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A B S T R A C T

Segmentation of magnetic resonance images (MRI) of skeletal striated mus-
cles is of crucial interest when studying myopathies. Diseases understanding,
therapeutic follow-ups of patients, etc. rely on discriminating the muscles in
MRI anatomical images. However, delineating the muscle contours manually
is an extremely long and tedious task, and thus often a bottleneck in clinical
research. Typical automatic segmentation methods rely on finding discrimina-
tive visual properties between objects of interest, accurate contour detection or
clinically interesting anatomical points. Skeletal muscles show none of these
features in MRI, making automatic segmentation a challenging problem. In
spite of recent advances on segmentation methods, their application in clinical
settings is difficult, and most of the times, manual segmentation and correction
is still the only option.

In this thesis, we propose several approaches for segmenting skeletal mus-
cles automatically in MRI, all related to the popular graph-based Random
Walker (RW) segmentation algorithm. The strength of the RW method relies
on its robustness in the case of weak contours and its fast and global optimiza-
tion. Originally, the RW algorithm was developed for interactive segmentation:
the user had to pre-segment small regions of the image – called seeds – before
running the algorithm which would then complete the segmentation. Our first
contribution is a method for automatically generating and labeling all the ap-
propriate seeds, based on a Markov Random Fields formulation integrating
prior knowledge of the relative positions, and prior detection of contours be-
tween pairs of seeds. A second contribution amounts to incorporating prior
knowledge of the shape directly into the RW framework. Such formulation re-
tains the probabilistic interpretation of the RW algorithm and thus allows to
compute the segmentation by solving a large but simple sparse linear system,
like in the original method. In a third contribution, we propose to develop a
learning framework to estimate the optimal set of parameters for balancing the
contrast term of the RW algorithm and the different existing prior models. The
main challenge we face is that the training samples are not fully supervised.
Specifically, they provide a hard segmentation of the medical images, instead
of the optimal probabilistic segmentation, which corresponds to the desired
output of the RW algorithm. We overcome this challenge by treating the opti-
mal probabilistic segmentation as a latent variable. This allows us to employ
the latent Support Vector Machine (latent SVM) formulation for parameter esti-
mation. All proposed methods are tested and validated on real clinical datasets
of MRI volumes of lower limbs.

R É S U M É

La segmentation d’images anatomiques de muscles striés squelettiques ac-
quises par résonance magnétique nucléaire (IRM) présente un grand intérêt
pour l’étude des myopathies. Elle est souvent un préalable nécessaire pour
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l’étude les mécanismes d’une maladie, ou pour le suivi thérapeutique des pa-
tients. Cependant, le détourage manuel des muscles est un travail long et fas-
tidieux, au point de freiner les recherches cliniques qui en dépendent. Il est
donc nécessaire d’automatiser cette étape. Les méthodes de segmentation au-
tomatique se basent en général sur les différences d’aspect visuel des objets à
séparer et sur une détection précise des contours ou de points de repère anato-
miques pertinents. L’IRM du muscle ne permettant aucune de ces approches,
la segmentation automatique représente un défi de taille pour les chercheurs.

Dans ce rapport de thèse, nous présentons plusieurs méthodes de segmenta-
tion d’images de muscles, toutes en rapport avec l’algorithme dit du marcheur
aléatoire (MA). L’algorithme du MA, qui utilise une représentation en graphe
de l’image, est connu pour être robuste dans les cas où les contours des objets
sont manquants ou incomplets et pour son optimisation numérique rapide et
globale. Dans sa version initiale, l’utilisateur doit d’abord segmenter de pe-
tites portions de chaque région de l’image, appelées graines, avant de lancer
l’algorithme pour compléter la segmentation. Notre première contribution au
domaine est un algorithme permettant de générer et d’étiqueter automatique-
ment toutes les graines nécessaires à la segmentation. Cette approche utilise
une formulation en champs aléatoires de Markov, intégrant une connaissance à
priori de l’anatomie et une détection préalable des contours entre des paires de
graines. Une deuxième contribution vise à incorporer directement la connais-
sance à priori de la forme des muscles à la méthode du MA. Cette approche
conserve l’interprétation probabiliste de l’algorithme original, ce qui permet
de générer une segmentation en résolvant numériquement un grand système
linéaire creux. Nous proposons comme dernière contribution un cadre d’ap-
prentissage pour l’estimation du jeu de paramètres optimaux régulant l’in-
fluence du terme de contraste de l’algorithme du MA ainsi que des différents
modèles de connaissance à priori. La principale difficulté est que les données
d’apprentissage ne sont pas entièrement supervisées. En effet, l’utilisateur ne
peut fournir qu’une segmentation déterministe de l’image, et non une segmen-
tation probabiliste comme en produit l’algorithme du MA. Cela nous amène
à faire de la segmentation probabiliste optimale une variable latente, et ainsi
à formuler le problème d’estimation sous forme d’une machine à vecteurs de
support latents (latent SVM). Toutes les méthodes proposées sont testées et va-
lidées sur des volumes de muscles squelettiques acquis par IRM dans un cadre
clinique.
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1
I N T R O D U C T I O N

1.1 context and motivations

Magnetic resonance Imaging

Magnetic Resonance Imaging (MRI) is a medical imaging technique providing
2D or 3D views of the internal structures of the body. MRI makes use of
the principle of Nuclear Magnetic Resonance (NMR) which allows to measure
some properties of the nucleus of some specific atoms in presence of a powerful
magnetic field. MRI is non-invasive and implies non-ionizing radiations (e.g.
unlike X-rays) allowing long and repeated acquisitions with no hazard posed
for the health of patients.

Neuromuscular Diseases

Neuromuscular diseases may involve disorders in the motor neurons, in cells
of the spinal cord, in peripheral nerves or in the muscles themselves. There
exist both hereditary – dominant or recessive – and acquired – inflammatory,
toxic, etc – disorders. Among the features assessed by clinicians to character-
ize neuromuscular diseases one finds: time of onset, chronicity, presence or
absence of pain, muscle weakness and distribution of the involvement – proxi-
mal, distal, facial, symmetric or asymmetric, hypertrophical or atrophical, etc.

Clinical MRI is a non-invasive and powerful tool to characterize skeletal
muscle involvement in neuromuscular disorders. This imaging technique has
progressively established itself as a reference technique for the initial assess-
ment of pathologies and for the evaluation of therapeutic intervention. In the
NMR Laboratory of the Institute of Myology in Paris, several research projects
focus on developing biomarkers for skeletal muscle disorders based on MR
images: relative image intensity, intensity histogram, signal heterogeneity and

Figure 1.1.1 – Various axial cross-sections: (left) healthy subject (Dixon imaging);
(middle) patient with centronuclear myopathy (Dixon imaging) –
mutation of the MTM1 gene coding for the myotubularin; (right)
patient with centronuclear myopathy (T1-weighted imaging) – un-
known mutation.
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2 introduction

Figure 1.1.2 – (left) Several axial cross-sections of a 3D MRI volume of the lower
limbs (T?

2 imaging); (right) coronal cross-section of the same vol-
ume.

more sophisticated methods of texture analysis, geometrical analysis (distance,
area, volume, shape), etc. Moreover, some NMR parameters are intrinsic to the
different types of tissues and can be quantified: T1, T2, proton density, T?

2 , T1ρ

and T2ρ, D (diffusion constant), etc; We refer the reader to specialized publica-
tions – such as Fleckenstein et al. (1996) – for further information on the topic
of muscle MR imaging; a brief introduction is also provided in the appendices
of this document (see appendix A). In Fig. 1.1.1, we display MRI axial cross-
sections of healthy subject and patients, showing the varied visual patterns of
some myopathies.

By displaying the anatomical structures – bones, vessels, fat and muscle tis-
sues, etc. (see Figs. 1.1.2 and 1.1.1) – anatomical MR imaging allows to visually
discriminate between the muscles and other organs, and thus to perform seg-
mentation.

Image Segmentation

“In computer vision, segmentation is the process of partitioning a digital image
into multiple segments (sets of pixels). The goal of segmentation is to simplify
and/or change the representation of an image into something that is more
meaningful and easier to analyze. Image segmentation is typically used to
locate objects and boundaries (lines, curves, etc.) in images. More precisely,
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Figure 1.1.3 – Image segmentation example. (left) Original image; (right) Seg-
mented image. This segmentation is visualized by a boundary (red
curve) separating the two regions and different colors assigned to
the pixels, one per segment.

image segmentation is the process of assigning a label to every pixel in an im-
age such that pixels with the same label share certain visual characteristics”1.

Fig. 1.1.3 shows an example of image segmentation where a person in the
picture is separated from the background.

Segmentation methods are needed to facilitate the identification of a muscle
or of a muscle group. This step is particularly crucial when muscles have
to be investigated selectively: for instance, when one wants to determine the
NMR properties of each muscle group and study the differences between them.
It is also necessary to measure the volume of the muscles and monitor their
evolution.

Today, segmentation of muscle images is performed manually, by drawing
regions of interest on the images. Such task requires enormous amounts of
time, and is an extremely tedious and tiring process. Due to the advances in
acquisition techniques and computer storage facility, it is common to acquire
MRI 3D volumes composed of more than 50 slices. As a result, manually
segmenting a volume of a thigh – which comprises more than 15 muscles –
represents more than four hours of work. Moreover, during clinical research
protocols, patients are often scanned with several sequences and very large
amount of images can be generated. As acquiring images becomes easier and
faster for large volumes, segmentation of muscles images is becoming more
and more a bottleneck in the chain of analysis. Besides, manually processing
these data is not only time consuming, it is also highly observer-dependent:
different experts produce significantly different segmentations, especially in
places where the boundaries of the organs are not clearly visible. Fig. 1.1.4,
shows an example of manual segmentation of the muscles in anatomical MRI.

For these reasons, it is highly desirable to possess automatized segmentation
tools to process the data more quickly and consistently and thus facilitate their
interpretation. This is a crucial objective to sustain the growth of applications
of skeletal muscle MRI in the field of neuromuscular disorders.

Whereas many automatized methods have been developed for segmenting
images of brains and hearts, very few attempts were made on skeletal muscles.

1 Wikipedia, on 01.01.2013
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Figure 1.1.4 – (left) Axial cross-section of an MRI volume of a right thigh (Dixon
imaging); (center) same cross-section with all muscles manually
segmented; (right) 3D segmentation of the same volume.

Medical studies on the brain and the heart are more developed due to the ex-
istence of widespread diseases associated with theses organs, whereas severe
muscle diseases are often genetic and fall in the category of orphan diseases.
The specifics of muscle segmentation prevent using directly the methods de-
veloped for other organs and require specially adapted methods. Moreover, a
large part of the existing publications on muscle segmentation focus mainly
on the fat-muscle tissue separation rather than on muscle group segmentation
itself (Al-Attar et al., 2006; Barra and Boire, 2002; Mattei et al., 2006)

In this thesis report, we present our work on developing new automatic
image segmentation methods adapted to MRI images of skeletal muscles.

1.2 problem definition

Any automatized segmentation method relies on (a) finding consistent features
of targeted objects – e.g. shape or appearance descriptors – (b) allowing some
variability in the target features and (c) defining means of overcoming antici-
pated difficulties – e.g noise in images:

• consistent features of the skeletal muscles in MRI are (cf. Fig. 1.1.4):

– fixed relative positions – e.g. muscle a is always top left of muscle b;

– interweaved positions, closely entangled – e.g. muscle a is always
adjacent to muscle b;

– shapes, to some degree – e.g. muscle a can be visually identified
based on prior anatomy knowledge;

– smooth boundaries, to some degree, especially in the direction par-
allel to the limbs – i.e. muscles can be visually separated from each
other based on visible boundary structures.

– muscle/background appearances – i.e. muscles can be visually dis-
tinguished from other tissues based on their appearance.
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Figure 1.2.1 – Missing and spurious contours in muscle image. (left) Cross-
section of a thigh from a 37 year-old female subject; (right) same
height cross-section from a 29 year-old male subject. Notice the dif-
ferences in shape and proportion of the muscles between the two
subjects.

• variability is found in (cf. figure 1.2.1):

– shapes, with large inter-subject variations of the muscles size and
shapes.

• anticipated difficulties are (cf. figure 1.2.1):

– non-discriminative inter-muscle appearance – e.g. one cannot dis-
tinguish muscle a from muscle b based on intensity/texture differ-
ences;

– missing boundaries – e.g. muscle a is sometimes not separated from
muscle b by any visible structure;

– spurious contours – e.g. muscle a can present internal structures
visually similar to boundaries.

Considering these characteristics, our aim is to design semi-automatic or
automatic segmentation methods with the following features:

• multi-object;

• relying solely on:

– detectable boundaries;

– prior knowledge of the muscle shapes and topology;

– muscle/background intensity differences;

• robust to:

– missing boundaries;

– missing contours;

– shape variations.
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1.3 contributions

In this thesis report, we present several contributions related to the general
Random Walks (RW) for image segmentation algorithm (Grady, 2006). This al-
gorithm has the advantage of relying solely on boundaries while being robust
to partial contours, and provides a simple multi-object segmentation frame-
work with no topological issues (that is, no intersection issues).

Originally, the RW algorithm was developed for interactive segmentation:
the user had to pre-segment small regions – called seeds – of the image to
be segmented before running the algorithm which would then complete the
segmentation. Our first contribution is a method for generating and labeling
appropriate seeds automatically. This approach exploits the fact that relative
positions of the muscles are consistent among individuals, even though the
large inter-subject variations of skeletal muscles prevent using a deformable
model based on a shape template. Thus, it is reasonable to develop a seg-
mentation method whose prior information is not based on the position of
the boundaries and on the shape of the objects, but rather on the approximate
relative position of the objects and the existence of boundaries between them.
Seeds are compatible with this idea: they are generally placed well inside
the target object so that the actual boundaries are determined by the Random
Walks algorithm. Thus, our method aims at placing the seeds automatically,
based on prior knowledge of the relative positions and on the detection of
contours between pairs of seeds. We have the following stages: 1) generate
unlabeled seeds within homogeneous regions of the target image; 2) build a
graph over the sampled seeds, viewing each seed as a node and adding edges
between nearby ones; 3) assign a label to each seed automatically by mini-
mizing an functional defined on the graph nodes and edges; 4) the image is
segmented with the RW method using the newly generated seeds. During the
labeling stage 3), the node-wise potentials depend on prior-knowledge over
label assignments based on a comparison of the target image with a registered
reference annotated image. The pair-wise potentials depend on the likelihood
of the edge orientation and on the detection of boundaries between the seeds,
where both quantities can be obtained by statistical learning over the refer-
ence image. This labeling problem is solved using an efficient discrete energy
minimization method based on a belief propagation algorithm (Kolmogorov,
2006). Due to the non-specific (non sub-modular) formulation of the pair-wise
potentials, the labeling cost functional can only be minimized approximately;
however, we present experiments on real clinical data showing that the approx-
imate solution is better than not using pair-wise potentials. This method was
published in the proceedings of the 2012 ISBI conference (Baudin et al., 2012c).

This first method has the inconvenience of being two-stage: if the seed label-
ing fails, then the segmentation will irremediably fail in the same area. Fortu-
nately, it was shown that it is possible to completely bypass the seed placement
stage by incorporating prior-knowledge on the intensity to the RW formulation
(Grady, 2005). However, intensity is not a reliable feature in the case of mus-
cles separation. Our second contribution consists in proposing several models
mixing Random Walks and prior knowledge of the shape. The Random Walks
segmentation algorithm is a graph-based method working at the pixel level:
each pixel is viewed as a node and edges are defined between each adjacent
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pixels; the weights of the edges are set according to the strength of the contrast
between the connected pixels. The aim is to assign a label (e.g. the index of
a muscle) to each pixel. Segmentation is achieved by minimizing a quadratic
objective functional based on the combinatorial Laplacian matrix of the image,
which amounts to solving a large sparse linear system. In its original version,
a unique solution is found only if there exists at least one seed per label. In our
approach, a prior term depending on the squared distance of the segmentation
to a statistical atlas is added to the RW functional. We point out that such for-
mulation does not break the probabilistic explanation of the RW method, as
the added prior term can be seen as adding implicit seed nodes. Noting that
each pixel’s prior can be weighted independently from the others, we propose
several weighting schemes, either based on statistics over the training set or
on information from the target image itself. This method was published in the
proceedings of the 2012 MICCAI conference (Baudin et al., 2012a). In a second
approach, published in the proceedings of the 2012 BMVC conference (Baudin
et al., 2012b), we propose to further exploit our training set by building a sta-
tistical shape space – a low dimensional space of valid solutions – through
Principal Component Analysis. This is motivated by the need to increase the
flexibility of our model so that it can adapt to more diverse morphologies. The
segmentation is no longer anchored to a unique average atlas like in the previ-
ous approach, but is constrained to remain “close” to the shape space, which
models many possible valid segmentations. All approaches are validated on
real clinical data.

While it is interesting to determine which model gives better results on the
muscle data, it is also desirable to combine them together – e.g. using dif-
ferent weighting schemes plus the intensity prior. Moreover, we could also
want to use several weighting functions for setting the graph edges in order
to capture varied properties of the images simultaneously. However, achiev-
ing such generality requires to set balancing weights for a large number of
parameters, which would certainly not be optimal if done manually. As a
third contribution, we propose to develop a learning framework to determine
the optimal set of parameters for balancing the contrast term of the RW algo-
rithm and the different prior models. Our approach is guided by noticing the
RW formulation bears important similarities with the more wide-spread pixel-
based Markov Random Fields (MRF) (Boykov and Jolly, 2001) segmentation
methods. In recent work, machine learning methods – such as Support Vector
Machines (SVM) – were used to fit the parameters of the segmentation method
to the data type of interest (Szummer et al., 2008). We propose to adapt the
MRF/SVM learning scheme to the RW case. We explain why a direct transposi-
tion in the RW case of the previous formulation cannot solve the problem, due
to having only a “hard” – i.e. binary – annotation vector for our training data
whereas a “soft” – i.e. probabilistic – one is necessary. We overcome this issue
by introducing an implicit soft annotation vector, which amounts to solving a
latent SVM problem. Due to the large number of variables rendering certain
stages of the problem too difficult to solve exactly, we propose approximation
schemes in the “Annotation Consistent Inference” (ACI) stage and in the “Loss
Augmented Inference” (LAI) stage. Using the same clinical data as previously
described, we present preliminary results which demonstrate the potential of
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this learning approach for the prior-enhanced Random Walks segmentation
method.

1.4 thesis plan

This report is organized as follows: in chapter 2 we present a detailed state-of-
the-art of segmentation methods in medical imaging; the next three chapters
present our contributions to the field: automatic seed placement in chapter 3,
introducing shape priors to the Random Walks framework in chapter 4 and
developing a SVM-based learning scheme for improving the latter models in
chapter 5; the last part concludes this report.



2
S TAT E O F T H E A RT I N S E G M E N TAT I O N

To address the problem of image segmentation, a wide variety of techniques
was presented and one can find a very abundant literature. However, few
research works have dealt with muscle image segmentation to the best of our
knowledge. In this chapter, we review the existing segmentation methods
applied to medical images and their optimization procedures, with a special
attention paid on those which were designed to address muscle segmentation.

Almost all segmentation methods have in common is how they rely on a
cost functional, or energy functional, E (M, I) which measures how well a pro-
posed segmentation model M explains the target image I. In other words,
an energy functional is designed to measure the adequacy of the segmenta-
tion model with respect to a combination of criteria, such as alignment of the
model surface with image edges, intensity homogeneity within model regions,
plausibility of model shape, etc. The better the model M fits the image I, the
lower is E (M, I). Depending on the chosen approach, E (·, I) can be convex
and have only one global minimum, or non-convex and have many local min-
ima. Determining a model and its associated functional is the most crucial step
in developing a new segmentation method. Indeed, the desired segmentation
has to correspond to the global minimum, or to an “accessible” local-minimum
of E (·, I), otherwise one cannot expect to retrieve such solution relying on E.

When presented with a new image I to segment, the model M is fit to the
image via an optimization procedure, which consists on minimizing E (·, I) with
respect to the model parameters. Naturally, this optimization step is also cru-
cial in determining the quality of the obtained solution. Even when the global
minimum of E (·, I) corresponds to the desired solution, it sometimes cannot
be reached, either because the optimization procedure is mislead to an in-
correct result – e.g. a local optimization can be “stuck” in non-desired local
minimum – or because it would take too long to reach it – e.g. a NP-hard
problem.

In this chapter, we will distinguish between two types of approaches. In a
first part, we give an overview of vast family of surface-based models – i.e. mod-
els which rely on mathematical representations of the surface of the target ob-
jects. Among the most widely used models, Deformable Models, either explicit
or implicit, are surface models which are progressively fit to the image in a local
optimization process. An optimization process is said local when the solution
is found by applying successive local changes from an initial state, a canonical
example being the gradient descent. Among them, landmark-based models are
surface models based on remarkable, anatomical or statistically consistent im-
age points, which allows introducing statistical shape priors for constraining
the surface position. Finally, unlike Deformable Models, which mostly rely on
non-optimal local-optimization methods, graph-based surface models can reach a
global minimum of the cost functional thanks to efficient discrete optimization
algorithms. This advantage is paid by a certain approximation of the solution
due to the discretization of the solution space.

9
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In a second part, we present region-based models – i.e. which parametrize
every point of the image domain – devoid of intersection issues in the case of
multi-object segmentation, but whose topology and shapes are more difficult
to constrain. Among these, some use a typical approach based on continuous
local optimization, while others rely on a graph formalism: Graph-Cuts and
Random Walks. Graph-based models provide convenient and efficient frame-
works for multi-object segmentation, for dealing with weak edges, and for
accepting simple user interaction in the form of seeds. However there are still
few examples of such models incorporating prior knowledge of shapes.

2.1 surface-based models

Although they may have very diverse mathematical formulation, or rely on
very different types of information, surface-based models all have in common a
parametrized model of the surface of the objects of interest. Given a particular
state of the model, the image segmentation is determined by the location of
the model surface: any point in the image domain is either on one side of the
surface, or the other. If the surface is closed, then any point is either inside
the volume delimited by this surface – thus assimilated to this object’s class, or
outside – thus assimilated to another class or to the background class.

The value of the energy functional of a surface model thus depends on the
location of the surface with respect to the segmented image. What is measured
by the functional can either be related to image boundaries – i.e “is the model’s
surface matching the edges of the image ?” – or to image regions – i.e. “do the
properties of the regions delimited by the surface model match what I know
of them a priori ?”.

2.1.1 Active Contours

Active Contours is a general term which designates surface-based models whose
functional minimization procedure is a suboptimal strategy consisting in evolv-
ing an initial surface (or contour in 2D) in the direction of the steepest descent
of the functional. In general, the cost functional which is used is not convex
and the adopted minimization approaches only reach local minima, highly
dependent on the initialization state.

The first and most simple instances of active contours rely only on low-level
image features, such as edges, region intensity, texture, as well as low-level
shape features, such as contour length, object’s surface (object’s volume in
3D), contour smoothness, etc. However, a number of factors such as noise,
occlusion, complexity of shapes, etc. as well as sensibility to initial conditions
often limit the performance of purely low-level methods. For these reasons,
higher-level constraints on shapes were later introduced, called shape priors,
based on previously seen similar objects.

Let us first consider a boundary object C embedded in the domain space Ω
of the image I, such as a planar curve (C ⊂ R2) or a surface (C ⊂ R3) to be
deformed from an initial position in order to minimize an energy functional
E (C). The energy E (·) is specific to the model, as it is determined by the kind
of image information one wants to exploit; in the next sections, we present
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several formulations for E (·), depending on whether it uses edge information
or region information.

The energy functional E can often be minimized using finite elements meth-
ods for the variational form, by making C depend on time:

δC
δt

(s, t) = −∇CE (C (s, t) , t) . (2.1.1)

This expression is the base evolution equation for most active contours mod-
els. Such formulation has the visual effect of making the the surface of the
boundary object deform with time, hence the names “active contours” and
“deformable models”. The literature on active contours is extremely large and,
for this reason, we only give a brief and incomplete survey of it. For a deeper
review of active contour methods, we indicate to the reader several review ar-
ticles and books: McInerney and Terzopoulos (1996); Montagnat et al. (2004);
Cremers et al. (2006b); Paragios et al. (2005). Active contours can be driven
either by the edges of the image or by the properties of the image regions – or
by both simultaneously.

Active Contours and edge information

Active Contours for image segmentations based on edge information, also
called Snakes, were introduced by Kass et al. (1988), along with the typical
energy functional:

E (C) =
ˆ 1

0

α

2
|Cs|2 +

β

2
|Css|2 + Eext (C) ds, (2.1.2)

where C is a 2D parametric curve C : [0, 1] → Ω, Cs and Css denote the first
and second derivative of C, α and β are weighting parameters, respectively for
tension (Cs) and rigidity (Cs). These first two terms can be viewed as internal
energy terms, as they measure properties of the contour itself. Eext is a function
based on an edge map of the image I, such that it is minimal on image edges.
This term is an external energy term, measuring the adequacy of the contour
with the image. A canonical example for Eext is the image squared gradient
norm:

Eext (x) = − |∇I (x)|2 . (2.1.3)

Deriving equation 2.1.2 by following the scheme of 2.1.1 gives:

δC
δt

= αCss − βCssss −∇Eext. (2.1.4)

Such formulation can be extended to 3D straightforwardly (Terzopoulos et al.,
1988). Many variations on Snakes were developed, e.g. to decrease the depen-
dance on the initial conditions, the balloon model (Cohen, 1991) adds a force
term to equation 2.1.4:

δC
δt

= αCss − βCssss −∇Eext + νn, (2.1.5)
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Figure 2.1.1 – Segmentation with snakes: (left) model evolution: the boundary
model converges towards the edge of the pear (Kass et al., 1988);
(middle) tracking a person’s mouth with a snake in a video (ibid);
(right) snake-segmented cell in an EM photo-micrograph (McIner-
ney and Terzopoulos, 1996).

where ν > 0 sets the strength of the balloon force, and n is the outward normal
to the contour. Such expression amounts to maximizing the area of C while
keeping the boundaries smooth. Other examples include: adopting a multi-
resolution framework using Fourier descriptors for parametrizing the contour
(Leroy et al., 1996); replacing the finite difference numerical optimization ap-
proach by a more robust finite element method (Cohen and Cohen, 1993); us-
ing the gradient vector flow in the external energy term in order to extend the
capture range of the initial state (Xu, 1998). The mathematical parametriza-
tion is also crucial to determine the extent of the solution space; for instance,
initial deformable models were based on standard triangular or quadrangu-
lar mesh parametrization (Terzopoulos et al., 1988; Nastar and Ayache, 1993);
however, this type of parametrization necessitates frequent reparametrization
and makes topology changes – that is, changes in the object’s Euler character-
istic or in the number of objects – difficult. Types of parametrization allowing
topology changes have been proposed, such as particle systems (Szeliski and
Tonnesen, 1992; Lombardo et al., 1995) – which model the surface with ele-
mentary objects whose position is ruled by local forces, simulating the evolu-
tion of physical particles in a Newtonian space. The popular Simplex meshes
(Delingette, 1999) – which are topologically dual to triangular meshes – also
allow some topology changes and benefit from convenient reparametrization
schemes. More recently, Delaunay deformable models have been proposed
(Pons and Boissonnat, 2007), which model the surface from a Delaunay “tetra-
hedralization” (that is, the extension of triangulation in 3D) of the entire space
based on surface points. This model allows simple topology changes and is
free from topology issues, such as undesired intersections of objects.

Active Contours and region information

The models presented in the previous section are considered edge-based, as
they are driven by the proximity of edges according to the external energy Eext.
Such dependency make these models very sensitive to noise, and inadequate
to segment objects which cannot be differentiated by detecting edges between
them, e.g. in cases of fuzzy of blurred contours, or of highly textured objects.

However, other segmentation approaches are based on image regions rather
than edges. The classical approach was proposed by Mumford and Shah (1989);
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Blake and Zisserman (1987), were the image I is approximated with a piece-
wise smooth function u, via minimizing the functional:

E (u, C) = 1
2

ˆ
Ω
(I − u)2 dx + λ2 1

2

ˆ
Ω/C
|∇u|2 dx + ν |C| , (2.1.6)

with respect to both u and C. Here, C is a finite set of C1-arcs. Function u is
designed to be a texture-less approximation of image I, with sharp variations
only at the boundaries matched by C and smooth variations inside regions
defined by C. When minimizing this functional, the first term ensure the re-
semblance of u with I, the second term penalizes discontinuities of u except on
the boundary C and the third term limitates the length of the boundary to seg-
ment only important objects. Minimizing this highly non convex functional is
notoriously difficult and necessitates approximate methods and complex opti-
mization procedures (Blake and Zisserman, 1987). However, a simpler version
of the Mumford Shah functional 2.1.6 can be obtained in the limit λ → ∞,
yielding the cartoon limit (Mumford and Shah, 1989):

E ({ui} , C) = 1
2 ∑

i

ˆ
Ri

(I − ui)
2 dx + ν |C| , (2.1.7)

where {ui} is a partition of I into constant regions {Ri} determined by C. This
functional was modified by Zhu and Yuille (1996), introducing a Gaussian
probabilistic model of the constant gray-level value within each regions:

E ({αi} , C) = 1
2 ∑

i

ˆ
Ri

− log P (I|αi) dx + ν |C| , (2.1.8)

where P (I|αi) is the posterior probability of obtaining the intensity values in I
inside region Ri given distribution parameter αi.

A hybrid model, called diffusion snake, was also proposed (Cremers et al.,
2002):

E (u, C) = 1
2

ˆ
Ω
(I − u)2 dx + λ2 1

2

ˆ
Ω/C
|∇u|2 dx + ν

ˆ
|Cs|2 , (2.1.9)

where the external energy is that of the Mumford Shah functional 2.1.6, while
the internal elastic constraint on the boundary is that of the Snake 2.1.2. Such
model can then be optimized via standard gradient descent methods.

2.1.2 Surface models and shape priors

The regularization factors in the approaches of the previous sections, rendered
necessary due to noise and missing parts, all have the effect of minimizing the
contour length (Bergtholdt et al., 2006). These purely geometric constraints can
be viewed as shape priors, but they are based only on the intuition that natural
shapes have smooth boundaries. Such hypothesis is hardly true in practical
cases, and consistently yields excessive regularization, e.g. eroded contours
and ignored small details. Shape priors based on previously-seen examples, by
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Figure 2.1.2 – (left) Local parametrization of simplex meshes (Delingette, 1999);
(right) medial representation for constraining the model shape
(Gilles and Magnenat-Thalmann, 2010).

imposing the boundary to adopt realistic shapes, allow segmenting complex
shapes despite noise and occlusions.

Single reference shape models

The most simple shape prior type in deformable models is enforced when the
initial shape of the boundary corresponds to a template of the object to be
segmented. The regularization terms are sometimes enough to ensure that the
shape remains valid as the model deforms. This reference template boundary
can either be manually positioned or automatically positioned onto the target
image via rigid registration procedures. This reference shape can be a rough
approximation (simple mathematical objects, quickly hand-drawn shapes), or
a sample shape obtained from a previously segmented image.

An elastic shape model was introduced by Terzopoulos et al. (1987), propos-
ing an internal energy term measuring the changes in the curvature and the
length between nearby points – via the first and second fundamental forms –
of the deformed body. Spring-mass analogies were also proposed (Vasilescu
and Terzopoulos, 1992; Nastar and Ayache, 1993), in which the surface model –
parametrized as a discrete mesh – has its shape constrained by a set of springs
connecting the vertices together. The length of the springs at rest determines
the equilibrium position(s) and thus the minimum cost shape configuration(s).
The stiffness of the springs determines the elastic properties of the model and
thus the range of shapes the model can take. Over the years several models sim-
ulating soft tissue deformation have been proposed for segmentation, bridging
gaps between computer graphics, biomechanical simulation and computer vi-
sion.

muscle segmentation using simplex meshes with medial rep-
resentations Gilles and Magnenat-Thalmann (2010) presented a skele-
tal muscle segmentation method based on simplex meshes (Delingette,
1994). Considering a 3D surface model, simplex meshes are discrete meshes
where each vertex has exactly 3 neighbors. Having a constant connectivity
allows to simply parametrize the location of one vertex with respect to its
neighbors, and thus parametrize deformation of the shape – translation,
rotation, scaling – in a local manner. Indeed, the location of a pixel, de-
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noted as x can be expressed as a linear combination of the locations of
the three neighbors plus a local elevation term parallel to the local normal
(see figure 2.1.2): x = ε1x1 + ε2x2 + (1− ε1 − ε2) x3 + hn. As a result, many
local measurements – including curvature and cell surface – can be com-
puted efficiently and global energy terms enforcing local constraints come
up naturally.

Here, the authors impose local smoothing via curvature averaging, which
does not tend to reduce the surface like 1-order operators typically do.
Prior knowledge is imposed by constraining the local scale changes on the
elevation parameter with respect to a reference shape. Denoting the sur-
face of the triangle formed by the three neighbors of a pixel as S, given
the reference shape parameters

(
ε̃1, ε̃2, h̃, S̃

)
, the new location of the con-

sidered pixel is expressed as:

x = ε̃1x1 + ε̃2x2 + (1− ε̃1 − ε̃2) x3 + h̃
(
S/S̃

)1/β n, (2.1.10)

where β ∈ [2,+∞[ is a parameter which sets the amount of allowed lo-
cal deformation: with β = 2 this definition is similitude invariant; with
β = +∞ this definition is invariant through rigid transformations only.
The model is attached to the target image through either gradient norm
maximization in the direction of the gradient at the location of the ver-
tices, or maximization of similarities between the reference and the target
images at the vertices location.

A medial representation – similar to the M-reps of Pizer et al. (2003) – is
combined with the simplex parametrization to exploit the specific tubular
shapes of the skeletal muscles. Medial vertices are added to the model,
constrained to remain on the medial axis of the tubular objects. This is
achieved by connecting the new vertices to the surface vertices through
spring-like forces. This constrains the global structure to resemble its ini-
tial reference shape, thus acting as a global shape prior (see figure 2.1.2).
This medial axis representation also allows efficient collision handling. The
model is fit to the image through an iterative process of successive local
evolutions. Such model appear to always yield a valid solution, some-
times at the price of an excessive regularization or lack of adaptability to
the specifics of the target image.

muscle segmentation using deformable models and shape

matching A shape prior for muscle segmentation in 3D images was
derived from a computer animation technique, called shape matching, used
to efficiently approximate large soft-tissue elastic deformations (Gilles and
Pai, 2008). This method was applied to muscle segmentation with some
success. In this approach, discrete meshes are used to parametrize the
moving surface. Let x0 be the vector containing the initial position of the
control points of the parametric surface. Clustering is performed on x0

such that each cluster ζi contains at least a certain number of vertices (set
by the user). During segmentation, the evolution of the active surface is
performed according to the following iterative procedure:
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Figure 2.1.3 – Muscle segmentation using deformable models with a shape match-
ing prior (Gilles and Pai, 2008): from the first iteration (left) to the
last (right).

Figure 2.1.4 – Single reference shape priors. (left) An elastic cube model Ter-
zopoulos et al. (1987). (right) The advantages of generalized gradi-
ents (bottom) over standard gradient descent (top) using the same
deformable model: a realistic shape is kept all along the deforma-
tion process (Charpiat et al., 2007).

1. Shift vertices according to the external force: x̃t = fext + xt. The
external “force” fext is computed as the maximal gradient search in
the gradient direction.

2. Regularize vertex positions:

a) Compute rigid registration for each clusters:

Ti = arg min ∑j∈ζi

∥∥∥Tix0
j − x̃t

j

∥∥∥2
,

b) Average target position for each vertex:
xt+1

i = 1
|ζi | ∑j∈ζi

Tjx0
j .

Single reference prior models are convenient in that they require only one
annotated example of the objects of interest. However, when segmenting
a class of objects whose shape varies a lot, such approach becomes too
constraining and does not allow the model to adopt valid shapes which
are too different from the single reference.

In a different approach, a shape prior was derived from a generalization
of the fundamental variational equation 2.1.1 (Charpiat et al., 2007). Such
generalization is based on the observation that the canonical L2 inner prod-
uct is always implied when taking the gradient of the energy. The proposed
method relies on replacing this canonical inner product by new inner products,
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Figure 2.1.5 – Deformable templates: (top) a template eye made of a few simple
mathematical shapes (Yuille, 1990); (bottom) segmentation of a per-
son’s mouth, using deformable mouth template (ibid).

designed to enforce spatially coherent motions with respect to the initial tem-
plate shape. As a consequence, the trajectory of the boundary is optimized so
the energy does not have to include regularization terms. This method can be
used both with level sets (see section 2.1.4) and standard Active Contours.

Deformable templates

Deformable templates (Yuille, 1990) are combinations of simple geometric shapes
requiring very few parameters – e.g. a center location and a radius for a circle.
While their simplicity makes them robust and fast to optimize, these models
are not suited to segment complex shapes and large deformations.

Superquadrics, hyperquadrics

Superquadrics (Terzopoulos and Metaxas, 1990; Bardinet et al., 1996) are ge-
ometric shapes defined by parametric equations, generalizing simpler objects
such as ellipsoids. Like deformable templates, they require very few parame-
ters, and have similar pros and cons: simple and fast to optimize, but the space
of available shapes is too small to model complex shapes.

Hyperquadrics (Cohen and Cohen, 1996; Hanson, 1988) also defined by para-
metric equations, extend superquadrics by allowing a wider range of shapes.
A hyperquadric is defined by the points (x, y, z) satisfying the equation:

H (x, y, z) =
N

∑
i
|aix + biy + ciz + di|γi = 1. (2.1.11)

Unlike superquadrics, hyperquadrics are not restrained to symmetric shapes.
Hybrid hyperquadrics (Cohen and Cohen, 1996) further extend superquadrics
by allowing to create some local concavities in hyperquadrics. However, small
local details remain inaccessible to these models and many authors have used
them as coarse starting points to be refined in a second stage (e.g. using free-
form deformations).

Landmark-based models

Statistical shape priors are built from sets of training annotated images, and
aim at generating a subspace S of valid solutions capturing most of the shape
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Figure 2.1.6 – Examples of landmarks: (left) 32 manually placed landmarks on
the surface of a resistor Cootes et al. (2001); (middle) manually
placed landmarks on a person’s face (Romdhani et al., 1999); (right)
manually and interpolated landmarks on the surface of lungs in an
X-ray image (Ginneken et al., 2006).

Figure 2.1.7 – Active Shape Model: (left): scatter plot of the landmarks of the
training examples (Cootes et al., 1995); (middle) synthesized mod-
els using: x = x̄ + Up for different values of p [0] (ibid); (right) seg-
mentation of a heart ventricle in an echo-cardiogram using ASM
(ibid).

variability while remaining as small as possible. Once such a subspace is gen-
erated, the model is constrained to evolve within it or to remain close to it, thus
ensuring a valid shape is always kept. For contour models, such priors gener-
ally require to define a set of consistent boundary points, called landmarks (cf.
figure 2.1.6).

The Active Shape Model (ASM) (Cootes et al., 1995) uses a Principal Compo-
nent Analysis (PCA) performed on the position of the landmarks to generate a
sub-space S of solution containing the main variation modes (cf. figure 2.1.7).
Let {xk}k=1...K be the set of vectors containing the landmark positions for the
training data. The average models and its covariance are:

x̄ =
1
K

K

∑
k=1

xk, (2.1.12)

Σ =
1
K

K

∑
k=1

(xk − x̄) (xk − x̄)T . (2.1.13)

Then, PCA on Σ gives:
Σ ≈ UTdiag (Λ)U, (2.1.14)
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Figure 2.1.8 – (left) Invalid Gaussian hypothesis: variations of the first mode of a
linear ASM of a hand; the most probable shape (center) is the least
realistic (Cremers et al., 2003).
(right) A kernel-ASM trained on both right and left hand images
allows to segment a right hand in a new image (ibid).

where Λ is the vector of retained eigenvalues and U is the corresponding set
of retained eigenvectors stored in columns. Then, any shape lying within the
prior sub-space of solutions as determined by the set of boundary landmarks
writes:

x = x̄ + Up, (2.1.15)

where p is the coordinate vector of x in S . Such formulation assumes that the
distribution of realistic shapes can be effectively approximated by a Gaussian
distribution. During model evolution, which is similar to a gradient descent,
the boundary is regularly projected into subspace S to ensure the model shape
always remain realistic with respect to the training examples.

A similar strategy can be adopted, but using the full covariance matrix Σ
instead of a subspace via a selection of the main variation modes (Cremers
et al., 2002). Shape correctness is enforced by minimizing an energy term in
the form of a Mahalanobis distance, in addition to the external energy term:

Eshape (x) = (x− x̄)T Σ−1
⊥ (x− x̄) , (2.1.16)

where Σ⊥ is the regularized covariance matrix, authorizing inversion. Like
ASM, such model implies that the distribution of shapes be Gaussian, and pe-
nalizes – but does not forbid – more strongly shapes having a low probability.

However, for many classes of shapes, the Gaussian hypothesis leading to
linear shape statistics is not valid (cf. figure 2.1.8). In order to circumvent this
limitation, a typical solution is found in using constraints in a feature space via
kernel methods. Let φ : Ω→ F be a non-linear mapping from the input space
to a higher-dimensional feature space, potentially unknown. Using a Kernel
Principal Component Analysis (KPCA), a Kernel Active Shape Model was pro-
posed (Romdhani et al., 1999; Twining and Taylor, 2001). As in the linear ASM,
the optimization procedure of Romdhani et al. (1999) consists in regularly pro-
jecting the mapped boundary back into the feature space. Twining and Taylor
(2001) enforced the shape prior by minimizing an energy based on a “proxim-
ity to data” measure in the feature space. Using a formulation similar to that of
equation 2.1.16, a non-linear shape prior was proposed (Cremers et al., 2006a)
such that the empirical mean and covariance are computed on the mapped
training vectors.
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muscle segmentation using a hierarchical statistical shape

model A hierarchical prior model using Diffusion Wavelets was pro-
posed to segment organs (Essafi et al., 2009) – including one calf muscle
– in MRI. This model builds on the formulation of the ASM (cf. equa-
tion 2.1.15), using a different basis for the subspace of valid solutions. One
of the main drawbacks of ASMs, is that they often require a large number
of training data in order to obtain relevant decomposition modes. Indeed,
some non-correlated shape features – such as global and local shape con-
figurations – are often modeled by the same deformation modes. Thus,
desired shape behaviors are often mixed with unwanted shape behaviors
when optimizing the shape parameters for segmenting a new image. The
hierarchical approach allows to uncorrelate small and large scale shape
behaviors. Moreover, the presented method also uncorrelates long-range
shape behaviors, thus ensuring that deformation mode are spatially local-
ized.

We give a brief summary of this method. First, a graph G (V , E) is
built on the set of landmarks: V is the set of nodes and each landmark
corresponds to a node in V ; E is the set of edges, whose weights are de-
termined through a statistical analysis of the mutual relations between the
landmarks in the training set {xk}k=1...K (cf. Shape Maps (Langs et al.,
2008)). As a result, landmarks with independent behaviors will be con-
nected by edges with a small weight, whereas nodes with strongly related
behaviors – such as neighboring points – will be connected by large weight
edges.

Second, a Diffusion Wavelet decomposition of G is performed. This
process involves computing the diffusion operator T of graph G, which
is the symmetric normalized Laplace-Beltrami operator, and computing
and compressing the dyadic powers of T. The output of this decomposi-
tion is a hierarchical orthogonal basis {Γi} for the graph, whose vectors
correspond to different graph scales; considering the vector of landmark
positions when decomposed on the new basis:

x = x̄ + Γp, (2.1.17)

global deformations – i.e. global relations between all the nodes – are
controlled by some of the coefficients in p, while local interactions – i.e.
local interactions between close-by nodes – are controlled by some other
coefficients in p. Projecting all the training examples onto this new basis,
a PCA is performed at each scale of the decomposition. Finally, during the
segmentation process, the landmarks are positioned on the target image in
an iterative manner: 1) the position of the landmarks is updated according
to a local appearance model; 2) they are projected into the hierarchical
subspace defined previously.
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Figure 2.1.9 – Level set segmentation: (left) illustration of the level set method
(from Wikipedia); (right) topological changed during segmentation
of synthetic images (Paragios, 2005).

2.1.3 Implicit deformable models: level sets

Level set methods, also called Geometric Deformable Models, are a special class of
Deformable Models. They were designed to solve certain issues of standard Ac-
tive Contours (also called Parametric Deformable Models or Snakes): the explicit
parametrization of Snakes necessitates frequent re-parametrization in order to
preserve accuracy; topological changes in snakes are difficult to achieve; the
output depends heavily on the contour’s initialization (position and shape);
region features (color, texture) are difficult to take into account.

The level set method, proposed by Dervieux and Thomasset (1980); Osher
and Sethian (1988) in the field of fluid dynamics, uses an implicit representa-
tion of the evolving boundaries C as the location of the zero level line of an
implicit function φ : Ω→ R (cf. figure 2.1.9):

C = {x ∈ Ω|φ (x) = 0} . (2.1.18)

Such implicit representation allows natural topological changes of the implied
boundary (cf. figure 2.1.9). This representation is then combined with the
general energy functional for Active Contour models using parametric curves
C : [0, 1]→ Ω (Paragios, 2005; Cremers et al., 2006b) (cf. section 2.1.1):

E (C) =
ˆ 1

0
αEint (C (p)) + βEimg (I (C (p))) + γEext (C (p)) dp, (2.1.19)

where I is the image, Eint imposes curve smoothness (regularization term),
Eimg pushes the curve towards boundaries (data term), Eext encodes user knowl-
edge (interaction or prior term), and α, β, γ are balancing parameters. Such
cost functional can be minimized within a finite difference approach on the
variational form:

∂C
∂t

= −∂E (C)
∂C = F · n, (2.1.20)

where F is a speed function and n is the contour unitary normal vector. Incor-
porating the level set representation to the previous formula yields:

∂

∂t
φ = − |∇φ| F. (2.1.21)

http://en.wikipedia.org/wiki/File:Level_set_method.jpg
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Such a flow specifies the evolution of the implicit function φ at the location
of the boundaries. Among the first applications of the level set formalism, a
notable contribution is the Geodesic Active Contours model (Caselles et al., 1997;
Kichenassamy et al., 1995), with evolution equation:

∂

∂t
φ = |∇φ|div

(
g (I) ∇φ

|∇φ|

)
, (2.1.22)

where g is an edge function, increasing with the strength of the edges in I .
Such equation models an inward (respectively outward) flow which shrinks
(respectively expands) the initial curve towards the detected edges. For im-
plementation, φ is generally considered as a signed distance function to the
evolving curve:

φ (x) =


0 , x ∈ C ,

D (x, C) , x ∈ Cin,

−D (x, C) , x ∈ Cout,

(2.1.23)

where D(x, C) is the Euclidean distance from x to C, Cin ⊂ Ω is the region
inside C and Cout ⊂ Ω is the region outside C.

Having to impose the direction of the flow, as well as relying only on edge
detection make such formulation very dependent on the initialization and non-
robust to undesired local extrema. To overcome these problems, a global re-
gional term was introduced. For a two-phase segmentation, such model has
an energy of the form (Chan and Vese, 2001; Cremers et al., 2006b):

E (φ, θ1, θ2) =

ˆ
Ω
−H (φ) log p (I|θ1) (2.1.24)

− (1− H (φ)) log p (I|θ2) + w |∇Hφ| dx,

where p (I|θi) is the posterior probability to observe I given region model
parameter θi, H is the Heaviside step function such that: H (x) = 1, x ∈ Cin,
and H (x) = 0 otherwise – in practice, H is a smooth differentiable approxima-
tion of the Heaviside distribution. Region parameters θi can either be set, as
a prior knowledge of statistical properties of the objects region (Paragios and
Deriche, 1998), or estimated in an alternate optimization method, assuming
intensity piece-wise constant objects (Chan and Vese, 2001). Many variations
on this formulation were developed, for multi-phase segmentation (Zhao et al.,
1996; Paragios and Deriche, 2004; Yezzi et al., 1999), for using non-parametric
approximation of density functions (Kim et al., 2002; Rousson, 2002), instead
of Gaussian approximation functions.

2.1.4 Level sets and shape priors

Incorporating shape prior knowledge within the level set framework has been
done in multiple ways. Some methods (Chen et al., 2002; Rousson and Para-
gios, 2002) use the statistical average curve CM, and associated signed Eu-
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clidean distance function φM to guide the deformation of the model. For
example, when added to a level set energy functional, minimizing the term:

Eshape (φ,A, s) =
ˆ

Ω
δ (φ) (sφ (x)− φM (A (x)))2 dx (2.1.25)

imposes the implicit function φ to be similar to φM, where δ is a smooth
approximation of the Dirac distribution, A is a linear or non-linear transform
to be estimated, s is the scale factor between φ and φM to be estimated.

As seen previously with explicit models, single reference models can only
recover small deviations from the prior shape. In order to build a model able to
recover important shape variations, methods using a PCA on a set of distance
functions were developed (Leventon et al., 2000; Tsai et al., 2001), similar in
principle to the Active Shape Model (cf. section 2.1.2):

φλ = φM + ∑
j

λjUj, (2.1.26)

where λj is the parameter weighting the eigenvectors Uj. Similar to 2.1.25, an
energy term enforcing a shape prior can be formulated:

Eshape (φ,A, s, λ) =

ˆ
Ω

δ (φ) (sφ− φλ (A))2 dx. (2.1.27)

Such an approach assumes that the distribution of training shapes is Gaus-
sian, which is often not true in practice, and thus necessitates a large number
of eigenvectors in order to capture enough details of the shape. Approaches for
modeling non-Gaussian shapes distributions were considered, using nonpara-
metric density estimators (Cremers et al., 2006a; Rousson and Cremers, 2005),
e.g. yielding prior energy terms of the form (Rousson and Cremers, 2005):

Eshape (φ, λ) = − log
1
N

N

∑
i=1

K
(

λ− λi

σ

)
, (2.1.28)

where λi = (λ1, . . . , λn) is the shape vector (e.g. projection into a PCA space)
for training shape i, λ is the shape vector of the model, K is a kernel function
(e.g. Gaussian kernel K (x) ∝ exp−x2) and σ is a scaling parameter. Such
approach ensures the model remains in the vicinity of the training shapes.

2.1.5 Graph-based surface models

Unlike most surface-based models, which are usually optimized with continu-
ous local methods, these models are fit to the image via discrete graph-based
optimization procedures. The graph frameworks has the advantage of allow-
ing to enforce similarity invariant statistical shape priors while searching for a
globally optimal solution.

surface models and pair-wise discrete optimization A landmark-
based surface model was proposed by Besbes et al. (2009); Besbes (2010) for a
2-class segmentation methods with a shape prior based on learning joint prob-
abilities between pairs of control points. Let us call xi the spatial location of
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the i-th control points, X = {x1, . . . , xN} the set of control points. Given an
annotated training set of sample images, the joint probability for the relative
location of two control points is learned based on the normalized distance
between pairs of points:

dij =

∥∥xi − xj
∥∥

d
, (2.1.29)

where d is the estimated scale of the object. Since prior information relies only
on a normalized distance between the control points, it is rotation, translation
and scale invariant – although scale-invariance depends on a separate scale
estimation. From these distance, a joint probability distribution is estimated:
pij = p

(
dij
)

given a statistical model (e.g. a Gaussian model). A graph G =

(V , E) is then built over the control points. The following functional is defined:

E (X ) = ∑
vi∈V

Vi (xi) + ∑
eij∈E

Vij
(
xi, xj

)
, (2.1.30)

where: Vi (·) is the data inference term for each control point. This mea-
sures the adequacy of the segmentation with the pixels intensity; Vij (·, ·) is
the shape prior term, measuring the adequacy of the surface’s shape with the
prior knowledge:

Vij
(
xi,xj

)
= − log pij. (2.1.31)

The most appropriate configuration for the set X can be obtained by mini-
mizing the discrete energy E: each control point is limited to a finite number
of displacements. As formulated, this problem is NP-hard and can only be
approximately solved, e.g. via an efficient primal-dual algorithm (Komodakis
et al., 2007). Due to the limited set of locations for each control point, this op-
timization method remains non-global, but nonetheless covers a greater range
of solutions than variational methods.

muscle segmentation using higher-order cliques In the pre-
vious method, a shape prior is enforced via learning distribution models
for pairs of control points. While such modeling makes a rotation and
translation invariant model, it is only approximately scale invariant due to
the normalization of distances by an estimation scale of the model. More-
over, the iterative approach for minimizing the functional imposes an ini-
tial guess for the control point location, e.g via user interaction.

A surface model using prior distributions over higher-order cliques – as
triplets – was proposed by Wang et al. (2010). This allows to define an exact
scale-invariant model and allows global search for control point locations
due to the more constraining effect of imposing triplet configurations. Let
us denote the spatial distribution for triplet (i, j, k) as pijk , which is learned
for all triplets of points, using a mixture of Gaussians statistical model.

Unlike the previously presented method, control point possible loca-
tions are searched in a first stage, within the entire image. Such approach
is achieved by capturing the local image appearance around the control
points in the training set images. A series of Gabor filters are computed
over patches surrounding the landmarks and fed to a Randomized Forest
Classifier. Then the trained classifier is run over the target image to deter-
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mine a set of best matches for each landmark and a score for each match.
The k-th match for landmark i represents the assignment label lk

i for node
vi. Defining xi (li) as the location of point i for label li, the following func-
tional is defined:

E (L) = ∑
vi∈V

Vi (xi (li)) + ∑
eij∈E

Vijk
(
xi (li) , xj

(
lj
)

, xk (lk)
)

, (2.1.32)

where: Vi (·) is the data inference term for each control point. This is
defined as a decreasing function of the classification score for the corre-
sponding point match; Vij (·, ·, ·) is the shape prior term, measuring the
adequacy of the surface’s shape with the prior knowledge:

Vijk
(

xi (li) , xj
(
lj
)

, xk (lk)
)
= − log pijk

(
xi (li) , xj

(
lj
)

, xk (lk)
)

. (2.1.33)

This functional contains high-order cliques and can be minimized using
a novel Dual-decomposition method (Komodakis, 2011). Since the possible
location for each landmark are searched for globally, no iterative approach
is required and the model does not necessitate an initial guess.

2.2 region-based methods

Apart from methods relying on surface representations, there also exists seg-
mentation methods using regions models: each point in the image domain
is parametrized by an assignment value, which can be hard – a label – or
soft – e.g. a probabilistic label assignment. In general, these methods achieve
good accuracy at segmenting the boundaries of the objects, but global shapes
and topology are much more difficult to constrain. This is the opposite with
surface-based methods which provide natural means for enforcing shape con-
straints and topology but often fail to segment the boundaries accurately. In
the case of multi-object segmentation, surface-based methods necessitate com-
plex computer animation algorithm to deal with interacting objects – e.g. to
solve intersection issues. Region-based methods offer a simpler framework in
that matter, since one point in the image domain can only belong determinis-
tically to one label. Moreover, fuzzy or probabilistic assignment to different
labels is also simpler with such methods.

2.2.1 Continuous methods

A continuous segmentation model based on probabilistic atlases was intro-
duced by Cremers et al. (2008). This approach was motivated by the well-
known limitations of level sets with shape prior methods: a) the cost function-
als are generally non-convex, leading to non-optimal solutions and b) it was
noticed that linear combinations of signed distance functions – used in build-
ing statistical shape priors – do not yield valid shapes and thus poor shape
priors.

This approach is based on a probabilistic assignment model. Let us denote q :
Ω → [0, 1] such that q (x) is the probability that x belongs of the target object.
Assuming we own a set of annotated training images, denoted T = {qk}k,
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a PCA is performed on T . This operation involves computing the average
probabilistic segmentation:

µ =
1
|T |∑k

qk, (2.2.1)

and the covariance matrix of the centered samples:

Σ =
1
|T |∑k

(qk − µ) (qk − µ)T . (2.2.2)

Then a segmentation in the subspace spanned by the first n eigen-modes is:

qγ = µ + Γγ, (2.2.3)

where Γ ∈ RN×n denotes the matrix whose columns are the n retained eigen-
vectors. With these definitions, the following general cost functional is pro-
posed:

E (qγ) = Ei (qγ) + αEs (qγ) . (2.2.4)

where:

Ei (q) =

ˆ
f (x) q (x) dx (2.2.5)

+

ˆ
g (x) (1− q (x)) dx +

ˆ
h (x) |∇q (x)| dx,

where f (x) and g (x) are functions binding the model to the image, and h (x)
a function constraining the length of the boundary. Such functional is a gen-
eralized version of the typical two-phase level set cost functional 2.1.24 (Chan
and Vese, 2001). However, unlike the level set approaches, this functional is
convex in q (whose domain is also convex). The shape prior functional is:

Es (qγ) = γTΣ−1γ, (2.2.6)

which is convex in γ. Such approach has the advantage that the shapes spanned
by the PCA are always valid, unlike the level set case. It should be noted that
this approach assumes a Gaussian model for the probabilistic assignment vari-
ables, which is a rather rough approximation and, as a consequence, the PCA
does not generate probability vectors.

muscle segmentation using a continuous region model The
previous method was extended to multi-label segmentation by Andrews
et al. (2011b), and applied to skeletal muscle segmentation (Andrews et al.,
2011a). Before performing the PCA on the training samples, an Isomet-
ric Log-Ratio (ILR) transform is applied to the assignment vectors. The
reason for using this transform is that multi-label segmentation requires
to have probabilities at all times, which the previous method does not
achieve. Here, the PCA is performed in the ILR space and its output is
projected back into the initial probability space. Denoting ηγ = µ + Γγ a
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segmentation in the subspace of valid solution spanned by the PCA in the
ILR space, the following functional is proposed:

E (ηγ) = d (ηBG,ηγ)
2 +

ˆ
(1− h (x)) |∇ηγ|2 + γTΣ−1γ, (2.2.7)

where d (ηBG, ·) is an intensity prior functional for separating muscle vox-
els from background voxels, and h (x) is and edge-map of the target image
such that the energy is minimal when the boundaries of the model match
the edges in the image.

2.2.2 Graph-based methods

In the following we review region-based methods relying on a graph formal-
ism. Digital images are intrinsically discretized: in space into pixels and in
time into frames (videos) – amplitude quantization is generally too fine to
be considered. For this reason, pixels/voxels decomposition provides a con-
venient solution domain and are often used as such. However, other sub-
domains have been used by further reducing the search domain into sets of pix-
els with the same assignment value (super-pixels) . These graph-based meth-
ods are intrinsically “bottom/up”, since they rely on pixel-scale features to
provide a segmentation of larger scale objects. More importantly, graph-based
methods offer means of obtaining globally optimal segmentations, which is
not the case for most surface-models, whose results depend heavily on the
initial conditions.

notations Let us consider an image I with N pixels. A segmentation on
I is formulated as a labeling problem of an weighted graph G = (V , E), where
V is the set of nodes and E ⊂ V × V is the set of edges. The i-th node vi
corresponds to the i-th pixel of image I. An edge spanning two vertices vi
and vj is denoted eij, and its weight wij. The set of edges is composed only of
pairs of adjacent pixels – e.g 4-connected neighborhood structure in 2D, and a
6-connected structure in 3D.

Given a set of labels S (e.g. the indices of the muscles), segmenting I consists
of assigning a label s ∈ S to each node p ∈ V . In the binary case, S = {0, 1} .
We denote xi ∈ S the assignment label of pixel i.

2.2.3 Segmentation with Graph Cuts

The Graph Cuts method was originally developed for binary clustering of im-
ages (Wu and Leahy, 1993; Shi and Malik, 2000b), and for interactive segmenta-
tion (Boykov and Jolly, 2001) where a user provides annotated pixels, the seeds,
as an initialization for the algorithm. In the following, we briefly explain the
principles of the graph cut theory for the binary case – i.e. a foreground/back-
ground segmentation.

Two terminal nodes, the source S and the sink T are added to the set of nodes
V . A cut on graph G is a separation of the nodes into two subsets, one VS
containing the source, and the other VT the sink (cf. figure 2.2.1). We call
C ⊂ E the subset of edges crossing the separation – i.e. with one vertex in VS
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Figure 2.2.1 – Graph-cut: (left) a directed graph G; (right) a cut on G (Boykov and
Kolmogorov, 2004).

and the other in VT. The cost |C| of this cut is the sum of the weight of the
edges in C:

|C| = ∑
(i,j)∈C

wi,j. (2.2.8)

The Ford-Fulkerson max-flow/min-cut algorithm can be used to find the min-
imum cut in polynomial time.

Segmenting image I is a (binary) labeling problem which amounts to defin-
ing a cut on graph G, where each node in VS are assigned to one label (e.g. the
background) and each node in VT are assigned to the other label (e.g. the fore-
ground). An optimal segmentation is one which verifies certain criteria: e.g.
intensity homogeneity (“I know this object has the same color everywhere”),
intensity prior (“I know this object is dark”). These simple criteria can be
expressed at the pixel scale in terms of edge weights:

• homogeneity of intensity between two pixels can be measured using a
Gaussian weighting of intensity differences:

∀ (i, j) ∈ E\ {S, T} , wij = exp
(
−β

(
Ii − Ij

)2
)

. (2.2.9)

where β is a contrast parameter;

• prior knowledge over intensity of one pixel can be measured using the
negative log-likelihood:

∀vi ∈ V ,
wiS = − log Pr (Ii|T) ,

wiT = − log Pr (Ii|S) ,
(2.2.10)

where Pr (Ii|T) (respectively Pr (Ii|S)) is the intensity distribution for
the object attached to the sink (respectively the source). Note that if
Pr (Ii|T) ≈ 0, then wiS � 0, which implies that cutting the edge eiS is
very costly.

As a consequence, an optimal segmentation according to pair-wise criteria can
be obtained by finding the minimum cut Ĉ, which is a cut of G which has
a minimal cost. Indeed, minimizing the cost of the cut implies cutting the
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Figure 2.2.2 – Automatic image partition using normalized cuts (Shi and Malik,
2000b).

edges with the smallest weight on average, which is equivalent of satisfying
the selected criteria as well as possible. An optimal segmentation is obtained
via minimizing the following functional with respect to the label assignments:

E (x) = ∑
(i,j)∈E

wij
∣∣xi − xj,

∣∣ , (2.2.11)

where x = {xS, xT} ∪ {xi}i=1...N and where xi is a binary assignment variable:

xi =

1 if vi ∈ VS,

0 if vi ∈ VT.
(2.2.12)

Under this formulation, the assignment value for terminal nodes is of course
already known: xS = 1 and xT = 0. Additional information can be provided
in the form of seeds, i.e. used-assigned pixels. Let us call VM the set of marked
nodes, then finding the optimal segmentation is achieved by minimizing 2.2.11

with respect to the assignments for un-marked nodes v ∈ V\VM.
In the general case, wij

(
xi, xj

)
can depend on the labels xi and xj. It was

shown that Graph Cuts achieve a globally optimal solution providing that
wij(·, ·) is a sub-modular function (Kolmogorov and Zabih, 2004), i.e. that it
verifies:

wij (0, 0) + wij (1, 1) ≤ wij (1, 0) + wij (1, 0) . (2.2.13)

When one wishes to segment several objects at once, the multi-label case can
be formulated as a multi-way cut problem (Boykov et al., 1999). However, such
formulation was proven to be NP-hard and only good approximate solutions
can be found (Boykov et al., 1999; Komodakis et al., 2007).

A different approach with no required intensity prior (Wu and Leahy, 1993;
Shi and Malik, 2000b) can be formulated by setting: ∀i, wiS = wiT = constant.
Moreover, seeds are no longer required, so the resulting segmentation depends
only on the intensity difference between pixels. Such method is called percep-
tual grouping. However, the output segmentation tends to be biased towards
very small segments, because small segments have less edges and induce a
lower cut cost (Wu and Leahy, 1993). This problem can be solved with normal-
ized cuts (Shi and Malik, 2000b) (cf. figure 2.2.2), where a different functional
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Figure 2.2.3 – Two examples of graph-cut segmentation (red curve) using user-
provided seeds (green and blue marks) (Sinop and Grady, 2007).

is minimized, consisting in a normalized cut cost by the cost of all edges within
the parts:

EnC (x) =

(
∑

(i,j)∈E
wij
∣∣xi − xj

∣∣)( 1
∑(i,j)∈E wijxi

+
1

∑(i,j)∈E wij (1− xi)

)
.

(2.2.14)
However, minimizing the normalized cut is a NP-hard problem and can only
be optimized approximately.

An interactive scheme can be adopted, where the user has to provide seeds
to initialize the algorithm (Boykov and Jolly, 2001) (cf. figure2.2.3). As a result,
the segmentation consists in a optimal separation of the seeded regions and
is not biased towards small cuts. No intensity prior is required, but one can
be estimated simply by computing the histogram of the marked regions, thus
enforcing intensity coherence as well as spatial coherence.

2.2.4 Shape priors and graph-cuts

A “star shape prior” was proposed by Veksler (2008), allowing to constrain
the shape of objects with star shapes. An object O has a star shape if there
exists a point c such that any point p in O can be reached in straight line from
c without stepping out of O. The shape prior is enforced by setting special
weights sij to edges connecting pixels i and j which both lie on a line passing
through c. Assuming pixel j is between c and pixel i, these special weights
have the following form:

sij
(

xi, xj
)
=


0 if xi = xj,

∞ if xi = 1, xj = 0

β if xi = 0, xj = 1,

, (2.2.15)

to be added to the original weights wij. This way, if pixel i belongs to the target
object, then pixel j has to belong to the object as well. The center point c is
provided by the user.
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A “topological” prior was proposed by Delong and Boykov (2009), . Topo-
logical constraints are, for instance: containment (“object A contains object
B”), exclusion (“object A and object B are not superimposed”), etc. These
constraints are enforced in the binary graph-cut framework by solving simul-
taneous binary problems – one layer per label – and adding edges between
the pixels of the different layers. These additional edges enforce the aforemen-
tioned topological constraints. Similarly, a topological “location” prior was
proposed by Chittajallu et al. (2009), relying on prior knowledge on the loca-
tion of other objects: e.g. having segmented the lungs in CT-scan of the torso,
the position of these organs provides a prior on the location of the heart.

A shape prior based on a single reference segmentation was introduced to
the graph-cut framework by Freedman and Zhang (2005). Let us denote C the
boundary of this template shape, and φ the unsigned distance function whose
0-level set is C: C = {p ∈ Ω|φ (p) = 0}. Then, with p (i) denoting the spatial
location of pixel i, the additional binary weight function is used:

sij
(
xi, xj

)
=

0 if xi = xj,

φ
(

p(i)+p(j)
2

)
otherwise,

(2.2.16)

which gives a low cost if the label transition (i.e. the boundary of the object) is
located near the boundary of the reference shape.

2.2.5 Segmentation with Random Walks

We refer the reader to chapter 4 for detailed explanations on this approach.

2.3 prior art limitations

In this chapter, we have tried to review all existing segmentation methods
which could adapt to muscle segmentation, highlighting those which were
actually applied to this task. Although there were few attempts at segment-
ing striated skeletal muscles, the existing methods adopted very different ap-
proaches. Among the surface-based models, Gilles and Pai (2008); Gilles and
Magnenat-Thalmann (2010) adopted the active surface approach: a reference
shape is deformed according to internal regularization forces and external
image-driven forces in a local optimization process (pp. 14). Shape prior is
enforced by a “shape memory” term (Gilles and Magnenat-Thalmann, 2010)
or via a soft tissue simulation algorithm called shape-matching (Gilles and Pai,
2008). Both constraints enforce a strong prior, and the results is always valid
in terms of anatomy. However, the local optimization and the possibly unreli-
able data-terms (gradient driven) sometimes yield over-regularized solutions.
The method of Essafi et al. (2009) also uses a surface model, and thus suffers
from the same problems. However, due to using a hierarchical statistical prior
models, one can expect the surface model to adapt more easily to the specifics
of the target image (pp. 20). The method of Wang et al. (2010) has the advan-
tage of being optimized globally, as candidate targets for the surface vertices
are searched in all the image. Second, the higher-order clique approach al-
lows to learn a statistical shape prior and to enforce local similitude invariance
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in a practical way. However, like other landmark-based approaches, it relies
on finding consistent detectable anatomical points, which we believe is very
difficult with skeletal muscles (pp. 24). Like most surface models, the latter
two methods may also suffer from topological issues such as intersection dur-
ing optimization in a multi-object context, since this case was not addressed.
Finally, the method of Andrews et al. (2011a) benefits from its region-based ap-
proach: global optimization and no topological issues (pp. 26). Shape prior is
efficiently enforced for the entire limb by imposing the shape to evolve in a sta-
tistical shape space of valid solutions, built from a training atlas base through
principal component analysis. The presented results demonstrate excellent
performances. However, one weakness may remain in the image term, which
relies on contour detection, an unreliable process in MR images of muscles
where contours are often missing or often confused with spurious structures.

In chapter 4, we present some quantitative comparisons of the methods of
Gilles and Pai (2008) and Andrews et al. (2011a) with our own proposed meth-
ods.



3
A U T O M AT I C S E E D P L A C E M E N T

3.1 introduction

The approach presented in this part builds upon the observation that certain
region-based methods can achieve excellent results, providing a substantial
manual initialization. Among them, the Random Walks (RW) segmentation al-
gorithm (Grady, 2006) has the advantage of addressing the issue of incomplete
contours, which is one of the main difficulties in our task. The RW algorithm
is a pixel-wise graph-based method which amounts to computing the proba-
bilities of assignment of each pixel to each label (e.g. the index of a muscle).
In this approach, a quadratic energy functional measuring the conformity of
the segmentation with the image is defined and minimized by solving a large
sparse linear system. Since efficient optimization algorithms exist to solve such
problem – e.g. the conjugate gradient method – large volumes can be entirely
segmented in a few minutes (see chapter 4 for a more in-depth view of the RW
method). The interactive phase of the RW method consists in manually anno-
tating some pixels of each label: the seeds (cf. figure 3.1.1). However, while this
approach offers a considerable time gain by avoiding to manually annotate all
the pixels, manually positioning the seeds remains a time consuming process,
especially when large volumes are to be segmented.

In this chapter, we propose a method for generating the seeds automatically.
While the large inter-subject variations of skeletal muscles prevent using a de-
formable model based on a shape template, the relative positions of the mus-
cles are consistent among individuals. Therefore, it is reasonable to develop a
segmentation method whose prior information is not based on the position of
the boundaries and on the shape of the objects, but rather on the approximate
relative position of the objects and the existence of boundaries between them.
Seeds are compatible with this idea: it is sufficient that they are placed well
inside the target object and the Random Walks algorithm will segment the con-
tours accurately. Through a sampling process, unlabeled seeds are generated
in the image domain. The clustering of these seeds with respect to the different
muscle classes is achieved through a MRF graph-based approach: each seed
is considered as a node and is to be assigned to a label – i.e. a muscle index.
The weight of the edges between the seeds is set to reflect the topological in-
formation: the presence – or absence – of a boundary between two seeds and
the likelihood of the orientation of an edge with respect to the assigned muscle
indices. A discrete energy functional is defined to measure the the quality of a
global label assignment. Due to being NP-hard, this problem can only be ap-
proximately solved; however, we obtained satisfying results using an efficient
message passing algorithm (Kolmogorov, 2006) on a real clinical dataset.

33
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Figure 3.1.1 – (left) Axial cross-section of a right thigh with manually drawn
seeds; (right) segmentation.

3.2 related work

To our knowledge, this is the first method proposing an automatic seed gen-
eration based on a graph formulation of the labeling problem. Previous auto-
matic seeding methods may be associated with graph-cuts (Boykov and Jolly,
2001), seeded region growing (Adams and Bischof, 1994) or Random Walks.
The more straightforward approaches rely on appearance filtering for select-
ing seeds: only pixels of a certain predetermined intensity or color are kept as
seeds (Wyatt et al., 2000; Wighton et al., 2009). Similarly, some methods (Fan
et al., 2001) first detect certain images features (e.g. edges) and generate seeds
according to geometrical considerations (e.g. estimated centroids). Integra-
tion of knowledge of the anatomy can be based on pre-defined distances and
relative positions (Wyatt et al., 2000; Maier et al., 2008), but such approaches
require small inter-subject variations or few objects to segment, with simple
geometries. Finally, there also exists “pre-segmentation” methods, destined to
partition the image into several regions to be latter merged to obtain semanti-
cally correct regions (Mičušík and Hanbury, 2006); such methods do not rely
on any predefined topology, segmenting an unknown number of objets, with
unknown shapes.

3.3 prerequisites

We need a binary mask of the muscle tissues, separating them from the back-
ground and the fat tissues (see figure 3.3.1). Such a mask can be obtained
via intensity thresholding – or in our case, more efficiently, from the “water-
map” images we based on for our experiments. This water-map represents the
fraction of water protons in the organic tissues; as a result, muscles – made
of water for a large part – have high intensity values, whereas fat tissues and
bones have intensity values close to zero (cf. appendix A for more details).
This mask is used to ensure the seeds are only generated within the muscles.

This approach assumes we have a reference atlas rigidly registered with the
image to be segmented (see figure 3.3.2). We applied rigid-registration (trans-
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Figure 3.3.1 – Binary mask (right) generated from water map image (left). This
mask is used for registering the reference image onto the test image.

Figure 3.3.2 – (left) Axial cross-section of a right thigh; (right) manual segmen-
tation. The reference segmentation will serve as a reference atlas
when segmenting a new image.

lation, rotation, scaling) using the free registration software medInria. This
software uses the block matching rigid registration algorithm (Ourselin et al.,
2000). To reduce the possibility of registration errors, we used the binary masks
of the muscle tissues as input images for the registration software. This way,
only the muscle/fat boundaries are taken into account for leading the registra-
tion algorithm.

3.4 unlabeled seeds sampling

The first step of our algorithm is to generate the seeds that will be used as
initialization by the RW algorithm once labeled. We are going to place the
seeds well inside the muscles, and not too close to the contours since the task
of segmenting the contours accurately is left to the RW method. To achieve
this, we first compute an edge map of our volume – e.g. by computing the
local variance of the intensity on a small patch centered on each pixel. Then,

http://med.inria.fr/
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Figure 3.4.1 – Generating the unlabeled seeds: (left) points are sampled regularly
over the test image with a spacing of k pixels; (center) edge map;
(right) unlabeled seeds, after removal of the points lying outside of
the mask of the muscles, and after displacement of k/2 pixels in
the opposite direction of the gradient of the edge map.

we sample the seeds on a regular grid, with a high enough density to ensure all
the muscles contain several seeds. Finally, we move the seeds in the opposite
direction of the gradient of the edge map for a few iterations. More precisely,
if the spacing of the grid is k, then the seeds are allowed to move by k/2 from
their original position, to prevent any pair of moved seeds to take the same
location. This way, seeds are moved away from the close-by edges by a few
pixels (see figure 3.4.1).

The seed displacement process can be summed-up by the following algo-
rithm:

1. let us denote the initial location of voxel p as z0
p;

2. for i = 1 . . . k
2 do:

a) compute normalized displacement vector vi
p = −

⌊
∇I
(
zp
)

/‖∇I
(
zp
)
‖+ 0.5

⌋
.

b) shift seed by v: zi
p ← zi−1

p + vi ;

The next step is the label assignment.

3.5 mrf formulation

We now describe how to assign a label to the seeds we generated, according to
the similarities between the test image and the reference segmentation.

3.5.1 Energy form

We formulate our problem as a labeling problem, that we will solve by mini-
mizing a first-order Markov Random Fields energy functional. Let G = (V , E)
be an undirected graph, where V is the set of nodes and E is the set of edges.
Given a set of labels L, we want to assign a label l ∈ L to each node p ∈ V .
We denote xp the label assigned to p, and x the collection of all assignments. A
first order MRF functional has the form:

E (x) = ∑
p∈V

θp
(
xp
)
+ ∑

(p,q)∈V
θp,q

(
xp, xq

)
, (3.5.1)
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where the unary potential θp (·) depends only on the label assigned to node p,
and the binary potential θp,q (·, ·) depends on the labels assigned to each nodes
of edge (p, q). Unary potentials (or “costs”) measure the quality of the label
assignment of each node. Similarly, Binary potentials measure the quality of
the label assignment of a pair of nodes. The quality measures we are referring
to are specific to the desired application. The interest of the MRF formula-
tion is that the assignment of each node depends only on the neighborhood of
this node. In the simple case where only pair-wise dependencies are consid-
ered, efficient optimization algorithm can be used to minimized the previous
functional.

In this framework, the nodes in V are the unlabeled seeds and the labels in L
are the indices of the muscles in the reference segmentation. In the following,
we define the unary potentials so that seeds close to (respectively far from)
a muscle in the reference image have a small (respectively large) assignment
cost. Binary potentials will reflect the topological properties we seek to exploit:
when assigning two different labels (i.e. muscles), unlikely orientations and
the absence of boundary between the connected seeds will yield a large binary
cost; reciprocally, when assigning the same label to both ends of an edge, it
is the presence of a boundary between the connected seeds which will yield
a large cost (orientations do not matter is this case). As we will see in a later
part, the set of edges will be set to model the spatial proximity of the nodes.

3.5.2 Unary potential

We define a unary cost θp (·) based on the knowledge that the reference atlas
is rigidly registered onto the test image:

θp (m) = d (p, Mm) , (3.5.2)

where Mm is the set of pixels with label m in the reference segmentation and
d (·, ·) is a distance function between a point and a set:

d (p, R) =

min {‖p− r‖ , r ∈ R} if p /∈ R,

0 otherwise.
(3.5.3)

The rigid registration ensures that, if we superimpose the test image and
the reference segmentation, an unknown muscle in the test image is likely
to correspond to a geometrically close muscle in the reference segmentation.
Therefore, this term will favor the assignment to a node of a label correspond-
ing to a geometrically close muscle, over the label of a more distant muscle
(see figure 3.5.1).

Geodesic distance potential and graph connectivity

The unary term does not take into account the structure of the set of muscles.
As we saw previously, the shape of the muscles can vary quite extensively
between individuals. On the other hand, the topology of the set of muscles
is consistent: muscle a is always "close to" muscle b, but "far from" muscle c,
there is most of the time a visible contour between muscle a and b. We designed
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Figure 3.5.1 – The reference atlas is registered onto the test volume, providing
prior-knowledge on label assignment likelihood for each node.

binary terms to account for this knowledge. The binary potential is the sum
of two potentials: θp,q (·, ·) = wgeodθ

geod
p,q (·, ·) + worientθ

orient
p,q (·, ·), weighted by

parameters wgeod and worient.

The term θ
geod
p,q (·, ·) is derived from the geodesic distance g (p, q) between the

seeds p and q. This geodesic distance between two points is understood as
the length of the shortest path from one point to another over a curved space.
Here, we consider the edge-map of the test image as a curved space: a ground
with “hills” – i.e. edges – and “valleys” – i.e. homogeneous regions. The
interest of such measure is the following: considering two edges of the same
Euclidean length – an edge crossing a boundary has a larger geodesic length
than a non-boundary crossing edge. We propose the following definition:

θ
geod
p,q

(
xp, xq

)
∝

1/ (1 + exp (γ− g (p, q))) if xp = xq,

1/ (1 + exp (g (p, q)− γ)) otherwise.
(3.5.4)

where γ is a free parameter. If xp = xq, i.e. both seeds belong to the same
muscle, θ

geod
p,q

(
xp, xq

)
will penalize large geodesic distances, as there should be

no contour between p and q. On the other hand, θ
geod
p,q

(
xp, xq

)
will favor large

geodesic distances if xp 6= xq (see figure 3.5.2).
We compute an approximate geodesic distance between the seeds using the

Fast Marching algorithm (Sethian, 1996) on the test image. The Fast Marching
method solves the general static Hamilton-Jacobi equation for a given speed
function. Here, the speed is determined by the value of the edge-map (e.g.
the gradient magnitude). A propagating discrete front is started at each node
and marches in the outward direction at the given spatially-dependent speed.
From a technical view, an efficient heap-sort is used to select the best front
pixel to update, so that previously evaluated pixels are seen only once. Since
there are several fronts evolving simultaneously, the origin point of each front
is stored for each visited pixel. Once all pixels have been visited, the arrival
time of the front at a given pixel can be seen as a geodesic distance from this
pixel to the origin pixel of the front.

We supply the algorithm with the unlabeled sampled seeds. We obtain in
return a partition of the image, where each seed in included in a different re-
gion, and where the boundary between two regions is equidistant to the seeds
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Figure 3.5.2 – Visual representation of the geodesic distance between seeds: the
color-map goes from blue to red as the geodesic distance increases.
Notice that edges crossing a visible boundary have a large geodesic
distance whereas edges crossing a homogeneous area have a small
geodesic distance.

in the regions, in the geodesic sense (i.e. a geodesic Voronoi partition). The
connectivity of the graph is determined by the Voronoi partition: for each ad-
jacent region, we add an edge between the corresponding nodes. Note that we
do not obtain an edge between every pair of seeds, but only between geomet-
rically close seeds. This is not a problem, since θ

geod
p,q is designed to account for

the presence or the absence of a contour between two seeds, and thus is mostly
a local term; our unary cost coarsely handles the labeling problem at a larger
scale.

Relative orientation potential

The term θorient
p,q (·, ·) is intended to ensure that the relative position of a pair of

muscles is maintained, e.g. muscle a is located "top right of" muscle b. In a
pre-processing stage using the reference atlas, we computed the distribution of
the orientations for each pair (m, n) of muscles. More precisely, we estimated
the probability density pm,n (·) of random variable

U = (Pm − Pn) / ‖Pm − Pn‖ , (3.5.5)

where Pm is a randomly chosen point in muscle Mm, and

Pn = arg min
p∈Mn

‖Pm − p‖ (3.5.6)

(see figure 3.5.3). Thus, pm,n (u) can be seen as the probability that, for any
pixel in muscle m, the direction of the closest pixel in muscle n is u. We define
the orientation cost as:

θorient
p,q

(
xp, xq

)
∝

− log Pxp ,xq (p− q) if xp 6= xq,

0 otherwise.
(3.5.7)
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Figure 3.5.3 – (left) the probability density of the orientations between muscles
Mm and Mn is estimated by sampling points within Mm and deter-
mining the closest point in Mn. (right) the cost of an edge between
nodes p and q depends on the probability of the orientation of vec-
tor −→pq.

This cost will be large if the orientation of the edge between two nodes is
unlikely given the labels to which the nodes are assigned.

3.6 experimental validation

3.6.1 MRF Optimization

Minimizing the energy 3.5.1 is a NP-hard problem for the binary potential
function is arbitrary. However, due to the relatively small number of vari-
ables we can expect to reach a good approximate in reasonable time with an
efficient message passing algorithm such as the convergent Tree-Reweighed
(TRW) Message Passing algorithm (Kolmogorov, 2006). The TRW algorithm
uses a linear programming relaxation technique and operates on the dual of
the relaxed problem in order to find a lower bound to the energy of the original
problem. Due to its state of the art performance among discrete optimization
methods, TRW has been applied to solve many computer vision and medical
imaging tasks.

3.6.2 Experimental Results

To evaluate our method, we used a dataset composed of 3D volumes of the
right thigh of 15 healthy subjects, covering a wide range of morphologies (8
females, 7 males, ages range: 26 to 60), acquired with a 3T Siemens scanner
and using 3pt Dixon sequence (TR=10ms, TE1=2.75 ms TE2=3.95 ms TE3=5.15

ms, rf. flip angle =3°; we used the out-of-phase image), with the an average
image size of: 220px× 220px× 64px. Every volume was manually segmented
to obtain the ground truth against which the segmentation results are com-
pared. We focused our evaluation on clinically relevant muscles of the thigh
(13 muscles).

Sampling the seeds, as described in section 3.4, with grid spacing 7px ×
7px × 7px, and 2 iterations to bring the seeds further away from the edges
(filter radius = 1px), gave us between 2000 and 2500 seeds per test image. At
the MRF stage, detailed in section 3.5, we obtained our best results with the
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following cross-validation estimated parameters wgeod = 0.1, worient = 0.01,
γ = 2×medianp,q∈V g (p, q), and U contains 26 regularly spread unitary ori-
entation vectors. On a 2.8 GHz Intel® processor with 4 GB of RAM, total
processing time is under 5 min, which adds up to the RW segmentation time
(5 min).

All our results are based on a leave-one-out validation protocol: each vol-
ume is used as the reference segmentation for segmenting all the other vol-
umes. First, we evaluated the automatic labeling process by computing the
labeling error rate for each muscle (figure 3.6.1) as box-plots1. For testing the
efficiency of the binary potential, we also computed the error rate for an en-
ergy only composed of the unary potential. We observe that using the binary
potential significantly reduce the error rate. Moreover, the combination of the
geodesic potential with the orientation potential is more efficient than using
only the geodesic potential, which confirms that both terms exploit comple-
mentary types of information.

Then, we computed Dice coefficients to evaluate the segmentation results
given by the RW with the labeled seeds (figures 3.6.2 and 3.6.3). The expression
of the Dice coefficient is: D = 2 |T ∩ R| / (|T|+ |R|), where T and R are the
pixel sets of a given muscle in the inferred segmentation and the reference
segmentation respectively. The presented method outperforms a simple Atlas-
based segmentation method (see chapter 4 for details on this method).

In figure 3.6.4, we show cross-sections of segmentation results. We observe
that small muscles tend to be more affected by segmentation errors than large
ones, which points out the limitations of our model. In particular, the unary
term, based on the superimposition of the registered reference atlas with the
target image, is bound to be less effective for small muscles, because the dis-
tance term d (., .) is likely to be larger than in the case of large muscles. Besides,
many errors are due to the absence of reliable contours between parts of mus-
cles, which, in the case of large errors, indicates that the topology constraints
are failing to insure topology or shape correctness.

3.7 conclusion

In this chapter we presented a first method relying on the good properties of
the RW algorithm when facing weak boundaries. Results on real clinical data
show the validity of this approach and the usefulness of the proposed two bi-
nary terms. However, an inherent limitation of this method lies in its two-stage
formulation: 1) label the seeds; 2) segment the volume from the seeds. Indeed,
as shown in figure 3.7.1, if the labeling fails, segmentation will inevitably fail
in the same area since seeds act as constraints on the segmentation process (see
the Random Walks algorithm detailed presentation in the next chapter). This
issue may be revealed by the non-negligible amount of outliers in the Dice plots
(Fig. 3.6.2), which means that the method totally failed to segment some mus-
cles (in general, smaller ones, like the biceps femoris or the adductor brevis).
In order to avoid such propagation of errors, we propose an integrated method
in the next chapter, in which the Random Walks and prior knowledge of shape

1 Box-plot presentation: the boxes contain the middle 50% of the data and the median value, and
the extremities of the lines indicate the min and max values, excluding the outliers (for more
details, see the documentation of Matplotlib).
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Figure 3.6.1 – Labeling error rate (in percent) as box-plots. “Nearest” is when
using only the unary potential (wgeod = worient = 0). The label
of the seeds is only determined by the geometrically nearest muscle
in the reference atlas. “Autoseed (geo. only)” is the error rate when
using only the geodesic distance term (worient = 0, wgeod = 0.1).
“Autoseeds” refers to the proposed method. Using both binary
potentials significantly reduces the error rates.

Figure 3.6.2 – Dice coefficients for all muscles as box-plots “Multi atlas regis-
tration” refers to a simple atlas registration-based segmentation
method (see next chapter for more details). The expression of the
Dice coefficient is: D = 2 |T ∩ R| / (|T|+ |R|), where T and R are
the pixel sets of a given muscle in the inferred segmentation and
the reference segmentation respectively.
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Figure 3.6.3 – Detailed Dice results for all muscles separately.
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Figure 3.6.4 – Examples of cross-sections of 3d volumes of right thighs automati-
cally segmented with the proposed method.

Figure 3.7.1 – Incorrectly labeled seeds (diamond markers) prevent the RW
method to segment the corresponding regions correctly (white re-
gions)
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are combined into one formulation. Although this method is inherently flawed
for the aforementioned reasons, some improvements could still be considered.
In particular, using non-rigid registration could improve the performance if a
better match of the atlas and the segmented image is achieved.





4
R A N D O M WA L K S S E G M E N TAT I O N A N D P R I O R
K N O W L E D G E

In this chapter, we present different approaches based on the general Random
Walks Segmentation algorithm. The state of the art RW algorithm has several
benefits over its competitors: (i) unlike discrete methods such as graph-cuts, it
provides a probabilistic segmentation (that is, a distribution over all putative
labels for each pixel/voxel); (ii) unlike surface-based methods like Active Con-
tours, it has the ability to handle intersection issues in multi-label cases; (iii)
it is robust to partial contours; and (iv) it is computationally efficient, since
it only requires solving a sparse linear system of equations. Although it was
initially proposed for the interactive setting where a user specifies the seeds of
the segmentation, a fully automated extension using the contrast information
was proposed by (Grady, 2006). However, contrast information does not per-
mit accurate segmentation in the skeletal muscle case where all muscles share
the same appearance. Therefore, we propose to incorporate prior knowledge
of the shape of skeletal muscles into the RW framework. In a first published
approach (Baudin et al., 2012a), a prior energy functional is added to the RW
functional in the form of a proximal regularization of the probabilistic segmen-
tation, whose deviations from an average reference segmentation are penal-
ized. We propose to modulate the strength of the model constraints according
to both prior information on the model’s local accuracy and to the strength of
the contours present in the segmented image. A second published approach
(Baudin et al., 2012b), introduces some flexibility to the model by constrain-
ing the shape to remain close to a Principal Component Analysis shape space
built from training examples. Using the PCA allows us to model complex non-
rigid shape variations relying on a few eigen-modes. These methods benefit
from the high performance of the Random Walks optimization process, as they
require only a simple addition to the original objective function.

4.1 the random walks segmentation algorithm

4.1.1 Preliminaries

From an image I with N pixels, we build a undirected graph G = (V , E), with
V representing the set of nodes, |V| = N, and E the set of edges, where the i-th
node vi corresponds to the i-th pixel of image I. We denote the edge connecting
the nodes with indices i and j as eij, and its weight as wij ≥ 0 . Since the graph
is undirected, eij and eji denote the same edge and their weight is the same:
ωij = ωji. The set of edges E is only composed of pairs of adjacent pixels,
such that graph G contains only cliques of order 0 and 1. We also denote the
neighborhood of pixel i as Ni =

{
vj/eij ∈ E

}
.

Given a set of labels S (e.g. the indices of the muscles), segmenting an image
I is defined as a graph partitioning procedure, i.e. consisting in assigning a label

47
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Figure 4.1.1 – (left) Random walker on a discretized ground with target seeds
(flags). The probability of the walker of stepping onto an adjacent
square/pixel can be different for each pixel, as figured by the red
arrows of various sizes. (Right) Segmented ground/image: the
label assigned to one pixel is the label of the most probably first
reached seed during a random walk starting from that pixel.

s ∈ S to each node v ∈ V . We refer to the assignment of node vi to the label s
as: l (i) = s.

4.1.2 Random Walker analogy

The Random Walks (or Random Walker) algorithm is a probabilistic method
modeling the behavior of a inebriated walker on a non homogeneous ground.
At each step, the walker chooses a random direction, where the chosen direc-
tion is more likely if it is an easy path – e.g. on a flat ground – than a difficult
path – e.g. on a bumpy ground (see figure 4.1.1 for illustration). Suppose the
ground is discretized, i.e. the walker can only take a finite number of steps.
The ground can be represented by a graph, each node being one possible loca-
tion. The edges of this graph are the possible paths from one location (node)
to another.

The connection with graph partitioning – and thus image segmentation –
is established as follows: suppose some of the locations on the ground are
marked with a colored flag. The number of colors is finite and there can be
several flags of the same color. In graph terms, some nodes in the graph are
already assigned to one label, and the number of labels is finite. We refer
to the marked nodes as seeds. Then, the Random Walks algorithm computes
the probability that the walker reaches one flag before all the others, for each
starting location. Finally, each starting location is assigned to the most probably
reached-first flag; in graph terms: each node is assigned to the most probable
label.

4.1.3 Probabilistic explanation1

In this framework, the global label assignment is modeled by a random vari-
able. We denote the probability of assignment of voxel i to label s as xs

i =

1 Thanks to Danny Goodman for his help in this section.
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Pr (l (i) = s). In this notation, l (i) = arg maxs xs
i . We denote the transition

probability from node i to node j as pij. In general, we have pij 6= pji.
Assume we possess a set VM of seeds, i.e. pre-labeled nodes for each label

(typically, manually marked voxels). We denote the set of unknown nodes
as VU , such that VM ∪ VU = V and VM ∩ VU = ∅. For convenience in the
notations, we denote the sets of indices of the nodes in VU and VM as U and
M respectively. Since the label of marked voxels is known for certain, their
assignment probability is either 1 or 0

∀i ∈ M, xs
i =

1 l (i) = s,

0 l (i) 6= s.
(4.1.1)

We denote to the probability vector for label s as xs, where xs contains the xs
i

for each voxel i. Then, without loss of generality, we can assume the variables
in xs are ordered so that we can write:

xs =

[
xs

U

xs
M

]
, (4.1.2)

where xs
U (respectively xs

M) is the vector containing the assignment probabili-
ties for unknown (respectively marked) nodes in VU (respectively VM). Then,
the assignment probability of any unknown node vi ∈ VU can be expressed
with respect to the assignment probability of all the nodes (both unknown and
marked) in its neighborhood Ni:

∀i ∈ U, xs
i = ∑

vj∈Ni

pijxs
j . (4.1.3)

The probability of assignment of one pixel depends only on the assignment
probabilities of its neighbors. Since all nodes have the same property, the
assignment probabilities can all be represented at once in matrix form. We
denote the transition probability matrix as Π:

Π =

pij if eij ∈ E ,

0 otherwise.
(4.1.4)

We denote the sub-matrix of Π containing the transition probabilities be-
tween two unknown nodes as ΠU (respectively: (i)ΠM; (ii)ΠUM; (iii)ΠMU) (re-
spectively: (i) between two marked nodes: (ii) from an unknown node to a
marked node; (iii) from a marked node to an unknown node):

Π =

[
ΠU ΠUM

ΠMU ΠM

]
. (4.1.5)

Thus, we can write:

∀s, xs
U = ΠUxs

U + ΠUMxs
M, (4.1.6)

(I −ΠU) xs
U = ΠUMxs

M, (4.1.7)
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Figure 4.1.2 – Image contrast is chosen as the source for the transition probabil-
ities (figured by red arrows). The green curve, following the se-
quence of lowest transition probabilities, is more likely to be se-
lected as a boundary during the segmentation.

with I being the identity matrix of size |U| × |U|.

4.1.4 Transition probabilities

The transition probabilities are to be set accordingly to the desired properties
of the segmentation. In general – and such is case of in muscle segmentation –
one wishes to segment an image according to the visible boundaries. A bound-
ary in an image is the result of an intensity pattern where many side-by-side
pixels of very different intensities form a continuous curve In our probabilistic
framework, this leads to have higher probability transitions for pairs of pixels
having different intensities and lower probability transitions for pixels having
similar intensities (cf. figure 4.1.2). A well-known choice for transition proba-
bility is the Gaussian kernel2:

wij = exp
(
−β

(
Ii − Ij

)2
)

, (4.1.8)

where wij is thus defined as the weight for edge eij. Since pij is a probability,
the transition probability is given by:

pij =
ωij

∑i ωij
. (4.1.9)

2 we also implemented the following alternate formulation wij =
1

β|Ii−Ij|+ε
.
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4.1.5 Random Walks objective functional

Let us define A, the non-normalized transition matrix – also designated as the
affinity matrix:

Aij =

ωij if eij ∈ E .

0 otherwise,
(4.1.10)

and D, the diagonal matrix such that:

Dii = ∑
j

ωij, (4.1.11)

and L, the un-normalized combinatorial Laplacian matrix

L = D− A. (4.1.12)

The Random Walks objective functional is defined as:

Es
RW(xs) =

1
2

xs>Lxs. (4.1.13)

In the following, we will see that minimizing this functional amounts to solv-
ing the probabilistic Random Walks equation 4.1.3, hence determining the as-
signment probabilities. Since wij = wji (it is an undirected graph), the entries
of L are:

Li,j =


∑k ωkj if i = j,

−ωij if eij ∈ E ,

0 otherwise.

(4.1.14)

The Laplacian L has many properties (Von Luxburg, 2007), among which the
most important ones are:

1. L is symmetric and positive semi-definite; the latter can be seen by refor-
mulating 4.1.13 in a scalar form:

Es
RW (xs) = ∑

eij∈E
ωij

(
xs

i − xs
j

)2
, (4.1.15)

which gives:
∀a ∈ RN , a>La ≥ 0; (4.1.16)

2. the smallest eigenvalue of L is 0, and the corresponding eigenvector is
the constant one vector 1.

We decompose L into sub-blocks for marked and unknown nodes, hence defin-
ing sub-blocks LU , LM and B:

L =

[
LU B

B> LM

]
,
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which allows us to rewrite equation 4.1.13 as:

ERW(xs) =
1
2

xs>
U LUxs

U + xs>
U Bxs

M +
1
2

xs>
M LMxs

M. (4.1.17)

By differentiating 4.1.17 with respect to the unknown variables, we obtain:

LUxs
U = −Bxs

M. (4.1.18)

We can show that the solution to this system exists and is unique if their ex-
ists at least one path composed of only nonzero-weight edges between each
unknown node and a marked node (see appendix B.1).

The system of equation 4.1.18 is equivalent to the probabilistic Random
Walks equation 4.1.7. This can be seen by noting that, if D has no zero en-
try – i.e. each pixel has at least one edge with a non null weight – one can
retrieve Π from equation 4.1.9, by normalizing A:

Π = D−1A. (4.1.19)

Thus, we can write

L = D (I −Π) , (4.1.20)

= DLrw, (4.1.21)

where Lrw, defined as Lrw = I −Π, is called the normalized Laplacian. Decom-
posing Lrw into sub-blocks, we can write:

LU = DU(I −ΠU), (4.1.22)

B = −DUΠUM, (4.1.23)

where DU is the sub-matrix of D corresponding to unknown indices.

4.1.6 Segmentation algorithm

The Random Walks functional 4.1.13 provides a measure of the probabilistic
segmentation xs, and the optimal segmentation is the one which minimizes it,
i.e. which has the lower cost according to this measure. We have seen that
minimizing the RW functional is equivalent to solving the initial RW system,
which we recall here:

∀vi ∈ VU , xs
i = ∑

vj∈Ni

pijxs
j .

It can be shown (see appendix B.2) that a solution to 4.1.18 is always a proba-
bility:

∀i, ∑
s

xs
i = 1, (4.1.24)

∀i, ∀s, xs
i ≥ 0. (4.1.25)
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Once one has inferred the probabilistic segmentation x̂s for each label s, the
“hard” segmentation – i.e. the estimated label l̂ (i) of each node vi – is obtained
via:

l̂ (i) = arg max
s

x̂s
i . (4.1.26)

4.1.7 Related work

The graph Laplacian is a fundamental tool for graph analysis, and is related to
many other notions besides Random Walks, as we will see in the following.

spectral clustering In the machine learning community, one finds spec-
tral clustering (Shi and Malik, 2000b; Ng et al., 2002; Meila and Shi, 2001), an
extremely popular clustering technique. We refer the reader to Von Luxburg
(2007) for a detailed overview of many aspects of spectral clustering.

There exists several versions of the spectral clustering technique, involving
either the un-normalized Laplacian L, the normalized Laplacian (Ng et al.,
2002) Lrw, or the symmetric normalized Laplacian (Shi and Malik, 2000a):

Lsym = D−1/2LD−1/2. (4.1.27)

Assuming that the data consist of n points x1, . . . xn in an arbitrary space, an
affinity matrix S – also called similarity matrix – is built from some pairwise
similarity function Sij = s

(
xi, xj

)
≥ 0. A similarity graph G is constructed

over the data points and their pair-wise similarities. The first k eigenvectors
u1, . . . uk of one of the Laplacians of G are computed and stored in a matrix
U ∈ Rn×k (in (Ng et al., 2002), the rows of U are normalized to norm 1).
Then, denoting the points whose coordinate are the rows of U as y1, . . . , yn,
clustering with the k-means algorithm (Hartigan and Wong, 1979) is performed
on “abstract” points {yi}i.

normalized graph cuts Spectral clustering can be seen as an approx-
imation of some graph-cut problem. Let us denote a partition of the graph
with k subsets as A1, . . . , Ak. With the notation: W (A, B) = ∑i∈A,j∈B ωij and Ā
as the complement of A, then the min-cut problem consists of minimizing the
following quantity:

cut (A1, . . . , Ak) =
1
2

k

∑
i=1

W (Ai, Āi) . (4.1.28)

As the solutions to the min-cut problem often tend to create “unbalanced”
partitions, selecting excessively small subsets of nodes, some modifications of
the objective were introduced; the best-known are the RatioCut (Hagen and
Kahng, 1992) and the normalized cut Ncut (Shi and Malik, 2000b). Denoting
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the number of node in partition A as|A| and the total weight of the edges in A
as vol (A) = ∑i,j∈A ωij, the definitions are:

RatioCut (A1, . . . , Ak) =
1
2

k

∑
i=1

W (Ai, Āi)

|Ai|
, (4.1.29)

Ncut (A1, . . . , Ak) =
1
2

k

∑
i=1

W (Ai, Āi)

vol (Ai)
. (4.1.30)

However, unlike standard min-cut, both problems are NP-hard and can only
be solved approximately.

It can be shown (Shi and Malik, 2000a; Hagen and Kahng, 1992) that these
quantities can be expressed using the un-normalized graph Laplacian:

RatioCut (A1, . . . , Ak) = Tr
(

H>LH
)

, (4.1.31)

with Hij =

1/
√∣∣Aj

∣∣ if vi ∈ Aj

0 otherwise
,

and the symmetric normalized graph Laplacian:

Ncut (A1, . . . , Ak) = Tr
(

H>LsymH
)

, (4.1.32)

with Hij =

1/
√

vol
(

Aj
)

if vi ∈ Aj

0 otherwise
.

Thus, both problems can be reformulated as trace minimization problems
under some constraints. It can be shown that spectral clustering using the
un-normalized Laplacian L (respectively the symmetric normalized Laplacian
Lsym) solves the relaxation of the RatioCut problem (respectively the Ncut prob-
lem (Shi and Malik, 2000a)) when the entries of H are allowed to take arbitrary
real values. Please refer to the work of Von Luxburg (2007) for further de-
tails and proofs. Although the solutions of the relaxed problems via spectral
clustering can be very different from the original problems, spectral clustering
remains a popular approximation for its simplicity of use and the quality of its
output in practice.

ncut and random walks A relationship exists between Ncut and Ran-
dom Walks (Meila and Shi, 2001), which can be seen from the following result:

Ncut (A, Ā) = P (Ā|A) + P (A|Ā) , (4.1.33)

where P (A|B) is the probability that the random walker jumps from a node
in subset B onto a node in subset A. Thus, one can say that minimizing Ncut
amounts to finding a partition such that a random walker has the lowest prob-
ability of transitioning between parts.

commute time distance The commute time distance between two ver-
tices v1and v2 is defined as the expected number of jumps of a random walker
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to travel from v1 to v2 and back. Among other interesting properties, the com-
mute distance differs from the shortest path in that it considers all possible
paths between the two nodes; as a result, two subsets separated by a partial
gap – i.e. whose all but a few inter-connecting edges have low weights – will
be considered as “far apart” when using the commute distance, whereas they
could be considered as “close-by” with the shortest path distance. The com-
mute time distance can be computed using the generalized inverse of the un-
normalized Laplacian L. Recalling the eigen-decomposition of the Laplacian
L = UΛU>, the generalized inverse of L is given by:

L† = UΛ†U>, (4.1.34)

with Λ†
ii =

1/Λii if Λii > 0

0 otherwise
.

Then, the commute time distance between nodes vi and vj (Saerens et al., 2004)
denoted as cij , is given by:

cij = vol (V)
(

L†
ii − 2L†

ij + L†
jj

)
. (4.1.35)

As a consequence one can define an embedding of the data points x1, . . . , xn,
denoted as z1, . . . , zn and given by the rows of matrix

(
Λ†)1/2 U, such that

the commute time distances between points xi are converted to Euclidean dis-
tances between points zi:

cij = vol (V)
∥∥zi − zj

∥∥2 . (4.1.36)

This embedding is similar to that of the spectral clustering (where the data
points are mapped to the rows of U), although it does not yield identical results
in clustering.

laplacian eigenmaps The Laplacian eigenmaps algorithm (Belkin and
Niyogi, 2001) is used to perform dimensionality reduction of low-dimensional
manifolds embedded in a high-dimensional space. The embedding of the sam-
ple points x1, . . . , xn is given by the rows of U which contains the k eigenvectors
corresponding to the first k smallest eigenvalues for Lsym (same embedding as
the spectral clustering of (Shi and Malik, 2000a)). It can be seen (Ham et al.,
2004) that the Laplacian eigenmap algorithm is equivalent to kernel Principal
Component Analysis (PCA) using kernel L†.

4.2 random walks with prior knowledge

One can say that the standard formulation of the Random Walks segmenta-
tion method relies on prior knowledge in the form of pre-segmented nodes:
the seeds. In general seeds are provided by the user, who manually segments
a few pixels of each class. While this method is convenient and much more
efficient than segmenting the whole image manually, it is still impractical for
large datasets. For this reason, one can be interested in completely automatiz-
ing the segmentation process by using different, unsupervised types of prior
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Figure 4.2.1 – Appearance model for RW in heart segmentation: (left) original
image; (center) seeds as black lines; (right) segmented image. The
appearance model reduces the amount of required user interaction
(Grady, 2005)

knowledge such as statistical intensity of shape models. Moreover, even in the
case of manual seeding, incorporating additional information could improve
the segmentation results and thus also decrease the user time.

4.2.1 Random Walks segmentation with appearance prior

Prior knowledge to the Random Walk formulation was introduced by Grady
(2005), providing an estimate of the probability distribution of the gray-level
intensity for each label. An an example of such technique can be found in
figure 4.2.1, which allows using very few seeds to separate organs from the
background, using the differences in intensity distributions.

Let us introduce as (·) as the probability density distribution for label s.
Then, denoting Ii the intensity at pixel i, the Bayes’ rule states that the proba-
bility of assignment to s for pixel i is:

xs
i =

as (Ii)

∑t at (Ii)
. (4.2.1)

Denoting the vector containing the as (Ii) for each pixel i as as = [as (I1) , . . . , as (IN)]
and As = diag (as), the previous equality can be rewritten as(

∑
t

At

)
xs = as. (4.2.2)

The solution to this system is the minimum of the aspatial functional:

xs>
(

∑
t 6=s

At

)
xs + (1N − xs)> As (1N − xs) . (4.2.3)

This prior-appearance functional is combined with the Random Walks func-
tional 4.1.13 with the introduction of a free balancing parameter wapp:

Es
RWapp (xs) = xs>Lxs (4.2.4)

+ wapp

[
xs>

(
∑
t 6=s

At

)
xs + (1N − xs)> As (1N − xs)

]
.
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Intuitively, minimizing this functional will yield a segmentation influenced by
both the Random Walk principle – segmentation along boundaries – and by the
appearance prior – privileging label assignments that are consistent with inten-
sity distributions. The optimal segmentation minimizing the functional 4.2.4
is obtained through solving:(

L + wapp ∑
t

At

)
xs = wappas. (4.2.5)

Since L is positive semi-definite, system of equations 4.2.5 can be solved even
when all entries of xs are unknown (no seeds). However, as noted by Grady
(2005), it is still possible – and useful – to use seeds in combination with a
prior to obtain more robust segmentations. In the case of muscle segmentation
however, the intensity distributions of the labels (the muscles) are extremely
similar – except for the background – and thus would make a very weak prior
if used alone.

4.2.2 Probabilistic framework3

In this section, we show that the intensity prior of previous section 4.2.1 is
consistent with the probabilistic framework of the Random Walks method, and
allows incorporating prior knowledge of shapes as well. As we saw previously
in the case of standard Random Walks, prior information is incorporated into
the seeds, in the form of pre-segmented nodes. With the probabilistic notations,
this is equivalent to setting the value of the assignment probability for marked
nodes to either 0 or 1 – i.e. enforcing the certainty that each one of these pixels
belongs to one chosen label.

At present, we release these constraints by providing no seed, but add an
additional layer of nodes to the graph G with a one-to-one correspondence
with the original layer of nodes (cf. figure 4.2.2). The nodes in this second
layer V0 are called the prior nodes, while the nodes in the original layer V are
the primary nodes. We set one directed edge from each primary node to its
corresponding prior node. We denote the transition probability from primary
node vi to prior node v0 i as λi, and the assignment probability to label s of
prior node v0 i as xs

0 i; no edge is set between the prior nodes. Then, the Random
Walks node-wise probability (for primary nodes) becomes:

∀vi ∈ V , xs
i = (1− λi) ∑

vj∈Ni

pijxs
j + λixs

0 i, (4.2.6)

where the probability pij of transition from primary node vi to primary node
vj in the original RW equation 4.1.3 is multiplied by the probability to not walk
onto the prior node v0 i: (1− λi).

3 Thanks to Danny Goodman for his help in this section.
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Figure 4.2.2 – Prior information is introduced to the Random Walks framework
by adding a second layer of nodes (the prior nodes); each of these
prior nodes has a known assignment probability to each label (here,
each color on the second layer represents the most probable prior
label). The transition probabilities (figured as vertical arrows) from
the first layer to the second layer can vary along the pixels.

Denoting the diagonal transition matrix from primary nodes to prior nodes
asΛ = [λ1, . . . , λN ]

T and the transition matrix between primary nodes as Π,
we reformulate the Random Walks equation 4.2.6 in matrix form

xs = (I −Λ)Πxs + Λxs
0 (4.2.7)

[(I −Λ) (I −ΠV ) + Λ] xs = Λxs
0. (4.2.8)

We recall that D is the diagonal matrix such that Dii = ∑j wij, and that the
combinatorial Laplacian of the primary graph is given by L = D (I −Π) . Then
the new Random Walks equation is equivalent to

[(I −Λ) L + ΛD] xs = ΛDxs
0, (4.2.9)

which can be solved if the transition probabilities to prior nodes are non-zero,
ensuring that (I −Λ) L + ΛD is positive definite.We can rewrite the previous
as

(L + ∆) xs = ∆xs
0, (4.2.10)

with the diagonal matrix
Ω = (I −Λ)−1 ΛD, (4.2.11)

which excludes setting λi = 1 without loss of generality, since such setting
would make the problem trivial by considering only the prior model and ig-
noring the Laplacian.

The solution to the last equation 4.2.10 provides the minimum of the follow-
ing objective:

Es
RW+prior (x

s) = xs>Lxs + (xs − xs
0)
>Ω (xs − xs

0) , (4.2.12)

= xs>Lxs + ‖xs − xs
0‖

2
Ω , (4.2.13)
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Figure 4.3.1 – Label assignment probability of prior model xs
0, for two different

labels s : (left) background; (right) vastus lateralis.

where ‖.‖Ω is a weighted norm by Ω. Intuitively, the optimal segmentation
minimizing this functional is influenced by both the Random Walk principle
– segmentation along boundaries – and by the prior model – privileging label
assignments consistent with the prior probabilities. Any solution to this prob-
lem is a probability distribution if

{
xs

0 i
}

s is a probability distribution (please
refer to appendix B.3):

∑
s

xs
0 = 1⇒∑

s
xs = 1. (4.2.14)

Going back to the appearance prior model of section 4.2.1, we set the prior
probabilities as:

xs
0 =

(
∑

t
At

)−1

as, (4.2.15)

and Ω as:

Ω = wapp

(
∑

t
At

)
, (4.2.16)

retrieving the system for appearance prior 4.2.5.

4.3 random walks segmentation with shape prior

4.3.1 Constant prior weight

In this section we propose a simple shape prior model for the Random Walks
based on the general formulation 4.2.12. Suppose that we have an estimate
for xs

0, based on learning a pixel-wise shape over previous segmentations in
a training set T (see figure 4.3.1). We set the transition probabilities from the
primary nodes to the prior nodes in Λ such that Ω is the constant diagonal
matrix:

Ω = wshape I, (4.3.1)
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Figure 4.3.2 – Weighting schemes, displaying the diagonal of Ω as an image: (left)
entropy weighting; (right) confidence map.

with wshape > 0. Since Ω = (I −Λ)−1 ΛD, this is achieved by setting the
transition probability λi to the prior nodes in the following manner:

∀vi ∈ V , λi =
1

∑j ωij/wshape + 1
. (4.3.2)

With this choice of Ω, each pixel is biased towards its prior assignment proba-
bilities depending on the relative values of the wij and wshape: if ωij � wshape,
node vi is influenced more by the prior than by its neighborhood; conversely, if
ωij � wshape, then node vi is more strongly influenced by the label assignment
of its neighbors than by the prior probabilities. The corresponding functional
is:

Es
RWconst (x

s) = xs>Lxs + wshape ‖xs − xs
0‖

2 . (4.3.3)

This model simply penalizes the deviation of vector xs from xs
0 with a uniform

weighting scheme.
The prior assignment probabilities can be obtained by computing the em-

pirical mean of the assignment probabilities over the training set T . Since
the training T is composed of manually segmented images, the assignment of
each pixel is known and the corresponding assignment probability is either 0
or 1. Referring to lk (i) as the assigned label of pixel i in training image k, the
binary assignment probability is defined by:

zs
k i =

1 if lk (i) = s,

0 if lk (i) 6= s,
(4.3.4)

and the corresponding vector is denoted as zs
k. Then, xs

0 is computed as:

xs
0 =

1
|T |∑k

zs
k. (4.3.5)

4.3.2 Prior-weighted models

entropy model The previous shape model weights each pixel by the same
amount wshape towards the average probability. However, if we own a confi-
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dence measure of the quality of this prior model, it could be useful to vary the
weights in order to constrain the pixels according to the degree of confidence.
For instance, the entropy

e (i) = −∑
s

xs
0 i log (xs

0 i) (4.3.6)

is a measure of how certain the prior model is of the pixel assignment. Indeed,
if pixel i was consistently assigned to label s in the training set, then e (i) ≈ 0.
Conversely, if pixel i has similar assignment probabilities for all the labels,
e (i) ≈ log (|S|) (see figure 4.3.2). Hence, a possible weighting scheme is given
by:

Ωii = wshape

(
1− e (i)

log |S|

)
. (4.3.7)

gaussian model We observe that the term ‖xs − xs
0‖

2 in the constant shape
prior functional can be interpreted as the typical log-likelihood functional for
independent Gaussian variables, with mean xs

0 and variance 1:

‖xs − xs
0‖

2
2 = − log exp

(
−‖xs − xs

0‖
2
)

. (4.3.8)

Pursuing this Gaussian analogy, we may use the empirical variance as a mea-
sure of confidence:

Ωs
ii = wshape

1
σ (i)

. (4.3.9)

In the previous, we may use the empirical estimate of the variance over the
training set:

σ̂2 (i) =
1

|T | |S|∑s
∑

k
(zs

k i − xs
0 i)

2 . (4.3.10)

Since x (i, s) is a probability and since the variables in xs are necessarily corre-
lated, such Gaussian modeling can only be a rough approximation but it has
the advantage of simplicity. In practice, due to the small number of training
examples, it is necessary to regularize the variance term. Indeed, some pixels
have a variance that is equal to zero when all training examples agree on this
pixel’s label. An empirical regularization of the variance can be obtained with
the following formula:

Ωs
ii = wshape

1
ασ2 (i) + (1− α)

, (4.3.11)

with α ∈ ]0, 1[.

4.3.3 Confidence map

All previous shape models balance the influence of the prior model according
to information extracted from the training data. We may also find interesting
to reduce the influence of the model according to the strength of the contours
in the test image, rather than from the training set: the stronger the contours, the
least we should rely on the model (see figure 4.3.2). Assume we possess such
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a “confidence map” c, with values close to 0 on strong contours, and values
close to 1 in homogeneous regions, we can set:

Ωs = wshapediag (c) . (4.3.12)

In the following, we propose a simple formula to compute the confidence
map, but many other methods would likely be as effective. Denoting the local
variance at pixel i computed on a patch with radius r as σ2

r (i) , we propose the
following formula:

ci = exp
(
−kvσ2

r (i)
)

, (4.3.13)

where kv is a free parameter .

4.3.4 Experimental validation

datasets All our experiments were performed on datasets composed of
3D volumes of the right thigh of healthy subjects, covering a wide range of
morphologies (males and females, ages range: 26 to 60), acquired with a
3T Siemens scanner and using 3pt Dixon sequence (TR=10ms, TE1=2.75 ms
TE2=3.95 ms TE3=5.15 ms, rf. flip angle =3°; we used the out-of-phase image),
with the an average image size of: 220× 220× 64px. Four clinically relevant
muscles (the quadriceps: vastus lateralis, vastus intermedius, vastus medialis
and rectus femoris) were segmented in 30 volumes; in addition, among these
30 volumes, 13 of which had all 13 thigh muscles segmented.

registration For a given test volume, all other volumes served as a train-
ing set and were non-rigidly registered onto the test volume. We chose non-
rigid registration in order to have the least possible variations of the outer-
boundaries of the muscle tissues (the muscle/fat boundaries). The objective is
to rely on the RW algorithm only to segment the more difficult inter-muscle
boundaries.

As mentionned in the conclusion of the previous chapter, registration of the
outer-boundaries of the muscle tissues is much easier than registration of the
inter-muscle boudaries. Indeed, the latter are often weak or confused with
spurious ones, such that trying to register them may lead to larger errors if the
registration process is not-rigid enough. For this reason, we generated binary
masks of the muscle tissues from the water-map image (see appendix A) and
used them to compute the deformation fields. With binary masks, the inter-
muscle boundaries are completely ignored by the registration software, and
thus only deformed accordingly to the outer-boundary matching. The defor-
mation fields were then applied to the corresponding segmentation atlases in
order to generate the average segmentation x0.

Registration was achieved using the Drop software (Glocker et al., 2008).
This methods uses a multi-scale discrete modeling approach relying on a Markov
random field objective function minimized through efficient linear program-
ming. This method can accept any similarity measure and we chose the default
one (sum of absolute differences) to register the binary masks. The software
provided a smooth deformation field which we then used to deform the refer-
ence atlas.

http://www.mrf-registration.net)
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validation To evaluate the segmentation generated by our methods, we
computed Dice coefficients. The expression of the Dice coefficient is: D =

2 |T ∩ R| / (|T|+ |R|), where T and R are the pixel sets of a given muscle in
the inferred segmentation and the reference manual segmentation respectively.
Let us denote the binary vector containing the manual segmentation for label
s as zs, and the binarized vector containing the inferred segmentation for label
s as xs, that is,

xs (i) =

1 if s = arg maxt xt (i),

0 otherwise.
(4.3.14)

Then, the Dice coefficient for label s of the inferred segmentation x is computed
as

Ds =
2zs>xs

1> (zs + xs)
. (4.3.15)

Thus, if the inferred segmentation is identical to the manual segmentation for a
given label, it will have Dice coefficients equal to 1 for all muscles; conversely,
if it is entirely different from the manual segmentation, its Dice coefficients
will be 0.

Results are presented as boxplots4, with the Dice coefficients for all the
segmented muscles combined into a single box – excluding the background.
Figs. 4.3.3 and 4.3.4show some examples of segmentations obtained with our
method (constant weighting scheme, 13-muscle dataset). Large muscles tend
to be better segmented that small ones. This is related to the average segmen-
tation x0: since the average segmentation and the true segmentation of the
target image do not correspond exactly, a larger proportion of the small mus-
cles are incorrectly segmented by x0, as compared to the larger muscles. As a
result, the assignment probabilities computed by the RW algorithm are gener-
ally lower than with large muscles, thus leading to more segmentation errors.
This is also true when a muscle has a rarely seen location or shape : large
segmentation errors with x0 may lead to large errors in the resulting segmen-
tation. We conclude that this algorithm only works well for average anatomies.
Improvements of this method will necessitate a more flexible model, capable
of adapting to a larger range of anatomies.

various weighting schemes We tested different weighting schemes based
on statistics on the training database: entropy weighting and Gaussian weight-
ing and compared them to the constant weighting scheme. In addition, we also
tested the confidence map weighting scheme. Dice coefficient for the different
approaches were reported in figure 4.3.5 and show that for all tested parame-
ters wshape, neither weighting scheme improved on the constant weighting; the
variance weighting even seems to degrade the performance. The reason for
the lack of improvement is possibly due to the limited validity of the statistics
on such a small number of training example (29 volumes, the 30th is the one
being segmented). However, although no statistically significant differences
in terms of Dice coefficients were found, one can observe on the segmented
data some visual differences depending on the weighting scheme used. For in-

4 Box-plot presentation: the boxes contain the middle 50% of the data and the median value, and
the extremities of the lines indicate the min and max values, excluding the outliers (for more
details, see the documentation of Matplotlib).
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Figure 4.3.3 – Examples of segmentations obtained with the RW algorithm with
shape priors (constant weighting scheme).
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Figure 4.3.4 – Two 3D views of a segmentation (right thigh) obtained with our
method.

Figure 4.3.5 – Comparing performances for various weighting schemes; the box-
plots are generated from Dice coefficients for all labels (4 mus-
cle database). “Cmap” designates the confidence map weighting
scheme.

stance, figure 4.3.6 shows some of the effects of the confidence map scheme on
the segmentation results; here, the result is less influenced by the prior shape
than with the constant prior, which improves the segmentation quality around
the bone; however, the gain in accuracy in one place is lost in another place
where the contours are missing, due to the increased freedom of the model.
As often, it appears that the compromise between segmenting the contours
accurately and keeping a valid shape is hard to find.

Since all hyper-parameters were selected by hand – in particular wshape –
we expect that an automatized parameter selection would yield more optimal
values and maybe find significant differences between the weighting schemes.
In the next chapter of this report, we propose such a method for selecting
parameters.

using the appearance prior As mentioned previously, it is possible
to combine several prior terms to benefit from complementary knowledge
sources. For instance, let us consider the appearance prior seen in section 4.2.4;
this prior term is not usable in itself in the context of muscle separation, since
all muscles have the same appearance properties; however, when used in com-
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Figure 4.3.6 – Comparison of segmentations using the constant weighting scheme
(left) and the confidence map weighting scheme (right).

Figure 4.3.7 – Local segmentation differences due to adding an appearance prior
term

bination with a shape prior term, it could help improving the separation be-
tween muscles and fat tissues.

In figure 4.3.7, we show identical cross-sections where the left one has been
segmented only with the constant shape prior (that is: equation 4.3.3, using
wshape = 1.10−2), whereas the right one has been segmented with the same
prior term plus an appearance prior (equation 4.2.5, using wapp = 1.10−2). One
can see the appearance prior has an obvious influence over the muscle/back-
ground separation in several places. However, quantitative results – shown in
figure 4.3.8 – show that the appearance prior does not improve the segmen-
tation on our dataset. This is due to the fact that, in our test images (see
appendix section A.2.2), the average intensity of the fat tissues is close to the
average intensity of muscle tissues; moreover, there are notable local variations
of the average intensity due to magnetic field inhomogeneities – a notorious
artifact in MRI. Although it appears that such an appearance prior is inefficient
on our database, the evidence of a discriminative effect shown in figure 4.3.7
leads us to believe it could improve the segmentation results on a different
dataset where fat and muscle tissues are more clearly separated (for instance
when using T1-weighted images).

comparison with previous work We compared the presented method
with related methods (see figures 4.3.11 and 4.3.9). For reasons explained in
the following, the tests could not be performed on the exact same datasets, but
only on overlapping datasets with different number of samples and segmented
muscles. Thus, some of these comparisons should be taken cautiously. All tests
were performed by the authors of the corresponding methods.

• The method of Gilles and Pai (2008), briefly presented in section 2.1.2.
We recall this method belongs to the deformable model family, using
a single reference shape model as initial state and prior term. Dataset:
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Figure 4.3.8 – Comparing performances with and without the appearance prior;
the boxplots are generated from Dice coefficients for all labels (13

muscle database).

16 volumes extracted from our 30-muscle dataset, among which one was
fully segmented for providing the prior shape; the 15 other volumes were
then segmented automatically5; we computed the Dice coefficients only
on the 4 muscles for which we had the manual segmentations.

• The method of Andrews et al. (2011a), briefly presented in section 2.2.1.
This method is a region-based continuous method, with a shape prior
derived from PCA performed on training samples projected into a Iso-
metric Log-Ratio space. Dataset used: our database of 13 volumes with 13

segmented muscles. The images and corresponding segmentations have
been cropped and aligned based on the location of the bone, as per the
method described in the original paper6. On this dataset, due to not hav-
ing a clear difference between the intensity of the muscles and that of the
fat tissues, the method did not perform as well as in the published article
where the authors present an average global Dice coefficient of 0.92.

• A method called “Registration”, which consists of segmenting the vol-
umes using the average segmentation x0. This amounts to considering
only the performance of the non-rigid registration stage that is applied
before constructing the prior model and segmenting the volumes with
the RW method. This method can be seen as a multi-atlas segmentation
method with majority label voting.

• Our own method for automatic generation of seeds (see chapter 3). Dataset
used: our 15-muscle database. Since this method requires only one ref-
erence segmentation for providing a shape prior, many different tests
could be performed in a cross-validation approach (with 13 volumes, this
makes 13× 12 = 156 tests).

• Our own Random Walks with shape prior method. Dataset used: either
our 13-muscle or our 4-muscle database.

Our first comparison concerns the method of Gilles and Pai (2008). We under-
line the fact that very few volumes of our dataset were segmented using this
method, and thus the quantitative comparison with our own method has only
limited validity. However some qualitative comments can be made about these

5 I would like to thank B. Gilles for performing these experiments
6 I would like to thank S. Andrews for performing these experiments



68 random walks segmentation and prior knowledge

Figure 4.3.9 – Comparison of our method (bottom box) with the “registration”
method (top box) and the method from (Gilles and Pai, 2008) (mid-
dle box). Dataset: subset of the 4-muscle dataset with only 15 test
volumes.

Figure 4.3.10 – Cross-sections of segmentations obtained with the method from
(Gilles and Pai, 2008). This method always produces realistic seg-
mentations, but sometimes fails to detect the contours.

results and the cross sections of segmentations obtained with this method (see
figure 4.3.10). First, we notice that this method always produces valid shapes,
that is, shapes that are realistic and could be actual segmentations. However,
due to depending too much on one reference segmentation and also to the
local minimization procedure, this method sometimes fails to segment large
parts of the volumes even though the contours are well defined, as showed in
the figure 4.3.10. These large errors explain the lower figures obtained here.

Second, we compare our method with the method of Andrews et al. (2011a).
Here, the obtained Dices on our dataset with the latter method are abnormally
low – as compared to the figures produced in the original paper. This can be
explained by the fact that the type of contrast of our volumes is ill-adapted to
this method, for it relies heavily on a the separation of muscle and fat tissues
in a preliminary stage; however, our volumes do not show a clear visual differ-
ence between the two types of tissues, as the contrast parameters were rather
selected for a good visualization of the contours.

Finally, we compare our method with the automatic seed placement method
of chapter 3. As seen in figure 4.3.11, it appears that the autoseed method
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Figure 4.3.11 – Comparison of our method (bottom box) with the “registration”
method (top box), the method from (Andrews et al., 2011a) (sec-
ond box) and our automatic seeding method (third box). Dataset:
13-muscle dataset with 13 samples.

slightly outperforms7 our current method on the tested dataset (all 13 muscle,
13 samples). It seems that this shape prior using the average segmentation is
too constraining and does not allow enough variability to fit the most different
shapes. On the other hand, automatic seed placement is less constraining due
to having no seeds close to the boundary of the muscles. However, when this
latter method fails to label the seed correctly, errors can be extremely large as
can be seen from the very low Dice coefficients in figure 4.3.11

per-slice results In practice, certain analyzes of the muscles properties
do not require to segment a muscle entirely. In figure 4.3.12 we show that the
median Dice coefficient obtained with our method (using constant weighting,
as it is the simplest method and provides results that are equivalent to or better
than the other weighting schemes) is much greater in the middle slices than
in the upper and lower slices. This is due to greater variability of the muscles
shapes at their extremities, and to the fact that there are many more missing
contours in those places (especially in the upper part of the thigh, where it
is extremely difficult to determine the boundaries). These results show that
the obtained segmentations are the most accurate in the places most useful for
studying the muscles.

4.4 pca model

In this section, we propose a segmentation method based on the Random
Walks algorithm, in which shape deformation is constrained to remain close

7 unlike what we published in (Baudin et al., 2012a). This is due to using a slightly different
method here, where the labels are not weighted differenly, for remaining true to the probabilistic
framework presented in section 4.2.2.
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Figure 4.3.12 – Per-slice plot of the Dice coefficients for the segmentation method
with constant weighting. The darker bars represent the average
of the lower quartile, the intermediary bars the median and the
lighter bars the average of the upper quartile.
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to a Principal Component Analysis (PCA) shape space constructed over train-
ing examples. Using the PCA allows us to model complex non-rigid shape
variations relying on a few eigen-modes. Such formulation does not fit in the
probabilistic framework presented in section 4.2.2, and only yields an approxi-
mate solution.

4.4.1 Additional notations

Since minimizing 4.1.13 is an independent process for each label, the whole
RW process can be equivalently synthesized in one equation. We denote the
stacked up label-wise segmentations as x> =

[
x1>|x2>| . . . |xK>], such that

x ∈ RKN×1 and the extended Laplacian matrix as:

L̃ =


L · · · 0
... L

...

0 · · · L

 ∈ RKN×KN . (4.4.1)

Matrix L̃ is block-diagonal with K identical blocks, whereK is the number of
labels. In this notations, the RW objective becomes:

ERW (x) = xT L̃x, (4.4.2)

4.4.2 Shape space

It is obvious that the entries of x are not independent from each other, but
instead are highly tied to each other, at least for sets of close-by pixels. This
implies that there exists an implicit lower-dimensional space in which any
true segmentations reside. The principle of a shape space is to design a low-
dimensional affine space approximating this implicit space. If we succeed, we
expect a valid segmentation to lie "not too far" from the shape space; we also
expect the projection of that segmentation onto the shape space to be a good
approximation of the segmentation itself. PCA notoriously provides a simple
mean to compute such a shape space.

Assume we possess a set T of co-registered segmented training volumes. We
model a segmentation vector x as a random vector X with normal distribution
N (x0, Σ), for which we possess a number of samples {zk}k=1...|T |. Let us
denote the centered segmentation vectors as xc

k = zk − x0 . The expression of
the empirical covariance Σ is given by:

Σij =
1
|T |∑k

(zk i − x0 i)
(
zk j − x0 j

)
. (4.4.3)

The previous can be reformulated in matrix form as

Σ =
1
|T |XcX>c (4.4.4)

with Xc =
[
xc

1 · · · xc
|T |

]
.



72 random walks segmentation and prior knowledge

Then we compute the eigen-decomposition of Σ:

Σ = U∆U>, (4.4.5)

where ∆ is a diagonal matrix with the eigenvalues of Σ on the diagonal, and
the columns of square matrix U are the eigenvectors of Σ, in the same order
as the eigenvalues. Since Σ is symmetric and positive definite, its eigenvectors
are orthogonal and its eigenvalues are all positive or zero. Moreover, since the
number of training examples is smaller than the size of X: |T | � N, we know
we have at most |T | strictly positive eigenvalues, all other eigenvalues being
zero.

We retain the n < |T | largest eigenvalues and associated eigenvectors, yield-
ing an approximate covariance matrix:

Σ̃ ≈ Un∆nU>n , (4.4.6)

where ∆n is the n× n diagonal matrix with the n largest eigenvalues of Σ and
Un is the non-square matrix whose columns are the n retained eigenvectors.

In practice, due to the large number of variables N, it is not possible to
compute Σ. Thus, we use a different approach to perform the PCA. We define
the |T | × |T | matrix:

Σ′ =
1
|T |X

>
c Xc. (4.4.7)

This matrix being much smaller that Σ, we can perform an eigen-decomposition:

Σ′ = V∆′V> (4.4.8)

with obvious notations. Since

XcΣ′ = ΣXc, (4.4.9)

the eigenvalues of Σ′ are all eigenvalues of Σ:

Xc
(
Σ′V

)
= Xc

(
V∆′

)
, (4.4.10)

Σ (XcV) = (XcV)∆′. (4.4.11)

The eigenvectors of Σ are now obtained by computing

Un = XcVn, (4.4.12)

which will be normalized afterward to form an orthonormal basis.
The matrix Un determines a shape space, in which the projection of any seg-

mentation x in the shape space is given by

x̃ = x0 + Unγ, (4.4.13)

where γ is the coordinate vector of x in the shape space. We expect that x̃ will
a good approximation of a valid segmentation x. For any segmentation, we
can write:

x = x0 + Unγ + dx, (4.4.14)
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where dx is the deviation of x from the shape space. If the shape space models
the space of valid segmentation well, then the norm of dx will be small when
x is a valid segmentation.

4.4.3 PCA model

In order to obtain a segmentation which remains close to the shape space, we
want to minimize the objective function 4.4.2 with respect to both dx and γ,
while keeping dx small. This leads to the following functional:

ERWpca (dx, γ) = (dx + Uγ + x̄)T L̃ (dx + Uγ + x̄) + wdx ‖dx‖2 , (4.4.15)

where wdx is a hyper parameter setting a constraint on the norm of dx. We
reformulate 4.4.15 as:

ERWpca (y) = (Ay + x0)
T L̃ (Ay + x0) + wdxyTBy, (4.4.16)

with

y =

[
dx

γ

]
, A = [IKN U] , B =

[
IKN 0

0 0

]
. (4.4.17)

where IKN is the identity matrix of size KN × KN.
The minimum of 4.4.16 verifies:(

AT L̃A + wdxB
)

y = −AT L̃x0. (4.4.18)

Obviously, the entries of x being probability distributions, assuming a Gaus-
sian distribution can only lead to a rough approximation. For these reason, we
expect the PCA shape space not to be a very good space of realistic solutions.
In particular, it is unlikely that any projection into this shape space will yield
a probability distributions.

4.4.4 Experimental validation

Our experiments were conducted on the same dataset as with the previous
method (see section 4.3.4). This dataset consists of 30 volumes, in which four
clinically relevant muscles (the quadriceps: vastus lateralis, vastus intermedius,
vastus medialis and rectus femoris) were segmented in 30 volumes8. Compar-
isons are made using Dice coefficients as previously.

In figure 4.4.1, we compare the Dice coefficients obtained with our shape
space method to the previously presented simpler method of section 4.3 (using
a constant scheme), and to the baseline registration method. It appears that
the presented method does not improve over the previous, simpler method.
This can be explained by the poor quality of the PCA generative model for
probabilistic segmentations.

On figure 4.4.2, we show the effect of the PCA shape prior. We see that the
PCA model is deformed from its initial shape (left column) to fit the bound-
aries of the test image (middle column). Due to the rough approximation

8 Most of these volumes were segmented by Yoann Barnouin. The author would like to thank
him for this work.
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Figure 4.4.1 – Comparison of our RW with shape space method (bottom box) with
the simpler RW with prior method with constant weighting (mid-
dle box, see section 4.3) and the registration-based baseline method
(top box, see section 4.3.4).

of modeling probabilistic atlases with a linear subspace, the boundaries of the
muscles are rather fuzzy. However, when allowing a small deviation (called dx)
from the model, as does our method, the contours are more accurately defined
(right column). Notice there remains segmentation errors as the PCA model
is not capable of deforming enough to fit unusual shapes while retaining a
realistic topology. In the presented method, the main segmentation errors are
due to the muscles with unusual shape – more elongated, smaller, etc. Model-
ing probabilistic segmentations with PCA model does not allow representing
shapes which differ too much from standard shapes.

4.5 conclusion

To conclude this chapter, we will say that directly incorporating prior knowl-
edge of shape into the Random Walks framework is valid and compares favor-
ably to state-of-the-art methods, but also shows some limitations. In the case of
the simplest prior (sec. 4.3), the simplicity and the validity of the formulation
allow to propose an easy-to-use method, quite efficient (less than 30 seconds
for 13 muscles in a 220× 220× 64 volume) and which does not require a large
training dataset (we used between 12 and 29 samples during our experiments).
However, errors inevitably appear when the average model x0 is too differ-
ent from the segmented image. In particular, smaller muscles with too large
inter-subject variations are likely to be incorrectly registered. In a very recent
publication, Eslami et al. (2012) have proposed a very similar shape prior for-
mulation for the Random Walks framework, called “guided” Random Walks.
However, instead of using the empirical mean over the training samples, the
author propose to use directly each training segmentation as a reference seg-
mentation x0 and retain the infered segmentation x that most overlaps with
x0. This promising approach is aimed at retrieving shapes which are quite dif-
ferent from the average model. For lack of time, we were not able to test this
method on our data.

Ideally, we would like to handle large scale deformations by allowing the
model to evolve in a low-dimensional shape space of valid segmentations.
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Figure 4.4.2 – Segmentation examples. Cross-sections of segmented volumes
with: (left column) the registration method x = x0; (middle column)
the shape-space component of the inferred segmentation x = x0 +
Uγ; (right column) the inferred segmentation x = x0 + Uγ + dx.
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Small-scale deformations or subject-specific fine details would be segmented
like in the simple model through the RW process. The PCA model presented
in section 4.4 was an attempt at such flexible shape prior. Indeed, PCA is a
well-know way to generate a low-dimensional shape space. The mitigated per-
formance we achieved is likely to be due to the weak modeling of probabilities
with a PCA model.

Future direction would include finding a different shape space more compat-
ible with probabilities, such as a barycenter model – indeed, a barycenter of a
probability distribution remains a probability distribution. In the conclusion
of this report, we also propose a different possible direction for dealing with
large scale deformations, relying on additional connections between remote
voxels.



5
L E A R N I N G PA R A M E T E R S F O R R A N D O M WA L K S - B A S E D
S E G M E N TAT I O N

In the previous chapter, we empirically observed that the accuracy of the RW
algorithm relies heavily on the relative weighting between the various contrast
and prior terms. For instance, the contrast parameter used to construct the
Laplacian matrix was chosen so that it gives the best results on average. In a
more general approach, a different edge weighting function could be designed
to extract different features of the image, more complex and specific appear-
ance information. Then, instead of selecting the best Laplacian, it would be
interesting to see if a particular linear combination of these Laplacians would
yield better results than a single one of them. Similarly, we could also combine
the different prior models.

At present, the proposed methods rely on a user to hand-tune the parame-
ters or on exhaustive cross-validation. However, both these approaches quickly
become infeasible as the number of terms in the RW objective function increase:
a human would be unable to hand-tune a large number of parameters, and a
thorough cross-validation would require vast and expensive computational re-
sources.

In contrast to the RW literature, the problem of parameter estimation has
received considerable attention in the case of discrete models such as condi-
tional random fields (Lafferty et al., 2001). Recent years have witnessed the
emergence of structured-output support vector machine (Structured SVM) as
one of the most effective discriminative frameworks for supervised parameter
estimation (Taskar et al., 2003; Tsochantaridis et al., 2004). Given a training
dataset that consists of pairs of input and their ground-truth output, struc-
tured SVM minimizes the empirical risk of the inferred output with respect
to the ground-truth output. The risk is determined by a user-specified loss
function that measures the difference in quality between two given outputs.
The parameters are estimated by minimizing a convex quadratic program, for
which many efficient algorithms have been proposed (Joachims et al., 2009;
Shalev-Shwartz et al., 2007; Taskar et al., 2003; Tsochantaridis et al., 2004).
The structured SVM formulation has been successfully employed for many
applications including graph-cuts based segmentation (Szummer et al., 2008),
object detection (Blaschko and Lampert, 2008) and natural language parsing
(Tsochantaridis et al., 2004).

Inspired by the efficacy of structured SVM in discrete models, we would
like to discriminatively learn the parameters of the RW formulation. Such an
approach would allow us to fully exploit the benefits of RW using numerous
contrast and prior terms. To this end, a straightforward application of struc-
tured SVM would require a training dataset that consists of pairs of inputs
– here, medical acquisitions using MRI scans – as well as their ground-truth
outputs – in our case, the optimal probabilistic segmentation. In other words,
we require a human to provide us with the output of the RW algorithm for the
best set of parameters. This is an unreasonable demand since the knowledge

77
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of the optimal probabilistic segmentation is as difficult to acquire as it is to
hand-tune the parameters itself. Thus we are faced with a scenario where we
cannot directly use structured SVM to estimate the desired parameters.

In order to handle the above difficulty, we propose a novel formulation for
discriminative parameter estimation in the RW framework. Specifically, we
learn the parameters using a weakly supervised dataset that consists of pairs
of medical acquisitions and their hard segmentations. Unlike probabilistic
segmentations, hard segmentations can be obtained easily from human anno-
tators. We treat the optimal probabilistic segmentation that is compatible with
the hard segmentation as a latent variable. Here, compatibility refers to the
fact that the probability of the ground-truth label (as specified by the hard seg-
mentation) should be greater than the probability of all other labels for each
pixel/voxel. Clearly, the number of compatible probabilistic, or soft, segmenta-
tions for a given hard segmentation (that is, the size of the space for the latent
variables) is uncountably infinite. Nonetheless, the resulting representation
allows us to learn the parameters using the latent SVM formulation (Yu and
Joachims, 2009).

While latent SVM does not result in a convex optimization problem, its local
optimum solution can be obtained using the iterative concave-convex proce-
dure (CCCP) (Yuille et al., 2002). At each iteration, CCCP performs two steps:
(i) estimating a compatible probabilistic segmentation for each training sam-
ple using the current set of parameters – commonly referred to as annotation
consistent inference (ACI); and (ii) updating the parameters by fixing the com-
patible probabilistic segmentations to those obtained during ACI. The second
step of CCCP involves solving a structured SVM problem, which lends itself to
efficient optimization. In order to make the overall algorithm computationally
feasible, we propose a novel efficient approach for ACI based on dual decom-
position (Bertsekas, 1999; Komodakis et al., 2007). We demonstrate the benefit
of our learning framework over a baseline structured SVM using a challenging
dataset of real 3D MRI volumes1.

5.1 related work

As mentioned earlier, the methods that employ the RW algorithm rely on pa-
rameters that have been hand-tuned or exhaustively cross-validated (see chap-
ter 4). In contrast, the parameters of discrete models such as conditional ran-
dom fields (CRFs) are often estimated using large supervised training datasets.
One of the most effective supervised learning formulations is structured SVM
(Taskar et al., 2003; Tsochantaridis et al., 2004), which generalizes the well-
known binary SVM classifier to cases where the desired output is a vector
of inter-dependent elements. Structured SVM minimizes a regularized upper
bound on the empirical risk as defined by a user-specified loss function. The
loss function provides a measure of the difference between two different out-
puts. Using the structured SVM formulation, the problem of parameter estima-
tion reduces to that of solving a convex quadratic problem, for which several
efficient algorithms have been proposed in the literature (Joachims et al., 2009;
Shalev-Shwartz et al., 2007; Taskar et al., 2003; Tsochantaridis et al., 2004). The

1 This part was developed with the help of Danny Goodman and Pawan Kumar.
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strong theoretical foundation and practical feasibility of structured SVM has
led to its use in several real-world applications (Blaschko and Lampert, 2008;
Szummer et al., 2008; Taskar et al., 2003; Tsochantaridis et al., 2004). One of
the main deficiencies of structured SVM is that it requires a fully supervised
training dataset, which consists of pairs of inputs and their desired outputs.
Often, it is extremely challenging, or even impossible, to obtain full supervi-
sion (for example, in our case where a human annotator cannot specify the
optimal probabilistic segmentation). However, it is relatively easy to obtain
weakly supervised training samples.

In order to exploit the information present in such datasets, several re-
searchers have independently proposed an extension to structured SVM known
as latent SVM (Felzenszwalb et al., 2008; Smola et al., 2005; Yu and Joachims,
2009). Latent SVM treats any missing information in the human annotation
as latent variables, which allows it to upper bound the empirical risk as a
difference-of-convex optimization problem. Although its globally optimal so-
lution cannot in general be computed in polynomial time, its local minimum
or saddle point solution can be obtained efficiently using the CCCP algorithm
(Yu and Joachims, 2009; Yuille et al., 2002). Since its first appearance, latent
SVM has been steadily gaining popularity due to its accurate empirical perfor-
mance (Felzenszwalb et al., 2008; Kumar et al., 2010, 2011; Yu and Joachims,
2009). Most of the previous instantiations of structured SVM and latent SVM
have focused on discrete CRFs, that is, where the desired output is determin-
istic. In contrast, we propose a novel approach to learn the parameters of the
probabilistic RW algorithm, where the latent variables model the unknown
optimal soft segmentation that is compatible with a given hard segmentation.

5.2 preliminaries

5.2.1 Notations

In this part, the notations will differ slightly from chapter 4, for consistency
with the SVM notations. We will refer to a 3D volume as x. We use i to denote
the index of a voxel in this volume, and denote the set of all indices as V . In
a hard segmentation, each voxel is assigned a label s ∈ S (for example, the
index of a muscle). We will use z to represent the human annotation (that is,
the class labels of the voxels in x) in binary form:

z (i, s) =

1 if voxel i is of class s,

0 otherwise.
(5.2.1)

In other words, the binary form z of the annotation specifies delta distribution
over the putative labels for each voxel. Our training dataset is a collection of
training images x and hard segmentations z: D = {(xk, zk)}k . Note that we
use subscript k to denote the input index within a dataset, and parenthetical i
to denote a voxel within a particular input.
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We recall that the RW algorithm provides a probabilistic – or soft – segmen-
tation of an input x, which we denote by y, that is,

y (i, s) = Pr [voxel i is of class s] , ∀i ∈ V , s ∈ S . (5.2.2)

When using one contrast term and one prior model, the RW algorithm amounts
to minimizing the following convex quadratic objective functional:

E (y, x) = y>L (x) y + wprior ‖y− y0‖2
Ω0(x) , (5.2.3)

= y>L (x) y + Eprior (y, x) . (5.2.4)

Here, y0 is a reference prior probabilistic segmentation dependent on appear-
ance (Grady, 2005) or shape (Baudin et al., 2012a), and Ω0(x) is a diagonal
matrix that specifies a voxel-wise weighting scheme for x. It can be shown that
the energy functional 5.2.4 is convex and can be minimized over all possible
probabilistic segmentations y in polynomial time. In fact, Grady (2006) showed
that the RW algorithm amounts to solving a sparse linear system of equations,
which lends itself to efficient optimization. We refer the reader to section 4.2.2
and to the work of Grady (2006) for further details.

5.2.2 Parameters and Feature Vectors

In the above description of the RW algorithm, we restricted ourselves to a
single Laplacian and a single prior. However, our goal is to enable the use of
numerous Laplacians and priors. To this end, let {Lα}α denote a known family
of Laplacian matrices and

{
Eβ (·)

}
β

denote a known family of prior energy
functionals. In section 5.4, we will specify the family of Laplacians and priors
used in our experiments. We denote the general form of a linear combination
of Laplacians and prior terms as:

L (x; w) = ∑
α

wαLα (x) , wα ≥ 0, ∀α, (5.2.5)

Eprior (·, x; w) = ∑
β

wβEβ (·, x) , wβ ≥ 0, ∀β. (5.2.6)

Each term Eβ (·, x) is of the form:

Eβ (y, x) =
∥∥y− yβ

∥∥2
Ωβ(x)

, (5.2.7)

where yβ is the β-th reference segmentation and Ωβ (x) is the corresponding
voxel-wised weighting matrix (which are both known). We denote the set of
all parameters as w =

{
wα, wβ

}
. Clearly the RW energy 5.2.4 is linear in w.

and can therefore be formulated as:

E (y, x; w) = y>L (x; w) y + Eprior, (5.2.8)

= w>ψ (x, y) , (5.2.9)
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where ψ (x, y) is known as the joint feature vector of x and y. Note that by
restricting the parameters to be non-negative (that is, w ≥ 0), we ensure that
the energy functional E (·, x; w) remains convex.

5.2.3 Loss Function

As mentioned earlier, we would like to estimate the parameters w by minimiz-
ing the empirical risk over the training samples. The risk is specified using a
loss function that measures the difference between two segmentations. In this
work, we define the loss function as the number of incorrectly labeled voxels.
Formally, let bin (y) denote the underlying hard segmentation of the soft seg-
mentation y, that is bin (y) (i, s) = δ (s = arg maxs∈S y (i, s)), where δ is the
Kronecker function. The loss function is defined as

∆ (z, y) = 1− 1
|V|bin (y)> z, (5.2.10)

where V is the set of all voxels and |·| denotes the cardinality of a set. If both
segmentations are equal, then ∆ (z, y) = 0; if they are disjoint, ∆ (z, y) = 1 .

Note for later that this function in not concave in y, and that infinitely many
soft segmentations y are compatible with the hard segmentation z, that is,
there is an infinite number of solutions y to the equation ∆ (z, y) = 0.

5.3 parameter estimation using latent svm

5.3.1 Upper Bound on the Risk

Given a dataset D = {(xk, zk) , k = 1, . . . , N}, which consists of inputs xk and
their hard segmentation zk, we would like to estimate parameters w such that
the resulting inferred segmentations are accurate. Here, the accuracy is mea-
sured using the loss function ∆ (·, ·). Formally, let ỹk (w) denote the soft seg-
mentation obtained by minimizing the energy functional E (·, xk; w) for the
k-th training sample, that is,

ỹk (w) = arg min
y

w>ψ (xk, y) . (5.3.1)

We would like to learn the parameters w such that the empirical risk is mini-
mized over all samples in the dataset. In other words, we would like to esti-
mate the parameters w? such that

w? = arg min
w

1
N ∑

k
∆ (zk, ỹk (w)) . (5.3.2)
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The above objective function is highly non-convex in w, which makes it prone
to bad local minimum solutions. To alleviate this deficiency, the latent SVM
formulation upper bounds the risk for a sample (x, z) as follows:

∆ (zk, ỹk (w)) = ∆ (zk, ỹk (w)) + w> [ψ (xk, ỹk (w))− ψ (xk, ỹk (w))] ,(5.3.3)

≤ min
∆(zk ,ŷ)=0

w>ψ (xk, ŷ) (5.3.4)

−
[
w>ψ (xk, ỹk (w))− ∆ (zk, ỹk (w))

]
,

≤ min
∆(zk ,ŷ)=0

w>ψ (xk, ŷ) (5.3.5)

−min
y

[
w>ψ (xk, y)− ∆ (zk, y)

]
.

The first inequality follows from the fact that the prediction ỹk (w) has the
minimum possible energy (see equation 5.3.1). Thus, its energy has to be less than
or equal to the energy of any compatible segmentation ŷ with ∆ (zk, ŷ) = 0.
The second inequality is true since it replaces the loss augmented energy of the
prediction ỹk (w) with the minimum loss augmented energy.

relation to the crf case In some cases – for instance, when learning
conditional random fields (Szummer et al., 2008; Komodakis, 2011) – the loss
function is concave, so that the minimum loss is only reached when the predic-
tion ŷ is equal to the annotation zk:

min
∆(zk ,ŷ)=0

w>ψ (xk, ŷ) = w>ψ (xk, zk) . (5.3.6)

As a result, the upper bound on the empirical risk becomes

∆ (zk, ỹk (w)) ≤ w>ψ (xk, zk)−min
y

[
w>ψ (xk, y)− ∆ (zk, y)

]
, (5.3.7)

This upper bound is convex in w, since the minimum of a collection of affine
functions is concave (which becomes convex with the − sign). As a result, one
obtains a learning algorithm by minimizing the upper bound for each sample in
the training set:

min
w, ξk≥0

λ||w||2 + 1
N

N

∑
k=1

ξk, (5.3.8)

s.t. w> [ψ (xk, zk)− ψ (xk, y)] + ∆ (zk, y) ≤ ξk, ∀ȳ, ∀k,

where the slack variable ξk represents the upper bound of the risk for the k-th
training sample. The regularizing term ||w||2, weighted by hyper-parameter
λ, ensures that we do not over-fit to the training samples. The previous al-
gorithm is a convex quadratic program and corresponds to the formulation of
Structural SVM with rescaled margin (Taskar et al., 2003; Tsochantaridis et al.,
2004), for which may efficient algorithms have been proposed (Joachims et al.,
2009; Shalev-Shwartz et al., 2007; Taskar et al., 2003; Tsochantaridis et al., 2004).

However, as mentioned earlier, the loss function ∆ (·, ·) is not concave in w,
which in turns leads to a non-convex upper bound on the empirical risk. Equa-
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tion 5.3.6 is not verified, and solving the baseline Struct-SVM problem 5.3.8 is
bound to fail in our case.

5.3.2 Formulation with Latent SVM

Let us recall the upper bound of the empirical risk derived above:

∆ (zk, ỹk (w)) ≤ min
∆(zk ,ŷ)=0

w>ψ (xk, ŷ)−min
y

[
w>ψ (xk, y)− ∆ (zk, y)

]
.

While this upper bound is not convex, it is a difference of two convex functions
in (Yu and Joachims, 2009). This observation allows us to obtain a local min-
imum or saddle point solution using the CCCP algorithm (Yu and Joachims,
2009; Yuille et al., 2002), which iteratively improves the parameters starting
with an initial estimate w0 (the detailed optimization algorithm will be de-
scribed shortly).

Using the upper bound on the empirical risk, the latent SVM optimization
problem is specified as follows:

min
w, ξk≥0

λ ‖w‖2 + λ′ ‖w−w0‖2 +
1
N ∑

k
ξk, (5.3.9)

s.t. min
∆(xk,ŷ)=0

w>ψ (xk, ŷ) ≤ w>ψ (xk, ȳ)− ∆ (zk, ȳ) + ξk, ∀ȳ, ∀k,

where the slack variable ξk represents the upper bound of the risk for the k-th
training sample. Note that we have added two regularization terms for the
parameters w. The first term ‖w‖2, weighted by hyper-parameter λ, ensures
that we do not over-fit to the training samples. The second term ‖w−w0‖2,
weighted by hyper-parameter λ′, ensures that we do not obtain a solution that
is very far away from our initial estimate w0. The reason for including this
term is that our upper bound to the empirical risk may not be sufficiently tight.
Thus, if we do not encourage our solution to lie close to the initial estimate,
it may drift towards an inaccurate set of parameters. In section 5.4, we show
the empirical effect of the hyper-parameters λ and λ′ on the accuracy of the
parameters.

A local minimum or saddle point solution for problem 5.3.9 can be found
using the iterative CCCP method, which is outlined in Algorithm 5.1. It con-
sists of two main steps at each iteration: (i) step 3, which involves estimating a
compatible soft segmentation for each training sample – known as annotation
consistent inference (ACI); and (ii) step 4, which involves updating the pa-
rameters by solving problem 5.3.10. In the following subsections, we provide
efficient algorithms for both the steps.

5.3.3 Annotation Consistent Inference2

Given an input x and its hard segmentation z, ACI requires us to find the soft
segmentation y? with the minimum energy, under the constraint that it should
be compatible with z (see step 3 of Algorithm 5.1). We denote the ground truth

2 This section was developed with the help of Puneet Kumar and Pawan Kumar
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Algorithm 5.1 The CCCP method for parameter estimation using latent SVM.
Input: Dataset D, λ, λ′, w0,ε

1: Set t = 0. Initialize wt = w0.
2: repeat
3: Compute y?

k = arg minŷk , ∆(zk ,ŷk)=0 w>t ψ (xk, ŷk) , ∀k.
4: Update the parameters by solving the following problem

wt+1 = arg min
w, ξk≥0

λ ‖w‖2 + λ′ ‖w−w0‖2 +
1
N ∑

k
ξk, (5.3.10)

s.t. w>ψ (xk, y?
k ) ≤ w>ψ (xk, ȳ)− ∆ (zk, ȳ) + ξk, ∀ȳ, ∀k,

5: t = t + 1
6: until The objective function of problem 5.3.9 does not decrease below tol-

erance ε.

label of a voxel i by si, that is, si = arg maxs z(i, s), and the set of all voxel
indices by V . Using our notation, ACI can be formally specified as

y? = arg min
y∈C(V)

y>L (x; w) y + Eprior (y, x; w) . (5.3.11)

Here, C(V) is the set of all compatible probabilistic segmentations, that is,

C (V) :

y (i, s) ≥ 0, ∀s ∈ S , (5.3.12)

∑
s∈S

y (i, s) = 1, ∀i ∈ V , (5.3.13)

y (i, si) ≥ y (i, s) , ∀i ∈ V , ∀s ∈ S . (5.3.14)

Constraints 5.3.12 and 5.3.13 ensure that y? is a valid probabilistic segmenta-
tion. The last set of constraints 5.3.14 ensure that y? is compatible with the
hard ground truth z. Note that in the absence of constraint 5.3.14, the other
constraints are not necessary (see section 4.2.2) and the above problem can be
solved efficiently using the RW algorithm. However, since the ACI problem
requires the additional set of compatibility constraints, we need to develop a
novel efficient algorithm to solve the above convex optimization problem. To
this end, we exploit the powerful dual decomposition framework (Bertsekas,
1999; Komodakis et al., 2007).

dual decomposition for the aci Briefly, dual decomposition (DD) al-
lows us to iteratively solve a convex optimization problem of the form

y? = arg min
y∈F

M

∑
m=1

gm (y) , (5.3.15)

that is, any problem which can be exactly decomposed into a sum of (prefer-
ably simpler) sub-problems with functionals gm (y). At each iteration t, DD
solves the set of slaves problems

y?
m = arg min

y∈F

(
gm (y) + ρt

my
)

, (5.3.16)
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where ρt
m are the dual variables satisfying ∑m ρt

m = 0. The dual variables are
initialized as ρ0

m = 0, ∀m, and updated at iteration t as follows:

ρt+1
m ← ηt

(
y?

m −
1

M

M

∑
n=1

y?
n

)
,

where ηt is the learning rate at iteration t. Under fairly general conditions,
this iterative strategy converges to the globally optimal solution of the original
problem, that is, y? = y?

m, ∀m. We refer the reader to the works of Bertsekas
(1999); Komodakis et al. (2007) for details.

In order to specify our slave problems, we divide the set of voxels V into
subsets Vm, m = 1, . . . , M, such that each pair of neighboring voxels (i, j) ∈ N
appear together in exactly one subset Vm. Given such a division of voxels, our
slave problems correspond to the following:

min
ym∈C(Vm)

y>m Lm (x; w) ym + Eprior
m (ym, x; w) + ρt

mym, (5.3.17)

where Lm (x; w) is the Laplacian matrix whose non-zero entries correspond to
the voxels in Vm, which leads to

L = ∑
m

Lm. (5.3.18)

The prior prior energy functions Eprior
m modifies the original prior Eprior by

weighting each voxel i ∈ Vm by the reciprocal number of subsets that contain i.
This weighting scheme allows us to decompose the prior term exactly, that is

Eprior (y, x; w) = ∑
m

Eprior
m (y, x; w) , (5.3.19)

which is the consequence of the following trivial equality:

∥∥y− yβ

∥∥2
Ωβ

= ∑
m

∥∥∥y− yβ

∥∥∥2

RΩβ

, (5.3.20)

where R is the diagonal matrix such that Rii = 1/ |{Vn, s.t. i ∈ Vn}|. In other
words, the prior term for each voxel i ∈ V is multiplied by the number of times
voxel i appears in a slave problem Vn.

Thus, the slave problems defined above provide a valid reparametrization
of the original problem 5.3.11, that is g (y) = ∑m gm (y). Decomposing the set
of constraints C (Vm) for each subset of variables is straightforward. By using
small subsets Vm we can optimize each slave problem in every iteration inde-
pendently using a standard quadratic programming solver. The sub-problems –
which are quadratic programs – can be made sufficiently small to be solved in
parallel with a dedicated solver. In our experiments, we used the Mosek solver.
To the best of our knowledge, this is the first application of dual decomposition
to solve a probabilistic segmentation problem under linear constraints.

http://www.mosek.com/
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5.3.4 Parameter Update

We now describe how the parameters can be efficiently updated by solving
problem 5.3.10 for a fixed set of soft segmentations y?

k . Note that while prob-
lem 5.3.10 is convex, the number of constraints is of the order of the number of
possible soft segmentations of an input. In other words, it consists of an infi-
nite number of constraints. Nonetheless, the problem can be solved efficiently
using the cutting plane method outlined in Algorithm 5.2. The method starts
by specifying no constraints for any of the training samples. At each iteration,
it finds the most violated constraint for each sample (step 3), and updates the
parameters (step 5) until the increase in the objective function is less than the
tolerance.

Algorithm 5.2 The cutting plane method for updating the parameters.
Input: Dataset D, y?

k , λ, λ′, wt, ε

1: SetWk = ∅ for all k. Initialize w = wt.
2: repeat
3: Compute ȳk = arg miny w>ψ (xk, y)− ∆ (zk, y) , ∀k.
4: UpdateWk =Wk

⋃
yk.

5: Update the parameters by solving the following problem:

min
w, ξk≥0

λ||w||2 + λ′||w−w0||2 +
1
N ∑

k
ξk, (5.3.21)

s.t. w> [ψ (xk, y?
k )− ψ (xk, y)] ≤ ξk − ∆ (zk, y) , ∀y ∈ Wk, ∀k.

6: until The objective function of problem 5.3.21 does not increase above tol-
erance ε.

The main ingredient of the cutting plane method is the computation of the
most violated constraint, that is,

y = arg min
y

w>ψ (x, y)− ∆ (z, y) (5.3.22)

for a given sample (x, y). While in most of the previous instantiations of
structured SVM and latent SVM, the above problem can be solved optimality,
in our case it presents a computational challenge. The reason for this is that
the loss function, defined in equation 5.2.10, is not concave in y, which makes
the above problem non-convex. One obvious solution to this challenge would
be to replace the loss function by its concave approximation, that is,

∆′ (z, y) = 1− 1
|V|y

>z. (5.3.23)

However, the resulting convex approximation of problem 5.3.10 would not
lend itself to the RW algorithm, as it does not guaranty that the output is a
probability distribution as required by the RW probabilistic framework. In
other words, we would need to resort to a dual decomposition strategy to
obtain a constraint at each iteration of the cutting plane method. Such an ap-
proach would render the overall CCCP algorithm computationally infeasible.
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Instead, in this work, we obtain the approximate most violated constraint as
the predicted segmentation, that is,

y = arg min
y

w>ψ (x, y) . (5.3.24)

The above problem only requires the minimization of the energy (without any
loss terms), which can be performed efficiently using the RW algorithm. As
our results indicate, coupled with the regularization of the parameters, this
simple cutting plane strategy provides an accurate set of parameters.

5.4 experimental validation

We demonstrate the efficacy of our approach on a challenging dataset. Specifi-
cally, we test the hypothesis that it is important to model the unknown optimal
soft segmentations of the training samples using latent variables in order to
learn an accurate set of parameters. In what follows, we describe the experi-
mental setup and our results in detail.

Dataset

We use the 30 volume dataset described in section 5.4. This datasets consists
of volumes of the thigh region of dimensions 224× 224× 100. The various seg-
ments correspond to 4 different muscle groups together with the background
class. We randomly split the dataset into 80% for training and 20% for test-
ing. In order to reduce the training time for both our method and the base-
lines, we divide each volume into 100/2 volumes of dimension 224× 224× 2.
During dual decomposition, we further divide the volumes into dimensions
10× 10× 2 in order to specify the slave problems.

Laplacians and Prior Terms

We used 4 different Laplacians based on the standard weighting function given
in section 4.1, 3 of them corresponding to β ∈ {10, 50, 100} – to be used with
volumes which have been normalized with respect to their standard deviation.
The last one to the alternate expression given in footnote 2 with β = 100.
Furthermore, we use two shape priors and one appearance prior: the first one
as the shape prior with constant weighting as described in section 4.3, the
second one using the entropy weighting also described in section 4.3, and the
third one being the contrast based prior of Grady (2005). This results in a total
of 7 parameters to be estimated.

Methods

The main hypothesis of our work is that it is important to represent the un-
known optimal soft segmentation using latent variables. In order to test this
hypothesis, we compare our method with a baseline structured SVM that re-
places the latent variables with the given hard segmentations. In other words,
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Figure 5.4.1 – Probability map of one muscle using the distance transform to
“soften” the probabilistic segmentation spatially.

our baseline estimates the parameters by solving the following optimization
problem:

min
w, ξk≥0

λ||w||2 + λ′ ‖w−w0‖2 +
1
N

N

∑
k=1

ξk, (5.4.1)

s.t. w> [ψ (x, zk)− ψ (x, y)] ≤ ξk − ∆ (z, y) , ∀ȳ, ∀k,

which is the same as 5.3.8 with an added proximal regularization term. The
above problem can be solved using Algorithm 5.2, where the imputed soft
segmentations y?

k are replaced by the hard segmentations zk.
During our experiments, we found that replacing the hard segmentation

with a pseudo soft segmentation based on the distance transform system-
atically decreased the loss of the output. Thus, the method referred to as
“Baseline” uses a structured SVM with distance-transform “softened” segmen-
tations. The transformed segmentation, denoted as z̃k, is computed in the
following manner:

z̃k (i, s) =
exp

(
−γdistk (i; s)2

)
∑t exp

(
−γdistk (i; t)2

) , (5.4.2)

where distk (i, s) is the Euclidean distance from pixel i to the closest pixel
with label s in the hard segmentation zk; if pixel i already belongs to class s,
then distk (i; s) = 0. This term is normalized by a sum over all labels such that
z̃k is a probability distribution. Parameter γ > 0 determines the amount of
spatial smoothing of the distribution, that is, the smaller γ is, the more pro-
gressive are the transitions between labels. Fig. 5.4.1 illustrates the softening
process of the segmentation.

Results

Figure 5.4.2 shows the test loss for three different methods: (i) the initial hand-
tuned parameters w0; (ii) the baseline structured SVM with distance trans-
forms; and (iii) our proposed approach using latent SVM. As can be seen from
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Figure 5.4.2 – Test loss for three different methods. Each figure corresponds to
a different λ – that is, the SVM regularization parameter. Curves
are plotted with respect of λ′ – that is, the proximal regulariza-
tion parameter, which penalizes deviations from the hand-tuned
parameters w0. “Baseline” corresponds to the standard struct-SVM
method using distance-transformed pseudo-soft segmentations z̃k
as annotation vectors.

Fig. 5.4.2, latent SVM provides significantly better results than the baselines
– even when using the distance transform (which is the baseline method dis-
played in Fig. 5.4.2).

For the 4 x 5 hyper-parameter settings that we report (that is, four different
values of λ and 5 different values of λ′), latent SVM is significantly better than
SVM in 15 cases, and significantly worse in only 2 cases. Note that latent
SVM provides the best results for very small values of λ′, which indicates that
the upper bound on the empirical risk in tight. As expected, for sufficiently
large values of λ′, all the methods provide similar results. For the best settings
of the corresponding hyper-parameters, the percentage of incorrectly labeled
voxels as follows: (i) for w0, 13.5%; (ii) for structured SVM, 10.0%; and (iii)
for latent SVM, 9.2%. Fig. 5.4.3 shows some example segmentations for the
various methods.

Conclusion

Results show that our approach allows to estimate good parameters for the
Random Walks segmentation method using shape priors. At the moment,
since tests were performed on a small dataset (6 test volumes, 24 training
volumes, 4 muscles), we can only claim it to be a proof of concept. Our results
provide empirical evidence for our main hypothesis, namely the importance
of treating the underlying soft segmentations as latent variables. This can be
seen not only in the overall improvement achieved by our approach, but also
by the relative robustness of latent SVM to the choice of hyperparameters. This
allows us to envision more extensive estimation processes. By carefully choos-
ing more Laplacians and shape priors and learning their relative weighting,
our framework may be able to provide bigger improvements. In particular,



90 learning parameters for random walks-based segmentation

Figure 5.4.3 – (left column) segmentation using w0 (hand-tuned parameters);
(right column) segmentation using learning w using latent struc-
tured SVM. Segmentations with learned parameters are more accu-
rate.
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we are interested in learning separate parameters for different image regions.
Indeed, some regions have edges which are consistently visible, while others
do not. Thus it would be useful to change the balance between the model and
the contrast term based on this knowledge, a task that would be impossible
to fulfill manually. Moreover the latent variable formulation opens the door
for more semi-supervised learning: authorizing the use of partially or coarsely
segmented ones would allow us to increase the size of the learning set by or-
ders of magnitude. An improvement of the method could be tested in replac-
ing the implied L2 norm of the regularization terms – ‖w‖2 and ‖w−w0‖2 –
by a L1 norm. Such change could promote sparsity in the parameter values,
such that only the most relevent terms are selected, rather that searching for a
combination of all terms.

However, our experiments revealed an important drawback: computing
time. Indeed SVM learning is an iterative process and in each iteration, all the
training samples have to be segmented (during the LAI process). Each segmen-
tation task is taking several dozen of seconds for the full image on a powerful
desktop computer. Even more problematic is the ACI stage, where we had
to solve a large quadratic program using dual decomposition. Even though it
allowed us to estimate the latent soft segmentation, this process takes several
dozens of minutes for a single volume. All our experiments were conducted
on the computer cluster of the École Centrale Paris. Even there, a single ex-
periment; for a given set of parameters λ, λ′, etc., took more than 2 hours for
estimating seven parameters. However, we point out that the code written in
Python and not optimized for efficient computation. Besides, all presented
algorithms (cutting plance, CCCP, ACI) are highly parallelizable.

A second limitation is the apparent weakness of the improvements in the seg-
mentation results (as measured by loss decrease). The limited improvements
may be due to the small number of parameters we estimated and by the fact
that there were little room for improvement with the segmentation method
considered. As always, parameter learning can only improve the results of
a method within the limits of the method. Here, the single reference shape
model may not be able to provide results which are much better than what
was obtained by hand-tuning the parameters. To conclude, we say that this
learning method appears to be effectively learning and could be re-used and
extended to more interesting cases, but we also believe that the segmentation
model is even more crucial and should be improved as well.





6
S U M M A RY A N D C O N C L U S I O N

6.1 material

Most of the presented work was coded using the open source and highly
portable Python programming language, in combination with the scientific
libraries Numpy and Scipy. The author would like to contribute to publicize
to the scientific community the great versatility and power of this free software.
All development and computations were performed on standard desktop ma-
chines, except for the learning process presented in chapter 5 which had to be
performed on the computer cluster of École Centrale Paris.

All MRI volumes used for testing and training the segmentation methods
were acquired on the 3 Tesla Siemens scanner of the Institute of Myology.

Moreover, all manual segmentations where performed using the free and
open source ITK Snap software (Yushkevich et al., 2006).

6.2 summary of the contributions

In this thesis report, we have presented several contributions towards solving
the difficult problem of muscle MRI segmentation. All presented methods
require a require a registration stage – either rigid or non-rigid – of a training
set of atlases onto the target image.

Our first contribution takes advantage of the good performance of interac-
tive Random Walks segmentation algorithm (Grady, 2006) by automatically
computing the seeds, which are normally drawn manually. This approach con-
sists in generating unlabeled seeds over the target image, and labeling them
automatically by detecting the contours between the muscles and based on
prior knowledge of the relative position of the muscles extracted from one
reference atlas. Labeling is achieved through a graph-based discrete energy
approximate minimization procedure.

In a different approach, we proposed to integrate prior-knowledge shape
directly to the Random Walks formulation. In a first contribution, similar to
an intensity prior formulation (Grady, 2005), we added a term to the Random
Walks objective that prevents the segmentation to deviate too much from a
known average segmentation. We show this shape prior term does not break
the probabilistic framework of the RW formulation with an easy-to-minimize
objective functional – which amounts to solving a large sparse linear system.
We propose several weighting schemes for the shape term based on reasonable
intuitions. Obtained results showed that our method is favorably comparable
to the current state-of-the-art. In a second approach, we try to expand the
range of accessible shapes in order to improve the segmentation performance
on morphologies far from the average. We build a low-dimensional shape
space through Principal Component Analysis on the training set. Then we
propose an objective in which the segmentation is constrained to remain in the
vicinity of the shape space while it minimizes the RW objective. However, the
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results indicate that this approach suffers from the poor modelization of prob-
abilistic segmentations using a PCA as well as the small number of samples in
the training set.

In a last part, we proposed a novel discriminative learning framework to
estimate the parameters for the probabilistic Random Walks segmentation al-
gorithm. Indeed, the information in the training dataset had not been exploited
to finely tune the proposed models up to this point. In order to deal with the
lack of full supervision, we represented the optimal soft segmentation that is
compatible with the hard segmentation of each training sample as a latent vari-
able. This allowed us to formulate the problem of parameter estimation using
latent SVM, which upper bounds the empirical risk of prediction with a differ-
ence of convex optimization program. Using a challenging clinical dataset of
MRI volumes, we demonstrated the efficacy of our approach over the baseline
method that replaces the latent variables with the given hard segmentations.
Our formulation allows for a large number of parameters to be estimated using
a training dataset.

6.3 future directions

Although it appears that the automatic seed method presented in chapter 3

slightly outperforms the Random Walks-based model of chapter 4, we believe
that the latter method has more potential than the former for several reasons:
(i) the automatic seeding method requires one more computing stage than the
RW-based method (registration, seeding, segmentation for the former, regis-
tration and segmentation for the latter) and is more likely to propagate errors
from one stage to the next. Integrating the shape prior within the segmenta-
tion method as does our RW-based method in a very simple way is likely to be
more robust – which the smaller number of outliers for this method seems to
confirm (in Fig. 4.3.11). (ii) Many possible extensions of the RW-based method
can be explored, for which we propose two:

a. Incorporate long-range connections between pixels instead of using only
adjacent edges – this would help in situations where the prior shape
model is too different from the target image. This could be achieved inThis idea was

suggested by Danny
Goodman.

the following manner: generate random edges between voxels, targeting
an optimal edge length based on a small world perspective (Kleinberg,
2000). On the training set, learn typical distributions of the voxel inten-
sity along the edges, in order to build a contour detector. The geodesic
distance or the commute-time distance can be used as features to the clas-
sifier. Run the classifier on the tested image to generate the weights for
the long-range edges: voxels with no contours between them would have
a transition probability close to one. The added edges do not change the
formulation of the Random Walks algorithm. In addition, if one wishes
to increase the probability of label change when a contour is found be-
tween the connected voxels, it can also be done by introducing non-zero
inter-label weights in the global Laplacian (that is, the Laplacian which
gather all RW equations, as seen in section 4.4). It can be shown that this
formulation retains a probabilistic meaning, and therefore also resolves
in a large sparse linear system.
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b. Instead of a PCA (see sec. 4.4), build a shape space from a barycenter of
training segmentations – a formulation which may better fit within the
probabilistic framework since a barycenter of probability distributions is
still a probability distribution.

(iii) Apart form shape priors, different types of priors can be easily integrated
to the RW-based method, in particular appearance-based priors involving in-
tensity (Grady, 2005).

Regarding parameter estimation, as mentioned in chapter 5, future work
could involve exploring extensions where the parameters specify spatially vary-
ing terms in the RW objective function. This would allow us to encourage the
presence of edges in between different segments, while at the same time not
penalize the absence of edge in the background. The latent SVM framework
can also be used to estimate parameters from partially segmented data. Such
an approach would allow us to scale the size of the training dataset by orders
of magnitude.

Although their is plenty of room for improvement in automatic techniques,
one should not loose sight that segmentation methods are to be used by re-
searchers and clinicians in practical settings. In particular, considering no fully
automatic method will provide perfect results in a near future, one should still
consider user interaction as an acceptable mean. Thus, it is important that seg-
mentation methods remain simple to use, and that learning methods remain
practical, the latter of which the presented work did not fully achieve. More
importantly, it is crucial to develop new interactive methods for correcting the
imperfect output of automatic methods. Otherwise, they may remain useless
if it takes as much time to correct an automatic segmentation than to segment
the image manually from the start.





A
M R I B A S I C S

a.1 basics in nuclear magnetic resonance

The aim of this section is to give a brief insight into the origin of the contrast in
MRI. It is based on the basics of Magnetic Resonance Imaging by Fleckenstein
et al. (1996). Nuclear Magnetic Resonance is a quantum phenomenon affecting
certain atomic nuclei having a non-zero nuclear spin

−→
S . The spin is an inher-

ent property of protons and neutrons, and of nuclei with an odd number of
these particles. Some of the nuclei which have a non-zero spin can be found
in the human body, such as: 1H, 13C,23Na, 31P. Among them, Hydrogen is the
most prevalent and therefore is the most adequate for MRI.

The nucleus of a 1H hydrogen atom consists of a single proton, which has a
positive electric charge. The spin of the proton generates an electrical current
loop and hence a magnetic field. The proton has a magnetic moment parallel
to the direction of its spin: −→µ = γ

−→
S , where γ is the gyromagnetic ratio of the

nucleus of interest (γH = 267.513× 106rad.s−1.T−1). The gyromagnetic ratio γ

is specific for each nuclear species.
Without a magnetic field, the orientation of the magnetic moment is random.

When placed in a magnetic field
−→
B0 , −→µ tends to align with the direction of B0

and, due to a resonance phenomenon, begins a precessional movement of the
spinning axis around the direction of B0. The angular velocity ω0 – called
Larmor angular velocity – of the precession movement is proportional to the
amplitude of B0 and the gyromagnetic ratio γ:

ω0 = γB0. (A.1.1)

When a sample containing many protons is placed in a magnetic field
−→
B0 , the

individual protons tend to align with the direction of the field which results
in a net magnetization

−→
M of the sample. However, due to thermal movements

which prevent a complete alignment, the resulting magnetization vector is very
weak. A NMR experiment aims at measuring

−→
M.

Let us consider the rotating frame of reference (x, y, z) and assume
−→
B0 =

B0
−→ez . We can decompose the net magnetization vector as:

−→
M = Mx

−→ex +

My
−→ey + Mz

−→ez . The measured signal S is proportional to the transverse com-

ponent: S ∝
√

M2
x + M2

y. During an experiment in NMR,
−→
M is tilted away

from its equilibrium position, using short pulses of radio-frequency (RF) radi-
ation

−→
B1 , perpendicular to

−→
B0 , centered at the middle of the NMR spectrum.

Applying
−→
B1 on

−→
M produces a magnetic moment which causes

−→
M to precess

about
−→
B1 as well. This additional moment is: −→m =

−→
M × −→B1 . This results

in a magnetization vector
−→
M which deviates from the z axis by a flip angle α.

When the pulse ceases, the out-of-equilibrium magnetization vector returns to
equilibrium state after a certain delay. This phenomenon is exponential and is
characterized by two relaxation constants (cf. figure A.1.1):
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Figure A.1.1 – Longitudinal (left) and transverse (right) relaxations. The trans-
verse component decreases with a time constant T2 in a homoge-
neous field

−→
B0 , and T?

2 in an inhomogeneous field.

• the longitudinal magnetic – or spin-lattice – relaxation time T1 is relaxation
constant of the longitudinal component Mz of the net magnetization vec-
tor returning to its initial state:

Mz (t) = M
(

1− e−t/T1
)

; (A.1.2)

• the transverse – or spin-spin – relaxation time T2 is relaxation constant of
the transverse component Mxy of the net magnetization vector when re-
turning to zero. It is the average time for the spins of precessing nuclei
to dephase, due to mutual interactions:

Mxy (t) = M sin (α)e−t/T2 . (A.1.3)

The relaxation constants T1 and T2 depend the amplitude of the magnetic
field

−→
B0 and on the physicochemical environment: the biological composition

of the tissue of interest, as well as controlled parameters such as the tempera-
ture and the pressure. However in practice, the local field seen by the nuclei
is not spatially homogeneous, due to

−→
B0 being non-homogeneous itself, but

also to the chemical environment created by the biological tissue. This makes
the resonant frequency of the spins vary continuously across space. The phase
shift between the spins increasing with time, this results in an different expo-
nential decrease in transverse magnetization, modeled by different relaxation
time T?

2 < T2 (cf. figure A.1.1). The values of T1, T2 and T?
2 change significantly

depending on the tissue in which the protons are located, and are the source
of the contrast in MRI.

The visibility of protons in MRI depend mainly on their relaxation time.
Therefore, proton density reflects water and fat concentration in tissues. For
example, a healthy muscle contains about 80% water. By choosing a sequence
of RF pulses and adequate parameters and

−→
B0 gradients, one can have the dif-

ferent biological structures – e.g. muscle tissues and fat tissues – to take differ-
ent intensities, allowing to separate them visually. For instance, a T2-weighted
sequence provides images in which the intensity is a increasing function of the
T2 value of the tissue in this location. There exist many sequences for acquir-
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Figure A.2.1 – Axial-cross sections of thigh: (left) T1-weighted; (right)T?
2 -

weighted with fat-suppression (a special method was applied dur-
ing the acquisition of this volume to ignore signal from fat tissues).

ing T1-weighted, T2-weighted or T?
2 -weighted images, in which the biological

tissues are shown with different intensity distributions.

a.2 nmr imaging

In a volume, it is possible to make localized measurements of the amplitude of
the components of

−→
M, using magnetic field gradients and strategies involving

certain Fourier space encoding, resulting in an multidimensional image (2D or
3D).

For the task of segmenting images of muscles, it is convenient to use. a
choice of sequence and sequence parameters which reveals as much as possi-
ble the boundary of the muscles. The muscles are surrounded by a thin bio-
membrane of connective tissue – the fasciae (singular: fascia) – and generally
separated by a layer of fat tissues. Fasciae are made of collagen fibers, with the
property of having an ultra-short T2 which, in most typical modalities yields
very little signal and show in black in images: if the transverse component of
−→
M is fully relaxed, the output signal is zero whatsoever.

Muscle and fat tissues have different and well know relaxation constants,
and some methods have been developed to give them different intensities in
images, for easy visual discrimination. For instance, some T1-weighted images
can be used for separating muscle and fat tissues, even thought the fasciae are
difficult to see (cf. figure 1.1.1).

Some modalities reveal the muscle/fat transition more strongly than others.
For example, gradient-echo sequences produce T∗2 -weighted images using the
fact that the spin of fat protons (i.e. protons in fat-tissues) precess in a dif-
ferent rate than muscle (water) protons. In regions containing both kinds of
protons, this causes a phase difference which results in a decreased amplitude
of the transverse component at the acquisition time. In these images, mus-
cle boundaries show a deep contrast (cf. figure 1.1.1). Among T?

2 -weighted
modalities, the Dixon method combines several acquisitions in order to pro-
vide separate images for fat-composed tissues and a water-composed tissues
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Figure A.2.2 – Dixon method, axial-cross sections of thigh: (left) water-map; (rig)
opposed-phase image.

(muscle tissues and vessels). This method provides convenient material for
segmenting muscles (cf. figure A.2.2):

• a map of muscle tissues only (vessels are negligible volume). We may
use this water-map for easy separation of the muscles from fat tissues;

• an opposed-phase image, acquired are the instant when fat protons and
water protons have opposed-phase spins, which enhances the boundaries.
We will use this image in segmentation techniques relying on having
contrasted boundaries for the objects of interest.

One should note that healthy muscles tissues cannot be discriminated from
their appearance, since all muscles are made of the same biological tissue,
which results in identical intensities and textures. The differences of intensities
observable in the presented muscles are due to spatial inhomogeneities of the
magnetic fields.
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M AT H E M AT I C A L A P P E N D I C E S

b.1 positive definiteness of LU

Proposition 1. Assume there exists at least one path composed of nonzero-weight
edges between each unknown node and one seed. Then LU is positive definite:

∀x ∈ R |U | , x>LU x > 0.

Proof. We recall the definition of LU :

LU ( i , j) =


d i if i = j ,

−w i , j if e i j ∈ E ,

0 otherwise,

where d i = ∑ j∈U∪M w i j . Consider the following:

∀x ∈ R |U | , x>LU x = ∑
i∈U

d i x2
i − 2 ∑

i , j∈U
w i j x i x j , (B.1.1)

= ∑
i∈U

(
∑

j∈U∪M
w i j

)
x2

i − 2 ∑
i , j∈U

w i j x i x j , (B.1.2)

= ∑
i∈U , j∈M

w i j x2
i + (B.1.3)(

∑
i , j∈U

w i j x2
i − 2 ∑

i , j∈U
w i j x i x j

)
,

= ∑
i∈U , j∈M

w i j x2
i + ∑

i , j∈U
w i j

(
x i − x j

)2 . (B.1.4)

Using Reductio ad absurdum, suppose:

∃x ∈ R |U |/ {0} s .t . x>LU x = 0. (B.1.5)

For this hypothesis to stand, we must have:

∀ i , j ∈ U , w i j
(

x i − x j
)2

= 0, (B.1.6)

∀ ( i , j) ∈ U × M , w i j x2
i = 0. (B.1.7)

Let us consider the index k of any nonzero entry of x: ∀k ∈ { i ∈ U /x i 6= 0}.
There exists a path Pk l ⊂ E of edges with a nonzero weight between node vk
and a marked node v l ∈ VM . Then (a)∀e i j ∈ Pk l ∩ (VU × VU ) equation B.1.6
gives: x i = x j ; (b) ∀e i j ∈ Pk l ∩ (VU × VM ) equation B.1.7 gives: x i = 0.
Both results lead to ∀k ∈ U , xk = 0, which contradicts the first hypothesis
B.1.5.
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b.2 random walks and probability distributions

Proposition 2. The Random Walks system 4.1.18 can only yield a solution {x s} s
that is a probability distribution:

∀ i , ∑
s

x s
i = 1, (B.2.1)

∀ i , ∀s , x s
i ≥ 0. (B.2.2)

Proof. We use the fact that LU is positive definite and thus invertible, and that
1 = [1, . . . , 1]> is a solution to Lx = 0 and thus

(LU1U + B1M) = 0.

Consider:

LUxs
U = −Bxs

M, (B.2.3)

∑
s

LUxs
U = −∑

s
Bxs

M, (B.2.4)

LU

(
∑

s
xs

U

)
= −B1M, (B.2.5)

LU

(
∑

s
xs

U

)
= LU1U , (B.2.6)

Since LU is invertible, we have

∑
s

xs
U = 1U .

In order to prove the non-negativity of x, consider the RW objective and its
gradient at location 0 = [0, . . . , 0]>:

ERW (xs
U) =

1
2

xs>
U Lxs

U + xs>
U Bxs

M + cst, (B.2.7)

∇ERW (0) = Bxs
M. (B.2.8)

Since all entries of the gradient of ERW (·) at location 0 are non-positive:

(Bxs
M) [i] = − ∑

j∈M
wijxs

j ≤ 0, (B.2.9)

we know that the direction of the solution is towards the positive numbers:

∀i ∈ U, ∀s, xs
i ≥ 0.

b.3 random walks , shape prior and probability distributions

Proposition 3. Assume the entries of {xs
0}s are probabilities. Then, the Random

Walks system incorporating a prior knowledge term 4.2.10 can only yield a solution
that is a probability:
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∀i, ∑
s

xs
i = 1, (B.3.1)

∀i, ∀s, xs
i ≥ 0. (B.3.2)

Proof. We use the fact that (L + ∆) is positive definite – and thus the solution
to (L + ∆) x = b is unique – and that 1 = [1, . . . , 1]T is a solution to Lx = 0.
Consider:

(L + ∆) xs = ∆xs
0, (B.3.3)

∑
s
(L + ∆) xs = ∆

(
∑

s
xs

0

)
, (B.3.4)

(L + ∆)

(
∑

s
xs

)
= ∆1. (B.3.5)

Since the solution is unique,
∑

s
xs = 1.

Considering the RW objective and its gradient at location 0 = [0, . . . , 0]T:

ERW+prior (xs) = xsT Lxs + ‖xs − xs
0‖

2
Ω , (B.3.6)

∇ERW+prior (0) = −2Ωxs
0. (B.3.7)

Thus the entries of ∇ERW+prior (0) are non-positive and we know the direction
of the solution is towards the positive numbers:

∀i, ∀s, xs
i ≥ 0.
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