H. Bauke and S. Mertens, Random numbers for large-scale distributed Monte Carlo simulations, Physical Review E, vol.75, issue.6, pp.701-714, 2007.
DOI : 10.1103/PhysRevE.75.066701

T. Bradley, J. D. Toit, R. Tong, M. Giles, and P. Woodhams, Parallelization Techniques for Random Number Generators, GPU Computing Gems Emerald Edition, pp.231-246, 2011.
DOI : 10.1016/B978-0-12-384988-5.00016-4

R. G. Brown, D. Eddelbuettel, and D. Bauer, DieHarder: a random number test suite, 2009.

H. Bugmann, A review of forest gap models, Climatic Change, vol.51, issue.3/4, pp.259-305, 2001.
DOI : 10.1023/A:1012525626267

J. Caux, Parallélisation et optimisation d'un simulateur de morphogénèse d'organes Application aux éléments du rein, 2012.

J. Caux, D. R. Hill, and P. Siregar, Accelerating 3D cellular automata computation with GP-GPU in the context of integrative biology. Cellular Automata-Innovative Modelling for Science and Engineering, pp.411-426, 2011.
URL : https://hal.archives-ouvertes.fr/hal-00679045

O. Chafik, ScalaCL. (Cited on page 152, 2011.

J. Chave, Study of structural, successional and spatial patterns in tropical rain forests using TROLL, a spatially explicit forest model, Ecological Modelling, vol.124, issue.2-3, pp.233-254, 1999.
DOI : 10.1016/S0304-3800(99)00171-4

S. Chiba, Javassist?a reflection-based programming wizard for java, Proceedings of OOPSLA'98 Workshop on Reflective Programming in C++ and Java, p.174, 1998.

P. Coddington, TESTS OF RANDOM NUMBER GENERATORS USING ISING MODEL SIMULATIONS, International Journal of Modern Physics C, vol.07, issue.03, pp.61-62, 1996.
DOI : 10.1142/S0129183196000235

P. Coddington and A. Newell, JAPARA - a Java parallel random number generator library for high-performance computing, 18th International Parallel and Distributed Processing Symposium, 2004. Proceedings., pp.156-166, 2004.
DOI : 10.1109/IPDPS.2004.1303143

P. D. Coddington and S. Ko, Techniques for empirical testing of parallel random number generators, Proceedings of the 12th international conference on Supercomputing , ICS '98, pp.282-288, 1998.
DOI : 10.1145/277830.277895

G. Cong, S. Kodali, S. Krishnamoorthy, D. Lea, V. Saraswat et al., Solving Large, Irregular Graph Problems Using Adaptive Work-Stealing, 2008 37th International Conference on Parallel Processing, pp.536-545, 2008.
DOI : 10.1109/ICPP.2008.88

R. Céréghino, C. Leroy, A. Dejean, C. , and B. , Ants mediate the structure of phytotelm communities in an ant-garden bromeliad, Ecology, vol.6, issue.5, pp.1549-1556, 2010.
DOI : 10.1073/pnas.0700062104

L. Dagum and R. Menon, OpenMP: an industry standard API for shared-memory programming, IEEE Computational Science and Engineering, vol.5, issue.1, pp.46-55, 1998.
DOI : 10.1109/99.660313

D. Matteis, A. Eichenauer-herrmann, J. Grothe, and H. , Computation of critical distances within multiplicative congruential pseudorandom number sequences, Journal of Computational and Applied Mathematics, vol.39, issue.1, pp.49-55, 1992.
DOI : 10.1016/0377-0427(92)90221-I

D. Matteis, A. Pagnutti, and S. , Parallelization of random number generators and long-range correlations, Numerische Mathematik, vol.10, issue.No. 2, pp.595-608, 1988.
DOI : 10.1007/BF01397554

D. Matteis, A. Pagnutti, and S. , A class of parallel random number generators, Parallel Computing, vol.13, issue.2, pp.193-198, 1990.
DOI : 10.1016/0167-8191(90)90146-Z

D. Matteis, A. Pagnutti, and S. , Long-range correlations in linear and non-linear random number generators, Parallel Computing, vol.14, issue.2, pp.207-210, 1990.
DOI : 10.1016/0167-8191(90)90108-L

D. Matteis, A. Pagnutti, and S. , Controlling correlations in parallel Monte Carlo, Parallel Computing, vol.21, issue.1, pp.73-84, 1995.
DOI : 10.1016/0167-8191(94)00073-J

J. Dean and S. Ghemawat, MapReduce, Communications of the ACM, vol.51, issue.1, pp.107-113, 2008.
DOI : 10.1145/1327452.1327492

R. Dolbeau, S. Bihan, and F. Bodin, HMPP: a hybrid multi-core parallel programming environment, Workshop on General Purpose Processing on Graphics Processing Units, 2007.

M. J. Durst, Using linear congruential generators for parallel random number generation, Proceedings of the 21st Winter Simulation Conference, pp.462-466, 1989.

W. F. Eddy, Random number generators for parallel processors, Journal of Computational and Applied Mathematics, vol.31, issue.1, pp.63-71, 1990.
DOI : 10.1016/0377-0427(90)90336-X

J. Eichenauer-herrmann and H. Grothe, A remark on long-range correlations in multiplicative congruential pseudo random number generators, Numerische Mathematik, vol.389, issue.6, pp.609-611, 1989.
DOI : 10.1007/BF01396346

E. Bitar, Z. Lazaro, D. Coello, C. Breton, V. Hill et al., Fully 3D monte carlo image reconstruction in SPECT using functional regions. Nuclear Instruments and Methods in Physics Research Section A: Accelerators ,Spectrometers, Detectors and Associated Equipment, pp.399-403, 2006.
URL : https://hal.archives-ouvertes.fr/in2p3-00024935

K. Entacher and B. Hechenleitner, Pitfalls when using parallel streams in OM- NET++ simulations, Interdomain Performance and Simualtion (IPS) Workshop, p.11, 2003.

K. Entacher, A. Uhl, and S. Wegenkittl, Linear Congruential Generators for Parallel Monte Carlo: the Leap-Frog Case., Monte Carlo Methods and Applications, vol.4, issue.1, pp.1-16, 1998.
DOI : 10.1515/mcma.1998.4.1.1

K. Entacher, A. Uhl, and S. Wegenkittl, Parallel Random Number Generation: Long-Range Correlations Among Multiple Processors, Parallel Computation, pp.107-116, 1999.
DOI : 10.1007/3-540-49164-3_11

G. Ewing, K. Pawlikowski, and D. Mcnickle, Akaroa-2: Exploiting network computing by distributing stochastic simulation, Proceedings of the 13th European Simulation Multiconference, pp.175-181, 1999.

W. Feng and S. Xiao, To GPU synchronize or not GPU synchronize, Circuits and Systems (ISCAS Proceedings of 2010 IEEE International Symposium on, pp.3801-3804, 2010.

A. Ferrenberg, D. Landau, and Y. Wong, Monte Carlo simulations: Hidden errors from ??????good?????? random number generators, Physical Review Letters, vol.69, issue.23, pp.3382-3384, 1992.
DOI : 10.1103/PhysRevLett.69.3382

M. Flynn, Very high-speed computing systems, Proceedings of the IEEE, vol.54, issue.12, pp.1901-1909, 1966.
DOI : 10.1109/PROC.1966.5273

P. Frederickson, R. Hiromoto, T. Jordan, . Smith, and T. Warnock, Pseudo-random trees in Monte Carlo, Parallel Computing, vol.1, issue.2, pp.175-180, 1984.
DOI : 10.1016/S0167-8191(84)90072-3

G. Fudenberg and L. A. Mirny, Higher-order chromatin structure: bridging physics and biology, Current Opinion in Genetics & Development, vol.22, issue.2, pp.115-124, 2012.
DOI : 10.1016/j.gde.2012.01.006

R. M. Fujimoto, Parallel and distributed simulation systems, Proceeding of the 2001 Winter Simulation Conference (Cat. No.01CH37304), 2000.
DOI : 10.1109/WSC.2001.977259

E. Gamma, R. Helm, R. Johnson, and J. M. Vlissides, Design patterns: elements of reusable object-oriented software, pp.86-150, 1995.

J. E. Gentle, Random Number Generation and Monte Carlo Methods, Statistics and Computing, 2003.
DOI : 10.1007/978-1-4757-2960-3

J. Gosling, B. Joy, G. Steele, and G. Bracha, The Java language specification, 2005.

S. Gourlet-fleury, G. Cornu, H. Dessard, N. Picard, and P. Sist, Modelling forest dynamics for practical management purposes, Bois et Forêts des Tropiques, vol.280, issue.2, pp.41-52, 2004.

J. L. Gustafson, Reevaluating Amdahl's law, Communications of the ACM, vol.31, issue.5, pp.532-533, 1988.
DOI : 10.1145/42411.42415

P. Haller and M. Odersky, Scala Actors: Unifying thread-based and event-based programming, Theoretical Computer Science, vol.410, issue.2-3, pp.202-220, 2009.
DOI : 10.1016/j.tcs.2008.09.019

H. Haramoto, M. Matsumoto, T. Nishimura, F. Panneton, and P. Lõecuyer, -Linear Random Number Generators, INFORMS Journal on Computing, vol.20, issue.3, pp.385-390, 2008.
DOI : 10.1287/ijoc.1070.0251

B. He, W. Fang, Q. Luo, N. K. Govindaraju, W. et al., Mars, Proceedings of the 17th international conference on Parallel architectures and compilation techniques, PACT '08, pp.260-269, 2008.
DOI : 10.1145/1454115.1454152

B. Hechenleitner, Defects in Random Number Routines of Well-Known Network Simulators and Appropriate Improvements, 2004.

B. Hechenleitner and K. Entacher, On shortcomings of the NS-2 random number generator, Proceedings of the Communication Networks and Distributed Systems Modeling and Simulation, pp.71-77, 2002.

P. Hellekalek, Don't trust parallel monte carlo! In Proceedings of Parallel and Distributed Simulation PADS98, pp.82-89, 1998.

P. Hellekalek, Good random number generators are (not so) easy to find, Mathematics and Computers in Simulation, vol.46, issue.5-6, pp.485-505, 1998.
DOI : 10.1016/S0378-4754(98)00078-0

D. R. Hill, C. Mazel, J. Passerat-palmbach, and M. K. Traoré, Distribution of random streams for simulation practitioners. Concurrency and Computation: Practice and Experience, pp.1427-1442, 2013.
URL : https://hal.archives-ouvertes.fr/hal-01099203

D. R. Hill and U. Ma, Object-oriented analysis and simulation, 1996.

D. R. Hill, Object-oriented pattern for distributed simulation of large scale ecosystems, SCS Summer Computer Simulation Conference, pp.945-950, 1997.

D. R. Hill, URNG: a portable optimization technique for software applications requiring pseudo-random numbers. Simulation Modelling Practice and Theory, pp.643-654, 2003.

D. R. Hill, Practical distribution of random streams for stochastic High Performance Computing, 2010 International Conference on High Performance Computing & Simulation, pp.1-8, 2010.
DOI : 10.1109/HPCS.2010.5547156

M. D. Hill and M. R. Marty, Amdahl's Law in the Multicore Era, Computer, vol.41, issue.7, pp.33-38, 2008.
DOI : 10.1109/MC.2008.209

J. Hoberock and N. Bell, Thrust: A Parallel Template Library. Version 1.3.0, p.48, 2010.

S. Hong, S. K. Kim, T. Oguntebi, and K. Olukotun, Accelerating CUDA graph algorithms at maximum warp, Proceedings of the 16th ACM symposium on Principles and practice of parallel programming, pp.267-276, 2011.

L. Howes and D. Thomas, Efficient random number generation and application using CUDA, In GPU Gems, vol.3, 2007.

E. Ising, Beitrag zur theorie des ferromagnetismus Zeitschrift für Physik A Hadrons and Nuclei, pp.253-258, 1925.

F. James, A review of pseudorandom number generators, Computer Physics Communications, vol.60, issue.3, pp.329-344, 1990.
DOI : 10.1016/0010-4655(90)90032-V

A. Janowczyk, S. Chandran, A. , and S. , Fast, Processor-Cardinality Agnostic PRNG with a Tracking Application, 2008 Sixth Indian Conference on Computer Vision, Graphics & Image Processing, pp.171-178, 2008.
DOI : 10.1109/ICVGIP.2008.90

S. A. Joshi, Leveraging aparapi to help improve financial java application performance, 2012.

I. Junier, R. K. Dale, C. Hou, F. Képès, and A. Dean, CTCF-mediated transcriptional regulation through cell type-specific chromosome organization in the $\beta$-globin locus, Nucleic Acids Research, 2012.

I. Junier, O. Martin, and F. Képès, Spatial and Topological Organization of DNA Chains Induced by Gene Co-localization, PLoS Computational Biology, vol.133, issue.2, pp.1000678-126, 2010.
DOI : 10.1371/journal.pcbi.1000678.s007

URL : https://hal.archives-ouvertes.fr/hal-00484355

K. Karimi, N. G. Dickson, and F. Hamze, A Performance Comparison of CUDA and OpenCL. submitted, pp.22-27, 2010.

G. Kiczales, J. Lamping, A. Mendhekar, C. Maeda, C. Lopes et al., Aspect-oriented programming, 1997.

D. B. Kirk and W. W. Hwu, Programming Massively Parallel Processors, 2010.

W. Kirschenmann, Vers des noyaux de calcul intensif pérennes, 2012.

W. Kirschenmann, L. Plagne, and S. Vialle, Multi-target C++ implementation of parallel skeletons, Proceedings of the 8th workshop on Parallel/High-Performance Object-Oriented Scientific Computing, POOSC '09, p.7, 2009.
DOI : 10.1145/1595655.1595662

URL : https://hal.archives-ouvertes.fr/hal-00437542

R. Kitching, Food webs and container habitats: the natural history and ecology of phytotelmata, 2000.
DOI : 10.1017/CBO9780511542107

J. Kleijnen, Statistical tools for simulation practitioners, 1986.

A. Klöckner, N. Pinto, Y. Lee, B. Catanzaro, P. Ivanov et al., PyCUDA and PyOpenCL: A scripting-based approach to GPU run-time code generation, Parallel Computing, vol.38, issue.3, pp.157-174, 2012.
DOI : 10.1016/j.parco.2011.09.001

D. Knuth, The Art of Computer Programming Seminumerical Algorithms, pp.57-100, 1969.

J. C. Lagarias, Pseudorandom Numbers, Statistical Science, vol.8, issue.1, pp.31-39, 1993.
DOI : 10.1214/ss/1177011081

W. B. Langdon, A fast high quality pseudo random number generator for graphics processing units, 2008 IEEE Congress on Evolutionary Computation (IEEE World Congress on Computational Intelligence), pp.459-465, 2008.
DOI : 10.1109/CEC.2008.4630838

W. B. Langdon, A fast high quality pseudo random number generator for nVidia CUDA, Proceedings of the 11th annual conference companion on Genetic and evolutionary computation conference, GECCO '09, pp.2511-2514, 2009.
DOI : 10.1145/1570256.1570353

J. Langowski and D. Heermann, Computational modeling of the chromatin fiber, Seminars in Cell & Developmental Biology, vol.18, issue.5, pp.659-667, 2007.
DOI : 10.1016/j.semcdb.2007.08.011

D. Lazaro, Z. Bitar, V. Breton, D. R. Hill, and I. Buvat, Fully 3D Monte Carlo reconstruction in SPECT: a feasibility study, Physics in Medicine and Biology, vol.50, issue.16, p.3739, 2005.
DOI : 10.1088/0031-9155/50/16/006

URL : https://hal.archives-ouvertes.fr/in2p3-00104871

D. Lea, A Java fork/join framework, Proceedings of the ACM 2000 conference on Java Grande , JAVA '00, pp.36-43, 2000.
DOI : 10.1145/337449.337465

P. J. Leach, M. Mealling, and R. Salz, A universally unique identifier (UUID) URN namespace -RFC 4122, Internet Engineering Task Force (IETF), 2005.

L. 'ecuyer and P. , Efficient and portable combined random number generators, Communications of the ACM, vol.31, issue.6, pp.742-751, 1988.
DOI : 10.1145/62959.62969

L. 'ecuyer and P. , Random numbers for simulation, Communications of the ACM, vol.33, issue.10, pp.85-98, 1990.
DOI : 10.1145/84537.84555

L. 'ecuyer and P. , Maximally equidistributed combined Tausworthe generators, Mathematics of Computation, vol.65, issue.213, pp.203-213, 1996.
DOI : 10.1090/S0025-5718-96-00696-5

L. 'ecuyer and P. , Good Parameters and Implementations for Combined Multiple Recursive Random Number Generators, Operations Research, vol.47, issue.1, pp.159-164, 1999.
DOI : 10.1287/opre.47.1.159

L. 'ecuyer and P. , Software for uniform random number generation: Distinguishing the good and the bad, Proceedings of the Winter Simulation Conference, pp.95-105, 2001.

L. 'ecuyer and P. , Pseudorandom number generators, Encyclopedia of Quantitative Finance, pp.1431-1437, 2010.

L. 'ecuyer, P. Buist, and E. , Simulation in java with SSJ, Proceedings of the 37th conference on Winter simulation, pp.611-620, 2005.

L. 'ecuyer, P. Côté, and S. , Implementing a random number package with splitting facilities, ACM Transactions on Mathematical Software, vol.17, issue.1, pp.98-111, 1991.
DOI : 10.1145/103147.103158

L. 'ecuyer, P. Leydold, and J. , rstream: Streams of random numbers for stochastic simulation, 2005.

L. 'ecuyer, P. Meliani, L. Vaucher, and J. , SSJ: a framework for stochastic simulation in java, Proceedings of the 34th Winter Simulation Conference: exploring new frontiers, pp.234-242, 2002.

L. 'ecuyer, P. Simard, and R. , Beware of linear congruential generators with multipliers of the form a = ??2q ??2r, ACM Transactions on Mathematical Software, vol.25, issue.3, pp.367-374, 1999.
DOI : 10.1145/326147.326156

L. 'ecuyer, P. Simard, and R. , TestU01: a c library for empirical testing of random number generators, ACM Transactions on Mathematical Software, vol.3322, issue.32, pp.1-40, 2007.

L. 'ecuyer, P. Simard, and R. , TestU01:A Software Library in ANSI C for Empirical Testing of Random Number Generators -User's guide, detailed version, pp.54-56, 2009.

L. 'ecuyer, P. Simard, R. Chen, E. J. Kelton, and W. D. , An Object-Oriented Random-Number Package with Many Long Streams and Substreams, Operations Research, vol.50, issue.6, pp.1073-1075, 2002.
DOI : 10.1287/opre.50.6.1073.358

J. K. Lee and A. J. Smith, Branch Prediction Strategies and Branch Target Buffer Design, Computer, vol.17, issue.1, pp.6-22, 1984.
DOI : 10.1109/MC.1984.1658927

V. W. Lee, C. Kim, J. Chhugani, M. Deisher, D. Kim et al., Debunking the 100X GPU vs. CPU myth, ACM SIGARCH Computer Architecture News, vol.38, issue.3, pp.451-460, 2010.
DOI : 10.1145/1816038.1816021

Y. Li and M. Mascagni, Improving performance via computational replication on a large-scale computational grid, Proceedings of the 3st International Symposium on Cluster Computing and the Grid, pp.442-448, 2003.

L. Maigne, D. R. Hill, P. Calvat, V. Breton, R. Reuillon et al., Parallelization of monte carlo simulations and submission to a grid environment. Parallel processing letters, pp.177-196, 2004.
URL : https://hal.archives-ouvertes.fr/in2p3-00023432

G. Marsaglia, A current view of random number generators, Computer Science and Statistics, Sixteenth Symposium on the Interface, pp.3-10, 1985.

G. Marsaglia, Xorshift RNGs, Journal of Statistical Software, vol.8, issue.14, pp.1-6, 2003.
DOI : 10.18637/jss.v008.i14

G. Marsaglia, B. Narasimhan, and A. Zaman, A random number generator for PC's, Computer Physics Communications, vol.60, issue.3, pp.345-349, 1990.
DOI : 10.1016/0010-4655(90)90033-W

G. Marsaglia and A. Zaman, A New Class of Random Number Generators, The Annals of Applied Probability, vol.1, issue.3, pp.462-480, 1991.
DOI : 10.1214/aoap/1177005878

M. Mascagni, High-Performance Monte Carlo Tools [Conferences & Workshops], IEEE Computational Science and Engineering, vol.5, issue.2, pp.97-98, 1998.
DOI : 10.1109/MCSE.1998.683747

M. Mascagni, Some Methods of Parallel Pseudorandom Number Generation, IMA Volumes in Mathematics and Its Applications, pp.277-288, 1999.
DOI : 10.1007/978-1-4612-1516-5_12

M. Mascagni and H. Chi, Parallel linear congruential generators with Sophie???Germain moduli, Parallel Computing, vol.30, issue.11, pp.1217-1231, 2004.
DOI : 10.1016/j.parco.2004.08.002

M. Mascagni and A. Srinivasan, Algorithm 806: SPRNG: a scalable library for pseudorandom number generation, ACM Transactions on Mathematical Software, vol.26, issue.3, pp.436-461, 2000.
DOI : 10.1145/358407.358427

M. Mascagni and A. Srinivasan, Parameterizing parallel multiplicative lagged-Fibonacci generators, Parallel Computing, vol.30, issue.7, pp.899-916, 2004.
DOI : 10.1016/j.parco.2004.06.001

M. Matsumoto and T. Nishimura, Mersenne twister: a 623-dimensionally equidistributed uniform pseudo-random number generator, ACM Transactions on Modeling and Computer Simulation, vol.8, issue.1, pp.3-30, 1998.
DOI : 10.1145/272991.272995

M. Matsumoto and T. Nishimura, Dynamic Creation of Pseudorandom Number Generators, pp.56-69, 1998.
DOI : 10.1007/978-3-642-59657-5_3

S. Mcconnell, Code Complete: A Practical Handbook of Software Construction, p.22, 2004.

N. Metropolis, A. Rosenbluth, M. Rosenbluth, A. Teller, and E. Teller, Equation of state calculations by fast computing machines. The journal of chemical physics, p.1087, 1953.

B. Meyer, Object-Oriented Software Construction, 1988.

S. Meyers, Effective C++: 55 Specific Ways to Improve Your Programs and Designs, 2005.

G. A. Miller, The magical number seven, plus or minus two: some limits on our capacity for processing information., Psychological Review, vol.63, issue.2, p.81, 1956.
DOI : 10.1037/h0043158

J. Nickolls and W. J. Dally, The GPU Computing Era, IEEE Micro, vol.30, issue.2, pp.56-69, 2010.
DOI : 10.1109/MM.2010.41

H. Niederreiter, Quasi-Monte Carlo Methods, Wiley Online Library, 1992.

M. Odersky, L. Spoon, and B. Venners, Programming in Scala, Artima Incorporated, 2008.

C. Okasaki, Purely functional data structures, Cambridge Univ Pr, 1999.
DOI : 10.1017/CBO9780511530104

J. Orivel and C. Leroy, The diversity and ecology of ant gardens (hymenoptera: Formicidae; spermatophyta: Angiospermae), Myrmecological News, vol.14, pp.73-85, 2011.

F. Panneton, Construction d'ensembles de points basée sur des récurrences linéaires dans un corps fini de caractéristique 2 pour la simulation Monte Carlo et l'intégration quasi-Monte Carlo. PhD thesis, Département d'informatique et de recherche opérationnelle -Faculté des arts et des sciences, p.10, 2004.

F. Panneton, P. L-'ecuyer, and M. Matsumoto, Improved long-period generators based on linear recurrences modulo 2, ACM Transactions on Mathematical Software, vol.32, issue.1, pp.1-16, 2006.
DOI : 10.1145/1132973.1132974

A. Papakonstantinou, K. Gururaj, J. Stratton, D. Chen, J. Cong et al., FCUDA: Enabling efficient compilation of CUDA kernels onto FPGAs, 2009 IEEE 7th Symposium on Application Specific Processors, pp.35-42, 2009.
DOI : 10.1109/SASP.2009.5226333

S. K. Park and K. W. Miller, Random number generators: good ones are hard to find, Communications of the ACM, vol.31, issue.10, pp.1192-1201, 1988.
DOI : 10.1145/63039.63042

J. Passerat-palmbach, J. Caux, Y. L. Pennec, R. Reuillon, I. Junier et al., Parallel stepwise stochastic simulation, Proceedings of the 2013 ACM SIGSIM conference on Principles of advanced discrete simulation, SIGSIM-PADS '13, pp.169-177, 2013.
DOI : 10.1145/2486092.2486114

URL : https://hal.archives-ouvertes.fr/hal-01098546

J. Passerat-palmbach, J. Caux, P. Schweitzer, P. Siregar, C. Mazel et al., Harnessing aspect oriented programming on GPU: application to warp-level parallelism (WLP), The International Journal of Computer Aided Engineering and Technology, p.page submitted. under review, 2013.
URL : https://hal.archives-ouvertes.fr/hal-01099208

J. Passerat-palmbach, J. Caux, P. Siregar, and D. R. Hill, Warp-level parallelism: Enabling multiple replications in parallel on GPU, Proceedings of, 2011.
URL : https://hal.archives-ouvertes.fr/hal-01083163

K. Pawlikowski, Towards credible and fast quantitative stochastic simulation Analysis and Simulation of Distributed Systems, Proceedings of International SCS Conference on Design, p.11, 2003.

K. Pawlikowski, H. Jeong, L. , and J. , On credibility of simulation studies of telecommunication networks, IEEE Communications Magazine, vol.40, issue.1, pp.132-139, 2002.
DOI : 10.1109/35.978060

K. Pawlikowski and D. Mcnickle, Speeding up stochastic discrete-event simulation, Proc. European Simulation Symposium, ESS'01, pp.132-138, 2001.

K. Pawlikowski and V. Yau, On automatic partitioning, run-time control and output analysis methodology for massively parallel simulations, Proceedings of the European Simulation Symposium, ESS'92, pp.135-139, 1992.

K. Pawlikowski, V. Yau, and D. Mcnickle, Distributed stochastic discreteevent simulation in parallel time streams, Proceedings of the 26th conference on Winter simulation, pp.723-730, 1994.

O. Percus and M. Kalos, Random number generators for MIMD parallel processors, Journal of Parallel and Distributed Computing, vol.6, issue.3, pp.477-497, 1989.
DOI : 10.1016/0743-7315(89)90002-6

V. N. Podlozhnyuk, Parallel mersenne twister, 2007.

P. C. Pratt-szeliga, J. W. Fawcett, W. , and R. D. , Rootbeer: Seamlessly Using GPUs from Java, 2012 IEEE 14th International Conference on High Performance Computing and Communication & 2012 IEEE 9th International Conference on Embedded Software and Systems, pp.375-380, 2012.
DOI : 10.1109/HPCC.2012.57

T. Preis, P. Virnau, W. Paul, and J. Schneider, GPU accelerated Monte Carlo simulation of the 2D and 3D Ising model, Journal of Computational Physics, vol.228, issue.12, pp.4468-4477, 2009.
DOI : 10.1016/j.jcp.2009.03.018

A. Prokopec, P. Bagwell, T. Rompf, and M. Odersky, A Generic Parallel Collection Framework, Euro-Par 2011 Parallel Processing, pp.136-147, 2011.
DOI : 10.1007/978-3-642-23397-5_14

D. Reith, L. Mirny, and P. Virnau, GPU based molecular dynamics simulations of polymer rings in concentrated solution: Structure and scaling. Progress of Theoretical Physics Supplement, pp.135-145, 2011.

R. Reuillon, Simulations stochastiques en environnements distribués -Application aux grilles de calcul, Sciences pour l'Ingénieur, pp.30-73, 2008.

R. Reuillon, Testing 65536 parallel pseudo-random number streams, EGEE Grid User Forum, p.181, 2008.

R. Reuillon, F. Chuffart, M. Leclaire, T. Faure, N. Dumoulin et al., Declarative task delegation in OpenMOLE, 2010 International Conference on High Performance Computing & Simulation, pp.55-62, 2010.
DOI : 10.1109/HPCS.2010.5547155

R. Reuillon, D. R. Hill, Z. Bitar, and V. Breton, Rigorous Distribution of Stochastic Simulations Using the DistMe Toolkit, IEEE Transactions on Nuclear Science, vol.55, issue.1, pp.595-603, 2008.
DOI : 10.1109/TNS.2007.914026

URL : https://hal.archives-ouvertes.fr/in2p3-00258304

R. Reuillon, M. Leclaire, R. , and S. , OpenMOLE, a workflow engine specifically tailored for the distributed exploration of simulation models, Future Generation Computer Systems, vol.29, issue.8, pp.1981-1990, 2013.
DOI : 10.1016/j.future.2013.05.003

URL : https://hal.archives-ouvertes.fr/hal-00840744

R. Reuillon, M. K. Traore, J. Passerat-palmbach, and D. R. Hill, Parallel stochastic simulations with rigorous distribution of pseudo-random numbers with DistMe: application to life science simulations. Concurrency and Computation: Practice and Experience, pp.723-738, 2011.

A. Rukhin, J. Soto, J. Nechvatal, M. Smid, E. Barker et al., A statistical test suite for random and pseudorandom number generators for cryptographic applications, 2001.
DOI : 10.6028/NIST.SP.800-22

S. Ryoo, C. I. Rodrigues, S. S. Baghsorkhi, S. S. Stone, D. B. Kirk et al., Optimization principles and application performance evaluation of a multithreaded GPU using CUDA, Proceedings of the 13th ACM SIGPLAN Symposium on Principles and practice of parallel programming , PPoPP '08, pp.73-82, 2008.
DOI : 10.1145/1345206.1345220

M. Rütti, A random number generator test suite for the C++ standard, 2004.

M. Rütti, M. Troyer, and W. Petersen, A generic random number generator test suite. Arxiv preprint math/0410385, 2004.

M. Saito, Tiny mersenne twister (TinyMT): a small-sized variant of mersenne twister, p.44, 2011.

M. Saito and M. Matsumoto, SIMD-Oriented Fast Mersenne Twister: a 128-bit Pseudorandom Number Generator, pp.607-622, 2006.
DOI : 10.1007/978-3-540-74496-2_36

M. Saito and M. Matsumoto, A deviation of CURAND: standard pseudorandom number generator in CUDA for GPGPU. presentation, 2012.

M. Saito and M. Matsumoto, Variants of Mersenne Twister Suitable for Graphic Processors, ACM Transactions on Mathematical Software, vol.39, issue.2, pp.41-52, 2013.
DOI : 10.1145/2427023.2427029

J. K. Salmon, M. A. Moraes, R. O. Dror, and D. E. Shaw, Parallel random numbers, Proceedings of 2011 International Conference for High Performance Computing, Networking, Storage and Analysis on, SC '11, pp.1-16, 0118.
DOI : 10.1145/2063384.2063405

M. N. Scarpino, OpenCL in Action, 2011.

T. C. Schelling, Dynamic models of segregation???, The Journal of Mathematical Sociology, vol.1, issue.2, pp.143-186, 1971.
DOI : 10.2307/213133

P. Schweitzer, C. Mazel, F. Fehr, C. Carloganu, and D. R. Hill, Proper parallel Monte Carlo for computed tomography of volcanoes, 2013 International Conference on High Performance Computing & Simulation (HPCS), pp.519-526, 2013.
DOI : 10.1109/HPCSim.2013.6641463

J. Siek and A. Lumsdaine, Concept checking: Binding parametric polymorphism in c++, First Workshop on C++ Template Programming, 2000.

M. Sipper and M. Tomassini, GENERATING PARALLEL RANDOM NUMBER GENERATORS BY CELLULAR PROGRAMMING, International Journal of Modern Physics C, vol.07, issue.02, pp.181-190, 1996.
DOI : 10.1142/S012918319600017X

J. E. Smith, A study of branch prediction strategies, 25 years of the international symposia on Computer architecture (selected papers) , ISCA '98, pp.202-215, 1998.
DOI : 10.1145/285930.285980

I. Sommerville, Software Engineering, 2010.

O. Spinczyk, A. Gal, and W. Schröder-preikschat, AspectC++: an aspectoriented extension to the c++ programming language, Proceedings of the Fortieth International Conference on Tools Pacific: Objects for internet, mobile and embedded applications, pp.53-60, 2002.

A. Srinivasan, Introduction to parallel RNGs, 1998.

A. Srinivasan, M. Mascagni, C. , and D. , Testing parallel random number generators, Parallel Computing, vol.29, issue.1, pp.69-94, 2003.
DOI : 10.1016/S0167-8191(02)00163-1

URL : http://citeseerx.ist.psu.edu/viewdoc/summary?doi=

R. Stevanovic, G. Topic, K. Skala, M. Stipcevic, R. et al., Quantum Random Bit Generator Service for Monte Carlo and Other Stochastic Simulations, Lecture Notes in Computer Science, vol.124, pp.508-515, 2008.
DOI : 10.1016/S0010-4655(99)00434-8

T. R. Strick, M. Dessinges, G. Charvin, N. H. Dekker, J. Allemand et al., Stretching of macromolecules and proteins, Reports on Progress in Physics, vol.66, issue.1, p.1, 2003.
DOI : 10.1088/0034-4885/66/1/201

M. Sussman, W. Crutchfield, and M. Papakipos, Pseudorandom number generation on the GPU, Proceedings of the 21st ACM SIGGRAPH/EUROGRAPHICS symposium on Graphics hardware, GH '06, pp.87-94, 2006.
DOI : 10.1145/1283900.1283914

R. Tausworthe, Random numbers generated by linear recurrence modulo two, Mathematics of Computation, vol.19, issue.90, pp.201-209, 1965.
DOI : 10.1090/S0025-5718-1965-0184406-1

M. Tomassini, Parallel and distributed evolutionary algorithms: A review, 1999.

M. Tomassini, M. Sipper, M. Zolla, and M. Perrenoud, Generating high-quality random numbers in parallel by cellular automata, Future Generation Computer Systems, vol.16, issue.2-3, pp.291-305, 1999.
DOI : 10.1016/S0167-739X(99)00053-9

P. Topa and P. M?ocek, GPGPU Implementation of Cellular Automata Model of Water Flow, Parallel Processing and Applied Mathematics, pp.630-639, 2012.
DOI : 10.1007/978-3-642-31464-3_64

L. Touraille, M. K. Traoré, and D. R. Hill, Enhancing DEVS simulation through template metaprogramming, 2010 Summer Simulation Multiconference, pp.394-402, 2010.
URL : https://hal.archives-ouvertes.fr/hal-00679052

M. K. Traoré and D. R. Hill, The use of random number generation for stochastic distributed simulation: application to ecological modeling, Proceedings of the 13th European Simulation Symposium, pp.555-559, 2001.

R. Vallée-rai, P. Co, E. Gagnon, L. Hendren, P. Lam et al., Soot, CASCON First Decade High Impact Papers on, CASCON '10, pp.214-224, 2010.
DOI : 10.1145/1925805.1925818

A. Van-deursen, P. Klint, and J. Visser, Domain-specific languages, ACM SIGPLAN Notices, vol.35, issue.6, pp.26-36, 2000.
DOI : 10.1145/352029.352035

I. Vattulainen and T. Ala-nissila, Mission Impossible: Find a Random Pseudorandom Number Generator, Computers in Physics, vol.9, issue.5, pp.500-510, 1995.
DOI : 10.1063/1.168548

C. Wittenbrink, E. Kilgariff, and A. Prabhu, Fermi GF100 GPU Architecture, IEEE Micro, vol.31, issue.2, pp.50-59, 2011.
DOI : 10.1109/MM.2011.24

P. Wu and K. Huang, Parallel use of multiplicative congruential random number generators, Computer Physics Communications, vol.175, issue.1, pp.25-29, 2006.
DOI : 10.1016/j.cpc.2004.08.009

S. Xiao and W. Feng, Inter-block GPU communication via fast barrier synchronization, Parallel & Distributed Processing (IPDPS), 2010 IEEE International Symposium on, pp.1-12, 2010.

A. Zhmurov, K. Rybnikov, Y. Kholodov, V. Barsegov, and . Cern, Efficient pseudorandom number generators for biomolecular simulations on graphics processors, 2010.