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A B S T R A C T

Segmentation of magnetic resonance images (MRI) of skeletal striated muscles is of cru-
cial interest when studying myopathies. Diseases understanding, therapeutic follow-
ups of patients, etc. rely on discriminating the muscles in MRI anatomical images.
However, delineating the muscle contours manually is an extremely long and tedious
task, and thus often a bottleneck in clinical research. Typical automatic segmentation
methods rely on finding discriminative visual properties between objects of interest,
accurate contour detection or clinically interesting anatomical points. Skeletal muscles
show none of these features in MRI, making automatic segmentation a challenging
problem. In spite of recent advances on segmentation methods, their application in
clinical settings is diffcult, and most of the times, manual segmentation and correction
is still the only option.

In this thesis, we propose several approaches for segmenting skeletal muscles au-
tomatically in MRI, all related to the popular graph-based Random Walker (RW) seg-
mentation algorithm. The strength of the RW method relies on its robustness in the
case of incomplete contours and its efficient optimization. Originally, the RW algo-
rithm was developed for interactive segmentation: the user had to pre-segment small
regions of the image – called seeds – before running the algorithm which would then
complete the segmentation. Our first contribution is a method for automatically gen-
erating and labeling all the appropriate seeds, based on a Markov Random Fields
formulation integrating prior knowledge of the relative positions, and prior detection
of contours between pairs of seeds. A second contribution amounts to incorporating
prior knowledge of the shape directly into the RW framework. Such formulation re-
tains the probabilistic interpretation of the RW algorithm and thus allows to compute
the segmentation simply by solving a large sparse linear system, like in the original
method. In a third contribution, we propose to develop a learning framework to esti-
mate the optimal set of parameters for balancing the contrast term of the RW algorithm
and the different existing prior models. The main challenge we face is that the training
samples are not fully supervised. Specically, they provide a hard segmentation of the
medical images, instead of the optimal probabilistic segmentation, which corresponds
to the desired output of the RW algorithm. We overcome this challenge by treating the
optimal probabilistic segmentation as a latent variable. This allows us to employ the
latent Support Vector Machine (latent SVM) formulation for parameter estimation.
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R É S U M É

La segmentation d’images anatomiques de muscles striés squelettiques acquises par
résonance magnétique nucléaire (IRM) présente un grand intérêt pour l’étude des myo-
pathies. Elle est souvent un préalable nécessaire pour l’étude les mécanismes d’une
maladie, ou pour le suivi thérapeutique des patients. Cependant, le détourage manuel
des muscles est un travail long et fastidieux, au point de freiner les recherches cliniques
qui en dépendent. Il est donc nécessaire d’automatiser cette étape. Les méthodes de
segmentation automatique se basent en général sur les différences d’aspect visuel des
objets à séparer et sur une détection précise des contours ou de points de repère
anatomiques pertinents. L’IRM du muscle ne permettant aucune de ces approches, la
segmentation automatique représente un défi de taille pour les chercheurs.

Dans ce rapport de thèse, nous présentons plusieurs méthodes de segmentation
d’images de muscles, toutes en rapport avec l’algorithme dit du marcheur aléatoire
(MA). L’algorithme du MA, qui utilise une représentation en graphe de l’image, est
connu pour être robuste dans les cas où les contours des objets sont manquants ou in-
complets et pour son optimisation numérique efficace. Dans sa version initiale, l’utilisa-
teur doit d’abord segmenter de petites portions de chaque région de l’image, appelées
graines, avant de lancer l’algorithme pour compléter la segmentation. Notre première
contribution au domaine est un algorithme permettant de générer et d’étiqueter auto-
matiquement toutes les graines nécessaires à la segmentation. Cette approche utilise
une formulation en champs aléatoires de Markov, intégrant une connaissance à priori
de l’anatomie et une détection préalable des contours entre des paires de graines. Une
deuxième contribution vise à incorporer directement la connaissance à priori de la
forme des muscles à la méthode du MA. Cette approche conserve l’interprétation pro-
babiliste de l’algorithme original, ce qui permet de générer une segmentation simple-
ment en résolvant un numériquement un grand système linéaire creux. Nous propo-
sons comme dernière contribution un cadre d’apprentissage pour l’estimation du jeu
de paramètres optimaux régulant l’influence du terme de contraste de l’algorithme du
MA ainsi que des différents modèles de connaissance à priori. La principale diffculté
est que les données d’apprentissage ne sont pas entièrement supervisées. En effet,
l’utilisateur ne peut fournir qu’une segmentation déterministe de l’image, et non une
segmentation probabiliste comme en produit l’algorithme du MA. Cela nous amène à
faire de la segmentation probabiliste optimale une variable latente, et ainsi à formu-
ler le problème d’estimation sous forme d’une machine à vecteurs de support latents
(latent SVM).
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1
I N T R O D U C T I O N

1.1 context and motivations

Magnetic resonance Imaging

Magnetic Resonance Imaging (MRI) is a medical imaging technique providing 2D or
3D views of the internal structures of the body. MRI makes use of the principle of
Nuclear Magnetic Resonance (NMR) which allows to measure some properties of the
nucleus of some specific atoms in presence of a powerful magnetic field. MRI is non-
invasive and implies non-ionizing radiations (e.g. unlike X-rays) allowing long and
repeated acquisitions with no hazard posed for the health of patients.

Neuromuscular Diseases

Neuromuscular diseases may involve disorders in the motor neurons, in cells of the
spinal cord, in peripheral nerves or in the muscles themselves. There exist both hered-
itary – dominant or recessive – and acquired – inflammatory, toxic, etc – disorders.
Among the features assessed by clinicians to characterize neuromuscular diseases one
finds: time of onset, chronicity, presence or absence of pain, muscle weakness and
distribution of the involvement – proximal, distal, facial, symmetric or asymmetric,
hypertrophical or atrophical, etc.

Clinical MRI is a non-invasive and powerful tool to characterize skeletal muscle
involvement in neuromuscular disorders. This imaging technique has progressively
established itself as a reference technique for the initial assessment of pathologies and
for the evaluation of therapeutic intervention. In the NMR Laboratory of the Insti-
tute of Myology in Paris, several research projects focus on developing biomarkers
for skeletal muscle disorders based on MR images: relative image intensity, intensity
histogram, signal heterogeneity and more sophisticated methods of texture analysis,
geometrical analysis (distance, area, volume, shape), etc. Moreover, some NMR param-
eters are intrinsic to the different types of tissues and can be quantified: T1, T2, proton
density, T⋆

2 , T1ρ and T2ρ, D (diffusion constant), etc; We refer the reader to special-
ized publications – such as Fleckenstein et al. (1996) – for further information on the
topic of muscle MR imaging; a brief introduction is also provided in the appendices of
this document (see appendix A). In Fig. 1.1.1, we display MRI axial cross-sections of
healthy subject and patients, showing the varied visual patterns of some myopathies.
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2 introduction

Figure 1.1.1 – Various axial cross-sections: (left) healthy subject (Dixon imaging); (middle)
patient with centronuclear myopathy (Dixon imaging) – mutation of the
MTM1 gene coding for the myotubularin; (right) patient with centronuclear
myopathy (T1-weighted imaging) – unknown mutation.

Figure 1.1.2 – (left) Several axial cross-sections of a 3D MRI volume of the lower limbs (T⋆

2
imaging); (right) coronal cross-section of the same volume.
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Figure 1.1.3 – Image segmentation example. (left) Original image; (right) Segmented im-
age. This segmentation is visualized by a boundary (red curve) separating
the two regions and different colors assigned to the pixels, one per segment.

By displaying the anatomical structures – bones, vessels, fat and muscle tissues, etc.
(see Figs. 1.1.2 and 1.1.1) – anatomical MR imaging allows to visually discriminate
between the muscles and other organs, and thus to perform segmentation.

Image Segmentation

“In computer vision, segmentation is the process of partitioning a digital image into
multiple segments (sets of pixels). The goal of segmentation is to simplify and/or
change the representation of an image into something that is more meaningful and
easier to analyze. Image segmentation is typically used to locate objects and bound-
aries (lines, curves, etc.) in images. More precisely, image segmentation is the process
of assigning a label to every pixel in an image such that pixels with the same label
share certain visual characteristics”1.

Fig. 1.1.3 shows an example of image segmentation where a person in the picture is
separated from the background.

Segmentation methods are needed to facilitate the identification of a muscle or of a
muscle group. This step is particularly crucial when muscles have to be investigated
selectively: for instance, when one wants to determine the NMR properties of each
muscle group and study the differences between them. It is also necessary to measure
the volume of the muscles and monitor their evolution.

Today, segmentation of muscle images is performed manually, by drawing regions
of interest on the images. Such task requires enormous amounts of time, and is an ex-
tremely tedious and tiring process. Due to the advances in acquisition techniques and

1 Wikipedia, on 01.01.2013
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Figure 1.1.4 – (left) Axial cross-section of an MRI volume of a right thigh (Dixon imaging);
(center) same cross-section with all muscles manually segmented; (right) 3D
segmentation of the same volume.

computer storage facility, it is common to acquire MRI 3D volumes composed of more
than 50 slices. As a result, manually segmenting a volume of a thigh – which comprises
more than 15 muscles – represents more than four hours of work. Moreover, during
clinical research protocols, patients are often scanned with several sequences and very
large amount of images can be generated. As acquiring images becomes easier and
faster for large volumes, segmentation of muscles images is becoming more and more
a bottleneck in the chain of analysis. Besides, manually processing these data is not
only time consuming, it is also highly observer-dependent: different experts produce
significantly different segmentations, especially in places where the boundaries of the
organs are not clearly visible. Fig. 1.1.4, shows an example of manual segmentation of
the muscles in anatomical MRI.

For these reasons, it is highly desirable to possess automatized segmentation tools to
process the data more quickly and consistently and thus facilitate their interpretation.
This is a crucial objective to sustain the growth of applications of skeletal muscle MRI
in the field of neuromuscular disorders.

Whereas many automatized methods have been developed for segmenting images
of brains and hearts, very few attempts were made on skeletal muscles. Medical stud-
ies on the brain and the heart are more developed due to the existence of widespread
diseases associated with theses organs, whereas severe muscle diseases are often ge-
netic and fall in the category of orphan diseases. The specifics of muscle segmentation
prevent using directly the methods developed for other organs and require specially
adapted methods. Moreover, a large part of the existing publications on muscle seg-
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mentation focus mainly on the fat-muscle tissue separation rather than on muscle
group segmentation itself (Al-Attar et al., 2006; Barra and Boire, 2002; Mattei et al.,
2006)

In this thesis report, we present our work on developing new automatic image seg-
mentation methods adapted to MRI images of skeletal muscles.

1.2 problem definition

Any automatized segmentation method relies on (a) finding consistent features of
targeted objects – e.g. shape or appearance descriptors – (b) allowing some variability
in the target features and (c) defining means of overcoming anticipated difficulties –
e.g noise in images:

• consistent features of the skeletal muscles in MRI are (cf. Fig. 1.1.4):

– fixed relative positions – e.g. muscle a is always top left of muscle b;

– interweaved positions, closely entangled – e.g. muscle a is always adjacent

to muscle b;

– shapes, to some degree – e.g. muscle a can be visually identified based on
prior anatomy knowledge;

– smooth boundaries, to some degree, especially in the direction parallel to
the limbs – i.e. muscles can be visually separated from each other based on
visible boundary structures.

– muscle/background appearances – i.e. muscles can be visually distin-
guished from other tissues based on their appearance.

• variability is found in (cf. figure 1.2.1):

– shapes, with large inter-subject variations of the muscles size and shapes.

• anticipated difficulties are (cf. figure 1.2.1):

– non-discriminative inter-muscle appearance – e.g. one cannot distinguish
muscle a from muscle b based on intensity/texture differences;

– missing boundaries – e.g. muscle a is sometimes not separated from muscle
b by any visible structure;

– spurious contours – e.g. muscle a can present internal structures visually
similar to boundaries.

Considering these characteristics, our aim is to design semi-automatic or automatic
segmentation methods with the following features:

• multi-object;
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Figure 1.2.1 – Missing and spurious contours in muscle image. (left) Cross-section of a
thigh from a 37 year-old female subject; (right) same height cross-section
from a 29 year-old male subject. Notice the differences in shape and propor-
tion of the muscles between the two subjects.

• relying solely on:

– detectable boundaries;

– prior knowledge of the muscle shapes and topology;

– muscle/background intensity differences;

• robust to:

– missing boundaries;

– missing contours;

– shape variations.

1.3 contributions

In this thesis report, we present several contributions related to the general Random
Walks (RW) for image segmentation algorithm (Grady, 2006). This algorithm has the
advantage of relying solely on boundaries while being robust to partial contours, and
provides a simple multi-object segmentation framework with no topological issues
(that is, no intersection issues).

Originally, the RW algorithm was developed for interactive segmentation: the user
had to pre-segment small regions – called seeds – of the image to be segmented be-
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fore running the algorithm which would then complete the segmentation. Our first
contribution is a method for generating and labeling appropriate seeds automatically.
This approach exploits the fact that relative positions of the muscles are consistent
among individuals, even though the large inter-subject variations of skeletal muscles
prevent using a deformable model based on a shape template. Thus, it is reasonable
to develop a segmentation method whose prior information is not based on the posi-
tion of the boundaries and on the shape of the objects, but rather on the approximate
relative position of the objects and the existence of boundaries between them. Seeds
are compatible with this idea: they are generally placed well inside the target object
so that the actual boundaries are determined by the Random Walks algorithm. Thus,
our method aims at placing the seeds automatically, based on prior knowledge of the
relative positions and on the detection of contours between pairs of seeds. We have
the following stages: 1) generate unlabeled seeds within homogeneous regions of the
target image; 2) build a graph over the sampled seeds, viewing each seed as a node
and adding edges between nearby ones; 3) assign a label to each seed automatically
by minimizing an functional defined on the graph nodes and edges; 4) the image is
segmented with the RW method using the newly generated seeds. During the labeling
stage 3), the node-wise potentials depend on prior-knowledge over label assignments
based on a comparison of the target image with a registered reference annotated im-
age. The pair-wise potentials depend on the likelihood of the edge orientation and
on the detection of boundaries between the seeds, where both quantities can be ob-
tained by statistical learning over the reference image. This labeling problem is solved
using an efficient discrete energy minimization method based on a belief propagation
algorithm (Kolmogorov, 2006). Due to the non-specific (non sub-modular) formula-
tion of the pair-wise potentials, the labeling cost functional can only be minimized
approximately; however, we present experiments on real clinical data showing that
the approximate solution is better than not using pair-wise potentials. This method
was published in the proceedings of the 2012 ISBI conference (Baudin et al., 2012c).

This first method has the inconvenience of being two-stage: if the seed labeling
fails, then the segmentation will irremediably fail in the same area. Fortunately, it
was shown that it is possible to completely bypass the seed placement stage by in-
corporating prior-knowledge on the intensity to the RW formulation (Grady, 2005).
However, intensity is not a reliable feature in the case of muscles separation. Our
second contribution consists in proposing several models mixing Random Walks and
prior knowledge of the shape. The Random Walks segmentation algorithm is a graph-
based method working at the pixel level: each pixel is viewed as a node and edges
are defined between each adjacent pixels; the weights of the edges are set according
to the strength of the contrast between the connected pixels. The aim is to assign a
label (e.g. the index of a muscle) to each pixel. Segmentation is achieved by mini-
mizing a quadratic objective functional based on the combinatorial Laplacian matrix
of the image, which amounts to solving a large sparse linear system. In its original
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version, a unique solution is found only if there exists at least one seed per label. In
our approach, a prior term depending on the squared distance of the segmentation to
a statistical atlas is added to the RW functional. We point out that such formulation
does not break the probabilistic explanation of the RW method, as the added prior
term can be seen as adding implicit seed nodes. Noting that each pixel’s prior can
be weighted independently from the others, we propose several weighting schemes,
either based on statistics over the training set or on information from the target image
itself. This method was published in the proceedings of the 2012 MICCAI conference
(Baudin et al., 2012a). In a second approach, published in the proceedings of the 2012

BMVC conference (Baudin et al., 2012b), we propose to further exploit our training
set by building a statistical shape space – a low dimensional space of valid solutions
– through Principal Component Analysis. This is motivated by the need to increase
the flexibility of our model so that it can adapt to more diverse morphologies. The
segmentation is no longer anchored to a unique average atlas like in the previous ap-
proach, but is constrained to remain “close” to the shape space, which models many
possible valid segmentations. All approaches are validated on real clinical data.

While it is interesting to determine which model gives better results on the muscle
data, it is also desirable to combine them together – e.g. using different weighting
schemes plus the intensity prior. Moreover, we could also want to use several weight-
ing functions for setting the graph edges in order to capture varied properties of the
images simultaneously. However, achieving such generality requires to set balancing
weights for a large number of parameters, which would certainly not be optimal if
done manually. As a third contribution, we propose to develop a learning framework
to determine the optimal set of parameters for balancing the contrast term of the RW
algorithm and the different prior models. Our approach is guided by noticing the
RW formulation bears important similarities with the more wide-spread pixel-based
Markov Random Fields (MRF) (Boykov and Jolly, 2001) segmentation methods. In
recent work, machine learning methods – such as Support Vector Machines (SVM) –
were used to fit the parameters of the segmentation method to the data type of inter-
est (Szummer et al., 2008). We propose to adapt the MRF/SVM learning scheme to
the RW case. We explain why a direct transposition in the RW case of the previous
formulation cannot solve the problem, due to having only a “hard” – i.e. binary –
annotation vector for our training data whereas a “soft” – i.e. probabilistic – one is
necessary. We overcome this issue by introducing an implicit soft annotation vector,
which amounts to solving a latent SVM problem. Due to the large number of vari-
ables rendering certain stages of the problem too difficult to solve exactly, we propose
approximation schemes in the “Annotation Consistent Inference” (ACI) stage and in
the “Loss Augmented Inference” (LAI) stage. Using the same clinical data as previ-
ously described, we present preliminary results which demonstrate the potential of
this learning approach for the prior-enhanced Random Walks segmentation method.
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1.4 thesis plan

This report is organized as follows: in chapter 2 we present a detailed state-of-the-
art of segmentation methods in medical imaging; the next three chapters present our
contributions to the field: automatic seed placement in chapter 3, introducing shape
priors to the Random Walks framework in chapter 4 and developing a SVM-based
learning scheme for improving the latter models in chapter 5; the last part concludes
this report.





2
S TAT E O F T H E A RT I N S E G M E N TAT I O N

To address the problem of image segmentation, a wide variety of techniques was pre-
sented and one can find a very abundant literature. However, few research works have
dealt with muscle image segmentation to the best of our knowledge. In this chapter,
we review the existing segmentation methods applied to medical images and their op-
timization procedures, with a special attention paid on those which were designed to
address muscle segmentation.

Almost all segmentation methods have in common is how they rely on a cost func-

tional, or energy functional, E (M, I) which measures how well a proposed segmentation
model M explains the target image I. In other words, an energy functional is designed
to measure the adequacy of the segmentation model with respect to a combination
of criteria, such as alignment of the model surface with image edges, intensity homo-
geneity within model regions, plausibility of model shape, etc. The better the model
M fits the image I, the lower is E (M, I). Depending on the chosen approach, E (·, I)
can be convex and have only one global minimum, or non-convex and have many
local minima. Determining a model and its associated functional is the most crucial
step in developing a new segmentation method. Indeed, the desired segmentation has
to correspond to the global minimum, or to an “accessible” local-minimum of E (·, I),
otherwise one cannot expect to retrieve such solution relying on E.

When presented with a new image I to segment, the model M is fit to the image
via an optimization procedure, which consists on minimizing E (·, I) with respect to
the model parameters. Naturally, this optimization step is also crucial in determining
the quality of the obtained solution. Even when the global minimum of E (·, I) cor-
responds to the desired solution, it sometimes cannot be reached, either because the
optimization procedure is mislead to an incorrect result – e.g. a local optimization can
be “stuck” in non-desired local minimum – or because it would take too long to reach
it – e.g. a NP-hard problem.

In this chapter, we will distinguish between two types of approaches. In a first
part, we give an overview of vast family of surface-based models – i.e. models which
rely on mathematical representations of the surface of the target objects. Among the
most widely used models, Deformable Models, either explicit or implicit, are surface
models which are progressively fit to the image in a local optimization process. An
optimization process is said local when the solution is found by applying successive
local changes from an initial state, a canonical example being the gradient descent.
Among them, landmark-based models are surface models based on remarkable, anatom-
ical or statistically consistent image points, which allows introducing statistical shape

11



12 state of the art in segmentation

priors for constraining the surface position. Finally, unlike Deformable Models, which
mostly rely on non-optimal local-optimization methods, graph-based surface models can
reach a global minimum of the cost functional thanks to efficient discrete optimization
algorithms. This advantage is paid by a certain approximation of the solution due to
the discretization of the solution space.

In a second part, we present region-based models – i.e. which parametrize every point
of the image domain – devoid of intersection issues in the case of multi-object segmen-
tation, but whose topology and shapes are more difficult to constrain. Among these,
some use a typical approach based on continuous local optimization, while others rely
on a graph formalism: Graph-Cuts and Random Walks. Graph-based models provide
convenient and efficient frameworks for multi-object segmentation, for dealing with
weak edges, and for accepting simple user interaction in the form of seeds. However
there are still few examples of such models incorporating prior knowledge of shapes.

2.1 surface-based models

Although they may have very diverse mathematical formulation, or rely on very dif-
ferent types of information, surface-based models all have in common a parametrized
model of the surface of the objects of interest. Given a particular state of the model,
the image segmentation is determined by the location of the model surface: any point
in the image domain is either on one side of the surface, or the other. If the surface
is closed, then any point is either inside the volume delimited by this surface – thus
assimilated to this object’s class, or outside – thus assimilated to another class or to
the background class.

The value of the energy functional of a surface model thus depends on the location
of the surface with respect to the segmented image. What is measured by the func-
tional can either be related to image boundaries – i.e “is the model’s surface matching
the edges of the image ?” – or to image regions – i.e. “do the properties of the regions
delimited by the surface model match what I know of them a priori ?”.

2.1.1 Active Contours

Active Contours is a general term which designates surface-based models whose func-
tional minimization procedure is a suboptimal strategy consisting in evolving an initial
surface (or contour in 2D) in the direction of the steepest descent of the functional. In
general, the cost functional which is used is not convex and the adopted minimization
approaches only reach local minima, highly dependent on the initialization state.

The first and most simple instances of active contours rely only on low-level image
features, such as edges, region intensity, texture, as well as low-level shape features,
such as contour length, object’s surface (object’s volume in 3D), contour smoothness,
etc. However, a number of factors such as noise, occlusion, complexity of shapes,



2.1 surface-based models 13

etc. as well as sensibility to initial conditions often limit the performance of purely
low-level methods. For these reasons, higher-level constraints on shapes were later
introduced, called shape priors, based on previously seen similar objects.

Let us first consider a boundary object C embedded in the domain space Ω of the
image I, such as a planar curve (C ⊂ R

2) or a surface (C ⊂ R
3) to be deformed from

an initial position in order to minimize an energy functional E (C). The energy E (·) is
specific to the model, as it is determined by the kind of image information one wants
to exploit; in the next sections, we present several formulations for E (·), depending
on whether it uses edge information or region information.

The energy functional E can often be minimized using finite elements methods for
the variational form, by making C depend on time:

δC

δt
(s, t) = −∇CE (C (s, t) , t) . (2.1.1)

This expression is the base evolution equation for most active contours models. Such
formulation has the visual effect of making the the surface of the boundary object
deform with time, hence the names “active contours” and “deformable models”. The
literature on active contours is extremely large and, for this reason, we only give a
brief and incomplete survey of it. For a deeper review of active contour methods, we
indicate to the reader several review articles and books: McInerney and Terzopoulos
(1996); Montagnat et al. (2004); Cremers et al. (2006b); Paragios et al. (2005). Active
contours can be driven either by the edges of the image or by the properties of the
image regions – or by both simultaneously.

Active Contours and edge information

Active Contours for image segmentations based on edge information, also called
Snakes, were introduced by Kass et al. (1988), along with the typical energy functional:

E (C) =

ˆ 1

0

α

2
|Cs|

2 +
β

2
|Css|

2 + Eext (C) ds, (2.1.2)

where C is a 2D parametric curve C : [0, 1]→ Ω, Cs and Css denote the first and second
derivative of C, α and β are weighting parameters, respectively for tension (Cs) and
rigidity (Cs). These first two terms can be viewed as internal energy terms, as they
measure properties of the contour itself. Eext is a function based on an edge map of the
image I, such that it is minimal on image edges. This term is an external energy term,
measuring the adequacy of the contour with the image. A canonical example for Eext

is the image squared gradient norm:

Eext (x) = − |∇I (x)|2 . (2.1.3)
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Figure 2.1.1 – Segmentation with snakes: (left) model evolution: the boundary model con-
verges towards the edge of the pear (Kass et al., 1988); (middle) tracking a
person’s mouth with a snake in a video (ibid); (right) snake-segmented cell
in an EM photo-micrograph (McInerney and Terzopoulos, 1996).

Deriving equation 2.1.2 by following the scheme of 2.1.1 gives:

δC

δt
= αCss − βCssss −∇Eext. (2.1.4)

Such formulation can be extended to 3D straightforwardly (Terzopoulos et al., 1988).
Many variations on Snakes were developed, e.g. to decrease the dependance on the
initial conditions, the balloon model (Cohen, 1991) adds a force term to equation 2.1.4:

δC

δt
= αCss − βCssss −∇Eext + νn, (2.1.5)

where ν > 0 sets the strength of the balloon force, and n is the outward normal to
the contour. Such expression amounts to maximizing the area of C while keeping
the boundaries smooth. Other examples include: adopting a multi-resolution frame-
work using Fourier descriptors for parametrizing the contour (Leroy et al., 1996); re-
placing the finite difference numerical optimization approach by a more robust finite
element method (Cohen and Cohen, 1993); using the gradient vector flow in the ex-
ternal energy term in order to extend the capture range of the initial state (Xu, 1998).
The mathematical parametrization is also crucial to determine the extent of the solu-
tion space; for instance, initial deformable models were based on standard triangular
or quadrangular mesh parametrization (Terzopoulos et al., 1988; Nastar and Ayache,
1993); however, this type of parametrization necessitates frequent reparametrization
and makes topology changes – that is, changes in the object’s Euler characteristic or in
the number of objects – difficult. Types of parametrization allowing topology changes
have been proposed, such as particle systems (Szeliski and Tonnesen, 1992; Lombardo
et al., 1995) – which model the surface with elementary objects whose position is
ruled by local forces, simulating the evolution of physical particles in a Newtonian
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space. The popular Simplex meshes (Delingette, 1999) – which are topologically dual
to triangular meshes – also allow some topology changes and benefit from conve-
nient reparametrization schemes. More recently, Delaunay deformable models have
been proposed (Pons and Boissonnat, 2007), which model the surface from a Delaunay
“tetrahedralization” (that is, the extension of triangulation in 3D) of the entire space
based on surface points. This model allows simple topology changes and is free from
topology issues, such as undesired intersections of objects.

Active Contours and region information

The models presented in the previous section are considered edge-based, as they are
driven by the proximity of edges according to the external energy Eext. Such depen-
dency make these models very sensitive to noise, and inadequate to segment objects
which cannot be differentiated by detecting edges between them, e.g. in cases of fuzzy
of blurred contours, or of highly textured objects.

However, other segmentation approaches are based on image regions rather than
edges. The classical approach was proposed by Mumford and Shah (1989); Blake and
Zisserman (1987), were the image I is approximated with a piecewise smooth function
u, via minimizing the functional:

E (u, C) =
1
2

ˆ

Ω

(I − u)2 dx + λ2 1
2

ˆ

Ω/C
|∇u|2 dx + ν |C| , (2.1.6)

with respect to both u and C. Here, C is a finite set of C1-arcs. Function u is de-
signed to be a texture-less approximation of image I, with sharp variations only at the
boundaries matched by C and smooth variations inside regions defined by C. When
minimizing this functional, the first term ensure the resemblance of u with I, the sec-
ond term penalizes discontinuities of u except on the boundary C and the third term
limitates the length of the boundary to segment only important objects. Minimizing
this highly non convex functional is notoriously difficult and necessitates approximate
methods and complex optimization procedures (Blake and Zisserman, 1987). However,
a simpler version of the Mumford Shah functional 2.1.6 can be obtained in the limit
λ→ ∞, yielding the cartoon limit (Mumford and Shah, 1989):

E ({ui} , C) =
1
2 ∑

i

ˆ

Ri

(I − ui)
2 dx + ν |C| , (2.1.7)

where {ui} is a partition of I into constant regions {Ri} determined by C. This func-
tional was modified by Zhu and Yuille (1996), introducing a Gaussian probabilistic
model of the constant gray-level value within each regions:

E ({αi} , C) =
1
2 ∑

i

ˆ

Ri

− log P (I|αi) dx + ν |C| , (2.1.8)
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where P (I|αi) is the posterior probability of obtaining the intensity values in I inside
region Ri given distribution parameter αi.

A hybrid model, called diffusion snake, was also proposed (Cremers et al., 2002):

E (u, C) =
1
2

ˆ

Ω

(I − u)2 dx + λ2 1
2

ˆ

Ω/C
|∇u|2 dx + ν

ˆ

|Cs|
2 , (2.1.9)

where the external energy is that of the Mumford Shah functional 2.1.6, while the
internal elastic constraint on the boundary is that of the Snake 2.1.2. Such model can
then be optimized via standard gradient descent methods.

2.1.2 Surface models and shape priors

The regularization factors in the approaches of the previous sections, rendered nec-
essary due to noise and missing parts, all have the effect of minimizing the contour
length (Bergtholdt et al., 2006). These purely geometric constraints can be viewed as
shape priors, but they are based only on the intuition that natural shapes have smooth
boundaries. Such hypothesis is hardly true in practical cases, and consistently yields
excessive regularization, e.g. eroded contours and ignored small details. Shape pri-
ors based on previously-seen examples, by imposing the boundary to adopt realistic
shapes, allow segmenting complex shapes despite noise and occlusions.

Single reference shape models

The most simple shape prior type in deformable models is enforced when the initial
shape of the boundary corresponds to a template of the object to be segmented. The
regularization terms are sometimes enough to ensure that the shape remains valid
as the model deforms. This reference template boundary can either be manually po-
sitioned or automatically positioned onto the target image via rigid registration pro-
cedures. This reference shape can be a rough approximation (simple mathematical
objects, quickly hand-drawn shapes), or a sample shape obtained from a previously
segmented image.

An elastic shape model was introduced by Terzopoulos et al. (1987), proposing an
internal energy term measuring the changes in the curvature and the length between
nearby points – via the first and second fundamental forms – of the deformed body.
Spring-mass analogies were also proposed (Vasilescu and Terzopoulos, 1992; Nastar
and Ayache, 1993), in which the surface model – parametrized as a discrete mesh – has
its shape constrained by a set of springs connecting the vertices together. The length of
the springs at rest determines the equilibrium position(s) and thus the minimum cost
shape configuration(s). The stiffness of the springs determines the elastic properties
of the model and thus the range of shapes the model can take. Over the years sev-
eral models simulating soft tissue deformation have been proposed for segmentation,
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Figure 2.1.2 – (left) Local parametrization of simplex meshes (Delingette, 1999); (right) me-
dial representation for constraining the model shape (Gilles and Magnenat-
Thalmann, 2010).

bridging gaps between computer graphics, biomechanical simulation and computer
vision.

muscle segmentation using simplex meshes with medial represen-
tations Gilles and Magnenat-Thalmann (2010) presented a skeletal muscle seg-
mentation method based on simplex meshes (Delingette, 1994). Considering a 3D
surface model, simplex meshes are discrete meshes where each vertex has exactly
3 neighbors. Having a constant connectivity allows to simply parametrize the
location of one vertex with respect to its neighbors, and thus parametrize defor-
mation of the shape – translation, rotation, scaling – in a local manner. Indeed,
the location of a pixel, denoted as x can be expressed as a linear combination of
the locations of the three neighbors plus a local elevation term parallel to the local
normal (see figure 2.1.2): x = ε1x1 + ε2x2 + (1− ε1 − ε2) x3 + hn. As a result, many
local measurements – including curvature and cell surface – can be computed
efficiently and global energy terms enforcing local constraints come up naturally.

Here, the authors impose local smoothing via curvature averaging, which does
not tend to reduce the surface like 1-order operators typically do. Prior knowledge
is imposed by constraining the local scale changes on the elevation parameter with
respect to a reference shape. Denoting the surface of the triangle formed by the
three neighbors of a pixel as S, given the reference shape parameters

(
ε̃1, ε̃2, h̃, S̃

)
,

the new location of the considered pixel is expressed as:

x = ε̃1x1 + ε̃2x2 + (1− ε̃1 − ε̃2) x3 + h̃
(
S/S̃

)1/β
n, (2.1.10)

where β ∈ [2,+∞[ is a parameter which sets the amount of allowed local de-
formation: with β = 2 this definition is similitude invariant; with β = +∞ this
definition is invariant through rigid transformations only. The model is attached
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to the target image through either gradient norm maximization in the direction of
the gradient at the location of the vertices, or maximization of similarities between
the reference and the target images at the vertices location.

A medial representation – similar to the M-reps of Pizer et al. (2003) – is com-
bined with the simplex parametrization to exploit the specific tubular shapes of
the skeletal muscles. Medial vertices are added to the model, constrained to re-
main on the medial axis of the tubular objects. This is achieved by connecting
the new vertices to the surface vertices through spring-like forces. This constrains
the global structure to resemble its initial reference shape, thus acting as a global
shape prior (see figure 2.1.2). This medial axis representation also allows efficient
collision handling. The model is fit to the image through an iterative process of
successive local evolutions. Such model appear to always yield a valid solution,
sometimes at the price of an excessive regularization or lack of adaptability to the
specifics of the target image.

muscle segmentation using deformable models and shape match-
ing A shape prior for muscle segmentation in 3D images was derived from a
computer animation technique, called shape matching, used to efficiently approx-
imate large soft-tissue elastic deformations (Gilles and Pai, 2008). This method
was applied to muscle segmentation with some success. In this approach, discrete
meshes are used to parametrize the moving surface. Let x0 be the vector contain-
ing the initial position of the control points of the parametric surface. Clustering
is performed on x0 such that each cluster ζi contains at least a certain number of
vertices (set by the user). During segmentation, the evolution of the active surface
is performed according to the following iterative procedure:

1. Shift vertices according to the external force: x̃t = fext + xt. The external
“force” fext is computed as the maximal gradient search in the gradient di-
rection.

2. Regularize vertex positions:

a) Compute rigid registration for each clusters:

Ti = arg min ∑j∈ζi

∥∥∥Tix
0
j − x̃t

j

∥∥∥
2
,

b) Average target position for each vertex:
xt+1

i = 1
|ζi |

∑j∈ζi
Tjx

0
j .

Single reference prior models are convenient in that they require only one anno-
tated example of the objects of interest. However, when segmenting a class of
objects whose shape varies a lot, such approach becomes too constraining and
does not allow the model to adopt valid shapes which are too different from the
single reference.
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Figure 2.1.3 – Muscle segmentation using deformable models with a shape matching prior
(Gilles and Pai, 2008): from the first iteration (left) to the last (right).

Figure 2.1.4 – Single reference shape priors. (left) An elastic cube model Terzopoulos et al.
(1987). (right) The advantages of generalized gradients (bottom) over stan-
dard gradient descent (top) using the same deformable model: a realistic
shape is kept all along the deformation process (Charpiat et al., 2007).
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Figure 2.1.5 – Deformable templates: (top) a template eye made of a few simple mathe-
matical shapes (Yuille, 1990); (bottom) segmentation of a person’s mouth,
using deformable mouth template (ibid).

In a different approach, a shape prior was derived from a generalization of the
fundamental variational equation 2.1.1 (Charpiat et al., 2007). Such generalization
is based on the observation that the canonical L2 inner product is always implied
when taking the gradient of the energy. The proposed method relies on replacing this
canonical inner product by new inner products, designed to enforce spatially coherent
motions with respect to the initial template shape. As a consequence, the trajectory
of the boundary is optimized so the energy does not have to include regularization
terms. This method can be used both with level sets (see section 2.1.4) and standard
Active Contours.

Deformable templates

Deformable templates (Yuille, 1990) are combinations of simple geometric shapes re-
quiring very few parameters – e.g. a center location and a radius for a circle. While
their simplicity makes them robust and fast to optimize, these models are not suited
to segment complex shapes and large deformations.

Superquadrics, hyperquadrics

Superquadrics (Terzopoulos and Metaxas, 1990; Bardinet et al., 1996) are geometric
shapes defined by parametric equations, generalizing simpler objects such as ellip-
soids. Like deformable templates, they require very few parameters, and have similar
pros and cons: simple and fast to optimize, but the space of available shapes is too
small to model complex shapes.
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Figure 2.1.6 – Examples of landmarks: (left) 32 manually placed landmarks on the surface
of a resistor Cootes et al. (2001); (middle) manually placed landmarks on
a person’s face (Romdhani et al., 1999); (right) manually and interpolated
landmarks on the surface of lungs in an X-ray image (Ginneken et al., 2006).

Hyperquadrics (Cohen and Cohen, 1996; Hanson, 1988) also defined by parametric
equations, extend superquadrics by allowing a wider range of shapes. A hyperquadric
is defined by the points (x, y, z) satisfying the equation:

H (x, y, z) =
N

∑
i

|aix + biy + ciz + di|
γi = 1. (2.1.11)

Unlike superquadrics, hyperquadrics are not restrained to symmetric shapes. Hy-
brid hyperquadrics (Cohen and Cohen, 1996) further extend superquadrics by allow-
ing to create some local concavities in hyperquadrics. However, small local details
remain inaccessible to these models and many authors have used them as coarse start-
ing points to be refined in a second stage (e.g. using free-form deformations).

Landmark-based models

Statistical shape priors are built from sets of training annotated images, and aim at
generating a subspace S of valid solutions capturing most of the shape variability
while remaining as small as possible. Once such a subspace is generated, the model
is constrained to evolve within it or to remain close to it, thus ensuring a valid shape
is always kept. For contour models, such priors generally require to define a set of
consistent boundary points, called landmarks (cf. figure 2.1.6).

The Active Shape Model (ASM) (Cootes et al., 1995) uses a Principal Component
Analysis (PCA) performed on the position of the landmarks to generate a sub-space
S of solution containing the main variation modes (cf. figure 2.1.7). Let {xk}k=1...K be
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Figure 2.1.7 – Active Shape Model: (left): scatter plot of the landmarks of the training
examples (Cootes et al., 1995); (middle) synthesized models using: x =
x̄ + Up for different values of p [0] (ibid); (right) segmentation of a heart
ventricle in an echo-cardiogram using ASM (ibid).

the set of vectors containing the landmark positions for the training data. The average
models and its covariance are:

x̄ =
1
K

K

∑
k=1

xk, (2.1.12)

Σ =
1
K

K

∑
k=1

(xk − x̄) (xk − x̄)T . (2.1.13)

Then, PCA on Σ gives:
Σ ≈ UTdiag (Λ)U, (2.1.14)

where Λ is the vector of retained eigenvalues and U is the corresponding set of re-
tained eigenvectors stored in columns. Then, any shape lying within the prior sub-
space of solutions as determined by the set of boundary landmarks writes:

x = x̄ + Up, (2.1.15)

where p is the coordinate vector of x in S . Such formulation assumes that the distri-
bution of realistic shapes can be effectively approximated by a Gaussian distribution.
During model evolution, which is similar to a gradient descent, the boundary is regu-
larly projected into subspace S to ensure the model shape always remain realistic with
respect to the training examples.

A similar strategy can be adopted, but using the full covariance matrix Σ instead of
a subspace via a selection of the main variation modes (Cremers et al., 2002). Shape
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Figure 2.1.8 – (left) Invalid Gaussian hypothesis: variations of the first mode of a linear
ASM of a hand; the most probable shape (center) is the least realistic (Cre-
mers et al., 2003).
(right) A kernel-ASM trained on both right and left hand images allows to
segment a right hand in a new image (ibid).

correctness is enforced by minimizing an energy term in the form of a Mahalanobis
distance, in addition to the external energy term:

Eshape (x) = (x− x̄)T
Σ−1
⊥ (x− x̄) , (2.1.16)

where Σ⊥ is the regularized covariance matrix, authorizing inversion. Like ASM, such
model implies that the distribution of shapes be Gaussian, and penalizes – but does
not forbid – more strongly shapes having a low probability.

However, for many classes of shapes, the Gaussian hypothesis leading to linear
shape statistics is not valid (cf. figure 2.1.8). In order to circumvent this limitation, a
typical solution is found in using constraints in a feature space via kernel methods. Let
φ : Ω → F be a non-linear mapping from the input space to a higher-dimensional
feature space, potentially unknown. Using a Kernel Principal Component Analysis
(KPCA), a Kernel Active Shape Model was proposed (Romdhani et al., 1999; Twining
and Taylor, 2001). As in the linear ASM, the optimization procedure of Romdhani
et al. (1999) consists in regularly projecting the mapped boundary back into the feature
space. Twining and Taylor (2001) enforced the shape prior by minimizing an energy
based on a “proximity to data” measure in the feature space. Using a formulation
similar to that of equation 2.1.16, a non-linear shape prior was proposed (Cremers et al.,
2006a) such that the empirical mean and covariance are computed on the mapped
training vectors.

muscle segmentation using a hierarchical statistical shape

model A hierarchical prior model using Diffusion Wavelets was proposed to
segment organs (Essafi et al., 2009) – including one calf muscle – in MRI. This
model builds on the formulation of the ASM (cf. equation 2.1.15), using a differ-
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ent basis for the subspace of valid solutions. One of the main drawbacks of ASMs,
is that they often require a large number of training data in order to obtain rel-
evant decomposition modes. Indeed, some non-correlated shape features – such
as global and local shape configurations – are often modeled by the same defor-
mation modes. Thus, desired shape behaviors are often mixed with unwanted
shape behaviors when optimizing the shape parameters for segmenting a new im-
age. The hierarchical approach allows to uncorrelate small and large scale shape
behaviors. Moreover, the presented method also uncorrelates long-range shape
behaviors, thus ensuring that deformation mode are spatially localized.

We give a brief summary of this method. First, a graph G (V , E) is built on the
set of landmarks: V is the set of nodes and each landmark corresponds to a node
in V ; E is the set of edges, whose weights are determined through a statistical anal-
ysis of the mutual relations between the landmarks in the training set {xk}k=1...K
(cf. Shape Maps (Langs et al., 2008)). As a result, landmarks with independent
behaviors will be connected by edges with a small weight, whereas nodes with
strongly related behaviors – such as neighboring points – will be connected by
large weight edges.

Second, a Diffusion Wavelet decomposition of G is performed. This process
involves computing the diffusion operator T of graph G, which is the symmet-
ric normalized Laplace-Beltrami operator, and computing and compressing the
dyadic powers of T. The output of this decomposition is a hierarchical orthogo-
nal basis {Γi} for the graph, whose vectors correspond to different graph scales;
considering the vector of landmark positions when decomposed on the new basis:

x = x̄ + Γp, (2.1.17)

global deformations – i.e. global relations between all the nodes – are controlled
by some of the coefficients in p, while local interactions – i.e. local interactions
between close-by nodes – are controlled by some other coefficients in p. Projecting
all the training examples onto this new basis, a PCA is performed at each scale

of the decomposition. Finally, during the segmentation process, the landmarks
are positioned on the target image in an iterative manner: 1) the position of the
landmarks is updated according to a local appearance model; 2) they are projected
into the hierarchical subspace defined previously.

2.1.3 Implicit deformable models: level sets

Level set methods, also called Geometric Deformable Models, are a special class of De-
formable Models. They were designed to solve certain issues of standard Active Con-
tours (also called Parametric Deformable Models or Snakes): the explicit parametrization
of Snakes necessitates frequent re-parametrization in order to preserve accuracy; topo-
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Figure 2.1.9 – Level set segmentation: (left) illustration of the level set method (from
Wikipedia); (right) topological changed during segmentation of synthetic
images (Paragios, 2005).

logical changes in snakes are difficult to achieve; the output depends heavily on the
contour’s initialization (position and shape); region features (color, texture) are diffi-
cult to take into account.

The level set method, proposed by Dervieux and Thomasset (1980); Osher and
Sethian (1988) in the field of fluid dynamics, uses an implicit representation of the
evolving boundaries C as the location of the zero level line of an implicit function
φ : Ω→ R (cf. figure 2.1.9):

C = {x ∈ Ω|φ (x) = 0} . (2.1.18)

Such implicit representation allows natural topological changes of the implied bound-
ary (cf. figure 2.1.9). This representation is then combined with the general energy
functional for Active Contour models using parametric curves C : [0, 1] → Ω (Para-
gios, 2005; Cremers et al., 2006b) (cf. section 2.1.1):

E (C) =

ˆ 1

0
αEint (C (p)) + βEimg (I (C (p))) + γEext (C (p)) dp, (2.1.19)

where I is the image, Eint imposes curve smoothness (regularization term), Eimg

pushes the curve towards boundaries (data term), Eext encodes user knowledge (in-
teraction or prior term), and α, β, γ are balancing parameters. Such cost functional can
be minimized within a finite difference approach on the variational form:

∂C

∂t
= −

∂E (C)

∂C
= F · n, (2.1.20)

http://en.wikipedia.org/wiki/File:Level_set_method.jpg
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where F is a speed function and n is the contour unitary normal vector. Incorporating
the level set representation to the previous formula yields:

∂

∂t
φ = − |∇φ| F. (2.1.21)

Such a flow specifies the evolution of the implicit function φ at the location of the
boundaries. Among the first applications of the level set formalism, a notable contri-
bution is the Geodesic Active Contours model (Caselles et al., 1997; Kichenassamy et al.,
1995), with evolution equation:

∂

∂t
φ = |∇φ|div

(
g (I)

∇φ

|∇φ|

)
, (2.1.22)

where g is an edge function, increasing with the strength of the edges in I . Such
equation models an inward (respectively outward) flow which shrinks (respectively
expands) the initial curve towards the detected edges. For implementation, φ is gener-
ally considered as a signed distance function to the evolving curve:

φ (x) =





0 , x ∈ C ,

D (x, C) , x ∈ Cin,

−D (x, C) , x ∈ Cout,

(2.1.23)

where D(x, C) is the Euclidean distance from x to C, Cin ⊂ Ω is the region inside C
and Cout ⊂ Ω is the region outside C.

Having to impose the direction of the flow, as well as relying only on edge detec-
tion make such formulation very dependent on the initialization and non-robust to
undesired local extrema. To overcome these problems, a global regional term was in-
troduced. For a two-phase segmentation, such model has an energy of the form (Chan
and Vese, 2001; Cremers et al., 2006b):

E (φ, θ1, θ2) =

ˆ

Ω

−H (φ) log p (I|θ1) (2.1.24)

− (1− H (φ)) log p (I|θ2) + w |∇Hφ| dx,

where p (I|θi) is the posterior probability to observe I given region model parameter
θi, H is the Heaviside step function such that: H (x) = 1, x ∈ Cin, and H (x) = 0
otherwise – in practice, H is a smooth differentiable approximation of the Heaviside
distribution. Region parameters θi can either be set, as a prior knowledge of statistical
properties of the objects region (Paragios and Deriche, 1998), or estimated in an alter-
nate optimization method, assuming intensity piece-wise constant objects (Chan and
Vese, 2001). Many variations on this formulation were developed, for multi-phase seg-
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mentation (Zhao et al., 1996; Paragios and Deriche, 2004; Yezzi et al., 1999), for using
non-parametric approximation of density functions (Kim et al., 2002; Rousson, 2002),
instead of Gaussian approximation functions.

2.1.4 Level sets and shape priors

Incorporating shape prior knowledge within the level set framework has been done in
multiple ways. Some methods (Chen et al., 2002; Rousson and Paragios, 2002) use the
statistical average curve CM, and associated signed Euclidean distance function φM to
guide the deformation of the model. For example, when added to a level set energy
functional, minimizing the term:

Eshape (φ,A, s) =

ˆ

Ω

δ (φ) (sφ (x)− φM (A (x)))2 dx (2.1.25)

imposes the implicit function φ to be similar to φM, where δ is a smooth approximation
of the Dirac distribution, A is a linear or non-linear transform to be estimated, s is the
scale factor between φ and φM to be estimated.

As seen previously with explicit models, single reference models can only recover
small deviations from the prior shape. In order to build a model able to recover
important shape variations, methods using a PCA on a set of distance functions were
developed (Leventon et al., 2000; Tsai et al., 2001), similar in principle to the Active
Shape Model (cf. section 2.1.2):

φλ = φM + ∑
j

λjUj, (2.1.26)

where λj is the parameter weighting the eigenvectors Uj. Similar to 2.1.25, an energy
term enforcing a shape prior can be formulated:

Eshape (φ,A, s, λ) =

ˆ

Ω

δ (φ) (sφ− φλ (A))
2 dx. (2.1.27)

Such an approach assumes that the distribution of training shapes is Gaussian,
which is often not true in practice, and thus necessitates a large number of eigen-
vectors in order to capture enough details of the shape. Approaches for modeling
non-Gaussian shapes distributions were considered, using nonparametric density esti-
mators (Cremers et al., 2006a; Rousson and Cremers, 2005), e.g. yielding prior energy
terms of the form (Rousson and Cremers, 2005):

Eshape (φ, λ) = − log
1
N

N

∑
i=1

K

(
λ− λi

σ

)
, (2.1.28)
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where λi = (λ1, . . . , λn) is the shape vector (e.g. projection into a PCA space) for
training shape i, λ is the shape vector of the model, K is a kernel function (e.g. Gaus-
sian kernel K (x) ∝ exp−x2) and σ is a scaling parameter. Such approach ensures the
model remains in the vicinity of the training shapes.

2.1.5 Graph-based surface models

Unlike most surface-based models, which are usually optimized with continuous lo-
cal methods, these models are fit to the image via discrete graph-based optimization
procedures. The graph frameworks has the advantage of allowing to enforce similarity
invariant statistical shape priors while searching for a globally optimal solution.

surface models and pair-wise discrete optimization A landmark-based
surface model was proposed by Besbes et al. (2009); Besbes (2010) for a 2-class seg-
mentation methods with a shape prior based on learning joint probabilities between
pairs of control points. Let us call xi the spatial location of the i-th control points,
X = {x1, . . . , xN} the set of control points. Given an annotated training set of sample
images, the joint probability for the relative location of two control points is learned
based on the normalized distance between pairs of points:

dij =

∥∥xi − xj

∥∥
d

, (2.1.29)

where d is the estimated scale of the object. Since prior information relies only on
a normalized distance between the control points, it is rotation, translation and scale
invariant – although scale-invariance depends on a separate scale estimation. From
these distance, a joint probability distribution is estimated: pij = p

(
dij

)
given a statis-

tical model (e.g. a Gaussian model). A graph G = (V , E) is then built over the control
points. The following functional is defined:

E (X ) = ∑
vi∈V

Vi (xi) + ∑
eij∈E

Vij

(
xi, xj

)
, (2.1.30)

where: Vi (·) is the data inference term for each control point. This measures the
adequacy of the segmentation with the pixels intensity; Vij (·, ·) is the shape prior
term, measuring the adequacy of the surface’s shape with the prior knowledge:

Vij

(
xi,xj

)
= − log pij. (2.1.31)

The most appropriate configuration for the set X can be obtained by minimizing the
discrete energy E: each control point is limited to a finite number of displacements.
As formulated, this problem is NP-hard and can only be approximately solved, e.g.
via an efficient primal-dual algorithm (Komodakis et al., 2007). Due to the limited set
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of locations for each control point, this optimization method remains non-global, but
nonetheless covers a greater range of solutions than variational methods.

muscle segmentation using higher-order cliques In the previous
method, a shape prior is enforced via learning distribution models for pairs of
control points. While such modeling makes a rotation and translation invariant
model, it is only approximately scale invariant due to the normalization of dis-
tances by an estimation scale of the model. Moreover, the iterative approach for
minimizing the functional imposes an initial guess for the control point location,
e.g via user interaction.

A surface model using prior distributions over higher-order cliques – as triplets
– was proposed by Wang et al. (2010). This allows to define an exact scale-invariant
model and allows global search for control point locations due to the more con-
straining effect of imposing triplet configurations. Let us denote the spatial distri-
bution for triplet (i, j, k) as pijk , which is learned for all triplets of points, using a
mixture of Gaussians statistical model.

Unlike the previously presented method, control point possible locations are
searched in a first stage, within the entire image. Such approach is achieved by
capturing the local image appearance around the control points in the training
set images. A series of Gabor filters are computed over patches surrounding the
landmarks and fed to a Randomized Forest Classifier. Then the trained classifier is
run over the target image to determine a set of best matches for each landmark and
a score for each match. The k-th match for landmark i represents the assignment
label lk

i for node vi. Defining xi (li) as the location of point i for label li, the
following functional is defined:

E (L) = ∑
vi∈V

Vi (xi (li)) + ∑
eij∈E

Vijk

(
xi (li) , xj

(
lj

)
, xk (lk)

)
, (2.1.32)

where: Vi (·) is the data inference term for each control point. This is defined as a
decreasing function of the classification score for the corresponding point match;
Vij (·, ·, ·) is the shape prior term, measuring the adequacy of the surface’s shape
with the prior knowledge:

Vijk

(
xi (li) , xj

(
lj

)
, xk (lk)

)
= − log pijk

(
xi (li) , xj

(
lj

)
, xk (lk)

)
. (2.1.33)

This functional contains high-order cliques and can be minimized using a novel
Dual-decomposition method (Komodakis, 2011). Since the possible location for
each landmark are searched for globally, no iterative approach is required and the
model does not necessitate an initial guess.
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2.2 region-based methods

Apart from methods relying on surface representations, there also exists segmentation
methods using regions models: each point in the image domain is parametrized by an
assignment value, which can be hard – a label – or soft – e.g. a probabilistic label assign-

ment. In general, these methods achieve good accuracy at segmenting the boundaries
of the objects, but global shapes and topology are much more difficult to constrain.
This is the opposite with surface-based methods which provide natural means for
enforcing shape constraints and topology but often fail to segment the boundaries ac-
curately. In the case of multi-object segmentation, surface-based methods necessitate
complex computer animation algorithm to deal with interacting objects – e.g. to solve
intersection issues. Region-based methods offer a simpler framework in that matter,
since one point in the image domain can only belong deterministically to one label.
Moreover, fuzzy or probabilistic assignment to different labels is also simpler with
such methods.

2.2.1 Continuous methods

A continuous segmentation model based on probabilistic atlases was introduced by
Cremers et al. (2008). This approach was motivated by the well-known limitations of
level sets with shape prior methods: a) the cost functionals are generally non-convex,
leading to non-optimal solutions and b) it was noticed that linear combinations of
signed distance functions – used in building statistical shape priors – do not yield
valid shapes and thus poor shape priors.

This approach is based on a probabilistic assignment model. Let us denote q : Ω→
[0, 1] such that q (x) is the probability that x belongs of the target object. Assuming we
own a set of annotated training images, denoted T = {qk}k, a PCA is performed on
T . This operation involves computing the average probabilistic segmentation:

µ =
1
|T |∑

k

qk, (2.2.1)

and the covariance matrix of the centered samples:

Σ =
1
|T |∑

k

(qk − µ) (qk − µ)T . (2.2.2)

Then a segmentation in the subspace spanned by the first n eigen-modes is:

qγ = µ + Γγ, (2.2.3)
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where Γ ∈ R
N×n denotes the matrix whose columns are the n retained eigenvectors.

With these definitions, the following general cost functional is proposed:

E (qγ) = Ei (qγ) + αEs (qγ) . (2.2.4)

where:

Ei (q) =

ˆ

f (x) q (x) dx (2.2.5)

+

ˆ

g (x) (1− q (x)) dx +

ˆ

h (x) |∇q (x)| dx,

where f (x) and g (x) are functions binding the model to the image, and h (x) a func-
tion constraining the length of the boundary. Such functional is a generalized version
of the typical two-phase level set cost functional 2.1.24 (Chan and Vese, 2001). How-
ever, unlike the level set approaches, this functional is convex in q (whose domain is
also convex). The shape prior functional is:

Es (qγ) = γTΣ−1γ, (2.2.6)

which is convex in γ. Such approach has the advantage that the shapes spanned by the
PCA are always valid, unlike the level set case. It should be noted that this approach
assumes a Gaussian model for the probabilistic assignment variables, which is a rather
rough approximation and, as a consequence, the PCA does not generate probability
vectors.

muscle segmentation using a continuous region model The previ-
ous method was extended to multi-label segmentation by Andrews et al. (2011b),
and applied to skeletal muscle segmentation (Andrews et al., 2011a). Before per-
forming the PCA on the training samples, an Isometric Log-Ratio (ILR) transform
is applied to the assignment vectors. The reason for using this transform is that
multi-label segmentation requires to have probabilities at all times, which the pre-
vious method does not achieve. Here, the PCA is performed in the ILR space and
its output is projected back into the initial probability space. Denoting ηγ = µ+ Γγ

a segmentation in the subspace of valid solution spanned by the PCA in the ILR
space, the following functional is proposed:

E (ηγ) = d (ηBG,ηγ)
2 +

ˆ

(1− h (x)) |∇ηγ|
2 + γTΣ−1γ, (2.2.7)

where d (ηBG, ·) is an intensity prior functional for separating muscle voxels from
background voxels, and h (x) is and edge-map of the target image such that the
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energy is minimal when the boundaries of the model match the edges in the
image.

2.2.2 Graph-based methods

In the following we review region-based methods relying on a graph formalism. Dig-
ital images are intrinsically discretized: in space into pixels and in time into frames
(videos) – amplitude quantization is generally too fine to be considered. For this
reason, pixels/voxels decomposition provides a convenient solution domain and are
often used as such. However, other sub-domains have been used by further reducing
the search domain into sets of pixels with the same assignment value (super-pixels)
. These graph-based methods are intrinsically “bottom/up”, since they rely on pixel-
scale features to provide a segmentation of larger scale objects. More importantly,
graph-based methods offer means of obtaining globally optimal segmentations, which
is not the case for most surface-models, whose results depend heavily on the initial
conditions.

notations Let us consider an image I with N pixels. A segmentation on I is
formulated as a labeling problem of an weighted graph G = (V , E), where V is the set
of nodes and E ⊂ V × V is the set of edges. The i-th node vi corresponds to the i-th
pixel of image I. An edge spanning two vertices vi and vj is denoted eij, and its weight
wij. The set of edges is composed only of pairs of adjacent pixels – e.g 4-connected
neighborhood structure in 2D, and a 6-connected structure in 3D.

Given a set of labels S (e.g. the indices of the muscles), segmenting I consists of
assigning a label s ∈ S to each node p ∈ V . In the binary case, S = {0, 1} . We denote
xi ∈ S the assignment label of pixel i.

2.2.3 Segmentation with Graph Cuts

The Graph Cuts method was originally developed for binary clustering of images (Wu
and Leahy, 1993; Shi and Malik, 2000b), and for interactive segmentation (Boykov and
Jolly, 2001) where a user provides annotated pixels, the seeds, as an initialization for
the algorithm. In the following, we briefly explain the principles of the graph cut
theory for the binary case – i.e. a foreground/background segmentation.

Two terminal nodes, the source S and the sink T are added to the set of nodes V . A
cut on graph G is a separation of the nodes into two subsets, one VS containing the
source, and the other VT the sink (cf. figure 2.2.1). We call C ⊂ E the subset of edges
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Figure 2.2.1 – Graph-cut: (left) a directed graph G; (right) a cut on G (Boykov and Kol-
mogorov, 2004).

crossing the separation – i.e. with one vertex in VS and the other in VT. The cost |C|
of this cut is the sum of the weight of the edges in C:

|C| = ∑
(i,j)∈C

wi,j. (2.2.8)

The Ford-Fulkerson max-flow/min-cut algorithm can be used to find the minimum
cut in polynomial time.

Segmenting image I is a (binary) labeling problem which amounts to defining a cut
on graph G, where each node in VS are assigned to one label (e.g. the background)
and each node in VT are assigned to the other label (e.g. the foreground). An optimal
segmentation is one which verifies certain criteria: e.g. intensity homogeneity (“I
know this object has the same color everywhere”), intensity prior (“I know this object
is dark”). These simple criteria can be expressed at the pixel scale in terms of edge
weights:

• homogeneity of intensity between two pixels can be measured using a Gaussian
weighting of intensity differences:

∀ (i, j) ∈ E\ {S, T} , wij = exp
(
−β

(
Ii − Ij

)2
)

. (2.2.9)

where β is a contrast parameter;

• prior knowledge over intensity of one pixel can be measured using the negative
log-likelihood:

∀vi ∈ V ,
wiS = − log Pr (Ii|T) ,

wiT = − log Pr (Ii|S) ,
(2.2.10)
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where Pr (Ii|T) (respectively Pr (Ii|S)) is the intensity distribution for the object
attached to the sink (respectively the source). Note that if Pr (Ii|T) ≈ 0, then
wiS ≫ 0, which implies that cutting the edge eiS is very costly.

As a consequence, an optimal segmentation according to pair-wise criteria can be
obtained by finding the minimum cut Ĉ, which is a cut of G which has a minimal cost.
Indeed, minimizing the cost of the cut implies cutting the edges with the smallest
weight on average, which is equivalent of satisfying the selected criteria as well as
possible. An optimal segmentation is obtained via minimizing the following functional
with respect to the label assignments:

E (x) = ∑
(i,j)∈E

wij

∣∣xi − xj,
∣∣ , (2.2.11)

where x = {xS, xT} ∪ {xi}i=1...N and where xi is a binary assignment variable:

xi =





1 if vi ∈ VS,

0 if vi ∈ VT.
(2.2.12)

Under this formulation, the assignment value for terminal nodes is of course already
known: xS = 1 and xT = 0. Additional information can be provided in the form
of seeds, i.e. used-assigned pixels. Let us call VM the set of marked nodes, then
finding the optimal segmentation is achieved by minimizing 2.2.11 with respect to the
assignments for un-marked nodes v ∈ V\VM.

In the general case, wij

(
xi, xj

)
can depend on the labels xi and xj. It was shown

that Graph Cuts achieve a globally optimal solution providing that wij(·, ·) is a sub-
modular function (Kolmogorov and Zabih, 2004), i.e. that it verifies:

wij (0, 0) + wij (1, 1) ≤ wij (1, 0) + wij (1, 0) . (2.2.13)

When one wishes to segment several objects at once, the multi-label case can be for-
mulated as a multi-way cut problem (Boykov et al., 1999). However, such formulation
was proven to be NP-hard and only good approximate solutions can be found (Boykov
et al., 1999; Komodakis et al., 2007).

A different approach with no required intensity prior (Wu and Leahy, 1993; Shi and
Malik, 2000b) can be formulated by setting: ∀i, wiS = wiT = constant. Moreover, seeds
are no longer required, so the resulting segmentation depends only on the intensity
difference between pixels. Such method is called perceptual grouping. However, the
output segmentation tends to be biased towards very small segments, because small
segments have less edges and induce a lower cut cost (Wu and Leahy, 1993). This
problem can be solved with normalized cuts (Shi and Malik, 2000b) (cf. figure 2.2.2),
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Figure 2.2.2 – Automatic image partition using normalized cuts (Shi and Malik, 2000b).

Figure 2.2.3 – Two examples of graph-cut segmentation (red curve) using user-provided
seeds (green and blue marks) (Sinop and Grady, 2007).

where a different functional is minimized, consisting in a normalized cut cost by the
cost of all edges within the parts:

EnC (x) =

(

∑
(i,j)∈E

wij

∣∣xi − xj

∣∣
)(

1
∑(i,j)∈E wijxi

+
1

∑(i,j)∈E wij (1− xi)

)
. (2.2.14)

However, minimizing the normalized cut is a NP-hard problem and can only be opti-
mized approximately.

An interactive scheme can be adopted, where the user has to provide seeds to ini-
tialize the algorithm (Boykov and Jolly, 2001) (cf. figure2.2.3). As a result, the segmen-
tation consists in a optimal separation of the seeded regions and is not biased towards
small cuts. No intensity prior is required, but one can be estimated simply by comput-
ing the histogram of the marked regions, thus enforcing intensity coherence as well as
spatial coherence.
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2.2.4 Shape priors and graph-cuts

A “star shape prior” was proposed by Veksler (2008), allowing to constrain the shape
of objects with star shapes. An object O has a star shape if there exists a point c such
that any point p in O can be reached in straight line from c without stepping out of O.
The shape prior is enforced by setting special weights sij to edges connecting pixels i

and j which both lie on a line passing through c. Assuming pixel j is between c and
pixel i, these special weights have the following form:

sij

(
xi, xj

)
=





0 if xi = xj,

∞ if xi = 1, xj = 0

β if xi = 0, xj = 1,

, (2.2.15)

to be added to the original weights wij. This way, if pixel i belongs to the target object,
then pixel j has to belong to the object as well. The center point c is provided by the
user.

A “topological” prior was proposed by Delong and Boykov (2009), . Topological con-
straints are, for instance: containment (“object A contains object B”), exclusion (“object
A and object B are not superimposed”), etc. These constraints are enforced in the bi-
nary graph-cut framework by solving simultaneous binary problems – one layer per
label – and adding edges between the pixels of the different layers. These additional
edges enforce the aforementioned topological constraints. Similarly, a topological “lo-
cation” prior was proposed by Chittajallu et al. (2009), relying on prior knowledge on
the location of other objects: e.g. having segmented the lungs in CT-scan of the torso,
the position of these organs provides a prior on the location of the heart.

A shape prior based on a single reference segmentation was introduced to the
graph-cut framework by Freedman and Zhang (2005). Let us denote C the bound-
ary of this template shape, and φ the unsigned distance function whose 0-level set is
C: C = {p ∈ Ω|φ (p) = 0}. Then, with p (i) denoting the spatial location of pixel i, the
additional binary weight function is used:

sij

(
xi, xj

)
=





0 if xi = xj,

φ
(

p(i)+p(j)
2

)
otherwise,

(2.2.16)

which gives a low cost if the label transition (i.e. the boundary of the object) is located
near the boundary of the reference shape.
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2.2.5 Segmentation with Random Walks

We refer the reader to chapter 4 for detailed explanations on this approach.

2.3 prior art limitations

In this chapter, we have tried to review all existing segmentation methods which could
adapt to muscle segmentation, highlighting those which were actually applied to this
task. Although there were few attempts at segmenting striated skeletal muscles, the
existing methods adopted very different approaches. Among the surface-based mod-
els, Gilles and Pai (2008); Gilles and Magnenat-Thalmann (2010) adopted the active
surface approach: a reference shape is deformed according to internal regularization
forces and external image-driven forces in a local optimization process (pp. 17). Shape
prior is enforced by a “shape memory” term (Gilles and Magnenat-Thalmann, 2010)
or via a soft tissue simulation algorithm called shape-matching (Gilles and Pai, 2008).
Both constraints enforce a strong prior, and the results is always valid in terms of
anatomy. However, the local optimization and the possibly unreliable data-terms (gra-
dient driven) sometimes yield over-regularized solutions. The method of Essafi et al.
(2009) also uses a surface model, and thus suffers from the same problems. However,
due to using a hierarchical statistical prior models, one can expect the surface model
to adapt more easily to the specifics of the target image (pp. 23). The method of Wang
et al. (2010) has the advantage of being optimized globally, as candidate targets for the
surface vertices are searched in all the image. Second, the higher-order clique approach
allows to learn a statistical shape prior and to enforce local similitude invariance in
a practical way. However, like other landmark-based approaches, it relies on finding
consistent detectable anatomical points, which we believe is very difficult with skeletal
muscles (pp. 29). Like most surface models, the latter two methods may also suffer
from topological issues such as intersection during optimization in a multi-object con-
text, since this case was not addressed. Finally, the method of Andrews et al. (2011a)
benefits from its region-based approach: global optimization and no topological issues
(pp. 31). Shape prior is efficiently enforced for the entire limb by imposing the shape
to evolve in a statistical shape space of valid solutions, built from a training atlas base
through principal component analysis. The presented results demonstrate excellent
performances. However, one weakness may remain in the image term, which relies on
contour detection, an unreliable process in MR images of muscles where contours are
often missing or often confused with spurious structures.

In chapter 4, we present some quantitative comparisons of the methods of Gilles
and Pai (2008) and Andrews et al. (2011a) with our own proposed methods.





3
A U T O M AT I C S E E D P L A C E M E N T

3.1 introduction

The approach presented in this part builds upon the observation that certain region-
based methods can achieve excellent results, providing a substantial manual initializa-
tion. Among them, the Random Walks (RW) segmentation algorithm (Grady, 2006)
has the advantage of addressing the issue of incomplete contours, which is one of the
main difficulties in our task. The RW algorithm is a pixel-wise graph-based method
which amounts to computing the probabilities of assignment of each pixel to each
label (e.g. the index of a muscle). In this approach, a quadratic energy functional mea-
suring the conformity of the segmentation with the image is defined and minimized
by solving a large sparse linear system. Since efficient optimization algorithms exist
to solve such problem – e.g. the conjugate gradient method – large volumes can be
entirely segmented in a few minutes (see chapter 4 for a more in-depth view of the
RW method). The interactive phase of the RW method consists in manually annotating
some pixels of each label: the seeds (cf. figure 3.1.1). However, while this approach
offers a considerable time gain by avoiding to manually annotate all the pixels, man-
ually positioning the seeds remains a time consuming process, especially when large
volumes are to be segmented.

In this chapter, we propose a method for generating the seeds automatically. While
the large inter-subject variations of skeletal muscles prevent using a deformable model
based on a shape template, the relative positions of the muscles are consistent among
individuals. Therefore, it is reasonable to develop a segmentation method whose prior
information is not based on the position of the boundaries and on the shape of the
objects, but rather on the approximate relative position of the objects and the existence
of boundaries between them. Seeds are compatible with this idea: it is sufficient that
they are placed well inside the target object and the Random Walks algorithm will
segment the contours accurately. Through a sampling process, unlabeled seeds are
generated in the image domain. The clustering of these seeds with respect to the
different muscle classes is achieved through a MRF graph-based approach: each seed
is considered as a node and is to be assigned to a label – i.e. a muscle index. The
weight of the edges between the seeds is set to reflect the topological information: the
presence – or absence – of a boundary between two seeds and the likelihood of the
orientation of an edge with respect to the assigned muscle indices. A discrete energy
functional is defined to measure the the quality of a global label assignment. Due to
being NP-hard, this problem can only be approximately solved; however, we obtained

39
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Figure 3.1.1 – (left) Axial cross-section of a right thigh with manually drawn seeds; (right)
segmentation.

satisfying results using an efficient message passing algorithm (Kolmogorov, 2006) on
a real clinical dataset.

3.2 related work

To our knowledge, this is the first method proposing an automatic seed generation
based on a graph formulation of the labeling problem. Previous automatic seeding
methods may be associated with graph-cuts (Boykov and Jolly, 2001), seeded region
growing (Adams and Bischof, 1994) or Random Walks. The more straightforward
approaches rely on appearance filtering for selecting seeds: only pixels of a certain
predetermined intensity or color are kept as seeds (Wyatt et al., 2000; Wighton et al.,
2009). Similarly, some methods (Fan et al., 2001) first detect certain images features
(e.g. edges) and generate seeds according to geometrical considerations (e.g. estimated
centroids). Integration of knowledge of the anatomy can be based on pre-defined dis-
tances and relative positions (Wyatt et al., 2000; Maier et al., 2008), but such approaches
require small inter-subject variations or few objects to segment, with simple geome-
tries. Finally, there also exists “pre-segmentation” methods, destined to partition the
image into several regions to be latter merged to obtain semantically correct regions
(Mičušík and Hanbury, 2006); such methods do not rely on any predefined topology,
segmenting an unknown number of objets, with unknown shapes.
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Figure 3.3.1 – Binary mask (right) generated from water map image (left). This mask is
used for registering the reference image onto the test image.

3.3 prerequisites

We need a binary mask of the muscle tissues, separating them from the background
and the fat tissues (see figure 3.3.1). Such a mask can be obtained via intensity thresh-
olding – or in our case, more efficiently, from the “water-map” images we based on
for our experiments. This water-map represents the fraction of water protons in the
organic tissues; as a result, muscles – made of water for a large part – have high
intensity values, whereas fat tissues and bones have intensity values close to zero (cf.
appendix A for more details). This mask is used to ensure the seeds are only generated
within the muscles.

This approach assumes we have a reference atlas rigidly registered with the image
to be segmented (see figure 3.3.2). We applied rigid-registration (translation, rotation,
scaling) using the free registration software medInria. This software uses the block
matching rigid registration algorithm (Ourselin et al., 2000). To reduce the possibility
of registration errors, we used the binary masks of the muscle tissues as input images
for the registration software. This way, only the muscle/fat boundaries are taken into
account for leading the registration algorithm.

3.4 unlabeled seeds sampling

The first step of our algorithm is to generate the seeds that will be used as initialization
by the RW algorithm once labeled. We are going to place the seeds well inside the
muscles, and not too close to the contours since the task of segmenting the contours

http://med.inria.fr/
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Figure 3.3.2 – (left) Axial cross-section of a right thigh; (right) manual segmentation. The
reference segmentation will serve as a reference atlas when segmenting a
new image.

accurately is left to the RW method. To achieve this, we first compute an edge map of
our volume – e.g. by computing the local variance of the intensity on a small patch
centered on each pixel. Then, we sample the seeds on a regular grid, with a high
enough density to ensure all the muscles contain several seeds. Finally, we move the
seeds in the opposite direction of the gradient of the edge map for a few iterations.
More precisely, if the spacing of the grid is k, then the seeds are allowed to move by
k/2 from their original position, to prevent any pair of moved seeds to take the same
location. This way, seeds are moved away from the close-by edges by a few pixels (see
figure 3.4.1).

The seed displacement algorithm can be summed-up by the following algorithm:

1. let us denote the initial location of voxel p as z0
p;

2. for i = 1 . . . k
2 do:

a) compute normalized displacement vector vi
p = −

⌊
∇I
(
zp

)
/‖∇I

(
zp

)
‖+ 0.5

⌋
.

b) shift seed by v: zi
p ← zi−1

p + vi ;

The next step is the label assignment.

3.5 mrf formulation

We now describe how to assign a label to the seeds we generated, according to the
similarities between the test image and the reference segmentation.
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Figure 3.4.1 – Generating the unlabeled seeds: (left) points are sampled regularly over the
test image with a spacing of k pixels; (center) edge map; (right) unlabeled
seeds, after removal of the points lying outside of the mask of the muscles,
and after displacement of k/2 pixels in the opposite direction of the gradient
of the edge map.

3.5.1 Energy form

We formulate our problem as a labeling problem, that we will solve by minimizing a
first-order Markov Random Fields energy functional. Let G = (V , E) be an undirected
graph, where V is the set of nodes and E is the set of edges. Given a set of labels L,
we want to assign a label l ∈ L to each node p ∈ V . We denote xp the label assigned to
p, and x the collection of all assignments. A first order MRF functional has the form:

E (x) = ∑
p∈V

θp

(
xp

)
+ ∑

(p,q)∈V

θp,q
(
xp, xq

)
, (3.5.1)

where the unary potential θp (·) depends only on the label assigned to node p, and
the binary potential θp,q (·, ·) depends on the labels assigned to each nodes of edge
(p, q). Unary potentials (or “costs”) measure the quality of the label assignment of
each node. Similarly, Binary potentials measure the quality of the label assignment of
a pair of nodes. The quality measures we are referring to are specific to the desired
application. The interest of the MRF formulation is that the assignment of each node
depends only on the neighborhood of this node. In the simple case where only pair-
wise dependencies are considered, efficient optimization algorithm can be used to
minimized the previous functional.

In this framework, the nodes in V are the unlabeled seeds and the labels in L are the
indices of the muscles in the reference segmentation. In the following, we define the
unary potentials so that seeds close to (respectively far from) a muscle in the reference
image have a small (respectively large) assignment cost. Binary potentials will reflect
the topological properties we seek to exploit: when assigning two different labels (i.e.
muscles), unlikely orientations and the absence of boundary between the connected
seeds will yield a large binary cost; reciprocally, when assigning the same label to both
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Figure 3.5.1 – The reference atlas is registered onto the test volume, providing prior-
knowledge on label assignment likelihood for each node.

ends of an edge, it is the presence of a boundary between the connected seeds which
will yield a large cost (orientations do not matter is this case). As we will see in a later
part, the set of edges will be set to model the spatial proximity of the nodes.

3.5.2 Unary potential

We define a unary cost θp (·) based on the knowledge that the reference atlas is rigidly
registered onto the test image:

θp (m) = d (p, Mm) , (3.5.2)

where Mm is the set of pixels with label m in the reference segmentation and d (·, ·) is
a distance function between a point and a set:

d (p, R) =





min {‖p− r‖ , r ∈ R} if p /∈ R,

0 otherwise.
(3.5.3)

The rigid registration ensures that, if we superimpose the test image and the refer-
ence segmentation, an unknown muscle in the test image is likely to correspond to a
geometrically close muscle in the reference segmentation. Therefore, this term will fa-
vor the assignment to a node of a label corresponding to a geometrically close muscle,
over the label of a more distant muscle (see figure 3.5.1).

Geodesic distance potential and graph connectivity

The unary term does not take into account the structure of the set of muscles. As
we saw previously, the shape of the muscles can vary quite extensively between in-
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dividuals. On the other hand, the topology of the set of muscles is consistent: mus-
cle a is always "close to" muscle b, but "far from" muscle c, there is most of the time

a visible contour between muscle a and b. We designed binary terms to account
for this knowledge. The binary potential is the sum of two potentials: θp,q (·, ·) =

wgeodθ
geod
p,q (·, ·) + worientθ

orient
p,q (·, ·), weighted by parameters wgeod and worient.

The term θ
geod
p,q (·, ·) is derived from the geodesic distance g (p, q) between the seeds p

and q. This geodesic distance between two points is understood as the length of the
shortest path from one point to another over a curved space. Here, we consider the
edge-map of the test image as a curved space: a ground with “hills” – i.e. edges – and
“valleys” – i.e. homogeneous regions. The interest of such measure is the following:
considering two edges of the same Euclidean length – an edge crossing a boundary
has a larger geodesic length than a non-boundary crossing edge. We propose the
following definition:

θ
geod
p,q

(
xp, xq

)
∝





1/ (1 + exp (γ− g (p, q))) if xp = xq,

1/ (1 + exp (g (p, q)− γ)) otherwise.
(3.5.4)

where γ is a free parameter. If xp = xq, i.e. both seeds belong to the same muscle,

θ
geod
p,q

(
xp, xq

)
will penalize large geodesic distances, as there should be no contour

between p and q. On the other hand, θ
geod
p,q

(
xp, xq

)
will favor large geodesic distances

if xp 6= xq (see figure 3.5.2).
We compute an approximate geodesic distance between the seeds using the Fast

Marching algorithm (Sethian, 1996) on the test image. The Fast Marching method
solves the general static Hamilton-Jacobi equation for a given speed function. Here,
the speed is determined by the value of the edge-map (e.g. the gradient magnitude). A
propagating discrete front is started at each node and marches in the outward direction
at the given spatially-dependent speed. From a technical view, an efficient heap-sort
is used to select the best front pixel to update, so that previously evaluated pixels are
seen only once. Since there are several fronts evolving simultaneously, the origin point
of each front is stored for each visited pixel. Once all pixels have been visited, the
arrival time of the front at a given pixel can be seen as a geodesic distance from this
pixel to the origin pixel of the front.

We supply the algorithm with the unlabeled sampled seeds. We obtain in return a
partition of the image, where each seed in included in a different region, and where
the boundary between two regions is equidistant to the seeds in the regions, in the
geodesic sense (i.e. a geodesic Voronoi partition). The connectivity of the graph is
determined by the Voronoi partition: for each adjacent region, we add an edge between
the corresponding nodes. Note that we do not obtain an edge between every pair of
seeds, but only between geometrically close seeds. This is not a problem, since θ

geod
p,q is

designed to account for the presence or the absence of a contour between two seeds,
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Figure 3.5.2 – Visual representation of the geodesic distance between seeds: the color-map
goes from blue to red as the geodesic distance increases. Notice that edges
crossing a visible boundary have a large geodesic distance whereas edges
crossing a homogeneous area have a small geodesic distance.

and thus is mostly a local term; our unary cost coarsely handles the labeling problem
at a larger scale.

Relative orientation potential

The term θorient
p,q (·, ·) is intended to ensure that the relative position of a pair of muscles

is maintained, e.g. muscle a is located "top right of" muscle b. In a pre-processing
stage using the reference atlas, we computed the distribution of the orientations for
each pair (m, n) of muscles. More precisely, we estimated the probability density
pm,n (·) of random variable

U = (Pm − Pn) / ‖Pm − Pn‖ , (3.5.5)

where Pm is a randomly chosen point in muscle Mm, and

Pn = arg min
p∈Mn

‖Pm − p‖ (3.5.6)

(see figure 3.5.3). Thus, pm,n (u) can be seen as the probability that, for any pixel in
muscle m, the direction of the closest pixel in muscle n is u. We define the orientation
cost as:

θorient
p,q

(
xp, xq

)
∝




− log Pxp ,xq (p− q) if xp 6= xq,

0 otherwise.
(3.5.7)
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Figure 3.5.3 – (left) the probability density of the orientations between muscles Mm and
Mn is estimated by sampling points within Mm and determining the closest
point in Mn. (right) the cost of an edge between nodes p and q depends on
the probability of the orientation of vector −→pq.

This cost will be large if the orientation of the edge between two nodes is unlikely
given the labels to which the nodes are assigned.

3.6 experimental validation

3.6.1 MRF Optimization

Minimizing the energy 3.5.1 is a NP-hard problem for the binary potential function is
arbitrary. However, due to the relatively small number of variables we can expect to
reach a good approximate in reasonable time with an efficient message passing algo-
rithm such as the convergent Tree-Reweighed (TRW) Message Passing algorithm (Kol-
mogorov, 2006). The TRW algorithm uses a linear programming relaxation technique
and operates on the dual of the relaxed problem in order to find a lower bound to
the energy of the original problem. Due to its state of the art performance among
discrete optimization methods, TRW has been applied to solve many computer vision
and medical imaging tasks.

3.6.2 Experimental Results

To evaluate our method, we used a dataset composed of 3D volumes of the right
thigh of 15 healthy subjects, covering a wide range of morphologies (8 females, 7

males, ages range: 26 to 60), acquired with a 3T Siemens scanner and using 3pt Dixon
sequence (TR=10ms, TE1=2.75 ms TE2=3.95 ms TE3=5.15 ms, rf. flip angle =3°; we
used the out-of-phase image), with the an average image size of: 220px× 220px× 64px.
Every volume was manually segmented to obtain the ground truth against which the
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segmentation results are compared. We focused our evaluation on clinically relevant
muscles of the thigh (13 muscles).

Sampling the seeds, as described in section 3.4, with grid spacing 7px× 7px× 7px,
and 2 iterations to bring the seeds further away from the edges (filter radius = 1px),
gave us between 2000 and 2500 seeds per test image. At the MRF stage, detailed in
section 3.5, we obtained our best results with the following cross-validation estimated
parameters wgeod = 0.1, worient = 0.01, γ = 2×medianp,q∈V g (p, q), and U contains 26

regularly spread unitary orientation vectors. On a 2.8 GHz Intel® processor with 4 GB
of RAM, total processing time is under 5 min, which adds up to the RW segmentation
time (5 min).

All our results are based on a leave-one-out validation protocol: each volume is
used as the reference segmentation for segmenting all the other volumes. First, we
evaluated the automatic labeling process by computing the labeling error rate for each
muscle (figure 3.6.1) as box-plots1. For testing the efficiency of the binary potential, we
also computed the error rate for an energy only composed of the unary potential. We
observe that using the binary potential significantly reduce the error rate. Moreover,
the combination of the geodesic potential with the orientation potential is more effi-
cient than using only the geodesic potential, which confirms that both terms exploit
complementary types of information.

Then, we computed Dice coefficients to evaluate the segmentation results given
by the RW with the labeled seeds (figures 3.6.2 and 3.6.3). The expression of the
Dice coefficient is: D = 2 |T ∩ R| / (|T|+ |R|), where T and R are the pixel sets of a
given muscle in the inferred segmentation and the reference segmentation respectively.
The presented method outperforms a simple Atlas-based segmentation method (see
chapter 4 for details on this method).

In figure 3.6.4, we show cross-sections of segmentation results. We observe that
small muscles tend to be more affected by segmentation errors than large ones, which
points out the limitations of our model. In particular, the unary term, based on the
superimposition of the registered reference atlas with the target image, is bound to be
less effective for small muscles, because the distance term d (., .) is likely to be larger
than in the case of large muscles. Besides, many errors are due to the absence of
reliable contours between parts of muscles, which, in the case of large errors, indicates
that the topology constraints are failing to insure topology or shape correctness.

3.7 conclusion

In this chapter we presented a first method relying on the good properties of the RW
algorithm when facing weak boundaries. Results on real clinical data show the valid-

1 Box-plot presentation: the boxes contain the middle 50% of the data and the median value, and the
extremities of the lines indicate the min and max values, excluding the outliers (for more details, see the
documentation of Matplotlib).
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Figure 3.6.1 – Labeling error rate (in percent) as box-plots. “Nearest” is when using only
the unary potential (wgeod = worient = 0). The label of the seeds is only
determined by the geometrically nearest muscle in the reference atlas. “Au-
toseed (geo. only)” is the error rate when using only the geodesic distance
term (worient = 0, wgeod = 0.1). “Autoseeds” refers to the proposed method.
Using both binary potentials significantly reduces the error rates.
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Figure 3.6.2 – Dice coefficients for all muscles as box-plots “Multi atlas registration” refers
to a simple atlas registration-based segmentation method (see next chap-
ter for more details). The expression of the Dice coefficient is: D =
2 |T ∩ R| / (|T|+ |R|), where T and R are the pixel sets of a given muscle in
the inferred segmentation and the reference segmentation respectively.

Figure 3.6.3 – Detailed Dice results for all muscles separately.
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Figure 3.6.4 – Examples of cross-sections of 3d volumes of right thighs automatically seg-
mented with the proposed method.
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Figure 3.7.1 – Incorrectly labeled seeds (diamond markers) prevent the RW method to
segment the corresponding regions correctly (white regions)

ity of this approach and the usefulness of the proposed two binary terms. However, an
inherent limitation of this method lies in its two-stage formulation: 1) label the seeds;
2) segment the volume from the seeds. Indeed, as shown in figure 3.7.1, if the labeling
fails, segmentation will inevitably fail in the same area since seeds act as constraints on
the segmentation process (see the Random Walks algorithm detailed presentation in
the next chapter). This issue may be revealed by the non-negligible amount of outliers
in the Dice plots (Fig. 3.6.2), which means that the method totally failed to segment
some muscles (in general, smaller ones, like the biceps femoris or the adductor bre-
vis). In order to avoid such propagation of errors, we propose an integrated method
in the next chapter, in which the Random Walks and prior knowledge of shape are
combined into one formulation. Although this method is inherently flawed for the
aforementioned reasons, some improvements could still be considered. In particular,
using non-rigid registration could improve the performance if a better match of the
atlas and the segmented image is achieved.



4
R A N D O M WA L K S S E G M E N TAT I O N A N D P R I O R K N O W L E D G E

In this chapter, we present different approaches based on the general Random Walks
Segmentation algorithm. The state of the art RW algorithm has several benefits over its
competitors: (i) unlike discrete methods such as graph-cuts, it provides a probabilis-
tic segmentation (that is, a distribution over all putative labels for each pixel/voxel);
(ii) unlike surface-based methods like Active Contours, it has the ability to handle in-
tersection issues in multi-label cases; (iii) it is robust to partial contours; and (iv) it
is computationally efficient, since it only requires solving a sparse linear system of
equations. Although it was initially proposed for the interactive setting where a user
specifies the seeds of the segmentation, a fully automated extension using the contrast
information was proposed by (Grady, 2006). However, contrast information does not
permit accurate segmentation in the skeletal muscle case where all muscles share the
same appearance. Therefore, we propose to incorporate prior knowledge of the shape

of skeletal muscles into the RW framework. In a first published approach (Baudin
et al., 2012a), a prior energy functional is added to the RW functional in the form of
a proximal regularization of the probabilistic segmentation, whose deviations from an
average reference segmentation are penalized. We propose to modulate the strength
of the model constraints according to both prior information on the model’s local ac-
curacy and to the strength of the contours present in the segmented image. A second
published approach (Baudin et al., 2012b), introduces some flexibility to the model by
constraining the shape to remain close to a Principal Component Analysis shape space
built from training examples. Using the PCA allows us to model complex non-rigid
shape variations relying on a few eigen-modes. These methods benefit from the high
performance of the Random Walks optimization process, as they require only a simple
addition to the original objective function.

4.1 the random walks segmentation algorithm

4.1.1 Preliminaries

From an image I with N pixels, we build a undirected graph G = (V , E), with V
representing the set of nodes, |V| = N, and E the set of edges, where the i-th node
vi corresponds to the i-th pixel of image I. We denote the edge connecting the nodes
with indices i and j as eij, and its weight as wij ≥ 0 . Since the graph is undirected, eij

and eji denote the same edge and their weight is the same: ωij = ωji. The set of edges

53
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E is only composed of pairs of adjacent pixels, such that graph G contains only cliques
of order 0 and 1. We also denote the neighborhood of pixel i as Ni =

{
vj/eij ∈ E

}
.

Given a set of labels S (e.g. the indices of the muscles), segmenting an image I is
defined as a graph partitioning procedure, i.e. consisting in assigning a label s ∈ S to
each node v ∈ V . We refer to the assignment of node vi to the label s as: l (i) = s.

4.1.2 Random Walker analogy

The Random Walks (or Random Walker) algorithm is a probabilistic method modeling
the behavior of a inebriated walker on a non homogeneous ground. At each step, the
walker chooses a random direction, where the chosen direction is more likely if it is
an easy path – e.g. on a flat ground – than a difficult path – e.g. on a bumpy ground
(see figure 4.1.1 for illustration). Suppose the ground is discretized, i.e. the walker can
only take a finite number of steps. The ground can be represented by a graph, each
node being one possible location. The edges of this graph are the possible paths from
one location (node) to another.

The connection with graph partitioning – and thus image segmentation – is estab-
lished as follows: suppose some of the locations on the ground are marked with a
colored flag. The number of colors is finite and there can be several flags of the same
color. In graph terms, some nodes in the graph are already assigned to one label,
and the number of labels is finite. We refer to the marked nodes as seeds. Then, the
Random Walks algorithm computes the probability that the walker reaches one flag
before all the others, for each starting location. Finally, each starting location is assigned
to the most probably reached-first flag; in graph terms: each node is assigned to the
most probable label.

4.1.3 Probabilistic explanation1

In this framework, the global label assignment is modeled by a random variable. We
denote the probability of assignment of voxel i to label s as xs

i = Pr (l (i) = s). In this
notation, l (i) = arg maxs xs

i . We denote the transition probability from node i to node
j as pij. In general, we have pij 6= pji.

Assume we possess a set VM of seeds, i.e. pre-labeled nodes for each label (typically,
manually marked voxels). We denote the set of unknown nodes as VU , such that
VM ∪ VU = V and VM ∩ VU = ∅. For convenience in the notations, we denote the

1 Thanks to Danny Goodman for his help in this section.
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Figure 4.1.1 – (left) Random walker on a discretized ground with target seeds (flags). The
probability of the walker of stepping onto an adjacent square/pixel can be
different for each pixel, as figured by the red arrows of various sizes. (Right)
Segmented ground/image: the label assigned to one pixel is the label of the
most probably first reached seed during a random walk starting from that
pixel.

sets of indices of the nodes in VU and VM as U and M respectively. Since the label of
marked voxels is known for certain, their assignment probability is either 1 or 0

∀i ∈ M, xs
i =





1 l (i) = s,

0 l (i) 6= s.
(4.1.1)

We denote to the probability vector for label s as xs, where xs contains the xs
i for each

voxel i. Then, without loss of generality, we can assume the variables in xs are ordered
so that we can write:

xs =

[
xs

U

xs
M

]
, (4.1.2)

where xs
U (respectively xs

M) is the vector containing the assignment probabilities for
unknown (respectively marked) nodes in VU (respectively VM). Then, the assignment
probability of any unknown node vi ∈ VU can be expressed with respect to the assign-
ment probability of all the nodes (both unknown and marked) in its neighborhood
Ni:

∀i ∈ U, xs
i = ∑

vj∈Ni

pijx
s
j . (4.1.3)

The probability of assignment of one pixel depends only on the assignment prob-
abilities of its neighbors. Since all nodes have the same property, the assignment
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probabilities can all be represented at once in matrix form. We denote the transition
probability matrix as Π:

Π =





pij if eij ∈ E ,

0 otherwise.
(4.1.4)

We denote the sub-matrix of Π containing the transition probabilities between two
unknown nodes as ΠU (respectively: (i)ΠM; (ii)ΠUM; (iii)ΠMU) (respectively: (i) be-
tween two marked nodes: (ii) from an unknown node to a marked node; (iii) from a
marked node to an unknown node):

Π =

[
ΠU ΠUM

ΠMU ΠM

]
. (4.1.5)

Thus, we can write:

∀s, xs
U = ΠUxs

U + ΠUMxs
M, (4.1.6)

(I −ΠU) xs
U = ΠUMxs

M, (4.1.7)

with I being the identity matrix of size |U| × |U|.

4.1.4 Transition probabilities

The transition probabilities are to be set accordingly to the desired properties of the
segmentation. In general – and such is case of in muscle segmentation – one wishes
to segment an image according to the visible boundaries. A boundary in an image
is the result of an intensity pattern where many side-by-side pixels of very different
intensities form a continuous curve In our probabilistic framework, this leads to have
higher probability transitions for pairs of pixels having different intensities and lower
probability transitions for pixels having similar intensities (cf. figure 4.1.2). A well-
known choice for transition probability is the Gaussian kernel2:

wij = exp
(
−β

(
Ii − Ij

)2
)

, (4.1.8)

where wij is thus defined as the weight for edge eij. Since pij is a probability, the
transition probability is given by:

pij =
ωij

∑i ωij
. (4.1.9)

2 we also implemented the following alternate formulation wij =
1

β|Ii−Ij|+ε
.
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Figure 4.1.2 – Image contrast is chosen as the source for the transition probabilities (fig-
ured by red arrows). The green curve, following the sequence of lowest
transition probabilities, is more likely to be selected as a boundary during
the segmentation.

4.1.5 Random Walks objective functional

Let us define A, the non-normalized transition matrix – also designated as the affinity

matrix:

Aij =





ωij if eij ∈ E .

0 otherwise,
(4.1.10)

and D, the diagonal matrix such that:

Dii = ∑
j

ωij, (4.1.11)

and L, the un-normalized combinatorial Laplacian matrix

L = D− A. (4.1.12)

The Random Walks objective functional is defined as:

Es
RW(xs) =

1
2

xs⊤Lxs. (4.1.13)
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In the following, we will see that minimizing this functional amounts to solving the
probabilistic Random Walks equation 4.1.3, hence determining the assignment proba-
bilities. Since wij = wji (it is an undirected graph), the entries of L are:

Li,j =





∑k ωkj if i = j,

−ωij if eij ∈ E ,

0 otherwise.

(4.1.14)

The Laplacian L has many properties (Von Luxburg, 2007), among which the most
important ones are:

1. L is symmetric and positive semi-definite; the latter can be seen by reformulat-
ing 4.1.13 in a scalar form:

Es
RW (xs) = ∑

eij∈E

ωij

(
xs

i − xs
j

)2
, (4.1.15)

which gives:
∀a ∈ R

N , a⊤La ≥ 0; (4.1.16)

2. the smallest eigenvalue of L is 0, and the corresponding eigenvector is the con-
stant one vector 1.

We decompose L into sub-blocks for marked and unknown nodes, hence defining
sub-blocks LU , LM and B:

L =

[
LU B

B⊤ LM

]
,

which allows us to rewrite equation 4.1.13 as:

ERW(xs) =
1
2

xs⊤
U LUxs

U + xs⊤
U Bxs

M +
1
2

xs⊤
M LMxs

M. (4.1.17)

By differentiating 4.1.17 with respect to the unknown variables, we obtain:

LUxs
U = −Bxs

M. (4.1.18)

We can show that the solution to this system exists and is unique if their exists at least
one path composed of only nonzero-weight edges between each unknown node and a
marked node (see appendix B.1).

The system of equation 4.1.18 is equivalent to the probabilistic Random Walks equa-
tion 4.1.7. This can be seen by noting that, if D has no zero entry – i.e. each pixel has
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at least one edge with a non null weight – one can retrieve Π from equation 4.1.9, by
normalizing A:

Π = D−1A. (4.1.19)

Thus, we can write

L = D (I −Π) , (4.1.20)

= DLrw, (4.1.21)

where Lrw, defined as Lrw = I −Π, is called the normalized Laplacian. Decomposing
Lrw into sub-blocks, we can write:

LU = DU(I −ΠU), (4.1.22)

B = −DUΠUM, (4.1.23)

where DU is the sub-matrix of D corresponding to unknown indices.

4.1.6 Segmentation algorithm

The Random Walks functional 4.1.13 provides a measure of the probabilistic segmenta-
tion xs, and the optimal segmentation is the one which minimizes it, i.e. which has the
lower cost according to this measure. We have seen that minimizing the RW functional
is equivalent to solving the initial RW system, which we recall here:

∀vi ∈ VU , xs
i = ∑

vj∈Ni

pijx
s
j .

It can be shown (see appendix B.2) that a solution to 4.1.18 is always a probability:

∀i, ∑
s

xs
i = 1, (4.1.24)

∀i, ∀s, xs
i ≥ 0. (4.1.25)

Once one has inferred the probabilistic segmentation x̂s for each label s, the “hard”
segmentation – i.e. the estimated label l̂ (i) of each node vi – is obtained via:

l̂ (i) = arg max
s

x̂s
i . (4.1.26)

4.1.7 Related work

The graph Laplacian is a fundamental tool for graph analysis, and is related to many
other notions besides Random Walks, as we will see in the following.
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spectral clustering In the machine learning community, one finds spectral
clustering (Shi and Malik, 2000b; Ng et al., 2002; Meila and Shi, 2001), an extremely
popular clustering technique. We refer the reader to Von Luxburg (2007) for a detailed
overview of many aspects of spectral clustering.

There exists several versions of the spectral clustering technique, involving either
the un-normalized Laplacian L, the normalized Laplacian (Ng et al., 2002) Lrw, or the
symmetric normalized Laplacian (Shi and Malik, 2000a):

Lsym = D−1/2LD−1/2. (4.1.27)

Assuming that the data consist of n points x1, . . . xn in an arbitrary space, an affinity
matrix S – also called similarity matrix – is built from some pairwise similarity function
Sij = s

(
xi, xj

)
≥ 0. A similarity graph G is constructed over the data points and their

pair-wise similarities. The first k eigenvectors u1, . . . uk of one of the Laplacians of G
are computed and stored in a matrix U ∈ R

n×k (in (Ng et al., 2002), the rows of U are
normalized to norm 1). Then, denoting the points whose coordinate are the rows of
U as y1, . . . , yn, clustering with the k-means algorithm (Hartigan and Wong, 1979) is
performed on “abstract” points {yi}i.

normalized graph cuts Spectral clustering can be seen as an approximation
of some graph-cut problem. Let us denote a partition of the graph with k subsets as
A1, . . . , Ak. With the notation: W (A, B) = ∑i∈A,j∈B ωij and Ā as the complement of A,
then the min-cut problem consists of minimizing the following quantity:

cut (A1, . . . , Ak) =
1
2

k

∑
i=1

W (Ai, Āi) . (4.1.28)

As the solutions to the min-cut problem often tend to create “unbalanced” partitions,
selecting excessively small subsets of nodes, some modifications of the objective were
introduced; the best-known are the RatioCut (Hagen and Kahng, 1992) and the nor-
malized cut Ncut (Shi and Malik, 2000b). Denoting the number of node in partition A

as|A| and the total weight of the edges in A as vol (A) = ∑i,j∈A ωij, the definitions are:

RatioCut (A1, . . . , Ak) =
1
2

k

∑
i=1

W (Ai, Āi)

|Ai|
, (4.1.29)

Ncut (A1, . . . , Ak) =
1
2

k

∑
i=1

W (Ai, Āi)

vol (Ai)
. (4.1.30)

However, unlike standard min-cut, both problems are NP-hard and can only be solved
approximately.
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It can be shown (Shi and Malik, 2000a; Hagen and Kahng, 1992) that these quantities
can be expressed using the un-normalized graph Laplacian:

RatioCut (A1, . . . , Ak) = Tr
(

H⊤LH
)

, (4.1.31)

with Hij =





1/
√∣∣Aj

∣∣ if vi ∈ Aj

0 otherwise
,

and the symmetric normalized graph Laplacian:

Ncut (A1, . . . , Ak) = Tr
(

H⊤LsymH
)

, (4.1.32)

with Hij =





1/
√

vol
(

Aj

)
if vi ∈ Aj

0 otherwise
.

Thus, both problems can be reformulated as trace minimization problems under some
constraints. It can be shown that spectral clustering using the un-normalized Lapla-
cian L (respectively the symmetric normalized Laplacian Lsym) solves the relaxation of
the RatioCut problem (respectively the Ncut problem (Shi and Malik, 2000a)) when
the entries of H are allowed to take arbitrary real values. Please refer to the work
of Von Luxburg (2007) for further details and proofs. Although the solutions of the
relaxed problems via spectral clustering can be very different from the original prob-
lems, spectral clustering remains a popular approximation for its simplicity of use and
the quality of its output in practice.

ncut and random walks A relationship exists between Ncut and Random
Walks (Meila and Shi, 2001), which can be seen from the following result:

Ncut (A, Ā) = P (Ā|A) + P (A|Ā) , (4.1.33)

where P (A|B) is the probability that the random walker jumps from a node in subset B

onto a node in subset A. Thus, one can say that minimizing Ncut amounts to finding a
partition such that a random walker has the lowest probability of transitioning between
parts.

commute time distance The commute time distance between two vertices v1and
v2 is defined as the expected number of jumps of a random walker to travel from v1 to
v2 and back. Among other interesting properties, the commute distance differs from
the shortest path in that it considers all possible paths between the two nodes; as a re-
sult, two subsets separated by a partial gap – i.e. whose all but a few inter-connecting
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edges have low weights – will be considered as “far apart” when using the commute
distance, whereas they could be considered as “close-by” with the shortest path dis-
tance. The commute time distance can be computed using the generalized inverse of
the un-normalized Laplacian L. Recalling the eigen-decomposition of the Laplacian
L = UΛU⊤, the generalized inverse of L is given by:

L† = UΛ†U⊤, (4.1.34)

with Λ†
ii =





1/Λii if Λii > 0

0 otherwise
.

Then, the commute time distance between nodes vi and vj (Saerens et al., 2004) denoted
as cij , is given by:

cij = vol (V)
(

L†
ii − 2L†

ij + L†
jj

)
. (4.1.35)

As a consequence one can define an embedding of the data points x1, . . . , xn, de-

noted as z1, . . . , zn and given by the rows of matrix
(
Λ†
)1/2

U, such that the commute
time distances between points xi are converted to Euclidean distances between points
zi:

cij = vol (V)
∥∥zi − zj

∥∥2 . (4.1.36)

This embedding is similar to that of the spectral clustering (where the data points are
mapped to the rows of U), although it does not yield identical results in clustering.

laplacian eigenmaps The Laplacian eigenmaps algorithm (Belkin and Niyogi,
2001) is used to perform dimensionality reduction of low-dimensional manifolds em-
bedded in a high-dimensional space. The embedding of the sample points x1, . . . , xn

is given by the rows of U which contains the k eigenvectors corresponding to the first
k smallest eigenvalues for Lsym (same embedding as the spectral clustering of (Shi and
Malik, 2000a)). It can be seen (Ham et al., 2004) that the Laplacian eigenmap algorithm
is equivalent to kernel Principal Component Analysis (PCA) using kernel L†.

4.2 random walks with prior knowledge

One can say that the standard formulation of the Random Walks segmentation method
relies on prior knowledge in the form of pre-segmented nodes: the seeds. In general
seeds are provided by the user, who manually segments a few pixels of each class.
While this method is convenient and much more efficient than segmenting the whole
image manually, it is still impractical for large datasets. For this reason, one can be
interested in completely automatizing the segmentation process by using different,
unsupervised types of prior knowledge such as statistical intensity of shape models.
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Figure 4.2.1 – Appearance model for RW in heart segmentation: (left) original image; (cen-
ter) seeds as black lines; (right) segmented image. The appearance model
reduces the amount of required user interaction (Grady, 2005)

Moreover, even in the case of manual seeding, incorporating additional information
could improve the segmentation results and thus also decrease the user time.

4.2.1 Random Walks segmentation with appearance prior

Prior knowledge to the Random Walk formulation was introduced by Grady (2005),
providing an estimate of the probability distribution of the gray-level intensity for each
label. An an example of such technique can be found in figure 4.2.1, which allows
using very few seeds to separate organs from the background, using the differences in
intensity distributions.

Let us introduce as (·) as the probability density distribution for label s. Then, denot-
ing Ii the intensity at pixel i, the Bayes’ rule states that the probability of assignment
to s for pixel i is:

xs
i =

as (Ii)

∑t at (Ii)
. (4.2.1)

Denoting the vector containing the as (Ii) for each pixel i as as = [as (I1) , . . . , as (IN)]
and As = diag (as), the previous equality can be rewritten as

(

∑
t

At

)
xs = as. (4.2.2)

The solution to this system is the minimum of the aspatial functional:

xs⊤

(

∑
t 6=s

At

)
xs + (1N − xs)⊤ As (1N − xs) . (4.2.3)
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This prior-appearance functional is combined with the Random Walks functional 4.1.13

with the introduction of a free balancing parameter wapp:

Es
RWapp (xs) = xs⊤Lxs (4.2.4)

+ wapp

[
xs⊤

(

∑
t 6=s

At

)
xs + (1N − xs)⊤ As (1N − xs)

]
.

Intuitively, minimizing this functional will yield a segmentation influenced by both
the Random Walk principle – segmentation along boundaries – and by the appearance
prior – privileging label assignments that are consistent with intensity distributions.
The optimal segmentation minimizing the functional 4.2.4 is obtained through solving:

(
L + wapp ∑

t

At

)
xs = wappas. (4.2.5)

Since L is positive semi-definite, system of equations 4.2.5 can be solved even when
all entries of xs are unknown (no seeds). However, as noted by Grady (2005), it is still
possible – and useful – to use seeds in combination with a prior to obtain more robust
segmentations. In the case of muscle segmentation however, the intensity distributions
of the labels (the muscles) are extremely similar – except for the background – and thus
would make a very weak prior if used alone.

4.2.2 Probabilistic framework3

In this section, we show that the intensity prior of previous section 4.2.1 is consistent
with the probabilistic framework of the Random Walks method, and allows incorporat-
ing prior knowledge of shapes as well. As we saw previously in the case of standard
Random Walks, prior information is incorporated into the seeds, in the form of pre-
segmented nodes. With the probabilistic notations, this is equivalent to setting the
value of the assignment probability for marked nodes to either 0 or 1 – i.e. enforcing
the certainty that each one of these pixels belongs to one chosen label.

At present, we release these constraints by providing no seed, but add an additional
layer of nodes to the graph G with a one-to-one correspondence with the original
layer of nodes (cf. figure 4.2.2). The nodes in this second layer V0 are called the
prior nodes, while the nodes in the original layer V are the primary nodes. We set one
directed edge from each primary node to its corresponding prior node. We denote the
transition probability from primary node vi to prior node v0 i as λi, and the assignment

3 Thanks to Danny Goodman for his help in this section.
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Figure 4.2.2 – Prior information is introduced to the Random Walks framework by adding
a second layer of nodes (the prior nodes); each of these prior nodes has a
known assignment probability to each label (here, each color on the second
layer represents the most probable prior label). The transition probabilities
(figured as vertical arrows) from the first layer to the second layer can vary
along the pixels.

probability to label s of prior node v0 i as xs
0 i; no edge is set between the prior nodes.

Then, the Random Walks node-wise probability (for primary nodes) becomes:

∀vi ∈ V , xs
i = (1− λi) ∑

vj∈Ni

pijx
s
j + λix

s
0 i, (4.2.6)

where the probability pij of transition from primary node vi to primary node vj in the
original RW equation 4.1.3 is multiplied by the probability to not walk onto the prior
node v0 i: (1− λi).

Denoting the diagonal transition matrix from primary nodes to prior nodes asΛ =

[λ1, . . . , λN ]
T and the transition matrix between primary nodes as Π, we reformulate

the Random Walks equation 4.2.6 in matrix form

xs = (I −Λ)Πxs + Λxs
0 (4.2.7)

[(I −Λ) (I −ΠV ) + Λ] xs = Λxs
0. (4.2.8)
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We recall that D is the diagonal matrix such that Dii = ∑j wij, and that the com-
binatorial Laplacian of the primary graph is given by L = D (I −Π) . Then the new
Random Walks equation is equivalent to

[(I −Λ) L + ΛD] xs = ΛDxs
0, (4.2.9)

which can be solved if the transition probabilities to prior nodes are non-zero, ensuring
that (I −Λ) L + ΛD is positive definite.We can rewrite the previous as

(L + ∆) xs = ∆xs
0, (4.2.10)

with the diagonal matrix
Ω = (I −Λ)−1

ΛD, (4.2.11)

which excludes setting λi = 1 without loss of generality, since such setting would make
the problem trivial by considering only the prior model and ignoring the Laplacian.

The solution to the last equation 4.2.10 provides the minimum of the following
objective:

Es
RW+prior (x

s) = xs⊤Lxs + (xs − xs
0)
⊤

Ω (xs − xs
0) , (4.2.12)

= xs⊤Lxs + ‖xs − xs
0‖

2
Ω , (4.2.13)

where ‖.‖Ω is a weighted norm by Ω. Intuitively, the optimal segmentation minimizing
this functional is influenced by both the Random Walk principle – segmentation along
boundaries – and by the prior model – privileging label assignments consistent with
the prior probabilities. Any solution to this problem is a probability distribution if{

xs
0 i

}
s

is a probability distribution (please refer to appendix B.3):

∑
s

xs
0 = 1⇒∑

s

xs = 1. (4.2.14)

Going back to the appearance prior model of section 4.2.1, we set the prior probabil-
ities as:

xs
0 =

(

∑
t

At

)−1

as, (4.2.15)

and Ω as:

Ω = wapp

(

∑
t

At

)
, (4.2.16)

retrieving the system for appearance prior 4.2.5.
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Figure 4.3.1 – Label assignment probability of prior model xs
0, for two different labels s :

(left) background; (right) vastus lateralis.

4.3 random walks segmentation with shape prior

4.3.1 Constant prior weight

In this section we propose a simple shape prior model for the Random Walks based
on the general formulation 4.2.12. Suppose that we have an estimate for xs

0, based
on learning a pixel-wise shape over previous segmentations in a training set T (see
figure 4.3.1). We set the transition probabilities from the primary nodes to the prior
nodes in Λ such that Ω is the constant diagonal matrix:

Ω = wshape I, (4.3.1)

with wshape > 0. Since Ω = (I −Λ)−1
ΛD, this is achieved by setting the transition

probability λi to the prior nodes in the following manner:

∀vi ∈ V , λi =
1

∑j ωij/wshape + 1
. (4.3.2)

With this choice of Ω, each pixel is biased towards its prior assignment probabilities
depending on the relative values of the wij and wshape: if ωij ≪ wshape, node vi is
influenced more by the prior than by its neighborhood; conversely, if ωij ≫ wshape,
then node vi is more strongly influenced by the label assignment of its neighbors than
by the prior probabilities. The corresponding functional is:

Es
RWconst (x

s) = xs⊤Lxs + wshape ‖x
s − xs

0‖
2 . (4.3.3)
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Figure 4.3.2 – Weighting schemes, displaying the diagonal of Ω as an image: (left) entropy
weighting; (right) confidence map.

This model simply penalizes the deviation of vector xs from xs
0 with a uniform weight-

ing scheme.
The prior assignment probabilities can be obtained by computing the empirical

mean of the assignment probabilities over the training set T . Since the training T
is composed of manually segmented images, the assignment of each pixel is known
and the corresponding assignment probability is either 0 or 1. Referring to lk (i) as
the assigned label of pixel i in training image k, the binary assignment probability is
defined by:

zs
k i =





1 if lk (i) = s,

0 if lk (i) 6= s,
(4.3.4)

and the corresponding vector is denoted as zs
k. Then, xs

0 is computed as:

xs
0 =

1
|T |∑

k

zs
k. (4.3.5)

4.3.2 Prior-weighted models

entropy model The previous shape model weights each pixel by the same amount
wshape towards the average probability. However, if we own a confidence measure of
the quality of this prior model, it could be useful to vary the weights in order to
constrain the pixels according to the degree of confidence. For instance, the entropy

e (i) = −∑
s

xs
0 i log (xs

0 i) (4.3.6)
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is a measure of how certain the prior model is of the pixel assignment. Indeed, if pixel
i was consistently assigned to label s in the training set, then e (i) ≈ 0. Conversely,
if pixel i has similar assignment probabilities for all the labels, e (i) ≈ log (|S|) (see
figure 4.3.2). Hence, a possible weighting scheme is given by:

Ωii = wshape

(
1−

e (i)

log |S|

)
. (4.3.7)

gaussian model We observe that the term ‖xs − xs
0‖

2 in the constant shape prior
functional can be interpreted as the typical log-likelihood functional for independent
Gaussian variables, with mean xs

0 and variance 1:

‖xs − xs
0‖

2
2 = − log exp

(
−‖xs − xs

0‖
2
)

. (4.3.8)

Pursuing this Gaussian analogy, we may use the empirical variance as a measure of
confidence:

Ωs
ii = wshape

1
σ (i)

. (4.3.9)

In the previous, we may use the empirical estimate of the variance over the training
set:

σ̂2 (i) =
1

|T | |S|∑s
∑

k

(zs
k i − xs

0 i)
2 . (4.3.10)

Since x (i, s) is a probability and since the variables in xs are necessarily correlated,
such Gaussian modeling can only be a rough approximation but it has the advantage
of simplicity. In practice, due to the small number of training examples, it is necessary
to regularize the variance term. Indeed, some pixels have a variance that is equal to
zero when all training examples agree on this pixel’s label. An empirical regularization
of the variance can be obtained with the following formula:

Ωs
ii = wshape

1
ασ2 (i) + (1− α)

, (4.3.11)

with α ∈ ]0, 1[.

4.3.3 Confidence map

All previous shape models balance the influence of the prior model according to infor-
mation extracted from the training data. We may also find interesting to reduce the
influence of the model according to the strength of the contours in the test image, rather
than from the training set: the stronger the contours, the least we should rely on the
model (see figure 4.3.2). Assume we possess such a “confidence map” c, with values
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close to 0 on strong contours, and values close to 1 in homogeneous regions, we can
set:

Ωs = wshapediag (c) . (4.3.12)

In the following, we propose a simple formula to compute the confidence map, but
many other methods would likely be as effective. Denoting the local variance at pixel
i computed on a patch with radius r as σ2

r (i) , we propose the following formula:

ci = exp
(
−kvσ2

r (i)
)

, (4.3.13)

where kv is a free parameter .

4.3.4 Experimental validation

datasets All our experiments were performed on datasets composed of 3D vol-
umes of the right thigh of healthy subjects, covering a wide range of morphologies
(males and females, ages range: 26 to 60), acquired with a 3T Siemens scanner and
using 3pt Dixon sequence (TR=10ms, TE1=2.75 ms TE2=3.95 ms TE3=5.15 ms, rf.
flip angle =3°; we used the out-of-phase image), with the an average image size of:
220 × 220 × 64px. Four clinically relevant muscles (the quadriceps: vastus lateralis,
vastus intermedius, vastus medialis and rectus femoris) were segmented in 30 vol-
umes; in addition, among these 30 volumes, 13 of which had all 13 thigh muscles
segmented.

registration For a given test volume, all other volumes served as a training set
and were non-rigidly registered onto the test volume. We chose non-rigid registration
in order to have the least possible variations of the outer-boundaries of the muscle
tissues (the muscle/fat boundaries). The objective is to rely on the RW algorithm only
to segment the more difficult inter-muscle boundaries.

As mentionned in the conclusion of the previous chapter, registration of the outer-
boundaries of the muscle tissues is much easier than registration of the inter-muscle
boudaries. Indeed, the latter are often weak or confused with spurious ones, such that
trying to register them may lead to larger errors if the registration process is not-rigid
enough. For this reason, we generated binary masks of the muscle tissues from the
water-map image (see appendix A) and used them to compute the deformation fields.
With binary masks, the inter-muscle boundaries are completely ignored by the regis-
tration software, and thus only deformed accordingly to the outer-boundary matching.
The deformation fields were then applied to the corresponding segmentation atlases
in order to generate the average segmentation x0.

Registration was achieved using the Drop software (Glocker et al., 2008). This meth-
ods uses a multi-scale discrete modeling approach relying on a Markov random field
objective function minimized through efficient linear programming. This method can

http://www.mrf-registration.net)
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accept any similarity measure and we chose the default one (sum of absolute differ-
ences) to register the binary masks. The software provided a smooth deformation field
which we then used to deform the reference atlas.

validation To evaluate the segmentation generated by our methods, we com-
puted Dice coefficients. The expression of the Dice coefficient is: D = 2 |T ∩ R| / (|T|+ |R|),
where T and R are the pixel sets of a given muscle in the inferred segmentation and
the reference manual segmentation respectively. Let us denote the binary vector con-
taining the manual segmentation for label s as zs, and the binarized vector containing
the inferred segmentation for label s as xs, that is,

xs (i) =





1 if s = arg maxt xt (i),

0 otherwise.
(4.3.14)

Then, the Dice coefficient for label s of the inferred segmentation x is computed as

Ds =
2zs⊤xs

1⊤ (zs + xs)
. (4.3.15)

Thus, if the inferred segmentation is identical to the manual segmentation for a given
label, it will have Dice coefficients equal to 1 for all muscles; conversely, if it is entirely
different from the manual segmentation, its Dice coefficients will be 0.

Results are presented as boxplots4, with the Dice coefficients for all the segmented
muscles combined into a single box – excluding the background. Figs. 4.3.3 and
4.3.4show some examples of segmentations obtained with our method (constant weight-
ing scheme, 13-muscle dataset). Large muscles tend to be better segmented that small
ones. This is related to the average segmentation x0: since the average segmentation
and the true segmentation of the target image do not correspond exactly, a larger
proportion of the small muscles are incorrectly segmented by x0, as compared to the
larger muscles. As a result, the assignment probabilities computed by the RW algo-
rithm are generally lower than with large muscles, thus leading to more segmentation
errors. This is also true when a muscle has a rarely seen location or shape : large seg-
mentation errors with x0 may lead to large errors in the resulting segmentation. We
conclude that this algorithm only works well for average anatomies. Improvements
of this method will necessitate a more flexible model, capable of adapting to a larger
range of anatomies.

4 Box-plot presentation: the boxes contain the middle 50% of the data and the median value, and the
extremities of the lines indicate the min and max values, excluding the outliers (for more details, see the
documentation of Matplotlib).
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Figure 4.3.3 – Examples of segmentations obtained with the RW algorithm with shape
priors (constant weighting scheme).
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Figure 4.3.4 – Two 3D views of a segmentation (right thigh) obtained with our method.

various weighting schemes We tested different weighting schemes based on
statistics on the training database: entropy weighting and Gaussian weighting and
compared them to the constant weighting scheme. In addition, we also tested the
confidence map weighting scheme. Dice coefficient for the different approaches were
reported in figure 4.3.5 and show that for all tested parameters wshape, neither weight-
ing scheme improved on the constant weighting; the variance weighting even seems
to degrade the performance. The reason for the lack of improvement is possibly due
to the limited validity of the statistics on such a small number of training example
(29 volumes, the 30th is the one being segmented). However, although no statistically
significant differences in terms of Dice coefficients were found, one can observe on
the segmented data some visual differences depending on the weighting scheme used.
For instance, figure 4.3.6 shows some of the effects of the confidence map scheme on
the segmentation results; here, the result is less influenced by the prior shape than
with the constant prior, which improves the segmentation quality around the bone;
however, the gain in accuracy in one place is lost in another place where the contours
are missing, due to the increased freedom of the model. As often, it appears that the
compromise between segmenting the contours accurately and keeping a valid shape
is hard to find.

Since all hyper-parameters were selected by hand – in particular wshape – we expect
that an automatized parameter selection would yield more optimal values and maybe
find significant differences between the weighting schemes. In the next chapter of this
report, we propose such a method for selecting parameters.
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Figure 4.3.5 – Comparing performances for various weighting schemes; the boxplots are
generated from Dice coefficients for all labels (4 muscle database). “Cmap”
designates the confidence map weighting scheme.

Figure 4.3.6 – Comparison of segmentations using the constant weighting scheme (left)
and the confidence map weighting scheme (right).
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Figure 4.3.7 – Local segmentation differences due to adding an appearance prior term

using the appearance prior As mentioned previously, it is possible to com-
bine several prior terms to benefit from complementary knowledge sources. For in-
stance, let us consider the appearance prior seen in section 4.2.4; this prior term is not
usable in itself in the context of muscle separation, since all muscles have the same
appearance properties; however, when used in combination with a shape prior term,
it could help improving the separation between muscles and fat tissues.

In figure 4.3.7, we show identical cross-sections where the left one has been seg-
mented only with the constant shape prior (that is: equation 4.3.3, using wshape =

1.10−2), whereas the right one has been segmented with the same prior term plus
an appearance prior (equation 4.2.5, using wapp = 1.10−2). One can see the appear-
ance prior has an obvious influence over the muscle/background separation in several
places. However, quantitative results – shown in figure 4.3.8 – show that the appear-
ance prior does not improve the segmentation on our dataset. This is due to the fact
that, in our test images (see appendix section A.2.2), the average intensity of the fat
tissues is close to the average intensity of muscle tissues; moreover, there are notable
local variations of the average intensity due to magnetic field inhomogeneities – a no-
torious artifact in MRI. Although it appears that such an appearance prior is inefficient
on our database, the evidence of a discriminative effect shown in figure 4.3.7 leads us
to believe it could improve the segmentation results on a different dataset where fat
and muscle tissues are more clearly separated (for instance when using T1-weighted
images).

comparison with previous work We compared the presented method with
related methods (see figures 4.3.11 and 4.3.9). For reasons explained in the following,
the tests could not be performed on the exact same datasets, but only on overlapping
datasets with different number of samples and segmented muscles. Thus, some of
these comparisons should be taken cautiously. All tests were performed by the authors
of the corresponding methods.

• The method of Gilles and Pai (2008), briefly presented in section 2.1.2. We recall
this method belongs to the deformable model family, using a single reference
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Figure 4.3.8 – Comparing performances with and without the appearance prior; the box-
plots are generated from Dice coefficients for all labels (13 muscle database).

shape model as initial state and prior term. Dataset: 16 volumes extracted from
our 30-muscle dataset, among which one was fully segmented for providing
the prior shape; the 15 other volumes were then segmented automatically5; we
computed the Dice coefficients only on the 4 muscles for which we had the
manual segmentations.

• The method of Andrews et al. (2011a), briefly presented in section 2.2.1. This
method is a region-based continuous method, with a shape prior derived from
PCA performed on training samples projected into a Isometric Log-Ratio space.
Dataset used: our database of 13 volumes with 13 segmented muscles. The images
and corresponding segmentations have been cropped and aligned based on the
location of the bone, as per the method described in the original paper6. On this
dataset, due to not having a clear difference between the intensity of the muscles
and that of the fat tissues, the method did not perform as well as in the published
article where the authors present an average global Dice coefficient of 0.92.

• A method called “Registration”, which consists of segmenting the volumes using
the average segmentation x0. This amounts to considering only the performance
of the non-rigid registration stage that is applied before constructing the prior
model and segmenting the volumes with the RW method. This method can be
seen as a multi-atlas segmentation method with majority label voting.

• Our own method for automatic generation of seeds (see chapter 3). Dataset used:
our 15-muscle database. Since this method requires only one reference segmen-
tation for providing a shape prior, many different tests could be performed in a
cross-validation approach (with 13 volumes, this makes 13× 12 = 156 tests).

• Our own Random Walks with shape prior method. Dataset used: either our 13-
muscle or our 4-muscle database.

5 I would like to thank B. Gilles for performing these experiments
6 I would like to thank S. Andrews for performing these experiments
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Figure 4.3.9 – Comparison of our method (bottom box) with the “registration” method
(top box) and the method from (Gilles and Pai, 2008) (middle box). Dataset:
subset of the 4-muscle dataset with only 15 test volumes.

Our first comparison concerns the method of Gilles and Pai (2008). We underline the
fact that very few volumes of our dataset were segmented using this method, and thus
the quantitative comparison with our own method has only limited validity. However
some qualitative comments can be made about these results and the cross sections
of segmentations obtained with this method (see figure 4.3.10). First, we notice that
this method always produces valid shapes, that is, shapes that are realistic and could
be actual segmentations. However, due to depending too much on one reference
segmentation and also to the local minimization procedure, this method sometimes
fails to segment large parts of the volumes even though the contours are well defined,
as showed in the figure 4.3.10. These large errors explain the lower figures obtained
here.

Second, we compare our method with the method of Andrews et al. (2011a). Here,
the obtained Dices on our dataset with the latter method are abnormally low – as
compared to the figures produced in the original paper. This can be explained by the
fact that the type of contrast of our volumes is ill-adapted to this method, for it relies
heavily on a the separation of muscle and fat tissues in a preliminary stage; however,
our volumes do not show a clear visual difference between the two types of tissues, as
the contrast parameters were rather selected for a good visualization of the contours.

Finally, we compare our method with the automatic seed placement method of chap-
ter 3. As seen in figure 4.3.11, it appears that the autoseed method slightly outper-
forms7 our current method on the tested dataset (all 13 muscle, 13 samples). It seems
that this shape prior using the average segmentation is too constraining and does not

7 unlike what we published in (Baudin et al., 2012a). This is due to using a slightly different method here,
where the labels are not weighted differenly, for remaining true to the probabilistic framework presented
in section 4.2.2.
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Figure 4.3.10 – Cross-sections of segmentations obtained with the method from (Gilles
and Pai, 2008). This method always produces realistic segmentations, but
sometimes fails to detect the contours.

Figure 4.3.11 – Comparison of our method (bottom box) with the “registration” method
(top box), the method from (Andrews et al., 2011a) (second box) and our
automatic seeding method (third box). Dataset: 13-muscle dataset with 13

samples.
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allow enough variability to fit the most different shapes. On the other hand, automatic
seed placement is less constraining due to having no seeds close to the boundary of the
muscles. However, when this latter method fails to label the seed correctly, errors can
be extremely large as can be seen from the very low Dice coefficients in figure 4.3.11

per-slice results In practice, certain analyzes of the muscles properties do not
require to segment a muscle entirely. In figure 4.3.12 we show that the median Dice
coefficient obtained with our method (using constant weighting, as it is the simplest
method and provides results that are equivalent to or better than the other weighting
schemes) is much greater in the middle slices than in the upper and lower slices. This
is due to greater variability of the muscles shapes at their extremities, and to the fact
that there are many more missing contours in those places (especially in the upper
part of the thigh, where it is extremely difficult to determine the boundaries). These
results show that the obtained segmentations are the most accurate in the places most
useful for studying the muscles.

4.4 pca model

In this section, we propose a segmentation method based on the Random Walks al-
gorithm, in which shape deformation is constrained to remain close to a Principal
Component Analysis (PCA) shape space constructed over training examples. Using
the PCA allows us to model complex non-rigid shape variations relying on a few
eigen-modes. Such formulation does not fit in the probabilistic framework presented
in section 4.2.2, and only yields an approximate solution.

4.4.1 Additional notations

Since minimizing 4.1.13 is an independent process for each label, the whole RW pro-
cess can be equivalently synthesized in one equation. We denote the stacked up label-
wise segmentations as x⊤ =

[
x1⊤|x2⊤| . . . |xK⊤

]
, such that x ∈ R

KN×1 and the extended
Laplacian matrix as:

L̃ =




L · · · 0
... L

...

0 · · · L


 ∈ R

KN×KN . (4.4.1)

Matrix L̃ is block-diagonal with K identical blocks, whereK is the number of labels. In
this notations, the RW objective becomes:

ERW (x) = xT L̃x, (4.4.2)
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Figure 4.3.12 – Per-slice plot of the Dice coefficients for the segmentation method with
constant weighting. The darker bars represent the average of the lower
quartile, the intermediary bars the median and the lighter bars the average
of the upper quartile.
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4.4.2 Shape space

It is obvious that the entries of x are not independent from each other, but instead are
highly tied to each other, at least for sets of close-by pixels. This implies that there ex-
ists an implicit lower-dimensional space in which any true segmentations reside. The
principle of a shape space is to design a low-dimensional affine space approximating
this implicit space. If we succeed, we expect a valid segmentation to lie "not too far"
from the shape space; we also expect the projection of that segmentation onto the
shape space to be a good approximation of the segmentation itself. PCA notoriously
provides a simple mean to compute such a shape space.

Assume we possess a set T of co-registered segmented training volumes. We model
a segmentation vector x as a random vector X with normal distribution N (x0, Σ),
for which we possess a number of samples {zk}k=1...|T |. Let us denote the centered
segmentation vectors as xc

k = zk − x0 . The expression of the empirical covariance Σ is
given by:

Σij =
1
|T |∑

k

(zk i − x0 i)
(
zk j − x0 j

)
. (4.4.3)

The previous can be reformulated in matrix form as

Σ =
1
|T |

XcX⊤c (4.4.4)

with Xc =
[
xc

1 · · · x
c
|T |

]
.

Then we compute the eigen-decomposition of Σ:

Σ = U∆U⊤, (4.4.5)

where ∆ is a diagonal matrix with the eigenvalues of Σ on the diagonal, and the
columns of square matrix U are the eigenvectors of Σ, in the same order as the eigen-
values. Since Σ is symmetric and positive definite, its eigenvectors are orthogonal and
its eigenvalues are all positive or zero. Moreover, since the number of training exam-
ples is smaller than the size of X: |T | ≪ N, we know we have at most |T | strictly
positive eigenvalues, all other eigenvalues being zero.

We retain the n < |T | largest eigenvalues and associated eigenvectors, yielding an
approximate covariance matrix:

Σ̃ ≈ Un∆nU⊤n , (4.4.6)

where ∆n is the n× n diagonal matrix with the n largest eigenvalues of Σ and Un is
the non-square matrix whose columns are the n retained eigenvectors.
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In practice, due to the large number of variables N, it is not possible to compute Σ.
Thus, we use a different approach to perform the PCA. We define the |T | × |T | matrix:

Σ′ =
1
|T |

X⊤c Xc. (4.4.7)

This matrix being much smaller that Σ, we can perform an eigen-decomposition:

Σ′ = V∆′V⊤ (4.4.8)

with obvious notations. Since
XcΣ′ = ΣXc, (4.4.9)

the eigenvalues of Σ′ are all eigenvalues of Σ:

Xc

(
Σ′V

)
= Xc

(
V∆′

)
, (4.4.10)

Σ (XcV) = (XcV)∆′. (4.4.11)

The eigenvectors of Σ are now obtained by computing

Un = XcVn, (4.4.12)

which will be normalized afterward to form an orthonormal basis.
The matrix Un determines a shape space, in which the projection of any segmentation

x in the shape space is given by

x̃ = x0 + Unγ, (4.4.13)

where γ is the coordinate vector of x in the shape space. We expect that x̃ will a good
approximation of a valid segmentation x. For any segmentation, we can write:

x = x0 + Unγ + dx, (4.4.14)

where dx is the deviation of x from the shape space. If the shape space models the
space of valid segmentation well, then the norm of dx will be small when x is a valid
segmentation.

4.4.3 PCA model

In order to obtain a segmentation which remains close to the shape space, we want to
minimize the objective function 4.4.2 with respect to both dx and γ, while keeping dx

small. This leads to the following functional:

ERWpca (dx, γ) = (dx + Uγ + x̄)T L̃ (dx + Uγ + x̄) + wdx ‖dx‖2 , (4.4.15)
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Figure 4.4.1 – Comparison of our RW with shape space method (bottom box) with the
simpler RW with prior method with constant weighting (middle box, see
section 4.3) and the registration-based baseline method (top box, see sec-
tion 4.3.4).

where wdx is a hyper parameter setting a constraint on the norm of dx. We reformu-
late 4.4.15 as:

ERWpca (y) = (Ay + x0)
T L̃ (Ay + x0) + wdxyTBy, (4.4.16)

with

y =

[
dx

γ

]
, A = [IKN U] , B =

[
IKN 0

0 0

]
. (4.4.17)

where IKN is the identity matrix of size KN × KN.
The minimum of 4.4.16 verifies:

(
AT L̃A + wdxB

)
y = −AT L̃x0. (4.4.18)

Obviously, the entries of x being probability distributions, assuming a Gaussian
distribution can only lead to a rough approximation. For these reason, we expect the
PCA shape space not to be a very good space of realistic solutions. In particular, it is
unlikely that any projection into this shape space will yield a probability distributions.

4.4.4 Experimental validation

Our experiments were conducted on the same dataset as with the previous method
(see section 4.3.4). This dataset consists of 30 volumes, in which four clinically relevant
muscles (the quadriceps: vastus lateralis, vastus intermedius, vastus medialis and
rectus femoris) were segmented in 30 volumes. Comparisons are made using Dice
coefficients as previously.
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In figure 4.4.1, we compare the Dice coefficients obtained with our shape space
method to the previously presented simpler method of section 4.3 (using a constant
scheme), and to the baseline registration method. It appears that the presented method
does not improve over the previous, simpler method. This can be explained by the
poor quality of the PCA generative model for probabilistic segmentations.

On figure 4.4.2, we show the effect of the PCA shape prior. We see that the PCA
model is deformed from its initial shape (left column) to fit the boundaries of the test
image (middle column). Due to the rough approximation of modeling probabilistic at-
lases with a linear subspace, the boundaries of the muscles are rather fuzzy. However,
when allowing a small deviation (called dx) from the model, as does our method, the
contours are more accurately defined (right column). Notice there remains segmenta-
tion errors as the PCA model is not capable of deforming enough to fit unusual shapes
while retaining a realistic topology. In the presented method, the main segmentation
errors are due to the muscles with unusual shape – more elongated, smaller, etc. Mod-
eling probabilistic segmentations with PCA model does not allow representing shapes
which differ too much from standard shapes.

4.5 conclusion

To conclude this chapter, we will say that directly incorporating prior knowledge of
shape into the Random Walks framework is valid and compares favorably to state-of-
the-art methods, but also shows some limitations. In the case of the simplest prior
(sec. 4.3), the simplicity and the validity of the formulation allow to propose an easy-
to-use method, quite efficient (less than 30 seconds for 13 muscles in a 220× 220× 64
volume) and which does not require a large training dataset (we used between 12

and 29 samples during our experiments). However, errors inevitably appear when the
average model x0 is too different from the segmented image. In particular, smaller
muscles with too large inter-subject variations are likely to be incorrectly registered.
In a very recent publication, Eslami et al. (2012) have proposed a very similar shape
prior formulation for the Random Walks framework, called “guided” Random Walks.
However, instead of using the empirical mean over the training samples, the author
propose to use directly each training segmentation as a reference segmentation x0 and
retain the infered segmentation x that most overlaps with x0. This promising approach
is aimed at retrieving shapes which are quite different from the average model. For
lack of time, we were not able to test this method on our data.

Ideally, we would like to handle large scale deformations by allowing the model to
evolve in a low-dimensional shape space of valid segmentations. Small-scale defor-
mations or subject-specific fine details would be segmented like in the simple model
through the RW process. The PCA model presented in section 4.4 was an attempt
at such flexible shape prior. Indeed, PCA is a well-know way to generate a low-
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Figure 4.4.2 – Segmentation examples. Cross-sections of segmented volumes with: (left
column) the registration method x = x0; (middle column) the shape-space
component of the inferred segmentation x = x0 + Uγ; (right column) the
inferred segmentation x = x0 + Uγ + dx.
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dimensional shape space. The mitigated performance we achieved is likely to be due
to the weak modeling of probabilities with a PCA model.

Future direction would include finding a different shape space more compatible
with probabilities, such as a barycenter model – indeed, a barycenter of a probability
distribution remains a probability distribution. In the conclusion of this report, we
also propose a different possible direction for dealing with large scale deformations,
relying on additional connections between remote voxels.



5
L E A R N I N G PA R A M E T E R S F O R R A N D O M WA L K S - B A S E D
S E G M E N TAT I O N

In the previous chapter, we empirically observed that the accuracy of the RW algorithm
relies heavily on the relative weighting between the various contrast and prior terms.
For instance, the contrast parameter used to construct the Laplacian matrix was chosen
so that it gives the best results on average. In a more general approach, a different
edge weighting function could be designed to extract different features of the image,
more complex and specific appearance information. Then, instead of selecting the
best Laplacian, it would be interesting to see if a particular linear combination of these
Laplacians would yield better results than a single one of them. Similarly, we could
also combine the different prior models.

At present, the proposed methods rely on a user to hand-tune the parameters or on
exhaustive cross-validation. However, both these approaches quickly become infeasi-
ble as the number of terms in the RW objective function increase: a human would be
unable to hand-tune a large number of parameters, and a thorough cross-validation
would require vast and expensive computational resources.

In contrast to the RW literature, the problem of parameter estimation has received
considerable attention in the case of discrete models such as conditional random fields
(Lafferty et al., 2001). Recent years have witnessed the emergence of structured-output
support vector machine (Structured SVM) as one of the most effective discriminative
frameworks for supervised parameter estimation (Taskar et al., 2003; Tsochantaridis
et al., 2004). Given a training dataset that consists of pairs of input and their ground-
truth output, structured SVM minimizes the empirical risk of the inferred output with
respect to the ground-truth output. The risk is determined by a user-specified loss
function that measures the difference in quality between two given outputs. The pa-
rameters are estimated by minimizing a convex quadratic program, for which many
efficient algorithms have been proposed (Joachims et al., 2009; Shalev-Shwartz et al.,
2007; Taskar et al., 2003; Tsochantaridis et al., 2004). The structured SVM formulation
has been successfully employed for many applications including graph-cuts based seg-
mentation (Szummer et al., 2008), object detection (Blaschko and Lampert, 2008) and
natural language parsing (Tsochantaridis et al., 2004).

Inspired by the efficacy of structured SVM in discrete models, we would like to
discriminatively learn the parameters of the RW formulation. Such an approach would
allow us to fully exploit the benefits of RW using numerous contrast and prior terms.
To this end, a straightforward application of structured SVM would require a training
dataset that consists of pairs of inputs – here, medical acquisitions using MRI scans – as

87
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well as their ground-truth outputs – in our case, the optimal probabilistic segmentation.
In other words, we require a human to provide us with the output of the RW algorithm
for the best set of parameters. This is an unreasonable demand since the knowledge
of the optimal probabilistic segmentation is as difficult to acquire as it is to hand-tune
the parameters itself. Thus we are faced with a scenario where we cannot directly use
structured SVM to estimate the desired parameters.

In order to handle the above difficulty, we propose a novel formulation for discrim-
inative parameter estimation in the RW framework. Specifically, we learn the param-
eters using a weakly supervised dataset that consists of pairs of medical acquisitions
and their hard segmentations. Unlike probabilistic segmentations, hard segmentations
can be obtained easily from human annotators. We treat the optimal probabilistic seg-
mentation that is compatible with the hard segmentation as a latent variable. Here,
compatibility refers to the fact that the probability of the ground-truth label (as spec-
ified by the hard segmentation) should be greater than the probability of all other
labels for each pixel/voxel. Clearly, the number of compatible probabilistic, or soft,
segmentations for a given hard segmentation (that is, the size of the space for the
latent variables) is uncountably infinite. Nonetheless, the resulting representation al-
lows us to learn the parameters using the latent SVM formulation (Yu and Joachims,
2009).

While latent SVM does not result in a convex optimization problem, its local opti-
mum solution can be obtained using the iterative concave-convex procedure (CCCP)
(Yuille et al., 2002). At each iteration, CCCP performs two steps: (i) estimating a com-
patible probabilistic segmentation for each training sample using the current set of
parameters – commonly referred to as annotation consistent inference (ACI); and (ii)
updating the parameters by fixing the compatible probabilistic segmentations to those
obtained during ACI. The second step of CCCP involves solving a structured SVM
problem, which lends itself to efficient optimization. In order to make the overall algo-
rithm computationally feasible, we propose a novel efficient approach for ACI based
on dual decomposition (Bertsekas, 1999; Komodakis et al., 2007). We demonstrate the
benefit of our learning framework over a baseline structured SVM using a challenging
dataset of real 3D MRI volumes1.

5.1 related work

As mentioned earlier, the methods that employ the RW algorithm rely on parameters
that have been hand-tuned or exhaustively cross-validated (see chapter 4). In contrast,
the parameters of discrete models such as conditional random fields (CRFs) are often
estimated using large supervised training datasets. One of the most effective super-
vised learning formulations is structured SVM (Taskar et al., 2003; Tsochantaridis et al.,
2004), which generalizes the well-known binary SVM classifier to cases where the de-

1 This part was developed with the help of Danny Goodman and Pawan Kumar.
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sired output is a vector of inter-dependent elements. Structured SVM minimizes a
regularized upper bound on the empirical risk as defined by a user-specified loss func-
tion. The loss function provides a measure of the difference between two different
outputs. Using the structured SVM formulation, the problem of parameter estimation
reduces to that of solving a convex quadratic problem, for which several efficient algo-
rithms have been proposed in the literature (Joachims et al., 2009; Shalev-Shwartz et al.,
2007; Taskar et al., 2003; Tsochantaridis et al., 2004). The strong theoretical foundation
and practical feasibility of structured SVM has led to its use in several real-world
applications (Blaschko and Lampert, 2008; Szummer et al., 2008; Taskar et al., 2003;
Tsochantaridis et al., 2004). One of the main deficiencies of structured SVM is that it
requires a fully supervised training dataset, which consists of pairs of inputs and their
desired outputs. Often, it is extremely challenging, or even impossible, to obtain full
supervision (for example, in our case where a human annotator cannot specify the
optimal probabilistic segmentation). However, it is relatively easy to obtain weakly
supervised training samples.

In order to exploit the information present in such datasets, several researchers have
independently proposed an extension to structured SVM known as latent SVM (Felzen-
szwalb et al., 2008; Smola et al., 2005; Yu and Joachims, 2009). Latent SVM treats any
missing information in the human annotation as latent variables, which allows it to
upper bound the empirical risk as a difference-of-convex optimization problem. Al-
though its globally optimal solution cannot in general be computed in polynomial
time, its local minimum or saddle point solution can be obtained efficiently using the
CCCP algorithm (Yu and Joachims, 2009; Yuille et al., 2002). Since its first appearance,
latent SVM has been steadily gaining popularity due to its accurate empirical perfor-
mance (Felzenszwalb et al., 2008; Kumar et al., 2010, 2011; Yu and Joachims, 2009).
Most of the previous instantiations of structured SVM and latent SVM have focused
on discrete CRFs, that is, where the desired output is deterministic. In contrast, we
propose a novel approach to learn the parameters of the probabilistic RW algorithm,
where the latent variables model the unknown optimal soft segmentation that is com-
patible with a given hard segmentation.

5.2 preliminaries

5.2.1 Notations

In this part, the notations will differ slightly from chapter 4, for consistency with the
SVM notations. We will refer to a 3D volume as x. We use i to denote the index of a
voxel in this volume, and denote the set of all indices as V . In a hard segmentation,
each voxel is assigned a label s ∈ S (for example, the index of a muscle). We will use z
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to represent the human annotation (that is, the class labels of the voxels in x) in binary
form:

z (i, s) =





1 if voxel i is of class s,

0 otherwise.
(5.2.1)

In other words, the binary form z of the annotation specifies delta distribution over the
putative labels for each voxel. Our training dataset is a collection of training images x

and hard segmentations z: D = {(xk, zk)}k . Note that we use subscript k to denote the
input index within a dataset, and parenthetical i to denote a voxel within a particular
input.

We recall that the RW algorithm provides a probabilistic – or soft – segmentation of
an input x, which we denote by y, that is,

y (i, s) = Pr [voxel i is of class s] , ∀i ∈ V , s ∈ S . (5.2.2)

When using one contrast term and one prior model, the RW algorithm amounts to
minimizing the following convex quadratic objective functional:

E (y, x) = y⊤L (x) y + wprior ‖y− y0‖
2
Ω0(x)

, (5.2.3)

= y⊤L (x) y + Eprior (y, x) . (5.2.4)

Here, y0 is a reference prior probabilistic segmentation dependent on appearance
(Grady, 2005) or shape (Baudin et al., 2012a), and Ω0(x) is a diagonal matrix that
specifies a voxel-wise weighting scheme for x. It can be shown that the energy func-
tional 5.2.4 is convex and can be minimized over all possible probabilistic segmen-
tations y in polynomial time. In fact, Grady (2006) showed that the RW algorithm
amounts to solving a sparse linear system of equations, which lends itself to efficient
optimization. We refer the reader to section 4.2.2 and to the work of Grady (2006) for
further details.

5.2.2 Parameters and Feature Vectors

In the above description of the RW algorithm, we restricted ourselves to a single Lapla-
cian and a single prior. However, our goal is to enable the use of numerous Laplacians
and priors. To this end, let {Lα}α denote a known family of Laplacian matrices and{

Eβ (·)
}

β
denote a known family of prior energy functionals. In section 5.4, we will
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specify the family of Laplacians and priors used in our experiments. We denote the
general form of a linear combination of Laplacians and prior terms as:

L (x; w) = ∑
α

wαLα (x) , wα ≥ 0, ∀α, (5.2.5)

Eprior (·, x; w) = ∑
β

wβEβ (·, x) , wβ ≥ 0, ∀β. (5.2.6)

Each term Eβ (·, x) is of the form:

Eβ (y, x) =
∥∥y− yβ

∥∥2
Ωβ(x)

, (5.2.7)

where yβ is the β-th reference segmentation and Ωβ (x) is the corresponding voxel-
wised weighting matrix (which are both known). We denote the set of all parameters
as w =

{
wα, wβ

}
. Clearly the RW energy 5.2.4 is linear in w. and can therefore be

formulated as:

E (y, x; w) = y⊤L (x; w) y + Eprior, (5.2.8)

= w⊤ψ (x, y) , (5.2.9)

where ψ (x, y) is known as the joint feature vector of x and y. Note that by restrict-
ing the parameters to be non-negative (that is, w ≥ 0), we ensure that the energy
functional E (·, x; w) remains convex.

5.2.3 Loss Function

As mentioned earlier, we would like to estimate the parameters w by minimizing the
empirical risk over the training samples. The risk is specified using a loss function
that measures the difference between two segmentations. In this work, we define the
loss function as the number of incorrectly labeled voxels. Formally, let bin (y) denote
the underlying hard segmentation of the soft segmentation y, that is bin (y) (i, s) =

δ (s = arg maxs∈S y (i, s)), where δ is the Kronecker function. The loss function is
defined as

∆ (z, y) = 1−
1
|V|

bin (y)⊤ z, (5.2.10)

where V is the set of all voxels and |·| denotes the cardinality of a set. If both segmen-
tations are equal, then ∆ (z, y) = 0; if they are disjoint, ∆ (z, y) = 1 .

Note for later that this function in not concave in y, and that infinitely many soft
segmentations y are compatible with the hard segmentation z, that is, there is an
infinite number of solutions y to the equation ∆ (z, y) = 0.
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5.3 parameter estimation using latent svm

5.3.1 Upper Bound on the Risk

Given a dataset D = {(xk, zk) , k = 1, . . . , N}, which consists of inputs xk and their
hard segmentation zk, we would like to estimate parameters w such that the result-
ing inferred segmentations are accurate. Here, the accuracy is measured using the
loss function ∆ (·, ·). Formally, let ỹk (w) denote the soft segmentation obtained by
minimizing the energy functional E (·, xk; w) for the k-th training sample, that is,

ỹk (w) = arg min
y

w⊤ψ (xk, y) . (5.3.1)

We would like to learn the parameters w such that the empirical risk is minimized over
all samples in the dataset. In other words, we would like to estimate the parameters
w⋆ such that

w⋆ = arg min
w

1
N ∑

k

∆ (zk, ỹk (w)) . (5.3.2)

The above objective function is highly non-convex in w, which makes it prone to bad
local minimum solutions. To alleviate this deficiency, the latent SVM formulation
upper bounds the risk for a sample (x, z) as follows:

∆ (zk, ỹk (w)) = ∆ (zk, ỹk (w)) + w⊤ [ψ (xk, ỹk (w))− ψ (xk, ỹk (w))] , (5.3.3)

≤ min
∆(zk ,ŷ)=0

w⊤ψ (xk, ŷ) (5.3.4)

−
[
w⊤ψ (xk, ỹk (w))− ∆ (zk, ỹk (w))

]
,

≤ min
∆(zk ,ŷ)=0

w⊤ψ (xk, ŷ) (5.3.5)

−min
y

[
w⊤ψ (xk, y)− ∆ (zk, y)

]
.

The first inequality follows from the fact that the prediction ỹk (w) has the minimum

possible energy (see equation 5.3.1). Thus, its energy has to be less than or equal to the
energy of any compatible segmentation ŷ with ∆ (zk, ŷ) = 0. The second inequality
is true since it replaces the loss augmented energy of the prediction ỹk (w) with the
minimum loss augmented energy.

relation to the crf case In some cases – for instance, when learning condi-
tional random fields (Szummer et al., 2008; Komodakis, 2011) – the loss function is
concave, so that the minimum loss is only reached when the prediction ŷ is equal to
the annotation zk:

min
∆(zk ,ŷ)=0

w⊤ψ (xk, ŷ) = w⊤ψ (xk, zk) . (5.3.6)
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As a result, the upper bound on the empirical risk becomes

∆ (zk, ỹk (w)) ≤ w⊤ψ (xk, zk)−min
y

[
w⊤ψ (xk, y)− ∆ (zk, y)

]
, (5.3.7)

This upper bound is convex in w, since the minimum of a collection of affine functions
is concave (which becomes convex with the − sign). As a result, one obtains a learning

algorithm by minimizing the upper bound for each sample in the training set:

min
w, ξk≥0

λ||w||2 +
1
N

N

∑
k=1

ξk, (5.3.8)

s.t. w⊤ [ψ (xk, zk)− ψ (xk, y)] + ∆ (zk, y) ≤ ξk, ∀ȳ, ∀k,

where the slack variable ξk represents the upper bound of the risk for the k-th training
sample. The regularizing term ||w||2, weighted by hyper-parameter λ, ensures that
we do not over-fit to the training samples. The previous algorithm is a convex quadratic

program and corresponds to the formulation of Structural SVM with rescaled margin
(Taskar et al., 2003; Tsochantaridis et al., 2004), for which may efficient algorithms have
been proposed (Joachims et al., 2009; Shalev-Shwartz et al., 2007; Taskar et al., 2003;
Tsochantaridis et al., 2004).

However, as mentioned earlier, the loss function ∆ (·, ·) is not concave in w, which
in turns leads to a non-convex upper bound on the empirical risk. Equation 5.3.6 is
not verified, and solving the baseline Struct-SVM problem 5.3.8 is bound to fail in our
case.

5.3.2 Formulation with Latent SVM

Let us recall the upper bound of the empirical risk derived above:

∆ (zk, ỹk (w)) ≤ min
∆(zk ,ŷ)=0

w⊤ψ (xk, ŷ)−min
y

[
w⊤ψ (xk, y)− ∆ (zk, y)

]
.

While this upper bound is not convex, it is a difference of two convex functions in
(Yu and Joachims, 2009). This observation allows us to obtain a local minimum or
saddle point solution using the CCCP algorithm (Yu and Joachims, 2009; Yuille et al.,
2002), which iteratively improves the parameters starting with an initial estimate w0

(the detailed optimization algorithm will be described shortly).
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Using the upper bound on the empirical risk, the latent SVM optimization problem
is specified as follows:

min
w, ξk≥0

λ ‖w‖2 + λ′ ‖w−w0‖
2 +

1
N ∑

k

ξk, (5.3.9)

s.t. min
∆(xk,ŷ)=0

w⊤ψ (xk, ŷ) ≤ w⊤ψ (xk, ȳ)− ∆ (zk, ȳ) + ξk, ∀ȳ, ∀k,

where the slack variable ξk represents the upper bound of the risk for the k-th training
sample. Note that we have added two regularization terms for the parameters w. The
first term ‖w‖2, weighted by hyper-parameter λ, ensures that we do not over-fit to
the training samples. The second term ‖w−w0‖

2, weighted by hyper-parameter λ′,
ensures that we do not obtain a solution that is very far away from our initial estimate
w0. The reason for including this term is that our upper bound to the empirical risk
may not be sufficiently tight. Thus, if we do not encourage our solution to lie close to
the initial estimate, it may drift towards an inaccurate set of parameters. In section 5.4,
we show the empirical effect of the hyper-parameters λ and λ′ on the accuracy of the
parameters.

A local minimum or saddle point solution for problem 5.3.9 can be found using the
iterative CCCP method, which is outlined in Algorithm 5.1. It consists of two main
steps at each iteration: (i) step 3, which involves estimating a compatible soft segmen-
tation for each training sample – known as annotation consistent inference (ACI); and
(ii) step 4, which involves updating the parameters by solving problem 5.3.10. In the
following subsections, we provide efficient algorithms for both the steps.

Algorithm 5.1 The CCCP method for parameter estimation using latent SVM.
Input: Dataset D, λ, λ′, w0,ε

1: Set t = 0. Initialize wt = w0.
2: repeat

3: Compute y⋆

k = arg minŷk , ∆(zk ,ŷk)=0 w⊤t ψ (xk, ŷk) , ∀k.
4: Update the parameters by solving the following problem

wt+1 = arg min
w, ξk≥0

λ ‖w‖2 + λ′ ‖w−w0‖
2 +

1
N ∑

k

ξk, (5.3.10)

s.t. w⊤ψ (xk, y⋆

k ) ≤ w⊤ψ (xk, ȳ)− ∆ (zk, ȳ) + ξk, ∀ȳ, ∀k,

5: t = t + 1
6: until The objective function of problem 5.3.9 does not decrease below tolerance ε.
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5.3.3 Annotation Consistent Inference2

Given an input x and its hard segmentation z, ACI requires us to find the soft segmen-
tation y⋆ with the minimum energy, under the constraint that it should be compatible

with z (see step 3 of Algorithm 5.1). We denote the ground truth label of a voxel i by si,
that is, si = arg maxs z(i, s), and the set of all voxel indices by V . Using our notation,
ACI can be formally specified as

y⋆ = arg min
y∈C(V)

y⊤L (x; w) y + Eprior (y, x; w) . (5.3.11)

Here, C(V) is the set of all compatible probabilistic segmentations, that is,

C (V) :

y (i, s) ≥ 0, ∀s ∈ S , (5.3.12)

∑
s∈S

y (i, s) = 1, ∀i ∈ V , (5.3.13)

y (i, si) ≥ y (i, s) , ∀i ∈ V , ∀s ∈ S . (5.3.14)

Constraints 5.3.12 and 5.3.13 ensure that y⋆ is a valid probabilistic segmentation. The
last set of constraints 5.3.14 ensure that y⋆ is compatible with the hard ground truth
z. Note that in the absence of constraint 5.3.14, the other constraints are not necessary
(see section 4.2.2) and the above problem can be solved efficiently using the RW al-
gorithm. However, since the ACI problem requires the additional set of compatibility
constraints, we need to develop a novel efficient algorithm to solve the above con-
vex optimization problem. To this end, we exploit the powerful dual decomposition
framework (Bertsekas, 1999; Komodakis et al., 2007).

dual decomposition for the aci Briefly, dual decomposition (DD) allows us
to iteratively solve a convex optimization problem of the form

y⋆ = arg min
y∈F

M

∑
m=1

gm (y) , (5.3.15)

that is, any problem which can be exactly decomposed into a sum of (preferably sim-
pler) sub-problems with functionals gm (y). At each iteration t, DD solves the set of
slaves problems

y⋆

m = arg min
y∈F

(
gm (y) + ρt

my
)

, (5.3.16)

2 This section was developed with the help of Puneet Kumar and Pawan Kumar
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where ρt
m are the dual variables satisfying ∑m ρt

m = 0. The dual variables are initialized
as ρ0

m = 0, ∀m, and updated at iteration t as follows:

ρt+1
m ← ηt

(
y⋆

m −
1

M

M

∑
n=1

y⋆

n

)
,

where ηt is the learning rate at iteration t. Under fairly general conditions, this iterative
strategy converges to the globally optimal solution of the original problem, that is,
y⋆ = y⋆

m, ∀m. We refer the reader to the works of Bertsekas (1999); Komodakis et al.
(2007) for details.

In order to specify our slave problems, we divide the set of voxels V into subsets
Vm, m = 1, . . . , M, such that each pair of neighboring voxels (i, j) ∈ N appear to-
gether in exactly one subset Vm. Given such a division of voxels, our slave problems
correspond to the following:

min
ym∈C(Vm)

y⊤m Lm (x; w) ym + E
prior
m (ym, x; w) + ρt

mym, (5.3.17)

where Lm (x; w) is the Laplacian matrix whose non-zero entries correspond to the
voxels in Vm, which leads to

L = ∑
m

Lm. (5.3.18)

The prior prior energy functions E
prior
m modifies the original prior Eprior by weighting

each voxel i ∈ Vm by the reciprocal number of subsets that contain i. This weighting
scheme allows us to decompose the prior term exactly, that is

Eprior (y, x; w) = ∑
m

E
prior
m (y, x; w) , (5.3.19)

which is the consequence of the following trivial equality:

∥∥y− yβ

∥∥2
Ωβ

= ∑
m

∥∥∥y− yβ

∥∥∥
2

RΩβ

, (5.3.20)

where R is the diagonal matrix such that Rii = 1/ |{Vn, s.t. i ∈ Vn}|. In other words,
the prior term for each voxel i ∈ V is multiplied by the number of times voxel i appears
in a slave problem Vn.

Thus, the slave problems defined above provide a valid reparametrization of the
original problem 5.3.11, that is g (y) = ∑m gm (y). Decomposing the set of constraints
C (Vm) for each subset of variables is straightforward. By using small subsets Vm

we can optimize each slave problem in every iteration independently using a standard
quadratic programming solver. The sub-problems – which are quadratic programs –
can be made sufficiently small to be solved in parallel with a dedicated solver. In
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our experiments, we used the Mosek solver. To the best of our knowledge, this is the
first application of dual decomposition to solve a probabilistic segmentation problem
under linear constraints.

5.3.4 Parameter Update

We now describe how the parameters can be efficiently updated by solving prob-
lem 5.3.10 for a fixed set of soft segmentations y⋆

k . Note that while problem 5.3.10

is convex, the number of constraints is of the order of the number of possible soft seg-
mentations of an input. In other words, it consists of an infinite number of constraints.
Nonetheless, the problem can be solved efficiently using the cutting plane method
outlined in Algorithm 5.2. The method starts by specifying no constraints for any of
the training samples. At each iteration, it finds the most violated constraint for each
sample (step 3), and updates the parameters (step 5) until the increase in the objective
function is less than the tolerance.

Algorithm 5.2 The cutting plane method for updating the parameters.
Input: Dataset D, y⋆

k , λ, λ′, wt, ε

1: SetWk = ∅ for all k. Initialize w = wt.
2: repeat

3: Compute ȳk = arg miny w⊤ψ (xk, y)− ∆ (zk, y) , ∀k.
4: UpdateWk =Wk

⋃
yk.

5: Update the parameters by solving the following problem:

min
w, ξk≥0

λ||w||2 + λ′||w−w0||
2 +

1
N ∑

k

ξk, (5.3.21)

s.t. w⊤ [ψ (xk, y⋆

k )− ψ (xk, y)] ≤ ξk − ∆ (zk, y) , ∀y ∈ Wk, ∀k.

6: until The objective function of problem 5.3.21 does not increase above tolerance ε.

The main ingredient of the cutting plane method is the computation of the most
violated constraint, that is,

y = arg min
y

w⊤ψ (x, y)− ∆ (z, y) (5.3.22)

for a given sample (x, y). While in most of the previous instantiations of structured
SVM and latent SVM, the above problem can be solved optimality, in our case it
presents a computational challenge. The reason for this is that the loss function, de-
fined in equation 5.2.10, is not concave in y, which makes the above problem non-

http://www.mosek.com/
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convex. One obvious solution to this challenge would be to replace the loss function
by its concave approximation, that is,

∆′ (z, y) = 1−
1
|V|

y⊤z. (5.3.23)

However, the resulting convex approximation of problem 5.3.10 would not lend itself
to the RW algorithm, as it does not guaranty that the output is a probability distribu-
tion as required by the RW probabilistic framework. In other words, we would need
to resort to a dual decomposition strategy to obtain a constraint at each iteration of the
cutting plane method. Such an approach would render the overall CCCP algorithm
computationally infeasible. Instead, in this work, we obtain the approximate most
violated constraint as the predicted segmentation, that is,

y = arg min
y

w⊤ψ (x, y) . (5.3.24)

The above problem only requires the minimization of the energy (without any loss
terms), which can be performed efficiently using the RW algorithm. As our results
indicate, coupled with the regularization of the parameters, this simple cutting plane
strategy provides an accurate set of parameters.

5.4 experimental validation

We demonstrate the efficacy of our approach on a challenging dataset. Specifically, we
test the hypothesis that it is important to model the unknown optimal soft segmenta-
tions of the training samples using latent variables in order to learn an accurate set of
parameters. In what follows, we describe the experimental setup and our results in
detail.

Dataset

We use the 30 volume dataset described in section 5.4. This datasets consists of vol-
umes of the thigh region of dimensions 224× 224× 100. The various segments corre-
spond to 4 different muscle groups together with the background class. We randomly
split the dataset into 80% for training and 20% for testing. In order to reduce the train-
ing time for both our method and the baselines, we divide each volume into 100/2

volumes of dimension 224× 224× 2. During dual decomposition, we further divide
the volumes into dimensions 10× 10× 2 in order to specify the slave problems.
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Laplacians and Prior Terms

We used 4 different Laplacians based on the standard weighting function given in
section 4.1, 3 of them corresponding to β ∈ {10, 50, 100} – to be used with volumes
which have been normalized with respect to their standard deviation. The last one to
the alternate expression given in footnote 2 with β = 100. Furthermore, we use two
shape priors and one appearance prior: the first one as the shape prior with constant
weighting as described in section 4.3, the second one using the entropy weighting also
described in section 4.3, and the third one being the contrast based prior of Grady
(2005). This results in a total of 7 parameters to be estimated.

Methods

The main hypothesis of our work is that it is important to represent the unknown
optimal soft segmentation using latent variables. In order to test this hypothesis, we
compare our method with a baseline structured SVM that replaces the latent variables
with the given hard segmentations. In other words, our baseline estimates the param-
eters by solving the following optimization problem:

min
w, ξk≥0

λ||w||2 + λ′ ‖w−w0‖
2 +

1
N

N

∑
k=1

ξk, (5.4.1)

s.t. w⊤ [ψ (x, zk)− ψ (x, y)] ≤ ξk − ∆ (z, y) , ∀ȳ, ∀k,

which is the same as 5.3.8 with an added proximal regularization term. The above
problem can be solved using Algorithm 5.2, where the imputed soft segmentations y⋆

k

are replaced by the hard segmentations zk.
During our experiments, we found that replacing the hard segmentation with a

pseudo soft segmentation based on the distance transform systematically decreased
the loss of the output. Thus, the method referred to as “Baseline” uses a structured
SVM with distance-transform “softened” segmentations. The transformed segmenta-
tion, denoted as z̃k, is computed in the following manner:

z̃k (i, s) =
exp

(
−γdistk (i; s)2

)

∑t exp
(
−γdistk (i; t)2

) , (5.4.2)

where distk (i, s) is the Euclidean distance from pixel i to the closest pixel with label
s in the hard segmentation zk; if pixel i already belongs to class s, then distk (i; s) =

0. This term is normalized by a sum over all labels such that z̃k is a probability
distribution. Parameter γ > 0 determines the amount of spatial smoothing of the
distribution, that is, the smaller γ is, the more progressive are the transitions between
labels. Fig. 5.4.1 illustrates the softening process of the segmentation.
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Figure 5.4.1 – Probability map of one muscle using the distance transform to “soften” the
probabilistic segmentation spatially.

Results

Figure 5.4.2 shows the test loss for three different methods: (i) the initial hand-tuned
parameters w0; (ii) the baseline structured SVM with distance transforms; and (iii)
our proposed approach using latent SVM. As can be seen from Fig. 5.4.2, latent SVM
provides significantly better results than the baselines – even when using the distance
transform (which is the baseline method displayed in Fig. 5.4.2).

For the 4 x 5 hyper-parameter settings that we report (that is, four different values of
λ and 5 different values of λ′), latent SVM is significantly better than SVM in 15 cases,
and significantly worse in only 2 cases. Note that latent SVM provides the best results
for very small values of λ′, which indicates that the upper bound on the empirical risk
in tight. As expected, for sufficiently large values of λ′, all the methods provide similar
results. For the best settings of the corresponding hyper-parameters, the percentage of
incorrectly labeled voxels as follows: (i) for w0, 13.5%; (ii) for structured SVM, 10.0%;
and (iii) for latent SVM, 9.2%. Fig. 5.4.3 shows some example segmentations for the
various methods.

Conclusion

Results show that our approach allows to estimate good parameters for the Random
Walks segmentation method using shape priors. At the moment, since tests were
performed on a small dataset (6 test volumes, 24 training volumes, 4 muscles), we can
only claim it to be a proof of concept. Our results provide empirical evidence for our
main hypothesis, namely the importance of treating the underlying soft segmentations
as latent variables. This can be seen not only in the overall improvement achieved
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Figure 5.4.2 – Test loss for three different methods. Each figure corresponds to a different
λ – that is, the SVM regularization parameter. Curves are plotted with re-
spect of λ′ – that is, the proximal regularization parameter, which penalizes
deviations from the hand-tuned parameters w0. “Baseline” corresponds to
the standard struct-SVM method using distance-transformed pseudo-soft
segmentations z̃k as annotation vectors.

by our approach, but also by the relative robustness of latent SVM to the choice of
hyperparameters. This allows us to envision more extensive estimation processes.
By carefully choosing more Laplacians and shape priors and learning their relative
weighting, our framework may be able to provide bigger improvements. In particular,
we are interested in learning separate parameters for different image regions. Indeed,
some regions have edges which are consistently visible, while others do not. Thus it
would be useful to change the balance between the model and the contrast term based
on this knowledge, a task that would be impossible to fulfill manually. Moreover
the latent variable formulation opens the door for more semi-supervised learning:
authorizing the use of partially or coarsely segmented ones would allow us to increase
the size of the learning set by orders of magnitude. An improvement of the method
could be tested in replacing the implied L2 norm of the regularization terms – ‖w‖2

and ‖w−w0‖2 – by a L1 norm. Such change could promote sparsity in the parameter
values, such that only the most relevent terms are selected, rather that searching for a
combination of all terms.

However, our experiments revealed an important drawback: computing time. In-
deed SVM learning is an iterative process and in each iteration, all the training sam-
ples have to be segmented (during the LAI process). Each segmentation task is taking
several dozen of seconds for the full image on a powerful desktop computer. Even
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Figure 5.4.3 – (left column) segmentation using w0 (hand-tuned parameters); (right col-
umn) segmentation using learning w using latent structured SVM. Segmen-
tations with learned parameters are more accurate.
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more problematic is the ACI stage, where we had to solve a large quadratic program
using dual decomposition. Even though it allowed us to estimate the latent soft seg-
mentation, this process takes several dozens of minutes for a single volume. All our
experiments were conducted on the computer cluster of the École Centrale Paris. Even
there, a single experiment; for a given set of parameters λ, λ′, etc., took more than 2

hours for estimating seven parameters. However, we point out that the code written in
Python and not optimized for efficient computation. Besides, all presented algorithms
(cutting plance, CCCP, ACI) are highly parallelizable.

A second limitation is the apparent weakness of the improvements in the segmen-
tation results (as measured by loss decrease). The limited improvements may be due
to the small number of parameters we estimated and by the fact that there were little
room for improvement with the segmentation method considered. As always, param-
eter learning can only improve the results of a method within the limits of the method.
Here, the single reference shape model may not be able to provide results which are
much better than what was obtained by hand-tuning the parameters. To conclude, we
say that this learning method appears to be effectively learning and could be re-used
and extended to more interesting cases, but we also believe that the segmentation
model is even more crucial and should be improved as well.





6
S U M M A RY A N D C O N C L U S I O N

6.1 material

Most of the presented work was coded using the open source and highly portable
Python programming language, in combination with the scientific libraries Numpy
and Scipy. The author would like to contribute to publicize to the scientific com-
munity the great versatility and power of this free software. All development and
computations were performed on standard desktop machines, except for the learning
process presented in chapter 5 which had to be performed on the computer cluster of
École Centrale Paris.

All MRI volumes used for testing and training the segmentation methods were ac-
quired on the 3 Tesla Siemens scanner of the Institute of Myology.

Moreover, all manual segmentations where performed using the free and open
source ITK Snap software (Yushkevich et al., 2006).

6.2 summary of the contributions

In this thesis report, we have presented several contributions towards solving the diffi-
cult problem of muscle MRI segmentation. All presented methods require a require a
registration stage – either rigid or non-rigid – of a training set of atlases onto the target
image.

Our first contribution takes advantage of the good performance of interactive Ran-
dom Walks segmentation algorithm (Grady, 2006) by automatically computing the
seeds, which are normally drawn manually. This approach consists in generating un-
labeled seeds over the target image, and labeling them automatically by detecting the
contours between the muscles and based on prior knowledge of the relative position
of the muscles extracted from one reference atlas. Labeling is achieved through a
graph-based discrete energy approximate minimization procedure.

In a different approach, we proposed to integrate prior-knowledge shape directly to
the Random Walks formulation. In a first contribution, similar to an intensity prior
formulation (Grady, 2005), we added a term to the Random Walks objective that pre-
vents the segmentation to deviate too much from a known average segmentation. We
show this shape prior term does not break the probabilistic framework of the RW for-
mulation with an easy-to-minimize objective functional – which amounts to solving a
large sparse linear system. We propose several weighting schemes for the shape term
based on reasonable intuitions. Obtained results showed that our method is favorably
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comparable to the current state-of-the-art. In a second approach, we try to expand
the range of accessible shapes in order to improve the segmentation performance on
morphologies far from the average. We build a low-dimensional shape space through
Principal Component Analysis on the training set. Then we propose an objective in
which the segmentation is constrained to remain in the vicinity of the shape space
while it minimizes the RW objective. However, the results indicate that this approach
suffers from the poor modelization of probabilistic segmentations using a PCA as well
as the small number of samples in the training set.

In a last part, we proposed a novel discriminative learning framework to estimate
the parameters for the probabilistic Random Walks segmentation algorithm. Indeed,
the information in the training dataset had not been exploited to finely tune the pro-
posed models up to this point. In order to deal with the lack of full supervision, we
represented the optimal soft segmentation that is compatible with the hard segmen-
tation of each training sample as a latent variable. This allowed us to formulate the
problem of parameter estimation using latent SVM, which upper bounds the empirical
risk of prediction with a difference of convex optimization program. Using a challeng-
ing clinical dataset of MRI volumes, we demonstrated the efficacy of our approach
over the baseline method that replaces the latent variables with the given hard seg-
mentations. Our formulation allows for a large number of parameters to be estimated
using a training dataset.

6.3 future directions

Although it appears that the automatic seed method presented in chapter 3 slightly
outperforms the Random Walks-based model of chapter 4, we believe that the lat-
ter method has more potential than the former for several reasons: (i) the automatic
seeding method requires one more computing stage than the RW-based method (reg-
istration, seeding, segmentation for the former, registration and segmentation for the
latter) and is more likely to propagate errors from one stage to the next. Integrating
the shape prior within the segmentation method as does our RW-based method in a
very simple way is likely to be more robust – which the smaller number of outliers
for this method seems to confirm (in Fig. 4.3.11). (ii) Many possible extensions of the
RW-based method can be explored, for which we propose two:

a. Incorporate long-range connections between pixels instead of using only adja-
cent edges – this would help in situations where the prior shape model is too
different from the target image. This could be achieved in the following man-This idea was

suggested by Danny

Goodman.
ner: generate random edges between voxels, targeting an optimal edge length
based on a small world perspective (Kleinberg, 2000). On the training set, learn
typical distributions of the voxel intensity along the edges, in order to build a
contour detector. The geodesic distance or the commute-time distance can be
used as features to the classifier. Run the classifier on the tested image to gener-
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ate the weights for the long-range edges: voxels with no contours between them
would have a transition probability close to one. The added edges do not change
the formulation of the Random Walks algorithm. In addition, if one wishes to
increase the probability of label change when a contour is found between the con-
nected voxels, it can also be done by introducing non-zero inter-label weights in
the global Laplacian (that is, the Laplacian which gather all RW equations, as
seen in section 4.4). It can be shown that this formulation retains a probabilistic
meaning, and therefore also resolves in a large sparse linear system.

b. Instead of a PCA (see sec. 4.4), build a shape space from a barycenter of train-
ing segmentations – a formulation which may better fit within the probabilistic
framework since a barycenter of probability distributions is still a probability
distribution.

(iii) Apart form shape priors, different types of priors can be easily integrated to the
RW-based method, in particular appearance-based priors involving intensity (Grady,
2005).

Regarding parameter estimation, as mentioned in chapter 5, future work could in-
volve exploring extensions where the parameters specify spatially varying terms in
the RW objective function. This would allow us to encourage the presence of edges in
between different segments, while at the same time not penalize the absence of edge in
the background. The latent SVM framework can also be used to estimate parameters
from partially segmented data. Such an approach would allow us to scale the size of
the training dataset by orders of magnitude.

Although their is plenty of room for improvement in automatic techniques, one
should not loose sight that segmentation methods are to be used by researchers and
clinicians in practical settings. In particular, considering no fully automatic method
will provide perfect results in a near future, one should still consider user interaction
as an acceptable mean. Thus, it is important that segmentation methods remain simple
to use, and that learning methods remain practical, the latter of which the presented
work did not fully achieve. More importantly, it is crucial to develop new interactive
methods for correcting the imperfect output of automatic methods. Otherwise, they
may remain useless if it takes as much time to correct an automatic segmentation than
to segment the image manually from the start.





A
M R I B A S I C S

a.1 basics in nuclear magnetic resonance

The aim of this section is to give a brief insight into the origin of the contrast in MRI.
It is based on the basics of Magnetic Resonance Imaging by Fleckenstein et al. (1996).
Nuclear Magnetic Resonance is a quantum phenomenon affecting certain atomic nu-
clei having a non-zero nuclear spin

−→
S . The spin is an inherent property of protons

and neutrons, and of nuclei with an odd number of these particles. Some of the nuclei
which have a non-zero spin can be found in the human body, such as: 1H, 13C,23Na,
31P. Among them, Hydrogen is the most prevalent and therefore is the most adequate
for MRI.

The nucleus of a 1H hydrogen atom consists of a single proton, which has a positive
electric charge. The spin of the proton generates an electrical current loop and hence a
magnetic field. The proton has a magnetic moment parallel to the direction of its spin:
−→µ = γ

−→
S , where γ is the gyromagnetic ratio of the nucleus of interest (γH = 267.513×

106rad.s−1.T−1). The gyromagnetic ratio γ is specific for each nuclear species.
Without a magnetic field, the orientation of the magnetic moment is random. When

placed in a magnetic field
−→
B0 , −→µ tends to align with the direction of B0 and, due to a

resonance phenomenon, begins a precessional movement of the spinning axis around
the direction of B0. The angular velocity ω0 – called Larmor angular velocity – of the
precession movement is proportional to the amplitude of B0 and the gyromagnetic
ratio γ:

ω0 = γB0. (A.1.1)

When a sample containing many protons is placed in a magnetic field
−→
B0 , the in-

dividual protons tend to align with the direction of the field which results in a net
magnetization

−→
M of the sample. However, due to thermal movements which prevent

a complete alignment, the resulting magnetization vector is very weak. A NMR exper-
iment aims at measuring

−→
M.

Let us consider the rotating frame of reference (x, y, z) and assume
−→
B0 = B0

−→ez .
We can decompose the net magnetization vector as:

−→
M = Mx

−→ex + My
−→ey + Mz

−→ez .

The measured signal S is proportional to the transverse component: S ∝
√

M2
x + M2

y.

During an experiment in NMR,
−→
M is tilted away from its equilibrium position, using

short pulses of radio-frequency (RF) radiation
−→
B1 , perpendicular to

−→
B0 , centered at

the middle of the NMR spectrum. Applying
−→
B1 on

−→
M produces a magnetic moment

109
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Figure A.1.1 – Longitudinal (left) and transverse (right) relaxations. The transverse com-
ponent decreases with a time constant T2 in a homogeneous field

−→
B0 , and

T⋆

2 in an inhomogeneous field.

which causes
−→
M to precess about

−→
B1 as well. This additional moment is: −→m =

−→
M ×

−→
B1 .

This results in a magnetization vector
−→
M which deviates from the z axis by a flip

angle α. When the pulse ceases, the out-of-equilibrium magnetization vector returns
to equilibrium state after a certain delay. This phenomenon is exponential and is
characterized by two relaxation constants (cf. figure A.1.1):

• the longitudinal magnetic – or spin-lattice – relaxation time T1 is relaxation constant
of the longitudinal component Mz of the net magnetization vector returning to
its initial state:

Mz (t) = M
(

1− e−t/T1

)
; (A.1.2)

• the transverse – or spin-spin – relaxation time T2 is relaxation constant of the trans-
verse component Mxy of the net magnetization vector when returning to zero. It
is the average time for the spins of precessing nuclei to dephase, due to mutual
interactions:

Mxy (t) = M sin (α)e−t/T2 . (A.1.3)

The relaxation constants T1 and T2 depend the amplitude of the magnetic field
−→
B0

and on the physicochemical environment: the biological composition of the tissue of
interest, as well as controlled parameters such as the temperature and the pressure.
However in practice, the local field seen by the nuclei is not spatially homogeneous,
due to

−→
B0 being non-homogeneous itself, but also to the chemical environment created

by the biological tissue. This makes the resonant frequency of the spins vary continu-
ously across space. The phase shift between the spins increasing with time, this results
in an different exponential decrease in transverse magnetization, modeled by different
relaxation time T⋆

2 < T2 (cf. figure A.1.1). The values of T1, T2 and T⋆

2 change signifi-
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cantly depending on the tissue in which the protons are located, and are the source of
the contrast in MRI.

The visibility of protons in MRI depend mainly on their relaxation time. Therefore,
proton density reflects water and fat concentration in tissues. For example, a healthy
muscle contains about 80% water. By choosing a sequence of RF pulses and adequate
parameters and

−→
B0 gradients, one can have the different biological structures – e.g.

muscle tissues and fat tissues – to take different intensities, allowing to separate them
visually. For instance, a T2-weighted sequence provides images in which the intensity
is a increasing function of the T2 value of the tissue in this location. There exist many
sequences for acquiring T1-weighted, T2-weighted or T⋆

2 -weighted images, in which
the biological tissues are shown with different intensity distributions.

a.2 nmr imaging

In a volume, it is possible to make localized measurements of the amplitude of the com-
ponents of

−→
M, using magnetic field gradients and strategies involving certain Fourier

space encoding, resulting in an multidimensional image (2D or 3D).
For the task of segmenting images of muscles, it is convenient to use. a choice of

sequence and sequence parameters which reveals as much as possible the boundary of
the muscles. The muscles are surrounded by a thin bio-membrane of connective tissue
– the fasciae (singular: fascia) – and generally separated by a layer of fat tissues. Fasciae
are made of collagen fibers, with the property of having an ultra-short T2 which, in
most typical modalities yields very little signal and show in black in images: if the
transverse component of

−→
M is fully relaxed, the output signal is zero whatsoever.

Muscle and fat tissues have different and well know relaxation constants, and some
methods have been developed to give them different intensities in images, for easy vi-
sual discrimination. For instance, some T1-weighted images can be used for separating
muscle and fat tissues, even thought the fasciae are difficult to see (cf. figure 1.1.1).

Some modalities reveal the muscle/fat transition more strongly than others. For
example, gradient-echo sequences produce T∗2 -weighted images using the fact that the
spin of fat protons (i.e. protons in fat-tissues) precess in a different rate than muscle
(water) protons. In regions containing both kinds of protons, this causes a phase differ-
ence which results in a decreased amplitude of the transverse component at the acqui-
sition time. In these images, muscle boundaries show a deep contrast (cf. figure 1.1.1).
Among T⋆

2 -weighted modalities, the Dixon method combines several acquisitions in or-
der to provide separate images for fat-composed tissues and a water-composed tissues
(muscle tissues and vessels). This method provides convenient material for segment-
ing muscles (cf. figure A.2.2):

• a map of muscle tissues only (vessels are negligible volume). We may use this
water-map for easy separation of the muscles from fat tissues;
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Figure A.2.1 – Axial-cross sections of thigh: (left) T1-weighted; (right)T⋆

2 -weighted with
fat-suppression (a special method was applied during the acquisition of
this volume to ignore signal from fat tissues).

Figure A.2.2 – Dixon method, axial-cross sections of thigh: (left) water-map; (rig) opposed-
phase image.
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• an opposed-phase image, acquired are the instant when fat protons and water
protons have opposed-phase spins, which enhances the boundaries. We will use
this image in segmentation techniques relying on having contrasted boundaries
for the objects of interest.

One should note that healthy muscles tissues cannot be discriminated from their ap-
pearance, since all muscles are made of the same biological tissue, which results in
identical intensities and textures. The differences of intensities observable in the pre-
sented muscles are due to spatial inhomogeneities of the magnetic fields.





B
M AT H E M AT I C A L A P P E N D I C E S

b.1 positive definiteness of LU

Proposition 1. Assume there exists at least one path composed of nonzero-weight edges be-

tween each unknown node and one seed. Then LU is positive definite:

∀x ∈ R
|U | , x⊤LU x > 0.

Proof. We recall the definition of LU :

LU ( i , j) =





d i if i = j ,

−w i , j if e i j ∈ E ,

0 otherwise,

where d i = ∑ j∈U∪M w i j . Consider the following:

∀x ∈ R
|U | , x⊤LU x = ∑

i∈U

d i x2
i − 2 ∑

i , j∈U

w i j x i x j , (B.1.1)

= ∑
i∈U

(

∑
j∈U∪M

w i j

)
x2

i − 2 ∑
i , j∈U

w i j x i x j , (B.1.2)

= ∑
i∈U , j∈M

w i j x
2
i + (B.1.3)

(

∑
i , j∈U

w i j x
2
i − 2 ∑

i , j∈U

w i j x i x j

)
,

= ∑
i∈U , j∈M

w i j x
2
i + ∑

i , j∈U

w i j

(
x i − x j

)2 . (B.1.4)

Using Reductio ad absurdum, suppose:

∃x ∈ R
|U |/ {0} s .t . x⊤LU x = 0. (B.1.5)

For this hypothesis to stand, we must have:

∀ i , j ∈ U , w i j

(
x i − x j

)2
= 0, (B.1.6)

∀ ( i , j) ∈ U × M , w i j x
2
i = 0. (B.1.7)
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Let us consider the index k of any nonzero entry of x: ∀k ∈ { i ∈ U /x i 6= 0}.
There exists a path Pk l ⊂ E of edges with a nonzero weight between node vk and
a marked node v l ∈ VM . Then (a)∀e i j ∈ Pk l ∩ (VU × VU ) equation B.1.6 gives:
x i = x j ; (b) ∀e i j ∈ Pk l ∩ (VU × VM ) equation B.1.7 gives: x i = 0. Both results lead
to ∀k ∈ U , xk = 0, which contradicts the first hypothesis B.1.5.

b.2 random walks and probability distributions

Proposition 2. The Random Walks system 4.1.18 can only yield a solution {xs}s that is a

probability distribution:

∀i, ∑
s

xs
i = 1, (B.2.1)

∀i, ∀s, xs
i ≥ 0. (B.2.2)

Proof. We use the fact that LU is positive definite and thus invertible, and that 1 =

[1, . . . , 1]⊤ is a solution to Lx = 0 and thus

(LU1U + B1M) = 0.

Consider:

LUxs
U = −Bxs

M, (B.2.3)

∑
s

LUxs
U = −∑

s

Bxs
M, (B.2.4)

LU

(

∑
s

xs
U

)
= −B1M, (B.2.5)

LU

(

∑
s

xs
U

)
= LU1U , (B.2.6)

Since LU is invertible, we have

∑
s

xs
U = 1U .

In order to prove the non-negativity of x, consider the RW objective and its gradient
at location 0 = [0, . . . , 0]⊤:

ERW (xs
U) =

1
2

xs⊤
U Lxs

U + xs⊤
U Bxs

M + cst, (B.2.7)

∇ERW (0) = Bxs
M. (B.2.8)
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Since all entries of the gradient of ERW (·) at location 0 are non-positive:

(Bxs
M) [i] = − ∑

j∈M

wijx
s
j ≤ 0, (B.2.9)

we know that the direction of the solution is towards the positive numbers:

∀i ∈ U, ∀s, xs
i ≥ 0.

b.3 random walks , shape prior and probability distributions

Proposition 3. Assume the entries of {xs
0}s are probabilities. Then, the Random Walks system

incorporating a prior knowledge term 4.2.10 can only yield a solution that is a probability:

∀i, ∑
s

xs
i = 1, (B.3.1)

∀i, ∀s, xs
i ≥ 0. (B.3.2)

Proof. We use the fact that (L + ∆) is positive definite – and thus the solution to
(L + ∆) x = b is unique – and that 1 = [1, . . . , 1]T is a solution to Lx = 0. Consider:

(L + ∆) xs = ∆xs
0, (B.3.3)

∑
s

(L + ∆) xs = ∆

(

∑
s

xs
0

)
, (B.3.4)

(L + ∆)

(

∑
s

xs

)
= ∆1. (B.3.5)

Since the solution is unique,

∑
s

xs = 1.

Considering the RW objective and its gradient at location 0 = [0, . . . , 0]T:

ERW+prior (x
s) = xsT Lxs + ‖xs − xs

0‖
2
Ω , (B.3.6)

∇ERW+prior (0) = −2Ωxs
0. (B.3.7)

Thus the entries of ∇ERW+prior (0) are non-positive and we know the direction of the
solution is towards the positive numbers:

∀i, ∀s, xs
i ≥ 0.
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