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Abstract

Perception is one of important steps for the functioning of an autonomous vehicle

or even for a vehicle providing only driver assistance functions. Vehicle observes

the external world using its sensors and builds an internal model of the outer envi-

ronment configuration. It keeps on updating this internal model using latest sensor

data. In this setting perception can be divided into two sub parts: first part, called

SLAM (Simultaneous Localization And Mapping), is concerned with building an on-

line map of the external environment and localizing the host vehicle in this map, and

second part deals with finding moving objects in the environment and tracking them

over time and is called DATMO (Detection And Tracking of Moving Objects). Using

high resolution and accurate laser scanners successful efforts have been made by many

researchers to solve these problems. However, with low resolution or noisy laser scan-

ners solving these problems, especially DATMO , is still a challenge and there are either

many false alarms, miss detections or both. In this thesis we propose that by using vi-

sion sensor (mono or stereo) along with laser sensor and by developing an effective

fusion scheme on an appropriate level, these problems can be greatly reduced.

The main contribution of this research is concerned with the identification of three fu-

sion levels and development of fusion techniques for each level for SLAM and DATMO

based perception architecture of autonomous vehicles. Depending on the amount of

preprocessing required before fusion for each level, we call them low level, object de-

tection level and track level fusion. For low level we propose to use grid based fusion

technique and by giving appropriate weights (depending on the sensor properties) to

each grid for each sensor a fused grid can be obtained giving better view of the external

environment in some sense. For object detection level fusion, lists of objects detected

for each sensor are fused to get a list of fused objects where fused objects have more

information then their previous versions. We use a Bayesian fusion technique for this

level. Track level fusion requires to track moving objects for each sensor separately and

then do a fusion between tracks to get fused tracks. Fusion at this level helps remove

false tracks.
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Second contribution of this research is the development of a fast technique of finding

road borders from noisy laser data and then using these border information to remove

false moving objects. Usually we have observed that many false moving objects ap-

pear near the road borders due to sensor noise. If they are not filtered out then they

result into many false tracks close to vehicle making vehicle to apply breaks or to issue

warning messages to the driver falsely.

Third contribution is the development of a complete perception solution for lidar and

stereo vision sensors and its integration on a real vehicle demonstrator used for a Eu-

ropean Union project (INTERSAFE-21). This project is concerned with the safety at in-

tersections and aims at the reduction of injury and fatal accidents there. In this project

we worked in collaboration with Volkswagen, Technical university of Cluj-Napoca Ro-

mania and INRIA Paris to provide a complete perception and risk assessment solution

for Volkswagen demonstrator vehicle.

Key Words:

Robotics, Multisensor data fusion, Fusion levels, Environment perception, SLAM, DATMO,

Laser scanner, Stereo vision, Occupancy Grids, Road border detection.

1http://www.intersafe-2.eu/public/
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Résumé

La perception est un point clé pour le fonctionnement d’un véhicule autonome ou

même pour un véhicule fournissant des fonctions d’assistance. Un véhicule observe le

monde externe à l’aide de capteurs et construit un modèle interne de l’environnement

extérieur. Il met à jour en continu ce modèle de l’environnement en utilisant les dernières

données des capteurs. Dans ce cadre, la perception peut être divisée en deux étapes : la

première partie, appelée SLAM (Simultaneous Localization And Mapping) s’intéresse à

la construction d’une carte de l’environnement extérieur et à la localisation du véhicule

hôte dans cette carte, et deuxième partie traite de la détection et du suivi des objets

mobiles dans l’environnement (DATMO Detection And Tracking of Moving Objects).

En utilisant des capteurs laser de grande précision, des résultats importants ont été

obtenus par les chercheurs. Cependant, avec des capteurs laser de faible résolution et

des données bruitées, le problème est toujours ouvert, en particulier le problème du

DATMO. Dans cette thèse nous proposons d’utiliser la vision (mono ou stéréo) couplée

à un capteur laser pour résoudre ce problème.

La première contribution de cette thèse porte sur l’identification et le développement

de trois niveaux de fusion. En fonction du niveau de traitement de l’information cap-

teur avant le processus de fusion, nous les appelons "fusion bas niveau", "fusion au

niveau de la détection" et "fusion au niveau du suivi". Pour la fusion bas niveau, nous

avons utilisé les grilles d’occupations. Pour la fusion au niveau de la détection, les ob-

jets détectés par chaque capteur sont fusionnés pour avoir une liste d’objets fusionnés.

La fusion au niveau du suivi requiert le suivi des objets pour chaque capteur et ensuite

on réalise la fusion entre les listes d’objets suivis.

La deuxième contribution de cette thèse est le développement d’une technique rapide

pour trouver les bords de route à partir des données du laser et en utilisant cette infor-

mation nous supprimons de nombreuses fausses alarmes. Nous avons en effet observé

que beaucoup de fausses alarmes apparaissent sur le bord de la route.

La troisième contribution de cette thèse est le développement d’une solution complète

vi



pour la perception avec un capteur laser et des caméras stéréo-vision et son intégra-

tion sur un démonstrateur du projet européen (INTERSAFE-22). Ce projet s’intéresse

à la sécurité aux intersections et vise à y réduire les blessures et les accidents mortels.

Dans ce projet, nous avons travaillé en collaboration avec Volkswagen, l’Université

Technique de Cluj-Napoca, en Roumanie et l’INRIA Paris pour fournir une solution

complète de perception et d’évaluation des risques pour le démonstrateur de Volkswa-

gen.

Mots Clés:

Robotique, Fusion de donnée multi capteurs, Niveaux de fusion, Perception de l’environnement,

SLAM, DATMO, Capteur laser, Stéréovision, Grilles d’occupations, Detection des bords

de route

2http://www.intersafe-2.eu/public/

vii

http://www.intersafe-2.eu/public/


Acknowledgements

I am highly thankful to my directors of thesis Thierry Fraichard and Olivier Aycard for

providing me an opportunity to work with them and for all their help during this time.

I am especially thankful to Olivier Aycard for being ever ready to help me cope with

technical and even administrative problems. Without his help this work would have

been an impossible task for me.

I am thankful to my family for their prayers and moral support especially my wife and

my son for being a source of motivation even in difficult times.

My special thanks to Higher Education Commission of Pakistan for supporting this

work financially even when Pakistan was passing through financial problems.

This work was also partially supported by research project INTERSAFE-2. INTERSAFE-

2 is part of the 7th Framework Programme, funded by the European Commission. The

partners of INTERSAFE-2 thank the European Commission for supporting the work of

this project.

viii



Contents

1 Introduction 1

1.1 Brief history of intelligent vehicles . . . . . . . . . . . . . . . . . . . . . . 2

1.2 Intelligent vehicle perception . . . . . . . . . . . . . . . . . . . . . . . . . 5

1.3 Sensors . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

1.3.1 Sensor uncertainty . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

1.3.2 Sensor model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

1.3.3 Sensors used: LIDAR and Vision Camera . . . . . . . . . . . . . . 10

1.3.4 Data synchronization . . . . . . . . . . . . . . . . . . . . . . . . . . 14

1.4 Multi-sensor data fusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14

1.4.1 Fusion for intelligent vehicle perception . . . . . . . . . . . . . . . 16

1.5 Contributions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17

1.6 Thesis layout . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18

2 Vehicle Perception with Fusion - State of the Art 19

2.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19

2.2 Perception without fusion . . . . . . . . . . . . . . . . . . . . . . . . . . . 21

2.2.1 SLAM . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21

2.2.2 DATMO . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27

2.2.3 Synthesis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30

2.3 Perception with fusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31

2.3.1 Multi-sensor Data Fusion . . . . . . . . . . . . . . . . . . . . . . . 32

2.3.2 Fusion Levels . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33

2.4 Road border detection to improve DATMO . . . . . . . . . . . . . . . . . 40

ix



CONTENTS

2.5 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42

3 Laser and Stereo Vision Fusion 44

3.1 Occupancy grid based SLAM and DATMO . . . . . . . . . . . . . . . . . 45

3.1.1 SLAM . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45

3.1.2 DATMO . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49

3.2 Low level fusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49

3.2.1 Laser processing: occupancy grid construction . . . . . . . . . . . 50

3.2.2 Stereo vision processing . . . . . . . . . . . . . . . . . . . . . . . . 52

3.2.3 Fusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55

3.2.4 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57

3.2.5 Input to SLAM . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58

3.3 Object level fusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59

3.3.1 Laser Processing - Moving objects extraction . . . . . . . . . . . . 59

3.3.2 Stereo vision processing . . . . . . . . . . . . . . . . . . . . . . . . 62

3.3.3 Fusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62

3.3.4 Tracking . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66

3.3.5 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67

3.4 Track level fusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69

3.4.1 Sensor processing . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70

3.4.2 Fusion scheme and results . . . . . . . . . . . . . . . . . . . . . . . 71

3.5 Road border detection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73

3.5.1 Applying road borders to detect false positives . . . . . . . . . . . 78

3.5.2 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 79

3.6 Synthesis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 81

4 Laser and Mono Vision Fusion 83

4.1 Low level fusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 84

4.1.1 Experimental Setup . . . . . . . . . . . . . . . . . . . . . . . . . . . 85

4.1.2 Occupancy Grid . . . . . . . . . . . . . . . . . . . . . . . . . . . . 85

x



CONTENTS

4.1.3 Occupancy Grid for Laser . . . . . . . . . . . . . . . . . . . . . . . 86

4.1.4 Vision Processing . . . . . . . . . . . . . . . . . . . . . . . . . . . . 86

4.1.5 Fusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 89

4.1.6 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 90

4.2 Object level fusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 93

4.2.1 Data Set . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 95

4.2.2 Moving objects detection from laser data . . . . . . . . . . . . . . 96

4.2.3 Fusion: finding region of interest and its class for a dynamic object 96

4.2.4 Model based tracking . . . . . . . . . . . . . . . . . . . . . . . . . 97

4.2.5 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 97

4.3 Synthesis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 98

5 Application: Safety at Intersections (INTERSAFE-2) 101

5.1 General architecture . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 103

5.2 Host vehicle: system architecture . . . . . . . . . . . . . . . . . . . . . . . 105

5.3 Partners’ contribution . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 107

5.3.1 Stereo vision processing . . . . . . . . . . . . . . . . . . . . . . . . 107

5.3.2 Lidar processing . . . . . . . . . . . . . . . . . . . . . . . . . . . . 110

5.3.3 Lidar and stereo vision fusion . . . . . . . . . . . . . . . . . . . . . 112

5.3.4 Moving objects tracking . . . . . . . . . . . . . . . . . . . . . . . . 112

5.3.5 Risk assessment . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 112

5.4 System integration into demonstrator vehicle . . . . . . . . . . . . . . . . 115

5.5 Synthesis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 117

6 Conclusion and Perspectives 118

6.1 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 118

6.2 Perspectives . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 121

References 122

xi



CHAPTER 1

Introduction

Human have always longed and strove for getting more and more information about

the external world with an objective of making their existence safer and more comfort-

able. Primarily they have used their five senses for this purpose. Looking on other liv-

ing things it can be easily identified that nature has equipped them with senses which

may differ in number, quality and type depending on the type of environment where

they need to keep their survival. The fact that most of the living things have more than

one senses simply implies that only one sense is not sufficient to get information about

the environment necessary for survival. For example, assessing the quality of an edi-

ble substance may not be possible using only the sense of vision; the combination of

sight, touch, smell, and taste is far more effective. Similarly, when vision is limited by

structures or other obstructions in the way, the sense of hearing can provide advanced

warning of impending dangers (Hall and Llinas, 2001). All living things are capable of

combining information from all of their senses, without any effort, in the most infor-

mative way, enabling them to timely react to any changes in the environment.

Inspired from this natural observation, modern man has recognized that a true au-

tonomous machine or robot must have multiple sensors to get information from the

environment where it will work to achieve some goal. It is because of this fact that we

see even semi autonomous robots being equipped with different sensors like lidars, vi-

sion sensors, radars etc. Although combining information from different senses is quite

natural and an effortless process in living things, however mimicking the same capa-

bility in human made machines is an extremely challenging task. The realization of

this challenge is becoming more and more viable due to the emergence of new sensors,

advanced processing techniques and algorithms, and improved processing hardware.

Recent advances in computing and sensing have provided the capability to emulate, in

hardware and software, the natural data fusion capabilities of humans and animals.

1



CHAPTER 1: INTRODUCTION

Autonomous vehicle1 driving is a hot field of research these days. Based on modern

sensors and processing hardware researchers are developing techniques that will en-

able the intelligent vehicles to see the things around them on the roads and assess their

behavior, an important prerequisite for their responsible autonomous control on the

roads. However there are, as yet, many challenges to overcome in this field, especially

related to extracting and combining useful information from sensors’ data to under-

stand external world.

The objective of our research in this dissertation has been to develop fusion techniques

for multiple sensors (laser and vision (mono and stereo)) to improve perception capa-

bilities of an autonomous vehicle. This research has resulted in the development of

fusion strategies at different levels of abstraction for these sensors. The details of these

techniques are given in rest of the chapters of this thesis whereas this chapter develops

the context of our research.

In this chapter we first give a brief history of intelligent vehicles and then explain what

intelligent vehicle perception is. We also introduce some concepts about sensors and

briefly describe multi sensor data fusion. We close this chapter with a list of our contri-

butions and thesis layout.

1.1 Brief history of intelligent vehicles

The types of robots that we want to see on roads or highways are autonomous vehicles,

also called driver-less cars; driving people or goods from one point to the other without

human intervention, sharing the roads with other driver-less or human driven cars and

following the traffic rules. In the following we mention some earlier attempts to build

vehicles having some degree of autonomy along with sensory instruments used by

them to observe the world.

In retrospect the very first vehicle built that will attain some degree of autonomy was

Stanford Cart 2 in 1961 with a research aim of controlling a moon rover from earth using

a video camera. It was built by Mechanical Engineering graduate student James L.

Adams. At that time vehicle had no on-board computer and was connected to a control

console through a long cable and carried a TV camera. By 1971 Rodney Schmidt a PhD

student working with Les Earnest, was able to make this cart follow a high contrast

white line under controlled lighting conditions using video images processed by KA10

processor. Finally Hans Moravec was able to use binocular vision (single camera was

1In this thesis we use the terms autonomous vehicle, intelligent vehicle and driver less cars in the same sense.
2http://www.stanford.edu/~learnest/cart.htm
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CHAPTER 1: INTRODUCTION

slid on a slider platform to get images from different positions) to navigate slowly

around obstacles in a controlled environment. In 1979 the cart successfully crossed a

structured chair-filled room without human intervention in about five hours (Moravec,

1980).

In 1977 Japan’s Tsukuba Mechanical Engineering Lab vehicle followed a road up-to 50

meters at a speed of 30 km/h by tracking white street markers using a video camera3.

Although details are not available about their work however it looks that they used

background subtraction techniques to follow white color.

Shakey (1966 to 1972), developed by Artificial Intelligence Center at SRI International

(then Stanford Research Institute) looks to be the first robot using multiple sensors. It

used three sensors, a TV camera, an optical range finder and tactile sensors. TV cam-

era and Range finder sensors were used primarily for perception and path planning

whereas tactile sensors were used for bump detection. Shakey worked in an indoor

structured environment (Nilsson, 1984).

The vehicles mentioned so far had very limited perception capabilities and mainly used

simple techniques for vision sensors for functioning. Moreover they worked in highly

structured indoor environment having objects, walls and floors of very specific colors

that could be easily recognized in images. They moved very slow due to the limited

processing resources available. The main objective of these systems looks to prove

the idea that artificial sensors and processing resources can be used to observe and

understand (called perception) the world, an imperative prerequisite for autonomous

navigation. Advancements in both hardware and software technologies resulted in

more intelligent systems as given below.

In 1980s Ernst Dieter Dickmanns, a former German professor, was recognized as a

pioneer of intelligent cars because of the tremendous amount of work he did with his

team. Using vision technique along with probabilistic approaches like Kalman filters,

he was able to build cars that could run on empty roads autonomously. By 1987 his

intelligent vehicle VaMoRs could run at speeds up to 96 km/h. This stimulated European

Union to spend almost $1 billion for the pan-European Prometheus project (1987-1995)

to conduct research in building autonomous cars. The result of this project had two

culmination events: The first, in 1994, demonstrated two robot cars VaMP and VITA-2

drove more than one thousand kilometers on a Paris multi-lane highway in standard

heavy traffic at speeds up-to 130 km/h, the second in 1995 a S-Class Mercedes-Benz

car did a round trip from Munich to Copenhagen, going up-to speed of 175 km/h on

German Autobahn. These cars used vision sensors with computer vision techniques

3http://www.tech-faq.com/driverless-car.html
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CHAPTER 1: INTRODUCTION

to achieve these goals. Although results look quite promising yet there were many

limitations. For examples these vehicles could only run on a road in a lane and could

detect vehicles ahead of them, however lane changing and handling traffic situation in

intersection like scenarios was not possible. Moreover human input was often needed

even in a lane on highways.

Later on a series of DARPA grand challenges attracted many people from around the

world to put research efforts in autonomous vehicle driving, the winning teams of its

2007 challenge were able to complete 96 km long urban track in less than 5 hours.

These vehicles are very close to the ideal intelligent vehicles however they were able to

achieve these goals by using many redundant sensors such that the total cost of sensors

was many times the cost of vehicle.

Recently VisLab’s4 VIAC challenge (4 autonomous vehicles followed a man driven

vehicle from Italy to China with main purpose of getting datasets of different envi-

ronments) and Google Cars have set new milestones in autonomous vehicle driving.

Although VisLab vehicles used only vision cameras as main perception sensors how-

ever Google cars are using multiple sophisticated sensors (velodyne, radar, vision) for

environment perception.

As of today all the intelligent vehicle systems mentioned are not capable of dealing

with all possible scenarios that we may encounter while driving, especially on busy

city roads. The reason being the amount of information required, about the environ-

ment, to deal with such situations successfully is yet a challenge to get from the sensors.

Now it is a general acceptance that one single sensor, due to its limitations and uncer-

tainty (given in section 1.3), is not capable enough to provide all necessary information

required for this complicated task. Using multiple sensors is a potential solution, how-

ever combining information optimally from these sensors is a challenge.

Summarizing we can say that the degree of intelligent vehicle’s autonomy depends on

its capability of understanding external environment using its sensors’ data, we term

this capability as vehicle perception. More specifically, perception is the key step in the

overall structure of an intelligent vehicle and all the other high level decision making

is based on it. In the following we describe more precisely what it is all about and what

kind of problems related to perception must be addressed.

4www.vislab.it
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CHAPTER 1: INTRODUCTION

1.2 Intelligent vehicle perception

Literally perception (from the Latin perceptio, percipio) is the process of attaining

awareness or understanding of the environment by organizing and interpreting sen-

sory information. In the context of robotics (or intelligent vehicles) it involves getting

data about the surrounding environment using sensors, processing these data and in-

ferring an internal representation (we will call this internal representation as internal

model) of this external environment.

In our context perception involves getting following important information from the

sensor data:

• Position of objects w.r.t each other and shape of the road. These information are

called map of the environment.

• Position of the intelligent vehicle in this map.

• Distinction between static and dynamic objects with trajectories of moving ob-

jects.

• Types of objects (cars, bicycles, persons etc) called classification information.

Figure 1.1: A goal of the robotic perception. Right: a real road scenario. Left: vehicle’s

internal belief about it.

Figure 1.1, from (Fuerstenberg et al., 2002), is an attempt to show this goal of the intel-

ligent vehicle perception. Image in the right side shows a road scene whereas left side

shows the internal model of the intelligent vehicle inferred from sensor data. Data from

laser sensor is shown as red dots whereas intelligent vehicle (also called host vehicle,
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ego vehicle, test vehicle or demonstrator vehicle) is shown in blue color. It looks from

this figure that host vehicle has inferred shape of the road, position and type of other

objects in the environment, distinction between static and dynamic objects with tra-

jectories of dynamic objects (shown as yellow arrows) and its own position w.r.t other

objects in the environment, from sensor data (laser data in this case). Host vehicle

usually needs to process multiple data frames to infer these information.

Perception is one of the most important tasks a robot must accomplish in order to func-

tion without human intervention. Perception, as defined above, requires to solve fol-

lowing sub problems:

• Mapping, defined as the process of establishing spatial relationships among sta-

tionary objects. It is necessary to build on-line maps using sensor data because

due to the presence of temporary stationary objects a priori maps may not ful-

fill the purpose. Moreover it may be costly to get a priori maps for the target

environment.

• Localization, defined as the process of establishing spatial relationship between

vehicle and stationary objects in the environment. Intelligent vehicle needs to

know its own position in the map.

• Detection of moving objects, it requires the vehicle to distinguish between static and

dynamic objects.

• Tracking of moving objects, defined as the process of establishing the spatial and

temporal relationships between moving objects, host vehicle and stationary ob-

jects.

• Classification of objects, it involves knowing the type of each object especially the

dynamic objects.

First four sub problems are grouped in two problems: SLAM (Simultaneous Localiza-

tion And Mapping) and DATMO (Detection And Tracking of Moving Objects) (Figure

1.2). While SLAM gives the robot the map of the environment where it is operating

with the position of the robot in this map, DATMO allows it to be aware of moving

objects in this environment so that appropriate actions may be taken while complet-

ing a task. Classification information can be considered as details inferred from sensor

data to improve the results of these two problems. We will, especially, need them for

DATMO part. Some preprocessing of sensor data may be needed before SLAM , like

coordinates transformations for data representations etc.

6
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Figure 1.2: Inputs to perception consist of sensor measurements and control inputs

(usually taken as the motion measurements like odometry or IMU). Com-

mon elements of perception output include: robot or vehicle state (its po-

sition in the map, its velocity, acceleration etc), map of the environment

(details of the map depend on the target application) and list of moving

objects with attributes like position, velocity etc. These elements are col-

lectively called environment model.

Map details along with dynamic behavior (velocity, acceleration etc) of moving objects

given by SLAM and DATMO solutions, are used by high level applications to assist the

driver or to control the vehicle movement.

If we are able to accomplish both SLAM and DATMO reliably in real time, we can use

the generated environment model to detect critical situations to warn the driver in ad-

vance or apply brakes automatically in case of inevitable collision to mitigate damage.

Finally the importance of perception can also be seen from the fact that it is the first

element in the usual three component based robotic system architecture. They include:

Perception, Decision and Action. This is usually called PDA robot architecture (shown in

figure 1.3), the acronym of its three components. According to this architecture robot’s

actions are based on its decisions which in turn are based on the environment model

given by perception.

Many researchers have worked on perception problem using different sensors in dif-

ferent scenarios. In this dissertation we have used two main sensors: Laser and vision

(mono and stereo vision) to solve this problem. Especially we have developed tech-

niques to fuse data from these sensors at different levels to improve moving object

tracking sub problem for autonomous vehicles in crowded intersection like scenarios.

Since a solution to perception problem very much depends on the types of sensors

used as input sources, it is important to know their characteristics. In next section after

7
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Figure 1.3: Robot decisions are based on the environment model given by perception

module, hence perception is the base of robotic decisions and actions in

PDA architecture.

giving a general introduction of sensors we detail the two sensors that we have used in

our work.

1.3 Sensors

A sensor is a device that measures a physical quantity and converts it into a signal

which can be read by an observer, an instrument or a computer. Sensors are the only

way to get direct information from the environment. Sensors use physical properties

of matter and laws of physics to perform their function. They are capable of perceiving

a physical property or environmental attribute, such as heat, light, sound, pressure,

magnetism or motion. To be useful, the sensor must map the value of the property or

attribute to a quantitative measurement in a consistent and predictable manner. Usu-

ally a sensor measures a single aspect of the environment, so to get information about

different aspects of the environment different sensors are used. Modern sensors even

have data processing capabilities to transform observed data into more usable forms

before outputting for the target system. The choice of sensors very much depends on

the context of the problem to be solved. In the field of robotics in general and intelli-

gent vehicle driving in particular the sensors which can be used to create an accurate

internal representation of external environment are chosen. Examples include: 2D and

3D Laser scanners, Radars, Vision sensors (mono and stereo vision), IMUs, GPS etc.

These sensors can broadly be divided into two categories: passive and active. A passive

sensor only measures the energy emitted by the objects in the environment to observe

them whereas an active sensor emits energy and then observes the change in the re-

flected energy to estimate the state of the environment. Examples of passive sensors

include photographic camera, infrared camera and radiometers etc whereas laser scan-

ner, radar and ultra sonic are a few examples of active sensors.

Two concepts related to sensors: sensor uncertainty and sensor model are very important
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to consider. Without information about these concepts for each sensor it is difficult

to model correctly their behavior in the target system. Below we define what these

concepts are. We end this section with a short description of the laser scanner and

stereo vision camera mounted on the demonstrator used to get data for this work (left

camera from this pair of stereo serves as mono vision sensor for us).

1.3.1 Sensor uncertainty

Sensor measurements are inherently uncertain, which means that they can only give an

estimate of the measured physical property. Due to physical constraints it is impossible

to make a perfectly error free sensor. Sensor uncertainty is caused by many types of

errors (Mitchell, 2007) of which following two are commonly seen in many sensors:

• Random errors, these are caused by measurement noise and occur in an unpre-

dictable and non repeating manner. They may be caused due to fluctuations in

the capacity of the resistance of the electrical circuits in the sensor, or due to the

limited resolution of the sensor.

• Systematic errors, they repeat themselves in a systematic manner and include

following types of errors:

– Calibration errors, they are caused by calibration process (the process of es-

timating sensor parameters) and usually are due to linearization of the cali-

bration process for devices exhibiting non-linear characteristics.

– Representation errors. Caused by the transformations from sensor space to

a common representation format.

1.3.2 Sensor model

In order to analyze and use the output of a sensor it is important to model its behavior,

this modeling of behavior is called sensor model and is defined as the description of

the probabilistic relation between sensor measurement and actual state of the space

(Yguel et al., 2006). Formally if Z represents the sensor output and X the world state

then the probability P(Z|X) represents the sensor model and gives the probability of

sensor output for a given world configuration. An important related concept is inverse

sensor model represented as P(X|Z) and gives the probability of a world configuration

given a measurement. Usually a problem represented using one of these forms can be

converted to the other by applying Bayes theorem.

9
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1.3.3 Sensors used: LIDAR and Vision Camera

As mentioned earlier, our work in this dissertation focuses on LIDAR (LIght Detec-

tion And Ranging, but throughout the text we will write it as lidar or Lidar or simply

laser scanner) and vision camera (mono and stereo) as main sensors to solve perception

problem in the context of intelligent vehicles. The sensors mounted on the Volkswagen

(VW) demonstrator used to get data sets for this work are shown in figure 1.4 along

with their relative fields of view (FOV) and effective range information. Although

there are other sensors (like short range radars and long range radar) also installed

on the demonstrator however our work is concerned with lidar and stereo vision be-

cause field of views of 4 SRR (Short Range Radar) have no overlap with each other

and very little overlap with lidar. Similarly field of view of LRR (Long Range Radar)

is very narrow and is more relevant for a cruise control application. Although lidar

covers the significant area in-front of the vehicle and is the primary perception sensor,

information from stereo vision are very useful especially when vehicle is moving in

crowded urban environment or when lidar is more noisy. In these situations an object

occluded (or partially occluded) for lidar may be visible to stereo due to its different

installation position on the host vehicle, or lidar may give many false positives due to

noise that may not be the case with stereo vision due to its different functioning princi-

ple. Moreover information from lidar and Stereo vision are complementary with lidar

providing precise position information of objects and stereo vision giving classification

information with position estimates. Although for most of our work in this thesis we

have used data sets from this Volkswagen demonstrator, however, for our work of low

level fusion between laser and mono vision we have used data sets from a simulated

demonstrator vehicle called Sycab developed by INRIA, because we needed colored

images with high resolution laser scanner. More details about the simulated demon-

strator and sensors installed on it will be given in 4th chapter. Below we discuss some

important aspects of our main sensors installed on Volkswagen demonstrator vehicle.

Lidar

Lidar sensor used on this demonstrator is a Hella IDIS 2.0 that is capable of allowing

different configurations of use. With highest resolution configuration it has a horizontal

field of view of 160◦ and maximum resolution of 1◦. It has 161 laser beams with each

beam capable of detecting two targets with vertical opening angle of 3◦. Two targets

means that the beam first scans in horizontal plane then in a plane at an angle of 3◦

from horizontal plane. If the detected object in second case is different from the first
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Figure 1.4: Sensors mounted on the demonstrator vehicle. Our work in this thesis

is only concerned with Stereo Camera (green FOV) and Lidar (pink FOV).

Other sensors include four short range radars (SRR) one long range radar

(LRR) and vehicle to infrastructure communication setup (V2I).

one (using some threshold on difference of distance between them) it is reported as a

second target. In our work we only consider the closest target. However, to reduce

the amount of data to be transferred on the communication layer between different

modules and to ensure a minimum 20 fps (frames per second) rate for all the sensors

Volkswagen decided to use a low resolution configuration for this lidar sensor. In this

configuration lidar has 2◦ resolution with 160◦ field of view. So it has 81 laser beams

with each beam capable of detecting two targets as explained above. All our data sets

have this later configuration of the lidar sensor. In both configurations the range is from

1 meter to 150 meters, however, with 2◦ resolution hits detected beyond 50 meters are

so far apart that only one hit is observed on an object making it difficult to decide
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whether its a true object or false positive. To avoid this problem we reduce the effective

range to 50 meters. Practically observed lidar scan rate is 16.6 Hz.

Sensor model and inverse sensor model for a laser scanner is shown in figure 1.5. It

is important to mention that at the time of registering data sets for current work this

laser scanner had low signal to noise ratio. Other than usual uncertainties it showed

shaky beam behavior and erroneous reflections from white lane markings on the road.

Because of this perception solution using only laser showed many false positives.

Figure 1.5: Left: sensor model of a laser scanner, the curve models the probability of

getting a hit at different distances for an object at a distance of d (ground

truth), zmax is the maximum range of the scanner. The non null probability

on other than d location is due to sensor uncertainty mentioned above.

Right: inverse sensor model of the same laser scanner, this curve models

the probability of presence of an object at different distances for which laser

gives distance zt.

Lidar is one of the main sensors being used today for intelligent vehicle perception (and

for robotics in general) because of its high accuracy of obstacle distance measurement.

High resolution laser scanners have been successfully used for intelligent vehicle per-

ception, for example by Vu (2009) and Wang (2004). Moreover it performs equally well

both during day and night and is not affected by different weather conditions. This

makes lidar a preferred choice for intelligent vehicle perception. However one short-

coming of this sensor is its inability to give object classification information, moreover

if resolution is not high (< 1◦) or sensor uncertainty is high then there are many false

positives making overall perception results very poor. These shortcomings can be com-

pensated by adding another complementary sensor.
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Stereo Camera

This stereo vision system has two JAICV-M4+ cameras with each camera capable of

taking a gray scale image of high resolution at 24 fps (frames per second) rate. The

baseline length is 340 mm. Images from left camera are used for our mono vision work.

An example stereo vision camera and how it works is shown in figure 1.6.

Figure 1.6: A stereo vision system (top) and how it works (bottom). A point in world

(x, y, z) is projected on the image planes of both cameras, using epipolar

geometry an estimate of its distance can be made.

Stereo vision processing was done by a team of Technical University of Cluj-Napoca

Romania5 (Nedevschi et al., 2009a,b). We had access to two levels of data from the

output of their processing: i. 3D points with each point having position information

from a fixed frame of reference and ii. classified objects list with each object having infor-

mation about its position, dimensions (corner points of its bounding cuboid) and class

(pedestrian, vehicle, pole, curb, unknown). No motion information of objects were pro-

vided. Since we get preprocessed data from stereo vision we do not know the direct

sensor model and inverse sensor model. However in-order to perform fusion with laser

we have estimated measurement uncertainty for stereo vision indirectly, more details

5http://users.utcluj.ro/~nedevski/
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about this will be given in third chapter. Practically observed processed stereo data

frame rate is about 12 Hz.

Vision sensors are the very first sensors used for intelligent vehicle perception. In fact

the first autonomous vehicles developed by Ernst Dieter Dickmanns and his team only

used vision sensors. Both mono and stereo vision sensors have been used by many

researchers for both indoor and outdoor environment perception (Danescu et al., 2009,

Mittal and Davis, 2003). Although its performance heavily depends on lighting and

weather conditions, it still is a popular sensor being used for vehicle perception because

of its low cost and rich information.

From the characteristics mentioned both for laser and vision sensors our hypothesis in

this thesis is that by using lidar and vision camera (both mono and stereo) as perception

sensors we can devise fusion techniques at different levels of abstractions to improve

perception results. In next section we explain what multi sensor data fusion is along

with brief description of abstraction levels where we have performed fusion for these

sensors.

1.3.4 Data synchronization

In Volkswagen demonstrator each data frame from each sensor or module has a time

stamp that is used for synchronization. We save some frames of these sensors in arrays

and a simple search based on this time stamp gives the closest matching data frames

from these sensors for fusion. We have seen that size of these arrays never exceeds

from 4.

1.4 Multi-sensor data fusion

Multi-sensor data fusion is the process of combining sensory data or data derived from

sensory data in such a way that resulting information (fused data) is in some sense

better than data from individual sensors. The fusion may take place between similar

(homogeneous) or different (heterogeneous) sensors. Sensors measuring same proper-

ties of the environment are called homogeneous sensors whereas the ones measuring

different properties of the environment are called heterogeneous sensors. For exam-

ple two laser scanners are homogeneous whereas a laser scanner and a camera are

heterogeneous sensors. The rationale to use homogeneous sensors for observations is

either to reduce inherent sensor uncertainty or to increase sensor field of view. In either

case an effective data fusion scheme is necessary to make optimal use of the sensors.

14



CHAPTER 1: INTRODUCTION

In heterogeneous sensors case, complementary information are obtained from differ-

ent sensors, so an effective fusion technique will result in more complete information

about the environment under observation. Although our main sensors are heteroge-

neous but they have some homogeneous aspects as well (for example stereo vision also

gives depth information of detected objects like laser scanner). Figure 1.7 elaborates

this fusion concept.

Figure 1.7: Fusion example between laser and mono vision. Laser (bottom left) detects

moving objects, calculates their position and velocity information whereas

vision (bottom right) classifies them as cars. After fusion (top), system

knows that it is tracking two cars.

Multi sensor data fusion has been a topic of research since long especially in the field

of defense. Main fusion applications developed by people in this field are related to

ocean and air surveillance and battlefield intelligence. Non military applications are

related to intelligent robots, disease diagnostics, environment monitoring, state moni-

toring of industrial setups/equipments etc. Hall and Llinas (2001) have detailed many

application fields of multi sensor data fusion. Below we describe the abstraction levels

where we have performed fusion to improve intelligent vehicle perception
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1.4.1 Fusion for intelligent vehicle perception

Extracting information from sensor data can be termed as finding features of interest

from these data. For example from laser data we can extract features like position

and shape (lines). Similarly from vision sensors we can get more abstract features like

class of the objects. Intelligently combining these features from these sensors may give

more complete view of the objects and the environment and is the objective of a fusion

system.

Our work in this dissertation is related to the development of fusion techniques for

data from vision and laser sensors at different levels for intelligent vehicle perception

to improve perception results, more specifically to improve tracking of moving objects.

We have identified four levels in SLAM and DATMO based perception architecture (

shown in figure 1.2) where fusion can take place. Same perception architecture with

position of identified fusion levels is shown in figure 1.8. These identified fusion levels

are:

• Low level with minimum preprocessing (like projecting data into a common frame

of reference or classifying individual pixels etc) data from each sensor is repre-

sented in compatible forms and these individual representation forms are com-

bined to get fused representation. Output of fusion at this level is input to the

SLAM module. We have performed fusion at this level between laser and mono

vision and laser and stereo vision. Data set for this level of fusion between laser

and mono vision is obtained from Cycab simulated demonstrator as mentioned

earlier, however for all other purposes data from real Volkswagen demonstrator

vehicle have been used.

• Map level, output of each sensor is processed to solve SLAM problem and the

maps generated by individual sensors are combined to get a fused map. This

level is more interesting for robots moving in cluttered environments, however

for intelligent vehicles moving on roads map generated by laser scanner is suffi-

cient so we have not considered this level in our work as explained in next chap-

ter.

• Object detection level, output of each sensor is processed to detect objects in the

environment, then we perform fusion between these lists of objects to get a list of

fused objects, fused objects have more complete properties than their pre fusion

versions. Fusion at this level is done between laser and mono vision and laser

and stereo vision.

16



CHAPTER 1: INTRODUCTION

• Track level, fusion at this level involves combining lists of moving objects detected

and tracked over time by individual sensors. Objective of this fusion is to reduce

the number of false tracks. We have performed this fusion between laser and

stereo vision.

Figure 1.8: SLAM and DATMO based perception architecture with identified fusion

levels.

Detailed architecture of each of these levels is given in next chapter.

1.5 Contributions

In this dissertation we have implemented and validated the SLAM and DATMO solutions

developed by Vu (2009) using a new laser scanner having different specifications than

the one used in original work. Furthermore we have used additional sensors, stereo vi-

sion camera and mono camera, and have devised fusion techniques at different levels

to improve the results of above solutions. The main contributions of this research are

as follows:

First contribution of this research is the development, implementation and comparison

of fusion techniques at three levels of abstraction: Low level, with minimum preprocess-

ing of each sensor we represent their output in a common format (occupancy grids to

be precise) then using fusion technique we combine them in a single representation

which is further used as input to the next perception step. Object detection level and

Track level, as given above, we have developed techniques to solve the object/track as-

sociations and then to fuse the properties of these associated objects and tracks. The

result of these fusion techniques are improved perception, especially DATMO , results.
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Second contribution is the development of a fast technique for detection and tracking

of road borders in noisy laser data. The output of this module, a road model, is used in

DATMO module to reduce the number of false moving objects6 detected due to noisy

laser data.

Third contribution is the integration of the fusion techniques on a real Volkswagen

demonstrator vehicle. This integration has been performed in the framework of a Eu-

ropean Project INTERSAFE-27. This project is concerned with the road user safety on

intersections. The objective of this project was to develop a complete safety solution

for all types of road users on intersections using on-board and infrastructure sensors.

Since multiple sensors were used on the demonstrator vehicle so we developed fusion

techniques to accomplish the perception part of this project on demonstrator vehicle.

1.6 Thesis layout

Rest of this dissertation is structured as follows: In next chapter we give a detailed

state of the art of robotics perception especially SLAM, DATMO and multi-sensor data

fusion. In this chapter we also explain the schema of three levels for which we have

developed fusion techniques in the context of autonomous vehicle driving. Chapter 3

details the fusion process between laser and stereo vision camera along with our road

border detection technique that we have developed to reduce false alarms in noisy laser

data to improve DATMO results. In chapter 4 we give fusion details between laser and

mono camera. Chapter 5 details the INTERSAFE-2 project with contribution of the

partners involved. In last chapter we conclude our work with some perspectives.

6A false moving object is one which actually does not exist but due to sensor uncertainties is inferred

from its data.
7www.intersafe-2.eu
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CHAPTER 2

Vehicle Perception with Fusion -

State of the Art

2.1 Introduction

As discussed in the previous chapter, perception process in intelligent vehicles is con-

cerned with building an internal representation of external environment by interpret-

ing data obtained from its sensors. During this process the vehicle needs to estimate

the relative positions (may include other details like shapes and classification infor-

mation) of static objects, its own position in the environment and needs to find the

moving objects and track them over time. We grouped these sub problems into SLAM

and DATMO . This perception process takes some inputs and after processing gives

some outputs. In order to discuss state of the art techniques developed to solve per-

ception problem we need to formally define these inputs and outputs (shown in figure

2.1). Here Zt, sensor inputs accumulated until time step t, and Ut, control inputs but

Figure 2.1: Perception inputs and outputs (see text for details).

usually taken equivalent to the motion measurements given by odometer or inertial

measurement units (IMU), are given as:

Zt , z0:t = {z0, z1, . . . , zt} (2.1.1)
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Ut , u1:t = {u1, u2 . . . , ut} (2.1.2)

Where zi is sensor input and ui is motion measurement at time instant i.

The output Xt is the set of estimated vehicle states (position and orientation define

vehicle state) until time t. So if xi is the state of vehicle at time instant i then we have:

Xt , x0:t = {x0, x1, . . . , xt} (2.1.3)

The absence of u0 means that first motion measurement becomes available only when

vehicle has moved from state x0 to x1.

The map Mt is the set of static objects detected until time t and is represented as:

Mt = {m0, m1, . . . , mk} (2.1.4)

Finally the set of tracks at time t is the set of moving objects oi, detected consistently in

some previous data frames, given as:

Tt , {o0, o1, . . . , om} (2.1.5)

Where m is the number of tracked dynamic objects at time instant t.

It is important to note, from these definitions, that a time t subscript with a capital

letter variable means history (0 to t) of that variable whereas same subscript with a

small letter variable means only one value for that variable.

A probabilistic solution to perception problem needs to estimate following a posteriori

probability density:

P(xt, Mt, Tt|Zt, Ut, x0) (2.1.6)

It is a complex problem and is generally divided into following sub problems (SLAM

and DATMO respectively):

P(xt, Mt|Zt, Ut, x0) (2.1.7)

P(Tt|Zt, xt, Mt) (2.1.8)

Using multiple sensors to address perception problem, essentially, keeps the theoretical

structure of the problem same. It adds new inputs and the result is supposed to be

improved outputs or parts of outputs. Perception structure using inputs from two

sensors: laser Zl
t and vision Zv

t is shown in figure 2.2. And the perception formalization

equivalent to 2.1.6,in this case, becomes:

P(xt, Mt, Tt|Zl
t, Zv

t , Ut, x0) (2.1.9)

In the following we present state of the art perception solutions, first, without fusion

and then with fusion. We detail the different fusion levels that we have tested in this
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Figure 2.2: Structure of perception problem using inputs from two sensors: laser and

vision.

dissertation in section 2.3.2 and cite the relevance of our work and the improvements

caused by it. Section 2.4 gives the architecture of our road border detection module and

its position in the SLAM and DATMO based perception architecture, we also discuss

some related works in this section. We give a short synthesis of the chapter in the last

section.

2.2 Perception without fusion

Since we have divided perception into SLAM and DATMO parts we will discuss liter-

ature review on them in this order.

2.2.1 SLAM

Simultaneous Localization and Mapping (SLAM) also called Concurrent Mapping and

Localization (CML), a fundamental problem of autonomous navigation, has been an

important field of research for robotics community. In simple terms it means, is it pos-

sible for a robot (placed at unknown position in an unknown environment) to incre-

mentally build a consistent map of the environment while simultaneously determining

its location within this map using inputs from sensors? SLAM is a chicken-egg prob-

lem because to find the position of the vehicle we need to know the exact map and

to build the map of the environment we need to know exact position of the vehicle in

the environment. The importance of this problem can be imagined from the fact that a

solution to SLAM problem was considered as a ’holy grail’ by robotics community be-

cause it would provide the means to make a robot truly autonomous (Durrant-Whyte

and Bailey, 2006). In the following we first give a short description of the progressive

development of techniques addressing SLAM problem, then we summarize formaliza-

tions of modern solutions to this problem.
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In retrospect - development of SLAM

Before the localization and mapping were taken as problems to be solved simultane-

ously the early navigational systems showing some autonomy can be divided into fol-

lowing types:

• Line following; these systems used sensors to observe very specific "features" in the

environment and followed them to perform their assigned tasks. For examples

vehicles in industrial setup following current carrying wires buried in ground

using induction coils (Tsumura, 1986) and odor (Deveza et al., 1994, Russel et al.,

1994) or heat (Russel, 1993) trail following systems. No on-line mapping and

localization was addressed in these systems. They were simple navigational sys-

tems.

• Beacon based systems; They were primarily localization systems based on observ-

ing artificial beacons installed in the environment, using sensors. From the ob-

served position information of the beacons they were able to calculate their own

position in the environment (Kleeman, 1992) and (Durrant-Whyte, 1996). Bea-

cons can be active or passive, active beacons emit signals which are received by

the robot whereas passive beacons do not emit signals, robots use active sensors

to observe them. GPS (Global Positioning System) based localization (Evers and

Kasties, 1994) is also a form of active beacons. Other than GPS systems beacons

are, in general, costly to install and maintain, whereas GPS based systems suf-

fer from the problems of accuracy and unavailability of signals due to different

reasons (Durrant-Whyte, 1996, Poppen, 1993).

• Localization on a priori maps; For example Zhang (1994) and Vandorpe et al. (1996)

have described systems where robot extracts features from sensor data to localize

on a priori input maps. In contrast to beacons, features are naturally occurring

distinctive markers (landmarks) in the environment.

The main disadvantage of these systems is that they cannot be used in unknown envi-

ronments because either they need specially modified environments (having artificial

beacons installed) or a priori maps for their functioning.

The work on SLAM started with seminal works by Smith and Cheeseman (1987), Smith

et al. (1990) and Durrant-Whyte (1988) in which they established a statistical basis for

describing uncertain relationships between landmarks and manipulating geometric

uncertainty and measurement uncertainty described by Brooks (1985). These works

are a basis of modern SLAM solutions now. An important conclusion of Smith et al.

22



CHAPTER 2: VEHICLE PERCEPTION WITH FUSION - STATE OF THE ART

(1990) was that the estimates of landmarks observed by the robot are correlated be-

cause of the common error in estimated vehicle location. As a result of this conclusion

positions of all landmarks were made part of the state vector requiring update on each

observation. Inevitably the computational and storage complexity increases as robot

moves and explores new areas by finding new landmarks (Hebert et al., 1996). So to

keep the size of state vector in limits some authors either used thresholds (Leonard

and Durrant-Whyte, 1992) or did not take these correlations into account altogether

(Rencken, 1993).

According to Durrant-Whyte and Bailey (2006) the work by Smith et al. (1990) did not

look at the convergence properties of the map, so at that time it was assumed that

estimated map errors display random walk behavior so people tried to solve local-

ization and mapping problems separately. However it was realized that if mapping

and localization are formulated as a single estimation problem then they actually con-

verge. These convergence properties were first investigated by (Csorba, 1997) in his

PhD thesis. The acronym ’SLAM’ was first introduced in a paper presented at 1995

International Symposium on Robotics Research (Durrant-Whyte, 1996).

Above mentioned works primarily used landmarks extracted from sensor data to solve

SLAM problem, however Elfes (1989a) introduced occupancy grids (OG) framework

for localization and mapping. In this framework the space is divided into cells where

each cell has a probabilistic estimate of its occupancy state. Usually a high value of

cell probability indicates the cell is occupied and a low value means the cell is empty.

Although Kriegman et al. (1990) argues that OG cannot cope with the uncertainties

inherent in the data available to the robot yet this framework has been successfully

used for localization and mapping (at least locally) (Elfes, 1989b, Konolige, 1997, Vu

et al., 2008, Vu, 2009).

Modern solutions

Modern solutions of SLAM problem are probabilistic in nature and estimate the joint

probability given in equation 2.1.7. Using Bayes formula and Markovian assumptions

this equation can be expanded as:

P(xt, Mt|z0:t, u1:t)︸ ︷︷ ︸
posterior at t

∝ P(zt|xt, Mt)︸ ︷︷ ︸
update

∫
P(xt|xt−1, ut) P(xt−1, Mt|z0:t−1, u1:t−1)︸ ︷︷ ︸

prior

dxt−1

︸ ︷︷ ︸
prediction

(2.2.1)

This equation (2.2.1) gives the modern recursive two step, prediction (time-update) and

correction (measurement-update) solution. More precisely these are given as:
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Prediction (time-update)

P(xt, Mt|z0:t−1, u1:t) =
∫

P(xt|xt−1, ut)P(xt−1, Mt|z0:t−1, u0:t−1)dxt−1 (2.2.2)

Correction (measurement-update)

P(xt, Mt|z0:t, u1:t) =
P(zt|xt, Mt)P(xt, Mt|z0:t−1, u0:t)

P(zt|z0:t−1, u0:k)
(2.2.3)

In these equations two factors: P(zt|xt, Mt) and P(xt|xt−1, ut) are important and need

some explanation.

The first factor P(xt|xt−1, ut) (vehicle motion model), used in prediction step, states

how vehicle moves from previous state to current state under control inputs. In robotics,

usually, instead of considering control commands, odometry measurements taken at

current state are used to predict vehicle state.

The second factor P(zt|xt, Mt), used in the update step, defines the probabilistic de-

scription of the sensor and is called sensor model. For an effective solution to SLAM

problem it is important to define this sensor model for each sensor very carefully by

taking into account all details and uncertainties of the sensor behavior in the target

environment where this sensor will be used.

Map representation

The equations given above present a theoretical solution to the SLAM problem, how-

ever implementable solutions, from these equations, depend on how the map and prob-

abilities are represented. Vu (2009) has divided the map representation techniques into

following types (shown in figure 2.3):

• Direct representation (point cloud); usually used for range sensors (like laser scan-

ner), is a method of map representation using raw data without extracting fea-

tures. Cole and Newman (2006) has used this representation for 3D SLAM. This

is a simple method but lacks a precise representation of sensor uncertainty.

• Feature based representation; raw sensor data is processed to extract features which

are used to represent map. This is a compact representation technique that de-

pends on a set of distinguishable geometrical features extracted from sensor data.

However, only a predefined set of features can be used, moreover, environments

having irregular objects can be a challenge to represent. Dissanayake et al. (2001)

have implemented a feature based SLAM solution.
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• Grid based representation; the environment is divided into rectangular (or cubical

for 3D) cells and the state of occupancy of these cells is inferred from the sen-

sor data. Occupancy grids framework introduced by Elfes (1989b) falls in this

category and has been used extensively to represent robot environment.

Figure 2.3: Map representation techniques used to represent same environment.

Usually point cloud representation is used for 3D maps, so in the following we will only

discuss solutions for other two types.

Feature based solution

A preferred choice for feature based map representation is Kalman filter (Kalman, 1960)

based SLAM solution if following assumptions are made:

• Vehicle motion model (P(xt|xt−1, ut)) is linear with added Gaussian noise.

• Measurement model (P(zt|xt, Mt)) is linear with added Gaussian noise.
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• Initial state uncertainty is Gaussian.

If these conditions hold then Kalman filter based solution is a standard recursive two

step process consisting of prediction (time update) and correction (measurement up-

date) steps given in equations 2.2.2 and 2.2.3 respectively.

Usually the linearity condition for vehicle motion model is not true and the new posi-

tion xt depends non linearly on previous pose xt−1 and control input ut. In this case

these non linear functions can be linearized using Taylor series expansion and the re-

sulting filter is called extended Kalman filter (EKF) (Gordon et al., 1993). For highly non

linear and non Gaussian systems particle filter based solutions like FastSLAM (Monte-

merlo and Thrun, 2002) can be used.

Recently efforts have been made to merge other techniques with Kalman based solu-

tions to address different problems for different scenarios or different sensors. For ex-

ample Gérossier et al. (2009) have used Fourier-Mellin transform for microwave radar

images to present an EKF based SLAM solution.

Grid based solution

For grid based map representation technique an incremental maximum likelihood based

SLAM solution is more appropriate. In this formulation the maximum likelihood of the

estimated vehicle state and environment map at time t is given as marginal likelihood:

< x̂t, M̂t >= arg max
xt,Mt

{P(zt|xt, Mt)P(xt, Mt|ut, x̂t−1, M̂t−1)} (2.2.4)

Here x̂t and M̂t are the latest maximum likelihood based estimates of vehicle state and

environment map respectively. This equation (derived from 2.2.1) shows that the new

maximum likelihood estimates of vehicle position and map depend on sensor model

and previous estimates of position and map. However to solve equation 2.2.4 a good

estimate of new vehicle position at time t can be obtained by searching in vehicle pose

space using new measurement and previous map at time step t− 1, mathematically it

means:

x̂t = arg max
xt

{P(zt|xt, M̂t)P(xt|ut, x̂t−1)} (2.2.5)

A scan matching technique (Vu et al., 2007) based on particle filter can be used to find

best value of new vehicle pose that fits new measurement with map constructed so far.

After we have found the best pose x̂t then we can construct new map M using this pose

value and the latest sensor measurement zt. This new map can be combined with map

estimate at time step t− 1 to get new map estimate as follows:

M̂t = M̂t−1
⋃

M (2.2.6)
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Equations 2.2.5 and 2.2.6 actually implement the SLAM solution given in equation

2.2.4. This completes the solution for SLAM problem.

The advantage of ML-SLAM is that it can be applied to any kind of representations

whereas KF-SLAM works with feature based representation. Moreover ML-SLAM is

fast because it calculates new map based only on current pose estimate and previous

map (at time step t− 1).

In this thesis we have implemented a maximum likelihood based solution (Baig et al.,

2009) using occupancy grid framework. Next we discuss state of the art solutions to

the second part (DATMO) of the perception problem.

2.2.2 DATMO

Second important part of intelligent vehicle perception is the Detection And Tracking of

Moving Objects (DATMO) present in the environment along with autonomous vehicle,

and has been a hot field or research for decades (Bar-Shalom and Tse, 1974, 1975, Black-

man and Popoli, 1999, Burlet et al., 2007, Wang, 2004). A solution to SLAM problem

either supposes that no moving objects are present in the environment or they are fil-

tered out for further processing. Many of the modern tracking systems are based on

the techniques developed for old air and ocean surveillance systems (Fortmann and

Baron, 1979, Singer and Stein, 1971), these systems were primarily based on radar and

sonar sensors respectively with the assumption that all the detected targets were mov-

ing (Fortmann and Baron, 1979, Singer et al., 1974). However this is not the case when

we are dealing with intelligent vehicles on the real road scenarios. Finding both static

and moving objects is normal on roads, so the vehicle must be able to distinguish be-

tween them.

In DATMO , usually, detection of moving objects is handled separately from the track-

ing part and detected list of objects/targets is taken as input to the tracking part. In the

following we follow the same order.

Moving objects detection

A huge amount of work has been done to detect moving objects, especially by vision

community (Jain et al., 1979, Li, 2000, Taleghani et al., 2009, Zhang, 1994). These tech-

niques have primarily been based on background subtraction or motion cues. Similar

to background subtraction techniques have also been used in occupancy grids to detect

moving objects (Burlet et al., 2007, Vu et al., 2009, Wang et al., 2003). These techniques

are based on inconsistencies observed for new data by comparing them with maps con-
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structed by SLAM. Petrovskaya and Thrun (2009) and Vu and Aycard (2009) have also

proposed model based techniques to detect moving objects on the roads in the context

of autonomous vehicle driving. Recently Dempster-Shafer theory based grids (eviden-

tial grids) have been used to detect moving objects using conflict analysis techniques

(Moras et al., 2011a,b).

In our occupancy grid based solution if Mt[zi
t] is the cell of map Mt where ith part

of measurement z at time t is projected (like ith laser beam of laser scan zt) then the

dynamic parts of the measurements is the set {zi
t|M[zi

t] is marked free}.

Moving objects tracking

The detected moving objects are input to the moving object tracking (MOT) module.

Most of the researchers have divided the MOT systems into four parts: 1) Gating (gate

is an area around the next predicted position of a track where new observations of same

track are searched) , 2) Data Association (is the process of assigning new observations

to the existing tracks, this association takes place in gate area), 3) Track Management (is

the process of keeping list of tracks and rules about creation of new tracks and deletion

of old tracks) and 4) Filtering (a recursive process of estimating properties of tracks

usually based on prediction and update steps) as shown in figure 2.4. These elements

are even found in the early tracking systems for air traffic control or ocean surveillance.

For example Singer and Stein (1971) calls the filtering as track-update and data associ-

ation as return-to-track correlation and mentions the Gates based on predicted measure-

ment for the object in track and statistical distance test. S.Blackman and Popoli (1999)

have also given same architecture with an additional initiating element of Sensor Data

Processing and Measurement Formation which in our case is equivalent to preprocessing

done for detecting the moving objects. Two out of these four elements, namely Data As-

sociation and Filtering have attracted much more research efforts than Gating and Track

Management this is because Gating is controlled by the predictions made by filtering

and Track Management usually depends on the employed Data Association techniques.

However a large number of researchers have developed many different techniques and

their flavors for both Data Association and Filtering to solve MOT problem in either dif-

ferent scenarios or using different sensors. In the following we structure state of art

according to techniques developed for these two elements.

Theoretically if ω is any set of tracks at time t then tracking is the optimal set of tracks

ω∗ = argmax
ω

P(ω|z1:t)

Data Association Techniques
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Figure 2.4: Typical elements of a Moving Objects Tracking system.

Some well known data association techniques are discussed below.

Global Nearest Neighbor (GNN) is the simplest data association approach that attempts

to find and to propagate the single most likely hypothesis at each data scan. It has

been used by many researchers as a data association choice (Crowley et al., 1988, De-

riche and Faugeras, 1991, Singer and Stein, 1971). The term global is used to refer to

the fact that the assignment is made considering all possible (within gates) associations

under the constraint that an observation can be associated with at most one track. This

distinguishes GNN from the simple nearest neighbor (NN) approach in which a track

is updated with the closest observation even if that observation may also be used by

another track (Blackman, 2004). Konstantinova et al. (2003) has quantitatively evalu-

ated the performance difference of these two flavors. This approach works well if the

sensor is not very noisy and the targets are sufficiently apart from each other but does

not perform well in cluttered scenarios (Blackman, 2004).

Probabilistic Data Association is the data association technique in which all of the poten-

tial candidates for association to a track are combined in a single statistically most prob-

able update, taking account of the statistical distribution of the track errors and clutter

and assuming that only one of the candidates is a target, and the rest are false alarms.

This technique detailed in (Bar-Shalom and Tse, 1974) has been used by many to solve

data association problems. Many different flavors (JPDAF, MXPDAF) of this technique

have also been developed, a review of them along with some other techniques have

been discussed by Cox (1993) and Bar-Shalom et al. (2009). Blackman (2004) has dis-

cussed some problems with JPDA (Joint Probabilistic Data Association).

Multiple Hypothesis Tracking (MHT) originally developed by Reid (1979) has been suc-
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cessfully used by many tracking systems to solve data association problem like (Burlet

et al., 2007, Cox and Hingorani, 1996, Vu et al., 2007). Irrespective of its storage complex-

ity it is a generally preferred method of solving data association problem (Blackman,

2004).

Filtering Techniques

Some most common filtering techniques employed to solve MOT are discussed below.

Kalman Filter developed by Kalman (1960) is by far most commonly used filtering tech-

nique in many different fields. In this form this filter only deals with linear systems

however its variants have been developed to deal with non linear systems like Ex-

tended Kalman Filter, and for highly non linear systems, Unscented Kalman filter.

Particle Filter, Kalman filters are inherently unimodal, so to deal with multi model prob-

lems a class of filters commonly known as particle filters were developed (Gordon et al.,

1993).

Interacting Multiple Model (IMM) Filter is a preferred filter to track moving objects hav-

ing multiple motion models (Bar-Shalom and Li, 1995). In IMM a Kalman filter is de-

fined for each motion model. This filter has been extensively used for moving objects

tracking (Blackman, 2004, Burlet et al., 2007, Vu et al., 2007).

A detailed derivation of these and many other filters can be found in Thrun et al. (2005).

Since both DATMO and SLAM are closely related Wang (2004) has formulated both of

them as a single problem called Simultaneous Localization Mapping and Moving Object

Tracking (SLAMMOT) and has proposed a solution to it.

2.2.3 Synthesis

In this section we have summarized literature review on solutions presented for dif-

ferent parts of the perception problem with some details on modern solutions. We

have also listed different techniques developed to address subparts of the main prob-

lems of SLAM and DATMO . Depending on the target environment, a combination of

these techniques can be chosen to implement a solution to perception problem. To ad-

dress this problem for autonomous vehicles driving on busy city roads we have imple-

mented a maximum-likelihood based solution using occupancy grids for SLAM using

lidar as main sensor. For DATMO we have chosen grid based moving object detec-

tion along with MHT for data association and IMM for tracking multiple targets. Since

we need to detect and track multiple objects moving in different directions with differ-

ent motion attributes so we need to choose technique which take these requirements

into account, with MHT all possible association hypothesis are considered and IMM
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can handle multiple motion modes. It makes these techniques quite relevant to our

requirements. However low resolution and high uncertainty of the lidar used for this

work gives many false alarms and miss detections making it necessary to add another

sensor to make for its shortcomings. In next section we discuss perception solutions

using multiple sensors.

2.3 Perception with fusion

In previous section we have described some state of the art solutions developed by dif-

ferent people for different parts of the perception problem. A carefully chosen combi-

nation of these techniques will give a complete (at least theoretical) solution to the per-

ception problem for any target system. For example for an intelligent vehicle equipped

with a laser sensor, choosing following components will give a complete solution to its

perception problem:

• Occupancy grid based representation with maximum likelihood SLAM

• Grid based moving objects detection technique

• MHT based data association

• IMM filter for tracking moving objects

Question can be asked, will this be a perfect or even a reliable solution for the target

system (autonomous driving on city roads)? A responsible answer will be ’no’! The

reasons being (there may be others):

• Sensor limitations: laser scanners can only get distances of their impact points,

hence they see the world as set of points. Even repeated scans can only increase

the number of points but will never make the world look continuous. So the state

of the world parts between these points can only be guessed. The parts of the

world directly observed (the impact points) are just a small fraction of the space

in the visible range of the sensor. Similarly some objects are invisible for certain

sensors, for example glassy black colors do not reflect enough light to be detected

by laser receiver. Similar limitations exist for all sensors.

• The impossibility of modeling the exact behavior of a sensor for all possible sit-

uations the target system may encounter while operating. Similarly all factors

contributing to the sensor uncertainty are simply never known!
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• The strong assumptions and approximations used on virtually every step to fa-

cilitate the solution derivation.

Since the first two reasons in the above list may have different significance for differ-

ent sensors (even for the homogeneous sensors), two systems using same theoretical

solution but different sensors may have different results. In the light of this discus-

sion we can say that using multiple sensors may improve perception results because

sensors may complement each other with one sensor providing information about an

aspect of the environment which is more uncertain for other sensor and vice versa (het-

erogeneous sensors case). Or even by providing more data about the environment to

decrease the part of the environment to be guessed (homogeneous sensors case).

However, using multiple sensors inherently requires us to develop techniques to com-

bine data from these sensors in a way such that the overall results of the system are

better than the single sensor case. Since a solution to perception problem consists of

multiple steps so this sensor data fusion can also take place on different steps or levels.

In this thesis we have developed fusion techniques for laser and vision (stereo camera

and mono camera), for three different levels of an intelligent vehicle perception. These

levels, already mentioned in first chapter, include: Low level; before the input to SLAM

module, Object detection level; before DATMO part and Track level; for the output of the

DATMO module (a detailed description of these levels is given in next chapter).

In the following we first give general state of the art on multi-sensor data fusion and

then detail the three levels of fusion and give a comparison with works related to our

contributions.

2.3.1 Multi-sensor Data Fusion

Multisensor data fusion has been a topic of research since long, the reason being the

need to combine information from a number of different sensors to obtain a full and

complete description of the environment (Durrant-Whyte et al., 1990). Theoretical sci-

entific literature on data fusion started to appear in late 1960s with implementations

and more algorithmic developments in 1970s and 1980s (Gros, 1996). In the mid-1980s

(1984), the Joint Directors of Laboratories formed the Data Fusion Subpanel (which

later became known as the Data Fusion Group)1 charged with tasks such as: organiz-

ing conferences, promoting data fusion to industry and educational establishments,

identifying the needs of industry and coordinating data fusion projects. Since then

huge amount of research has been conducted in this field with many researchers, all

1http://en.wikipedia.org/wiki/Data_fusion
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over the world, still dedicating their research efforts to this field broadening the limits

of its applicability. Hall and Garga (1999) have highlighted the pitfalls in data fusion

that justify the active research still going on. Especially the point There is no such thing as

a magic or golden data fusion algorithm implies that fusion techniques very much depend

on the sensors used, the problem to be solved and even the level of pre-processing done

on the sensor data.

Early systems very much focused on integrating information obtained from different

positions of a single sensor or multiple sensors to reconstruct the environment. For ex-

ample Durrant-Whyte (1985) developed a Bayesian integration technique to combine

measurement information from distributed sensors. This work (Durrant-Whyte, 1985)

is also credited to have started the statistical uncertainty modeling for multi-sensor sys-

tems (Nakamura and Zu, 1989). This technique was further used in (Durrant-Whyte,

1986) to fuse observed geometrical features to construct the environment model. Sim-

ilarly Ayache and Faugeras (1988) have used a Kalman filtering technique to fuse geo-

metrical features extracted from passive vision to reconstruct three dimensional robot

environment. In this context Nakamura and Zu (1989) have proposed a general statis-

tical fusion method for multiple sensors based on geometrical uncertainties. In 1987,

Luo et al. (1987) defined the confidence distance measure using linear Gaussian mod-

els and proposed a hypothesis test to reject sensory data obtained by malfunction and

discussed an iterative computational method of fusion. Hashimoto and Paul (1987) ap-

plied the approach by Durrant-Whyte to integrate encoder data and tachometer data

to control manipulators. Yi et al. (2000b) have used Dempster-Shafer fusion technique

to handle range errors in specular environments of an ultra sonic sensor while building

an environment map. Similarly a wealth of publications are available on data fusion

for target tracking (Hall and Llinas, 1997). For example Blair and Kazakos (1993) has

developed fusion techniques for intermittent sensors for tracking moving targets.

2.3.2 Fusion Levels

The architecture of fusion levels that we have addressed in this dissertation are shown

in the figure 2.5.

This architecture divides the robot sensor data processing into four steps with follow-

ing four levels of fusion:

• Low level with minimum preprocessing (like projecting data into a common frame

of reference or classifying individual pixels etc) data from each sensor is repre-

sented in compatible forms and these individual representation forms are com-
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Figure 2.5: SLAM and DATMO based perception architecture with identified fusion

levels.

bined to get fused representation. Output of fusion at this level is input to the

SLAM module. We have performed fusion at this level between laser and mono

vision and laser and stereo vision.

• Map level, output of each sensor is processed to solve SLAM problem and the

maps generated by individual sensors are combined to get a fused map. This

level is more interesting for robots moving in cluttered environments, however

for intelligent vehicles moving on roads map generated by laser scanner is suffi-

cient so we have not considered this level in our work as explained in next chap-

ter.

• Object detection level, output of each sensor is processed to detect objects in the

environment, then we perform fusion between these lists of objects to get a list of

fused objects, fused objects have more complete properties than their pre fusion

versions. Fusion at this level is done between laser and mono vision and laser

and stereo vision.

• Track level, fusion at this level involves combining lists of moving objects detected

and tracked over time by individual sensors. Objective of this fusion is to reduce

the number of false tracks. We have performed this fusion between laser and

stereo vision.

A practical system may implement fusion on one or more of these levels at the same

time. Since laser and vision are complementary sensors so it is interesting to know

how information from both of them can be combined in different ways and on different

levels of abstraction. Moreover comparing the results and pros and cons of these levels
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may facilitate to decide how these information can be optimally used in the context of

fast moving intelligent vehicles. Although several other similar works exist however

they mostly deal with pedestrians detection and tracking in restricted environments.

We do not know any other work treating the same topic in the context of SLAM and

DATMO based intelligent vehicle perception.

In the following we will specify in detail the position of these fusion levels in the usual

SLAM and DATMO based perception setup as shown in figure 2.6. At the end of each

level’s description we compare our work with related works already done by other

researchers.

Figure 2.6: Relation of SLAM and DATMO with their inputs and outputs: Z = sensor

input, U = motion measurements (odometry measurements), X = vehicle

state, M = generated environment map (relationship of static objects in the

environment) and T = tracks (moving objects with motion attributes).

Low level fusion

Position of low level fusion in perception architecture is shown in figure 2.7

We call it low level because only basic preprocessing is done before the fusion process.

We have performed fusion at this level between laser and stereo vision and laser and

mono vision. Generally fusion at this level involves representing preprocessed data

from the sensors in a common format (for example occupancy grids) and then finding

some strategy to combine these individual representations to form a combined repre-

sentation. This combined representation is used as input for later steps.

As it can be seen from the figure 2.7 fusion at this level only affects the SLAM part of

the perception architecture. More formally the SLAM formulation using inputs from
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Figure 2.7: Low level fusion with perception architecture

two sensors will be:

P(xt, M|Zl
t, Zv

t , Ut)

This will require a new derivation of the SLAM solution presented in previous section.

However with this low level fusion architecture we define following fusion function to

combine the two sensor inputs like:

Z f
t = FOG(Zl

t, Zv
t ) (2.3.1)

And this fused input is used for SLAM as follows:

P(xt, M|Z f
t , Ut)

The main purpose of fusion at this level is to compensate the visibility problems of one

sensor with the help of second sensor. For example a big truck may not be detected

by a laser mounted on a car simply because the level of laser may be lower than the

bottom of the truck, however vision sensor will be able to detect it.

In literature we see that Braillon et al. (2006) have described an occupancy grid based

fusion between stereo and optical flow data. The idea is based on constructing an occu-

pancy grid from stereo data after removing 3D points belonging to ground plane and

another grid from optical flow information of two consecutive frames of one camera.

This method can be compared with our low level fusion between laser and mono vi-

sion. The main difference between the two techniques is that we use a very fast method

to calculate occupancy grids for camera (to limit the obstacle search region in the image

we use transformations from laser to image reference frames to get a strip like region in

the image). Whereas they first calculate the optical flow using complex calculations for

each pixel in the image (using two consecutive images) and then using camera projec-

tive model they construct an occupancy grid. Moreover while concluding their work

they mention some ambiguities for mono camera case which implies that this method

had some failure cases.
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In our work we have devised a fast method of constructing occupancy grids for vision

sensors and then using a weighted approach we combine them with laser data. We

have detailed this fusion between mono vision and laser scanner in our publication

(Baig and Aycard, 2010). We will explain the construction of occupancy grid for each

sensor and the fusion function FOG in chapters 3 and 4 for stereo and mono vision

respectively with lidar sensor.

Map level fusion

Next two fusion levels deal with fusion between moving objects detected by both sen-

sors. Another level of fusion can also be defined that fuses the static parts (i.e. map)

of the environment detected by multiple sensors. Input for this fusion level will be the

output maps of SLAM or static objects by these sensors and output will be a combined

map. The systems dealing with finding position of the vehicle in the map are also

placed in this category. For example work by Abuhadrous et al. (2003) deals with vehi-

cle localization on maps and Yi et al. (2000a) developed a fusion technique for building

precise maps using multiple ultrasonic sensors. Chanier et al. (2008) have developed a

technique to fuse an on-line map, built using EKF based SLAM , and an a priori map to

find accurate vehicle pose and to constrain the on-line map using known map.

In this thesis we do not take this fusion level into account because it is more relevant for

robots moving in a cluttered environment where both static and dynamic objects can

be present and detection of both types of objects is equally important. In the context

of intelligent vehicles we suppose that they only move on roads having no permanent

static objects on them. To deal with temporary static objects we see that the map gen-

erated by laser scanner gives sufficient information about the static parts. So in this

context dealing with moving objects becomes more important.

Object level fusion

Object level fusion architecture is shown in figure 2.8. The position of this fusion level

is between moving object detection and tracking parts of the DATMO .

From the figure we can see that stereo vision processing does follow the same process-

ing steps as that of laser, this is due to the fact that stereo vision processing was done

by another team (as already mentioned). Output of their processing consists of a set of

detected objects.

Fusion at this level takes two lists of objects, finds corresponding objects in the two lists

and fuses their properties. The major challenge here is to solve this correspondence or
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Figure 2.8: Object level fusion with perception architecture. Here VOst is the list of

objects detected by vision, LOst is the list of moving objects detected by

laser and FOst the list of fused objects.

association problem. This fusion is useful because different sensors detect different

properties of the objects more reliably so the fused object has more details than its

previous instance. This fusion can be represented in following functional form.

FOst = FOL(VOst, LOst) (2.3.2)

Labayrade et al. (2005) have presented a fusion technique between laser and stereo

vision for obstacles detection. Based on vision technique they extract obstacles from

stereo vision data. Using a segmentation technique they perform clustering on laser

data to form objects. The fusion mainly consists of comparing the position of objects

from both sensors, if an object detected by stereo is on the same position as the one de-

tected by laser then this object is considered a real one. The objects having no matching

counterparts in the other sensor are taken as false alarms and are ignored. However we

think that the strong assumption about the same position of an object for both sensors

(having different uncertainties) is not correct and many of the true objects will be ig-

nored because their position difference for two sensors will make them false alarms.We

suggest that fusion at this level should be taken more like an association problem and

uncertainties of both sensors should be taken into account during this process.

Somewhat related work in this context has also been done by Baltzakis et al. (2003).

They have developed a fusion technique between laser and stereo vision data. From

laser data they extract line features and each extracted line is supposed to be a wall.

Then they construct a 3D model of walls (having infinite height) from all the extracted

lines, the walls are supposed to have a fixed color. For each pixel in the stereo camera

images they calculate its depth information. Then using projection of a pixel in the im-

age on the constructed 3D model from the laser the color information from this model
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are compared with pixel color. If they match then it is inferred that both camera and

laser are seeing the same point otherwise camera is seeing a hanging obstacle in the en-

vironment. The main disadvantage of this method is its computation cost because for

each extracted line it needs to construct a 3D model of the walls, moreover this method

is not applicable for outdoor environments where such strong assumptions on shapes

and colors cannot be made.

Another important related work is done by Fayad and Cherfaoui (2009). This work

based on transferable belief model framework is in-fact a mixture of object and track

level fusion as compared to our level scheme. Although this work only addresses the

pedestrians, however evidential theory (on which this work is based) is an alternative

approach to the Bayesian approach that we have used.

The advantage of fusion at this level is that with more properties of objects we can im-

prove tracking. For example the classification information obtained from vision allow

us to apply models on objects to do model based tracking to get smooth tracks. Baig

et al. (2011) details our work on this level of fusion between stereo vision and laser scan-

ner. We have also performed this fusion between laser and mono vision. The details

on how we define the association function are given in chapters 3 and 4 for stereo and

mono vision respectively.

Track level fusion

Track level fusion architecture is shown in figure 2.9.

Here again the processing of stereo vision does not perform SLAM step due to the fact

that we did not do stereo vision processing on raw images.

Fusion at this level requires that input of each sensor is processed to solve DATMO

problem and for each sensor list of tracks at time t is available. Then the fusion process

fuses these lists of tracks to get a combined list of tracks. The fusion function at this

level has not only to solve the association problem but also need to find a strategy to

fuse their properties (like velocity, position) in a reliable and acceptable way. The fusion

function at this level can be given as:

Tt = FT(Tl
t , Tv

t ) (2.3.3)

Gidel et al. (2009) have developed a particle filter based track level fusion architecture

for pedestrian tracking. The main contribution consists of the development of a non

parametric data association technique based on machine learning kernel methods. The

method described is for pedestrians only.
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Figure 2.9: Track level fusion with perception architecture. Here Tl
t is the list of tracks

detected by laser, Tv
t is the list of tracks detected by stereo vision and Tt the

list of fused tracks.

Blanc et al. (2004) have described a track level fusion architecture for radar, infrared and

lidar sensors. The main concept consists of defining an association technique based

on the gating window obtained from covariance matrices of the tracks given by these

sensors. This work is very close to what we have done, however we define a simple

association function that can be evaluated quickly to validate true tracks. A similar

approach has also been described by Floudas et al. (2007) using a different association

technique.

Fusion at this level is useful for sensors with high noise level. By using an effective

fusion strategy false tracks can be reduced. We have performed fusion at this level

between laser and stereo vision. Inputs from both sensors are processed separately

to detect and track moving objects. Then we define an association function to find

corresponding tracks in two lists, details are given in next chapter.

2.4 Road border detection to improve DATMO

Our work with different sensors especially laser scanners has shown that most of the

false positives (false moving objects) are detected close to the road borders because of

low resolution and lidar noise. So to decrease the number of these false alarms an idea

is to detect road borders from laser data and then use this border information to find
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and remove the moving objects detected close to it. The position of this road border

detection module in perception architecture is shown in figure 2.10.

Figure 2.10: Perception architecture with road border detection from the map to im-

prove DATMO . RM is the road model detected by the road border detec-

tion module.

The main idea is to detect road borders efficiently from the map, these borders define

road model. This road model is further used during classification of laser hits in dy-

namic and static segments during DATMO. The dynamic segments detected close to

the road borders are considered as false alarms and are ignored during further pro-

cessing of tracking, resulting in reduced number of false tracks. However, moving

objects giving consistent tracking results on these areas are not ignored because they

may belong to real moving objects like pedestrians walking on side walks.

Many people have already worked on road border detection, especially in vision, lane

detection has been a hot field of research. However vision techniques usually based on

features extraction are slow. Kirchner and Heinrich (1998) have mentioned pros and

cons of usual vision techniques used for this purpose. Moreover using laser scanner

they have presented a model based technique for detecting and tracking road borders.

Based on clothoid model and Kalman filter it involves many calculations during each

step, moreover this work assumes the absence of moving objects in the environment

making it infeasible for our work.

Wijesoma et al. (2001) present another method for road border detection based on spe-

cial laser setup along with strict flat road plan assumptions. In their setup laser is

mounted on the vehicle such that its beams hit the road plane at few meters from the

vehicle, since road is taken as strictly flat, the laser hit points appear as a line on the

ground but this line has sharp edges on the borders due to curbs. The algorithm finds

these sharp shifts in the data to detect road borders. Due to the fact that this system re-
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quires special orientation of laser scanner and strictly flat road, makes it inappropriate

for our purpose.

Work by Weiss et al. (2007) is closest to what we have done. However rather than

finding road borders they find drivable free space in-front of host vehicle in occupancy

grid maps by moving multiple line segments in-front of vehicle in both left and right

sides. These line segments stop when they reach occupied cells on both sides and

then they extract the polygonal shape from these segments as drivable area. For this

technique to work a high resolution accurate laser scanner is required otherwise with

noisy data search lines will stop on different positions giving irregular shapes.

An important contribution of our work in this context is related to an efficient road bor-

der detection algorithm from laser data and to use it further as an a priori knowledge

for DATMO module to reduce false tracks due to sensor noise. Based on intermediate

grid and noise filtering we define a fast search technique to find road borders in the

map generated by SLAM. We detail this process in next chapter.

2.5 Summary

In this chapter we have presented formalizations for SLAM and have described differ-

ent solutions presented in the literature to solve it. Among different choices available

we have proposed to use occupancy grid based map representation for laser sensor

and maximum likelihood based SLAM solution. We have also summarized solutions

to DATMO problem and different solution choices available for its components. For

an intelligent vehicle system we propose to use MHT based data association with IMM

filtering techniques to handle multiple moving objects tracking, for dynamic objects

having different motion modes.

Although these components give a solution to the vehicle perception problem however

due to sensor uncertainties there usually are many false positives. In order to deal

with them we propose to use vision (stereo and mono) as complementary sensor with

laser scanner. However using multiple sensors requires to devise fusion techniques to

combine information from these sensors. In this context we propose fusion at three

different levels (low, object and track levels) in the SLAM and DATMO based vehicle

perception architecture. We have specified the position, inputs and outputs of these

fusion levels in this architecture and have also described some earlier works carried

out in this regard with pros and cons.

Finally it has been stated that road border information can be inferred efficiently from
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the map constructed with laser data and these information can be used to detect false

moving objects in noisy laser data near these borders, to improve perception results.

In next chapters we will expand on these concepts by giving details of preprocessing

done for vision (mono and stereo) and laser sensors. We will also formally develop the

fusion functions mentioned in this chapter for different fusion levels and will present

results of these fusion strategies for data sets obtained from Volkswagen demonstrator

vehicle.
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CHAPTER 3

Laser and Stereo Vision Fusion

Both laser scanners and vision cameras are sensors of choice for robotic perception

these days. With laser providing precise distance information and vision giving content

rich information, like, classification information of objects, host vehicle is able to build

more elaborate environment model. Decisions based on this model are more useful

and intended. Stereo camera in vision sensors is even more useful than mono vision

because other than usual classification information, we can also get depth information

of objects using epipolar geometry making it compatible with laser sensor and creating

some redundancy that may be useful when one sensor fails temporarily.

In this chapter we present our work of fusion on three levels between laser and stereo

vision. These fusion levels are defined in the context of SLAM and DATMO based per-

ception architecture. Our work is an extension of work by Vu (2009) which was based

on laser scanner only. Using a different laser scanner with relatively low resolution and

more uncertainty a reimplementation of this solution gives many miss detections and

false alarms. However these problems can be greatly reduced by using stereo vision

along with laser scanner and using an effective fusion strategy at an appropriate level.

This chapter deals with this and is structured as follows:

In next section, before going into fusion details, we give details of our occupancy grid

based theoretical solution to both SLAM and DATMO problems. Later sections will

give implementation details of these problems. Low level fusion between laser and

stereo vision sensors is detailed in section 3.2, especially in this section we explain in-

verse sensor models for both sensors for constructing occupancy grids. Section 3.3

explains our object level fusion, after explaining the extraction of moving objects from

laser and input list of objects from stereo vision we detail the fusion process and present

some results. Track level fusion is presented in section 3.4. We detail our road border

detection algorithm in section 3.5 and explain how this knowledge can be used to re-
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duce false alarms detected near road boundaries. Last section gives a synthesis of this

chapter.

3.1 Occupancy grid based SLAM and DATMO

3.1.1 SLAM

In occupancy grid based environment representation the environment is divided into

two dimensional lattice M of rectangular cells mi of equal sizes, where each cell has a

probabilistic estimate of its occupancy state. At any instant of time the state of this grid

represents the map of the environment. In this section we first present the solution of

mapping part assuming that position of the vehicle is known (i.e. xt is known) and

then we will discuss how to find best localization given updated map.

The objective of the mapping algorithm is to estimate the posterior probability P(M|x1:t, z1:t)

where x1:t = {x1, . . . , xt} is the vehicle trajectory and z1:t = {z1, . . . , zt} are the sensor

inputs obtained from start to time t. Using Bayes theorem this probability can be ex-

panded to a form where we are required to calculate a marginal probability over the

map M for each new sensor input making it intractable for even small maps. A pro-

posed solution is to assume conditional independence of the map cells reducing above

probability to P(m|x1:t, z1:t) where mapping is equivalent to estimating occupancy state

of all individual cells. Using Bayes theorem we can write it as:

P(m|x1:t, z1:t) =
P(zt|x1:t, z1:t−1, m).P(m|x1:t, z1:t−1)

P(zt|x1:t, z1:t−1)
(3.1.1)

We can further assume that current sensor measurement zt does not depend on pre-

vious measurements (z1:t−1) and previous vehicle positions (x1:t−1). This reduces the

factor P(zt|x1:t, z1:t−1, m) to P(zt|xt, m) so that above equation becomes:

P(m|x1:t, z1:t) =
P(zt|xt, m).P(m|x1:t, z1:t−1)

P(zt|x1:t, z1:t−1)
(3.1.2)

Applying Bayes theorem on the factor P(zt|xt, m) this equation becomes:

P(m|x1:t, z1:t) =
P(m|zt, xt).P(zt|xt).P(m|x1:t, z1:t−1)

P(m|xt).P(zt|x1:t, z1:t−1)
(3.1.3)

Here P(m|xt) is the prior probability of occupancy of the cell m and does not depend

on the current vehicle position, so above equation becomes.

P(m|x1:t, z1:t) =
P(m|zt, xt).P(zt|xt).P(m|x1:t, z1:t−1)

P(m).P(zt|x1:t, z1:t−1)
(3.1.4)
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In this equation the term P(m|x1:t, z1:t−1) can be expanded using Bayes theorem as:

P(m|x1:t, z1:t−1) =
P(xt|x1:t−1, m, z1:t−1).P(m|x1:t−1, z1:t−1)

P(xt|x1:t−1, z1:t−1)
(3.1.5)

So the equation 3.1.4 becomes

P(m|x1:t, z1:t) =
P(m|zt, xt).P(zt|xt).P(xt|x1:t−1, m, z1:t−1).P(m|x1:t−1, z1:t−1)

P(m).P(zt|x1:t, z1:t−1).P(xt|x1:t−1, z1:t−1)
(3.1.6)

This equation (3.1.6) gives the probability that cell m is occupied, similarly the prob-

ability that cell m is free (represented as m such that P(m) = 1− P(m)) can be given

as:

P(m|x1:t, z1:t) =
P(m|zt, xt).P(zt|xt).P(xt|x1:t−1, m, z1:t−1).P(m|x1:t−1, z1:t−1)

P(m).P(zt|x1:t, z1:t−1).P(xt|x1:t−1, z1:t−1)
(3.1.7)

Dividing equation (3.1.6) by equation (3.1.7) we get:

P(m|x1:t, z1:t)

P(m|x1:t, z1:t)
=

P(m|zt, xt)

P(m|zt, xt)
.
P(m)

P(m)
.
P(xt|x1:t−1, m, z1:t−1)

P(xt|x1:t−1, m, z1:t−1)
.
P(m|x1:t−1, z1:t−1)

P(m|x1:t−1, z1:t−1)
(3.1.8)

Since we suppose that current position xt is known so the terms of the fraction
P(xt|x1:t−1,m,z1:t−1)
P(xt|x1:t−1,m,z1:t−1)

cancel each other giving following equation:

P(m|x1:t, z1:t)

P(m|x1:t, z1:t)
=

P(m|zt, xt)

P(m|zt, xt)
.
P(m)

P(m)
.
P(m|x1:t−1, z1:t−1)

P(m|x1:t−1, z1:t−1)
(3.1.9)

If we define:

Odds(x) =
P(x)
P(x)

=
P(x)

1− P(x)
(3.1.10)

Then equation (3.1.9) becomes:

Odds(m|x1:t, z1:t) = Odds(m|zt, xt).Odds(m)−1.Odds(m|x1:t, z1:t−1) (3.1.11)

Usually the probability values are very small and division operation makes them even

smaller. So to avoid the underflow of values we represent them in logarithmic forms.

This can be achieved by applying log operation on both sides of the equation (3.1.11),

giving following log odds form:

log Odds(m|x1:t, z1:t) = log Odds(m|zt, xt)− log Odds(m) + log Odds(m|x1:t−1, z1:t−1)

(3.1.12)

P(m) and P(m) are the prior probabilities of cells being occupied and free respectively.

We usually take them as P(m) = P(m) = 0.5 since we have no a priori information

about them. Because of being equal they cancel out each other in equation (3.1.9) and

equation (3.1.12) reduces to:

log Odds(m|x1:t, z1:t) = log Odds(m|zt, xt) + log Odds(m|x1:t−1, z1:t−1) (3.1.13)
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The value of the probability P(m|x1:t, z1:t) can be recovered by using the definition of

Odds operator in equation (3.1.11) and doing some simplifications, this gives us:

P(m|x1:t, z1:t) =

[
1 +

1− P(m|xt, zt)

P(m|xt, zt)
.

P(m)

1− P(m)
.
1− P(m|x1:t−1,z1:t−1)

P(m|x1:t−1,z1:t−1)

]−1

(3.1.14)

From this equation (3.1.14) it is clear that to update the occupancy state of a cell from

new measurements we need to multiply previous odds ratio of its occupancy state with

odds ratio of current belief and divide by prior odds ratio. Until here these derivations

are generic and can be used for any sensor, however in later sections we will see how

to calculate the current belief (also called inverse sensor model) term (P(m|xt, zt)) for

each sensor.

For above derivations we had supposed that current position (xt) of the vehicle is

known, however for SLAM we have to estimate it simultaneously from the map and

sensor input. As described in chapter 2, we have used an incremental maximum like-

lihood SLAM approach. According to this approach the current vehicle pose estimate

x̂t can be calculated by maximizing the marginal likelihood given as:

x̂t = arg max
xt

{P(zt|xt, M̂t−1)P(xt|ut, x̂t−1)} (3.1.15)

Where M̂t−1 is the map at time instant t− 1 and x̂t−1 is the estimated previous pose.

Below we will explain how to maximize the marginal likelihood. Having determined

the pose of vehicle we update the occupancy grid map using previous map and new

measurement as given in the equation (3.1.14). This update process gives new map and

can be represented as:

M̂t = M̂t−1
⋃

M (3.1.16)

Where M is the new instantaneous map obtained from estimated pose x̂t and current

measurement zt.

The two probabilities given in equation (3.1.15) are important to consider. The term

P(xt|ut, x̂t−1), called motion model, gives the probability of being at position xt when

control ut is applied from previous estimated position x̂t−1. And P(zt|xt, M̂t−1) is the

measurement model and gives the probability of getting the measurement zt from pose

xt and previous estimated map M̂t−1. Now maximizing (3.1.15) is equivalent to finding

the vehicle pose xt that satisfies the motion model P(xt|ut, x̂t−1) and best fits the zt to

the map M̂t−1. In this setup the maximization problem reduces to defining a proba-

bilistic motion model, sampling sufficient values of new pose xt from this model and

for each value fitting the new measurement zt to the map M̂t−1. The sample of xt that
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best fits (a score function can be defined to decide the best fit) zt can be taken as the

new estimated pose x̂t. For a control input consisting of translational and rotational

velocities ut = (νt, ωt) a probabilistic motion model is shown in figure 3.1.

Figure 3.1: Vehicle motion model P(xt|ut, x̂t−1) (left) and its sampling version (right).

Gray part shows the uncertainty in the two components of control input

ut = (νt, ωt).

The probability P(zt|xt, M̂t−1) can be taken equivalent to the degree the measurement

zt fits to the map M̂t−1 w.r.t the current sampled value of xt. For example to evaluate

this probability for a laser scanner we project the current measurement zt on the map

constructed so far M̂t−1 taking current sampled value of xt as position of the vehicle.

If ci is the grid cell corresponding to the hit point of ith laser beam in zt and M̂t−1[ci] is

the occupancy probability of cell ci in the map M̂t−1 then the probability P(zt|xt, M̂t−1)

is given as:

P(zt|xt, M̂t−1) ∝
N

∑
i

M̂t−1[ci] (3.1.17)

Here N is the total number of laser beams in zt. This sum can be evaluated for different

samples of xt, and the one giving maximum value of this sum will be the current es-

timated pose x̂t according to the equation (3.1.15). This is called scan matching SLAM

approach for maximum likelihood based SLAM solution.

Summarizing we can say that maximum likelihood based SLAM consists of finding

best vehicle pose estimate x̂t according to the equation (3.1.15) using motion model

P(xt|ut, x̂t−1) and measurement model P(zt|xt, M̂t−1) based on scan matching approach.

And then using this pose x̂t and the latest sensor measurement zt to update the map as

given in equation (3.1.16) using the cell update scheme given by equation (3.1.14).

In next section we discuss the low level fusion scheme that we have developed for laser

and stereo vision sensors.
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3.1.2 DATMO

The quality of the map and the precision of the localization mentioned in previous sec-

tion are affected if the measurements belonging to dynamic objects in the environment

are not distinguished from the measurements given by static parts. To get good re-

sults, input to SLAM should only consist of measurements belonging to static parts of

the environment, so it is important to detect moving objects in the environment. To

do this we make use of inconsistencies observed between new data and the map con-

structed so far. From the updated position of the vehicle new sensor measurements

are projected on the map. Measurements falling in the cells that were seen as free

previously are considered as belonging to dynamic objects. If M[zi
t] (here M=M̂, the

estimated map) is the cell where ith part of measurement z at time t is projected (like

ith laser beam of laser scan zt) then the dynamic parts of the measurements is the set

{zi
t|M[zi

t] is marked free}. This gives a theoretical solution based on scan matching

technique to the moving objects detection problem.

After detection of moving objects next step is to track them, where tracking is essen-

tially identifying same moving object in consecutive data frames and calculating its

properties like: position, velocity, acceleration etc. Since number of moving objects vis-

ible to the sensors of the vehicle may change from one data frame to next and due to

different modes and directions of object movements, tracking usually is a non trivial

task. Theoretically if ω is any set of tracks at time t then tracking is the optimal set of

tracks ω∗ = argmax
ω

P(ω|z1:t). We will explain the components of the tracking solution

in 3.3.4 section.

These two subsections complete the theoratical solution to SLAM and DATMO prob-

lems. Implementation details of mapping part of SLAM problem are given in next

section whereas solution to localization part is given in section 3.3.1 along with solu-

tion to DATMO problem using lidar and stereo vision sensors.

3.2 Low level fusion

Position of low level fusion in the perception architecture is shown in figure 3.2. Fusion

at this level consists of processing sensor data (latest scan) to construct occupancy grid

for each sensor separately and then combining these grids to get a fused grid. Since we

are using laser and stereo vision at this level, we represent their current data scans as

zl
t and zv

t respectively. In the following we explain how we construct occupancy grids

from these data and then how we fuse them to get a fused grid. This fused grid is then
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Figure 3.2: Low level fusion with perception architecture

input to the SLAM module to update the grid map M̂t−1 to get M̂t

3.2.1 Laser processing: occupancy grid construction

In this section we explain how we build occupancy grid from current laser scan zl
t.

Laser scan consists of N tuples {(d1, θ1), . . . , (dN , θN)} corresponding to its N laser

beams’ hit points (usually a single laser beam is reflected by a rotating mirror at N

different angles to get N distance readings). Each laser beam gives the angle (θ) and

distance (d) of the point where it impacts on the object in its way.

An occupancy grid (OGl) having the same dimensions and cell sizes as that of grid map

used by SLAM , is created. The current pose estimate x̂t is taken as the position of the

vehicle in this grid. Figure 3.3 shows an illustration with vehicle (blue rectangle) in an

occupancy grid, laser beams (red lines), laser field of view (black closed shape) and an

example cell OGl [i][j], named m, of which we need to estimate occupancy state or more

precisely the probability P(m|x̂t, zl
t).

If θ1 and θN are the angles of first and last laser beams respectively and dl
max is the

maximum distance laser scanner can measure then estimating the inverse sensor model

probability (P(m|x̂t, zl
t)) for each grid cell involves following steps:

1. Calculating the polar coordinates (dm, θm) of the center of the cell m w.r.t the laser

frame of reference. It means that the length and angle of blue line w.r.t the origin

of green frame of reference in the figure 3.3.

2. Finding the closest laser beam (dk, θk) by comparing θm with laser beam angles

θi. This closeness only depends on the proximity of the angles and does not de-

pend on the beam length. Ideally a beam should only be used to estimate the

occupancy state of the cells lying on the way of the laser beam (with θm = θk),

however, since the number of beams is limited we suppose that the cells lying
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Figure 3.3: Illustration showing current position of the vehicle (blue) in the occupancy

grid OGl , laser frame of reference (green), laser beams (red), laser field

of view (black) and an example cell m = OGl [i][j] of which we want to

estimate the occupancy state.

close to the closest beam have the same occupancy state as the ones lying on its

path.

3. Calculating the cell occupancy probability using following equation:

P(m|x̂t, zl
t) =


pprior if θ1 > θm > θN or dm > dl

max

p f ree if dm < dk

pocc if dm = dk

pprior otherwise

(3.2.1)

Here pprior is the prior probability, p f ree is the probability that the cell is free and

pocc is the value of probability when the cell is occupied. From the inverse sensor

model shown in figure 3.4 they are respectively taken as 0.5, 0.2 and 0.8.
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Figure 3.4: Laser scanner inverse sensor model.

Evaluating above three steps for each cell of the grid gives the occupancy grid for zl
t.

However the area visible in the laser field of view is relatively small than the occupancy

grid size, so to quickly calculate the occupancy state of each cell we first initialize all

cells with pprior value then we check if the current cell lies in the laser field of view (the

condition: θ1 > θm > θN or dm > dmax), the cells passing this condition are used for

occupancy calculations. An occupancy grid for real laser data constructed using above

steps is shown in the figure 3.5.

3.2.2 Stereo vision processing

Stereo vision processing (done by: Nedevschi et al. (2009a,b)) for this level of fusion

consists of taking the two images from the stereo camera, rectifying them, correct-

ing them (to remove lens distortions) and down sampling them. The down sampled

images are input to the stereo reconstruction module implemented in the hardware.

From the depth map provided by the stereo-engine the 3D coordinates of reconstructed

points are computed using camera parameters. The output of this processing consists

of a list of 3D points (zv
t = {P1, . . . , PM} where Pi = (xi, yi, zi) and M is points count)

and our objective in this section is to build an occupancy grid from these points that

should be compatible with the one constructed from laser data. The 3D coordinates of

these points are given w.r.t a frame of reference having origin on ground exactly under

the laser scanner with z-axis pointing in the direction of driving and x-axis to the right,

moreover if ground is flat then x-z and ground planes coincide.

The laser plane is at a height of h = 33cm from this x-z plane (laser scanner is mounted

in the front bumper of the vehicle at this height from the ground). Since 3D stereo
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Figure 3.5: An occupancy grid constructed from laser data for the road scenario

shown at the bottom. Red lines mark the field of view of laser scanner.

reconstruction gives points everywhere (for example ground points, tree leaves, obsta-

cles etc) so to construct an occupancy grid compatible with the one constructed from

the laser data, we need to find vision points which most probably belong to the obsta-

cles detected by laser. To meet this requirement we ignore the points which are below

the level of laser plane and more than one meter above this level. This gives us follow-

ing reduced set of points:

zv
t = {Pi | Pi ∈ zv

t & h > yi > h + 1} (3.2.2)

This set of points corresponds to a layer of points of 1 meter thickness at a height of

h from the ground. Figure 3.6 shows an example layer of points (from two different

angles) belonging to the objects shown in figure 3.6c. For next step of preprocessing
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we define an intermediate grid Gc (grid of counts) having same dimensions, cell sizes

and position as that of the laser grid (the position of this grid is on the bottom of this

layer of points, same as that of laser plane) and project all points on this grid (figure

3.7 a). After projection each cell has a count of the points falling in it (projection simply

involves ignoring the y coordinate and determining the grid cell exactly below the

point and incrementing the count of the cell for each point falling in it, the count of

the cell is zero if no point falls in it) we need this point density for each cell to remove

noise.

Figure 3.6: Layer of points (a) for a given real scenario (c). Same layer of points (b)

rotated about 45◦ clockwise in 3D. Position of the pedestrian shown in blue

circles.
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As a noise removal step we define a grid Gc similar to Gc and populate it as follows:

Gc[i][j] =

 1 if ∑i+1
k=i−1 ∑

j+1
l=j−1 Gc[k][l] > Vthr

0 otherwise
(3.2.3)

Where Vthr is the threshold count value, determined empirically, to remove noise. After

this step we have a 1 in the cell where the probability of the presence of an object is high.

The cluster of the adjacent cells having 1 in them, form an object. The grid Gc before

and after noise removal is shown in figure 3.7(a,b) for a road scenario.

The last step of preprocessing defines the inverse sensor model that we use to calculate

occupancy probability for each cell. This step consists of finding the cone of each object

with the vertex of the cone at the origin and its two sides passing through the two

extreme points of the objects determined in last step. To define such a cone for each

object we find polar coordinates of each cell of the object, cells having the minimum

and maximum angles form the two ends of the object and lines passing through these

cells and the origin form the cone of the object (such a cone for an object is shown in

figure 3.7 c). In this context suppose that θi
min is the minimum and θi

max is the maximum

angle of the ith object and ri
min is the distance of this object’s cell closest to the origin.

Similarly, if θs is the vision field of view start angle, θe is the vision field of view end

angle and dv
max is the stereo vision effective range then we define the inverse sensor

model for vision for each cell (having polar coordinates (rm, θm)) of its occupancy grid

OGv as follows:

P(m|x̂t, zv
t ) =



pv
prior if θs > θm > θe or dm > dv

max

pv
occ if Gc[m] = 1

pv
f ree if θi

max >= θm >= θi
min and rm <= ri

min

pv
prior if θi

max >= θm >= θi
min and rm > ri

min

pv
f ree otherwise

(3.2.4)

In simple words the cells lying between the vertex of the cone and the object are marked

as free whereas the cells beyond the object in the cone are marked as unknown. The

cells belonging to the object are marked as occupied. Finally the cells which do not

lie in the cone of any object are marked as free because no object was found by stereo

vision in those parts. These steps of preprocessing and inverse sensor model are shown

in figure 3.7.

3.2.3 Fusion

After that two compatible grids have been constructed for both sensors we can combine

them using some appropriate scheme that depends on the knowledge about the sensor
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Figure 3.7: Steps to construct an occupancy grid for vision points. a) points projected

on a grid, b) object points after noise removal, c) object cone for one ob-

ject shown by blue lines, d) final occupancy grid for vision points. Image

corresponding to these grids shown at the bottom.

behavior.

A general weighted scheme can be given as (α being the weighting factor):

OG f [i][j] = α.OGl [i][j] + (1− α)OGv[i][j] (3.2.5)

Although this fusion scheme can assign weight according to the uncertainty of the

sensor however this scheme does not deal with conflicting situations where one sensor

sees an object but the other does not or vice a versa. This scheme is more useful where

we want to be sure about the free or occupied state. If both sensors see same state of

space then the probability of actual state being the opposite is highly unlikely.
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In our case the laser scanner has the problem of getting reflections from the white lane

markings and missing thin poles due to weak resolution (2◦ for data sets having 3D

stereo points). Because of these problems we give more weight to the vision grid within

its view. We can write fusion function as:

OG f [i][j] =

{
OGv[i][j] for i, j in vision field of view

OGl [i][j] otherwise
(3.2.6)

3.2.4 Results

Some fusion results are shown in figures 3.8 and 3.9. Scenario shown in figure3.8 shows

the laser reflections from white lane markings giving false objects (shown in 3.8a) in

front of the vehicle, however no such objects are seen by vision (shown in 3.8b) so a

fused grid (shown in 3.8c) gives more realistic environment model. Similarly a false

object detected by laser has been removed by the fusion in figure 3.9. The main thing

in low level fusion is to define appropriate inverse sensor models and then constructing

individual grids. Once the grids are ready then an appropriate way of combining these

grids can be defined that take the sensor properties into account.

Figure 3.8: Fusion results for a scenario when false laser reflections are observed due

to white markings on the empty road making them appear as objects (a).

However vision sees no object (b), the fused view (c) removes the false

objects observed by laser.

Although low level fusion is helpful in some cases as shown in the results to remove

some problems of one sensor with the help of other one. However, usually, low level
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Figure 3.9: Fusion results for a real road scenario.

fusion is too early and has two main implications: first, for all the sensors involved

we need to find a way to represent data in a compatible form even if the sensors have

different characteristics. Second, no sensor specific knowledge can be used after that

data has been represented in this common form, for example when occupancy grid has

been created from vision 3D points no vision cues can be used to segment objects from

this representation.

3.2.5 Input to SLAM

As shown in figure 3.2, the output of the low level fusion is used as input for the SLAM

module, so the fused grid servers as input in this case. More precisely the fused grid

OG f becomes zt for equations 3.1.15 and 3.1.16. Since this fused grid has the same size

and position as that of SLAM map so there is a one to one correspondence between

cells of map and fused grid making scan matching and map update even easier.

In actual implementation, using fused grid and map built so far, we calculate the num-

ber of times a cell is observed free and number of times it is observed as occupied. If

we call these numbers as N f ree and Nocc respectively then the updated cell occupancy

probability derived from equation 3.1.14 is given as:

P(m|x1:t, z1:t) =
exp (Nocc pocc + N f ree p f ree)

1 + exp (Nocc pocc + N f ree p f ree)
(3.2.7)

Similarly for localization current fused occupancy grid is matched with the map from

58



CHAPTER 3: LASER AND STEREO VISION FUSION

different sampled xt positions. The position giving best match is taken as true vehicle

position.

3.3 Object level fusion

In this section we explain our object detection level fusion strategy between laser and

stereo vision, this work is published as (Baig et al., 2011). The position of this fusion

level in the perception architecture is shown in figure 3.10. Our objective here is to

Figure 3.10: Object level fusion with perception architecture. Here VOst is the list of

objects detected by vision, LOst is the list of moving objects detected by

laser and FOst the list of fused objects.

explain following fusion function introduced in last chapter:

FOst = FOL(VOst, LOst) (3.3.1)

In the following we start with explaining how to get list of moving objects from laser

and list of objects from stereo vision and then how we fuse these two lists to get a list

of fused objects.

3.3.1 Laser Processing - Moving objects extraction

This process of extracting moving objects from laser data consists of following steps:

first we construct a local grid map and localize the vehicle in it, then using this map

we classify individual laser beams in the latest data frame as belonging to moving or

static parts of the environment, finally we segment this laser scan to make objects from

individual laser hit points.
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Environment Mapping & Localization

As explained in the beginning of this chapter we have used an incremental mapping

approach based on laser scan matching algorithm to build a local vehicle map. Based

on occupancy grid representation the environment is divided into two dimensional lat-

tice of rectangular cells and we keep track of probabilistic occupancy state of each cell.

We build a grid map of 90m× 108m with each cell having dimensions of 0.3m× 0.3m.

Environment mapping is essentially the estimate of posterior probability of occupancy

P(m | x1:t, z1:t) for each cell of grid m, given observations z1:t = {z1, ..., zt} from time

1 to time t at corresponding known poses x1:t = {x1, ..., xt}, here zt = {Pi} where

Pi = (x = ri cos θi, y = ri sin θi) is the impact point of ith laser beam (from its polar

coordinates ri, θi) for ∀i ≤ 161 expressed in laser frame of reference, and xt = (x, y, θ)

is the vehicle pose. To solve localization problem we have used importance sampling

based particle filter Thrun et al. (2005). A total of 300 particles are used. For the given

previous pose xt−1 and current odometry information ut = (ν, ω) (translational and

rotational velocities) we sample different possible positions of the vehicle from the mo-

tion model P(xt|ut, xt−1). Then we compute the probability of each position using laser

data and a sensor model. The pose of the particle getting highest probability is taken

as true pose.

Moving & Static Parts Distinction

By projecting the latest laser data onto the local map constructed so far, the impact

points are classified as static or dynamic. The points observed in free space are classi-

fied as dynamic whereas the rest are classified as static. More precisely, if we represent

the local grid map at time t as Mt = {m} where m is a grid cell and if Mt[Pi] gives the

occupancy probability of the grid cell corresponding to the laser impact point Pi then

we classify the laser impact points into following two types:

• MovingPoints = {Pi | Mt[Pi] < 0.5}

• StaticPoints = {Pi | Mt[Pi] ≥ 0.5}

Laser Objects Extraction

Finally we perform segmentation to extract objects from these laser impact points. We

define an object as:

ÓL = {Pn | dist(Pn, Pn−1) < Sthr}

60



CHAPTER 3: LASER AND STEREO VISION FUSION

Here Pi is the impact point as defined above , dist(Pn, Pn−1) is the euclidean distance be-

tween two adjacent points, and Sthr is the segment threshold distance which is equal to

2.0 meters in our experiments. An object is marked as dynamic if ÓL ∩MovingPoints 6=
∅, Finally we calculate the polar coordinates of center of gravity (centroid) (rL, θL) of

each object using Cartesian coordinates of its constituting points as: rL =
√

x́2 + ý2 and

θL = atan2(ý, x́) where x́ = ∑i x/n and ý = ∑i y/n for ∀Pi(x, y) ∈ ÓL and n = |ÓL|.

Laser Processing Output

The output of laser processing step at time t consists of a local grid map Mt, and a list

of detected moving objects Lt
objects = {OL} where OL = (ÓL, rL, θL) is moving object

with centroid information. Grid map is only used to display on the screen whereas list

of dynamic objects is used further for fusion. The results of laser processing are shown

in Figure 3.11.

Figure 3.11: Mapping and moving objects detection results. Detected moving objects

(a bicycle in left image and two cars in right image) are shown as green

rectangles.
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3.3.2 Stereo vision processing

As already mentioned in 1st chapter, another team from University of Cluj-Napoca

Romania working on INTERSAFE-2 project has performed the stereo vision processing

Nedevschi et al. (2009a,b) (their processing details are summarized in chapter 5). Their

output of stereo vision processing consists of a list of objects detected in each frame

of the stereo images. For each object in the list we are given 3D coordinates of the

four corners of the lower rectangle of the object cuboid in stereo frame of reference,

the height of the top rectangle and the class of the object (pedestrian, pole vehicle etc),

but no information about the dynamic state of the object are available, objects can be

dynamic or static. From this data we can easily calculate the coordinates of the eight

corners of the cuboid.

Pre-Fusion Processing

We need to perform some processing on stereo objects before performing fusion. The

first step before performing fusion between laser data and stereo vision objects is to

project stereo objects onto the laser plane using transformation matrices to achieve the

common spatial reference. For object level fusion between laser and stereo we need to

represent vision objects by their centroids. We take this centroid as the middle point

of the front line segment of object rectangle. Since laser points also belong to the front

end of objects, so this centroid gives better results than the object rectangle center. We

calculate polar coordinates of the centroid for each vision object (in a similar way as

explained for laser objects) to make the representation compatible to the laser objects

for fusion.

Stereo Vision Processing Output

The output of stereo vision processing at time t consists of a list of objects Vt
objects =

{OV} where OV = (rV , θV , class). rV and θV are the polar coordinates of the object

centroid. The set of classes consists of {pedestrian, vehicle, cyclist, pole}.

3.3.3 Fusion

In this section we give details of object detection level fusion between laser and stereo

vision sensors. Two lists of objects are input to the fusion process: list of dynamic

objects detected by laser and represented as centroid points, and list of objects (static

or dynamic) detected by stereo vision represented as points along-with classification
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information. We believe that an object detection level fusion between these two lists

can complement each other thus giving more complete information about the states of

objects in the environment. This fusion process consists of following two steps:

Object Association

In this step we determine which stereo objects are to be associated to which laser objects

from the two object lists, using nearest neighbor technique. The positional uncertainty

of an object given by stereo vision increases with depth, so we have defined a distance

threshold function based on the depth of the stereo object from the origin as:

Vthr = 5 ∗ rV

36

Vthr is the uncertainty in position of an object detected at a distance of rV by stereo

vision. Here 5 (meters) is the maximum depth uncertainty for an object detected at

a distance of 36 meters. Stereo objects beyond this distance are ignored because the

effective range of stereo is limited to 36m for this work. A stereo object Oi
V is associated

to a laser object Oj
L if dist(Oi

V , Oj
L) < Vthr and Oj

L is closest to Oi
V .

Position information fusion

This step works on the pair of objects associated with each other in the previous step

and fuses their position (range and bearing) information. We model the position un-

certainty using 2D Gaussian distribution for both objects. Suppose PL = [rL, θL]
T is the

centroid position of laser object and PV = [rV , θV ]
T is the centroid position of associated

stereo vision object. If X is the true position of the object then the probability that laser

detects this object at point PL is given as:

P(PL|X) =
e
−(PL−X)T R−1

L (PL−X)

2

2π
√
|RL|

and similar probability for stereo object is given as:

P(PV |X) =
e
−(PV−X)T R−1

V (PV−X)

2

2π
√
|RV |

Here RL is the 2X2 covariance matrix of range and bearing uncertainty calculated from

the uncertainty values provided by the vendor. Whereas RV is the covariance matrix

for stereo vision and depends on the depth of the object from origin. To calculate this

matrix empirically for different ranges (with a difference of 2 meters) we manually

associate vision objects with corresponding laser objects. Considering the laser object
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position as the mean true position of the object we are able to calculate their difference

for both range and bearing values for vision objects. Repeating this process for different

ranges in different data sets we are able to collect data for calculating this matrix.

Using Bayesian fusion the probability of fused position P = [rF, θF]
T is given as:

P(P|X) =
e
−(P−X)T R−1(P−X)

2

2π
√
|R|

where P and R are given as:

P =
PL/RL + PV/RV

1/RL + 1/RV

and

1/R = 1/RL + 1/RV

respectively. This process of fusion is shown in figure 3.12. P is taken as the position of

the fused object.

Figure 3.12: Fusion process: red color shows the position uncertainty of laser object,

green color for corresponding stereo object and violet the fusion result of

the two.

The result of this fusion process is a new list of fused objects. This list also has all

the laser objects which could not be associated with stereo objects and all the stereo

objects which could not be associated with some laser objects. We keep unassociated

stereo objects because they may correspond to dynamic objects which may not have

been detected by laser in current frame due to occlusion as explained next.
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Figure 3.13 shows an interesting fusion scenario, objects shown in cyan color are the ob-

jects detected by stereo vision whereas the objects shown by light violet rectangles are

the laser detected objects, red dots are raw laser impact points. An oncoming car that

was being detected by laser until last scan is now occluded by a cyclist whereas stereo

system was able to detect this car. So this miss detection by laser will be filled in by

stereo during fusion hence giving a smooth track. The increased position uncertainty

with depth for stereo vision objects can also be seen in the figure (green ellipses).

Figure 3.13: Laser and Stereo vision objects fusion, see the text for details.

Fusion Output

The output of fusion process consists of fused list of objects Ft
objects = {OF} where

OF = (rF, θF, class, DynamicState, SensorCount). For each object we have position (cen-

troid) information, dynamic state information (dynamic or unknown, unknown for

unassociated stereo objects), classification information and a count for number of sen-

sors detecting this object. Sensor count value is especially useful during tracking, if an

object is detected by two sensors then we create a track immediately instead of waiting

for some frames to confirm the object as real.

65



CHAPTER 3: LASER AND STEREO VISION FUSION

3.3.4 Tracking

In general multi objects tracking problem is quite complex. It includes the definition of

tracking methods, association methods and maintenance of objects currently present in

the environment. Usually Bayesian filters are used to solve this problem which require

the definition of a specific motion model of tracked objects to predict their positions

in the environment. Using the prediction and observation update combination, new

position of each object is estimated. In the following we explain the components of our

tracking module.

Data Association

This step consists of assigning new objects of fused list to the existing tracks. Since in

the current work we are more concerned with tracking multiple objects in an intersec-

tion like scenario so it is important to choose a more effective technique of data associ-

ation. We have used MHT (Reid, 1977) approach to solve the data association problem.

An important optimization that we have achieved here due to fusion process men-

tioned above is related to classification information provided by stereo vision. While

generating hypotheses we ignore all those hypotheses which involve objects from dif-

ferent classes. For example a hypothesis trying to involve a pedestrian with a vehicle in

a track will be ignored, this significantly reduces the number of hypotheses. To further

control the growth of tracks trees we need to use some pruning technique. We have

chosen the N-Scans pruning technique to keep the tracks trees to a limit of N.

Track Management

In this step tracks are confirmed, deleted or created using the m-best hypotheses re-

sulting from the data association step. New tracks are created if a new track creation

hypothesis appears in the m-best hypothesis. A newly created track is confirmed if it

is updated by objects detected in current frames after a variable number of algorithm

steps (one step if the object was detected by both laser and stereo vision otherwise in

three steps). This implies that the spurious measurements which can be detected as

objects in the first step of our method are never confirmed. To deal with non-detection

cases, if such a hypothesis appears (which can appear for instance when an object is oc-

cluded by another one) tracks with no new associations are updated according to their

last position, for them next filtering stage becomes a simple prediction. In this way a

track is deleted if it is not updated by a detected object for a given number of steps.
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Filtering

Since in an intersection like scenario there may be different types of objects (vehicles,

motor bikes, pedestrians etc) moving in different directions using different motion

modes, a single motion model based filtering technique is not sufficient. To address

the tracking problem in this scenario we have used an on-line adapting version of In-

teracting Multiple Models (IMM) filtering technique. The details of this technique can

be found in our other published work Vu et al. (2009). We have seen that four motion

models (constant velocity, constant acceleration, left turn and right turn) are sufficient

to successfully track objects on an intersection. We use four Kalman filters to handle

these motion models. Finally the most probable trajectories are computed by taking

the most probable branch and we select one unique hypothesis for one track tree.

3.3.5 Results

Fusion and tracking results are shown in figures 3.14 and 3.15 along-with the images

of corresponding scenarios. Figure 3.14 shows an interesting intersection scenario for

Figure 3.14: Fusion and tracking results. Left(laser only): car occluded by cyclist is not

being tracked. Right(laser and stereo): with fusion car was successfully

tracked.

fusion. Here left image shows tracking results based only on laser data, car behind the

cyclist was occluded in last few frames giving insufficient impact points to be detected

as a moving object. Right image shows tracking with fusion, car was also partially

detected by stereo vision and was successfully tracked in the fused results. Figure 3.15

shows a similar scenario, the ego vehicle is waiting for the signal, a truck turning left,
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Figure 3.15: Tracking results for a truck, a pedestrian and a cyclist.

Table 3.1: Data sets used for experiments for this work.

Data Set 1 Data Set 2 Data Set 3

Scenario Urban road and

intersection driv-

ing

Urban road and

intersection driv-

ing

Urban road and

intersection driv-

ing

Time 1 Min 4 Sec 2 Min 30 Sec 3 Min 16 Sec

True Moving Ob-

jects

30 21 43

a cyclist and a pedestrian crossing the road in opposite directions are being tracked.

Although truck in this scenario is partially occluded by the cyclist but due to fusion it

has been tracked successfully. Table 3.2 shows empirically observed statistics of missed

tracks for three data sets given in table 3.1.

We have observed that in many of the cases object level fusion is the more appropriate

level of fusion. It is not too early that sensor specific information are ignored and not

too late that even real objects are ignored due to lake of sustained evidence over several

data frames.
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Table 3.2: Statistics of missed tracks with and without fusion for three data sets.

Data Set Missed tracks without fusion Missed tracks with fusion

1 10 7

2 12 8

3 7 4

3.4 Track level fusion

Position of this fusion level in the perception architecture is shown in figure 3.16. For

this level of fusion moving objects are detected and tracked for each sensor separately

and fusion is performed on the lists of tracked objects (called tracks). The objective

of fusion at this level is to be more certain about the presence of moving objects near

the host vehicle moving at fast speed. In the following we first summarize the sensor

processing for both sensors to get tracks and then give the fusion scheme used to fuse

lists of these tracks given by individual sensors (laser and stereo vision).

Figure 3.16: Track level fusion with perception architecture. Here Tl
t is the list of tracks

detected by laser, Tv
t is the list of tracks detected by stereo vision and Tt

the list of fused tracks.
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3.4.1 Sensor processing

Lidar processing

Lidar processing done for this level is the same as explained in previous two sections.

We first build a grid based map of the environment and localize the host vehicle in

this map using maximum likelihood SLAM solution. Then using the map we find the

moving laser points by projecting new frame on the map and finding the inconsisten-

cies of these projected points with the built map. In next step we segment the detected

moving points to form objects. Finally we track these objects using the MHT and IMM

based techniques as explained in previous section. This lidar processing gives us a set

of tracks Tl . Figure 3.17 shows track results from lidar data for two cars.

Figure 3.17: Tracking results for two cars.

Stereo processing

As mentioned in previous section, output of the stereo vision processing by Cluj team

consists of a list of 3D objects for each data frame. However, this list contains both static

and dynamic objects and no information is provided if an object is static or dynamic.

To solve this problem we consider all objects as dynamic and try to track them using
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a similar MHT and IMM based scheme as that of laser (using localization information

given by laser processing). Due the the absence of dynamic state information of objects

usually many false positives are reported. Some tracking results based on this scheme

for stereo vision are shown in figure 3.18.

Figure 3.18: Stereo vision tracking results of a truck, cyclist and pedestrian.

3.4.2 Fusion scheme and results

Fusion at this level mainly involves associating tracks from both individual sensors

and computing their compatibility. We have used a gating approach based on the co-

variance matrices of the tracks for both sensors, similar to Bar-Shalom and Chen (2004)

using statistical distance. If two tracks pass this association check then we perform

an additional step to check their trajectory consistency, the main difference of our ap-

proach with others. Associated tracks having parallel trajectories are confirmed as true

tracks and are fused together. We check this parallelisms as follows:

Suppose that two tracks Tl and Tv fall in same gate, each of these tracks consists of

some of its previous poses (position and orientations) and some other information (like
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velocity, acceleration). If Tl has Nl previous poses and Tv has Nv previous poses then

we can represent these tracks as (by ignoring velocity and acceleration information etc

for simplicity sake):

Tl = {(xl
t, yl

t, θl
t), (xl

t−1, yl
t−1, θl

t−1), . . . , (xl
t−Nl

, yl
t−Nl

, θl
t−Nl

)}

Tv = {(xv
t , yv

t , θv
t ), (xv

t−1, yv
t−1, θv

t−1), . . . , (xv
t−Nv

, yv
t−Nv

, θv
t−Nv

)}

If N = min(Nl , Nv) then:

M θ =
∑N

i=0 |θl
t−i − θv

t−i|
N

M x =
∑N

i=0 |xl
t−i − xv

t−i|
N

M y =
∑N

i=0 |yl
t−i − yv

t−i|
N

Two tracks Tl and Tv are considered parallel if M θ < θthr, M x < xthr and M y <

ythr where these threshold values are determined empirically. Figure 3.19 shows this

concept of parallel tracks.

Figure 3.19: Illustration showing the concept of parallel tracks. (a) shows a track de-

tected in laser data (red) and a track detected in stereo vision data (green).

These tracks are considered as parallel as they fulfill the M constraints,

and will be fused. However, two tracks shown in figure (b) are not paral-

lel as they are moving in opposite directions and will not be fused.

The fused list of tracks has two types of tracks: fused tracks, tracks visible in fields

of view of both laser and stereo vision and passing the parallel check, and the tracks

detected by laser beyond the stereo vision range. Tracks of first type carry more weight.

Another layer of processing can be implemented on this fused list of tracks using some

data association and filtering technique to predict new position of fused tracks and

then to update the properties of tracks using observations consisting of tracks from

individual sensors. In this case parallelism check can be used to reduce number of

hypothesis during data association step.
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Table 3.3: Statistics of tracks detected for laser and stereo vision data and tracks pass-

ing the parallel test.

Data Set Laser Tracks Stereo Tracks Parallel Tracks

1 108 24 18

2 147 38 27

3 198 65 54

This fusion strategy helps remove false tracks detected by laser within the stereo vision

view. Some tracking results are shown in figure 3.15 and 3.17. Some empirically ob-

served results are shown in table 3.3 for data sets given in table 3.1. We observed that

the tracks passing the parallel test were 98% true tracks.

Different track output schemes can be used depending on the sensor noise levels. For

too much noisy sensors only tracks falling in fields of view of both sensors and fulfilling

the parallel check are output, however this scheme usually has many miss detections.

Another scheme can be to output a union of both track lists with a tag showing whether

a track was detected by a single sensor or by both (and passed the parallel check).

One advantage of fusion at this level is that it can be implemented as independent

module without requiring knowledge of sensor specific information. This module only

needs lists of tracks as input to give fused list of tracks.

3.5 Road border detection

In this section we present a fast algorithm for detection of road borders from noisy laser

data. We have observed that the laser scanner on demonstrator used for current work

has following problems due to noise: Data appear vibrating and have reflections from

white markings on the road. On the right side near the right edge of the host vehicle

especially, the edges of road border appear moving and tend to be curved. It also has

longitudinal uncertainty that causes the objects to appear as clutter of points rather

than having some uniform outline. From these observations we learned that a suc-

cessful detection of road borders in laser data can help remove a significant number of

false alarms detected on and beyond road borders. This road border detection should

be efficient enough to let both SLAM and DATMO run on-line in real time without

requiring any extra hardware modifications. In this work we present a simple to im-

plement but efficient road border detection algorithm and use it to reduce false alarms

in our DATMO solution.
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In this section we present details of our road border detection technique which con-

sists of representing the grid map in an intermediate form called hit grid, removing

noise, defining a search window, a score function and details about how these search

windows are evaluated in an efficient way to find road border.

Since we do not use special setup of laser scanner for detecting road borders, our tech-

nique is based on the hypothesis that road curbs are frequently detected by the laser

mounted on the host vehicle while driving on the road. If there are parked cars along-

side the road we can effectively take them as road border markers or end of drivable

road area. Our road border finding process consists of following steps:

1) Hit grid (HG) representation; along with the occupancy grid of local map we generate

another grid, called hit grid. This grid has same number of cells and spans the same

area as that of occupancy grid but each cell of this grid keeps only a count of laser

hits detected in area corresponding to this cell. With each new scan reading from laser

scanner the count of hits keeps on increasing in cells corresponding to static parts of

environment. An advantage of this grid is that, no complicated update formulas need

be evaluated for each new observation. The update step only involves incrementing

the count of a cell where a laser hit is detected in new observation. If we represent

this HG at time instance t as Ht then the value of a cell at the intersection of row i

and column j is represented as Ht
ij. The update process for this grid consists of finding

corresponding cell Ht
ij for each laser hit point zt

k=1:161 and incrementing its count.

2) Noise removal; to filter false hits caused by sensor error and moving objects we per-

form two operations on each cell of the grid: first, we do the smoothing by adding to

the value of each cell the counts of its eight neighbors (a classic smoothing technique

in vision), second, we pass this new grid, denoted as St and called smoothed hit grid,

through a high pass filter. We reset the count value to zero for those cells of St which

have values less than filter’s cut-off value defined as Fthr = Max(Sij)/10. This removes

the erroneous values and the cells having count values greater than zero belong to ar-

eas having static objects including road borders. Formally these operations are given

as:

St
ij =

i+1

∑
i−1

j+1

∑
j−1

Ht
kl (3.5.1)

Sij =

{
Sij if Sij >= Fthr

0 otherwise
(3.5.2)

3) Search window; since we suppose that host vehicle is always (excluding when it is on

an intersection) oriented parallel to road border, so instead of searching road border

everywhere in the grid we search only specific areas in the hit grid. These areas to be
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searched lie on left and right side of the host vehicle. So we define two search windows

of length l and width w (in our experiments l = 20 and w = 1, in meters, give good

results), one on left and the other on right side of the host vehicle. Initial positions of

these windows are at 1 meter on right and 1 meter on left of host vehicle. Then in each

search iteration the left window is moved 0.9 meter left (maximum 25 iterations) and

right window is moved 0.9 meter right (maximum 15 iterations) and a score function

is evaluated for the hit counts present in the cells lying under search window. Finally

a threshold value is used to decide the presence or absence of road border. In each

direction the first window that shows the presence of a road border stops the search in

that direction. Figure 3.20 shows host vehicle along with some search windows in the

smoothed hit grid.

4) Score function; we have defined a very simple score function that can be evaluated

very fast. According to this function the score of a search window W consists of the

sum of hits of all cells lying under this window:

Score(W) = ∑ St
ij|St

ij ∈W (3.5.3)

5) Detailed algorithm; Before going into our model details we will define following math-

ematical notations (as defined in Smith and Cheeseman (1987)): The pose (position with

orientation) of an object j (real or hypothetical) with respect to a reference frame i is rep-

resented as Pij = [xij, yij, θij]
T. We also define following compounding pose relations

for pose transformations: if Pij is the pose of object j w.r.t object i and Pjk = [xjk, yjk, θjk]
T

is the pose of object k w.r.t j then the pose of k w.r.t i denoted as Pik = [xik, yik, θik]
T is

given as:

Pik ≡ ⊕(Pij, Pjk) =


xjk cos(θij)− yjk sin(θij) + xij

xjk sin(θij) + yjk cos(θij) + yij

θij + θjk


For the pose Pij the reverse pose relationship Pji = [xji, yji, θji]

T (pose of i w.r.t j) is

defined as:

Pji ≡ 	(Pij) =


−xij cos(θij)− yij sin(θij)

xij sin(θij)− yij cos(θij)

−θij


Considering figure 3.21, our objective is to find cells lying under red rectangle (our

search window) so that score function can be evaluated for them. To proceed we have

three frames of reference: grid frame of reference with origin Og shown in color green,

laser frame of reference with origin Ol shown in color blue and search window frame

of reference with origin Or shown in color dark red. The pose of Ol w.r.t Og is known
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Figure 3.20: Position of host vehicle and two left (blue) and two right (red) search

windows in smoothed hit grid. The two search windows for each left

and right side include the initial window and the one with highest score.

Windows with highest score lie on road border. Cells having black dots

have hit count values non zero. Arrows show the direction of movement

of their respective windows.

and is Pgl = [xgl , ygl , θgl ]
t. Similarly pose of Or w.r.t Ol denoted as Plr = [d, 0, 0]t is also

known, because we always take it on Xl at a distance d (that increases with each search

iteration by 0.9 meters).

Coordinates of four corners of red rectangle w.r.t Or are fixed and given as (−0.5, 0),

(0.5, 0), (−0.5, 20) and (0.5, 20). So a point P(xlp, ylp) lies in red rectangle if −0.5 <=

xlp <= 0.5 and 0 <= ylp <= 20. Each cell can be represented by its middle point

P = [xgp, ygp]t, the coordinates of this point can be easily calculated w.r.t Og from its

row and column using following equations

xgp = col ∗ CellSize + CellSize/2 (3.5.4)
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Figure 3.21: Evaluation of score function for red rectangle. Three reference frames

belong to smoothed hit grid Og, laser frame of reference Ol , and search

rectangle frame of reference Or. Our objectives are to find the coordinates

of point P, given in Og reference frame, w.r.t Or reference frame and to

find row and column of bottom left and top right corners of green rect-

angle. Cells within green rectangle will be searched only to find the cells

lying under red rectangle.

ygp = row ∗ CellSize + CellSize/2 (3.5.5)

But to calculate the coordinates of same point P w.r.t Or i.e P = [xrp, yrp]t we need

following operations: Pose of Or w.r.t Og:

Pgr = ⊕(Pgl , Plr) (3.5.6)
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Pose of Og w.r.t Or:

Prg = 	(Pgr) (3.5.7)

Pose of P w.r.t Or:

Prp = ⊕(Prg, Pgp) (3.5.8)

Using these relations we can calculate the coordinates of middle point of any grid cell

w.r.t Or and then we can easily check if this point lies in the red rectangle or not.

Now we have the tool to know if a cell lies under red rectangle or not. So to evaluate the

score function one brute force method can be to loop on all cells of the grid, evaluate

above equations on them and sum the score for cells which are in red rectangle and

ignore the others. But it will be quite inefficient to evaluate all the cells when the red

rectangle is very small as compared to whole grid. To solve this problem we will restrict

our search to cells in green rectangle, but first we need to calculate row and column of

bottom left and top right corners of this rectangle. To calculate this, suppose Prp =

[xrp, yrp, 0]t is the pose of a corner of red rectangle w.r.t Or the pose of same corner w.r.t

Og can be calculated using following relation:

Pgp = ⊕(Pgr, Prp) (3.5.9)

This way we can calculate coordinates of all four corners of the red rectangle w.r.t Og.

Then minimum of the four x and y values will give bottom left corner of green rectangle

w.r.t Og and maximum of the four x and y values will give top right corner. Finally us-

ing reverse transforms of equations 3.5.4 and 3.5.5 we can calculate rows and columns

of cells on these corners.

The window giving highest score greater than a threshold value is taken as belonging

to road border and the line connecting the middle points of this search rectangle (red)

along the length is taken as road border.

3.5.1 Applying road borders to detect false positives

After we have detected the road borders, the process of removing false positives from

the detected moving objects in the current laser scan consists of following steps:

1) See if the detected object lies to the left or to the right of the host vehicle. This is

important to check it against appropriate road border.

2) Transform the rectangle (only four corner points) of the detected moving object to

the reference frame of the search window of the detected road border on the left or right

side depending on the inferred position of the object in step 1. To do this, suppose the
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pose of one corner point P of the object rectangle w.r.t Og is Pgp = [xgp, ygp, 0]t. Then

the pose of this point w.r.t Or denoted as Prp = [xrp, yrp, 0]t is given by equation 3.5.8.

Then this point is a false positive if xrp >= −0.5 for right road border or xrp <= 0.5

for left road border. We repeat this process for all four points of object rectangle, this

object is taken as valid moving object if none of its corner points is a false positive.

3) If object is a false positive then remove it from the list of detected dynamic objects

before passing to tracking module.

3.5.2 Results

Figure 3.22 shows the results of smoothing process of a scene. In the smoothed hit

window road borders are easily visible. Two moving cars in front of host vehicle have

no traces in the smoothed grid.

Figure 3.22: Smoothed hit grid (top) with host vehicle (pink rectangle) for an actual

road scene (bottom), smoothing process removed the laser hits detected

on moving cars.

Results of road border detection for two scenarios are shown in figure 3.23. The de-

tected road borders are shown in map view instead of smooth hit grid.

Figure 3.24 shows the detected road borders in moving objects tracking view. Red dots

are the current laser hits and small pink rectangles with speed captions are the detected
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Figure 3.23: Detected road borders shown in map view for two scenarios.

moving objects by our DATMO. In both of these examples they are false alarms due to

noisy laser data. It can be seen that these false positives lie on the detected road borders,

which allows us to infer them as false positives and filter them out. In these figures they

are shown before this filtration just to show them as false positives.

Figure 3.24: False positives (static objects detected as moving due to sensor noise) de-

tected on road borders, with this knowledge of road borders we can suc-

cessfully identify them as false positives.

Table 3.4 shows empirically observed quantitative results for detected false positives
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Table 3.4: Statistics of false positives (FP) with and without road border information

for three data sets.

Data Set FP without road border FP with road border

1 70 45

2 103 80

3 150 95

Table 3.5: Statistics of intersection detection against ground truth for three data sets.

Data Set Total intersection True positives False positives

1 2 2 1

2 1 1 1

3 4 4 4

using road border information for data sets given in table 3.1.

Another important result is the detection of intersections on road. Our simple hypoth-

esis in this regard is that, if no road borders are detected at some instance then host

vehicle is on an intersection. Some states of intersection detection are shown in table

3.5.

3.6 Synthesis

In this chapter we have detailed our fusion based solution to SLAM and DATMO prob-

lems. After giving theoretical solution to these problems we explain fusion at three lev-

els between laser and stereo vision. Maximum likelihood based SLAM solution that we

have used is quite fast and gives good results. In this method new position of the ve-

hicle in the map is calculated using sampling technique from its motion model. From

each sampled position current data scan is matched with the map and the position giv-

ing best match is taken as the new updated position of the vehicle. The map is updated

using this position and latest data scan. This technique gives good results and is fast

enough to allow real time on-line calculations.

Occupancy grid based low level fusion between laser and stereo vision requires to build

two grids one for each sensor and then fuse these grids using some appropriate fusion

technique suitable for sensor properties. To build an occupancy grid we need to define

an appropriate inverse sensor model, although for laser we have used a well known
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inverse sensor model, however for stereo vision we have defined a detailed inverse

sensor model that gives an occupancy grid compatible with laser grid. This fusion is

useful in the scenario where one sensor has known problems that can be reduced using

information from other sensor. Since laser scanner used for this work has problem of

giving reflections from white markings so giving more weight to vision grid solved this

problem.

Object level fusion detailed in this chapter fuses objects of two lists of moving objects

detected by laser and stereo vision sensors. Due to different properties of the sen-

sors the fused objects have more details and give better environment view. We used

Bayesian fusion at this level to get correct object positions and classification informa-

tion to the laser objects to get better tracking results.

Track level fusion is useful when there are many false alarms and we want to confirm

real tracks rapidly.

We have seen that in most of the cases object level fusion is more appropriate then the

other two levels because low level is too early and many sensor specific information

are lost due to finding a common representation scheme quite early in the process and

track level is too late that sensor uncertainty differences may have already resulted into

many false positives and miss detections. At object level appropriate data association

decisions can be made using knowledge about sensor properties. However for much

noisy sensors track level fusion may give better results.

Last important work detailed in this chapter is the fast detection of road borders from

laser data and then using this knowledge to remove false moving objects detected near

road boundaries due to sensor noise. Without requiring to use another sensor this

technique not only reduces false alarms but also gives more institutive road shape.

Although people have tried fusion between laser and stereo vision in different ways

however we believe that the fast and simple fusion techniques that we have developed

and detailed in this chapter are very useful in similar scenarios mentioned in this chap-

ter. Especially object level fusion level is relatively more appropriate level as low level

is too early and track level is too late. However both low and track levels can be useful

in certain situations as reasoned above.

82



CHAPTER 4

Laser and Mono Vision Fusion

Monocular cameras are one of the first sensors to be used in research for building in-

telligent vehicles. As noted in first chapter, both Starnford Cart and Japan’s Tsukuba

Mechanical Engineering Lab vehicles, the very first examples of intelligent vehicles,

used mono vision as main sensors. Laser sensors, because of their ability to give pre-

cise distance information, and mono vision being able to give content rich information,

are now sensors of choice for intelligent vehicle perception.

In this chapter, we detail our work of fusion between laser and monocular vision cam-

era. The main difference of this work w.r.t our fusion work between laser and stereo

vision, detailed in previous chapter, is that both stereo vision and laser are compati-

ble sensors with some aspects of each sensor better than the other one. So both were

given equal importance for fusion at different levels. However, mono vision is not

compatible with laser scanner and each of them gives details of different aspects of the

environment. So in this case they complement each other and information from mono

vision are used to add more details to the environment model constructed by laser

scanner. Laser is used as primary sensor whereas mono vision as secondary sensor. An

important implication of this setup is that failure of laser scanner will cause a complete

failure of the perception system.

We have performed fusion between laser and mono vision at two levels: low and ob-

jects detection level. We see that track level fusion between these sensors adds more

overhead than advantage. Essentially track level fusion reduces to object level fusion

but by taking extra processing resources. Since there are no depth information avail-

able from mono vision so tracking a moving object in the images will add no more

information for the laser tracks other than class information. Same results are achieved

by fusion at object level.

Rest of this chapter is structured as follows: Next section details fusion between laser
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and mono vision at low level. Here again we use occupancy grid framework to do the

fusion, using information from laser we find corresponding regions in the image and

using background subtraction technique we build an occupancy grid for vision, for

laser we use same technique as explained in previous chapter to build occupancy grid.

These two grids are combined using a fusion technique to get fused grid. Experiments

performed on a simulator test vehicle show that this technique is effective and can be

used in certain environments. Section 4.2 details our object level fusion between these

two sensors. Here again, using laser scanner as primary sensor we extract moving

objects from laser data and then using camera calibration information object rectangles

are projected on the image to get regions of interest in them. These regions of interest

are passed to classifiers to get the class information for each laser object. Using these

classification information we do model based tracking of laser objects to get smooth

tracks. Although we have used this model based tracking concept here with laser and

mono vision, however it can also be used easily with stereo vision and laser scanner

case because it is based on classification information of the objects. Last section of this

chapter gives a summary and some discussion of the techniques presented here.

4.1 Low level fusion

In this section we explain our low level fusion work between laser and monocular color

camera (architecture shown in figure 4.1). This work is detailed in our publication

Baig and Aycard (2010). Like our previous low level fusion work between laser and

stereo vision it is also based on occupancy grid frame work. Main novelty of this work

comes from the fast inverse sensor model that we have developed for mono vision to

construct a low level occupancy grid. For each new data frame from these sensors we

construct an occupancy grid for both of them and then fuse these grids to construct a

fused occupancy grid. Although the laser processing is similar to that in last chapter

however the inverse sensor model for mono vision is completely different from that of

stereo vision.

Since this work uses a color camera so it uses a new experimental setup as explained in

next sub section. Then we summarize our laser processing to build laser grid and detail

vision processing and vision sensor model based on background subtraction technique.

Fusion and some results of experiments conducted on simulated demonstrator vehicle

are presented at the end of this section.
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Figure 4.1: Low level fusion with perception architecture

4.1.1 Experimental Setup

The demonstrator vehicle used to get data sets for this work is a simulator of a Cycab1

vehicle prepared by INRIA. This simulator provides a graphical interface along with

a movable Cycab car. This Cycab car has simulated laser and camera sensors fixed on

it. We can also load different static and moving objects in the view by executing their

respective scripts. With this simulator creation of experimental environment becomes

very easy.

The figure 4.2 provides a close view of the Cycab vehicle and the two sensors mounted

on it. In the simulator environment this Cycab vehicle can move around in the parking.

The simulated laser scanner has a field of view of 180◦ and a maximum range of 90

meters. It has 360 laser beams called channels.

4.1.2 Occupancy Grid

As explained in last chapter occupancy grid is a multi-dimensional tessellation of space

into cells where each cell stores a probabilistic estimate of its state. To be consistent with

our previous notations we represent the output of laser as zl
t and output from camera

on the Cycab simulator as zv
t , at time instant t. Here again laser output consists of

N tuples (zl
t = {(r1, θ1), . . . , (rN , θN)}) for N laser hit points. However the output of

camera is a raw color image at time instant t.

The general theory of constructing an occupancy grid is the same as described in sec-

tion 3.1. Cell update probability is represented as P(m|x1:t, z1:t) and, using log odds

form, was calculated (in section 3.1) to be:

log Odds(m|x1:t, z1:t) = log Odds(m|zt, xt) + log Odds(m|x1:t−1, z1:t−1) (4.1.1)

1http://cycabtk.gforge.inria.fr/wiki/doku.php?id=download
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Figure 4.2: Cycab with laser scanner and camera mounted on it.

So giving a brief summary of occupancy grid construction for laser in the following

section we explain our vision processing and inverse sensor model used to construct

occupancy grid for camera sensor in the section next to the following.

4.1.3 Occupancy Grid for Laser

Using the inverse sensor model shown in figure 3.4 we use the same process for con-

structing occupancy grid for laser scanner as explained in section 3.2.1 of last chapter.

Summarizing, occupancy state of a cell is decided by the nearest beam from the center

of this cell. If the nearest laser beam goes beyond this cell it has low probability of oc-

cupancy (signifying empty state). However, if the nearest laser beam terminates in the

cell or quite close to this cell, it has high value of occupancy. Otherwise cell has a value

of 0.5 indicating that the occupancy state is unknown.

4.1.4 Vision Processing

As we know that an image from a camera is a 2D projection of a 3D view. Whereas a

laser scanner scans semi-circle shaped horizontal plane at a fixed height from ground.
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Since our target is to construct two grids, one for laser and one for camera, and then

to merge them to get a combined occupancy state of the view. Therefore it is very

important that constructed grids correspond to the same area of the 3D view for both

sensors. Horizontal plan scanned by laser corresponds to a sort of horizontal strip in

the image. This implies that if we want to calculate occupancy grid for camera then

we, first of all, need to find the points in the image corresponding to each laser beam.

This requires us to perform transformations from laser reference frame towards camera

reference frame. These transformations will give us pixels in the image that correspond

to the hit points of the laser beams. So for each laser hit point P = [x, y, z, 1]T we need

the pixel X = [u, v, 1]T. For laser we have x = r cos(θ),y = r sin(θ) and z = 0 since

our global origin is same as that of laser reference frame’s origin. We use following

equations from vision literature to calculate these transformations.

X3×1 ∼ PM3×4 × P4×1 (4.1.2)

Where Projection Matrix PM is given as:

PM3×4 = K3×4 ×
(

R −Rt

0T 1

)
4×4

(4.1.3)

Here K is the camera calibration matrix. R is rotation matrix and t is the camera trans-

lation vector. Camera is calibrated and fixed with respect to laser scanner so we know

values of these matrices and vector.

By applying these equations we can calculate image pixels for each laser beam if its

termination point lies in the camera view. Now in order to classify these pixels as

belonging to objects or background, we need a technique to differentiate background

from the foreground. This technique is explained below.

Object Detection

Our object detection technique is based on background subtraction. We classify a pixel

as either belonging to background or foreground. In order to apply this technique

we need to learn background first. We have used multivariate Gaussian distribution

technique to learn background. In our case bounding fence of the parking area forms

the background. Learning background essentially means learning mean vector (µ) and

covariance matrix(Σ) of the multivariate Gaussian distribution. For this purpose we

collect different sets of pixels belonging to background from different distances by

moving cycab in the parking area and manually segmenting the regions belonging to
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background. Figure 4.3 shows the simulated parking area with bounding fence and

parked cars in it. From training data we can calculate the µ and Σ parameters of the

multivariate Gaussian distribution for N background pixels X = [r, g, b]T as follows:

µ =
1
n

N

∑
i=1

Xi (4.1.4)

Σ =
1
n

N

∑
i=1

(Xi − µ).(Xi − µ)> (4.1.5)

The advantage of this technique is that object detection will work even if the simulator

cycab is moving in the parking area.

After we have learnt background parameters we can apply following equation to clas-

sify any pixel x = [r, g, b]T as belonging to object or background.

fx(r, g, b) =
1

(2π)3/2|Σ|1/2 exp
(
−1

2
(x− µ)>Σ−1(x− µ)

)
(4.1.6)

Figure 4.3: Simulated parking area.

If the probability is smaller than a threshold value, learnt experimentally, then the pixel

belongs to an object otherwise it belongs to background.
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Occupancy Grid For Camera

For camera measurement is defined as zt = {z1
t , ..., zk

t} for k individual pixels corre-

sponding to k laser beams’ termination points visible in the camera view. Whereas one

pixel measurement is defined as z = [c] where c is the class of the pixel. For construct-

ing an occupancy grid we need to define inverse sensor model for camera to calculate

P(m | zt, xt) term in equation 4.1.1. We define inverse sensor model as follows, if a pixel

is classified as belonging to background then all the cells lying along a line from cam-

era to the end of the grid have low value of occupancy. But if the pixel is classified as

object then all the cells lying along the line have relatively high value of the occupancy

state. Since we do not have depth information from the images so all the cells along

the line have high value of occupancy if the pixel is classified as belonging to object.

The cells lying outside of the camera view have a probability value of 0.5 which means

unknown state.

The steps to construct an occupancy grid for camera are as follows:

• Find pixels of the image corresponding to laser hit points for those laser beams

which lie in the camera view. We need this step only to know the image region

that is common with laser so that both occupancy grids are compatible.

• Find class of these pixels to see which of them belong to background and which

of them belong to objects.

• Using definition of inverse sensor model given above, set probabilities of all cells

using pixel classification information.

Figure 4.4 shows an occupancy grid constructed from camera with laser hit points pro-

jected on this grid. We can see that most of the points lie in the area where there is high

probability of occupancy, showing the effectiveness of this technique.

4.1.5 Fusion

Fusion is the process of combining information from multiple sources in such a way

that the combined information are more useful in some sense. Our objective is to com-

bine information from laser and camera sensors. An advantage of fusion at this level

is that there is no information loss due to any interpretation of data which is necessary

for higher levels.

There exist different fusion techniques of which we have used weighted linear combi-
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Figure 4.4: Occupancy grid for camera within red lines with black dots representing

objects detected by laser

nation of the two grids. Fusion equation is given below:

FusedGridt,i = α.CameraGridt,i + (1− α).LaserGridt,i (4.1.7)

Here α is the weighting factor for camera and its value is between 0 and 1.

Another fusion technique that we have used is the conservative estimate. Let ml
i is the

ith cell of the occupancy map built for laser sensor and mc
i is the same cell for camera

sensor. Then the value of same cell in the fused grid is given by:

mi = max(ml
i , mc

i ) (4.1.8)

This map is the most pessimistic map given its components: If any of the sensor-specific

map shows that a grid cell is occupied, so will the combined map. While this combined

estimator is biased in factor of occupied maps, it is more appropriate than the Bayes

filter approach when sensors with different characteristics are fused Thrun et al. (2005).

As stated in previous chapter, the main task is to construct two compatible grids by

defining appropriate inverse sensor models for all sensors. After that we have the

grids then different ways, that depend on the characteristics of the sensors, can be

easily devised to combine these grids.

4.1.6 Results

Fusion results of weighted linear combination for three different values of α are shown

in figures 4.5, 4.7 and 4.8. The red lines in the fused view show the camera view with
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respect to laser view. The respective scenes for these results are shown in figures 4.6

and 4.9. Some important information can be seen easily from these results: first, the

occupancy grid constructed for camera is compatible with that of laser and belong to

the same part of the environment. Second, mostly an object seen by laser is also seen by

vision on the same place, although there are no depth information present for vision,

however, the free space seen by both sensors is same giving more weight to this part of

the grid.

Similarly the figure 4.10 shows fusion results for conservative approach for the same

scene as shown in figure 4.9. From these results we see that other than depth infor-

mation for vision, occupancy grids constructed for both sensors are similar and object

seen by laser sensor is also detected by vision.

Figure 4.5: Laser OG at left, Camera OG at right and Fused OG at bottom for α = 0.1.

Scenario shown in figure 4.6.

We can see from these results that the two occupancy grids constructed for laser and

camera are very good approximation of the actual environment. And the fused view

shows the combined information of both the sensors.

If depth information are used from laser scanner for objects detected by vision then

both grids will become compatible and will give even better view of the external envi-

ronment. This fusion is useful for structured indoor environment where background

color can be separated and where we need to be more sure about the free space before

the robot.

An important other use of vision processing described in this section is that we can de-

tect objects easily and rapidly in the image. The consecutive pixels detected as belong
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Figure 4.6: Scene for α = 0.1

Figure 4.7: Laser OG at left, Camera OG at right and Fused OG at bottom for α = 0.4.

Scenario shown in figure 4.9.

to foreground define the width of the object, a similar search can be done vertically for

each detected object to find the height of each object. The results of object detection in

the images are shown in figures 4.6 and 4.9 using green rectangles.
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Figure 4.8: Laser OG at left, Camera OG at right and Fused OG at bottom for α = 0.7.

Scenario shown in figure 4.9.

Figure 4.9: Scene for α = 0.4 and α = 0.7

4.2 Object level fusion

In this section we present object level fusion between laser and mono vision. Here laser

is used as primary sensor and vision is used to get classification information for laser
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Figure 4.10: Fusion result for conservative approach. Scenario shown in figure 4.9.

objects. To achieve this, laser data is processed to solve SLAM and DATMO problems

as explained in previous chapter. To get classification information of detected moving

objects, laser points belonging to each object are projected on the image to get an posi-

tion of the object on the image. An appropriate rectangular region is extracted from the

image for each object and passed through a classifier to get class information. These

information are used to do model based tracking as explained below.

An important problem of object tracking using laser scanner is the smoothness of the

trajectory of the moving object. Even if the object is detected and tracked successfully

the shape of the object path is usually not smooth due to different shapes of the object

segment detected in different data frames. This problem and its solution using object

class information are shown in figure 4.11 (from (Vu and Aycard, 2009)).

To solve this problem for laser scanner a model based object tracking approach was

suggested by Petrovskaya and Thrun (2009) where they used a flexible box model to

represent cars and introduced a method to learn object sizes during tracking. Later on

a similar approach was used by Vu (2009), however he formulated the detection and

tracking of moving objects as a single simultaneous problem and model detection of the

moving object was incorporated into this simultaneous problem. This approach results

into a large dimensional solution space, where solution is a set of tracks observed in the

data frames over a sliding window of T frames. They used an MCMC based sampling

technique to find solution from this space .

Although above methods may work with high resolution laser scanners they are not

suitable for noisy and low resolution laser sensor. In this scenario we have used a gray
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Figure 4.11: Known problems with laser-based detection and tracking. (a) an example

of a car approaching the laser scanner; (b) car tracking using centers of

laser impact bounding-boxes leads to incorrect result; (c) correct tracking

using car model; (d)(e) objects can be divided into several segments mak-

ing tracking harder that requires object merging, track grouping; (f) using

car model can overcome these problems.

scale monocular vision camera along with laser scanner to do model based tracking.

Laser data is used to find moving objects, the laser points belonging to these moving

objects are projected on the image to find regions of interest in the image, these regions

are passed to a classifier to know the class of the objects in these regions, based on this

output a model is fit onto the laser data during tracking process to get smooth track.

This process is detailed in following subsections.

4.2.1 Data Set

Data set for this work comes from Volkswagen demonstrator described in previous

chapter and consists of a laser scanner with 2◦ resolution and images from a gray scale

monocular camera (left camera of the stereo vision system mentioned in previous chap-

ter serves as the monocular camera). As usual we represent the current scan of laser
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data as zl
t and current image from the camera as zv

t .

4.2.2 Moving objects detection from laser data

The process of detecting moving objects from laser data is exactly same as described in

section 3.3.1 of last chapter. As detailed there, the moving objects are detected by ob-

serving inconsistencies between the latest map of the environment generated by SLAM

module and current laser data frame. The laser hits in zl
t frame seen in empty areas of

map belong to moving objects, and a segmentation process is used to make objects from

individual laser hit points. So a moving object is a set of points classified as moving

and belonging to a segment: Oi = {P|P is moving and belongs to ith segment}, here P

is a laser hit point.

4.2.3 Fusion: finding region of interest and its class for a dynamic object

Finding region of interest for each moving object in the image is directed by the laser

points comprising this object. The distance between two extreme points in the object

segment can be used as a guide for object rectangle in the image. However to take the

laser data problems into account (like the ones shown in d and e parts of figure 4.11) we

actually define three rectangles for the three types of objects (vehicle, bike and person)

that we have handled in this work. These rectangles are defined as follows: for each

segment we first find its "center of gravity" (a point having the mean values of x and

y coordinates of the segment points) and then one rectangle for each type of the object

is defined around this point (widths and heights are different for these classes). The

four corners of these rectangles are projected on the image using camera calibration

information to find three regions of interest. These regions of interest are passed to

their respective classifiers and the one returning the highest confidence is taken as the

class of this object. Due to the distance given by laser the perspective ratios of the

width and height for each region of interest are automatically taken into account (an

object farther away will have small rectangle whereas an object closer to the vehicle

will have larger rectangle).

Since in this thesis we were primarily concerned with laser data processing and devel-

opment of fusion techniques, so we used vision processing done by other teams. The

same idea applies to this fusion level and we want to use open source classifiers for

objects classification. However, so far we have not found some good classifiers for ve-

hicles and cyclists because as stated by Gupte et al. (2002) and Pinto et al. (2008), this is a

hard problem. A good literature review on different techniques of object classification
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in camera images is discussed in (Deselaers et al., 2010, Filipovych and Ribeiro, 2007).

For this work we have used some hand labeled data. For each data set we do a labeling

run in which each object is projected on the image to see its class and this class is saved

in a file for each object. In second run class of each object is read from this file for model

based tracking.

4.2.4 Model based tracking

As detailed in section 3.3.4 of chapter 3, we have implemented a tracking scheme that

uses MHT for data association and IMM as filtering schemes. However before the

tracking process we best fit a model (currently we are using only three models, a rect-

angle for vehicles, a small rectangle for cyclists and a dot circle for pedestrians) to the

laser points of each object segment, the dimensions of this rectangle depend on the class

of the object determined in the previous step. The center of this rectangle is taken as

the position of the object. During data association step, hypotheses involving different

types of objects (objects having different class types) are ignored resulting in reduced

number of hypotheses. If the shape of the laser points is such that a model can fit in

more than one directions then we use information from its previous position to deter-

mine its correct direction. For very first occurrence of the object we select one randomly

from possible directions and hope that if its not correct then it will be corrected in next

iteration when we will have new position information of the same object.

Although for current work we have used hand labeled data, however, by introducing

some noise (wrong class information) for some objects we have seen that this effect

of errors reduces greatly in next data frames when new position information become

available and some knowledge of shape is used from laser data.

4.2.5 Results

Tracking results of a pedestrian are shown in figure 4.12. Figure 4.13 shows another

useful aspect of this fusion related to HMI (human machine interface) presented to the

driver to show information in more intuitive way. Although showing moving objects

as dots or rectangles is common however if system is able to infer class information of

the moving targets then it is far better to show class icons on the screen than showing

dots or rectangles.

Although it is relatively difficult with low resolution laser scanners, however if high

resolution scanners are used then class of the object can be, to some extent, inferred

from the shape of the object segment given by laser scanner.
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Figure 4.12: Tracking results of a pedestrian. Red dots show current laser scan points

on static objects.

In general we see that as vision processing advances and fast and reliable classifiers are

built then this fusion can be very much useful for driver assistance systems. True class

information in HMI systems results in more driver satisfaction than using moving dots

or rectangles.

4.3 Synthesis

In this chapter we have detailed our fusion work between laser and monocular vi-

sion camera at two levels: low and object level. Based on occupancy grid framework

low level involves constructing two compatible grids, one for each sensor and then
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Figure 4.13: Fusion example between laser and mono vision. Laser (bottom left) de-

tects moving objects, calculates their position and velocity information

whereas vision (bottom right) classifies them as cars. After fusion (top),

system knows that it is tracking two cars.

combining these grids to get a fused grid. For vision our technique was based on clas-

sifying image pixels corresponding to laser hit points as belonging to background or

foreground. A pixel belonging to background means that there is no object before vehi-

cle in this direction. But if a pixel is classified as foreground then it means that there is

an object before the vehicle in this direction. Fusion between two grids was performed

using different weights for two grids. This fusion is more useful in the scenario where

we need more confidence about empty space in front of the vehicle, for example for

applications that need to know the drivable area. The weak point of this approach is

that it is only useful for indoor environments where background can be distinguished

from foreground.

Fusion at object level involved finding regions of interest in the image for each dynamic

segment detected by laser scanner and then using a classifier to find the class of the ob-

ject of this region. The knowledge of the classification information is used in next step

to do model based tracking. The main objective of the model based tracking is to get

smooth trajectories of moving objects which is not possible from laser data alone, since

same object appears to have different shapes when it is at different positions relative to
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the sensor.

From both of these fusion strategies it can be easily seen that laser is taken as primary

sensor whereas mono camera is used as secondary sensor where information from

camera are used to support information from laser to get better environment under-

standing. This primary and secondary relationship between laser and camera further

helps to avoid processing whole image. In both cases we only process specific pixels

(or regions of interest) to get required information making the whole process very fast.

In general fusion between laser and mono vision is used to convey more information to

the driver in HMI components by displaying intuitive icons and images while display-

ing other information on the screen. These information make the driving experience

more comfortable and relaxing.
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Application: Safety at Intersections

(INTERSAFE-2)

Our fusion work especially at object level between laser and stereo vision was inte-

grated into Volkswagen demonstrator used for INTERSAFE-21 project. INTERSAFE-2

is an FP7 project funded by European Commission and deals with safety at intersections.

In this chapter we summarize software architecture of INTERSAFE-2 safety system

and briefly mention contributions of different teams which collaborated on different

modules of this project for Volkswagen demonstrator. Our this work is published here

(Aycard et al., 2011).

Although most of the so called black spots have been eliminated from the road net-

works, however this is not true for the intersections, they can still be regarded as black

spots. According to the data collected for this project, depending on the region and

country, from 30 to 60% of all injury accidents and up to one third of the fatalities occur

at intersections due to the complex scenarios there. This project aimed at the develop-

ment and demonstration of a Cooperative Intersection Safety System (CISS) that is able

to significantly reduce injury and fatal accidents at intersections.

The consortium for this project consisted of twelve partners2 who worked on three

demonstrator vehicles: a car demonstrator from BMW, another car demonstrator from

VW and a truck demonstrator from VTEC, they are shown in figure 5.1. Our fusion

work was concerned with Volkswagen demonstrator vehicle only.

In this project the concept of equipped infrastructure was also tested, where sensors

were mounted on poles in the intersection on different points to get more complete

view of the environment and V2I (vehicle to infrastructure) communication was used

1http://www.intersafe-2.eu/public
2http://www.intersafe-2.eu/public/partners
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to convey information to the demonstrator vehicles. With this concept, vehicle was

able to see the areas which are not directly visible to the sensors on the vehicle from

its current position. Moreover traffic light information were also communicated to

the vehicle to decide its action in advance (like, if it needs to apply breaks or there is

sufficient time to pass through the intersection without reducing speed). Figure 5.2

shows this concept of on-board (on the vehicle) and infrastructure sensors with their

fields of view in different colors.

The objective of the project has been to use information from these on-board and in-

frastructure sensors to build a complete environment model and to be aware of any

moving objects in the environment. Based on these information higher level appli-

cations would calculate risk of collision between demonstrator vehicle and any other

static or dynamic object on the intersection and would warn the driver or would take

appropriate automated action to avoid or mitigate the risk. INTERSAFE-2 has been

completed successfully and a public event of its final assessment took place on 17th

May 2011 in Wolfsburg Germany.

Figure 5.1: Three demonstrator vehicles used for INTERSAFE-2 project with sensors

installed on them.

The rest of this chapter is structured as follows: In next section we describe general
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Figure 5.2: Concept of vehicle and infrastructure sensors (best viewed in color).

architecture of the whole INTERSAFE-2 system. Section 5.2 gives details of the system

architecture of the host vehicle describing the three layers of this architecture. We sum-

marize the contribution of each partner involved in work on Volkswagen demonstrator

in section 5.3. Berief description of integration technology used in the host vehicle is

given in section 5.4 and give synthesis of this chapter in last section.

5.1 General architecture

The general architecture of the whole system is shown in the figure 5.3 (from Shooter

and Reeve (2009)). INTERSAFE-2 vehicle system is designed to operate in following

two modes:

• Independent mode, this mode is always active for a host vehicle and makes use

of on-board sensors and processing capabilities to observe the surrounding envi-

ronment. Based on the interpretations made from the sensors data appropriate

actions are taken either by warning the driver of the developing dangerous situ-

ation or by taking auto actions if the time is too short for a human to intervene.

System architecture of this mode consists of three main layers: bottom layer con-

sists of hardware sensors installed on the host vehicle, middle layer called Per-

ception is responsible of processing sensors data to build environment model and

finding moving objects and calculating their motion attributes. The top layer
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called Application layer makes use of the environment model and lists of moving

objects given by middle layer to assess the environment situations and to take

appropriate actions. We will detail this mode in more details in next section.

• Cooperative mode, host vehicle works in this mode only when it is on an intersec-

tion equipped with infrastructure sensors or there are other vehicles equipped

with similar independent mode systems and are willing to share information.

Equipped infrastructure has sensors and monitoring devices, information from

these components are communicated to the host vehicle via V2I communica-

tion. Similarly two equipped vehicles exchange information with each other us-

ing V2V communication setup. Both V2I and V2V are collectively called V2X

communication setup and consists of necessary hardware and software modules.

The main purpose of equipped infrastructures is to enhance the perception and

application layer capabilities of an equipped vehicle however this cooperation is

optional and host vehicle is always capable of operating in independent mode.

Figure 5.3: Two modes of an INTERSAFE-2 demonstrator vehicle with components of

each mode. Independent mode is always active and makes use of on-board

sensors to observe environment and respond to any demanding situation.

Cooperative mode only works when demonstrator vehicle is on an inter-

section equipped with infrastructure sensors and monitoring components

or is nearby other vehicles equipped with same system and are ready to

share information.

Our work in this project was related to the Perception layer of the host vehicle working

in independent mode. In next section we explain the system architecture of the host

104



CHAPTER 5: APPLICATION: SAFETY AT INTERSECTIONS (INTERSAFE-2)

vehicle.

5.2 Host vehicle: system architecture

A generic architecture of an INTERSAFE-2 demonstrator vehicle is shown in figure 5.4

(published in Shooter and Reeve (2009)). This architecture consists of three layers, V2X

communication component and maps database. The layers are:

Figure 5.4: System architecture of a demonstrator vehicle.

• Vehicle sensors layer consists of hardware sensors installed on the vehicle. These

sensors can be divided into two types: external environment sensors and host

dynamics sensor. Figure 5.5 shows the types, positions and fields of view of the

external environment perception sensors installed on the VW demonstrator vehi-

cle, whereas an Inertial Measurement Unit (IMU) sensor is used to measure host

vehicle dynamics. Our work in this project is concerned with the processing of

data from Lidar and Stereo vision sensors only.

• Perception layer consists of modules that process sensors data to understand exter-

nal environment. The objectives of processing at this layer include reconstruction
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Figure 5.5: External environment perception sensors, their positions and fields of view

installed on the VW demonstrator.

of external environment, detection and tracking of moving objects and determin-

ing the position of host vehicle in the on line constructed or pre-built maps. Main

modules in this layer include fusion at different levels, intersection reconstruc-

tion, host vehicle localization and dynamic objects detection, classification and

tracking. Our contribution in this project pertains to different modules of this

layer.

• Application layer uses the environment model and other information provided

by perception layer modules for scene modeling. This scene modeling consists

of scenario interpretation and doing a risk assessment based on these interpre-

tations. These modules are responsible for finding any developing dangerous

situations and taking appropriate actions. The output of this layer consists of
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information and warning messages or an active intervention if the interpreted

situation is so demanding.

5.3 Partners’ contribution

In this project we collaborated with two other teams from Technical University of Cluj-

Napoca Romania and INRIA Paris who worked respectively on Stereo vision process-

ing and Risk assessment modules. Stereo vision output consists of a list of classified

objects and we perform lidar processing to build environment map and detect moving

objects. Detected moving objects are fused with objects given by stereo vision to get list

of fused objects. We perform tracking on this list of fused objects to get list of tracks.

This list of tracks and the environment model is passed to the risk assessment module

to calculate risk of collision between two objects.

In the following we start with stereo vision processing done by team from Technical

University of Cluj-Napoca Romania and then summarize our work related to lidar pro-

cessing, fusion and tracking we end this section with details of risk assessment done

by INRIA Paris. The relationship of these modules is shown in figure 5.6. The details

of this work can be found in our (Aycard et al., 2011) publication.

5.3.1 Stereo vision processing

Introduction

Dealing with the intersection specific situations imposes substantial changes in the

physical setup and in the processing algorithms of a stereo sensor. The use of a wider

field of view lenses (shorter focal length) comes at the cost of larger distortions and

reduced depth accuracy. For this reason an increased accuracy in calibration and dense

stereo reconstruction is required. The use of stereo sensor opens not only the possibility

to infer the 3D coordinates for any image point but also the possibility to compute the

3D motion vector for any pixel. The combined use of the 3D position and 3D motion

information significantly improves object detection, discrimination between static and

dynamic components, and dynamic object tracking.

Stereo sensor architecture for intersection assistance

Based on the requirements of this project a two level architecture of a 6D stereo sensor

was proposed (figure 5.7 and figure 5.8). The low level architecture controls the im-
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Figure 5.6: Architecture showing the dependence of different processing modules.

age acquisition process and provides, after the sensorial data processing, the primary

information needed by the high level processing modules: 6D point information (3D

position and 3D motion), ego motion estimation and intensity images at a rate of 20

frames per second. Using the rich output of the low-level architecture the two environ-

ment descriptions (structured and unstructured)are generated.

Obstacle detection

- 3D Points pre-processing

Using information from the digital elevation map the 3D points are classified according
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Figure 5.7: Low level architecture.

Figure 5.8: High level architecture.

to their position with regard to the detected road/navigable area plane. Optical flow

provides motion information for a subset of these points (corner points)

- Obstacle detection

An improved obstacle detection technique was developed based on the fusion of 3D

position information with 3D motion information. The obstacle detection algorithm ex-

tends the existing polar occupancy grid-based approach by augmenting it with motion

109



CHAPTER 5: APPLICATION: SAFETY AT INTERSECTIONS (INTERSAFE-2)

information. The occupied areas are fragmented into obstacles with cuboidal shape

without concavities and only with 90◦ convexities.

- Relevant obstacles classification

The goal of obstacle classification is to recognize the relevant objects in an intersection.

They have identified three classes of relevant objects: Pedestrian, Pole, Car. A generic

classification system able to recognize in real-time each of these classes of objects has

been developed (Nedevschi et al., 2009a) (Figure 5.9 ).

Figure 5.9: Output of classification: the predicted class.

- Obstacle representation

The obstacle are represented as cuboids carrying the following information:

• the cuboid’s position, orientation and size,

• lateral and longitudinal speed,

• variance of the object center coordinates orientation and speed.

• tracking history (number of frames in which this object was previously seen)

• The detected obstacles are classified into: pedestrians, cars, poles and unknown

5.3.2 Lidar processing

For this project we have done a complete processing of lidar data to construct environ-

ment model, host vehicle localization and moving objects detection, the details of this

processing were published in Baig et al. (2009, 2011) papers and are summarized below

(detailed descriptions in chapter 3).
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Environment mapping

As explained in 3rd chapter, we have used an occupancy grid based environment map-

ping scheme for lidar data. In this scheme the environment of the robot is divided into

rectangular cells and the mapping problem reduces to finding the occupancy state of

each cell using lidar data and vehicle dynamics data accumulated over time. In this

setting the occupancy state of each cell m is inferred knowing all the lidar measure-

ments (z1:t) and the trajectory of the vehicle (x1:t) and is represented by the probability

P(m|x1:t, z1:t). We further reduced this probability formulation into a recursive formula

where new state of the cell depends on its previous state and value of inverse sensor

model for current estimated position and current lidar data. This scheme called incre-

mental mapping gives environment maps which are very good approximation of the

actual environment.

Host vehicle localization

At each time step initial estimate of new vehicle position is made by integrating new

values of translational and rotational velocities (νt, ωt) given by IMU sensor. How-

ever, to deal with drift errors we have used an incremental scan matching technique to

correct vehicle pose in the built map. In this approach using a particle filter different

samples of new vehicle position are selected from the vehicle motion model. From each

of this new position current lidar scan is matched with the map built so far and a score

function is calculated. The position giving best match (highest score) is taken as the

corrected pose of the vehicle in the map.

Both mapping and localization are usually solved simultaneously and are known by

the name of SLAM problem. The mapping and localization techniques summarized in

these two subsections are detailed in 3rd chapter and are collectively called maximum

likelihood based SLAM solution.

Moving objects detection

Our moving objects detection scheme is based on the concept of finding inconsistencies

between map built so far and new lidar data. To find these inconsistencies new lidar

data is projected on the updated map from the current corrected position. The laser

hits observed in free areas of the map are taken as belonging to moving objects. Then

using a clustering technique these individual dynamic hits are clustered into objects. A

list of such objects from each lidar scan are the detected moving objects.

111



CHAPTER 5: APPLICATION: SAFETY AT INTERSECTIONS (INTERSAFE-2)

5.3.3 Lidar and stereo vision fusion

Although we have implemented fusion between lidar and stereo vision sensors at three

different levels, however only object detection level fusion (explained in section 3.3 of

3rd chapter) was integrated on the VW demonstrator vehicle. In this scheme list of

moving objects given by our lidar processing is fused with the list of objects given by

stereo vision processing. The result of this fusion is a list of fused objects having more

properties than their versions before fusion.

5.3.4 Moving objects tracking

As detailed in 3.3.4 section, the list of fused objects given by fusion module is input

to the tracking module. Tracking module uses MHT based data association and IMM

filtering techniques to track these moving objects.

5.3.5 Risk assessment

The risk assessment module provides an evaluation of the risk of a potential colli-

sion between the host vehicle and the objects that may be present in the driving en-

vironment. Our approach follows the work previously presented in (Ammoun and

Nashashibi, 2009). This evaluation consists in the prediction of the environment for the

future time instants and quantification of the risk associated to the detected collision

situations: potential future collisions. It is considered that the driver has full control of

the host vehicle and that the future driver behavior is unknown. The risk assessment

is performed in the following sequential steps:

• scenario interpretation

• trajectory prediction

• collision detection

• risk quantification

• risk management

Scenario interpretation

The scenario interpretation consists of a representation of the current host vehicle state

and local map of the surrounding environment composed of dynamic and static ob-

jects. This interpretation, that in most cases is incomplete and not very accurate, will
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influence the performance of the risk assessment. The host vehicle state provides in-

formation about the position, heading, steering angle, velocity, acceleration, yaw rate

of the host vehicle. The dynamic objects can be of 2 types: vehicles and pedestrians.

The information about the static and dynamic objects is limited and it leads to some

assumptions that will influence the trajectory prediction process:

• The objects of type vehicle keep current speed and direction: no information

about steering angle, acceleration, yaw rate or blinkers is provided by the high

level fusion or communications.

• The host vehicles and other dynamic objects trajectories are not constraint to fol-

low the road: there is no information about the static objects like the road geom-

etry and lanes description.

Trajectory prediction

Given the current scenario interpretation the host vehicle state and dynamic objects are

modeled and integrated in time to provide a projection of the future environment rep-

resentation. This integration time consists in predicting the trajectories of the dynamic

objects, including host vehicle, just by using the current scenario interpretation. The

future driver behavior is unknown and will not be predicted although it may affect the

future trajectories. A trajectory of a dynamic object is a temporal sequence of object

states for the future time instants. For each object a trajectory predicted from the cur-

rent time t0 until a given time horizon t0+h where h is the total prediction time. The

modeling of the trajectories is done taking into account the object type vehicle or pedes-

trian and associated information. The prediction of the vehicles trajectories, including

the one of the host vehicle, is performed by using a bicycle dynamic model (Gillespie,

1992) integrated in time using the 4th order Runge-Kutta method that uses accelera-

tion and steering rate commands as inputs. The initial vehicle state used to integrate

the previous model is the one obtained at the time t0. Predict the movement of pedes-

trians is a substantially more difficult task (Nicolao et al., 2007) than vehicles. Since a

pedestrian can easily change direction no assumptions are made regarding the direc-

tion of its movement. The pedestrian is then modeled as a circle with a predefined

radius centered at the initially detected pedestrian position at time t0, that will increase

its radius in time proportionally to its initially estimated speed.
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Figure 5.10: Example of a potential collision between the host vehicle (red circle on

the bottom) and another vehicle (green circle on the bottom right).

Collision detection

The host vehicle and dynamic objects are represented as circles: the circle center is

given by the object position, and the circle radius is set according with the object type,

at a given moment in time. The position uncertainty of the objects is represented by

an increase of the circles radius in function of the estimated traveled distance by the

object. A potential collision is detected when the host vehicle circle intersects at least

one circle of the dynamic objects at the same moment in time. Figure 5.10 gives an

illustration of this process.

Risk quantification

Figure 5.11: Relation between TTC and risk indicator.

The risk of collision is calculated for the nearest potential collision situation in time. For

calculating this risk it is used the parameter time-to-collision (TTC) that corresponds

to the duration between the current time t0 and the instant of when the first detected

collision will occur. A consideration is taken that all objects keep their initial speeds
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until the moment of the collision. The TTC is an important parameter because it can be

compared to the driver and vehicle reaction times and provide a collision risk indicator.

In our implementation the obtained TTC is compared with the commonly used total

reaction time of 2 seconds: driver (1 sec) Zhang et al. (2006) and vehicle (1 sec). The

risk estimation performed until a predefined time horizon t0+h and the risk indicator

is given by the relation shown in figure 5.11.

Risk management

Based on quantification of the collision risk two strategies can be adopted to avoid or

minimize the potential accident: Information or warning: advices are provided to the

driver through the appropriate HMI visual, audio, or haptic feedback to avoid or re-

duce the risk of accident. Intervention: the automation takes momentarily control of

the vehicle to perform an obstacle avoidance or collision mitigation manoeuvre. In our

implantation only visual information is provided to the driver with periodical estima-

tion of the collision risk for the given scenario interpretation.

5.4 System integration into demonstrator vehicle

Our final contribution in this project was the development of integration modules that

could allow smooth communication between different components developed by dif-

ferent teams.

Volkswagen decided to use Data Distribution Services (DDS)3 developed by Real-Time

Innovations (RTI). This communication layer application takes care of data transfer at

low level and provides interfaces to send and receive data. In DDS, communication

with higher level modules is implemented through subscribers and publishers. A pub-

lisher application allows a module to send its output on the DDS layer that will be used

as input by some other module whereas a subscribers application allows to receive data

from DDS layer published by some other module.

For this project the three teams implemented their components independently on dif-

ferent computers and these three computers were put in the demonstrator vehicle for

integration. We implemented following subscriber and publisher modules to allow

communication between these components implemented on three different computers

in the demonstrator vehicle:

• Lidar data subscriber: a subscriber application to read raw laser data.
3http://www.rti.com/products/dds/
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• IMU subscriber: was used to read inertial measurement unit data for host vehicle

dynamics.

• Stereo vision subscriber: This module allowed us to read stereo vision objects pub-

lished by Cluj team.

• Fusion results publisher: a publisher application that we implemented to transmit

our fusion and map results on the network to be used by risk assessment module.

• Risk assessment subscriber: a subscriber module that we implemented for risk as-

sessment module to read data published by our fusion module.

This integration scheme is shown in figure 5.12. Sensors shown in bottom layer publish

their data on DDS layer for processing. Respective modules read this data through

subscribers (violet arrows), process data and publish their results through publishers

(blue arrows) on the DDS layer to be used by next module. These integration modules

allowed a smooth communication between components developed by teams involved

in the task.

Figure 5.12: System Integration architecture showing communication between differ-

ent modules through RTI DDS layer. Violet arrows are subscriber inter-

faces whereas blue arrows are publisher interfaces.
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5.5 Synthesis

In this chapter we have briefly reviewed the application of our fusion work in the

INTERSAFE-2 project. This is an FP7 project funded by European Union and deals

with safety at intersections. Intersections are still seen as a risky area in traffic networks

and from 30 to 60% of all injury accidents and up to one third of fatalities occur at in-

tersection. In this project two new concepts, other than equipped host vehicle, were

also tested. These concepts include installing sensors on the intersections to observe

areas not visible to the vehicle sensors and share these information with host vehicle to

increase its perception range. The second concept was to share perception information

between multiple equipped vehicles with the same objective of increasing each others

perception range to avoid dangerous situations. This operation mode of sharing infor-

mation is called cooperative mode. However if intersections are not equipped or there

is no other equipped vehicle at the intersection to share information even then host

vehicle should be able to operate in a self contained safety mode called independent

mode. Different layers and modules for both of these modes are summarized in this

chapter.

Our work in this project was related to perception layer of the vehicle’s independent

mode safety system. We performed complete lidar processing to build environment

map and to find precise position of the host vehicle in this map to solve localization

problem. We also developed techniques to find moving objects from laser data and

perform fusion between lists of objects given by lidar processing and stereo vision pro-

cessing done by University of Cluj. Finally the fused lists of objects were used to find

tracks by solving tracking problem. The output of our perception module was used

by a team working at INRIA Paris charged with the work of risk assessment to find

dangerous situations and to take appropriate actions if need be. Finally we developed

integration techniques using DDS technology by RTI to allow smooth communication

between components developed by these partners. This project has been successfully

completed and its final assessment took place on 17th May 2011 in Wolfsburg Germany.
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Conclusion and Perspectives

6.1 Conclusion

In this thesis we have worked on the vehicle perception problem divided into SLAM

and DATMO sub problems using lidar and vision (stereo and mono) sensors. Although

some other people (like Vu (2009) and Wang (2004)) have also addressed these problems

using single laser sensor however we have seen that the solution developed by them

depend on the quality and type of the sensor used. They usually have used high res-

olution (<= 0.5◦) laser scanner, however, these solutions do not give good results with

low resolution (2◦) and noisy laser scanner. We have reimplemented the solution devel-

oped by Vu (2009) to confirm that, although, SLAM results are acceptable but DATMO

results have many false alarms and miss detections. The lidar scanner installed on the

VW demonstrator used for INTERSAFE-2 project (on which I worked during last 3

years) other than having low resolution, has some other problems like: some times it

reports reflections from white lane markings on the road giving false moving objects,

it has relatively more longitudinal uncertainty giving irregular shape of even straight

objects (like road curbs). Due to low resolution very few hits are observed on objects

at distance making them appear as noise eventually causing miss detections. Since

demonstrator used for INTERSAFE-2 project also has other sensors installed on it, es-

pecially stereo vision, so we proposed to solve problems of laser scanner by using data

from both laser and stereo vision and by developing fusion techniques on different

levels, primarily for this particular context.

In the setting of SLAM and DATMO based perception architecture we have noted that

fusion can take place at three different levels. In chapter 2 after reviewing already

existing solutions and techniques in the literature on this subject we give details of these

three levels. They include: Low level fusion when only basic preprocessing of the sensors
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data has been done. We propose to use occupancy grid based fusion technique at this

level. Object detection level fusion, data of individual sensors are processed separately

to detect objects and we propose to define a fusion function that will fuse these lists of

objects to get fused list of objects. These fused objects have more properties than their

previous versions giving good tracking results. Track level fusion, moving objects are

detected and tracked for each sensor individually and fusion takes place on the lists of

tracks. This fusion greatly helps to reduce the number of false tracks.

Chapter 3 gives details of these fusion levels for lidar and stereo vision sensors. For

low level fusion we explain the inverse sensor model used for laser data to construct

occupancy grid and give details of inverse sensor model that we have developed for

stereo vision data that consists of 3D points, to build a compatible occupancy grid

for stereo vision. We see that different fusion functions depending on the behavior of

sensors can be used to combine these occupancy grids to get a fused occupancy grid.

We also detail how this fused occupancy grid can be used as an input for SLAM module

to update the map. For object level fusion we explain how to get moving objects from

lidar data and define a fusion function for these objects and vision objects given by

stereo processing done by an other team. We see that this list of fused objects has more

properties and helps improve the tracking part. Finally track level fusion helps remove

false tracks detected due to sensor problem in the critical common area of both lidar

and stereo sensor.

In the same chapter we detail our fast road border detection technique to find road bor-

ders form laser data. The main advantage of detecting road borders is to remove false

moving objects detected close to road borders due to longitudinal lidar uncertainty. We

had noted that many false moving objects are detected close to road borders. The de-

veloped technique is very effective and can be used for any laser or similar sensors to

find road borders and for constructing more intuitive environment model.

Chapter 4 gives details of fusion techniques for lidar and mono vision sensors. Al-

though this work was not developed for INTERSAFE-2 data sets, instead we used a

simulator for low level fusion and some imitated vision data for object level fusion,

however we see that in particular context fusion between mono vision and lidar can be

very useful. If the environment is structured and background can be separated from

foreground then have suggest an inverse sensor model for mono vision to construct

occupancy grid that can be fused with lidar occupancy grid. As explained in this chap-

ter, occupancy grid constructed this way is especially useful if we need more belief for

free space in-front of the vehicle. For object level fusion between laser and mono vi-

sion we suggest that images from mono camera can be used to get class information of

119



CHAPTER 6: CONCLUSION AND PERSPECTIVES

the detected moving objects in the laser and then a model based tracking can be done

to get more smooth trajectories of moving objects. To speed up image processing we

suggest to use transformations for laser to image to find regions of interests (ROI) cor-

responding to detected laser objects and only these ROIs should be used for the object

classifier. We think that a track level fusion between laser and mono vision, although

possible, however may not be interesting. As we cannot get easily and precisely depth

information from single images so fusion at this level will only contribute classification

information making it similar to object level fusion but at higher processing costs.

Chapter 5 reviews INTERSAFE-2 project, its system architecture and contribution of

the partners who worked on Volkswagen demonstrator vehicle.

We see that In many of the works related to fusion, the fusion is done after tracking. The

main advantage of this strategy is that fusion module can be designed independent of

the sensors. This is very convenient to design generic methods to perform sensor data

fusion. On the other hand, high level fusion has several drawbacks: to be able to per-

form fusion, we have to wait until an object is tracked which can take several frames.

Another important problem is when an object is detected, it is sometimes not created

for tracking due to numerous false alarms or miss detections. To overcome these prob-

lems we see that object level fusion is more appropriate. It is not too early (like low

level fusion) where finding common representation scheme requires to develop similar

processing models for even different sensors (for example finding an inverse sensor

model for vision sensor that is compatible with that of lidar to construct compatible

occupancy grids). And is not too late (like in case of track level fusion) that it may take

many frames to confirm an object as a moving target, especially in the case when a

moving object goes out of view before it is confirmed as a valid dynamic object. Other

information inferred from data (like road borders from laser data) can help improve

the quality of the perception results.

In this thesis we have presented a fusion based solution for SLAM and DATMO based

perception architecture for autonomous vehicles moving fast in urban environments

for particular sensor constraints. Although there exist other fusion algorithms however

as rightly pointed out by Hall and Garga (1999) there is no such thing as a magic or golden

data fusion algorithm, a need of new algorithms will keep on arising for different sensors

and/or target environments. We hope that our work in this thesis has explored another

dimension in fusion and can be useful for many similar situations as they are not rare

in robotics field.
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6.2 Perspectives

Work done in this thesis can be extended in many different ways. Firstly we see that

many of the existing fusion techniques are based on Bayesian filters. We see that on

both object and track level these filters can be used to remove many of the false objects

before fusion resulting in better results. Although this will incur an overhead of extra

processing but it may be worth it in certain situations like when data is very much

noisy.

Secondly we will like to extend our road border detection technique by adding tracking

them over time to get smooth borders even if data is missing. And to detect real moving

objects detected on or beyond road borders like pedestrians on footpath.

Although Bayesian approach used in this thesis is fast, however, some times it does not

handle the conflicting information in a more useful way, for example if there is conflict

in two occupancy grids where one sensor sees an object whereas second sensor sees

this place empty. Then a Bayesian combination of the grids will give the occupancy

state of these cells between the two pre fusion versions, making these information of

little use. We solved this kind of situations by using knowledge of sensor properties

and defining custom rules. However Dempster-Shafer and evidence theory based on

belief functions handle such situations in a more systematic way. Another perspective

is to identify situation where these approaches can give better results than the Bayesian

approach and use them to solve data fusion problem.

Stereo vision system used for this work is also capable of giving lane and other road

marking (arrows, stop lines) information, however, for current work we have ignored

such information. Moreover occupancy grid based map representation technique used

for environment representation is not capable of using these information because it

can only be used to see if a place is occupied or empty. We also plan to use new map

representation techniques capable of making use of such useful information and hence

giving more realistic maps.
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