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Abstract

The capsule is a liquid droplet enclosed by a very thin and deformable

membrane. The membrane allows the separation and protection of inter-

nal liquid medium from external environment. The membrane mechanical

properties are critical for the deformation and motion of capsules in ac-

tual applications. The flow of a capsule suspension through a microfluidic

channel with dimensions comparable with those of the suspended parti-

cles can be used to infer the elastic properties of the capsule membrane,

however a mechanical model of the process is then essential.

We present a three-dimensional numerical model for this fluid-structure

interactions problem in confined flows. We use a novel numerical model

that couples a boundary integral method for the internal and external

fluid flows and a finite element method for the membrane deformation.

This model is proved to be stable even when the membrane is under

compression and tends to buckle.

The developed model is applied to study the flow of an initially spherical

capsule in channels with different cross-sections. In a cylindrical channel

with a circular cross-section, we show that the confinement effect of the

channel walls leads to compression of the capsule in the hoop direction.

The membrane then tends to buckle and to fold as observed experimen-

tally. The capsule deformation is three-dimensional but can be fairly well

approximated by an axisymmetric model that ignores the folds. In a mi-

crofluidic channel with a square cross-section, the fully three-dimensional

capsule deformation is less than the one in a cylindrical channel for the

same given flow conditions. The effects of membrane constitutive laws,

size ratio and flow strength on the capsule deformation are systematically

studied. We provide the databases of the deformation parameters and

capsule velocity as a function of flow strength, size ratio and membrane

constitutive laws in a square section channel. The comparison between

experimental and numerical results allows us to deduce the membrane
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mechanical properties of a population of artificial capsules with an oval-

bumin membrane. We also show that the ovalbumin membrane tends to

have a strain-softening behavior.

The present work shows the possibility to measure the membrane mechani-

cal properties by using a microfluidic channel with a square cross-section.

It can be extended to unsteady capsule flows in a channel with variable

cross-sections or bifurcations.

keywords: microcapsule, fluid-structure interactions, boundary integral

methods, microfluidics, inverse analysis

Résumé

Une capsule est une goutte de liquide enveloppée par une membrane très

fine et déformable. La membrane permet de séparer et protéger le mi-

lieu interne du milieu externe. Les propriétés mécaniques de la mem-

brane sont essentielles pour le mouvement et la déformation de la capsule

dans les applications pratiques. L’analyse de l’écoulement d’une suspen-

sion de capsules dans un canal microfluidique de dimension comparable

est une technique qui peut être utilisée pour déterminer les propriétés

élastiques de la membrane. Cependant, un modèle mécanique approprié

de l’écoulement est essentiel.

Nous présentons un modèle numérique tridimensionnel pour ce problème

d’interaction fluide-structure dans un écoulement confiné. Ce modèle cou-

ple une méthode intégrale de frontière pour les écoulements des fluides

interne et externe et une méthode d’éléments finis pour la déformation

de la membrane. Il s’avère être stable même lorsque la membrane est en

compression et a tendance à flamber.

Le modèle proposé est utilisé pour étudier l’écoulement d’une capsule ini-

tialement sphérique dans des canaux de sections transversales différentes.

Dans un canal cylindrique, on montre que l’effet de confinement des parois

du canal conduit à la compression de la capsule. Cela engendre la forma-

tion de plis sur la membrane autour de l’axe de l’écoulement, phénomène
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également observé expérimentalement. La déformation de la capsule est

donc tridimensionnelle, mais peut être correctement approximée par un

modèle axisymétrique qui ne tient pas compte des plis. Dans un canal mi-

crofluidique de section carrée, la déformation est totalement tridimension-

nelle, et moins importante que dans un canal cylindrique pour des condi-

tions d’écoulement identiques. Les effets de la loi constitutive de la mem-

brane, du rapport de taille et du débit d’écoulement sur la déformation

de la capsule sont systématiquement étudiés. Nous avons construit une

base de données des paramètres de la déformation et de la vitesse de la

capsule en fonction du débit d’écoulement, du rapport de taille et de la

loi constitutive de la membrane dans un canal carré. La comparaison en-

tre les résultats expérimentaux et numériques nous permet de déduire les

propriétés mécaniques de la membrane en ovalbumine d’une population

de capsules artificielles. Nous avons ainsi montré que la membrane en

ovalbumine semble avoir un comportement adoucissant.

Ce travail prouve la faisabilité de la mesure de propriétés mécaniques

d’une membrane en utilisant une technique microfluidique en canal carré.

Il pourrait être étendu par l’étude d’écoulements instationnaires dans un

canal de section variable ou avec une ou plusieurs bifurcations.

mots-clés: microcapsule, interaction fluide-structure, méthode des in-

tégrales de frontière, microfluidique, analyse inverse
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Chapter 1

Introduction

1.1 Definition and applications of capsule

Capsules consisting of an internal liquid droplet enclosed by a thin elastic membrane

exist in every corners of our daily lives, just as the omnipresent biological cells in

nature and widespread deformable artificial particles in industry. Thanks to the pre-

sence of a thin membrane, the specific structure of capsules allows the separation

and protection of an internal medium from an external liquid environment. There-

fore the dispersion and degradation of the internal active substance are prevented

or controlled by the membrane. Meanwhile, the motion and deformation of a cap-

sule are usually different from that of a rigid particle, as they largely depend on the

mechanical properties of membrane.

(a) (b) External liquid

Internal liquid

Deformable membrane

Figure 1.1: Capsule model for biological cells. (a) red blood cells (from clinicalcen-
ter.nih.gov); (b) Capsule model.

A capsule is usually used as a simplified model for those biological cells ranging

from red blood cells to bacteria. They differ from simple droplets, for which an exten-

sible interface controlled by surface tension separates the drop liquid from the external

liquid. Biological capsules are usually enclosed by a surface inextensible thin solid
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CHAPTER 1. INTRODUCTION

membrane with complicated structure. For instance, the red blood cell, which can

be treated as a typical passive natural capsule, is enclosed by a membrane consisting

of a phospholipid bilayer containing internal membrane proteins and an underlying

membrane skeleton [101]. As the red blood cells are responsible for transportation of

respiratory gases to and from the tissues, large motions and deformations of red blood

cells will be repeated for a large number of cycles in the circulation system during

their life cycle spreading over 120 days [38]. The membrane mechanical properties

permit the protection of internal hemoglobin from external plasma flow by avoiding

rupture, as well as the maintenance of a relatively stable shape in the microcirculation

which is beneficial for the gaseous exchanges. In addition, the high deformability of

the membrane plays a key role in the microcirculation by allowing the red blood cell

to flow easily through capillary vessels of diameter smaller than the cell dimension.

There is no question that the membrane mechanical properties are essential for the

red blood cell to realize its natural functions.

(a) (b) (c)

150µm

20µm

Figure 1.2: Applications of encapsulation techniques in various domains. (a) capsules
for drug release in pharmaceutics [71]; (b) capsules in cosmetics (from www.swri.org);
(c) cellular uptake by microcapsules in bioengineering [109].

To make artificial capsules, a controlled encapsulation technique encloses the in-

ternal substance (liquid or solid) by a thin elastic membrane. It leads to encapsu-

lated structures which are of great importance to meet the demands of industries for

many reasons. One of the primary reasons is that the isolation of the internal active

substance can provide effective protection by avoiding its degradation and deactiva-

tion (like oxidation effect) by the surrounding environment. Besides, encapsulation

techniques also permit the targeted transportation and/or the controlled release of

the internal substance as demanded in practical applications. During the past few

decades, lots of researchers have paid close attention to the studies of encapsulation

techniques [110].

Artificial capsules are widely used in many industrial domains, such as in phar-

maceutics, cosmetics, bio- and biomedical engineering, as shown in Fig. 1.2.
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CHAPTER 1. INTRODUCTION

In the pharmaceutical industry, the targeted transportation of an active thera-

peutic drug over an extended time is becoming more common for medical treatments,

since it has lots of benefits such as the decrease of drug toxicity and the increase of

use efficiency. For this purpose, encapsulation techniques are often used to develop

controlled-release delivery systems, which usually involve colloidal packagings such as

polymeric particles and microemulsion capsules [13]. The use of encapsulation tech-

niques is also found to be able to improve the dissolution and bioavailability of some

medicines. Ghirardi et al. [33] have compared the encapsulated form of the digoxin

solution inside soft gelation capsules with the common commercial tablet form, the

in vitro results showed that the digoxin capsules dissolved more readily with higher

bioavailability than that in tablet forms.

Microcapsules are also used as a carrier system for active materials (such as ther-

apeutic antigen and liquid reagents) in applications of drug targetting and/or slow

release systems. The protection of the internal medium is allowed by encapsulation

during transportation, and controlled release can be realized by the break-up of the

microcapsules when they arrive at the targeted area. Such applications widely exist

in the bioengineering and biomedical domains [39, 70].

In the cosmetic industry, the encapsulation technique is also widely used to meet

the increasing number of demands for the better control of labile substances such as

antioxidants and perfumes. The encapsulation of an active component can facilitate

its fabrication, storage and release. A good example is the preservation of vitamin

E in cosmetics. As is known to all, the vitamin E can be used in skin care products

to protect the tissue from the effect of ultraviolet radiation. However, it is easy to

degrade through exposure to air and/or heat. Encapsulation is one technique used

to preserve its activity. For example, Shalaka et al. [93] developed a method based

on a membrane consisting of the combination of two polymers (pectin and sodium

alginate). During application, the protected vitamin E is released by rupturing the

capsules. Hurteaux et al. [45] have proposed an adapted transacylation method to

enclose calcium alginate gel by a human serum albumin (HSA)-alginate membrane.

The obtained capsules of size around 60 µm were shown to be effective for the slow

release of the internal substance. Great progress has also been done on encapsulation

techniques for other cosmetic products such as essential oils and ultraviolet absorbents

[66, 3, 67].

In the food industry, there is an increasing number of food products containing

bioactive components with a health promoting or disease preventing effect [18]. Some

live microorganisms such as probiotic bacteria and lactobacilli can be used as bioactive

3



CHAPTER 1. INTRODUCTION

food components, but they are highly sensitive to the environmental conditions (e.g.

pH value, hydrodynamic force and digestive enzymes in the digestive system) [68].

An important application of the encapsulation technique is to improve the stability

of those live and active ingredients in complex conditions. An emulsion method was

proposed to encapsulate lactobacilli in calcium alginate gels by Shue and Marshall

[95]. They showed that encapsulated lactobacilli had survival rate 40% higher than

free non-entrapped cells during freezing of ice milk. Sultana et al. [100] have proposed

a modified method for probiotic cells involving calcium-alginate-starch encapsulation.

The encapsulated cells were shown to have a better survival rate than free cells after

a storage period of 8 weeks. Many other benefits can also be introduced into food

industry by the encapsulation technique, for example, to conceal unpleasant tastes of

polyphenols [28] and to preserve the flavor of aromatic additives [65]. More reviews

of the encapsulation technique in food industry are available in [18, 28, 68].

In this dissertation, we specifically study liquid-filled capsules enclosed by a thin

elastic membrane, for which, the motion highly depends on mechanical properties

of the deformable membrane. A good understanding of the membrane mechanical

properties is therefore critical for lots of purposes, ranging from the design of artificial

capsules to the control of rupture as demanded.

1.2 Fabrication of liquid-filled capsule

Since capsules have extensive applications in various domains, many researchers have

paid close attention to their fabrication, and several encapsulation techniques have

been developed. Capsules of different physical properties (e.g. the shape, size and

stability) can be produced depending on fabrication parameters, membrane materials

and encapsulation techniques. Tremendous research efforts have been done on dif-

ferent aspects of the capsule fabrication. In this section, we briefly summarize some

classical techniques that are close to the purpose of this dissertation.

The traditional methods for capsule fabrication can be decomposed into two steps

[16]: first, a liquid droplet of required size is fabricated. Then, capsules are formed

by enveloping the droplet with a membrane made of different materials (e.g. proteins

and polymers).

1.2.1 Droplet fabrication

For the fabrications of droplets, one of the most common and classical methods is to

use the emulsification process which consists in agitating mechanically two immiscible
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Figure 1.3: Fabrication of droplets from the emulsification process produced by the
mechanical agitation.

phases, e.g. the oil and water, as shown in Fig. 1.3. Droplets are thus generated from

the emulsification effect. The average size of fabricated droplets depends on several

factors, including the agitation velocity, the emulsification time, the ratios of volumes

and viscosities between dispersed and continuous phases, etc. The emulsification pro-

cess can also be produced by some other systems such as power ultrasound. Ab̈ısmail

et al. [1, 2] have compared the oil-in-water emulsions produced by mechanical agi-

tation or power ultrasound. They showed that the power ultrasound method leads

to a smaller average drop size than mechanical agitation under the same conditions.

Although a large number of droplets are produced by the emulsification processes, a

limitation of this technique is the inhomogeneity of droplet sizes which can lead to a

large dispersion to about 40% [16].

Another classical droplet fabrication is the extrusion method. As implied by the

name, the dispersed phase (e.g. alginate solution) is extruded through an orifice

or syringe needle under a controlled pressure, the droplets are thus formed one by

one by the effect of surface tension [73, 50]. The size of the fabricated droplets is

more homogeneous than in the emulsification process. It depends largely on the

pore geometry and some other factors such as the applied pressure [73]. However,

the droplets are extruded individually. This method only allows the fabrication of a

limited number of droplets, which is one of the drawbacks of this technique [16].
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1.2.2 Membrane formation

Liquid-filled microcapsule membranes are mainly fabricated by a chemical process,

such as interfacial polycondensation and interfacial cross-linking polymerization.

Figure 1.4: Typical process of membrane formation by the interfacial polycondensa-
tion of dispersed monomers. Image from [102].

A typical process of the membrane generation by the interfacial polycondensa-

tion of dispersed monomers is shown in Fig. 1.5. Considering two monomers (A

and B) which can react with each other according to a polycondensation mechanism,

it is possible to introduce monomers A in the dispersed phase and then generate

the droplets containing monomers A by the emulsification process, as shown in Fig.

1.5(a). Adding the monomers B in the continuous phase, the monomers react togeth-

er to induce an interfacial polycondensation, as shown in Fig. 1.5 (b). The reaction

between the monomers is decreased since the initial membrane formation, as it be-

comes harder for the monomers to diffuse through the increasingly thicker membrane

[60]. The properties of the formed membranes are normally homogenous. The size of

fabricated microcapsules depends largely on the factors in the emulsification process,

as presented in section 1.2.1. Several studies have been done with this technique for

the formation of microcapsules using nylon [86], polyurethanes [46] or polymers [10].

Aqueous solution
of protein

Hydrophobic phase
+ surfactant

Terephthaloyl chloride

Separation

Washing

Emulsification Reticulation Liquid-filled microcapsules

Figure 1.5: Typical process of microcapsule fabrication by the interfacial polymeriza-
tion with reticulation reactions.
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The liquid-filled microcapsules are also often fabricated by interfacial polymer-

ization with cross-linking reactions [25, 17]. The principle process of this method

is shown in Fig. 1.5. First, an aqueous solution of protein is emulsified in a hy-

drophobic phase to form the droplets of required size with the use of a surfactant

as the stabilizer. An organic solution of the cross-linking agent (e.g. terephthaloyl

chloride) is then added into the emulsified solution. Since the cross-linking agent is

bifunctional, the acylating reagent creates covalent bonds and leads to the formation

of bridges between protein molecules: the membrane is thus formed by reticulation

at the interface of the droplet. Finally, the reaction is stopped by dilution. The fabri-

cated microcapsules are separated from the hydrophobic phase by centrifugation and

washing, and conserved in an aqueous suspension. This method can be used to pro-

duce capsules of sizes ranging from several microns to millimeters [111, 102, 16]. The

properties of fabricated capsules depend on the parameters of emulsification process

(e.g. the agitation velocity), and also on several other factors, such as the pH of the

aqueous solution, the concentration in protein and the reticulation time. Chu et al.

[17] have studied the elastic modulus of the membrane of ovalbumin microcapsules

by an inverse analysis method and showed that the shear modulus increases with the

pH values and reaction time.

1.3 Determination of capsule membrane mechani-

cal properties

The determination of the membrane mechanical properties is essential both for fun-

damental research and for industrial applications, but it is a challenging task because

of the small size of micro-capsules. This problem has attracted much attention in the

past few decades, and several methods have been proposed to measure the mechanical

properties of different capsules. The common idea is to generate a capsule deformation

under a controlled stress and then to compare with the results of the corresponding

mechanical models to infer the mechanical properties of the capsule membrane.

1.3.1 Technique of compression

A widely used method for relatively large millimeter-size capsules is to compress them

between two solid parallel plates [12, 81, 84, 98]. As shown in Fig. 1.6, an initially

spherical capsule with radius r0 is placed between two parallel plates without contact

at the beginning of experiment. The separation of the two plates d(t) is used to

measure the capsule deformation. It is recorded simultaneously with the resultant
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force on the capsule F (t) in the process of compression. The compression process is

usually applied until the capsule bursts. A mechanical model is subsequently used

to analyze the experimental results: for each intra-plate distance, the comparison of

the experimental force and the numerical/theoretical one allows the deduction of the

intrinsic mechanical properties of the capsule membrane.

Figure 1.6: Compression of an initially spherical capsule between two parallel plates
[81].

A proper mechanical model of the capsule compression is therefore critical for the

successful deduction of the membrane properties from experimental results. Rachik et

al. [81] have shown that a 2D model with a thin shell approximation can be used for

the compression of capsules with thin membranes (less than 5% of total radius), but it

is necessary to use a 3D model for thicker membranes as the shear stress distribution

in the membrane thickness needs to be taken into account.

Carin et al. [12] have performed compression experiments on biocompatible cap-

sules with HSA-Alginate membrane, and determined the values of the apparent mem-

brane elastic modulus as the deformation increases. The compression experiments on

HSA-Alginate capsules with different membrane thickness have also been presented

to show the effect of membrane thickness [81]. Smith et al. [98] have applied the

compression test on yeast cells to measure the wall material properties.

Although the compression technique has been implemented successfully to mea-

sure several types of capsules, it was found that it requires a high sensitivity of the

experimental setup to allow precise measurement of the force for small compression

[12], and its applications are limited to millimeter-size capsules.

1.3.2 Technique of atomic force microscope

Following the successful invention of the scanning tunneling microscope which can

image individual surface atoms with unprecedented resolution, some new ”scanning

probe” microscopes relying on the mechanical scanning of a sharp tip over a sample
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Figure 1.7: Schematic of the deformation of an initially spherical capsule exerted by
the colloidal probe AFM technique. Image from [64].

surface have been developed [87]. The atomic force microscope (AFM) uses a sharp

tip attached at the end of a cantilever for the measurement or application of forces.

Different from the low sensitivity of capsule compression, the development of the

AFM-based apparatus has provided a possibility to measure the sub-micron deforma-

tions of microcapsules with good precision. The AFM technique can measure forces

between 10−11N and 10−6N and detect displacements as small as 1nm, which is suit-

able for microcapsule deformation studies [29]. Radmacher has used the AFM’s high

spatial resolution and high force sensitivity to test the stiffness of some biological

material including living cells [82].

In the case of the micro-sphere AFM probe technique [11, 24], a spherical solid

particle of several microns is attached to the end of AFM cantilever to replace the

sharp tip. Compared with a sharp tip, using a spherical particle (e.g. colloidal

or glass) probe can introduce a well-defined geometry and increase the sensitivity

for small interactions by increasing the interaction area [29]. It can be adapted to

perform a deformation similar to the one exerted by the compression technique by

using a colloid particle of large radius of curvature [30]. Dubreuil et al. [23] were

the first to apply the colloidal probe method for measurement of small deformations

of polyelectrolyte multilayer capsules. They obtained quantitative information on

material parameters such as the Young’s modulus.

The micro-sphere AFM probe technique has also been performed on biological

cells by many researchers. Ladjal et al. [56] have used the AFM system with a

spherical tip to obtain deformations of the mouse embryonic stem cells (mESC) and

determined the Young’s modulus of mESC by comparisons of experimental results

with some analytical models.
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1.3.3 Micropipette technique

The micropipette technique uses a micropipette to suck and deform part of a capsule

under a defined hydrostatic pressure. It has been applied with success to measure the

mechanical properties of many kinds of capsules including biological ones such as red

blood cells. A typical case of capsule deformation by the micropipette technique is

shown in Fig. 1.8. A micropipette with an inner diameter of several microns is used

for aspiration of a capsule under a controlled pressure drop. The capsule progression

into the pipette is monitored by microcopy as a function of the corresponding applied

pressure. With the help of mechanical models, it is then possible to determine the

elastic properties of capsule membrane.

Figure 1.8: Aspiration of phospholipid vesicle by a micropipette under a linear pres-
sure [40].

Kwok and Evans [53] have carried out the micro-mechanical test of the membrane

elastic properties of bilayer vesicles with the micropipette technique. Evans and

Rawicz [27] have used a sensitive micropipette method to measure the projected

surface area of vesicles under tensions in a large magnitude range (10−3−10 dyn/cm).

The mechanical behavior of living cells ranging from soft cells like red blood cells

to more rigid cells like endothelial cells has been studied with micropipette [42].

An automated micropipette aspiration has been proposed recently by Heinrich and

Rawicz [40], which was designed to apply fast and precise tensions to generate and

record the deformations of biological and artificial capsules.

Micro-techniques including the micropipette technique and the AFM-based tech-

nique have been proved to be able to deform the membrane deformations under

controlled tensions. However such techniques cannot be used to characterize large

populations of capsules as they require a number of skillful manipulations.
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(a) (b) (c)

Figure 1.9: Deformation sequences of a polymerized polysiloxane microcapsule [106].
The initially spherical capsule at rest (a) is deformed with shear rates γ̇ = 4s−1 (b)
and γ̇ = 18s−1 (c).

1.3.4 Flow in simple flow fields

Subjecting micro-capsules to simple flow fields (e.g. centrifugal flow and simple shear

flow) is also a possible method to generate and measure the capsule deformations

exerted by controllable viscous forces.

Chang et al. [15] have examined the shapes and orientations of a synthetic capsule

with a thin nylon membrane under the simple shear flows generated by a Couette

apparatus. The membrane elastic modulus and the membrane viscosity have been

deduced by comparison of their experimental results with the predictions of a small-

deformation theory proposed by Barthès-Biesel and Sgaier [8]. Walter et al. [106]

have also implemented experiments of shear induced deformations on polyamide and

polysiloxane microcapsules, as shown in Fig. 1.9. They have shown that the analyzed

capsules are predominantly elastic with minor viscous contributions. Two interesting

dynamic effects of shape oscillations and membrane folding have been revealed by

their experiments.

Pieper et al. [79, 72] have used a classical spinning drop apparatus, which was

originally designed to measure the surface tension between two liquids. The deforma-

tion of a capsule exerted by increasing rotation rates is measured in the apparatus,

and then a theoretical analysis of the mechanics of an initially spherical elastic shell

subjected to centrifugal forces allows the deduction of the surface elastic coefficients

from the experimental measurements of capsule deformations [72]. A limitation of

this technique is linked to the rather low level of mechanical stress that can be applied

[59].
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1.3.5 Flow in a microfluidic channel

A simple method to measure the elastic properties of membrane is to flow the capsule

suspension into a micro-fluidic channel with cross dimension of the same order as the

capsule size [59]. Large capsule deformations can be generated by the hydrodynamic

forces and boundary confinement, as shown in Fig. 1.10. With the recorded capsule

profiles and the corresponding velocities, the membrane mechanical properties can be

determined by comparison of experimental and numerical results.

(a) (b) (c) (d)

Figure 1.10: Capsule with a cross-linked ovalbumin membrane flowing in a cylindrical
glass capillary tube win inner diameter 75 µm. (a)(b)(c) typical deformed capsule
shapes for different size ratio [59]. (d) folds on membrane of a large capsule [59, 44].

This technique was initially proposed by Lefebvre et al. to measure the mechanical

properties of the membranes of artificial microcapsules [59]. Liquid-filled microcap-

sules (average diameter of 67 µm) with a membrane made of crossed-linked ovalbumin

were flowed into a cylindrical glass capillary tube with internal diameter 75 µm, and

then an axisymmetric model was successfully applied to infer the membrane elastic

modulus. Chu et al. [17] have applied this technique to characterize cross-linked

ovalbumin microcapsule populations fabricated at different reaction pH values and

reticulation time for the discrimination of the cross-linking degree. Their results

showed that the mechanical analysis method is reliable to discriminate between var-

ious cross-linking degrees of microcapsules. The axisymmetric model [19, 59], that

considers the flow of a centered spherical capsule in a cylindrical channel, is an essen-

tial part in the inverse analysis method for the comparison with experimental results.

The feasibility of the axisymmetric model has been shown for millimeter size capsules

[85] and for micrometer size capsules [59, 17].

However, folds on the membrane have been observed in experiments of large cap-

sules flowing in a cylindrical pore, as shown in Fig. 1.10(d). Because of their presence,

the capsule deformation is not axisymmetric. The feasibility of using the axisym-

metric model has to be examined for such three-dimensional (3D) deformation in

cylindrical channel.
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1.4 Capsule motion and deformation in channel

flow

Owing to the high deformability of the membrane, the motion of capsules is different

from that of rigid particles or simple droplets. Compared with a rigid particle, large-

displacement fluid-structure interactions are always involved in capsule flow. A good

understanding of capsule motion and deformation is essential both for fundamental

research and industrial applications. Therefore, several researchers have paid atten-

tion to the flow-induced behavior of liquid-filled capsules which evidently depends on

the external flow conditions. In this section, we specifically summarize experimental

and numerical studies of a single liquid-filled capsule flow in a straight channel, which

is close to the purpose of this dissertation.

1.4.1 Experimental observations

Just like the circulation of red blood cells in microvessels, capsules are often forced

to travel in micro channels to transport an active substance to the place where it

needs to be released. The capsule motion and deformation in channels determines,

to a great extent, whether the purposes of the applications can be achieved. Nu-

merous experimental studies have been devoted to the study of capsule motion and

deformation in various types of channel flow, and many features of the capsule flow

in comparable dimensional channels have been revealed.

The capsules flowing through a channel of comparable cross-section usually present

large deformations. As shown in Fig. 1.10 (a), the slug shape, which is characterized

by a larger membrane curvature at the front than at the rear, have been widely ob-

served in various experiments based on cylindrical tubes for initially spherical artificial

capsules with size of a few large millimeters [85] to a few microns [59, 17]. Because

the internal pressure at equilibrium state remains constant, the capsule longitudinal

profile must take a larger curvature in the front than in the rear to adapt to the

viscous pressure drop of the external flow. Thus the classical slug shape is obtained.

It is of interest to notice that the slug shapes were also observed by Lefebvre et al. in

a square-section microfluidic channels [59]. As shown in Fig. 1.10 (c) and (d), when

the capsule deformation is increased by a higher flow strength or other factors, the

capsules are frequently shown to deform with a concave membrane curvature in the

rear part. These are called parachute shapes [85, 59, 17]. The parachute shapes have

also been observed for red blood cells that have initially biconcave shapes both in

vivo (microcirculation) and in vitro experiments [96, 105, 36, 103].
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An important phenomenon for capsule flow in confined flow is the wrinkles (or

folding) on the membrane (see for example [14, 31, 63]). The wrinkles were initial-

ly observed on the membrane of elastic microcapsules deformed in shear flow [106]:

capsules with a polysiloxane membrane were found to present wrinkles on the mem-

brane even at low shear rates, while steady deformed shapes were observed for other

cross-linked polyamide capsules. Recently, it was shown that the wrinkles could oc-

cur on the surface of a large initially spherical capsule with cross-linked ovalbumin

membrane when it flows in a cylindrical channel [59, 44], as shown in Fig. 1.10 (d).

Figure 1.11: Shapes of red blood cells in a capillary vessel [96].

Another well-known problem of non-axisymmetric capsule deformation is the pu-

zzle of slipper-like shapes of red blood cells even if they flow in axisymmetric channels.

Motivated by the study of blood microcirculation, the motions and deformations of

red blood cells in capillary vessels have drawn a lot of attention from researchers. In

parabolic confined flow, red blood cells are found to adopt axisymmetric parachute-

like shapes which are a consequence to the combined effects of hydrodynamic forces,

membrane elasticity and boundary confinement [47]. But in fact, non-axisymmetric

slipper-like shapes have been observed in in vivo experiments of red blood cells in

microvessels, as shown in Fig. 1.11. Meanwhile, the slipper-like shapes have also been

frequently revealed in in vitro experiments in straight glass cylindrical tubes which

have a comparable radial dimension as that of red blood cells [32, 92, 104, 103].

Such a difference between experimental results and common assumptions continues

to attract plenty of attention in the aim of explaining it.

As shown above, the capsule flow in tubes of comparable dimension exhibits specif-

ic features including large capsule deformations, wrinkles, non-axisymmetric motion,

which need to be taken into account when constructing a model to described the

capsule flow in channels.
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1.4.2 Numerical simulations

Due to the micro-size of the capsule and its low velocity, the dynamic capsule flow

occurs normally at low Reynolds number: the internal and external flows can be de-

scribed by the Stokes equations. The capsule membrane is most frequently treated

as an 2D impermeable hyperelastic isotropic surface. Neglecting bending resistance,

the membrane deformation occurs in-plane. In this fluid-structure interaction prob-

lem, the capsule deformation depends on the membrane constitutive law. Several

membrane constitutive laws have been proposed to describe the mechanics of a thin

membrane. For instance, the strain-softening neo-Hookean law follows the assumption

that the membrane is an infinitely thin sheet of an isotropic volume incompressible

material, while the strain-hardening Skalak law was initially proposed to model the

area incompressible membrane of biological cells [59]. More details about the mem-

brane constitutive laws are available in section 2.1.3.2.

1.4.2.1 Pioneer studies

The theoretical studies of the mechanism of microcapsules under different flows were

initiated by Barthès-Biesel in 1980 [5]. She examined the small deformations of a

spherical capsule suspended in simple shear flow. In this research, the motions of the

internal and external flows were described by the Stokes equations, while the dynamic

equilibrium of the elastic membrane was expressed as the balance between viscous

and elastic forces. With the assumption of small deviation from initial sphericity, a

perturbation solution was sought for the deformation and orientation of microcapsule

in terms of the magnitude of shear rate, the ratio of internal and external viscosities

and the membrane elastic coefficient. The results obtained analytically revealed that

the capsule orientation depends on the ratio of internal and external viscosities, the

more viscous capsule being more titled towards the streamline. This method was later

improved by Barthès-Biesel and Rallison to derive the time-dependent deformation

of a microcapsule with a general two-dimensional elastic membrane under arbitrary

linear shear flow [7]. However, the perturbation models are valid only for small

deviations from the initial spherical shape. They are not suitable for non-spherical

capsules under large deformation, such as those experienced by red blood cells under

shear stress.

For the motion of a red blood cell in shear flow, Keller and Skalak [49] used e-

quilibrium and energy considerations to predict the cell motion which depends on

the ellipsoidal-axis ratios and the ratios of internal and external viscosities. In their
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theoretical model, the energy dissipation in the cell membrane was neglected and the

deformed cell geometry was a priori given. Two typical motions are observed de-

pending on the values of parameters: a stationary orientation motion or an unsteady

flipping motion. However, further research is needed to better simulate the motion

and deformation of a red blood cell in shear flow, since the mechanical properties of

the cell have not been well taken into account in this simplified model.

With the assumption of a small film between the capsule and the channel wall, the

lubrication approximation was proposed by Secomb et al. for the steady axisymmetric

deformation of a capsule flowing in a narrow cylindrical channel when the cell and the

tube are coaxial [91]. The flow of the suspending fluid in the gap between the capsule

and the channel wall was described by the lubrication theory, while the membrane

was assumed to be area-incompressible with negligible shear resistance. Their results

showed that the cell shape and apparent viscosity were independent of flow rate at

moderate and high cell velocities (& 1mm/s). But the apparent viscosity was found

to increase with decreasing flow rate for lower flow velocity, since the membrane stress

becomes increasingly important.

1.4.2.2 2D numerical models

The capsule motions in confined flows have also been studied by two-dimensional

(2D) numerical models. The capsule membrane surface that encloses the internal

medium is modeled as an elastic line, and the mass conservation of internal medium

is described by the invariance of the internal surface area.

Over the years, several 2D models of capsule motion and deformation under vari-

ous confined flows have been constructed with different techniques. Using the lubrica-

tion theory for the flow between the capsule and channel wall, Secomb and Skalak [90]

proposed a 2D model which considers the effect of asymmetry of cell shape on capil-

lary flow of tightly fitted red blood cells. When several red blood cells travel in group,

the zipper-type arrangement has been observed in experiments: the bulging head of

each cell is next to the trailing tail of another cell, as shown in [32]. Sugihara-Seki

et al. [99] have applied a 2D numerical analysis (based on a finite element method)

to study the effect of tank-treading motions on an idealized zipper-type flow. They

found that the zipper-type arrangements of red blood cells in capillaries are stabilized

by the membrane tank-treading. Thereafter, Secomb et al. [92] proposed a new 2D

model for a red blood cell by adding a set of interconnected viscoelastic elements

to model the membrane. The capsule motion and deformation computed using a
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finite-element numerical method were showed to agree closely with experimental ob-

servations. Based on the immersed boundary method, 2D simulations of blood flow

in small vessels were proposed by Bagchi [4]. He studied the motion of an individual

red blood cell in suspension and the collective motion of many cells. Recently, a 2D

vesicle model based on lattice-Boltzmann method has been proposed by Kaoui et al.

for the investigation of the effect of confinement between two parallel walls on vesicle

dynamics (e.g. the inclination angle and effective viscosity) under shear flow [48].

However, it is questionable that the simplified 2D models can provide quantita-

tively accurate results of the motion of a capsule which is inherently three-dimensional

(3D). In fact, the issue of introducing unrealistic features was already discovered when

2D models were applied for 3D motions [92]. For example, the rates of tank-treading

motion predicted by a 2D model [90] were much higher than the experimental obser-

vations. It is then necessary to construct a full 3D model of capsule flow, especially

when the 3D effects need to be taken into account.

1.4.2.3 3D axisymmetric models

As observed in experiments, a microcapsule flowing in channels often presents large

deformations induced by the boundary confinement and the hydrodynamic forces. It

is difficult to treat these large capsule deformations by analytical models as nonlinear

problems are involved. A numerical model must be developed especially for problems

including the membrane shear elasticity and bending resistance [80]. If the capsule

flow can be assumed to be axisymmetric, i.e. when the capsule and channel axis

coincide, the problem can be solved in a meridian plane.

The first axisymmetric model of capsule flow was carried out by Li et al. for

capsules suspended in an elongational flow [62]. The boundary-integral technique

was applied to obtain the deformation and motion of a capsule with a Mooney-Rivlin

membrane. The membrane surface that encloses the internal medium was then labeled

by material points (48 collocation points) on a meridian curve. The model was rea-

sonably accurate and stable for large deformations, even if some numerical smoothing

was necessary. Diaz et al. [20] extended this work by applying the boundary element

method for the spatial discretization of the capsule contour. High precision and re-

liability of the axisymmetric model were achieved by using cubic B-splines functions

to interpolate the positions of membrane points. A similar problem was then studied

and applied to a red blood cell in a straining flow by Pozrikidis [74].

As the motion and deformation are required to be axisymmetric, the models are

limited to only a small number of situations. However, the capsule coaxial flow in a
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cylindrical channel can be well described by an axisymmtric model. An axisymmetric

model for an initial spherical capsule flowing through a constriction was developed

by Leyrat-Maurin and Barthès-Biesel [61]. Their unsteady results help the under-

standing of capsule transient motions during filtration. As observed in experiments,

the entrance or exit plugging was well predicted by their model. Subsequently, the

axisymmetric motion of capsules passing through cylindrical channels with hyperbol-

ic entrance and exit regions was also studied by Quéguiner and Barthès-Biesel [80].

The boundary integral method was applied for the solutions of internal and external

Stokes flow, while the large membrane deformations were assumed to follow a neo-

Hookean law. A collocation technique was used for computation and a smoothing

method was also implemented to remove the oscillation in the capsule deformed pro-

files. Their results showed that the entrance length for a capsule to reach a steady

deformation depended largely on the capsule size and membrane behavior, even if the

capsule entrance was not sensitive to the downstream conditions. The effect of mem-

brane pre-stress on the motion of capsule in a cylindrical channel was also studied

by Lefebvre and Barthès-Biesel with the help of a similar axisymmetric model. The

numerical results were in good agreement with experimental observations of capsule

with alginate membrane [58].

Recently, axisymmetric models have been successfully applied to characterize the

membrane mechanical properties of artificial capsule flowing into a cylindrical channel

(more details are available in section 1.3.5) [59, 17].

1.4.2.4 3D models

A full 3D model is necessary to describe the capsule dynamic behavior in confined

channel for arbitrary cross-section shapes. Over the years, great progress has been

made by many researchers in constructing 3D models for such a confined capsule flow.

Hsu and Secomb [43] developed a three-dimensional theoretical analysis for the

flow of asymmetric red blood cell along a cylindrical capillary tube. With a tightly-

fitting assumption, the lubrication theory was used to compute velocities and pres-

sures of the fluid surrounding the cell. They showed that the membrane tank-treading

motion helps to reduce the flow resistance. A more general model was proposed by

Pozrikidis to describe the three-dimensional motion of an elastic capsule enclosed by a

strain-softening neo-Hookean membrane in a cylindrical tube [77]. The capsule mem-

brane mechanics was coupled with the interior and exterior hydrodynamics by means

of surface equilibrium expressed in global Cartesian coordinates, and a boundary-

element method was used to simulate the flow of capsules with initially spherical,
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oblate ellipsoidal and bioconcave shapes. This model was not based on the assump-

tion of tightly-fitting capsules in channel. It is more general than the lubrication

theory since the motion of a capsule with a small size compared with the channel

dimension is allowed. However, the problem of numerical instability was shown to

arise when negative tensions occur.

In a low-Reynolds-number Poiseuille flow between two parallel plates, the motion

of a deformable droplet was firstly examined by Griggs et al. using an efficient 3D

boundary-integral method [35]. Subsequently, Doddi and Bagchi [22] have presented

a three-dimensional numerical simulation using front-tracking technique based on the

immersed boundary method for the capsule migration in a channel flow bounded

by two infinite parallel plates. The internal and external fluids were incompressible,

Newtonian and with the same density; the effect of viscosity difference was considered.

The front-tracking/immersed boundary method uses a single set of equations for the

internal and external fluids and introduces body forces in the governing equations

for the interface effect. The membrane deformations following the neo-Hookean law

was treated with a finite-element method. The lateral migrations of capsules towards

the centerline of the channel have been well observed. Thereafter, the flow of a large

number of deformable cells confined between parallel plates was also examined by the

same method [21].

The elastic capsule flow in a square-section channel was considered by Kuriakose

and Dimitrakopoulos [52]. An initial spherical capsule with a strain-hardening mem-

brane was slightly inflated and pre-stressed by a positive osmotic pressure difference

between the internal and external fluids. The membrane was discretized by a spec-

tral grid, while a collocation technique was used for the implementation of a spectral

boundary integral method. The effects of capsule size and capillary number on the

capsule steady states in a square-section channel were examined by this method, but

the results are limited to capsules with pre-stress effect to avoid the possible numerical

instabilities that could be introduced by the negative tensions on the membrane.

Recently, Walter et al. [108] have developed a coupling method which combines the

Boundary Integral (BI) method for fluid flow and the Finite Element (FE) method for

the capsule membrane deformation. Numerical stability and high precision have been

achieved by this model even when the membrane undergoes in-plane compression, but

the results were limited to unbounded flows, such as the simple shear flow and planar

hyperbolic flow.

19
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1.5 Objectives

The motion and deformation of flowing capsules depend on the mechanical properties

of the membrane. The characterization of these properties is essential for fundamen-

tal and applicable research, but it is a challenging task when the capsules have a small

size of order a few tens of micrometers. As presented in section 1.3.5, the microflu-

idic technique, which consists in flowing the capsules in a microfluidic channel with

comparable dimensions, offers a practical and efficient method to generate control-

lable large deformations of micron-sized capsules [59, 17]. To deduce the membrane

properties from experimental observations, a proper mechanical model of the capsule

flow in a channel is thus necessary for the subsequent inverse analysis. It is therefore

necessary to develop a 3D model of the process. We thus study the flow of a single

liquid-filled microcapsule in a channel in this dissertation with the main objectives:

• the development of an adapted 3D BI+FE model for confined capsule flows and

its validation;

• the comprehensive understanding of capsule flows in channels with circular,

square or rectangular section;

• the characterization of membrane mechanical properties of a capsule population

by flowing them into a square-section microfluidic channel;

• the effect of membrane constitutive laws on the experimental analysis.

In section 2, the configurations and assumptions of this problem are first present-

ed. The boundary integral formulation and the membrane mechanics are summarized.

Following the coupling method proposed in [108], we have developed an adapted 3D

BI+FE method for confined capsule flows, and the details of numerical implementa-

tions are also included. The validations of the adapted 3D BI+FE model are then

performed by comparisons with previous models [52]. It is shown that the adapt-

ed model can provide excellent results. In section 3, the capsule flows in channels

with circular, square or rectangular section have been simulated using the develope-

d model. In section 4, we propose to use the numerical results to characterize the

membrane mechanical properties of capsules flowing in a square-section microfluidic

channel. Successful measurements of microcapsules with a crossed-linked ovalbumin

membrane are then presented. The effect of membrane constitutive laws on the ex-

perimental analysis is also discussed.
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Chapter 2

Capsule flow in confined flows

In this chapter, we present a three-dimensional mechanical model for an initially

spherical capsule flowing in a channel with constant cross-section. The flow configu-

ration is similar to the axisymmetric case studied by Quéguiner and Barthès-Biesel

[80], Diaz and Barthès-Biesel [19] and Lefebvre and Barthès-Biesel [58] or to the

three-dimensional situation considered by Pozrikidis [77], Doddi and Bagchi [22] and

Kuriakose and Dimitrakopoulos [52]. It will be firstly summarized in the section 2.1.

For this fluid-structure interaction problem, a three-dimensional method for infinite

capsule flows was proposed by Walter et al. [108], we have adapted it to construct

the model of confined flows which integrates the Boundary Integral method (for fluid,

in section 2.1.2) and the Finite Element method (for solid, in section 2.2.2). The

validation of this model is presented in section 2.3.

S1 S2 2ℓ
n

n
n n

C(Gs, Ks)

W

y

z
O

a External liquid(ρ, µ)

Internal liquid(ρ, λµ)

Figure 2.1: Schematic of an initial spherical capsule flowing in a channel with constant
cross-section. S1, S2 and W denote the surfaces of inlet, outlet and channel wall
respectively, C is the capsule thin membrane with shear elastic modulus Gs and
surface dilation modulus Ks.
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CHAPTER 2. CAPSULE FLOW IN CONFINED FLOWS

2.1 Problem description

2.1.1 General problem equations

As shown in Fig. 2.1, the capsule consists of an internal droplet of volume Vcap

enclosed by a very thin membrane. The capsule is initially freely suspended in an

external liquid. The internal and external liquids are both incompressible and New-

tonian with viscosity λµ and µ respectively, and equal density ρ.

Diaz and Barthès-Biesel [19] have shown that the viscosity ratio λ has an influence

on the time that a capsule needs to reach its steady state in a channel flow. However,

the internal viscosity value does not influence the steady capsule deformation as the

membrane velocity is zero and the internal fluid is at rest. As we are mostly interested

in the steady deformed state of a capsule flowing in straight channels, we take λ = 1

in this dissertation without loss of generality.

The mass conservation of the internal liquid is satisfied since the membrane is

impermeable. As those artificial capsules are usually obtained through interfacial

polymerization of a liquid droplet and are thus spherical, the radius of the initially

spherical capsule a is defined by

a =
3

√

3Vcap
4π

. (2.1)

It is of interest to notice that, for non-spherical capsules such as red blood cells,

we can also use equation 2.1 to deduce an equivalent initial radius. The capsule is

assumed to flow inside a channel consisting of a long prismatic tube with constant

cross-section of characteristic dimension ℓ. More precisely, 2ℓ is the diameter of a

cylindrical tube or the sectional height of a square channel. The capsule deformation

and motion inside a channel evidently depend on the effect of boundary confinement,

which can be measured by the size ratio a/ℓ, ratio of the capsule initial radius a and

the characteristic dimension of the channel ℓ.

We assume that the channel is filled with the suspending liquid flowing with mean

velocity V and flow rate Q. The velocity field in the channel in absence of capsule

is denoted υ∞. Body forces and buoyancy effects are neglected. Consequently, the

capsule that is initially centred on the channel axis remains centred. However, even if

the capsule were not initially centred, it would migrate towards the axis [41, 77, 22].

The superscript b is used to denote either the external or the internal liquid (b = 1 or 2

respectively). We use v(b), σ(b) and p(b) to denote the velocity, stress and pressure

fields in the external and internal liquids. Considering a sufficiently small Reynolds
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number Re = ρV/µ ≪ 1, the viscous effect is dominant while the inertial effect is

insignificant, and the internal and external flows can be described by the equations

of Stokes flows

∇ · v(b) = 0, −∇p(b) + µ(b)
∇

2v(b) = 0 or ∇ · σ(b) = 0. (2.2)

We solve the flow in a domain bounded by the cross-sections S1 at the entrance

and S2 at the exit, the channel wall W and the capsule surface C. The unit normal

vector n to all the boundaries points inwards the suspending liquid, as indicated in

Fig. 2.1. Considering that S1 and S2 are both far enough from the capsule, the

capsule flow disturbance vanishes at the entrance and exit. It is then reasonable to

neglect the entrance and exit effects. The problem boundary conditions are:

• no flow disturbance on entrance S1 and exit S2 as they are far from the capsule:

v(1)(x, t) → v∞(x), x ∈ S1 ∪ S2; (2.3)

• pressure values prescribed on S1 and S2:

p(1)(x, t) = 0, x ∈ S1,

p(1)(x, t) = ∆P (t) + ∆P∞, x ∈ S2.
(2.4)

where ∆P∞ is the undisturbed pressure drop between S1 and S2 in the absence

of capsule and ∆P is the additional pressure drop due to the capsule presence;

• no slip on the channel wall W :

v(1)(x, t) = 0, x ∈ W ; (2.5)

• no slip on the capsule deformed surface C:

v(1)(x, t) = v(2)(x, t) =
∂

∂t
x(X, t), x ∈ C, (2.6)

where X denotes the initial position of a membrane material point located at

position x at time t;

• the load q per unit area on the membrane is due to the viscous traction jump:

(σ(1) − σ(2)) · n = q, x ∈ C. (2.7)
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Since the thickness of a capsule membrane is very small compared with the cap-

sule dimensions and typical radius of curvature, dimensional analysis shows that the

inertia effect of a membrane is negligible at a vanishing Reynolds number [108]. We

model the capsule membrane as an infinitely thin hyperelastic surface devoid of bend-

ing resistance with a shear elastic modulus Gs and an area dilatation modulus Ks.

Neglecting bending resistance, the membrane deformation occurs only in-plane and

thus the normal vector to the surface remains normal during its deformation.

The capillary number is another important non-dimensional parameter,

Ca =
µV

Gs
. (2.8)

It compares the viscous forces exerted by the fluids with the elastic forces of the

deformable membrane.

2.1.2 Boundary Integral formulation for the fluid problem

Due to linearity of Stokes equations, the instantaneous flow structure only depends

on the present boundary configuration and conditions, and is independent of the

motion history [75]. This interesting linear property is then the basis of the boundary

integral method proposed by Ladyzhenskaya in 1969 [57]. As the boundary integral

formulation is classical, we only summarize some basic results that are relevant to

the capsule confined flow in this dissertation. More details are available in [75, 6, 77,

108, 52].

2.1.2.1 Boundary Integral formulation for simple capsule flow

Ω1

Ω2

ρ, µ(1) = µ

ρ, µ(2) = λµ

∂Ω1

∂Ω2

n

n

Figure 2.2: Capsule flowing in a suspending liquid.
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As shown in Fig. 2.2, we consider an internal droplet Ω2 with viscosity λµ sepa-

rated from an external liquid Ω1 with viscosity µ by an interface ∂Ω2. The internal

and external liquids have the same density ρ. An imaginary boundary ∂Ω1 encloses

the whole flow domain, and n denotes the normal vector pointing inwards. For such

a simple capsule flow, a classical boundary integral representation is available and

has been widely applied [75, 77, 108, 52].

1 + λ

2
vj(y) = −

1

8πµ

∫

∂Ω2

Jij(x,y)∆fi(x)dS(x)

+
1− λ

8π

∫ PV

∂Ω2

vi(x)Tijk(x,y)nk(x)dS(x)

−
1

8πµ

∫

∂Ω1

Jij(x,y)fi(x)dS(x)

+
1

8π

∫ PV

∂Ω1

vi(x)Tijk(x,y)nk(x)dS(x), y ∈ ∂Ω1 ∪ ∂Ω2,

(2.9)

where fi = σiknk is the surface force, ∆fi = f
(1)
i − f

(2)
i denotes the viscous traction

jump on interface ∂Ω2, and the normal vector n points into the external flow domain.

PV means that the integral calculation is defined by Cauchy principal value. With

r = x− y, the Green’s function is defined as

Jij(x,y) =
δij
|r|

+
rirj

|r|3
, (2.10)

where δij is the Kronecker symbol. The free-space Green’s function J(x,y) is also

called the Stokeslet [75]. The associated stress tensor Tijk is

Tijk(x,y) = −6
rirjrk
|r|5

. (2.11)

2.1.2.2 Boundary Integral formulation for confined capsule flow

The Stokes equations are recast in boundary integral form for the three-dimensional

motion of the internal and external fluids. In view of the linearity of the system, it

is reasonable to consider the confined capsule flow to be composed of two parts [77]:

the undisturbed channel flow in the absence of capsule and the disturbed channel

flow with the presence of capsule. We specifically consider the case of a capsule in a

tube and for λ = 1, the velocity v(x) of any point x in the fluid domain of a confined

capsule flow is given by Pozrikidis [77]:
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v(x) = v∞(x)−
1

8πµ

[
∫

C

J(r) · q dS(y) +

∫

W

J(r) · f dS(y)−∆P

∫

S2

J(r) · n dS(y)

]

(2.12)

where f is the disturbance wall friction due to the capsule presence, and v∞ denotes

the undisturbed flow in the absence of capsule. We can obtain the velocity field υ∞

driven by a pressure drop ∆P∞ between S1 and S2. In the case of a cylindrical

channel, it is the Poiseuille flow,

v∞ = 2V [1− (x2 + y2)/ℓ2]ez, (2.13)

where V denotes the mean velocity. For the flow in a rectangular-section channel, the

uniform axial velocity distribution v∞ = v∞(x, y)ez has also been given by a number

of textbooks (e.g. [76]),

v∞(x, y) =
πV

∑

[

1
n3 −

coshnπx/h
n3 coshnπW/2h

]

sinnπ(y/h+ 1/2)

2
[

π4

96
−
∑ tanhnπW/2h

n5πW/2h

] n = 1, 3, ... (2.14)

whereW and h denote the width and height of the channel cross-section, respectively.

Equation (2.14) is particularized for a square-section channel if W = h.

Applying the reciprocal theorem to the flow without capsule (v∞,σ∞) and to the

flow with the capsule (v(1),σ(1)) in the external flow domain bounded by S1 ∪ S2 ∪

W ∪ C, we find

∫

C

[σ(1)
· n] · v∞dS − (∆P +∆P∞)Q =

∫

C

[σ∞

· n] · v(1)dS −∆P∞Q, (2.15)

where we have used the facts that the flow rate Q is the same with and without the

capsule, and that the velocity is zero on W . Now, we apply the reciprocal theorem

to (v∞,σ∞) and to (v(2),σ(2)) in the internal flow domain bounded by C

∫

C

[σ(2)
· n] · v∞dS =

∫

C

[σ∞

· n] · v(2)dS. (2.16)

We subtract (2.15) and (2.16), assuming no slip condition on the capsule mem-

brane surface and the membrane load to be caused by traction jump, as indicated

by conditions 2.6 and 2.7. We find that the additional pressure drop caused by the

capsule is simply given by

∆P =
1

Q

∫

C

v∞(x) · q dS(y). (2.17)
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Once the value of the pressure disturbance ∆P is known, the application of equa-

tion (2.12) to x ∈ W

0 =

∫

C

J(r) · q dS(y) +

∫

W

J(r) · f dS(y)−∆P

∫

S2

J(r) · n dS(y) (2.18)

yields an implicit equation for f which is solved numerically.

2.1.3 Solid problem: Membrane mechanics

The capsule motion is a complicated fluid-structure interaction problem, especially

as large capsule deformations are often involved in channel flows. Capsule membrane

mechanics is thus important. Only some fundamental concepts such as the descrip-

tion of membrane deformation, the constitutive laws and membrane equilibrium, are

summarized in this section. Further details are available in previous publications

[34, 9, 107].

2.1.3.1 Membrane deformation

Figure 2.3: The coordinate systems for description of membrane deformation: a local
covariant base (a1, a2, n) following the surface deformation and a fixed Cartesian
base (e1, e2, e3) [9]

.

The infinitely thin membrane of the capsule is an impermeable hyperelastic isotrop-

ic surface with surface shear elastic modulus Gs and area dilatation modulus Ks. As

indicated in Fig. 2.3, the position of a membrane point can be determined by sur-

face curvilinear coordinates (ξ1, ξ2). The membrane deformation is thus described by

the local covariant (a1,a2,n) and contravariant (a1,a2,n) bases constructed from

the surface curvilinear coordinates [34, 107]. We consider the undeformed membrane

shape as a reference state. The corresponding covariant and contravariant bases are

denoted by (A1,A2,n) and (A1,A2,n).
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(a) (b)

dX1

d
X

2

dx1 = λ1dX1d
x
2
=
λ
2
d
X

2

τ1

τ2

Figure 2.4: In-plane deformation of a membrane element along the principal axes [9].
(a) Reference state; (b) Deformed state with dilation ratios λ1 and λ2 under principal
tractions τ1 and τ2.

We assume that a membrane material point, identified by its position X in the

reference state, is displaced to the position x(X, t) in the deformed state. The trans-

formation gradient is defined as F = ∂x/∂X, and the local deformation of the

membrane surface is measured by the Green-Lagrange strain tensor

e =
1

2
(F T

· F − I), (2.19)

where I is the identity tensor. The membrane deformation can be quantified by the

principal dilatation ratios λ1 and λ2 in its plane which correspond to two eigenvalues

of e, as shown in Fig. 2.4. The invariants of the transformation are defined as:

I1 = λ21 + λ22 − 2, I2 = (λ1λ2)
2 − 1 = J2

s − 1, (2.20)

where the Jacobian Js = det(F ) = λ1λ2 measures the ratio of deformed membrane

area to the reference area.

2.1.3.2 Membrane constitutive laws

Since the membrane is infinitely thin, elastic stress in the membrane are replaced by

the Cauchy tension tensor τ corresponding to forces per unit arc length measured

in the plane of the membrane, as shown in Fig. 2.4. When the capsule membrane

consists of a sheet of a two-dimensional isotropic material, the Cauchy tension τ is

related to a strain energy function ws(I1, I2) per unit deformed surface area [34, 107,

108],

τ =
1

Js
F ·

∂ws

∂e
· F T . (2.21)
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Using the chain rule, the contravariant representation of τ can be expressed as

[34],

ταβ =
2

Js

∂ws

∂I1
Aαβ + 2Js

∂ωs

∂I2
aαβ . (2.22)

where Aαβ and aαβ represent the contravariant representations of the metric tensors

at the reference and deformed states. They are defined respectively as

Aαβ = Aα ·Aβ , aαβ = aα · aβ (α, β = 1, 2). (2.23)

The membrane constitutive law is described by equation (2.22) which gives the

relationship between the membrane stresses τ and the corresponding elastic defor-

mations as functions of the strain energy functions ws.

A number of constitutive laws are available to model thin hyperelastic membranes

[6]. Different material behaviors can be described for large deformation, including the

strain-softening behavior of gelled membranes exhibiting rubber-like elasticity or the

strain-hardening behavior of membranes made of a polymerized network with strong

covalent links. For conciseness, only some widely applied laws with constant material

coefficients are summarized in this dissertation.

• The Hooke’s law (H) provides a simple linear dependence of tension on the mem-

brane deformation under the assumption of small deformation. The principal

tensions are given by

τH1 =
Gs

1− νs
[λ21 − 1 + νs(λ

2
2 − 1)] (likewise for τ2), (2.24)

where νs denotes the surface Poisson ratio describing the relationship between

the area dilation modulus Ks and the shear elastic modulus Gs, as Ks = Gs(1+

νs)/(1− νs) and νs 6= 1.

• The neo-Hookean law (NH) describes the behavior of an infinitely thin sheet of

a three-dimensional isotropic and incompressible material. It is expressed as

τNH
1 =

Gs

λ1λ2

[

λ21 −
1

(λ1λ2)2

]

(likewise for τ2). (2.25)

It has been found to be the appropriate law to model the behavior of protein-

reticulated membranes [12, 59, 17]. The hypothesis of volume incompressibility

implies that area dilatation is balanced by membrane thinning, and correspond-

ingly the area dilatation modulus is Ks = 3Gs [6].
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• The Mooney-Rivlin law (MR) describes the membrane as a thin sheet of isotrop-

ic volume incompressible rubber-like material with a uniform thickness,

τMR
1 =

Gs

λ1λ2

[

λ21 −
1

(λ1λ2)2

]

[ψ + λ22(1− ψ)] (likewise for τ2), (2.26)

where ψ is a scalar coefficient. For ψ = 1, the MR law becomes the NH law.

• The Skalak law (SK) was originally derived to model the large deformations of

biological membranes such as red blood cells [97],

τSK1 =
Gs

λ1λ2

[

λ21(λ
2
1 − 1) + C(λ21λ

2
2)(λ

2
1λ

2
2 − 1)

]

(likewise for τ2), (2.27)

where the first and second terms account for the membrane shear deformation

and area dilation respectively. The parameter C measures the ratio of area

dilation modulus Ks to shear modulus Gs as Ks = (1+ 2C)Gs. A value C ≫ 1

corresponds to an area incompressible membrane of biological cells. Still the

SK law is very general and can model membranes for which Ks and Gs are of

the same order of magnitude [12]. It is of interest to notice that, the values

Ks/Gs of SK law are the same as those of NH law when C = 1. The two laws

predict the same tension-strain behavior under small deformations. However,

large differences occur under large deformations. It has been shown that the SK

law is strain-hardening whereas the NH law is strain-softening under uniaxial

stretching (τ1 6= 0 and τ2 = 0) [6].

2.1.3.3 Membrane equilibrium

The membrane motion is governed by the local equilibrium equation

∇s · τ + q = 0, (2.28)

where q is the external load exerted by the fluids as given by (2.7) and ∇s· is the

surface divergence operator in the deformed configuration.

Since the bending modulus of the membrane has been neglected, the capsule

wall buckles locally in the regions where the elastic tensions are compressive (as

indicated in section 1.4.1). In order to study the post-buckling behavior of the capsule,

bending moments and transverse shear forces must be added to equation (2.28) and

a constitutive equation must be postulated to relate bending moments and local

deformations. It follows that the bending behavior of a capsule is a complicated
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problem of shell mechanics that is not completely resolved yet. In this dissertation,

we neglect the bending effect.

According to the principal of virtual work, the virtual work of external and internal

forces balances for any virtual displacement field û. For an arbitrary û , a weak form

of equation (2.28) can be deduced by forming the scalar product with û on both sides

of (2.28) and integrating on the membrane surface C [107],

∫

C

û · qdS +

∫

C

ǫ̂(û) : τdS = 0 (2.29)

where ǫ̂(û) = 1
2
(∇sû+∇sû

T ) denotes the virtual deformation tensor. The first term

corresponds to the virtual work of the external fluid forces, while the second side

corresponds to the virtual work of the membrane elastic forces.

2.1.3.4 Pre-stress effect on membrane

We assume that a positive pressure difference p may exist between the internal and

external liquids of capsule. This situation is often encountered for artificial capsules

enclosed by semipermeable membranes which are permeable to small molecules as

water but impermeable to large molecules [51, 9]. During the storage of capsules,

partial dissolution of membrane material into the internal liquid can lead to an in-

crease in the internal liquid concentration, because large molecules are trapped inside

the capsule by the semipermeable membrane [94, 58]. The presence of a concentra-

tion jump between the internal and external liquids introduces a positive osmotic

pressure difference p, and the initial spherical capsule of radius a is thus pre-stressed

and inflated to a new radius ap.

We introduce preinflation parameter α to account for the relationship of inflated

radius ap and initial radius a, as ap/a = 1 + α. Since the capsule is spherical, the

membrane deformation is isotropic and can be measured by the principal dilatation

ratios λ1 = λ2 = λp = 1 + α, while the corresponding isotropic membrane tensions

are given by the Laplace law [9]

τ1 = τ2 = τp =
1

2
pap. (2.30)

The pre-stress effect has a significant effect on the capsule deformations. For ex-

ample, Lac and Barthès-Biesel showed that the deformation of a capsule flowing in

unbounded simple shear flow was lowered by the pre-stress effect for a given shear

rate [54]. They have also shown that the pre-stress effect can help reduce the mem-

brane buckling instability observed at low flow strength [55]. Recently, the pre-stress
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effect was also employed by Kuriakose and Dimitrakopoulos to reduce the membrane

buckling instability of capsule flowing in a square channel [52].

2.2 Adapted BI+FE method for bounded capsule

flow

The fluid-structure interaction problem can be solved by an adapted model based on

the coupling method proposed by Walter et al. [107, 108], which was developed for

unbounded capsule flows by the coupling of a Finite Element (FE) method (for the

capsule wall mechanics) and a Boundary Integral (BI) method (for the internal and

external flows).

In this section, we first introduce the mesh generations for discretizing the surfaces

of the capsule membrane C, the channel boundaryW and outlet S2 into unstructured

triangles. We simply summarize the FE formulation for the membrane equilibrium

[107, 108, 9], and subsequently construct the adapted coupling BI+FE numerical pro-

cedure for capsules in confined flow. A pre-deformation treatment for large capsules

a/ℓ ≥ 1 is also proposed.

2.2.1 Capsule and channel meshes generation

All the surfaces (C, W and S2) are discretized by triangular elements using isopara-

metric interpolation. This means that all the unknowns (e.g., point position y, ve-

locity v and load on membrane q) are interpolated with the same shape functions.
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Figure 2.5: Illustrations of reference coordinate system and node numbering. (a) P1

element; (b) P2 element.

As shown in Fig. 2.5, we use two types of elements in surface discretizations:

• the flat P1 element defined by 3 nodes at each vertex of a triangle. Linear

interpolation is then used.
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• the curved P2 element defined with 6 nodes respectively at each vertex or the

middle of each side. Quadratic interpolation is then used.

The positions of points on an element are determined by the intrinsic coordinates

(η1, η2), defined such that η1, η2 and 1−η1−η2 lie in the interval [0, 1] [9]. The value

of an interpolated quantity at a point, for example a vectorial quantity f , can be

calculated from nodal values of this quantity. If we suppose f p
Xj

is the jth Cartesian

component of f at node p, and p ∈ 1, ..., nn where nn is the number of nodes of the

element, we have an interpolated formulation for f as

f (η1, η1) =
nn
∑

p=1

f p
Xj
N (p)(η1, η1)ej , (2.31)

where the shape function N (p)(η1, η1) depends on the element type. For P1 elements,

we have:

N (1)(η1, η2) = 1− η1 − η2,

N (2)(η1, η2) = η1,

N (3)(η1, η2) = η2.

(2.32)

For P2 elements, the expressions are:

N (1)(η1, η2) = (1− η1 − η2)(1− 2η1 − 2η2),

N (2)(η1, η2) = η1(2η1 − 1),

N (3)(η1, η2) = η2(2η2 − 1),

N (4)(η1, η2) = 4η1(1− η1 − η2),

N (5)(η1, η2) = 4η1η2,

N (6)(η1, η2) = 4η2(1− η1 − η2).

(2.33)

The mesh of the initial spherical capsule is obtained by firstly inscribing an icosa-

hedron (regular polyhedron with 20 triangular faces) in the sphere [83, 108]. Each

triangular face is divided into 4 triangular sub-elements by placing a new node in

the middle of each side. The new nodes are then projected radially onto the sphere,

and we repeat the procedure until the desired number of P1 elements is reached. We

use N
(c)
e and N

(C)
n to denote the total number of elements and nodes on the capsule

surface C. A typical capsule surface meshed by P1 elements at different precision is

presented in figure 2.6. The P2 elements are obtained by cutting each edge in half

in the last step and then projecting the new nodes onto the sphere. Walter et al.

[108] have studied the effects of P1 and P2 elements on unbounded flows, including
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(a) (b)

Figure 2.6: Typical capsule membrane surface meshed with flat triangles (P1 ele-
ments) (a) NN = 642, NE = 1280; (b) NN = 2562, NE = 5120.

pre-stressed isotropic deformations and capsule flowing in simple shear flow, they

found that both element types behaved well and that the results converged toward a

common solution. Following their work, P2 elements are employed for capsule mesh

generations in present study. For all of the following 3D computations, we use a

capsule mesh with N
(c)
e = 1280 elements and N

(c)
n = 2562 nodes. Assuming all the

elements are perfect triangles, we can find the characteristic size of this capsule mesh

∆hC = O(0.1a). Validation of this capsule mesh is done by comparison with a finer

mesh, as presented in section 2.3.1.

(a) (b)

Figure 2.7: (a) Meshes of the circular and square cross-sections; (b) Meshes of the
prismatic tubes.

The channel mesh is generated with P1 elements using Modulef (INRIA Rocquen-

court, France). We first generate the two-dimensional geometry of the tube cross-

section with the desired shape by unstructured triangular elements having a mesh

size ∆hS = O(0.14ℓ), as indicated in Fig. 2.7(a). The corners of the rectangular

cross-section have been rounded with a circle (radius ∆hS) in order to avoid corner

effects when solving for the flow. Since the boundary integral method only requires

the surface to be meshed, the mesh of the tube external surface is extracted from the
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volume mesh. The nodes and elements contained on the inlet surface S1 are removed,

as no boundary condition is numerically applied on them. The resulting open surface

mesh on the boundary wall W and outlet surface S2 is the final channel mesh used

for our simulations. The total numbers of elements and nodes on the boundary wall

W and the exit surface S2 are denoted by N
(w)
e and N

(w)
n , N

(o)
e and N

(o)
n respective-

ly. As shown in Fig. 2.7(b), we employ a refined mesh with characteristic length

∆hW = O(0.14ℓ) in the central section of the tube with length Lc = 4ℓ, while the

inlet and outlet sections, each of length Lio = 6ℓ, are with ∆hW = O(0.22ℓ).

We will discuss the effects of channel mesh in section 2.3.1, including the mesh

size and the channel lengths.

2.2.2 FE formulation for membrane equilibrium

Considering a deformed capsule shape, equation (2.29) deduced from the virtual work

principal is solved to determine the unknown membrane load q from a virtual dis-

placement û. Based on the capsule mesh presented in section 2.2.1, we discretize the

domain into a finite element space ϑh using isoparametric interpolations [107, 108, 9].

The objective of this problem is to express (2.29) as a linear system of algebraic e-

quations at the membrane nodes. As the integral over the membrane surface C can

be decomposed into a sum over all individual elements, the first term of (2.29) is

expressed as

∫

C

û · qdS =
∑

el

û
(p)
Xj
[

∫ 1

0

∫ 1−η2

0

N (p)N (q)
√

|aαβ|dη
1dη2]q

(q)
Xj

=
∑

el

{ûel}
T [Mel]{qel},

(2.34)

where el denotes the number of elements,
√

|aαβ|dη
1dη2 is the local differential sur-

face element. The vectors {qel} and {ûel} of size 3nn are respectively the Cartesian

components of the discrete load and the virtual displacement at element nodes,

{qel} = q
(1)
1 , q

(1)
2 , q

(1)
3 , ..., q

(nn)
1 , q

(nn)
2 , q

(nn)
3 ,

{ûel} = û
(1)
1 , û

(1)
2 , û

(1)
3 , ..., û

(nn)
1 , û

(nn)
2 , û

(nn)
3 .

(2.35)

Because the capsule deforms, the differential surface element
√

|aαβ |dη
1dη2 on a de-

formed membrane is not fixed, thus the matrix [Mel] involving
√

|aαβ|dη
1dη2 needs

to be recalculated at each time step.
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Since the capsule surface C is discretized with N
(c)
n nodes, we assemble the vectors

{qel} and {ûel} into their global counterparts {q} and {û} of size 3N
(c)
n , and do the

same for matrix [Mel] into [M ] of size 3N
(c)
n × 3N

(c)
n . Equation (2.34) becomes

∫

C

û · qdS = {û}T [M ]{q} (2.36)

The second term of (2.29) can be decomposed as

∫

C

ǫ̂(û) : τdS =
∑

el

[

∫ 1

0

∫ 1−η2

0

ǫ̂αβτ
αβ
√

|aαβ|dη
1dη2], (2.37)

where the contravariant representation of tension ταβ can be computed by equation

(2.22) and is highly dependent on the membrane constitutive laws that we choose.

The virtual strain tensor ǫ̂αβ depends on the virtual displacement û:

ǫ̂αβ =
1

2
[ûα,β + ûα,β − 2Γi

αβ ûi], α, β = 1, 2, and i, j = 1, 2, 3, (2.38)

where Γi
αβ = aα,β · ai denotes the Christoffel symbol, ûi = a

Xj

i ûXj
= N (p)a

Xj

i û
(p)
Xj

is the covariant representation of û where a
Xj

i is the Cartesian component of local

covariant base ai. Following the work of Walter et al. [107], the virtual strain can be

written as

ǫ̂αβ = û
(p)
Xj
χ
(p)j
αβ , (2.39)

where χ
(p)j
αβ has a form

χ
(p)j
αβ =

1

2
N

(p)
,β a

Xj

α +
1

2
N (p)

,α a
Xj

β +N (p)a
Xj

α,β + Γi
αβN

(p)a
Xj

i . (2.40)

Factoring the virtual displacement û
(p)
Xj

out of the integral, we assemble the vectors

{ûel}
T and {Rel} into their global counterparts and obtain

∫

C

ǫ̂(û) : τdS =
∑

el

û
(p)
Xj
[

∫ 1

0

∫ 1−η2

0

χ
(p)j
αβ τ

αβ
√

|aαβ |dη
1dη2]

=
∑

el

{ûel}
T{Rel}

= {û}T{R}.

(2.41)

Like the matrix [M ], the vector {R} of size 3N
(c)
n also depends on

√

|aαβ |dη
1dη2, and

thus needs to recomputed at each time step. Assembling the two equations (2.36)

and (2.41), we finally obtain the finite element formulation for membrane equilibrium
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{û}T [M ]{q} = −{û}T{R}. (2.42)

As it is verified for any virtual displacement {û}T ∈ ϑh, we can simplify it to

[M ]{q} = {R}. (2.43)

2.2.3 Coupling BI+FE numerical procedure

Walter et al. have proposed a coupling BI+FE method for unbounded capsule flows

[107, 108]. Following their method, we have constructed an adapted coupling BI+FE

numerical procedure for the capsule confined flows as follows:

1. Initialization Given an initial capsule shape, we discretize the capsule membrane

surface C byN
(c)
n nodes andN

(c)
e elements. All the membrane points at reference

state are identified and recorded in the position vector X. The position vector

of the capsule mass center at reference state XO is also provided. As mentioned

in section 2.2.1, the fixed channel is also discretized.

2. Membrane load At any time t, the positions of the membrane material points

are denoted by x(X, t). We solve equation (2.43) and determine the membrane

load vector {q}.

3. Pressure drop Knowing the membrane load {q}, we can discretize the boundary

condition (2.17) into a linear system of algebraic equations for the additional

pressure drop ∆P caused by the capsule presence, as

∆P =
1

Q
{v∞}T [M ]{q}, (2.44)

where {v∞} is the undisturbed velocity vector of membrane points, which is

obtained by assembling the Cartesian components of global undisturbed veloc-

ity vectors. The undisturbed velocity in a channel with circular or rectangu-

lar(square) section is given by equations (2.13) and (2.14). Since the integral of

equation (2.17) is on the capsule surface C, the vector {v∞} arranged into the

global counterpart is of size 3N
(c)
n , as

{v∞} = {v∞
(1)
X1
, v∞

(1)
X2
, v∞

(1)
X3

· · · v∞
(N

(c)
n )

X1
, v∞

(N
(c)
n )

X2
, v∞

(N
(c)
n )

X3
}. (2.45)

The matrix [M ] and the vectors {q} are given by equation (2.43). Equation

(2.44) is computed to determine the value of ∆P .
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4. Wall friction The other boundary condition, equation (2.18), can be also dis-

cretized into the set of algebraic equations,

0 = [Jwc][M ]{q} −∆P [Jwo][Mo]{no}+ [Jww][Mw]{f}, (2.46)

where [Jwc], [Jwo] and [Jww] denote the matrices of the Green’s functions for the

integrals on surfaces C, S2 and W , that are, respectively of size 3N
(w)
n × 3N

(c)
n ,

3N
(w)
n × 3N

(o)
n and 3N

(w)
n × 3N

(w)
n . The vector {no} of size 3N

(o)
n denotes the

normal vectors on the channel outlet S2. In the same way as the matrix [M ] is

the integral of the shape functions over the capsule surface C in equation (2.34),

the matrices [Mo] and [Mw] are the equivalent integrals on surfaces of S2 and

W . As the channel boundary surfaces are fixed, it is of interest to note that the

matrices [Mo] and [Mw] need to be calculated only once at the beginning of the

procedure, while the matrix [M ] on the deformable capsule surface needs to be

computed at each time step.

Incorporating ∆P and {q} into equation (2.46), we can obtain the friction vector

on the wall {f} by solving the linear system.

5. Membrane velocity The velocity vector of the membrane points v, provided by

the BI formulation (2.12), can be expressed as

{υ} = {υ∞}−
1

8πµ
[Jcc][M ]{q}+

∆P

8πµ
[Jco][Mo]{no}−

1

8πµ
[Jcw][Mw]{f}, (2.47)

where the matrices of the Green’s functions [Jcc], [Jco] and [Jcw] are respectively

of size 3N
(c)
n × 3N

(c)
n , 3N

(c)
n × 3N

(o)
n and 3N

(c)
n × 3N

(w)
n . Since the capsule

membrane load {q}, channel wall friction {f} and pressure drop ∆P are already

determined, the velocity vector {υ} can be obtained by solving the linear system

(2.47).

6. Membrane displacement Using an explicit second-order Runge-Kutta method,

the new position of the membrane points x is calculated by time-integration of

the kinematic equation (2.6):

v(x, t) =
∂

∂t
x(X, t), x ∈ C. (2.48)
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7. Centroid velocity From the new position x(X, t) of the membrane points, we

deduce the new position of the capsule mass center xO = (xo, yo, zo). The

velocity of the capsule mass center v(O, t) is thus determined from the values

of xO at two successive time points,

v(O, t) =
xO(t)− xO(t−∆t)

∆t
, (2.49)

where ∆t is the time step. It is of interest to notice that the position of the

capsule mass center xO is computed after the displacement of the membrane

points at each time step. We finally translate the capsule points by −zoez to

ensure that the flowing capsule is always placed in the central section of the

channel.

8. Steady results The procedure from step 2 to step 6 is repeated until a steady

state is reached, which occurs when the surface of the capsule varies by less

than 5× 10−4 × (4πa2) over a non-dimensional time V t/ℓ = 1.

In numerical implementation, we apply 6 Hammer points on each element for

the surface integrations involved in the calculation of matrices [M ], [Mw], [Mo] and

vector {R} [37, 108]. The linear systems are solved using the sparse solver Pardiso

[88, 89, 108]. We find that the numerical method is conditionally stable when the

time step ∆t satisfies a condition similar to the one found for the unbounded case

[108]:

V

ℓ
∆t < O(

∆hC
ℓ

Ca), (2.50)

All the results shown hereafter have been obtained with a time step V∆t/ℓ = 5×10−5.

2.2.4 Pre-deformation for large capsules a/ℓ ≥ 1

When the capsule initial size is larger than the channel cross dimension, we pre-deform

the capsule into an spheroid that fits inside the channel. Correspondingly, a point

initially located at (X, Y, Z) on the capsule surface is displaced to (x, y, z), such that

z = k1Z, y = k2Y, x = k2X, (2.51)

with k22k1 = 1, in view of the volume conservation requirement. We choose k2 such

that y/ℓ = 0.9, in order to leave a reasonably thick liquid film between the membrane

and the channel wall. The resulting elastic tensions in the membrane and the load
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q exerted on the fluid are computed by means of the finite element method. The

capsule deformation is then followed in time as explained above.

(a) (b) channel wallchannel wall

Pre-deformationSphere a/ℓ ≥ 1.0

Figure 2.8: Schematic of pre-deformation for large capsules. (a) Large capsule of size
ratio a/ℓ ≥ 1.0; (b) A large spherical capsule is pre-deformed into a spheroid to fit
inside the channel.

2.3 Validations

The validations of the BI+FE model adapted for confined flows are presented in this

section. We first compare the results with different capsule mesh sizes to show that the

mesh we use is adapted to the problem. We then study the effects of pre-deformation

and of the channel length. Finally, the validations of our adapted BI+FE model

are carried out by comparisons with the results of a published model in [52] that

considered a pre-stressed capsule flowing in a square-sectional channel, as presented

in 2.3.4.

2.3.1 Mesh size

In the previous work of Walter et al. [108], the effects of the capsule mesh size have

been studied in the case of unbounded capsule flows. They found that the error on the

capsule shape is mainly determined by the capsule mesh size and the time step. With

a capsule mesh discretized by N
(c)
e = 1280 P2 elements, it is conditionally stable and

the error is of order O(∆h4C) as shown in [108]. Since the capsule typically presents

wrinkles in a channel flow, we specifically study the effects of mesh size on wrinkles

and deformed capsule shapes in this section.

The capsule of size ratio a/ℓ = 0.9 is assumed to flow inside a cylindrical channel

at a moderate capillary number Ca = 0.05. The capsule membrane mechanics is
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Figure 2.9: Comparisons of steady capsule profiles of different mesh sizes. (a) Cross-
sectional profiles on xy-plane; (b) Longitudinal profiles on yz-plane. Ca = 0.05,
a/ℓ = 0.9, NH membrane, cylindrical channel.

described by the neo-Hookean law. We perform the discretization of the capsule

surface with two different mesh sizes: a very fine mesh (Type I) that is discretized

by N
(c)
e = 5120 P2 elements with characteristic mesh size about ∆hC = O(0.05a);

a moderate mesh (Type II) that is discretized by N
(c)
e = 1280 P2 elements with

∆hC = O(0.1a). The cylindrical tube of total length L = 16 is discretized with the

method mentioned in section 2.2.1. We employ a refined mesh with ∆hw = O(0.07ℓ)

in the central section of length Lc = 4 for the fine capsule mesh (Type I), and

∆hw = O(0.14ℓ) for the moderate capsule mesh (Type II).

The deformed capsule shapes at equilibrium states are obtained by 3D compu-

tations. We determine the deformed capsule intersections on the xy-, xz- and yz-

planes for zo = 0. As the membrane is undergoing compression, it tends to buckle.

There is no bending resistance in our 3D model to regulate the process, so that the

wrinkles are controlled by the mesh (Fig. 2.9(a)). the wavelength of the oscillations

is decreased when the mesh size decreases by a factor in the case of the fine mesh

(Type I). However, the longitudinal and cross-profiles obtained by both mesh sizes are

perfectly superimposed, as shown in Fig. 2.9. It implies that the moderate capsule

mesh (Type II) is appropriate for our simulations.

2.3.2 Pre-deformation

Considering a typical spherical capsule of a/ℓ = 0.9 enclosed by a neo-Hookean mem-

brane and flowing in a cylindrical channel at Ca = 0.5, we have checked the effect of
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Figure 2.10: Comparisons of capsule profiles with and without pre-deformation treat-
ment. Ca = 0.05, a/ℓ = 0.9, NH membrane, cylindrical channel.
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pre-deformation on the final results by comparison of the results with and without

pre-deformation.

At time t = 0, we deform the spherical capsule to a spheroid having short axes

x/ℓ = y/ℓ = 0.7 by following the method presented in section 2.2.4 (Fig. 2.10 (a) and

(b)). Both the initial sphere and the pre-deformed spheroid are then deformed by the

same flow strength and reach the equilibrium state. We can find that, the deformed

profiles of the two cases are perfectly superimposed, as shown in Fig. 2.10 (c) and

(d). It implies that the pre-deformation does not affect the final results.

2.3.3 Channel length
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y
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z/ℓ

xy-plane yz-plane

Normal
Long

Figure 2.11: Comparisons of deformed profiles of capsules flowing inside cylindrical
channels of different lengths. The ”normal” channel has a total length L = 16ℓ, while
L = 24ℓ is for the ”long” channel. Ca = 0.05, a/ℓ = 0.9, NH membrane.

Since we have assumed that the capsule flow disturbance vanishes at the channel

entrance and exit, it is necessary to verify that the total length of the channel mesh

is long enough. We consider an initially spherical capsule with a/ℓ = 0.9 and a

NH membrane flowing inside a cylindrical channel. The capsule is discretized by

a moderate mesh, which has N
(c)
e = 1280 P2 elements and ∆hC = O(0.1a). The

cylindrical channel is discretized into three parts: the central section with a refined

mesh size ∆hW = O(0.14ℓ) inside which the capsule is centered and the inlet and

outlet sections with ∆hW = O(0.22ℓ), as presented in section 2.2.1. Two different

channel lengths are considered:

• ”Normal” channel with total length L = 16ℓ, which has a central section with

Lc = 4ℓ and Lio = 6ℓ for the inlet and outlet sections.
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• ”Long” channel with total length L = 24ℓ, which has a central section with

Lc = 4ℓ and Lio = 10ℓ for the inlet and outlet sections.

The deformed capsule profiles at equilibrium states are as shown in Fig. 2.11.

We find that the capsule profile in the channel with ”normal” length is perfectly

superimposed with that in a ”long” channel. It implies that the total length L = 16ℓ

is long enough for our simulations, and it is reasonable to apply a ”normal” length

in the following content.

2.3.4 Capsule flow in square-section channel

The capsule flow in a square-section channel was recently considered by Kuriakose

and Dimitrakopoulos [52]. The effects of a/ℓ and Ca on the capsule steady states

have been studied in their work, for a pre-stressed capsule flowing in square-sectional

channel. As a validation, we study the motions of a pre-stressed capsule (αp = 0.05)

by the adapted 3D BI+FE model for comparisons with previous results in [52].

The capsule with a SK membrane (C = 1) flows inside a square-section channel at

Ca = 0.1, and for size ratios a/ℓ = 0.8, 0.9, 1.1. With the discretizations of surfaces

as presented in 2.2.1, we can obtain the capsule profiles at equilibrium. These results

are compared with the equivalent ones in [52], as shown in Fig. 2.12. We can find

that, all the capsule profiles with different a/ℓ obtained by our model coincide well

with those in [52], both on the longitudinal yz-plane and the cross-sectional xy-plane.
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Figure 2.12: Comparisons of capsule steady profiles of our adapted BI+FE model with
those of Kuriakose and Dimitrakopoulos [52]. The pre-stressed capsule (αp = 0.05)
with SK membrane (C = 1) flows at Ca = 0.1 in a square-section channel. The
size ratio a/ℓ varies from 0.8, 0.9 to 1.1, as indicated in (a), (b) and (c) for profiles
in the cross-sectional xy-plane, while (d), (e) and (f) are profiles in the longitudinal
yz-plane.
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Chapter 3

Capsule flowing in different

bounded flows

In this section, we use the adapted 3D BI+FE model to consider the motions of

an initially spherical liquid-filled capsule in channels with different cross-sections, as

shown in Fig. 3.1. The capsule flow in channel with circular or square cross-section has

been studied in our paper published in Journal of Fluid Mechanics, which is included

in section 3.1. The additional results of capsule flows in square or rectangular channel

are then presented in section 3.2.
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Figure 3.1: Prismatic channel with axis Oz. The cross-section is circular (radius 2ℓ),
square (side width 2ℓ) or rectangular (width 4ℓ and height 2ℓ).
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CHAPTER 3. CAPSULE FLOWING IN DIFFERENT BOUNDED FLOWS

3.1 Capsule flow in a channel with circular or square

cross-section
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Flow of a spherical capsule in a pore with
circular or square cross-section
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Université de Technologie de Compiègne, BP 20529, 60205 Compiègne, France

(Received 3 May 2011; revised 29 July 2011; accepted 17 October 2011;
first published online 1 December 2011)

The motion and deformation of a spherical elastic capsule freely flowing in a pore
of comparable dimension is studied. The thin capsule membrane has a neo-Hookean
shear softening constitutive law. The three-dimensional fluid–structure interactions are
modelled by coupling a boundary integral method (for the internal and external fluid
motion) with a finite element method (for the membrane deformation). In a cylindrical
tube with a circular cross-section, the confinement effect of the channel walls leads to
compression of the capsule in the hoop direction. The membrane then tends to buckle
and to fold as observed experimentally. The capsule deformation is three-dimensional
but can be fairly well approximated by an axisymmetric model that ignores the folds.
In a microfluidic pore with a square cross-section, the capsule deformation is fully
three-dimensional. For the same size ratio and flow rate, a capsule is more deformed
in a circular than in a square cross-section pore. We provide new graphs of the
deformation parameters and capsule velocity as a function of flow strength and size
ratio in a square section pore. We show how these graphs can be used to analyse
experimental data on the deformation of artificial capsules in such channels.

Key words: biological fluid dynamics, boundary integral methods, capsule/cell dynamics

1. Introduction
Suspensions of microparticles are common in nature and industry. The particles may

be passive with a motion and deformation governed by hydrodynamic forces or they
may be self-propelled like bacteria or squirmers (Pedley & Kessler 1992; Pedley 2010).
In both cases, the motion of the particle depends strongly on the interfacial mechanics
and kinematics.

In the present paper, we consider a special class of passive deformable particles,
capsules, that consist of a liquid drop enclosed by a deformable membrane. Capsules
are common in nature (red blood cells, phospholipid vesicles) and in different
applications, such as pharmacology (Cole, Cad & Benameur 2008), cosmetics
(Miyazawa et al. 2000), the food industry (Gibbs et al. 1999) and biomedical
engineering (Rabanel et al. 2009). A fine control of the membrane properties is
necessary to control the capsule deformation or possible breakup (to be induced
or prevented depending on the application). However, measuring the mechanical
properties of the capsule membrane is difficult because the particles are small (from

† Email address for correspondence: dbb@utc.frc
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FIGURE 1. Large initially spherical capsule with a cross-linked ovalbumin membrane,
flowing in a cylindrical pore (diameter 75 µm). Folds appear on the side of the capsule
where the membrane is under compression. Image obtained with the experimental method of
Lefebvre et al. (2008).

a few micrometres to a few millimetres) and fragile. Large capsules with dimensions
of a few millimetres can be squeezed between two parallel plates (Carin et al. 2003;
Risso & Carin 2004). The squeezing force and the overall capsule deformation are
measured simultaneously. The interpretation of the results in terms of the membrane
mechanical properties necessitates a good mechanical model of the process, as it can
involve large deformations of the capsule with reversible reduction of diameter as
large as 70 %. For very small capsules with dimensions of a few micrometres, it is
possible to use the same measurement principle with atomic force microscopy (Fery &
Weinkamer 2007). However, the method is difficult to use and must be applied to a
number of capsules to get an average value for a population.

A simple way to test a population of capsules is to flow a capsule suspension
in a small pore which has transversal dimensions comparable with those of the
suspended capsules (Lefebvre et al. 2008; Chu et al. 2010). The hydrodynamic
stresses and the constraints due to the channel walls cause large deformations of
the capsules that depend on the flow strength and on the particle intrinsic physical
properties such as relative size compared with the channel section and membrane
constitutive behaviour. The capsule deformation, volume and velocity can be measured
simultaneously by means of image analysis. A sophisticated model of the flow of a
capsule in a small pore then allows us to infer the membrane mechanical properties
from the experimental results. The feasibility of the method has been demonstrated for
millimetre size capsules (Risso, Collé-Paillot & Zagzoule 2006; Lefebvre & Barthès-
Biesel 2007) and for micrometre size capsules (Lefebvre et al. 2008; Chu et al. 2010).
In both cases, the capsules were initially spherical with a membrane made of alginate
cross-linked with either human serum albumin (HSA) or ovalbumin for the millimetre
or micrometre size particles, respectively. The model used to analyse the experiments
considered the flow of a centred spherical capsule in a cylindrical channel. The
situation is thus fully axisymmetric. This allows integration of the different quantities
(stress, deformation, etc.) in the azimuthal direction, so that the problem equations
need only to be solved in a meridian plane. The simplification is significant.

However, observations of large capsules flowing in a cylindrical pore indicate that
folds occur on the membrane as shown in figure 1. The presence of such folds means
that the deformation of the membrane is not axisymmetric but three-dimensional (3D).
Then the question which arises is how accurate (or inaccurate) is the axisymmetric
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model used to analyse the deformation of a spherical capsule in a cylindrical pore. In
order to answer this question a 3D model of this flow must be devised.

A related problem is the flow of a capsule in a microfluidic pore. When such
pores are created by means of soft lithography techniques, they have a rectangular
or square cross-section. The flow of an initially spherical capsule in a pore with a
square or rectangular cross-section is obviously 3D. A new model is thus necessary
to analyse the deformation of the capsule in terms of the membrane properties. This
situation is quite interesting to study as there is an increasing interest for designing
micro-encapsulation systems inside microfluidic devices (Zhang et al. 2006; Huang
et al. 2007; Yeh et al. 2009). Creating a characterization system that can be mounted
on-line on the capsule fabrication device would be very useful to test and sort the
particles.

In this paper, we study the 3D flow of an initially spherical simple capsule
consisting of a liquid drop enclosed by a very thin hyperelastic membrane. We assume
that the flow Reynolds number is small and we adapt the numerical method of Walter
et al. (2010) to model the fluid–structure interaction and the confining effect of the
solid boundaries: the fluid motion is solved by means of the boundary integral (BI)
method, while the membrane mechanics is solved by means of a finite element (FE)
method. The coupling of the two methods has been shown to be very precise and to
remain numerically stable even when the membrane is subjected to compressive forces
causing buckling.

The method used to simulate the fluid–structure interactions occurring when a
spherical capsule flows in a pore of various cross-sections is detailed in § 2. We then
study the 3D evolution and deformation of a capsule in a cylindrical pore and compare
the results with the ones obtained with the largely used axisymmetric numerical model
in § 3. In § 4, we model the flow of a spherical capsule in a square-section pore, give
new results on the effect of size ratio and flow strength and show how these can be
used to analyse experimental measurements of initially spherical capsules flowing in
such pores. We conclude with a critical analysis and comparison of the two set-ups.

2. Problem statement and numerical method
The flow configuration is similar to the axisymmetric case studied by Quéguiner &

Barthès-Biesel (1997), Diaz & Barthès-Biesel (2002) and Lefebvre & Barthès-Biesel
(2007) or to the 3D situation considered by Pozrikidis (2005), Doddi & Bagchi (2008)
and Kuriakose & Dimitrakopoulos (2011); it will be only summarized in the following.

2.1. Problem description
The channel consists of a long prismatic tube with constant cross-section with
characteristic dimension `. Entrance and exit effects are neglected. As indicated in
figure 2, we consider either a cylindrical tube with a circular section of radius R
(` = R) or a microfluidic channel with a square section of side h (` = h/2). The
channel is filled with an incompressible Newtonian liquid of viscosity µ flowing with
mean velocity V and flow rate Q. The velocity field in the channel in absence of
particle is denoted v∞.

The capsule is initially spherical with radius a. It is filled with a Newtonian
incompressible liquid with viscosity λµ and enclosed by an infinitely thin
impermeable hyperelastic membrane with surface shear elastic modulus Gs and area
dilatation modulus Ks. Buoyancy forces are neglected and consequently, when the
capsule is centred on Oz, it remains centred. However, if the capsule were not
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FIGURE 2. Prismatic channel with axis Oz. The cross-section is either circular with radius R
or square with side h.

centred on the tube axis, it would migrate towards it (Helmy & Barthès-Biesel 1982;
Pozrikidis 2005; Doddi & Bagchi 2008). We use a reference frame Oxyz, centred at
time t on the capsule centre of mass O, Oz being along the tube axis (figure 2). We
are interested in the steady deformed state of the capsule in the tube. The membrane
velocity is then zero (because of the flow symmetry) and the internal fluid at rest.
Consequently the internal viscosity value does not influence the steady deformation
and we can take λ= 1 without loss of generality. Of course, λ has an influence on the
time it takes to reach the steady state (Diaz & Barthès-Biesel 2002).

The flow Reynolds number is assumed to be very small so that the internal and
external liquid motion satisfies the Stokes equations. We solve these in a domain
bounded by the cross-sections S1 at the entrance and S2 at the exit, that are both
located far enough from O for the capsule flow perturbation to vanish. The other
domain boundaries are the channel wall W and the capsule surface C. The unit normal
vector n to all of the boundaries points inwards the suspending liquid. We use v(β),
σ (β) and p(β) to denote the velocity, stress and pressure fields in the suspending (β = 1)
and internal (β = 2) liquids.

The problem boundary conditions are:

(a) no flow disturbance on S1 and S2 as they are far from the capsule:

v(1)(x, t)→ v∞(x), x ∈ S1 ∪ S2; (2.1)

(b) pressure values prescribed on S1 and S2:

p(1)(x, t)= 0, x ∈ S1, (2.2)

p(1)(x, t)=1P(t)+1P∞, x ∈ S2, (2.3)

where 1P∞ is the undisturbed pressure drop between S1 and S2 in the absence of
capsule and 1P is the additional pressure drop due to the capsule;

(c) no slip on the channel wall W:

v(1)(x, t)= 0, x ∈W; (2.4)

(d) no slip on the capsule deformed surface C:

v(1)(x, t)= v(2)(x, t)= ∂

∂t
x(X, t), x ∈ C, (2.5)

where X denotes the initial position of a membrane material point located at
position x at time t;

(e) the load q on the membrane is due to the viscous traction jump:

(σ (1) − σ (2)) ·n= q, x ∈ C. (2.6)
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2.2. Capsule membrane mechanics

When the thickness of a capsule membrane is small compared with the capsule
dimensions and typical radius of curvature, the membrane can be modelled as
a hyperelastic surface devoid of bending resistance. A membrane material point,
identified by its position X in the reference state, is displaced to the position x(X, t)
in the deformed state. Because the bending stiffness is neglected, the normal vector to
the surface remains normal during deformation. The local deformation of the surface is
measured by the Green–Lagrange strain tensor

e = 1
2(F

T
· F − I), (2.7)

where F = ∂x/∂X . The membrane deformation can also be quantified by the principal
dilatation ratios λ1 and λ2 in its plane which correspond to eigenvalues of e. Since the
membrane is infinitely thin, elastic stresses are replaced by a Cauchy tension tensor τ
corresponding to forces per unit arclength measured in the plane of the membrane.

A number of constitutive laws are available to model thin hyperelastic membranes
(Barthès-Biesel, Diaz & Dhenin 2002). Different material behaviours can be described
for large deformation, including the strain-softening behaviour of gelled membranes
exhibiting rubber-like elasticity or the strain-hardening behaviour of membranes made
of a polymerized network with strong covalent links. For conciseness, we will restrict
the study to the widely used neo-Hookean (NH) law, which has been found to be the
appropriate law to model the behaviour of protein-reticulated membranes (Carin et al.
2003; Lefebvre et al. 2008; Chu et al. 2010). The NH law describes the behaviour of
an infinitely thin sheet of a 3D isotropic and incompressible material. The principal
tensions are given by

τ1 = Gs

λ1λ2

[
λ2

1 −
1

(λ1λ2)
2

]
(likewise for τ2). (2.8)

The hypothesis of volume incompressibility implies that area dilatation is balanced by
membrane thinning and correspondingly the area dilatation modulus is Ks = 3Gs.

Owing to the negligible inertia of a membrane with small thickness, the membrane
motion is governed by the local equilibrium equation

∇s · τ + q= 0, (2.9)

where q is the external load exerted by the fluids as given by (2.6) and ∇s· is the
surface divergence operator in the deformed configuration.

Since the bending modulus of the membrane has been neglected, the capsule wall
buckles locally in the regions where the elastic tensions are compressive (see, for
example, Cerda & Mahadevan 2003, Luo & Pozrikidis 2007 and Finken & Seifert
2006). In order to study the post-buckling behaviour of the capsule, bending moments
and transverse shear forces must be added to (2.9) and a constitutive equation must
be postulated to relate bending moments and local deformations. It follows that the
bending behaviour of a capsule is a complicated problem of shell mechanics that is not
completely resolved yet.

The simplified membrane model that we use here will be appropriate to model
capsules with a very low bending resistance. It will detect zones where tensions are
compressive but cannot compute the post-buckling behaviour of the capsule.
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2.3. Numerical procedure
We use the method developed by Walter et al. (2010) which is based on the coupling
of a membrane FE method (for the capsule wall mechanics) and a boundary integral
method (for the internal and external flows). We position the capsule on the channel
axis and then follow the position of the material points of the membrane after the
start of flow at time t = 0. At each time step, the deformation of the capsule may
be computed from the position of the membrane material points. The elastic tension
tensor τ is then obtained from the values of the in-plane stretch ratios λ1 and λ2. The
FE method used to solve the equilibrium of the membrane provides the load q.

The Stokes equations are recast in boundary integral form for the 3D motion of
the internal and external fluids. In the case of a capsule in a tube and for λ = 1, the
velocity v(x) of any point x in the fluid domain is given by Pozrikidis (2005)

v(x)= v∞(x)− 1
8πµ

[∫
C

J(r) · q dS(y)+
∫

W
J(r) · f dS(y)

−1P
∫

S2

J(r) ·n dS(y)
]
, (2.10)

where f is the disturbance wall friction due to the capsule and r = y − x. The Green
kernel is defined by

J(r)= 1
r

I + r⊗ r
r3

, (2.11)

where r = ‖r‖ and I is the identity tensor.
Applying the reciprocal theorem to the flow without capsule (v∞, σ∞) and to the

flow with the capsule (v(1), σ (1)) in the domain bounded by S1 ∪ S2 ∪W ∪ C, we find∫
C
[σ (1)
·n] ·v∞ dS− (1P+1P∞)Q=

∫
C
[σ∞ ·n] ·v(1) dS−1P∞Q, (2.12)

where we have used the facts that the flow rate Q is the same with and without the
capsule and that the velocity is zero on W. Now, we apply the reciprocal theorem to
(v∞, σ∞) and to (v(2), σ (2)) in the domain bounded by C∫

C
[σ (2)
·n] ·v∞ dS=

∫
C
[σ∞ ·n] ·v(2) dS. (2.13)

We subtract (2.12) and (2.13) and use (2.5) and (2.6) to find that the additional
pressure drop is simply given by

1P= 1
Q

∫
C
v∞(x) · q dS(y). (2.14)

Once the value of the pressure disturbance 1P is known, the application of (2.10) to
x ∈W

0=
∫

C
J(r) · q dS(y)+

∫
W

J(r) · f dS(y)−1P
∫

S2

J(r) ·n dS(y) (2.15)

yields an implicit equation for f which is solved numerically. Applying then (2.10)
to x ∈ C, we obtain the new velocity v(x, t) of the membrane points from which we
deduce the velocity v(O, t) of the centre of mass. The no-slip equation (2.5) is first
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(a) (b)

FIGURE 3. (a) Meshes of the circular and square cross-sections; (b) meshes of the prismatic
tubes.

modified to keep the centre of mass fixed at point O

v(1)(x, t)− v(O, t)= ∂

∂t
x(X, t), x ∈ C. (2.16)

Equation (2.16) is then time-integrated to provide the new position of the membrane
points. The procedure is repeated until a steady state is reached (typically when the
surface of the capsule varies by less than 5 × 10−4 × (4πa2) over a non-dimensional
time Vt/`= 1).

2.4. Discretization
The surface of the capsule is discretized using triangular curved P2 elements, which
have six nodes (one at each vertex and at the middle of each side) and are associated
with quadratic shape functions. The mesh of the initial spherical capsule is obtained
by first inscribing an icosahedron (regular polyhedron with 20 triangular faces) in the
sphere and subdividing the elements sequentially until the desired number of elements
is reached (Ramanujan & Pozrikidis 1998; Walter et al. 2010). For all of the 3D
computations, we use a capsule mesh with 1280 elements and 2562 nodes, which
correspond to a characteristic mesh size 1hC = O(0.1a).

The tube mesh is generated using Modulef (INRIA Rocquencourt, France). We
first generate the two-dimensional geometry of the tube cross-section with the desired
shape (circular or square in the present case). The circular or square cross-sections are
meshed with unstructured triangular elements having a mesh size 1hS = O(0.14`). The
corners of the rectangular cross-section have been rounded with an arccircle (radius
1hS) in order to avoid corner effects when solving for the flow (figure 3a). As shown
in figure 3(b), the central section of the tube (of length 4`) has a more refined mesh
(1hW = O(0.14`)) than the inlet and outlet tube sections (1hW = O(0.22`)), each of
length 6`. Altogether, the mesh comprises 1505 nodes and 2976 elements for the
cylindrical tube and 1905 nodes and 3768 elements for the rectangular tube.

The numerical method is conditionally stable if the time step satisfies a similar
condition to that found for the unbounded case (Walter et al. 2010)

V

`
1t < O

(
1hC

`
Ca

)
, (2.17)

where 1t is the time step. All of the results shown hereafter have been obtained with a
time step V1t/`= 5× 10−5. We have checked the influence of the wall and exit mesh
size using a mesh size twice as small as that described above and have not found any
significant influence on the capsule deformed profile. This confirms that the error on
the capsule shape is mainly determined by the capsule mesh size and is then O(1h4

C)

as shown by Walter et al. (2010).
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2.5. Case a/` > 1
When the capsule initial size is larger than the channel cross-dimension, we pre-
deform the capsule into an spheroid that fits inside the pore. Correspondingly, a point
initially located at X,Y,Z on the capsule surface is displaced to x, y, z, such that

z= k1Z, y= k2Y, x= k2X, (2.18)

with k2
2k1 = 1, in view of the volume conservation requirement. We choose k2 such that

y/` = 0.9, in order to leave a reasonably thick liquid film between the membrane and
the channel wall. The resulting elastic tensions in the membrane and the load q exerted
on the fluid are computed by means of the FE method. The capsule deformation
is then followed in time as explained above. We have verified that the amount of
pre-deformation does not influence the results: exactly the same results have been
obtained with another value of k2 such that the capsule is pre-deformed to y/`= 0.8.

2.6. Presentation of the results
The model parameters are the capillary number Ca= µV/Gs which measures the ratio
between the viscous and elastic forces and the size ratio a/`. The deformed profile
intersections with the yz- or xz-planes are determined. These correspond to what
is typically observed experimentally for a capsule flowing in a pore. The principal
tensions along the profile are also computed in order to detect the presence of
compression zones. The position of a point M on the profile is determined by the
angle θ = (ez,OM).

3. Flow of a capsule in a cylindrical pore
We now consider a pore with a circular cross-section of radius R. The undisturbed

velocity is

v∞ = 2V[1− (x2 + y2)/R2]ez. (3.1)

If we assume the capsule profile to remain axisymmetric, the flow is also axisymmetric
and it is possible to integrate (2.9), (2.10), (2.14) and (2.15) analytically in the
azimuthal direction. The surface integrals on C and W then become line integrals
along the meridian curves of the corresponding surfaces, while the integral on S2 is
taken along a radius of the section (Pozrikidis 1992; Quéguiner & Barthès-Biesel
1997; Diaz & Barthès-Biesel 2002; Lefebvre & Barthès-Biesel 2007). With this
procedure, a negative azimuthal tension may compress part of the capsule membrane
without creating any numerical instability. However, it must be recognized that the
solution thus obtained is mechanically unstable: the membrane should actually buckle
in these regions as observed experimentally (figure 1).

In the axisymmetric model we use, the tube entrance is shaped as an hyperboloid
(Quéguiner & Barthès-Biesel 1997; Diaz & Barthès-Biesel 2002; Lefebvre & Barthès-
Biesel 2007). An undeformed capsule is positioned in the entrance section, far enough
from the cylindrical part of the pore to fit in, and we follow the entrance process into
the cylindrical pore until a steady state is reached. Charts of the capsule deformation
parameters as functions of the size ratio, capillary number and osmotic pre-swelling
may be found in Lefebvre & Barthès-Biesel (2007), Lefebvre et al. (2008) and Chu
et al. (2010).

3.1. Three-dimensional effects on capsule deformation
We compare the results obtained with the 3D computation, where no specific
assumption on the problem symmetry is made a priori, with those provided by the
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FIGURE 4. Successive profiles of a capsule of aspect ratio a/R= 1.1, subjected to a capillary
number Ca= 0.05. The initially spherical capsule being larger than the pore is deformed into
an ellipsoid at dimensionless time tV/R= 0. The capsule is then left free to adapt its shape to
the flow. It has a steady parachute shape at tV/R= 10.

axisymmetric model. For the 3D computation, we first stretch the capsule as explained
in § 2.5 and then let it reach an equilibrium, if any. Results are presented for a
typical case where a/R = 1.1 and Ca = 0.05. It is a deliberate choice to show results
for a large capsule aspect ratio, as the larger the aspect ratio the larger the capsule
deformation for a given capillary number. The successive capsule profiles are shown in
figure 4. We note that the largest shape change occurs at the rear where the curvature
evolves from a positive to a negative value. At steady state, the internal liquid being
at rest, the internal pressure is constant. In order to adapt to the viscous pressure drop
occurring in the external liquid, the membrane curvature must be larger at the front
than at the rear, thus leading to slug or parachute shapes of the capsule.

As shown in figure 5(a), the meridional axisymmetric and 3D profiles are almost
superimposed in plane Oyz. The cross-profiles in plane z = 0 are also superimposed
notwithstanding small oscillations of the 3D profile about the mean circular profile
predicted by the axisymmetric model (figure 5b).

The axisymmetric computation shows that the principal tension τ2 in the azimuthal
direction is negative, and thus compressive, on part of the membrane (for θ/π ∈
±[0.35; 0.8] or z ∈ [−1.16; 0.43]) as shown in figure 6. This means that in the grey
area of figure 5(a), the membrane is undergoing compression and will tend to buckle.
In this area where the membrane is undergoing compression and where there is no
bending resistance to regulate the process, the 3D model leads to values of τ2 which
oscillate about zero with a wavelength of the order of twice the grid spacing. The
membrane undergoes a numerical buckling which mimics the actual one qualitatively
only. We have checked that the wavelength of the oscillation decreases by a factor two
when the number of elements is doubled.
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the axisymmetric and 3D computations for a/R = 1.1 and Ca = 0.05. The principal tensions
are plotted as a function of position θ/π along the profile. Tension τ1 is directed along the
profile, while τ2 is perpendicular to the plane and thus in the hoop direction.

As a consequence of the compression, the 3D cross-profile in plane z= 0 undergoes
small oscillations about the mean circular profile predicted by the axisymmetric
model (figure 5b). These oscillations correspond qualitatively to the folds that
are observed experimentally and whose wavelength is obviously regulated by the
membrane thickness and bending stiffness. The values of the principal tension τ1 along
a ‘meridian’ curve in the Oyz plane also oscillate about the axisymmetric value.

Finally we note that on the part of the membrane where no compression occurs
(i.e. about the front of the capsule), the tensions values are superimposed. In particular,
the maxima of τ1 are identical with the two computations. This indicates that the
axisymmetric and 3D model would both lead to the same mechanical failure criterion.

In conclusion, we find that, for large capsule aspect ratios, there is significant lateral
compression on the capsule membrane leading to folds similar to those observed
experimentally and shown in figure 1. For smaller values of the size ratio a/R, we
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obtain the same qualitative results, namely that the axisymmetric and 3D profiles are
almost identical. The fit is optimal for small aspect ratios and capillary numbers, as the
capsule is then devoid of compression zones around its surface at steady state.

The axisymmetric model predicts that for a given size ratio, there exists a higher
bound on the capillary number Camax for which it is possible to reach a steady
equilibrium state (Chu et al. 2010). For flow rates such that Ca > Camax the capsule
undergoes continuous extension. This phenomenon is similar to that which occurs
in elongational flow for NH membranes and which is due to the strain-softening
behaviour of the NH law (Barthès-Biesel 2011). The 3D computation also finds an
upper bound on the values of Ca for which it is not possible to obtain a steady
state. The values of Camax are about 10 % larger with the 3D model than with the
axisymmetric model. This difference may be attributed to the numerical technique and
to the discretization of the membrane. As a consequence, the exact 3D value of Camax

is immaterial, and the upper bounds given by Chu et al. (2010) can be used for
practical purposes.

3.2. Conclusion for the capsule flow in a cylindrical pore
The axisymmetric model has been used by Lefebvre et al. (2008) and Chu et al.
(2010) to analyse experiments on microcapsules flowing in a cylindrical pore of
known radius R. The procedure is based on the contour extraction of the deformed
profile from which the capsule volume and size ratio a/R are computed. A database
of computed deformed profiles obtained for different values of a/R and Ca is then
searched to find the same deformation characteristics as the experimentally observed
profile. This leads to a set of values of Ca from which Gs is inferred (for details, see
Lefebvre et al. 2008 and Chu et al. 2010).

We have shown that although the capsule membrane tends to fold, the axisymmetric
profiles represent a very good approximation of the actual 3D profiles. It follows
that the characterization procedure based on the axisymmetric model is sound. As
regards the elastic tensions though, the axisymmetric model can only be used to
evaluate their maximum values and determine the zones where buckling will occur.
This is an important result, as it is much easier and faster to use an axisymmetric
representation than a full 3D representation. For example, for Ca= 0.05 and a/l= 0.9,
the computation of a time interval tV/`= 1 takes 1 h for the axisymmetric case using
one core of a 128-core cluster and 5.7 h for the 3D case using 8 cores (of course,
those times are given for a usual mesh size, but increase with the mesh refinement).

4. Flow in a square cross-section pore
The uniform axial velocity distribution v∞ = v∞(x, y)ez in a duct with a square

cross-section is given in a number of textbooks (e.g. Pozrikidis 1997)

v∞(x, y)=
πV
∑[

1
n3
− cosh nπx/h

n3 cosh nπ/2

]
sin nπ(y/h+ 1/2)

2
[
π4

96
−
∑ tanh nπ/2

n5π/2

] n= 1, 3, . . . (4.1)

where the sums are taken over odd values of n. When applying the no-slip condition
(2.15), we set to zero the velocity of the node point located in the middle of the
rounded corner (figure 3), where its actual value is 0.05V or 0.02V for the standard or
refined boundary mesh, respectively. As the change in wall mesh size has a negligible
influence on the capsule profile, we consider that this corner rounding leads to a
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FIGURE 7. Steady capsule profiles in a square channel (full line) and in a cylindrical tube
(dashed line) for a/` = 0.9. (a) Profiles in the yz-plane, with the cross on the axis indicating
the position of the centre of mass z= 0; (b) cross-profiles in the xy-plane for which z= 0.

negligible error. In the following, we analyse the influence of the confinement induced
by a square tube as compared to a cylindrical tube. For brevity, we use the notation
‘circular capsule’ or ‘square capsule’ for the capsule in the circular or square section
pore, respectively. The results shown for the circular capsule are obtained with the
three-dimensional model.

4.1. Case a/` < 1
We first consider the case 2a/h = 0.9 where the capsule is only slightly smaller
than the channel. The longitudinal and cross-profiles are shown in figure 7 and
compared with the three-dimensional profiles obtained in a cylindrical tube for the
same values of Ca and a/R. We note that for small capillary numbers (e.g. Ca= 0.02)
the deformation is small and the deformed profiles in the two channels are almost
superimposed. When Ca increases, the circular capsule having less room to deform
is more elongated than the square capsule, which can expand in the corners of the
channel as shown in figure 7(b). As a consequence, the deformed profile of a square
capsule is not axisymmetric. Another consequence is that the tension τ1 along the
profile is larger for the circular than for the square capsule as shown in figure 8(a).
Furthermore, the cross-section of the square capsule is not under compression (τ2 is
positive everywhere), whereas the circular capsule is compressed and tends to buckle
as discussed in the previous section (figure 8b). For Ca = 0.1, one could be under
the wrong impression that the circular capsule does not buckle: actually, it buckles for
negative values of z.

4.2. Case a/`> 1
We now turn to large capsules that must be pre-deformed. The longitudinal and cross-
profiles are shown in figure 9 for the case a/` = 1.1. First we note that for low flow
strength (Ca 6 0.05), the square capsule membrane is compressed near the wall but
is extended in the corners. By contrast, the circular capsule is compressed all around
as evidenced by the cross-profiles (figure 9b) and by the corresponding oscillations
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(dashed line) for a/` = 1.1. (a) Profiles in the yz-plane, with the cross on the axis indicating
the position of the centre of mass z= 0; (b) cross-profiles in the xy-plane for which z= 0.

of tension τ2 (figure 10b). As the flow strength increases, the capsule is stretched
along the pore axis, the surface area increases and the negative tensions disappear. The
circular capsule being more deformed than the square one, the tension level in the
membrane is higher as shown in figure 10.

For a/` = 1.1 and high flow strength (Ca = 0.08–0.09), the capsule also undergoes
continuous elongation and no steady equilibrium state can be reached. We note again
that the value of Camax for which this phenomenon occurs is larger in the square
section pore than in the circular section pore. Indeed, in the cylindrical pore, a flow
strength Ca= 0.07 exceeds Camax, which is the reason why no circular capsule profile
is shown in figure 9 for Ca= 0.07.

4.3. Effect of Ca and a/l
From an experimental point of view, it is convenient to characterize the capsule
deformation with the maximum profile length L and the axial length La along the Oz
axis. These two parameters are equal for slug shapes, whereas La < L for parachute
shapes. The lengths L and La are plotted as a function of Ca in figure 11(a) for
the circular and square pores. We find that, to obtain the same elongation L in the
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a capsule (a/` = 0.9) at steady state flowing in a cylindrical or square channel. For the same
value of Ca, the capsule is more deformed in the cylindrical than in the square pore and
travels at a slower speed.

two pores, the value of Ca in the square pore must be about 60 % higher than that
in the circular pore. The values of L − La are the same for the two types of pores,
as can also be observed from figure 7. The steady velocity of the capsule centre of
mass vO is plotted in figure 11(b). It is 10 % higher in the square than in the circular
pore. The explanation for this larger velocity is outlined by Lefebvre et al. (2008) and
summarized here in the limiting case where the film is thin. When a capsule has the
same deformed axial profile in a circular or square channel, it is subjected to the same
pressure drop 1Pc along its length L (because the front and back curvatures are the
same). This pressure drop is related to the viscous loss in the lubrication film. For
example for the circular tube, a force balance yields

1Pcπ`
2 = 2π`LµvOcyl/hcyl (4.2)

where hcyl is the mean film thickness. The same expression is found for the mean film
thickness hsq in terms of the capsule velocity vOsq in the square channel. It follows that

vOsq

vOcyl
= hsq

hcyl

. (4.3)
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These graphs are useful to analyse experimental data on capsules flowing in square section
pores.

There are two limiting shapes of the capsule cross-section in a square channel that
correspond to a given axial profile. If the cross-section of the capsule is square, the
mean thickness is constant hsq = hcyl. If it is circular with radius ` − hcyl, hsq > hcyl

due to the contribution of the corners. From (4.3), the velocity vOsq is then equal or
larger than vOcyl. The numerical model finds that the capsule cross-section is square
with rounded corners (figures 7b and 9b), which indicates that vOsq must be larger than
vOcyl.

In conclusion, larger flow rates must be used in the square pore than in the
cylindrical pore to get the same deformation. This may cause some experimental
difficulties as the capsule will move faster and its detection will be more difficult.

The combined effects of flow strength and aspect ratio are summarized in figure 12.
We note that for aspect ratios less than unity, the capsule is first compressed in
the axial direction when the capillary number is small (e.g. Ca 6 0.02) as can be
surmised from the initial decrease of L. Then the stretching effect of the viscous forces
elongates the capsule. When a/` 6 0.95–0.97 the capsule takes a parachute shape for
all values of Ca. For larger aspect ratios (e.g. a/` > 1), the parachute appears only
when Ca exceeds a critical value Cac. When Ca < Cac, the capsule has a slug shape
and (L − La)/` = 0. The capsule moves faster than the average fluid velocity as it
is centred on the channel. All of these phenomena are qualitatively similar to those
observed for the flow of capsules in cylindrical tubes (Lefebvre & Barthès-Biesel
2007; Lefebvre et al. 2008) irrespective of the membrane constitutive law.
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FIGURE 13. Flow of initially spherical capsules with a cross-linked ovalbumin membrane
in a 50 µm × 50 µm microfluidic channel; (a) aapp/` = 0.85, vO = 6.6 mm s−1; (b) aapp/` =
1.05, vO = 4.5 mm s−1.

These plots are necessary to analyse the flow of capsules in a square section pore
and to infer a value for the membrane elastic modulus from the capsule deformation
and velocity. In a typical microfluidic device, only the capsule deformed profile in one
plane (e.g. the yz-plane) can be observed. It is thus difficult to evaluate the volume (or
the initial radius) of the capsule. A way to do it is to rotate the profile in the yz-plane
about the pore axis as if the capsule were axisymmetric and to deduce an approximate
initial radius aapp, from the pseudo-axisymmetric volume. The model allows us to
compute the error between aapp and the real value a. Indeed, the model yields a steady
deformed profile for a capsule of known volume. If we rotate the deformed profile
in the yz-plane about the channel axis and compute the volume of the axisymmetric
shape thus obtained, we can infer the numerical value of aapp and compare it to a. This
is done in figure 12(c) where we find that aapp always underestimates a. This is of
course due to the propensity of the square capsule to occupy the tube corners for large
aspect ratios: the capsule volume that expands in the corners is not taken into account
during the rotation procedure described above.

4.4. Comparison with experimental results
Measurement of the flow of artificial capsules in cylindrical tubes and in square
section microfluidic pores have been conducted by Lefebvre et al. (2008). The
capsules are initially spherical and have a cross-linked ovalbumin membrane. They
are suspended in a 100 % glycerin solution (viscosity µ = 1 Pa) and flowed through
microchannels with a cross-section comparable to the capsule, a/` = O(1). The
capsule deformed profile are recorded with a high-speed camera and their velocity is
measured. Lefebvre et al. (2008) used a NH model to describe the membrane elasticity
and found a shear modulus value Gs = 0.07 ± 0.01 N m−1 from the cylindrical pore
measurements.

We outline briefly how the results of § 4.3 can be used to evaluate the mechanical
properties of capsules. In figure 13, we show deformed capsules obtained in a
microfluidic channel with a 50 µm× 50 µm cross-section under the same experimental
conditions as Lefebvre et al. (2008). We first note the qualitative similarity between
the profiles of figures 7(a) and 13(a) on the one hand, and of figures 9(a) and 13(b)
on the other. For the small capsule, we find aapp/` = 0.85 or a/` = 0.86 − 0.87;
L/` = 1.7. From figure 12(a,d), we find Ca ≈ 0.06 and vO/V = 1.33. It follows that
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the membrane shear modulus is

Gs = 6.6× 10−3

1.33× 0.06
= 0.08 N m−1. (4.4)

The same reasoning for the large capsule yields aapp/` = 1.05 or a/` = 1.1 − 1.09;
L/`= 2.5, Ca≈ 0.04 and vO/V = 1.19, leading to

Gs = 4.5× 10−3

1.19× 0.04
= 0.09 N m−1. (4.5)

These values are in good agreement with those of Lefebvre et al. (2008), which is very
encouraging. A full analysis of the precision and discriminating power of the method
is left for a future study.

5. Conclusion
We have shown in this paper how 3D effects affect the flow of capsules in pores

with cross-dimensions comparable with the capsule diameter. The confinement effect
due to the channel walls compresses the capsule in the direction perpendicular to
the pore axis. This leads to compression of the membrane and a tendency towards
buckling that has been observed experimentally. The flow of a capsule in a small pore
is thus a 3D process even when the pore and the capsule share the same revolution
axis.

These 3D effects have been specifically studied and we have shown that in a
cylindrical tube with a circular cross-section, the 3D capsule deformation is well
approximated by an axisymmetric simple model. This is an interesting and important
result as it is much easier and faster to use an axisymmetric numerical model rather
than a full 3D model.

In the case of microfluidic pores with square cross-section the 3D aspect of the
problem cannot be simplified. We have thus conducted a novel study of the flow
of spherical capsules in pores as a function of capillary number and aspect ratio.
A comparison between the numerical model and some experimental measurements
of capsules flowing in square section microfluidic pores shows that it is possible to
evaluate the capsule membrane elastic modulus. This is a very interesting result as
it opens the way to the design of on-line microfluidic measuring systems that can
evaluate the mechanical properties of capsules.

One of the drawbacks of this study is the lack of bending resistance of the capsule
membrane leading to non-physical numerical folds in the regions where the membrane
is undergoing compression. Accounting properly for the bending and post-buckling
behaviour of the capsule membrane is a formidable problem of shell mechanics. The
reason being that the capsule is subjected to large deformation, large membrane forces
and that the bending effect becomes preponderant only on parts of the wall. It is clear
that a very fine mesh of the capsule wall would be necessary if we were to reproduce
the folds with any precision. This would increase very significantly the computer time.
The interesting question which arises at this point is how necessary is it to account
for bending forces? If the capsule wall has a highly anisotropic structure (e.g. the red
blood cell wall which consists of a lipid bilayer lined by a protein network), it is clear
that bending forces can be fairly large as compared to membrane shear forces and
must be accounted for. For artificial capsules with a wall which consists of a thin layer
of a 3D isotropic material (e.g. a gelled membrane reinforced by a polymer network),
the bending resistance is directly related to the ratio of the membrane thickness to
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the capsule radius. For thickness ratios less than 10 %, it is generally admitted that
bending effects will be very small compared with the membrane forces. It is thus
quite possible that ignoring bending forces and adding a small uncontrolled numerical
resistance (due to discretization) leads to a fairly good approximate model that can be
used to analyse the motion of real artificial capsules.
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CHAPTER 3. CAPSULE FLOWING IN DIFFERENT BOUNDED FLOWS

3.2 Capsule flow in a channel with square or rect-

angular cross-section

In this section, we consider an initially spherical capsule flowing in a channel with

square or rectangular cross-section. For the rectangular one, the width and height

of the section are W = 4ℓ and h = 2ℓ respectively, while the side width for square

channel is 2ℓ, as shown in Fig. 3.1. The capsule is centred on the channel axis, and

the surfaces of the channel and capsule are discretized as presented in section 2.2.1.

All the following results are obtained by 3D computations. We first study the capsule

flow in a rectangular channel, which is compared with the results in a square channel.

Finally the global effect of the channel geometry on the capsule flow is presented.
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Figure 3.2: The effect of Ca on the profiles of a capsule flowing in a channel with
rectangular cross-section. Ca increases from 0.05, 0.10 to 0.15. a/ℓ = 1.1, NH
membrane.
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As shown in Fig. 3.2, the capsule with a/ℓ = 1.1 and a NH membrane flows inside

a channel with rectangular cross-section. The flow strength Ca varies from 0.05, 0.10

to 0.15. We determine the deformed capsule profiles in the xy-, xz- and yz- planes

for zo = 0. Since the channel width is twice the height, the centred capsule is less

confined in the x- direction and it expands in this direction as Ca increases, as shown

in Fig. 3.2(a) and (c). In the y- direction, the boundary walls confine the capsule

and the parachute depth becomes larger with the increase of Ca.
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Figure 3.3: Comparisons of the deformed profiles of a capsule flowing in square and
rectangular channels. Ca = 0.05, a/ℓ = 1.1, NH membrane. The solid line is for the
square sectional channel, and the dashed line for the rectangular one.

The flow of a capsule with a/ℓ = 1.1 and a NH membrane inside a square or a

rectangular channel at Ca = 0.05 is shown in Fig. 3.3. Since the rectangular channel

is twice as wide as the square one, the capsule profile in a rectangular channel is wider

in the x- direction but shorter in the z- direction. Since less boundary confinement is
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imposed on the capsule in the rectangular than in the square channel, the capsule in

a square channel presents more wrinkles than that in a rectangular one.
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Figure 3.4: Effect of Ca, a/ℓ and channel cross-sectional geometry on the capsule
total length L/ℓ, parachute shape (L− La)/ℓ and center of mass velocity υo/V .

The maximum length L/ℓ and the parachute depth (L − La)/ℓ in the yz-plane

are shown in Fig. 3.4. The parachute forms when the capillary number exceeds the

critical capillary number Cac. The value of Cac is less for a capsule in a square channel

than for one in a rectangular channel. When Ca > Cac, both L/ℓ and (L − La)/ℓ

increase faster with Ca for the capsule flowing in a square channel than for the one in a

rectangular channel. This is due to the larger cross-sectional space of the rectangular

channel, which allows the capsule to expand more in the x- direction than in a square

channel. The overall effect of the size ratio is to increase the deformation for a given

flow strength. It is of interest to notice that the capsule in a rectangular channel has

a higher relative velocity than in a square channel. This is due again to the larger
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sectional space of rectangular channel, which allows the capsule to stay in the central

area of the channel where the velocity is higher than in the area near the boundary.
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Chapter 4

Comparison with experiments

In this section, we propose to use the numerical results in a channel with square

cross-section to characterize the membrane mechanical properties of a population of

artificial microcapsules with a cross-linked ovalbumin membrane. Since the rational

choice of membrane constitutive laws is important for a successful measurement,

the effect of membrane constitutive laws is also discussed. This is included in our

paper submitted to Physical Review E recently, which is presented in section 4.1.

The additional results including the tensions on profiles of capsule flowing in square

channel and the effect of pre-stress are presented in section 4.2.

4.1 Characterization of membrane properties of

capsules flowing in a square-section microflu-

idic channel: effects of the membrane consti-

tutive law
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I. INTRODUCTION

Capsules, which are liquid droplets enclosed by a thin elastic membrane, are widely

found in nature (red blood cells, eggs) and in cosmetic, food or pharmaceutical industry1.

The deformable membrane that separates the internal and external liquids prevents the

diffusion and degradation of the internal substance and controls its release. The motion and

deformation of flowing capsules depend on the mechanical properties of membrane. The

characterization of these properties is thus essential for the design of artificial capsules, but

it is a challenging task when the capsules have a small size of order a few tens of micrometers.

Artificial capsules are usually obtained through interfacial polymerization of a liquid droplet

and are thus spherical. In the following, we consider only initially spherical artificial capsules

with radius a.

A method that is widely used for relatively large millimeter-size capsules is to compress

them between two rigid parallel plates and measure simultaneously the plate separation and

compression force. Using an appropriate mechanical model of the set-up, the membrane

constitutive law can be deduced2. Subjecting capsules to simple shear flow3 or to centrifugal

flow fields4 are two other possible ways to measure the membrane properties. However, it is

difficult to reach large mechanical stresses in such devices.

For micrometer-size capsules, poking the membrane with an atomic force microscope5

or sucking part of it in a micropipette6,7 are classical techniques to measure the membrane

mechanical properties. Both require skillful micro-manipulations and are not suitable for

screening large populations of microcapsules quickly. Recently, a new method has been pro-

posed to measure the membrane properties of a capsule population. It consists of flowing

a capsule suspension into a cylindrical glass capillary tube with radius comparable to that

of the capsules8,9. Hydrodynamic forces and boundary confinement lead to a large defor-

mation of the capsules, which can take either a parachute or a slug shape. The membrane

mechanical properties are then determined by analyzing the experimental results with a

numerical model of the set-up. This method, applied to 50 µm diameter capsules with a

cross-linked ovalbumin membrane, allows to correlate the membrane mechanical properties

to the cross-linking degree and to the physicochemical conditions of the capsule fabrication9.

It is, however, not easy to connect the syringe pump to the 50 µm diameter capillary tube,

where the measurement is performed. A double tube was designed, but it leads to fairly
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large pressure drops.

The rapidly growing microfluidic technologies allow to design simpler devices, where the

capillary tubes are easily connected to the feeding system. Owing to fabrication constraints,

the tubes usually have a square or rectangular cross-section. We thus investigate the feasi-

bility of using a microfluidic channel with a square cross-section to measure the membrane

properties of a population of capsules suspended in a viscous fluid. The channel has a side

length 2ℓ of the same order of magnitude as the capsule mean diameter 2a. We will see that

the initially spherical capsule can be subjected to significant deformations depending on the

flow velocity and size ratio a/ℓ between the capsule and the channel. This means that it

will be possible to discriminate which type of constitutive law the membrane follows.

The analysis of the experiments requires a specific numerical model of the flow of a capsule

in a square pore. Kuriakose & Dimitrakopoulos10 recently designed such a model, based on

the use of spectral elements, for capsules enclosed in a shear-hardening membrane described

by a Skalak et al. law11. However, the capsules had to be pre-inflated and thus pre-stressed

in order to prevent buckling instabilities. If the pre-stress has a negligible influence when

the capsule is highly deformed, it changes the results significantly at small and moderate

deformation12. We use instead the three-dimensional fluid-structure interaction scheme ini-

tially proposed for capsules freely suspended in unbounded flows13 and recently adapted for

capsules flowing in circular and square-section channels14. This numerical technique consists

of coupling the boundary integral method for the fluid flows with a finite element method for

the membrane deformation. The advantages of this model are two-fold: the capsules do not

need to be pre-stressed and large confinement ratios can be considered. In Hu et al.14, we

have studied in detail the case of capsules with a strain-softening neo-Hookean membrane.

We now extend the results to the case of capsules with a strain-hardening law in order to

analyze the experimental results with either law.

We first present the experimental method used to measure the deformation of artificial

capsules flowing in a square-section capillary tube. We then explain briefly the mechanical

model which represents the experiments and give global results on the capsule deformation

and kinematics as functions of the suspending flow strength and confinement. Finally we

show how the method can be used to estimate the shear elastic modulus of the membrane

of a capsule population and discuss the limits of the method.
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II. MATERIALS AND METHODS

A. Capsule fabrication

Microcapsules are prepared using an interfacial cross-linking method15. Briefly, a 10%

(w/v) ovalbumin (Sigma) solution is prepared using a phosphate buffer with pH = 5. The

solution is emulsified in cyclohexane (SDF) containing 2% (w/v) sorbitan trioleate (Sigma)

at a stirring speed of 1550 rpm. A 2.5% (w/v) solution of terephthaloyl chloride (Acros)

in chloroform:cyclohexane (1:4 v/v) is then added to the emulsion and the cross-linking

reaction is allowed to develop for 5 min. The reaction is stopped by diluting the reaction

medium with cyclohexane. The microcapsules are separated from the organic phase by

centrifugation and washed successively with cyclohexane, with water containing 2% (w/v)

polysorbate (Sigma) and finally washed three times with pure water in which the samples

are kept. The resulting capsules have a mean diameter of 62± 14 µm.

B. Microfluidic system fabrication

Straight 5 mm long square-section channels are fabricated by molding liquid poly-

dimethylsiloxane (PDMS) onto a silicon master, baking and peeling it off16,17. The channels

are then closed bonding them onto a glass lamella by air plasma (Plasma cleaner, Harrick).

The width of the channel is estimated to be W = 57.5± 1.5 µm using a line graduated rule

to estimate the pixel to µm conversion factor. The depth of the channel, measured on the

silicon mold, is h = 52 ± 1 µm. As the channel cross-section is not perfectly square, we

define the length 2ℓ as the side of the ideal square cross-section channel having the same

cross-area

ℓ =

√
W × h

2
= 27.4± 0.5µm. (1)

C. Capsule suspension preparation

A volume of 40 µL of ovalbumin microcapsule sediment is suspended in 1.8 mL of glycerin

(100%, VWR BDH Prolabo), which leads to a 2.2% (w/v) capsule suspension. After mixing

by successive pumping in-and-out of a syringe, the suspension is left to rest for 10 min at

the room temperature of 23◦C to allow the inner water to be replaced by the outer glycerin

4



by osmotic exchange. This process does not seem to damage the capsules, which recover

a spherical shape within minutes. As a consequence, we consider that there is no osmotic

difference between the internal and external liquids and that the membrane is thus not

pre-stressed. The viscosity µ of the suspending fluid strongly depends on temperature and

water content18. Former measurements of the suspension9 provided a viscosity of µ = 0.7

Pa.s at 23◦C . We assume this value to be the viscosity of the fluid carrier and thus neglect

the influence of the small amount of capsules present in the suspension.

D. Experimental setup

We fill a 1 mL glass syringe (Fortuna Optima) with the suspension and take care that

no air bubble remains in either the syringe or the silicon connection tube to minimize

throughput variations. The suspension is injected into the microfluidic system by means

of a syringe pump (KDS100, KD Scientific) at different flow rates. The deformation and

velocity of a capsule is observed with a ×40 magnification transmission microscope (Leica

DM IL LED), which is connected to a high resolution high-speed camera (FASTCAM SA3

Photron) through a ×1 C-mount (Leica). The microscope is focused on the channel center

plane. The capsule profile is observed along the channel axis and width W . The images are

recorded at 1000 frames per second, with an exposure time of 0.2 ms and an observation

field 1024× 256 pixels. The calibration scale is 0.425 µm/pixel. The observation field is far

enough from the entrance (about 3 mm i.e. 100ℓ) to consider that the capsule has reached a

steady state. From two successive images, we measure the capsule velocity vo, which varies

between 1 and 10 mm/s, depending on the size of the capsule and the flow rate.

E. Capsule profile extraction and experimental measurements

Fig. 1(a) shows an experimental image of a capsule flowing in a 2ℓ square channel.

Because automatic image extraction is difficult with this low contrast level, we use ImageJ

to detect manually the capsule contour. The channel and membrane contours are determined

at the center of the dark line. We then calculate the surface S of the profile, its total length L

and its axial length La as shown in Fig. 1(b). The parachute depth is given by Lp = L−La.

The experimental error on the lengths 2ℓ, L, La is of order 1 µm. The wall corrugations,
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(a) (b) (c)

2ℓ

L

La

S

2ℓ

FIG. 1. Capsule profile extraction from an experimental image: (a) Initial image; (b) Contour

extracted with ImageJ; (c) Approximate capsule volume based on the contour area and channel

depth.

which appear in Fig. 1(a), are also of order 1 µm. They lead to small oscillations of the

capsule profile, which are of the same order as the measurement error.

The initial capsule radius a cannot be inferred directly from the experimental images,

which are only projections of the deformed profile. We thus estimate an approximate capsule

volume as the volume of a cylinder with section S and height 2ℓ (Fig. 1(c)). This allows us

to calculate an approximate capsule radius aapp given by

aapp =

(

3ℓS

2π

)1/3

. (2)

The relationship between aapp and the exact radius a is given by the numerical model of the

capsule flow problem.

III. MODEL OF THE FLOW OF A CAPSULE IN A PORE

In order to analyze the experiments, a mechanical model of the set-up is needed. The

flow of a capsule in circular12,19 or square10,14 cross-section channels has been studied. We

briefly outline the numerical model and provide new results for the flow of capsules in square-

section channels for a wide range of size ratios and flow strengths, and for strain-hardening

or strain-softening capsule membranes. Details on the problem equations and their solution

by means of the coupled boundary integral and finite element methods can be found in Hu

et al.14.
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FIG. 2. Prismatic channel with axis Oz. The cross-section is square with side 2ℓ.

A. Problem statement

An initially spherical capsule (radius a) flows along the z-axis of a microfluidic channel

with a square cross-section (side 2ℓ) in the perpendicular xy-plane. The interior and exterior

of the capsule are incompressible Newtonian fluids with the same density ρ and viscosity

µ. The thin membrane of the capsule is an impermeable hyperelastic isotropic material

with surface shear modulus Gs and area dilatation modulus Ks. Apart from the capsule

membrane mechanical properties, the two other main parameters of the problem are the

size ratio a/ℓ between the capsule initial radius and the channel cross dimension, and the

capillary number

Ca = µV/Gs, (3)

which measures the ratio between viscous and elastic forces, where V is the mean external

undisturbed flow velocity along the z-axis of the channel.

We denote v(β), σ(β) and p(β) the velocity, stress and pressure fields in the suspending

(β = 1) and internal (β = 2) liquids. The flow Reynolds number is assumed to be very

small, so that the internal and external liquid motions satisfy the Stokes equations:

∇p(β) = µ∇2v(β), ∇ · v(β) = 0, β = 1, 2. (4)

They are solved in a domain bounded by the cross-sections S1 at the tube entrance and S2

at the exit, both located far from the capsule center of mass (Fig. 2). The other domain

boundaries are the channel wall W and the capsule surface C. The unit normal vector n to

all the boundaries points towards the suspending liquid. The problem boundary conditions

are:
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• no flow disturbance on S1 and S2 as they are far from the capsule:

v(1)(x, t) → v∞(x), x ∈ S1 ∪ S2, (5)

where v∞ is the parabolic flow velocity in a square channel in the absence of capsule.

• uniform pressure on S1 and S2:

p(1)(x, t) = 0 x ∈ S1, (6)

p(1)(x, t) = ∆P (t) + ∆P∞ x ∈ S2, (7)

where ∆P∞ is the undisturbed pressure drop between S1 and S2 in the absence of

capsule and ∆P is the additional pressure drop due to the capsule.

• no slip on the channel wall W :

v(1)(x, t) = 0, x ∈ W, (8)

• no slip on the capsule deformed surface C:

v(1)(x, t) = v(2)(x, t) =
∂

∂t
x(X, t), x ∈ C, (9)

where X denotes the initial position of a membrane material point located at position

x at time t.

• the load per unit area q on the membrane is due to the viscous traction jump:

(σ(1) − σ(2)) · n = q, x ∈ C. (10)

B. Membrane laws

As the membrane thickness is negligibly small compared to the capsule dimensions, the

membrane can be treated as a hyperelastic surface devoid of bending stiffness. The in-plane

deformation is then measured by the principal extension ratios λ1 and λ2. Owing to the
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combined effects of hydrodynamic forces, boundary confinement and membrane deforma-

bility, the capsule can be highly deformed as shown in Fig. 1. Consequently the choice of

the membrane constitutive law is important. We consider two simple laws with constant

material coefficients. One such law (NH) is the widely used neo-Hookean law, which models

the membrane as an infinitely thin sheet of a three-dimensional isotropic and incompressible

material. The principal Cauchy in-plane tensions (forces per unit arc length of deformed

surface curves) can be expressed as20

τ1 =
Gs

λ1λ2

[

λ2
1 −

1

(λ1λ2)2

]

(likewise for τ2). (11)

The membrane dilatation modulus Ks is then given by Ks = 3Gs.

Another law was originally proposed by Skalak et al.11 to describe the membrane defor-

mations of red blood cells. The principal tensions are

τ1 =
Gs

λ1λ2

[

λ2
1(λ

2
1 − 1) + C(λ2

1λ
2
2)(λ

2
1λ

2
2 − 1)

]

(likewise for τ2), (12)

where the dimensionless parameter C mainly measures the resistance to area-dilatation.

The membrane dilatation modulus is then given by Ks = (1 + 2C)Gs. This law has strain-

hardening properties which increase with C for C ≥ 020. When C = 1, the Skalak et al. law

(SK) and the NH law lead to the same small deformation behavior with the same values ofGs

and Ks. Contrary to the SK law, the NH law is strain-softening under large deformation20.

We thus study the effect of the membrane strain-hardening or softening property on the

capsule deformation by considering the flow of capsules enclosed by either a NH membrane

or by a SK membrane.

To close the problem, we must relate the load on the membrane given by Eq. (10) to the

elastic Cauchy tension tensor τ . In absence of inertia, the membrane equilibrium leads to

∇s · τ + q = 0. (13)

C. Numerical procedure

The problem is solved coupling a boundary integral method to solve for the fluid flow

and a finite element method to solve for the membrane mechanics13,14. The advantage of

the procedure is that only the boundaries of the flow domain S1, S2, W , C are discretized.
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The capsule mesh is generated by first inscribing an icosahedron (regular polyhedron with

20 triangular faces) in the sphere and subdividing the elements sequentially until the required

number of elements is reached13,14. The capsule mesh is composed of 1280 P2 elements and

2562 nodes. The mesh of the external tube walls (S2 and W ) is generated using P1 elements

with Modulef (INRIA Rocquencourt, France)14 and is refined in the central portion of the

channel, where the capsule is located. The boundary mesh has 1905 nodes and 3768 elements.

All the results are obtained with a non-dimensional time step ∆t× V/ℓ = 5× 10−5.

The equations are solved in a reference frame moving with the capsule center of mass.

Thus for each time step, we compute the velocity vo of the capsule center of mass and move

back the whole capsule by vo∆t/ℓ, so that the capsule remains centered in the tube domain.

The model inputs are the capillary number Ca, the size ratio a/ℓ and the membrane law.

The model outputs are the capsule centroid velocity υo and the steady deformed capsule

shape. From the latter, it is possible to compute the evolution of the total length L, of the

parachute depth Lp and of the apparent capsule radius aapp with size ratio a/ℓ and Ca. The

model also yields the elastic tension distribution in the membrane. If a failure criterion is

known for the membrane, it is then possible to infer whether there is a risk of breakup.

Since the bending modulus of the membrane has been neglected, the capsule wall buckles

locally in the regions where the elastic tensions are compressive14. In order to study the

post-buckling behavior of the capsule, bending moments and transverse shear forces should

be added to Eq. (13) and a constitutive equation should be postulated to relate bending

moments and local deformations. It follows that the bending behavior of a capsule is a

complicated problem of shell mechanics that is not completely resolved yet. The simplified

membrane model that we use here is appropriate to model capsules with a very low bending

resistance. It detects zones where tensions are compressive and where the capsule wall

may buckle. The use of triangular finite elements allows for some profile oscillations in

compression areas without creating any numerical instability. Such numerical ’folds’ have a

wavelength which depends on the grid point spacing. Hence they do not model the physical

post-buckling behavior of the capsule14.
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FIG. 3. Comparison of steady profiles (solid line: SK law, dashed line: NH law): (a) Effect of Ca

for constant a/ℓ = 1.1; (b) Effect of a/ℓ for constant Ca = 0.1.

D. Effect of membrane law on capsule deformation

We consider the flow of capsules with a NH or a SK membrane in a microfluidic pore for

different size ratios a/ℓ at various flow strengths Ca. It is assumed that the steady-state

configuration is reached, when the area of the capsule varies by less than 5× 10−4 × (4πa2)

over a non-dimensional time V t/ℓ = 1. All the following results pertain to this equilibrium

state. At steady-state, the membrane and thus the internal fluid are motionless. This means

that assuming the same value of viscosity for the internal and external liquids does not limit

the validity of the results; the viscosity ratio only influences the time the capsule needs to

reach a steady state (this time increases as the internal viscosity increases). Furthermore, as

the pressure inside the capsule is uniform, the curvature at the capsule upstream tip must

be larger than at the rear to account for the viscous pressure drop in the lubrication film

around the capsule. This explains why parachute or slug shapes are obtained.

We first show the deformed profiles of a large capsule (a/ℓ = 1.1) in Fig. 3(a) for

increasing flow strengths Ca = 0.01, 0.05, 0.07. The axial profile in the zy-plane is what

is observed experimentally. At low flow strength (Ca = 0.01), the profiles of the NH and

SK capsules are almost superimposed, since the two membrane laws are equivalent at small

deformations. For Ca = 0.05, a parachute shape is found for the NH capsule, while the SK

capsule still has a slug shape. This indicates that the flow strength level Cac, for which the

parachute shape appears, depends on the membrane constitutive law. The cross profiles in

the xy-plane show that the capsule shape is not axisymmetric as the membrane tends to fill

the corners of the channel.

Fig. 3(b) shows the capsule profile at a high flow strength Ca = 0.1 for various size ratios.
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FIG. 4. Maximum values of Ca, for which a steady profile is obtained for a capsule enclosed by a

NH membrane. The comparison between a square or circular pore with radius ℓ shows the effect

of the corners.

The parachute shape appears for all the capsules. The NH capsule is more deformed than

the SK one, even though the difference is quite small for small capsules (a/ℓ ≤ 0.9). For

a/ℓ = 1.10, we can get a steady-state solution for the SK membrane, only. Indeed, a strain-

softening NH capsule undergoes continuous elongation, when a maximum flow strength

Camax is exceeded. This phenomenon was already observed in a cylindrical tube where

the situation is axisymmetric9. It is due to the fact that a strain-softening membrane has

a deformation, which increases faster than linearly with the imposed load1. The values

of Camax for a square-section tube are shown in Fig. 4, where they are compared with

the values obtained for a cylindrical tube with radius ℓ. We note that Camax is slightly

larger for a square than for a circular pore because, for the same flow rate, the viscous

shear on the capsule is less in a square pore than in a circular one due to the presence of

corners. This continuous elongation phenomenon does not occur with a SK membrane, at

it is strain-hardening1.

The overall capsule deformation is quantified by the maximum length L/ℓ and the

parachute depth Lp/ℓ, as shown in Fig. 5. The parachute forms at the capsule rear, when

the capillary number exceeds the critical value Cac. The value of Cac is less for a NH capsule

than for a SK one. Below Cac, the capsule elongation is small and there is little influence of

the membrane law. When Ca > Cac, both L/ℓ and Lp/ℓ increase much faster with Ca for a

NH capsule than for a SK one. This is due again to the strain-softening property of the NH
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membrane, which allows larger deformation for the same stress level than a strain-hardening

SK membrane. The overall effect of the size ratio is to increase the deformation for a given

flow strength. Finally, we note that the capsule velocity decreases, when the confinement

increases or when the deformation decreases.

E. Size, deformation and velocity charts for a capsule with NH or SK law

The results of the numerical model are gathered in charts, where the main output param-

eters, i.e. total length L/ℓ, parachute depth Lp/ℓ, approximate radius aapp/ℓ and centroid

velocity υo/V , are plotted as functions of Ca and a/ℓ for capsules with a NH membrane

(Fig. 6) or with a SK membrane with C = 1 (Fig. 7). For the NH capsules, the range of Ca

is limited by the continuous elongation phenomenon. For the SK capsules, the range of Ca

is a priori unlimited. However, we give results for Ca up to 0.5, because the variation of the

different geometrical quantities is almost linear with Ca when Ca ≥ 0.2, while the velocity

is almost constant. For very large capsules (a/ℓ ≥ 1.2) and high flow strength (Ca ≥ 0.5)

the deformation at the rear and the concomitant curvature of the tip become too large to

be modeled correctly by a membrane law where bending rigidity is neglected. This is why

we do not give results for Ca > 0.3 when a/ℓ = 1.2.

Note that aapp/ℓ does not vary much with Ca, except for very low values of Ca. This

point will be important for the determination of the actual size ratio of a capsule from the

measurement of aapp/ℓ. The relative difference between aapp and a is of order 17% for small

capsules and decreases to less than 10% for the largest capsules. Finally, we have refrained
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FIG. 6. Plots of the capsule total length L/ℓ, parachute depth Lp/ℓ, approximate radius aapp/ℓ

and velocity of mass center υo/V obtained with the NH law.

from giving results for small capsules with a/ℓ < 0.85 because they require high values of

Ca to be significantly deformed. Experimentally, such high values of Ca imply high values

of the flow velocity V , for which it is difficult to obtain capsules images with good enough

contrast and sharpness.

F. Inverse analysis of the experimental results

We have developed a new MatLab program, inspired from the algorithm of Chu et al.9,

to automatically perform the inverse analysis of capsule profiles in square channels. The

numerical data shown in Fig. 6 and 7 are linearly interpolated on a regular grid. A membrane
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FIG. 7. Plots of the capsule total length L/ℓ, parachute depth Lp/ℓ, approximate radius aapp/ℓ

and velocity of mass center υo/V obtained with the SK law (C = 1).

law is first assumed and the algorithm then determines the size ratio a/ℓ and the capillary

number Ca, for which the experimental and numerical values of L/ℓ and Lp/ℓ fit best.

Tolerances have been defined to account for the uncertainty on experimental measure-

ments. Depending on the flow conditions, the membrane can appear more or less fuzzy.

Considering an error of 2% on ℓ and L, we assume a tolerance of 4% on L/ℓ. The parachute

depth is more difficult to measure with precision. For Lp/ℓ < 0.05 we consider that there

is no parachute and that we are close to the critical value Cac. For 0.05 < Lp/ℓ < 0.1, we

take a tolerance of 50%. For 0.1 < Lp/ℓ < 0.2, we take a tolerance of 25% and for higher

values the tolerance is 15%.

The size ratio is first calculated from aapp/ℓ, Ca and the corresponding database. For the
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FIG. 8. Experimental images and corresponding extracted deformed profiles. The top row images

are the original experimental images, while the bottom row figures are the corresponding extracted

profiles. (a-b) aapp/ℓ = 1.08, vo = 3.0 mm/s; (c-d) aapp/ℓ = 1.05, vo = 7.3 mm/s; (e-f) aapp/ℓ =

1.2, vo = 1.4 mm/s; (g-h) aapp/ℓ = 1.16, vo = 3.4 mm/s.

first iteration, Ca is initialized with the mean value of the total range (which depends on the

membrane constitutive law). The size ratio is then used to calculate two ranges of possible

capillary numbers from the experimental values of L/ℓ and Lp/ℓ with their tolerances. If

these two ranges intersect, we calculate and use the intersection mean value to process

the next iteration of the algorithm until the mean value of Ca remains constant within

10−3 over two successive iterations. For each value of Ca in the intersection interval, we

calculate the mean fluid velocity V from the capsule velocity vo and the velocity ratio vo/V

of the database. Finally, we calculate the shear moduli that correspond to each Ca in the

intersection interval by means of Eq. 3. This procedure is executed for 5 values of aapp/ℓ

(aapp/ℓ, aapp/ℓ ± 1% and aapp/ℓ± 2%) to take into account a relative uncertainty of about

4%. Then, we calculate the mean value of the shear modulus and the standard deviation.
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FIG. 9. Superposition of experimental and numerical capsule profiles in square-section microfluidic

channel. The numerical profiles are obtained with the NH law or with the SK (C=1.0) law. (a)

NH law (Ca = 0.08, a/ℓ = 0.90) and SK law (Ca = 0.17, a/ℓ = 0.90); (b) NH law (Ca = 0.03,

a/ℓ = 1.10) and SK law (Ca = 0.05, a/ℓ = 1.09).

IV. RESULTS AND DISCUSSION

A. Capsule deformation in a square-section channel

Typical profiles of capsules mildly to highly deformed in a square-section channel are

shown in Fig. 8. Capsules (a) and (c) have almost the same apparent size, which corresponds

to an actual size ratio of order a/ℓ = 0.9 (Fig. 6 or 7). However capsule (c) has a higher

velocity than capsule (a). As a consequence capsule (c) is more deformed than capsule (a)

and has a deeper parachute. The same phenomenon is observed for capsules (e) and (g),

which have the same apparent size corresponding to an actual size ratio of order a/ℓ = 1.05 ∼

1.1. Being the fastest one, capsule (g) is the most deformed with the deepest parachute.

B. Determination of membrane properties

As an example, we first apply the inverse analysis algorithm with either the NH or the

SK law, to a typical capsule which is smaller than the pore (profile (d) of Fig 8). We find

a/ℓ = 0.9 in both cases, Ca = 0.08 for the NH law capsule and Ca = 0.17 for the SK law

one. We then compute exactly the equilibrium deformed profiles corresponding to these

two cases and compare them with the experimental profiles in Fig. 9(a). We note that the
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deformed profile of a small capsule can be well fitted with either the NH or the SK law.

However, the capillary number for the SK capsule is about twice that for the NH capsule,

due to the strain-hardening property of the SK membrane, which requires higher loads to

reach the same deformation as the NH one. The process is repeated with a capsule, which

is larger than the pore (profile (f) of Fig 8). We find two slightly different values of the

initial radius a/ℓ = 1.1 for the NH law and a/ℓ = 1.09 for the SK law. The values of Ca are

both small and of the same order, as should be expected, since for small deformation the

two laws are equivalent. Computing the deformed profiles corresponding to the couples of

values of a/ℓ and Ca with either the NH or the SK law, we can again fit them well to the

experimental ones as shown in Fig. 9(b).

We then proceed to analyze a population of 18 capsules of different initial sizes, flowing

through the square-section capillary tube at different flow rates. We use the inverse analysis

algorithm to deduce, for each capsule, the mean value of the shear elastic modulus of the

membrane Gs. We define the mean capsule elongation Λ

Λ = P/2πa (14)

where P is the perimeter of the deformed capsule profile. It is then convenient to plot the

values of Gs in terms of Λ rather than the size ratio. As shown in Fig. 10, when we assume a

NH law for the membrane, we find a constant value of the shear modulus Gs = 0.036±0.006

N/m for a mean elongation ranging from 1 to 1.25 (which corresponds to a fairly large

deformation!).

If we assume a SK law for the membrane, the value of Gs for small deformation (Λ ≤ 1.03)

is of the same order as the one obtained for the NH law. However, as the profile deformation

increases, the corresponding values of Gs decrease by a factor three. This is a consequence of

the strain-hardening property of the SK law. The fact that we cannot find a constant value

for the shear modulus of the SK law for all deformation levels indicates that the membrane

of ovalbumin capsules is not strain-hardening, but rather strain-softening as modeled by the

NH law.

C. Discussion

The objective of this work was to determine plausible elastic properties for the membrane

of capsules. We have chosen two simple constitutive laws with the same small deformation
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behavior, but with either strain-softening or strain-hardening properties under large strain.

The use of the neo-Hookean law as the strain-softening one means that we have arbitrarily

fixed the area-dilation to shear modulus ratio to Ks/Gs = 3. For the strain-hardening law,

we could have used values of C smaller than unity, which would have lowered the strain-

hardening feature of the law (without eliminating it) and might have led to values of Gs

less dependent on the deformation. However, using C < 1 would have made the comparison

with NH law less meaningful as the small deformation parameters would have been different.

We note that there is some dispersion of the results in Fig 10. The dispersion is larger

for the NH law than for the SK one. This is due to the fact that, when we use the NH law,

the capillary number is small and the geometrical parameters L and Lp vary non-linearly

with Ca. When we use the SK law, the values of Ca are larger and the variation of L and

Lp with Ca is almost linear.

Another question is linked to the fact that the channel we used is not perfectly square (as

is usually the case with PDMS channels). Of course, we could have run the model with the

exact dimensions of the channel, but we decided instead to provide general charts for the flow

in square channels and use them to analyze our results. As a check, we compare the value

we find, Gs = 0.036 ± 0.006 N/m, with the previous study of Chu et al.9, who obtained

Gs = 0.042± 0.016 N/m for ovalbumin capsules prepared under the same conditions and

flowing in a 50 µm glass capillary tube. The two mean values of Gs fall in the same range

within experimental errors.

The reason why the ovalbumin membrane seems to be strain-softening is probably due

to the conformation of the albumin molecule at the interface. For a small reticulation time

of 5 min, the density of covalent links between the protein molecules is low and the protein

chains are loosely linked. This may explain why the membrane is easily deformable, as

described by a NH law. It has not been possible to obtain deformations larger than 25%, so

that we do not know for what deformation the membrane breaks.

V. CONCLUSION

We show here that it is possible to infer plausible mechanical properties of an artificial

capsule membrane from experiments, where the capsule has to deform to flow inside a small

pore with cross dimensions of the same order as those of the capsule. The method is based on
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the coupling of experimental observations with a rigorous mechanical model of the system.

It also implies a strong hypothesis on the value of the area dilation to shear modulus ration,

which is assumed to beKs/Gs = 3. The method works well, if the deformation of the capsule

is large enough. Indeed for a small deformation, it is not possible to distinguish between

different laws and there is some dispersion in the results. Thus, it is best to use a pore,

such that the size ratio of the capsules is of order unity. Small capsules (a/ℓ ≤ 0.8) have to

be flowed fast to be deformed with concomitant difficulties of observation leading to profile

fuzziness. In order to reach large deformation, while keeping the capsule velocity moderate,

a high viscosity suspending liquid is necessary. But the price to pay is that the high viscous

pressure drop inside the microchannel may lead to the destruction of the connections. The

advantage of using a square-section channels rather than a cylindrical one is linked to the easy

fabrication of microfluidic tubes of any size and to the easy connection with the propulsion

device. Furthermore, this system can be built in a microfluidic fabrication device to monitor

the properties of the capsules in situ21. We note that it is even possible to infer the large

deformation behavior of the membrane, at least decide whether it is strain-softening or

hardening.

Acknowledgments

20



This work was supported by the Conseil Régional de Picardie (MODCAP grant), by the

French Agence Nationale de la Recherche (CAPSHYDR grant ANR-11-BS09-013) and by

the French Ministère de la Recherche (Pilcam2 grant). The PhD scholarship of X.-Q. Hu has

been financed by the China Scholarship Council. The capsules were provided by Dr. Florence

Edwards-Lévy, Institut de Chimie Moléculaire de Reims (UMR CNRS 7312), Université de
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CHAPTER 4. COMPARISON WITH EXPERIMENTS

4.2 Additional results

4.2.1 Tensions on profiles
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Figure 4.1: Comparison of principal tensions in the yz-plane along steady profiles
(Solid line: Skalak law with C = 1, Dashed line: neo-Hookean law). The principal
tensions are plotted as a function of position θ/π on the profile, e.g. θ/π = 0 denotes
the front point that lies on the channel axis. Tension τ1 is along the capsule profile,
while τ2 is on the hoop direction which is perpendicular to the plane. (a) Effect of
Ca for constant a/ℓ = 1.1. (b) Effect of a/ℓ for constant Ca = 0.1.

The meridional and azimuthal principal tensions (τ1 and τ2) along the longitudinal
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CHAPTER 4. COMPARISON WITH EXPERIMENTS

profiles on yz-plane are plotted as functions of the polar angle θ/π made by the

position vector with the z- axis, as shown in Fig. 4.1.

For small capsule deformations, the tensions are also relatively small, as shown

for Ca = 0.01 in Fig. 4.1(a) or a/ℓ = 0.85 in Fig. 4.1(b). The tension distributions

of NH and SK (C = 1) membranes are almost superimposed as should be expected

since the two laws are equivalent for small deformation.

For higher flow strength (Ca = 0.05, 0.07) or stronger boundary confinement

(a/ℓ = 0.85, 1.10), the effect of the membrane law becomes significant. The tensions

on the NH membrane are notably smaller than those on the SK (C = 1) one. It

is of interest to note that the NH capsule undergoes larger deformations at smaller

membrane tensions than the SK (C = 1) capsule. This is due to the fact that the

NH law is strain-softening while the SK law (C = 1) is strain-hardening for large

membrane deformations.
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Chapter 5

Conclusions and perspectives

5.1 Conclusions

An initially spherical capsule flowing inside microchannels with constant cross-sections

is considered in this dissertation. This fluid-structure problem in confined flows is

solved by an adapted 3D model coupling the Boundary Integral (BI) method for the

fluid problem and the Finite Element (FE) method for the solid problem [108, 44]. It

has been shown that this 3D BI+FE model can provide excellent results even if the

flowing capsule undergoes large deformations and negative tensions.

We have shown in this dissertation how three-dimensional effects affect the flow

of capsules in channels with cross-dimensions comparable with the capsule diameter.

The confinement effect due to the channel walls compresses the capsule in the direction

perpendicular to the channel axis. This leads to compression of the membrane and

a tendency towards buckling that has been observed experimentally. The flow of a

capsule in a small channel is thus a three-dimensional process even when the channel

and the capsule share the same revolution axis.

These three-dimensional effects have been specifically studied and we have shown

that in a cylindrical channel with a circular cross-section, the 3D capsule deformation

is well approximated by an axisymmetric simple model. This is an interesting and

important result as it is much easier and faster to use an axisymmetric numerical

model rather than a full three-dimensional one.

The three-dimensional aspect of the problem cannot be simplified in the case of

microfluidic channels with square cross-section. The capsule flowing in a square chan-

nel can expand in the corners of the channel, the deformed capsule profile is therefore

not axisymmetric. Compared with the case of a capsule in cylindrical channel, the

square capsule is less deformed for the same given capillary number and aspect ratio.

Larger flow rates must be used in a square channel than in the cylindrical one to
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CHAPTER 5. CONCLUSIONS AND PERSPECTIVES

get the same capsule deformation. It is of interest to notice as the capsule will move

faster and its detection in experiments will be more difficult. We have also shown that

the capsule flowing in a rectangular channel for which the width is twice the height

is less confined than that in a square channel. Its larger cross-sectional space allows

the capsule to expand more in the x- direction to deform non-axisymmetrically.

Based on the numerical results, we have shown that it is possible to infer the

mechanical properties of an artificial capsule membrane from experiments, where the

capsule has to deform to flow inside a small channel with cross dimensions of the

same order as those of the capsule. This novel method is based on the coupling

of experimental observations with a rigorous mechanical model of the system. The

applications of this method on a population of microcapsules with a cross-linked

ovalbumin membrane have shown to be successful, if the deformation of the capsule

is large enough. Indeed for a small deformation, it is not possible to distinguish

between different membrane constitutive laws and there is some dispersion in the

results. Thus, it is best to use a channel, such that the size ratio of the capsules is

of order unity. Indeed, it is shown that small capsules (a/ℓ ≤ 0.8) have to be flowed

fast to be deformed with concomitant difficulties of observation leading to profile

fuzziness. In order to reach large deformation, while keeping the capsule velocity

moderate, a high viscosity suspending liquid is necessary. But the price to pay is that

the high viscous pressure drop inside the microchannel may lead to the destruction

of the tube connections.

The advantage of using a square section channel rather than a cylindrical one

is linked to the easy fabrication of microfluidic tubes of any size and to the easy

connection with the propulsion device. Furthermore, this system could well be built in

a microfluidic fabrication device to monitor the properties of the capsules in situ. We

note that it is even possible to infer the large deformation behavior of the membrane,

at least decide whether it is strain-softening or hardening.

5.2 Perspectives

Nowadays, the increasing number of demands in microcapsule applications contribute

to the fast development of numerical and experimental studies on confined capsule

flows. Based on some general assumptions, we have specifically studied an initially

spherical capsule flowing along the axis of straight microfluidic channels in this dis-

sertation. For future study, it will be interesting to continue the present research in

the following aspects:
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(a) (b) (c)

Figure 5.1: Motions of a droplet inside a bifurcating channel. Image from [78].

Capsule flowing in bifurcating channels When a capsule is flowing inside a bi-

furcating channel, as shown in Fig. 5.1, the downstream flows are generally

unequal and complicated to be determined. This ”phase separation” problem

exists widely in natural blood microcirculation and in microfluidic applications.

It has been shown that the motions of droplets and capsules through a bifur-

cating channel exhibits rich dynamics [78]. A theoretical model for red blood

cell motion in bifurcating microvessels was proposed by EI-Kareh and Secomb,

which was limited to rigid spherical particles [26]. Recently, Pozrikidis [78] pro-

posed a numerical model to consider the flow of a droplet inside two-dimensional

bifurcating channels using the boundary-element method. The ability of the

droplet to remain intact as it passes through the bifurcation was discussed .

However, the capsule flows in bifurcating channels has not been well studied till

now. It will be meaningful to enrich the present study to consider capsule flows

in bifurcating channels.

Capsule migrations In bounded parabolic flows, the red blood cell (RBC) is as-

sumed to adopt an axisymmetric parachute shape, but in fact a non-axisymmetric

slipper-like shape has been frequently observed both in in vitro and in vivo ex-

periments, as presented in section 1.4.1. A number of studies have been done to

explain this issue. Noguchi and Gompper [69] have studied the shape transitions

of RBC model from a non-axisymmetric discoyte to an axisymmetric parachute

shape focusing on the membrane properties and corresponding critical velocities

for transitions. Kaoui et al. [47] have numerically analyzed the dynamics of

vesicles which are comparatively small with flow dimension in 2D unbounded

Poiseuille flow. The slipper-like shapes were found to result from the loss of

stability of the symmetric state and to improve the flow efficiency. Although
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Figure 5.2: Profiles on yz-plane of capsules in migration. Initial eccentric distance
∆x0 = −0.07, capillary number Ca = 0.5, SK (C = 1) membrane. (a) ”Thin” oblate
with a/b = 0.28, (b) ”Thck” oblate with a/b = 0.50.

some progresses have been made, the uncertainty of slipper-like shapes in 3D

confined Poiseuille flow has not been fully discussed and then it becomes a good

perspective of the present study.

Some preliminary results have been obtained. An oblate capsule is assumed

to flow inside a 3D cylindrical channel, for which the long axes are b = 0.7ℓ

and the short-to-long axis ratios a/b varies from 0.28 to 0.50. We introduce

the initial eccentric distance ∆x0 = −0.07 of the mass center. The profiles of

capsules in migration are shown on the yz-plane in Fig. 5.2. We find that the

initially eccentric ”thin” capsule with a/b = 0.28 oscillates near the channel

axis, while the ”thick” capsule with a/b = 0.50 returns rapidly to the channel

axis. It implies that the ”thin” oblate capsule with a/b = 0.28, which is usually

employed as models for RBCs, requires a much longer distance (time) to return

back from a non-axisymmetric disturbance. It seems that its travelling distance

is very long, even longer than the length of microvessels or capillary tubes in

experiments. That is why the non-axisymmetric shapes are often observed.

However, more studies are still needed to confirm this conclusion.

Membrane bending stiffness In this dissertation, we specifically study artificial

capsules with a membrane which consists of a thin layer of a 3D isotropic ma-

terial (e.g. a gelled membrane reinforced by a polymer network). The bending

resistance is directly related to the ratio of the membrane thickness to the cap-

sule radius. For thickness ratios less than 10%, it is generally admitted that
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bending effects will be very small compared to the membrane forces. It is thus

quite reasonable to ignore bending forces.

However, one of the drawbacks of the present study is the lack of bending re-

sistance of the capsule membrane leading to non-physical folds in the regions

where the membrane is undergoing compression. Accounting properly for bend-

ing and the post buckling behaviour of the capsule membrane is a formidable

problem of shell mechanics. The reason being that the capsule is subjected to

large deformation, large membrane forces and that the bending effect becomes

preponderant only on parts of the wall. It is clear that a very fine mesh of the

capsule wall would be necessary if we were to reproduce the folds with any preci-

sion. This would increase very significantly the computer time. The interesting

question which arises at this point is how necessary is it to account for bending

forces? If the capsule wall has a highly anisotropic structure (e.g. the red blood

cell wall which consists of a lipid bi-layer lined by a protein network), it is clear

that bending forces can be fairly large as compared to membrane shear forces

and must be accounted for.
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Numerical results: capsule

deformation and velocity in a

square channel

Membrane law Ca a/ℓ L/ℓ Ly/ℓ
1 La/ℓ (L− La)/ℓ υo/V

NH 0.000 0.85 1.7000 1.7000 1.7000 0.0000
NH 0.010 0.85 1.6076 1.7027 1.5045 0.1031 1.3500
NH 0.020 0.85 1.5824 1.6956 1.4600 0.1224 1.3487
NH 0.050 0.85 1.6104 1.6700 1.4255 0.1848 1.3543
NH 0.080 0.85 1.6945 1.6466 1.4512 0.2433 1.3638
NH 0.100 0.85 1.7470 1.6296 1.4592 0.2877 1.3709

NH 0.000 0.90 1.8000 1.8000 1.8000 0.0000
NH 0.010 0.90 1.7060 1.7741 1.6585 0.0475 1.2884
NH 0.020 0.90 1.7007 1.7557 1.5707 0.1300 1.2927
NH 0.050 0.90 1.7601 1.7085 1.5657 0.1944 1.3104
NH 0.080 0.90 1.8820 1.6778 1.6046 0.2774 1.3261
NH 0.100 0.90 1.9551 1.6570 1.6204 0.3347 1.3365

NH 0.000 0.95 1.9000 1.9000 1.9000 0.0000
NH 0.005 0.95 1.8936 1.8240 1.8832 0.0104 1.2385
NH 0.020 0.95 1.8367 1.7802 1.7122 0.1244 1.2508
NH 0.030 0.95 1.8551 1.7608 1.7090 0.1461 1.2592
NH 0.050 0.95 1.9354 1.7297 1.7353 0.2001 1.2747
NH 0.080 0.95 2.0986 1.7064 1.7791 0.3195 1.2957
NH 0.100 0.95 2.2201 1.6874 1.8243 0.3958 1.3099

NH 0.000 1.00 2.0000 2.0000 2.0000 0.0000
NH 0.005 1.00 2.0420 1.8568 2.0420 0.0000 1.1934

1Ly/ℓ: the height of capsule profile
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VELOCITY IN A SQUARE CHANNEL

NH 0.010 1.00 1.9982 1.8138 1.9442 0.0541 1.2037
NH 0.020 1.00 1.9836 1.7935 1.8710 0.1126 1.2159
NH 0.050 1.00 2.1249 1.7352 1.9040 0.2209 1.2449
NH 0.080 1.00 2.3512 1.7136 1.9828 0.3684 1.2715
NH 0.100 1.00 2.6471 1.6729 2.1198 0.5273 1.3051

NH 0.000 1.05 2.1000 2.1000 2.1000 0.0000
NH 0.005 1.05 2.1737 1.8814 2.1737 0.0000 1.1419
NH 0.010 1.05 2.1997 1.8525 2.1997 0.0000 1.1628
NH 0.015 1.05 2.1807 1.8241 2.1634 0.0172 1.1774
NH 0.020 1.05 2.1628 1.8040 2.0965 0.0663 1.1845
NH 0.030 1.05 2.2030 1.7870 2.0870 0.1160 1.1980
NH 0.050 1.05 2.3545 1.7604 2.1175 0.2370 1.2205
NH 0.080 1.05 2.6770 1.7146 2.2442 0.4328 1.2586

NH 0.000 1.10 2.2000 2.2000 2.2000 0.0000
NH 0.010 1.10 2.3547 1.8574 2.3547 0.0000 1.1313
NH 0.015 1.10 2.3625 1.8381 2.3625 0.0000 1.1486
NH 0.020 1.10 2.3484 1.8220 2.3178 0.0306 1.1597
NH 0.030 1.10 2.3932 1.8005 2.2817 0.1115 1.1767
NH 0.050 1.10 2.5893 1.7750 2.3147 0.2745 1.2038
NH 0.070 1.10 2.8995 1.7226 2.4537 0.4458 1.2340

NH 0.000 1.20 2.4000 2.4000 2.4000 0.0000
NH 0.010 1.20 2.7554 1.8923 2.7554 0.0000 1.0708
NH 0.020 1.20 2.8338 1.8687 2.8338 0.0000 1.1108
NH 0.030 1.20 2.8831 1.8311 2.8274 0.0558 1.1350
NH 0.050 1.20 3.2771 1.7970 2.9097 0.3675 1.1781

SK (C=1) 0.000 0.85 1.7000 1.7000 1.7000 0.0000
SK (C=1) 0.010 0.85 1.6049 1.7011 1.6049 0.0000 1.3506
SK (C=1) 0.030 0.85 1.5813 1.6895 1.4336 0.1477 1.3500
SK (C=1) 0.050 0.85 1.5920 1.6759 1.4341 0.1579 1.3534
SK (C=1) 0.100 0.85 1.6604 1.6497 1.4609 0.1995 1.3646
SK (C=1) 0.200 0.85 1.7795 1.6180 1.4989 0.2807 1.3807
SK (C=1) 0.300 0.85 1.8739 1.6006 1.5195 0.3543 1.3895
SK (C=1) 0.500 0.85 2.0152 1.5979 1.5487 0.4664 1.4000

SK (C=1) 0.000 0.95 1.9000 1.9000 1.9000 0.0000
SK (C=1) 0.010 0.95 1.8807 1.8055 1.8807 0.0000 1.2444
SK (C=1) 0.020 0.95 1.8318 1.7855 1.7107 0.1210 1.2498
SK (C=1) 0.050 0.95 1.8813 1.7454 1.7308 0.1505 1.2694
SK (C=1) 0.100 0.95 1.9965 1.7153 1.7728 0.2237 1.2909
SK (C=1) 0.200 0.95 2.1709 1.6988 1.8205 0.3504 1.3136
SK (C=1) 0.300 0.95 2.2561 1.6881 1.8357 0.4203 1.3220

103



APPENDIX A. NUMERICAL RESULTS: CAPSULE DEFORMATION AND

VELOCITY IN A SQUARE CHANNEL

SK (C=1) 0.500 0.95 2.4457 1.6828 1.8679 0.5778 1.3305

SK (C=1) 0.000 1.00 2.0000 2.0000 2.0000 0.0000
SK (C=1) 0.010 1.00 2.0457 1.8195 2.0457 0.0000 1.2044
SK (C=1) 0.020 1.00 1.9799 1.8003 1.8919 0.0880 1.2134
SK (C=1) 0.030 1.00 1.9905 1.7852 1.8819 0.1086 1.2224
SK (C=1) 0.050 1.00 2.0499 1.7622 1.9118 0.1381 1.2365
SK (C=1) 0.100 1.00 2.1861 1.7278 1.9545 0.2316 1.2608
SK (C=1) 0.200 1.00 2.3816 1.7132 2.0026 0.3790 1.2834
SK (C=1) 0.300 1.00 2.4798 1.7342 2.0158 0.4640 1.2927
SK (C=1) 0.500 1.00 2.6784 1.7195 2.0413 0.6371 1.2983

SK (C=1) 0.000 1.10 2.2000 2.2000 2.2000 0.0000
SK (C=1) 0.010 1.10 2.3392 1.8666 2.3392 0.0000 1.1274
SK (C=1) 0.018 1.10 2.3472 1.8384 2.3472 0.0000 1.1489
SK (C=1) 0.020 1.10 2.3171 1.8301 2.3015 0.0156 1.1558
SK (C=1) 0.030 1.10 2.3422 1.8138 2.3057 0.0365 1.1674
SK (C=1) 0.040 1.10 2.3809 1.8018 2.3092 0.0717 1.1768
SK (C=1) 0.070 1.10 2.5058 1.7861 2.3181 0.1877 1.1974
SK (C=1) 0.100 1.10 2.6201 1.7712 2.3588 0.2613 1.2101
SK (C=1) 0.200 1.10 2.8209 1.7525 2.3764 0.4444 1.2282
SK (C=1) 0.300 1.10 2.9709 1.7774 2.4053 0.5656 1.2372
SK (C=1) 0.500 1.10 3.1883 1.7986 2.3969 0.7914 1.2369

SK (C=1) 0.000 1.20 2.4000 2.4000 2.4000 0.0000
SK (C=1) 0.030 1.20 2.8276 1.8688 2.8276 0.0000 1.1127
SK (C=1) 0.050 1.20 2.8647 1.8315 2.8213 0.0433 1.1387
SK (C=1) 0.100 1.20 3.0667 1.8050 2.7986 0.2681 1.1634
SK (C=1) 0.200 1.20 3.3400 1.8144 2.7903 0.5497 1.1761
SK (C=1) 0.300 1.20 3.5133 1.8163 2.8150 0.6983 1.1843

104



Bibliography
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