frontière et ne nécessite
pas de choisir une racine. Le fait qu’un tel mécanisme de croissance non-local invariant conforme
existe est assez surprenant (et le fait que ses paramétrisations temporelles vues à partir de différents
points coı̈ncident exactement l’est encore plus).

Grâce à ce mécanisme de croissance de l’ensemble CLE4, nous pouvons associer d’une manière
invariante conforme un paramètre de temps positif uL à chaque boucle L dans la configuration des
boucles L , qui correspond au temps dans le mécanisme de croissance pour lequel la boucle a été
découverte. Nous définissons un processus de Markov sur les domaines (Du,u ≥ 0) : à l’instant
u = 0, c’est le demi-plan supérieur; et à un instant u > 0, c’est le domaine qui reste lorsque l’on
retire toutes les boucles ayant un paramètre de temps inférieur à u. De ce mécanisme de croissance
invariant conforme, on déduit que (Du,u≥ 0) et (Φ(Du),u≥ 0) sont identiquement distribués pour
toute transformation conforme Φ de H sur lui-même.

Couplage entre champ libre Gaussien et CLE4 avec paramètre de temps
Notons que les courbes SLE4 sont les lignes de niveau du champ libre Gaussien [SS09, SS12,
Dub09b]. Et l’ensemble CLE4 est la collection des lignes de niveau du champ libre Gaussien
[MS13a], dans le sens où l’on peut coupler un champ libre Gaussien h avec un CLE4 L de telle
sorte que les boucles de L sont des lignes de niveau de h de hauteur ±λ (λ = π/2) et les signes
de la valeur moyenne de h à l’intérieur de la boucle sont donnés par des variables de Bernoulli i.i.d
indépendantes du CLE4. Dans ce couplage, on peut effectivement prouver que la configuration des
boucles du CLE4 est une fonction déterministe de h.
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Dans le chapitre 4, nous fournissons un deuxième nouveau couplage entre le champ libre
Gaussien et l’ensemble CLE4, en utilisant le paramètre de temps défini dans le chapitre 3. Plus
précisément, nous couplons un champ libre Gaussien h (ayant une valeur zéro au bord) avec un
CLE4 (avec paramètre de temps) ((L,uL),L ∈ L ) en sorte que, pour chaque boucle L, il est la
ligne de niveau de h et la valeur moyenne de h à l’intérieur de L est 2λ −2λuL. Nous montrons en
plus que dans ce couplage la configuration des boucles de CLE4 et le paramètre de temps sont des
fonctions déterministes de h.

Du champ libre Gaussien aux processus SLE et aux intersections des courbes SLE
Les résultats principaux du chapitre 5 sont la détermination de la dimension de Hausdorff des
ensembles de points doubles et des ensembles de points de coupure des courbes SLE. Soient κ ′ ∈
(4,8) et γ ′ un processus SLEκ ′ . L’ensemble de points de coupure de γ ′ est défini par K = {γ ′(t) :
t ∈ (0,∞),γ ′(0, t)∩ γ ′(t,∞) = /0}. Nous montrons que, presque sûrement,

dimH(K ) = 3− 3κ ′

8
.

Soit D l’ensemble de points doubles de γ ′. Nous montrons que, presque sûrement,

dimH(D) = 2− (12−κ ′)(4+κ ′)
8κ ′

.

Restriction conforme: le cas radial
Le dernier chapitre est consacré à l’étude de l’analogue radial de l’échantillon de restriction chordale
[LSW03]. Plus précisément, considérons le disque unité U et fixons un point du bord 1 et un point
à l’intérieur 0. Un échantillon de restriction radiale est un sous-ensemble aléatoire fermé K de U
tel que:

• K est connexe, C\K est connexe, K∩∂U= {1}, 0 ∈ K.

• Pour chaque sous-ensemble fermé A de U tel que A = U∩A, U\A est simplement connexe,
contient l’origine et le point 1 est sur sa frontière, la loi de ΦA(K) conditionnée sur (K∩A =
/0) est égale à la loi de K où ΦA est la transformation conforme de U\A à U qui préserve 1 et
l’origine (Figure 1.1.6).

Nous montrons dans le chapitre 6 que la mesure de restriction radiale est caractérisée par le
couple de deux nombres réels (α,β ) tel que

P(K∩A = /0) = |Φ′A(0)|αΦ
′
A(1)

β

où A est un sous-ensemble fermé de U tel que A = U∩A, U\A est simplement connexe, contient
l’origine et 1 sur sa frontière, et ΦA est la transformation conforme de U\A à U qui préserve 0 et
1. La mesure de restriction radiale correspondante est notée P(α,β ). En plus, nous montrons que
P(α,β ) existe si et seulement si

β ≥ 5
8
, α ≤ ξ (β ) =

1
48

(
(
√

24β +1−1)2−4
)
.



Chapter 2

From CLE to SLE

The results in this chapter are contained in [WW13a].

2.1 Introduction
The goal of the present paper is to derive ways to construct samples of (chordal) SLE curves (or the
related SLEκ(ρ) curves) out of the sample of a Conformal Loop Ensemble (CLE), using additional
Brownian paths (or so-called restriction measure samples). In order to properly state a first version
of our result, we need to briefly informally recall the definition of these three objects: SLE, CLE
and the restriction measures.

• Recall that a chordal SLE (for Schramm-Loewner Evolution) in a simply connected domain
D is a random curve that is joining two prescribed boundary points a and b of D. These
curves have been first defined by Oded Schramm in 1999 [Sch00], who conjectured (and this
conjecture was since then proved in several important cases) that they should be the scal-
ing limit of particular random curves in two-dimensional critical statistical physics models
when the mesh of the lattice goes to 0. More precisely, one has typically to consider the
statistical physics model in a discrete lattice-approximation of D, with well-chosen boundary
conditions, where (lattice-approximations of) the points a and b play a special role. When
κ ≤ 4, these SLEκ curves are random simple continuous curves that join a to b with fractal
dimension is 1+κ/8 (see for instance [Law05] and the references therein).

• CLEs (for Conformal Loop Ensembles) are closely related objects. A CLE is a random
family of loops that is defined in a simply connected domain D. In the present paper, we will
only discuss the CLEs that consist of simple loops. There are various equivalent definitions
and constructions of these simple CLEs – see for instance the discussion in [SW12]. More
precisely, one CLE sample is a collection of countably many disjoint simple loops in D,
and it is conjectured to correspond to the scaling limit of the collection of all discrete (but
macroscopic) interfaces in the corresponding lattice model from statistical physics. Here, the
boundary conditions are “uniform” and involve no special marked points on the boundary of
D (as opposed to the definition of chordal SLE that requires to choose the boundary points
a and b). It is proved in [SW12] that there is exactly a one-dimensional family of simple
CLEs, that is indexed by κ ∈ (8/3,4]. Then, in a CLEκ sample, the loops all locally look like
SLEκ type curves (and have fractal dimension 1+κ/8). Note also that, even if any two loops
are disjoint in CLEκ sample, the Lebesgue measure of the set of points that are surrounded

27
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by no loop is almost surely 0. This is therefore a random Cantor-like set, sometimes called
the CLE carpet (its fractal dimension is actually proved in [SSW09, NW11] to be equal to
1+ (2/κ) + 3κ/32 ∈ [15/8,2)). In the present paper, we will only discuss the CLEs for
κ ≤ 4, that consist of simple disjoint loops (there exists other CLEs for κ ∈ (4,8]).

• When a and b are two boundary points of a simply connected domain D as before, it is possi-
ble to define random simple curves from a to b that possess a certain “one-sided restriction”
property, that is defined and discussed in [LSW03]. There is in fact a one-dimensional fam-
ily of such random curves, that is parametrized by its restriction exponent, which can take
any positive real value α . All these random restriction curves can be viewed as boundaries
of certain Brownian-type paths (or like SLE8/3 curves). In particular, they all almost surely
have a Hausdorff dimension that is equal to 4/3.

Let us now state the main result that we prove in the present paper: Define independently, in a
simply connected domain D with two marked boundary points a and b, the following two random
objects: A CLEκ (for some κ ∈ (8/3,4]) that we call Γ and a one-sided restriction path γ from a to
b, with restriction exponent α . Finally, we define the set obtained by attaching to γ all the loops of
Γ that it intersects. Then, we define the right-most boundary of this set. This turns out to be again
a simple curve from a to b in D that we call η (see Figure 2.1.1). Note that in order to construct η ,
it is enough to know γ and the outermost loops of Γ.

γ
Γ η

b

a a

b

Figure 2.1.1: Construction of η out of γ and Γ.

Theorem 2.1.1. When κ ∈ (8/3,4] and α = (6−κ)/(2κ), then η is a chordal SLEκ from a to b in
D.

In fact, for a given κ , the other choices of α > 0 give rise to variants of SLEκ , the so-called
SLEκ(ρ) curves, where ρ is related to κ and α by the relation α = (ρ + 2)(ρ + 6− κ)/(4κ).
We will state this generalization of Theorem 2.1.1 in the next subsection, after having properly
introduced these SLEκ(ρ) processes.

To illustrate Theorem 2.1.1, let us give the following example for κ = 3, which corresponds
to the scaling limit of the critical Ising model (see [CS12, CDCH+12]). Consider a CLE3 Γ in D
which is the (soon-to-be proved) scaling limit of the collection of outermost critical Ising model
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“− cluster” boundaries, when one considers the model with uniformly “+ boundary conditions”.
On the other hand, consider now the scaling limit of the critical Ising model with mixed boundary
conditions, + between a and b (anti-clockwise) and − between b and a. This model defines loops
as before, as well as the additional± interface η joining a and b, which turns out to be a SLE3 path
(see [CDCH+12]). Now, our result shows that in order to construct a sample of η , one possibility
is to take the right boundary of the union of a restriction measure with exponent 1/2 together
with all the loops in Γ that it intersects. It gives a way to see the “effect” of changing the boundary
conditions (note that there are natural ways to couple the discrete Ising model with mixed boundary
conditions to the model with uniform boundary conditions, it would be interesting to compare them
with this coupling in the scaling limit).

We would like to make a few comments:

1. It is proved in [SW12] that CLEs can be constructed as outer boundaries of clusters of Poisso-
nian clouds of Brownian loops in D (the “Brownian loop-soups” introduced in [LW04]) with
intensity c(κ). Hence, together with the construction of the restriction measure via clouds of
Brownian excursions or reflected Brownian motions, this provides a “completely Brownian”
construction of all these chordal SLEκ curves and their SLEκ(ρ) variants. This result was in
fact announced in [Wer03], so that – combined with [SW12] – the present paper eventually
completes the proof of that (not so recent) research announcement.

2. This Brownian construction of SLEκ(ρ) paths turn out to be particularly useful and handy,
when one has to derive “second moment estimates” for these SLE curves. We will illustrate
this in the final section of the present paper by giving a short self-contained derivation of the
Hausdorff dimension of the intersection of SLEκ(ρ) (in the upper half-plane) with the real
line.

3. A direct by-product of this construction of these chordal SLEκ curves and their variants is
that they are “reversible” simple paths (for instance, the SLE from a to b in D is a simple
path has the same law as the SLE from b to a modulo reparametrization – in the case of
SLEκ(ρ) the statement is also clear, but the reversed SLEκ(ρ) is then pushed/attracted from
its right). This provides an alternative proof to the reversibility of these SLEκ(ρ) curves that
has been obtained thanks to their relation with the Gaussian Free Field in [MS12b] (see also
[Zha08b, Zha10b, Dub09a] for earlier proofs of this result in the case ρ = 0 and then when
the SLEκ(ρ) curves do not hit the boundary of the domain i.e. when ρ ≥ (κ −4)/2). Note
however that our approach does not yield any result for κ /∈ [8/3,4].

4. The construction of the restriction measure via Poisson point processes of Brownian excur-
sions, as explained in [Wer05], together with that of the CLE’s via loop-soups, make it possi-
ble to define simultaneously in a fairly natural and “ordered way” (see the comments after the
statement of Theorem 2.2.1), on a single probability space, all these SLEκ(ρ)’s in D from a
to b, for all boundary points a and b, and for all κ ∈ (8/3,4] and all ρ >−2. This is of course
reminiscent of the definitions of SLEκ(ρ) processes within a Gaussian Free Field [MS12a].
It is interesting to see the similarities and differences between these two constructions.

2.2 Preliminaries
In this section, we will recall in a little more detail some definitions, notations and facts, and point
to appropriate references for background. We then state our main result, Theorem 2.2.1 and make
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a couple of remarks.

2.2.1 Conformal restriction property
We first recall the definition and the basic properties of the paths satisfying conformal restriction
(almost all the results that we shall describe have been derived in [LSW03], a survey as well as the
construction of restriction samples from Brownian excursions can be found in [Wer05]).

Here and throughout the paper, we denote the upper half of the complex plane C by H :=
{x+ iy : x ∈ R,y > 0}. Let A be the set of all bounded closed A ⊂ H such that R− ∩A = /0 and
HA :=H\A is simply connected.

For A ∈A , we define ΦA to be the unique conformal map from HA onto H such that ΦA(z)∼ z
as z→∞ and such that ΦA(0) = 0 (the fact that ΦA can be extended analytically to a neighborhood
of 0 follows easily from the Schwarz reflection principle).

We say that a random curve γ from 0 to infinity in H does satisfy one-sided conformal restriction
(to the right), if for any A, the law of ΦA(γ) conditionally on γ ∩A = /0 is in fact identical to the law
of γ itself (see Figure 2.2.1).

γ

A

ΦA

0 0

ΦA(γ)

Figure 2.2.1: The law of ΦA(γ) conditionally on γ ∩A = /0 has the same law as γ itself.

It turns out that if this is the case, then there exists some non-negative α such that for all A∈A ,

P(γ ∩A = /0) = Φ
′
A(0)

α . (2.2.1)

Conversely, for all non-negative α , there exists exactly one distribution for γ that fulfils (2.2.1) for
all A ∈A . We call γ an one-sided restriction sample of exponent α. There exist several equivalent
constructions of γ:

• As the right boundary of a certain Brownian motion from 0 to ∞, reflected on (−∞,0] with a
certain reflection angle θ(α) and conditioned not to intersect [0,∞), see [LSW03].

• As the right boundary of a Poissonian cloud of Brownian excursions from (−∞,0] in H (so
it is the right boundary of the countable union of Brownian paths that start and end on the
negative half-line, see [Wer05]). Note that if the Poissonian cloud of Brownian excursions
has intensity α times the (appropriately normalized) Brownian excursion measure, then the
right boundary of the union of all these excursions is sampled like the one-sided conformal
restriction sample of exponent α .

• As an SLE8/3(ρ) curve for some ρ >−2 (these processes will be defined in the next section),
see [LSW03] for the relation between α and ρ . Note that this approach enables to show that
γ does hit the negative half-line if and only if α < 1/3.
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We can note that the limiting case α = 0 corresponds to the case where γ is the negative half-
line, whereas the case α = 5/8 corresponds to ρ = 0 i.e. to the SLE8/3 curve itself, which is
left-right symmetric. Furthermore, the second construction shows immediately that for α < α ′, it
is possible to couple the corresponding restriction curves in such a way that γ ′ stays “to the right”
of γ (with obvious notation). In other words, the larger α is, the more the restriction sample is
“repelled” from the negative half-line.

In fact, we will be only using the second description in the present paper (and we will actually
recall in Section 2.2.4 why this indeed constructs a random simple curve γ).

2.2.2 SLEκ(ρ) process
The SLEκ(ρ) processes are natural variants of SLEκ processes that have been first introduced in
[LSW03]. Recall first the definition of SLEκ . Suppose (Wt , t ≥ 0) is a real-valued continuous
function. For each z ∈H, define gt(z) as the solution to the chordal Loewner ODE:

∂tgt(z) =
2

gt(z)−Wt
, g0(z) = z. (2.2.2)

We set Wt =
√

κBt where (Bt , t ≥ 0) is a standard Brownian motion and κ ≤ 4, then SLEκ is the
continuous simple random curve η in H from 0 to ∞ that, for each t > 0, gt is the conformal map
from H \η [0, t] onto H with normalization gt(z) ∼ z+ o(1) when z→ ∞ (for the existence and
uniqueness of such a continuous curve, see for instance [Law05] ). Note that η is parametrized by
its half-plane capacity (i.e. for any t, the conformal map gt from H\η [0, t] onto H in fact satisfies
gt(z)− z∼ 2t/z as z→ ∞).

SLEκ curves possess the following properties:

• The law of η is scale-invariant: For any positive λ , the traces of η and of λη have the same
law.

• Let us suppose that η is parametrized by its half-plane capacity. For any positive time t, the
distribution of gt(η [t,∞))−gt(ηt) is identical to the distribution of η itself.

In fact, the SLEκ curves are the only random curves with this property, which is what led Oded
Schramm to this definition of these curves via Loewner differential equation driven by Brownian
motion (see [Sch00]).

There exist variants of the SLEκ curves that involve additional marked boundary points, and
that are called the SLEκ(ρ1, . . . ,ρL) processes. Let us now describe the SLEκ(ρ) processes that
involve exactly one additional marked boundary point (see [LSW03, Dub05]). Consider gt as the
conformal maps generated by Loewner evolution (2.2.2) with Wt replaced by the solution to the
system of SDEs:

dWt =
√

κdBt +
ρ

Wt−Ot
dt,W0 = 0; dOt =

2
Ot−Wt

dt,O0 = x. (2.2.3)

When κ ≤ 4,ρ > −2, SLEκ(ρ) in H from 0 to ∞ with force point x is the increasing family of
compact set (Kt) such that for each t, gt is the conformal map from H\Kt onto H with normalization
gt(z)∼ z as z→ ∞. As we shall see, it turns out that these compact sets are almost surely a simple
curve η , in other words Kt = η [0, t] for each t. Note that when ρ = 0, the SLEκ(ρ) is just the
ordinary chordal SLEκ (and the force point plays no role). When ρ > 0, the force point should be
thought of as “repelling” while it is “attracting” when ρ ∈ (−2,0).
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It turns out that these SLEκ(ρ) can also be characterized by a couple of properties. Let us
now state the characterization that will be handy for our purposes: Suppose that the following four
properties hold:

• η is a random simple curve from 0 to ∞ in H.

• The law of η is scale-invariant: For any positive λ , the traces of λη and η are identically
distributed.

• η ∩ (0,∞) = /0 and the Lebesgue measure of η ∩ (−∞,0] is almost surely equal to 0. Mind
however that it is possible (and it will happen in a number of cases) that η hits the negative
half-line.

• Suppose that η is parametrized by half-plane capacity as before. For any positive time t,
define Ht as the unbounded connected component of H \η [0, t] (if η intersects the nega-
tive half-line, it happens that Ht 6= H \η [0, t]) and ot as the left-most point of the intersec-
tion η [0, t]∩R−. Let ft be the unique conformal map from Ht onto H that sends the triplet
(ot ,ηt ,∞) onto (0,1,∞). Then, the distribution of ft(η [t,∞)) is independent of t (and of
η [0, t]) (see Figure 2.2.2).

ft(ηt) = 1ft(ot) = 00

η

ot

ftηt

ft(η[t,∞))

Figure 2.2.2: ft(η [t,∞)) is independent of η [0, t].

Then, η is necessarily a SLEκ(ρ) for some κ ∈ (0,4] and ρ > −2 (mind that the fact that this
SLEκ(ρ) is almost surely a simple curve is then part of the conclusion; in fact in the present paper,
we will never use the a priori fact that the SLEκ(ρ) processes are continuous simple paths).

This is very easy to see, using the Loewner chain description of the random simple curve η . If
one parametrizes the curve η by its half-plane capacity (which is possible because its capacity is
increasing continuously – this is due to the third property) and defines the usual conformal map gt
from Ht onto H normalized by gt(z) = z+o(1) near infinity, then one can define

Wt = gt(ηt),Ot = gt(ot).

One observes that Xt := Wt −Ot is a Markov process with the Brownian scaling property i.e., a
multiple of a Bessel process. More precisely, one can first note that the first two items imply that
for any given t0 > 0, ηt0 /∈ (−∞,0) and therefore u :=Xt0 6= 0. The final property then implies readily
that the law of ((Xt0+tu2−u)/u, t ≥ 0) is independent of (Xt , t ≤ t0). From this, it follows that at least
up to the first time after t0 at which X hits the origin, it does behave like a Bessel process. Then,
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one can notice that X is instantaneously reflecting away from 0 because the Lebesgue measure of
the set of times at which it is at the origin is almost surely equal to 0. Hence, one gets that X is
the multiple of some reflected Bessel process of positive dimension (see [RY94] for background
on Bessel processes). From this, one can then recover the process t 7→ Ot (because of the Loewner
equation dOt = 2dt/(Ot−Wt) when Xt 6= 0) and finally t 7→Wt . In particular, we get that

dWt =
√

κdBt +
ρ

Wt−Ot
dt

for some ρ >−2 and κ ≤ 4 (the fact that ρ >−2 is a consequence of the fact that the dimension of
the Bessel process X is positive; κ ≤ 4 is due to the fact that η does not hit the positive half-line).
This characterizes the law of η , which is the same as SLEκ(ρ).

Actually, it is possible to remove some items from this characterization of SLEκ(ρ) curves; the
first three items are slightly redundant, but since we do get these properties for free in our setting,
the present presentation will be sufficient for our purposes (see for instance [SW05, MS12b] for a
more general characterization).

Note that the SLEκ(ρ) processes touch the negative half-line if and only if ρ < (κ/2)− 2 (as
this corresponds to the fact that the Bessel process (Wt−Ot)/

√
κ has dimension smaller than 2).

Let us point out that it is possible to make sense also of SLEκ(ρ) processes for some values of
ρ ≤−2 by introducing either a symmetrization or a compensation procedure (see [Dub05, She09,
WW13b]), some of which are very closely related to CLEs as well, but we will not discuss such
generalized SLEκ(ρ)’s in the present paper.

2.2.3 Simple CLEs

Let us now briefly recall some features of the Conformal Loop Ensembles for κ ∈ (8/3,4] – we refer
to [SW12] for details (and the proofs) of these statements. A CLE is a collection Γ of non-nested
disjoint simple loops (γ j, j ∈ J) in H that possesses a particular conformal restriction property. In
fact, this property that we will now recall, does characterize these simple CLEs:

• For any Möbius transformation Φ of H onto itself, the laws of Γ and Φ(Γ) are the same. This
makes it possible to define, for any simply connected domain D (that is not the entire plane
– and can therefore be viewed as the conformal image of H via some map Φ̃), the law of the
CLE in D as the distribution of Φ̃(Γ) (because this distribution does then not depend on the
actual choice of conformal map Φ̃ from H onto D).

• For any simply connected domain H ⊂H, define the set H̃ = H̃(H,Γ) obtained by removing
from H all the loops (and their interiors) of Γ that do not entirely lie in H. Then, conditionally
on H̃, and for each connected component U of H̃, the law of those loops of Γ that do stay in
U is exactly that of a CLE in U .

It turns out that the loops in a given CLE are SLEκ type loops for some value of κ ∈ (8/3,4] (and
they look locally like SLEκ curves). In fact for each such value of κ , there exists exactly one CLE
distribution that has SLEκ type loops. As explained in [SW12], a construction of these particular
families of loops can be given in terms of outermost boundaries of clusters of the Brownian loops
in a Brownian loop-soup with subcritical intensity c (and each value of c corresponds to a value of
κ).
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2.2.4 Main Statement
We can now state our main Theorem, that generalizes Theorem 2.1.1: Suppose that κ ∈ (8/3,4] is
fixed (and it will remain fixed throughout the rest of the paper) and consider a CLEκ in the upper
half-plane. Independently, sample a restriction curve γ from 0 to ∞ in H with positive exponent α ,
and define η out of the CLE and γ just as in Theorem 2.1.1. Let ρ̃ := ρ̃(κ,α) denote the unique
real in (−2,∞) such that

α =
(ρ̃ +2)(ρ̃ +6−κ)

4κ

(we will use this notation throughout the paper). Then:

Theorem 2.2.1. The curve η is a random simple curve which is an SLEκ(ρ̃).

Note that for a fixed κ ∈ (8/3,4], the function α 7→ ρ̃ is indeed an increasing bijection from
(0,∞) onto (−2,∞). The limiting case ρ = −2 in fact can be interpreted as corresponding to
the case where both γ and η are the negative half-line. Similarly, in the limiting case κ = 8/3,
where the CLE is in fact empty, then Theorem 2.2.1 corresponds to the description of γ itself as an
SLE8/3(ρ) curve.

Note that this construction shows that it is possible to couple an SLEκ(ρ) with an SLEκ ′(ρ
′) in

such a way that the former is almost surely “to the left” of the latter, when 8/3 < κ ≤ κ ′ ≤ 4 and ρ

and ρ ′ are chosen in such a way that

(ρ +2)(
ρ +6

κ
−1)≤ (ρ ′+2)(

ρ ′+6
κ ′
−1).

For example, an SLEκ(ρ) can be chosen to be to the left of an SLEκ(ρ
′) for ρ ≤ ρ ′. Or an SLE3

can be coupled to an SLE4(2
√

2− 2) in such a way that it remains almost surely to its left. Such
facts are seemingly difficult to derive directly from the Loewner equation definitions of these paths.

Similarly, it also shows that it is possible to couple an SLEκ(ρ) from 0 to ∞ with another
SLEκ(ρ) from 1 to ∞, in such a way that the latter stays to the “right” of the former.

Let us recall that the definition of SLEκ(ρ) processes can be generalized to more than one
marked boundary point. For instance, if one considers x1 < .. . < xn ≤ 0 ≤ x′1 < x′2 < .. . < x′l , it
is possible to define a SLEκ(ρ1, . . . ,ρn;ρ ′1, . . . ,ρ

′
l ) from 0 to infinity in H, with marked boundary

points x1, . . . ,x′l with corresponding weights. Several of these processes have also an interpretation
in terms of conditioned SLEκ(ρ) processes (where the conditioning involves non-intersection with
additional restriction samples) – see [Wer04a], so that they can also be interpreted via a CLE and
restriction measures.

Let us now immediately explain why η is necessarily almost surely a continuous curve from 0
to ∞ in H. Let us first map all items (the CLE loops and the restriction sample) onto the unit disc,
via the Moebius map Φ that maps 0, i and ∞ respectively onto −1, 0 and 1, and write Γ̃ = Φ(Γ),
η̃ = Φ(η) and γ̃ = Φ(γ).

Let us note that γ̃ is almost surely a continuous curve from −1 to 1 in the closed unit disc. One
simple way to check this (but other justifications are possible) is to use the construction of γ̃ as the
bottom boundary of the union of countably many excursions away from the top half-circle. More
precisely, for each excursion e in this Poisson point process, one can define the loop l(e) obtained
by adding to this excursion the arc of the top half-circle that joins the endpoints of e. Then, one
can construct a continuous path λ from −1 to 1 by moving from −1 to 1 on this top arc, and
attaching all these loops l(e) in the order in which one meets them (once one meets a loop, one
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travels around the loop before continuing at the point where the loop was encountered). As almost
surely, for any ε > 0, there are only finitely many loops l(e) of diameter greater than ε , there is a
way to parametrize λ as a continuous function from [0,1] into the closed disk. We then complete
λ into a loop by adding the bottom half-circle. Then, we can interpret γ̃ as part of the boundary
of a connected component of the complement of a continuous loop in the plane: It is therefore
necessarily a continuous curve and it is easy to check that it is self-avoiding (because the Brownian
excursions have no double cut-points).

We have detailed the previous argument, because it can be repeated in almost identical terms
to explain why η̃ is a simple curve. Let us first recall from [SW12] that Γ̃ consists of a countable
family of disjoint simple loops such that for any ε > 0, there exist only finitely many loops of
diameter greater than ε . We now move along γ̃ and attach the loops of Γ̃ that it encounters, in their
order of appearance (once one meets the loop, one travels around the loop before continuing). By
an appropriate time-change, we can ensure that the obtained path that joins −1 to 1 in the closed
disk is a continuous curve from [0,1] into the closed unit disk. Then, just as above, we complete
this curve into a loop by adding the bottom half-circle, and note that η̃ is a continuous curve from
−1 to 1. It is then easy to conclude that it is self-avoiding, because almost surely, γ̃ does never hit
a loop of Γ̃ at just one single point (this is due to the Markov property of Brownian motion: If one
samples first the CLE and then the Brownian excursions that are used to construct γ , almost surely,
a Brownian excursion will actually enter the inside of each individual loop of Γ that it hits).

2.3 Identification of ρ

The proof of Theorem 2.2.1 consists of the following two steps.

Lemma 2.3.1. The random simple curve η is an SLEκ(ρ) curve for some ρ >−2.

Lemma 2.3.2. If η is an SLEκ(ρ) for some ρ >−2, then necessarily ρ = ρ̃(κ,α).

The proof of Lemma 2.3.1 will be achieved in the next section by proving that it satisfies all
the properties that characterize these curves (and that we have recalled in the previous subsection),
which is the most demanding part of the paper. In the present section, we will prove Lemma 2.3.2.
These ideas were already very briefly sketched in [Wer03].

Let us build on the loop-soup cluster construction of the CLEκ as established in [SW12]. We
therefore consider a Poisson point process of Brownian loops (as defined in [LW04]) in the upper-
half plane with intensity c(κ) ∈ (0,1] with

c(κ) =
(3κ−8)(6−κ)

2κ
.

Then, we construct the CLEκ as the collection of all outermost boundaries of clusters of Brownian
loops (here, we say that two loops l, l′ in the loop-soup are in the same cluster of loops if one
find a finite chain of loops l0, ..., ln in the loop-soup such that l0 = l, ln = l, and l j ∩ l j−1 6= /0 for
j ∈ {1, ...,n}), as explained in [SW12].

We also sample the restriction sample γ with exponent α , via a Poisson point process of Brow-
nian excursions attached to R−, as explained in [Wer05].

Suppose now that A∈A , and define H = HA to be the unbounded connected component of H\
A as before. By definition of A , the negative half-line still belongs to ∂HA. If we restrict the loop-
soup and the Poisson point process of Brownian excursions to those that stay in HA, the restriction
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properties of the corresponding intensity measures imply immediately that one gets a sample of the
Brownian loop-soup with intensity c in HA, and a sample of the Poisson point process of Brownian
excursions away from the negative half-line in HA, with intensity α . In particular, because of the
conformal invariance of these two underlying measures, it follows that these Poissonian samples
have the same law as the image under Φ

−1
A of the original loop and excursion soups in H.

Let us now first sample these items in HA, and let ηA be the right-most boundary of a set defined
in the same way as η but from the samples in HA instead of in H. Then, we sample those excursions
and loops that do not stay in HA, and we construct η itself. One can note that either η 6⊂ HA or
η = ηA. Indeed, the only way in which η can be different than ηA is because of these additional
loops/excursions, that do force η to get out of HA. Hence, the event η ⊂ HA holds if and only if on
the one hand the curve γ stays in HA (recall that this happens with probability Φ′A(0)

α ), and on the
other hand, no loop in the loop-soup does intersect both ηA and A (see Figure 2.3.1). Let PH and
PHA be the laws of the processes η and ηA respectively. It follows immediately that for any A ∈A ,

dPH
dPHA

(η)1η∩A= /0 = Φ
′
A(0)

α exp(−cL(H;A,η))1η∩A= /0

where L(H;A,η) denotes the mass (according to the Brownian loop-measure in H) of the set of
loops that intersect both A and η .

A A

ηA ηA

Figure 2.3.1: η = ηA if and only if there is no loop in Γ that intersects ηA and A.

Equivalently,
dPHA

dPH
(η)1η∩A= /0 = 1η∩A= /0Φ

′
A(0)

−α exp(cL(H;A,η)). (2.3.1)

Note that this implies that

EH
(
1η∩A= /0 exp(cL(H;A,η)

)
= EHA(1η∩A= /0Φ

′
A(0)

α) = Φ
′
A(0)

α (2.3.2)

(and the present argument in fact shows that the expectation in the left-hand side is actually finite).
We now wish to compare (2.3.1) with features of SLEκ(ρ) processes. Let us now suppose that

the curve η is an SLEκ̄(ρ̄) process for some κ̄ ≤ 4 and ρ̄ >−2. We keep the same notations as in
Section 2.2.2. For A ∈ A , let T be the (possibly infinite) first time at which η hits A. For t < T ,
write ht := Φgt(A). Then (see [Dub05, Lemma 1]), an Itô formula calculation shows that

Mt = h′t(Wt)
a1h′t(Ot)

a2

(
ht(Wt)−ht(Ot)

Wt−Ot

)a3

exp(c̄L(H;A,η [0, t]))
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is a local martingale (for t < T ) where a1 = (6− κ̄)/(2κ̄), a2 = ρ̄(ρ̄ +4− κ̄)/(4κ̄), a3 = ρ̄/κ̄ and
and c̄ = c(κ̄) = (3κ̄ − 8)(6− κ̄)/(2κ̄) (note that such martingale calculations have been used on
several occasions in related contexts, see e.g. [Dub09a] and the references therein).

It can be furthermore noted that M0 =Φ′A(0)
ᾱ (and more generally, at those times when Ot =Wt ,

one puts Mt = h′t(Wt)
ᾱ exp(c̄L(H;A,η [0, t])), where

ᾱ = α(κ̄, ρ̄) = a1 +a2 +a3 = (ρ̄ +2)(ρ̄ +6− κ̄)/(4κ̄).

One has to be a little bit careful, because (as opposed to the case where κ̄ < 8/3), Mt is not bounded
on t < T , so that we do not know if the local martingale stopped at T is uniformly integrable (indeed
the term involving L(H;A,η [0, t]) actually does blow up when t→ T− and T < ∞). However, even
if some of the numbers a2 and a3 may be negative, one always has (see [Dub05], the proof of
Lemma 2-(i))

0≤ h′t(Wt)
a1h′t(Ot)

a2

(
ht(Wt)−ht(Ot)

Wt−Ot

)a3

≤ 1.

Furthermore (see again [Dub05]), when η ∩A = /0, then when t→ ∞, then Mt converges to

M∞ := exp(c̄L(H;A,η))

because each of the first three factors in the definition of Mt converge to 1.
Note also that dMt = MtKt

√
κ̄dBt where

Kt = a1
h′′t (Wt)

h′t(Wt)
+a3

h′t(Wt)

ht(Wt)−ht(Ot)
−a3

1
Wt−Ot

.

Let Tn denote the first (possibly infinite) time that the distance between the curve and A reaches 1/n.
Then, for a fixed A, we see that (Mt∧Tn, t ≥ 0) is uniformly bounded by a finite constant. Hence,
if QH is the probability measure under which W is the driving process of the SLEκ̄(ρ̄) η in H, we
can define the probability measure Q∗n by dQ∗n/dQH = MTn/M0. Under Q∗n, we have

dBt = dB∗t +Ktdt, dht(Wt) =
√

κ̄h′t(Wt)dB∗t +
ρ̄

ht(Wt)−ht(Ot)
h′t(Wt)

2dt.

This implies that Q∗n is the law of a (time-changed) SLEκ̄(ρ̄) in HA up to the time Tn, which happens
to be the (possibly infinite) first time at which this curve gets to distance 1/n of A.

We can now note that by definition, the sequences Q∗n are compatible in n, so that there exists a
probability measure Q∗ such that, under Q∗, and for each n, the curve, up to time Tn, is an SLEκ̄(ρ̄)
in HA up to the first time it is at distance 1/n of A. But we also know that an SLEκ̄(ρ̄) in HA almost
surely does not hit A. Hence, Q∗ is just the law of SLEκ̄(ρ̄) in HA.

By the definition of Q∗, we have that, for any n,

dQ∗

dQH
(η)1d(η ,A)≥1/n =

MTn

M0
1d(η ,A)≥1/n =

M∞

M0
1d(η ,A)≥1/n.

Hence, we finally see that

dQ∗

dQH
(η)1d(η ,A)>0 =

M∞

M0
1d(η ,A)>0 = Φ

′
A(0)

−ᾱ exp(c̄L(H;A,η))1η∩A= /0.

Comparing this with (2.3.1), we conclude that κ̄ = κ and that ρ̄ = ρ̃(κ,α).

Note that a by-product of this proof (keeping in mind that (2.3.2) holds) is that in fact the
stopped martingale Mt∧T is indeed uniformly integrable: It is a positive martingale such that

E(MT ) = E( lim
t→∞

Mt∧T )≥ E(M∞1T=∞) = Φ
′
A(0)

α = E(M0).
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2.4 Proof of Lemma 2.3.1
We now describe the steps of the proof of Lemma 2.3.1. Quite a number of these steps are almost
identical to ideas developed in [SW12]. We will therefore not always provide all details of those
parts of the proof. Let us first note that the law of η is obviously scale-invariant, and that we
already have seen that it is almost surely a simple curve. Furthermore, we know (for instance using
the construction of γ via a Poisson point process of Brownian excursions, or via its SLE8/3(ρ)
description), that almost surely, the Lebesgue measure of γ ∩ (−∞,0) is zero. By construction
(since η ∩ (−∞,0) is a subset of this set), the Lebesgue measure of η ∩ (−∞,0) is also 0. Hence,
in order to prove the lemma, it only remains to check the “conformal Markov” property i.e. the last
item in the characterization of SLEκ(ρ) processes derived in Section 2.2.2.

2.4.1 Straight exploration and the pinned path
A first idea will be not to focus only on the curve η , but to also keep track of the CLE loops that lie
to its right. In other words, we will consider half-plane configurations (η ,Λ), where – as before – η

is a curve in H from 0 to ∞ that does not touch (0,∞) and Λ is a loop configuration in the connected
component of H \η that has (0,∞) on its boundary (we say that it is the connected component
to the right of η). The conformal restriction property of the CLE shows that the following two
constructions are equivalent:

• Construct η as in the statement (via a CLE Γ and a restriction path γ), and consider Λ to be
the collection of loops in the CLE Γ (that one used to construct η) that lie to the right of η .

• First sample η , and then in the connected component Hη of H\η that lies to the right of η ,
sample an independent CLE that we call Λ.

It turns out that the couple (η ,Λ) does satisfy a simple “restriction-type” property, that one can
sum up as follows: For a given A ∈ A , let us condition on the event {η ∩A = /0}. Then, one can
define the collection Λ̃A of loops of Λ that intersect A, and the unbounded connected component
H̃A of H \ (A∪ Λ̃A). We also denote by ΛA to be the collection of loops of Λ that stay in H̃A.
Let Ψ = Ψ(Λ̃A,A) denote the conformal map from H̃A onto H with Ψ(0) = 0 and Ψ(z) ∼ z when
z→∞. Then, the conditional law of (Ψ(η),Ψ(ΛA)) (conditionally on η ∩A = /0) is identical to the
original law of (η ,Λ). This is a direct consequence of the construction of (η ,Λ) and the restriction
properties of γ and Γ.

This restriction property is of course reminiscent of the restriction property of CLEs themselves.
In [SW12], the restriction property of CLE was exploited as follows: Fix one point in H (say the
point i) and discover all loops of the CLE that lie on the segment [0, i] (by moving upwards on this
segment) until one discovers the loop that surrounds i (see Figure 2.4.1). This can be approximated
by iterating discrete small cuts, discovering the loops that intersect these cuts and repeating the
procedure. The outcome was a description of the law of the loop that surrounds i at the “moment”
at which one discovers it (see Proposition 4.1 in [SW12]).

Here, we use the very same idea, except that the goal is to cut in the domain until one reaches
the curve η (note that in the CLE case, the marked point i is an interior point of H and that here, the
marked points 0 and ∞ on the boundary do also correspond to the choice of two degrees of freedom
in the conformal map). We can for instance do this by moving upwards on the vertical half-line
L := 1+ iR+; a simple 0-1 law argument shows that almost surely, the curve γ does intersect L, and
that therefore η ∩L 6= /0 too. Let ηT denote the point of η ∩L with smallest y-coordinate. One way
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Ψ

Figure 2.4.1: Discovering the loop that surrounds i in a CLE defines a pinned loop (see [SW12])

to find it, is to move on L upwards until one meets η for the first time. This can be approximated
also by “exploration steps”, in a way that is almost identical to the explorations of CLEs described
in [SW12]. We refer to that paper for rather lengthy details, the arguments really just mimic those
to that paper. The conclusion, analogous to Proposition 4.1 in [SW12] is that (see Figure 2.4.2):

10 10

Ψ

η∗
η

ηT

η∗T ∗

o∗T ∗oT

Figure 2.4.2: Discovering η in half-plane configuration defines a pinned path

Lemma 2.4.1. The conditional law of η conditionally on the event that η passes through the ε-
neighborhood of 1, converges as ε→ 0 to the distribution of η∗ := Ψ(η), where Ψ is the conformal
map from H̃[1,ηT ] onto H that maps the triplet (0,ηT ,∞) onto (0,1,∞).

We will call η∗ a “pinned” path, as in [SW12]. Note that this construction also shows that η∗

is independent of Ψ.

2.4.2 Restriction property for the pinned path
When η∗ is such a pinned path, then H\η∗ has several connected components, and we call U0 the
connected component with (0,1) on its boundary and U+ the one with (1,∞) on its boundary (see
Figure 2.4.3). If one first samples η∗ and then in U0 and U+ samples two independent CLEκ ’s ,
then one gets a “pinned configuration” (η∗,Λ∗).

This pinned configuration inherits the following restriction property from (η ,Λ): Suppose that
A ∈A with d(1,A) > 0, and condition on A∩η∗ = /0. Then, define H∗A for (η∗,Λ∗) just as H̃A in
the case of (η ,Λ). Note that 0 and 1 are both boundary points of H∗A so that it is possible to define
the conformal transformation Φ∗A from H∗A onto H that fixes the three boundary points 0, 1 and ∞.
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Then, the conditional law of Φ∗A(η
∗) (conditionally on the event that η∗∩A = /0) is equal to the

initial (unconditioned) law of η∗ itself. This result just follows by passing to the limit the restriction
property of (η ,Λ).

Let us define T ∗ the time at which η∗T ∗ = 1, and o∗T ∗ as the leftmost point in η∗[0,T ∗]∩R− (note
that depending on the value of ρ , it may be the case that o∗T ∗ = 0). Denote by ϕ∗ the conformal map
from the unbounded connected component of H\η∗[0,T ∗] onto H, that maps the triplet (o∗T ∗,1,∞)
onto (0,1,∞) (see Figure 2.4.3). One can therefore note that ϕ∗ is therefore a deterministic function
of η∗[0,T ∗].

o∗T ∗ 0 1 10

ϕ∗η∗
ϕ∗(η∗[T ∗,∞))

η∗

10o∗T ∗ 10

Φ∗A

Figure 2.4.3: Definitions of Φ∗A and ϕ∗

Let us now consider a set A ∈A that is also at positive distance from [1,∞), i.e. that is attached
to the segment [0,1] (we call A[0,1] this set of closed subsets of the plane). Then, the following
restriction property will be inherited from the restriction property of (η∗,Λ∗):

Lemma 2.4.2. The curve ϕ∗(η∗[T ∗,∞)) is independent of the event η∗[0,T ∗]∩A = /0.

Proof. Suppose that the event η∗[0,T ∗]∩A = /0 holds (which is the same as η∗∩A = /0). Recall
that the conditional distribution of Φ∗A(η

∗) is equal to the original (unconditioned) distribution of
η∗.

Let us now define G the measurable transformation that allows to construct ϕ∗(η∗[T ∗,∞)) from
the path η∗ (as in the bottom line of Figure 2.4.3). When η∗[0,T ∗]∩A = /0 holds, then we see that
the same transformation G applied to Φ∗A(η

∗) (i.e. to the top right path in the figure) gives also
ϕ∗(η∗[T ∗,∞)) i.e. that G(η∗) = G(Φ∗A(η

∗)). Hence, the conditional distribution of ϕ∗(η∗[T ∗,∞))
given η∗[0,T ∗]∩A = /0 is equal to the unconditional distribution of ϕ∗(η∗[T ∗,∞)), which proves
the lemma.

A direct consequence of the lemma is therefore that η∗[0,T ∗] and ϕ∗(η∗[T ∗,∞)) are indepen-
dent. Indeed, the σ -field generated by the family of events of the type η∗[0,T ∗]∩A = /0 when
A ∈A[0,1] (which is stable by finite intersections) is exactly σ(η∗[0,T ∗]).
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2.4.3 General explorations and consequences

The rest of the proof mimics ideas from [SW12] that we now briefly describe.
In fact, just as in [SW12], it is easy to see that the argument that leads to Lemma 2.4.1 can be

generalized to other curves than the straight line L. In particular, we choose L to be any oriented
simple curve on the grid δ (Z×N) that starts on the positive half-line and disconnects 0 from
infinity in H, then define ηT to be the point of η that L meets first, and let L̃ denote the part of L
until it hits ηT . If we parametrize L continously in some prescribed way, then ηT = Lσ for some σ

and L̃ = L[0,σ). We then define H̃ as the unbounded connected component of the set obtained by
removing from H \ L̃ all the loops of Λ that intersect L̃. Let Ψ denote the conformal map from H̃
onto H that sends the triplet (0,ηT ,∞) onto (0,1,∞). Let Ĥ be the unbounded connected component
of the set obtained by removing from H the union of η [0,T ], L̃ and the loops in Λ that intersect L̃.
Let Ψ̂L̃ denote the conformal map from Ĥ onto H that sends the triplet (oT ,ηT ,∞) onto (0,1,∞)
(see Figure 2.4.4).

0 1

1

0

00

η

oT

Ψ

Ψ̂

η∗
η

ηT

ηT

η∗T ∗

o∗T ∗oT

ϕ∗

U0

U+

Figure 2.4.4: Ψ, ϕ∗ and Ψ̂ = ϕ∗ ◦Ψ.

Then the same arguments than the ones used to derive Lemma 2.4.1 imply that Ψ(η) has the
same law as pinned path η∗, and that it is independent from Ψ. From Lemma 2.4.2, using the fact
that Ψ̂L̃(η [T,∞)) can be viewed as the deterministic function G applied to Ψ(η), we know that
Ψ̂L̃(η [T,∞)) is independent of Ψ(η [0,T ]). Combining these two observations, we conclude that
Ψ̂L̃(η [T,∞)) is independent of η [0,T ].

Furthermore, it is also possible to condition on the position of Lσ . The previous results still
hold when one considers the probability measure conditioned by σ ∈ (s1,s2).

The next step of the proof is again almost identical to the corresponding one in [SW12]: Fix a
time T and suppose that ηT 6∈ R. Consider δn as a deterministic sequence converging to zero. Let
β n be an approximation of η [0,T ] from the right on the lattice δn(Z×N) such that the last edge
is the only edge of β n that crosses the curve η (see Figure 2.4.5). Here, one should view β n as a
deterministic given function of η [0,T ] (and there are a number of possibilities to choose such an
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approximation β n). Let T n be the first time that η hits β n (note that of course, ηT n is on the last
edge of β n).

Let us now consider a given deterministic linear path L such that the probability that β n = L̃ is
positive. For this event to happen, one in particularly requires that the curve η intersects L̃ only on
its last edge (this corresponds to a conditioning of the type σ ∈ (s1,s2]). Furthermore, if this holds,
in order to check whether β n = L̃ or not, it is possible to define β n in such a way that it can be read
of from η [0,T ].

Hence, we can deduce from our previous considerations that conditionally on {β n = L̃}, the
path Ψ̂L̃(η [T n,∞)) is independent of η [0,T n]. But for any given deterministic piecewise linear
path L, on the event {β n = L̃}, the probability that L̃ intersects some macroscopic loop in Λ is very
small when n is large enough, so that Ψ̂L̃(η [T n,∞)) is very close to fT (η [T,∞)) on this event (recall
that fT is the conformal map from the unbounded connected component of H\η [0,T ] onto H that
sends the triplet (oT ,ηT ,∞) onto (0,1,∞)). Hence, by passing to the limit (as n→ ∞, possibly
taking a subsequence), we conclude that fT (η [T,∞)) is independent of η [0,T ] as desired. This is
exactly the conformal Markov property that was needed to conclude the proof of Lemma 2.3.1.

100

η

oT

Ψ̂L̃

ηT
βn = L̃

Ψ̂L̃(η[T,∞))

Figure 2.4.5: Ψ̂L̃ maps the triplet (oT n,ηT n,∞) onto (0,1,∞).

2.5 Consequences for second-moment estimates
In order to illustrate how the present construction can be used in order to derive directly some
properties of SLEκ(ρ) processes, we are going to derive in this section some information about the
intersection of SLEκ(ρ) processes and the real line. Analogous ideas have been used in [NW11] to
study the dimension of the CLE gasket, but the situation here is even more convenient.

Recall that from the definition, we know that the SLEκ(ρ) process η , from 0 to ∞ in H does
not touch the positive half-line, but – as we already mentioned –, its definition via the Loewner
equation and Bessel processes shows that it touches almost surely the negative half-line as soon as
ρ < (κ/2)−2. For instance, for κ = 4, this will happen for ρ ∈ (−2,0), while for κ = 3, this will
occur for ρ ∈ (−2,−1/2). Here for obvious reasons, we will restrict ourselves to the case where
κ ∈ (8/3,4].

Proposition 2.5.1. For κ ∈ (8/3,4] and ρ ∈ (−2,−2+ κ/2), then the Hausdorff dimension of
η ∩R− is almost surely equal to 1− (ρ +2)(ρ +4−κ/2)/κ .

Note that this result is also derived in [MW13] for all κ ∈ (0,8) and ρ ∈ (−2,−2+(κ/2))
using the properties of flow lines of GFF introduced in [MS12a].
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Before turning our attention to the proof of this result, let us first focus on the following related
question: Let us fix c ∈ (0,1) and α > 0. Consider on the one hand a Brownian loop-soup with
intensity c in the upper half-plane, and its corresponding CLEκ sample consisting of the outermost
boundaries of the loop-soup clusters, as in [SW12].

On the other hand, consider a Poisson point process (b j, j ∈ J) of Brownian excursions away
from the real line in H, with intensity α . Each of these excursions b j has a starting point S j and an
endpoint E j that both lie on the real axis.

For each point x on the real line, for each ε < r, we define the semi-ring

Ax(ε,r) := {z ∈H : ε < |z− x|< r}.

For each given ε and r, we can artificially restrict ourselves to those Brownian loops and excursions
that stay in Ax(ε,r). We define the event Ex(ε,r) that the union of all these paths does not disconnect
x from infinity in H (see Figure 2.5.1).

x

Ax(ε, r)

Figure 2.5.1: Event Ex(ε,r): x is not disconnected from ∞ by the excursions and loops.

Clearly, the probability of Ex(ε,r) is in fact a function of ε/r and does not depend on x. Let us
denote this probability by p(ε/r). It is elementary to see that for all ε,ε ′ < 1,

p(εε
′)≤ p(ε)p(ε ′).

Indeed, if one divides A0(εε ′,1) into the two semi-annuli A0(εε ′,ε) and A0(ε,1), one notices that

E0(εε
′,1)⊂ E0(εε

′,ε)∩E0(ε,1)

and the latter two events are independent, due to their Poissonian definition.
On the other hand, for some universal constant C, we know that for all ε,ε ′ < 1/4,

p(8εε
′)≥Cp(ε)p(ε ′). (2.5.1)

Indeed, let us consider the following three events:

• U1: No CLE loop touches both {z : |z|= 2} and {z : |z|= 4}

• U2: No Brownian excursion touches both {z : |z|= 1} and {z : |z|= 2}.

• U3: No Brownian excursion touches both {z : |z|= 4} and {z : |z|= 8}.
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All the events U1, U2, U3, E0(8ε,8) and E0(1,1/ε ′) are decreasing events of the Poisson point
processes of loops and excursions (i.e. if an event fails to be true, then adding an extra excursion
or loop will not fix it). Hence, they are positively correlated. Furthermore, we have chosen these
events in such a way that

(
U1∩U2∩U3∩E0(8ε,8)∩E0(1,1/ε

′)
)
⊂ E0(8ε,1/ε

′).

The fact that c ≤ 1 ensures that the events U1, U2 and U3 have a positive probability. Putting the
pieces together, we get that

p(8εε
′) = P(E0(8ε,1/ε

′))≥ P(U1∩U2∩U3)p(ε)p(ε ′)

from which (2.5.1) follows. Hence, if we define q(ε) :=Cp(8ε), we get q(εε ′)≥ q(ε)q(ε ′).
These properties of p(ε) and q(ε) ensure that there exists a positive finite β and a constant C′

such that for all ε < 1/8,
ε

β ≤ p(ε)≤C′εβ .

Let us now focus on the proof of the proposition. First, let us note that a simple 0-1 argument
(because the studied property is invariant under scaling) shows that there exists D such that almost
surely, the dimension of η ∩R− is equal to D. Furthermore, we can use scale-invariance again to
see that in order to prove that D is equal to some given value d, it suffices to prove that on the one
hand, almost surely, the Hausdorff dimension of η ∩ [−2,−1] does not exceed d, and that on the
other hand, with positive probability, the Hausdorff dimension of η ∩ [−2,−1] is equal to d.

Let us now note that if a point x ∈ [−2,−1] belongs to the ε-neighborhood Kε of η , then it
implies that Ex(ε,1) holds. Hence, the first moment estimate implies readily that almost surely, the
Minkovski dimension of η ∩ [−2,−1] is not greater than 1−β , and therefore that D≤ 1−β .

In order to prove that with positive probability, the dimension of η ∩ [−2,−1] is actually equal
to 1−β , we can make the following two observations.

• Suppose that x ∈ [−2,−1] and that Ex(ε/2,8) holds. Suppose furthermore that no excursion
in the Poisson point process of excursions attached to (−∞,−6) does intersect the ball of
radius 4 around the origin, no excursion in the Poisson point process excursions attached to
(−2,0) exits the ball of radius 4 around−2. Suppose furthermore that no loop in the CLE (in
H) intersects both the circle of radius 4 and 6 around the origin. Note that these two events
have positive probability and are positively correlated to Ex(ε/2,8) (they are all decreasing
events of the Poisson point processes of loops and excursions). Then, by construction, x is
necessarily in the ε-neighborhood of η . It therefore follows that for some constant c′, for all
x ∈ [−2,−1],

P(x ∈ Kε)≥ c′εβ .

• Suppose now that −2 < x < y <−1, that y−x < 1/4 and that ε < (y−x)/4. Clearly, if both
x and y belong to Kε , then it means that the three events Ex(ε,(y− x)/2), Ey(ε,(y− x)/2)
and Ex(2(y− x),1/2) hold. These three events are independent, and the previous estimates
therefore yield that there exists a constant c′′ such that

P(x ∈ Kε ,y ∈ Kε)≤ c′′
ε2β

(y− x)β
.

Standard arguments (see for instance [MP10]) then imply that with positive probability, the dimen-
sion of η ∩ [−2,−1] is not smaller than 1− β . This concludes the proof of the fact that almost
surely, the Hausdorff dimension of η ∩ (−∞,0) is almost surely equal to 1−β .
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In order to conclude, it remains to compute the actual value of β . A proof of this is provided in
[MW13] using the framework of flow lines of the Gaussian Free Field. Let us give here an outline
of how to compute β bypassing the use of the Gaussian Free Field, using the more classical direct
way to derive the values of such exponents i.e. to exhibit a fairly simple martingales involving the
derivatives of the conformal maps at a point, and then to use this to estimate the probability that the
path ever reaches a small distance of this point: Consider the SLEκ(ρ) process in H from 0 to ∞,
and keep the same notations as in Section 2.2.2. First, one can note that for any real v,

Mt = g′t(−1)v(κv+4−κ)/4(Wt−gt(−1))v(Ot−gt(−1))vρ/2

is a local martingale. We then choose v = (κ−8−2ρ)/κ, and define β̃ := (ρ +2)(ρ +4−κ/2)/κ

as well as

ϒt =
Ot−gt(−1)

g′t(−1)
, Nt =

Ot−gt(−1)
Wt−gt(−1)

, τε = inf{t : ϒt = ε}.

Then Mt = ϒ
−β̃

t N−v
t . Furthermore, the probability that the curve gets within the ball centered at−1

of radius ε is comparable to P(τε < ∞). But, one has

P(τε < ∞) = E(Mτε
Nv

τε
1τε<∞)ε

β̃ = E∗(Nv
τε
)ε β̃

where P∗ is the measure P weighted by the martingale M. Under P∗, we have that τε < ∞ almost
surely and that E∗(Nv

τε
) is bounded both sides by universal constants independent of ε. It follows

that indeed β = β̃ .

We conclude with the following two remarks:

• Similar second-moment estimates can be performed for other questions related to SLEκ(ρ)
processes for κ ∈ (8/3,4] and ρ >−2. For instance the boundary proximity estimates from
Schramm and Zhou [SZ10] can be generalized/adapted to the SLEκ(ρ) cases. We leave this
to the interested reader.

• It is proved in [MS12a] that the left boundary of an SLEκ0(ρ0) process for κ0 > 4 and ρ0 >−2
is an SLEκ1(ρ1,ρ2) process for κ1 = 16/κ0 with an explicit expression of ρ1 and ρ2 in terms
of (κ0,ρ0) (this is the “generalized SLE duality”). Hence, it follows from Proposition 2.5.1
that its statement (i.e. the formula for the Hausdorff dimension) in fact holds true for all
κ ∈ (4,6) as well. However, since the Gaussian Free Field approach is anyway used in
the derivation of this generalized duality result, it is rather natural to use also the Gaussian
Free Field in order to derive the second moments estimates, as done in [MW13]. The same
remark applies to the intersection of the right boundary of an SLEκ0(ρ0) when κ0 > 4 and
ρ0 ∈ (−2,0); the Hausdorff dimension of the intersection of this right boundary with R− then
turns out to be

1− (ρ0 +2)(ρ0 +(κ0/2))
κ0

=−ρ0

(
ρ0 +2

κ0
+

1
2

)
.
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Chapter 3

From SLE to CLE

The results in this chapter are contained in [WW13b].

3.1 Introduction

The current paper will be devoted to the study of some properties of the Conformal Loop Ensembles
(CLE) defined and studied by Scott Sheffield in [She09] and by Sheffield and Werner in [SW12].

A simple CLE can be viewed as a random countable collection (γ j, j ∈ J) of disjoint simple
loops in the unit disk that are non-nested (almost surely no loop surrounds another loop in CLE).
The paper [SW12] shows that there are several different ways to characterize them and to construct
them. In that paper, a CLE is defined to be such a random family that also possesses two important
properties: It is conformally invariant (more precisely, for any fixed conformal map Φ from the unit
disk onto itself, the law of (Φ(γ j), j ∈ J) is identical to that of (γ j, j ∈ J) – this allows to define the
law of the CLE in any simply connected domain via conformal invariance) and it satisfies a certain
natural restriction property that one would expect from interfaces in physical models. It is shown in
[SW12] that there exists exactly a one-parameter family of such CLEs. Each CLE law corresponds
exactly to some κ ∈ (8/3,4] in such a way that for this κ , the loops in the CLE are loop-variants of
the SLEκ processes (these are the Schramm-Loewner Evolutions with parameter κ – recall that an
SLEκ for κ ≤ 4 is a simple curve with Hausdorff dimension 1+κ/8), and that conversely, for each
κ in that range, there exists exactly one corresponding CLE. Part of the arguments in the paper
[SW12] are based on the analysis of discrete “exploration algorithms” of these loop ensembles,
where one slices the CLE open from the boundary and their limits (roughly speaking when the
step-size of explorations tends to zero).

In the earlier paper [She09], Sheffield had pointed out a way to construct a number of ran-
dom collections of loops, using variants of SLEκ processes. In particular, for any κ ∈ (8/3,4], he
has shown how to construct random collections of SLEκ -type loops (or rather “quasi-loops” that
should turn out to be loops, we will come back to the precise definition later; for the time being
the reader can think of these quasi-loops as boundaries of a bounded simply connected component
that is a loop with at most one point of discontinuity) that should be the only possible candidates
for the conformally invariant scaling limit of various discrete models, or of level lines of certain
continuous models. Roughly speaking, one chooses some boundary point x on the unit circle (“the
root”) and launches from there a branching exploration tree of SLE processes (or rather target-
independent variants of SLEκ processes called the SLE(κ,κ − 6) processes) that will trace some
loops along the way, that one keeps track of. For each κ and x, there are in fact several ways to
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do this. One particular way, that we will refer to as symmetric in the current paper, is to impose
certain “left-right” symmetry in the law of the exploration tree, but several other natural options are
described in [She09]. Hence, for each κ , the exploration tree is defined via the choice of the root x
and the exploration “strategy” that describes how “left-right” asymmetric the exploration is. These
exploration strategies are particularly natural, because they are invariant under all conformal trans-
formations that preserve x. Note also that it is conjectured that the exploration indeed traces a tree
with continuous branches, but that this result is not yet proved (to our knowledge). Nevertheless,
these processes indeed trace continuous quasi-loops along the way. So to sum up, once κ , x and a
given strategy are chosen, the Loewner differential equation enables to construct a random family
of quasi-loops in the unit disc (and the law of this family a priori depends on κ , on x and on the
chosen strategy).

One can also note that the symmetric strategy is very natural for κ = 4 from the perspective
of the Gaussian Free Field, but much less so from the perspective of interfaces of lattice models.
For instance, in the case of κ = 3 viewed as the scaling limit of the Ising model (see [CS12]), the
“totally asymmetric” procedure seems more natural.

Based on the conjectured or proved relation to discrete models and to the Gaussian Free Field,
Sheffield conjectures in [She09] that for any given κ ≤ 4, all these random collections of loops
traced by the various exploration trees have the same law.

One consequence of the results of Sheffield and Werner in [SW12] is that this conjecture is
indeed true for all symmetric explorations: More precisely, for each κ ∈ (8/3,4], the law of the
random collection of quasi-loops traced by a symmetric SLE(κ,κ − 6) exploration tree rooted at
x does not depend on x. In fact, their common law is proved to be that of “the CLE” with SLEκ -
type loops mentioned in the first paragraph of this introduction, and they can also be viewed (see
[SW12]) as outer boundaries of clusters of Brownian loop-soups (which proves that the quasi-
loops are in fact all loops). One main idea in [SW12] is to study the asymptotic behavior of the
discrete explorations when the steps get smaller and smaller, and to prove that it converges to the
above-mentioned symmetric SLE(κ,κ−6) process.

The first main result of the current paper can be summarized as follows: For each κ ∈ (8/3,4],
all the random collections of SLEκ -type quasi-loops constructed via Sheffield’s asymmetric explo-
ration trees in [She09] have the same law. They all are the CLEκ families of loops constructed in
[SW12]. The proof of this fact will heavily rely on the results of [SW12], but we will try to make
our paper as self-contained as possible.

Recall that when one works directly in the SLE-framework, certain questions turn out to be
rather natural – it is for instance possible to derive rather directly the values of certain critical
exponents, to compute explicitly probabilities of certain events, or to study questions related to
conformal restriction – while the setting of the Loewner equation does not seem so naturally suited
for some other questions. Proving reversibility of the SLE path (that the random curve defined
by an SLE from a to b is the same as that defined by an SLE from b to a) turns out to be very
tricky, see [Zha08b, MS12b, MS12c]. A by-product of [SW12] is that it provides another proof of
this reversibility in the case where κ ∈ (8/3,4]. In a way, our results are of a similar nature: One
obtains results about these asymmetric branching SLE processes without going into fine Loewner
chain technology.

The second main point of our paper is to highlight something specific to the case κ = 4 i.e. to
CLE4 (recall that this is the CLE that is most directly related to the Gaussian Free Field, see [SS12,
SS09, Dub09b, She11]). In this particular case, it is possible to define a conformally invariant and
unrooted (one does not need to even choose a starting point) growing mechanism of loops (the term
“exploration” that is used in this paper is a little bit misleading, as it is not proved that the growth
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process is in fact a deterministic function of the CLE, we will discuss this at the end of the paper).
Roughly speaking, the growth process that progressively discovers loops is growing “uniformly”
from the boundary (even if it is a Poisson point process and each loop is discovered at once) and
does not require to choose a root. The fact that such a conformally invariant non-local growth
mechanism exists at all is quite surprising (and the fact that its time-parametrization as seen from
different points does exactly coincide even more so). It also leads to a conformal invariant way to
describe distances between loops in a CLE (where any two loops in a CLE are at a positive distance
of each other) and to a new coupling of CLE with the Gaussian Free Field that will be studied in
more detail in the subsequent work [SWW13], and to open questions that we will describe at the
end of the paper.

3.2 Background and first main statement
In the present subsection, we recall some ideas, arguments and results from [She09, SW12], and
set up the framework that will enable us to derive our main results in a rather simple way.

Bessel processes and principal values
Suppose throughout this subsection that δ ∈ (0,1]. It is easy to define the squared Bessel pro-
cess (Zt , t ≥ 0) of dimension δ started from Z0 = z0 ≥ 0 as the unique solution to the stochastic
differential equation

dZt = 2
√

ZtdBt +δdt

where (Bt , t ≥ 0) is a Brownian motion (note that it is implicit that this solution is non-negative
because one takes its square root).

The non-negative process Yt =
√

Zt is then usually called the Bessel process of dimension δ

started from
√

z0. It is not formally the solution to the stochastic differential equation

dYt = dBt +(δ −1)
dt
2Yt

because it gets an (infinitesimal) upwards push whenever it hits the origin, so that Yt − (δ −
1)
∫ t

0 ds/(2Ys) is not a martingale (note for instance that when δ = 1, the process Yt is a reflect-
ed Brownian motion, which is clearly not the solution to dYt = dBt). This stochastic differential
equation however describes well the evolution of Y while it is away from the origin, and if one
adds the fact that Y is almost surely non-negative, continuous and that the Lebesgue measure of
{t > 0 : Yt = 0} is almost surely equal to 0, then it does characterize Y uniquely. Note that the
filtration generated by Y and by B do coincide (B can be recovered from Y ).

Bessel processes have the same scaling property as Brownian motion: When Y0 = 0, then for
any given positive ρ , (Yt , t ≥ 0) and (ρ−1Yρ2t , t ≥ 0) have the same law (this is an immediate
consequence of the definition of its squared process Z). Just as in the case of the Itô measure on
Brownian excursions, it is possible to define an infinite measure λ on (positive) Bessel excursions
of dimension δ . An excursion e is a continuous function (e(t), t ∈ [0,τ]) defined on an interval
of non-prescribed length τ = τ(e) such that e(0) = e(τ) = 0 and e(t) > 0 when t ∈ (0,τ). The
measure λ is then characterized by the fact that for any x, the mass of the set of excursions

Ex := {e : sup
s≤τ

e(s)≥ x}
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is finite, and that if one renormalizes λ in such a way that it is a probability measure on Ex, then
the law of e on [τx,τ] is that of a Bessel process of dimension δ , started from x and stopped at its
first hitting time of the origin. The fact that t 7→ (Yt)

2−δ is a local martingale when Y is away from
the origin (which follows immediately from the definition of the Bessel process Y and from Itô’s
formula) shows readily that

λ (Ex) = cxδ−2

for some constant c that can be chosen to be equal to one (this is the normalization choice of λ ).
Standard excursion theory shows that it is possible to define the process Y by gluing together a
Poisson point process (eu,u≥ 0) of these Bessel excursions of dimension δ , chosen with intensity
λ ⊗du.

Suppose that we are given a parameter β ∈ [−1,1] and that for each excursion e of the Bessel
process Y , one tosses an independent coin in order to choose ε(e) = εβ (e) ∈ {−1,1} in such a
way that the probability that ε(e) = +1 (respectively ε(e) = −1) is (1+β )/2 (resp. (1−β )/2).
Then, one can define a process X (β ) by gluing together the excursions (ε(e)× e) instead of the
excursions (e). Note that |X (β )| = X (1) = Y , but some of the excursions of X (β ) are negative as
soon as β < 1. The process X (0) is the symmetrized Bessel process such that X (0) and −X (0) have
the same law. Note that (as opposed to Y = X (1)) the process X (β ) is not a deterministic function of
the underlying driving Brownian motion B in the stochastic differential equation when β ∈ (−1,1),
because additional randomness is needed to choose the signs of the excursions. However, B is still
a martingale with respect to the filtration generated by X (β ) because the signs of the excursions are
in a way independent of the excursions.

In the sequel, it will be useful to consider the processes X (β ) for various values of β simulta-
neously. Clearly, it is easy to first define Y and then to couple all signs in such a way that for each
excursion e of Y , εβ (e) ≥ εβ ′(e) as soon as β ≥ β ′; we will implicitly always work with such a
coupling.

In the context of SLE processes, it turns out to be essential to try to make sense of a quantity of
the type

∫ t
0 ds/X (β )

s . We define, for each excursion, the integral

i(e) :=
∫

τ

0
ds/e(s).

It is easy to check that
λ (i(e)1E1)< ∞,

from which it follows using scaling that i(e) < ∞ for λ almost all excursion e. Note also that the
scaling shows that

λ ({e : i(e)≥ x}) = xδ−2
λ ({e : i(e)≥ 1}).

It follows that typically, the number of excursions that occur before time 1 for which i(e) ∈
[2−n,2−n+1) is of the order of (2−n)δ−2, so that their cumulative contribution to

∫ t
0 ds/Ys is of

the order of (2−n)δ−1. If we sum this over n, one readily sees that when t > 0, then
∫ t

0
ds/Ys = ∞

almost surely as soon as δ ≤ 1 (and this argument can be easily made rigorous) due to the cumula-
tive contributions of the many short excursions during the interval [0, t]. Hence,

∫ t
0 ds/X (β )

s can not
be defined as a simple absolutely converging integral.



3.2. BACKGROUND AND FIRST MAIN STATEMENT 51

There are however ways to circumvent this difficulty. The first classical one works for all
δ ∈ (0,1] but it is specific to the case where β = 0 i.e. to the symmetrized Bessel process X (0). In
that case, when one formally evaluates the cumulative contribution to

∫ t
0 ds/X (0)

s of the excursions
for which i(e) ∈ [2−n,2−n+1), then the central limit theorem suggests that one will get a value of
the order of 2−n× (2(2−δ )n)1/2 = 2−δn/2; when one then sums over n, one gets an almost surely
converging series. This heuristic can be easily be made rigorous, and this shows that one can define
a process I(0)t that one can informally interpret as

∫ t
0 ds/X (0)

s (even though this last integral does not
converge absolutely). Another possible way to characterize this process is that it is the only process
such that:

• t 7→ I(0)t is almost surely continuous and satisfies Brownian scaling.

• dI(0)t −dt/X (0)
t is zero on any time-interval where X (0) is non-zero.

• The process I(0) is a deterministic function of the process X (0).

Let us reformulate and detail our first approach to I(0)t in a way that will be useful for our purposes.
Suppose that r > 0 is given and small. We denote by Jr the set of times that belong to an excursion
of Y away from the origin, that has time-length at least r2 (we choose r2 in order to have the
same scaling properties as for the height and i(e)). Then, because the integral

∫
ds/e(s) on each

individual excursion is finite, we see that it is possible to define without any difficulty the absolutely
converging integral

I(0,r)t :=
∫ t

0
ds1s∈Jr/X (0)

s .

Then, as r→ 0 the continuous process I(0,r) converges to the continuous process I(0). More rigor-
ously

Lemma 3.2.1. When n→ ∞, then on any compact time-interval, the sequence of continuous func-
tions I(0,1/2n) converges almost surely to a limiting continuous function I(0).

Proof. Let τ = τ(r0) denote the end-time of first excursion that has time-length at least r2
0 (here

r0 should be thought of as very large, so that this time, which is greater than r2
0, is large too). It

suffices to prove the almost sure convergence on the interval [0,τ] (as any given compact interval
is inside some interval [0,τ] for large enough r0).

Let us suppose that n ≥ m. Notice that the process t 7→ I(0,1/2n)
t − I(0,1/2m)

t is monotonous (i.e.
non-increasing or non-decreasing) on each excursion of Y , so that

sup
t≤τ

(I(0,1/2n)
t − I(0,1/2m)

t )2 = sup
t≤τ,Yt=0

(I(0,1/2n)
t − I(0,1/2m)

t )2.

Next we define the σ -field F0 generated by the knowledge of all excursions |e|, but not their
signs. If we condition on F0 and look at the value of I(0,1/2n)

t − I(0,1/2m)
t at the end-times of the

excursions of length greater than 2−n, we get a discrete martingale. From Doob’s L2 inequality, we
therefore see that almost surely,

E
(

sup
t≤τ

(I(0,1/2n)
t − I(0,1/2m)

t )2 |F0

)
≤ 4E

(
(I(0,1/2n)

τ − I(0,1/2m)
τ )2 |F0

)
.

The right-hand side is in fact the mean of the square of a series of symmetric random variables
of the type ∑ε ji j for some given i j and coin-tosses ε j. Therefore, it is equal to 4∑e i(e)2 where
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the sum is over all excursions appearing before time τ , corresponding to times in J1/2n \ J1/2m . By
simple scaling, the expectation of this quantity is equal to a constant times 2−mδ − 2−nδ , so that
finally

E
(

sup
t≤τ

(I(0,1/2n)
t − I(0,1/2m)

t )2
)
≤C(2−mδ −2−nδ )≤C2−mδ .

It then follows easily (via Borel-Cantelli) that almost surely, the function t 7→ I(0,1/2n)
t converges

uniformly as n→∞ on the time-interval [0,τ] (and that the limiting process I(0) is continuous).

This construction of I(0) can not be directly extended to the case where β 6= 0. Indeed, the
cumulative contributions of those excursions of X (β ) for which i(e) ∈ [2−n,21−n) is then of the
same order of magnitude than when β = 1 (the previously described case where one looks at the
integral of 1/Ys). A solution when the dimension of the Bessel process is smaller than 1, is to
compensate the explosion of this integral appropriately. Let us first describe this in the case where
β = 1 (i.e. X (β ) = Y is the non-negative Bessel process). As for instance explained in [She09,
Section 3], it is possible to characterize the principal value It = I(1)t of the integral of 1/Yt as the
unique process such that:

• t 7→ It is almost surely continuous.

• dIt−dt/Yt is zero on any time-interval where Y is non-zero.

• (It ,Yt) is adapted to the filtration of Y and satisfies Brownian scaling.

Let us describe how to construct explicitly this process It . For any very small r, recall the
definition of the time-set Jr, and define Nr(t) as the number of excursions of time-length at least r2

that Y has completed before time t. Simple scaling considerations show that (for fixed t), Nr(t) will
explode like (some random number times) rδ−2 as r→ 0.

Just as before, there is no problem to define the absolutely converging integral
∫ t

0

1s∈Jrds
Ys

.

But, as we have already indicated, when β 6= 0 this quantity tends to ∞ when r tends to 0. One
option is therefore to consider the quantity

Kr
t :=

∫ t

0

1s∈Jrds
Ys

−CrNr(t)

where

Cr :=
λ (i(e)1τ(e)≥r2)

λ (1τ(e)≥r2)

is the mean value of the integral of 1/e for an excursion conditioned to have length greater than r2.
Note that

C = λ (i(e)1τ(e)≥1)/λ (1τ(e)≥1)

is a constant that does not depend on r. When r→ 0, rNr(t) explodes like rδ−1, but nevertheless:

Lemma 3.2.2. As n→∞, the process K1/2n
= (K1/2n

t , t ≥ 0) does almost surely converge uniformly
on any compact time-interval to some continuous limiting process I(1).
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Proof. The proof goes along similar lines as in the case β = 0, but there are some differences. Let
us prove again almost sure convergence on each [0,τ] for each given r0.

First, let us notice that for each r > r′, the quantity Kr
t −Kr′

t is constant, except on the excursion-
intervals of time-length between r′ and r. If we follow the value of this quantity only at (the discrete
set of) end-times of excursions of length greater than r′, we get a discrete martingale. Doob’s
inequality and scaling, just as before, imply that

E

(
sup

t≤τ:Yt=0
(Kr

t −Kr′
t )

2

)
≤ E

(
(Kr

τ −Kr′
τ )

2
)
.

The right-hand side can be viewed as the sum of a geometric number of zero-mean random variables
with bounded second moment, and it follows from scaling that it can be bounded by

cr2−δ

0 rδ .

It follows that almost surely, the function K1/2n
converges uniformly as n→ ∞ on the set {t ≤ τ :

Yt = 0}. The definition of Kr then yields that this almost sure uniform convergence takes place on
all of [0,τ] (just because the supremum of the integral of 1/Ys over all excursions of length greater
than r before τ goes to 0 as r→ 0).

On the other hand, if we slightly modify Kr on each excursion interval by adding a linear
function that makes it continuous on the closed support of the excursion in order to compensate the
−Cr jump of Kr and the end-time of the excursion, one obtains a continuous function K̃r such that
|Kr

t − K̃r
t | ≤Cr for each t. It follows that almost surely K̃1/2n

converges uniformly on any compact
time-interval to the same limit as K1/2n

. As the functions K̃r are continuous, it follows that this
limit is almost surely a continuous function of time.

For any β (and as long as δ ∈ (0,1)), the very same idea can be used to define a process I(β )

associated to X (β ) instead of Y , as the limit when r→ 0 of the process
∫ t

0

1s∈Jrds

X (β )
s

−CrβNr(t).

Let us describe in more detail a variant of the previous construction that will be useful for our
purposes. Suppose that one is working with the coupling of all processes X (β ) (for fixed δ ∈ (0,1)).
We then define the process

X (β ,r)
t := X (β )

t 1t∈Jr +X (0)
t 1t /∈Jr .

In other words, we replace X (β ) by X (0) on all excursions of length smaller than r2. Clearly, this
makes it possible to make sense of the continuous process

∫ t

0

(
1

X (β ,r)
s

− 1

X (0)
s

)
ds

(because only the times in Jr i.e. in the macroscopic excursions will contribute). We can therefore
define the process

I(β ,r)t := I(0)t +
∫ t

0
1s∈Jr

(
1

X (β ,r)
s

− 1

X (0)
s

)
ds−βCrNr(t).
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This process I(β ,r) follows exactly the evolution of I(0) except that some excursions of length greater
than r2 are sign-changed (and on these excursions I(β ,r)t + I(0)t is constant), and that at the end of
each of those excursions, it makes a small jump of −βCr.

Then, almost surely, when r→ 0, the process I(β ,r) converges uniformly on any compact time-
interval to a process I(β ) because the two processes

I(0)t −
∫ t

0
1s∈Jrds/X (0)

s

and ∫ t

0
1s∈Jrds/X (β )

s −βCrNr(t)− I(β )t

do almost surely uniformly converge to zero on any given compact interval.

The previous definition of I(β ) can not be directly adapted to the case δ = 1. However, one notes
that for any real µ , the process I<µ>

t := I(0)t + µ`t , where ` is the local time at 0 of X does also
satisfy the Brownian scaling property and that dI<µ>

t = dt/Xt on all intervals where X is non-zero.
This process I<µ> can in fact again be approximated via Nr(t) (using the classical approximation
of Brownian local time); more precisely, it is the limit as r→ 0 of the process

I<µ,r>
t := I(0)t +µrNr(t).

From Bessel processes to ensembles of (quasi-)loops
We now recall (mostly from [She09]) how to use the previous considerations in order to give an SLE
based construction of the loop ensembles. If we work in the upper half-plane H, then Loewner’s
construction shows that as soon as one has defined a continuous real-valued function (wt , t ≥ 0),
one can define a two-dimensional “Loewner chain” (that in many cases turns out to correspond to
a two-dimensional path) as follows: For any z ∈H, define the solution (Zt = Zt(z)) to the ordinary
differential equation

Zt = z+
∫ t

0

2ds
Zs−ws

.

This equation is well-defined up to a (possibly infinite) explosion/swallowing time T (z) = sup{t ≥
0 : inf{|Zs−ws| : s ∈ [0, t)} > 0}. For each given t, the map gt : z 7→ Zt(z) is a conformal map
from some subset Ht of H onto H such that gt(z)− z = o(1) when z→∞. One defines Kt =H\Ht ;
the Loewner chain usually means the chain (Kt , t ≥ 0).

When wt is chosen to be equal to
√

κBt , where B is a standard real-valued Brownian motion,
then this defines the SLEκ processes, that turn out to be simple curves as soon as κ ≤ 4. The so-
called SLE(κ,κ−6) processes are variants of SLEκ with a particular target independence property
first pointed out in [SW05]. More precisely, suppose that one considers the joint evolution of two
points (Wt ,Ot) in R started from (W0,O0) with W0 6= O0, and described by

dOt =
2dt

Ot−Wt
and dWt =

√
κdBt +

κ−6
Wt−Ot

dt (3.2.1)

as long as Wt 6=Ot (where B is a standard Brownian motion). Then, one can use the random function
W as the driving function of our Loewner chain, which is this SLE(κ,κ−6). There is no difficulty
in defining the process (W,O) as long as Wt does not hit Ot , but more is needed to understand what
happens after such a meeting time.
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Note that if one writes Xt = (Wt−Ot)/
√

κ , then

dXt = dBt +
κ−4
κXt

dt

so that X evolves like a Bessel process of dimension

δ = 3− 8
κ
∈ (0,1]

when κ ∈ (8/3,4], and that dOt is a constant multiple of dt/Xt as long as Xt 6= 0. Furthermore, the
knowledge of Xt and of Ot enables to recover Wt = Ot +

√
κXt .

This gives the following options to define a driving process (Wt , t ≥ 0) at all non-negative times
(even for W0 = O0 = 0):

• When δ ∈ (0,1) (i.e., κ ∈ (8/3,4)) and β ∈ [−1,1]: Define first one of the Bessel processes
X (β ) as before started at 0, and its corresponding process I(β ). Then define O(β )

t = 2
√

κI(β )t
and

W (β )
t =

√
κX (β )

t +O(β )
t =

√
κX (β )

t +2
√

κI(β )t .

• When δ = 1 (i.e., κ = 4) and µ ∈ R, then, define O<µ>
t = 4I<µ>

t and

W<µ>
t = 2Bt +O<µ>

t = 2Bt +4I<µ>
t

where B is standard one-dimensional Brownian motion.

In all these cases, one constructs a couple (Wt ,Ot) that satisfies the Brownian scaling property
and that evolves according to (3.2.1) when Wt 6= Ot . The process (Wt , t ≥ 0) defines a Loewner
chain (Kt , t ≥ 0) from the origin to infinity in the upper half-plane. More precisely, for each t,
Ht :=H\Kt is the preimage of H under the conformal map gt characterized by the fact that for all
s≤ t,

g0(z) = z and ∂sgs(z) =
2

gs(z)−Ws

(see e.g. [Law05] for background). The Brownian scaling property shows that this Loewner chain
is invariant (in law) under scaling (modulo time-parametrization). This makes it possible to also
define (via conformal invariance) the law of the Loewner chain in H from 0 to some u ∈ R (and
more generally from any boundary point to any other boundary point of a simply connected domain)
by considering the conformal image of the previously defined chain from 0 to infinity under a
conformal map from H onto itself that maps 0 onto itself, and ∞ onto u.

In the sequel, when we will refer to “a SLE(κ,κ−6) process”, we will implicitly mean such a
chordal chain, for some κ ∈ (8/3,4], and some choice of β (if κ ∈ (8/3,4)) or µ (when κ = 4).

All these SLE(κ,κ−6) processes are of particular interest because of their target-independence
property: Up to the first time at which the Loewner chain disconnects u from infinity, the two
Loewner chains (from 0 to ∞, and from 0 to u) have the same law (modulo time-change). When
Ot−Wt is not equal to 0, the fact that the local evolution of chain is independent of the target point
is derived (via Itô formula computations for (Ot ,Wt)) in [SW05]. Note that the two evolutions
match up to a time-change only, because time corresponds to the size of the Loewner chain seen
from either infinity or from u. In order to check that target-independence remains valid at all times,
one needs to check that the “local push” rule that is used in order to define I(β )t (or I<µ>

t when
κ = 4) and then Ot is also the same (modulo the time-change) for both processes. This is basically
explained in [She09, Section 7].
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In fact, if we formally replace the Bessel process X by just one Bessel excursion e, the procedure
defines an SLE “pinned loop” or SLE “bubble” i.e. a continuous simple curve in H∪{0} that passes
through the origin. More precisely, let us start with the excursion (e(s),s≤ τ) and use the driving
function

wt :=
√

κe(t)+2
√

κ

∫ t

0
ds/e(s)

to generate the Loewner chain. It is shown in [SW12] that for almost all (positive) Bessel excursion
e (according to the Bessel excursion measure that we have denoted by λ ), this defines a such a
simple loop γ(e) in the upper half-plane, that starts and ends at the origin (and Ht = H \ γ(0, t]).
The time-length τ(e) of the loop corresponds to the half-plane capacity seen from infinity of γ . The
infinite measure on loops γ that one obtains when starting from the infinite measure λ on Bessel
excursions is referred to as the one-point pinned measure in [SW12].

Hence, for each excursion e of X , corresponding to the excursion interval [t−(e), t+(e)] (with
t+− t− = τ(e)), one can define the preimage of γ(e) under the conformal map gt− of the Loewner
chain. It is not clear at this point that this is a proper continuous loop in H because we do not
know whether g−1

t− extends continuously to the origin, but we already know that it is almost a loop:
In particular, the preimage of γ(e) \ {0} is a simple curve such that its closure disconnects some
interior domain from an outer domain in Ht . In the sequel, we will refer to this as a quasi-loop
(mind that in [She09], this is called a “conformal loop” and that the term quasi-simple loops is
used for something different). One of the consequences of [SW12] is that in the symmetric case,
all these quasi-loops are in fact loops (here one uses the alternative construction using Brownian
loop-soup clusters). For the other cases, we shall see that it is also the case, but at this stage of the
proof, we do not know it yet.

As explained in [She09], the target-independence makes it possible to define (for each version
of the SLE(κ,κ − 6) that we have defined, and that we will implicitely keep fixed in the coming
three paragraphs) a “branching SLE” structure starting from 0 and aiming at a dense set of points
in the upper half-plane. Let us first describe the process targeting i, until it discovers a quasi-loop
around i (this is the “radial” SLE(κ,κ − 6); we choose here not to introduce the radial Loewner
equation but to explain this radial process via the chordal setting): Consider a chordal SLE(κ,κ−6)
from 0 to ∞ until time t1, which is the first end-time of an excursion of X after the first moment at
which the Loewner chain reaches the (half)-circle of radius 1/2 away from the origin. One has two
possibilities, either at t1, the Loewner chain has traced a quasi-loop around i (and it can be only
the quasi-loop that the chain had started to trace when reaching the circle, and t1 is the end-time
of the corresponding excursion) or not. In the latter case, it means that i is still in the remaining
to be explored unbounded simply connected component Ht1 of the chain at time t1. At this time,
the chain is growing at a prime end (i.e. loosely speaking, a boundary point) of Ht1 . We can now
consider the conformal transformation F1 of Ht1 onto H that maps this prime end onto the origin,
and keeps i fixed (another way to describe F1 is to say that it is the composition of gt1 with the
Moebius transformation of the upper half-plane that maps gt1(i) onto i and Wt1 onto 0). Then, we
repeat the same procedure again: Grow an SLE(κ,κ − 6) from the origin in H until the first end-
time of an quasi-loop that touches the circle of radius 1/2 etc., and we look at its preimage under
F1 (this can be interpreting as a switch of chordal target at t1, this pre-image chain now aims at
F−1

1 (∞) instead of ∞). After a geometric number of iterations, one finds a chordal SLE(κ,κ − 6)
in H that catches i via a quasi-loop that intersects the circle of radius 1/2. The concatenation of the
preimages of these Loewner chains is what is called the radial SLE(κ,κ − 6) targeting i, and the
preimage of this quasi-loop that surrounds i is the quasi-loop γ(i) defined by this radial SLE.
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In a similar way, one can define for each given z ∈H, the radial SLE(κ,κ−6) targeting z, and
the quasi-loop γ(z) that it discovers. The target-independence property of chordal SLE(κ,κ − 6)
can be then used in order to see that for any z1, . . . ,zn, it is possible to couple all these radial
explorations in such a way that for any k 6= j, the explorations targeting zk and z j coincide as long
as zk and z j remain in the same connected component, and that they are conditionally independent
after the moment at which zk and z j are disconnected from each other. Hence, one can define a
process (γ(z),z ∈ H) of quasi-loops via the law of its finite-dimensional marginals, that has the
property that for all z,z′, on the event where γ(z) surrounds z′, one has γ(z′) = γ(z). The countable
collection of loops that is defined for instance via the loops that surround points with rational
coordinates is the CLE constructed by Sheffield [She09] associated to this value of κ and β (or µ).

Let us repeat that the law of this family of quasi-loops is characterized by its finite-dimensional
distributions (i.e. the laws of the families (γ(z1), . . . ,γ(zk)) for any finite set {z1, . . . ,zk} in the
upper half-plane). A convenient topology to use in order to define these random quasi-loops is,
for the loop γ(z), to use the Carathéodory topology for the inside of the quasi-loop as seen from z.
In the sequel, when we will say that a sequence of CLE’s converges in law to another CLE in the
sense of finite-dimensional distributions, we will implicitly be using this topology.

Note that a quasi-loop will be traced clockwise or anti-clockwise, depending on the sign of the
corresponding excursion. For instance, for β = 1, all quasi-loops are traced anti-clockwise.

Let us summarize what these procedures define:

• When κ ∈ (8/3,4), for each β ∈ [−1,1] and for each boundary point x (corresponding to our
choice of starting point in the previous setting) a random family of quasi-loops that we can
denote by CLEβ

κ (x).

• When κ = 4, for each µ ∈R and each boundary point x, a random family of quasi-loops that
we denote by CLE4,µ(x).

The construction and the target-independence ensures that these CLE’s are conformally-invariant
(this follows basically from the target-independence property, see [She09]), i.e. for each given x,
κ and β (or µ), and any Moebius transformation of the upper half-plane, the image of a CLEβ

κ (x)
under Φ is distributed like a CLEβ

κ (Φ(x)).

In [SW12], it is proved that the law of a CLE0
κ(x) does not depend on x, and that the law of

CLE4,0(x) does not depend on x (note that these are the families of quasi-loops constructed via the
symmetric exploration procedure). Furthermore, for these ensembles, all quasi-loops are almost
sure plain loops (the proof of these last facts are based on the fact that these loop ensembles are the
only family of loops that satisfy some axiomatic properties, and that they can also be constructed
as boundaries of clusters of Brownian loops).

3.3 The asymmetric explorations
The present subsection is devoted to the proof of the following proposition and to its analogue for
κ = 4, Proposition 3.3.2):

Proposition 3.3.1. For all given κ ∈ (8/3,4), the law of CLEβ

κ (x) does depend neither on x nor on
β .
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Note that this also proves that in these ensembles, all quasi-loops are indeed loops because we
already know that CLE0

κ(x) almost surely consists of loops. Recall also that we know that this
CLE0

κ(x) does not depend on x (in the present subsection, we will simply refer to it as the CLEκ ).
It is therefore enough to check that in the upper half-plane, the laws of CLEβ

κ (0) and of CLE0
κ(0)

coincide, ie., that for any given z1, . . . ,zn in the upper half-plane, the joint law of (γ(z1), . . . ,γ(zn))
is the same for these two CLEs.

Let us first make the following observations:

1. A by-product of the characterization/uniqueness of CLE derived in [SW12] is the fact that
the image measure µ0 on pinned loops γ(e) (i.e. the image measure of λ under e 7→ γ(e)) is
invariant under the symmetry with respect to the imaginary axis (x+ iy 7→ −x+ iy). In other
words, it is the same as the image measure on loops defined by e 7→ γ(−e) if one forgets
about the time-parametrization of the loops (this is closely related to the reversibility of SLE
paths first derived by Zhan [Zha08b] by other more direct means). Note that the time-length
τ(e) is both the half-plane capacity of γ(e) and of γ(−e) for a given e.

2. Suppose now that we consider a symmetric SLE(κ,κ−6) with driving function W , that we
stop at the first time T1 at which it completes an excursion of length greater than r2. This
defines a certain family of loops in the unit disc via the procedure described above. If we are
given some sign ε1 ∈ {−1,+1} (independent of the process W ), we can decide to modify the
previous process W into another process Ŵ , by just (maybe) changing the sign of the final
excursion before T1 into ε1 (it may be that we do not have to change it in order to have it equal
to ε1). Then, clearly, the law of (Ŵ , t ≤ T1) is absolutely continuous with respect to that of
(Wt , t ≤ T1), and it therefore also defines almost surely a family of loops in the unit disk. The
previous item shows in fact that the collection of loops defined by these two processes up
to T1 have exactly the same law (because changing the sign of one final excursion does not
change the distribution of the corresponding loop). Furthermore, the law of the collection of
connected components of the complement of this symmetric SLE(κ,κ − 6) at that moment
are clearly identical too.

3. Suppose that T is some stopping time for the driving function (Wt , t ≥ 0) of the symmetric
SLE(κ,κ − 6) process started from the origin in the half-plane. Suppose furthermore that
this stopping time is chosen in such a way that almost surely WT = OT . Then, we know
that the process (WT+t −WT , t ≥ 0) is distributed exactly as W itself, and furthermore, it is
independent of (Wt , t ≤ T ). This means that the conditional law given (Wt , t ≤ T ) of the non-
yet explored loops is just a CLEκ in the yet-to-be explored domain. This makes it possible
to change the starting point of the upcoming evolution, because we know that the law of
the loops defined by the branching symmetric SLE(κ,κ − 6) is independent of the chosen
starting point. In particular, if we consider an increasing sequence of stopping times Tn (and
T0 = 0) such that Tn→ ∞ almost surely and WTn = OTn for each n, and define the process

Ŵt =Wt + cNt (3.3.1)

where c is some constant and Nt = max{n ≥ 0 : Tn ≤ t}, the planar loops associated with
the excursions intervals of the Bessel process X will be distributed according to loops in
a CLEκ . More precisely, for each n, if one samples (conditionally on the process up to
Tn) independent CLEκ ’s in the remaining unexplored connected components created by the
Loewner chain at time Tn, and considers the union of the obtained loops with the loops that
have been discovered before Tn, then one gets a full CLEκ sample.



3.3. THE ASYMMETRIC EXPLORATIONS 59

Let us now combine the previous facts in the case where κ < 4 (i.e., δ < 1). Suppose now that
r > 0 is fixed. Consider a symmetrized Bessel process X (0) and the corresponding driving function
W (0). Define the stopping times Tn(r) as the end-time of the n-th excursion of length at least r2 of
|X (0)|. Up to time T1(r), we perform the exploration using the driving function W (0)

t (that is defined
using the symmetrized Bessel process) except that the sign of the last excursion may have been
changed depending on the sign ε1(r). Note that we have just recalled that this procedure defines
exactly loops of a CLEκ . Note that T1(r) is the end-time of an excursion and corresponds exactly
to the completion of a CLE loop. Then, we force a jump of −βCr2

√
κ of the driving function, and

continue from there until time T2(r) by following the dynamics of W (0)
t (possibly changing the sign

of the last excursion before T2(r)). At T2(r), we again wake a jump of −βCr2
√

κ . Combining the
previous two items shows that for any n and r, the following procedure constructs a CLE sample:

• Sample the previous process until time Tn(r). Keep all the loops corresponding to the excur-
sions of X .

• In each connected components created along the way by this Loewner chain (one can view
these connected components as those of the complement of the closure of the union of the
interior of all the loops created by the chain – because these loops are “dense” in the created
chain) as well as in the remaining unbounded component, sample independent CLEκ ’s.

Note that the result still holds, if for some given r, one stops the process at a stopping time which
is the end-time of some loop (not necessarily a Tn(r)).

Let us now look at the driving function of the previously defined Loewner chain. It is exactly
the one that would obtain if the signs of the excursions of length larger than r2 are those given
by ε1(r),ε2(r) etc., and one also puts in the negative jumps at each time Tn(r). This corresponds
exactly to the driving function

W (β ,r)
t :=

√
κX (β ,r)

t +2
√

κI(β ,r)t .

We now need to control what happens when r→ 0. A first important observation is that, as
argued in the previous sections, the function W (β ,r) converges uniformly towards W (β ) on any com-
pact interval. On the other hand, we have just described a relation between the Loewner chain/the
loops generated by W (β ,r) and CLEκ . Our goal is now to deduce a similar statement for the Loewn-
er chain generated by W (β ). For that chain, let H(β )

t denote the complement of the chain at time t
(using the usual notations, and the time-parametrization of W (β )).

For simplicity, let us first focus only on the law of the loop that surrounds one fixed interior point
z ∈ H, in a CLEβ

κ (0). Two scenarios can occur. Either for the Loewner chain (without branching,
and targeting infinity) generated by W (β ), z is at some point swallowed by a quasi-loop (that we
then call γ(β )(z)) or not. Let A(β )

1 (z) and A(β )
2 (z) denote these two events. If A(β )

2 (z) holds, then let
τ(β )(z) = sup{t > 0 : z ∈ H(β )

t }.
When A(β )

1 (z) holds, the quasi-loop γ(β )(z) corresponds to a time-interval (t−(e), t+(e)) for
some excursion e, that in turn corresponds (for each r) to some loop γ(β ,r,∗) traced by the Loewner
chain driven by W (β ,r). The almost sure convergence of W (β ,r) to W (β ) implies that (with full
probability on the event that γ(β )(z) exists) in Carathéodory topology seen from z, the inside of the
loop corresponding to γ(β ,r,∗) converges to the inside of γ(β )(z) as r→ 0 (note that the loops γ(β ,r,∗)

will surround z for all small enough r).
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(a) Loops generated by W (β ).

z

(b) z is contained in a loop.

z
z

(c) The connected component containing z.

Figure 3.3.1: Two scenarios for z.

It is a little more tricky to handle the case where A(β )
2 (z) holds. Note that then τ(β )(z) cannot

belong to some (t−(e), t+(e)] (because this interval corresponds to a quasi-loop that is locally drawn
like a simple slit). Furthermore, in this case, for any time t before τ(β )(z), z belongs to the still to
be explored unbounded simply connected domain H(β )

t . Target-independence of the SLE(κ,κ−6)
processes yields that modulo reparametrization, one can view the evolution of the Loewner chain
before τ(β )(z) as a radial SLE(κ,κ −6) targeting z as described before. In particular, this implies
that the conformal radius of H(β )

t seen from z decreases continuously to some limit when t increases
to τ(β )(z). This limit is the conformal radius of the simply connected domain that we denote
by Ω(β )(z) and that is the decreasing limit (seen from z in Carathéodory topology) of H(β )

t as t
increases to τ(β )(z) (note that we have not excluded the – somewhat unlikely – case where τ(β )(z)=
∞ when A(β )

2 (z) holds).
In the next couple of paragraphs, since z is fixed, we will omit to mention the dependence of

τ(β )(z), Ω(β )(z) etc on z, and write τ(β ), Ω(β ) instead.
In the same way, we can define almost surely, for each r, γ(β ,r) = γ(β ,r)(z) or Ω(β ,r) = Ω(β ,r)(z)

depending on whether the Loewner chain drawn by W (β ,r) creates a quasi-loop around z or not
(here, we use the target-independence of the symmetric SLE(κ,κ−6)). One problem to circumvent
is that the fact that W (β ,r) converges uniformly to W (β ) on any compact interval is not enough to
ensure that Ω(β ,r) converges to Ω(β ), for instance because just before the disconnection time, a very
small fluctuation of the driving function can create a path that enters and exits this soon-to-be-cut-



3.3. THE ASYMMETRIC EXPLORATIONS 61

off domain. An additional problem is that it could be that, even for small r, τ(β ,r)(z) is much larger
than τ(β )(z).

One way around this is to introduce additional stopping times that approximate τ(β ) from below.
For instance, for each ε , define τ̂

(β )
ε to be the first time t at which it is possible to disconnect z from

infinity in Ht by removing from Ht a ball of radius ε . Then, let τ̃
(β )
ε = min(1/ε, τ̂

(β )
ε ) (this is just

to take care of the possibility that τ(β ) = ∞). Then finally, if this time belongs to some quasi-loop
interval (t−(e), t+(e)), define τ

(β )
ε to be the end-time t+(e) of this quasi-loop, and otherwise let

τ
(β )
ε = τ̃

(β )
ε . Note that τ

(β )
ε is a stopping time with respect to the filtration of W (β ).

Clearly, for any small ε , τ
(β )
ε < τ(β ) as soon as τ(β ) is finite (recall that τ(β ) cannot be equal to

some t+(e)). On the other hand, τ
(β )
ε cannot increase to anything else than τ(β ) as ε decreases to 0.

Furthermore, the convergence of W (β ,r) to W (β ) ensures that for each given ε , the domain H(β ,r)

τ
(β )
ε

converges in Carathéodory topology (seen from z) to H(β )

τ
(β )
ε

when r→ 0. Hence, we conclude that

for a well-chosen r(ε) (small enough), as ε → 0 along some well-chosen sequence, almost surely
on the even τ(β ) < ∞, the sequence of domains H(β ,r(ε))

τ
(β )
ε

converges in Carathéodory topology to

Ω(β ).
For each given ε , choose r(ε) very small, we can construct a loop surrounding z as follows,

using the Loewner chain associated to W (β ,r). If this chain has traced a loop γ(β ,r,ε) that surrounds
z along the way before τ

(β )
ε , then just keep this loop. If not, then sample in the domain H(β ,r(ε))

τ
(β )
ε

an

independent CLEκ , look at the loop that surrounds z in this sample, and call it γ(β ,r,ε). Our previous
arguments relating the loops traced by W (β ,r) to CLEκ (note that τ

(β )
ε is a stopping time at which

all these Loewner chains complete a quasi-loop) show that for each fixed ε and r, the law of γ(β ,r,ε)

is the same as the law of the loop that surrounds z in an CLEκ in H.
Note finally that in the case A(β )

1 where a quasi-loop γ(β ) is discovered by the Loewner chain
driven by W (β ), then (as we have argued before) the same holds true for the Loewner chain driven
by W (β ,r) for all small r, and that furthermore, for all small ε and r, γ(β ,r,ε) = γ(β ,r).

Hence, we can conclude that for a well-chosen sequence εn→ 0 (with a well-chosen r(εn)), in
the limit when n→ ∞, the constructed loop (which has always the law of γ(z) in a CLEκ in H as
we have just argued) is:

• Either γ(β ) if A(β )
1 holds

• Or otherwise, obtained by sampling a CLEκ in Ω(β ).

But now, because we know that this procedure defines a loop that is distributed like γ(z) is a CLEκ ,
one can use the branching idea, and iterate this result within Ω(β ). We then readily get that the law
of the quasi-loop that surrounds z in a CLE(β )

κ (0) is identical to the law of the loop that surrounds
z for a CLEκ .

In fact, in order to describe the law of CLE(β )
κ (0), we have to see what happens when one looks

at the joint distribution of the loops that surround n given points z1, . . . ,zn. The argument is al-
most identical: The main difference is that one first replaces τ(β )(z) by τ(β ) := τ(β )(z1, . . . ,zn) =

min(τ(β )(z1), . . . ,τ
(β )(zn)) and also changes τ

(β )
ε (z) into τ

(β )
ε := τ

(β )
ε (z1, . . . ,zn) which is associ-

ated to the first time at which adding some ball of radius ε to the Loewner chain disconnects at
least one of these n points from infinity in H(β )

t . The rest of the procedure is basically unchanged
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and readily leads to the fact that the joint distribution of the set of loops that surround these points
in a CLE(β )

κ (x) or in a CLEκ are identical, which completes the proof of Proposition 3.3.1. The
only additional ingredient is to note that when one considers a decreasing sequence of open simply
connected sets Ωn, the law of the CLEκ in Ωn (as described via its finite-dimensional marginals)
converges to the law obtained by sampling independent CLEκ ’s in the different connected compo-
nents of the interior of ∩Ωn (which is a fact that follows for instance directly from the description of
CLEκ as loop-soup cluster boundaries). This ensures that in the limit when n→∞ (for well-chosen
εn and rn), on the event τ(β )(z1, . . . ,zn) < ∞, sampling a CLEκ in H(β ,rn)

τ
(β )
εn

converges in law (in the

sense of finite-dimensional distributions) to sampling two independent CLEκ ’s in H(β )

τ(β )
and in the

cut-out component Ω(β ) at time τ(β ).

For κ = 4 and µ ∈ R. In the same spirit, we choose the driving function

W<µ,r>
t :=Wt +4µrNr(t) = 2Bt +4(I(0)t +µrNr(t)).

Then, the very same arguments as before show that the corresponding constructed loops are those
of a CLE. And on the other hand, the driving function W<µ,r> converges to W<µ>. This allows to
complete the proof of the following fact:

Proposition 3.3.2. When κ = 4, the law of CLE4,µ(x) does depend neither on x nor on µ .

3.4 The uniform exploration of CLE4

Let us now modify the “symmetric” Loewner driving function W (0) by introducing some random
jumps. Basically, at each time Tn(r) (the end-times of the excursions of X of time-length at least
r2), we decide to resample the position of the driving function according to the uniform density in
[−m,m] – here m should be thought of as very large, we will then let it go to infinity.

Suppose for a while that m is fixed (we will omit to mention the dependence in m during the
next paragraphs in order to avoid heavy notation). Let us associate to each excursion e of X a
random variable ξ (e) with this uniform distribution on [−m,m], in such a way that conditionally
on X , all these variables ξ are i.i.d. (for notational simplicity, we sometimes also write ξ = ξ (T )
when T is the time of X at which the corresponding excursion is finished). Then, we define the
function t 7→ Ŵ r

t as follows: T0(r) = 0 and for each n≥ 0,

• Ŵ r(Tn) = ξ (Tn+1).

• Ŵ r−W (0) is constant on each interval [Tn(r),Tn+1(r)).

The function Ŵ r is piecewise continuous, and it is therefore the driving function of some Loewner
chain. The very same arguments as before show that for each given r, it defines a family of loops
distributed like loops in a CLEκ (in the sense that, just as before, when one completes the picture
with independent CLE’s in the not-yet-filled parts, one obtains a CLEκ sample (note that the jump
distribution – i.e. the choice of the new point according to the uniform distribution – is in fact
independent of the future behavior of X).

It is easy to understand what happens to this construction when r tends to 0. As before, we are
going to look at the almost sure behavior of Ŵ r when r→ 0, for a given sample of W (0) and ξ ’s .
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Let us define the process Ŵ by the fact that for each excursion e corresponding to a time-interval
(S,T ),

Ŵt = (W (0)
t −W (0)

S )+ξ (T )

for t ∈ [S,T ) (this defines Ŵ for all t, except on the zero-Lebesgue measure set of times that are
not in the time-span of some excursion, for those times, we can choose Ŵ as we wish). Then,
clearly, the fact that t 7→W (0)

t is continuous ensures that for each given excursion interval, Ŵ r

converges uniformly to Ŵ as r → 0 on this time-interval, because for small enough r, Ŵ r = Ŵ
on this excursion. It follows readily that the Loewner chain generated by Ŵ r does (almost surely)
converge (in Carathéodory topology) to the one generated by Ŵ .

Hence, using the same arguments as above (the law of the traced loops is always that of loops
in CLE, that are simple disjoint loops, the excursion-intervals correspond to the loops, and these
intervals are the same for all r), we conclude that during each excursion time-interval, the driving
process Ŵ does indeed trace a loop, and that the joint law of all these loops are those of loops in a
CLE.

Let us now rephrase all the above construction in terms of the Poisson point process of Bessel
excursions (eu,u≥ 0). As we have explained earlier, each Bessel excursion in fact corresponds (via
Loewner’s equation) to a two-dimensional loop in the upper-half plane, that touches the boundary
only at the origin. Let us call γu the loop corresponding to eu. To each excursion eu of the Bessel
process, we also associate a random position xu ∈ R sampled according to the uniform measure on
[−m,m] (more precisely, conditionally on all Bessel excursions (eu j), the random variables (xu j)
are i.i.d. with this distribution). Then, we define the loop γ̂u by shifting γu horizontally by xu (and
so, the loop γ̂u touches the real axis at xu).

For each excursion eu, we can now define the conformal transformation f̂u from the connected
component of H\ γ̂u that contains i onto H such that f̂u(i) = i and f̂ ′u(i)∈R+. As this will be useful,
we now reintroduce the dependence on m in the notation for these maps (and write f̂u = f̂ m

u ).
For a given m, we start with a Poisson point process (eu,≥ 0) of Bessel excursions defined under

the measure 2mλ and we then associate to each excursion the uniform random variable ξ (eu). A
cleaner equivalent way to describe the process ((eu,ξu),u ≥ 0) is to say that it is a Poisson point
process with intensity λ ⊗dx1x∈(−m,m).

Then, clearly, we get a Poisson point process ( f̂ m
u ,u≥ 0) of such conformal maps (because for

each u, f̂ m
u is a deterministic function of the pair (eu,xu) and ((eu,xu),u ≥ 0) is a Poisson point

process).
For each u > 0, one can then define

F̂m
u = ◦v<u f̂ m

v

(where the composition is done in the order of appearance of the maps f̂v). Clearly, F̂m
u corre-

sponds to the Loewner map (generated by the driving function Ŵ ) at the time (in the Loewner time
parametrization) corresponding to the completion of all loops γ̂m

v for v < u. In other words, if τ(eu)
is the time-length of the excursion eu, the Loewner time at which the loop corresponding to that
excursion will start being traced is ∑v<u τ(ev).

Hence, the loops
γ̃

m
u := (F̂m

u )−1(γ̂m
u )

are distributed like CLE loops. In particular, the loop that contains i will be the loop (F̂m
τ )−1(γ̂m

τ )
where

τ = inf{u≥ 0 : γ̂
m
u surrounds i}.
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Let us rephrase what we have done so far: For each m, we have seen that one can define
CLE loops by considering the Loewner chain generated by Ŵ , using the Poisson point process
( f̂ m

u ,u≥ 0), or equivalently, via the Poisson point process Γ̂m := (γ̂m
u ,u≥ 0) with intensity measure

Mm =
∫ m

−m
dxµ

x

where µx denotes the measure on loops rooted at x (like in [SW12], we define this measure as the
measure µ0 on loops in the upper half-plane generated via a Bessel excursion defined under λ , and
shifted horizontally by x).

Now, let us describe what happens when m→ ∞. Suppose now that we consider the Poisson
point process Γ̂ := (γ̂u,u≥ 0) with intensity

M :=
∫

R
dxµ

x

and the corresponding iterations of maps F̂u. Even though this measure seems “even more infinite”
than Mm, this iteration of conformal maps does not explode. This is due to the scaling properties of
µx and to the fact that one normalizes always at i (so that loops rooted far away do not contribute
much the derivative at i) – one can for instance justify this using Lemma 3.4.2 below.

Note also that if we keep only those loops in Γ̂ that are rooted at a point in [−m,m], we obtain
a process with the same law as Γ̂m. The key observation is now to see that when m→ ∞, each
map F̂m

u converges uniformly in any compact subdomain of the closed upper half-plane to F̂u. This
implies the following:

Lemma 3.4.1. The loops Γ̃ = (γ̃u := F̂−1
u (γ̂u),u≤ τ) are also distributed like loops in a CLE.

At this stage, everything we have said is still true if we replace the Lebesgue measure on R by
(almost) any other given distribution on R, and any κ ∈ (8/3,4]. An important reason to choose
this particular measure and to focus on the case where κ = 4 is that the following Lemma holds
only in this case:

Lemma 3.4.2. When κ = 4 the measure M is conformal invariant.

Proof. Recall from [SW12] that when κ = 4 and if Φ is a conformal transformation of the half-
plane onto itself,

Φ◦µ
x = |Φ′(x)|µΦ(x)

where the measure Φ◦µx is defined by

Φ◦µ
x(A) = µ

x{γ : Φ(γ) ∈ A}.

Hence, it follows immediately that Φ◦M = M.

A direct consequence of this conformal invariance is that

Corollary 3.4.3. When κ = 4, the law of Γ̃ = (γ̃u,u≤ τ) is invariant under any Moebius transfor-
mation Φ of the upper half-plane that preserves i.

Note that there is no time-change involved. The law of Φ(γ̃u)1u≤τ and γ̃u1u≤τ are for instance
identical.
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i i
f̂u

γ̂u

(a) f̂u fixes i and f̂ ′u(i)> 0.

i i
F̂u

(b) F̂u is the composition of f̂v for v < u.

i i
F̂−1
u

γ̂u

γ̃u

(c) γ̃u is the preimage of γ̂u under F̂u.

Figure 3.4.1: construction of γ̃u.

Proof. Let Φ be a Moebius transformation of the upper half-plane that preserves i, and (γ̂u,u≥ 0)
be a Poisson point process with intensity M. And define τ, f̂u for u < τ, and F̂u, γ̃u for u ≤ τ as
described above.

Note that (γ̄u := Φ(γ̂u),u ≥ 0) is a Poisson point process with intensity M = Φ◦M, and it has
therefore the same distribution as (γ̂u,u ≥ 0). For u < τ, let f̄u be the conformal map from the
connected component of H\ γ̄u that contains i onto H such that f̄u(i) = i and f̄ ′u(i) ∈ R+. It is easy
to see that

f̄u = Φ◦ f̂u ◦Φ
−1

and hence for u≤ τ,

F̄u := ◦v<u f̄v = Φ◦ F̂u ◦Φ
−1.

As a result, for u≤ τ,

Φ(γ̃u) = Φ(F̂u(γ̂u)) = F̄u(γ̄u).

Since (γ̄u,u≥ 0) has the same distribution as (γ̂u,u≥ 0), it follows that (Φ(γ̃u),u≤ τ) has the same
distribution as (γ̃u,u≤ τ).

In fact, a stronger result holds. Let us now choose some other point z than i in the upper half-
plane. Let σ denote the first moment if it exists at which the process (γ̃u,u≤ τ) disconnects i from
z. If the loop γ̃τ surrounds both i and z, we simply set σ = τ . Note that the event that σ < τ can
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happen when the process discovers a loop surrounding one of the two points and not the other, but
at this stage, it is not excluded that it can disconnect two points strictly before discovering the loops
that surround them, just like the symmetric SLE(κ,κ−6) does, see [SW12].

Define the same process (γ̃z
u,u≤ τz) as above, except that we choose to normalize “at z” instead

of normalizing at i. One way to describe it would be to write γ̃z
u = ϕ(γ̃u), where ϕ is the affine

transformation from H onto itself such that ϕ(i) = z (but we will use another way to describe it in
terms of γ̃u in a moment). We then define σ z to be the first moment at which it disconnects z from
i or discovers the loop that surrounds both points.

Lemma 3.4.4. When κ = 4, and for any z ∈ H, the law of (γ̃z
u,u ≤ σ z) is identical to the law of

(γ̃u,u≤ σ).

We shall use the following classical result about Poisson point process (see for instance [Ber96,
Section 0.5]:

Result. Let (au,u ≥ 0) be a Poisson point process with some intensity ν (defined in some metric
space A). Let Fu− = σ(av,v < u). If (Φu,u ≥ 0) is a process (with values on functions of A onto
A) such that for any u≥ 0, Φu is Fu−-measurable, and that Φu preserves ν then (Φu(au),u≥ 0) is
still a Poisson point process with intensity ν .

We are now ready to prove the lemma.

Proof. Consider the process (γ̃u,u ≤ τ) defined from the Poisson point process (γ̂u,u ≥ 0) with
intensity M as above (and keep the same definitions for τ , f̂u with u < τ , F̂u, γ̃u with u ≤ τ , where
the latter are defined by normalizing the maps at i).

We denote Fu− = σ(γ̂v,v < u). For u < σ , F̂−1
u (H) is a simply connected domain of H con-

taining z. Let Gu be the conformal map from F̂−1
u (H) onto H normalized at z by Gu(z) = z and

G′u(z) ∈ R+. Define for each u < σ

Φu = Gu ◦ F̂−1
u .

We also define Φσ = limu→σ−Φu, and we say that Φu is the identity map for all u > σ . It is clear
that, for each positive u, the map Φu is a Fu−-measurable Moebius transformation from the upper
half-plane onto itself. Hence, the process (γ̄u := Φu(γ̂u),u ≥ 0) is also Poisson point process with
intensity M.

If we use the point process (γ̄u) to construct the process (γ̃z
u) normalized at z, we get a coupling

of (γ̃u) and (γ̃z
u) in such a way that they coincide up to time σ : For all u < σ , γ̃u = γ̃z

u, and in
addition,

γ̄σ = Φσ (γ̂σ )

(if this γ̂σ exists) so that γ̃σ = γ̃z
σ .

Hence, with this coupling, we see that σ ≤ σ z almost surely. By symmetry (because there exists
a conformal map interchanging these two points), it follows that σ = σ z almost surely.

This means that it is possible to couple these two processes up to the first moment at which it
disconnects i from z. By scaling, this shows that for any pair of points z and z′, we can couple the
two processes γ̃z and γ̃z′ up to the first time at which they disconnect z from z′. Hence, it is possible
to couple the processes γ̃z for all z ∈H simultaneously in such a way that for any two points z and
z′, the previous statement holds.

If we now use such a coupling, we get a Markov process on domains (Du,u≥ 0): At time u = 0,
the domain is the upper half-plane, and at time u > 0, it is the union of all the (disjoint) open sets
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corresponding to the evolution to all points z at time u. Existence of such a conformally invariant
process is a rather striking feature, as it uses no reference point, and the time of the evolution is
preserved through the conformal transformation. We can therefore sum up the properties of this
process as follows.

Proposition 3.4.5. The process (Du,u ≥ 0) provides a way to construct CLE4. Furthermore, the
processes (Du,u ≥ 0) and (Φ(Du),u ≥ 0) are identically distributed (with no time-change) for all
Moebius transformations Φ.

Note that this uniform exploration mechanism can also be viewed as the limit (in law) of the
asymmetric CLE4,µ construction of Proposition 3.3.2 in the limit when µ → ∞ (and the boundary
points +∞ and −∞ of the upper half-plane are identified, alternatively, one can state this easily in
the radial setting). We leave the details to the interested reader.

3.5 Comments and open questions

Some open questions.

We first mention some natural open questions that are closely related to the current paper:
It is proved in [SS09, Dub09b] that an SLE4 can be deterministically drawn as the contour lines

(or sometimes called level-lines or cliff-lines) in a Gaussian Free Field with appropriate boundary
conditions. See also [MS13a] for the fact that the entire CLE4 can be deterministically embedded
in a Gaussian Free Field. Note that the symmetric exploration process looks a priori more natu-
rally associated to the Gaussian Free Field than the asymmetric ones, because when one defines
a Gaussian Free Field out of a CLE4 with the coupling described in [MS13a], one has to toss an
independent coin for each CLE4 loop to decide an orientation, so that the symmetric SLE(4,−2)
(including the coin tosses) is defined via the randomness present in the GFF. However, as shown
in [SWW13], the dynamic “uniform” construction of SLE4 described in Proposition 3.4.5 actually
also yields a rather natural construction of the GFF.

In general, the conformally invariant ways to construct a CLE that we described in the current
paper via these branching Loewner chains induce additional information than just the CLE (which
loop is discovered where, what is the starting and end-point of the loop when one uses a given
exploration etc.). This leads naturally to the following open questions:

1. If we are given a CLEκ in a simply connected domain D and a starting point on the boundary
of D, and a family of Bernoulli random variables ε(γ) with parameter β (one for each CLE
loop γ), is the asymmetric exploration process with parameter β deterministically defined?

2. In particular, is the totally asymmetric exploration process (when β = 1) sample a determin-
istic function of the CLE sample and of the starting point?

3. Is the uniform exploration process in fact a deterministic function of the CLE4?

A positive answer to this last question would give rise to a conformally invariant distance be-
tween loops in a CLE4. This will be investigated further in the forthcoming paper [SWW13].
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Discrete explorations

Our proofs rely a lot on the fact that the symmetric Bessel explorations do indeed construct the
loops in a CLE, which was derived in [SW12] using a discretization of the exploration procedure
that was proved to converge to the symmetric Bessel construction. The other CLE constructions
that we have studied in the current paper also have natural discrete counterparts that we now briefly
describe. However, it turns out to be (seemingly) technically more unpleasant to control the con-
vergence of these asymmetric discrete exploration procedures than the symmetric ones, so that it
seemed simpler to derive our results building on the relation between CLE’s and the symmetric
construction.

We first recall the exploration procedures described in [SW12] to explore a CLE little by little
(here a CLE is just a collection of loops that satisfy the CLE axioms defined in [SW12]). It will be
easier to explain things in the radial setting i.e. in the unit disk instead of the half-plane.

Suppose that Γ = (γ j, j ∈ J) is a CLE in the unit disc U and that ε > 0 is given. We denote
γ(z) as the loop of Γ (when it exists) surrounding z ∈ U. Throughout this subsection, D(1,ε) will
denote the image of the set {z ∈H : |z|< ε} under the conformal map Ψ : z 7→ (i− z)/(i+ z) from
the upper half-plane H onto the unit disc such that Ψ(i) = 0,Ψ(0) = 1. Note that for small ε , this
set is rather close to a small semi-disc centered at 1.

At the first step, we “explore” the small shape D(1,ε) in U, and we discover all the loops in Γ

that intersect D(1,ε). If γ(0) has already been discovered during this first step, we define N = 1
and we stop. Otherwise, we let U1 denote the connected component that contains the origin of the
set obtained when removing from U ′1 = U \D(1,ε) all the loops that do not stay in U ′1. From the
restriction property in the CLE axioms, the conditional law of Γ restricted to U1 (given U1) is that
of a CLE in this domain.

We now choose some point x1 on ∂U1, and the conformal map ϕε
1 from U1 onto U such that

ϕε
1 (0) = 0 and ϕε

1 (x1) = 1. Note that we allow here for different possible choices for x1. It can
be a deterministic function of U1, but the choice of x1 can also involve additional randomness (we
can for instance choose it according to the harmonic measure at the origin etc.), but we impose
the constraint that conditionally on U1, the CLE restricted to U1 and the point x1 are conditionally
independent (in other words, one is not allowed to use information about the loops in U1 in order
to choose x1).

During the second step of the exploration, one discovers the loops of Γ1 := ϕε
1 (Γ∩U1) that

intersect D(1,ε). In other words, we consider the pushforward of Γ by ϕε
1 (which has the same law

as Γ itself, due to the CLE axioms) and we repeat step 1. If we discover a loop that surrounds the
origin at that step, then we stop and define N = 2. Otherwise, we define the connected component
U2 that contains the origin of the domain obtained when removing from U\D(1,ε) the loops of Γ1
that do not stay in this domain, and we define the conformal map ϕε

2 from U2 onto U with ϕε
2 (0) = 0

and ϕε
2 (x2) = 1, where x2 is chosen in a conditionally independent way of Γ1 ∩U2, given U1, U2

and x1.
We then explore Γ2 := ϕε

2 (Γ1) and so on. We can iterate this procedure until the step N at
which we eventually “discover” a loop that surrounds the origin. Note that γ(0) (the loop in Γ

that surrounds the origin) is the preimage of this loop (the loop in ΓN that surrounds the origin and
intersects D(1,ε)) under ϕε

N ◦ · · · ◦ϕε
1 .

In this definition, the discrete exploration “strategy” is encoded by ε (the “step-size”) and by
the rule used to choose the xn’s. Since the probability to discover the loop at each given step n
(conditionally on the fact that it has not been discovered before) is constant and positive, it follows
that N is almost surely finite, that its law is geometric (regardless of the choice of xn’s).
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In [SW12], it is shown that if a CLE (ie. satisfying the CLE axioms exist), then its loops are
of SLEκ -type for some κ ∈ (8/3,4] and that it is necessarily the one constructed via the symmetric
Bessel construction (and therefore unique). Conversely (using a different argument involving loop-
soups) it is shown that these CLE do exist. The strategy of one part of the proof is to control the
behavior of certain natural discrete exploration strategies when ε tends to 0:

The first one is the “exploration normalized at the origin”. Here, at each step, xn and ϕε
n are

chosen according to the rule that (ϕε
n )
′(0) is a positive real number. In other words, we choose ϕε

n
using the standard normalization at the origin.

Towards the end of the paper [SW12], it is shown that the symmetric exploration indeed con-
structs an axiomatic CLE, by using the following symmetric discrete exploration procedure: Define
1+ε and 1−ε the two intersections of ∂D(1,ε) with the unit circle. At each step, one tosses a (new)
fair coin to decide which one of the two points gets mapped conformally onto 1. In other words,
the maps ϕε

n are i.i.d., x1 is independent of U1, and

P(x1 = 1+ε ) = P(x1 = 1−ε ) = 1/2.

The definition of the asymmetric discrete explorations is then natural: For a given β , we toss
a (1+β )/2 vs. (1−β )/2 coin in order to chose which one of the two points 1+ε or 1−ε to choose,
but in order to compensate the created bias, we post-compose the obtained map ϕ̃ε

n with a deter-
ministic rotation of some angle θ(ε) that vanishes as ε → 0 (that corresponds to the jump in the
approximation I(β ,r) of I(β )). However, we see that this rotation depends on the chosen base-point
(here the origin); this is one reason for which this discrete approximation is a little harder to master
than in the case β = 0.

The definition of uniform discrete approximations is also very natural: Just choose xn at random
on the boundary of Un according to the harmonic measure seen from 0. Equivalently, choose any
ϕε

n and compose it with a uniformly chosen rotation. Again, this rule depends on the target point
(the origin) – but this one is less tricky to control as ε → 0. We leave it to the interested (and
motivated) reader to check that these discrete explorations indeed converge in distribution to the
continuous CLE constructions that we have studied in the current paper.
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Chapter 4

Coupling between GFF and CLE4

4.1 Introduction
Before describing the result of this section, we first recall a standard fact about Brownian motion.
Consider (Bt , t ≥ 0) as an one-dimensional Brownian motion, and (Lt , t ≥ 0) as its local time pro-
cess. (|Bt |, t ≥ 0) can be decomposed into countably many Brownian excursions and when we
parameterize these excursions by the local time, the excursion process (eu,u≥ 0) is a Poisson point
process. Conversely, given a Poisson point process (eu,u ≥ 0) with intensity of Brownian excur-
sion measure, there are two ways to construct a Brownian motion. For the first way, one sample iid
coin tosses for each excursion so that the excursion is positive or negative with equal probability
1/2. Then we concatenate these signed excursions, this process has the same law as a Brownian
motion. For the second way, one concatenate the excursions and denote the process as (Yt , t ≥ 0)
(this process has the same law as (|Bt |, t ≥ 0)). Define the local time process (Lt , t ≥ 0) for Y . Then
(Yt − Lt , t ≥ 0) has the same law as a Brownian motion. In the present section, we will discuss
somewhat analogous pair of couplings for CLE4 coupled with Gaussian Free Field on a planar
domain with zero boundary condition.

A simple CLE (Conformal Loop Ensemble) is a random countable family L = (L j, j ∈ J)
of simple, disjoint, non-nested loops in simply connected domain D in C. In [SW12], a CLE is
defined to be such a random family that possesses two properties: conformal invariance (precisely,
(Φ(L j), j ∈ J) has the same law as (L j, j ∈ J) for any conformal map Φ from D onto itself) and
domain Markov property (for any deterministic subset U of D, conditioned on the loops intersecting
U , the collection of the other loops has the same law as CLE in the remaining domain). It is
proved in [SW12] that there exists an exactly one-parameter family of such CLEs. Each CLE law
corresponds to some κ ∈ (8/3,4] in the way that each CLE loop is a loop-variant of SLEκ process.
In the earlier work [She09], Sheffield has defined CLE via exploration tree and it is proved in
[SW12] and [WW13b] that the two definitions give the same law of the loop configuration. We
are interested in CLE with κ = 4. In [MS13a], Miller and Sheffield give the first coupling between
CLE4 L = (L j, j ∈ J) and GFF h in the way that L j’s are the outmost level lines of h with heights
±λ (λ = π/2 is a special constant for the GFF) and the sign of the expected value of h inside L j
is given by iid coin tosses. They also proved that, in this first coupling, both the loop configuration
and the signs are determined by the field h.

In [WW13b], the authors construct a time-parameter in CLE4. Roughly speaking, they define
a conformally invariant growing mechanism of SLE4 loops and the loops are growing uniformly
from the boundary. In this construction, the obtained loop configuration has the same law as CLE4
and each loop inherits a time parameter from the growing mechanism: ((L, tL),L ∈L ). The main
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result of the current section is the coupling between GFF and CLE4 with time parameter which we
call the second coupling between GFF and CLE4.

Proposition 4.1.1. Sample a CLE4 with time parameter ((L, tL),L∈L ). Conditioned on ((L, tL),L∈
L ), for each loop L sample a GFF hL inside L with mean value 2λ −2λ tL and all these hL,L ∈L
are independent. Then the sum of these GFF’s h = ∑L∈L hL has the same law as a GFF with mean
zero.

Just as the deterministic result in the first coupling, we also prove that

Proposition 4.1.2. In the coupling between GFF h and CLE4 with time parameter given by Propo-
sition 4.1.1, both the loop configuration and the time parameter are deterministic functions of the
field h.

Outline. In Section 4.2, we will review the definition of SLE process, the coupling between GFF
and SLE4. In Section 4.3, we introduce the boundary exploration tree by use of which we prove
Proposition 4.1.1. In Section 4.4, we define the downward height-varying level line and prove
Proposition 4.1.2.

4.2 Preliminaries
SLEκ and SLEκ(ρ) processes. We work in the upper half-plane H, the Loewner’s construction
shows that as soon as one has defined a continuous real-valued function (Wt , t ≥ 0), one can define
a two-dimensional “Loewner-chain” as follows: for any z ∈ H, define the solution (Zt = Zt(z)) to
the ordinary differential equation

Zt = z+
∫ t

0

2ds
Zs−Ws

.

This equation is well-defined up to a swallowing time T (z) = sup{t ≥ 0 : inf{|Zs−Ws| : s∈ [0, t)}>
0}. For each given t, the map gt : z 7→ Zt(z) is a conformal map from some subset H\Kt of H onto
H. For all t ≥ 0, set Kt is a compact subset of H, and H\Kt is simply connected. We also use the
notation ft = gt−Wt .

When Wt is chosen to be equal to
√

κBt , where B is a standard real-valued Brownian motion,
then this defines the SLEκ processes. For κ > 0, the compact sets (Kt , t ≥ 0) are generated by
continuous curves which we call SLEκ curves. When κ ≤ 4, the curves are simple.

Generally, an SLEκ(ρ
L;ρR) process is a variant of SLEκ in which one keeps track of multiple

additional points, which we refer to as force points. Suppose xL = (xl,L < · · ·< x1,L ≤ 0) and xR =
(0≤ x1,R < · · ·< xr,R) are our force points. Associated with each force point xi,q,q ∈ {L,R}, there
is a weight ρ i,q ∈R,q ∈ {L,R}. An SLEκ(ρ

L;ρR) process with force points (xL;xR) is the measure
on continuously growing compact hulls Kt generated by the Loewner chain with Wt replaced by the
solution to the system of SDEs:

Wt =
√

κBt +
l

∑
i=1

∫ t

0

ρ i,Lds

Ws−V i,L
s

+
r

∑
i=1

∫ t

0

ρ i,Rds

Ws−V i,R
s

, (4.2.1)

V i,q
t = xi,q +

∫ t

0

2ds

V i,q
s −Ws

, i ∈ N,q ∈ {L,R}. (4.2.2)
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For all κ > 0, there is a unique solution to (4.2.1, 4.2.2) up until the continuation threshold is
hit–the first time t for which either

∑
i:V i,L

t =Wt

ρ
i,L ≤−2 or ∑

i:V i,R
t =Wt

ρ
i,R ≤−2.

For κ > 0, the compact subsets associated to the process are generated by a continuous curve up
to the continuation threshold (see [MS12a]). We call this curve as the curve associated to the
SLEκ(ρ

L;ρR) process with force points (xL;xR).
Given a configuration

c = (D,z0,zL,zR,z∞),

where D is a simply connected domain with l+r+2 marked points on the boundary, we can define
an SLEκ(ρ

L;ρR) process in c by the conformal image of an SLEκ(ρ
L;ρR) process in H with force

points (xL;xR) under the conformal map Φ where Φ is from D onto H, sends z0 to 0, z∞ to ∞, and
xL = Φ(zL), xR = Φ(zR).

GFF and the coupling with SLE4. Let γ be the curve associated to the SLE4(ρ
L;ρR) process with

force points (xL;xR) and K is the corresponding compact hulls. Let h be a GFF on H with zero
boundary value. There exists a coupling (γ,h) such that the following is true. Suppose τ is any
finite stopping time less than the continuation threshold for γ.

γ

−λ

λ

λ
x1,R

λ(1+ρ1,R) λ(1+ρ1,R+ρ2,R)
x2,Rx1,L

−λ−λ(1+ρ1,L)

Figure 4.2.1: h is a GFF in H with boundary value depicted in the figure. γ is the level line of h
which is in fact an SLE4(ρ

1,L;ρ1,R,ρ2,R) process with force points (x1,L;x1,R,x2,R).

Let ηt be the function which is harmonic in H with boundary values (see an illustration in
Figure 4.2.1) {

−λ (1+ρ
j,L) if x ∈ ( ft(x j+1,L), ft(x j,L))

λ (1+ρ
j,R) if x ∈ ( ft(x j,R), ft(x j+1,R))

where

ρ
j,q =

j

∑
i=1

ρ
j,q

for q ∈ {L,R}, j ∈ N. Then the conditional law of h+ η0|H\Kτ
given Kτ is equal to the law of

h ◦ fτ +ητ . In this coupling, the curve γ is almost surely determined by the field h, and we can
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γa
γb

2λ−a

−a
−b

2λ−b

Figure 4.2.2: If b < a, then γa almost surely stays to the left of γb.

view γ as the level line of h+η0 with height 0 (see [SS09, SS12]). For a > 0, we usually denote γa
as the level line of h+η0− (λ −a). We call γa as the level line of h+η0 with height λ −a.

Given real numbers a,b such that 0 < b < a < 2λ , consider a GFF in H with mean zero. Let γa
(resp. γb) be the level line of height λ −a (resp. λ −b). From the results in [SS09, SS12], we have
that γa is in fact an SLE4(−a/λ ;−2+a/λ ) and almost surely γa stays to the left of γb (see Figure
4.2.2).

4.3 Constructing the coupling

Boundary exploration tree

Given a GFF h on H with zero boundary value. For a ∈ (0,2λ ), we run a level line of height
λ − a starting at 0. This is the curve associated to SLE4(−a/λ ;−2+ a/λ ) process with force
points (0−;0+). Note that,this curve is target-independent. That is, if we fix distinct target points
x,y∈R\{0}, and denote γx (resp. γy) as the curve associated to SLE4(−a/λ ;−2+a/λ ) process in
H from 0 to x (resp. y) with force points (0−;0+). Then the law of γx — up to the time t that y∈Kx

t
—and the law of γy— up to the time t that x ∈ Ky

t — are the same (up to a time reparameterization)
(See [SW05]). This implies that γx and γy can be coupled in such a way that the corresponding hulls
Kx

t and Ky
t agree (after a time reparameterization) up to the first time t that x and y are separated

(i.e. x ∈ Ky
t ,y ∈ Kx

t ) and evolve independently of one another after that time.
In fact, we can define the boundary branching process SLE4(−a/λ ;−2+a/λ ) to be a coupling

of SLE4(−a/λ ;−2+a/λ ) curves from 0 targeted at each point in a countable dense set of R such
that for any two different target points x and y, the processes agree almost surely until the first time
that x and y are separated, after which they evolve independently. We will call such a branching
process as an a-boundary exploration tree. There are two observations for the boundary explo-
ration tree. First, the law on the boundary exploration tree is independent of the countable dense
set of target points. Second, the a-boundary exploration tree is conformally invariant: the image
of an a-boundary exploration tree under any conformal transformation from H onto itself has the
same law as an a-boundary exploration tree.

When coupled with zero-boundary GFF, any arc of a-boundary exploration tree is level line of
the field with height λ−a. The boundary exploration tree divide the upper half plane into countably
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many domains–the field has mean height 2λ−a on some domains and mean height−a on the other
domains. We call the domains with mean height 2λ −a as “plateaus” and the domains with mean
height −a as “valleys”. Fix a point z ∈ H and let p be the probability that z is inside a “plateau”.
By the conformal invariance of the boundary exploration tree, we know that p is independent of z.
Consider the expected value of the field at point z, we have that

(2λ −a)p+(−a)(1− p) = 0, p =
a

2λ
. (4.3.1)

Discrete exploration process
Consider a GFF in H with zero boundary value. Take an ε > 0 small, and run an ε-boundary
exploration tree. The tree divides the upper-half plane into plateaus and valleys. We continue to
run ε-boundary exploration trees inside each valleys and these trees divide the domain into plateaus
and valleys. And we repeat the same procedure inside each valley, and finally, every point is inside
some plateaus. In this way, we explore the field step-by-step.

Precisely, we fix an interior point i ∈ H. Let ϒ1 be an ε-boundary exploration tree. Then ϒ1
divides the upper-half plane into countably many domains: plateaus with boundary value 2λ − ε

and valleys with boundary value ε . ϒ1 divides H into plateaus with boundary value 2λ − ε and
valleys with boundary value ε . If i is inside a plateau, we stop. If not, we denote H1 as the
connected component of H\ϒ1 containing i and let ϕ1 be the conformal map from H1 onto H such
that ϕ1(i) = i,ϕ ′1(i)> 0.

The image of the field in H1 under the map ϕ1 is a GFF on H with boundary value −ε . We run
an ε-boundary exploration tree ϒ2 of this field. Note that this time ϒ2 divides H into plateaus with
boundary value 2λ −2ε and valleys with boundary value 2ε . If i is in the plateaus, we stop. If not,
let H2 be the connected component of H\ϒ2 containing i and let ϕ2 be the conformal map from H2
onto H such that ϕ2(i) = i,ϕ ′2(i) > 0. The image of the field in H2 under ϕ2 is a GFF on H with
boundary value−2ε . Then we explore this field by ε-boundary exploration tree, and so on. We can
iterate this procedure until finally i is inside some plateau. Clearly, this will happen after finitely
many steps with probability one. We call N(ε) the random finite step after which i is inside some
plateau. It is important to note that at each step until N(ε), we just repeat the same procedure as
the previous step except that we are in the field lowered by −ε as the previous step. We list some
basic facts concerning this discrete procedure:

• N(ε) is geometric with distribution

P(N(ε)≥ k) = (1− ε

2λ
)k, k = 1,2,3....

• Conditional on N(ε), the random conformal maps ϕ1, ...,ϕN(ε) are i.i.d. and the random trees
ϒ1, ...,ϒN(ε) are i.i.d.

• For n≤ N(ε), in Hn, we have the GFF with boundary value −nε .

• At the step N(ε)+1, i is inside a plateau and this time the GFF in the connected component
of H\ϒN(ε)+1 that contains i has the boundary value 2λ − (N(ε)+1)ε.

For n≤ N(ε), we define

Φ
ε
n = ϕn ◦ · · · ◦ϕ1, Φ

ε = ϕN(ε) ◦ · · · ◦ϕ1.
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Continuous exploration process
We begin by reminding the reader of some definitions and results from [SW12] and [WW13b].
A pinned loop is a simple loop in H̄ intersecting the real line at a single point x. If we define
the measure Pε

x to be the law of SLE4 from x to x+ ε in H, then ε−1Pε
x converges vaguely to an

infinite measure µx on pinned loops [SW12, Lemma 6.7]. We can “symmetrize” by choosing x∈R
according to Lebesgue measure, thus obtaining the measure

M =
∫

R
µ

x dx

on pinned loops. This measure is conformally invariant (i.e. Φ◦M(·) := M(Φ−1(·)) is the same as
M for any conformal transformation Φ from H onto itself) and M(γ : γ surrounds i) = 1.

In our discrete exploration process of GFF, fix ε > 0 and at each step, we denote Pε as the law
of the plateau that has the largest harmonic measure in H seen from i. From (4.3.1) we know that

Pε(γ surrounds i) =
ε

2λ
.

Then it is clear that

Lemma 4.3.1. 2λ/ε×Pε converges weakly to M as ε goes to zero in Gromov-Hausdorff metric.

Consider a Poisson point process (γu,u≥ 0) with intensity M. Let τ be the first time u such that
γu surrounds the origin. For u < τ , let ψu be the conformal map from H\γu onto H and normalizing
at i: ψu(i) = i,ψ ′u(i) > 0. For any r > 0, let u1, ...u j be the time u before τ that γu has harmonic
measure in H seen from i larger than r. The composition

Ψ
r = ψu j ◦ · · ·ψu1

converges to some conformal map Ψ in Carathéodory topology in H seen from i(see [SW12,
WW13b]). And we formally define that, for u≤ τ ,

Ψu = ◦v<uψv, Ψ = ◦v<τψv.

We collect several facts concerning this Poisson point process

• τ has exponential law with parameter 1.

• For u ≤ τ , define Du = Ψ−1
u (H) which is a simply connected component of H containing i.

Li
u := Ψ−1

u (γu) is an SLE4 bubble in Du. We also define that Du+ = Du \Li
u.

• The sequence of loops (Li
u,u ≤ τ) has the same law as loops of CLE4 in H, i.e. we sample

independent CLE4’s in each connected component of H\∪u≤τLi
u, then the union of all these

loops together with (Li
u,u≤ τ) has the same law as CLE4 in H.

From Lemma 4.3.1, we can further prove that

Lemma 4.3.2. Φε converges in distribution to Ψ in Carathéodory topology in H seen from i.

Proof. [SW12, Section 7.1]
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From this lemma, the discrete exploration process of GFF “converges” to the Poisson point
process and thus

Corollary 4.3.3. There exists a coupling between GFF h and (Li
u,u≤ τ) such that

• Given (Li
u,u ≤ τ), for each u ≤ τ , h|Li

u
has the same law as a GFF inside Li

u with boundary
value 2λ −2λu.

• Let hv be the expected value of h at i given (Li
u,u < v) and hv+ be the expected value of h

given (Li
u,u≤ v), then

hv = −2λv, if v≤ τ,
hτ+ = 2λ −2λτ.

Recall that we start from Poisson point process (γu,u ≥ 0) and construct a sequence of loops
(Li

u,u ≤ τ) in H by targeting at i. For any interior point z ∈ H, we can also construct a sequence
of loops (Lz

u,u≤ τz) from (γu,u≥ 0) by targeting at z, i.e. let τz be the first time that γu surrounds
z and for each u < τz, we let ψu be the conformal map from H \ γu onto H and normalizing at z :
ψu(z) = z,ψ ′u(z)> 0. Then define Ψu,Ψ,Lz

u correspondingly.
Given two interior points z,w ∈ H, for the sequence (Lz

u,u ≤ τz), let σ z,w be the time that z
and w are separated, i.e. the first time u that w 6∈ Du. For the sequence (Lw

u ,u ≤ τw), let σw,z

be the time that z and w are separated. By the conformal invariance in M, we know that the
process (Lz

u,u < σ z,w) and the process (Lw
u ,u ≤ σw,z) have the same law (see [WW13b]). Thus

we can couple the two processes in the way that, up to the first time that z,w are separated, the
two processes are identical and after the separating time, the two processes evolve independently
towards their own target point.

We can also couple all processes (Lz
u,u≤ τz) for all z ∈H simultaneously such that for any two

interior points z,w, the two processes are identical up to the disconnecting time and after which
the two processes evolve independently. This is the conformal invariant growing mechanism
of CLE4 introduced in [WW13b]. This growing process gives us a CLE4 with time parameter:
((L, tL),L ∈L ). By Corollary 4.3.3, we see that, given ((L, tL),L ∈L ), we sample independent
GFF’s hLinside each L ∈L with boundary value 2λ −2λ tL, the sum of all these fields h = ∑L hL
has the same law as a GFF in H with boundary value zero. This completes the proof of Proposition
4.1.1. In this coupling, it is clear that, given ((L, tL),L ∈L ), h|L has the same law as a GFF inside
L with boundary value 2λ −2λ tL.

4.4 Downward height-varying level line
Given a GFF h in H with zero boundary value, we fix a starting point x ∈ R and a target point
z ∈ H and constants a1, ...,ak taking values in (0,2λ ). Let γx→z

a1
be the level line of h starting at

x with height λ − a1, and let τ1 be a stopping time. Note that this γx→z
a1

is the curve associated to
SLE4(−a1/λ ;−2+a1/λ ) process with force points (x−;x+). The curve may touch the boundary
and it is target-independent. Thus, we may require γx→z

a1
evolves in the way that after the curve

separates the point z from ∞, the curve continues in the connected component containing z. For
2≤ j≤ k, we inductively let γx→z

a1···a j
be the level line of h conditioned on γx→z

a1···a j−1
[0,τ j−1] starting at

γx→z
a1···a j−1

(τ j−1) with height λ −a j and let τ j be a stopping time. And we always require the curve
to continue inside the connected component containing z. We call γx→z

a1···ak
an height-varying level

line starting at x, targeting at z with heights λ − a1, ...,λ − ak with respect to the stopping times
τ1, ...,τk. See Figure 4.4.1.



78 CHAPTER 4. COUPLING BETWEEN GFF AND CLE4

x

z

2λ−a1
−a1

2λ−a2
−a2

2λ−a3
−a3 γx→z(τ1)

γx→z(τ2)

Figure 4.4.1: γx→z is the height-varying level line. The curve always continues inside the connected
component containing z. And the field always has a height 2λ higher to the right side of the curve
than the left side of the curve.

Lemma 4.4.1. Let γ = γx→z
a1···ak

be an height-varying level line of h starting at x, targeting at z with
heights λ −a1, ...,λ −ak with respect to the stopping times τ1, ...,τk. Then

• γ is almost surely a continuous curve in H from x to z;

• γ is almost surely determined by the field h.

Proof. We prove by induction on k. For the first segment γx→z[0,τ1], it is just part of the curve
associated to SLE4(−a1/λ ;−2+ a1/λ ) with force points (x−;x+). Thus it is continuous and is
determined by the field (see [MS12a, Lemma 5.6, Lemma 6.2]). For j ≥ 2, given γx→z[0,τ j−1],
γx→z[τ j−1,τ j] is part of the curve associated to some generalized SLE4 process in the connected
component of H\ γx→z[0,τ j−1] containing z with some weights and some force points. Hence, it is
continuous and determined by the field.

In this subsection, we are more interested in the downward height-varying level lines which
are the curves γx→z

a1···ak
with a decreasing sequence of heights: λ − a1 > · · · > λ − ak or 0 < a1 <

· · ·< ak < 2λ . The reason to consider this kind of level line is the following

Lemma 4.4.2. In the coupling given by Proposition 4.1.1, any downward height-varying level line
of the field cannot go inside loops of the CLE4 loop configuration.

Proof. Consider a nontrivial loop L in the loop configuration with time parameter tL. Then the field
has the height 2λ −2λ tL to the inside of L and the height −2λ tL to the outside of L. We know that
two level lines can not cross each other, if some downward height-varying level line goes inside L,
then it must hit L at its one stopping time τ j and then, after τ j, it goes inside L as a level line with
height λ −a j+1.

Recall the relation between two level lines explained in Figure 4.2.2, inside L, we must have
a j+1 < 2λ tL; and outside L, we must have a j ≥ 2λ tL. This contradicts with the fact that, we are
running a downward height-varying level line, and we have a j+1 > a j. See Figure 4.4.2.



4.4. DOWNWARD HEIGHT-VARYING LEVEL LINE 79

2λ−aj
−aj

γ(τj)

2λ−aj+1
−aj+1

2λ−2λtL

L −2λtL

Figure 4.4.2: If a height-varying level line γ goes inside L, it should hit L at one stopping time
τ j and after τ j, the line goes inside L. We can see that, L is to the left of γ[τ j,τ j+1], thus we have
a j+1 < 2λ t; L is to the right of γ[τ j−1,τ j], thus a j ≥ 2λ t.

Then we are ready to complete the proof of Proposition 4.1.2.

Proof of Proposition 4.1.2. In the coupling given by Proposition 4.1.1, we denote ((L, tL),L ∈L )
as the loop configuration with time parameter, and h as the GFF with zero-boundary value. Let K
be the gasket of the loop configuration, i.e. the closure of the set of points that are not surrounded
by any loop. For z ∈ H, let L(z) be the connected component of H \K that contains z and let t(z)
be the time parameter such that h has boundary value 2λ −2λ t(z) inside L(z).

We fix a countable dense subset S of R and a countable dense subset T of H. Define the
sequence

an,i = (
1
2n ,

2
2n , ...,

i
2n ), λ −an,i = (λ − 1

2n , ...,λ −
i

2n ).

Let ϒn,i be the closure of the set of points accessible by downward height-varying level lines of h
starting from point in S , targeting at point in T , with heights λ − an,i and with positive rational
height change times. It is clear that

ϒ
n,i ⊂ ϒ

n,i+1,

thus we can define the closure of the union of this increasing sequence

ϒ
n =

⋃

i∈N
ϒn,i.

For any z ∈ H, we can define Ln(z) as the connected component of H \ϒn containing z. And
we define Nn(z) be the integer that the field has the boundary value 2λ −2−nNn(z) inside Ln(z).

We define the closure of the union of the increasing sequence

K∞ =
⋃

n∈N
ϒn.

We denote L∞(z) as the connected component of H \K∞ that contains z. It is clear that Ln(z)
converges decreasingly to L∞(z). From the discrete exploration procedure, we have that

Nn+1(z) = 2Nn(z)+Bn(z),
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where Bn(z) is a {0,1}-valued variable, thus

|2−n−1Nn+1(z)−2−nNn(z)| ≤ 2−n−1,

and 2−nNn(z) will, almost surely, converge to some parameter 2λ t∞(z).
From Lemma 4.4.1, we know that K∞ is deterministic function of h. From Lemma 4.4.2, K∞

is contained in K. From the discrete exploration process of GFF, we can see that 2−n-boundary
exploration trees are contained in ϒn and thus K has the same law as gasket of CLE4. Combine these
three facts, we have that K = K∞ almost surely and K is a deterministic function of h. Moreover,
L(z) = L∞(z) and thus t(z) = t∞(z) which is also a deterministic function of h. This completes the
proof.



Chapter 5

Intersections of SLE Paths

The results in this chapter are contained in [MW13].

5.1 Introduction

5.1.1 Overview

The Schramm-Loewner evolution SLEκ (κ > 0) is the canonical model for a conformally invari-
ant probability measure on non-crossing, continuous paths in a proper simply connected domain
D in C. SLEκ was introduced by Oded Schramm [Sch00] as the candidate for the scaling limit
of loop-erased random walk and for the interfaces in critical percolation. Since its introduction,
SLE has been proved to describe the limiting interfaces in many different models from statisti-
cal mechanics [LSW04, CN07, SS09, Mil11, CS12, CDCH+12]. The purpose of this article is
to study self-intersections of SLE paths as well as the intersection of multiple SLE paths when
coupled together using the Gaussian free field (GFF). Our main results are Theorems 5.1.1–5.1.6
which give the dimension of the self-intersection and cut points of chordal, radial, and whole-plane
SLEκ and SLEκ(ρ) processes as well as the dimension of the intersection of such paths with the
domain boundary. Theorems 5.1.1–5.1.4 are actually derived from Theorem 5.1.5 which gives the
dimension of the intersection of two SLEκ(ρ) processes coupled together as flow lines of a GFF
[She, Dub09b, MS10, SS12, HBB10, IK10, She11, MS12a, MS12b, MS12c, MS13b] with different
angles.

5.1.2 Main Results

Throughout, unless explicitly stated otherwise we shall assume that κ ′ > 4 and κ = 16/κ ′ ∈ (0,4).
The first result that we state is the double point dimension for chordal SLEκ ′ .

Theorem 5.1.1. Let η be a chordal SLEκ ′ process for κ ′ > 4 and let D be the set of double points
of η . Almost surely,

dimH (D) =

{
2− (12−κ ′)(4+κ ′)

8κ ′ for κ ′ ∈ (4,8)
1+ 2

κ ′ for κ ′ ≥ 8.
(5.1.1)

In particular, when κ ′ = 6, dimH (D) = 3
4 .

81
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Recall that chordal SLEκ ′ is self-intersecting for κ ′ > 4 and space-filling for κ ′ ≥ 8 [RS05].
The dimension in (5.1.1) for κ ′ ∈ (4,8) was first predicted by Duplantier–Saleur [DS89] in the
context of the contours of the FK model. The almost sure Hausdorff dimension of SLEκ is 1+
κ

8 for κ ∈ (0,8) and 2 for κ ≥ 8 [Bef08] and, by SLE duality, the outer boundary of an SLEκ ′

process for κ ′ > 4 stopped at a positive and finite time is described by a certain SLEκ process
[Zha08a, Zha10a, Dub09a, MS12a, MS12c, MS13b]. Thus (5.1.1) for κ ′ ≥ 8 states that the double
point dimension is equal to the dimension of the outer boundary of the path. We note that chordal
SLEκ ′ does not have triple points for κ ′ ∈ (4,8) and the number of triple points is countable for
κ ′ ≥ 8; see Remark 5.5.3.

Our second main result is the dimension of the cut-set of chordal SLEκ ′:

Theorem 5.1.2. Let η be a chordal SLEκ ′ process for κ ′ > 4 and let

K = {η(t) : t ∈ (0,∞), η(0, t)∩η(t,∞) = /0}

be the cut-set of η . Then, for κ ′ ∈ (4,8), almost surely

dimH (K ) = 3− 3κ ′

8
. (5.1.2)

In particular, when κ ′ = 6, dimH (K ) = 3
4 . For κ ′ ≥ 8, almost surely K = /0.

The dimension (5.1.2) was conjectured in [Dup04] by Duplantier in the context of quantum
field theory. Note that we recover the cut-set dimension for Brownian motion and SLE6 established
in the works of Lawler and Lawler-Schramm-Werner [Law96, LSW01a, LSW01b, LSW02]. The
dimension of the cut times (with respect to the capacity parameterization for SLE), i.e. the set
{t ∈ (0,∞) : η(0, t)∩η(t,∞) = /0} is 2− κ ′

4 for κ ′ ∈ (4,8) and was computed by Beffara in [Bef04,
Theorem 5].

Our next result gives the dimension of the self-intersection points of the radial and whole-plane
SLEκ(ρ) processes for κ ∈ (0,4). Unlike chordal SLEκ and SLEκ(ρ) processes, such processes
can intersect themselves depending on the value of ρ > −2. The maximum number of times that
such a process can hit any given point for κ > 0 is given by [MS13b, Proposition 3.31]:

dJκ,ρe where Jκ,ρ =
κ

2(2+ρ)
. (5.1.3)

In particular, Jκ,ρ ↑ +∞ as ρ ↓ −2 and Jκ,ρ ↓ 1 as ρ ↑ κ

2 − 2. Recall that −2 is the lower thresh-
old for an SLEκ(ρ) process to be defined. For radial or whole-plane SLEκ(ρ), the interval of
ρ values in which such a process is self-intersecting is given by (−2, κ

2 − 2) (see, e.g., [MS13b,
Section 2.1]). (For chordal SLEκ(ρ), this is the interval of ρ values in which such a process is
boundary intersecting.) For ρ ≥ κ

2 −2, such processes are almost surely simple.

Theorem 5.1.3. Suppose that η is a radial SLEκ(ρ) process in D for κ ∈ (0,4) and ρ ∈
(
−2, κ

2 −
2
)
. Assume that η starts from 1 and has a single boundary force point of weight ρ located at 1−

(immediately to the left of 1 on ∂D). For each j ∈ N, let I j denote the set of points in (the interior
of) D that η hits exactly j times. For each 2 ≤ j ≤ dJκ,ρe, where Jκ,ρ is given by (5.1.3), we have
that

dimH (I j) =
1

8κ

(
4+κ +2ρ−2 j

(
2+ρ

))(
4+κ−2ρ +2 j

(
2+ρ

))
(5.1.4)
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almost surely. For j > dJκ,ρe, almost surely I j = /0. These results similarly hold if η is a whole-
plane SLEκ(ρ) process.

Let B j be the set of points in ∂D that η hits exactly j times. For each 1 ≤ j ≤ dJκ,ρe−1, we
have that

dimH (B j) =
1

2κ

(
κ−2 j

(
2+ρ

))(
2+ j

(
2+ρ

))

almost surely on {B j 6= /0}.
(5.1.5)

For each j > dJκ,ρe−1, almost surely B j = /0.

Note that Jκ,ρ +1 is the value of j that makes the right side of (5.1.4) equal to zero. Similarly,
Jκ,ρ is the value of j that makes the right side of (5.1.5) equal to zero. Inserting j = 1 into (5.1.4)
we recover the dimension formula for the range of an SLEκ process [Bef08] (though we do not
give an alternative proof of this result).

We next state the corresponding result for whole-plane and radial SLEκ ′(ρ) processes with
κ ′ > 4. Such a process has two types of self-intersection points. Those which arise when the
path wraps around its target point and intersects itself in either its left or right boundary (which
are defined by lifting the path to the universal cover of the domain minus the target point of the
path) and those which occur between the left and right boundaries. It is explained in [MS13b,
Section 4.2] that these two self-intersection sets are almost surely disjoint and the dimension of the
latter is almost surely given by the corresponding dimension for chordal SLEκ ′ (Theorem 5.1.1). In
fact, the set which consists of the multiple intersection points of the path where the path hits itself
without wrapping around its target point and are also contained in its left and right boundaries is
almost surely countable. The following gives the dimension of the former:

Theorem 5.1.4. Suppose that η ′ is a radial SLEκ ′(ρ) process in D for κ ′ > 4 and ρ ∈
(

κ ′
2 −

4, κ ′
2 −2). Assume that η ′ starts from 1 and has a single boundary force point of weight ρ located

at 1− (immediately to the left of 1 on ∂D). For each j ∈ N, let I ′j denote the set of points that
η ′ hits exactly j times and which are also contained in its left and right boundaries. For each
2≤ j ≤ dJκ ′,ρe where Jκ ′,ρ is given by (5.1.3), we have that

dimH (I ′j ) =
1

8κ ′

(
4+κ

′+2ρ−2 j
(
2+ρ

))(
4+κ

′−2ρ +2 j
(
2+ρ

))
(5.1.6)

almost surely. For j > dJκ ′,ρe, almost surely I ′j = /0. These results similarly hold if η ′ is a whole-
plane SLEκ ′(ρ) process.

Similarly, let L ′
j (resp. R ′j) be the set of points on ∂D which η ′ hits exactly j times while

traveling in the clockwise (resp. counterclockwise) direction. Then

dimH (L ′
j ) =

1
2κ ′

(
κ
′−2 j

(
2+ρ

))(
2+ j

(
2+ρ

))

almost surely on {L ′
j 6= /0}.

(5.1.7)

and

dimH (R ′j) =
1

2κ ′

(
κ
′+2ρ−2 j(2+ρ)

)(
2−ρ + j(2+ρ)

)

almost surely on {R ′j 6= /0}. (5.1.8)
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The reason that we restrict to the case that ρ > κ ′
2 − 4 is that for ρ ≤ κ ′

2 − 4 such processes
almost surely fill their own outer boundary. That is, for any time t, the outer boundary of the range
of the path drawn up to time t is almost surely contained in η ′([t,∞]) and processes of this type fall
outside of the framework described in [MS13b].

The proofs of Theorem 5.1.1 and Theorem 5.1.2 are based on using various forms of SLE
duality which arises in the interpretation of the SLEκ and SLEκ(ρ) processes for κ ∈ (0,4) as

flow lines of the vector field eih/χ where h is a GFF and χ = 2√
κ
−
√

κ

2 [Dub09a, Dub09b, MS12a,
MS12c, MS13b]. We will refer to these paths simply as “GFF flow lines.” (An overview of this
theory is provided in Section 5.2.) The duality statement which is relevant for the cut-set (see
Figure 5.2.5) is that the left (resp. right) boundary of an SLEκ ′ process is given by an SLEκ flow
line of a GFF with angle π

2 (resp. −π

2 ). Thus the cut set dimension is given by the dimension of the
intersection of two flow lines with an angle gap of

θcut = π. (5.1.9)

Another form of duality which describes the boundary of the SLEκ ′ before and after hitting a given
boundary point and also arises in the GFF framework allows us to relate the double point dimension
to the dimension of the intersection of GFF flow lines with an angle gap of [MS12c]

θdouble = π

(
κ−2
2− κ

2

)
. (5.1.10)

We will explain this in more detail in Section 5.5. The set of points which a whole-plane or radial
SLEκ(ρ) process for κ ∈ (0,4) and ρ ∈ (−2, κ

2 −2) hits j times (in the interior of the domain) is
locally absolutely continuous with respect to the intersection of two flow lines with an angle gap of

θ j = 2π( j−1)
(

2+ρ

4−κ

)
for 2≤ j ≤ dJκ,ρe; (5.1.11)

see [MS13b, Proposition 3.32]. The angle gap which gives the dimension of the self-intersection
set contained in the interior of the domain for κ ′ > 4 and ρ ∈ (κ ′

2 −4, κ ′
2 −2) is given by

θ
′
j = π

(
2 j(2+ρ)−2ρ−κ ′

κ ′−4

)
for 2≤ j ≤ dJκ ′,ρe; (5.1.12)

see [MS13b, Proposition 4.10]. Thus Theorems 5.1.1–5.1.4 follow from (with the exception of
(5.1.5), (5.1.7), (5.1.8)):

Theorem 5.1.5. Suppose that h is a GFF on H with piecewise constant boundary data. Fix κ ∈
(0,4), angles

θ1 < θ2 < θ1 +

(
κπ

4−κ

)
,

and let
ρ =

1
π
(θ2−θ1)

(
2− κ

2

)
−2.

For i = 1,2, let ηθi be the flow line of h starting from 0. We have that

dimH (ηθ1 ∩ηθ2 ∩H) = 2− 1
2κ

(
ρ +

κ

2
+2
)(

ρ− κ

2
+6
)

almost surely on the event {ηθ1 ∩ηθ2 ∩H 6= /0}.
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Theorem 5.1.5 gives the dimension of the intersection of two flow lines in the bulk. The fol-
lowing result gives the dimension of the intersection of one path with the boundary.

Theorem 5.1.6. Fix κ > 0 and ρ ∈ ((−2)∨ (κ

2 −4), κ

2 −2). Let η be an SLEκ(ρ) process with a
single force point located at 0+. Almost surely,

dimH (η ∩R+) = 1− 1
κ
(ρ +2)

(
ρ +4− κ

2

)
. (5.1.13)

(Recall that κ

2 −4 is the threshold at which such processes become boundary filling and −2 is
the threshold for these processes to be defined.) In the case that ρ = θ

π
(2− κ

2 )− 2 for θ > 0 and
κ ∈ (0,4), we say that η intersects ∂H with an angle gap of θ . This comes from the interpreta-
tion of such an SLEκ(ρ) process as a GFF flow line explained in Section 5.2. See, in particular,
Figure 5.2.4. By [MS13b, Proposition 3.33], applying Theorem 5.1.6 with an angle gap of θ j+1
where θ j is as in (5.1.11) gives (5.1.5) of Theorem 5.1.3. Similarly, by [MS13b, Proposition 4.11],
applying Theorem 5.1.6 with an angle gap of

φ j,L = π

(
4−κ ′+2 j(2+ρ)

κ ′−4

)
(5.1.14)

gives (5.1.7) and with an angle gap of

φ j,R = π

(
4−κ ′−2ρ +2 j(2+ρ)

κ ′−4

)
(5.1.15)

gives (5.1.8). Theorem 5.1.6 is proved first by computing the boundary intersection dimension for
κ ∈ (0,4) and then using SLE duality to extend to the case that κ ′ > 4. In particular, we obtain
as a corollary (when ρ = 0) the following which was first proved in [AS08]. We remark that an
alternative proof to the lower bound of Theorem 5.1.6 for κ ∈ [8/3,4] is proved in [WW13a] using
the relationship between the SLEκ(ρ) processes for these κ values and the Brownian loop soups.

Corollary 5.1.7. Fix κ ′ ∈ (4,8) and let η be an SLEκ ′ process in H from 0 to ∞. Then, almost
surely

dimH (η ∩R) = 2− 8
κ ′
.

One of the main inputs in the proof of Theorem 5.1.5 and Theorem 5.1.6 is the following
theorem, which gives the exponent for the probability that an SLEκ(ρ) process gets very close to a
given boundary point.

Theorem 5.1.8. Fix κ > 0, ρ1,R > −2, ρ2,R ∈ R such that ρ1,R + ρ2,R > κ

2 − 4. Let η be an
SLEκ(ρ1,R,ρ2,R) process with force points (0+,1). Let

α =
1
κ
(ρ1,R +2)

(
ρ1,R +ρ2,R +4− κ

2

)
. (5.1.16)

For each ε > 0, we let τε = inf{t ≥ 0 : η(t) ∈ ∂B(1,ε)}. We have that

P[τε < ∞] = ε
α+o(1) as ε → 0. (5.1.17)

By taking ρ = ρ1,R ∈ ((−2)∨(κ

2 −4), κ

2 −2) and ρ2,R = 0, Theorem 5.1.8 gives the exponent for
the probability that an SLEκ(ρ) process gets close to a fixed point on the boundary. Theorem 5.1.8
is proved (in somewhat more generality) in Section 5.3.
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Outline

The remainder of this article is structured as follows. In Section 5.2, we will review the definition
and important properties of the SLEκ and SLEκ(ρ) processes. We will also describe the coupling
between SLE and the Gaussian free field. Next, in Section 5.3, we will compute the Hausdorff
dimension of SLEκ(ρ) intersected with the boundary. We will extend this to compute the dimension
of the intersection of two GFF flow lines in Section 5.4. Finally, in Section 5.5 we will complete
the proof of Theorem 5.1.1.

5.2 Preliminaries

We will give an overview of the SLEκ and SLEκ(ρ) processes in Section 5.2.1. Next, in Sec-
tion 5.2.2, we will give an overview of the SLE/GFF coupling and then use the coupling to es-
tablish several useful lemmas regarding the behavior of the SLEκ and SLEκ(ρ) processes. In
Section 5.2.3, we will compute the Radon-Nikodym derivative associated with a change of do-
mains and perturbation of force points for an SLEκ(ρ) process. Finally, in Section 5.2.4 we will
record some useful estimates for conformal maps. Throughout, we will make use of the following
notation. Suppose that f ,g are functions. We will write f � g if there exists a constant C ≥ 1 such
that C−1 f (x) ≤ g(x) ≤C f (x) for all x. We will write f . g if there exists a constant C > 0 such
that f (x)≤Cg(x) and f & g if g . f .

5.2.1 SLEκ and SLEκ(ρ) processes

We will now give a very brief introduction to SLE. More detailed introductions can be found in
many excellent surveys of the subject, e.g., [Wer04b, Law05]. Chordal SLEκ in H from 0 to ∞ is
defined by the random family of conformal maps (gt) obtained by solving the Loewner ODE

∂tgt(z) =
2

gt(z)−Wt
, g0(z) = z (5.2.1)

with W =
√

κB and B a standard Brownian motion. Write Kt := {z ∈ H : τ(z) ≤ t} where τ(z) is
the swallowing time of z defined by sup{t ≥ 0 : mins∈[0,t] |gs(z)−Ws| > 0}. Then gt is the unique
conformal map from Ht :=H\Kt to H satisfying lim|z|→∞ |gt(z)− z|= 0.

Rohde and Schramm showed that there almost surely exists a curve η (the so-called SLE trace)
such that for each t ≥ 0 the domain Ht of gt is the unbounded connected component of H\η([0, t]),
in which case the (necessarily simply connected and closed) set Kt is called the “filling” of η([0, t])
[RS05]. An SLEκ connecting boundary points x and y of an arbitrary simply connected Jordan do-
main can be constructed as the image of an SLEκ on H under a conformal transformation ϕ : H→D
sending 0 to x and ∞ to y. (The choice of ϕ does not affect the law of this image path, since the
law of SLEκ on H is scale invariant.) For κ ∈ [0,4], SLEκ is simple and, for κ > 4, SLEκ is
self-intersecting [RS05]. The dimension of the path is 1+ κ

8 for κ ∈ [0,8] and 2 for κ > 8 [Bef08].
An SLEκ(ρL

;ρ
R
) process is a generalization of SLEκ in which one keeps track of additional

marked points which are called force points. These processes were first introduced in [LSW03,
Section 8.3]. Fix xL = (x`,L < · · · < x1,L ≤ 0) and xR = (0 ≤ x1,R < · · · < xr,R). We associate with
each xi,q for q ∈ {L,R} a weight ρi,q ∈ R. An SLEκ(ρL

;ρ
R
) process with force points (xL;xR) is

the measure on continuously growing compact hulls Kt generated by the Loewner chain with Wt
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replaced by the solution to the system of SDEs:

dWt =
`

∑
i=1

ρi,L

Wt−V i,L
t

dt +
r

∑
i=1

ρi,R

Wt−V i,R
t

dt +
√

κdBt ,

dV i,q
t =

2

V i,q
t −Wt

dt, V i,q
0 = xi,q, i ∈ N, q ∈ {L,R}.

(5.2.2)

It is explained in [MS12a, Section 2] that for all κ > 0, there is a unique solution to (5.2.2) up until
the continuation threshold is hit — the first time t for which either

∑
i:V i,L

t =Wt

ρi,L ≤−2 or ∑
i:V i,R

t =Wt

ρi,R ≤−2.

The almost sure continuity of the SLEκ(ρ) processes is proved in [MS12a, Theorem 1.3]. Let

ρ j,q =
j

∑
i=0

ρi,q for q ∈ {L,R} and j ∈ N (5.2.3)

with the convention that ρ0,L = ρ0,R = 0, x0,L = 0−, x`+1,L = −∞, x0,R = 0+, and xr+1,R = +∞.
The value of ρk,R determines how the process interacts with the interval (xk,R,xk+1,R) (and likewise
when R is replaced with L). In particular:

Lemma 5.2.1. Suppose that η is an SLEκ(ρL
;ρ

R
) process in H from 0 to ∞ with force points

located at (xL;xR).

1. If ρk,R ≥ κ

2 −2, then η almost surely does not hit (xk,R,xk+1,R).

2. If κ ∈ (0,4) and ρk,R ∈ (κ

2 − 4,−2], then η can hit (xk,R,xk+1,R) but cannot be continued
afterwards.

3. If κ > 4 and ρk,R ∈ (−2, κ

2 − 4], then η can hit (xk,R,xk+1,R) and be continued afterwards.
Moreover, η ∩ (xk,R,xk+1,R) is almost surely an interval.

4. If ρk,R ∈ ((−2)∨ (κ

2 − 4), κ

2 − 2) then η can hit and bounce off of (xk,R,xk+1,R). Moreover,
η ∩ (xk,R,xk+1,R) has empty interior.

Proof. See [MS12a, Remark 5.3 and Theorem 1.3] as well as [Dub09a, Lemma 15].

In this article, it will also be important for us to consider radial SLEκ and SLEκ(ρ) processes.
These are typically defined using the radial Loewner equation. On the unit disk D, this is described
by the ODE

∂tgt(z) =−gt(z)
gt(z)+Wt

gt(z)−Wt
, g0(z) = z (5.2.4)

where Wt is a continuous function which takes values in ∂D. For w∈ ∂D, radial SLEκ starting from
w is the growth process associated with (5.2.4) where Wt = wei

√
κBt and B is a standard Brownian

motion. For w,v ∈ ∂D, radial SLEκ(ρ) with starting configuration (w,v) is the growth process
associated with the solution of (5.2.4) where the driving function solves the SDE

dWt =−
κ

2
Wt dt + i

√
κWt dBt−

ρ

2
Wt

Wt +Vt

Wt−Vt
dt, W0 = w (5.2.5)
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with Vt = gt(v), the force point. The continuity of the radial SLEκ(ρ) processes for ρ > −2 can
be extracted from the continuity of chordal SLEκ(ρ) processes given in [MS12a, Theorem 1.3];
this is explained in [MS13b, Section 2.1]. The value of ρ for a radial SLEκ(ρ) process has the
same interpretation as in the setting of chordal SLEκ(ρ) explained in Lemma 5.2.1. That is, the
processes are boundary filling for ρ ∈ (−2, κ

2 −4] (for κ > 4), boundary hitting but not filling for
ρ ∈ ((−2)∨ (κ

2 −4), κ

2 −2), and boundary avoiding for ρ ≥ κ

2 −2. In particular, by the conformal
Markov property for radial SLEκ(ρ), such processes are self-intersecting for ρ ∈ (−2, κ

2 −2) and
fill their own outer boundary for ρ ∈ (−2, κ

2 −4] (κ > 4). The latter means that, for any time t, the
outer boundary of the range of η up to time t is almost surely contained in η([t,∞)).

Martingales
From the form of (5.2.2) and the Girsanov theorem, it follows that the law of an SLEκ(ρ) process
can be constructed by reweighting the law of an ordinary SLEκ process by a certain local martin-
gale, at least until the first time τ that W hits one of the force points V i,q [Wer04a]. It is shown
in [SW05, Theorem 6 and Remark 7] that this local martingale can be expressed in the following
more convenient form. Suppose x1,L < 0 < x1,R and define

Mt = ∏
i,q

∣∣g′t(xi,q)
∣∣
(4−κ+ρi,q)ρi,q

4κ ×∏
i,q

∣∣∣Wt−V i,q
t

∣∣∣
ρi,q

κ

× ∏
(i,q)6=(i′,q′)

∣∣∣V i,q
t −V i′,q′

t

∣∣∣
ρi,qρi′,q′

2κ

.

(5.2.6)

Then Mt is a local martingale, and, the law of a standard SLEκ process weighted by M (up to time
τ , as above) is equal to that of an SLEκ(ρL

;ρ
R
) process with force points (xL;xR). We remark that

there is an analogous martingale in the setting of radial SLEκ(ρ) processes [SW05, Equation 9], a
special case of which we will describe and make use of in Section 5.4.

One application of this that will be important for us is as follows. Suppose that η is an
SLEκ(ρL;ρR) process with only two force points xL < 0 < xR. If we weight the law of η by
the local martingale

ML
t = |Wt−V L

t |
κ−4−2ρL

κ ×|V L
t −V R

t |
(κ−4−2ρL)ρR

2κ (5.2.7)

then the law of the resulting process is that of an SLEκ(ρ̂L;ρR) process where ρ̂L = κ−4−ρL. If
ρL <

κ

2 −2 so that ρ̂L >
κ

2 −2, Lemma 5.2.1 implies that the reweighted process almost surely does
not hit (−∞,xL).

5.2.2 SLE and the GFF

We are now going to give a brief overview of the coupling between SLE and the GFF. We refer the
reader to [MS12a, Sections 1 and 2] as well as [MS12b, Section 2] for a more detailed overview.
Throughout, we fix κ ∈ (0,4) and κ ′ = 16/κ > 4.

Suppose that D ⊆ C is a given domain. The Sobolev space H1
0 (D) is the Hilbert space closure

of C∞
0 (D) with respect to the Dirichlet inner product

( f ,g)∇ =
1

2π

∫
∇ f (x) ·∇g(x)dx. (5.2.8)
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The zero-boundary Gaussian free field (GFF) h on D is given by

h = ∑
n

αn fn (5.2.9)

where (αn) is a sequence of i.i.d. N(0,1) random variables and ( fn) is an orthonormal basis for
H1

0 (D). The sum (5.2.9) does not converge in H1
0 (D) (or any space of functions) but rather in an

appropriate space of distributions. The GFF h with boundary data f is given by taking the sum of
the zero-boundary GFF on D and the function F in D which is harmonic and is equal to f on ∂D.
See [She07] for a detailed introduction.

λ(1+ρ1,R)−λ(1+ρ1,L)

η

−λ λ

x1,L x1,R x2,R

λ(1+ρ1,R+ρ2,R)

x2,L

−λ(1+ρ1,L+ρ2,L)

−λ′
:::

λ′
:

Figure 5.2.1: Suppose that h is a GFF on H whose boundary data is as indicated above. Then the
flow line η of h starting from 0 is an SLEκ(ρ2,L,ρ1,L;ρ1,R,ρ2,R) process (κ ∈ (0,4)) from 0 to ∞

with force points located at x2,L < x1,L < 0 < x1,R < x2,R. The conditional law of h given η (or η up
to a stopping time) is that of a GFF off of η with the boundary data as illustrated on η ; the notation
:
x is shorthand for x + χ ·winding and is explained in detail in [MS12a, Figures 1.9 and 1.10].
The boundary data for the coupling of SLEκ(ρ) with many force points arises as the obvious
generalization of the above.

−λ′(1+ρ′1,R)λ′(1+ρ′1,L)

η′

λ′ −λ′
x1,L x1,R x2,R

−λ′(1+ρ′1,R+ρ′2,R)

x2,L

λ′(1+ρ′1,L+ρ′2,L)

::
λ′ −λ′

:::

:
λ

:::
−λ

Figure 5.2.2: Suppose that h is a GFF on H whose boundary data is as indicated above. Then the
counterflow line η ′ of h starting from 0 is an SLEκ ′(ρ

′
2,L,ρ

′
1,L;ρ ′1,R,ρ

′
2,R) process (κ ′ > 4) from 0 to

∞ with force points located at x2,L < x1,L < 0 < x1,R < x2,R. The conditional law of h given η ′ (or
η ′ up to a stopping time) is that of a GFF off of η ′ with the indicated boundary data; the notation
:
x is shorthand for x + χ ·winding and is explained in detail in [MS12a, Figures 1.9 and 1.10].
The boundary data for the coupling of SLEκ ′(ρ

′) with many force points arises as the obvious
generalization of the above.

Let

χ =
2√
κ
−
√

κ

2
, λ =

π√
κ
, and λ

′ =
π√
κ ′

=
π

4
√

κ = λ − π

2
χ. (5.2.10)
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x2

ηx2θ2 ηx1θ1

−λ′−θ2χ
:::::::::

λ′−θ2χ
:::::::

−λ′−θ1χ
:::::::::

λ′−θ1χ
:::::::

x1

· · ·· · · · · ·

(a) Monotonicity of flow lines.

x2

ηx2θ
ηx1θ

−λ′−θχ
::::::::

λ′−θχ
:::::: −λ′−θχ

::::::::
λ′−θχ
::::::

x1

· · ·· · · · · ·

(b) Flow lines merging.

Figure 5.2.3: Suppose that h is a GFF on H with piecewise constant boundary data and x1,x2 ∈ ∂H
with x2 ≤ x1. Fix angles θ1,θ2 and, for i = 1,2, let η

xi
θi

be the flow line of h with angle θi starting
from xi. If θ2 > θ1, then η

x2
θ2

almost surely stays to the left of (but may bounce off of) η
x1
θ1

. If
θ1 = θ2 = θ , then η

x1
θ

merges with η
x2
θ

upon intersecting after which the paths never separate.

x2

ηx2θ2

ηx1θ1
−λ′−θ2χ
:::::::::

λ′−θ2χ
:::::::

−λ′−θ1χ
:::::::::

λ′−θ1χ
:::::::

x1

· · ·· · · · · ·

ϕ

· · · · · ·−λ−θ2χ λ−θ2χ

ϕ(ηx1θ1 )

−λ′−θ1χ
:::::::::

λ′−θ1χ
:::::::

ϕ(x1)

ηx2θ2 (τ2)

ϕ(ηx2θ2 (τ2))

Figure 5.2.4: Assume that we have the same setup as in Figure 5.2.3 and that τ2 is a stopping time
for η

x2
θ2

. Then we can compute the conditional law of η
x1
θ1

given η
x2
θ2
|[0,τ2]. Let ϕ be a conformal map

which takes the unbounded connected component of H \η
x2
θ2
([0,τ2]) to H and let h2 = h ◦ϕ−1−

χ arg(ϕ−1)′. Then ϕ(ηx1
θ1
) is the flow line of h2 starting from ϕ(x1) with angle θ1 and we can read

off its conditional law from the boundary data of h2 as in Figure 5.2.1.

Suppose that η is an SLEκ(ρL
;ρ

R
) process in H from 0 to ∞ with force points (xL;xR), let (gt) be

the associated Loewner flow, W its driving function, and ft = gt −Wt . Let h be a GFF on H with
zero boundary values. It is shown in [She, Dub09b, MS10, SS12, HBB10, IK10, She11] that there
exists a coupling (η ,h) such that the following is true. Suppose τ is any stopping time for η . Let
φ 0

t be the function which is harmonic in H with boundary values (recall (5.2.3))

{ −λ (1+ρ j,L) if x ∈ [ ft(x j+1,L), ft(x j,L))

λ (1+ρ j,R) if x ∈ ( ft(x j,R), ft(x j+1,R)].

Let
φt(z) = φ

0
t ( ft(z))−χ arg f ′t (z).

Then the conditional law of (h + φ0)|H\Kτ
given Kτ is equal to the law of h ◦ fτ + φτ . In this

coupling, η is almost surely determined by h [SS12, Dub09b, MS12a]. For κ ∈ (0,4), η has the
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−i

i

η′

ηL

ηR

−λ+ 3
2
πχ−λ′ρ′L

:::::::::::::::
λ− 3

2
πχ+λ′ρ′R

::::::::::::::

−λ′(1+ρ′L)::::::::::
λ′(1+ρ′R):::::::::

−λ′− 1
2
πχ

:::::::::
λ′− 1

2
πχ

::::::::

−λ′+ 1
2
πχ

:::::::::
λ′+ 1

2
πχ

::::::::

−λ′
::: λ′:

λ:
−λ
:::

Figure 5.2.5: Let h be a GFF on [−1,1]2 with the illustrated boundary data. Then the counterflow
line η ′ of h from i to −i is an SLEκ ′(ρ

′
L;ρ ′R) process (κ ′ > 4) with force points located at (i)−,(i)+

(immediately to the left and right of i). The left (resp. right) boundary ηL (resp. ηR) of η ′ is given
by the flow line of h with angle π

2 (resp. −π

2 ) starting from −i and targeted at i; these paths can
be drawn if ρ ′L,ρ

′
R ≥ κ ′

2 −4. Explicitly, ηL (resp. ηR) is an SLEκ(κ−4+ κ

4 ρ ′L; κ

2 −2+ κ

4 ρ ′R) (resp.
SLEκ(

κ

2 − 2+ κ

4 ρ ′L;κ − 4+ κ

4 ρ ′R)) process in [−1,1]2 from −i to i with force points located at
(−i)−,(−i)+ (κ = 16/κ ′ ∈ (0,4)). The cut-set of η ′ is given by ηL ∩ηR and η ′ ∩ ∂ ([−1,1]2) =
(ηL ∪ ηR)∩ ∂ ([−1,1])2. The same holds if [−1,1]2 is replaced by a proper, simply-connected
domain and the boundary data of the GFF is transformed according to (5.2.11). Finally, if ρ ′L,ρ

′
R ≥

κ ′
2 −4, then conditional law of η ′ given ηL and ηR is independently that of an SLEκ ′(

κ ′
2 −4; κ ′

2 −4)
in each of the bubbles of [−1,1]2 \ (ηL∪ηR) which lie to the right of ηL and to the left of ηR.

interpretation as being the flow line of the (formal) vector field ei(h+φ0)/χ [She11] starting from
0; we will refer to η simply as a flow line of h+ φ0. See Figure 5.2.1 for an illustration of the
boundary data. The notation

:
x is used to indicate that the boundary data for the field is given by

x+ χ ·winding where “winding” refers to the winding of the path or domain boundary. For curves
or domain boundaries which are not smooth, it is not possible to make sense of the winding along
the curve or domain boundary. However, the harmonic extension of the winding does make sense.
This notation as well as this point are explained in detail in [MS12a, Figures 1.9 and 1.10]. When
κ = 4, η has the interpretation of being the level line of h+φ0 [SS12]. Finally, when κ ′ > 4, η ′

has the interpretation of being a “tree of flow lines” which travel in the opposite direction of η ′

[MS12a, MS13b]. For this reason, η ′ is referred to as a counterflow line of h+φ0 in this case.
If h were a smooth function, η a flow line of the vector field eih/χ , and ϕ a conformal map, then

ϕ(η) is a flow line of eih̃/χ where

h̃ = h◦ϕ
−1−χ arg(ϕ−1)′; (5.2.11)

see [MS12a, Figure 1.6]. The same is true when h is a GFF and this formula determines the
boundary data for coupling the GFF with an SLEκ(ρL

;ρ
R
) process on a domain other than H. See

also [MS12a, Figure 1.9]. SLEκ flow lines and SLEκ ′ , κ ′ = 16/κ ∈ (4,∞), counterflow lines can
be coupled with the same GFF. In order for both paths to transform in the correct way under the
application of a conformal map, one thinks of the flow lines as being coupled with h as described
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above and the counterflow lines as being coupled with −h. This is because χ(κ ′) = −χ(κ); see
the discussion after the statement of [MS12a, Theorem 1.1]. This is why the signs of the boundary
data in Figure 5.2.2 are reversed in comparison to that in Figure 5.2.1.

The theory of how the flow lines, level lines, and counterflow lines of the GFF interact with
each other and the domain boundary is developed in [MS12a, MS13b]. See, in particular, [MS12a,
Theorem 1.5]. The important facts for this article are as follows. Suppose that h is a GFF on H with
piecewise constant boundary data. For each θ ∈R and x ∈ ∂H, let ηx

θ
be the flow line of h starting

at x with angle θ (i.e., the flow line of h+θ χ starting at x). If θ1 < θ2 and x1 ≥ x2 then η
x1
θ1

almost
surely stays to the right of η

x2
θ2

. If θ1 = θ2, then η
x1
θ1

may intersect η
x2
θ2

and, upon intersecting, the
two flow lines merge and never separate thereafter. See Figure 5.2.3. Finally, if θ2 +π > θ1 > θ2,
then η

x1
θ1

may intersect η
x2
θ2

and, upon intersecting, crosses and possibly subsequently bounces off of
η

x2
θ2

but never crosses back. It is possible to compute the conditional law of one flow line given the
realization of several others; see Figure 5.2.4. For simplicity, we use ηθ to indicate ηx

θ
when x = 0.

If η ′ is a counterflow line coupled with the GFF, then its outer boundary is described in terms of
a pair of flow lines starting from the terminal point of η ′ [Dub09a, Dub09b, MS12a, MS13b]; see
Figure 5.2.5.

We are now going to use the SLE/GFF coupling to collect several useful lemmas regarding the
behavior of SLEκ(ρ) processes.

Lemma 5.2.2. Fix κ > 0. Suppose that (xn,L) (resp. (xn,R)) is a sequence of negative (resp. pos-
itive) real numbers converging to xL ≤ 0− (resp. xR ≥ 0+) as n→ ∞. For each n, suppose that
(W n,V n,L,V n,R) is the driving triple for an SLEκ(ρL;ρR) process in H with force points located at
(xn,L ≤ 0≤ xn,R). Then (W n,L,V n,L,V n,R) converges weakly in law with respect to the local uniform
topology to the driving triple (W,V L,V R) of an SLEκ(ρL;ρR) process with force points located
at (xL ≤ 0 ≤ xR) as n→ ∞. The same likewise holds in the setting of multi-force-point SLEκ(ρ)
processes.

Proof. See [MS12a, Section 2].

A(ε)

0

η
γ(T )

γ

Figure 5.2.6: Suppose that η is an SLEκ(ρL
;ρ

R
) process in H from 0 to ∞ with x1,L = 0− and

x1,R = 0+ with ρ1,L,ρ1,R > −2 and fix any deterministic curve γ : [0,T ]→ H. For each ε > 0, let
A(ε) be the ε neighborhood of γ . We show in Lemma 5.2.3 that with positive probability, η gets
within distance ε of γ(T ) before leaving A(ε).

Lemma 5.2.3. Fix κ > 0. Suppose that η is an SLEκ(ρL
;ρ

R
) process in H from 0 to ∞ with force

points located at (xL;xR) with x1,L = 0− and x1,R = 0+ (possibly by taking ρ1,q = 0 for q ∈ {L,R}).
Assume that ρ1,L,ρ1,R > −2. Suppose that γ : [0,T ]→ R is any deterministic simple curve in H
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starting from 0 and otherwise does not hit ∂H. Fix ε > 0, let A(ε) be the ε neighborhood of
γ([0,T ]), and define stopping times

σ1 = inf{t ≥ 0 : |η(t)− γ(T )| ≤ ε} and σ2 = inf{t ≥ 0 : η(t) /∈ A(ε)}.

Then P[σ1 < σ2]> 0.

Proof. See Figure 5.2.6 for an illustration. We will use the terminology “flow line,” but the proof
holds for κ > 0. By running η for a very small amount of time and using that P[Wt = V 1,L

t ] =

P[Wt =V 1,R
t ] = 0 for all t > 0 before the continuation threshold is reached [MS12a, Section 2] and

then conformally mapping back, we may assume without loss of generality that ρ1,L = ρ1,R = 0.
Let U be a Jordan domain which contains γ([0,T ]) and is contained in A(ε). Assume, moreover,
that ∂U ∩ [x2,L,x2,R] is an interval, say [yL,yR], which contains 0. Suppose κ ∈ (0,4) and let h be a
GFF on H whose boundary data has been chosen so that its flow line η from 0 is an SLEκ(ρL

;ρ
R
)

process as in the statement of the lemma. Pick a point x0 ∈ ∂U with |γ(T )− x0| ≤ ε . Let h̃
be a GFF on U whose boundary conditions are chosen so that its flow line η̃ starting from 0 is
an SLEκ process from 0 to x0. Let σ̃1 = inf{t ≥ 0 : |η̃(t)− γ(T )| ≤ ε}. Since η̃ |(0,σ̃1]

almost
surely does not hit ∂U , it follows that X̃ ≡ dist(η̃ |[0,σ̃1]

,∂U \ [yL,yR]) > 0 almost surely. For each
δ > 0, let Uδ = {x ∈U : dist(x,∂U \ [yL,yR]) > δ}. Then the laws of h|Uδ

and h̃|Uδ
are mutually

absolutely continuous [MS12a, Proposition 3.2]. Thus the result follows since we can pick δ > 0
sufficiently small so that P[X̃ > δ ] > 0. This proves the result for κ ∈ (0,4). For κ ′ > 4, one
chooses the boundary data for h̃ so that the counterflow line is an SLEκ ′(

κ ′
2 − 2; κ ′

2 − 2) process
(recall Lemma 5.2.1).

Lemma 5.2.4. Fix κ > 0. Suppose that η is an SLEκ(ρL;ρR) process in H from 0 to ∞ with force
points located at (xL≤ 0≤ xR) and with ρR >−2. Let γ : [0,1]→H be the unit segment connecting
0 to i. Fix ε > 0 and define stopping times σ1, σ2 as in Lemma 5.2.3. For each xL

0 < 0 there exists
p0 = p0(xL

0 ,ε)> 0 such that for every xL ∈ (−∞,xL
0 ] and xR ≥ 0, we have that

P[σ1 < σ2]≥ p0. (5.2.12)

If ρL >−2, then there exists p0 = p0(ε) such that (5.2.12) holds for xL
0 = 0−.

Proof. We know that this event has positive probability for each fixed choice of xL,xR as above
by Lemma 5.2.3. Therefore the result follows from Lemma 5.2.2 and the results of [Law05, Sec-
tion 4.7].

Lemma 5.2.5. Fix κ > 0. Suppose that η is an SLEκ(ρL
;ρ

R
) process in H from 0 to ∞ with force

points located at (xL;xR) with x1,L = 0− and x1,R = 0+ (possibly by taking ρ1,q = 0 for q ∈ {L,R}).
Assume that ρ1,L,ρ1,R >−2. Fix k ∈ N such that ρ = ∑

k
j=1 ρ j,R ∈ (κ

2 −4, κ

2 −2) and ε > 0. There
exists p1 > 0 depending only on κ,maxi,q |ρi,q|, ρ , and ε such that if |x2,q| ≥ ε for q ∈ {L,R},
xk+1,R− xk,R ≥ ε , and xk,R ≤ ε−1 then the following is true. Suppose that γ is a simple curve
starting from 0, terminating in [xk,R,xk+1,R], and otherwise does not hit ∂H. Let A(ε) be the ε

neighborhood of γ([0,T ]) and let

σ1 = inf{t ≥ 0 : η(t) ∈ (xk,R,xk+1,R)} and σ2 = inf{t ≥ 0 : η(t) /∈ A(ε)}.

Then P[σ1 < σ2]≥ p1.
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A(ε)

0 xk,R xk+1,R

η

γ

Figure 5.2.7: Suppose that η is an SLEκ(ρL
;ρ

R
) process in H from 0 to ∞ with x1,L = 0− and

x1,R = 0+ with ρ1,L,ρ1,R > −2 and fix any deterministic curve γ : [0,T ]→ H which connects 0 to
[xk,R,xk+1,R] where k is such that ∑

k
j=1 ρ j,R ∈ (κ

2 − 4, κ

2 − 2). For each ε > 0, let A(ε) be the ε

neighborhood of γ . We show in Lemma 5.2.5 that with positive probability, η hits [xk,R,xk+1,R]
before leaving A(ε).

Proof. See Figure 5.2.7 for an illustration. We will use the terminology “flow line,” but the proof
holds for κ > 0. Arguing as in the proof of Lemma 5.2.3, we may assume without loss of generality
that ρ1,L = ρ1,R = 0. Let U be a Jordan domain which contains γ and is contained in A(ε). Assume,
moreover, that ∂U ∩ [x2,L,x2,R] is an interval which contains 0 and ∂U ∩ [xk,R,xk+1,R] is also an
interval, say [yL,yR]. Suppose κ ∈ (0,4). Let h be a GFF on H whose boundary data has been
chosen so that its flow line η from 0 is an SLEκ(ρL

;ρ
R
) process as in the statement of the lemma.

Let h̃ be a GFF on U whose boundary conditions are chosen so that its flow line η̃ starting from
0 and targeted at yR is an SLEκ(ρ) process with a single force point located at yL with ρ as in the
statement of the lemma. Let σ̃1 be the first time that η̃ hits [yL,yR]. Since η̃ |(0,σ̃1]

almost surely
does not hit ∂U \ [yL,yR], it follows that

dist(η̃ |[0,τ̃],∂U \ ([x2,L,x2,R]∪ [yL,yR]))> 0

almost surely. Since η̃ almost surely hits [yL,yR], the assertion follows using the same absolute
continuity argument for GFFs as in the proof of Lemma 5.2.3. As in the proof of Lemma 5.2.3, one
proves the result for κ ′ > 4 by taking the boundary conditions for h̃ on U so that the counterflow
line starting from 0 is an SLEκ ′(

κ ′
2 −2; κ ′

2 −2,ρ− (κ ′
2 −2)) process.

Lemma 5.2.6. Fix κ > 0. Suppose that η is an SLEκ(ρL;ρR) process in H from 0 to ∞ with force
points located at (xL ≤ 0≤ xR) with ρL ∈ (κ

2 −4, κ

2 −2) and ρR >−2. For each xL
0 ∈ (−1,0) there

exists p2 = p2(xL
0) ∈ [0,1) such that the following is true. Fix xL ∈ [xL

0 ,0] and define stopping times

σ1 = inf{t ≥ 0 : |η(t)|= 1} and τ
L
0 = inf{t ≥ 0 : η(t) ∈ (−∞,xL]}.

Then we have that
P[σ1 ≤ τ

L
0 ]≤ p2.

Proof. See Figure 5.2.8. Lemma 5.2.5 implies that this event has probability strictly smaller than
1 for each fixed choice of xL,xR as above. Therefore the result follows from Lemma 5.2.2.
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−1 1xL0 xL xR

η

0

Figure 5.2.8: Suppose that η is an SLEκ(ρL;ρR) process in H starting from 0 to ∞ with force
points located at xL ≤ 0≤ xR with ρL ∈ (κ

2 −4, κ

2 −2) and ρR >−2. We show in Lemma 5.2.6 that
for each choice of xL

0 ∈ (−1,0) there exists p2 = p2(xL
0)∈ [0,1) such that the probability that η hits

∂B(0,1) before hitting (−∞,xL] is at most p2 uniformly in xL ∈ [xL
0 ,0].

5.2.3 Radon-Nikodym Derivative
Following [Dub09a, Lemma 13], we will now describe the Radon-Nikodym derivative between
SLEκ(ρ) processes arising from a change of domains and the locations of the force points. Let
c = (D,z0,xL,xR,z∞) be a configuration consisting of a Jordan domain D in C with `+ r + 2
marked points on ∂D. An SLEκ(ρL

;ρ
R
) process η with configuration c is given by the image of an

SLEκ(ρL
;ρ

R
) process η̃ in H under a conformal transformation ϕ taking H to D with ϕ(0) = z0,

ϕ(∞) = z∞, and which takes the force points of η̃ to those of η .
Suppose that c = (D,z0,xL,xR,z∞) and c̃ = (D̃,z0, x̃L, x̃R, z̃∞) are two configurations such that D̃

agrees with D in a neighborhood U of z0. Let µU
c denote the law of an SLEκ(ρL

;ρ
R
) process in c

stopped at the first time τ that it exits U and define µU
c̃ analogously. Let

ρ∞ = κ−6−∑
i,q

ρi,q

and

Z(c) = HD(z0,z∞)
− ρ∞

2κ ×∏
i,q

HD(z0,xi,q)
− ρi,q

2κ

× ∏
(i,q)6=(i′,q′)

HD(xi,q,xi′,q′)
−

ρi,qρi′,q′
8κ ×∏

i,q
HD(xi,q,z∞)

− ρi,qρ∞

4κ

(5.2.13)

where HD is the Poisson excursion kernel of the domain D. We also let

ξ =
(6−κ)(8−3κ)

2κ
,

cτ = (D\Kτ ,η(τ),xτ
L,x

τ
R,z∞),

m(D;K,K′) = µ
loop (` : `⊆ D, `∩K 6= /0, `∩K′ 6= /0

)
,

with Kτ the compact hull associated with η([0,τ]), xτ
i,q the evolution of xi,q at time τ (precisely, if at

time τ , xi,q is not swallowed, then xτ
i,q = xi,q; if not, xτ

i,L (resp. xτ
i,R)is the leftmost (resp. rightmost)

point of ∂Kτ ∩ ∂D in the clockwise (resp. counterclockwise) arc on ∂D from z0 to z∞), and µ loop

the Brownian loop measure on unrooted loops in C (see [LW04] for more on the Brownian loop
measure).
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The following result is proved in [Dub09a, Lemma 13] in the case that U is at a positive distance
from the marked points of c, c̃ other than z0. We are now going to use the SLE/GFF coupling
described in the previous section to extend the result to the case that U is at a positive distance from
the marked points of c, c̃ which are different.

Lemma 5.2.7. Assume that we have the setup described just above. Suppose that U is at a positive
distance from those marked points of c, c̃ which differ. The probability measures µU

c̃ and µU
c are

mutually absolutely continuous and

dµU
c̃

dµU
c
(η)

=

(
Z(c̃τ)/Z(c̃)
Z(cτ)/Z(c)

)
exp
(
−ξ m(D;Kτ ,D\ D̃)+ξ m(D̃;Kτ , D̃\D)

) (5.2.14)

Proof. We are first going to prove the result in the case that x1,L 6= z0 6= x1,R. We know that we can
couple η ∼ µU

c (resp. η̃ ∼ µU
c̃ ) with a GFF h (resp. h̃) on D (resp. D̃) so that η (resp. η̃) is the flow

line of h (resp. h̃) starting from z0. By our hypotheses, the boundary data of h and h̃ agree with each
other in the boundary segments which are contained in ∂U . Consequently, the laws of h|U and h̃|U
are mutually absolutely continuous [MS12a, Proposition 3.2]. Since η (resp. η̃) is almost surely
determined by h (resp. h̃) [MS12a, Theorem 1.2], it follows that µU

c and µU
c̃ are mutually absolutely

continuous. Thus, to complete the proof, we just need to identify f (η) := (dµU
c̃ /dµU

c )(η). By
[Dub09a, Lemma 13], we know that f (η) is equal to the right side of (5.2.14) for paths η which
intersect the boundary only in the counterclockwise segment of ∂D from x1,L to x1,R. Therefore,
to complete the proof, we need to show that the same equality holds for paths η which intersect
the other parts of the domain boundary. Note that the right hand side of (5.2.14) is a continuous
function of η with respect to the uniform topology on paths. Therefore, to complete the proof, it
suffices to show that the Radon-Nikodym derivative f (η) is also continuous with respect to the
same topology. Indeed, then the result follows since both functions are continuous and agree with
each other on a dense set of paths. We are going to prove that this is the case using that η , η̃ are
coupled with h, h̃, respectively.

Let νU
c (resp. νU

c̃ ) denote the joint law of (η ,h|U) (resp. (η̃ , h̃|U)). As explained above, νU
c

and νU
c̃ are mutually absolutely continuous. Moreover, the Radon-Nikodym derivative dνU

c̃ /dνU
c

is a function of h alone since h, h̃ almost surely determine η , η̃ , respectively. Let νU
c (· | ·) (resp.

νU
c̃ (· | ·)) denote the conditional law of h|U given η (resp. h̃|U given η̃). Note that

η 7→ dνU
c̃ (· |η)

dνU
c (· |η)

is continuous in η with respect to the uniform topology on continuous paths. Let νU
c,h(·) (resp.

νU
c̃,h(·)) denote the law of h|U (resp. h̃|U ). Then we have that

f (η) =
dνU

c̃,h(·)
dνU

c,h(·)
· dνU

c (· |η)

dνU
c̃ (· |η)

(the right side does not depend on the choice of ·). This implies the desired result in the case that
x1,L 6= z0 6= x1,R since the latter factor on the right side is continuous in η , as we remarked above.
The result follows in the case that one or both of x1,L,x1,R agrees with z0 since the laws converge
as one or both of x1,L,x1,R converge to z0 (Lemma 5.2.2).
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Lemma 5.2.8. Assume that we have the same setup as in Lemma 5.2.7 with D =H, D̃⊆H, U ⊆H
bounded, and z0 = 0. Fix ζ > 0 and suppose that the distance between U and H\ D̃ is at least ζ ,
the force points of c, c̃ in U are identical, the corresponding weights are also equal, and the force
points which are outside of U are at distance at least ζ from U. There exists a constant C ≥ 1
depending on U, ζ , κ , and the weights of the force points such that

1
C
≤ dµU

c̃
dµU

c
≤C.

Proof. Note that 0 ≤ m(H;Kτ ,H \ D̃) ≤ m(H;U,H \Uζ ) where Uζ is the ζ -neighborhood of U .
Moreover, we have that m(H;U,H\Uζ ) is bounded from above by a finite constant depending on
U and ζ since, the mass according to µ loop of the loops which are contained in H, intersect U , and
have diameter at least ζ is finite [Law, Corollary 4.6]. Consequently, by Lemma 5.2.7, we only
need to bound the quantity Z(c̃τ )/Z(c̃)

Z(cτ )/Z(c) .

Recall from (5.2.13) that the terms in Z(c̃τ )/Z(c̃)
Z(cτ )/Z(c) are ratios of terms of the form HX(u,v) where

X is one of H, Hτ , D̃, D̃τ and u,v are two marked points on the boundary of X . We will complete
the proof by considering several cases depending on the location of the marked points.
Case 1. At least one marked point is outside of Uζ . This is the case handled in the proof of
[Dub09a, Lemma 14].
Case 2. Both marked points u,v are contained in U and u 6= v. It is enough to bound from above
and below the ratios:

A =
HD̃(x,y)
HH(x,y)

and B =
HD̃τ

(xτ ,yτ)

HHτ
(xτ ,yτ)

where x,y ∈ ∂U ∩R are distinct and xτ ,yτ ∈ ∂Hτ ∩U are distinct.
We can bound A as follows. Let ϕ : D̃ → H be the unique conformal transformation with

ϕ(x) = x, ϕ(y) = y, and ϕ ′(x) = 1. Then A = |ϕ ′(y)| which, by [LSW03, Proposition 4.1], is equal
to the mass of those Brownian excursions in H connecting x and y which avoid H\D̃. We will write
q(H,x,y,H\ D̃) for this quantity. Since this is given by a probability, we have that |ϕ ′(y)| ≤ 1 and
it follows that |ϕ ′(y)| is bounded from below by q(H,x,y,Uζ )> 0. This lower bound is a positive
continuous function in x,y ∈ ∂U ∩ ∂H hence yields a uniform lower bound. Consequently, A is
bounded from both above and below.

Similarly, B is equal to the mass q(H\Kτ ,xτ ,yτ ,H\ D̃) of those Brownian excursions in H\Kτ

which connect xτ and yτ and avoid H\ D̃. As before, this quantity is bounded from above by 1. We
will now establish the lower bound. Let g be the conformal map from H\Kτ onto H which sends
the triple (xτ ,yτ ,∞) to (0,1,∞). Note that g can be extended to C\ (K ∪ K̄) by Schwarz reflection
where K̄ = {z ∈ C : z̄ ∈ K}. We will view g as such an extension. Then it is clear that

q(H\Kτ ,xτ ,yτ ,H\ D̃)≥ q(H\Kτ ,xτ ,yτ ,H\Uζ )

= q(H,0,1,H\g(Uζ )).

Note that q(H,0,1,H \ g(Uζ )) is a continuous functional on compact hulls K inside U equipped
with the Hausdorff metric. Indeed, suppose that (Kn) is a sequence of compact hulls inside U
converging towards K in Hausdorff metric and, for each n, let gn be the corresponding confor-
mal map. Then gn converges to g uniformly away from K ∪ K̄. In particular, gn(Uζ ) converges
to g(Uζ ) in Hausdorff metric. Let φn (resp. φ ) be the conformal map from H \ gn(Uζ ) (resp.
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H \ g(Uζ )) onto H which fixes 0, 1 and has derivative 1 at 1. Then φ ′n(0) converges to φ ′(0).
Thus q(H,0,1,H\gn(Uζ )) = φ ′n(0) converges to q(H,0,1,H\g(Uζ )) = φ ′(0) which explains the
continuity of q(H,0,1,H \ g(Uζ )) in K. Since the set of compact hulls inside U endowed with
Hausdorff metric is compact. There exists q0 > 0 depending on U and ζ such that

q(H\Kτ ,xτ ,yτ ,H\ D̃)≥ q(H,0,1,H\g(Uζ ))≥ q0

for any compact hull.
Case 3. A single marked point u contained in U . The ratios which involve terms of the form
HX(u,u) are interpreted using limits hence are uniformly bounded by Case 2.

5.2.4 Estimates for conformal maps
For a proper simply connected domain D and w ∈ D, let CR(w;D) denote the conformal radius of
D with respect to w, i.e., CR(w;D)≡ f ′(0) for f the unique conformal map D→ D with f (0) = w
and f ′(0) > 0. Let rad(w;D) ≡ inf{r : Br(w) ⊇ D} denote the out-radius of D with respect to w.
By the Schwarz lemma and the Koebe one-quarter theorem,

dist(w,∂D)≤ CR(w;D)≤ [4dist(w,∂D)]∧ rad(w;D). (5.2.15)

Further (see e.g. [Pom92, Theorem 1.3])

|ζ |
(1+ |ζ |)2 ≤

| f (ζ )−w|
CR(w;D)

≤ |ζ |
(1−|ζ |)2 (5.2.16)

As a consequence,
|ζ |
4
≤ | f (ζ )−w|

CR(w;D)
≤ 4|ζ | (5.2.17)

where the right-hand inequality above holds for |ζ | ≤ 1/2.
Finally, we state the Beurling estimate [Law05, Theorem 3.76] which we will frequently use in

conjunction with the conformal invariance of Brownian motion.

Theorem 5.2.9 (Beurling Estimate). Suppose that B is a Brownian motion in C and τD = inf{t ≥
0 : B(t) /∈ D}. There exists a constant c < ∞ such that if γ : [0,1]→ C is a curve with γ(0) = 0 and
|γ(1)|= 1, z ∈ D, and Pz is the law of B when started at z, then

Pz[B([0,τD])∩ γ([0,1]) = /0]≤ c|z|1/2.

5.3 The intersection of SLEκ(ρ) with the boundary

5.3.1 The upper bound
The main result of this section is the following theorem, which in turn implies Theorem 5.1.8.

Theorem 5.3.1. Fix κ > 0, ρ1,R >−2, and ρ2,R ∈R such that ρ1,R+ρ2,R > κ

2 −4. Fix xR ∈ [0+,1)
and let η be an SLEκ(ρ1,R,ρ2,R) process with force points (xR,1). Let

α =
1
κ
(ρ1,R +2)

(
ρ1,R +ρ2,R +4− κ

2

)
. (5.3.1)
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For each ε > 0, let τε = inf{t ≥ 0 : η(t) ∈ ∂B(1,ε)} and, for each r > 0, let σr = inf{t ≥ 0 : η(t) ∈
∂ (rD)}. For each δ ∈ [0,1) and r ≥ 2 fixed, let

Eδ ,r
ε = {τε < σr, Im(η(τε))≥ δε}. (5.3.2)

We have that
P[Eδ ,r

ε ] = ε
α+o(1) as ε → 0. (5.3.3)

The o(1) in the exponent of (5.3.3) tends to 0 as ε → 0 and depends only on κ , δ , xR, and
the weights ρ1,R, ρ2,R. The o(1), however, is uniform in r ≥ 2. Taking ρ1,R > (−2)∨ (κ

2 −4) and
ρ2,R = 0, we have that

α =
1
κ
(ρ +2)

(
ρ +4− κ

2

)
. (5.3.4)

Thus Theorem 5.3.1 leads to the upper bound of Theorem 5.1.6. We begin with the following
lemma which contains the same statement as Theorem 5.3.1 except is restricted to the case that
δ ∈ (0,1) and, in particular, is not applicable for δ = 0.

Lemma 5.3.2. Assume that we have the same setup and notation as in Theorem 5.3.1. Then for
each δ ∈ (0,1) and r ≥ 2 fixed, we have that

P[Eδ ,r
ε ]� ε

α

where the constants in � depend only on κ , δ , xR, and the weights ρ1,R, ρ2,R.

Proof. For η , the SLEκ(ρ1,R,ρ2,R) process with force points (xR,1), let (gt) be the associated
Loewner evolution and let V R

t denote the evolution of xR. From (5.2.6) we know that

Mt =

(
gt(1)−V R

t
g′t(1)

)−α( gt(1)−Wt

gt(1)−V R
t

)− 2
κ
(ρ1,R+ρ2,R+4−κ/2)

is a local martingale and the law of η reweighted by M is that of an SLEκ(ρ1,R, ρ̃2,R) process where
ρ̃2,R =−2ρ1,R−ρ2,R−8+κ . We write K = Kτε

and K = {z : z ∈ K}. Let G be the extension of gτε

to C\ (K∪K) which is obtained by Schwarz reflection. By (5.2.15), we have

G′(x)dist(x,K)� dist(G(x),G(K∪K)). (5.3.5)

Observe that G(K ∪K) = [OL
τε
,OR

τε
] where OL

t (resp. OR
t ) is the image of the leftmost (resp. right-

most) point of Kt ∩R under gt . Note that (5.3.5) implies

εg′τε
(1)� gτε

(1)−OR
τε
.

It is clear that gt(1)−Wt ≥ gt(1)−OR
t ≥ gt(1)−V R

t . On the event Eδ ,r
ε , we run a Brownian

motion started from the midpoint of the line segment [1,η(τε)]. Then this Brownian motion has
uniformly positive (though δ -dependent) probability to exit H \K through each of the left side of
K, the right side of K, the interval [xR,1], and the interval (1,∞). Consequently, by the conformal
invariance of Brownian motion,

gτε
(1)−Wτε

� gτε
(1)−OR

τε
� gτε

(1)−V R
τε

on Eδ ,r
ε .
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0 1xR

η

B(1, ε)

B(0, r)

ϕ

−ε=ϕ(∞) ϕ(xR)

ϕ(η)

B(−ε, 1)=ϕ(B(1, ε))

0

Figure 5.3.1: The image of an SLEκ(ρ1,R,ρ2,R) process in H from 0 to ∞ with force points (xR,1)
under ϕ(z) = εz/(1− z) has the same law as an SLEκ(ρL;ρR) process in H from 0 to ∞ with force
points (−ε;εxR/(1− xR)) where ρR = ρ1,R and ρL = κ−6− (ρ1,R +ρ2,R).

These facts imply that Mτε
� ε−α on Eδ ,r

ε where the constants in � depend only on κ , δ , xR,
and the weights ρ1,R, ρ2,R. Thus

P[Eδ ,r
ε ]� ε

αE[Mτε
1

Eδ ,r
ε

] = ε
αP?[Eδ ,r

ε ]

where P? is the law of η weighted by the martingale M. As we remarked earlier, P? is the law of
an SLEκ(ρ1,R, ρ̃2,R) with force points (xR,1).

We now perform a coordinate change using the Möbius transformation ϕ(z) = εz/(1− z).
Then the law of the image of a path distributed according to P? under ϕ is equal to that of an
SLEκ(2+ ρ1,R + ρ2,R;ρ1,R) process in H from 0 to ∞ with force points (−ε;εxR/(1− xR)) (see
Figure 5.3.1). Note that 2+ ρ1,R + ρ2,R ≥ κ

2 − 2 by the hypotheses of the lemma. Let η? be an
SLEκ(2+ ρ1,R + ρ2,R;ρ1,R) process in H from 0 to ∞ with force points (−ε;εxR/(1− xR)). In
particular, by Lemma 5.2.1, η? almost surely does not hit (−∞,−ε). Under the coordinate change,
the event Eδ ,r

ε becomes {σ?
1,ε < ξ ?

ε,r, Im(η?(σ?
1,ε)) ≥ δ} where σ?

1,ε is the first time that η? hits
∂B(−ε,1), ξ ?

ε,r is the first time that η? hits ∂B(−εr2/(r2− 1),εr/(r2− 1)). By Lemma 5.2.4,
the probability of the event {σ?

1,ε < ξ ?
ε,r, Im(η?(σ?

1,ε)) ≥ δ} is bounded from below by a positive

constant depending only on κ , δ , ρ1,R, and ρ2,R. Thus P?[Eδ ,r
ε ] � 1 which implies P[Eδ ,r

ε ] � εα

and the constants in � depend only on κ , δ , xR, and the weights ρ1,R, ρ2,R.

Corollary 5.3.3. Fix κ > 0, ρL > −2,ρ1,R > −2 and ρ2,R ∈ R such that ρ1,R +ρ2,R > κ

2 − 4. Fix
xL ≤ 0,xR ∈ [0+,1) and let η be an SLEκ(ρL;ρ1,R,ρ2,R) process with force points (xL;xR,1). Let
Eδ ,r

ε be the event as in Theorem 5.3.1, then for each δ ∈ (0,1) and r ≥ 2 fixed, we have that

P[Eδ ,r
ε ]� ε

α

where the constants in � depend only on κ , δ , r, xL, xR, and the weights ρL,ρ1,R, ρ2,R.

Proof. Let (gt) be the Loewner evolution associated with η and let V L
t ,V

R
t denote the evolution of

xL,xR, respectively, under gt . From (5.2.6) we know that

Mt =

(
gt(1)−V R

t
g′t(1)

)−α

×
(

gt(1)−Wt

gt(1)−V R
t

)− 2
κ
(ρ1,R+ρ2,R+4−κ/2)

× (gt(1)−V L
t )
− ρL

κ
(ρ1,R+ρ2,R+4−κ/2)
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is a local martingale which yields that the law of η reweighted by M is that of an SLEκ(ρL;ρ1,R, ρ̃2,R)
process where ρ̃2,R = −2ρ1,R−ρ2,R− 8+κ . Note that, by similar analysis in Lemma 5.3.4, the
term gτε

(1)−V L
τε

is bounded both from below and above by positive finite constants depending
only on r on the event Eδ ,r

ε . The rest of the analysis in the proof of Lemma 5.3.2 applies similarly
in this setting.

Throughout the rest of this subsubsection, we let:

T= R× (0,1). (5.3.6)

Lemma 5.3.4. Let η be a continuous curve in H starting from 0 with continuous Loewner driving
function W and let (gt) be the corresponding family of conformal maps. For each t ≥ 0, let OL

t
(resp. OR

t ) be the leftmost (resp. rightmost) point of gt(η([0, t])) in R. There exists a universal
constant C≥ 1 such that the following is true. Fix ϑ > 0 and let σ be the first time that η exits ϑT.
Then

|Wσ −Oq
σ | ≥

ϑ

C
for q ∈ {L,R}. (5.3.7)

Let ζ be the first time that η exits D∩ϑT. Then

|Wt−Oq
t | ≤Cϑ for q ∈ {L,R} and all t ∈ [0,ζ ]. (5.3.8)

Finally, if η exits D∩ϑT through the right side of ∂D∩ϑT, then

|Wζ −OL
ζ
| ≥ 1

C
. (5.3.9)

Proof. For z ∈ C, we let Pz denote the law of a Brownian motion B in C started at z. By [Law05,
Remark 3.50] we have that

|Wσ −OL
σ |= lim

y→∞
yPyi [B exits H\η [0,σ ] on the left side of η([0,σ ])] .

Let τ be the exit time of B from H\ϑT and let I = [η(σ)−ϑ ,η(σ)]. Then

|Wσ −OL
σ | ≥ lim

y→∞
yPyi [Bτ ∈ I]

×Pyi [B exits H\η([0,σ ]) on the left side of η([0,σ ]) |Bτ ∈ I] . (5.3.10)

We have,

lim
y→∞

yPyi [Bτ ∈ I] = lim
y→∞

∫

I−ϑ i

1
π

y(y−ϑ)

w2 +(y−ϑ)2 dw

=
∫

I−ϑ i

1
π

dw =
ϑ

π
(5.3.11)

(recall the form of the Poisson kernel on H, see e.g. [Law05, Exercise 2.23]). It is easy to see that
there exists a universal constant p0 > 0 such that for any z ∈ I,

Pz [B exits H\η [0,σ ] on the left side of η([0,σ ])]≥ p0. (5.3.12)

Combining (5.3.10) with (5.3.11) and (5.3.12) gives (5.3.7). The bounds (5.3.8) and (5.3.9) are
proved similarly.
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Lemma 5.3.5. Fix κ > 0, ρL ∈ (κ

2 − 4, κ

2 − 2), and ρR > −2. Let η be an SLEκ(ρL;ρR) process
with force points (−ε;xR) for xR ≥ 0+ and ε > 0. Let σ1 = inf{t ≥ 0 : η(t) ∈ ∂D}. Define, for
u ≥ 0, T L

u = inf{t ≥ 0 : Wt −V L
t = u}, where V L

t denotes the evolution of xL. Let p2 = p2(
1
2) be

the constant from Lemma 5.2.6. There exists constants ε0 > 0, ϑ0 > 0, and C > 0 such that for all
ε ∈ (0,ε0) and ϑ ∈ (0,ϑ0) we have

P[σ1 < T L
0 ∧T L

ϑ ]≤ p1/(Cϑ)
2 .

Proof. Let Eϑ = {σ1 < T L
0 ∧T L

ϑ
}. By definition, we have that

|Wt−V L
t |< ϑ for all t ∈ [0,σ1] on Eϑ . (5.3.13)

By (5.3.7) of Lemma 5.3.4 there exists a constant C1 > 0 such that η([0,σ1])⊆C1ϑT. Moreover, η

exits D∩
(
C1ϑT

)
on its left side for all ϑ > 0 small enough because a Brownian motion argument

(analogous to (5.3.9)) implies there exists a constant C2 > 0 such that |Wσ1−V L
σ1
| ≥C2 on the event

that η exits through the right side, contradicting (5.3.13).
Suppose C > 0; we will set its value later in the proof. For each 1≤ k ≤ 1

Cϑ
, we let

Lk = {z ∈H : Re(z) =−kCϑ} and ζk = inf{t ≥ 0 : η(t) ∈ Lk}.

On Eϑ , we have that ζ1 < ζ2 < · · · < σ1 < T L
0 . For each k, let Fk = {ζk < T L

ϑ
} and let Fk be the

σ -algebra generated by η |[0,ζk]. To complete the proof, we will show that

P[ζk+1 < T L
0 |Fk]1Fk ≤ p21Fk for each 1≤ k ≤ 1

Cϑ

where p2 = p2(
1
2) is the constant from Lemma 5.2.6. To see this, we just need to show that

gζk
(η |[ζk,ζk+1]) satisfies the hypotheses of Lemma 5.2.6 and that with

L̃k+1 =
gζk

(Lk+1)−Wζk

Wζk
−V L

ζk

we have that L̃k+1∩2D= /0 on Fk. Therefore it suffices to prove

dist(Wζk
,gζk

(Lk+1))

Wζk
−V L

ζk

→ ∞ on Fk as C→ ∞. (5.3.14)

Let B be a Brownian motion starting from zϑ
k = η(ζk)− ϑ and let Hk+1 = {z ∈ H : Re(z) ≥

−(k + 1)Cϑ} be the subset of H which is to the right of Lk+1 (see Figure 5.3.2). The prob-
ability that B exits Hk+1 \ η([0,ζk]) through the right side of η([0,ζk]) (blue) is & 1, through
(−(k+1)Cϑ ,−kCϑ) (green) is & 1, and through Lk+1 (orange) is . 1/C (since this probability is
less than the probability that the Brownian motion exits {z ∈ C : −(k+ 1)Cϑ < Re(z) < −kCϑ}
through Lk+1 which is less than 1/C). Let

z̃ϑ
k ≡ x̃ϑ

k + ỹϑ
k i≡

gζk
(zϑ

k )−Wζk

Wζk
−V L

ζk

.

By the conformal invariance of Brownian motion, we have that

dist(z̃ϑ
k , L̃k+1)

ỹϑ
k

&C. (5.3.15)
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gζk (·)−Wζk

Wζk
−V L

ζk

−kCϑ−(k+1)Cϑ

η
zϑk =η(ζk)−ϑ

LkLk+1

z̃ϑk

ϑ

0−1

L̃k+1

Figure 5.3.2: Illustration of the justification of (5.3.14) in the proof of Lemma 5.3.5.

Indeed, the probability of a Brownian motion started from z̃ϑ
k to exit H̃k+1 :=(gζk

(Hk+1)−Wζk
)/(Wζk

−
V L

ζk
) through L̃k+1 is bounded from below by a positive universal constant times the probability that

a Brownian motion starting from z̃ϑ
k exits B(z̃ϑ

k , d̃)∩H, d̃ = dist(z̃ϑ
k , L̃k+1), through ∂B(z̃ϑ

k , d̃)∩H.
This latter probability is bounded from below by a positive universal constant times ỹϑ

k /d̃. Thus
1/C & ỹϑ

k /d̃, as desired.
The conformal invariance of Brownian motion and the estimates above also imply that sin(arg(z̃ϑ

k ))�
1, hence |z̃ϑ

k | � |ỹϑ
k |. Combining this with (5.3.15) implies that

dist(z̃ϑ
k , L̃k+1)

|z̃ϑ
k |

&C.

Thus, by the triangle inequality,
dist(L̃k+1,0)&C|z̃ϑ

k |
(provided C is large enough). Since |z̃ϑ

k | � 1, this proves (5.3.14), hence the lemma.

Proof of Theorem 5.3.1. Lemma 5.3.2 implies the lower bound in (5.3.3) because we can take, e.g.,
δ = 1

2 . In order to prove the upper bound, it is sufficient to show

P[τε < ∞]≤ ε
α+o(1) as ε → 0.

We are first going to perform a change of coordinates. Let ϕ : H→H be the Möbius transfor-
mation z 7→ ϕ(z) := εz/(1−z). Fix x̃R ∈ [0+,1) and let η̃ be an SLEκ(ρ1,R,ρ2,R) process with force
points located at (x̃R,1) as in Theorem 5.3.1. Then the law of η = ϕ(η̃) is that of an SLEκ(ρL;ρR)
process with force points (−ε;xR) where xR = ε x̃R/(1− x̃R) and

ρL = κ−6−
(
ρ1,R +ρ2,R

)
and ρR = ρ1,R. (5.3.16)

Let σ1 be the first time that η hits ∂D and let V L
t ,V

R
t denote the evolution of xL,xR under gt ,

respectively. For u≥ 0, define T L
u = inf{t ≥ 0 : Wt−V L

t = u} (as in the statement of Lemma 5.3.5).
Then it is sufficient to prove P[σ1 < T L

0 ]≤ εα+o(1). Note that the exponent α comes from the sum
of the exponent of |V L

t −V R
t | and the exponent of |Wt −V L

t | in the left martingale ML from (5.2.7)
with these weights. For u≥ 0, define τL

u = inf{t ≥ 0 : ML
t = u}. Note that τL

0 = T L
0 . Fix β ∈ (0,1)

and set ϑ = εβ . For u > 0, we have the bound

P[σ1 < τ
L
0 ]≤ P[τL

u < τ
L
0 ]+P[σ1 < τ

L
0 < τ

L
u ]. (5.3.17)
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We claim that exists constants C1 > 0 and γ > 0 depending only on ρL, ρR, and κ such that

|Wt−V L
t |γ ≤C1ML

t for all t ∈ [0,σ1]. (5.3.18)

Since ρ1,R+ρ2,R > κ

2 −4 it follows that ρL <
κ

2 −2. Therefore the sign of the exponent of |V L
t −V R

t |
in the definition of ML

t is the same as the sign of ρR. If ρR ≥ 0, then the exponent has a positive
sign. In this case, ML

t ≥ |Wt−V L
t |α so that we can take γ = α . Now suppose that ρR < 0. By (5.3.8)

of Lemma 5.3.4 we know that there exists a constant C2 > 0 such that

|V L
t −V R

t | ≤C2 for all t ∈ [0,σ1]. (5.3.19)

Thus, in this case, there exists a constant C3 > 0 such that ML
t ≥C3|Wt−V L

t |(κ−4−2ρL)/κ . Therefore
we can take γ = (κ−4−2ρL)/κ . This proves the claimed bound in (5.3.18).

Set u = ϑ γ/C1. To bound the second term on the right side of (5.3.17), we first note by (5.3.18)
that

P[σ1 < τ
L
0 < τ

L
u ]≤ P[σ1 < T L

0 ∧T L
ϑ ]. (5.3.20)

By Lemma 5.3.5, we know that

P[σ1 < T L
0 ∧T L

ϑ ]≤ p1/(Cϑ)
2 . (5.3.21)

We will now bound the first term on the right side of (5.3.17). Since τL
0 ,τ

L
u are stopping times

for the martingale ML and Mτ0∧τu = uP[τL
u < τL

0 ], we have that

P[τL
u < τ

L
0 ] =

1
u
E[ML

τ0∧τu
] =

ML
0

u
=

εα

u(1− x̃R)(κ−4−2ρL)ρR/(2κ)
. (5.3.22)

Combining (5.3.17) with (5.3.21) and (5.3.22) we get that P[σ1 < T L
0 ]≤ εα+o(1), as desired.

Recall that (see for example [MP10, Section 4]) the β -Hausdorff measure of a set A ⊆ R is
defined as

H β (A) = lim
ε→0+

H β

ε (A)

where

H β

ε (A) := inf

{
∑

j
|I j|β : A⊆ ∪ jI j and |I j| ≤ ε for all j

}
.

Proof of Theorem 5.1.6 for κ ∈ (0,4), upper bound. Fix κ ∈ (0,4),ρ ∈ (−2, κ

2 − 2). Let η be an
SLEκ(ρ) process with a single force point located at 0+. Let α ∈ (0,1) be as in (5.3.4). Fix
0 < x < y. We are going to prove the result by showing that

dimH (η ∩ [x,y])≤ 1−α almost surely. (5.3.23)

For each k ∈ Z and n ∈ N we let Ik,n = [k2−n,(k + 1)2−n] and let zk,n be the center of Ik,n. Let
In be the set of k such that Ik,n ⊆ [x/2,2y] and let Ek,n be the event that η gets within distance
21−n of zk,n. Therefore there exists n0 = n0(x,y) such that for every n≥ n0 we have that {Ik,n : k ∈
In, Ek,n occurs} is a cover of η ∩ [x,y].

Fix ζ > 0. Theorem 5.3.1 implies that there exists a constant C1 > 0 (independent of n) and
n1 = n1(ζ ) such that

P[Ek,n]≤C12−(α−ζ )n for each n≥ n1 and k ∈In.
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Consequently, there exists a constant C2 > 0 such that

E
[
H β

2−n(η ∩ [x,y])
]
≤ E

[
∑

k∈In

2−βn1Ek,n

]
≤C22−βn×2n×2−(α−ζ )n.

By Fatou’s lemma,

E
[
H 1−α+2ζ (η ∩ [x,y])

]
≤ liminf

n
E
[
H 1−α+2ζ

2−n (η ∩ [x,y])
]

≤ liminf
n

C22−nζ = 0.

This implies that H 1−α+2ζ (η ∩ [x,y]) = 0 almost surely. This proves (5.3.23) which completes
the proof of the upper bound.

5.3.2 The lower bound
Throughout, we fix κ ∈ (0,4) and ρ ∈ (−2, κ

2 −2) and let h be a GFF on H with boundary data−λ

on R− and λ (1+ρ) on R+. (Recall the values in (5.2.10) as well as Figure 5.2.1.) For each x≥ 0,
we let ηx be the flow line of h starting from x and let η = η0. Note that η is an SLEκ(ρ) process in
H from 0 to ∞ with a single force point located at 0+, i.e., has configuration (H,0,0+,∞) (recall the
notation of Section 5.2.3). By Lemma 5.2.1, it follows that η can hit (0,∞). For each x > 0, ηx is
an SLEκ(2+ρ,−2−ρ;ρ) process with configuration (H,x,(0,x−),(x+),∞). By Lemma 5.2.1, it
follows that ηx can hit (x,∞) and, if ρ >−κ/2, then ηx can also hit (0,x). Fix δ ∈ (0,1), a > log8,
and let

εn = e−an for each n ∈ N.
We will eventually take limits as a→ ∞ and δ → 0+. For U ⊆H, we let

σ
x(U) = inf{t ≥ 0 : η

x(t) ∈U}. (5.3.24)

We will omit the superscript in (5.3.24) if x = 0. For k ∈ N and x ∈ [1,∞), we let

xk =

{
x− 1

4εk if k ≥ 2 and
0 if k = 1.

We also let
σ

x
m = σ

xm(B(x,εm+1)). (5.3.25)

Let E1
k (x) be the event that

1. σ x
k < ∞ and Im(ηxk(σ x

k ))≥ δεk+1 and

2. ηxk hits B(x,εk+1) before exiting B(x, 1
2εk).

We let E2
k (x) be the event that ηxk−1|[σ x

k−1,∞) merges with ηxk |[0,σ x
k ]

before exiting the annulus

B(x, 1
2εk−1)\B(x,εk+1) (see Figure 5.3.3). Finally, we let Ek(x) = E1

k (x)∩E2
k (x),

Em,n(x) = E1
m+1(x)∩

n⋂

k=m+2

Ek(x), and En(x) = E0,n(x).

The following is the main input into the proof of the lower bound.
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xxkxk−1

ηxk−1

ηxk

B(x, εk)

B(x, εk+1)

λ(1+ρ) λ(1+ρ) λ(1+ρ)

−λ′
:::

λ′:

−λ′
:::

λ′:

−λ
:::

λ′− π
2
χ

:::::::

0

−λ

Figure 5.3.3: On E1
k−1(x), ηxk−1 hits B(x,εk) and does so for the first time above the horizontal line

through iδεk. Given that E1
k (x) has occurred, E2

k (x) is the event that ηxk−1 merges with ηxk before
the path leaves the annulus B(x, 1

2εk−1)\B(x,εk+1). Also indicated is the boundary data for h along
∂H as well as along the paths ηxk−1 and ηxk .

Proposition 5.3.6. For each δ ∈ (0,1), there exists a constant c(δ )> 0 such that for all x,y∈ [1,2]
and m ∈ N such that 1

2εm+1 ≤ |x− y|< 1
2εm we have

P[En(x),En(y)]≤ c(δ )−m
ε
−α
m P[En(x)]P[En(y)].

The main steps in the proof of Proposition 5.3.6 are contained in the following three lemmas.

Lemma 5.3.7. For each x≥ 1 and m,n ∈ N with m≤ n, we have that

P[Em,n(x),Em(x)]� P[Em,n(x)]P[Em(x)] (5.3.26)

If, moreover, y≥ 1 and 1
2εm+2 < |x− y| ≤ 1

2εm+1, then we have that

P[Em+1,n(x),Em+1,n(y),Em(x)]� P[Em+1,n(x)]P[Em+1,n(y)]P[Em(x)].

In each of the above, the constants in � depend only on δ , κ and ρ .

Proof. We begin by proving (5.3.26) which is equivalent to

P[Em,n(x) |Em(x)]� P[Em,n(x)].

Recall that ηxm+1 is an SLEκ(2+ρ,−2−ρ;ρ) process with configuration

c = (H,xm+1,(0,x−m+1),(x
+
m+1),∞).

Let ω = η(σ(B(x,εm))), let H be the closure of the complement of the unbounded connected
component of H\∪m

j=1ηx j([0,σ x
j ]), and let v be the rightmost point of H∩R (see Figure 5.3.4). The

conditional law of ηxm+1 given ηx1|[0,σ x
1 ]
, . . . ,ηxm|[0,σ x

m]
on Em(x) is that of an SLEκ(2,ρ,−2−ρ;ρ)

process in
c̃ = (H\H,xm+1,(ω,v,x−m+1),(x

+
m+1),∞)

(recall Figure 5.2.4.)
Let U = B(x, 1

2εm+1), τ = σ xm+1(H\U), K be the closure of the complement of the unbounded
connected component of H\ηxm+1([0,τ]), ωxm+1 = ηxm+1(τ), and let u−,u+ be the leftmost (resp.
rightmost) point of K∩R. By Lemma 5.2.7, we have that

dµU
c̃

dµU
c

=
Z(c̃τ)/Z(c̃)
Z(cτ)/Z(c)

exp(−ξ m(H;H,K))
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x
xm+1

xm−1 v

ω

u+u−

η

ηxm−1

ηxm

ηxm+1

B(x, εm+1

2
)

B(x, εm+1)

ωxm+1

xm0

−λ′
:::

λ′:

−λ
:::

λ′− π
2
χ

:::::::

−λ′
:::

λ′:

λ(1+ρ)−λ

−λ
:::

λ′− π
2
χ

:::::::

−λ′
:::

λ′:

−λ
:::

λ′− π
2
χ

:::::::

λ(1+ρ) λ(1+ρ) λ(1+ρ)

−λ′
:::

λ′:

Figure 5.3.4: Let H (shown in red) be the closure of the complement of the unbounded connected
component of H\∪m

j=1ηx j([0,σ x
j ]) and let K (shown in blue) be the closure of the complement of

the unbounded connected component of H\ηxm+1([0,τ]) where τ is the first time that ηxm+1 leaves
U = B(x, εm+1

2 ). Then dist(H,K)& diam(U).

where

cτ = (H\K,ωxm+1,(0,u−),(u+),∞),

c̃τ = (H\ (H ∪K),ωxm+1,(ω,v,u−),(u+),∞).

Note that H ⊆H\B(x, 3
4εm+1), K ⊆ B(x, 1

2εm+1), and diam(U) = εm+1. Consequently,

dist(H,K)

diam(U)
& 1.

Therefore Lemma 5.2.8 implies there exists C1 ≥ 1 so that

1
C1
≤ dµU

c̃
dµU

c
≤C1. (5.3.27)

This proves (5.3.26) in the case that n = m+1. We now suppose that n≥ m+2. Given ηxm+1|[0,τ],
we similarly have that the Radon-Nikodym derivative between the conditional law of ηxn stopped
upon exiting the connected component of B(x, 1

2εn) \ηxm+1([0,τ]) with xn on its boundary with
respect to the law in which we additionally condition on H on Em(x) is bounded from above and
below by C1 and C−1

1 , respectively, possibly by increasing the value of C1 > 1 (see Figure 5.3.5).
Moreover, conditional on both of the paths ηxm+1|[0,σ xm+1(B(x,εn+1))] and ηxn |[0,σ x

n ]
as well as the

event that they have merged before exiting U , the joint law of ηx j |[0,σ x
j ]

for j = m+2, . . . ,n−1 is
independent of ηxk |[0,σ x

k ]
for k = 1, . . . ,m (see Figure 5.3.5). This proves (5.3.26).

The second part of the lemma is proved similarly.

Lemma 5.3.8. For each x≥ 1 and m,n ∈ N with m≤ n we have that

P[En(x)]� P[Em(x)]P[Em,n(x)] (5.3.28)

where the constants depend only on δ , κ , and ρ .



108 CHAPTER 5. INTERSECTIONS OF SLE PATHS

η

ηxm

xxm0

ω

ηxm+1

B(x, εm+1)

zm

ηxn

xm+1 xn

λ(1+ρ) λ(1+ρ) λ(1+ρ)

−λ′
:::

λ′:

−λ′
:::

λ′:

−λ′
:::

λ′:

−λ

−λ
:::

λ′− π
2
χ

:::::::

−λ
:::

λ′− π
2
χ

:::::::

Figure 5.3.5: Assume that we are working on Em(x)∩ Em,n(x). Let H (shown in red) be the
closure of the complement of the unbounded connected component of H \ ∪m

j=1ηx j([0,σ x
j ]) and

let K (shown in blue) be the closure of the complement of the unbounded connected component
of H \∪n

j=m+1ηx j([0,σ x
j ]). Let zm be the point that lies at distance δεm+1 from ω along the line

connecting ω to x. Then a Brownian motion starting from zm has positive probability to exit H \
(H ∪K) through each of the left side of H, the right side of H, and the left side of K.

Proof. The upper bound follows from (5.3.26) of Lemma 5.3.7. To complete the proof of the
lemma, it suffices to show that

P[E2
m+1(x) |Em(x),Em,n(x)]� 1.

Throughout, we assume that we are working on Em(x)∩Em,n(x). To see this, we let H (resp. K)
be the closure of the complement of the unbounded connected component of H\∪m

j=1ηx j([0,σ x
j ])

(resp. H \∪n
j=m+1ηx j([0,σ x

j ])). Let ω = ηxm(σ x
m) and let zm be the point which lies at distance

δεm+1 from ω along the line segment connecting ω to x (see Figure 5.3.5). Note that the probability
that a Brownian motion starting from zm exits H\ (H ∪K) in the left (resp. right) side of H is � 1
(though this probability decays as δ ↓ 0) and likewise for the left side of K. Let ϕ : H\(H∪K)→H
be the conformal map which takes zm to i and ω to 0. Let xL (resp. xR) be the image of the leftmost
(resp. rightmost) point of H ∩R under ϕ . The conformal invariance of Brownian motion implies
that there exists ε > 0 depending only on δ such that |xq| ≥ ε for q ∈ {L,R}. Let yL (resp. y) be the
image of the leftmost point of K∩R (resp. ηxm+1(σ x

m+1)) under ϕ . By shrinking ε > 0 if necessary
(but still depending only on δ ), it is likewise true that y− yL ≥ ε and yL ≤ ε−1. Consequently, it
follows from Lemma 5.2.5 that ηxm|[σ x

m,∞) has a positive chance (depending only on δ , κ , and ρ) of
hitting (hence merging into) the left side of ηxm+1|[0,σ x

m+1)
before leaving B(x, 1

2εm)\B(x,εm+2).

Lemma 5.3.9. For each δ ∈ (0,1) there exists a constant c(δ )> 0 such that the following is true.
For each x≥ 1, we have that

P[Em(x)]≥ c(δ )m× ε
α
m .

Proof. By (5.3.26) of Lemma 5.3.7, we know that

P[E1
k (x) |Ek−1(x)]� P[E1

k (x)].
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Therefore we just have to show that there exists a constant c(δ )> 0 such that

P[E1
k (x)]≥ c(δ )

(
εk+1

εk

)α

= c(δ )e−aα and (5.3.29)

P[E2
k (x) |Ek−1(x),E1

k (x)]� 1. (5.3.30)

Note that (5.3.30) follows from Lemma 5.2.5 using the same argument as in the proof of
Lemma 5.3.8. We know that ηxk is an SLEκ(2 + ρ,−2− ρ;ρ) process within the configura-
tion c = (H,xk,(0,x−k ),(x

+
k ),∞). Consequently, (5.3.29) follows by combining Corollary 5.3.3

and Lemma 5.2.8. The latter is used to get that the Radon-Nikodym derivative between the law
of an SLEκ(2+ ρ,−2− ρ;ρ) process with configuration (H,xk,(0,x−k ),(x

+
k ),∞) and the law of

an SLEκ(−2−ρ;ρ) process with configuration (H,xk,(x−k ),(x
+
k ),∞), where each path is stopped

upon exiting B(x, εk
2 ), is bounded both from below and above by universal positive and finite con-

stants.

Proof of Proposition 5.3.6. We have that,

P[En(x),En(y)]≤P[En(x),Em,n(y)]

.P[Em(x)]P[Em+1,n(x)]P[Em+1,n(y)] (Lemma 5.3.7)

=
P[Em(x)]P[Em(y)]

P[Em(y)]
P[Em+1,n(x)]P[Em+1,n(y)]

.
P[En(x)]P[En(y)]

c(δ )mεα
m

(Lemma 5.3.8 and Lemma 5.3.9)

Proof of Theorem 5.1.6. We are first going to give the lower bound for κ ∈ (0,4) and then explain
how to extract the dimension result for κ ′ > 4 from the result for κ ∈ (0,4). For each β ∈ R and
Borel measure µ , let

Iβ (µ) :=
∫ ∫

µ(dz)µ(dw)
|z−w|β

be the β -energy of µ . To prove the lower bound, we will show that, for each ζ > 0, there exists a
nonzero Borel measure supported on η ∩ [1,2] that has finite (1−α−2ζ )-energy.

Fix n∈N. We divide [1,2] into ε−1
n intervals of equal length εn and let z j,n =( j− 1

2)εn+1 be the
center of the jth such interval for j = 1, . . . ,ε−1

n . Let Cn be the subset of Dn = {z j,n : j = 1, . . . ,ε−1
n }

for which En(z) occurs. Let In(z)= [z− εn
2 ,z+

εn
2 ] be the interval with center z and length εn. Finally,

we let
C =

⋂

k≥1

⋃

n≥k

⋃

z∈Cn

In(z).

It is easy to see that
C ⊆ η

⋂
R+.

Let µn be the measure on [1,2] defined by

µn(A) =
∫

A
∑

z∈Dn

1En(z)

P[En(z)]
1In(z)(z

′)dz′ for A⊆ [1,2] Borel.
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Then E[µn([1,2])] = 1. Moreover, we have that

E[µn([1,2])2] = ε
2
n ∑

z,w∈Dn

P[En(z)∩En(w)]
P[En(z)]P[En(w)]

= ε
2
n ∑

z,w∈Dn
z 6=w

P[En(z)∩En(w)]
P[En(z)]P[En(w)]

+ ε
2
n ∑

z∈Dn

1
P[En(z)]

. ε
2
n ∑

z,w∈Dn
z 6=w

|z−w|−α−ζ + ε
2
n ∑

z∈Dn

ε
−1+α−ζ
n (Proposition 5.3.6 and Lemma 5.3.9)

. 1

provided we choose n and a large enough. Set β = 1−α−2ζ . We also have that

E[Iβ (µn)] = ∑
z,w∈Dn

z 6=w

P[En(z)∩En(w)]
P[En(z)]P[En(w)]

∫∫

In(z)×In(w)

dz′dw′

|z′−w′|β

= ∑
z,w∈Dn

z 6=w

P[En(z)∩En(w)]
P[En(z)]P[En(w)]

∫∫

In(z)×In(w)

dz′dw′

|z′−w′|β

+ ∑
z∈Dn

1
P[En(z)]

∫∫

In(z)×In(z)

dz′dw′

|z′−w′|β

. ∑
z,w∈Dn

z6=w

P[En(z)∩En(w)]
P[En(z)]P[En(w)]

ε2
n

|z−w|β + ∑
z∈Dn

1
P[En(z)]

ε
2−β
n

. ∑
z,w∈Dn

z6=w

|z−w|−α−ζ
ε

2
n |z−w|−β + ∑

z∈Dn

ε
−1+α−ζ
n ε

2−β
n . 1.

Consequently, the sequence (µn) has a subsequence (µnk) that converges weakly to some nonzero
measure µ . It is clear that µ is supported on C and has finite (1−α−2ζ )-energy. From [MP10,
Theorem 4.27], we know that

P
[
dimH (η

⋂
R+)≥ 1−α−2ζ

]
> 0.

Since η is conformally invariant, by 0-1 law (see [Bef08]), we have that

P
[
dimH (η

⋂
R+)≥ 1−α−2ζ

]
= 1

for any ζ > 0. This proves the lower bound for κ ∈ (0,4).

It is left to prove the result for κ ′ > 4. Fix ρ ′ ∈ (κ ′
2 −4, κ ′

2 −2). Consider a GFF h on [−1,1]2

with the boundary values as depicted in Figure 5.2.5 with ρ ′R = ρ ′ and ρ ′L = 0, and let η ′ be the
counterflow line of h from i to −i. Then η ′ is an SLEκ ′(ρ

′) process with a single force point
located at (i)+, i.e., immediately to the right of i. As explained in Figure 5.2.5, the right boundary
of η ′ is equal to the flow line ηR of h with angle −π

2 starting from −i. In particular, ηR is an
SLEκ(

κ

2 − 2;κ − 4+ κ

4 ρ ′) process with force points ((−i)−;(−i)+) where κ = 16
κ ′ ∈ (0,4). The
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intersection of η ′ with the counterclockwise segment S of ∂ ([−1,1]2) from −i to i coincides with
ηR∩S . Consequently, it follows that the dimension of η ′∩S is given by

1− 1
κ

(
κ−2+

κ

4
ρ
′
)(

κ

2
+

κ

4
ρ
′
)
= 1− 1

κ ′
(
ρ
′+2

)(
ρ
′+4− κ ′

2

)
.

5.4 The intersection of flow lines
In this section, we will prove Theorem 5.1.5. We begin in Section 5.4.1 by proving an estimate
for the derivative of the Loewner map associated with an SLEκ(ρ) process when it gets close to
a given point. Next, in Section 5.4.2 we will prove the one point estimate which we will use in
Section 5.4.3 to prove the upper bound. Finally in Section 5.4.4 we will complete the proof by
establishing the lower bound.

5.4.1 Derivative estimate

Recall from Section 5.2.4 that for a point w in a simply connected domain U , CR(w;U) denotes
the conformal radius of U as viewed from w. Fix κ ∈ (0,4), let η be an ordinary SLEκ process in
H from 0 to ∞ and, for each t, let Ht denote the unbounded connected component of H\η([0, t]).
We use the notation of [VL12, Section 6.1]. We let

Zt = Zt(z) = Xt + iYt = gt(z)−Wt .

For z ∈H, we let

∆t = |g′t(z)|, ϒt =
Yt

|g′t(z)|
, Θt = argZt , and St = sinΘt . (5.4.1)

We note that ϒt =
1
2CR(z;Ht)� dist(z,∂Ht). For each r ∈ R, we also let

ν = ν(r) =
r2

4
κ + r

(
1− κ

4

)
and ξ = ξ (r) =

r2

8
κ. (5.4.2)

Then we have that [VL12, Proposition 6.1]:

Mt = Mt(z) = |Zt |rY ξ

t ∆
ν
t = S−r

t ϒ
ξ+r
t ∆

ν+r
t (5.4.3)

is a local martingale. This martingale also appears in [SW05, Theorem 6], though it is expressed
there in a slightly different form. (The martingale in (5.2.6) is of the same type, though there we
have not included the interior force points.) For each ε > 0 and R > 0, we let

τε = inf{t ≥ 0 : ϒt =
1
2ε}= inf{t ≥ 0 : CR(z;Ht) = ε} and

σR = inf{t ≥ 0 : |η(t)|= R}. (5.4.4)

Then we have that
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Lemma 5.4.1. Fix r < 1
2 − 4

κ
, δ ∈ (0, π

2 ), and z ∈ H such that arg(z) ∈ (δ ,π − δ ). Let P? be the
law of η weighted by M. We have that,

P?[τε < ∞] = 1 (5.4.5)

and
E?[Sr

τε
]� 1 (5.4.6)

where the constants depend only on δ , κ , and r. We also have that

P?[Θτε
∈ (δ ,π−δ )]� 1 (5.4.7)

where constants depend only on δ , κ , and r. Finally, we have that

P?[σR ≤ τε ]→ 0 as R→ ∞ (5.4.8)

uniformly over ε > 0.

Proof. Note that (5.4.5) and (5.4.6) are proved in [VL12, Equation (6.9)], so we will not repeat
the arguments here. Following [VL12], we define the radial parametrization (i.e., by log conformal
radius) u(t) by

ϒ̂t = ϒu(t) = e−2t

and write η̂(t) = η(u(t)) and Θ̂t = Θu(t). Then Θ̂t satisfies the SDE (see [VL12, Section 6.3])

dΘ̂t =

(
1− 4

κ
− r
)

cot
(
Θ̂t
)
dt +dŴt (5.4.9)

where Ŵ is a P?-Brownian motion. The process Θ̂ almost surely does not hit {0,π} (see [Law05,
Lemma 1.27]) and the density with respect to Lebesgue measure on [0,π] for the stationary distri-
bution for (5.4.9) is given by

f (θ) = c(sinθ)
2
(

1− 4
κ
−r
)

where c > 0 is a normalizing constant (see [Law05, Lemma 1.28]). Moreover, as t→∞, the law of
Θ̂t converges to the stationary distribution with respect to the total variation norm.

We can use this to extract (5.4.7) as follows. Fix 0 < T < ∞. We first note that by the Girsanov
theorem the law of Θ̂|[0,T ] stopped upon leaving (δ

2 ,π− δ

2 ) is mutually absolutely continuous with
respect to that of B|[0,T ] where B is a Brownian motion starting from Θ̂0, also stopped upon leaving
(δ

2 ,π− δ

2 ). Fix 0≤ t ≤ T . Then a Brownian motion starting from Θ̂0 ∈ [δ ,π−δ ] has a uniformly
positive chance of staying in [δ

2 ,π− δ

2 ] during the time interval [0, t] and then being in (δ ,π− δ )
at time t. Therefore it is easy to see that (5.4.7) holds for all 0≤ t ≤ T .

The lower bound, however, that comes from this estimate decays as T increases. We are now
going to explain how we make our choice of T as well as get a uniform lower bound for t ≥ T . We
suppose that Θ̂1,Θ̂2 are solutions of (5.4.9) where Θ̂1

0 = δ and Θ̂2
0 = π−δ . We assume further that

the Brownian motions driving Θ̂, Θ̂1, and Θ̂2 are independent of each other until the time that any
two of the processes meet, after which we take the Brownian motions for the pair to be the same.
This gives us a coupling (Θ̂1,Θ̂,Θ̂2) such that Θ̂1

t ≤ Θ̂t ≤ Θ̂2
t for all t ≥ 0 almost surely. Note that

after Θ̂1 first hits Θ̂2, all three processes stay together and never separate. Let qδ > 0 be the mass
that the stationary distribution puts on (δ ,π−δ ). We then take T > 0 sufficiently large so that:
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1. For all t ≥ T , the total variation distance between the law of Θ̂1
t and the stationary distribution

is at most qδ

2 .

2. Let ξ = inf{t ≥ 0 : Θ̂1
t = Θ̂2

t }. Then P[ξ ≥ T ]≤ qδ

4 .

With this particular choice of T , we have that

P?[Θ̂t ∈ (δ ,π−δ )]≥ P?[Θ̂1
t ∈ (δ ,π−δ )]−P?[ξ ≥ T ]

≥qδ

2
− qδ

4
=

qδ

4
for all t ≥ T.

This proves (5.4.7).
For (5.4.8), note that, under P?, η̂ has the same law as a radial SLEκ(ρ) in H from 0 to z with a

single boundary force point located at ∞ of weight ρ = κ−6− rκ ≥ κ

2 −2 (see [SW05, Theorem 3
and Theorem 6]). Define σ̂R = inf{t ≥ 0 : |η̂(t)|= R}. Then

P?[σR < τε ]≤ P?[σ̂R < ∞].

The endpoint continuity of the radial SLEκ(ρ) processes with ρ > −2 [MS13b, Theorem 1.12]
implies that P?[σ̂R < ∞]→ 0 as R→ ∞, as desired.

We are now going to use Lemma 5.4.1 to estimate the moments of g′t(z) at times when η is
close to z. We will actually prove this for general SLEκ(ρ) processes which is why we truncate on
various events in the estimates proved below.

Lemma 5.4.2. Fix r < 1
2 − 4

κ
and δ ∈ (0, π

2 ). There exists R0 = R0(r)> 0 such that for all R≥ R0
the following holds. Suppose η ∼ SLEκ(ρ) in H from 0 to ∞ where the force points lie outside of
2RD. Fix z ∈ D∩H with arg(z) ∈ (δ ,π−δ ). For each ε > 0 and R > 0 we let τε and σR be as in
(5.4.4). Then

E
[∣∣g′τε

(z)
∣∣ν+r 1{τε<σR}

]
� ε

−ξ−r provided CR(z;H)≥ ε (5.4.10)

where the constants depend only on δ , κ , and the weights ρ of the force points. Fix a constant
C > 1 and suppose that ζε is a stopping time for η such that τCε ≤ ζε ≤ τε/C. Let

Eδ
ε,R = {ζε < σR, Θζε

∈ (δ ,π−δ )}. (5.4.11)

Then we have that

E
[∣∣∣g′ζε

(z)
∣∣∣
ν+r

1Eδ
ε,R

]
� ε

−ξ−r provided CR(z;H)≥ ε (5.4.12)

where the constants depend only on C, δ , κ , and the weights ρ of the force points.

Proof. It suffices to prove the result for an ordinary SLEκ process since it is clear from the form of
(5.2.6) that the Radon-Nikodym derivative between the law of an SLEκ and an SLEκ(ρ) process
whose force points lie outside of 2RD stopped at time σR is bounded from above and below by
finite and positive constants which depend only on the total (absolute) weight of the force points
and κ .
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We only need to prove the upper bound of (5.4.10) and the lower bound of (5.4.12). We have
that,

E
[∣∣g′τε

(z)
∣∣ν+r 1{τε<σR}

]
≤ E

[∣∣g′τε
(z)
∣∣ν+r 1{τε<∞}

]

� ε
−ξ−rE[Mτε

Sr
τε

1{τε<∞}]

= ε
−ξ−rM0E?[Sr

τε
]

. ε
−ξ−r (by (5.4.6)).

This proves the upper bound of (5.4.10). We are first going to give the proof of the lower bound of
(5.4.12) for ζε = τε . We compute

E
[∣∣g′τε

(z)
∣∣ν+r 1Eδ

ε,R

]
� ε

−ξ−rE
[
Mτε

Sr
τε

1Eδ
ε,R

]

≥ ε
−ξ−rE

[
Mτε

1Eδ
ε,R

]

= ε
−ξ−rM0P?[Eδ

ε,R].

To bound P?[Eδ
ε,R], we have

P?[Eδ
ε,R] = P?[τε < σR, Θτε

∈ (δ ,π−δ )]

≥ P?[Θτε
∈ (δ ,π−δ )]−P?[σR < τε ].

From (5.4.7), we know that P?[Θτε
∈ (δ ,π−δ )] is bounded from below uniformly in ε > 0. From

(5.4.8), we know that P?[σR < τε ] converges to zero as R→ ∞ uniformly over ε > 0. These show
that P?[Eδ

ε,R] is bounded from below which proves the lower bound for (5.4.12). The case in which
we replace τε with ζε is proved similarly. In particular, it is not difficult to see that

P?[Θt ∈ (δ ,π−δ ) for all t ∈ [τCε ,τε/C] |ΘτCε
∈ (δ ,π−δ )]> 0

uniformly in ε > 0 and

P?[σR ≤ ζε ]≤ P?[σR ≤ τε/C]→ 0 as R→ ∞

uniformly in ε > 0.

5.4.2 Hitting probabilities
Fix an angle θ ∈ (π−2λ/χ,0). This is the range so that GFF flow lines with angles 0,θ are able
to intersect each other where the flow line with angle θ stays to the right of the flow line with angle
0 [MS12a, Theorem 1.5]. Let

A =
1

2κ

(
ρ +

κ

2
+2
)(

ρ− κ

2
+6
)

where ρ =−θ χ

λ
−2. (5.4.13)

Lemma 5.4.3. Fix C > 2, let x1 = 0, and fix x2 ≥ 2R0 where R0 is the constant from Lemma 5.4.2
with

r =− 2
κ

(
ρ +6− κ

2

)
.
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z

x1

η1
η2

x2

∂B(z, ε)

g1ζ1
ε

g1ζ1
ε
(η1(ζ

1
ε )) g1ζ1

ε
(x2)

g1ζ1
ε
(∂B(z, ε))

g1ζ1
ε
(η2)

λ−θχλ−λ λ−λ λ−θχ

Figure 5.4.1: Illustration of the setup of Lemma 5.4.3, the one point estimate for the intersection
dimension. On the left side, η1 (resp. η2) is a flow line of a GFF on H with the indicated boundary
data with angle 0 (resp. θ ∈ (π − 2λ/χ,0)) starting from x1 (resp. x2 > x1). Note that η1 (resp.
η2) is an SLEκ(−θ χ/λ ) (resp. SLEκ(2,−θ χ/λ − 2)) process. The force point for η1 is located
at x2 and the force points for η2 are located at x1 and x−2 . By Figure 5.2.4, the conditional law of
η2 given η1 drawn up to any stopping time is also an SLEκ(2,−θ χ/λ −2) process. Shown is the
event Gδ

ε (z) that η1 hits ∂B(z,ε), say for the first time at ζ 1
ε , before exiting B(0,R0) where R0 > 0 is

a large, fixed constant, the harmonic measure of the left (resp. right) side of η1 stopped upon hitting
∂B(z,ε) is not too small, and that η2 also hits ∂B(z,ε). We estimate the probability of Gδ

ε (z) by
combining Lemma 5.4.2 with Theorem 5.3.1.

ϕ

ϕ(η1(ζ
1
ε )) ϕ(η2(ζ

2
ε ))

i = ϕ(z)z

x1

η1
η2

x2

∂B(z, ε)

λ−θχλ−λ

Figure 5.4.2: (Continuation of Figure 5.4.1.) Let ζ 1
ε ,ζ

2
ε be the times that η1,η2 hit ∂B(z,ε),

respectively, and let ϕ be the unique conformal map that uniformizes the unbounded connected
component of H \ (η1([0,ζ 1

ε ])∪η2([0,ζ 2
ε ])) with z sent to i and ∞ fixed. For the lower bound of

Theorem 5.1.5, we will also need to estimate the probability of the event Hδ
ε (z) that Gδ

ε (z) occurs
(as described in Figure 5.4.1), that the diameter of η2([0,ζ 2

ε ]) is not too large, and that the images
of ηi(ζ

i
ε) for i = 1,2 under ϕ are not too far from i as illustrated on the right.

Let h be a GFF on H with boundary data as illustrated in Figure 5.4.1. That is,

h|(−∞,0) ≡−λ , h|[0,x2] ≡ λ , and h|(x2,∞) ≡ λ −θ χ. (5.4.14)

Let η1 (resp. η2) be the flow line of h starting from x1 (resp. x2) with angle 0 (resp. θ ). Fix δ ∈ (0, π

2 )
and let z ∈ D∩H with arg(z) ∈ (δ ,π− δ ). For i = 1,2, let ζ i

ε be the first time that ηi hits B(z,ε)
and let Θ1

t be the process as in Lemma 5.4.2 for η1.

1. Let Gδ
ε (z) be the event that η1 hits ∂B(z,ε) before exiting ∂B(0,R0), Θ1

ζ 1
ε

∈ (δ ,π− δ ), and
that η2 hits ∂B(z,ε). Then we have that

P[Gδ
ε (z)] = ε

A+o(1) (5.4.15)
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where the o(1) term depends only on δ , κ , θ , and x2.

2. On Gδ
ε (z), let ϕ be the unique conformal map which takes the unbounded connected compo-

nent of H\ (η1([0,ζ 1
ε ])∪η2([0,ζ 2

ε ])) to H sending z to i and fixing ∞. There exists a constant
R1 > 0 such that with

Hδ
ε (z) = Gδ

ε (z)∩{max
i=1,2
|ϕ(ηi(ζ

i
ε))| ≤ R1, η2([0,ζ 2

ε ])⊆ B(0,10x2)}

we have that

P[Hδ
ε (z)]& ε

A (5.4.16)

where the constants depend only on δ , κ , θ , and x2.

The same likewise holds if h is a GFF on H with piecewise constant boundary conditions which
change values a finite number of times and in the interval [−20x2,20x2] takes the form in (5.4.14).
In this case, the constants also depend on ‖h|R‖∞.

Proof. For each t ≥ 0, let H1
t be the unbounded connected component of H \η1([0, t]), let τ1

ε =
inf{t ≥ 0 : CR(z;H1

t )= ε}, σ1
R0

= inf{t ≥ 0 : η(t) /∈B(0,R0)}, and let (g1
t ) be the Loewner evolution

associated with η1. By (5.2.17), note that τ1
4ε
≤ ζ 1

ε . It then follows from Theorem 5.3.1 that

P[Gδ
ε (z) |η1|[0,τ1

4ε
]]≤ |(g1

τ1
4ε

)′(z)ε|α+o(1).

Note that r < 1− 8
κ
< 1

2 − 4
κ

since ρ >−2. With this choice of r, we have

ν + r = α and ν−ξ = A.

Thus, by (5.4.10) of Lemma 5.4.2, we have that

P[Gδ
ε (z)]≤ E

[
|(g1

τ1
4ε

)′(z)ε|α+o(1)1{τ1
4ε
≤σ1

R0
}
]
≤ ε

A+o(1).

This gives the upper bound for (5.4.15).
Let Eδ

ε,R0
= {ζ 1

ε < σ1
R0
, Θ1

ζ 1
ε

∈ (δ ,π− δ )}. On Eδ
ε,R0

and {ζ 2
ε < ∞}, we let wε = g1

ζ 1
ε

(η2(ζ
2
ε ))

and rε = |(g1
ζ 1

ε

)′(z)|ε . From Lemma 5.3.2, we have that

P
[
Gδ

ε (z) |η1|[0,ζ 1
ε ]

]
1Eδ

ε,R0
& rα

ε 1Eδ
ε,R0

.

We see from (5.4.12) of Lemma 5.4.2 that P[Gδ
ε (z)]& εA.

We will now explain how to prove the result for Hδ
ε (z) in place of Gδ

ε (z). First of all, we note
that on Eδ

ε,R0
, it follows from [Law05, Corollary 3.44] that |g1

ζ 1
ε

(w)−w| ≤ 3R0 for all w ∈ H1
ζ 1

ε

.
Consequently,

B(g1
ζ 1

ε

(z),10x2−6R0)⊆ g1
ζ 1

ε

(B(z,10x2)); (5.4.17)

recall that 10x2 ≥ 20R0. By Lemma 5.3.2 and (5.4.17), we have that,

P
[
ζ

2
ε < ∞, η2([0,ζ 2

ε ])⊆ B(z,10x2), Im(wε)≥ δ rε |η1|[0,ζ 1
ε ]

]
1Eδ

ε,R0

& rα
ε 1Eδ

ε,R0
.
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On the event in the probability above, a Brownian motion starting from z has a uniformly positive
chance (depending on δ ) of hitting both the left side of η1([0,ζ 1

ε ]) and right side of η2([0,ζ 2
ε ]).

Consequently, the desired result follows by applying (5.4.12) from Lemma 5.4.2.
The final claim of the lemma follows from (5.2.6) to compare the case with extra force points

to the case without considered above.

In order for Lemma 5.4.3 to be useful, we need that as η1 gets progressively closer to a given
point z, it is unlikely that Θ1 /∈ (δ ,π − δ ) for some δ > 0. This is the purpose of the following
estimate.

Lemma 5.4.4. Suppose that η is an SLEκ process in H from 0 to ∞ with κ ∈ (0,4). Fix z ∈ H
and let nz = − log2 Im(z) so that n ≥ nz implies that B(z,2−n) ⊆ H. Let Θ be the process as in
(5.4.1). For each n, let ζn be the first time that η hits B(z,2−n) and, for each δ ∈ (0, π

2 ), let
Eδ

n = {ζn < ∞, Θζn /∈ (δ ,π − δ )}. There exists a function p : (0,1)→ [0,1] with p ↓ 0 as δ ↓ 0
such that for each r ≥ nz we have that

P[∩r
m=nEδ

m]≤ (p(δ ))r−n for all nz ≤ n≤ r.

Proof. Since the SLEκ processes are scale-invariant in law, almost surely transient, and do not
intersect the boundary for κ ∈ (0,4) [RS05], it follows that

lim
s→∞

P
[
η hits [s,s+2]× [0,2]

]
= lim

s→∞
P
[
η hits [1,1+ 2

s ]× [0, 2
s ]
]
= 0.

(For otherwise η would intersect the boundary with positive probability.) Consequently, it follows
that there exists a function q : (0,1)→ [0,1] with q(δ ) ↓ 0 as δ ↓ 0 such that the following is true.
If z ∈H with Im(z) = 1 and arg(z) /∈ (δ ,π−δ ), then

P[η hits B(z,1)]≤ q(δ ). (5.4.18)

For each n ≥ nz, on the event {ζn < ∞}, let ϕn : H \ η([0,ζn]) → H be the unique conformal
map with ϕn(η(ζn)) = 0, ϕn(∞) = ∞, and satisfies Im(ϕn(z)) = 1. Note that ϕn(B(z,2−n−3))) ⊆
B(ϕn(z),1) by [Law05, Corollary 3.25]. Therefore it follows from (5.4.18) that

P[Eδ
n+3 |η |[0,ζn]]1Eδ

n
≤ q(δ )1Eδ

n
. (5.4.19)

Iterating (5.4.19) and taking p(δ ) = (q(δ ))1/3 proves the lemma.

For each n ∈ N, we let Dn be the set of squares with side length 2−n which are contained in
H and with corners in 2−nZ2. For each Q ∈ Dn, let z(Q) be the center of Q and let Q̃n(Q) =

B(z(Q),21−n). For each z ∈ H, let Qn(z) be the element of Dn which contains z and let Q̃n(z) =
Q̃n(Qn(z)). See Figure 5.4.3 for an illustration.

Lemma 5.4.5. Suppose that η is an SLEκ process in H from 0 to ∞ with κ ∈ (0,4). For each
z ∈H, let Θz be the process from (5.4.1) (with respect to z) and let ζz,n = inf{t ≥ 0 : η(t) ∈ Q̃n(z)}.
Let S δ

n be the set of points z ∈ H such that Eδ
z,n = {ζz,n < ∞, Θ

z
ζz,n

/∈ (δ ,π − δ )} occurs and let

S δ = ∪∞
n=1 ∩∞

m=n S δ
m . There exists δ0 > 0 such that for every δ ∈ (0,δ0) we have that S δ = /0

almost surely.
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Qn(z)

Q̃n(z)

z

Dn

Figure 5.4.3: Shown in the illustration are Qn(z) and Q̃n(z) for a given point z ∈H.

Proof. Fix z∈H and let nz =− log2 Im(z). Note that Q̃n(z)⊆B(z,22−n) so that Q̃n(z)⊆H provided
n≥ nz +2. By Lemma 5.4.4, we have that

P[∩r
m=nEδ

z,m]≤
(

p(δ )
)r−n for all nz +2≤ n≤ r (5.4.20)

(where p(δ ) is as in the statement of Lemma 5.4.4).
Suppose that Q ∈ Dm and suppose that n ∈ N with n ≤ m. Then the function Q→ R given by

w 7→Θw
ζw,n

is positive and harmonic. Consequently, it follows from the Harnack inequality [Law05,
Proposition 2.26] that there exists a universal constant K ≥ 1 (independent of m,n) such that the
following is true. If Eδ

w,m occurs for any w ∈Q, then EKδ

z(Q),m occurs. Thus letting Eδ
Q,m = ∪w∈QEδ

w,m
we have that

P[∩r
m=nEδ

Q,m]≤ P[∩n
m=nEKδ

z(Q),m] for any nz(Q)+2≤ n≤ r. (5.4.21)

Combining this with Lemma 5.4.4 implies that

P[∩r
m=nEδ

Q,m]≤ (p(Kδ ))r−n for any nz(Q)+2≤ n≤ r. (5.4.22)

Fix α ∈ (0,1) and let n = − log2 α . For each r ≥ n, let V α,δ
r be the collection of squares Q in Dr

with Q⊆ {z ∈H : |z|< 1
α
, Im(z)≥ α} and for which ∩r

m=nEδ
Q,m occurs. Then (5.4.22) implies that

there exists a constant C > 0 such that
∞

∑
r=n

E
[
|V α,δ

r |
]
≤ C

α2

∞

∑
r=n

22r(p(Kδ )
)r−n

. (5.4.23)

Take δ0 > 0 so that δ ∈ (0,δ0) implies that 4p(Kδ ) < 1. Then for δ ∈ (0,δ0), the summation on
the right side of (5.4.23) is finite. This implies that for every α ∈ (0,1), V α,δ

r = /0 for all but finitely
many r almost surely. This, in turn, implies the desired result since α > 0 was arbitrary and V α,δ

r
increases as α decreases.

5.4.3 The upper bound
Now that we have established Lemma 5.4.3 and Lemma 5.4.5, we can prove the upper bound in
Theorem 5.1.5.
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Proposition 5.4.6. Suppose that h is a GFF on H with piecewise constant boundary conditions
which change values a finite number of times. Let η1 (resp. η2) be the flow line of h starting from
x1 = 0 (resp. x2 > 0) with angle 0 (resp. θ ∈ (π−2λ/χ,0)). We have that

dimH (η1∩η2∩H)≤ 2−A almost surely

where A is as in (5.4.13).

Proof. We are going to prove the proposition assuming that the boundary data is as in Lemma 5.4.3.
This suffices by absolute continuity for GFFs. Fix 0 < ε < δ < π

4 . For each t > 0, we let H1
t be

the unbounded connected component of H \η1([0, t]). For each z ∈ H, we let ζ 1
z,ε = inf{t ≥ 0 :

η1(t) ∈ ∂B(z,ε)} and let Θ1,z be the process as in (5.4.1) for η1 and z. We let Iε,δ consist of those
z ∈ η1∩η2∩B(0,δ−1) such that

1. Im(z)≥ δ .

2. Θ
1,z
t ∈ (2δ ,π−2δ ) for all t ∈ [ζ 1

z,ε/2,ζ
1
z,2ε

].

3. Let ζ 1
z be the first time that η1 hits z and σ1

z,δ be the first time after ζ 1
z,ε that η1 hits ∂B(z,δ ).

Then ζ 1
z ≤ σ1

z,δ .

By the transience, continuity, and simplicity of the SLEκ(ρ) processes for κ ∈ (0,4) (which almost
surely do not hit the continuation threshold) [MS12a, Theorem 1.3], we have that η1 ∩η2 ∩H ⊆
∪ε∈Q+ ∪δ∈Q+

Iε,δ almost surely. (If this were not true then we would be led to the contradiction
that η1 has double points with positive probability.) We are going to prove the result by showing
that for every ε,δ > 0,

dimH (Iε,δ )≤ 2−A almost surely.

It in fact suffices to show that this is the case for 0 < ε < δ < δ0 where δ0 is as in Lemma 5.4.5.
Let Dn and z(Q) be as before the statement of Lemma 5.4.5. We let U ε,δ

n consist of those Q ∈Dn
which are hit by both η1 and η2, contained in B(0,δ−1), and:

1. Im(z(Q))≥ δ .

2. Θ
1,z(Q)

ζ 1
z(Q),ε

∈ (δ ,π−δ ) and Θ
1,z(Q)
ζ (Q),2−n ∈ (δ ,π−δ ).

3. After ζ 1
z(Q),ε , η1 hits Q before σ1

z(Q),δ .

We are now going to show that, for every n ∈ N, W ε,δ
n = ∪m≥nU

ε,δ
m is a cover of Iε,δ . To see

this, we fix z ∈ Iε,δ and let (Qk) be a sequence of squares in ∪m≥nDm such that z ∈ Qk for every
k and |Qk| → 0 as k→ ∞. Let zk = z(Qk). Since ζ 1

zk,ε
∈ [ζ 1

z,ε/2,ζ
1
z,2ε

] for all k large enough, there

exists K0 = K0(z) such that for all k ≥ K0, we have that Θ
1,zk
ζ 1

zk ,ε
∈ (δ ,π − δ ). Since z ∈ Qk, we

have that η1 hits Qk. If there exists a subsequence (k j) such that, for every j, η1 hits ∂B(zk j ,δ )

after hitting ∂B(zk j ,ε) and before hitting Qk j , we get a contradiction that z ∈ Iε,δ . Therefore there
exists K1 = K1(z) such that for every k≥ K1, we have that, after hitting ∂B(zk,ε), η1 hits Qk before
hitting ∂B(zk,δ ). Combing this with Lemma 5.4.5 implies that there exists a sequence (k j) such
that Qk j ∈W ε,δ

n for all j, which proves our claim.
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By running η1 until time ζ 1
z,ε and then conformally mapping back, Lemma 5.4.3 implies for

Q ∈Dm with Q⊆ B(0,δ−1) and Im(z(Q))≥ δ that P[Q ∈U ε,δ
m ]≤ 2−m(A+o(1)) provided m is large

enough and ε > 0 is small enough relative to δ > 0. (The purpose of choosing ε > 0 smaller than
δ > 0 is so that the force points of η1 are mapped far away from η1(ζ

1
z,ε) relative to the distance of

z.) Consequently, it follows that there exists C =C(ε,δ )> 0 such that for each ξ > 0, we have

E[H 2−A+2ξ (Iε,δ )]≤C
∞

∑
m=n

22m×2−m(A−ξ )×2−m(2−A+2ξ ) < ∞.

Since the above holds for every n, we therefore have that H 2−A+2ξ (Iε,δ ) = 0 almost surely. Since
ξ > 0 was arbitrary, we have that dimH (Iε,δ )≤ 2−A almost surely, as desired.

5.4.4 The lower bound

z

0

η1

η2

−λ λ−θχ

Figure 5.4.4: Suppose that h is a GFF on H with the illustrated boundary data. Let η1 (resp. η2) be
the flow line of h starting from 0 with angle 0 (resp. θ ∈ (π−2λ/χ,0)). Shown is an illustration of
the construction of the event that a given point, say z ∈ H, is a “perfect point” for the intersection
of η1 and η2. Each of the green flow lines has angle θ — the same as that of η2 — and start at
points along η1 which get progressively closer to z. The reason that we introduce the auxiliary
green flow lines is that this is what gives us the approximate independence necessary for the two
point estimate, see e.g. Figure 5.4.7.

We are now going to prove the lower bound for Theorem 5.1.5. As in the proof of Theo-
rem 5.1.6, we will accomplish this by introducing a special class of points, so-called “perfect
points,” which are contained in the intersection of two flow lines whose correlation structure is
easy to control. Fix β̃ > β 2 > β > 1; we will eventually send β̃ → ∞ but we will take β fixed and
large.

Definition of the events

We are going to define the perfect points as follows.

Definition 5.4.7. Suppose that γ1 is a path in H starting from 0 and γ2 is a path starting from
x2 ∈ [0,eβ ]. Let ζ̃1 be the first time that γ1 hits ∂B(i,e−β̃ ) and suppose that γ̃2 is a path starting
from γ1(ζ̃1). Fix u ∈ R \ [0,x2]. We let Eβ

u (γ1, γ̃2,γ2) be the event that the following hold (see
Figure 5.4.5 for an illustration):
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i

∂B(i, e−β̃)

0 x2

γ1

γ2

ϕ=ϕ(γ1)
i

0=ϕ(γ1(ζ1)) ϕ(x2)

∂B(i, e−β̃−β)

ϕ(γ2)

γ̃2

ϕ(γ̃2)

∂B(i, e−β)

Figure 5.4.5: Suppose that γ1, γ2 are paths in H starting from 0,x2 ∈ R, respectively, with
x2 ∈ [0,eβ ]. Let ζ̃1 be the first time that γ1 hits ∂B(i,e−β̃ ) and let γ̃2 be a path starting from

γ1(ζ̃1). Fix u ∈ R \ [0,x2]. Then Eβ ,β̃
u (γ1, γ̃2,γ2) is the event that the following hold. First, γ1 hits

∂B(i,e−β ) before leaving the e−2β neighborhood of [0, i]. Second, γ1 (resp. γ2) hits ∂B(i,e−β̃−β )

(resp. ∂B(i,e−β̃ )) before leaving B(i,e2β ). Let ζ1,ζ2 be the first hitting times for γ1, γ2, respective-
ly, for these small circles. Third, the first time ζ̃2 that γ̃2 hits γ2 is finite and γ̃2([0, ζ̃2]) is disjoint
from both ∂B(i, 1

2e−β̃ ) and ∂B(i,2e−β̃ ). Fourth, the three paths stopped at the aforementioned
times do not separate i from u. Fifth, the probability that a Brownian motion starting from i exits
H\ (γ1([0,ζ1])∪ γ̃2([0, ζ̃2])∪ γ2([0,ζ2])) in the left (resp. right) side of γ1 is at least 1

2 − e−β/4 and
in the left (resp. right) side of γ̃2([0, ζ̃2]) (resp. γ2([0,ζ2])) is at least e−β . We take H to be the
connected component of H\ γ1([0,ζ1]) with u on its boundary and let ϕ = ϕ(γ1) be the conformal
transformation H→H fixing i and with ϕ(γ1(ζ1)) = 0. Then the image of (the right side of) γ1(ζ̃1)

under ϕ is contained in [0,eβ ] and ϕ(γ̃2([0, ζ̃2]))⊆ B(i,eβ ).

1. γ1 hits ∂B(i,e−β ) before leaving the e−2β neighborhood of [0, i],

2. The first time ζ1 (resp. ζ2) that γ1 (resp. γ2) hits ∂B(i,e−β̃−β ) (resp. ∂B(i,e−β̃ )) is finite and
γi([0,ζi])⊆ B(i,e2β ) for i = 1,2.

3. The first time ζ̃2 that γ̃2 hits γ2 is finite and γ̃2([0, ζ̃2]) does not intersect either ∂B(i, 1
2e−β̃ )

or ∂B(i,2e−β̃ ).

4. The connected component of H \ (γ1([0,ζ1])∪ γ̃2([0, ζ̃2])∪ γ2([0,ζ2])) which contains i also
contains u on its boundary.

5. The probability that a Brownian motion starting from i exits H \ (γ1([0,ζ1])∪ γ̃2([0, ζ̃2])∪
γ2([0,ζ2])) on the left (resp. right) side of γ1([0,ζ1]) is at least 1

2 − e−β/4 and the probability
of exiting on the left (resp. right) side of γ̃2([0, ζ̃2]) (resp. γ2([0,ζ2])) is at least e−β . We take
H to be the connected component of H\ γ1([0,ζ1]) with u on its boundary and let ϕ = ϕ(γ1)
be the conformal transformation H → H which fixes i and with ϕ(γ1(ζ1)) = 0. Finally, the
image of (the right side of) γ1(ζ̃1) under ϕ is contained in [0,eβ ] and ϕ(γ̃2([0, ζ̃2]))⊆B(i,eβ ).
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The purpose of Part 1 above is that, by drawing a path up until hitting ∂B(i,e−β ) and then
conformally mapping back, the resulting configuration of paths satisfies the hypotheses of Lem-
ma 5.4.3.

Lemma 5.4.8. Suppose that we have the same setup described just above. There exists a constant
C1 > 0 such that the following is true. On the event Eβ

u (γ1, γ̃2,γ2) with ϕ =ϕ(γ1), for each α ∈ (0,1)
we have that B(i,C1e(1−α)(β+β̃ )/2)⊆ ϕ(B(i,e−α(β+β̃ ))).

Proof. Throughout, we shall suppose that Eβ
u (γ1, γ̃2,γ2) occurs. Fix α ∈ (0,1). The probabili-

ty that a Brownian motion starting from i hits ∂B(i,e−α(β+β̃ )) before hitting ∂H∪ γ1([0,ζ1]) is
O(e−(1−α)(β+β̃ )/2) by Beurling estimate 5.2.9. By the conformal invariance of Brownian motion,
the probability of the event X that a Brownian motion starting from i exits ϕ(B(i,e−α(β+β̃ ))) in
ϕ(∂B(i,e−α(β+β̃ ))) is also O(e−(1−α)(β+β̃ )/2). Let

d = dist(ϕ(∂B(i,e−α(β+β̃ ))), i).

We claim P[X ] & d−1. Indeed, X1∩X2 ⊆ X where X1 is the event that the Brownian motion exits
∂B(0,d) before hitting ∂H at a point with argument in [π

4 ,
3π

4 ] and X2 is the event that it hits

ϕ(∂B(i,e−α(β+β̃ ))) after hitting ∂B(0,d) before hitting ∂H. It is easy to see that P[X1]& d−1 and
P[X2 |X1]& 1. Consequently, e−(1−α)(β+β̃ )/2 & d−1 hence d & e(1−α)(β+β̃ )/2, as desired.

Flow line estimates

Fix θ ∈ (π−2λ/χ,0); recall that this is the range of angles so that a GFF flow line with angle θ

can hit and bounce off of a GFF flow line with angle 0 on its right side. We will now use the events
introduced in Definition 5.4.7 to define the perfect points. Suppose that h1 is a GFF on H with the
following boundary data: suppose x1,1 = x1,2 = 0 and u1 ∈ R \ {0}. If u1 < x1,1 = x1,2 = 0, the
boundary data is

h|(−∞,u1] ≡ λ +(2π−θ)χ, h|(u1,0] ≡−λ , and h|(0,∞) ≡ λ −θ χ.

If u1 > x1,1 = x1,2 = 0, then the boundary data is

h|(−∞,0] ≡−λ , h|(0,u1] ≡ λ −θ χ, and h|(u1,∞) ≡−λ −2πχ.

These two possibilities correspond to the boundary data that arises when one takes a GFF with
boundary conditions as in Figure 5.4.1 and Figure 5.4.2 and then applies a change of coordinates
which takes a given point z ∈ H to i. In either case, we let η1,1 (resp. η1,2) be the flow line of h1

starting from x1,1 (resp. x1,2) of angle 0 (resp. θ ). We also let ζ̃1,1 be the first time that η1 hits

∂B(i,e−β̃ ) and let η̃1,2 be the flow line of h1 starting from (the right side of) η1,1(ζ̃1,1) with angle
θ .

Let E1 = Eβ
u1(η1,1, η̃1,2,η1,2). Let ζ1,1 (resp. ζ1,2) be the first time that η1,1 (resp. η1,2) hits

∂B(i,e−β̃−β ) (resp. ∂B(i,e−β̃ )) and let ζ̃1,2 be the first time that η̃1,2 hits η1,2. Let ϕ1 be the unique
conformal map from the connected component of H\η1,1([0,ζ1,1]) with u1 on its boundary which
fixes i and sends the tip η1,1(ζ1,1) to 0.

Suppose that the events E j have been defined as well as paths η j,1, η̃ j,2,η j,2, GFFs h j, and

conformal transformations ϕ j for 1 ≤ j ≤ k. On the event that ηk,1 hits ∂B(i,e−β−β̃ ), we take
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ηk+1,1 = ϕk(ηk,1) and ηk+1,2 = ϕk(η̃k,2). Note that ηk+1,1 is the flow line of the GFF hk+1 =

hk ◦ ϕ
−1
k − χ arg(ϕ−1

k )′ starting from 0. Similarly, ηk+1,2 is the flow line of hk+1 starting from

xk+1,2 = ϕk(ηk,1(ζ̃k,1)) with angle θ . We let ζ̃k+1,1 be the first time that ηk+1,1 hits ∂B(i,e−β̃ )

and let η̃k+1,2 be the flow line starting from (the right side of) ηk+1,1(ζ̃k+1,1) with angle θ and let
uk+1 = ϕk(uk).

On the event that ηk+1,1 hits ∂B(i,e−β̃−β ), say for the first time at time ζk+1,1, we let ϕk+1 be the
conformal transformation which uniformizes the connected component of H \ηk+1,1([0,ζk+1,1])
with uk+1 on its boundary fixing i and with ϕk+1(ηk+1,1(ζk+1,1)) = 0. We then define the event
Ek+1 in terms of the paths ηk+1,1, η̃k+1,2, and ηk+1,2 analogously to E1 as well as stopping times
ζk+1,2, ζ̃k+1,2. For each n≥ m we let

Em,n = ∩n
k=m+1Ek and En = E0,n. (5.4.24)

Remark 5.4.9.

1. Note that Em,n for n > m≥ 1 can occur even if only a subset of (or none of) E1, . . . ,Em occur.

2. The conformal maps ϕ j are measurable with respect to η1,1. Note that each of the paths
η̃k,2 is given by the conformal image of a flow line which starts at a point in the range of
η1,1. The starting points of these flow lines are likewise measurable with respect to η1,1.
These facts will be important when we establish the two point estimate for the lower bound
of Theorem 5.1.5 at the end of this subsection.

We will now work towards proving the one point estimate for the perfect point i.

Proposition 5.4.10. There exists β0 > 1 such that for all β̃ > β 2 > β ≥ β0 we have

P[En]� e−β̃ (1+Oβ (1)oβ̃
(1))nA (5.4.25)

where A is the constant from (5.4.13) and the constants in the � of (5.4.25) depend only on u1, κ ,
and θ .

In the statement of Proposition 5.4.10, we write o
β̃
(1) to indicate a quantity which converges

to 0 as β̃ → ∞ and Oβ (1) for a term which is bounded by some constant which depends only on
β . In particular, for β fixed, Oβ (1)oβ̃

(1)→ 0 as β̃ → ∞. The first step in the proof of Proposi-
tion 5.4.10 is Lemma 5.4.11. The second step, which allows one to iterate the estimate in (5.4.26),
is Lemma 5.4.13 and is stated and proved below.

Lemma 5.4.11. There exists β0 > 1 such that for all β̃ > β 2 > β ≥ β0 we have

P[E1]� e−β̃ (1+Oβ (1)oβ̃
(1))A (5.4.26)

where A is the constant from (5.4.13) and the constants in the � of (5.4.26) depend only on u1, κ ,
and θ .
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Proof. By Lemma 5.2.3, we know that η1,1 has a positive chance of being uniformly close to [0, i]
before hitting ∂B(i,e−β ). Let τ be the first time that η1,1 hits ∂B(i,e−β ) and let g be the conformal
transformation from the connected component of H \ η1,1([0,τ]) containing i which fixes i and
sends η1,1(τ) to 0. By choosing β0 sufficiently large, it is clear that g(η1,1) and g(η1,2) satisfy
the hypotheses of (5.4.16) of Lemma 5.4.3. From this, we deduce that the probability that η1,1

and η1,2 both hit ∂B(i,2e−β̃ ) before leaving B(i,e2β ) and such that the harmonic measure of the
left (resp. right) side of each of the paths stopped at this time as viewed from i is bounded from

below by some universal constant is equal to e−β̃ (1+Oβ (1)oβ̃
(1))A. The rest of the lemma follows

from repeated applications of Lemma 5.2.3 and Lemma 5.2.5.

For each z ∈ H, we let ψz be the unique conformal transformation H→ H taking z to i and
fixing 0. For each k ∈ N, we let η

z
k,i for i = 1,2 and η̃

z
k,2 be the paths after applying the conformal

map ψz and we let ζ
z
k,i, ζ̃

z
k,i be the corresponding stopping times. We define

Em,n(z) = Em,n(ηz
1,1, η̃

z
1,2,η

z
1,2) and

En(z) = E0,n(z).
(5.4.27)

In other words, Em,n(z) and En(z) are the events corresponding to Em,n and En defined in (5.4.24)
but with respect to the flow lines of the GFF h1 ◦ψ−1

z − χ arg(ψ−1
z )′ starting from 0 and ψz(x1,2).

Let ϕk,z be the corresponding conformal maps. We let

ϕ
j,k

z = ϕ j+1,z ◦ · · · ◦ϕk,z for each 0≤ j ≤ k and ϕ
k
z = ϕ

0,k
z . (5.4.28)

We also let

Vn(z) = B(z,28n+4Im(z)e−n(β+β̃ )) for each n ∈ N.

Lemma 5.4.12. There exists β0 > 1 such that for all β̃ > β 2 > β ≥ β0, the following is true.
For each m,n ∈ N with m ≥ n+ 1, on Em(z) we have that ψ−1

z ◦ (ϕm−1
z )−1(γ) ⊆ Vn(z) for γ =

η
z
m,i([0,ζ

z
m,i]) for i = 1,2 and γ = η̃

z
m,2([0, ζ̃

z
m,2]).

Proof. We are first going to give the proof in the case that z = i. Fix m,n ∈ N with m ≥ n+ 1.
Throughout, we shall assume that we are working on Em. It follows from [Law05, Corollary 3.25]
that if r ∈ (0, 1

2) then

ϕ
−1
k (B(i,r))⊆ B(i,16re−β̃−β ) for 1≤ k ≤ m. (5.4.29)

Iterating (5.4.29) implies that

(ϕk)−1(B(i, 1
2))⊆ B(i,28ke−k(β̃+β )) for 1≤ k ≤ m (5.4.30)

(provided we take β0 large enough).
Note that ηm,i([0,ζm,i])⊆ B(i,e2β ) for i = 1,2 by the definition of the events. Consequently, it

follows from Lemma 5.4.8 that ϕ−1
m (ηm,i([0,ζm,i])) ⊆ B(i,e−β̃/4) for i = 1,2 provided β0 is large

enough. We also assume that β0 is sufficiently large so that e−β̃/4 < 1
2 . Applying (5.4.30) proves

the result for ηm,i([0,ζm,i]) for i = 1,2 and η̃m,2([0, ζ̃m,2]). This proves the result for z = i. For the
case that z 6= i, we note that applying [Law05, Corollary 3.25] again yields,

ψ
−1
z (B(i,r))⊆ B(i,16rIm(z)). (5.4.31)

Combining (5.4.30) with (5.4.31) gives the desired result.
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ηm+1,1

η̃m+1,2

i

0

(ϕm,n−1)−1(η̃n,2)

Figure 5.4.6: Illustration of the configuration of paths used in the proof of Lemma 5.4.13. On
Em,n, ηm+1,1, η̃m+1,2, and (ϕm,n−1)−1(η̃n,2) separate the paths (ϕm, j−1)−1(η̃ j,2) for m+ 2 ≤ j ≤
n− 1 (shown in green) stopped upon hitting η̃m+1,2 from i. Thus, once ηm+1,1, η̃m+1,2, and
(ϕm,n−1)−1(η̃n,2) have been fixed, the conditional law of the remaining paths does not depend
on the boundary data of hm+1 or on the other auxiliary paths.

w z

η1

η2

0

ϕ

i=ϕ(z)

0

Vn(w) Vn(z)

Figure 5.4.7: Illustration of the setup for the two point estimate (Lemma 5.4.13 and Lemma 5.4.15)
in the case that η1 gets close first to w and then to z. Conformally map back everything drawn before
the paths hit the neighborhood of z. Then all of the auxiliary paths are outside of a large ball which
is far from i = ϕ(z), so we can apply the one point estimate for perfect points (Lemma 5.4.11) for
this region as before. We can also apply the one point estimate for the paths near z. Finally, to
complete the proof, we apply the one point estimate a final time for the paths up to when they hit a
neighborhood containing both z and w.

For each m ∈ N and z ∈ H, let Fm(z) be the σ -algebra generated by η
z
k,i|[0,ζ z

k,i]
for i = 1,2 and

η̃
z
k,2|[0,ζ̃ z

k,2]
for 1≤ k ≤ m.

Lemma 5.4.13. There exists β0 > 1 such that for all β̃ > β 2 > β ≥ β0 the following is true. Fix
δ ∈ (0, π

2 ) and z ∈ D∩H with arg(z) ∈ (δ ,π−δ ). For each m ∈ N we have that

P[Em,n(z) |Fm(z)]1Em(z) � eOβ (1)oβ̃
(1)β̃ P[En−m]1Em(z) (5.4.32)

where the constants in � depend only on δ , κ , and θ .
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Proof. By applying ψz, we may assume without loss of generality that z = i. Recall the definition
of the GFF hm+1 as well as the paths ηk,i for i = 1,2 and η̃k,2 from just before Remark 5.4.9.
By the definition of Em and the conformal invariance of Brownian motion, we know that there
exists a constant c1 > 0 such that the boundary data for hm+1 in (−c1,0) (resp. (0,c1)) is given by
−λ (resp. λ ). The same is likewise true for h1. Moreover, by Lemma 5.4.8, it follows that the
auxiliary paths coupled with hm+1 are far away from i provided β0 is large enough. Consequently,
by Lemma 5.2.8, the laws of ηm+1,1 (given Em) and η1,1 stopped upon exiting the c1

2 neighborhood
of the line segment from 0 to i are mutually absolutely continuous with Radon-Nikodym derivative
which is bounded from above and below by universal positive and finite constants which depend
only on κ and θ .

On Em,n, ηm+1,1 does not leave this tube before getting very close to i and neither does η1,1
on En−m. For a given choice of η , by Lemma 5.2.8, we moreover have that the Radon-Nikodym
derivative of the conditional law of η̃m+1,2 given ηm+1,1 = η stopped upon exiting the tube with
respect to that of η̃1,2 given η1,1 = η is bounded from above and below by universal finite and
positive constants which do not depend on the specific choice of η . On this event, the same is also
true for the Radon-Nikodym derivative of the conditional law of (ϕm,n−1)−1(η̃n,2) given ηm+1,1 =η

and η̃m+1,2 = η̃ with respect to the conditional law of (ϕn−m−1)−1(η̃n−m,2) given η1,1 = η and
η̃1,2 = η̃ . The conditional law of (ϕm, j−1)−1(η̃ j,2) for m+ 2 ≤ j ≤ n− 1 stopped upon hitting
η̃m+1,2 given ηm+1,1, η̃m+1,2, and η̃n,2 is independent of the boundary data of hm+1 (as well as the
other auxiliary paths). (See Figure 5.4.6.) The same is likewise true for the conditional law of
(ϕ j−1)−1(η̃ j,2) for 2≤ j ≤ n−m−1 stopped upon hitting η̃1,2 given η1,1, η̃1,2, and η̃n−m,2.

Let K be the compact hull associated with these paths and let g be the conformal transformation
H \K → H with g(z) ∼ z as z→ ∞. Conditionally on all of these paths and the event that they
are contained in B(i,2e−β̃ ), the probability that ηm+1,2 hits ∂B(i,10e−β̃ ) before leaving B(i,e2β )

is � |g′(i)e−β̃ |α+Oβ (1)oβ̃
(1) (as in the proof of Lemma 5.4.3; the extra force points only change the

probability by a positive and finite factor by Lemma 5.2.8.) Given that ηm+1,2 has hit ∂B(i,10e−β̃ ),

the conditional probability that it then merges with η̃m+1,2 before the latter has hit ∂B(i, 1
2e−β̃ )

or ∂B(i,2e−β̃ ) is positive by Lemma 5.2.5. The same is true with η1,2 in place of ηm+1,2, which
completes the proof.

Proof of Proposition 5.4.10. This follows by combining Lemma 5.4.11 with Lemma 5.4.13.

Lemma 5.4.14. Fix δ ∈ (0, π

2 ) and z,w ∈ D∩H distinct with arg(z),arg(w) ∈ (δ ,π−δ ) and let m
be the smallest integer such that Vm(z)∩Vm(w) = /0. Let Pw be the event that η1,1 hits Vm(w) before
hitting Vm(z). There exists β0 > 1 such that for every β̃ > β 2 > β ≥ β0 we have that

P[Em,n(z) |Fk(w)]1Ek(w),Pw
≤ eOβ (1)β̃ P[En−m]1Ek(w),Pw

(5.4.33)

for all k ≥ m.

Proof. We are going to extract (5.4.33) from (5.4.32) of Lemma 5.4.13. As before, by applying ψz,
we may assume without loss of generality that z = i. Fix k ≥ m. By Proposition 5.4.10, it suffices
to prove

P[Em+1,n |Em+1,Fk(w)]1Ek(w),Pw
. P[En−m−1]1Ek(w),Pw

(5.4.34)

in place of (5.4.33). By Lemma 5.4.12, we know that the paths involved in Em,n are disjoint
from those involved in Ek(z) due to the choice of m. Thus by conformally mapping back (see
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Figure 5.4.7) and applying Lemma 5.2.8 as in the proof of Lemma 5.4.13, it is therefore not hard
to see that

P[Em+1,n |Em+1,Fk(w)]1Ek(w),Pw
� P[E1,n−m |E1]1Ek(w),Pw

.

Combining this with (5.4.32) completes the proof.

Lemma 5.4.15. For every ε > 0 and δ ∈ (0, π

2 ) there exists β0 > 1 such that for all β̃ > β 2 > β ≥ β0
there exists constants C > 0 and n0 ∈ N such that the following is true. Fix z,w ∈ D∩H distinct
with arg(z),arg(w) ∈ (δ ,π−δ ). Let m be the smallest integer such that Vm(z)∩Vm(w) = /0. Then

P[En(z),En(w)]≤Ceβ̃ (1+ε)mAP[En(z)]P[En(w)] for all n≥ n0.

Proof. Suppose that z,w ∈H are as in the statement of the lemma. Let Pw be the event that η1 hits
Vm(w) before hitting Vm(z) and let Pz be the event in which the roles of z and w are swapped. We
have that

P[En(z),En(w)] = P[En(z),En(w),Pw]+P[En(z),En(w),Pz]

≤P[En(z) |En(w),Pw]P[En(w)]+P[En(w) |En(z),Pz]P[En(z)]. (5.4.35)

We are going to bound the first summand; the second is bounded analogously. We have,

P[En(z) |En(w),Pw]≤ P[Em,n(z) |En(w),Pw]. (5.4.36)

By (5.4.33) of Lemma 5.4.14, we have that

P[Em,n(z) |En(w),Pw]≤ eOβ (1)β̃ P[En−m]. (5.4.37)

By (5.4.32) of Lemma 5.4.13 and Proposition 5.4.10, we have that

P[En−m]≤ eβ̃ (1+ε)mAP[En(z)] (5.4.38)

(possibly increasing β0). The same likewise holds when we swap the roles of Pw and Pz. Combining
(5.4.35)–(5.4.38) gives the result.

We can now complete the proof of Theorem 5.1.5.

Proof of Theorem 5.1.5. We first suppose that h is a GFF on H with boundary conditions

h|(−∞,0] ≡−λ and h|(0,∞) ≡ λ −θ χ

and let η1 (resp. η2) be the flow line of h starting from 0 with angle 0 (resp. θ ∈ (π−2λ/χ,0)). We
have already established the upper bound for dimH (η1∩η2∩H) in Proposition 5.4.6. We will now
establish the lower bound. Once we have proved this, we get the corresponding dimension when
h has general piecewise constant boundary data as described in the theorem statement by absolute
continuity for GFFs.

The proof is completed in the same manner as the proof of Theorem 5.1.6. Indeed, we let
εn = 28n+4e−(β+β̃ )n. We divide [−1,1]× [1,2] into 2ε−2

n squares of equal side length εn and let
zn

j be the center of the jth such square for j = 1, . . . ,2ε−2
n . Let Cn be the set of centers z of these

squares for which En(z) occurs. Let Sn(z) be the square with center z and length εn. Finally, we let

C =
⋂

k≥1

⋃

n≥k

⋃

z∈Cn

Sn(z).
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It is easy to see that
C ⊆ η1∩η2∩H.

The argument of the proof of Theorem 5.1.6 combined with Lemma 5.4.15 implies, for each ξ > 0,
that P[dimH (η1 ∩ η2) ≥ 2− A− ξ ] > 0. To finish the proof, we only need to explain the 0-
1 argument: that for each d ∈ [0,2], P[dimH (η1 ∩η2 ∩H) = d] ∈ {0,1}. As explained above,
by absolute continuity for GFFs, for the purposes of computing the intersection dimension we
can make whichever choice of boundary data is most convenient for the proof. Here, the most
convenient choice is to take the boundary data to be given by the constant value c = πχ

2 −λ which
guarantees that η1,η2 can be continued towards ∞. For r > 0, let Dr = dimH (η1∩η2∩B(0,r)∩H).
It is clear that 0 < r1 < r2 implies Dr1 ≤ Dr2 . By the scale invariance of the setup, we have that
Dr1 has the same law as Dr2 . Thus Dr1 = Dr2 almost surely for all 0 < r1 < r2. In particular,
P[D∞ = Dr] = 1 for all r > 0. Thus the events {D∞ = d} and {Dr = d} are the same up to a set
of probability zero. The latter is measurable with respect to the GFF restricted to B(0,r). Letting
r ↓ 0, we see that this implies that the event {D∞ = d} is trivial, which completes the proof.

5.5 Proof of Theorem 5.1.1
We will first work towards proving (5.1.1) for κ ′ ∈ (4,8); let κ = 16

κ ′ ∈ (2,4). It suffices to compute
the almost sure Hausdorff dimension of the double points of the chordal SLEκ ′(

κ ′
2 − 4; κ ′

2 − 4)
processes. Indeed, this follows since the conditional law of an SLEκ ′ process given its left and
right boundaries is independently that of an SLEκ ′(

κ ′
2 − 4; κ ′

2 − 4) in each of the bubbles which
lie between these boundaries (recall Figure 5.2.5). In order to establish this result, we are going to
make use of the path decomposition developed in [MS12c] which was used to prove the reversibility
of SLEκ ′ for κ ′ ∈ (4,8). This, in turn, makes use of the duality results established in [MS12a,
Section 7]. For the convenience of the reader, we are going to review the path decomposition here.

Throughout, we suppose that h is a GFF on the horizontal strip T = R× (0,1) with boundary
values given by−λ + π

2 χ =−λ ′ on the lower boundary ∂LT=R of the strip and λ− 3π

2 χ = λ ′−πχ

on the upper boundary ∂UT=R×{1} of the strip. (See Figure 5.5.1 for an illustration of the setup
and recall the identities from (5.2.10).) Let η ′ be the counterflow line of h from +∞ to −∞. Then
η ′ is an SLEκ ′(

κ ′
2 − 4; κ ′

2 − 4) process in T from +∞ to −∞ where the force points are located
immediately to the left and right of the starting point of the path. Recall that κ ′

2 − 4 is the critical
threshold at or below which an SLEκ ′(ρ) process fills the domain boundary. Fix z∈ ∂T and let t(z)
be the first time t that η ′ hits z. Then t(z)< ∞ almost surely (and this holds for all boundary points
simultaneously). Assume further that z ∈ ∂LT and let η1

z be the outer boundary of η ′([0, t(z)]).
Explicitly, η1

z is equal to the flow line of h with angle π

2 starting from z stopped at time τ1
z , the first

time that it hits ∂UT (see Figure 5.5.1). The conditional law of η ′ given η1
z ([0,τ

1
z ]) in each of the

connected components C of T\η1
z ([0,τ

1
z ]) which lie to the right of η1

z ([0,τ
1
z ]) is independently that

of an SLEκ ′(
κ ′
2 −4; κ ′

2 −4) process starting from the first point of C visited by η ′ and terminating
at the last.

Let w = η1
z (τ

1
z ) ∈ ∂UT. Since η ′ is boundary filling and cannot enter the loops it creates with

itself or with the domain boundary, the first point on ∂UT that η ′ hits after time t(z) is w. Let η2
z

be the outer boundary of η ′([t(z),∞)). Then η2
z is the flow line of h given η1

z ([0,τ
1
z ]) with angle π

2
starting from w and stopped at time τ2

z , the first time the path hits z. Let P(z) be the region which
lies between η1

z ([0,τ
1
z ]) and η2

z ([0,τ
2
z ]). Then P(z) separates the set of points that η ′ visits before

and after hitting z. The right (resp. left) boundary of P(z) is given by η1
z ([0,τ

1
z ]) (resp. η2

z ([0,τ
2
z ])).
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−λ+ π
2
χ

λ− 3π
2
χ

w = η1z(τ
1
z )

η1z([0, τ
1
z ])

P (z)

η2z([0, τ
2
z ])

z

Figure 5.5.1: Suppose that h is a GFF on the horizontal strip T = R× (0,1) with the illustrated
boundary data and let η ′ be the counterflow line of h starting from +∞ and targeted at −∞. Then
η ′ is an SLEκ ′(

κ ′
2 − 4; κ ′

2 − 4) with force points located immediately to the left and right of the
starting point of the path. Fix z in the lower boundary ∂LT = R of T and let t(z) be the first time
that η ′ hits z. Since η ′ is boundary filling, t(z) < ∞ almost surely. Let η1

z be the outer boundary
of η ′([0, t(z)]). Then η1

z is equal to the flow line of h with angle π

2 starting from z and stopped
at time τ1

z , the first time that it hits ∂UT. Let w = η1
z (τ

1
z ). Given η1

z ([0,τ
1
z ]), let η2

z be the outer
boundary of η ′([t(z),∞)). Then η2

z is equal to the flow line of h given η1
z ([0,τ

1
z ]) with angle π

2
started from w stopped at time τ2

z , the first time it hits z. Let P(z) be the region between η1
z ([0,τ

1
z ])

and η2
z ([0,τ

2
z ]) (indicated in gray). Given P(z), the conditional law of η ′ in each component C of

T\P(z) is independently that of an SLEκ ′(
κ ′
2 −4; κ ′

2 −4) from the first point in C visited by η ′ to
the last. The points η1

z ([0,τ
1
z ])∩η2

z ([0,τ
2
z ]) are double points of η ′.

The conditional law of η ′ given P(z) is independently that of an SLEκ ′(
κ ′
2 − 4; κ ′

2 − 4) process in
each of the components C of T \P(z) starting from the first point of C hit by η ′ and terminating
at the last — the same as that of η ′ up to a conformal transformation. This symmetry allows us to
iterate this exploration procedure to eventually discover the entire path. Note that the intersection
points η1

z ([0,τ
1
z ])∩η2

z ([0,τ
2
z ]) are double points of η ′. If z ∈ ∂UT, then we can define the paths

η1
z ,η

2
z analogously except the angle π

2 is replaced with −π

2 . This is because when η ′ hits z ∈ ∂UT,
only its right boundary is visible from −∞ which is contrast to the case when it hits z ∈ ∂LT when
only its left boundary is visible from −∞.

The following lemma allows us to relate the dimension of the double points of η ′ to the inter-
section dimension of GFF flow lines given in Theorem 5.1.5. This immediately leads to the lower
bound in Theorem 5.1.1 for κ ′ ∈ (4,8). We will explain a bit later how to extract from this the
upper bound as well.

Lemma 5.5.1. Let P∩(z) = η1
z ([0,τ

1
z ])∩η2

z ([0,τ
2
z ]). We have that

dimH (P∩(z)) = 2− (12−κ ′)(4+κ ′)
8κ ′

almost surely.

That is, dimH (P∩(z)) is almost surely equal to the Hausdorff dimension of the intersection of two
GFF flow lines with an angle gap of θdouble (recall (5.1.10)) as given in Theorem 5.1.5.

Proof. See Figure 5.5.2 for an illustration of the argument. We shall assume throughout for sim-
plicity that z ∈ ∂LT. A similar argument gives the same result for z ∈ ∂UT. Suppose that h̃ is a
GFF on H with the boundary data as indicated in the left side of Figure 5.5.2. Let η1

0 be the flow
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−λ+ π
2
χ

λ− 3π
2
χ

w = η1z(τ
1
z )

η1z([0, τ
1
z ])

P (z)

η2z([0, τ
2
z ])

z

−λ+ π
2
χ

λ− 3π
2
χ

:::::::

0 1

η10η20

η11η21

ϕ

U1

Figure 5.5.2: (Continuation of Figure 5.5.1.) Suppose that h̃ is a GFF on H with the boundary data
indicated on the left side. Let η1

0 be the flow line of h̃ from 0 to ∞ with angle π

2 . Given η1
0 , let η2

0
be the flow line of h̃ given η1

0 from ∞ with angle π

2 in the connected component of H \η1
0 which

is to the left of η1
0 . Then η1

0 is an SLEκ(
κ

2 − 2;−κ

2 ) in H from 0 to ∞. Moreover, the conditional
law of η2

0 given η1
0 is that of an SLEκ(κ−4;−κ

2 ) in the component of H\η1
0 which is to the left

of η1
0 from ∞ to 0 (the κ − 4 force point lies between the paths). Shown is the boundary data for

the conditional law of h̃ given (η1
0 ,η

2
0 ) in the component U1 of H \ (η1

0 ∪η2
0 ) which contains 1

on its boundary. Let ϕ : U1→ H be the conformal transformation with ϕ(1) = z and which takes
leftmost (resp. rightmost) point of ∂U1 ∩ ∂H to −∞ (resp. +∞). Then h̃ ◦ϕ−1− χ arg(ϕ−1)′ has
the boundary data shown on the right side. Let (η1

1 ,η
2
1 ) be a pair of paths defined in the same way

as (η1
0 ,η

2
0 ) except starting from 1. Then the image of the region in U1 between η1

1 and η2
1 under ϕ

has the same law as P(z) described in Figure 5.5.1. (See also [MS12c, Figure 3.2].)

0

η̂10η̂20

0 0

Figure 5.5.3: Suppose that ĥ is a GFF on H with zero boundary conditions as illustrated. Let η̂1
0

(resp. η̂2
0 ) be the flow line of ĥ starting from 0 with angle−1

2θdouble (resp. 1
2θdouble); recall (5.1.10).

Then η̂1
0 is an SLEκ(

κ

2 −2;−κ

2 ) process in H from 0 to ∞ (Figure 5.2.1) and the conditional law of
η̂2

0 given η̂1
0 in the connected component of H\ η̂1

0 which is to the left of η̂1
0 is an SLEκ(−κ

2 ;κ−4)
process from 0 to ∞ (Figure 5.2.4). Similarly, η̂2

0 is an SLEκ(−κ

2 ; κ

2 − 2) process in H from 0 to
∞ (Figure 5.2.1) and the conditional law of η̂1

0 given η̂2
0 is an SLEκ(κ−4;−κ

2 ) process from 0 to
∞ in the component of H\ η̂2

0 which is to the right of η̂2
0 (Figure 5.2.4). In particular, by the main

result of [MS12b], the joint law of the ranges of η̂1
0 and η̂2

0 is equal to the joint law of the ranges of
η1

0 and η2
0 from the left side of Figure 5.5.2. Consequently, we can use Theorem 5.1.5 to compute

the almost sure dimension of the intersection of the latter.
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line of h̃ from 0 with angle π

2 . Given η1
0 , let η2

0 be the flow line of h̃ with angle π

2 from ∞ in the
component L of H\η1

0 which is to the left of η1
0 . Note that η1

0 is an SLEκ(
κ

2 −2;−κ

2 ) process in
H from 0 to ∞. Moreover, the conditional law of η2

0 given η1
0 is an SLEκ(κ−4;−κ

2 ) process in L
from ∞ to 0; see [MS12c, Lemma 3.3]. (The κ − 4 force point lies between η1

0 and η2
0 .) By the

main result of [MS12b], the time-reversal η̃2
0 of η2

0 is an SLEκ(−κ

2 ;κ−4) process in L from 0 to
∞. As explained in Figure 5.5.3, it consequently follows from Theorem 5.1.5 that

dimH (η1
0 ∩η

2
0 ) = 2− (12−κ ′)(4+κ ′)

8κ ′
almost surely (5.5.1)

since this is the almost sure dimension of η̂1
0 ∩ η̂2

0 (using the notation of Figure 5.5.3). Thus to
complete the proof, we just have to argue that dimH (P∩(z)) is also given by this value.

Let U1 be the component of H \ (η1
0 ∪η2

0 ) which contains 1 on its boundary. Let ϕ : U1→ T
be the conformal transformation which takes 1 to z and the leftmost (resp. rightmost) point of
∂U1∩R to −∞ (resp. +∞). Let (η1

1 ,η
2
1 ) be a pair of paths constructed in exactly the same manner

as (η1
0 ,η

2
0 ) except starting from 1 rather than 0. We consequently have that the image under ϕ

of the region between η1
1 and η2

1 is equal in distribution to P(z) as described before the lemma
statement. Since dimH (η1

1 ∩η2
1 ) is also almost surely given by the value in (5.5.1), the desired

result follows.

z1

z2

P (z1)

P (z2)

η1z1(τ
1
z1
)

η1z2(τ
1
z2
)

η1z1([0, τ
1
z1
])

η2z1([0, τ
2
z1
])

η1z2([0, τ
1
z2
])

η2z2([0, τ
2
z2
])

Figure 5.5.4: Suppose that we have the same setup as described in Figure 5.5.1. Shown is
P(z1) where z1 ∈ ∂T is fixed. The conditional law of η ′ given P(z1) is independently that of
an SLEκ ′(

κ ′
2 − 4; κ ′

2 − 4) in each of the components C of T \P(z1) starting from the first point of
C hit by η ′ and exiting at the last. Fix z2 on the boundary of a component C of T \P(z1). Then
we can consequently form the set P(z2) which describes the interface between the set of points that
η ′, viewed as a path in C, hits before and after hitting z2. The intersection of the left and right
boundaries of P(z2) consists of double points of η ′. Moreover, the conditional law of η ′ given
both P(z1) and P(z2) is independently that of an SLEκ ′(

κ ′
2 − 4; κ ′

2 − 4) in each of the components
of T\ (P(z1)∪P(z2)). Consequently, we can iterate this procedure to eventually explore the entire
trajectory of η ′ (and, as we will explain in Lemma 5.5.2, the double points of η ′). We will use this
in Lemma 5.5.2 to reduce the double point dimension to computing the intersection dimension of
GFF flow lines with an angle gap of θdouble (recall (5.1.10)).

Let D be the set of double points of η ′. To complete the proof of Theorem 5.1.1, we will show
that every double point of η ′ is in fact in some P∩(z). To this end, we explore the trajectory of
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η ′ as follows. Let (d j) j∈N be a sequence that traverses N×N in diagonal order, i.e. d1 = (1,1),
d2 = (1,2), d3 = (2,1), etc. Let (z1,k)k∈N be a countable dense subset of ∂T, and set z1 = zd1 . Let
P(z1) be the set which separates T into the set of points visited by η ′ before and after hitting z1, as
in Figure 5.5.1. We then let (z2,k)k∈N be a countable dense subset of ∂ (T\P(z1)) and set z2 = zd2 .
Recall that the conditional law of η ′ given P(z1) is independently that of an SLEκ ′(

κ ′
2 −4; κ ′

2 −4)
process in each of the components of T \P(z1) — this is the same as the law of η ′ itself, up to
conformal transformation. Consequently, once we have fixed P(z1), we define P(z2) analogously
in terms of the segment of η ′ which traverses the component of T \P(z1) with z2 on its boundary
(see Figure 5.5.4). Generally, given P(z1), . . . ,P(zn), we let (zn+1,k)k∈N be a countable dense subset
of ∂ (T \ ∪n

j=1P(z j)) and set zn+1 = zdn+1 . The conditional law of η ′ given P(z1), . . . ,P(zn) is

independently that of an SLEκ ′(
κ ′
2 − 4; κ ′

2 − 4) in each of the components of T \∪n
j=1P(z j). Thus

given P(z1), . . . ,P(zn), we define P(zn+1) analogously in terms of the segment of η ′ which traverses
the component which has zn+1 on its boundary. For each n ∈ N, η ′ almost surely hits zn only once
at time t(zn). Moreover, from the construction, we have that (t(zn))n∈N is a dense set of times in
[0,∞) (see [MS12c, Section 3.3]).

Lemma 5.5.2. Almost surely, D ⊆ ∪∞
j=1P∩(z j).

Proof. For each ω ∈D , let t f (ω) and t`(ω) be the first and last time that η ′ hits ω . For each δ > 0
we let Dδ = {ω ∈ D : t`(ω)− t f (ω) ≥ δ}. Clearly, the sets Dδ increase as δ > 0 decreases and
D = ∪δ>0Dδ . Therefore it suffices to show that Dδ ⊆ ∪∞

n=1P∩(zn) for each δ > 0. Fix ω ∈ Dδ

and consider P(z1). If t f (ω) < t(z1) < t`(ω), then ω ∈ P∩(z1) and we stop the exploration. If
t(z1)> t`(ω) or t(z1)< t f (ω), then ω is a double point of η ′|[0,t(z1)] or a double point of η ′|[t(z1),∞),
respectively. Consider P(z2). If t f (ω)< t(z2)< t`(ω), then ω ∈P∩(z2) and we stop the exploration.
If t(z2)< t f (ω) or t(z2)> t`(ω), we continue the exploration. We continue to iterate this until the
first k that ω ∈ P(zk). To see that the exploration terminates after a finite number of steps, recall
that (t(zn))n∈N is a dense set of times in [0,∞). In particular, letting

k = min
{

j ≥ 1 : t f (ω)< t(z j)< t`(ω)
}

we have that ω ∈ P∩(zk).

We now have all of the ingredients to complete the proof of Theorem 5.1.1 for κ ′ ∈ (4,8).

Proof of Theorem 5.1.1 for κ ′ ∈ (4,8). Lemma 5.5.1 and Lemma 5.5.2 together imply that dim(D)=
2− (12−κ ′)(4+κ ′)/(8κ ′) almost surely, as desired.

We finish by proving Theorem 5.1.1 for κ ′ ≥ 8.

Proof of Theorem 5.1.1 for κ ′ ≥ 8. Fix κ ′≥ 8 and let κ = 16
κ ′ ∈ (0,2]. Let η ′ be an SLEκ ′ process in

H from 0 to ∞ and let D be the set of double points of η ′. Then η ′ is space-filling [RS05]. For each
point z ∈H, let t(z) be the first time that η ′ hits z and let γ(z) be the outer boundary of η([0, t(z)]).
It follows from [MS13b, Theorem 1.1 and Theorem 1.13] and [Bef08] that the dimension of γ(z)
is equal to 1+ κ

8 = 1+ 2
κ ′ . Given γ(z), η ′([t(z),∞)) is an SLEκ ′ process in the remaining domain,

and thus almost surely hits every point on γ(z) except the point z. This implies that every point on
γ(z) except for z is contained in D . This gives the lower bound for dimH (D).

Let (zk)k∈N be a countable dense set in H. For the upper bound, we will show that every element
of D is in fact on γ(zk) for some k. Note that (t(zk))k∈N is a dense set of times in [0,∞) because η ′
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is continuous. For each ω ∈D , let t f (ω) and t`(ω) be the first and last times, respectively, that η ′

hits ω . For each δ > 0, Dδ = {ω ∈D : t`(ω)− t f (ω)≥ δ}. Then D =∪δ>0Dδ . Since the sets Dδ

are increasing as δ > 0 decreases, it suffices to show that Dδ ⊆ ∪kγ(zk) for each δ > 0. Fix δ > 0
and ω ∈Dδ . Since (t(zk))k∈N is dense, we have that

k = min{ j ≥ 1 : t`(ω)> t(z j)> t f (ω)}< ∞.

Clearly, ω ∈ γ(zk). This completes the proof for κ ′ ≥ 8.

Remark 5.5.3. We note that SLE′κ for κ ′ ∈ (4,8) does not have triple points and, when κ ′ ≥ 8, the
set of triple points is countable. Indeed, to see this we note that if z is a triple point of an SLE′κ
process η ′ then there exists rational times t1 < t2 such that z is a single-point of and contained in the
outer boundary of η ′|[0,t1] and a double point of and contained in the outer boundary of η ′|[0,t2]. For
each pair t1 < t2 there are precisely two points which satisfy these properties. The claim follows for
κ ′ ∈ (4,8) since SLE′κ for κ ′ ∈ (4,8) almost surely does not hit any given boundary point distinct
from its starting point. The claim likewise follows for κ ′ ≥ 8 because this describes a surjection
from Q+×Q+, Q+ = (0,∞)∩Q, to the set of triple points.
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Chapter 6

Radial Conformal Restriction

The results in this chapter are contained in [Wu13].

6.1 Introduction
The present paper is a write-up of the “radial” counterpart of some of the results derived in the
“chordal” setting in the paper [LSW03] by Lawler, Schramm and Werner. The goal is to describe
the laws of all random sets that satisfy a certain radial conformal restriction property.

Let us describe without further ado this property, and the main result of the present paper:
Consider the unit disc U and we fix a boundary point 1 and an interior point the origin. We will
study closed random subsets K of U such that:

• K is connected, C\K is connected, K∩∂U= {1}, 0 ∈ K .

• For any closed subset A of U such that A = U∩A, U \A is simply connected, contains the
origin and has 1 on the boundary, the law of ΦA(K) conditioned on (K∩A = /0) is equal to to
law of K where ΦA is the conformal map from U \A onto U that preserves 1 and the origin
(see Figure 6.1.1).

The law of such a set K is called a radial restriction measure, by analogy with the chordal restriction
measures defined in [LSW03].

K ΦA(K)

ΦA

A

Figure 6.1.1: ΦA is the conformal map from U \A onto U that preserves 0 and 1. Conditioned on
(K∩A = /0), ΦA(K) has the same law as K.

135
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The main result of the present paper is the following classification and description of all radial
restriction measures.

Theorem 6.1.1. 1. (Characterization). A radial restriction measure is fully characterized by a
pair of real numbers (α,β ) such that

P
[
K∩A = /0

]
= |Φ′A(0)|αΦ

′
A(1)

β

where A is any closed subset of U such that A = U∩A, U \A is simply connected, contains
the origin and has 1 on the boundary, and ΦA is the conformal map from U \A onto U that
preserves 0 and 1. We denote the corresponding radial restriction measure by P(α,β ).

2. (Existence). The measure P(α,β ) exists if and only if

β ≥ 5
8
, α ≤ ξ (β ) =

1
48

(
(
√

24β +1−1)2−4
)
.

We shall give an explicit construction of the measures P(α,β ) for all these admissible values
of α and β . The function ξ (β ) is (as could be expected) the so-called disconnection exponent
associated with the half-plane exponent β (see [LW00, LSW01a, LSW01b, LSW02]).

It is worth observing that |Φ′A(0)| ≥ 1 and that Φ′A(1) ≤ 1. In Theorem 6.1.1, we see that
the value of β is necessarily positive (and that therefore Φ′A(1)

β ≤ 1), but the value of α can be
negative or positive (as long as α ≤ ξ (β )), so that |Φ′A(0)|α can be greater than one (but of course,
the product |Φ′A(0)|αΦ′A(1)

β cannot be greater than one which is guaranteed by the condition α ≤
ξ (β )).

This theorem is the counterpart of the classification of chordal restriction measures in [LSW03]
that we shall recall in the next section. It is worth noticing already that while the class of chordal
conformal restriction measures was parametrized by a single parameter β ≥ 5/8, the class of radial
restriction samples is somewhat larger as it involves the additional parameter α . This can be rather
easily explained by the fact that the radial restriction property is in a sense weaker than the chordal
one. It involves an invariance property of the probability distribution under the action of the semi-
group of conformal transformations that preserve both an inner point and a boundary point of the
disc. In the chordal case, the semi-group of transformations were those maps that preserve two
given boundary points (which is a larger family). Another way to see this is that the chordal restric-
tion samples in the upper half-plane are scale-invariant, while the radial ones aren’t. However, and
this will be apparent in the latter part of the proof of Theorem 6.1.1, chordal restriction samples
of parameter β can be viewed as limits of radial ones with parameters (α,β ) (for all admissible
α’s), in the same way as chordal SLE can be viewed as the limit of radial SLE when the inner point
converges to the boundary of the domain.

These results have been discussed and mentioned before, at least partially, in e-mail exchanges,
lectures and discussions by a number of mathematicians, including of course Lawler, Schramm and
Werner, and also Dubédat or Gruzberg. In fact, reference 31. in the paper [LSW03] written in 2003
by Lawler, Schramm and Werner is precisely a paper “in preparation” with the very same title as
the present one. I wish to hereby thank Greg Lawler and Wendelin Werner for letting me write up
the present paper and work out the details of the proofs.
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6.2 Preliminaries
We now briefly recall some background material that will be needed in our proofs, concerning
chordal or radial SLE and their SLEκ(ρ) variants, Brownian loop-soups as well as chordal restric-
tion measures. When K is a subset of C and x ∈ C, we denote x+K as the set {x+ z : z ∈ K} and
xK as the set {xz : z ∈ K}.

6.2.1 Chordal Loewner chains and SLE
Suppose (Wt , t ≥ 0) is a real-valued continuous function. For each z∈H, define gt(z) as the solution
to the chordal Loewner ODE:

∂tgt(z) =
2

gt(z)−Wt
, g0(z) = z.

Write τ(z) = sup{t ≥ 0 : infs∈[0,t] |gs(z)−Ws| > 0} and Kt = {z ∈ H : τ(z) ≤ t}. Then gt is the
unique conformal map from H \Kt onto H such that |gt(z)− z| → 0 as z→ ∞. And (gt , t ≥ 0) is
called the chordal Loewner chain generated by the driving function (Wt , t ≥ 0). In fact, we have
(gt(z)− z)z→ 2t as z→ ∞.

SLE curves are introduced by Oded Schramm as candidates of scaling limits of discrete statis-
tical physics models (see [Sch00]). A chordal SLEκ is defined by the random family of chordal
conformal maps gt when W =

√
κB where B is a standard one-dimensional Brownian motion. It is

proved that there exists a.s. a continuous curve η such that for each t ≥ 0, H\Kt is the unbounded
connected component of H\η([0, t]) (see [RS05]).

Chordal SLEκ(ρ) processes are variants of SLEκ process. For simplicity, we will here only
describe the SLEκ(ρ) processes with just one additional force point: It is the measure on the
random family of conformal maps gt generated by chordal Loewner chain with Wt replaced by the
solution to the system of SDEs:

dWt =
√

κdBt +
ρ

Wt−Vt
dt;

dVt =
2

Vt−Wt
dt, V0 = x 6= 0, (Wt−Vt)/(W0−V0)≥ 0.

When κ > 0,ρ >−2, there is a unique solution to the above SDEs. The force point is repelling
when ρ is positive while it is attracting when ρ is negative. There exists a.s. a continuous curve η

in H from 0 to ∞ associated to the SLEκ(ρ) process (see [MS12a]).
In the limit when x→ 0+ (respectively 0−), the process has a limit that is scale-invariant in dis-

tribution. This enables to define the corresponding SLEκ(ρ) (referred to as SLER
κ(ρ) or SLEL

κ(ρ)
to indicate if the force-point is to the right or to the left of the driving point) from a boundary point
of a simply connected domain to another by conformal invariance, just as for ordinary SLEκ .

6.2.2 Chordal restriction samples
We now recall briefly some facts from [LSW03]. Consider the upper half plane H and we fix two
boundary points 0 and ∞. A chordal restriction sample is a closed random subset of H such that

• K is connected, C\K is simply connected, K∩R= {0}, and K is unbounded.
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• For any closed subset A of H such that A = H∩A, H\A is simply connected, A is bounded
and 0 6∈ A, the law of ΨA(K) conditioned on (K ∩A = /0) is equal to the law of K where ΨA
is any given conformal map from H\A onto H that preserves 0 and ∞.

Note that this second property in the case where A = /0 shows that the law of K is scale-invariant
(ie. that K and λK have the same distribution for any fixed positive λ ). It is proved that the chordal
restriction measures form a one-parameter family (Qβ ), such that for all A as before,

Qβ

[
K∩A = /0

]
= Ψ

′
A(0)

β

where ΨA is the conformal map from H \A onto H that preserves 0 and ΨA(z)/z→ 1 as z→ ∞

(see [LSW03]). In that paper, it is proved that the chordal conformal restriction measure Qβ exists
if and only if β ≥ 5/8.

We would like to make the following remarks that will be relevant for the present paper:

1. Chordal restriction samples can be defined in any simply connected domain H 6= C by con-
formal invariance (using the fact that their law in H is scale-invariant). For instance, if H
is such a simply connected domain and z,w are two different boundary points, the chordal
restriction sample in H connecting z and w is the image of chordal restriction sample in H
under any given conformal map φ from H onto H that sends the double (0,∞) to (z,w).

2. In the proof of the construction of these (two-sided) chordal restriction samples, an important
role is played by the related “right-sided chordal restriction samples”, that we shall also use
at some point in the present paper. These are a closed random subset K of H such that

• K is connected, C\K is connected, K∩R= (−∞,0].

• For any closed subset A of H such that A = H∩A, H \A is simply connected, A is
bounded and A∩R ⊂ (0,∞), the law of ΨA(K) conditioned on (K ∩A = /0) is equal to
the law of K where ΨA is any conformal map from H \A onto H that preserves 0 and
∞.

It is clear that the right boundary of chordal restriction sample is a right-sided restriction
sample. In fact, there exists a one-parameter family Q+

β
such that

Q+
β

[
K∩A = /0

]
= Ψ

′
A(0)

β

where ΨA is the conformal map from H \A onto H that preserves 0 and ΨA(z)/z→ 1 as
z→ ∞. Q+

β
exists if and only if β ≥ 0. We usually ignore the trivial case β = 0 where

K = R−.

One example of right-sided restriction sample is given by SLEL
8/3(ρ): Let η be such a process

in H from 0 to ∞. Let K be the closure of the union of domains between η and R−. Then K
is a right-sided restriction sample with exponent β = (ρ + 2)(3ρ + 10)/32. Conversely, let
K be a right-sided restriction sample with exponent β > 0, then the right boundary of K is an
SLEL

8/3(ρ) process with

ρ = ρ(β ) =
2
3
(
√

24β +1−1)−2. (6.2.1)
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3. We have just seen the the right boundary of a two-sided restriction sample is an SLEL
8/3(ρ)

process. It is also possible to construct the conditional law of the left boundary given the
right boundary: Denote Lr as the domain between R− and the right boundary of K. Then,
given this right boundary, the conditional law of the left boundary of K is an SLER

8/3(ρ−2)
from 0 to ∞ in Lr (see [Wer04a]). In fact, we shall construct our radial restriction samples
using the radial analogue of this recipe.

4. Let C(K) be the cut point set of K i.e. the set of points x in K such that K \ {x} is not
connected. Note that C(K) is the intersection of the right and left boundaries of K. It turns
out that the right and left boundaries of K can be coupled with a Gaussian Free Field as two
flow lines, which enables to prove (see [MW13, Theorem 1.5]) that the Hausdorff dimension
of C(K) is almost surely equal to (25−u2)/12 where u =

√
24β +1−1, when 5/8 ≤ β ≤

35/24, whereas C(K) = /0 almost surely when β > 35/24.

5. It is possible to describe the half-plane Brownian non-intersection exponents ξ̃ in terms of
restriction measures. For instance, consider two independent chordal restriction samples K1
and K2 with exponent β1,β2 respectively. One can derive that, conditioned on (K1∩K2 = /0)
(viewed as the limit of K1∩ (x+K2)∩B(0,R) = /0 as x→ 0,R→ ∞), the “inside” of K1∪K2
has the same law as a chordal restriction sample of exponent ξ̃ (β1,β2).

6. It is possible to use restriction samples in order to describe the law of SLEκ(ρ) processes
as SLEκ processes conditioned not to intersect a chordal restriction sample. For details, see
[Wer04a, Equation (9),(10)].

6.2.3 Brownian loop soup
We now briefly recall some results from [LW04]. It is well known that Brownian motion in C
is conformal invariant. Let us now define for all t ≥ 0, the law µt(z,z) of the two-dimensional
Brownian bridge of time-length t that starts and ends at t and define

µ
loop =

∫

C

∫
∞

0
dz

dt
t

µt(z,z)

where dz is the Lebesgue measure in C that we view as a measure on unrooted loops modulo time-
reparametrization (see [LW04]). Then, µ loop inherits a striking conformal invariance property.
More precisely, if for any subset D⊂ C, one defines the Brownian loop measure µ

loop
D in D as the

restriction of µ loop to the set of loops contained in D, then it is shown in [LW04]:

• For two domains D′ ⊂ D, µ
loop
D restricted to the loops contained in D′ is the same as µ

loop
D′

(this is a trivial consequence of the definition of these measures).

• For two simply connected domains D1,D2, let Φ be a conformal map from D1 onto D2, then
the image of µ

loop
D1

under Φ has the same law as µ
loop
D2

(this non-trivial fact is inherited from
the conformal invariance of planar Brownian motion).

From these two properties, if we denote µ0
U as µ

loop
U restricted to the loops surrounding the

origin, then it is further noted in [Wer08] that

µ
0
U(γ 6⊂U) = logΦ

′(0) (6.2.2)
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where U is any simply connected subset of U that contains the origin and Φ is the conformal map
from U onto U that preserves the origin and Φ′(0)> 0.

For c > 0, let (γ j, j ∈ J) be a Poisson point process with intensity cµ0
U, then, from (6.2.2), we

have that
P
[
γ j ⊂U,∀ j ∈ J

]
= exp

(
−cµ

0
U(γ 6⊂U)

)
= Φ

′(0)−c

where U is any simply connected subset of U that contains the origin and Φ is the conformal map
from U onto U that preserves the origin and Φ′(0)> 0.

6.2.4 Radial Loewner chains and SLE
Suppose (Wt , t ≥ 0) is a real-valued continuous function. For each z∈U, define gt(z) as the solution
to the radial Loewner ODE:

∂tgt(z) = gt(z)
eiWt +gt(z)
eiWt −gt(z)

, g0(z) = z.

Write τ(z) = sup{t ≥ 0 : infs∈[0,t] |gs(z)− eiWs| > 0} and Kt = {z ∈ U : τ(z) ≤ t}. Then gt is the
unique conformal map from U\Kt onto U such that gt(0) = 0,g′t(0)> 0. And (gt , t ≥ 0) is called
the radial Loewner chain generated by the driving function (Wt , t ≥ 0). In fact, we have g′t(0) = et .

Before introducing the radial SLE, let us first define some special Loewner chains that will be
of use later on. We want to define a radial Loewner curves η such that, for any t > 0, the future part
of the curve η([t,∞)) under gt is exactly η up to a rotation of the disc. Precisely, fix θ ∈ (0,2π),
define the driving function W θ

t = θ − t cot θ

2 . Let (gt , t ≥ 0) be the radial Loewner chain generated
by W θ . And define ft(·)= gt(·)/gt(1). Then there exists a continuous curve ηθ started from eiθ and
ended at the origin such that gt is the conformal map from U\ηθ ([0, t]) and gt(0) = 0,g′t(0) = et .
From the radial Loewner ODE, we have that gt(1) = ei(Wt−θ), and ft(ηθ (t)) = eiθ . Further, for any
t,s > 0, ft(ηθ ([t, t + s])) = ηθ ([0,s]). We call ηθ as perfect radial curve started from eiθ . Note
that

| f ′t (0)|= et , f ′t (1) = exp(− t
1− cosθ

). (6.2.3)

A radial SLEκ is defined by the random family of radial conformal maps gt when W =
√

κB
where B is a standard one-dimensional Brownian motion. It is proved that there exists a.s. a
continuous curve η such that for each t ≥ 0, U \Kt is the connected component of U \η([0, t])
containing the origin (this is due to the absolute continuity relation between radial and chordal
SLEs and the corresponding results for chordal SLEs).

Let us briefly focus on radial SLE8/3. Let η be an SLE8/3 in U from 1 to the origin. It is known
(see [Law05, Section 6.5]) that

P
[
η ∩A = /0

]
= |Φ′A(0)|5/48

Φ
′
A(1)

5/8 (6.2.4)

where A is any closed subset of U such that A = U∩A, U \A is simply connected, contains the
origin and has 1 on the boundary; ΦA is the conformal map from U \A onto U that preserves the
origin and the boundary point 1. This result follows from a standard martingale computation for
radial SLE8/3. This will ensure that the measure that we will call P(5/48,5/8) does exist.

We will also make use of a radial version of SLEκ(ρ) processes. For simplicity, let us just
define the radial SLEκ(ρ) process with only one force point. It is the measure on the random



6.3. CHARACTERIZATION 141

family of conformal maps gt generated by radial Loewner chain with Wt replaced by the solution
to the system of SDEs:

dWt =
√

κdBt +
ρ

2
cot(

Wt−Vt

2
)dt;

dVt =−cot(
Wt−Vt

2
)dt, V0 = x ∈ (0,2π).

(6.2.5)

When κ > 0,ρ >−2, there is a unique solution to the above SDEs. And there exists a.s. a contin-
uous curve η in U from 1 to 0 associated to the radial SLEκ(ρ) process [MS13b]. Note that, in the
radial case, a right force point eix with x ∈ (0,2π) can also be viewed as a left force point ei(2π−x).
Thus, different from the chordal case, we do not use the terminology of “left” and “right” force
point for the radial case. Let x→ 0+ (resp. x→ 2π−), the process has a limit and we call this limit
process as radial SLEκ(ρ) in U from 1 to 0 with force point 1+ (resp. 1−).

6.3 Characterization
The present section will be devoted to the proof of the characterization part of our main theorem.

Let A r be the set of all closed A⊂ U such that A = A∩U, U\A is simply connected, contains
the origin and has 1 on the boundary. For any A ∈A r, define ΦA as the conformal map from U\A
onto U such that preserves 1 and the origin. We usually call log |Φ′A(0)| as the capacity of A in
U seen from the origin. Generally, for any domain U ⊂ C, a closed subset A ⊂ U , and a point
z ∈ U \A, the capacity of A in U seen from z is logΦ′(z) where Φ is the conformal map from the
connected component of U \A that contains z onto U and is normalized at z : Φ(z) = 0,Φ′(z)> 0.

Let Ω be the collection of closed subsets K of U such that K is connected, C \K is connected
and 1∈K, 0∈K. Endow Ω with the σ -field generated by the family of events of the type {K ∈Ω :
K∩A = /0} where A ∈A r (note that this σ -field coincides with the σ -field generated by Hausdorff
metric on Ω, this is similar to the chordal case). It is clear that this family of events is closed under
finite intersection, so that, just as in the chordal case, we know that:

Lemma 6.3.1. If P and P′ are two probability measures on Ω such that P
[
K∩A = /0

]
= P′

[
K∩A =

/0
]

for all A ∈A r, then P= P′.

It will be useful to use our perfect radial curves. The following fact is the analogue of the fact
derived through [LSW03, Equation (3.1)]:

Lemma 6.3.2. Fix θ ∈ (0,2π) and let ηθ be the perfect radial curve started from eiθ . Let K be a
radial restriction sample, then there exists ν(θ) ∈ (0,∞) such that, for all t ≥ 0,

P
[
K∩η

θ ([0, t]) = /0
]
= exp(−ν(θ)t).

Proof. (See Figure 6.3.1) Recall that ft is the conformal map from U\ηθ ([0, t]) onto U such that
ft(0) = 0, | f ′t (0)| = et , ft(ηθ (t)) = eiθ and we also have that ft(ηθ ([t, t + s])) = ηθ ([0,s]) for any
t,s > 0. Then, for any t,s > 0, by the property of radial restriction sample, we have that

P
[
K∩η

θ ([0, t + s]) = /0 |K∩η
θ ([0, t]) = /0

]

= P
[
K∩ ft(ηθ ([t, t + s])) = /0

]
= P

[
K∩η

θ ([0,s]) = /0
]
.
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K

ft

ηθ([0, t])

ηθ([t, t+s])

eiθ eiθ

ft(η
θ([t, t+s]))=ηθ([0, s])

ft(K)

Figure 6.3.1: Conditioned on (K∩ηθ ([0, t]) = /0), ft(K) has the same law as K.

Thus, for any t,s > 0, we have

P
[
K∩η

θ ([0, t + s]) = /0
]
= P

[
K∩η

θ ([0, t]) = /0
]
×P
[
K∩η

θ ([0,s]) = /0
]
.

This implies that
P
[
K∩η

θ ([0, t])
]
= exp(−ν(θ)t)

for some ν(θ)∈ [0,∞]. If ν(θ)=∞, then K∩ηθ ([0, t]) 6= /0 a.s., for all t > 0. However∩t>0ηθ ([0, t])=
{eiθ} and eiθ 6∈ K. This rules out the possibility of ν(θ) = ∞. If ν(θ) = 0, then K∩ηθ ([0,∞]) = /0
a.s.. This is also impossible since 0 ∈ K and ηθ ends at the origin.

We would like to note at this point that in the chordal case, the analogous quantity was obviously
constant because of scale-invariance of the chordal restriction measures in the upper half-plane. In
the present radial case, this is not going to be the case. In particular, care will be needed to show
that θ 7→ ν(θ) is continuously differentiable.

We are now ready to prove the first part of Theorem 6.1.1 that we now state as a Proposition:

Proposition 6.3.3. For any radial restriction sample K, there exist α,β ∈ R such that

P
[
K∩A = /0

]
= |Φ′A(0)|αΦ

′
A(1)

β for all A ∈A r.

Note that Lemma 6.3.1 conversely shows that for any α and β , there exists at most one law (for
K) that satisfies this property. When it exists, we call it P(α,β ). An example is provided by radial
SLE8/3 (see Equation (6.2.4)) that corresponds to P(5/48,5/8).

The main part of the proof of the proposition will be devoted to show that θ 7→ ν(θ) is a
continuously differentiable function. Once this will have been established, it will be possible to use
“commutation relation ideas” inspired by the formal calculations in [LSW03] and by Dubédat’s
paper [Dub07].

In order to prove this proposition, it will in fact be a little easier to work in the upper half plane
instead of the unit disc. Consider the conformal map ϕ0(z) = i(1− z)/(1+ z) which maps U onto
H and sends 1 to 0, 0 to i. A radial restriction sample in H (with specified points 0 and i) is just the
image of radial restriction sample in U under the conformal map ϕ0. For x ∈ C,r > 0, We denote
B(x,r) as the disc centered at x with radius r.
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Fix x ∈ R\{0}, let 0 < ε < |x|. Then

gx,ε(z) := z+
ε2

z− x

is a conformal map from H\B(x,ε) onto H. Define

fx,ε(z) = b
gx,ε(z)− c

b2 +(c−a)(gx,ε(z)−a)

where a = ℜ(gx,ε(i)),b = ℑ(gx,ε(i)),c = gx,ε(0). Then fx,ε is the conformal map from H\B(x,ε)
onto H that preserves 0 and i.

Lemma 6.3.4. Let K be a radial restriction sample in H. For any x ∈ R\{0}, the following limit
exists

lim
ε→0

1
ε2P

[
K∩B(x,ε) 6= /0

]
.

We denote the limit as λ (x), we have further that λ (x) ∈ (0,∞).

Proof. Fix x ∈ (0,∞) and let θ ∈ (0,π) such that x = sinθ/(1+cosθ). Let ηx be the perfect radial
curve in H started from x and ended at i which is the image of the perfect radial curve in U started
from eiθ and ended at the origin under the conformal map ϕ0.

For ε > 0, define N(ε) = dε−2e. And ϕ1 = · · · = ϕN = fx,ε . Let Φε = ϕN(ε) ◦ · · · ◦ϕ1. Note
that Φε is a conformal map from H := ϕ

−1
1 ◦ · · · ◦ϕ

−1
N(ε)

(H) onto H that preserves i and 0. Define

Ax(ε) =H\H (see Figure 6.3.2). Then it is clear that,

Ax(ε)⊃ η
x([0, tx]), and Ax(ε)→ η

x([0, tx]) as ε → 0

where tx = (1+ cosθ)2 by direct computation of the capacity of Ax(ε) in H seen from i. And the
convergence is under Hausdorff metric.

K

Ax(ε)

i

0 x

Figure 6.3.2: Ax(ε) converges to ηx([0, tx]) in Hausdorff metric.

Define px(ε) = P
[
K ∩B(x,ε) 6= /0

]
. On the one hand, from conformal restriction property, we

know that
P
[
K∩Ax(ε) = /0

]
= (1− px(ε))

N(ε).

On the other hand, we know that

P
[
K∩Ax(ε) = /0

]
→ P

[
K∩η

x([0, tx]) = /0
]
= exp(−ν(θ)tx) as ε → 0.
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Compare these two relations, we have that

lim
ε→0

N(ε) log(1− px(ε)) =−ν(θ)(1+ cosθ)2.

This completes the proof. And we further know that

λ (
sinθ

1+ cosθ
) = ν(θ)(1+ cosθ)2. (6.3.1)

Lemma 6.3.5. The function λ defined in Lemma 6.3.4 is continuous for x ∈ (−∞,0)∪ (0,∞).

Proof. Suppose 0 < xL < xR < ∞. It is enough to prove the continuity of λ in the compact interval
I := [xL,xR].

We first analyze the convergence in Lemma 6.3.4 and use the same notations as in the proof of
Lemma 6.3.4. Since Ax(ε)⊃ ηx([0, tx]), we have that

P
[
K∩Ax(ε) = /0

]
≤ P

[
K∩η

x([0, tx]) = /0
]

which implies that (1− px(ε))
N(ε)≤ e−λ (x). We will show that there exists a universal upper bound

for e−λ (x)− (1− px(ε))
N(ε). Note that

e−λ (x)− (1− px(ε))
N(ε)

= P
[
K∩η

x([0, tx]) = /0,K∩Ax(ε) 6= /0
]

= P
[
K∩η

x([0, tx]) = /0
]
×P
[
K∩Ax(ε) 6= /0 |K∩η

x([0, tx]) = /0
]

= P
[
K∩η

x([0, tx]) = /0
]
×P
[
K∩Fx(Ax(ε)) 6= /0

]

≤ P
[
K∩Fx(Ax(ε)) 6= /0

]

where Fx is the conformal map from H \ηx([0, tx]) onto H that fixes 0 and i. Note that, the set
Fx(Ax(ε)) is continuous in x and ε (in Hausdorff metric). There exist interval J and universal
constant c > 0 such that Fx(Ax(ε)) ⊂ Jcε for any x ∈ Ĩ := [xL/2,2xR], where J depends only on I,
and c > 0 depends on I, and Jδ denotes the δ neighborhood of J. Then we can see further that there
exists r(ε)> 0, depending on I and ε with the property that r(ε)→ 0 as ε → 0, such that

P
[
K∩Fx(Ax(ε)) 6= /0

]
≤ r(ε) for any x ∈ Ĩ.

So that we have the uniform bound for x ∈ Ĩ,

0≤ e−λ (x)− (1− px(ε))
N(ε) ≤ r(ε),

or equivalently
λ (x)≤−N(ε) log(1− px(ε))≤− log(e−λ (x)− r(ε)). (6.3.2)

For any x ∈ I, let ρ ∈ (0,1), and y ∈ (x−ρε,x+ρε), it is clear that

B(y,(1−ρ)ε)⊂ B(x,ε)⊂ B(y,(1+ρ)ε).

This implies that
py((1−ρ)ε)≤ px(ε)≤ py((1+ρ)ε),
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or equivalently,

−N(ε) log(−py((1−ρ)ε))≤−N(ε) log(1− px(ε))≤−N(ε) log(1− py((1+ρ)ε)) .

By (6.3.2), we have that

N(ε)

N((1−ρ)ε)
λ (y)≤−N(ε) log(1− px(ε))≤−

N(ε)

N((1+ρ)ε)
log
(

e−λ (y)− r(ε)
)
.

Furthermore,

N(ε)

N((1−ρ)ε)
sup{λ (y) : |x− y| ≤ ρε} ≤ −N(ε) log(1− px(ε))

≤ N(ε)

N((1+ρ)ε)
inf{− log

(
e−λ (y)− r(ε)

)
: |x− y| ≤ ρε}.

Let ε → 0, we have that, for any ρ ∈ (0,1),

(1−ρ)2 lim
ε→0

sup{λ (y) : |x− y| ≤ ρε} ≤ λ (x), (6.3.3)

and
λ (x)≤ (1+ρ)2 liminf

ε→0
inf{− log

(
e−λ (y)− r(ε)

)
: |x− y| ≤ ρε}. (6.3.4)

Consider (6.3.3), since it is true for any ρ ∈ (0,1), it particularly implies that

λ (x)≥ limsup
y→x

λ (y). (6.3.5)

If λ is not continuous at x, by (6.3.5), we know that there exist δ > 0 and a sequence yk→ x such
that

λ (yk)≤ λ (x)−δ .

However, this contradicts with (6.3.4).

Fix x,y ∈ R\{0}, Define

F(x,y) = lim
ε→0

1
ε2 ( fx,ε(y)− y), G(x,y) = lim

ε→0

1
ε2 ( f ′x,ε(y)−1).

By direct computation, we have that

F(x,y) =
1+ x2 + y2 + xy

x(1+ x2)
+

1
y− x

, G(x,y) =
x+2y

x(1+ x2)
− 1

(y− x)2 . (6.3.6)

We use the notation f . g to imply f/g is bounded by universal constant, f & g to imply g . f ,
and f � g to imply f . g and f & g.

Lemma 6.3.6. The function λ defined in Lemma 6.3.4 is differentiable in x ∈ (−∞,0)∪ (0,∞) and
satisfies the following commutation relation: for any x,y ∈ R\{0},

λ
′(y)F(x,y)+2λ (y)G(x,y) = λ

′(x)F(y,x)+2λ (x)G(y,x). (6.3.7)
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Proof. Let I ⊂ (−∞,0)∪ (0,∞) be a compact interval. By the continuity of λ and (6.3.2), we have
that

px(ε) := P
[
K∩B(x,ε) 6= /0

]
� ε

2 (6.3.8)

where the constant in � depends only on I.
We will first show that λ is Lipschitz continuous on I. For x,y ∈ I. Recall that

e−λ (x) = P
[
K∩η

x([0, tx]) = /0
]
.

So that

e−λ (x)− e−λ (y)

= P
[
K∩η

x([0, tx]) = /0
]
−P
[
K∩η

y([0, ty]) = /0
]

≤ P
[
K∩η

x([0, tx]) = /0,K∩η
y([0, ty]) 6= /0

]

= P
[
K∩η

x([0, tx]) = /0
]
×P
[
K∩Fx(η

y([0, ty])) 6= /0
]

= e−λ (x)P
[
K∩Fx(η

y([0, ty])) 6= /0
]

where, recall that, Fx is the conformal map from H\ηx([0, tx]) onto H that fixes 0 and i. So that

1− exp(λ (x)−λ (y))≤ P
[
K∩Fx(η

y([0, ty])) 6= /0
]
. (6.3.9)

As we explained in the proof of Lemma 6.3.5, there exist a compact interval J depending on
I and c > 0 depending on I, such that Fx(η

y([0, ty])) ⊂ Jcε as long as |y− x| ≤ ε . Consider Jcε ,
there exists a number N depending on I such that Jcε can be covered by N/ε balls of radius 2cε .
Together with (6.3.8), we have that

P
[
K∩Fx(η

y([0, ty])) 6= /0
]
≤ P

[
K∩ Jcε 6= /0

]
. ε when |x− y| ≤ ε (6.3.10)

where the constant in . depends only on I. Combine this relation and (6.3.9), we have that

|λ (x)−λ (y)|. |x− y|

where the constant in . depends only on I.

Since λ is locally Lipschitz continuous in R \ {0}, it is differentiable almost everywhere, i.e.
it is differentiable except on a Lebesgue measure zero set. And there exists an integrable function
ω such that, λ ′(x) = ω(x) at the point x at which λ is differentiable, and, for any x > y > 0 (or
y < x < 0),

λ (x)−λ (y) =
∫ x

y
ω(u)du.

Consider two points x,y at which λ is differentiable. Let ε > 0,δ > 0.

P
[
K∩B(x,ε) = /0,K∩B(y,δ ) = /0

]

= P
[
K∩B(x,ε) = /0

]
×P
[
K∩ fx,ε(B(y,δ )) = /0

]

= 1− px(ε)−P
[
K∩ fx,ε(B(y,δ )) 6= /0

]
+ px(ε)P

[
K∩ fx,ε(B(y,δ )) 6= /0

]
.

So that,

P
[
K∩B(x,ε) = /0,K∩B(y,δ ) = /0

]
−1+ px(ε)+ py(δ )

= py(δ )−P
[
K∩ fx,ε(B(y,δ )) 6= /0

]
+ px(ε)P

[
K∩ fx,ε(B(y,δ )) 6= /0

]
.
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Divide by ε2δ 2 and take the limit, we have that

lim
ε,δ→0

1
ε2δ 2

(
P
[
K∩B(x,ε) = /0,K∩B(y,δ ) = /0

]
−1+ px(ε)+ py(δ )

)

= lim
ε,δ→0

1
ε2δ 2

(
py(δ )−P

[
K∩ fx,ε(B(y,δ )) 6= /0

]
(1− px(ε))

)

= lim
ε→0

1
ε2

(
λ (y)−λ ( fx,ε(y))| f ′x,ε(y)|2(1− px(ε))

)

= λ (x)λ (y)−λ
′(y)F(x,y)−2λ (y)G(x,y).

By the symmetry, we get (6.3.7) for the points x,y at which λ is differentiable.
Fix y in (6.3.7), we have

λ
′(x) = (λ ′(y)F(x,y)+2λ (y)G(x,y)−2λ (x)G(y,x))/F(y,x).

The right side is continuous in x ∈ R\{0,y}. Thus we can extend ω to R\{0,y} by the right side.
Then it is clear that ω is a continuous function in R \ {0} and in particular, this implies that λ is
differentiable everywhere in R\{0} and the derivative satisfies (6.3.7) for any points x,y∈R\{0}.

Lemma 6.3.7. There exist two constants c0,c2 ≥ 0 such that

λ (x) =
c0 + c2x2

x2(1+ x2)2 for x ∈ R\{0}.

Proof. From (6.3.7) and (6.3.6), we know that λ is smooth in (−∞,0)∪ (0,+∞). In (6.3.7), fix
x ∈ R\{0}, and let y→ x. Compare the coefficients of the two sides of the equation, we have that

x2(1+ x2)2
λ
′′′(x)+6x(1+ x2)(1+3x2)λ ′′(x)

+6(1+12x2 +15x4)λ ′(x)+24x(2+5x2)λ (x) = 0. (6.3.11)

Set P(x) = x2(1+ x2)2λ (x), then (6.3.11) is equivalent to

P(x)′′′ = 0.

Together with the symmetry in λ , we know that, there exist constants c0,c1,c2 such that

λ (x) =
c0 + c1x+ c2x2

x2(1+ x2)2 for x > 0; λ (x) =
c0− c1x+ c2x2

x2(1+ x2)2 for x < 0.

Take x > 0 > y, by (6.3.7), we have that c1 = 0. Since λ (x) > 0 for all x ∈ R\{0}, we know that
c0 ≥ 0,c2 ≥ 0.

Proof of Proposition 6.3.3. Consider a radial restriction sample K in U. Fix θ ∈ (0,π), let ν(θ) be
defined through Lemma 6.3.2. And let λ be defined through Lemma 6.3.4. From Lemma 6.3.7 and
(6.3.1), we have that

ν(θ) =−α +
β

1− cosθ

where α = (c0− c2)/4,β = c0/2. Recall (6.2.3), we have that

P
[
K∩η

θ ([0, t]) = /0
]
= | f ′t (0)|α f ′t (1)

β .

Then the conclusion can be derived by similar explanation in the proof of [LSW03, Proposition
3.3].
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6.4 Admissible range of (α,β )

6.4.1 Description of P(α,β )’s when β ≥ 5/8

In order to complete the proof of our main theorem, it now remains to show for which values of α

and β the previous measure exists. Note now that from the properties of Poisson point process of
Brownian loops, we can deduce the following fact:

Lemma 6.4.1. If the radial restriction measure P(α0,β0) exists for some α0,β0 ∈ R, then for any
α < α0, P(α,β0) exists, and furthermore, almost surely for P(α,β0), the origin is not on the
boundary of K.

Proof. Let K0 be a closed set sampled according to P(α0,β0), and let (γ j, j ∈ J) be an independent
Poisson Point Process with intensity (α0−α)µ0

U. We view each loop γ j as the loop with the domain
that it surrounds. Then let K be the closure of the union of K0 and all loops in (γ j, j ∈ J). We have
that, for any A ∈A r,

P
[
K∩A = /0

]

= P
[
K0∩A = /0

]
×P
[
γ j∩A = /0,∀ j ∈ J

]

= |Φ′A(0)|α0Φ
′
A(1)

β0|Φ′A(0)|α−α0 = |Φ′A(0)|αΦ
′
A(1)

β0.

It is clear that K has the law of P(α,β0) and the 0 /∈ ∂K.

Hence, we have the following result:

Corollary 6.4.2. Suppose that a radial restriction measure P(α0,β0) exists for some α0,β0 ∈ R,
and that for this measure, 0 ∈ ∂K almost surely. Then, P(α,β0) does exist if and only if α ≤ α0.

Proof. Suppose that P(α,β0) exists for some α >α0, then the previous lemma implies that P(α0,β0)
almost surely, 0 /∈ ∂K, which is a contradiction. On the other hand, the same lemma shows that
P(α,β0) exists for all α < α0.

In (6.2.4), we already know the existence of P(ξ (β ),β ) for β = 5/8. We will construct
P(ξ (β ),β ) for β > 5/8 in Proposition 6.4.4. Fix ρ > 0. Let (gt , t ≥ 0) be the radial Loewner
chain SLE8/3(ρ) generated by the driving function (Wt , t ≥ 0), and η be the corresponding radial
curve. Recall that W is the solution to the system of SDEs (6.2.5). To simplify notation, we denote
θt = (Wt−Vt)/2. For any A ∈A r, let τA be the first time that η hits A. For any t < τA, let ht be the
conformal map from U\gt(A) onto U such that ht(0) = 0,ht(eiWt ) = eiWt . Then

Lemma 6.4.3.

Mt := exp
(

α(
∫ t

0
ds|h′s(eiWs)|2− t)

)
×|h′t(eiWt )| 58 ×|h′t(eiVt )|γ ×Z

3
8 ρ

t (6.4.1)

is a local martingale where

Zt =
sinϑt

sinθt
, ϑt =

1
2

arg(ht(eiWt )/ht(eiVt )),

α =
5

48
+

3
64

ρ(ρ +4), γ =
1

32
ρ(3ρ +4), β =

5
8
+ γ +

3
8

ρ =
1

32
(ρ +2)(3ρ +10).

Note that α = ξ (β ).
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Proof. Define φt(z)=−i loght(eiz) where log denotes the branch of the logarithm such that−i loght(eiWt )=
Wt . Then

|h′t(eiWt )|= φ
′
t (Wt), |h′t(eiVt )|= φ

′
t (Vt), ϑt = (φt(Wt)−φt(Vt))/2.

To simplify the notations, we set X1 = φ ′t (Wt),X2 = φ ′′t (Wt),Y1 = φ ′t (Vt). By Itô formula, we have
that

dφt(Wt) =
√

8/3X1dBt +

(
−5

3
X2 +

ρ

2
X1 cotθt

)
dt,

dφt(Vt) =−X2
1 cotϑtdt,

dφ
′
t (Wt) =

√
8/3X2dBt +

(
ρ

2
X2 cotθt +

X2
2

2X1
+

X1−X3
1

6

)
dt,

dφ
′
t (Vt) =

(
−1

2
X2

1 Y1
1

sin2
ϑt

+
1
2

Y1
1

sin2
θt

)
dt,

dθt =

√
8/3
2

dBt +
ρ +2

4
cotθtdt,

dϑt =

√
8/3
2

X1dBt +

(
−5

6
X2 +

1
2

X2
1 cotϑt +

ρ

4
X1 cotθt

)
dt.

So that

dMt =

√
8/3

16
Mt

(
10

X2

X1
+3ρ(X1 cotϑt− cotθt)

)
dBt .

ηR

ηL

K

Figure 6.4.1: ηR is a radial SLE8/3(ρ) in U from 1 to 0. Conditioned on ηR, ηL is a chordal
SLER

8/3(ρ−2) in U\ηR([0,∞]) from 1 to 0. K is the closure of the union of domains between the
two curves.

Proposition 6.4.4. For β > 5/8, let ρ = 2
3(
√

24β +1−1)−2 > 0. Let ηR be a radial SLE8/3(ρ)

in U from 1 to 0 with force point 1−. Given ηR, let ηL be an independent chordal SLER
8/3(ρ − 2)
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in U \ηR([0,∞]) from 1− to 0. Define K as the closure of the union of the domains between ηR

and ηL. Then the law of K is P(ξ (β ),β ) (that therefore exists) and under this probability measure,
0 ∈ ∂K almost surely.

Hence, this proves that for β ≥ 5/8, P(α,β ) exists if and only if α ≤ ξ (β ).

Proof. (See Figure 6.4.1) Let (gt , t ≥ 0) be the radial Loewner chain for ηR. For any A ∈A , let τA
be the first time that ηR hits A. For any t < τA, define ht as the conformal map from U\gt(A) onto
U such that ht(0) = 0,ht(eiWt ) = eiWt . Define the local martingale M as in (6.4.1). When ρ > 0, Mt
is positive and bounded by 1. Thus it is a real martingale. Note that

M0 = |Φ′A(0)|ξ (β )Φ′A(1)β .

If τA < ∞, then there exists a sequence tn→ τA, such that limn Mtn = 0.
If τA = ∞, then there exists a sequence tn→ ∞, such that (see [Wer04a, Section 5.2])

|h′tn(0)| → 1, |h′tn(eiWtn )| → 1, Ztn → 1, |h′tn(eiVtn )|γ → P
[
K∩A = /0 |ηR].

Thus, almost surely,
lim

t→τA
Mt = P

[
K∩A = /0 |ηR]1τA=∞.

As a result
P
[
K∩A = /0

]
= E(MτA) = M0.

6.4.2 Why can β not be smaller than 5/8?
It remains to show that if P(α,β ) exists, then β ≥ 5/8. In the following we assume that P(α,β )
exists. We are going to show how to use this radial measure to construct a chordal restriction
measure of exponent β , which will then imply that β cannot be smaller than 5/8.

Let X be the collection of compact subsets K of U such that K is connected and C \K is
connected. Let A be the collection of compact subset A of U such that A = U∩A, U\A is simply
connected. Endow X with the σ -field generated by the events C (A) := (K ∈ X : K ∩A = /0) for
A ∈A . This σ -field coincides with the σ -field generated by Hausdorff metric on X . In particular,
X is compact since U is compact.

Let K be a radial restriction sample of law P(α,β ). For any ε > 0, define the probability
measure µε on X by

µε(C (A)) = P
[

fε(K)∩A = /0
]

where A ∈A such that +1 6∈ A,−1 6∈ A and fε is the conformal map from U onto itself such that
fε(0) =−1+ ε, fε(1) = 1.

Since X is compact, the sequence (µε ,ε > 0) is tight, thus there exists a subsequence (µεk ,k ∈
N) such that εk → 0 and µεk converges weakly to some probability measure µ on X . There two
observations:

• For any A ∈A such that +1 6∈ A,−1 6∈ A,

µε(C (A)) = |Φ′ε(−1+ ε)|αΦ
′
ε(1)

β →Ψ
′
A(1)

β as ε → 0 (6.4.2)

where Φε is the conformal map from U\A onto U that preserves −1+ ε and +1, ΨA is the
conformal map from U\A onto U that preserves ±1 and Ψ′A(−1) = 1.



6.4. ADMISSIBLE RANGE OF (α,β ) 151

• For any A ∈A such that +1 6∈ A,−1 6∈ A and δ > 0, define Aδ
o as the open δ -neighborhood

of A and Aδ
i = U\ (U\A)δ

o . Note that Aδ
o is open, Aδ

i is closed, C (Aδ
o ) is closed and C (Aδ

i )
is open. Thus

µ(C (Aδ
i )\C (Aδ

o ))≤ lim
k

µεk(C (Aδ
i )\C (Aδ

o )).

From (6.4.2), we know that there exists g(δ ) goes to zero as δ goes to zero and is independent
of ε such that

µεk(C (Aδ
i )\C (Aδ

o )) = µεk(C (Aδ
i ))−µεk(C (Aδ

o ))≤ g(δ ).

Thus we have that

µ(C (Aδ
i )\C (Aδ

o ))≤ g(δ ). (6.4.3)

From (6.4.2) and (6.4.3), we have that

µ(C (A)) = Ψ
′
A(1)

β

for any A ∈A such that ±1 6∈ A and ΨA is the conformal map from U\A onto U that preserves±1
and Ψ′A(−1) = 1. Thus µ is the chordal restriction measure of exponent β , thus β ≥ 5/8.

This concludes the proof of our main theorem.

6.4.3 Concluding remarks
We would just like to note that all the enumerated results on chordal restriction samples that we
have briefly recalled in Section 6.2.2 do have a radial restriction counterpart: The dimension of cut-
points is the same (and given by β only), the boundaries of radial restriction sample P(ξ (β ),β )
are radial SLE8/3(ρ) processes, the full-plane Brownian intersection exponents describe the law
of radial restriction samples conditioned not to intersect etc. We leave the precise statements and
detailed proofs to the interested reader.
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Supér. (4), 42(5):697–724, 2009.

153



154 BIBLIOGRAPHY
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