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Abstract

XML (eXtensible Markup Language) is a current standard format for exchanging semi-
structured data, which has been applied to web services, database, research on formal
methods, and so on. For a better processing of XML, recently there emerge many stati-
cally typed functional languages, such as XDuce, CDuce, XJ, XTatic, XACT, XHaskell,
OCamlDuce and so on. But most of these languages lack parametric polymorphism
or present it in a limited form. While parametric polymorphism is needed by XML
processing, this is witnessed by the fact that it has repeatedly been requested to and
discussed in various working groups of standards (e.g., RELAX NG and XQuery).
We study in this thesis the techniques to extend parametric polymorphism into XML
processing languages.

Our solution consists of two parts: a definition of a polymorphic semantic subtyping
relation and a definition of a polymorphic calculus. In the first part, we define and
study a polymorphic semantic subtyping relation for a type system with recursive,
product and arrow types and set-theoretic type connectives (i.e., intersection, union and
negation). We introduce the notion of “convexity” on which our solution is built up and
prove there exists at least one model that satisfies convexity. We also propose a sound,
complete and terminating subtyping algorithm. The second part is devoted to the
theoretical definition of a polymorphic calculus, which takes advance of the subtyping
relation. The novelty of the polymorphic calculus is to decorate λ-abstractions with
sets of type-substitutions and to lazily propagate type-substitutions at the moment of
the reduction. The second part also explores a semi-decidable local inference algorithm
to infer the set of type-substitutions as well as the compilation of the polymorphic
calculus into a variety of CDuce.
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Résumé

XML (eXtensible Markup Language) est un format standard pour l’échange de données
semi-structurées, qui est utilisé dans services web, les bases de données, et comme
format de sérialisation pour échanger des données entre applications. Afin d’avoir un
meilleur traitement de données XML, plusieurs langages statiquement typés pour XML
ont été récemment définis, tels XDuce, CDuce, XJ, XTatic, XACT, XHaskell, OCaml-
Duce. Ces langages peuvent vérifier si un programme n’engendra d’erreurs de types à
l’exécution. Mais la plupart de ces langages n’incluent pas le polymorphisme paramé-
trique ou l’incluent sous un forme très limitée. Cependant, le traitement de données
XML nécessite du polymorphisme paramétrique, c’est pourquoi il a été demandé et
discuté à plusieurs reprises dans diverses groupes de travail de standardisation (par
example, RELAX NG et XQuery) .

Nous étudions dans cette thèse les techniques pour étendre par le polymorphisme pa-
ramétrique les langages de traitement XML. Notre solution se deroule sur deux étapes :
(i) nous définissons et étudions une relation de sous-typage polymorphe sémantique
pour un système de type avec types récursifs, types des produits, types des flèches, et
types des ensemblistes (c’est-à-dire, l’union, l’intersection et la négation) ; et (ii) nous
concevons et étudions un langage fonctionnel d’ordre supérieur qui tire pleinement parti
des nouvelles fonctionnalités du système de type.

La solution que nous proposons dans cette thèse est générale. Ainsi elle a des do-
maines d’application autres que les langages pour le traitement de données XML.

Sous-typage polymorphe sémantique

Une approche näıf d’étendre l’approche monomorphisme avec polymorphisme consiste
à réutiliser l’approche monomorphisme en considérant toutes les instances de sol de
types polymorphes (c’est-à-dire, les substitutions des variables de type dans les types
de sol), mais l’extension fournit une relation de sous-typage qui souffre de tant de
problèmes qui se révèle être inutile. Le nœud du problème est le comportement de
« bégaiement » de types indivisibles, c’est-à-dire, les types non vides dont seul sous-
type strict est le type de vide. Généralement, un type indivisible est soit complètement
à l’intérieur soit complètement à l’extérieur de tout autre type. Notre solution est de
faire de types indivisibles « sécable » afin que les variables de type peuvent varier
sur des sous-ensembles stricts de n’importe quel type. Formellement, nous définissons
assignement sémantique pour les variables de type comme substitutions des variables de
types dans sous-ensembles de n’importe quel type. Ainsi, nous définissons la relation de
sous-typage comme l’inclusion des ensembles dénotés sous toutes les assignement pour
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les variables de type.

Pour caractériser sémantiquement les modèles où le bégaiement est absent, nous
introduisons une propriété de « convexité ». La convexité impose la relation de sous-
typage pour avoir un comportement uniforme, donc nous estimons qu’il existe des
liens solides entre la convexité et la paramétricité. Nous montrons aussi qu’il existe au
moins un modèle de ensembliste qui est convexe. En fait, il existe beaucoup de modèles
convexes car chaque modèle où tous les types de non vide dénotent qu’un ensemble
infini est convexe.

Enfin, basée sur la théorie des ensembles et la convexité, nous proposons un algo-
rithme de sous-typage, ce qui est correct, complète et décidable. L’idée est de remplacer
les variables de type survenant au niveau supérieur par type structurel (c’est-à-dire,
types de produits et de flèche) qui sont composées de nouvelles variables de type, et
puis de décomposer les constructeurs de types au niveau supérieur afin de récursivité
ou arrêter.

Calcul polymorphe

Le langage spéciale que nous cherchons à définir dans cette thèse est une version po-
lymorphe de CDuce. Dans CDuce, λ-abstractions sont tapées par les intersections des
types de flèche généralement pour taper surcharge. La nouveauté de la version po-
lymorphe est de permettre à des variables de type à se produire dans les types et
donc dans les types d’étiquetage dans les λ-abstractions. En conséquence, nous pou-
vons définir des fonctions polymorphes et appliquez-les. Avant d’appliquer une fonction
polymorphe, il faut ré-étiqueter (instancier) via une substitution de type approprié. En
raison de types d’intersection, nous pouvons renommer une fonction polymorphe via
plusieurs substitutions de type, à savoir que via un ensemble de substitutions de type.
Mais ce qui rend la voie de la tradition, qui applique un ensemble de substitutions de
type à tous les types d’étiquetage dans une fonction, ne fonctionnent plus. Notre solu-
tion est d’effectuer un « paresseux » ré-étiquetage en décorant des λ-abstractions avec
des ensembles de substitutions de type et de propager paresseusement les substitutions
de type au moment de la réduction. Notre calcul est aussi un λ-calcul explicitement
typé avec types d’intersection.

Deux types, le problème de correspondance de type est de vérifier s’il existe une
substitution telle que l’instance du premier type est un sous-type de l’instance du second
type. Nous considérons le problème de correspondance de type comme un problème de
satisfaction de contraintes. Basée sur la théorie des ensembles et l’algorithme de sous-
typage, nous proposons un algorithme de correspondance de type, ce qui est correct,
complète et décidable. L’idée principale est d’isoler les variables de type survenant
au niveau supérieur, ce qui donne des contraintes sur ces variables de type ; et puis
d’extraire une substitution de ces contraintes.

En pratique, les ensembles de substitutions de type sont transparentes pour le pro-
grammeur. Pour cela, nous proposons un système d’inférence, ce qui infère où et quelles
substitutions de type pouvant être insérées dans une expression pour la rendre bien typé.
La difficulté réside dans commment taper une application, car il doit vérifier si les types
de fonction et de son argument peuvent être rendues compatibles. Dans notre cadre,
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pour faire une application bien typé, nous devons trouver deux ensembles de substi-
tutions de type qui produisent des instances dont les intersections sont en la relation
de sous-typage droit. Supposons que les cardinalités de ces deux ensembles sont fixes.
Ensuite, nous pouvons réduire le problème de typage application à une instance de le
problème de correspondance de type en l’α-renommage. Cela donne immédiatement une
procédure semi-décision qui essaie toutes les cardinalités pour le système d’inférence.
Par ailleurs, afin d’assurer la résiliation, nous proposons deux nombres heuristiques
pour les cardinalités de ces deux ensembles qui sont établis selon les formes des types
de la fonction et de son argument. L’intuition est que ces connecteurs de type sont ce
qui nous font instancier un type polymorphe plusieurs fois.

Enfin, afin de fournir un modèle d’exécution pour notre calcul, nous étudions la
traduction de notre calcul polymorphe dans un calcul monomorphisme (par exemple,
une variante de CDuce). L’idée principale est d’utiliser l’expression case type pour
simuler les différentes ré-étiquetage sur l’expression du corps d’une λ-abstraction avec
différents cas type. Nous montrons aussi que la traduction est correct.
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Chapter 1

Introduction

1.1 XML

XML (Extensible Markup Language) is a simple but flexible text format to structure
documents [XML], standardized by World Wide Web Consortium (W3C). XML is a
markup language much like HTML [HTM99]. But unlike HTML, XML is extensible and
allows users to create their own tags based on the data processed. Due to its flexibility
and extensibility, XML has become popular for web services, database, research on
formal methods, and other applications. For example, XML has come into common
use for the interchange of data over the Internet.

An XML document is a text file where tags are inserted so that the whole document
forms a tree structure. That is to say, an XML document can be viewed as a tree of
variable arities in a natural way, where nodes (also called elements) are markups, leaves
are raw text (also called PCDATA). For example, a simple XML document and its tree
representation are given in Figure 1.1. This document represents an address book. In
this document “addrbook”, “person”, “name”, and “email” are tag names (labels). A
node (element) is represented as a pair of an opening tag <label> and a closing tag
</label>.

The XML specification defines an XML document as a text that is well-formed [XML].
For example, XML elements must be properly nested (i.e., tags must be well paren-
thesized). Of course, the specification specifies the syntactic constraints. Besides the
specification, there are some semantic constraints to impose on an XML document.
Then a well-formed document which satisfies these semantic constraints is said to be
valid. There are many schema languages to describe such constraints, such as DTD
(Document Type Definitions) [DTD06], RELAX NG [CM01], XML-Schema [XSc], DSD
(Document Structure Description) [KMS00], etc. With these schema languages, such
additional constraints can be specified: restrain the set of possible tags, specify the
order of appearance of tags, the content of a tag (e.g., a tag <a> must only contain
elements of tag <b> or characters) and so on. In XML processing, one can validate an
XML document against a given schema (e.g., DTD). For example, Figure 1.2 shows a
DTD which accepts documents similar to the one of the address book in Figure 1.1.

3
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<addrbook>

<person>

<name>Giuseppe Castagna</name>

<email>Giuseppe.Castagna@pps.jussieu.fr</email>

<email>gc@pps.jussieu.fr</email>

</person>

<person>

<name>Zhiwu Xu</name>

<email>Zhiwu.Xu@pps.jussieu.fr</email>

<tel>06-12-34-56-78</tel>

</person>

</addrbook>

addrbook

person

name Giuseppe Castagna

email Giuseppe.Castagna@pps.jussieu.fr

email gc@pps.jussieu.fr

person

name Zhiwu Xu

email Zhiwu.Xu@pps.jussieu.fr

tel 06-12-34-56-78

Figure 1.1: An XML document and its tree representation

<!ELEMENT addrbook (person*)>

<!ELEMENT person (name, email*,tel?)>

<!ELEMENT name #PCDATA>

<!ELEMENT email #PCDATA>

<!ELEMENT tel #PCDATA>

Figure 1.2: An example of DTD

1.2 Statically typed languages for XML

Many tools, libraries, and languages have been developed to help developing applica-
tions that manipulate XML documents. But most of them are error-prone or lack any
flexibility. For a better programming with XML and due to the fact that DTD, Relax-
NG or XML schema are some classes of regular tree languages [MLM01], recently there
emerged several concrete statically typed languages for XML processing, taking XML
documents as first-class values and XML schemas as XML types, such as XDuce [HP03],
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XQuery [BCF+03b], CDuce [BCF03a], XJ [HRS+05], XTatic [GLPS05a], XACT [KM06],
XHaskell [SZL07] and OCamlDuce [Fri06]. Moreover, programs are analyzed at com-
pile time (i.e., statically). When a program passes type-checking, it is guaranteed that
the program runs well and generates outputs of the expected type. For example, if an
XML transformation (i.e., a function) has been checked to have type t → s, then for
any input of type t, the output of the transformation will always have type s, without
any further validation.

XDuce [Hos01, HP01] was the first domain specific programming language with
static type-checking of XML operations. In XDuce, XML documents are first class
values and types are regular expression types. Regular expression types are nothing else
but regular tree languages [CDG+97]. The most essential part of the type system is the
definition of semantic subtyping, which is uniquely suited to finely check constraints
on XML documents. In Figure 1.3, we can see a sample of code1, which defines the
address book document (value) and its corresponding DTD (type). Type constructors
of the form <label>[R ] classify tree nodes with the tag name label, where R denotes
a regular expression on types.

type Addrbook = <addrbook>[Person*]

type Person = <person>[Name,Email*,Tel?]

type Name = <name>[String]

type Email = <email>[String]

type Tel = <tel>[String]

<addrbook>[

<person>[

<name>[Giuseppe Castagna]

<email>[Giuseppe.Castagna@pps.jussieu.fr]

<email>[gc@pps.jussieu.fr]

]

<person>[

<name>[Zhiwu Xu]

<email>[Zhiwu.Xu@pps.jussieu.fr]

<tel>[06-12-34-56-78]

]

]

Figure 1.3: CDuce definitions of address book and its type

Another important feature is the definition of regular expression pattern matching,
a generalization of pattern matching as found in many functional programming lan-
guages (e.g., SML, OCaml, and Haskell), which selects efficiently sub-parts of an input
document in a precisely typed way.

1This code is actually a CDuce code, whose syntax is close to the one of XDuce.
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XDuce has been further extended in many different directions. One extension is
XTatic [GLPS05a], which aims at integrating the main ideas from XDuce into C♯.
Another extension is the CDuce language [BCF03a], whose syntax is similar to that
of XDuce. The CDuce language attempts to extend XDuce towards being a general-
purpose functional language. To this end, CDuce extended semantic subtyping with
arrow types, and added higher-order and overloaded functions (while in XDuce, func-
tions are not first class values), yielding a more powerful type system. CDuce also
generalized the notion of regular expression pattern matching by exposing all Boolean
connectives to the programmer (while XDuce only provides union types).

1.3 Parametric polymorphism

All these XML processing languages achieved their goal to provide a way to statically
and precisely type XML transformations, but most of them lack an important typ-
ing facility, namely parametric polymorphism2 [Mil78]. Parametric polymorphism is
a way to make a language more expressive, while still maintaining full static type-
safety. It has been exploited in many programming languages, such as ML [MTHM97],
Haskell [Sim92], OCaml [Oca], Java [GJSB05], C♯ [HWG03], etc.

Not surprisingly, this useful facility is needed by XML processing. Parametric
polymorphism has repeatedly been requested to and discussed in various working groups
of standards (e.g., RELAX NG [CM01] and XQuery [DFF+07]), since it would bring
not only the well-known advantages already demonstrated in existing languages (e.g.,
the typing of map, fold, and other functions that are standard in functional languages
or the use of generics in object-oriented languages), but also new usages peculiar to
XML. A typical example is the Simple Object Access Protocol (SOAP) [soap] that
provides XML “envelopes” to wrap generic XML data d as follows:

<Envelope>

<Body>

d
</Body>

</Envelope>

The format of SOAP envelopes consists of an optional header (which contains application-
specific information like authentication, authorization, and payment processing) and of
a body (which contains the information that is the core of the SOAP message). This
format is specified by the schema in [Env]. Using the notation of regular expression
types (as defined in [BCF03a]) the core of this specification can be summarized as
follows:

type Envelope = <Envelope>[ Header? Body ]

type Header = <Header>[ Any* ]

type Body = <Body>[ Any* ]

2Indeed, some of them do provide polymorphism but in a limited form, for example, XDuce supports
polymorphism but not for higher-order functions [HFC09].
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where Any is the type of any XML document and <tag>[R ] classifies elements of the
form <tag>...</tag> whose content is a sequence of elements described by the regular
expression R on types. The definitions above, thus, state that documents of type
Envelope are XML elements with tag Envelope and containing a sequence formed by
an optional (as stated by the regular expression operator ‘?’) element of type Header

followed by an element of type Body. Elements of the former type are tagged by
Header and contain a possibly empty sequence of elements of any type (as specified by
the Kleene star ‘*’), and similarly for elements of the latter.

Envelopes are manipulated by API’s which provide functions — such as getBody,
setBody, getHeader, setBodyElement, ...— which are inherently polymorphic. So, for
instance , the “natural” types of the first two functions are:

setBody : ∀ α . α → <Envelope>[ <Body> α ]

getBody : ∀ α . <Envelope>[ Header? <Body> α ] → α

These types specify that setBody is a function that takes an argument of type α
and returns an envelope whose body encapsulates a value of type α, while getBody

extracts the content of type α from the body of an envelope, whatever this type is.
Unfortunately, since polymorphism for XML types is not available, API’s must either
use the Any type instead of type variables, or resort to macro expansion tricks.

A subtler example involving polymorphic higher-order functions, bounded polymor-
phism, and XML types is given by Ocsigen [BVY09], a framework to develop dynamic
web sites, where web-site paths (URIs) are associated to functions that take the URI
parameters —the so-called “query strings” [BLFM05]— and return an XHTML page.
The core of the dynamic part of Ocsigen system is the function register_new_service

whose (moral) type is:

∀α ≤ Params.(Path× (α → Xhtml)) → unit

where Params is the XML type of all possible query strings. That is, it is a function
that registers the association of its two parameters: a path in the site hierarchy and
a function that is fed with a query string that matches the description α and then
returns an XHTML page. By explicitly passing to register_new_service the type
of the parameters of the page to register, we can force the type system to statically
check that the function given as argument can safely handle them and we set a upper
bound (with respect to the subtyping order) for the type of these parameters. Unfortu-
nately, this kind of polymorphism is not available, yet, and the current implementation
of register_new_service must bypass the type system (of OCaml [Oca], OCaml-
Duce [Fri06], and/or CDuce [BCF03a]), losing all the advantages of static verification.

So why despite all this interest and motivations does no satisfactory solution exist
yet? The crux of the problem is that, despite several efforts (e.g., [HFC09, Vou06]),
a comprehensive polymorphic type system for XML was deemed unfeasible. This is
mainly because (i) a purely semantic subtyping approach to polymorphism was believed
to be impossible, and (ii) even if we are able to define a subtyping relation, we then
need to solve “local type inference” [PT00] in the presence of intersection types. We
explain these two reasons in the following.
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Semantic subtyping

XML types (Schema) are essentially regular tree languages [MLM01]. As such they
can be encoded by product types (to encode lists), union types (for regexp unions)
and recursive types (for Kleene’s star). To type higher order functions we need arrow
types. We also need intersection and negation types since in the presence of arrows
they can no longer be encoded. Therefore, studying polymorphism for XML types is
equivalent to studying it for the types that are co-inductively (for recursion) produced
by the following grammar:

t ::= b | t× t | t → t | t ∨ t | t ∧ t | ¬t | 0 | 1 (1.1)

where b ranges over basic types (e.g., Bool, Real, Int, . . . ), and 0 and 1 respectively
denote the empty (i.e., that contains no value) and top (i.e., that contains all values)
types. In other terms, types are nothing but a propositional logic (with standard logical
connectives: ∧,∨,¬) whose atoms are 0, 1, basic, product, and arrow types.

Because an XML type can be interpreted as a set of documents which conform
to the type (Schema) on one hand, and the subtyping relation can be defined simply
as the inclusion of denoted sets on the other hand, some of current research on type
systems for XML processing languages follows a semantic approach [AW93, Dam94]
(e.g., XDuce and CDuce), that is, one starts with a model of the language and an
interpretation of types as subsets of the model, then defines the subtyping relation as
the inclusion of denoted sets. Accordingly, Int is interpreted as the set that contains
the values 0, 1, -1, 2, . . . ; Bool is interpreted as the set that contains the values true

and false; and so on. In particular, then, unions, intersections, and negations (i.e.,
type connectives) must have a set-theoretic semantics, and products and arrows (i.e.,
type constructors) behave as set-theoretic products and function spaces. Formally, this
corresponds to defining an interpretation function [_] from types to the subsets of some
domain D (for simplicity the reader can think of the domain as the set of all values
of the language). Once such an interpretation has been defined, then the subtyping
relation is naturally defined as the inclusion of denoted sets:

t1 ≤ t2
def
⇐⇒ [t1] ⊆ [t2],

which, restricted to XML types, corresponds to the standard interpretation of subtyping
as tree language containment.

However, it is not trivial to extend this approach with parametric polymorphism.
To see the difficulty, assume that we allow type variables to occur in types 3 (hereafter
we call types without type variables as ground types) and that we naively extend
the semantic approach by considering all possible ground instances of types with type
variables:

t ≤ s
def
⇐⇒ ∀θ. [tθ] ⊆ [tθ] (1.2)

where t, s are types with type variables and θ is a ground substitution, that is a finite
map from type variables to ground types. Then let us consider the following subtyping

3We did not include any explicit quantification for type variables, since we focus on prenex para-
metric polymorphism where type quantification is meta-theoretic here.
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statement borrowed from [HFC09]:

(t× α) ≤ (t× ¬t) ∨ (α× t) (1.3)

where t is a ground type and α is a type variable. According to (1.2), it is possible to
see that (1.3) holds if and only if for all ground instances of α

t ≤ α or α ≤ ¬t. (1.4)

where or denotes the disjunction of classic propositional logic. In other terms, (1.3)
holds if and only if t is an indivisible type, that is, a non-empty type whose only strict
subtype is the empty type (e.g., singleton types). Consequently, deciding the subtyping
relation is at least as difficult as deciding the indivisibility of a type, which is a very
hard problem [CDV08] that makes us believe more in the undecidability of the relation
than in its decidability. Moreover, (1.3) is completely unintuitive4 since α appears in
unrelated positions in two related types and, as we discuss in Section 3.1, breaks the
so-called parametricity [Rey83]. Actually, a purely semantic subtyping approach to
polymorphism was believed to be impossible.

Local type inference

Even if we are able to solve the problem above and we define an intuitive subtyping
relation, we then need to solve “local type inference” [PT00], namely, the problem of
checking whether the types of a function and of its argument can be made compatible
and, if so, of inferring the type of their result. In this framework functions are typed by
intersections of arrow types typically to type overloading (see the grammar in (1.5)).
Thus the difficulty mainly resides in the presence of the intersection types: an expression
can be given different types either by subsumption (the expression is coerced into a
super-type of its type) or by instantiation (the expression is used as a particular instance
of its polymorphic type) and it is typed by the intersection of all these types. Therefore,
in this setting, the problem is not just to find a substitution that unifies the domain
type of the function with the type of its argument but, rather, a set of substitutions
that produce instances whose intersections are in the right subtyping relation. Besides,
the reminder that unrestricted intersection type systems are undecidable [CD78, Bak92]
should further strengthen the idea of how difficult this is going to be.

1.4 Our work

In this thesis, we are going to add polymorphism to XML processing languages, namely,
to define and study a language with higher-order polymorphic functions and recursive
types with union, intersection, and negation connectives. The ultimate goal is to define
a language in which the functions setBody and getBody described in the previous
section, would have definitions looking similar to the following ones:

4For what concerns subtyping, a type variable can be considered as a special new user-defined basic
type that is unrelated to any other atom but 0, 1 and itself.
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setBody :: α -> <Envelope> [ <Body> α ]

setBody x = <Envelope> [ <Body> x ]

getBody :: <Envelope> [ Header? <Body> α ] -> α
getBody (<Envelope> [ Header? <Body> x ]) = x

The functions above are mildly interesting. To design a general language and type
system that allows definitions such as the above, we will use and study a different
motivating example, namely the application of the functions map and even defined as
follows:

map :: (α -> β) -> [α] -> [β]

map f l = case l of

| [] -> []

| (x : xs) -> (f x : map f xs)

even :: (Int -> Bool) ∧ ((γ\Int) -> (γ\Int))

even x = case x of

| Int -> (x ‘mod‘ 2) == 0

| _ -> x

The first function is the classic map function defined in Haskell (we just used Greek
letters to denote type variables). The second would be an Haskell function were it
not for two oddities: its type contains type connectives (type intersection “∧” and
type difference “\”); and the pattern in the case expression is a type, meaning that it
matches if the value returned by the matched expression has that type. So what does
the even function do? It checks whether its argument is an integer; if so it returns
whether the integer is even or not, otherwise it returns its argument as it received it.

This thesis (in particular part III) aims to define a local type inference algorithm
for such a language so that the type inferred for the application map even is (equivalent
to) the following one:

map even :: ([Int] -> [Bool]) ∧
([γ\Int] -> [γ\Int]) ∧
([γ∨Int] -> [(γ\Int)∨Bool])

In words this type states that map even returns a function that when applied to a list
of integers it returns a list of Booleans, when applied to a list that does not contain
any integer then it returns a list of the same type (actually, it returns the same list),
and when it is applied to a list that may contain some integers (e.g., a list of reals),
then it returns a list of the same type, without the integers but with some Booleans
instead (in the case of reals, a list with Booleans and reals that are not integers).

The specific language we aim to define is a polymorphic version of CDuce, so first
let us succinctly describe CDuce. The essence of CDuce is a λ-calculus with explicitly-
typed functions, pairs and a type-case expression. Its types are defined by (1.1) and
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its expressions are inductively defined by:

e ::= c constant
| x variable
| (e, e) pair
| πi(e) projection (i = 1, 2)
| e e application
| λ∧i∈Isi→tix. e abstraction
| e∈t ? e : e type case

(1.5)

where c ranges over constants (e.g., Booleans, integers, characters, and so on), e∈t ? e1 : e2
denotes the type-case expression that evaluates either e1 or e2 according to whether
the value returned by e (if any) is of type t or not, and the λ-abstraction comes with an
intersection of arrow types

∧

i∈I si → ti such that the whole λ-abstraction is explicitly
typed by

∧

i∈I si → ti and intuitively such an abstraction is well-typed if for each i ∈ I
the body of the abstraction has type ti when the parameter is assumed to have type si.

Our solution to define the polymorphic extension of such a language consists of two
steps, each step being developed in one of the following parts of the thesis: (i) we define
and study a polymorphic semantic subtyping relation for a type system with recursive,
product and arrow types and set-theoretic type connectives (i.e., union, intersection
and negation); and (ii) we design and study a higher-order functional language that
takes full advantage of the new capabilities of the type system. The solution we found
is so general that we believe that its interest goes beyond the simple application to
XML processing languages.

1.4.1 Polymorphic semantic subtyping (Part II)

We want to define a subtyping relation for types formed by type variables, products,
arrows, and set-theoretic type connectives (i.e., union, intersection and negation) such
that it is (i) semantic, (ii) intuitive, and (iii) decidable. That is, the problem we want
to solve is to extend the semantic subtyping defined for ground types to types with
type variables.

Subtyping relation

As hinted in Section 1.3, the crux of the problem is the stuttering behaviour of indi-
visible types: they are either completely inside or completely outside any other type
(i.e., (1.4)). Our solution is to make indivisible types “splittable” so that type variables
can range over strict subsets of any type. To that end, we first define a semantic as-
signment η for type variables as substitutions from type variables to subsets of a given
domain (e.g. the set of all values). Then we add it to the interpretation function as a
further parameter. Thus, we define the subtyping relation as the inclusion of denoted
sets under all semantic assignments for the type variables:

t ≤ s
def
⇐⇒ ∀η. [t]η ⊆ [s]η.

In this setting, every type t that denotes a set of at least two elements can be split by
an assignment. That is, it is possible to define an assignment for which a type variable
α denotes a set such that the interpretation of t is neither completely inside nor outside
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the set. For example, assume that the interpretation of a ground type t is {d1, d2}.
Then we can define an assignment η for a type variable α such that η(α) = {d1}. For
such a type t, (1.4) does not hold and thus neither does (1.3). Then it is clear that
the stuttering of (1.4) is absent in models where all non-empty types (indivisible types
included) denote an infinite set. Therefore, infinite denotation for non-empty types is
a possible and particular solution.

However, what we are looking for is not a particular solution. We are looking for a
semantic characterization of models where the stuttering behaviour of indivisible types
is absent. Let us consider (1.3) and (1.4) again in our setting. Applying our subtyping
definition and according to set-theory, (1.3) holds if and only if

∀η. (([t ∧ α]η = ∅) or ([t ∧ ¬α]η = ∅)),

while (1.4) holds if and only if

(∀η. [t ∧ α]η = ∅) or (∀η. [t ∧ ¬α]η = ∅).

Clearly, (1.3) holds if and only if t is an indivisible type, while (1.4) does not hold
for all type t. That is to say, they are not equivalent now. Therefore, there exists a
gap between (1.3) and (1.4) in our setting, which is due to the stuttering behaviour of
indivisible types. To fill the gap (and thus avoid the stuttering behaviour), we require
that (1.3) and (1.4) should be equivalent in our setting as well, that is we will consider
only interpretation functions [_] such that

∀η. (([t ∧ α]η = ∅) or ([t ∧ ¬α]η = ∅)) ⇐⇒ (∀η. [t ∧ α]η = ∅) or (∀η. [t ∧ ¬α]η = ∅).

Moreover, as we will use arbitrary number of Boolean connectives, we generalize the
equation above to a finite set of types, which we call the convexity property:

∀η.(([t1]η=∅) or · · · or ([tn]η=∅)) ⇐⇒ (∀η.[t1]η=∅) or · · · or (∀η.[tn]η=∅) (1.6)

Accordingly, convexity is the property we sought. Convexity states that, given a finite
set of types, if every assignment makes some of these types empty, then there exists one
particular type such that it is empty for all possible assignments. That is, convexity
imposes a uniform behaviour to the zeros of the semantic interpretation. Indeed

s ≤ t ⇐⇒ [s] ⊆ [t] ⇐⇒ [s] ∩ [t] ⊆ ∅ ⇐⇒ [s ∧ ¬t] = ∅

where the S denotes the complement of the set S. Consequently, checking whether s ≤ t
is equivalent to checking whether the type s ∧ ¬t is empty. Therefore, convexity imposes
the subtyping relation to have a uniform behaviour and thus we believe that convexity
is a semantic characterization of the “uniformity” that characterize parametricity.

Subtyping algorithm

Next we propose a subtyping algorithm for convex well-founded models. To illustrate
our subtyping algorithm, let us consider the following example

(α× Int) ∧ α ≤ ((1× 1)× Int). (1.7)
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According to set-theory, the subtyping checking problem can be transformed into an
emptiness decision problem. So we are going to check

(α× Int) ∧ α ∧ ¬((1× 1)× Int) ≤ 0.

Considering the interpretation of α, we can split it into two parts: one contains all
the pair values and the other is the rest of the interpretation. So we substitute α with
(α1 × α2) ∨ α3, yielding

((α3 ∨ (α1 × α2))× Int) ∧ ((α1 × α2) ∨ α3) ∧ ¬((1× 1)× Int) ≤ 0,

where αi’s are fresh type variables. Moreover, since the second occurrence of α is
intersected with some products, then whatever the interpretation of α is, the only part of
its denotation that matters is the one that contains all the pair values, that is, (α1×α2).
In other words, the substitution of (α1 × α2) will suffice for the second occurrence of
α. While for the first occurrence of α, we can not simplify the substitution, as it is not
intersected with products and the interpretation of α may contain some values that are
not pairs. Consequently, we can simply check

((α3 ∨ (α1 × α2))× Int) ∧ (α1 × α2) ∧ ¬((1× 1)× Int) ≤ 0

which is equivalent to

((α3 ∨ (α1 × α2))× Int) ∧ (α1 × α2) ≤ ((1× 1)× Int) (1.8)

According to the set-theoretic properties of the interpretation function and our
definition of subtyping, we then check

∀η. [((α3 ∨ (α1 × α2))× Int)]η ∩ [(α1 × α2)]η ∩ [((1× 1)× Int)]η = ∅.

Based on the set-theory, we then reduce it to 5

∀η. ([(α3 ∨ (α1 × α2)) ∧ α1]η = ∅ or [Int ∧ α2 ∧ ¬Int]η = ∅)
and ∀η. ([(α3 ∨ (α1 × α2)) ∧ α1 ∧ ¬(1× 1)]η = ∅ or [Int ∧ α2]η = ∅)

where and denotes the conjunction of classic propositional logic. We now apply the
convexity property and distribute the quantification on η on each subformula of the or,
yielding

(∀η. [(α3 ∨ (α1 × α2)) ∧ α1]η = ∅) or (∀η. [Int ∧ α2 ∧ ¬Int]η = ∅)
and (∀η. [(α3 ∨ (α1 × α2)) ∧ α1 ∧ ¬(1× 1)]η = ∅) or (∀η. [Int ∧ α2]η = ∅)

which is equivalent to

((α3 ∨ (α1 × α2)) ∧ α1 ≤ 0) or (Int ∧ α2 ∧ ¬Int ≤ 0)
and ((α3 ∨ (α1 × α2)) ∧ α1 ∧ ¬(1× 1) ≤ 0) or (Int ∧ α2 ≤ 0)

5Interested readers can refer to the decomposition rule in Lemma 4.3.9.
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or equivalently6

(α3 ∨ (α1 × α2)) ∧ α1 ≤ 0
or Int ∧ α2 ≤ 0
or ((α3 ∨ (α1 × α2)) ∧ α1 ≤ (1× 1)) and (Int ∧ α2 ≤ Int)

These are the expected conditions for the subtyping relation in (1.8).

Hence, we are able to reduce the problem into sub-problems on (the instances of)
sub-terms. Then it is easy to find a substitution (i.e., a finite map from type variables
to types), for example, {Int/α3, Int/α1, Int/α2} such that all the subformulas of the or
fail. Therefore, the subtyping relation in (1.7) does not hold.

Besides, if we substituted (α1 × α2) for the first occurrence of α as well, then the
sub-problems we would check are

(α1 × α2) ∧ α1 ≤ 0
or Int ∧ α2 ≤ 0
or ((α1 × α2) ∧ α1 ≤ (1× 1)) and (Int ∧ α2 ≤ Int)

Clearly, the last subformula holds and thus so does the subtyping relation in (1.7). This
justifies that the tricky substitution {α3 ∨ (α1 × α2)/α} is necessary.

Similarly for the intersection of arrow types. Thanks to the regularity of our types,
the subtyping algorithm we explain in details in Section 3.4 terminates on all types.

Consider map even: its expected type contains an arrow [(γ ∨ Int)] → [((γ \ Int)∨
Bool)]. From that we deduce even should be typed by (γ ∨ Int) → ((γ \ Int)∨ Bool),
which we can not obtain by instantiation. So the only possible way to obtain it is by
subsumption. Namely, we need to check the following subtyping relation:

(Int → Bool) ∧ ((γ \ Int) → (γ \ Int)) ≤ (γ ∨ Int) → ((γ \ Int) ∨ Bool) (1.9)

According to the subtyping algorithm, (1.9) holds. Hence, even has type (γ ∨ Int) →
((γ \ Int) ∨ Bool) as expected.

Convex model

Finally, we prove that there exists at least one set-theoretic model that is convex, that
is, that satisfies (1.6). Actually, there exist a lot of convex models since every model for
ground types with infinite denotations is convex. To grasp the intuition, let us consider
the simple case of propositional logic:

t ::= α | t ∨ t | t ∧ t | ¬t | 0 | 1

where α’s are then propositional variables (the construction works also in the presence
of basic types). It is relatively easy to prove by contrapositive that if all propositions
(i.e., types) are interpreted into infinite sets, then for all n ≥ 2

∀η . (([t1]η=∅) or ... or ([tn]η=∅)) ⇒ (∀η . [t1]η=∅) or . . . or (∀η . [tn]η=∅) (1.10)

6Since the intersection of Int and ¬Int is always empty, by simplifying we can consider only two
cases: ((α3 ∨ (α1 ×α2))∧α1 ≤ (1×1)) or (Int∧α2 ≤ 0). But to exemplify our algorithm more detail,
we keep all the cases.
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holds7. Without loss of generality, we can assume that

ti =
∧

j∈Pi

αj ∧
∧

j∈Ni

¬αj (Pi ∩Ni = ∅)

since, if ti is a union, then by exiting the union from the interpretation we obtain
a special case of (1.10) with a larger n, for instance, [t1 ∨ t2]η = ∅ is equivalent to
[t1]η = ∅ or [t2]η = ∅. Then we proceed by contrapositive: suppose that there exists ηi
such that [ti]ηi 6= ∅ for each i, then we can build η̄ such that for all i, [ti]η̄ 6= ∅. The
construction of η̄ is done by iterating on the ti’s, picking at each iteration a particular
element d of the domain, and recording this choice in a set s0 so as to ensure that at
each iteration a different d is chosen:

Start with s0 = ∅ and for i = 1..n:

- choose d ∈ ([1]ηi \ s0) (which is possible since [1]ηi is infinite and s0 is finite)

- add d to s0 (to record that we used it) and to η̄(αj) for all j ∈ Pi.

Notice that infinite denotation ensures that a fresh element always exists at each step
of the iteration.

Therefore, to construct a convex model, it just suffices to take any model defined
in [FCB08] and straightforwardly modify the interpretation of basic types such that
they have infinite denotations.

1.4.2 Polymorphic calculus (Part III)

In part II we show how to extend semantic subtyping to polymorphic types. In part III
we then show how to define a polymorphic calculus that takes full advantage of the
new capabilities of the type system, which can then be easily extended to a full-fledged
polymorphic functional language for processing XML documents. Namely, the calculus
we want to define is a polymorphic version of CDuce.

An explicitly typed λ-calculus

The novelty of our work with respect to the current work on semantic subtyping and
CDuce [FCB08] is to allow type variables to occur in the types and, thus, in the types la-
beling λ-abstractions. It becomes thus possible to define the polymorphic identity func-
tion as λα→αx.x, while classic “auto-application” term is written as λ((α→β)∧α)→βx.xx.
The intended meaning of using a type variable, such as α, is that a (well-typed) λ-
abstraction not only has the type specified in its label (and by subsumption all its
super-types) but also all the types obtained by instantiating the type variables occur-
ring in the label. So λα→αx.x has by subsumption both the type 0→1 (the type of all
functions, which is a super-type of α→α) and the type ¬Int, and by instantiation the
types Int→Int, Bool→Bool, etc.

The use of instantiation in combination with intersection types has nasty conse-
quences, for if a term has two distinct types, then it has also their intersection type.
In the monomorphic case a term can have distinct types only by subsumption and,
thus, intersection types are assigned transparently to terms by the type system via
subsumption. But in the polymorphic case this is no longer possible: a term can be

7The other direction is straightforward, so we do not consider it here.
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typed by the intersection of two distinct instances of its polymorphic type which, in
general, are not in any subtyping relation with the latter: for instance, α→α is neither
a subtype of Int→Int nor vice-versa, since the subtyping relation must hold for all
possible instantiations of α (and there are infinitely many instances of α→α that are
neither subtype nor super-type of Int→Int).

Concretely, if we want to apply the polymorphic identity λα→αx.x to, say, 42, then
the particular instance obtained by the type substitution {Int/α} (denoting the replace-
ment of every occurrence of α by Int) must be used, that is (λInt→Intx.x)42. We have
thus to relabel the type decorations of λ-abstractions before applying them. In implic-
itly typed languages, such as ML, the relabeling is meaningless (no type decoration is
used) while in their explicitly typed counterparts relabeling can be seen as a logically
meaningful but computationally useless operation, insofar as execution takes place on
type erasures. In the presence of type-case expressions, however, relabeling is necessary
since the label of a λ-abstraction determines its type: testing whether an expression
has type, say, Int→Int should succeed for the application of λα→α→αx.λα→αy.x to 42

and fail for its application to true. This means that, in Reynolds’ terminology, our
terms have an intrinsic meaning [Rey03].

Notice that we may need to relabel/instantiate functions not only when they are
applied but also when they are used as arguments. For instance consider a function
that expects arguments of type Int→Int. It is clear that we can apply it to the identity
function λα→αx.x, since the identity function has type Int→Int (feed it by an integer
and it will return an integer). Before, though, we have to relabel the latter by the substi-
tution {Int/α} yielding λInt→Intx.x. As the identity has type Int→Int so it has type
Bool→Bool and, therefore, the intersection of the two: (Int→Int) ∧ (Bool→Bool).
So we can apply a function that expects an argument of this intersection type to
our identity function. The problem is now how to relabel λα→αx.x via two distinct
type-substitutions {Int/α} and {Bool/α}. Intuitively, we have to apply {Int/α} and
{Bool/α} to the label of the λ-abstraction and replace it by the intersection of the two
instances. This corresponds to relabel the polymorphic identity from λα→αx.x into
λ(Int→Int)∧(Bool→Bool)x.x. This is the solution adopted by this work, where we manip-
ulate sets of type-substitutions — delimited by square brackets —. The application of
such a set (e.g., in the previous example [{Int/α}, {Bool/α}]) to a type t, returns the
intersection of all types obtained by applying each substitution in the set to t (e.g., in
the example t{Int/α} ∧ t{Bool/α}).

The polymorphic identity function is too simple since we do not need to relabel its
body. Let us consider the relabeling of the “daffy” polymorphic identity function

λα→αx. (λα→αy.x)x

via the set of substitutions [{Int/α}, {Bool/α}]. Assume we naively relabel the function
deeply, that is, apply the set of type substitutions not only to the label of the function
but also to the labels in the body of the function. So we have the following expression:

λ(Int→Int)∧(Bool→Bool)x. (λ(Int→Int)∧(Bool→Bool)y.x)x

which, however, is not well-typed. Let us try to type-check this expression. This cor-
responds to prove that the expression (λ(Int→Int)∧(Bool→Bool)y.x)x has type Int under
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the hypothesis that x has type Int, and it has type Bool under the hypothesis that x
has type Bool. Both checks fail, since neither the expression λ(Int→Int)∧(Bool→Bool)y.x
has type Int → Int when x has type Bool, nor it has type Bool → Bool when x has
type Int. This example shows that in order to ensure that relabeling yields well-typed
expressions, the relabeling of the body must change according to the type the param-
eter x is bound to. More precisely, λα→αy.x should be relabeled as λInt→Inty.x when
x is of type Int, and as λBool→Booly.x when x is of type Bool.

Our solution to relabel a function via a set of type substitutions is to introduce a
new technique that consists in performing a “lazy” relabeling of the bodies, which is
obtained by decorating λ-abstractions by a finite set of explicit type-substitutions:

λ
∧i∈I ti→si
[σj ]j∈J

x.e

where [σj ]j∈J is a set of type substitutions to relabel. This yields our calculus with
explicit type-substitutions. So the “daffy” identity function can be decorated as

λα→α
[{Int/α},{Bool/α}]

x. (λα→αy.x)x.

When type-checking λ-abstractions, we propagate each type-substitution σj to the
bodies of abstractions separately and thus solve the type-checking problem. Consider
the “daffy” identity function again. When x is assumed to has type Int we propagate
{Int/α} to the body, and similarly {Bool/α} is propagated to the body when x is assumed
to have type Bool.

During reduction we also can not simply relabel an expression by a set of type-
substitutions by propagating the set of type-substitutions into the expression deeply.
For that, we also introduce a “lazy” relabeling operation @ which takes an expression
and a set of type-substitutions and lazily applies the set of type-substitutions to all
outermost λ-abstractions occurring in the expression. In particular, for λ-abstractions
we have

(λ
∧i∈I ti→si
[σj ]j∈J

x.e)@[σk]k∈K = λ
∧i∈I ti→si
[σj ]j∈J◦[σk]k∈K

x.e

where ◦ denotes the pairwise composition of all substitutions of the two sets.

Using the explicitly typed λ-calculus, in particular, with the type case, we can define
map8 and even as

map := µ(α→β)→[α]→[β]m λf . λ[α]→[β]ℓ . ℓ∈nil ? nil : (f(π1ℓ),mf(π2ℓ))

even := λ(Int→Bool)∧((γ\Int)→(γ\Int))x.x∈Int ? (x mod 2) = 0 :x

where nil denotes (the type of) the empty list. To make the application well-typed and
to obtain the type we expect, we first instantiate the type of map with [σ1, σ2, σ3], where
σ1 = {Int/α, Bool/β}, σ2 = {(γ \ Int)/α, (γ \ Int)/β}, and σ3 = {(γ ∨ Int)/α, ((γ \ Int) ∨ Bool)/β}.
Namely, we relabel map with [σ1, σ2, σ3], yielding map[σ1,σ2,σ3]

. Then by subsumption
(see the subtyping relation in (1.9)), we deduce even also has the following type:

(Int → Bool) ∧ ((γ \ Int) → (γ \ Int)) ∧ ((γ ∨ Int) → ((γ \ Int) ∨ Bool)),

8The type case in map should be a “binding” one and recursive functions can be added straightfor-
wardly, which is introduced in Chapter 12.
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which matches the domain of the type of map[σ1,σ2,σ3]
. Therefore (map[σ1,σ2,σ3]

) even is
well-typed and the result type is

([Int] → [Bool]) ∧ ([γ \ Int] → [γ \ Int]) ∧ ([γ ∨ Int] → [(γ \ Int) ∨ Bool])

as expected.

Type substitutions inference

In practice, we want to program with expressions without explicitly giving type sub-
stitutions, that is, in the language defined by the grammar (1.5), where types in the
λ-abstractions may contain type variables. For example, we would like to write the ap-
plication of map to even as map even rather than (map[σ1,σ2,σ3]

) even. Hence we propose
an inference system that infers where and whether type substitutions can be inserted
in an expression to make it well-typed. The difficulty lies in how to type applications,
as we need to check whether the types of a function and of its argument can be made
compatible.

As shown above, we can instantiate a polymorphic type not only with a type sub-
stitution but also with a set of type substitutions. That is, a λ-abstraction can be
relabeled not only by a type substitution but also by a set of type substitutions, such
as map[σ1,σ2,σ3]

. Accordingly, to make map even well-typed, that is, to tally the do-
main of the type of map against the type of even, we need to find two sets of type
substitutions [σi]i∈I and [σ′

j ]j∈J such that

∧

i∈I

((Int → Bool) ∧ ((γ \ Int) → (γ \ Int)))σi ≤
∨

j∈J

(α → β)σ′
j (1.11)

Note that the domain of an intersection of arrows is the union of the domains of each
arrow in the intersection. Assume that the cardinalities of I and J are fixed, for
example, |I| = 1 and |J | = 3. By general renaming, we can equivalently rewrite (1.11)
into

((Int → Bool) ∧ ((γ \ Int) → (γ \ Int)))σ ≤ ((α1 → β1) ∨ (α2 → β2) ∨ (α3 → β3))σ
(1.12)

where αi and βi are fresh variables. This is an instance of the type tallying problem
∃σ. sσ ≤ tσ, which is explained in the next section. Using the type tallying algorithm,
we can solve (1.12) and a solution is a substitution σ0 such as9:

{ Int/α1, Bool/β1 (corresponding to σ1)
(γ \ Int)/α2, (γ \ Int)/β2 (corresponding to σ2)
(γ ∨ Int)/α3, ((γ \ Int) ∨ Bool)/β3 } (corresponding to σ3)

In general, we can reduce the type substitution inference to the problem of deciding
whether for two given types s and t there exist two sets of type substitutions [σi]i∈I
and [σ′

j ]j∈J such that
∧

i∈I

sσi ≤
∨

j∈J

tσ′
j .

9The other solutions are either equivalent to σ0 or useless.
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When the cardinalities of I and J are fixed, we can further reduce it to a type tallying
problem. We prove that the type tallying problem has a sound, complete and termi-
nating algorithm. This immediately yields a semi-decision procedure (that tries all the
cardinalities) for the inference system.

In order to ensure termination we propose two heuristic numbers p and q for the
cardinalities of I and J that are established according to the form of s and t. The
intuition is that type connectives are what make us to instantiate a polymorphic type
several times. Take map even for example. The function even can be invoked in map

onto the lists (i) that contain only integers, (ii) that contain no integers, and (iii)
that contain some integers and some non-integers. That is, even can be typed by
Int → Bool, by (γ \ Int) → (γ \ Int), by (γ ∨ Int) → ((γ \ Int) ∨ Bool) (which can
be obtained from the first two by unions) and by the intersection of the three. So the
heuristic number q for map is 3. While the domain of the type for map is a single arrow
α → β, so the heuristic number p for even is 1.

Type tallying algorithm

Given two types t and s, the type tallying problem is to check whether there exists
a substitution σ such that tσ ≤ sσ. The type tallying problem can be consider as a
constraint solving problem, where constraints are of the form t ≤ s or t ≥ s. Constraints
of the form α ≥ s or α ≤ s are called normalized constraints. To illustrate the type
tallying algorithm, let us consider the following constraint:

(β → Int) → (β → Int) ≤ (α → α) → (α → α).

First, according to the subtyping algorithm presented in Section 1.4.1, we can de-
compose this constraint into several ones on sub-terms:

(α → α) ≤ (β → Int) and (β → Int) ≤ (α → α)

and thus, finally, a set of normalized constraints10

{α ≥ β, α ≤ Int, α ≤ β, α ≥ Int}.

Next, we can merge the normalized constraints with the same type variable. For
α ≥ β and α ≥ Int (i.e. lower bounds for α), we can merge them by unions, that is,
replace them by α ≥ (Int ∨ β). Similarly, we can replace α ≤ Int and α ≤ β (i.e.
upper bounds for α) by α ≤ (Int ∧ β). Then we get

{α ≥ (β ∨ Int), α ≤ (β ∧ Int)}.

If the type substitution σ we are looking for satisfies ασ ≥ (β ∨ Int)σ and ασ ≤
(β∧Int)σ, then it also satisfies (β∨Int)σ ≤ (β∧Int)σ. So we saturate the constraint
set with (β ∨ Int) ≤ (β ∧ Int), which we also decompose into normalized constraints,
yielding

{α ≥ (β ∨ Int), α ≤ (β ∧ Int), β ≥ Int, β ≤ Int}.

10For simplicity, we omit the case that 0 → 1 is a supertype of any arrow. Besides, from this
constraint set, we can immediate get the substitution {Int/β,Int/α}. But to exemplify our algorithm,
we keep on elaborating constraints.
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After that, there are only one lower bound and only one upper bound for each type
variable. Note that if there are no lower bounds (upper bounds resp.) for α, we can add
the trivial constraint α ≥ 0 (α ≤ 1 resp.). We then can transform a set of normalized
constraints into a set of equations: each pair of α ≥ t and α ≤ s is transformed into
an equation α = (t ∨ α′) ∧ s, where α′ is a fresh type variable. Thus the constraint set
above is transformed into

α = ((β ∨ Int) ∨ α′) ∧ (β ∧ Int)
β = (Int ∨ β′) ∧ Int

where α′ and β′ are fresh type variables. Finally, using Courcelle’s work on infinite
trees [Cou83], we solve this equation system, which gives us the following substitution:

{Int/β, Int/α}

which is a solution of the original type tallying problem.

Translation to CDuce

Finally, to make our approach feasible in practice, we compile our polymorphic calculus
into a variant of CDuce (where types contain type variables and the subtyping relation
is the polymorphic one) to provide an execution model for our calculus. The translation
relies on an extension of the type case expression that features binding, which we write
xǫ t ? e1 : e2 and can be encoded as:

(λ((s∧t)→t1)∧((s∧¬t)→t2)x.x∈t ? e1 : e2)x

where s is the type for the argument x and ti is the type of ei. Note that the difference
of the binding type case from the unbinding one is that the types for the occurrences of
x in e1 and e2 are different. The key idea of the translation is to use the “binding” type
case expression to simulate different relabeling on the body expression of λ-abstractions
with different type cases. For example, the expression map[σ1, σ2] is translated into

f ǫ (α → β)σ1 ∧ (α → β)σ2 ? C[mb@[σ1, σ2]]
f ǫ (α → β)σ1 ? C[mb@[σ1]]
f ǫ (α → β)σ2 ? C[mb@[σ2]]

f ǫ 1 ? C[mb]

where mb is the body of map and C[e] denotes the translation of e. The first branch
simulates the case where both type substitutions σ1 and σ2 are selected and propagated
to the body, that is, the parameter f belongs to the intersection of different instances
of α → β with these two type substitutions. The second and third branches simulate
the case where exactly one substitution is used. Finally, the last branch denotes the
case where no type substitutions are selected.

1.5 Contributions

The overall contribution of this thesis is the definition of a polymorphic semantic sub-
type relation for a type system with recursive types and union, intersection, and nega-
tion type connectives and the definition of a statically typed calculus with polymorphic
higher-order functions and semantic subtyping. More in details:
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1.5.1 Part II

The contributions of Part II are the following:

1. we define a polymorphic semantic subtyping relation for a type system with re-
cursive types and union, intersection, and negation type connectives. We first
define a semantic assignment for type variables, that is a substitution from type
variables to subsets of any type, and then the subtyping relation is defined as the
inclusion of denoted sets under all semantic assignments for the type variables.
We also introduce a convexity property, which imposes the subtyping relation to
have a uniform behaviour. Our definition is the first solution to the problem of
defining a semantic subtyping relation for regular tree types with type variables.

2. we propose an algorithm for deciding the polymorphic semantic subtyping relation
induced by a well-founded convex model, which is based on set-theoretic proper-
ties and the convexity property. We also prove the soundness, completeness, and
termination properties of the algorithm.

3. we prove that there exists at least one set-theoretic model that is convex. Actually,
there exist a lot of convex models since every model for ground types with infinite
denotations is convex.

1.5.2 Part III

The contributions of Part III are the following:

1. we define an explicitly-typed λ-calculus with intersection (and union and nega-
tion) types, whose key idea consists in decorating λ-abstractions with types and
type-substitutions that are lazily propagated at the moment of the reduction.
This contrasts with current solutions in the literature which require the addition
of new operators, stores and/or pointers. In doing that we singled out that the
problem of defining an explicit typed version of intersection type systems resides
in the fact that the relabeling of the body of a function is dependent on the actual
type of the argument, a point that, in our knowledge, was not understood before.

2. we propose an algorithm that for any pair of polymorphic regular tree types t1
and t2 produces a sound and complete set of solutions to the problem whether
there exists a substitution σ such that t1σ ≤ t2σ. This is obtained by using
the set-theoretic interpretation of types to reduce the problem to a unification
problem on regular tree types. We prove the termination of the algorithm.

3. we propose an algorithm for local type inference for the calculus. Practically
speaking this means that the programmer has to explicitly type function defini-
tions, but that any other type information, in particular the instantiations and
expansion of type variables is inferred by the system at compile time. The al-
gorithm yields a semi-decision procedure for the typability of a λ-calculus with
intersection types and with explicitly typed lambda expressions whose decidabil-
ity is still an open issue.



22 CHAPTER 1. INTRODUCTION

4. we design a compilation of the polymorphic calculus into the monomorphic one.
This is a non-trivial problem since the source polymorphic calculus includes a
type-case expression. From a practical viewpoint it allows us to reuse the run-
time engine developed for monomorphic CDuce also for the polymorphic version
with the sole modification of plugging the polymorphic subtyping relation in the
execution of type-cases.

1.6 Outline of the thesis

The thesis is organized as follows. The rest of Part I contains a chapter, which succinctly
describes the core of the programming language CDuce. Part II and Part III give
the definition of a polymorphic semantic subtyping relation and the definition of a
polymorphic calculus respectively. Part IV concludes the thesis and presents some
future work.

The contents of Part II and Part III are organized as follows. Chapter 3 illustrates
an informal description of the main ideas and intuitions underlying the definition of
polymorphic semantic subtyping relation. Chapter 4 describes the technical develop-
ment that supports the results exposed in Chapter 3. Chapter 5 presents a practice
subtyping algorithm which does not perform any type-substitution. Chapter 6 gives
an overview of the definition of polymorphic calculus. Chapter 7 defines an explicitly-
typed λ-calculus with sets of type-substitutions. Chapter 8 presents an equivalent type
system with syntax-directed rules for the explicitly-typed calculus. Chapter 9 defines
an implicitly-typed calculus and proposes an inference system that infers where and
whether type-substitutions can be inserted in an implicitly-typed expression. Chap-
ter 10 defines a type tallying problem and its algorithm, and proposes a semi-decision
procedure for the inference system. Chapter 11 introduces the translation from the
polymorphic calculus into a variant of the monomorphic calculus. Chapter 12 presents
some extensions and design choices.

Publication

Part II is an extended version of [CX11]. Part III is an extended version of [CNXL12].



Chapter 2

CDuce

Since our work is an extension of CDuce and in order to make our work more easy to
understand, we succinctly describe the core of the programming language CDuce and
some of its key ideas at first. The interested reader can refer to [BCF03a, Fri04, FCB08]
for more detailed definitions of the various concepts presented hereafter.

2.1 Types

We define the types in CDuce and their subtyping relation.

Definition 2.1.1. A type in CDuce is a regular (infinite) tree, co-inductively (for
recursion) produced by the following grammar:

t ::= b | t× t | t → t | t ∨ t | t ∧ t | ¬t | 0 | 1

where b ranges over basic types ( e.g., Bool, Real, Int, . . . ), and 0 and 1 respectively
denote the empty ( i.e., that contains no value) and top ( i.e., that contains all values)
types.

In other terms, types are nothing but a propositional logic (with standard logical
connectives: ∧,∨,¬) whose atoms are 0, 1, basic, product, and arrow types. Let T
denote the set of all types.

From a strictly practical viewpoint recursive types, products, and type connec-
tives are used to encode regular tree types [Hos01], which subsume existing XML
schema/types. For example, the following type (presented in Figure 1.3)

type Person = <person>[Name,Email*,Tel?]

can be considered as a syntactic sugar for the following equations:

Person = (‘book × (Name × (X × Y )))
X = (Email ×X) ∨ nil

Y = (Tel × nil) ∨ nil

where nil and ‘book are singleton types.
In order to preserve the semantics of XML types as sets of documents but also to

give programmers a very intuitive interpretation of types, it is advisable to interpret a
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type as the set of all values that have that type. Accordingly, Int is interpreted as the
set that contains the values 0, 1, -1, 2, . . . ; Bool is interpreted as the set that contains
the values true and false; and so on. In particular, then, unions, intersections, and
negations (i.e., type connectives) must have a set-theoretic semantics. Formally, this
corresponds to defining an interpretation function as follows:

Definition 2.1.2. A set-theoretic interpretation of T is given by some domain D and
a function [_] : T → P(D) such that, for all t1, t2, t ∈ T :

[t1 ∨ t2] = [t1] ∪ [t2] [0] = ∅
[t1 ∧ t2] = [t1] ∩ [t2] [1] = D

[¬t] = D \ [t]

Note that this function says nothing about the interpretation of atoms (i.e., basics,
products and arrows). Indeed, by an induction on types, the set-theoretic interpreta-
tions with domain D correspond univocally to functions from atoms to P(D). Once
such an interpretation has been defined, then the subtyping relation is naturally defined
as the inclusion relation.

Definition 2.1.3. Let [_] : T → P(D) be a set-theoretic interpretation. The subtyp-
ing relation ≤[ ]⊆ T 2 is defined as follows:

t ≤[ ] s
def

⇐⇒ [t] ⊆ [s]

When restricted to XML types, this definition corresponds to the standard inter-
pretation of subtyping as tree language containment.

As long as basic and product types are the only atoms and a product type (t1× t2)
is standardly interpreted as the Cartesian product [t1]× [t2], all definitions above run
quite smoothly. That is the setting of XDuce studied by Hosoya and Pierce [HP03].
But as soon as higher-order functions are added, that is, arrow types, the definitions
above no longer work:

1. If we take D as the set of all values, then it must include also λ-abstractions.
Therefore, to define the semantic interpretation of types we need to define the type
of λ-abstractions (in particular of the applications that may occur in their bodies)
which needs the subtyping relation, which needs the semantic interpretation. We
fall on a circularity.

2. If we take D as some mathematical domain, then t1 → t2 must be interpreted
as the set of functions from [t1] to [t2]. For instance if we consider functions as
binary relations, then [t1 → t2] could denote the set

{ f ⊆ D2 | (d1, d2)∈f and d1∈[t1] implies d2∈[t2] } (2.1)

or, compactly, P([t1]×[t2]), where the S denotes the complement of the set S
within the appropriate universe. In other words, these are the sets of pairs in
which it is not true that the first projection belongs to [t1] and the second does
not belong to [t2]. But then the problem is not circularity but cardinality, since
this would require D to contain P(D2), which is impossible.
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The solution to both problems is given by the theory of semantic subtyping [FCB08],
and relies on the observation that in order to use types in a programming language one
does not need to know what types are, but just how they are related (by subtyping).
In other terms, the semantic interpretation is not required to map arrow types into the
set in (2.1), but just to map them into sets that induce the same subtyping relation as
(2.1) does. Roughly speaking, this turns out to require that for all s1, s2, t1, t2, the
function [_] satisfies the property:

[s1→s2] ⊆ [t1→t2] ⇐⇒ P([s1]×[s2]) ⊆ P([t1]×[t2]) (2.2)

whatever the sets denoted by s1→s2 and t1→t2 are. To put it otherwise, instead of

univocally defining the semantics of arrow by setting [s1→s2] as equal to P([s1]×[s2])

and [t1→t2] as equal to P([t1]×[t2]), the much weaker condition, expressed by (2.2),
that whatever the interpretation of arrows is it must induce the same containment
relation as if arrows were interpreted into the set in (2.1) is imposed.

Equation (2.2) above covers only the case in which two single arrow types are
compared. But, of course, a similar restriction must be imposed also when arbitrary
Boolean combinations of arrows are compared. Formally, this can be enforced through
a new mapping E[ ], which is associated to [_] and called extensional interpretation.
Henceforth the subscript [ ] is omitted if it is clear from context.

Definition 2.1.4. Let [_] : T → P(D) be a set-theoretic interpretation. Its associated
extensional interpretation is the unique function E(_) defined as follows:

E(0) = ∅ E(1) = D

E(¬t) = D \ E(t) E(b) = [b]

E(t1 ∨ t2) = E(t1) ∪ E(t2) E(t1 × t2) = [t1]× [t2]

E(t1 ∧ t2) = E(t1) ∩ E(t2) E(t1 → t2) = P([t1]×[t2])

Then [_] forms a set-theoretic model of types if it induces the same subtyping
relation as if type constructors were interpreted in an extensional way.

Definition 2.1.5. A set-theoretic interpretation [_] : T → P(D) is a model if it
induces the same subtyping relation as its associated extensional interpretation, that is:

∀t1, t2 ∈T . [t1] ⊆ [t2] ⇐⇒ E(t1) ⊆ E(t2)

These definitions yield a subtyping relation with all the desired properties: type
connectives (i.e., unions, intersections, and negations) have a set-theoretic semantics,
type constructors (i.e., products and arrows) behave as set-theoretic products and
function spaces, and (with some care in defining the language and its typing relation)
a type can be interpreted as the set of values that have that type. All that remains to
do is:

1. to show that a model exists (which is easy) and

2. to show how to decide the subtyping relation (which is difficult).
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Both points are solved in [FCB08] and the resulting type system is at the core of the
programming language CDuce [BCF03a].

Theorem 2.1.6 (Lemma 5.6 in [FCB08]). There exists a model.

Theorem 2.1.7 (Lemma 5.8 in [FCB08]). The subtyping relation induced by models
is decidable.

Here, we do not need to look for a particular model, since all models induce es-
sentially the same subtyping relation. However for the subtyping algorithm we will
use the particular interpretation that maps [t1 × t2] into [t1]×[t2] and [t1 → t2] into

Pf ([t1]×[t2]), where Pf (X) denotes the set of finite subsets of X. It is easy to check
that this interpretation is a model as well (see [Fri04] for details).

Based on set-theoretic theory, there are two important decomposition rules used in
the subtyping algorithm: one for product types and the other for arrow types.

Lemma 2.1.8 (Lemma 6.5 in [FCB08]). Let P,N be two finite sets of product types.
Then:

⋂

t1×t2∈P

E(t1 × t2) ⊆
⋃

t1×t2∈N

E(t1 × t2) ⇐⇒

∀N ′ ⊆ N.







[
∧

t1×t2∈P
t1 ∧

∧

t1×t2∈N ′ ¬t1] = ∅

or

[
∧

t1×t2∈P
t2 ∧

∧

t1×t2∈N\N ′ ¬t2] = ∅

Lemma 2.1.9 (Lemma 6.8 in [FCB08]). Let P,N be two finite sets of arrow types.
Then:
⋂

t→s∈P

E(t → s) ⊆
⋃

t→s∈N

E(t → s) ⇐⇒

∃(t0 → s0) ∈ N. ∀P ′ ⊆ P.







[t0 ∧
∧

t→s∈P ′ ¬t] = ∅

or

P 6= P ′
and [

∧

t→s∈P\P ′ s ∧ ¬s0] = ∅

2.2 Core calculus

The core of CDuce is a λ-calculus with explicitly-typed recursive functions, pairs and
a type-case expression, which we dub “CoreCDuce”.

Definition 2.2.1. An expression in CoreCDuce is inductively produced by the following
grammar:

e ::= c | x | (e, e) | πi(e) | e e | µ∧i∈Isi→tif λx. e | e∈t ? e : e

where c ranges over constants ( e.g., Booleans, integers, characters, and so on), the λ-
abstraction comes with an intersection of arrow types

∧

i∈I si → ti such that the whole
λ-abstraction is explicitly typed by

∧

i∈I si → ti, and e∈t ? e1 : e2 denotes the type-case
expression that evaluates either e1 or e2 according to whether the value returned by e
(if any) is of type t or not.
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The reason of inclusion of a type-case is twofold. First, a natural application of in-
tersection types is to type overloaded functions, and without a type-case only “coherent
overloading” à la Forsythe [Rey96] can be defined (which, for instance, precludes the
definition of a —non diverging— function of type, say, (Int→Bool) ∧ (Bool→Int)).
The second motivation derives from the way arrow types are interpreted in (2.1). In
particular for every type s1, s2, t1, t2 the following containment is strict :

s1 ∨ s2 → t1 ∧ t2 � (s1 → t1) ∧ (s2 → t2) (2.3)

so there is a function in the type on the right that is not in the type of the left. Notice
that from a typing viewpoint the functions on the left do not distinguish inputs of s1
and s2 types, while the ones on the right do. So the interpretation of types naturally
induces the definition of functions that can distinguish inputs of two different types s1
and s2 whatever s1 and s2 are. Actually this second motivation is just a different facet
of the full-fledged vs. only “coherent” overloading motivation, since the functions that
are in the difference of the two types in (2.3) are also those that make the difference
between coherent and non coherent overloading. Both arguments, thus, advocate for
“real” overloaded functions, that execute different code according to the type of their
input, whence the need of type-case.

The need of explicitly typed functions is a direct consequence of the introduction
of the type case, because without explicit typing there could be some paradoxes such
as the following recursively defined (constant) function

µf.λx.f∈(1 → Int) ? true : 42 (2.4)

This function has type 1 → Int if and only if it does not have type 1 → Int. In order
to decide whether the function above is well-typed or not, a type must be explicitly
given to it. For instance, the function in (2.4) is well-typed if it is explicitly assigned
the type 1 → (Int∨Bool). This shows both that functions must be explicitly typed
and that specifying not only the type of parameters but also the type of the result is
strictly more expressive, as more expressions can be typed. As a matter of fact, if just
the type of the parameter x (not used in the body) is provided, then there is no type
(apart from the useless 0 type) that makes (2.4) typeable.

More generally, if a Church-style abstraction is adopted and functions are typed as
λxt.e, then all the functions would have a principal type of the form t → s. But then it
would not be possible to write a terminating function of type (Int → Bool)∧ (Bool →
Int) (the only way to obtain the previous type by instantiating and/or subsuming a
type of the form s → t, is to start from (Int ∨ Bool) → 0, so only non terminating
function could be defined). While it is pretty easy to write a function with the type if
the whole abstractions rather than their parameters are explicitly typed:

λ(Int→Bool)∧(Bool→Int)x.x∈Int ? true : 42

Therefore, the whole λ-abstractions are explicitly typed instead.
The typing judgments for expressions are of form Γ ⊢C e : t, where e is an expression,

t is a type, and Γ is a typing environment (i.e. a finite mapping from expression
variables to types). The typing rules1 are present in Figure 2.1. When Γ is empty, we
write ⊢C e : t for short.

1For simplicity, we do not consider the negation arrow types in the typing rule for abstractions.
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Γ ⊢C c : bc
(Cconst)

Γ ⊢C x : Γ(x)
(Cvar)

Γ ⊢C e1 : t1 Γ ⊢C e2 : t2

Γ ⊢C (e1, e2) : t1 × t2
(Cpair)

Γ ⊢C e : t1 × t2

Γ ⊢C πi(e) : ti
(Cproj)

Γ ⊢C e1 : t1 → t2 Γ ⊢C e2 : t1

Γ ⊢C e1e2 : t2
(Cappl)

∀i ∈ I. Γ, (f :
∧

i∈I

ti → si), (x : ti) ⊢C e : si

Γ ⊢C µ∧i∈I ti→sif λx. e :
∧

i∈I

ti → si
(Cabstr)

Γ ⊢C e : t′
{

t′ 6≤ ¬t ⇒ Γ ⊢C e1 : s
t′ 6≤ t ⇒ Γ ⊢C e2 : s

Γ ⊢C (e∈t ? e1 : e2) : s
(Ccase)

Γ ⊢C e : s s ≤ t

Γ ⊢C e : t
(Csubsum)

Figure 2.1: Typing rules of CoreCDuce

Definition 2.2.2. An expression e is a value if it is closed, well-typed (⊢C e : t for
some type t), and produced by the following grammar:

v ::= c | (v, v) | µ∧i∈Isi→tif λx. e

These values are enough to encode XML documents. For example in CDuce, lists
are encoded, à la Lisp, as nested pairs, the empty list being represented by the atom
nil. Thus an XML document2 is the pair of its tag, represented by an atom and the
list of its children (its content).

Finally, the dynamic semantics is given by the three notions of reduction applied
by a leftmost-outermost strategy in Figure 2.2.

2The attributes are excluded from the formal treatment.
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(CRproj) πi(v1, v2) C vi
(CRappl) (µ∧i∈I ti→sif λx. e′)v  C e′{µ∧i∈Iti→sif λx. e′/f , v/x}

(CRcase) (v ∈ t ? e1 : e2) C

{
e1 if ⊢C v : t
e2 otherwise

Figure 2.2: Reduction rules of CoreCDuce
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Part II

Polymorphic Semantic Subtyping
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Chapter 3

The Key Ideas

In this chapter, we focus on the definition of the subtyping relation for XML types in
the presence of type variables, and present an informal description of the main ideas
and intuitions underlying our approach. More precisely, we first examine why this
problem is deemed unfeasible or unpractical and simple solutions do not work (Section
3.1). Then we present the intuition underlying our solution (Section 3.2) and outline,
in an informal way, the main properties that make the definition of subtyping possible
(Section 3.3) as well as the key technical details of the algorithm that decides it (Section
3.4). We conclude this chapter by giving some examples of the subtyping relation
(Section 3.5) and discussing some related work (Section 3.6). The formal development
is described in Chapter 4.

3.1 A naive (wrong) solution

The problem we want to solve in this chapter is how to extend the approach of semantic
subtyping described in Chapter 2 when we add type variables (in bold):

t ::= α | b | t× t | t → t | t ∨ t | t ∧ t | ¬t | 0 | 1

where α ranges over a countable set of type variables V. We use T to denote the set of
all types.

For a simple setting, we did not include any explicit quantification for type variables:
in this work (as well as, all works in the domain we are aware of, foremost [HFC09,
Vou06]) we focus on prenex parametric polymorphism where type quantification is
meta-theoretic.

Once more, the crux of the problem is how to define the subtyping relation between
two types that contain type variables. Since we know how to subtype ground types (i.e.,
types without variables), then a naive solution is to reuse this relation by considering all
possible ground instances of types with variables. Let θ denote a ground substitution,
that is a substitution from type variables to ground types. Then, according to our
naive definition, two types are in subtyping relation if so are their ground instances:

t1 ≤ t2
def
⇐⇒ ∀θ. [t1θ] ⊆ [t2θ] (3.1)

33
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(provided that the domain of θ contains all the variables occurring in t1 and t2) where
[_] is thus the interpretation defined for ground types in Chapter 2. This closely
matches the syntactic intuition of subtyping for prenex polymorphism according to
which the statement t1 ≤ t2 is to be intended as ∀α1...αn(t1 ≤ t2), where α1...αn are
all the variables occurring in t1 or t2. Clearly, the containment on the right hand side
of (3.1) is a necessary condition for subtyping (this property is proved for our system
by Lemma 4.4.3). Unfortunately, considering it also as sufficient and, thus, using (3.1)
to define subtyping, yields a subtyping relation that suffers too many problems to be
useful.

The first obstacle is that, as conjectured by Hosoya in [HFC09], if the subtyping
relation defined by (3.1) is decidable (which is an open problem, though we believe more
in undecidability), then deciding it is at least as hard as the satisfiability problem for set
constraint systems with negative constraints [AKW95, GTT99], which is NEXPTIME-
complete [Ste94] and for which, so far, no practical algorithm is known.

But even if the subtyping relation defined by (3.1) were decidable and Hosoya’s con-
jecture wrong, definition (3.1) yields a subtyping relation that misses the intuitiveness
of the relation on ground types. This can be shown by an example drawn from [HFC09].
For the sake of the example, imagine that our system includes singleton types, that is
types that contain just one value, for every value of the language. Then, consider the
following subtyping statement:

t× α ≤ (t× ¬t) ∨ (α× t) (3.2)

where t is a ground type.
According to (3.1) the statement holds if and only if t× s ≤ (t×¬t)∨ (s× t) holds for
every ground type s. It is easy to see that the latter holds if and only if t is a singleton
type. This follows from the set theoretic property that if S is a singleton, then for
every set X, either S ⊆ X or X ⊆ S. By using this property on the singleton type
t, we deduce that for every ground substitution of α either (the relation obtained by
applying the substitution to) α ≤ ¬t holds (therefore t×α ≤ t×¬t also holds, whence
(3.2) follows) or (the relation obtained by applying the substitution to) t ≤ α holds
(therefore t× α = (t× α\t) ∨ (t× t) holds and the latter is contained component-wise
in (t × ¬t) ∨ (α × t), whence (3.2) holds again). Vice versa, if t contains at least two
values, then substituting α by any singleton containing just one value of t disproves the
containment.

More generally, (3.2) holds if and only if t is an indivisible type, that is, a non-empty
type whose only proper subtype is the empty type. Singleton types are just an example
of indivisible types, but in the absence of singleton types, basic types that are pairwise
disjoint are indivisible as well. Therefore, while the case of singleton types is evocative,
the same problem also occurs in a language with, say, just the Int type.

Equation (3.2) is pivotal in our work. It gives us two reasons to think that the
subtyping relation defined by (3.1) is unfit to be used in practice. First, it tells us that
in such a system deciding subtyping is at least as difficult as deciding the indivisibility
of a type. This is a very hard problem (see [CDV08] for an instance of this problem in
a simpler setting) that makes us believe more in the undecidability of the relation, than
in its decidability. Second, and much worse, it completely breaks parametricity [Rey83]
yielding a completely non-intuitive subtyping relation. Indeed notice that in the two
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types in (3.2) the type variable α occurs on the right component of a product in one
type and on the left component of a product in the other. The idea of parametricity
is that a function cannot explore arguments whose type is a type variable, it can just
discard them, pass them to another function or copy them into the result. Now if (3.1)
holds it means that by a simple subsumption a function that is parametric in its second
argument can be considered parametric in its first argument instead. Understanding
the intuition underlying this subtyping relation for type variables (where the same
type variable may appear in unrelated positions in two related types) seems out of
reach of even theoretically-oriented programmers. This is why a semantic approach
for subtyping polymorphic types has been deemed unfeasible and discarded in favor of
partial or syntactic solutions (see related works in Section 3.6).

3.2 Ideas for a solution

Although the problems pointed out in [HFC09] are substantial, they do not preclude a
semantic approach to parametric polymorphism. Furthermore the shortcomings caused
by the absence of this approach make the study well worth of trying. Here we show
that—paraphrasing a famous article by John Reynolds [Rey84]—subtyping of polymor-
phism is set-theoretic.

The conjecture that we have been following since we discovered the problem of [HFC09],
and that is at the basis of all this work, is that the loss of parametricity is only due to
the behavior of indivisible types, all the rest works (more or less) smoothly. The crux
of the problem is that for an indivisible type t the validity of the formula

t ≤ α or α ≤ ¬t (3.3)

can stutter from one subformula to the other (according to the assignment of α) losing
in this way the uniformity typical of parametricity. If we can give a semantic charac-
terization of models in which stuttering is absent, we believed this would have yielded
a subtyping relation that is (i) semantic, (ii) intuitive for the programmer,1 and (iii)
decidable. The problem with indivisible types is that they are either completely inside
or completely outside any other type. What we need, then, is to make indivisible types
“splittable”, so that type variables can range over strict subsets of any type, indivisible
ones included. Since this is impossible at a syntactic level, we shall do it at a semantic
level. First, we replace ground substitutions with semantic (set) assignments of type
variables, η : V → P(D) (in set-theoretic notation, η ∈ P(D)V), and add to interpre-
tation functions a semantic assignment as a further parameter (as it is customary in
denotational semantics):

[.] : T → P(D)V → P(D).

Such an interpretation (actually, the pair ([.],D) ) is then a set-theoretic model if and
only if for all assignments η it satisfies the following conditions (in bold the condition

1For instance, type variables can only be subsumed to themselves and according to whether they
occur in a covariant or contravariant position, to 1 and to unions in which they explicitly appear or
to 0 and intersections in which they explicitly appear, respectively. De Morgan’s laws can be used to
reduce other cases to one of these.
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that shows the role of the assignment parameter η):

[α]η = η(α) [¬t]η = D\[t]η

[0]η = ∅ [t1 ∨ t2]η = [t1]η ∪ [t2]η

[1]η = D [t1 ∧ t2]η = [t1]η ∩ [t2]η

[t1]η ⊆ [t2]η ⇐⇒ E(t1)η ⊆ E(t2)η

where E() is extended in the obvious way to cope with semantic assignments, that is,

E(¬t)η = D \ E(t)η E(b)η = [b]η

E(t1 ∨ t2)η = E(t1) ∪ E(t2)η E(t1 × t2)η = [t1]η × [t2]η

E(t1 ∧ t2)η = E(t1)η ∩ E(t2)η E(t1 → t2)η = P([t1]η×[t2]η)
E(α)η = η(α) E(0)η = ∅ E(1)η = D

Then the subtyping relation is defined as follows:

t1 ≤ t2
def
⇐⇒ ∀η∈P(D)V . [t1]η ⊆ [t2]η (3.4)

In this setting, every type t that denotes a set of at least two elements of D can
be split by an assignment. That is, it is possible to define an assignment for which
a type variable α denotes a subset of D such that is the interpretation of t neither
completely inside nor completely outside the set. Therefore for such a type t, neither
equation (3.3) nor, a fortiori, equation (3.2) hold. It is then clear that the stuttering of
(3.3) is absent in every set-theoretic model in which all non-empty types—indivisible
types included—denote infinite subsets of D. Infinite denotations for non-empty types
look as a possible, though specific, solution to the problem of indivisible types. But
what we are looking for is not a particular solution. We are looking for a semantic
characterization of the “uniformity” that characterizes parametricity, in order to define
a subtyping relation that is, we repeat, semantic, intuitive, and decidable.

This characterization is provided by the property of convexity.

3.3 Convexity

A set theoretic model ([.],D) is convex if and only if for every finite set of types t1,. . . ,
tn it satisfies the following property:

∀η.([t1]η=∅ or · · · or [tn]η=∅) ⇐⇒ (∀η.[t1]η=∅) or · · · or (∀η.[tn]η=∅) (3.5)

This property is the cornerstone of our approach. As such it deserves detailed com-
ments. It states that, given any finite set of types, if every assignment makes some of
these types empty, then it is so because there exists one particular type that is empty
for all possible assignments.2 Therefore convexity forces the interpretation function to
behave uniformly on its zeros (i.e., on types whose interpretation is the empty set).

2We dubbed this property convexity after convex formulas: a formula is convex if whenever it entails
a disjunction of formulas, then it entails one of them. The ⇒ direction of (3.5) (the other direction is
trivial) states the convexity of assignments with respect to emptiness: η ∈ P(D)V ⇒

∨
i∈I[ti]η = ∅

implies that there exists h ∈ I such that η ∈ P(D)V ⇒ [th]η = ∅.
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Now, the zeros of the interpretation function play a crucial role in the theory of semantic
subtyping, since they completely characterize the subtyping relation. Indeed

s ≤ t ⇐⇒ [s] ⊆ [t] ⇐⇒ [s] ∩ [t] ⊆ ∅ ⇐⇒ [s ∧ ¬t] = ∅.

Consequently, checking whether s ≤ t is equivalent to checking whether the type
s ∧ ¬t is empty; likewise, the condition of a model is equivalent to that for all t
[t] = ∅ ⇐⇒ E(t) = ∅. We deduce that convexity forces the subtyping relation
to have a uniform behavior and, ergo, rules out non-intuitive relations such as the one
in (3.2). This is so because convexity prevents stuttering, insofar as in every convex
model ([t∧¬α]η=∅ or [t∧α]η=∅) holds for all assignments η if and only if t is empty.

Convexity is the property we seek. The resulting subtyping relation is semantically
defined and preserves the set-theoretic semantics of type connectives (union, intersec-
tion, negation) and the containment behavior of set-theoretic interpretations of type
constructors (set-theoretic products for product types and set-theoretic function spaces
for arrow types). Furthermore, the subtyping relation is not only semantic but also
intuitive. First, it excludes non-intuitive relations by imposing a uniform behavior dis-
tinctive of the parametricity à la Reynolds: we believe that parametricity and convexity
are connected, despite the fact that the former is defined in terms of transformations
of related terms while the latter deals only with (subtyping) relations. Second, it is
very easy to explain the intuition of type variables to a programmer:

For what concerns subtyping, a type variable can be considered as a special
new user-defined basic type that is unrelated to any other atom but 0, 1,
and itself.3 Type variables are special because their intersection with any
ground type may be non-empty, whatever this type is.

Of course, neither in the theoretical development nor in the subtyping algorithm type
variables are dealt with as basic types. They need very subtle and elaborated techniques
that form the core of our work. But this complexity is completely transparent to the
programmer who can thus rely on a very simple intuition.

All that remains to do is (i) to prove the convexity property is not too restrictive,
that is, that there exists at least one convex set-theoretic model and (ii) to show
an algorithm that decides the subtyping relation. Contrary to the ground case, both
problems are difficult. While their solutions require a lot of technical results (see
Chapter 4), the intuition underlying them is relatively simple. For what concerns the
existence of a convex set-theoretic model, the intuition can be grasped by considering
just the logical fragment of our types, that is, the types in which 0 and 1 are the only
atoms. This corresponds to the (classical) propositional logic where the two atoms
represent, respectively, false and true. Next, consider the instance of the convexity
property given for just two types, t1 and t2. It is possible to prove that every non-
degenerate Boolean algebra (i.e., every Boolean algebra with more than two elements)

3This holds true even for languages with bounded quantification which, as it is well known, defines
the subtyping relation for type variables. Bounded quantification does not require any modification
to our system, since it can be encoded by intersections and union: a type variable α bounded by two
types s and t —i.e., with the constraint s≤α≤t— can be encoded by a fresh (unbounded) variable β by
replacing s∨(β∧t) for every occurrence of α. In other terms the type schema ∀s≤α≤t.u is equivalent
to the schema ∀β.u{s∨(β∧t)/α}.
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satisfies it. Reasoning by induction it is possible to prove that convexity for n types is
satisfied by any Boolean algebra containing at least n elements and from there deduce
that all infinite Boolean algebras satisfy convexity. It is then possible to extend the
proof to the case that includes basic, product, and arrow types and deduce the following
result:

Every set-theoretic model of ground types in which non-empty types denote
infinite sets is a convex set-theoretic model for the polymorphic types.

Therefore, not only do we have a large class of convex models, but also we recover our
initial intuition that models with infinite denotations was a possible way to go.

All that remains to explain is the subtype checking algorithm. We do it in the next
section, but before that we want to address the possible doubts of a reader about what
the denotation of a “finite” type like Bool is in such models. In particular, since this
denotation contains not only (the denotations of) true and false but infinitely many
other elements, then the reader can rightly wonder what these other elements are and
whether they carry any intuitive meaning. In order to explain this point, let us first
reexamine what convexity does for infinite types. Convexity is a condition that makes
the interpretation of the subtyping relation robust with respect to extensions. Imagine
that the syntax of types includes just one basic type: Int. Then Int is an indivisible
type and therefore there exist non-convex models in which the following relation (which
is an instance of equation (3.2) of Section 3.1) holds:

Int × α ≤ (Int × ¬Int) ∨ (α× Int) (3.6)

(e.g., a model where Int is interpreted by a singleton set: in a non-convex model nothing
prevents such an interpretation). Now, suppose to add the type Odd, a subtype of Int,
to the type system (and to extend the interpretation of basic types accordingly): then
in these models equation (3.6) no longer holds (the substitution of α by Odd disproves
it). Should the presence of Odd change the containment relation between Int and
the other types? Semantically this should not happen. A relation as (3.6) should
have the same meaning independently from whether Odd is included in the syntax of
types or not. In other terms we want the addition of Odd to yield a conservative
extension of the subtyping relation. Therefore, all models in which (3.6) is valid must
be discarded. Convexity does it. More generally, convexity rules out models where the
simple addition of a subtype may yield non conservative extensions of the subtyping
relation (or, equivalently, it rules out all models that do not have enough points to
support any possible extension of the subtyping relation).

The point is that convexity pushes this idea to all types, so that their interpretation
is independent from the possible syntactic subtypes they may have. It is as if the
interpretation of subtyping assumed that every type has at least one (actually, infinitely
many) stricter non empty subtype(s). So what could the denotation of type Bool be in
such a model, then? A possible choice is to interpret Bool into a set containing labeled
versions of true and false, where labels are drawn from an infinite set of labels (a
similar interpretation was first introduced by Gesbert et al. [GGL11]: see Section 3.6 on
related work). Here the singleton type {true} is interpreted as an infinite set containing
differently labeled versions of the denotation of true. So if tt is a denotation of the value
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true, then we can imagine that the singleton type {true} denotes a set of the form
{tt , ttb1,b2 , ttb2,b3,b5 , ...}. Does this labeling carry any intuitive meaning? One can think
of it as representing name subtyping (i.e., syntactic types with a user-defined subtyping
relation): these labels are the names of (potential) subtypes of the singleton type {true}

for which the subtyping relation is defined by name subtyping: a value belongs to a type
defined by name subtype only if it is labeled by it: so ttb1,b2 belongs to the interpretation
of the types b1 and b2 but not to the interpretation of type b3, where all these types
are subtypes (defined by name subtyping) of the singleton type {true}. As we do not
want the subtyping relation for Int to change (non conservatively) when adding to the
system the type Odd, so for the same reason we do not want the subtyping relation for
singleton types to change when adding by name subtyping new subtypes, even when
these subtypes are subtypes of a singleton type. So convexity makes the subtyping
relation insensitive to possible extensions by name subtyping. Or, put differently, it
ensures that all extensions by name subtyping of a subtyping relation are conservative
extensions of the original relation.

3.4 Subtyping algorithm

The subtyping algorithm for the relation induced by convex models can be decomposed
in 6 elementary steps. Let us explain the intuition underlying each of them: all missing
details can be found in Chapter 4.

First of all, we already said that deciding t1 ≤ t2—i.e., whether for all η, [t1]η ⊆
[t2]η—is equivalent to decide the emptiness of the type t1∧¬t2—i.e., whether for all η,
[t1∧¬t2]η=∅—. So the first step of the algorithm is to transform the problem t1 ≤ t2
into the problem t1∧¬t2 ≤ 0:

Step 1: transform the subtyping problem into an emptiness decision problem.

Our types are just a propositional logic whose atoms are type variables, 0, 1, basic,
product, and arrow types. We use a to range over atoms and, following the logic
nomenclature, call literal, ranged over by ℓ, an atom or its negation:

a ::= b | t× t | t → t | 0 | 1 | α ℓ ::= a | ¬a

By using the laws of propositional logic we can transform every type into a disjunctive
normal form, that is, into a union of intersections of literals:

∨

i∈I

∧

j∈Ji

ℓj

Since the interpretation function preserves the set-theoretic semantics of type connec-
tives, then every type is empty if and only if its disjunctive normal form is empty.
So the second step of our algorithm consists of transforming the type t1∧¬t2 whose
emptiness was to be checked, into a disjunctive normal form:

Step 2: put the type whose emptiness is to be decided in a disjunctive normal form.



40 CHAPTER 3. THE KEY IDEAS

Next, we have to decide when a normal form, that is, a union of intersections, is
empty. A union is empty if and only if every member of the union is empty. Therefore
the problem reduces to deciding emptiness of an intersection of literals:

∧

i∈I ℓi. Inter-
sections of literals can be straightforwardly simplified. Every occurrence of the literal
1 can be erased since it does not change the result of the intersection. If either any
of the literals is 0 or two literals are a variable and its negation, then we do not have
to perform further checks since the intersection is surely empty. An intersection can
be simplified also when two literals with different constructors occur in it: if in the
intersections there are two atoms of different constructors, say, t1×t2 and t1→t2, then
their intersection is empty and so is the whole intersection; if one of the two atoms
is negated, say, t1×t2 and ¬(t1→t2), then it can be eliminated since it contains the
one that is not negated; if both atoms are negated, then the intersection can also be
simplified (with some more work: cf. the formal development in Chapter 4). Therefore
the third step of the algorithm is to perform these simplifications so that the problem
is reduced to deciding emptiness of intersections that are formed by literals that are
(possible negations of) either type variables or atoms all of the same constructor (all
basic, all product, or all arrow types):

Step 3: simplify mixed intersections.

At this stage we have to decide emptiness of intersections of the form

∧

i∈I

ai ∧
∧

j∈J

¬a′
j ∧

∧

h∈H

αh ∧
∧

k∈K

¬βk

where all the ai’s and a′
j ’s are atoms with the same constructor, and where {αh}h∈H

and {βk}k∈K are disjoint sets of type variables: we just reordered literals so that negated
variables and the other negated atoms are grouped together. In this step we want to
get rid of the rightmost group in the intersection, that is, the one with negated type
variables. In other terms, we want to reduce our problem to deciding the emptiness of
an intersections as the above, but where all top-level occurrences of type variables are
positive. This is quite easy, and stems from the observation that if a type with a type
variable α is empty for every possible assignment of α, then it will be empty also if
one replaces ¬α for α in it: exactly the same set of checks will be performed since the
denotation of the first type for α 7→ S ⊆ D will be equal to the denotation of the second
type for α 7→ S ⊆ D. That is to say, ∀η.[t]η = ∅ if and only if ∀η.[t{¬α/α}]η = ∅
(where t{t′/α} denotes the substitution of t′ for α in t). So all the negations of the
group of toplevel negated variables can be eliminated by substituting ¬βk for βk in the
ai’s and a′

j ’s:

Step 4: eliminate toplevel negative variables.

Next comes what probably is the trickiest step of the algorithm. We have to prove
emptiness of intersections of atoms ai and negated atoms a′

j all on the same constructors
and of positive variables αk. To lighten the presentation let us consider just the case in
which atoms are all product types (the case for arrow types is similar though trickier,
while the case for basic types is trivial since it reduces to the case for basic types
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without variables). By using De Morgan’s laws we can move negated atoms on the
right hand-side of the relation so that we have to check the following containment

∧

t1×t2∈P

t1×t2 ∧
∧

h∈H

αh ≤
∨

t′1×t′2∈N

t′1×t′2 (3.7)

where P and N respectively denote the sets of positive and negative atoms. Our goal
is to eliminate all top-level occurrences of variables (the αh’s) so that the problem
is reduced to checking emptiness of product literals. To that end observe that each
αh is intersected with other products. Therefore whatever the interpretation of αh is,
the only part of its denotation that matters is the one that intersects D2. Ergo, it
is useless, at least at top-level, to check all possible assignments for αh, since those
contained in D2 will suffice. These can be checked by replacing γ1h×γ2h for αh, where

γ1,h , γ2h are fresh type variables. Of course the above reasoning holds for the top-level
variables, but nothing tells us that the non top-level occurrences of αh will intersect
any product. So replacing them with just γ1h×γ2h would yield a sound but incomplete
check. We rather replace every non toplevel occurrence of αh by (γ1h×γ2h) ∨ αh. This
still is a sound substitution since if (3.7) holds, then it must also hold for the case where
(γ1h×γ2h)∨αh is substituted for αh (with the ∨αh part useless for toplevel occurrences).
Rather surprisingly, at least at first sight, this substitution is also complete, that is
(3.7) holds if and only if the following holds:

∧

t1×t2∈P

t1σ × t2σ ∧
∧

h∈H

γ1h × γ2h ≤
∨

t′1×t′2∈N

t′1σ × t′2σ

where σ is the substitution {(γ1
h×γ2

h) ∨ αh/αh}h∈H .4 As an aside, we signal that this
transformation holds only because αh’s are positive: the application of Step 4 is thus a
necessary precondition to the application of this one. We thus succeeded to eliminate
all toplevel occurrences of type variables and, thus, we reduced the initial problem to
the problem of deciding emptiness of intersections in which all literals are products or
negations of products (and similarly for arrows):

Step 5: eliminate toplevel variables.

The final step of our algorithm must decompose the type constructors occurring
at toplevel in order to recurse or stop. To that end it will use set-theoretic properties
to deconstruct atom types and, above all, the convexity property to decompose the
emptiness problem into a set of emptiness subproblems (this is where convexity plays
an irreplaceable role: without convexity the definition of an algorithm seems to be
out of our reach). Let us continue with our example with products. At this stage all
it remains to solve is to decide a containment of the following form (we included the
products of fresh variables into P ):

∧

t1×t2∈P

t1×t2 ≤
∨

t′1×t′2∈N

t′1×t′2 (3.8)

4Note that the result of this substitution is equivalent to using the substitution

{(γ
1
h×γ2

h) ∨ γ3
h/αh}h∈H where γ3

h is also a fresh variable: we just spare a new variable by reusing
αh which would be no longer used (actually this artifice makes proofs much easier).
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Using the set-theoretic properties of the interpretation function and our definition of
subtyping, we can prove (see Lemma 2.1.8) that (3.8) holds if and only if for all N ′⊆N ,

∀η.



[
∧

t1×t2∈P

t1 ∧
∧

t′1×t′2∈N
′

¬t′1]η=∅ or [
∧

t1×t2∈P

t2 ∧
∧

t′1×t′2∈N\N ′

¬t′2]η=∅





We can now apply the convexity property and distribute the quantification on η over
each subformula of the or. Thus (3.8) holds if and only if for all N ′⊆N ,

∀η.



[
∧

t1×t2∈P

t1 ∧
∧

t′1×t′2∈N
′

¬t′1]η=∅



 or ∀η.



[
∧

t1×t2∈P

t2 ∧
∧

t′1×t′2∈N\N ′

¬t′2]η=∅





This is equivalent to state that we have to check the emptiness for each type that occurs
as argument of the interpretation function. Playing a little more with De Morgan’s laws
and applying the definition of subtyping we can thus prove that (3.8) holds if and only
if

∀N ′⊆N.




∧

t1×t2∈P

t1 ≤
∨

t′1×t′2∈N
′

t′1



 or




∧

t1×t2∈P

t2 ≤
∨

t′1×t′2∈N\N ′

t′2





To understand the rationale of this transformation the reader can consider the case in
which both P and N contain just one atom, namely, the case for t1×t2≤ t′1×t′2. There
are just two cases to check (N ′=∅ and N ′=N) and it is not difficult to see that the
condition above becomes: (t1≤0) or (t2≤0) or (t1≤t′1 and t2≤t′2), as expected.

The important point however is that we were able to express the problem of (3.8)
in terms of subproblems that rest on strict subterms (there is a similar decomposition
rule for arrow types). Remember that our types are possibly infinite trees since they
were coinductively generated by the grammar in Section 3.1. We do not consider every
possible coinductively generated tree, but only those that are regular (i.e., that have a
finite number of distinct subtrees) and in which every infinite branch contains infinitely
many occurrences of type constructors (i.e., products and arrows). The last condition
rules out meaningless terms (such as t = ¬t) as well as infinite unions and intersections.
It also provides a well-founded order that allows us to use recursion. Therefore, we
memoize the relation in (3.8) and recursively call the algorithm from Step 1 on the
subterms we obtained from decomposing the toplevel constructors:

Step 6: eliminate toplevel constructors, memoize, and recurse.

The algorithm is sound and complete with respect to the subtyping relation defined
by (3.4) and terminates on all types (which implies the decidability of the subtyping
relation).

3.5 Examples

The purpose of this subsection is twofold: first, we want to give some examples to convey
the idea that the subtyping relation is intuitive; second we present some cases that
justify the subtler and more technical aspects of the subtyping algorithm we exposed
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in the previous subsection (all the examples below can be tested in our prototype
subtype-checker or in the subtype checker of [GGL11] which is available online).

In what follows we will use x, y, z to range over recursion variables and the notation
µx.t to denote recursive types. This should suffice to avoid confusion with free type
variables that are ranged over by α, β, and γ.

As a first example we show how to use type variables to internalize meta-properties.
For instance, for all ground types t1, t2, and t3 the relation (t1 → t3) ∧ (t2 → t3) ≤
(t1∨t2) → t3 and its converse hold. This meta-theoretic property can be expressed in
our type system since the following relation holds:

(α → γ) ∧ (β → γ) ≃ (α∨β) → γ

(where t ≃ s denotes that both t ≤ s and s ≤ t hold). Of course we can apply this
generalization to any relation that holds for generic types. For instance, we can prove
common distributive laws such as

((α∨β)× γ) ≃ (α×γ) ∨ (β×γ) (3.9)

and combine it with the previous relation and the covariance of arrow on codomains to
deduce

(α×γ → δ1) ∧ (β×γ → δ2) ≤ ((α∨β)× γ) → δ1 ∨ δ2

Similarly we can prove that µx.(α×x) ∨ nil the type of α-lists —i.e., the set of
possibly empty lists whose elements have type α — contains both the α-lists with an
even number of elements

µx.(α×(α×x)) ∨ nil ≤ µx.(α×x) ∨ nil

(where nil denotes the singleton type containing just the value nil) and the α-lists with
an odd number of elements

µx.(α×(α×x)) ∨ (α×nil) ≤ µx.(α×x) ∨ nil

and it is itself contained in the union of the two, that is:

µx.(α×x) ∨ nil ≃ (µx.(α× (α× x)) ∨ nil) ∨ (µx.(α× (α× x)) ∨ (α× nil))

We said that the intuition for subtyping type variables is to consider them as basic
types. But type variables are not basic types. As an example, if t is a non-empty type,
then we have that:

α ∧ (α× t) 6≤ t1 → t2

which implies that α ∧ (α × t) is not empty. This is correct because if for instance we
substitute the type t∨ (t× t) for α, then (by the distributivity law stated in (3.9) ) the
intersection is equal to (t× t), which is non-empty. However, note that if α were a basic
type, then the intersection α∧ (α× t) would be empty, since no basic type intersects a
product type. Furthermore, since the following relation holds

α ∧ (α× t) ≤ α
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then, this last containment is an example of non-trivial containment (in the sense that
the left hand-side is not empty) involving type variables. For an example of non-trivial
containment involving arrows the reader can check

1 → 0 ≤ α → β ≤ 0 → 1

which states that 1 → 0, the set of all functions that diverge on all arguments, is
contained in all arrow types α → β (whatever types α and β are) and that the latter
are contained in 0 → 1, which is the set of all function values.

Type connectives implement classic proposition logic. If we use α ⇒ β to denote
¬α ∨ β, that is logical implication, then the following subtyping relation is a proof of
Pierce’s law:

1 ≤ ((α ⇒ β) ⇒ α) ⇒ α

since being a supertype of 1 logically corresponds to being equivalent to true (note that
arrow types do not represent logical implication; for instance, 0→1 is not empty: it
contains all function values). Similarly, the system captures the fundamental property
that for all non-empty sets β the set (β∧α) ∨ (β∧¬α) is never empty:

(β ∧ α) ∨ (β ∧ ¬α) ≃ β

from which we can derive

1 ≤ ( ((β∧α) ∨ (β∧¬α)) ⇒ 0 ) ⇒ (β ⇒ 0)

This last relation can be read as follows: if (β∧α)∨ (β∧¬α) is empty, then β is empty.
But the property above will never show a stuttering validity since the algorithm

returns false when asked to prove

nil × α ≤ (nil × ¬nil) ∨ (α× nil)

even for a singleton type as nil.
The subtyping relation has some simple form of introspection since t1≤t2 if and

only if 1 ≤ t1⇒t2 (i.e., by negating both types and reversing the subtyping relation,
t1∧¬t2 ≤ 0). However, the introspection capability is very limited insofar as it is
possible to state interesting properties only when atoms are type variables: although
we can characterize the subtyping relation ≤, we have no idea about how to characterize
its negation 6≤. 5

The necessity for the tricky substitution α 7→ (γ1×γ2)∨α performed at Step 5 of
the algorithm can be understood by considering the following example where t is any
non-empty type:

(α× t) ∧ α ≤ ((1× 1)× t).

5For instance, it would be nice to prove something like:

(¬β1 ∨ ((β1⇒α1) ∧ (α2⇒β2))) ≃ (α1→α2 ⇒ β1→β2)

since it seems to provide a complete characterization of the subtyping relation between two arrow
types. Unfortunately the equivalence is false since β1 6≤ α1 does not imply β1 ∧ ¬α1 ≥ 1 but just
β1 ∧ ¬α1 6≤ 0. This property can be stated only at meta level, that is: α1→α2 ≤ β1→β2 if and only if
(β1 ≤ 0 or (β1≤α1 and α2≤β2)).
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If in order to check the relation above we substituted just γ1×γ2 for α, then this would
yield a positive result, which is wrong: if we replace α by b ∨ (b×t), where b is any
basic type, then the intersection on the left becomes (b×t) and b is neither contained
in 1× 1 nor empty. Our algorithm correctly disproves the containment, since it checks
also the substitution of (γ1 × γ2) ∨ α for the first occurrence of α, which captures the
above counterexample.

Finally, the system also proves subtler relations whose meaning is not clear at first
sight, such as:

α1 → β1 ≤ ((α1∧α2)→(β1∧β2)) ∨ ¬(α2→(β2∧¬β1)) (3.10)

In order to prove it, the subtyping algorithm first moves the occurrence of α2 →
(β2∧¬β1) from the right of the subtyping relation to its left: (α1→β1)∧(α2→(β2∧¬β1)) ≤
((α1∧α2)→(β1∧β2)); then following the decomposition rules for arrows the algorithm
checks the four following cases (Step 6 of the algorithm), which hold straightforwardly:







α1∧α2 ≤ 0 or β1 ∧ (β2 ∧ ¬β1) ≤ β1 ∧ β2

α1∧α2 ≤ α1 or (β2 ∧ ¬β1) ≤ β1 ∧ β2

α1∧α2 ≤ α2 or β1 ≤ β1 ∧ β2

α1∧α2 ≤ α1 ∨ α2

Notice that relation (3.10) is subtle insofar as neither α1 → β1 ≤ (α1∧α2) → (β1 ∧ β2)
nor α1 → β1 ≤ ¬(α2 → (β2∧¬β1)) hold: the type on left hand-side of (3.10) is contained
in the union of the two types on the right hand-side of (3.10) without being completely
contained in either of them.

3.6 Related work

3.6.1 Semantic subtyping and polymorphism

The definition of polymorphic semantic subtyping extends the work on semantic sub-
typing [FCB08], as such these two works share the same approach and common devel-
opments. Since convex models of our theory can be derived from the models of [FCB08],
then several techniques we used in our subtyping algorithm (in particular the decom-
position of toplevel type constructors) are directly issued from the research in [FCB08].
Our work starts precisely from where [FCB08] stopped, that is the monomorphic case,
and adds prenex parametric polymorphism to it.

Our subtyping algorithm already has a follow-up. In a paper directly issued from
the research presented here [GGL11] Gesbert, Genevès, and Layäıda use the framework
we define here to give a different decision procedure for our subtyping relation. More
precisely, they take a specific model for the monomorphic type system (i.e., the model
defined by Frisch et al. [FCB08] and used by the language CDuce), they encode the
subtyping relation induced by this model into a tree logic, and use a satisfiability solver
to efficiently decide it. Next, they extend the type system with type variables and they
obtain a convex model by interpreting non-empty types as infinite sets using a labeling
technique similar to the one we outlined at the end of Section 3.3: they label values
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by (finite sets of) type variables and every non empty ground type is, thus, interpreted
as an infinite set containing the infinitely many labelings of its values. Again the
satisfiability solver provides a decision procedure for the subtyping relation. Their
technique is interesting in several respects. First it provides a very elegant solution to
the problem of deciding our subtyping relation, solution that is completely different
from the one given here. Second, their technique shows that the decision problem
is EXPTIME, (while here we only prove the decidability of the problem by showing
the termination of our algorithm). Finally, their logical encoding paves the way to
extending types (and subtyping) with more expressive logical constraints representable
by their tree logic. In contrast, our algorithm is interesting for quite different reasons:
first, it is defined for generic interpretations rather than for a fixed model; second, it
shows how convexity is used in practice (see in particular Step 6 of the algorithm);
and, finally, our algorithm is a straightforward modification of the algorithm used in
CDuce and, as such, can benefit of the technology and optimizations used there.6 We
expect the integration of this subtyping relation in the CDuce to be available in a not
so distant future.

3.6.2 XML processing and polymorphism

The most advanced work on polymorphism for XML types, thus far, is the Hosoya,
Frisch, and Castagna’s approach introduced in [HFC05] and described in details in [HFC09],
whose extended abstract was first presented at POPL ’05. Together with [FCB08], the
paper by Hosoya, Frisch, and Castagna constitutes the starting point of this work. A
starting point that, so far, was rather considered to establish a (negative) final point.
As a matter of fact, although the polymorphic system in [HFC09] is the one used to
define the polymorphic extension of XDuce [HP03] (incorporated from version 0.5.0
of the language7), the three authors of [HFC09] agree that the main interest of their
work does not reside in its type system, but rather in the negative results that motivate
it. In particular, the pivotal example of our work, equation (3.2), was first presented
in [HFC09], and used there to corroborate the idea that a purely semantic approach for
polymorphism of regular tree types was an hopeless quest. At that time, this seemed so
more hopeless that equation (3.2) did not involve arrow types: a semantically defined
polymorphic subtyping looked out of reach even in the restrictive setting of Hosoya and
Pierce seminal work [HP03], which did not account for higher-order functions. This is
why [HFC09] falls back on a syntactic approach that, even if it retains some flavors of
semantic subtyping, cannot be extended to higher-order functions (a lack that never-
theless fits XDuce). Our works shows that the negative results of [HFC09] were not so
insurmountable as it had been thought.

Hitherto, the only work that blends polymorphic regular types and arrow types is
Jérôme Vouillon’s work that was presented at POPL ’06 [Vou06]. His approach, how-
ever, is very different from ours insofar as it is intrinsically syntactic. Vouillon starts

6Alain Frisch’s PhD. thesis [Fri04] describes two algorithms that improve over the simple saturation-
based strategy described in Section 4.4. They are used both in CDuce compiler and in the prototype
we implemented to check the subtyping relation presented in this work.

7XDuce is the only language we are aware of that can express the polymorphism of the SOAP
functions we described in the introduction. However, since it lacks higher-order functions, it cannot
express the type of register_new_service.
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from a particular language (actually, a peculiar pattern algebra) and coinductively
builds up on it the subtyping relation by a set of inference rules. The type algebra in-
cludes only the union connective (negation and intersection are missing) and a semantic
interpretation of subtyping is given a posteriori by showing that a pattern (types are
special cases of patterns) can be considered as the set of values that match the pattern.
Nevertheless, this interpretation is still syntactic in nature since it relies on the defini-
tion of matching and containment, yielding a system tailored for the peculiar language
of the paper. This allows Vouillon to state impressive and elegant results such as the
translation of the calculus into a non-explicitly-typed one, or the interpretation of open
types containment as in our equation (3.1) (according to Vouillon this last result is
made possible in his system by the absence of intersection types, although the critical
example in (3.2) does not involve any intersection). But the price to pay is a system
that lacks naturalness (e.g., the wild-card pattern has different meanings according to
whether it occurs in the right or in left type of a subtyping relation) and, even more,
it lacks the generality of our approach (we did not state our subtype system for any
specific language while Vouillon’s system is inherently tied to a particular language
whose semantics it completely relies on). The semantics of Vouillon’s patterns is so
different from ours that typing Vouillon’s language with our types seems quite difficult.

Other works less related to ours are those in which XML and polymorphism are
loosely coupled. This is the case of OCamlDuce [Fri06] where ML-polymorphism and
XML types and patterns are merged together without mixing: the main limitation
of this approach is that it does not allow parametric polymorphism for XML types,
which is the whole point of our (and Vouillon’s) work(s). A similar remark can be done
for Xtatic [GLPS05b] that merges C# name subtyping with the XDuce set-theoretic
subtyping and for XHaskell [LS04] whose main focus is to implement XML subtyping
using Haskell’s type-classes. A more thorough comparison of these approaches can be
found in [Fri06, HFC09].

Polymorphism can be attained by adopting the so-called data-binding approach
which consists in encoding XML types and values into the structures of an existing
polymorphic programming language. This is the approach followed by HaXML [WR99].
While the polymorphism is inherited from the target language, the rigid encoding of
XML data into fixed structures loses all flexibility of the XML type equivalences so as,
for instance, (t×s1) ∨ (t×s2) and (t×s1∨s2) are different (and even unrelated) types.

Finally, we signal the work on polymorphic iterators for XML presented in [CN08]
which consists of a very simple strongly normalizing calculus fashioned to define tree
iterators. These iterators are lightly checked at the moment of their definition: the
compiler does not complain unless they are irremediably flawed. This optimistic typ-
ing, combined with the relatively limited expressive power of the calculus, makes it
possible to type iterator applications in a very precise way (essentially, by performing
an abstract execution of the iterator on the types) yielding a kind of polymorphism
that is out of reach of parametric or subtype polymorphism (for instance it can pre-
cisely type the reverse function applied to heterogeneous lists and thus deduce that the
application of reverse to a list of type, say, [ Int Bool* Char+ ] yields a result of
type [ Char+ Bool* Int ]). As such it is orthogonal to the kind of polymorphism
presented here, and both can and should coexist in a same language.
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Chapter 4

Formal Development

In this chapter we describe the technical development that supports the results we
exposed in the previous chapter.

4.1 Types

Definition 4.1.1 (Types). Let V be a countable set of type variables ranged over by
Greek letter α,β,γ,. . . , and B a finite set of basic (or constant) types ranged over by
b. A type is a term co-inductively produced by the following grammar

Types t ::= α type variable
| b basic
| t× t product
| t → t arrow
| t ∨ t union
| ¬t negation
| 0 empty

that satisfies two additional requirements:

• (regularity) the term must have a finite number of different sub-terms.

• (contractivity) every infinite branch must contain an infinite number of occur-
rences of atoms ( i.e., either a type variable or the immediate application of a type
constructor: basic, product, arrow).

We use T to denote the set of all types.

We write t1∧t2, t1\t2, and 1 respectively as an abbreviation for ¬(¬t1∨¬t2), t1∧¬t2,
and ¬0.

The condition on infinite branches bars out ill-formed types such as t = t∨ t (which
does not carry any information about the set denoted by the type) or t = ¬t (which
cannot represent any set). It also ensures that the binary relation ⊲⊆ T 2 defined by
t1∨t2 ⊲ ti, ¬t ⊲ t is Noetherian (that is, strongly normalizing). This gives an induction
principle on T that we will use without any further explicit reference to the relation.

49
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Since types are infinite then the accessory definitions on them will be given either
by using memoization (e.g., the definition of var(), the variables occurring in a type:
Definition 4.1.2), of by co-inductive techniques (e.g., the definition or the application
of type-substitution: Definition 4.1.5) or by induction on the relation ⊲, but only when
induction does not traverse a type constructor (e.g., the definition of tlv(), the variables
occurring at top-level of a type: Definition 4.1.3).

Definition 4.1.2 (Type variables). Let var0 and var1 be two functions from T ×
P(T ) to P(V) defined as:

var0(t,i) =

{

∅ if t ∈ i

var1(t,i ∪ {t}) otherwise

var1(α,i) = {α}
var1(b,i) = ∅

var1(t1 × t2,i) = var0(t1,i) ∪ var0(t2,i)
var1(t1 → t2,i) = var0(t1,i) ∪ var0(t2,i)
var1(t1 ∨ t2,i) = var1(t1,i) ∪ var1(t2,i)

var1(¬t1,i) = var1(t1,i)
var1(0,i) = ∅

where i is a set of types. The set of type variables occurring in a type t, written var(t),
is defined as var0(t, ∅). A type t is said to be ground or closed if and only if var(t) is
empty. We write T0 to denote the set of all the ground types.

Definition 4.1.3 (Top-level variables). Let t be a type. The set tlv(t) of type vari-
ables that occur at top level in t, that is, all the variables of t that have at least one
occurrence not under a constructor, is defined as:

tlv(α) = {α}
tlv(b) = ∅

tlv(t1 × t2) = ∅
tlv(t1 → t2) = ∅
tlv(t1 ∨ t2) = tlv(t1) ∪ tlv(t2)

tlv(¬t1) = tlv(t1)
tlv(0) = ∅

Definition 4.1.4 (Type substitution). A type-substitution σ is a total mapping
of type variables to types that is the identity everywhere but on a finite subset of V,
which is called the domain of σ and denoted by dom(σ). Given a substitution σ, the
range of σ is defined as the set of types ran(σ) = {σ(α) | α ∈ dom(σ)}, and the set of
type variables occurring in the range is defined as tvran(σ) =

⋃

α∈dom(σ) var(σ(α)). We
use the notation {t1/α1, . . . , tn/αn} to denote the type-substitution that maps αi to ti for
i = 1..n.

Definition 4.1.5. Given a type t ∈ T and a type-substitution σ, the application of σ
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to t is co-inductively defined as follows:

bσ = b
(t1 × t2)σ = (t1σ)× (t2σ)
(t1 → t2)σ = (t1σ) → (t2σ)
(t1 ∨ t2)σ = (t1σ) ∨ (t2σ)

(¬t)σ = ¬(tσ)
0σ = 0
ασ = σ(α) if α ∈ dom(σ)
ασ = α if α 6∈ dom(σ)

4.2 Subtyping

Definition 4.2.1 (Assignment). Given a set D, a semantic assignment η : V →
P(D) is a finite mapping from type variables to subsets of D. The set of type variables
that are defined in η is called the domain of η, denoted as dom(η).

Definition 4.2.2 (Set-theoretic interpretation). A set-theoretic interpretation of
T is given by a set D and a function [_] : T → P(D)V → P(D) such that, for all
t1, t2, t ∈ T , α ∈ V and η ∈ P(D)V :

• [t1 ∨ t2]η = [t1]η ∪ [t2]η,

• [¬t]η = D \ [t]η,

• [α]η = η(α),

• [0]η = ∅.

Once such an interpretation is defined, the subtyping relation is naturally defined
as the inclusion relation:

Definition 4.2.3 (Subtyping relation). Let [_] : T → P(D)V → P(D) be a set-
theoretic interpretation. We define the subtyping relation ≤[ ]⊆ T 2 as follows:

t ≤[ ] s
def

⇐⇒ ∀η ∈ P(D)V . [t]η ⊆ [s]η

We write t ≤ s when the interpretation [_] is clear from the context, and t ≃ s if
t ≤ s and s ≤ t.

As argued and stated in Section 3.3, the subtyping problem can be transformed
into emptiness decision problem, that is the following lemma.

Lemma 4.2.4. Let t, s be two types, then:

t ≤ s ⇐⇒ ∀η ∈ P(D)V . [t ∧ ¬s]η = ∅.

Proof.

t ≤ s ⇐⇒ ∀η ∈ P(D)V . [t]η ⊆ [s]η

⇐⇒ ∀η ∈ P(D)V . [t]η ∩ (D \ [s]η) = ∅

⇐⇒ ∀η ∈ P(D)V . [t ∧ ¬s]η = ∅.
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Let C be a subset of D whose elements are called constants. For each basic type b,
we assume there is a fixed set of constants B(b) ⊆ C whose elements are called constants
of type b. For two basic types b1, b2, the sets B(bi) can have a nonempty intersection.

If, as suggested in Section 2.1, we interpret extensionally an arrow t1→t2 as P([t1]×[t2])
(precisely as P(D2\([t1]×(D\[t2])))), then every arrow type is a subtype of 1→1. We
do not want such a property to hold because, otherwise, we could subsume every
function to a function that accepts every value and, therefore, every application of a
well-typed function to a well-typed argument would be well-typed, independently from
the types of the function and of the argument. For example, if, say, succ: Int→Int,
then we could deduce succ:1→1 and then succ(true) would have type 1. To avoid this
problem we use a technique introduced in [FCB08] and introduce an explicit type error
Ω and use it to define function spaces:

Definition 4.2.5. If D is a set and X,Y are subsets of D, we write DΩ for D + {Ω}
and define X → Y as:

X → Y
def

= {f ⊆ D ×DΩ | ∀(d, d′) ∈ f. d ∈ X ⇒ d′ ∈ Y }

This is used in the definition of the extensional interpretation:

Definition 4.2.6 (Extensional interpretation). Let [_] : T → P(D)V → P(D)
be a set-theoretic interpretation. Its associated extensional interpretation is the unique
function E(_) : T → P(D)V → P(ED) where ED = D+D2+P(D ×DΩ), defined as
follows:

E(α)η = η(α) ⊆ D
E(b)η = B(b) ⊆ D

E(t1 × t2)η = [t1]η × [t2]η ⊆ D2

E(t1 → t2)η = [t1]η → [t2]η ⊆ P(D ×DΩ)
E(t1 ∨ t2)η = E(t1)η ∪ E(t2)η

E(¬t)η = ED \ E(t)η
E(0)η = ∅

Since arrow types behave as function spaces under all possible semantics assign-
ments, that is, for all s1, s2, t1, t2 and for all η, we have:

[s1→s2]η ⊆ [t1→t2]η ⇐⇒ E(s1→s2)η ⊆ E(t1→t2)η

the definition of set-theoretic model is:

Definition 4.2.7 (Models). A set-theoretic interpretation [_] : T → P(D)V →
P(D) is a model if it induces the same inclusion relation as its associated extensional
interpretation, that is, it salsifies:

∀t ∈ T . ∀η ∈P(D)V . [t]η=∅ ⇐⇒ E(t)η=∅

From the condition of a model, we can deduce that [_] induces the same subtyping
relation as its associated extensional interpretation, that is,

∀η ∈P(D)V . [t]η=∅ ⇐⇒ ∀η ∈P(D)V .E(t)η=∅



4.3. PROPERTIES OF THE SUBTYPING RELATION 53

Definition 4.2.8 (Convexity, foundation). Let [_] : T → P(D)V → P(D) be a
set-theoretic interpretation. It is

1. convex if for all finite choices of types t1, ..., tn, it satisfies

∀η.([t1]η=∅ or · · · or [tn]η=∅) ⇐⇒ (∀η.[t1]η=∅) or · · · or (∀η.[tn]η=∅)

2. structural if D2 ⊆ D, [t1×t2]η=[t1]η×[t2]η and the relation on D induced by
(d1, d2) ◮ di is Noetherian.

Definition 4.2.9. Let [_] : T → P(D)V → P(D) be a model. It is

1. convex if its set-theoretic interpretation is convex;

2. well-founded if it induces the same inclusion relation as a structural set-theoretic
interpretation.

From now on we consider only well-founded convex models. We already explained
the necessity of the notion of convexity we introduced in Section 3.3. The notion of
well-founded model was introduced in Section 4.3 of [FCB08]. Intuitively, well-founded
models are models that contain only values that are finite (e.g., in a well-founded
model the type µx.(x×x)—i.e., the type that “should” contain all and only infinite
binary trees—is empty). This fits the practical motivations of this work, since XML
documents—i.e., values—are finite trees.

4.3 Properties of the subtyping relation

Types are essentially a propositional logic (with standard logical connectives: ∧,∨,¬)
whose atoms are 0, 1, basic types, product types, arrow types, and type variables. We
write Afun for atoms of the form t1→ t2, Aprod for atoms of the form t1× t2, Abasic for
basic types, and A for Afun ∪ Aprod ∪ Abasic. Therefore V ∪ A ∪ {0, 1} denotes the set
of all atoms, which are ranged over by a. Henceforth, we will disregard the atoms 0
and 1 since they can be straightforwardly eliminated during the algorithmic treatment
of subtyping.

Definition 4.3.1 (Normal form). A (disjunctive) normal form τ is a finite set of
pairs of finite sets of atoms, that is, an element of Pf (Pf (A ∪V)×Pf (A ∪V)), where
Pf (.) denotes the finite powerset. Moreover, we call an element of Pf (A ∪V)×Pf (A ∪
V) a single normal form. If [_] : T → P(D)V → P(D) is an arbitrary set-theoretic
interpretation, τ a normal form and η an assignment, we define [τ ]η as:

[τ ]η =
⋃

(P,N)∈τ

⋂

a∈P

[a]η ∩
⋂

a∈N

(D \ [a]η)

(with the convention that an intersection over an empty set is taken to be D).

Lemma 4.3.2. For every type t ∈ T , it is possible to compute a normal form dnf(t)
such that for every set-theoretic interpretation [_] and assignment η, [t]η = [dnf(t)]η.



54 CHAPTER 4. FORMAL DEVELOPMENT

Proof. We can define two functions dnf and dnf0, both from T to Pf (Pf (A ∪ V) ×
Pf (A ∪ V)), by mutual induction over types:

dnf(0) = ∅

dnf(a) = {({a}, ∅)} for a ∈ A ∪V

dnf(t1 ∨ t2) = dnf(t1) ∪ dnf(t2)

dnf(¬t) = dnf0(t)

dnf0(0) = {(∅, ∅)}

dnf0(a) = {(∅, {a})} for a ∈ A ∪V

dnf0(t1∨t2) = {(P1∪P2, N1∪N2) | (Pi, Ni) ∈ dnf0(ti), i=1, 2}

dnf0(¬t) = dnf(t)

Then we check the following property by induction over the type t:

[t]η = [dnf(t)]η = D \ [dnf0(t)]η

For instance, consider the type t = a1 ∧ (a3 ∨ ¬a2) where a1, a2, and a3 are any
atoms. Then dnf(t) = {({a1,a3}, ∅), ({a1}, {a2})}. This corresponds to the fact that
for every set-theoretic interpretation and semantic assignment, dnf(t), t, and (a1∧a3)∨
(a1∧¬a2) have the same denotation.

Note that the converse result is true as well: for any normal form τ , we can find a
type t such that for every set-theoretic interpretation [_] and semantic assignment η,
[t]η=[τ ]η. Normal forms are thus simply a different, but handy, syntax for types. In
particular, we can rephrase in Definition 4.2.7 the condition for a set-theoretic inter-
pretation to be a model as:

∀τ . ∀η∈P(D)V . [τ ]η=∅ ⇐⇒ E(τ)η=∅.

For these reasons henceforth we will often confound the notions of types and normal
forms, and often speak of the “type” τ , taking the latter as a canonical representation
of all the types in dnf−1(τ).

Moreover, the definition of substitution application is naturally extended to normal
forms by applying the substitution to each type in the sets that form the normal form.

Let [_] be a set-theoretic interpretation. Given a normal form τ , we are interested
in checking the assertion ∀η∈P(D)V . [τ ]η = ∅ or equivalently ∀η∈P(D)V .E(τ)η = ∅.
Clearly, the equation ∀η ∈ P(D)V .E(τ)η = ∅ is equivalent to:

∀η ∈ P(D)V . ∀(P,N) ∈ τ .
⋂

a∈P

E(a)η ⊆
⋃

a∈N

E(a)η (4.1)

Let us define EbasicD
def

= D, EprodD
def

= D2 and EfunD
def

= P(D ×DΩ). Then we have
ED =

⋃

u∈U EuD where U = {basic, prod, fun}. Thus we can rewrite equation (4.1) as:

∀η ∈ P(D)V . ∀u ∈ U . ∀(P,N) ∈ τ .
⋂

a∈P

(E(a)η ∩ EuD) ⊆
⋃

a∈N

(E(a)η ∩ EuD) (4.2)
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For an atom a ∈ A , we have E(a)η ∩ EuD = ∅ if a /∈ Au and E(a)η ∩ EuD = E(a)η if
a ∈ Au. Then we can rewrite equation (4.2) as:

∀η ∈ P(D)V . ∀u ∈ U. ∀(P,N) ∈ τ. (P ⊆ Au ∪ V) ⇒
⋂

a∈P∩Au

E(a)η ∩
⋂

α∈P∩V

(η(α) ∩ EuD) ⊆
⋃

a∈N∩Au

E(a)η ∪
⋃

α∈N∩V

(η(α) ∩ EuD) (4.3)

(where the intersection is taken to be ED when P = ∅). Furthermore, if the same
variable occurs both in P and in N , then (4.3) is trivially satisfied. So we can suppose
that P ∩N ∩ V = ∅. This justifies the simplifications made in Step 3 of the subtyping
algorithm described in Section 3.4, that is the simplification of mixed single normal
forms.

Step 4, the elimination of negated toplevel variables, is justified by the following
lemma:

Lemma 4.3.3. Let P,N be two finite subsets of atoms and α an arbitrary type variable,
then we have

∀η ∈ P(D)V .
⋂

a∈P E(a)η ⊆
⋃

a∈N E(a)η ∪ η(α) ⇐⇒

∀η ∈ P(D)V .
⋂

a∈P E(σ
¬β
α (a))η ∩ η(β) ⊆

⋃

a∈N E(σ¬β
α (a))η

where β is a fresh variable and σ¬β
α (a) = a{¬β/α}

Proof. Straightforward application of set theory.

Note that Lemma 4.3.3 only deals with one type variable, but it is trivial to gen-
eralize this lemma to multiple type variables (the same holds for Lemmas 4.3.7 and
4.3.8).

Using Lemma 4.3.3, we can rewrite equation (4.3) as:

∀η ∈ P(D)V . ∀u ∈ U . ∀(P,N) ∈ τ . (P ⊆ Au ∪ V) ⇒
⋂

a∈P∩Au

E(a)η ∩
⋂

α∈P∩V

(η(α) ∩ EuD) ⊆
⋃

a∈N∩Au

E(a)η (4.4)

since we can assume N ∩ V = ∅.
Next, we justify Step 5 of the algorithm, that is the elimination of toplevel variables.

In (4.4) this corresponds to eliminating the variables in P ∩ V. When u = basic this
can be easily done since all variables (which can appear only at top-level) can be
straightforwardly removed. Indeed, notice that if s and t are closed types then s∧α ≤ t
if and only if s ≤ t. Since unions and intersections of basic types are closed, then we
have the following lemma

Lemma 4.3.4. Let P,N be two finite subsets of Abasic, X a finite set of variables.
Then

∀η∈P(D)V .
⋂

b∈P

E(b)η ∩
⋂

α∈X

(η(α) ∩ C ) ⊆
⋃

b∈N

E(b)η ⇐⇒
⋂

b∈P

B(b) ⊆
⋃

b∈N

B(b)

(with the convention
⋂

a∈∅ E(a)η = C )
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Proof. Straightforwardly.

The justification of Step 5 for u = prod is given by Lemma 4.3.7. In order to
prove it we need to prove a substitution lemma for the extensional interpretation and
a substitution lemma for the set-theoretic interpretation.

Lemma 4.3.5. Let [_] be a model and E(_) its associated extensional interpretation.
For all types t, t′, variable α, and assignment η, if E(t′)η = η(α), then E(t{t′/α})η =
E(t)η.

Proof. Let P be a monadic proposition defined as:

P (s)
def

⇐⇒ E(s{t′/α})η = E(s)η

To prove this lemma, we construct an inference system as follows:

(P-BASIC) ⊢P b (P-EMPTY) ⊢P 0
(P-ANY) ⊢P 1 (P-VAR) ⊢P β
(P-NOT) s ⊢P ¬s (P-AND) s1, s2 ⊢P s1 ∧ s2
(P-OR) s1, s2 ⊢P s1 ∨ s2 (P-PROD) s1, s2 ⊢P s1 × s2
(P-ARR) s1, s2 ⊢P s1 → s2

where s1, . . . , sn ⊢P s means that if P (s1), . . . , P (sn) hold, then P (s) holds.
First we prove the inference system is correct by case analysis, that is, that each rule
holds.

P-BASIC, P-EMPTY, P-ANY: Straightforward.

P-VAR: If β 6= α, it is straightforward. Otherwise, from the hypothesis we have
E(t{t′/α})η = E(t′)η = η(α). Thus the rule holds.

P-AND: We have E(si{t
′/α})η = E(si)η for i = 1, 2. Then

E((s1 ∧ s2){t
′/α})η = E(s1{t

′/α})η ∩ E(s2{t
′/α})η

= E(s1)η ∩ E(s2)η
= E(s1 ∧ s2)η

Thus the rule holds.

P-NOT,P-OR: Similar to P-AND.

P-PROD: We have E(si{t
′/α})η = E(si)η for i = 1, 2, but what we need is that

[si{t
′/α}]η = [si]η. Notice however that from E(si{t

′/α})η = E(si)η we can deduce
both E(si{t

′/α})η \E(si)η ⊆ ∅ and E(si)η \E(si{t
′/α})η ⊆ ∅. That is, by definition

of E():
E(si{t

′/α} \ si)η ⊆ ∅ and E(si \ si{t
′/α})η ⊆ ∅

Since [_] is a model, then the zero of the interpretation and of the extensional
interpretation coincide, and thus we have

[si{t
′/α} \ si]η ⊆ ∅ and [si \ si{t

′/α}]η ⊆ ∅
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That is [si{t
′/α}]η = [si]η. Therefore,

E((s1 × s2){t
′/α})η = [s1{t

′/α}]η × [s2{t
′/α}]η

= [s1]η × [s2]η
= E(s1 × s2)η

Thus the rule holds.

P-ARR: Similar to P-PROD.

Then based on the inference system we define an operator FP : P(T ) → P(T ) as

FP (S) = {s ∈ T | ∃s1, . . . , sn ∈ S . s1, . . . , sn ⊢P s}

In other terms, FP (S) is the set of types that can be inferred to satisfy P in one step
from the types satisfying P in S by the inference system above. Clearly, the inference
operator FP is monotone: FP (S1) ⊆ FP (S2) if S1 ⊆ S2 and (P(T ),⊆) is cpo. By
Tarski’s fix point theorem [Tar55], the inference operator possesses both a least fixed
point and a greatest fixed point. Clearly the set of all types that satisfy the property
P is the greatest fix-point gfp(FP ) of FP . To prove our result we must prove that the
set of types T is contained in gfp(FP ). It is easy to prove that T ⊆ FP (T ): simply
take any type t ∈ T and prove by cases that it belongs to FP (T ). This means that
T is FP -consistent. By the principle of coinduction we deduce that T ⊆ gfp(FP ) and
we conclude that gfp(FP ) = T , namely, that all types satisfy P . Therefore, the result
follows.

Lemma 4.3.6. Let [_] be a set-theoretic interpretation. For all type t, substitution σ,
and assignments η, η′, if ∀α ∈ var(t). η′(α) = [σ(α)]η, then [t]η′ = [tσ]η.

Proof. Similar to the proof of Lemma 4.3.5: first we define a monadic proposition P (t)
(i.e., [t]η′ = [tσ]η) and an inference system, then we construct an operator FP , finally
we prove the set of types T is contained in the greatest fix-point gfp(FP ) of FP .
The correctness of the arrow rule P-ARR is as follows:

P-ARR : We have [s1]η
′ = [s1σ]η and [s2]η

′ = [s2σ]η. Take any element d ∈ [s1 →
s2]η

′. d must be {(di, d
′
i) | i ∈ I} and for each i ∈ I if di ∈ [s1]η

′ then d′i ∈ [s2]η
′,

where i is a possibly empty or infinite set1. Consider each i ∈ I. If di ∈ [s1σ]η,
then we have

di ∈ [s1σ]η
⇒ di ∈ [s1]η

′ ([s1]η
′ = [s1σ]η)

⇒ d′i ∈ [s2]η
′ ((di, d

′
i) ∈ d, d ∈ [s1 → s2]η

′)
⇒ d′i ∈ [s2σ]η ([s2]η

′ = [s2σ]η)

Thus, d ∈ [s1σ → s2σ]η, that is, d ∈ [(s1 → s2)σ]η. Therefore,

[s1 → s2]η
′ ⊆ [(s1 → s2)σ]η.

Similarly, we can prove that [(s1 → s2)σ]η ⊆ [s1 → s2]η
′. Thus the rule holds.

1Indeed, we do not give an explicit definition of [s1 → s2]η, but it must be a function on [s1]η and
[s2]η, based on which the correctness of P-ARR can be proved as well.
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Lemma 4.3.7. Let (D, [_]) be a model, P,N two finite subsets of Aprod and α an
arbitrary type variable.

∀η∈P(D)V .
⋂

a∈P

E(a)η ∩ (η(α) ∩ EprodD) ⊆
⋃

a∈N

E(a)η ⇐⇒

∀η∈P(D)V .
⋂

a∈P

E(σ×
α (a))η ∩ E(α1×α2)η ⊆

⋃

a∈N

E(σ×
α (a))η

where σ×
α (a) = a{(α1×α2)∨α/α} and α1, α2 are fresh variables.

Proof. “⇐” direction: consider a generic assignment η, and suppose we have η(α) ∩
EprodD =

⋃

i∈I(S
i
1 × Si

2) where Si
j are subsets of D and I may be infinite (notice that

every intersection with D2 can be expressed as an infinite union of products: at the
limit singleton products can be used). If |I| = 0, that is, η(α)∩ EprodD = ∅, clearly, we
have

⋂

a∈P

E(a)η ∩ (η(α) ∩ EprodD) = ∅ ⊆
⋃

a∈N

E(a)η

Assume that |I| > 0. Then for each (Si
1 × Si

2), we construct another assignment
ηi defined as ηi = η ⊕ {Si

1/α1,S
i
2/α2}, where ⊕ denotes both function extension and

redefinition. Then, we have

E((α1×α2) ∨ α)ηi = (ηi(α1)× ηi(α2)) ∨ ηi(α) by definition of E(_)
= (Si

1×Si
2) ∨ η(α) by definition of ηi

= η(α) since
⋃

i∈I(S
i
1×Si

2) ⊆ η(α)
= ηi(α) by definition of ηi

We can thus apply Lemma 4.3.5 and for any type t deduce that

E(t{(α1×α2)∨α/α})η
i = E(t)ηi

In particular, for all a ∈ P ∪N we have

E(σ×
α (a))η

i def

= E(a{(α1×α2∨α/α})η
i = E(a)ηi

Now, notice that η and ηi differ only for the interpretation of α1 and α2. Since these
variables are fresh, then they do not belong to var(a), and therefore E(a)ηi = E(a)η.
This allows us to conclude that

∀a ∈ (P ∪N) . E(σ×
α (a))η

i = E(a)η
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Therefore,

∀i∈I(
⋂

a∈P

E(σ×
α (a))η

i ∩ E(α1×α2)η
i ⊆

⋃

a∈N

E(σ×
α (a))η

i)

⇒∀i∈I(
⋂

a∈P

E(σ×
α (a))η

i ∩ E(α1×α2)η
i ∩

⋂

a∈N

E(σ×
α (a))ηi ⊆ ∅)

⇒
⋃

i∈I

(

(
⋂

a∈P

E(σ×
α (a))η

i ∩ E(α1×α2)η
i ∩

⋂

a∈N

E(σ×
α (a))ηi)

)

⊆ ∅

⇒
⋃

i∈I

(

(
⋂

a∈P

E(a)η ∩ E(α1×α2)η
i ∩

⋂

a∈N

E(a)η)

)

⊆ ∅

⇒
⋂

a∈P

E(a)η ∩ (
⋃

i∈I

E(α1×α2)η
i) ∩

⋂

a∈N

E(a)η ⊆ ∅

⇒
⋂

a∈P

E(a)η ∩ (
⋃

i∈I

(Si
1×Si

2)) ∩
⋂

a∈N

E(a)η ⊆ ∅

⇒
⋂

a∈P

E(a)η ∩ (η(α) ∩ EprodD) ∩
⋂

a∈N

E(a)η ⊆ ∅

⇒
⋂

a∈P

E(a)η ∩ (η(α) ∩ EprodD) ⊆
⋃

a∈N

E(a)η

This proves the result.

“⇒” direction: this direction is rather obvious since if a type is empty, then so is every
instance of it. In particular, suppose there exists an assignment η such that

⋂

a∈P

E(σ×
α (a))η ∩ E(α1×α2)η ⊆

⋃

a∈N

E(σ×
α (a))η

does not hold. Then, for this assignment η we have
⋂

a∈P

E(σ×
α (a))η ∩ (E(α1×α2)η) *

⋃

a∈N

E(σ×
α (a))η

and a fortiori
⋂

a∈P

E(σ×
α (a))η ∩ (E(α1×α2)η ∪ η(α)) *

⋃

a∈N

E(σ×
α (a))η

That is,

E(σ×
α (
∧

a∈P

a ∧ α ∧
∧

a∈N

¬a))η 6= ∅

Since [_] is a model, then

[σ×
α (
∧

a∈P

a ∧ α ∧
∧

a∈N

¬a)]η 6= ∅

Let η′ = η ⊕ {[(α1×α2)∨α]η/α}. Applying Lemma 4.3.6, we have

[
∧

a∈P

a ∧ α ∧
∧

a∈N

¬a]η′ 6= ∅
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Then we have
E(
∧

a∈P

a ∧ α ∧
∧

a∈N

¬a)η′ 6= ∅

That is,
⋂

a∈P

E(a)η′ ∩ (η′(α) ∩ EprodD) ⊆
⋃

a∈N

E(a)η′

does not hold, which contradicts the hypothesis.

The case for u = fun is trickier because 1 → 0 is contained in every arrow type,
and therefore sets of arrows that do not contain it must be explicitly checked. If,
analogously to u = prod, we used just {(α1→α2) ∨ α/α}, then we were considering only
instances of α that contain 1 → 0, as every possible instance of α1 → α2 contains it.
Therefore if we just check this family of substitutions the subtypes of 0 → 1 that do
not contain 1 → 0 would never be assigned to α by the algorithm and, thus, never
checked. To obviate this problem {((α1→α2) \ (1 → 0)) ∨ α/α} must be checked, as well.

Lemma 4.3.8. Let (D, [_]) be a well-founded model, P,N two finite subsets of Afun

and α an arbitrary type variable. Then

∀η∈P(D)V .
⋂

a∈P

E(a)η ∩ (η(α) ∩ EfunD) ⊆
⋃

a∈N

E(a)η ⇐⇒

∀η∈P(D)V .
⋂

a∈P

E(σ→
α (a))η ∩ E(α1→α2)η ⊆

⋃

a∈N

E(σ→
α (a))η and

∀η∈P(D)V .
⋂

a∈P

E(σ α (a))η ∩ E((α1→α2) \ (1 → 0))η ⊆
⋃

a∈N

E(σ α (a))η

where σ→
α (a) = a{(α1→α2) ∨ α/α}, σ α (a) = a{((α1→α2) \ (1 → 0)) ∨ α/α}, and α1, α2

are fresh variables.

Proof. “⇐” direction: suppose that there exists an assignment η such that

⋂

a∈P

E(a)η ∩ (E(α)η ∩ EfunD) ⊆
⋃

a∈N

E(a)η

does not hold. Then for this assignment, there exists at least an element d such that

d ∈ (
⋂

a∈P

E(a)η \
⋃

a∈N

E(a)η) ∩ (E(α)η ∩ EfunD)

If one of these elements d is such that d ∈ E(1 → 0)η, then |N | = 0: indeed since 1→0
is contained in every arrow type, then subtracting any arrow type (i.e., |N | > 0) would
remove all the elements of 1→0. Clearly, we have

d ∈ (
⋂

a∈P

E(σ→
α (a))η \

⋃

a∈N

E(σ→
α (a))η) ∩ E(α1 → α2)η

Indeed since |N | = 0 the set above is an intersection of arrow types, and since they all
contain 1→0, they all contain d as well. This contradicts the premise, therefore, the
result follows.
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Otherwise, assume that |N | > 0 and therefore d /∈ E(1 → 0)η. Since d ∈ (
⋂

a∈P E(a)η \
⋃

a∈N E(a)η) then we have
⋂

a∈P

E(a)η *
⋃

a∈N

E(a)η.

Let η1 be an assignment defined as η1 = η ⊕ {D/α1, ∅/α2}. Then, we have E(α1 →
α2)η1 = E(1 → 0)η1. Therefore:

E(σ α (α))η1 = (E(α1 → α2)η1 \ E(1 → 0)η1) ∪ η1(α) (by definition of E(_))
= η1(α) (by definition of η1)

We thus apply Lemma 4.3.5 and for any a ∈ P ∪ N , we deduce that E(σ α (a))η1 =
E(a)η1 = E(a)η. From this, we infer that

⋂

a∈P

E(σ α (a))η1 *
⋃

a∈N

E(σ α (a))η1

By an application of Lemma 2.1.9, we have

∀t01 → t02 ∈ N.∃P ′ ⊆ P.







[σ α (t01 \
∨

t1→t2∈P ′ t1)]η1 6= ∅

and

P ′ = P or [σ α (
∧

t1→t2∈P\P ′ t2 \ t
0
2)]η1 6= ∅

Thus there exist at least an element in [σ α (t01 \
∨

t1→t2∈P ′ t1)]η1 and, if P 6= P ′,
an element in [σ α (

∧

t1→t2∈P\P ′ t2 \ t02)]η1. The next step is to build a new assign-

ment η′ such that [σ α (t01 \
∨

t1→t2∈P ′ t1 ∨ α1)]η
′ contains an element and, if P 6= P ′,

[σ α ((
∧

t1→t2∈P\P ′ t2 ∧ α2) \ t
0
2)]η

′ contains an element.
To do so we invoke the procedure explore_pos defined in the proof of Lemma 4.6.5 (this
procedure was defined for the proof of that lemma, and it returns also the elements that
inhabit the types, which are here useless. We do not repeat its definition here). Let
V S =

⋃

a∈P∪N var(a) ∪ {α1, α2}. For each β ∈ V S, we construct a finite set sβ which
is initialized as an empty set and appended some elements during the processing of ex-
plore_pos. Thanks to the infinite support, to build an element in σ α (t01 \

∨

t1→t2∈P ′ t1∨
α1) is similar to build an element in σ α (t01 \

∨

t1→t2∈P ′ t1) (it has been proved that such
an element exists). And to build an element in σ α ((

∧

t1→t2∈P\P ′ t2 ∧ α2) \ t02), is to

build an element in σ α (
∧

t1→t2∈P\P ′ t2 \ t
0
2) first and then append this element to sα2 .

In the end, we define a new (finite) assignment as η′ = {sβ/β, . . .} for β ∈ V S. (If any
type contains infinite product types it is also possible to construct such an assignment
by Lemma 4.6.6). Therefore, under the assignment η′, we get

∀t01 → t02 ∈ N.∃P ′ ⊆ P.













[σ α (t01 \ (
∨

t1→t2∈P ′ t1 ∨ α1))]η
′ 6= ∅

and

P ′ = P or [σ α ((
∧

t1→t2∈P\P ′ t2) \ t
0
2)]η

′ 6= ∅

or






[σ α (t01 \ (
∨

t1→t2∈P ′ t1))]η
′ 6= ∅

and

[σ α ((
∧

t1→t2∈P\P ′ t2 ∧ α2) \ t
0
2)]η

′ 6= ∅



62 CHAPTER 4. FORMAL DEVELOPMENT

By an application of Lemma 2.1.9 again, we conclude that

⋂

a∈P

E(σ α (a))η′ ∩ E(α1 → α2)η
′ *

⋃

a∈N

E(σ α (a))η′

Since |N | > 0, then E(1→0)η′ is contained in
⋃

a∈N E(σ α (a))η′. Thus removing it
from the the left hand side does not change the result, which allows us to conclude
that: ⋂

a∈P

E(σ α (a))η′ ∩ E((α1 → α2) \ (1 → 0))η′ *
⋃

a∈N

E(σ α (a))η′

which again contradicts the hypothesis. Therefore the result follows as well.

“⇒” direction: similar to the “⇒” direction in the proof of Lemma 4.3.7.

It is necessary to check the substitution {((α1 → α2) \ (1 → 0)) ∨ α/α} for the sound-
ness of the algorithm. To see it consider the following relation (this example is due
to Nils Gesbert): ((α → β) ∧ α) ≤ ((1 → 0) → β). If the check above were not
performed, then the algorithm would return that the relation holds, while it does not.
In order to see that it does not hold, consider a type t1 = (1 → 0)∧ γ, where γ is some
variable. Clearly, there exists an assignment η0 such that [t1]η0 is nonempty. Let η
be another assignment defined as η = η0 ⊕ {[¬t1]η0/α, ∅/β}. Next, consider a function
f ∈ [(α → β) ∧ (¬α → 1)]η, that is, a function that diverges (since [β]η = ∅) on
values in [α]η (i.e., [¬t1]η). Take f so that it converges on the values in [¬α]η (i.e.,
[t1]η). This implies that that f 6∈ [¬α]η: indeed, assume f ∈ [¬α]η, that is f ∈ [t1]η0,
then f ∈ [1 → 0]η and, thus, f would diverge on all values: contradiction (note that
[t1]η0 6= ∅). Therefore f ∈ [α]η, and then f ∈ [(α → β)∧α]η. Instead, by construction
f does not diverge on [t1]η0, which is a nonempty subset of [1 → 0]η0. Therefore
f /∈ [(1 → 0) → β]η.

If we remove the check of {((α1 → α2) \ (1 → 0)) ∨ α/α} from the algorithm, then the
answer of the algorithm would be positive for the relation above since it would just
check that all the following four relations hold:







1 → 0 ≤ 0 or β ∧ α2 ≤ β (1)

1 → 0 ≤ (α{(α1 → α2) ∨ α/α}) or α2 ≤ β (2)

1 → 0 ≤ α1 or β ≤ β (3)

1 → 0 ≤ α1 ∨ (α{(α1 → α2) ∨ α/α}) (4)

where α1, α2 are two fresh variables. Clearly, these four relations hold if (a superset
of) [1 → 0] is assigned to α (see the substitution {(α1 → α2) ∨ α/α}). However, if there
exists a nonempty set s ⊆ [1 → 0]η which is not assigned to α (e.g., the non-empty set
[t1]η0 defined before), then we should substitute for the occurrences of α that are not
at top-level by ((α1 → α2) \ ((1 → 0) ∧ γ)) ∨ α rather than by (α1 → α2) ∨ α. Thus
Case (2) and Case (4) would not hold, and so does not the whole example. Therefore,
we need to consider the case that a nonempty subset of [1 → 0] is not assigned to α,
namely a strict subset of [1 → 0] is assigned to α.

Since the interpretation [1 → 0] is infinite, there are infinitely many strict subsets to
be considered. Assume there exists a strict subset of [1 → 0] that is assigned to α, and
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there exists an occurrence of α not at top level such that once it moves up to the top level
it occurs in the subtyping relation of the form in Lemma 4.3.8 (otherwise η(α)∩ EfunD
would be straightforwardly ignored). Since 1 → 0 is contained in every arrow type,
then either the strict subset of [1 → 0] can be ignored if the occurrence is positive, or
the subtyping relation does not hold if the occurrence is negative (see Case (2) above).
Note that what the strict subset actually is does not matter. Therefore, we just take
the empty set into consideration, that is the case of {((α1 → α2) \ (1 → 0)) ∨ α/α}. Thus,
only two cases — whether [1 → 0] is assigned to α or not — are enough for Lemma
4.3.8.

As an aside notice that both lemmas above would not hold if the variable α in their
statements occurred negated at toplevel, whence the necessity of Step 4.

Finally, Step 6 is justified by the two following lemmas in whose proofs the hypoth-
esis of convexity plays a crucial role:

Lemma 4.3.9. Let (D, [_]) be a convex set-theoretic interpretation and P,N two finite
subsets of Aprod. Then:

∀η.
⋂

t1×t2∈P

E(t1 × t2)η ⊆
⋃

t1×t2∈N

E(t1 × t2)η ⇐⇒

∀N ′ ⊆ N .







∀η.[
∧

t1×t2∈P
t1 ∧

∧

t1×t2∈N ′ ¬t1]η = ∅

or

∀η.[
∧

t1×t2∈P
t2 ∧

∧

t1×t2∈N\N ′ ¬t2]η = ∅

(with the convention
⋂

a∈∅ E(a)η = EprodD).

Proof. The Lemma above is a straightforward application of the convexity property
and of Lemma 2.1.8. In particular thanks to the latter it is possible to deduce the
following equivalence

∀η.
⋂

t1×t2∈P

E(t1 × t2)η ⊆
⋃

t1×t2∈N

E(t1 × t2)η ⇐⇒

∀η.∀N ′ ⊆ N .







[
∧

t1×t2∈P
t1 ∧

∧

t1×t2∈N ′ ¬t1]η = ∅

or

[
∧

t1×t2∈P
t2 ∧

∧

t1×t2∈N\N ′ ¬t2]η = ∅

The result is a straightforward application of the convexity property.

Lemma 4.3.10. Let (D, [_]) be a convex set-theoretic interpretation and P,N be two
finite subsets of Afun. Then:

∀η.
⋂

t→s∈P

E(t→s)η ⊆
⋃

t→s∈N

E(t→s)η ⇐⇒

∃(t0→s0)∈N . ∀P ′⊆P .







∀η.[t0 \ (
∨

t→s∈P ′ t)]η = ∅

or






P 6= P ′

and

∀η.[(
∧

t→s∈P\P ′ s) \ s0]η = ∅
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(with the convention
⋂

a∈∅ E(a)η = EfunD)

Proof. Similar to previous lemma, the proof can be obtained by a straightforward
application of Lemma 2.1.9 and the convexity property.

4.4 Algorithm

The formalization of the subtyping algorithm is done via the notion of simulation that
we borrow from [FCB08] and extend to account for type variables and type instantia-
tion. First, it is used to define the set of instances of a type.

Definition 4.4.1 (Instances). Given a type t ∈ T , we define [t]≈, the set of instances
of t as:

[t]≈
def

= {s | ∃σ : V → T . tσ = s}

Definition 4.4.2 (Simulation). Let S be an arbitrary set of normal forms. We
define another set of normal forms ES as

{τ | ∀s∈[τ ]≈. ∀u∈U. ∀(P,N)∈dnf(s). (P⊆Au ⇒ CP,N∩Au
u )}

where:

CP,N
basic

def

=
⋂

b∈P

B(b) ⊆
⋃

b∈N∩Abasic

B(b)

CP,N
prod

def

= ∀N ′⊆N.







dnf(
∧

t1×t2∈P
t1 ∧

∧

t1×t2∈N ′ ¬t1) ∈ S

or

dnf(
∧

t1×t2∈P
t2 ∧

∧

t1×t2∈N\N ′¬t2) ∈ S

CP,N
fun

def

= ∃t0 → s0 ∈ N . ∀P ′ ⊆ P .







dnf(t0 ∧
∧

t→s∈P ′ ¬t) ∈ S

or






P 6= P ′

and

dnf((¬s0) ∧
∧

t→s∈P\P ′ s) ∈ S

We say that S is a simulation if:

S ⊆ ES

The notion of simulation is at the basis of our subtyping algorithm. The intuition
of the simulation is that if we consider the statements of Lemmas 4.3.9 and 4.3.10 as
if they were rewriting rules (from right to left), then ES contains all the types that
we can deduce to be empty in one step reduction when we suppose that the types in
S are empty. A simulation is thus a set that is already saturated with respect to
such a rewriting. In particular, if we consider the statements of Lemmas 4.3.9 and
4.3.10 as inference rules for determining when a type is equal to 0, then ES is the
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set of immediate consequences of S , and a simulation is a self-justifying set, that is a
co-inductive proof of the fact that all its elements are equal to 0.

In what follows we show that simulations soundly and completely characterize the
set of empty types of a convex well-founded model. More precisely, we show that every
type in a simulation is empty (soundness) and that the set of all empty types is a
simulation (completeness), actually, the largest simulation.

Lemma 4.4.3. Let [_] : T → P(D)V → P(D) be a set-theoretic interpretation and t
a type. If ∀η ∈ P(D)V . [t]η = ∅, then ∀σ : V → T . ∀η ∈ P(D)V . [tσ]η = ∅

Proof. Suppose there exists σ : V → T and η ∈ P(D)V such that [tσ]η 6= ∅. Then we
consider the semantic assignment η′ such that

∀α ∈ var(t) . η′(α) = [σ(α)]η

Applying Lemma 4.3.6, we have [t]η′ = [tσ]η 6= ∅, which contradicts that ∀η ∈
P(D)V . [t]η = ∅. Therefore, the result follows.

Lemma 4.4.3 shows that the containment on the right hand side of equation (3.1)
in Section 3.1 is a necessary condition, here reformulated as the fact that if a type is
empty, then all its syntactic instances are empty. In particular if a type is empty we
can rename all its type variables without changing any property. So when working
with empty types or, equivalently, with subtyping relations, types can be considered
equivalent modulo α-renaming (i.e., the renaming of type variables).

The first result we prove is that every simulation contains only empty types.

Theorem 4.4.4 (Soundness). Let [_] : T → P(D)V → P(D) be a convex well-
founded model and S a simulation. Then for all τ ∈ S , we have ∀η ∈ P(D)V . [τ ]η =
∅

Proof. Consider a type τ ∈ S . Then ∀η ∈ P(D)V . [τ ]η = ∅ holds, if and only if

∀d ∈ D . ∀η ∈ P(D)V . d /∈ [τ ]η

Let us take d ∈ D and η ∈ P(D)V . Since the interpretation is structural we can prove
this property by induction on the structure of d. Since S is a simulation, we also have
τ ∈ ES , that is:

∀s∈[τ ]≈ . ∀u∈U . ∀(P,N)∈dnf(s) . (P⊆Au ⇒ CP,N∩Au
u ) (4.5)

where the conditions CP,N
u are the same as those in Definition 4.4.2. The result then

will follow from proving a statement stronger than the one of the lemma, that is, if
τ∈ES , then ∀d∈D.∀η∈P(D)V .d /∈ [τ ]η. Or, equivalently:

∀s ∈ [τ ]≈ . ∀u ∈ U . ∀(P,N) ∈ dnf(s) .

(P⊆Au ⇒ CP,N∩Au
u ) ⇒ d /∈

⋂

a∈P

[a]η \
⋃

a∈N

[a]η (4.6)

Let us take s ∈ [τ ]≈, (P,N) ∈ dnf(s) and u be the kind of d. Let us consider the possible
cases for an atom a ∈ P . Consider first a /∈ V: if a ∈ A \ Au, then clearly d /∈ [a]η.
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If a ∈ V then we know (by Lemma 4.3.4 if u = basic, Lemma 4.3.7 if u = prod, and
Lemma 4.3.8 if u = fun) that (4.6) holds if and only if it holds for another s′ ∈ [τ ]≈
and (P ′, N ′) ∈ dnf(s′) in which the variable a 6∈ P ′. As a consequence, if we can prove
the result holds when P ⊆ Au, then (4.6) holds.

So assume that P ⊆ Au. Applying (4.5), we obtain that CP,N∩Au
u holds. It remains

to prove that:

d /∈
⋂

a∈P

[a]η \
⋃

a∈N

[a]η

u = basic, d = c. The condition CP,N∩Abasic

basic is:

∀η ∈ P(D)V .
⋂

b∈P

B(b) ⊆
⋃

b∈N∩Abasic

B(b)

As a consequence, we get:

d /∈
⋂

a∈P

[a]η \
⋃

a∈N∩Abasic

[a]η

and a fortiori :

d /∈
⋂

a∈P

[a]η \ (
⋃

a∈N∩Abasic

[a]η ∪
⋃

a∈N\Abasic

[a]η)

which yields the result.

u = prod, d = (d1, d2). The condition CP,N∩Au
u is:

∀N ′ ⊆ N ∩ Aprod .







dnf(
∧

t1×t2∈P
t1 ∧

∧

t1×t2∈N ′ ¬t1) ∈ S

or

dnf(
∧

t1×t2∈P
t2 ∧

∧

t1×t2∈N\N ′ ¬t2) ∈ S

For each N ′, we apply the induction hypothesis to d1 and to d2. We get:

d1 /∈[
∧

t1×t2∈P

t1 ∧
∧

t1×t2∈N ′

¬t1]η or d2 /∈[
∧

t1×t2∈P

t2 ∧
∧

t1×t2∈N\N ′

¬t2]η

That is:

d /∈ (
⋂

t1×t2∈P

[t1]η \
⋃

t1×t2∈N ′

[t1]η)×(
⋂

t1×t2∈P

[t2]η \
⋃

t1×t2∈N\N ′

[t2]η)

Since to [t1]η×[t2]η = [t1×t2]η, then we get:

d /∈
⋂

a∈P

[a]η \
⋃

a∈N∩Aprod

[a]η

and a fortiori :

d /∈
⋂

a∈P

[a]η \
⋃

a∈N

[a]η

u = fun, d = {(d1, d
′
1), . . . , (dn, d

′
n)}. The condition CP,N∩Au

u states that there exists
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t0 → s0 ∈ N such that, for all P ′ ⊆ P

dnf(t0 ∧
∧

t→s∈P ′

¬t) ∈ S or







P ′ 6= P

and

dnf((¬s0) ∧
∧

t→s∈P\P ′ s) ∈ S

Applying the induction hypothesis to the di and d′i (note that if d′i = Ω, then d′i /∈ [τ ]η
is trivial for all τ):

di /∈ [t0 ∧
∧

t→s∈P ′

¬t]η or







P 6= P ′

and

d′i /∈ [(¬s0) ∧
∧

t→s∈P\P ′ s]η

Assume that ∀i . (di ∈ [t0]η ⇒ d′i ∈ [s0]η). Then we have d ∈ [t0 → s0]η.
Otherwise, let us consider i such that di ∈ [t0]η and d′i /∈ [s0]η. The formula above
gives for any P ′ ⊆ P :

(di ∈
⋃

t→s∈P ′

[t]η) or ((P ′ 6= P ) and (d′i ∈ {Ω} ∪
⋃

t→s∈P\P ′

[¬s]η))

Let’s take P ′ = {t → s ∈ P | di /∈ [t]η}. We have di /∈
⋃

t→s∈P ′[t]η, and thus P ′ 6= P
and d′i ∈ {Ω}∪

⋃

t→s∈P\P ′[¬s]η. We can thus find t → s ∈ P \P ′ such that d′i /∈ [s]η,and

because t → s /∈ P ′, we also have di ∈ [t]η. We have thus proved that d /∈ [t → s]η for
some t → s ∈ P .
In both cases, we get:

d /∈
⋂

a∈P

[a]η \
⋃

a∈N∩Afun

[a]η

and a fortiori

d /∈
⋂

a∈P

[a]η \
⋃

a∈N

[a]η

Completeness derives straightforwardly from the construction of simulation and the
lemmas we proved about it.

Theorem 4.4.5. Let [_] : T → P(D)V → P(D) be a convex set-theoretic interpreta-
tion. We define a set of normal forms S by:

S
def

= {τ | ∀η ∈ P(D)V . [τ ]η = ∅}

Then:
ES = {τ | ∀η ∈ P(D)V . E(τ)η = ∅}

Proof. Immediate consequence of Lemmas 4.3.9, 4.3.10 and 4.4.3.

Corollary 4.4.6. Let [_] : T → P(D)V → P(D) be a convex structural interpreta-
tion. Define as above S = {τ | ∀η ∈ P(D)V . E(τ)η = ∅}. If [_] is a model, then
S = ES .
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This corollary implies that the simulation that contains all the empty types is the
largest simulation2. In particular it entails the following corollary.

Corollary 4.4.7 (Completeness). Let [_] : T → P(D)V → P(D) be a convex well-
founded model and s and t two types. Then s≤t if and only if there exists a simulation
S such that dnf(s∧¬t) ∈ S .

The corollary states that to check whether s≤t we have to check whether there exists
a simulation that contains the normal form, denoted by τ0, of s∧¬t. Thus a simple
subtyping algorithm consists in using Definition 4.4.2 as a set of saturation rules: we
start from the set containing just τ0 and try to saturate it. At each step of saturation
we add just the normal forms in which we eliminated top-level variables according to
Lemmas 4.3.3, 4.3.4, 4.3.7, and 4.3.8. Because of the presence of “or” in the definition,
the algorithm follows different branches until it reaches a simulation (in which case it
stops with success) or it adds a non-empty type (in which case the whole branch is
abandoned).

All results we stated so far have never used the regularity of types. The theory holds
also for non regular types and the algorithm described above is a sound and complete
procedure to check their inclusion. The only result that needs regularity is decidability.

4.5 Decidability

The subtyping relation on polymorphic regular types is decidable in EXPTIME.3 We
prove decidability but the result on complexity is due to Gesbert et al. [GGL11] who
gave a linear encoding of the relation presented here in their variant of the µ-calculus,
for which they have an EXPTIME solver [GLS07], thus obtaining a subtyping decision
algorithm that is EXPTIME (in doing so they also spotted a subtle error in the original
definition of our subtyping algorithm). This is also a lower bound for the complexity
since the subtyping problem for ground regular types (without arrows) is known to be
EXPTIME-complete.

To prove decidability we just prove that our algorithm terminates. The decision
algorithm for which we prove termination is essentially a dull implementation of the
one presented in Section 3.4: it tries to check the emptiness of some type by trying
to build a simulation containing it. It does so by decomposing the original problem
into subproblems and using them to saturate the set obtained up to that point. More
precisely, in order to check the emptiness of a type, the algorithm first normalizes it;
it simplifies mixed intersections; it eliminates toplevel negative occurrences of vari-
ables by applying the substitution {¬β/α}; it eliminates toplevel positive occurrences of
variables by applying {(α1×α2)∨α3/α}, {(α1→α2) ∨ α3/α} or {((α1→α2) \ (1 → 0)) ∨ α3/α}
substitutions (in the proof of termination we will not effectively apply these substitu-
tions but keep them symbolical); it eliminates the toplevel constructors by applying the

2Moreover, as shown in Section 4.6, the condition for a set-theoretic interpretation to be a model
depends only on the subtyping relation for ground types it induces.

3Strictly speaking we cannot speak of the subtyping relation in general, but just of the subtyping
relation induced by a particular model. Here we intend the subtyping relation for the model used in
the proof of Corollary 4.6.8, that is, of the universal model of [FCB08] with a set of basic types whose
containment relation is decidable in EXPTIME. This coincides with the relation studied in [GGL11].
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equations of Definition 4.4.2 as left-to-right rewriting rules; the last point yields a set
of different subproblems: the algorithm checks whether all the subproblems are solved
(i.e., it reached a simulation), otherwise it recurses on all of them. The implementation
we consider is “dull” insofar as it will explore all the subproblems to their end, even
in the case when an answer could already be given earlier. So for example to check
the emptiness of a disjunctive normal form, the algorithm will check the emptiness of
all types in the union, even though it could stop as soon as it had found a non-empty
type; similarly, to check the emptiness of t1× t2 the algorithm will check the emptiness
of t1 and of t2, even though a positive results for, say, t1 would make the check for t2
useless. We do so because we want to prove that the algorithm is strongly normalizing,
that is, termination does not depend on the reduction strategy.

The proof of termination is conceptually simple and relies on a well known result
in combinatorics (Higman’s Lemma [Hig52]) to show that all the branches that do not
stop on a non-empty type will eventually stop because they will arrive on an instance
of a memoized term. It first requires two simple lemmas:

Lemma 4.5.1. Let [_] be a set-theoretic interpretation, E(_) its associated extensional
interpretation, and t, t′ be two types. Then

∀η . E(t)η = ∅ ⇒ ∀η . E(t ∧ t′)η = ∅.

Proof. Straightforward since E(t ∧ t′)η = E(t)η ∩ E(t′)η.

Lemma 4.5.2. Let [_] be a model, E(_) its associated extensional interpretation, and
t a type. Then

∀η . E(t)η = ∅ ⇒ ∀η . E(tσ)η = ∅

where σ = σ1 . . . σn for some n ≥ 0 and σi denotes a substitution of the form {¬β/α},
{(α1×α2)∨α3/α}, {(α1→α2) ∨ α3/α} or {((α1→α2) \ (1 → 0)) ∨ α3/α}.

Proof. An application of Lemma 4.4.3 and by the condition of a model.

We can now directly prove termination.

Theorem 4.5.3. The algorithm terminates on all types.

Proof. Consider a generic type s. Let dnf(s) be a disjunctive normal form of s. Since
it is a union, dnf(s) is empty if and only if all its single normal forms are empty. Let
us just consider one of its single normal forms t.

To check the emptiness of t, the algorithm first checks whether t is memoized
(i.e., whether this type was already met modulo α-renaming during the check and is
therefore supposed to be empty), or t is an instance of a type t′ that is memoized (see
Lemma 4.5.2), or t from which some atom intersections are removed is an instance of
a memoized type (this step is correct by Lemma 4.5.1). If it is, then the algorithm
terminates, otherwise, it memoizes t.4 Next if |tlv(t)| > 0, then the algorithm performs
the appropriate substitution(s) (see Lemmas 4.3.3, 4.3.7, and 4.3.8). Next according to

4If t happens to be nonempty, then in the real algorithm t will be removed from the memoized set,
but this is just an optimization that reduces the number of required checks and does not affect the
final result.
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the decomposition rules (see Lemmas 4.3.9 and 4.3.10), the algorithm decomposes t into
several types which are the candidate types to be checked on the next iteration. Since
t is empty if and only if some of the candidate types (depending on the decomposition
rules) are empty, then the algorithm reiterates the process on them. This iteration
eventually stops. In order to prove it, consider the form of all types that can be met
during the checking of the emptiness of t. For the sake of the proof we will consider
only the terms to which we applied the transformation of Lemma 4.3.3 (i.e., without
any toplevel negated variable). These are single normal forms (cf. Definition 4.3.1),
that is, intersections of atoms. Now in any of these intersections we can distinguish two
parts: there is a part of the intersection that is formed just by type variables (these are
either the variables of the original type or some fresh variables that were introduced to
eliminate a toplevel variable), and a second part that intersects basic and/or product
and/or arrow types. If the check of memoization fails, then the first part of the type
formed by the intersection of variables is eliminated, and the appropriate substitution(s)
is (are) applied to the second part. Then the atoms in this second part to which the
substitution(s) is (are) applied are decomposed to form the next set of single normal
forms. It is then clear that the second part of all the candidate single normal forms
met by the algorithm are formed by chunks of the original type to which a succession
of substitutions of the same form as those used in Lemmas 4.3.3, 4.3.7, and 4.3.8 is
applied. So we can formally characterize all the single normal forms examined by the
algorithm when checking the emptiness of a (single normal form) type t.

First, consider the original type t: for the sake of simplicity, in what follows we
just consider the case in which t ≤ 1 × 1 so as we just consider substitutions of the
form {(α1×α2)∨α3/α} (the proof for the other cases of substition {(α1→α2) ∨ α3/α}, and
{((α1→α2) \ (1 → 0)) ∨ α3/α} is exactly the same, only more cluttered with indexes).
Next consider the set of all subtrees of t: since t is regular, then this set is finite.
Finally consider the set C of all Boolean combinations of terms of the previous sets
(actually, just single normal forms would suffice) union {1}: modulo normalization (or
modulo type semantics) there are only finitely many distinct combinations of a finite
set of types, therefore C is finite as well. It is clear from what we said before that all
the types that will be considered during the emptiness check for t will be of the form

(t′∧β1∧...∧βh){(α
1
1×α2

1) ∨ α3
1/α1}...{(α

1
n×α2

n) ∨ α3
n/αn} ∧ γ1 ∧ . . . ∧ γp (4.7)

where t′ ∈ C, h, n, p ≥ 0, αi ∈ var(t′) ∪ {α1
j , α

2
j , α

3
j |1 ≤ j ≤ i − 1}, {βi|1 ≤ i ≤

h} ∪ {γi|1 ≤ i ≤ p} ⊆ {α1
i , α

2
i , α

3
i |1 ≤ i ≤ n}, {βi|1 ≤ i ≤ h} ⊆ {αi|1 ≤ i ≤ n}, and

{γi|1 ≤ i ≤ p} ∩ {αi|1 ≤ i ≤ n} = ∅. In a nutshell, t′ is an intersection of possibly
negated products, the βi’s are the type variables that will be affected by at least one
of the substitutions following them, and the γi’s are those that are not affected by any
substitution (note that: (i) the γi’s could be moved in the scope of the substitution,
but we prefer to keep them separated for the time being, and (ii) all toplevel variables
are not negated since we consider that we already applied Lemma 4.3.3 to get rid of
possible negations).

Let us now follow one particular sequence of the check and imagine by contradiction
that this sequence is infinite. All the types in the sequence are of the form described in
(4.7). Since C is finite, then there exists a type t◦∈ C occurring infinitely many times
in the sequence. Let s1 and s2 be two single normal forms in the sequence containing
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this particular t◦, namely:

s1 = (t◦ ∧ β1 ∧ . . . ∧ βh){(α
1
1×α2

1) ∨ α3
1/α1}...{(α

1
n×α2

n) ∨ α3
n/αn} ∧ γ1 ∧ . . . ∧ γp

s2 = (t◦ ∧ β1 ∧ . . . ∧ βk){(α
1
1×α2

1) ∨ α3
1/α1}...{(α

1
m×α2

m) ∨ α3
m/αm} ∧ γ1 ∧ . . . ∧ γq

Since we are checking the emptiness of these two types, then the types can be considered
modulo α-renaming of their variables. This justifies the fact that, without loss of
generality, in the two terms above we can consider the first min{n,m} substitutions,
the first min{h, k} β-variables and the first min{p, q} γ variables to be the same in
both terms.

Let us consider again the infinite sequence of candidates that are formed by t◦ and
consider the three cardinalities of the β variables, of the substitutions, and of the γ
variables, respectively. Since N3 with a point-wise order is a well-quasi-order, we can
apply Higman’s Lemma [Hig52] to this sequence and deduce that in the sequence there
occur two types as the s1 and s2 above such that s1 occurs before s2 and h ≤ k, n ≤ m,
and p ≤ q.

Let us write σj
i for the substitution

{(α1
i×α2

i ) ∨ α3
i/αi}...{(α

1
j×α2

j ) ∨ α3
j/αj}

with i ≤ j. We have that s2 is equal to

(t◦∧β1∧...∧βh∧...∧βk)σ
m
1 ∧γ1∧...∧γp∧...∧γq.

We exit the rightmost β’s by duplicating the σm
1 substitutions, yielding:

(t◦∧β1∧...∧βh)σ
m
1 ∧γ1∧...∧γp∧...∧γq∧(βh+1∧...∧βk)σ

m
1

since the γ’s are independent from the α’s we can move the p leftmost ones inside a
part of the substitutions obtaining

((t◦∧β1∧...∧βh)σ
n
1∧γ1∧...∧γp)σ

m
n+1∧γp+1∧...∧γq∧(βh+1∧...∧βk)σ

m
1

which by definition of s1 is equal to

s1σ
m
n+1∧γp+1∧...∧γq∧(βh+1∧...∧βk)σ

m
1

In conclusion s2 has the following form:

s2 = s1σ
m
n+1∧γp+1∧...∧γq∧βh+1σ

m
1 ∧...∧βkσ

m
1

therefore it is an intersection a part of which is an instance of the (memoized) type s1.
Therefore the algorithm (and thus the sequence) should have stopped on the check of
s2, which contradicts the hypothesis that the sequence is infinite.

In order to understand how the algorithm actually terminates on empty infinite
types, consider for instance the following type:

α ∧ (α× x) ∧ ¬(α× y)
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where x = (α ∧ (α × x)) ∨ nil and y = (α × y) ∨ nil. First, the algorithm memoizes it.
By an application of Lemma 4.3.7, the algorithm performs the substitution yielding

(α1 × α2) ∧ (((α1 × α2) ∨ α3)× x) ∧ ¬(((α1 × α2) ∨ α3)× y).

Following Lemma 4.3.9, the algorithm checks the candidate types as follows:













α1 ∧ ((α1 × α2) ∨ α3) = 0 (1)

or

α2 ∧ x ∧ ¬y = 0 (2)

and






α1 ∧ ((α1 × α2) ∨ α3) ∧ ¬((α1 × α2) ∨ α3) = 0 (3)

or

α2 ∧ x = 0 (4)

Type (1) is finite and nonempty, and type (3) is finite and empty. It is not necessary to
check type (4) insofar as one of its expansions, α1 ∧ nil, is not empty. So the algorithm
terminates on type (4) as well. Considering type (2), it is neither memoized nor an
instance of a memoized type, so it is memoized as well. Then the algorithm unfolds it
and gets

α2 ∧ ((α1×α2) ∨ α3) ∧ (((α1×α2) ∨ α3)× x) ∧ ¬(((α1×α2) ∨ α3)× y)

The algorithm matches the unfolded type with the memoized ones. It is an instance of

α2 ∧ α ∧ (α× x) ∧ ¬(α× y)

where the substitution is {((α1×α2) ∨ α3)/α}. Although it is not memoized, it is deduced
to be empty from the memoized α ∧ (α× x) ∧ ¬(α× y) and Lemma 4.5.1.

4.6 Convex models

The last step of our formal development is to prove that there exists at least one
set-theoretical model that is convex. From a practical point of view this step is not
necessary since one can always take the work we did so far as a syntactic definition of
the subtyping relation. However, the mathematical support makes our theory general
and applicable to several different domains (e.g., Gesbert et al ’s starting point and
early attempts relied on this result), so finding a model is not done just for the sake
of the theory. As it turns out, there actually exist a lot of convex models since every
model for ground types with infinite denotations is convex. So to define a convex model
it just suffices to take any model defined in [FCB08] and straightforwardly modify the
interpretation of basic and singleton types (more generally, of all indivisible types5) so
they have infinite denotations.

5Our system has a very peculiar indivisible type: 1→0, the type of the functions that diverge on all
arguments. This can be handled by adding a fixed infinite set of fresh elements of the domain to the
interpretation of every arrow type (cf. the proof of Corollary 4.6.8).
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Definition 4.6.1 (Infinite support). A model (D, [_]) is with infinite support if for
every ground type t and assignment η, if [t]η 6= ∅, then [t]η is an infinite set.

What we want to prove then is the following theorem.

Theorem 4.6.2. Every well-founded model with infinite support is convex.

The proof of this theorem is quite technical—it is the proof that required us most
effort—and proceeds in three logical steps. First, we prove that the theorem holds
when all types at issue do not contain any product or arrow type. In other words,
we prove that equation (3.5) holds for [_] with infinite support and where all ti’s are
Boolean combinations of type variables and basic types. This is the key step in which
we use the hypothesis of infinite support, since in the proof—done by contradiction—
we need to pick an unbounded number of elements from our basic types in order to
build a counterexample that proves the result. Second, we extend the previous proof
to any type ti that contains finitely many applications of the product constructor. In
other terms, we prove the result for any (possibly infinite) type, provided that recursion
traverses just arrow types, but not product types. As in the first case, the proof builds
some particular elements of the domain. In the presence of type constructors the
elements are built inductively. This is possible since products are not recursive, while
for arrows it is always possible to pick a fresh appropriate element that resides in that
arrow since every arrow type contains the (indivisible) closed type 1 → 0. Third, and
last, we use the previous result and the well-foundedness of the model to show that the
result holds for all types, that is, also for types in which recursion traverses a product
type. More precisely, we prove that if we assume that the result does not hold for
some infinite product type then it is possible to build a finite product type (actually, a
finite expansion of the infinite type) that disproves equation (3.5), contradicting what
is stated in our second step. Well-foundedness of the model allows us to build this finite
type by induction on the elements denoted by the infinite one.

Although the proof of Theorem 4.6.2 that follows is quite technical, its essence can
be grasped by considering the case of propositional logic t ::= α | t∨ t | t∧ t | ¬t | 0 | 1,
where α’s are then propositional variables (the construction works also in the presence
of basic types). It is relatively easy to prove by contrapositive that if all propositions
(i.e., types) are interpreted into infinite sets, then for all n ≥ 2

∀η . ([t1]η=∅) or ... or ([tn]η=∅) ⇒ (∀η . [t1]η=∅) or . . . or (∀η . [tn]η=∅) (4.8)

holds. First, put all the ti’s in disjunctive normal form. Without loss of generality we
can consider that

ti =
∧

j∈Pi

αj ∧
∧

j∈Ni

¬αj (Pi ∩Ni = ∅)

since, if ti is a union, then by exiting the union from the interpretation we obtain a spe-
cial case of (4.8) with a larger n. Next, proceed by contrapositive: suppose ∃η1, ..., ηn
such that [ti]ηi 6= ∅, then we can build η̄ such that for all i, [ti]η̄ 6= ∅. The construction
of η̄ is done by iterating on the ti’s, picking at each iteration a particular element d of
the domain and recording this choice in a set s0 so as to ensure that at each iteration
a different d is chosen. The construction of η̄ is performed as follows:
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Start with s0 = ∅ and for i = 1..n:

- choose d ∈ ([1]ηi \ s0) (which is possible since [1]ηi is infinite and s0 is finite)

- add d to s0 (to record that we used it) and to η̄(αj) for all j ∈ Pi.

Notice that at each step i of the loop we construct η̄ such that [ti]η̄ 6= ∅ (since it contains
the d selected in the i-th cycle) without disrupting the interpretation of the preceding
loops. This is possible since a fresh element d of the domain (an element not in s0)
is used at each loop: the hypothesis that denotations are infinite ensures that a fresh
element always exists. The construction in the proof also shows that in order to satisfy
equation (4.8) for a given n every denotation of a non-empty type must contain at least
n distinct elements (see also Theorem 4.6.9).

The technical proof proceeds as follows.

Definition 4.6.3 (Positive and negative occurrences). Let t ∈ T and t′ be a tree
that occurs in t. An occurrence of t′ in t is a negative occurrence of t if on the path
going from the root of the occurrence to the root of t there is an odd number of ¬ nodes.
It is a positive occurrence otherwise.

For instance if t = ¬(α×¬β) then β is a positive occurrence of t while α and α×¬β
are negative ones. Similarly no occurrence in α → β is negative (so the notion of
positive/negative concerns only negation and not co/contra-variant position).

Definition 4.6.4. We use T fp to denote the set of types with finite products, that is,
the set of all types in which every infinite branch contains a finite number of occurrences
of the × constructor.

The first two steps of our proof are proved simultaneously in the following lemma.

Lemma 4.6.5. Let (D, [_]) be a well-founded model with infinite support, and ti ∈ T fp

for i ∈ [1..n]. Then

∀η . ([t1]η = ∅) or . . . or ([tn]η = ∅) ⇐⇒ (∀η . [t1]η = ∅) or . . . or (∀η . [tn]η = ∅)

Proof. The ⇐ direction is trivial. For the other direction we proceed as follows. If at
most one type is not ground, then the result is trivial. If var(ti)∩var(tj) = ∅ for any two
types ti and tj , that is, the sets of variables occurring in the types are pairwise disjoint,
then the result follows since there is no correlation between the different interpretations.
Assume that

⋃

1≤i<j≤n(var(ti) ∩ var(tj)) 6= ∅. For convenience, we write CV for the
above set of common variables. Suppose by contradiction that

(∀η . [t1]η = ∅) or . . . or (∀η . [tn]η = ∅) (4.9)

does not hold. Then for each i ∈ [1..n] there exists ηi such that [ti]ηi 6= ∅. If under
the hypothesis that (4.9) does not hold we can find another assignment η′ such that
[ti]η

′ 6= ∅ for every i ∈ [1..n], then this contradicts the hypothesis of the lemma and
the result follows. We proceed by a case analysis on all possible combinations of the
ti’s: under the hypothesis of existence of ηi such that [ti]ηi 6= ∅, we show how to build
the η′ at issue.
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Case 1: Each ti is a single normal form, that is, ti ∈ Pf (A ∪V)×Pf (A ∪V). Recall
that we want to show that it is possible to construct an assignment of the common
variables such that all the ti’s have non empty denotation. To do that we build the
assignment for each variable step by step, by considering one ti at a time, and adding to
the interpretation of the common variables one element after one element. In order to
produce for a given type ti an assignment that does not interfere with the interpretation
defined for a different tj , we keep track in a set s0 of the elements of the domain D we use
during the construction. Since we start with an empty s0 and we add to it an element
at a time, then at each step s0 will be finite and, thanks to the property of infinite
support, it will always be possible to choose some element of the domain that we need
to produce our assignment and that is not in s0. More precisely, we construct a set s0
such that s0∩[t′i]ηi 6= ∅ for each i ∈ [1..n] where t′i is obtained from ti by eliminating the
top-level variables. Meanwhile, considering each variable α ∈

⋃

i∈{1,...,n} var(ti) (clearly
including CV ), we also construct a set sα which is initialized as an empty set and that
at the end of this construction is used to define η′(α).

Subcase 1: dnf(ti) =
∧

j∈J1
b1j ∧

∧

j∈J2
¬b2j ∧

∧

j∈J3
α1
j ∧
∧

j∈J4
¬α2

j , where Ji’s are finite
sets. The construction is as follows:
If ∃d . d ∈ [ti]ηi∧d /∈ s0, then set s0 = s0∪{d}. For each variable α1

j with j ∈ J3,
set sα1

j
= sα1

j
∪{d}. If such a d does not exist, then ti is not ground, since [ti]ηi ⊆

s0 and s0 is finite. As dnf(ti) =
∧

j∈J1
b1j ∧

∧

j∈J2
¬b2j ∧

∧

j∈J3
α1
j ∧

∧

j∈J4
¬α2

j ,
then either J1 ∪ J2 = ∅ and then we chose any element d′ such that d′ 6∈ s0, or
J1 ∪ J2 6= ∅ and [

∧

j∈J3
α1
j ∧

∧

j∈J4
¬α2

j ]ηi ⊆ s0, then there exists an element d′

such that d′ ∈ [
∧

j∈J1
b1j ∧

∧

j∈J2
¬b2j ]ηi and d′ /∈ s0, since [

∧

j∈J1
b1j ∧

∧

j∈J2
¬b2j ]ηi

is non empty (because [ti]ηi 6= ∅) and infinite (since the type at issue is closed
and [_] is with infinite support). In both cases we set s0 = s0 ∪ {d′}, and for
each variable α1

j with j ∈ J3, set sα1
j
= sα1

j
∪ {d′}.

Subcase 2: dnf(ti) =
∧

j∈J1
(t1j × t2j ) ∧

∧

j∈J2
¬(t3j × t4j ) ∧

∧

j∈J3
α1
j ∧
∧

j∈J4
¬α2

j , where
Ji’s are finite sets. If |J1| = |J2| = 0, then we are in the case of Subcase 1.
If |J1| = 0 and |J2| 6= 0, then we can do the construction as Subcase 1 since
C ⊆ [

∧

j∈J2
¬(t3j × t4j )]ηi. Suppose then that |J1| > 0: since we have

∧

j∈J1

(t1j × t2j ) = (
∧

j∈J1

t1j ×
∧

j∈J1

t2j )

then without loss of generality we can assume that |J1| = 1, that is there is a
single toplevel non negated product type. So we are considering the specific case
for

dnf(ti) = (t′1 × t′2) ∧
∧

j∈J3

α1
j ∧

∧

j∈J4

¬α2
j .

What we do next is to build a particular element of the domain by exploring
(t′1 × t′2) in a top-down way and stopping when we arrive to a basic type, or a
variable, or an arrow type. So even though (t′1 × t′2) may be infinite (since it may
contain an arrow type of infinite depth) the exploration will always terminate
(unions, negations, and products always are finite: in particular products are
finite because by hypothesis we are considering only types in T fp). It can then
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be defined recursively in terms of two mutually recursive explorations that return
different results according to whether the exploration step has already crossed
an even or an odd number of negations. So let t1 be a type different from 0
and t2 a type different from 1, we define the explore_pos(t1) and explore_neg(t2)
procedures that, intuitively, explore the syntax tree for positive and negative
occurrences, respectively, and which are defined as follows:

explore_pos(t) case t of:

1. t = t1 × t2. Let di be the result of explore_pos(ti) (for i = 1, 2): since t is
not empty so must t1 and t2 be; we add both d1 and d2 to s0 and return
d = (d1, d2).

2. t = t1 → t2: we can choose any element d ∈ 1 → 0 (whatever t1 and t2 are)
and return it.

3. t = 0: impossible.

4. t = 1: return any element d 6∈ s0.

5. t = b: we can choose any element d such that d ∈ [b]ηi and d /∈ s0 and
return it.

6. t = α: we can choose any element d /∈ s0, set sα = sα ∪ {d} and return d.

7. t = t1 ∨ t2: one of the two types is not empty. If it is t1, then call
explore_pos(t1). It yields d1 /∈ s0 and we return it. Otherwise we call
explore_pos(t2) and return its result.

8. t = t1 ∧ t2, then put it in disjunctive normal form. Since it is not empty,
then one of its single normal forms must be non empty, as well: repeat for
this non empty single normal form the construction of the corresponding
subcase in this proof and return the d constructed by it.

9. t = ¬t′, then we call explore_neg(t′) add its result to s0 and return it.

explore_neg(t), case t of:

1. t = t1 × t2: we can choose any element d ∈ C and d /∈ s0 and return it.

2. t = t1 → t2: we can choose any element d ∈ C and d /∈ s0 and return it.

3. t = 0: return any element d 6∈ s0.

4. t = 1: impossible.

5. t = b: we can choose any element d /∈ [b]ηi and d /∈ s0 and return it.

6. t = α: we can choose any element d /∈ s0 (which clearly implies that d /∈ sα),
and return it.

7. t = (t1 ∨ t2): call explore_pos(¬t1 ∧ ¬t2) and return it.

8. t = (t1∧t2): since this intersection is not 1 then one of the two types is not 1.
If it is t1 then call explore_neg(t1) and return it else return explore_neg(t2).

9. t = ¬t′, then we call explore_pos(t′) and return it.

Let d = explore_pos(t′1 × t′2). Since [t′1 × t′2]ηi 6= ∅, then the call is well defined.
Then set s0 = s0 ∪ {d} and sα1

j
= sα1

j
∪ {d} for all j ∈ J3.

Finally there is the case in which also |J2| > 0, that is, there exists at least one
toplevel negative product type. Since we have

(t1 × t2) ∧ ¬(t3 × t4) = (t1\t3 × t2) ∨ (t1 × t2\t4)
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then we can do the construction as above either for (t1 \ t3 × t2) or (t1 × t2 \ t4):
multiple negative product types are treated in the same way.

Subcase 3: dnf(ti) =
∧

j∈J1
(t1j → t2j ) ∧

∧

j∈J2
¬(t3j → t4j ) ∧

∧

j∈J3
α1
j ∧

∧

j∈J4
¬α2

j ,
where Ji’s are finite sets. If |J1| = |J2| = 0, then we are in the case of Subcase
1. If |J1| = 0 and |J2| 6= 0, then we can do the construction as Subcase 1 since
C ⊆ [

∧

j∈J2
¬(t3j → t4j )]ηi. Therefore let us suppose that |J1| 6= 0. The remaining

two cases, that is, |J2| = 0 and |J2| 6= 0, deserve to be treated separately:

|J2| = 0: In this case we have at toplevel an intersection of arrows and no negated
arrow. Notice that for all j ∈ J1 we have 1→0 ≤ t1j→t2j , therefore we deduce

that 1→0 ≤
∧

j∈J1
(t1j → t2j ). Since 1→0 is a closed type (actually, an

indivisible one) and [_] is with infinite support, then the denotation of 1→0
contains infinitely many elements. Since s0 is finite, then it is possible to
choose a d in the denotation of 1→0 such that d 6∈ s0. Once we have chosen
such a d, we proceed as before, namely, we set s0 = s0 ∪ {d} and similarly
add d to sα for every variable α occurring positively at the top-level of ti
(i.e., for all α1

j with j ∈ J3).

|J2| 6= 0: This case cannot be solved as for |J2| = 0, insofar as we can no longer
find a closed type that is contained in

∧

j∈J1
(t1j → t2j ) ∧

∧

j∈J2
¬(t3j → t4j ):

since we have at least one negated arrow type, then 1 → 0 is no longer
contained in the intersection. The only solution is then to build a particular
element in this intersection in the same way we did for product types in
Subcase 2. Unfortunately, contrary to the case of product types, we cannot
work directly on the interpretation function [_] since we do not know its
definition on arrow types. However, since we are in a model, we know
its behavior with respect to its associated extensional interpretation E[ ],
namely, that for every assignment η and type t it holds [t]η = ∅ ⇐⇒
E(t)η = ∅. Since we supposed that there exist n assignments ηi such that
[ti]ηi 6= ∅ (for i ∈ [1..n]), then the model condition implies that for these
same assignments E(ti)ηi 6= ∅. If from this we can prove that there exists
an assignment η′ such that for all i ∈ [1..n], E(ti)η

′ 6= ∅, then by the model
condition again we can deduce that for all i ∈ [1..n], [ti]η

′ 6= ∅, that is our
thesis.6

Consider
∧

j∈J1
(t1j → t2j ) ∧

∧

j∈J2
¬(t3j → t4j ). By hypothesis we have

E(
∧

j∈J1

(t1j → t2j ) ∧
∧

j∈J2

¬(t3j → t4j ))ηi 6= ∅.

By definition of E this is equivalent to
⋂

j∈J1

([t1j ]ηi → [t2j ]ηi) ∩
⋂

j∈J2

¬([t3j ]ηi → [t4j ]ηi) 6= ∅,

6As an aside, notice we could have used this technique also in other cases and by the very definition
of E the proof would not have changed (apart from an initial reference to E at the beginning of each
subcase as the one preceding this footnote). Actually, strictly speaking, we already silently used this
technique in the case of products since the hypothesis of well-foundedness of model does not state that
[t1 × t2]η is equal to [t1]η × [t2]η (an assumption we implicitly did all the proof long) but just that
induces the same subtyping relation as a model in which that equality holds. We preferred not to
further complicate the presentation of that case.
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or equivalently,

⋂

j∈J1

P([t1j ]ηi × [t2j ]ηi) ∩
⋂

j∈J2

¬P([t3j ]ηi × [t4j ]ηi) 6= ∅

We want to construct an assignment η′ and a set of pairs such that this set
of pairs is included in the intersection above. We then use this set of pairs to
define our assignment η′. According to Lemma 2.1.9, the intersection above
is not empty if and only if

∀j2 ∈ J2 . ∃J
′ ⊆ J1 .







[t3j2 \
∨

j1∈J ′ t1j1]ηi 6= ∅ if J1 = J ′







[t3j2 \
∨

j1∈J ′ t1j1]ηi 6= ∅

and

[
∧

j1∈J1\J ′ t2j1 \ t
4
j2

]ηi 6= ∅

otherwise

Therefore, consider each j2 ∈ J2 and let J j2 denote a subset J ′ ⊆ J1 for
which the property above holds. Then we proceed as we did in the Subcase
2 and use explore_pos to build two elements d1j2 and d2j2 . More precisely, if

J j2 6= J1 then we set

{

d1j2 = explore_pos(t3j2 \
∨

j1∈Jj2 t
1
j1
)

d2j2 = explore_pos(
∧

j1∈J1\Jj2 t
2
j1
\ t4j2)

Otherwise (i.e., J j2 = J1), we set

{

d1j2 = explore_pos(t3j2 \
∨

j1∈J1
t1j1)

d2j2 = explore_pos(¬t4j2) or Ω

We add d1j2 , d
2
j2

, and (d1j2 , d
2
j2
) to s0. Now consider the various pairs of

the form (d1j2 , d
2
j2
) for j2 ∈ J2. Since we chose d1j2 6∈ [

∨

j1∈Jj2 t
1
j1

]ηi, then

(d1j2 , d
2
j2
) ∈ [t1j → t2j ] for all j ∈ J1, and therefore it belongs to the intersec-

tion
⋂

j∈J1
[t1j → t2j ]ηi. Furthermore, by construction each (d1j2 , d

2
j2
) 6∈ [t3j2 →

t4j2]ηi. Therefore the set of pairs {(d1j2 , d
2
j2
) | j2 ∈ J2} is the element we were

looking for: we add {(d1j2 , d
2
j2
) | j2 ∈ J2} to s0 and to each sα1

j
for j ∈ J3.

Subcase 4: The previous subcases cover all the cases in which all the literals
of the single normal form at issue are on the same constructor (all basic or
product or arrow types). So the only remaining subcase is the one in which
there are literals with different constructors. This is quite straightforward
because it is always possible to reduce the problem to one of the previous
cases. More precisely

1. The case in which there are two positive literals with different construc-
tors is impossible since the type would be empty (e.g., the intersection
of a basic and a product type is always empty), contradicting our hy-
pothesis.
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2. Suppose ti contains some positive literals all on the same constructor.
Then we can erase all the negative literals with a different constructor
since they contain all the positive ones, thus reducing the problem to
one of the previous subcases.

3. Suppose that ti contains no positive literal on any constructor, that is
it is formed only by negated literals on some constructors. Since the
type is not empty, then either the union of all negated basic types does
not cover C , or the union of all negated product types does not cover
1 × 1, or the union of all negated arrow types does not cover 0 → 1.
In the first case take as d any element of C that is neither in s0 nor
in the union of all negated basic types. In the second case, keep just
the negated product types, intersect them with 1× 1 and proceed as in
Subcase 2. In the third case keep just the negated arrow types, intersect
them with 0 → 1 and proceed as in Subcase 3.

At the end of this construction we define a new semantic assignment η′ as follows
η′ = {sα/α, . . .} for α ∈

⋃

i∈{1,...,n} var(ti). By construction of η′ we have [ti]η
′ 6= ∅ for

each i ∈ [1..n], which contradicts the premise.

Case 2: There exists i ∈ {1, . . . , n} such that ti = t1i ∨ . . .∨ tmi while all other tj ’s are
single normal forms (for all j 6= i).
Form Definition 4.2.2, we have

[ti]η = ∅ ⇐⇒ ([t1i ]η = ∅) and . . . and ([tmi ]η = ∅)

Since

∀η ∈ P(D)V . ([t1]η = ∅) or . . . or ([ti]η = ∅) or . . . or ([tn]η = ∅)

Then consider each tji , we have

∀η ∈ P(D)V . ([t1]η = ∅) or . . . or ([tji ]η = ∅) or . . . or ([tn]η = ∅)

By Case 1, we have

(∀η ∈ P(D)V . [t1]η = ∅) or . . . or (∀η ∈ P(D)V . [tji ]η = ∅)

or . . . or (∀η ∈ P(D)V . [tn]η = ∅)

If there exists one type tk such that ∀η ∈ P(D)V . [tk]η = ∅ holds, where k ∈
{1, . . . , n} \ {i}, then the result follows. Otherwise, we have

(∀η ∈ P(D)V . [t1i ]η = ∅) and . . . and (∀η ∈ P(D)V . [tmi ]η = ∅)

⇐⇒∀η ∈ P(D)V . ([t1i ]η = ∅) and . . . and ([tmi ]η = ∅)

⇐⇒∀η ∈ P(D)V . [ti]η = ∅

Therefore the result follows.
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Other cases: If no ti matches the first two cases, then we proceed similarly to Case
2. We decompose one of the types, say, t1, then by Case 2 either one of the other types
is empty, or all the decompositions of t1 are empty, then t1 is empty.

Finally, it just remains to prove Theorem 4.6.2, that is to say, that Lemma 4.6.5
above holds also for ti’s with recursive products. This result requires the following
preliminary lemma.

Lemma 4.6.6. Let [_] be a well-founded model with infinite support and t a type
(which may thus contain infinite product types). If there exists an element d and an
assignment η such that d ∈ [t]η, then there exists a type tfp ∈ T fp such that d ∈ [tfp]η
and for all assignment η if [t]η = ∅, then [tfp]η = ∅.

Proof. Since the model is well founded, then by Definition 4.2.8 we can use a well-
founded preorder ◮ on the elements d of the domain D. Furthermore, since our types
are regular, then there are just finitely many distinct subtrees of t that are product
types. So we proceed by induction on ◮ and the number n of distinct subtrees of t of
the form t1 × t2 that do not belong to T fp. If n = 0, then t already belongs to T fp.
Suppose that t = t1 × t2 6∈ T fp. Then the element d of the statement is a pair, that
is, d = (d1, d2). By induction hypothesis on d1, d2, there exist tfp1 , t

fp
2 ∈ T fp such that

di ∈ [tfpi ]η and for all η, [ti]η = ∅ ⇒ [tfpi ]η = ∅, for i = 1, 2. Then take tfp = tfp1 ×tfp2 and
the result follows. Finally, if the product at issue is not at toplevel then we can choose
any (recursive) product subtree in t and we have two cases. Either the product does
not “participate” to the non emptiness of [t]η (e.g., it occurs in a union addendum that
is empty) and then it can be replaced by any type. Or we can decompose d to arrive
to a d′ that corresponds to the product subtree at issue, and then apply the induction
hypothesis as above. In both cases we removed one of the distinct product subtrees
that did not belong to T fp and the result follows by induction on n.

While the statement of the previous lemma may, at first sight, seem obscure, its
meaning is rather obvious. It states that in a well-founded model (i.e., a model in which
all the values are finite) whenever a recursive (product) type contains some value, then
we can find a finite expansion of this type that contains the same value; furthermore,
if the recursive type is empty in a given assignment, then also its finite expansion is
empty in that assignment. This immediately yields our final result.

Lemma 4.6.7. Let (D, [_]) be a well-founded model with infinite support, and ti for
i ∈ [1..n]. Then

∀η . ([t1]η = ∅) or . . . or ([tn]η = ∅) ⇐⇒ (∀η . [t1]η = ∅) or . . . or (∀η . [tn]η = ∅)

Proof. The ⇐ direction is trivial. For the other direction, by Lemma 4.6.5 we know
that if ti ∈ T fp for i ∈ [1..n] then it holds. Suppose by contradiction, that the result
does not hold. Then there exists η′i such that [ti]η

′
i 6= ∅ for all i ∈ [1..n]. Let di ∈ [ti]η

′
i,

we can apply Lemma 4.6.6 and find t′i ∈ T fp such that [t′i]η
′
i 6= ∅. Then by Lemma 4.6.5

we know that there exists an assignment η′ such that [t′1]η
′ 6= ∅ and . . . and [t′n]η

′ 6= ∅.
Applying Lemma 4.6.6 again, we deduce that [t1]η

′ 6= ∅ and . . . and [tn]η
′ 6= ∅, which

contradicts the premise.
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Corollary 4.6.8 (Convex model). There exists a convex model.

Proof. It suffices to take any model for the ground types with an infinite domain
(see [Fri04] for examples), interpret indivisible types into infinite sets, and then add
a semantic assignment η for type variables to the interpretation function as a further
parameter. For instance, imagine we have n basic types b1, ..., bn and suppose, for
simplicity, that they are pairwise disjoint. If we use the “universal model” of [FCB08]
it yields (roughly, without the modifications for Ω) the following model. D = C +D2+
Pf (D

2) where C = S0 ∪ S1 ∪ ... ∪ Sn with Si are pairwise disjoint infinite sets:

[0]=∅ [1]=D
[¬t]η=D \ [t] [bi]=Si

[t1 ∨ t2]=[t1] ∪ [t2] [t1 × t2]=[t1]× [t2]

[t1 ∧ t2]=[t1] ∩ [t2] [t1 → t2]=Pf ([t1]×[t2]) ∪ S0

Notice that all denotations of arrow types contain S0 thus, in particular, the indivisible
type 1 → 0, too. If the basic types are not pairwise disjoint then it suffice to take for
C a set of Si whose intersections correspond to those of the corresponding basic types.
The only requirement is that all intersections must be infinite sets, as well. For the
assignments, one can use a labeling technique similar to the one in Section 5.1: to label
elements by (finite sets of) type variables such that d ∈ η(α) if and only if d is labeled
by α.

All the development in this section is generic in the particular type constructors
considered: we have seen that the results hold not only for the the full system but also
for the propositional logic. However, Christine Paulin noticed that in the presence of
product types the above result holds also under weaker hypotheses: thanks to products,
requiring that (4.8) holds just for n = 2 is enough, since it implies (4.8) for all n. This
is is formally stated by the following theorem, whose proof is due to Christine.

Theorem 4.6.9 (Paulin). If products are included in the system, then

∀η . ([t1]η=∅) or ([t2]η=∅) ⇐⇒ (∀η . [t1]η=∅) or (∀η . [t2]η=∅)

implies that for all n ≥ 2

∀η . ([t1]η=∅) or ... or ([tn]η=∅) ⇐⇒ (∀η . [t1]η=∅) or . . . or (∀η . [tn]η=∅)

Proof. By induction on n. For n = 2 the result is straightforward. For n > 2 notice
that by the extensional interpretation of products, for a given η we have

([t1]η=∅) or ... or ([tn]η=∅) ⇐⇒ [t1×...×tn]η=∅.

Then

∀η. ([t1]η=∅) or ... or ([tn]η=∅)

⇐⇒ ∀η. ([t1×...×tn−1]η=∅) or ([tn]η=∅) products

⇐⇒ (∀η. [t1×...×tn−1]η=∅) or (∀η. [tn]η=∅) convexity for n = 2

⇐⇒ (∀η. ([t1]η=∅) or ... or ([tn−1]η=∅)) or (∀η. [tn]η=∅) products

⇐⇒ (∀η. [t1]η=∅) or ... or (∀η.[tn−1]η=∅) or (∀η.[tn]η=∅) induction
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Chapter 5

A Practical Subtyping Algorithm

This chapter describes a subtyping algorithm that, contrary to the algorithm of Chapter
3, does not perform any type substitution and that generates a counterexample and a
counter assignment whenever the subtyping check fails. Thus this algorithm is better
fitted to be used in practice.

5.1 An algorithm without substitutions

The subtyping algorithm presented in Chapter 3 is general insofar as it works for any
subtyping relation induced by a well-founded convex model. Furthermore it is correct
also for types that are not regular. Its definition, however, requires type substitutions,
which make the algorithm involved both computationally (efficient implementation of
substitutions is challenging) and theoretically (e.g., it is the presence of substitutions
that makes the decidability of subtyping hard to prove: see Section 4.5). In this section
we show that if we restrict our attention to some particular models (those with infinite
support), then it is possible to avoid substitutions. This is inspired by the construction
used in the proof of Lemma 4.6.5 and by Gesbert, Genevès, and Layäıda’s work [GGL11]
which encodes the subtyping relation induced by a convex model with infinite support
into a tree logic and uses a satisfiability solver to efficiently decide it without resorting
to substitutions.

Let us first recall why the algorithm uses substitutions. Consider a type α∧(t×s). If
it is not empty then α must contain some non empty product type. In other words, only
product types may make this type non-empty. Thus the idea underlying the algorithm
of the previous chapter is that we can just focus on product types and to that end we
substitute α by (α1 × α2) (see Lemma 4.3.7 for detail). A similar reasoning applies for
arrow types. Hence, the subtyping algorithm works only at type level trying to reduce
the emptiness of a type to the emptiness of simpler (or memoized) types.

The algorithm of Gesbert, Genevès, and Layäıda [GGL11] instead works at the
level of values by using refutation: to prove that a type is empty it tries to build a
value of that type —ie, it tries to prove that the type is not empty— and, if it fails
to do so, it deduces emptiness. Let us transpose such a reasoning in our setting by
considering the single normal form α ∧ (t × s). From the point of view of values this
type is not empty if and only if there exists an element d and an assignment η such

83
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that d ∈ [α∧ (t×s)]η, that is d ∈ η(α) and d ∈ [(t×s)]η. This suggests that a possible
procedure to “refute” the emptiness of the previous type is to build an element d that
belongs to (t × s) and then assign d to α. Of course, this may not work in general
because α may occur in (t× s) and assigning d to α may make (t× s) empty. However,
in every well-founded (convex) model with infinite support, this does hold: we can build
an element for (t × s) inductively and during the process we can always pick a fresh
appropriate element for each subtree (including type variables) of (t× s) and avoid the
conflict with the assignment for α (see Lemma 4.6.5 for details). In conclusion in a
well-founded convex model with infinite support α∧(t×s) is empty if and only if (t×s)
is empty. Therefore in such a setting emptiness can be checked without performing any
type substitution.

It is important to stress that well-founded convex models with infinite support not
only are the setting used by Gesbert, Genevès, and Layäıda’s algorithm (which explains
why they can achieve optimal complexity), but also that, so far, they are the only model
we know how to use in practice. Therefore it is sensible to define the following version
of the algorithm simplified for the case of models with infinite support:

Step 1: transform the subtyping problem into an emptiness decision problem;

Step 2: put the type whose emptiness is to be decided in normal form;

Step 3: simplify mixed intersections;

Step 4+5Step 4+5Step 4+5: discard all toplevel variables;

Step 6: eliminate toplevel constructors, memoize, and recurse.

This algorithm is the same as the one presented in Section 3.4 except for Step 4 and 5

which are now merged together to simply discard the toplevel variables independently
from their polarities (simply note that after Step 3 a type variable and its negation
cannot occur simultaneously at the top level of the type). In detail, at this stage we
have to decide the emptiness of intersections of the form

∧

i∈I

ai ∧
∧

j∈J

¬a′
j ∧

∧

h∈H

αh ∧
∧

k∈K

¬βk

where all the ai’s and a′
j ’s are atoms with the same constructor, and {αh}h∈H and

{βk}k∈K are disjoint sets of type variables. In a model with infinite support, to decide
the emptiness of the whole type is equivalent to decide the emptiness of

∧

i∈I ai ∧
∧

j∈J ¬a
′
j .

In order to justify Step 4+5, we first prove the following lemma which is the general
case of Step 4+5.

Lemma 5.1.1. Let (D, [_]) be a well-founded (convex) model with infinite support, t
a type and α a type variable. Then

∀η. [t ∧ α]η = ∅ ⇐⇒ (∃t′. t ≃ (¬α) ∧ t′) or (∀η. [t]η = ∅)

Proof. “⇐”: straightforward.
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“⇒”: Assume that ∃η0. [t]η0 6= ∅. Consider a normal form of t, that is, dnf(t) =
∨

i∈I τi
where for all i τi is a single normal form. Then there must exist at least one τi
such that ∃ηi. [τi]ηi 6= ∅. Let I ′ = {i | ∃ηi. [τi]ηi 6= ∅}. If there exists i0 ∈ I ′ such
that τi0 6≃ (¬α)∧τ ′ for any (single) normal form τ ′, then we invoke the procedure
explore_pos defined in the proof of Lemma 4.6.5 to construct an element d for τi0
(if τi0 contains infinite product types, by Lemma 4.6.6, the construction works as
well). The procedure explore_pos also generates an assignment η0 for the type
variables in var(τ). We define η′ such that η′ = η0 ⊕ {η0(α) ∪ {d}/α}. Clearly,
[τi0 ∧α]η′ 6= ∅, which deduces that [t∧α]η′ 6= ∅, which conflicts with the premise
∀η. [t ∧ α]η = ∅. Therefore, the result follows.
Otherwise, for each i ∈ I ′, we have τi ≃ (¬α)∧ τ ′i for some single normal form τ ′i .
Moreover, for each i ∈ I \ I ′, we have ∀η. [τi]η = ∅, and a fortiori τi ≃ (¬α)∧ τi.
Then

t ≃
∨

i∈I τi
≃

∨

i∈I′ τi ∨
∨

i∈I\I′ τi
≃

∨

i∈I′((¬α) ∧ τ ′i) ∨
∨

i∈I\I′ τi
≃

∨

i∈I′((¬α) ∧ τ ′i) ∨
∨

i∈I\I′((¬α) ∧ τi)

≃ (¬α) ∧ (
∨

i∈I′ τ
′
i ∨
∨

i∈I\I′ τi)

Let t′ = (
∨

i∈I′ τ
′
i ∨
∨

i∈I\I′ τi). We have t ≃ (¬α)∧ t′. Therefore the result follows
as well.

Note that the using ¬α instead of α does not change the validity of Lemma 5.1.1,
which explains why in this simpler algorithm we no longer need to eliminate the negative
top-level type variables first by replacing them with some fresh positive ones.

The justification of Step 4+5 is given by Lemmas 5.1.2 and 5.1.3.

Lemma 5.1.2. Let ≤ be the subtyping relation induced by a well-founded (convex)
model with infinite support, P,N two finite subsets of Aprod and α an arbitrary type
variable.

∧

t1×t2∈P

(t1 × t2) ∧ α ≤
∨

s1×s2∈N

(s1 × s2) ⇐⇒
∧

t1×t2∈P

(t1 × t2) ≤
∨

s1×s2∈N

(s1 × s2)

Proof. Consequence of Lemma 5.1.1.

Lemma 5.1.3. Let ≤ be the subtyping relation induced by a well-founded (convex)
model with infinite support, P,N two finite subsets of Afun and α an arbitrary type
variable.

∧

t→s∈P

(t → s) ∧ α ≤
∨

t′→s′∈N

(t′ → s′) ⇐⇒
∧

t→s∈P

(t → s) ≤
∨

t′→s′∈N

(t′ → s′)

Proof. Consequence of Lemma 5.1.1.

Note that Lemmas 5.1.2 and 5.1.3 deal with only one type variable, but it is trivial
to generalize these lemmas to multiple type variables.

To recap, while the algorithm with substitutions is a universal subtyping algorithm
that works for any convex model that satisfies Lemmas 4.3.7 and 4.3.8, the subtyping
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algorithm without substitutions works only for (convex) models that are well-founded
and with infinite support. Moreover, the algorithm with substitutions is somehow more
intuitive since it states the kind of types a type variable should be assigned to (e.g.,
the type variable α in the type α ∧ (t × s) should be a product type), while it is not
easy to understand why in the simpler algorithm type variables that are at toplevel can
be eliminated. To convey this intuition first notice that using an infinite support may
yield a different subtyping relation. As an example take a closed type that denotes
a singleton: for instance 1→0 which in the standard CDuce model contains only one
element, that is, the function ⊥ that diverges on every argument. In such a model
(α ∧ (1→0)× ¬α ∧ (1→0)) is empty (either ⊥ is in α or it is in ¬α) while in a model
with infinite support it is not (it suffices to assign α to a strict non-empty subset of
the denotation of 1→0). Also in the first model it is not true that α∧ (t× s) is empty
if and only if so (t× s) is. Take t = α ∧ (1→0) and s = ¬α ∧ (µx.(1→0)× x). For the
sake of simplicity consider a non well-founded model in which 1→0 denotes {⊥}. In
such a model (t×s) is not empty and contains exactly one element, namely the element
d that satisfies d = (⊥, d) (the infinite list of the diverging function). However if we
assign α to a set that contains d, then s denotes the empty set and so does the product.
So in this model α ∧ (t× s) is empty although (t× s) is not. In a model with infinite
support also α ∧ (t× s) is non empty since it contains, for instance, (d1, d) where d1 is
any element in the denotation of 1→0 different from ⊥.

Finally, remember that infinite denotations for non-empty types is just a possible
solution to the convexity property and that the simplified algorithm works only in that
case. However, we are not aware of any other different convex model. So while the
general algorithm with substitutions works also for models without infinite support,
we currently do not know any convex model in which the simpler algorithm would
not be enough. Finding such a model would have a purely theoretical interests since
well-founded convex models with infinite support (see Section 4.6) are to be used in
practice and, ergo, so does the simpler algorithm. The latter has several advantages:

• it is more efficient, since no substitution is performed,

• its decidability is easier to prove, since all the candidate types to be checked are
subtrees of the original type,

• in case the subtyping relation does not hold it is easier to give counterexamples
and counter assignments as we show in the next section.

5.2 Counterexamples and counter assignments

Given a nonempty type t, there exists an assignment η and an element d such that
d ∈ [t]η. Generally, d is called a counterexample of t and η is called a counter assignment
of t. One advantage of semantic subtyping is that once such a subtyping relation does
not hold, it is able to yield a counterexample and a counter assignment. A simple way
to generate a counterexample is to invoke the procedure explore_pos(s∧¬t) defined in
Lemma 4.6.5, whenever the check of s ≤ t fails. But this does some duplicate work, for
example, decomposing terms into sub-terms: one time for the subtyping check and one
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time for the procedure. Indeed, we can improve the subtyping algorithms by embedding
the procedure explore_pos(t) into it.

Compared with the algorithm without substitutions, to generate counterexamples
and counter assignments, the algorithm with substitutions needs (i) to consider not
only the type variables contained in types but also the fresh type variables introduced
by substitutions and (ii) to follow the tracks of substitutions. Therefore, it is eas-
ier to generate counterexamples and counter assignments for the algorithm without
substitutions. In the following, we only consider the algorithm without substitutions.

If a type is not empty, then there must exist a non-empty single normal form in
its normal form. Hence at Step 2, a counterexample for a non-empty single normal
form is enough. Next, we simplify mixed intersections (Step 3) and discard all the
toplevel variables (Step 4+5). Then at Step 6, the single normal form τ to be check
is an intersection of same constructors, which has three possible cases:

• τ =
∧

b∈P b ∧
∧

b∈N ¬b. If τ is not empty, then any element d that belongs to τ
is a counterexample. Here we require the counterexample to be fresh to ensure
the existence of a counter assignment, that is, the counterexample is not selected
(by other types) before. For example, consider ((b ∧ α)× (b ∧ ¬α)). If we take a
same element d for these two occurrences of b, then it is impossible to construct a
counter assignment, since we have to assign d to the first occurrence of α but we
can not assign d to the second occurrence of α. Notice that infinite denotation
ensures that a fresh element always exists.

• τ =
∧

t1×t2∈P
(t1× t2)∧

∧

t1×t2∈N
¬(t1× t2). Then by Lemma 4.3.9, we must check

whether for any subset N ′ ⊆ N ,

∧

t1×t2∈P

t1 ∧
∧

t1×t2∈N ′

¬t1 ≤ 0 or
∧

t1×t2∈P

t2 ∧
∧

t1×t2∈N\N ′

¬t2 ≤ 0

If τ is not empty, then there exists a subset N ′ ⊆ N such that

∧

t1×t2∈P

t1 ∧
∧

t1×t2∈N ′

¬t1 6≃ 0 and
∧

t1×t2∈P

t2 ∧
∧

t1×t2∈N\N ′

¬t2 6≃ 0

So two counterexamples, assuming they are d1 and d2 will be generated by the
subtyping algorithm for these two types respectively. Then the element (d1, d2)
belongs to t1 × t2 for any t1 × t2 ∈ P , while it does not belong to t1 × t2 for any
t1 × t2 ∈ N . Therefore, (d1, d2) is a counterexample for τ .

• τ =
∧

t1→t2∈P
(t1 → t2)∧

∧

t1→t2∈N
¬(t1 → t2). Then following Lemma 4.3.10, we

must check whether there exists t01 → t02 ∈ N such that for any subset P ′ ⊆ P ,

t01 ∧
∧

t1×t2∈P ′

¬t1 ≤ 0 or (
∧

t1×t2∈P\P ′

t2 ∧ ¬t02 ≤ 0 and P 6= P ′)

If τ is not empty, then for any ti1 → ti2 ∈ N there exists a subset P ′
i ⊆ P such

that
ti1 ∧

∧

t1×t2∈P ′
i

¬t1 6≃ 0 and (
∧

t1×t2∈P\P ′
i

t2 ∧ ¬ti2 6≃ 0 or P = P ′
i )
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Assume the counterexamples generated for the types ti1 ∧
∧

t1×t2∈P ′
i
¬t1 and

∧

t1×t2∈P\P ′
i
t2 ∧ ¬ti2 respectively by the subtyping algorithm are di1 and di2 (if

P = P ′
i , d

i
2 may be Ω). Then di1 belongs to ti1 while di2 does not belong to ti2, that

is, for any element f that belongs to ti1 → ti2, we have (di1, d
i
2) /∈ f . Moreover,

considering t1 → t2 ∈ P , either di1 does not belong to t1 or di2 belongs to t2. So
for any element f , if f belongs to t1 → t2, so does {(di1, d

i
2)} ∪ f . Therefore, the

element {(di1, d
i
2) | t

i
1 → ti2 ∈ N} is a counterexample for τ .

Since d is generated, we then mark it with the set of top-level type variables
{αh}h∈H ∪ {¬βk}k∈K to record the assignment information. That is, the element d
should be assigned to a type variable if the type variable is positive, while it should
not if the type variable is negative1. Finally, from these marking information, we can
easily construct a counter assignment by collecting all possible elements that could be
assigned to each type variable respectively.

For example, consider the following subtyping statement, a variant of (3.2).

(b× α) ≤ (b× ¬b) ∨ (α× b) (5.1)

where b is a basic type. According to Lemma 4.3.9, this is equivalent to the following
statement:

and







b ≤ 0 or α ∧ b ∧ ¬b ≤ 0

b ∧ ¬b ≤ 0 or α ∧ ¬b ≤ 0

b ∧ ¬α ≤ 0 or α ∧ b ≤ 0

b ∧ ¬b ∧ ¬α ≤ 0 or α ≤ 0

The first, second and fourth statements hold, while the third one does not. And the

algorithm generates the marked counterexamples d
{¬α}
1 and d

{α}
2 for b ∧ ¬α and α ∧ b

respectively, where d1 and d2 are two fresh elements belonging to b. So a marked

counterexample for (5.1) is (d
{¬α}
1 , d

{α}
2 ). Then a counter assignment corresponding to

this marked counterexample is {{d2}/α}. Besides, from the marked counterexample,
we deduce that d2 is different from d1, as it requires that d1 should not be assigned
to α while d2 should be. That is, b should contains at least two elements. Hence, a
byproduct of the mark information is that it is easy for us to deduce at least how many
elements a type should contain to make a subtyping statement invalid (e.g., (5.1)) or an
instance of convexity hold (e.g., ∀η. ([b∧¬α]η = ∅ or [α∧b]η = ∅) ⇐⇒ (∀η. [b∧¬α]η =
∅) or (∀η. [α ∧ b]η = ∅)).

Take b as Int. Following the construction above, we can generate for the subtyping
relation

(Int × α) ≤ (Int × ¬Int) ∨ (α× Int)

a counterexample (42, 3) and its corresponding counter assignment η0 = {{3}/α}. It is
easy to see that (42, 3) ∈ [(Int × α)]η0 but (42, 3) /∈ [(Int × ¬Int) ∨ (α× Int)]η0.

1Another meaning of labeling (representing name subtyping) was referred to Section 3.3 and a
similar labeling is introduced by Gesbert et al. [GGL11].
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Chapter 6

Overview

In this part, we design and study a higher-order functional language that takes full
advantage of the new capabilities of the type system defined in Part II, which can then
be easily extended to a full-fledged polymorphic functional language for processing
XML documents. Namely, the calculus we want to define is a polymorphic version of
CoreCDuce.

As explained in Section 2.2, we need to define an explicitly typed λ-calculus with
intersection types. This is a notoriously hard problem for which no full-fledged solution
exists yet: intersection types systems with explicitly typed terms can be counted on
the fingers of one hand and none of them is completely satisfactory (see related works
in Section 12.7). The solution introduced by CoreCDuce is to explicitly type by an
intersection of arrows types the whole λ-abstractions instead of just their parameters.
However, it is not trivial to extend this solution to parametric polymorphism.

The expressions in CoreCDuce are produced by the following grammar1:

e ::= c | x | (e, e) | πi(e) | ee | λ∧i∈Isi→tix. e | e∈t ? e : e (6.1)

Let us recall what we presented in the introduction and expand it with more details.
The novelty of a polymorphic extension is to allow type variables (ranged over by
lower-case Greek letters: α, β, ...) to occur in the types and, thus, in the types labeling
λ-abstractions. It becomes thus possible to define the polymorphic identity function
as λα→αx.x, while classic “auto-application” term is written as λ((α→β)∧α)→βx.xx. The
intended meaning of using a type variable, such as α, is that a (well-typed) λ-abstraction
not only has the type specified in its label (and by subsumption all its super-types) but
also all the types obtained by instantiating the type variables occurring in the label.
So λα→αx.x has by subsumption both the type 0→1 (the type of all functions, which
is a super-type of α→α) and the type ¬Int, and by instantiation the types Int→Int,
Bool→Bool, etc.

The use of instantiation in combination with intersection types has nasty conse-
quences, for if a term has two distinct types, then it has also their intersection type.
In the monomorphic case a term can have distinct types only by subsumption and,
thus, intersection types are assigned transparently to terms by the type system via
subsumption. But in the polymorphic case this is no longer possible: a term can be

1For simplicity, here we do not consider recursive functions, which can be added straightforwardly.
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typed by the intersection of two distinct instances of its polymorphic type which, in
general, are not in any subtyping relation with the latter: for instance, α→α is neither
a subtype of Int→Int nor vice-versa, since the subtyping relation must hold for all
possible instantiations of α (and there are infinitely many instances of α→α that are
neither subtype nor super-type of Int→Int).

Concretely, if we want to apply the polymorphic identity λα→αx.x to, say, 42, then
the particular instance obtained by the type substitution {Int/α} (denoting the replace-
ment of every occurrence of α by Int) must be used, that is (λInt→Intx.x)42. We have
thus to relabel the type decorations of λ-abstractions before applying them. In implic-
itly typed languages, such as ML, the relabeling is meaningless (no type decoration is
used) while in their explicitly typed counterparts relabeling can be seen as a logically
meaningful but computationally useless operation, insofar as execution takes place on
type erasures. In the presence of type-case expressions, however, relabeling is necessary
since the label of a λ-abstraction determines its type: testing whether an expression
has type, say, Int→Int should succeed for the application of λα→α→αx.λα→αy.x to 42

and fail for its application to true. This means that, in Reynolds’ terminology, our
terms have an intrinsic meaning [Rey03].

If we need to relabel some function, then it may be necessary to relabel also its body
as witnessed by the following “daffy” —though well-typed— definition of the identity
function:2

(λα→αx.(λα→αy.x)x) (6.2)

If we want to apply this function to, say, 3, then we have first to relabel it by applying
the substitution {Int/α}. However, applying the relabeling only to the outer “λ” does
not suffice since the application of (6.2) to 3 reduces to (λα→αy.3)3 which is not well-
typed (it is not possible to deduce the type α→α for λα→αy.3, which is the constant
function that always returns 3) although it is the reductum of a well-typed application.

The solution is to apply the relabeling also to the body of the function. Here
what “to relabel the body” means is straightforward: apply the same type-substitution
{Int/α} to the body. This yields a reductum (λInt→Inty.3)3 which is well typed. In
general, however, the way to perform a relabeling is not so straightforward and clearly
defined, since two different problems may arise: (1) it may be necessary to apply more
than a single type-substitution and (2) the relabeling of the body may depend on the
dynamic type of the actual argument of the function (both problems are better known
as —or are instances of— the problem of determining expansions for intersection type
systems [CDV80]). We discuss each problem in detail.

First of all notice that we may need to relabel/instantiate functions not only when
they are applied but also when they are used as arguments. For instance consider a
function that expects arguments of type Int→Int. It is clear that we can apply it to the
identity function λα→αx.x, since the identity function has type Int→Int (feed it by an
integer and it will return an integer). Before, though, we have to relabel the latter by the
substitution {Int/α} yielding λInt→Intx.x. As the identity has type Int→Int so it has
type Bool→Bool and, therefore, the intersection of the two: (Int→Int)∧(Bool→Bool).

2By convention a type variable is introduced by the outer λ in which it occurs and this λ implicitly
binds all inner occurrences of the variable. For instance, all the α’s in the term (6.2) are the same
while in a term such as (λα→αx.x)(λα→αx.x) the variables in the function are distinct from those in
its argument and, thus, can be α-converted separately, as (λγ→γx.x)(λδ→δx.x).
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So we can apply a function that expects an argument of this intersection type to our
identity function. The problem is now how to relabel λα→αx.x. Intuitively, we have
to apply two distinct type-substitutions {Int/α} and {Bool/α} to the label of the λ-
abstraction and replace it by the intersection of the two instances. This corresponds
to relabel the polymorphic identity from λα→αx.x into λ(Int→Int)∧(Bool→Bool)x.x. This
is the solution adopted by this work, where we manipulate sets of type-substitutions
—delimited by square brackets—. The application of such a set (eg, in the previous
example [{Int/α}, {Bool/α}]) to a type t, returns the intersection of all types obtained
by applying each substitution in set to t (eg, in the example t{Int/α}∧t{Bool/α}). Thus
the first problem has an easy solution.

The second problem is much harder and concerns the relabeling of the body of a
function since the naive solution consisting of propagating the application of (sets of)
substitutions to the bodies of functions fails in general. This can be seen by considering
the relabeling via the set of substitutions [{Int/α}, {Bool/α}] of the daffy function in
(6.2). If we apply the naive solution this yields

(λ(Int→Int)∧(Bool→Bool)x.(λ(Int→Int)∧(Bool→Bool)y.x)x) (6.3)

which is not well typed. That this term is not well typed is clear if we try apply it
to, say, 3: the application of a function of type (Int→Int) ∧ (Bool→Bool) to an Int

should have type Int, but here it reduces to (λ(Int→Int)∧(Bool→Bool)y.3)3, and there is
no way to deduce the intersection type (Int→Int) ∧ (Bool→Bool) for the constant
function λy.3. But we can also directly verify that it is not well typed, by trying to
type the function in (6.3). This corresponds to prove that under the hypothesis x : Int

the term (λ(Int→Int)∧(Bool→Bool)y.x)x has type Int, and that under the hypothesis
x : Bool this same term has type Bool. Both checks fail because, in both cases,
λ(Int→Int)∧(Bool→Bool)y.x is ill-typed (it neither has type Int→Int when x:Bool, nor
has it type Bool→Bool when x:Int). This example shows that in order to ensure that
relabeling yields well-typed terms, the relabeling of the body must change according to
the type the parameter x is bound to. More precisely, (λα→αy.x) should be relabeled
as λInt→Inty.x when x is of type Int, and as λBool→Booly.x when x is of type Bool.
An example of this same problem less artificial than our daffy function is given by
the classic apply function λf.λx.fx which, with our polymorphic type annotations, is
written as:

λ(α→β)→α→βf.λα→βx.fx (6.4)

The “apply” function in (6.4) has the type (Int→Int)→Int→Int, obtained by in-
stantiating its type annotation by the substitution {Int/α, Int/β}, as well as the type
(Bool→Bool)→Bool→Bool, obtained by the substitution {Bool/α, Bool/β}. If we want
to feed this function to another function that expects arguments whose type is the
intersections of these two types, then we have to relabel it by using the set of substi-
tutions [{Int/α, Int/β}, {Bool/α, Bool/β}]. But, once more, it is easy to verify that the
naive solution that consists in propagating the application of the set of substitutions
down to the body of the function yields an ill-typed expression.

This second problem is the showstopper for the definition of an explicitly typed λ-
calculus with intersection types. Most of the solutions found in the literature [Ron02,
WDMT02, LR07, BVB08] rely on the duplication of lambda terms and/or typing deriva-
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tions, while other calculi such as [WH02] that aim at avoiding such duplication obtain it
by adding new expressions and new syntax for types (see related work in Section 12.7).

Here we introduce a new technique that consists in performing a “lazy” relabel-
ing of the bodies. This is obtained by decorating λ-abstractions by (sets of) type-
substitutions. For example, in order to pass our daffy identity function (6.2) to a
function that expects arguments of type (Int→Int) ∧ (Bool→Bool) we first “lazily”
relabel it as follows:

(λα→α
[{Int/α},{Bool/α}]x.(λ

α→αy.x)x). (6.5)

The annotation in the outer “λ” indicates that the function must be relabeled and,
therefore, that we are using the particular instance whose type is the one in the inter-
face in which we apply the set of type-substitutions. The relabeling will be actually
propagated to the body of the function at the moment of the reduction, only if and
when the function is applied (relabeling is thus lazy). However, the new annotation
is statically used by the type system to check soundness. Notice that, contrary to ex-
isting solutions, we preserve the structure of λ-terms (at the expenses of some extra
annotation) which is of uttermost importance in a language-oriented study.

From a practical point of view it is important to stress that these annotations
will be transparent to the programmer and that all necessary relabeling will be inferred
statically and compiled away. In practice, the programmer will program in the language
defined by the grammar (6.1), where types in the interfaces of λ’s may contain type
variables. With the language defined by the grammar (6.1), we can define the map3

and even functions mentioned in Section 1.4 as

map
def

= µm(α→β)→[α]→[β] λf . λ[α]→[β]ℓ . ℓ∈nil ? nil : (f(π1ℓ),mf(π2ℓ))

even
def

= λ(Int→Bool)∧(α\Int→α\Int)x . x∈Int ? (x mod 2) = 0 :x

where the type nil tested in the type case denotes the singleton type that contains
just the constant nil, and [α] denotes the regular type that is the (least) solution of
X = (α,X) ∨ nil.

When fed by any expression of this language, the type-checker will infer sets of type-
substitutions and insert them into the expression to make it well-typed (if possible, of
course). For example, for the application of map to even, we will see that the inference
system of Chapter 9 infers one set of type-substitutions

[{Int/α, Bool/β}, {α∨Int/α, (α\Int)∨Bool/β}]

and inserts it between the two terms. Finally, the compiler will compile the expression
with the inserted type-substitutions into a monomorphic expression in which all sub-
stitutions are compiled away and only necessary relabelings are hard-coded. The rest
of the presentation proceeds then in four logical phases:

1. Definition of a calculus with explicit (sets of) type-substitutions (Chapter 7).
These explicit type-substitutions are used at reduction time to perform the rela-
beling of the bodies of the applied function. We define a type systems and prove
its soundness.

3Strictly speaking, the type case in map should be a “binding” one, which is introduced in Section
11.1.
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2. Inference of type-substitutions (Chapters 8– 10). We want to program with the
terms defined by the grammar (6.1), and not in a calculus with explicit type-
substitutions. Therefore we must define a system that infers where and whether
type-substitutions can be inserted in a term to make it well typed. In order to
define this system we proceed in three steps.

First we define a sound and complete typing algorithm for the type system
of the calculus with explicit type-substitutions (this reduces to the elimination of
the subsumption) (Chapter 8).

Second, we study this algorithm to deduce where sets of type-substitutions
must be inserted and use it as a guide to define a deduction system that in-
fers type-substitutions in order to give a type to the terms of the grammar
(6.1)(Chapter 9). This type inference system is sound and complete with re-
spect to the typing algorithm. This is stated in terms of an erasure function
which maps a term with explicit type-substitutions into a term of grammar (6.1)
by erasing all type-substitutions. If the inference systems assign some type to a
term without explicit substitutions, then this term is the erasure of a term that
has the same type. Conversely if a term with explicit type-substitutions is well
typed, then the inference system infers a (more general) type for it.

The third and final step is to give an effective procedure to “implement” the
sound and complete inference system, whose rules use constraints on the existence
of some type-substitutions (Chapter 10). We show that these constraints can in
general be reduced to deciding whether for two types s and t there exist two sets
of substitutions [σi]i∈I and [σ′

j ]j∈J such that
∧

i∈I sσi ≤
∨

j∈J tσ
′
j . We show how

to give a sound and complete set of solutions when the cardinalities of I and J are
bounded. This immediately yields a semi-decision procedure (that tries all the
cardinalities) for the inference system: the procedure infers a type for an implicit
term if and only if it is the erasure of a well-typed explicitly-typed term. If a
term is not the erasure of any explicitly-typed term, then the inference procedure
either fails or it never stops (decidability is still an open question because of union
types).

3. Compilation into a monomorphic calculus (Chapter 11). Given a well-typed term
of the implicitly typed calculus, the inference system effectively produces a term
with explicit type-substitutions that corresponds to it. In the last part we show
how to compile this explicitly typed term into a monomorphic term of CoreCDuce,
thus getting rid of explicit substitutions. The target language is CoreCDuce where
type variables are considered as new basic types and the subtyping relation is the
one defined in Chapter 4. The motivation of this translation is to avoid to perform
costly relabeling at run-time and to reuse the efficient and optimized run-time
engine of CDuce. We show that all possible relabelings can be statically computed
and dynamic relabeling compiled away. We prove that the translation preserve
both the static and the dynamic semantics of the source calculus, and show it is
sufficient to give an implementation of the polymorphic version.

4. Extensions (Chapter 12). Finally we discuss some additional features and design
choices, such as recursive functions, type substitution application and/or negation
arrows for the typing rule of abstractions, open type cases, and so on.
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Chapter 7

A Calculus with Explicit
Type-Substitutions

In this chapter, we define our explicitly-typed λ-calculus with sets of type-substitutions.

7.1 Expressions

Definition 7.1.1 (Expressions). Let C be a set of constants ranged over by c and X
a countable set of expression variables ranged over by x,y,z,. . . . An expression e is a
term inductively generated by the following grammar:

Expressions e ::= c constant
| x expression variable
| (e, e) pair
| πi(e) projection(i ∈ {1, 2})

| λ
∧i∈I ti→si
[σj ]j∈J

x.e abstraction

| e e application
| e∈t ? e : e type case
| e[σj ]j∈J instantiation

where ti, si range over types, t ∈ T0 is a ground type, and [σj ]j∈J is a set of type-
substitutions. We write E to denote the set of all expressions.

A λ-abstraction comes with a non-empty sequence of arrow types (called its inter-
face) and a possibly empty set of type-substitutions (called its decorations). When the
decoration is an empty set, we write λ(∧i∈I ti→si)x.e for short. For simplicity, here we
do not consider recursive functions, which can be added straightforwardly (see Chapter
12).

Since expressions are inductively generated, then the accessory definitions on them
can be given by induction.

Given a set of type variables ∆ and a set of type-substitutions [σj ]j∈J , for simplic-
ity, we use the notation ∆[σj ]j∈J to denote the set of type variables occurring in the
applications ασj for all α ∈ ∆, j ∈ J , that is:

∆[σj ]j∈J
def

=
⋃

j∈J

(
⋃

α∈∆

var(σj(α)))
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Definition 7.1.2. Let e be an expression. The set fv(e) of free variables of the expres-
sion e is defined by induction as:

fv(x) = {x}
fv(c) = ∅

fv((e1, e2)) = fv(e1) ∪ fv(e2)
fv(πi(e)) = fv(e)

fv(λ
∧i∈I ti→si
[σj ]j∈J

x.e) = fv(e) \ {x}

fv(e1 e2) = fv(e1) ∪ fv(e2)
fv(e∈t ? e1 : e2) = fv(e) ∪ fv(e1) ∪ fv(e2)

fv(e[σj ]j∈J) = fv(e)

The set bv(e) of bound variables of the expression e is defined by induction as:

bv(x) = ∅
bv(c) = ∅

bv((e1, e2)) = bv(e1) ∪ bv(e2)
bv(πi(e)) = bv(e)

bv(λ
∧i∈I ti→si
[σj ]j∈J

x.e) = bv(e) ∪ {x}

bv(e1 e2) = bv(e1) ∪ bv(e2)
bv(e∈t ? e1 : e2) = bv(e) ∪ bv(e1) ∪ bv(e2)

bv(e[σj ]j∈J) = bv(e)

The set tv(e) of type variables occurring in e is defined by induction as:

tv(x) = ∅
tv(c) = ∅

tv((e1, e2)) = tv(e1) ∪ tv(e2)
tv(πi(e)) = tv(e)

tv(λ
∧i∈I ti→si
[σj ]j∈J

x.e) = tv(e[σj ]j∈J) ∪ var(
∧

i∈I,j∈J tiσj → siσj)

tv(e1 e2) = tv(e1) ∪ tv(e2)
tv(e∈t ? e1 : e2) = tv(e) ∪ tv(e1) ∪ tv(e2)

tv(e[σj ]j∈J) = (tv(e))[σj ]j∈J

An expression e is closed if fv(e) is empty.

Note that the set of type variables in e[σj ]j∈J is the set of type variables in the
“application” of [σj ]j∈J to the set of type variables tv(e).

As customary, we assume bound expression variables to be pairwise distinct and
distinct from any free expression variable occurring in the expressions under considera-
tion. We equate expressions up to the α-renaming of their bound expression variables.
In particular, when substituting an expression e for a variable y in an expression e′

(see Definition 7.1.3), we assume that the bound variables of e′ are distinct from the
bound and free variables of e, to avoid unwanted captures. For example, (λα→αx.x)y
is α-equivalent to (λα→αz.z)y.

The situation is a bit more complex for type variables, as we do not have an explicit
binder for them. Intuitively, a type variable can be α-converted if it is a polymor-
phic one, that is, if it can be instantiated. For example, (λα→αx.x)y is α-equivalent
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to (λβ→βx.x)y, and (λα→α
[Int/α]

x.x)y is α-equivalent to (λβ→β
[Int/β]

x.x)y. Polymorphic vari-

ables can be bound by interfaces, but also by decorations or applications between
them: for example, in λInt→Int

[Int/α]
x.(λα→αy.y)x, the α occurring in the interface of the

inner abstraction is “bound” by the decoration [Int/α], and the whole expression is α-
equivalent to (λInt→Int

[Int/β]
x.(λβ→βy.y)x. Another example is that, λγ→γ

[α/γ]
x.(λα→αy.y)x is

α-equivalent to λγ→γ

[β/γ]
x.(λβ→βy.y)x. If a type variable is bound by an outer abstrac-

tion, it cannot be instantiated; such a variable is called monomorphic. For example, the
expression λ(α→α)→(α→α)y.((λα→αx.x)[Int/α]y) is not sound (i.e., it cannot be typed),
because α is bound at the level of the outer abstraction, not at level of the inner
one. Consequently, in this expression, α is monomorphic for the inner abstraction, but
polymorphic for the outer one. Monomorphic type variables cannot be α-converted:
λ(α→α)→(α→α)y.(λα→αx.x)y is not α-equivalent to λ(α→α)→(α→α)y.(λβ→βx.x)y (but it is
α-equivalent to λ(β→β)→(β→β)y.(λβ→βx.x)y). Note that the scope of polymorphic vari-
ables may include some type-substitutions [σi]i∈I : for example, ((λα→αx.x)y)[Int/α] is
α-equivalent to ((λβ→βx.x)y)[Int/β]. Finally, we have to be careful when performing ex-
pression substitutions and type substitutions to avoid clashes of polymorphic variables
namespaces. For example, substituting λα→αz.z for y in λα→αx.x y would lead to an
unwanted capture of α (assuming α is polymorphic, i.e., not bound by a λ-abstraction
placed above these two expressions), so we have to α-convert one of them, so that the
result of the substitution is, for instance, λα→αx.x (λβ→βz.z).

To resume, we adopt the following conventions on α-conversion for type variables.
We assume that polymorphic variables are pairwise distinct and distinct from any
monomorphic variable in the expressions under consideration. We equate expressions
up to α-renaming of their polymorphic variables. In particular, when substituting an
expression e for a variable y in an expression e′ (see Definition 7.1.3), we suppose the
polymorphic type variables of e′ to be distinct from the monomorphic and polymorphic
type variables of e to avoid unwanted capture1.

Definition 7.1.3 (Expression substitution). An expression substitution ̺ is a total
mapping of expression variables to expressions that is the identity everywhere but on a
finite subset of X , which is called the domain of ̺ and denoted by dom(̺). We use the
notation {e1/x1, . . . , en/xn} to denote the expression substitution that maps xi into ei for
i = 1..n.

The definitions of free variables, bound variables and type variables are extended
to expression substitutions as follows.

fv(̺) =
⋃

x∈dom(̺)

fv(̺(x)), bv(̺) =
⋃

x∈dom(̺)

bv(̺(x)), tv(̺) =
⋃

x∈dom(̺)

tv(̺(x))

1In this discussion, the definitions of the notions of polymorphic and monomorphic variables remain
informal. To make them more formal, we would have to distinguish between the two by carrying around
a set of type variables ∆ which would contain the monomorphic variables that cannot be α-converted.
Then all definitions (such as expression substitutions, for example) would have to be parametrized with
∆, making the definitions and technical developments difficult to read just because of α-conversion.
Therefore, for the sake of readability, we decided to keep the distinction between polymorphic and
monomorphic variables informal.
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Next, we define the application of an expression substitution ̺ to an expression e.
To avoid unwanted captures, we remind that we assume that the bound variables of
e do not occur in the domain of ̺ and that the polymorphic type variables of e are
distinct from the type variables occurring in ̺ (using α-conversion if necessary).

Definition 7.1.4. Given an expression e ∈ E and an expression substitution ̺, the
application of ̺ to e is defined as follows:

c̺ = c
(e1, e2)̺ = (e1̺, e2̺)
(πi(e))̺ = πi(e̺)

(λ
∧i∈I ti→si
[σj ]j∈J

x.e)̺ = λ
∧i∈I ti→si
[σj ]j∈J

x.(e̺)

(e1 e2)̺ = (e1̺) (e2̺)
(e∈t ? e1 : e2)̺ = e̺∈t ? e1̺ : e2̺

x̺ = ̺(x) if x ∈ dom(̺)
x̺ = x if x 6∈ dom(̺)

(e[σj ]j∈J)̺ = (e̺)[σj ]j∈J

In the case for instantiation (e[σj ]j∈J)̺, the σj operate on the polymorphic type
variables, which we assume distinct from the variables in ̺ (using α-conversion if nec-
essary). As a result, we have tv(̺) ∩

⋃

j∈J dom(σj) = ∅. Similarly, in the abstraction
case, we have x /∈ dom(̺).

To define the relabeling, we need to define the composition of two sets of type-
substitutions.

Definition 7.1.5. Given two sets of type-substitutions [σi]i∈I and [σj ]j∈J , we define
their composition as

[σi]i∈I ◦ [σj ]j∈J
def

= [σi ◦ σj ]i∈I,j∈J

where

σi ◦ σj(α) =







(σj(α))σi if α ∈ dom(σj)

σi(α) if α ∈ dom(σi) \ dom(σj)

α otherwise

Next, we define the relabeling of an expression e with a set of type substitutions
[σj ]j∈J , which consists in propagating the σj to the λ-abstractions in e if needed. We
suppose that the polymorphic type variables in e are distinct from the type variables
in the range of σj (this is always possible using α-conversion).

Definition 7.1.6 (Relabeling). Given an expression e ∈ E and a set of type-substitutions
[σj ]j∈J , we define the relabeling of e with [σj ]j∈J , written e@[σj ]j∈J , as e if tv(e) ∩
⋃

j∈J dom(σj) = ∅, and otherwise as follows:

(e1, e2)@[σj ]j∈J = (e1@[σj ]j∈J , e2@[σj ]j∈J)
(πi(e))@[σj ]j∈J = πi(e@[σj ]j∈J)
(e1 e2)@[σj ]j∈J = (e1@[σj ]j∈J) (e2@[σj ]j∈J)

(e∈t ? e1 : e2)@[σj ]j∈J = e@[σj ]j∈J∈t ? e1@[σj ]j∈J : e2@[σj ]j∈J
(e[σi]i∈I)@[σj ]j∈J = e@([σj ]j∈J ◦ [σi]i∈I)

(λ
∧i∈I ti→si
[σk]k∈K

x.e)@[σj ]j∈J = λ
∧i∈I ti→si
[σj ]j∈J◦[σk]k∈K

x.e
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The substitutions are not propagated if they do not affect the variables of e (i.e., if
tv(e)∩

⋃

j∈J dom(σj) = ∅). In particular, constants and variables are left unchanged, as
they do not contain any type variable. Suppose now that tv(e)∩

⋃

j∈J dom(σj) 6= ∅. In
the abstraction case, the propagated substitutions are composed with the decorations
of the abstraction, without propagating them further down in the body. Propagation
in the body occurs, whenever is needed, that is, during either reduction (see (Rappl)
in Section 7.3) or type-checking (see (abstr) in Section 7.2). In the instantiation case
e[σi]i∈I , we propagate the result of the composition of [σi]i∈I with [σj ]j∈J in e. The re-
maining cases are simple inductive cases. Finally notice that in a type case e∈t ? e1 : e2,
we do not apply the [σj ]j∈J to t, simply because t is ground.

7.2 Type system

Because of the type directed nature of our calculus, its dynamic semantics is only
defined for well-typed expressions. Therefore we introduce the type system before
giving the reduction rules.

Definition 7.2.1 (Typing environment). A typing environment Γ is a finite map-
ping from expression variables X to types T , and written as a finite set of pairs
{(x1 : t1), . . . , (xn : tn)}. The set of expression variables which is defined in Γ is
called the domain of Γ, denoted by dom(Γ). The set of type variables occurring in Γ,
that is

⋃

(x:t)∈Γ var(t), is denoted by var(Γ). If Γ is a type environment, then Γ, (x : t)
is the type environment defined as

(Γ, (x : t))(y) =

{

t if y = x

Γ(y) otherwise

The definition of type-substitution application can be extended to type environ-
ments by applying the type-substitution to each type in the type environment, namely,

Γσ = {(x : tσ) | (x : t) ∈ Γ}

The typing judgment for expressions has the form ∆ # Γ ⊢ e : t, which states that
under the set ∆ of (monomorphic) type variables and the typing environment Γ the
expression e has type t. When ∆ and Γ are both empty, we write ⊢ e : t for short. We
assume that there is a basic type bc for each constant c. We write σ ♯ ∆ as abbreviation
for dom(σ) ∩ ∆ = ∅. The typing rules are given in Figure 7.1. While most of these
rules are standard, some deserve a few comments.

The rule (abstr) is a little bit tricky. Consider a λ-abstraction λ
∧i∈I ti→si
[σj ]j∈J

x.e. Since

the type variables introduced in the (relabeled) interface are bound by the abstraction,
they cannot be instantiated in the body e, so we add them to the set ∆ when type-
checking e. We have to verify that the abstraction can be typed with each arrow type
ti → si in the interface to which we apply each decoration σj . That is, for each type
tiσj → siσj , we check the abstraction once: the variable x is assumed to have type
tiσj and the relabeled body e@[σj ] is checked against the type siσj . The type for the
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∆ # Γ ⊢ c : bc
(const)

∆ # Γ ⊢ x : Γ(x)
(var)

∆ # Γ ⊢ e1 : t1 ∆ # Γ ⊢ e2 : t2

∆ # Γ ⊢ (e1, e2) : t1 × t2
(pair)

∆ # Γ ⊢ e : t1 × t2

∆ # Γ ⊢ πi(e) : ti
(proj)

∆ # Γ ⊢ e1 : t1 → t2 ∆ # Γ ⊢ e2 : t1

∆ # Γ ⊢ e1e2 : t2
(appl)

∆′ = ∆ ∪ var(
∧

i∈I,j∈J

tiσj → siσj)

∀i ∈ I, j ∈ J. ∆′ # Γ, (x : tiσj) ⊢ e@[σj ] : siσj

∆ # Γ ⊢ λ
∧i∈I ti→si
[σj ]j∈J

x.e :
∧

i∈I,j∈J

tiσj → siσj
(abstr)

∆ # Γ ⊢ e : t′
{

t′ 6≤ ¬t ⇒ ∆ # Γ ⊢ e1 : s
t′ 6≤ t ⇒ ∆ # Γ ⊢ e2 : s

∆ # Γ ⊢ (e∈t ? e1 : e2) : s
(case)

∆ # Γ ⊢ e : t σ ♯ ∆

∆ # Γ ⊢ e[σ] : tσ
(inst)

∀j ∈ J. ∆ # Γ ⊢ e[σj ] : tj |J | > 1

∆ # Γ ⊢ e[σj ]j∈J :
∧

j∈J

tj
(inter)

∆ # Γ ⊢ e : s s ≤ t

∆ # Γ ⊢ e : t
(subsum)

Figure 7.1: Typing rules

abstraction is obtained by taking the intersection of all the types tiσj → siσj . For
example, consider the daffy identity function

(λα→α
[{Int/α},{Bool/α}]x.(λ

α→αy.x)x). (7.1)

The ∆ is always empty and the rule checks whether under the hypothesis x : α{Int/α}
(ie, x : Int), it is possible to deduce that ((λα→αy.x)x)@[{Int/α}] has type α{Int/α} (ie,
that (λInt→Inty.x)x : Int), and similarly for the substitution {Bool/α}. The relabeling
of the body in the premises is a key mechanism of the type system: if we had used e[σj ]
instead of e@[σj ] in the premises of the (abstr) rule, then the expression (7.1) could not
be typed. The reason is that e[σj ] is more demanding on typing than e@[σj ], since the
well typing of e is necessary to the former but not to the latter. Indeed while under the
hypothesis x : Int we just showed that ((λα→αy.x)x)@{Int/α} —ie, ((λInt→Inty.x)x)—
is well-typed, the term ((λα→αy.x)x){Int/α} is not, for (λα→αy.x) has not type α→α.
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For a type case e∈t ? e1 : e2 (rule (case)), we first infer the type t′ of the expression
e which is dynamically tested against t. Then we check the type of each branch ei
only if there is a possibility that the branch can be selected. For example, consider
the first branch e1. If t′ has a non-empty intersection with t (i.e., t′ 6≤ ¬t), then
e1 might be selected. In this case, in order for the whole expression to have type
s, we need to check that e1 has also type s. Otherwise (i.e., t′ ≤ ¬t), e1 cannot
be selected, and there is no need to type-check it. The reasoning is the same for
the second branch e2 where ¬t is replaced by t. Note that the ability to ignore the
first branch e1 and/or the second one e2 when computing the type for a type case
e∈t ? e1 : e2 is important to type-check overloaded functions. For example, consider the
abstraction λ(Int→Int)∧(Bool→Bool)x.(x∈Int ? 42 : false). According to the rule (abstr),
the abstraction will be checked against Int → Int, that is, the body is checked against
type Int when x is assumed to have type Int. Since Int ≤ Int, then the second branch
is not type-checked. Otherwise, the type of the body would contain Bool, which is not
a subtype of Int and thus the function would not be well-typed.

In the rule (inst), we require that only the polymorphic type variables (i.e., those
not in ∆) can be instantiated. Otherwise, without this requirement, an expression such
as λ(α→β)x.x[{β/α}] could be typed as follows:

{α, β} # {(x : α)} ⊢ x : α

{α, β} # {(x : α)} ⊢ x[{β/α}] : β

⊢ λ(α→β)x.x[{β/α}] : α → β

which is unsound (by applying the above functions it is possible to create polymorphic
values of type β, for every β). Moreover, in a judgment ∆ #Γ ⊢ e : t, the type variables
occurring in Γ are to be considered monomorphic, and therefore we require them to be
contained in ∆. Without such a requirement it would be possible to have a derivation
such as the following one:

{α} # (x : β) ⊢ x : β
{γ/β} ♯ {α}

{α} # (x : β) ⊢ x[{γ/β}] : γ

which states that by assuming that x has (any) type β, we can infer that it has also
(any other) type γ. This is unsound. We can prove that the condition var(Γ) ⊆ ∆ is
preserved by the typing rules (see Lemma 7.4.1). When we type a closed expression,
typically in the proof of the progress property, we have ∆ = Γ = ∅, which satisfies the
condition. This implies that all the judgments used in the proofs used for soundness
satisfy it. Therefore, henceforth, we implicitly assume the condition var(Γ) ⊆ ∆ to hold
in all judgments we consider.

The rule (subsum) makes the type system depend on the subtyping relation defined
inChapter 4. It is important not to confuse the subtyping relation ≤ of our system,
which denotes semantic subtyping (ie, set-theoretic inclusion of denotations), with the
ML one, which stands for type variable instantiation. For example, in ML we have
α → α ≤ Int → Int (because Int → Int is an instance of α → α). But this is not
true in our system, as the relation would have to hold for every possible instantiation



104 CHAPTER 7. A CALCULUS WITH EXPLICIT TYPE-SUBSTITUTIONS

of α, thus in particular for α equal to Bool. Notice that the preorder ⊑∆ defined in
Section 9.1 includes the type variable instantiation of the preorder typically used for
ML, so any direct comparison with constraint systems for ML types should focus on
⊑∆ rather than ≤.

Note that there is no typing rule for intersection elimination, as it can be encoded
by subsumption. Indeed, we have t ∧ s ≤ t and t ∧ s ≤ s, so from ∆ # Γ ⊢ e : t ∧ s, we
can deduce ∆ #Γ ⊢ e : t (or s). The rule (inter) introduces intersection only to combine
different instances of a same type. It does not restrict the expressiveness of the type
system, as we can prove that the usual rule for intersection introduction is admissible
in our system (see Lemma 7.4.2).

7.3 Operational semantics

In this section, we define the semantics of the calculus, which depends on the type
system given in Section 7.2.

Definition 7.3.1 (Values). An expression e is a value if it is closed, well-typed ( ie,
⊢ e : t for some type t), and produced by the following grammar:

Values v ::= c | (v, v) | λ
(∧i∈I ti→si)
[σj ]j∈J

x.e

We write V to denote the set of all values.

Definition 7.3.2 (Context). Let the symbol [_] denote a hole. A context C[_] is an
expression with a hole:

Contexts C[_] ::= [_]
| (C[_], e) | (e, C[_])
| C[_]e | eC[_]
| C[_]∈t ? e : e | e∈t ?C[_] : e | e∈t ? e :C[_]
| πi(C[_])

An evaluation context E[_] is a context that implements outermost leftmost reduction:

Evaluation Contexts E[_] ::= [_]
| (E[_], e) | (v, E[_])
| E[_]e | vE[_]
| E[_]∈t ? e : e
| πi(E[_])

We use C[e] and E[e] to denote the expressions obtained by replacing e for the hole in
C[_] and E[_], respectively.

We define a small-step call-by-value operational semantics for the calculus. The
semantics is given by the relation  , which is shown in Figure 7.2. There are four
notions of reduction: one for projections, one for applications, one for type cases,
and one for instantiations, plus context closure. Henceforth we will establish all the
properties for the reduction using generic contexts but, of course, these holds also
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Notions of reduction:

(Rproj) πi(v1, v2) vi

(Rappl) (λ
∧i∈I ti→si
[σj ]j∈J

x.e′)v  (e′@[σj ]j∈P ){v/x} where P = {j∈J | ∃i∈I. ⊢ v : tiσj}

(Rcase) (v∈t ? e1 : e2) 

{
e1 if ⊢ v : t
e2 otherwise

(Rinst) e[σj ]j∈J  e@[σj ]j∈J

Context closure:

(Rctx)
e e′

C[e] C[e′]

Figure 7.2: Operational semantics of the calculus

when the more restrictive evaluation contexts are used. The latter will only be used in
Chapter 11 in order to simplify the setting.

The (Rproj) rule is the standard projection rule. The (Rappl) rule states the se-
mantics of applications: this is standard call-by-value β-reduction, with the difference
that the substitution of the argument for the parameter is performed on the relabeled
body of the function. Notice that relabeling depends on the type of the argument and
keeps only the substitutions that make the type of the argument v match (at least one
of) the input types defined in the interface of the function (formally, we select the set
P of substitutions σj such that the argument v has type tiσj for some i). The (Rcase)
rule checks whether the value returned by the expression in the type-case matches the
specified type and selects the branch accordingly. Finally, the (Rinst) rule performs re-
labeling, that is, it propagates the sets of type-substitutions down into the decorations
of the outermost λ-abstractions.

We used a call-by-value semantics to ensure the type soundness property: subject
reduction (or type preservation) and progress (closed and well-typed expressions which
are not values can be reduced), which are discussed in Section 7.4.2. To understand
why, consider each basic reduction rules in turn.

The requirement that the argument of a projection must be a value is imposed to
ensure that the property of subject reduction holds. Consider the expression π1(e1, e2)
where e1 is an expression of type t1 (different from 0) and e2 is a (diverging) expression
of type 0. Clearly, the type system assigns the type t1 × 0 to (e1, e2). In our system,
a product type with an empty component is itself empty, and thus (e1, e2) has type 0.
Therefore the type of the projection π1(e1, e2) as well has type 0 (since 0 ≤ 0×0, then
by subsumption (e1, e2) : 0× 0 and the result follows from the (proj) typing rule). If it
were possible to reduce a projection when the argument is not a value, then π1(e1, e2)
could be reduced to e1, which has type t1: type preservation would be violated.

Likewise, the reduction rule for applications requires the argument to be a value.
Let us consider the application (λ(t→t×t)∧(s→s×s)x.(x, x))(e), where ⊢ e : t ∨ s. The
type system assigns to the abstraction the type (t → t × t) ∧ (s → s × s), which is



106 CHAPTER 7. A CALCULUS WITH EXPLICIT TYPE-SUBSTITUTIONS

a subtype of (t ∨ s) → ((t × t) ∨ (s × s)). By subsumption, the abstraction has type
(t ∨ s) → ((t× t) ∨ (s× s)), and thus, the application has type (t× t) ∨ (s× s). If the
semantics permits to reduce an application when the argument is not a value, then this
application could be reduced to the expression (e, e), which has type (t ∨ s) × (t ∨ s)
but not (t× t) ∨ (s× s).

Finally, if we allowed (e∈t ? e1 : e2) to reduce to e1 when ⊢ e : t but e is not a value,
we could break type preservation. For example, assume that ⊢ e : 0. Then the type
system would not check anything about the branches e1 and e2 (see the typing rule
(case) in Figure 7.1) and so e1 could be ill-typed.

Notice that in all these cases the usage of values ensures subject-reduction but it
is not a necessary condition: in some cases weaker constraints could be used. For
instance, in order to check whether an expression is a list of integers, in general it is
not necessary to fully evaluate the whole list: the head and the type of the tail are
all that is needed. Studying weaker conditions for the reduction rules is an interesting
topic we leave for future work, in particular in the view of adapting our framework to
lazy languages.

7.4 Properties

In this section we present some properties of our type system. First, we study the syn-
tactic meta-theory of our type system, in particular the admissibility of the intersection
rule, the generation lemma for values, the property that substitutions preserve typing.
These are functional to the proof of soundness, the fundamental property of that links
every type system of a calculus with its operational counterpart: well-typed expressions
do not go wrong [Mil78]. Finally, we prove that the explicitly-typed calculus is able
to derive the same typing judgements as the BCD intersection type system defined by
Barendregt, Coppo, and Dezani [BCD83]; and that the expressions of the form e[σj ]j∈J
are redundant insofar as their presence in the calculus does not increase its expressive
power.

7.4.1 Syntactic meta-theory

Lemma 7.4.1. If ∆ # Γ ⊢ e : t and var(Γ) ⊆ ∆, then var(Γ′) ⊆ ∆′ holds for every
judgment ∆′ # Γ′ ⊢ e′ : t′ in the derivation of ∆ # Γ ⊢ e : t.

Proof. By induction on the derivation of ∆ # Γ ⊢ e : t.

Lemma 7.4.2 (Admissibility of intersection introduction). Let e be an expres-
sion. If ∆ # Γ ⊢ e : t and ∆ # Γ ⊢ e : t′, then ∆ # Γ ⊢ e : t ∧ t′.

Proof. The proof proceeds by induction on the two typing derivations. First, assume
that these two derivations end with an instance of the same rule corresponding to the
top-level constructor of e.

(const): both derivations end with an instance of (const):

∆ # Γ ⊢ c : bc
(const)

∆ # Γ ⊢ c : bc
(const)

Trivially, we have bc ∧ bc ≃ bc, by subsumption, the result follows.
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(var): both derivations end with an instance of (var):

∆ # Γ ⊢ x : Γ(x)
(var)

∆ # Γ ⊢ x : Γ(x)
(var)

Trivially, we have Γ(x) ∧ Γ(x) ≃ Γ(x), by subsumption, the result follows.

(pair): both derivations end with an instance of (pair):

. . .
∆ # Γ ⊢ e1 : t1

. . .
∆ # Γ ⊢ e2 : t2

∆ # Γ ⊢ (e1, e2) : (t1 × t2)
(pair)

. . .
∆ # Γ ⊢ e1 : t

′
1

. . .
∆ # Γ ⊢ e2 : t

′
2

∆ # Γ ⊢ (e1, e2) : (t
′
1 × t′2)

(pair)

By induction, we have ∆ # Γ ⊢ ei : (ti ∧ t′i). Then the rule (pair) gives us
∆ # Γ ⊢ (e1, e2) : (t1 ∧ t′1) × (t2 ∧ t′2). Moreover, because intersection distributes
over products, we have (t1∧t′1)×(t2∧t′2) ≃ (t1×t2)∧(t′1×t′2). Then by (subsum),
we have ∆ # Γ ⊢ (e1, e2) : (t1 × t2) ∧ (t′1 × t′2).

(proj): both derivations end with an instance of (proj):

. . .
∆ # Γ ⊢ e′ : t1 × t2
∆ # Γ ⊢ πi(e

′) : ti
(proj)

. . .
∆ # Γ ⊢ e′ : t′1 × t′2
∆ # Γ ⊢ πi(e

′) : t′i
(proj)

By induction, we have ∆ #Γ ⊢ e′ : (t1 × t2)∧ (t′1 × t′2). Since (t1 ∧ t′1)× (t2 ∧ t′2) ≃
(t1 × t2) ∧ (t′1 × t′2) (see the case of (pair)), by (subsum), we have ∆ # Γ ⊢ e′ :
(t1 ∧ t′1)× (t2 ∧ t′2). Then the rule (proj) gives us ∆ # Γ ⊢ πi(e

′) : ti ∧ t′i.

(appl): both derivations end with an instance of (appl):

. . .
∆ # Γ ⊢ e1 : t1 → t2

. . .
∆ # Γ ⊢ e2 : t1

∆ # Γ ⊢ e1 e2 : t2
(appl)

. . .
∆ # Γ ⊢ e1 : t

′
1 → t′2

. . .
∆ # Γ ⊢ e2 : t

′
1

∆ # Γ ⊢ e1 e2 : t
′
2

(appl)

By induction, we have ∆ # Γ ⊢ e1 : (t1 → t2) ∧ (t′1 → t′2) and ∆ # Γ ⊢ e2 : t1 ∧ t′1.
Because intersection distributes over arrows, we have (t1 → t2)∧(t′1 → t′2) ≤ (t1∧
t′1) → (t2∧ t′2). Then by the rule (subsum), we get ∆ #Γ ⊢ e1 : (t1∧ t′1) → (t2∧ t′2).
Finally, by applying (appl), we get ∆ # Γ ⊢ e1 e2 : t2 ∧ t′2 as expected.

(abstr): both derivations end with an instance of (abstr):

∀i ∈ I, j ∈ J.
. . .

∆′ # Γ, (x : tiσj) ⊢ e′@[σj ] : siσj
∆′ = ∆ ∪ var(

∧

i∈I,j∈J tiσj → siσj)

∆ # Γ ⊢ λ
∧i∈I ti→si
[σj ]j∈J

x.e′ :
∧

i∈I,j∈J tiσj → siσj

∀i ∈ I, j ∈ J.
. . .

∆′ # Γ, (x : tiσj) ⊢ e′@[σj ] : siσj
∆′ = ∆ ∪ var(

∧

i∈I,j∈J tiσj → siσj)

∆ # Γ ⊢ λ
∧i∈I ti→si
[σj ]j∈J

x.e′ :
∧

i∈I,j∈J tiσj → siσj
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It is clear that

(
∧

i∈I,j∈J

tiσj → siσj) ∧ (
∧

i∈I,j∈J

tiσj → siσj) ≃
∧

i∈I,j∈J

tiσj → siσj

By subsumption, the result follows.

(case): both derivations end with an instance of (case):

. . .
∆ # Γ ⊢ e0 : t0







t0 6≤ ¬t ⇒
. . .

∆ # Γ ⊢ e1 : s

t0 6≤ t ⇒
. . .

∆ # Γ ⊢ e2 : s

∆ # Γ ⊢ (e0∈t ? e1 : e2) : s
(case)

. . .
∆ # Γ ⊢ e0 : t

′
0







t′0 6≤ ¬t ⇒
. . .

∆ # Γ ⊢ e1 : s
′

t′0 6≤ t ⇒
. . .

∆ # Γ ⊢ e2 : s
′

∆ # Γ ⊢ (e0∈t ? e1 : e2) : s
′ (case)

By induction, we have ∆ #Γ ⊢ e0 : t0 ∧ t′0. Suppose t0 ∧ t′0 6≤ ¬t; then t0 6≤ ¬t and
t′0 6≤ ¬t. Consequently, the branch e1 has been type-checked in both cases, and we
have ∆ # Γ ⊢ e1 : s ∧ s′ by the induction hypothesis. Similarly, if t0 ∧ t′0 6≤ t, then
we have ∆ # Γ ⊢ e2 : s ∧ s′. Consequently, we have ∆ # Γ ⊢ (e0∈t ? e1 : e2) : s ∧ s′

by the rule (case).

(inst): both derivations end with an instance of (inst):

. . .
∆ # Γ ⊢ e′ : t σ ♯ ∆

∆ # Γ ⊢ e′[σ] : tσ
(inst)

. . .
∆ # Γ ⊢ e′ : t′ σ ♯ ∆

∆ # Γ ⊢ e′[σ] : t′σ
(inst)

By induction, we have ∆ # Γ ⊢ e′ : t ∧ t′. Since σ ♯ ∆, the rule (inst) gives us
∆ # Γ ⊢ e′[σ] : (t ∧ t′)σ, that is ∆ # Γ ⊢ e′[σ] : (tσ) ∧ (t′σ).

(inter): both derivations end with an instance of (inter):

∀j ∈ J.
. . .

∆ # Γ ⊢ e′[σj ] : tj

∆ # Γ ⊢ e′[σj ]j∈J :
∧

j∈J tj
(inter)

∀j ∈ J.
. . .

∆ # Γ ⊢ e′[σj ] : t
′
j

∆ # Γ ⊢ e′[σj ]j∈J :
∧

j∈J t
′
j

(inter)

where |J | > 1. By induction, we have ∆ # Γ ⊢ e′[σj ] : tj ∧ t′j for all j ∈ J . Then
the rule (inter) gives us ∆ #Γ ⊢ e′[σj ]j∈J :

∧

j∈J(tj ∧ t′j), that is, ∆ #Γ ⊢ e′[σj ]j∈J :
(
∧

j∈J tj) ∧ (
∧

j∈J t
′
j).

Otherwise, there exists at least one typing derivation which ends with an instance
of (subsum), for instance,

. . .
∆ # Γ ⊢ e′ : s s ≤ t

∆ # Γ ⊢ e′ : t
(subsum) . . .

∆ # Γ ⊢ e′ : t′

By induction, we have ∆ # Γ ⊢ e′ : s ∧ t′. Since s ≤ t, we have s ∧ t′ ≤ t ∧ t′. Then the
rule (subsum) gives us ∆ # Γ ⊢ e′ : t ∧ t′ as expected.
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Lemma 7.4.3 (Generation for values). Let v be a value. Then

1. If ∆ # Γ ⊢ v : b, then v is a constant c and bc ≤ b.

2. If ∆ # Γ ⊢ v : t1 × t2, then v has the form of (v1, v2) with ∆ # Γ ⊢ vi : ti.

3. If ∆ # Γ ⊢ v : t → s, then v has the form of λ
∧i∈I ti→si
[σj ]j∈J

x.e0 with
∧

i∈I,j∈J(tiσj → siσj) ≤ t → s.

Proof. By a simple examination of the rules it is easy to see that a derivation for
∆ # Γ ⊢ v : t is always formed by an instance of the rule corresponding to the kind of v
(i.e., (const) for constants, (pair) for pairs, and (abstr) for abstractions), followed by
zero or more instances of (subsum). By induction on the depth of the derivation it is
then easy to prove that if ∆ #Γ ⊢ v : t is derivable, then t 6≡ 0. The lemma then follows
by induction on the number of the instances of the subsubsumption rule that end the
derivation of ∆ # Γ ⊢ v : t. The base case are straightforward, while the inductive cases
are:

∆ # Γ ⊢ v : b: v is by induction a constant c such that bc ≤ b.

∆ # Γ ⊢ v : t1 × t2: v is by induction a pair (v1, v2) and t′ is form of (t′1 × t′2) such that
∆ # Γ ⊢ vi : t

′
i. Here we use the fact that the type of a value cannot be 0: since

0 6≃ (t′1 × t′2) ≤ (t1 × t2), then we have t′i ≤ ti. Finally, by (subsum), we have
∆ # Γ ⊢ vi : ti.

∆ # Γ ⊢ v : t → s: v is by induction an abstraction λ
∧i∈I ti→si
[σj ]j∈J

x.e0 such that
∧

i∈I,j∈J(tiσj → siσj) ≤ t → s.

Lemma 7.4.4. Let e be an expression and [σj ]j∈J , [σk]k∈K two sets of type substitu-
tions. Then

(e@[σj ]j∈J)@[σk]k∈K = e@([σk]k∈K ◦ [σj ]j∈J)

Proof. By induction on the structure of e.

e = c:
(c@[σj ]j∈J)@[σk]k∈K = c@[σk]k∈K

= c
= c@([σk]k∈K ◦ [σj ]j∈J)

e = x:
(x@[σj ]j∈J)@[σk]k∈K = x@[σk]k∈K

= x
= x@([σk]k∈K ◦ [σj ]j∈J)

e = (e1, e2):

((e1, e2)@[σj ]j∈J)@[σk]k∈K = (e1@[σj ]j∈J , e2@[σj ]j∈J)@[σk]k∈K
= ((e1@[σj ]j∈J)@[σk]k∈K , (e2@[σj ]j∈J)@[σk]k∈K)

(by induction)
= (e1@([σk]k∈K ◦ [σj ]j∈J), e2@([σk]k∈K ◦ [σj ]j∈J))
= (e1, e2)@([σk]k∈K ◦ [σj ]j∈J)
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e = πi(e
′):

(πi(e
′)@[σj ]j∈J)@[σk]k∈K = (πi(e

′@[σj ]j∈J))@[σk]k∈K
= πi((e

′@[σj ]j∈J)@[σk]k∈K) (by induction)
= πi(e

′@([σk]k∈K ◦ [σj ]j∈J))
= π(e′)@([σk]k∈K ◦ [σj ]j∈J)

e = e1e2:

((e1e2)@[σj ]j∈J)@[σk]k∈K = ((e1@[σj ]j∈J)(e2@[σj ]j∈J))@[σk]k∈K
= ((e1@[σj ]j∈J)@[σk]k∈K)((e2@[σj ]j∈J)@[σk]k∈K)

(by induction)
= (e1@([σk]k∈K ◦ [σj ]j∈J))(e2@([σk]k∈K ◦ [σj ]j∈J))
= (e1e2)@([σk]k∈K ◦ [σj ]j∈J)

e = λ
∧i∈I ti→si
[σj′ ]j′∈J′

x.e′:

((λ
∧i∈I ti→si
[σj′ ]j′∈J′

x.e′)@[σj ]j∈J)@[σk]k∈K = (λ
∧i∈I ti→si
[σj ]j∈J◦[σj′ ]j′∈J′

x.e′)@[σk]k∈K

= (λ
∧i∈I ti→si
[σk]k∈K◦[σj ]j∈J◦[σj′ ]j′∈J′

x.e′)

= (λ
∧i∈I ti→si
[σj′ ]j′∈J′

x.e′)@([σk]k∈K ◦ [σj ]j∈J)

e = e0∈t ? e1 : e2: similar to e = (e1, e2)

e = e′[σi]i∈I :

((e′[σi]i∈I)@[σj ]j∈J)@[σk]k∈K = (e′@([σj ]j∈J ◦ [σi]i∈I))@[σk]k∈K
= e′@([σk]k∈K ◦ [σj ]j∈J ◦ [σi]i∈I) (by induction)
= (e′[σi]i∈I)@([σk]k∈K ◦ [σj ]j∈J)

Lemma 7.4.5. Let e be an expression, ̺ an expression substitution and [σj ]j∈J a
set of type substitutions such that tv(̺) ∩

⋃

j∈J dom(σj) = ∅. Then (e̺)@[σj ]j∈J =
(e@[σj ]j∈J)̺.

Proof. By induction on the structure of e.

e = c:
(c̺)@[σj ]j∈J = c@[σj ]j∈J

= c
= c̺
= (c@[σj ]j∈J)̺

e = x: if x /∈ dom(̺), then

(x̺)@[σj ]j∈J = x@[σj ]j∈J
= x
= x̺
= (x@[σj ]j∈J)̺
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Otherwise, let ̺(x) = e′. As tv(̺)∩
⋃

j∈J dom(σj) = ∅, we have tv(e′)∩
⋃

j∈J dom(σj) =
∅. Then

(x̺)@[σj ]j∈J = e′@[σj ]j∈J
= e′

= x̺
= (x@[σj ]j∈J)̺

e = (e1, e2):

((e1, e2)̺)@[σj ]j∈J = (e1̺, e2̺)@[σj ]j∈J
= ((e1̺)@[σj ]j∈J , (e2̺)@[σj ]j∈J)
= ((e1@[σj ]j∈J)̺, (e2@[σj ]j∈J)̺) (by induction)
= (e1@[σj ]j∈J , e2@[σj ]j∈J)̺
= ((e1, e2)@[σj ]j∈J)̺

e = πi(e
′):

(πi(e
′)̺)@[σj ]j∈J = (πi(e

′̺))@[σj ]j∈J
= πi((e

′̺)@[σj ]j∈J)
= πi((e1@[σj ]j∈J)̺) (by induction)
= πi(e

′@[σj ]j∈J)̺
= ((πi(e

′))@[σj ]j∈J)̺

e = e1e2:

((e1e2)̺)@[σj ]j∈J = ((e1̺)(e2̺))@[σj ]j∈J
= ((e1̺)@[σj ]j∈J)((e2̺)@[σj ]j∈J)
= ((e1@[σj ]j∈J)̺)((e2@[σj ]j∈J)̺) (by induction)
= ((e1@[σj ]j∈J)(e2@[σj ]j∈J))̺
= ((e1e2)@[σj ]j∈J)̺

e = λ
∧i∈I ti→si
[σk]k∈K

x.e′:

((λ
∧i∈I ti→si
[σk]k∈K

x.e′)̺)@[σj ]j∈J = (λ
∧i∈I ti→si
[σk]k∈K

x.(e′̺))@[σj ]j∈J

= λ
∧i∈I ti→si
[σj ]j∈J◦[σk]k∈K

x.(e′̺)

= (λ
∧i∈I ti→si
[σj ]j∈J◦[σk]k∈K

x.e′)̺

(because tv(̺) ∩
⋃

j∈J dom(σj) = ∅)

= ((λ
∧i∈I ti→si
[σk]k∈K

x.e′)@[σj ]j∈J)̺

e = e0∈t ? e1 : e2:

((e0∈t ? e1 : e2)̺)@[σj ]j∈J = ((e0̺)∈t ? (e1̺) : (e2̺))@[σj ]j∈J
= ((e0̺)@[σj ]j∈J)∈t ? ((e1̺)@[σj ]j∈J) : ((e2̺)@[σj ]j∈J)
= ((e0@[σj ]j∈J)̺)∈t ? ((e1@[σj ]j∈J)̺) : ((e2@[σj ]j∈J)̺)

(by induction)
= ((e0@[σj ]j∈J)∈t ? (e1@[σj ]j∈J) : (e2@[σj ]j∈J))̺
= ((e0∈t ? e1 : e2)@[σj ]j∈J)̺
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e = e′[σk]k∈K : using α-conversion on the polymorphic type variables of e, we can as-
sume tv(̺)∩

⋃

k∈K dom(σk) = ∅. Consequently we have tv(̺)∩
⋃

k∈K,j∈J dom(σk ◦
σj) = ∅, and we deduce

((e′[σk]k∈K)̺)@[σj ]j∈J = ((e′̺)[σk]k∈K)@[σj ]j∈J
= (e′̺)@([σj ]j∈J ◦ [σk]k∈K)
= (e′̺)@[σj ◦ σk]j∈J,k∈K
= (e′@[σj ◦ σk]j∈J,k∈K)̺ (by induction)
= (e′@([σj ]j∈J ◦ [σk]k∈K))̺
= ((e′[σk]k∈K)@[σj ]j∈J)̺

Lemma 7.4.6 ([Expression] substitution lemma). Let e, e1, . . . , en be expressions,
x1, . . . , xn distinct variables, and t, t1, . . . , tn types. If ∆#Γ, (x1 : t1), . . . , (xn : tn) ⊢ e : t
and ∆ # Γ ⊢ ei : ti for all i, then ∆ # Γ ⊢ e{e1/x1, . . . , en/xn} : t.

Proof. By induction on the typing derivations for ∆#Γ, (x1 : t1), . . . , (xn : tn) ⊢ e : t. We
simply “plug” a copy of the derivation for ∆ # Γ ⊢ ei : ti wherever the rule (var) is used
for variable xi. For simplicity, in what follows, we write Γ′ for Γ, (x1 : t1), . . . , (xn : tn)
and ̺ for {e1/x1, . . . , en/xn}. We procede by a case analysis on the last applied rule.

(const): straightforward.

(var): e = x and ∆ # Γ′ ⊢ x : Γ′(x).
If x = xi, then Γ′(x) = ti and x̺ = ei. From the premise, we have ∆ # Γ ⊢ ei : ti.
The result follows.
Otherwise, Γ′(x) = Γ(x) and x̺ = x. Clearly, we have ∆ #Γ ⊢ x : Γ(x). Thus the
result follows as well.

(pair): consider the following derivation:

. . .
∆ # Γ′ ⊢ e1 : t1

. . .
∆ # Γ′ ⊢ e1 : t1

∆ # Γ′ ⊢ (e1, e2) : (t1 × t2)
(pair)

By applying the induction hypothesis twice, we have ∆ # Γ ⊢ ei̺ : ti. By (pair),
we get ∆ # Γ ⊢ (e1̺, e2̺) : (t1 × t2), that is, ∆ # Γ ⊢ (e1, e2)̺ : (t1 × t2).

(proj): consider the following derivation:

. . .
∆ # Γ′ ⊢ e′ : t1 × t2
∆ # Γ′ ⊢ πi(e

′) : ti
(proj)

By induction, we have ∆ # Γ ⊢ e′̺ : t1 × t2. Then the rule (proj) gives us
∆ # Γ ⊢ πi(e

′̺) : ti, that is ∆ # Γ ⊢ πi(e
′)̺ : ti.

(abstr): consider the following derivation:

. . .
∀i ∈ I, j ∈ J. ∆′ # Γ′, (x : tiσj) ⊢ e′@[σj ] : siσj
∆′ = ∆ ∪ var(

∧

i∈I,j∈J tiσj → siσj)

∆ # Γ′ ⊢ λ
∧i∈I ti→si
[σj ]j∈J

x.e′ :
∧

i∈I,j∈J tiσj → siσj
(abstr)
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By α-conversion, we can ensure that tv(̺) ∩
⋃

j∈J dom(σj) = ∅. By induction,
we have ∆′ # Γ, (x : tiσj) ⊢ (e′@[σj ])̺ : siσj for all i ∈ I and j ∈ J . Because
tv(̺) ∩ dom(σj) = ∅, by Lemma 7.4.5, we get ∆′ # Γ, (x : tiσj) ⊢ (e′̺)@[σj ] : siσj .

Then by applying (abstr), we obtain ∆ # Γ ⊢ λ
∧i∈I ti→si
[σj ]j∈J

x.(e′̺) :
∧

i∈I,j∈J tiσj →

siσj . That is, ∆ # Γ ⊢ (λ
∧i∈I ti→si
[σj ]j∈J

x.e)̺ :
∧

i∈I,j∈J tiσj → siσj (because tv(̺) ∩
⋃

j∈J dom(σj) = ∅).

(case): consider the following derivation:

. . .
∆ # Γ′ ⊢ e0 : t

′







t′ 6≤ ¬t ⇒
. . .

∆ # Γ′ ⊢ e1 : s

t′ 6≤ t ⇒
. . .

∆ # Γ′ ⊢ e2 : s

∆ # Γ′ ⊢ (e0∈t ? e1 : e2) : s
(case)

By induction, we have ∆ # Γ ⊢ e0̺ : t′ and ∆ # Γ ⊢ ei̺ : s (for i such that
∆ # Γ′ ⊢ ei : s has been type-checked in the original derivation). Then the rule
(case) gives us ∆ # Γ ⊢ (e0̺∈t ? e1̺ : e2̺) : s that is ∆ # Γ ⊢ (e0∈t ? e1 : e2)̺ : s.

(inst):
. . .

∆ # Γ′ ⊢ e′ : s σ ♯ ∆

∆ # Γ′ ⊢ e′[σ] : sσ
(inst)

Using α-conversion on the polymorphic type variables of e, we can assume tv(̺)∩
dom(σ) = ∅. By induction, we have ∆ # Γ ⊢ e′̺ : s. Since σ ♯ ∆, by applying
(inst) we obtain ∆ # Γ ⊢ (e′̺)[σ] : sσ, that is, ∆ # Γ ⊢ (e′[σ])̺ : sσ because
tv(̺) ∩ dom(σ) = ∅.

(inter):

∀j ∈ J.
. . .

∆ # Γ′ ⊢ e′[σj ] : tj

∆ # Γ′ ⊢ e′[σj ]j∈J :
∧

j∈J tj
(inter)

By induction, for all j ∈ J we have ∆#Γ ⊢ (e′[σj ])̺ : tj , that is ∆#Γ ⊢ (e′̺)[σj ] : tj .
Then by applying (inter) we get ∆ # Γ ⊢ (e′̺)[σj ]j∈J :

∧

j∈J tj , that is ∆ # Γ ⊢
(e′[σj ]j∈J)̺ :

∧

j∈J tj .

(subsum): consider the following derivation:

. . .
∆ # Γ′ ⊢ e′ : s s ≤ t

∆ # Γ′ ⊢ e′ : t
(subsum)

By induction, we have ∆ # Γ ⊢ e′̺ : s. Then the rule (subsum) gives us ∆ # Γ ⊢
e′̺ : t.

Definition 7.4.7. Given two typing environments Γ1,Γ2, we define their intersection
as

(Γ1 ∧ Γ2)(x) =

{

Γ1(x) ∧ Γ2(x) if x ∈ dom(Γ1) ∩ dom(Γ2)

undefined otherwise
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We define Γ2 ≤ Γ1 if Γ2(x) ≤ Γ1(x) for all x ∈ dom(Γ1), and Γ1 ≃ Γ2 if Γ1 ≤ Γ2 and
Γ2 ≤ Γ1.

Given an expression e and a set ∆ of (monomorphic) type variables, we write e ♯∆ if
σj ♯ ∆ for all the type substitution σj that occur in a subterm of e of the form e′[σj ]j∈J
(in other terms, we do not consider the substitutions that occur in the decorations of
λ-abstractions).

Lemma 7.4.8 (Weakening). Let e be an expression, Γ,Γ′ two typing environments
and ∆′ a set of type variables. If ∆ #Γ ⊢ e : t, Γ′ ≤ Γ and e ♯ ∆′, then ∆∪∆′ #Γ′ ⊢ e : t.

Proof. By induction on the derivation of ∆ # Γ ⊢ e : t. We perform a case analysis on
the last applied rule.

(const): straightforward.

(var): ∆ # Γ ⊢ x : Γ(x). It is clear that ∆ ∪ ∆′ # Γ′ ⊢ x : Γ′(x) by (var). Since
Γ′(x) ≤ Γ(x), by (subsum), we get ∆ ∪∆′ # Γ′ ⊢ x : Γ(x).

(pair): consider the following derivation:

. . .
∆ # Γ ⊢ e1 : t1

. . .
∆ # Γ ⊢ e2 : t2

∆ # Γ ⊢ (e1, e2) : t1 × t2
(pair)

By applying the induction hypothesis twice, we have ∆ ∪∆′ # Γ′ ⊢ ei : ti. Then
by (pair), we get ∆ ∪∆′ # Γ′ ⊢ (e1, e2) : t1 × t2.

(proj): consider the following derivation:

. . .
∆ # Γ ⊢ e′ : t1 × t2
∆ # Γ ⊢ πi(e

′) : ti
(proj)

By the induction hypothesis, we have ∆ ∪∆′ # Γ′ ⊢ e′ : t1 × t2. Then by (proj),
we get ∆ ∪∆′ # Γ′ ⊢ πi(e

′) : ti.

(abstr): consider the following derivation:

∀i ∈ I, j ∈ J.
. . .

∆′′ # Γ, (x : tiσj) ⊢ e′@[σj ] : siσj
∆′′ = ∆ ∪ var(

∧

i∈I,j∈J tiσj → siσj)

∆ # Γ ⊢ λ
∧i∈I ti→si
[σj ]j∈J

x.e′ :
∧

i∈I,j∈J tiσj → siσj
(abstr)

By induction, we have ∆′′ ∪ ∆′ # Γ′, (x : tiσj) ⊢ e′@[σj ] : siσj for all i ∈ I and

j ∈ J . Then by (abstr), we get ∆∪∆′ # Γ′ ⊢ λ
∧i∈I ti→si
[σj ]j∈J

x.e′ :
∧

i∈I,j∈J tiσj → siσj .

(case): consider the following derivation:

. . .
∆ # Γ ⊢ e0 : t

′







t′ 6≤ ¬t ⇒
. . .

∆ # Γ ⊢ e1 : s

t′ 6≤ t ⇒
. . .

∆ # Γ ⊢ e2 : s

∆ # Γ ⊢ (e0∈t ? e1 : e2) : s
(case)

By induction, we have ∆ ∪ ∆′ # Γ′ ⊢ e0 : t0 and ∆ ∪ ∆′ # Γ′ ⊢ ei : s (for i such
that ei has been type-checked in the original derivation). Then by (case), we get
∆ ∪∆′ # Γ′ ⊢ (e0∈t ? e1 : e2) : s.
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(inst): consider the following derivation:

. . .
∆ # Γ ⊢ e′ : s σ ♯ ∆

∆ # Γ ⊢ e′[σ] : sσ
(inst)

By induction, we have ∆ ∪∆′ # Γ′ ⊢ e′ : s. Since e ♯ ∆′(i.e., e′[σ] ♯ ∆′), we have
σ ♯∆′. Then σ ♯∆∪∆′. Therefore, by applying (inst) we get ∆∪∆′#Γ′ ⊢ e′[σ] : sσ.

(inter): consider the following derivation:

∀j ∈ J.
. . .

∆ # Γ ⊢ e′[σj ] : tj

∆ # Γ ⊢ e′[σj ]j∈J :
∧

j∈J tj
(inter)

By induction, we have ∆ ∪∆′ # Γ′ ⊢ e′[σj ] : tj for all j ∈ J . Then the rule (inst)
gives us ∆ ∪∆′ # Γ′ ⊢ e′[σj ]j∈J :

∧

j∈J tj .

(subsum): there exists a type s such that

. . .
∆ # Γ ⊢ e′ : s s ≤ t

∆ # Γ ⊢ e′ : t
(subsum)

By induction, we have ∆ ∪∆′ # Γ′ ⊢ e′ : s. Then by applying the rule (subsum)
we get ∆ ∪∆′ # Γ′ ⊢ e′ : t.

Definition 7.4.9. Let σ1 and σ2 be two substitutions such that dom(σ1)∩dom(σ2) = ∅
(σ1 ♯ σ2 for short). Their union σ1 ∪ σ2 is defined as

(σ1 ∪ σ2)(α) =







σ1(α) α ∈ dom(σ1)

σ2(α) α ∈ dom(σ2)

α otherwise

The next two lemmas are used to simplify sets of type-substitutions applied to
expressions when they are redundant or they work on variables that are not in the
expressions.

Lemma 7.4.10 (Useless Substitutions). Let e be an expression and [σk]k∈K , [σ′
k]k∈K

two sets of substitutions such that σ′
k ♯ σk and dom(σ′

k)∩ tv(e) = ∅ for all k ∈ K. Then

∆ # Γ ⊢ e@[σk]k∈K : t ⇐⇒ ∆ # Γ ⊢ e@[σk ∪ σ′
k]k∈K : t

Proof. Straightforward.

Henceforth we use “⊎” to denote the union of multi-sets (e.g., {1, 2} ⊎ {1, 3} =
{1, 2, 1, 3}).

Lemma 7.4.11 (Redundant Substitutions). Let [σj ]j∈J and [σj ]j∈J ′ be two sets of
substitutions such that J ′ ⊆ J . Then

∆ # Γ ⊢ e@[σj ]j∈J⊎J ′ : t ⇐⇒ ∆ # Γ ⊢ e@[σj ]j∈J : t
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Proof. Similar to Lemma 7.4.10.

Lemma 7.4.10 states that if a type variable α in the domain of a type substitution
σ does not occur in the applied expression e, namely, α ∈ dom(σ)\ tv(e), then that part
of the substitution is useless and can be safely eliminated. Lemma 7.4.11 states that al-
though our [σj ]j∈J are formally multisets of type-substitutions, in practice they behave
as sets, since repeated entries of type substitutions can be safely removed. Therefore, to
simplify an expression without altering its type (and semantics), we first eliminate the
useless type variables, yielding concise type substitutions, and then remove the redun-
dant type substitutions. This is useful especially for the translation from our calculus
to the coreCDuce, since we need fewer type-case branches to encode abstractions (see
Chapter 11 for more details). It also explains why we do not apply relabeling when
the domains of the type substitutions do not contain type variables in expressions in
Definition 7.1.6.

Moreover, Lemma 7.4.11 also indicates that it is safe to keep only the type substi-
tutions which are different from each other when we merge two sets of substitutions
(e.g. Lemmas 7.4.14 and 7.4.15). In what follows, without explicit mention, we assume
that there are no useless type variables in the domain of any type substitution and no
redundant type substitutions in any set of type substitutions.

Lemma 7.4.12 (Relabeling). Let e be an expression, [σj ]j∈J a set of type substitu-
tions and ∆ a set of type variables such that σj ♯ ∆ for all j ∈ J . If ∆ # Γ ⊢ e : t,
then

∆ # Γ ⊢ e@[σj ]j∈J :
∧

j∈J

tσj

Proof. The proof proceeds by induction and case analysis on the structure of e. For
each case we use an auxiliary internal induction on the typing derivation. We label E
the main (external) induction and I the internal induction in what follows.

e = c: the typing derivation ∆ # Γ ⊢ e : t should end with either (const) or (subsum).
Assume that the typing derivation ends with (const). Trivially, we have ∆ #
Γ ⊢ c : bc. Since c@[σj ]j∈J = c and bc ≃

∧

j∈J bcσj , by subsumption, we have
∆ # Γ ⊢ c@[σj ]j∈J :

∧

j∈J bcσj .
Otherwise, the typing derivation ends with an instance of (subsum):

. . .
∆ # Γ ⊢ e : s s ≤ t

∆ # Γ ⊢ e : t
(subsum)

Then by I-induction, we have ∆ # Γ ⊢ e@[σj ]j∈J :
∧

j∈J sσj . Since s ≤ t, we
get

∧

j∈J sσj ≤
∧

j∈J tσj . Then by applying the rule (subsum), we have ∆ # Γ ⊢
e@[σj ]j∈J :

∧

j∈J tσj .

e = x: the typing derivation ∆ # Γ ⊢ e : t should end with either (var) or (subsum).
Assume that the typing derivation ends with (var). Trivially, by (var), we get
∆ # Γ ⊢ x : Γ(x). Moreover, we have x@[σj ]j∈J = x and Γ(x) =

∧

j∈J Γ(x)σj (as
var(Γ) ⊆ ∆). Therefore, we deduce that ∆ # Γ ⊢ x@[σj ]j∈J :

∧

j∈J Γ(x)σj .
Otherwise, the typing derivation ends with an instance of (subsum), similar to
the case of e = c, the result follows by I-induction.
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e = (e1, e2): the typing derivation ∆#Γ ⊢ e : t should end with either (pair) or (subsum).
Assume that the typing derivation ends with (pair):

. . .
∆ # Γ ⊢ e1 : t1

. . .
∆ # Γ ⊢ e2 : t2

∆ # Γ ⊢ (e1, e2) : t1 × t2
(pair)

By E-induction, we have ∆ # Γ ⊢ ei@[σj ]j∈J :
∧

j∈J tiσj . Then by (pair), we
get ∆ # Γ ⊢ (e1@[σj ]j∈J , e2@[σj ]j∈J) : (

∧

j∈J t1σj ×
∧

j∈J t2σj), that is, ∆ # Γ ⊢
(e1, e2)@[σj ]j∈J :

∧

j∈J(t1 × t2)σj .
Otherwise, the typing derivation ends with an instance of (subsum), similar to
the case of e = c, the result follows by I-induction.

e = πi(e
′): the typing derivation ∆#Γ ⊢ e : t should end with either (proj) or (subsum).

Assume that the typing derivation ends with (proj):
. . .

∆ # Γ ⊢ e′ : t1 × t2
∆ # Γ ⊢ πi(e

′) : ti
(proj)

By E-induction, we have ∆ # Γ ⊢ e′@[σj ]j∈J :
∧

j∈J(t1 × t2)σj , that is, ∆ # Γ ⊢
e′@[σj ]j∈J : (

∧

j∈J t1σj ×
∧

j∈J t2σj). Then the rule (proj) gives us that ∆ # Γ ⊢
πi(e

′@[σj ]j∈J) :
∧

j∈J tiσj , that is, ∆ # Γ ⊢ πi(e
′)@[σj ]j∈J :

∧

j∈J tiσj .
Otherwise, the typing derivation ends with an instance of (subsum), similar to
the case of e = c, the result follows by I-induction.

e = e1e2: the typing derivation ∆ #Γ ⊢ e : t should end with either (appl) or (subsum).
Assume that the typing derivation ends with (appl):

. . .
∆ # Γ ⊢ e1 : t → s

. . .
∆ # Γ ⊢ e2 : t

∆ # Γ ⊢ e1e2 : s
(pair)

By E-induction, we have ∆ #Γ ⊢ e1@[σj ]j∈J :
∧

j∈J(t → s)σj and ∆ #Γ ⊢ e2@[σj ] :
∧

j∈J tσj . Since
∧

j∈J(t → s)σj ≤ (
∧

j∈J tσj) → (
∧

j∈J sσj), by (subsum), we
have ∆ # Γ ⊢ e1@[σj ]j∈J : (

∧

j∈J tσj) → (
∧

j∈J sσj). Then by (appl), we get

∆ # Γ ⊢ (e1@[σj ]j∈J)(e2@[σj ]j∈J) :
∧

j∈J

sσj

that is, ∆ # Γ ⊢ (e1e2)@[σj ]j∈J :
∧

j∈J sσj .
Otherwise, the typing derivation ends with an instance of (subsum), similar to
the case of e = c, the result follows by I-induction.

e = λ
∧i∈I ti→si
[σk]k∈K

x.e′: the typing derivation ∆ # Γ ⊢ e : t should end with either (abstr) or

(subsum). Assume that the typing derivation ends with (abstr):

∀i ∈ I, k ∈ K.
. . .

∆′ # Γ, (x : tiσk) ⊢ e′@[σk] : siσk
∆′ = ∆ ∪ var(

∧

i∈I,k∈K tiσk → siσk)

∆ # Γ ⊢ λ
∧i∈I ti→si
[σk]k∈K

x.e′ :
∧

i∈I,k∈K tiσk → siσk
(abstr)

Using α-conversion, we can assume that σj ♯ (var(
∧

i∈I,k∈K tiσk → siσk) \∆) for
j ∈ J . Hence σj ♯ ∆′. By E-induction, we have

∆′ # Γ, (x : (tiσk)) ⊢ (e′@[σk])@[σj ] : (siσk)σj
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for all i ∈ I, k ∈ K and j ∈ J . By Lemma 7.4.4, (e′@[σk])@[σj ] = e′@([σj ] ◦ [σk]).
So

∆′ # Γ, (x : (tiσk)) ⊢ e′@([σj ] ◦ [σk]) : (siσk)σj

Finally, by (abstr), we get

∆ # Γ ⊢ λ
∧i∈I ti→si
[σj◦σk]k∈K,j∈J

x.e′ :
∧

i∈I,k∈K,j∈J

ti(σj ◦ σk) → si(σk ◦ σj)

that is,

∆ # Γ ⊢ (λ
∧i∈I ti→si
[σk]k∈K

x.e′)@[σj ]j∈J :
∧

j∈J

(
∧

i∈I,k∈K

tiσk → siσk)σj

Otherwise, the typing derivation ends with an instance of (subsum), similar to
the case of e = c, the result follows by I-induction.

e = e′∈t ? e1 : e2: the typing derivation ∆ # Γ ⊢ e : t should end with either (case) or
(subsum). Assume that the typing derivation ends with (case):

. . .
∆ # Γ ⊢ e′ : t′







t′ 6≤ ¬t ⇒
. . .

∆ # Γ ⊢ e1 : s

t′ 6≤ t ⇒
. . .

∆ # Γ ⊢ e2 : s

∆ # Γ ⊢ (e′∈t ? e1 : e2) : s
(case)

By E-induction, we have ∆ # Γ ⊢ e′@[σj ]j∈J :
∧

j∈J t
′σj . Suppose

∧

j∈J t
′σj 6≤ ¬t;

then we must have t′ 6≤ ¬t, and the branch for e1 has been type-checked. By
the E-induction hypothesis, we have ∆ # Γ ⊢ e1@[σj ]j∈J :

∧

j∈J sσj . Similarly,
if
∧

j∈J t
′σj 6≤ t, then the second branch e2 has been type-checked, and we have

∆ # Γ ⊢ e2@[σj ]j∈J :
∧

j∈J sσj by the E-induction hypothesis. By (case), we have

∆ # Γ ⊢ (e′@[σj ]j∈J∈t ? e1@[σj ]j∈J : e2@[σj ]j∈J) :
∧

j∈J

sσj

that is ∆ # Γ ⊢ (e′∈t ? e1 : e2)@[σj ]j∈J :
∧

j∈J sσj .
Otherwise, the typing derivation ends with an instance of (subsum), similar to
the case of e = c, the result follows by I-induction.

e = e′[σ]: the typing derivation ∆ #Γ ⊢ e : t should end with either (inst) or (subsum).
Assume that the typing derivation ends with (inst):

. . .
∆ # Γ ⊢ e′ : t σ ♯ ∆

∆ # Γ ⊢ e′[σ] : tσ
(inst)

Consider the set of substitutions [σj ◦ σ]j∈J . It is clear that σj ◦ σ ♯ ∆ for all
j ∈ J . By E-induction, we have

∆ # Γ ⊢ e′@[σj ◦ σ]j∈J :
∧

j∈J

t(σj ◦ σ)

that is, ∆ # Γ ⊢ (e′[σ])@[σj ]j∈J :
∧

j∈J(tσ)σj .
Otherwise, the typing derivation ends with an instance of (subsum), similar to
the case of e = c, the result follows by I-induction.
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e = e′[σk]k∈K : the typing derivation ∆ # Γ ⊢ e : t should end with either (inter) or
(subsum). Assume that the typing derivation ends with (inter):

∀k ∈ K.
. . .

∆ # Γ ⊢ e′[σk] : tk

∆ # Γ ⊢ e′[σk]k∈K :
∧

k∈K tk
(inter)

As an intermediary result, we first prove that the derivation can be rewritten as

∀k ∈ K.

. . .
∆ # Γ ⊢ e′ : s σk ♯ ∆

∆ # Γ ⊢ e′[σk] : sσk
(inst)

∆ # Γ ⊢ e′[σk]k∈K :
∧

k∈K sσk
(inter) ∧

k∈K sσk ≤
∧

k∈K tk

∆ # Γ ⊢ e′[σk]k∈K :
∧

k∈K tk
(subsum)

We proceed by induction on the original derivation. It is clear that each sub-
derivation ∆ # Γ ⊢ e′[σk] : tk ends with either (inst) or (subsum). If all the
sub-derivations end with an instance of (inst), then for all k ∈ K, we have

. . .
∆ # Γ ⊢ e′ : sk σk ♯ ∆

∆ # Γ ⊢ e′[σk] : skσk
(inst)

By Lemma 7.4.2, we have ∆ #Γ ⊢ e′ :
∧

k∈K sk. Let s =
∧

k∈K sk. Then by (inst),
we get ∆ # Γ ⊢ e′[σk] : sσk. Finally, by (inter) and (subsum), the intermediary
result holds. Otherwise, there is at least one of the sub-derivations ends with an
instance of (subsum), the intermediary result also hold by induction.
Now that the intermediary result is proved, we go back to the proof of the lemma.
Consider the set of substitutions [σj ◦ σk]j∈J,k∈K . It is clear that σj ◦ σk ♯ ∆ for
all j ∈ J, k ∈ K. By E-induction on e′ (i.e., ∆ # Γ ⊢ e′ : s), we have

∆ # Γ ⊢ e′@[σj ◦ σk]j∈J,k∈K :
∧

j∈J,k∈K

s(σj ◦ σk)

that is, ∆#Γ ⊢ (e′[σk]k∈K)@[σj ]j∈J :
∧

j∈J(
∧

k∈K sσk)σj . As
∧

k∈K sσk ≤
∧

k∈K tk,
we get

∧

j∈J(
∧

k∈K sσk)σj ≤
∧

j∈J(
∧

k∈K tk)σj . Then by (subsum), the result
follows.
Otherwise, the typing derivation ends with an instance of (subsum), similar to
the case of e = c, the result follows by I-induction.

Corollary 7.4.13. If ∆ # Γ ⊢ e[σj ]j∈J : t, then ∆ # Γ ⊢ e@[σj ]j∈J : t.

Proof. Immediate consequence of Lemma 7.4.12.

Lemma 7.4.14. If ∆#Γ ⊢ e@[σj ]j∈J : t and ∆′#Γ′ ⊢ e@[σj ]j∈J ′ : t′, then ∆∪∆′#Γ∧Γ′ ⊢
e@[σj ]j∈J∪J ′ : t ∧ t′

Proof. The proof proceeds by induction and case analysis on the structure of e. For
each case we use an auxiliary internal induction on both typing derivations. We label
E the main (external) induction and I the internal induction in what follows.
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e = c: e@[σj ]j∈J = e@[σj ]j∈J ′ = c. Clearly, both typing derivations should end with
either (const) or (subsum). Assume that both derivations end with (const):

∆ # Γ ⊢ c : bc
(const)

∆′ # Γ′ ⊢ c : bc
(const)

Trivially, by (const) we have ∆ ∪ ∆′ # Γ ∧ Γ′ ⊢ c : bc, that is ∆ ∪ ∆′ # Γ ∧ Γ′ ⊢
e@[σj ]j∈J∪J ′ : bc. As bc ≃ bc ∧ bc, by (subsum), the result follows.
Otherwise, there exists at least one typing derivation which ends with an instance
of (subsum), for instance,

. . .
∆ # Γ ⊢ e@[σj ]j∈J : s s ≤ t

∆ # Γ ⊢ e@[σj ]j∈J : t
(subsum)

Then by I-induction on ∆ #Γ ⊢ e@[σj ]j∈J : s and ∆′ #Γ′ ⊢ e@[σj ]j∈J ′ : t′, we have

∆ ∪∆′ # Γ ∧ Γ′ ⊢ e@[σj ]j∈J∪J ′ : s ∧ t′

Since s ≤ t, we have s ∧ t′ ≤ t ∧ t′. By (subsum), the result follows as well.

e = x: e@[σj ]j∈J = e@[σj ]j∈J ′ = x. Clearly, both typing derivations should end with
either (var) or (subsum). Assume that both derivations end with an instance of
(var):

∆ # Γ ⊢ x : Γ(x)
(var)

∆′ # Γ′ ⊢ x : Γ′(x)
(var)

Since x ∈ dom(Γ) and x ∈ dom(Γ′), x ∈ dom(Γ ∧ Γ′). By (var), we have ∆ ∪∆′ #
Γ ∧ Γ′ ⊢ x : (Γ ∧ Γ′)(x), that is, ∆ ∪∆′ # Γ ∧ Γ′ ⊢ e@[σj ]j∈J∪J ′ : Γ(x) ∧ Γ′(x).
Otherwise, there exists at least one typing derivation which ends with an instance
of (subsum), similar to the case of e = c, the result follows by I-induction.

e = (e1, e2): e@[σj ]j∈J = (e1@[σj ]j∈J , e2@[σj ]j∈J) and
e@[σj ]j∈J ′ = (e1@[σj ]j∈J ′ , e2@[σj ]j∈J ′). Clearly, both typing derivations should
end with either (pair) or (subsum). Assume that both derivations end with an
instance of (pair):

. . .
∆ # Γ ⊢ e1@[σj ]j∈J : s1

. . .
∆ # Γ ⊢ e2@[σj ]j∈J : s2

∆ # Γ ⊢ (e1@[σj ]j∈J , e2@[σj ]j∈J) : (s1 × s2)
(pair)

. . .
∆′ # Γ′ ⊢ e1@[σj ]j∈J ′ : s′1

. . .
∆′ # Γ′ ⊢ e2@[σj ]j∈J ′ : s′2

∆′ # Γ′ ⊢ (e1@[σj ]j∈J ′ , e2@[σj ]j∈J ′) : (s′1 × s′2)
(pair)

By E-induction, we have ∆∪∆′ #Γ∧Γ′ ⊢ ei@[σj ]j∈J∪J ′ : si ∧ s′i. Then by (pair),
we get ∆ ∪ ∆′ # Γ ∧ Γ′ ⊢ (e1@[σj ]j∈J∪J ′ , e2@[σj ]j∈J∪J ′) : (s1 ∧ s′1) × (s2 ∧ s′2),
that is ∆ ∪ ∆′ # Γ ∧ Γ′ ⊢ (e1, e2)@[σj ]j∈J∪J ′ : (s1 ∧ s′1) × (s2 ∧ s′2). Moreover,
because intersection distribute over product, we have (s1 ∧ s′1) × (s2 ∧ s′2) ≃
(s1 × s2) ∧ (s′1 × s′2). Finally, by applying (subsum), we have ∆ ∪ ∆′ # Γ ∧ Γ′ ⊢
(e1, e2)@[σj ]j∈J∪J ′ : (s1 × s2) ∧ (s′1 × s′2).
Otherwise, there exists at least one typing derivation which ends with an instance
of (subsum), similar to the case of e = c, the result follows by I-induction.
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e = πi(e
′): e@[σj ]j∈J = πi(e

′@[σj ]j∈J) and e@[σj ]j∈J ′ = πi(e
′@[σj ]j∈J ′), where i =

1, 2. Clearly, both typing derivations should end with either (proj) or (subsum).
Assume that both derivations end with an instance of (proj):

. . .
∆ # Γ ⊢ e′@[σj ]j∈J : s1 × s2

∆ # Γ ⊢ πi(e
′@[σj ]j∈J) : si

(proj)

. . .
∆′ # Γ′ ⊢ e′@[σj ]j∈J ′ : s′1 × s′2
∆′ # Γ′ ⊢ πi(e

′@[σj ]j∈J ′) : s′i
(proj)

By E-induction, we have ∆ ∪ ∆′ # Γ ∧ Γ′ ⊢ e′@[σj ]j∈J∪J ′ : (s1 × s2) ∧ (s′1 × s′2).
Since (s1 × s2)∧ (s′1 × s′2) ≃ (s1 ∧ s′1)× (s2 ∧ s′2) (See the case of e = (e1, e2)), by
(subsum), we have ∆ ∪∆′ # Γ ∧ Γ′ ⊢ e′@[σj ]j∈J∪J ′ : (s1 ∧ s′1)× (s2 ∧ s′2). Finally,
by applying (proj), we get ∆ ∪ ∆′ # Γ ∧ Γ′ ⊢ πi(e@[σj ]j∈J∪J ′) : si ∧ s′i, that is
∆ ∪∆′ # Γ ∧ Γ′ ⊢ πi(e)@[σj ]j∈J∪J ′ : si ∧ s′i.
Otherwise, there exists at least one typing derivation which ends with an instance
of (subsum), similar to the case of e = c, the result follows by I-induction.

e = e1e2: e@[σj ]j∈J = (e1@[σj ]j∈J)(e2@[σj ]j∈J) and
e@[σj ]j∈J ′ = (e1@[σj ]j∈J ′)(e2@[σj ]j∈J ′). Clearly, both typing derivations should
end with either (appl) or (subsum). Assume that both derivations end with an
instance of (appl):

. . .
∆ # Γ ⊢ e1@[σj ]j∈J : s1 → s2

. . .
∆ # Γ ⊢ e2@[σj ]j∈J : s1

∆ # Γ ⊢ (e1@[σj ]j∈J) (e2@[σj ]j∈J) : s2
(appl)

. . .
∆′ # Γ′ ⊢ e1@[σj ]j∈J ′ : s′1 → s′2

. . .
∆′ # Γ′ ⊢ e2@[σj ]j∈J ′ : s′1

∆′ # Γ′ ⊢ (e1@[σj ]j∈J ′) (e2@[σj ]j∈J ′) : s′2
(appl)

By E-induction, we have ∆ ∪∆′ # Γ ∧ Γ′ ⊢ e1@[σj ]j∈J∪J ′ : (s1 → s2) ∧ (s′1 → s′2)
and ∆∪∆′ #Γ∧Γ′ ⊢ e2@[σj ]j∈J∪J ′ : s1 ∧ s′1. Because intersection distributes over
arrows, we have (s1 → s2) ∧ (s′1 → s′2) ≤ (s1 ∧ s′1) → (s2 ∧ s′2). Then by the rule
(subsum), we get ∆ ∪∆′ # Γ ∧ Γ′ ⊢ e1@[σj ]j∈J∪J ′ : (s1 ∧ s′1) → (s2 ∧ s′2). Finally
by (appl), we have ∆∪∆′ # Γ∧ Γ′ ⊢ (e1@[σj ]j∈J∪J ′)(e2@[σj ]j∈J∪J ′) : s2 ∧ s′2, that
is, ∆ ∪∆′ # Γ ∧ Γ′ ⊢ (e1e2)@[σj ]j∈J∪J ′ : s2 ∧ s′2.
Otherwise, there exists at least one typing derivation which ends with an instance
of (subsum), similar to the case of e = c, the result follows by I-induction.

e = λ
∧i∈I ti→si
[σk]k∈K

x.e′: e@[σj ]j∈J = λ
∧i∈I ti→si
[σj ]j∈J◦[σk]k∈K

x.e′ and e@[σj ]j∈J ′ = λ
∧i∈I ti→si
[σj ]j∈J′◦[σk]k∈K

x.e′.

Clearly, both typing derivations should end with either (abstr) or (subsum). As-
sume that both derivations end with an instance of (abstr):

∀i ∈ I, j ∈ J, k ∈ K.
. . .

∆1 # Γ, (x : ti(σj ◦ σk)) ⊢ e′@[σj ◦ σk] : si(σj ◦ σk)
∆1 = ∆ ∪ var(

∧

i∈I,j∈J,k∈K ti(σj ◦ σk) → si(σj ◦ σk))

∆ # Γ ⊢ λ
∧i∈I ti→si
[σj ]j∈J◦[σk]k∈K

x.e′ :
∧

i∈I,j∈J,k∈K ti(σj ◦ σk) → si(σj ◦ σk)

∀i ∈ I, j ∈ J ′, k ∈ K.
. . .

∆2 # Γ′, (x : ti(σj ◦ σk)) ⊢ e′@[σj ◦ σk] : si(σj ◦ σk)
∆2 = ∆′ ∪ var(

∧

i∈I,j∈J ′,k∈K ti(σj ◦ σk) → si(σj ◦ σk))

∆′ # Γ′ ⊢ λ
∧i∈I ti→si
[σj ]j∈J′◦[σk]k∈K

x.e′ :
∧

i∈I,j∈J ′,k∈K ti(σj ◦ σk) → si(σj ◦ σk)
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Consider any expression e′@([σj ] ◦ [σk]) and any e0[σj0 ]j0∈J0 in e′@([σj ] ◦ [σk]),
where j ∈ J∪J ′, k ∈ K. (Then e0[σj0 ]j0∈J0 must be from e′). All type variables in
⋃

j0∈J0
dom(σj0) must be polymorphic, otherwise, e′@([σj ]◦ [σk]) is not well-typed

under ∆1 or ∆2. Using α-conversion, we can assume that these polymorphic type
variables are different from ∆1 ∪∆2, that is (

⋃

j0∈J0
dom(σj0)) ∩ (∆1 ∪∆2) = ∅.

So we have e′@([σj ] ◦ [σk]) ♯ ∆1 ∪∆2. According to Lemma 7.4.8, we have

∆1 ∪∆2 # Γ ∧ Γ′, (x : ti(σj ◦ σk)) ⊢ e′@[σj ◦ σk] : si(σj ◦ σk)

for all i ∈ I, j ∈ J ∪ J ′ and k ∈ K. It is clear that

∆1 ∪∆2 = ∆ ∪∆′ ∪ var(
∧

i∈I,j∈J∪J ′,k∈K

ti(σj ◦ σk) → si(σj ◦ σk))

By (abstr), we have

∆ ∪∆′ # Γ ∧ Γ′ ⊢ λ
∧i∈I ti→si
[σj ]j∈J∪J′◦[σk]k∈K

x.e′ :
∧

i∈I,j∈J∪J ′,k∈K

ti(σj ◦ σk) → si(σj ◦ σk)

that is, ∆∪∆′ #Γ∧Γ′ ⊢ e@[σj ]j∈J∪J ′ : t∧ t′, where t =
∧

i∈I,j∈J,k∈K ti(σj ◦σk) →
si(σj ◦ σk) and t′ =

∧

i∈I,j∈J ′,k∈K ti(σj ◦ σk) → si(σj ◦ σk).
Otherwise, there exists at least one typing derivation which ends with an instance
of (subsum), similar to the case of e = c, the result follows by I-induction.

e = (e0∈t ? e1 : e2): e@[σj ]j∈J = (e0@[σj ]j∈J∈t ? e1@[σj ]j∈J : e2@[σj ]j∈J) and
e@[σj ]j∈J ′ = (e0@[σj ]j∈J ′∈t ? e1@[σj ]j∈J ′ : e2@[σj ]j∈J ′). Clearly, both typing
derivations should end with either (case) or (subsum). Assume that both deriva-
tions end with an instance of (case):

. . .
∆ # Γ ⊢ e0@[σj ]j∈J : t0







t0 6≤ ¬t ⇒
. . .

∆ # Γ ⊢ e1@[σj ]j∈J : s

t0 6≤ t ⇒
. . .

∆ # Γ ⊢ e2@[σj ]j∈J : s

∆ # Γ ⊢ (e0@[σj ]j∈J∈t ? e1@[σj ]j∈J : e2@[σj ]j∈J) : s
(case)

. . .
∆′ # Γ′ ⊢ e0@[σj ]j∈J ′ : t′0







t′0 6≤ ¬t ⇒
. . .

∆′ # Γ′ ⊢ e1@[σj ]j∈J ′ : s′

t′0 6≤ t ⇒
. . .

∆′ # Γ′ ⊢ e2@[σj ]j∈J ′ : s′

∆′ # Γ′ ⊢ (e0@[σj ]j∈J ′∈t ? e1@[σj ]j∈J ′ : e2@[σj ]j∈J ′) : s′
(case)

By E-induction, we have ∆ ∪ ∆′ # Γ ∧ Γ′ ⊢ e0@[σj ]j∈J∪J ′ : t0 ∧ t′0. Suppose
t0 ∧ t′0 6≤ ¬t, then we must have t0 6≤ ¬t and t′0 6≤ ¬t, and the first branch
has been checked in both derivations. Therefore we have ∆ ∪ ∆′ # Γ ∧ Γ′ ⊢
e1@[σj ]j∈J∪J ′ : s ∧ s′ by the induction hypothesis. Similarly, if t0 ∧ t′0 6≤ t, we
have ∆∪∆′ #Γ∧Γ′ ⊢ e2@[σj ]j∈J∪J ′ : s∧ s′. By applying the rule (case), we have

∆ ∪∆′ # Γ ∧ Γ′ ⊢ (e0@[σj ]j∈J∪J ′∈t ? e1@[σj ]j∈J∪J ′ : e2@[σj ]j∈J∪J ′) : s ∧ s′

that is, ∆ ∪∆′ # Γ ∧ Γ′ ⊢ (e0∈t ? e1 : e2)@[σj ]j∈J∪J ′ : s ∧ s′.
Otherwise, there exists at least one typing derivation which ends with an instance
of (subsum), similar to the case of e = c, the result follows by I-induction.
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e = e′[σi]i∈I : e@[σj ]j∈J = e′@([σj◦σi](j,i)∈(J×I)) and e@[σj ]j∈J ′ = e′@([σj◦σi](j,i)∈(J ′×I)).
By E-induction on e′, we have

∆ ∪∆′ # Γ ∧ Γ′ ⊢ e′@[σj ◦ σi](j,i)∈(J×I)∪(J ′×I) : t ∧ t′

that is, ∆ ∪∆′ # Γ ∧ Γ′ ⊢ (e′[σi]i∈I)@[σj ]j∈J∪J ′ : t ∧ t′.

Corollary 7.4.15. If ∆ # Γ ⊢ e@[σj ]j∈J1 : t1 and ∆ # Γ ⊢ e@[σj ]j∈J2 : t2, then ∆ # Γ ⊢
e@[σj ]j∈J1∪J2 : t1 ∧ t2

Proof. Immediate consequence of Lemmas 7.4.14 and 7.4.8.

7.4.2 Type soundness

In this section, we prove the soundness of the type system: well-typed expressions do
not “go wrong”. We proceed in two steps, commonly known as the subject reduction
and progress theorems:

• Subject reduction: a well-typed expression keeps being well-typed during reduc-
tion.

• Progress: a well-typed expression can not be “stuck” (i.e., a well-typed expression
which is not value can be reduced).

Theorem 7.4.16 (Subject reduction). Let e be an expression and t a type. If
∆ # Γ ⊢ e : t and e e′, then ∆ # Γ ⊢ e′ : t.

Proof. By induction on the derivation of ∆ # Γ ⊢ e : t. We proceed by a case analysis
on the last rule used in the derivation of ∆ # Γ ⊢ e : t.

(const): the expression e is a constant. It cannot be reduced. Thus the result follows.

(var): similar to the (const) case.

(pair): e = (e1, e2), t = t1× t2. We have ∆ #Γ ⊢ ei : ti for i = 1..2. There are two ways
to reduce e, that is
(1) (e1, e2) (e′1, e2): by induction, we have ∆ # Γ ⊢ e′1 : t1. Then the rule (pair)
gives us ∆ # Γ ⊢ (e′1, e2) : t1 × t2.
(2) The case (e1, e2) (e1, e

′
2) is treated similarly.

(proj): e = πi(e0), t = ti, ∆ # Γ ⊢ e0 : t1 × t2.
(1) e0  e′0: e′ = πi(e

′
0). By induction, we have ∆ # Γ ⊢ e′0 : t1 × t2. Then the

rule (proj) gives us ∆ # Γ ⊢ e′ : ti.
(2) e0 = (v1, v2): e′ = vi. By Lemma 7.4.3, we get ∆ # Γ ⊢ e′ : ti.

(appl): e = e1 e2, ∆ # Γ ⊢ e1 : t → s and ∆ # Γ ⊢ e2 : t.
(1) e1 e2  e′1 e2 or e1 e2  e1 e′2: similar to the case of (pair).
(2) e1 = λ

∧i∈I ti→si
[σj ]j∈J

x.e0, e2 = v2, e
′ = (e0@[σj ]j∈P ){v2/x} and P = {j ∈ J | ∃i ∈

I. ∆ # Γ ⊢ v2 : tiσj}: by Lemma 7.4.3, we have
∧

i∈I,j∈J tiσj → siσj ≤ t → s.
From the subtyping for arrow types we deduce that t ≤

∨

i∈I,j∈J tiσj and that
for any non-empty set P ⊆ I × J if t 6≤

∨

(i,j)∈I×J\P tiσj , then
∧

(i,j)∈P siσj ≤ s.
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Let P0 = {(i, j) | ∆ # Γ ⊢ v2 : tiσj}. Since ∆ # Γ ⊢ v2 : t and t ≤
∨

i∈I,j∈J tiσj ,
P0 is non-empty. Also notice that t 6≤

∨

(i,j)∈I×J\P0
tiσj , since otherwise there

would exists some (i, j) /∈ P0 such that ∆ # Γ ⊢ v2 : tiσj . As a consequence, we
get

∧

(i,j)∈P0
siσj ≤ s. Moreover, since e1 is well-typed under ∆ and Γ, there

exists an instance of the rule (abstr) which infers a type
∧

i∈I,j∈J tiσj → siσj
for e1 under ∆ and Γ and whose premise is ∆′ # Γ, (x : tiσj) ⊢ e0@[σj ] : siσj
for all i ∈ I and j ∈ J , where ∆′ = ∆ ∪ var(

∧

i∈I,j∈J tiσj → siσj). By Lemma
7.4.14, we get ∆′ #

∧

(i,j)∈P0
(Γ, (x : tiσj)) ⊢ e0@[σj ]j∈P0 :

∧

(i,j)∈P0
siσj . Since

Γ, (x :
∧

(i,j)∈P0
tiσj) ≃

∧

(i,j)∈P0
(Γ, (x : tiσj)), then from Lemma 7.4.8 we have

∆′ # Γ, (x :
∧

(i,j)∈P0
tiσj) ⊢ e0@[σj ]j∈P0 :

∧

(i,j)∈P0
siσj and a fortiori ∆ # Γ, (x :

∧

(i,j)∈P0
tiσj) ⊢ e0@[σj ]j∈P0 :

∧

(i,j)∈P0
siσj . Furthermore, by definition of P0 and

the admissibility of the intersection introduction (Lemma 7.4.2) we have that
∆ #Γ ⊢ v2 :

∧

(i,j)∈P0
tiσj . Thus by Lemma 7.4.6, we get ∆ #Γ ⊢ e′ :

∧

(i,j)∈P0
siσj .

Finally, by (subsum), we obtain ∆ # Γ ⊢ e′ : s as expected.

(abstr): It cannot be reduced. Thus the result follows.

(case): e = e0∈s ? e1 : e2.
(1) e0  e′0 or e1  e′1 or e2  e′2: similar to the case of (pair).
(2) e0 = v0 and ⊢ e0 : s: we have e′ = e1. The typing rule gives us ∆ # Γ ⊢ e1 : t,
thus the result follows.
(3) otherwise (e0 = v0): we have e′ = e2. Similar to the above case.

(inst): e = e1[σ], ∆ # Γ ⊢ e1 : s, σ ♯ ∆ and e e1@[σ]. By applying Lemma 7.4.12, we
get ∆ # Γ ⊢ e1@[σ] : sσ.

(inter): e = e1[σj ]j∈J , ∆ # Γ ⊢ e1[σj ]j∈J :
∧

j∈J tj and e  e1@[σj ]j∈J . By applying
Corollary 7.4.13, we get ∆ # Γ ⊢ e1@[σj ]j∈J :

∧

j∈J tj .

(subsum): there exists a type s such that ∆ # Γ ⊢ e : s ≤ t and e  e′. By induction,
we have ∆ # Γ ⊢ e′ : s, then by subsumption we get ∆ # Γ ⊢ e′ : t.

Theorem 7.4.17 (Progress). Let e be a well-typed closed expression, that is, ⊢ e : t
for some t. If e is not a value, then there exists an expression e′ such that e e′.

Proof. By induction on the derivation of ⊢ e : t. We proceed by a case analysis of the
last rule used in the derivation of ⊢ e : t.

(const): immediate since a constant is a value.

(var): impossible since a variable cannot be well-typed in an empty environment.

(pair): e = (e1, e2), t = t1× t2, and ⊢ ei : ti for i = 1..2. If one of the ei can be reduced,
then e can also be reduced. Otherwise, by induction, both e1 and e2 are values,
and so is e.

(proj): e = πi(e0), t = ti, and ⊢ e0 : t1× t2. If e0 can be reduced to e′0, then e πi(e
′
0).

Otherwise, e0 is a value. By Lemma 7.4.3, we get e0 = (v1, v2), and thus e vi.

(appl): e = e1 e2, ⊢ e1 : t → s and ⊢ e2 : t. If one of the ei can be reduced, then
e can also be reduced. Otherwise, by induction, both e1 and e2 are values. By
Lemma 7.4.3, we get e1 = λ

∧i∈I ti→si
[σj ]j∈J

x.e0 such that
∧

i∈I,j∈J tiσj → siσj ≤ t →

s. By the definition of subtyping for arrow types, we have t ≤
∨

i∈I,j∈J tiσj .
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Moreover, as ⊢ e2 : t, the set P = {j ∈ J | ∃i ∈ I. ⊢ e2 : tiσj} is non-empty.
Then e (e0@[σj ]j∈P ){e2/x}.

(abstr): the expression e is an abstraction which is well-typed under the empty envi-
ronment. It is thus a value.

(case): e = e0∈s ? e1 : e2. If e0 can be reduced, then e can also be reduced. Otherwise,
by induction, e0 is a value v. If ⊢ v : s, then we have e e1. Otherwise, e e2.

(inst): e = e1[σ], t = sσ and ⊢ e1 : s. Then e e1@[σ].

(inter): e = e1[σj ]j∈J , t =
∧

j∈J tj and ⊢ e1[σj ] : tj for all j ∈ J . It is clear that
e e1@[σj ]j∈J .

(subsum): straightforward application of the induction hypothesis.

We now conclude that the type system is type sound.

Corollary 7.4.18 (Type soundness). Let e be a well-typed closed expression, that
is, ⊢ e : t for some t. Then either e diverges or it returns a value of type t.

Proof. Consequence of Theorems 7.4.17 and 7.4.16.

7.4.3 Expressing intersection types 2

We now prove that the calculus with explicit substitutions is able to derive the same
typings as the Barendregt, Coppo, Dezani (BCD) intersection type system [BCD83]
without the universal type ω. We remind the BCD types (a strict subset of T ), the
BCD typing rules (without ω) and subtyping relation in Figure 7.3, where we use m
to range over pure λ-calculus expressions. To make the correspondence between the
systems easier, we adopt a n-ary version of the intersection typing rule. Henceforth, we
use D to range over BCD typing derivations. We first remark that the BCD subtyping
relation is included in the one of this work.

Lemma 7.4.19. If t1 ≤BCD t2 then t1 ≤ t2.

Proof. All the BCD subtyping rules are admissible inour type system.

In this subsection, we restrict the grammar of expressions with explicit substitutions
to

e ::= x | e e | λ
∧i∈Isi→ti
[σj ]j∈J

x.e (7.2)

and we write ⌈e⌉ for the pure λ-calculus expression obtained by removing all types
references (i.e., interfaces and decorations) from e. Given a pure λ-calculus expression
m and a derivation of a judgement Γ ⊢BCD m : t, we build an expression e such that
⌈e⌉ = m and ∆ #Γ ⊢ e : t for some set ∆ of type variables. With the restricted grammar
of (7.2), the intersection typing rule is used only in conjunction with the abstraction
typing rule. We prove that it is possible to put a similar restriction on derivations of
BCD typing judgements.

2The proofs in this section are mainly done by Serguei Lenglet.
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Types:
t ::= α | t → t | t ∧ t

Typing rules:

Γ ⊢BCD x : Γ(x)
(BCD var)

Γ ⊢BCD m1 : t1 → t2 Γ ⊢ m2 : t1

Γ ⊢BCD m1 m2 : t2
(BCD app)

Γ, x : t1 ⊢BCD m : t2

Γ ⊢BCD λx.m : t1 → t2
(BCD abstr)

Γ ⊢BCD m : ti

Γ ⊢BCD m :
∧

i∈I

ti

i ∈ I
|I| > 1

(BCD inter)

Γ ⊢BCD m : t1 t1 ≤BCD t2

Γ ⊢ m : t2
(BCD sub)

Subtyping relation:

t ≤BCD t t ≤BCD t ∧ t t1 ∧ t2 ≤BCD t1

(t1 → t2) ∧ (t1 → t3) ≤BCD t1 → (t2 ∧ t3)

t1 ≤BCD t2 t2 ≤BCD t3

t1 ≤BCD t3

t1 ≤BCD t3 t2 ≤BCD t4

t1 ∧ t2 ≤BCD t3 ∧ t4

t3 ≤BCD t1 t2 ≤BCD t4

t1 → t2 ≤BCD t3 → t4

Figure 7.3: The BCD type system

Definition 7.4.20. Let D be a BCD typing derivation. We say D is in intersection-
abstraction normal form if (BCD inter) is used only immediately after (BCD abstr) in
D, that is to say, all uses of (BCD inter) in D are of the form

Di

Γ, x : ti ⊢BCD m : si

Γ ⊢BCD λx.m : ti → si
i ∈ I

Γ ⊢BCD λx.m :
∧

i∈I

ti → si

Definition 7.4.21. Let D be a (BCD) typing derivation. We define the size of D,
denoted by |D|, as the number of rules used in D.

We prove that any BCD typing judgement can be proved with a derivation in
intersection-abstraction normal form.
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Lemma 7.4.22. If Γ ⊢BCD m : t, then there exists a derivation in intersection-
abstraction normal form proving this judgement.

Proof. Let D be the derivation proving Γ ⊢BCD m : t. We proceed by induction on the
size of D. If |D| = 1 then the rule (BCD var) has been used, and D is in intersection-
abstraction normal form. Otherwise, assume that |D| > 1. We proceed by case analysis
on the last rule used in D.

(BCD sub): D ends with (BCD sub):

D =
D′ t′ ≤ t

Γ ⊢BCD m : t

where D′ proves a judgement Γ ⊢BCD m : t′. By the induction hypothesis, there
exists a derivation D′′ in intersection-abstraction normal form which proves the
same judgement as D′. Then

D′′ t′ ≤ t

Γ ⊢BCD m : t

is in intersection-abstraction normal form and proves the same judgement as D.

(BCD abstr): similar to the case of (BCD sub).

(BCD app): similar to the case of (BCD sub).

(BCD inter): D ends with (BCD inter):

D =
Di

Γ ⊢BCD m : t
i ∈ I

where each Di proves a judgement Γ ⊢BCD m : ti and t =
∧

i∈I ti. We distinguish
several cases.

If one of the derivations ends with (BCD sub), there exists i0 ∈ I such that

Di0 =
D′

i0 t′i0 ≤ ti0

Γ ⊢BCD m : ti0

The derivation

D′ =
Di D′

i0

Γ ⊢BCD m :
∧

i∈I\{i0}

ti ∧ t′i0

i ∈ I \ {i0}

is smaller than D, so by the induction hypothesis, there exists D′′ in intersection-
abstraction normal form which proves the same judgement as D′. Then the
derivation

D′′
∧

i∈I\{i0}

ti ∧ t′i0 ≤BCD

∧

i∈I

ti

Γ ⊢BCD m : t

is in intersection-abstraction normal form, and proves the same judgement
as D.
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If one of the derivations ends with (BCD inter), there exists i0 ∈ I such
that

Di0 =
Dj,i0

Γ ⊢BCD m :
∧

j∈J

tj,i0
j ∈ J

with ti0 =
∧

j∈J tj,i0 . The derivation

D′ =
Di Dj,i0

Γ ⊢BCD m : t

i ∈ I \ {i0}
j ∈ J

is smaller than D, so by the induction hypothesis, there exists D′′ in intersection-
abstraction normal form which proves the same judgement as D′, which is
the same as the judgement of D.

If all the derivations are uses of (BCD var), then for all i ∈ I, we have

Di =
Γ ⊢BCD x : Γ(x)

which implies t =
∧

i∈I Γ(x) and m = x. Then the derivation

Γ ⊢BCD x : Γ(x) Γ(x) ≤BCD t

Γ ⊢BCD x : t

is in intersection-abstraction normal form and proves the same judgement
as D.

If all the derivations end with (BCD app), then for all i ∈ I, we have

Di =
D1

i D2
i

Γ ⊢BCD m1 m2 : ti

where m = m1 m2, D
1
i proves Γ ⊢BCD m1 : si → ti, and D2

i proves Γ ⊢BCD

m2 : si for some si. Let

D1 =
D1

i

Γ ⊢BCD m1 :
∧

i∈I

si → ti
i ∈ I D2 =

D2
i

Γ ⊢BCD m2 :
∧

i∈I

si
i ∈ I

Both D1 and D2 are smaller than D, so by the induction hypothesis, there
exist D′

1, D
′
2 in intersection-abstraction normal form which prove the same

judgements as D1 and D2 respectively. Then the derivation

D′
1

∧

i∈I

si → ti ≤BCD (
∧

i∈I

si) → (
∧

i∈I

ti)

Γ ⊢BCD m1 : (
∧

i∈I

si) → (
∧

i∈I

ti)
D′

2

Γ ⊢ m1 m2 : t

is in intersection-abstraction normal form and proves the same derivation as
D.
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If all the derivations end with (BCD abstr), then for all i ∈ I, we have

Di =
D′

i

Γ ⊢BCD λx.m′ : ti
(BCD abstr)

with m = λx.m′. For all i ∈ I, D′
i is smaller than D, so by induction there

exists D′′
i in intersection-abstraction normal form which proves the same

judgement as D′
i. Then the derivation

D′′
i

Γ ⊢BCD λx.m′ : ti

Γ ⊢BCD λx.m′ :
∧

i∈I

ti
i ∈ I

is in intersection-abstraction normal form, and proves the same judgement
as D.

We now sketch the principles behind the construction of e from D in intersection-
abstraction normal form. If D proves a judgement Γ ⊢BCD λx.m : t → s, without any
top-level intersection, then we simply put t → s in the interface of the corresponding
expression λt→sx.e.

For a judgement Γ ⊢BCD λx.m :
∧

i∈I ti → si, we build an expression λα→β
[σi]i∈I

x.e
where each σi corresponds to the derivation which types λx.m with ti → si. For
example, let m = λf.λx.f x, and consider the judgement ⊢BCD m : ((t1 → t2) → t1 →
t2) ∧ ((s1 → s2) → s1 → s2). We first annotate each abstraction in m with types
αj → βj , where αj , βj are fresh, distinct variables, giving us e = λα1→β1f.λα2→β2x.f x.
Comparing λα2→β2x.f x to the judgement f : t1 → t2 ⊢BCD λx.f x : t1 → t2 and e to
⊢BCD m : (t1 → t2) → t1 → t2, we compute σ1 = {t1 → t2/α1, t1 → t2/β1, t1/α2, t2/β2}. We
compute similarly σ2 from the derivation of ⊢BCD m : (s1 → s2) → s1 → s2, and we
obtain finally

⊢ λα1→β1

[σ1,σ2]
f.λα2→β2x.f x : ((t1 → t2) → t1 → t2) ∧ ((s1 → s2) → s1 → s2)

as wished.
The problem becomes more complex when we have nested uses of the intersection

typing rule. For example, let m = λf.λg.g (λx.f (λy.x y)) and consider the judgement
⊢BCD m : (tf → tg → t4) ∧ (sf → sg → s7) with

tf = (t1 → t2) → t3

tg = tf → t4

sf = ((s1 → s2) → s3) ∧ ((s4 → s5) → s6)

sg = sf → s7

Notice that, to derive ⊢BCD m : sf → sg → s7, we have to prove f : sf , g : sg ⊢BCD

λx.f (λy.x y) : sf , which requires the (BCD inter) rule. As before, we annotate m
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with fresh interfaces, obtaining λα1→β1f.λα2→β2g.g (λα3→β3x.f (λα4→β4y.x y)). Be-
cause the intersection typing rule is used twice (once to type m, and once to type
m′ = λx.f (λy.x y)), we want to compute four substitutions σ1, σ2, σ3, σ4 to obtain a
decorated expression

λα1→β1

[σ1,σ2]
f.λα2→β2g.g (λα3→β3

[σ3,σ4]
x.f (λα4→β4y.x y)).

The difficult part is in computing σ3 and σ4: in one case (corresponding to the branch
⊢BCD m : tf → tg → t4), we want σ3 = σ4 = {t1 → t2/α3, t3/β3, t1/α4, t2/β4} to obtain

f : tf , g : tg ⊢ λα3→β3

[σ3,σ4]
x.f (λα4→β4y.x y) : tf , and in the other case (corresponding to the

derivation ⊢BCD m : sf → sg → s7), we want σ3 = {s1 → s2/α3, s3/β3, s1/α4, s2/β4} and

σ4 = {s4 → s5/α3, s6/β3, s4/α4, s5/β4} to obtain f : sf , g : sg ⊢ λα3→β3

[σ3,σ4]
x.f (λα4→β4y.x y) :

sf . To resolve this issue, we use intermediate fresh variables α′
3, β

′
3, α

′
4, β

′
4 and α′′

3, β
′′
3 , α

′′
4, β

′′
4

in the definition of σ3 and σ4. We define

σ1 ={tf/α1, tg → t4/β1, tg/α2, t4/β2, t1 → t2/α′

3
, t3/β′

3
, t1/α′

4
, t2/β′

4
,

t1 → t2/α′′

3
, t3/β′′

3
, t1/α′′

4
, t2/β′′

4
}

σ2 ={sf/α1, sg → s7/β1, sg/α2, s7/β2, s1 → s2/α′

3
, s3/β′

3
, s1/α′

4
, s2/β′

4
,

s4 → s5/α′′

3
, s6/β′′

3
, s4/α′′

4
, s5/β′′

4
}

σ3 ={α′

3/α3, β
′

3/β3,α
′

4/α4, β
′

4/β4}

σ4 ={α′′

3/α3, β
′′

3/β3,α
′′

4/α4, β
′′

4/β4}

Because the substitutions compose themselves, we obtain

⊢ λα1→β1

[σ1,σ2]
f.λα2→β2g.g (λα3→β3

[σ3,σ4]
x.f (λα4→β4y.x y)) : (tf → tg → t4) ∧ (sf → sg → s7)

as wished.
In the next lemma, given n derivations D1, . . . , Dn in intersection-abstraction nor-

mal form for a same expression m, we construct an expression e containing fresh inter-
faces and decorations with fresh variables if needed (as explained in the above example)
and n substitutions σ1, . . . , σn corresponding to D1, . . . , Dn. Let var(D1, . . . , Dn) de-
note the set of type variables occurring in the types in D1, . . . , Dn.

Lemma 7.4.23. Let m be a pure λ-calculus expression, ∆ be a set of type variables, and
D1, . . . , Dn be derivations in intersection-abstraction normal form such that Di proves
Γi ⊢BCD m : ti for all i. Let ∆′ be a set of type variables such that var(D1, . . . , Dn) ⊆ ∆′.
There exist e, σ1, . . . , σn such that ⌈e⌉ = m, dom(σ1) = . . . = dom(σn) ⊆ tv(e),
tv(e) ∩ (∆ ∪∆′) = ∅, and ∆′ # Γi ⊢ e@[σi] : ti for all i.

Proof. We proceed by induction on the sum of the size of D1, . . . , Dn. If this sum is
equal to n, then each Di is a use of the (BCD var) rule, and we have m = x for some
x. Let e = x and σi be the identity; we can then easily check that the result holds.
Otherwise, assume this sum is strictly greater than n. We proceed by case analysis on
D1, . . . , Dn.

Case 1: If one of the derivations ends with (BCD sub), there exists i0 such that

Di0 =
D′

i0 t′i0 ≤BCD ti0

Γi0 ⊢BCD m : ti0
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Clearly, the sum of the size of D1, . . . , D
′
i0
, . . . , Dn is smaller than that of D1, . . . , Dn,

and var(D1, . . . , D
′
i0
, . . . , Dn) ⊆ ∆′. So by the induction hypothesis, we have

∃e, σ1, . . . , σn. ⌈e⌉ = m
and dom(σ1) = . . . = dom(σn) ⊆ tv(e)
and tv(e) ∩ (∆ ∪∆′) = ∅
and ∀i ∈ {1, . . . , n} \ {i0}. ∆

′ # Γi ⊢ e@[σi] : ti
and ∆′ # Γi0 ⊢ e@[σi0 ] : t

′
i0
.

Since t′i0 ≤BCD ti0 , by Lemma 7.4.19, we have t′i0 ≤ ti0 . Therefore ∆′ # Γi0 ⊢
e@[σi0 ] : ti0 holds, and for all i, we have ∆′ # Γi ⊢ e@[σi] : ti as wished.

Case 2: If all the derivations end with (BCD app), then we have m = m1 m2, and for
all i

Di =
D1

i D2
i

Γi ⊢BCD m1 m2 : ti

where D1
i proves Γi ⊢BCD m1 : si → ti and D2

i proves Γi ⊢BCD m2 : si for some
si. Applying the induction hypothesis on D1

1, . . . , D
1
n (with ∆ and ∆′), we have

∃e1, σ
1
1, . . . , σ

1
n. ⌈e⌉1 = m1

and dom(σ1
1) = . . . = dom(σ1

n) ⊆ tv(e1)
and tv(e1) ∩ (∆ ∪∆′) = ∅
and ∀i ∈ {1, . . . , n}. ∆′ # Γi ⊢ e1@[σ1

i ] : si → ti.

Similarly, by induction on D2
1, . . . , D

2
n (with ∆ ∪ tv(e1) and ∆′),

∃e2, σ
2
1, . . . , σ

2
n. ⌈e⌉2 = m2

and dom(σ2
1) = . . . = dom(σ2

n) ⊆ tv(e2)
and tv(e2) ∩ (∆ ∪ tv(e1) ∪∆′) = ∅
and ∀i ∈ {1, . . . , n}. ∆′ # Γi ⊢ e2@[σ2

i ] : si.

From tv(e2) ∩ (∆ ∪ tv(e1) ∪ ∆′) = ∅, we deduce tv(e1) ∩ tv(e2) = ∅. Let i ∈
{1, . . . , n}. Because dom(σ1

i ) ⊆ tv(e1) and dom(σ2
i ) ⊆ tv(e2), we have dom(σ1

i ) ∩
dom(σ2

i ) = ∅, dom(σ1
i ) ∩ tv(e2) = ∅, and dom(σ2

i ) ∩ tv(e1) = ∅. Consequently, by
Lemma 7.4.10, we have ∆′#Γi ⊢ e1@[σ1

i ∪σ
2
i ] : si → ti and ∆′#Γi ⊢ e2@[σ1

i ∪σ
2
i ] : si.

Therefore, we have ∆′ #Γi ⊢ (e1 e2)@[σ1
i ∪ σ2

i ] : ti. So we have the required result
with e = e1 e2 and σi = σ1

i ∪ σ2
i .

Case 3: If all the derivations end with (BCD abstr), then m = λx.m1, and for all i,

Di =
D′

i

Γi ⊢BCD m : ti

where D′
i proves Γi, x : t1i ⊢BCD m1 : t2i and ti = t1i → t2i . By the induction

hypothesis,

∃e1, σ
′
1, . . . , σ

′
n. ⌈e⌉1 = m1

and dom(σ′
1) = . . . = dom(σ′

n) ⊆ tv(e1)
and tv(e1) ∩ (∆ ∪∆′) = ∅
and ∀i ∈ {1, . . . , n}. ∆′ # Γi, x : t1i ⊢ e1@[σ′

i] : t
2
i .
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Let α, β be two fresh type variables. So {α, β}∩(∆∪∆′) = ∅ and {α, β}∩tv(e1) =
∅. Take i ∈ {1, . . . , n}. Let σi = {t1i/α, t

2
i/β} ∪ σ′

i, and e = λα→βx.e1. We
have dom(σi) = {α, β} ∪ dom(σ′

i) ⊆ {α, β} ∪ tv(e1) = tv(e). Besides, we have
tv(e) ∩ (∆ ∪∆′) = ∅. Because tv(e1) ∩ {α, β} = ∅, we have dom(σ′

i) ∩ {α, β} = ∅,
and ∆′ #Γi, x : t1i ⊢ e1@[σi] : t

2
i by Lemma 7.4.10, which is equivalent to ∆′ #Γi, x :

ασi ⊢ e1@[σi] : βσi. Because ∆′ ∪ var(t1i → t2i ) = ∆′, by the abstraction rule, we

have ∆′ #Γi ⊢ λα→β
[σi]

x.e1 : ti, i.e., ∆′ #Γi ⊢ (λα→β .e1)@[σi] : ti. Therefore, we have
the required result.

Case 4: If one of the derivations ends with (BCD inter), then m = λx.m1. The deriva-
tions end with either (BCD inter) or (BCD abstr) (we omit the already treated
case of (BCD sub)). For simplicity, we suppose they all end with (BCD inter),
as it is the same if some of them end with (BCD abstr) (note that Case 3 is a
special case of Case 4). For all i, we have

Di =

Dj
i

Γi ⊢BCD m : sji → tji

Γi ⊢BCD m :
∧

j∈Ji

sji → tji
j ∈ Ji

where Dj
i proves Γi, x : sji ⊢BCD m1 : tji for all j ∈ Ji and ti =

∧

j∈Ji
sji → tji for

all i. By the induction hypothesis on the sequence of Dj
i ,

∃e1, (σ
j
1)j∈J1 , . . . , (σ

j
n)j∈Jn . ⌈e1⌉ = m1

and ∀i, i′, j, j′. dom(σj
i ) = dom(σj′

i′ ) and dom(σj
i ) ⊆ tv(e1)

and tv(e1) ∩ (∆ ∪∆′) = ∅

and ∀i, j. ∆′ # Γi, x : sji ⊢ e1@[σj
i ] : t

j
i .

Let p = maxi∈{1,...,n}{|Ji|}. For all i, we complete the sequence of substitutions

(σj
i ) so that it contains exactly p elements, by repeating the last one p−|Ji| times,

and we number them from 1 to p. All the σj
i have the same domain (included

in tv(e1)), that we number from 1 to q. Then σj
i =

⋃

k∈{1,...,q}{t
k
i,j/αk} for some

types (tki,j). Let α, β, (αj,k)j∈{1,...,p},k∈{1,...,q}, (αj,0, βj,0)j∈{1,...,p} be fresh pairwise
distinct variables (which do not occur in ∆ ∪∆′ ∪ tv(e1)). For all j ∈ {1, . . . , p},
i ∈ {1, . . . , n}, we define:

σj =
⋃

k∈{1,...,q}

{αj,k/αk} ∪ {αj,0/α, βj,0/β}

e = λα→β
[σj ]j∈{1,...,p}

x.e1

σi =
⋃

j∈{1,...,p},k∈{1,...,q}

{tki,j/αj,k} ∪
⋃

j∈{1,...,p}

{s
j
i/αj,0, t

j
i/βj,0}

For all i, j, k, we have by construction (αkσj)σi = αkσ
j
i , (ασj)σi = sji , and
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(βσj)σi = tji . Moreover, since

tv(e) = tv(e1@[σj ]j∈{1,...,p}) ∪
⋃

j∈{1,...,p} var((α → β)σj)

= (tv(e1))[σj ]j∈{1,...,p} ∪ {αj,0, βj,0}j∈{1,...,p}
⊇ (dom(σj

i ))[σj ]j∈{1,...,p} ∪ {αj,0, βj,0}j∈{1,...,p}
= ({αk}k∈{1,...,q})[σj ]j∈{1,...,p} ∪ {αj,0, βj,0}j∈{1,...,p}
= {αj,k, βj,k}j∈{1,...,p},k∈{1,...,q} ∪ {αj,0, βj,0}j∈{1,...,p}

and

tv(e) = (tv(e1))[σj ]j∈{1,...,p} ∪ {αj,0, βj,0}j∈{1,...,p}
⊆ tv(e1) ∪

⋃

j∈{1,...,p} tvran(σj) ∪ {αj,0, βj,0}j∈{1,...,p}
= tv(e1) ∪ {αj,k, βj,k}j∈{1,...,p},k∈{1,...,q} ∪ {αj,0, βj,0}j∈{1,...,p}

we have dom(σi) ⊆ tv(e) and tv(e) ∩ (∆ ∪ ∆′) = ∅. Because ∆′ # Γi, x : sji ⊢

e1@[σj
i ] : t

j
i , by Lemma 7.4.10, we have ∆′ # Γi, x : sji ⊢ e1@[σi ◦ σj ] : t

j
i , which is

equivalent to ∆′ # Γi, x : α(σi ◦ σj) ⊢ e1@[σi ◦ σj ] : β(σi ◦ σj) for all i, j. Since

∆′ ∪
⋃

j∈{1,...,p} var(sji → tji ) = ∆′, for a given i, by the abstraction typing rule we

have ∆′ # Γi ⊢ λα→β
[σi◦σj ]j∈{1,...,p}

x.e1 :
∧

j∈{1,...,p} s
j
i → tji ≤

∧

j∈Ji
sji → tji = ti. This

is equivalent to ∆′ #Γi ⊢ λα→β
[σj ]j∈{1,...,p}

x.e1@[σi] : ti, hence ∆′ #Γi ⊢ e@[σi] : ti holds

for all i, as wished.

We are now ready to prove the main result of this subsection.

Theorem 7.4.24. If Γ ⊢BCD m : t, then there exist e, ∆ such that ∆ # Γ ⊢ e : t and
⌈e⌉ = m.

Proof. By Lemma 7.4.22, there exists D in intersection-abstraction normal form such
that D proves Γ ⊢BCD m : t. Let ∆ be a set of type variables such that var(D) ⊆ ∆.
We prove by induction on |D| that there exists e such that ∆ # Γ ⊢ e : t and ⌈e⌉ = m.

Case (BCD var): The expression m is a variable and the result holds with e = m.

Case (BCD sub): We have

D =
D′ t′ ≤BCD t

Γ ⊢BCD m : t

where D′ in intersection-abstraction normal form and proves Γ ⊢BCD m : t′.
Clearly we have |D′| < |D| and var(D′) ⊆ ∆, so by the induction hypothesis,
there exists e such that ⌈e⌉ = m and ∆ # Γ ⊢ e : t′. By Lemma 7.4.19, we have
t′ ≤ t, therefore we have ∆ # Γ ⊢ e : t, as wished.

Case (BCD app): We have

D =
D1 D2

Γ ⊢BCD m : t
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where D1 proves Γ ⊢BCD m1 : s → t, D2 proves Γ ⊢BCD m2 : s, m = m1 m2, and
both D1 and D2 are in intersection-abstraction normal form. Since |Di| < |D|
and var(Di) ⊆ ∆, by the induction hypothesis, there exist e1 and e2 such that
⌈e1⌉ = m1, ⌈e2⌉ = m2, ∆ # Γ ⊢ e1 : s → t, and ∆ # Γ ⊢ e2 : s. Consequently we
have ∆ # Γ ⊢ e1 e2 : t, with ⌈e1 e2⌉ = m1 m2, as wished.

Case (BCD abstr) (or (BCD inter)): Because D is in intersection-abstraction normal
form, we have

D =

Di

Γ ⊢BCD λx.m′ : si → ti

Γ ⊢BCD m : t
i ∈ I

where each Di is in intersection-abstraction normal form and proves Γ, x : si ⊢BCD

m′ : ti, t =
∧

i∈I si → ti, and m = λx.m′. Since
⋃

i∈I var(Di) ⊆ ∆, by Lemma
7.4.23, there exist e′, σ1, . . . , σn such that ⌈e′⌉ = m′, dom(σ1) = . . . = dom(σn) ⊆
tv(e′), and ∆ # Γ, x : si ⊢ e′@[σi] : ti for all i ∈ I. Let α, β be two fresh type
variables. We define σ′

i = σi∪{si/α, ti/β} for all i ∈ I. Because dom(σi)∩{α, β} = ∅
and tv(e′)∩{α, β} = ∅, by Lemma 7.4.10 we have ∆ #Γ, x : si ⊢ e′@[σ′

i] : ti, which
is equivalent to ∆ #Γ, x : ασ′

i ⊢ e′@[σ′
i] : βσ

′
i. Note that ∆∪var(

∧

i∈I(α → β)σ′
i) =

∆ ∪ var(
∧

i∈I si → ti) = ∆ by definition of ∆, so by rule (abstr), we have ∆ # Γ ⊢

λα→β
[σ′

i]i∈I
x.e′ :

∧

i∈I si → ti. Hence we have the required result with e = λα→β
[σ′

i]i∈I
x.e′.

Therefore, the restricted calculus defined by the grammar (7.2) (even with types
without product, union, negation, and recursive types) constitutes an explicitly-typed
λ-calculus with intersection types whose expressive power subsumes those of intersec-
tion types (without a universal element). Moreover, the intersection type systems are
undecidable [CD78, Bak92], which indicates that how difficult type inference of our
type system is going to be (see Section 10.2 for more details).

7.4.4 Elimination of sets of type-substitutions

In this section we prove that the expressions of the form e[σj ]j∈J are redundant insofar
as their presence in the calculus does not increase its expressive power. For that we
consider a subcalculus, called normalized calculus, in which sets of type-substitutions
appear only in decorations.

Definition 7.4.25. A normalized expression e is an expression without any subterm
of the form e[σj ]j∈J , which is defined:

e ::= c | x | (e, e) | πi(e) | e e | λ
∧i∈Isi→ti
[σj ]j∈J

x.e | e∈t ? e : e

The set of all normalized expressions is denoted as EN .

We then define an embedding of the full calculus into this subcalculus as follows:
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Definition 7.4.26. The embedding emd(_) is mapping from E to EN defined as

emd(c) = c
emd(x) = x

emd((e1, e2)) = (emd(e1), emd(e2))
emd(πi(e)) = πi(emd(e))

emd(λ
∧i∈I ti→si
[σj ]j∈J

x.e) = λ
∧i∈I ti→si
[σj ]j∈J

x.emd(e)

emd(e1e2) = emd(e1)emd(e2)
emd(e∈t ? e1 : e2) = emd(e)∈t ? emd(e1) : emd(e2)

emd(e[σj ]j∈J) = emd(e@[σj ]j∈J)

We want to prove that the subcalculus has the same expressive power with the full
calculus, namely, given an expression and its embedding, they reduce to the same value.
We proceed in several steps, using auxiliary lemmas.

First we show that the embedding preserves values.

Lemma 7.4.27. Let v ∈ V be a value. Then emd(v) ∈ V .

Proof. Straightforward.

Then we prove that values and their embeddings have the same types.

Lemma 7.4.28. Let v ∈ V be a value. Then ⊢ v : t ⇐⇒ ⊢ emd(v) : t.

Proof. By induction and case analysis on v (note that emd(_) does not change the
types in the interfaces).

We now want to prove the embedding preserves the reduction, that is if an expression
e reduces to e′ in the full calculus, then its embedding emd(e) reduces to emd(e′) in
the subcalculus. Before that we show a substitution lemma.

Lemma 7.4.29. Let e be an expression, x an expression variable and v a value. Then
emd(e{v/x}) = emd(e){emd(v)/x}.

Proof. By induction and case analysis on e.

c:
emd(c{v/x}) = emd(c)

= c
= c{emd(v)/x}
= emd(c){emd(v)/x}

y:
emd(y{v/x}) = emd(y)

= y
= y{emd(v)/x}
= emd(y){emd(v)/x}

x:
emd(x{v/x}) = emd(v)

= x{emd(v)/x}
= emd(x){emd(v)/x}
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(e1, e2):

emd((e1, e2){v/x}) = emd((e1{v/x}, e2{v/x}))
= (emd(e1{v/x}), emd(e2{v/x}))
= (emd(e1){emd(v)/x}, emd(e2){emd(v)/x}) (by induction)
= (emd(e1), emd(e2)){emd(v)/x}
= emd((e1, e2)){emd(v)/x}

πi(e
′):

emd(πi(e
′){v/x}) = emd(πi(e

′{v/x}))
= πi(emd(e′{v/x}))
= πi(emd(e′){emd(v)/x}) (by induction)
= πi(emd(e′)){emd(v)/x}
= emd(πi(e

′)){emd(v)/x}

e1e2:

emd((e1e2){v/x}) = emd((e1{v/x})(e2{v/x}))
= emd(e1{v/x})emd(e2{v/x})
= (emd(e1){emd(v)/x})(emd(e2){emd(v)/x}) (by induction)
= (emd(e1)emd(e2)){emd(v)/x}
= emd(e1e2){emd(v)/x}

λ
∧i∈I ti→si
[σj ]j∈J

y.e0: using α-conversion, we can assume that tv(v) ∩
⋃

j∈J dom(σj) = ∅.

emd((λ
∧i∈I ti→si
[σj ]j∈J

y.e0){v/x}) = emd(λ
∧i∈I ti→si
[σj ]j∈J

y.e0{v/x})

= λ
∧i∈I ti→si
[σj ]j∈J

y.emd(e0{v/x})

= λ
∧i∈I ti→si
[σj ]j∈J

y.(emd(e0){emd(v)/x}) (by induction)

= (λ
∧i∈I ti→si
[σj ]j∈J

y.emd(e0)){emd(v)/x}

= (emd(λ
∧i∈I ti→si
[σj ]j∈J

y.e0)){emd(v)/x}

e0∈t ? e1 : e2:

emd((e0∈t ? e1 : e2){v/x})
= emd((e0{v/x})∈t ? (e1{v/x}) : (e2{v/x}))
= emd(e0{v/x})∈t ? emd(e1{v/x}) : emd(e2{v/x})
= emd(e0){emd(v)/x}∈t ? (emd(e1){emd(v)/x}) : (emd(e2){emd(v)/x}) (by induction)
= (emd(e0)∈t ? emd(e1) : emd(e2)){emd(v)/x}
= emd(e0∈t ? e1 : e2){emd(v)/x}

e′[σj ]j∈J : using α-conversion, we can assume that tv(v) ∩
⋃

j∈J dom(σj) = ∅

emd((e′[σj ]j∈J){v/x}) = emd((e′{v/x})[σj ]j∈J)
= emd((e′{v/x})@[σj ]j∈J)
= emd((e′@[σj ]j∈J){v/x}) (Lemma 7.4.5)
= emd(e′@[σj ]j∈J){emd(v)/x} (by induction)
= emd(e′[σj ]j∈J){emd(v)/x}
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Lemma 7.4.30. Let e ∈ E be an expression. If e e′, then emd(e) ∗ emd(e′).

Proof. By induction and case analysis on e.

c, x: irreducible.

(e1, e2): there are two ways to reduce e:
(1) e1  e′1. By induction, we have emd(e1) 

∗ emd(e′1). So (emd(e1), emd(e2)) 
∗

(emd(e′1), emd(e2)), that is, emd((e1, e2)) 
∗ emd((e′1, e2)).

(2) e2  e′2. Similar to the subcase above.

πi(e0): there are two ways to reduce e:
(1) e0  e′0. By induction, emd(e0)  

∗ emd(e′0). Then we have πi(emd(e0))  
∗

πi(emd(e′0)), that is, emd(πi(e0)) 
∗ emd(πi(e

′
0)).

(2) e0 = (v1, v2) and e  vi. According to Lemma 7.4.27, emd((v1, v2)) ∈ V .
Moreover, emd((v1, v2)) = (emd(v1), emd(v2)). Therefore, πi(emd(v1), emd(v2)) 
emd(vi), that is, emd(πi(v1, v2)) emd(vi).

e1e2: there are three ways to reduce e:
(1) e1  e′1. Similar to the case of (e1, e2).
(2) e2  e′2. Similar to the case of (e1, e2).
(3) e1 = λ

∧i∈I ti→si
[σj ]j∈J

x.e0, e2 = v2 and e1e2  (e0@[σj ]j∈P ){v2/x}, where P = {j ∈

J | ∃i ∈ I. ⊢ v2 : tiσj}. According to Lemma 7.4.28, we have ⊢ v2 : tiσj ⇐⇒ ⊢
emd(v2) : tiσj , thus we have {j ∈ J | ∃i ∈ I. ⊢ emd(v2) : tiσj} = {j ∈ J | ∃i ∈
I. ⊢ v2 : tiσj}. Therefore, emd(e1)emd(v2)  emd(e0@[σj ]j∈P ){emd(v2)/x}.
Moreover, by Lemma 7.4.29, emd(e0@[σj ]j∈P ){emd(v2)/x} = emd(e0@[σj ]j∈P {v2/x}),
which proves this case.

λ
∧i∈I ti→si
[σj ]j∈J

x.e0: It cannot be reduced. Thus the result follows.

e0∈t ? e1 : e2: there are three ways to reduce e:
(1) ei  e′i. Similar to the case of (e1, e2).
(2) e0 = v0, ⊢ v0 : t and e  e1. According to Lemmas 7.4.27 and 7.4.28,
emd(v0) ∈ V and ⊢ emd(v0) : t. So we have emd(v0)∈t ? emd(e1) : emd(e2)  
emd(e1).
(3) e0 = v0, 0 v0 : t and e  e2. According to Lemmas 7.4.27 and 7.4.28,
emd(v0) ∈ V and 0 emd(v0) : t. Therefore, emd(v0)∈t ? emd(e1) : emd(e2)  
emd(e2).

e0[σj ]j∈J : e  e0@[σj ]j∈J . By Definition 7.4.26, emd(e0[σj ]j∈J) = emd(e0@[σj ]j∈J).
Therefore, the result follows.

Although the embedding preserves the reduction, it does not indicate that an ex-
pression and its embedding reduce to the same value. This is because that there may
be some subterms of the form e[σj ]j∈J in the body expression of an abstraction value.
For example, the expression

(λInt→Int→Intz.λInt→Inty.((λα→αx.x)[{Int/α}]42))3
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reduces to
λInt→Inty.((λα→αx.x)[{Int/α}]42),

while its embedding reduces to

λInt→Inty.((λα→α
[{Int/α}]

x.x)42).

However, the embedding of the value returned by an expression is the value returned
by the embedding of the expression. For instance, consider the example above again:

emd(λInt→Inty.((λα→αx.x)[{Int/α}]42)) = λInt→Inty.((λα→α
[{Int/α}]

x.x)42).

Next, we want to prove an inversion of Lemma 7.4.30, that is, if the embedding
emd(e) of an expression e reduces to e′, then there exists e′′ such that its embedding is
e′ and e reduces to e′′. Prior to that we prove two auxiliary lemmas: the inversions for
values and for relabeled expressions.

Lemma 7.4.31. Let e ∈ E an expression. If emd(e) ∈ V , then there exists a value
v ∈ V such that e ∗

(Rinst) v and emd(e) = emd(v). More specifically,

(1) if emd(e) = c, then e ∗
(Rinst) c and emd(e) = c.

(2) if emd(e) = λ
∧i∈I ti→si
[σj ]j∈J

x.e0, then there exists e′0 such that e ∗
(Rinst) λ

∧i∈I ti→si
[σj ]j∈J

x.e′0
and emd(e′0) = e0.

(3) if emd(e) = (v1, v2), then there exist v1, v2 such that e  ∗
(Rinst) (v′1, v

′
2) and

emd(v′i) = vi.

Proof. By induction and case analysis on emd(e).

c: according to Definition 7.4.26, e should be the form of c[σj1 ]j1∈J1 . . . [σjn ]jn∈Jn , where
n ≥ 0. Clearly, we have e ∗

(Rinst) c and emd(e) = c.

λ
∧i∈I ti→si
[σj ]j∈J

x.e0: according to Definition 7.4.26, e should be the form of

(λ
∧i∈I ti→si
[σj0

]j0∈J0
x.e′0)[σj1 ]j1∈J1 . . . [σjn ]jn∈Jn

where emd(e′0) = e0, [σjn ]jn∈Jn ◦ . . . ◦ [σj1 ]j1∈J1 ◦ [σj0 ]j0∈J0 = [σj ]j∈J , and n ≥ 0.

Moreover, it is clear that e  ∗
(Rinst) λ

∧i∈I ti→si
[σj ]j∈J

x.e′0. Let v = λ
∧i∈I ti→si
[σj ]j∈J

x.e′0 and

the result follows.

(v1, v2): according to Definition 7.4.26, e should be the form of

(e1, e2)[σj1 ]j1∈J1 . . . [σjn ]jn∈Jn ,

where emd(ei@[σj1 ]j1∈J1@ . . .@[σjn ]jn∈Jn) = vi and n ≥ 0. Moreover, it is easy
to get that

e ∗
(Rinst) (e1@[σj1 ]j1∈J1@ . . .@[σjn ]jn∈Jn , e2@[σj1 ]j1∈J1@ . . .@[σjn ]jn∈Jn)

By induction on vi, there exists v′i such that ei@[σj1 ]j1∈J1@ . . .@[σjn ]jn∈Jn  
∗
(Rinst)

v′i and emd(ei@[σj1 ]j1∈J1@ . . .@[σjn ]jn∈Jn) = emd(v′i). Let v = (v′1, v
′
2). Then we

have e  ∗
(Rinst) (v′1, v

′
2) and emd(v) = (emd(v′1), emd(v′2)) = (v1, v2) = emd(e).

Therefore, the result follows.
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Lemma 7.4.32. Let e ∈ E be an expression and [σj ]j∈J a set of substitutions. If
emd(e@[σj ]j∈J) e′, then there exists e′′ such that e@[σj ]j∈J  

+ e′′ and emd(e′′) = e′.

Proof. By induction and case analysis on e.

c, x: straightforward.

(e1, e2): emd(e@[σj ]j∈J) = (emd(e1@[σj ]j∈J), emd(e2@[σj ]j∈J)). There are two ways
to reduce emd(e@[σj ]j∈J):
(1) emd(e1@[σj ]j∈J) e′1. By induction, there exists e′′1 such that e1@[σj ]j∈J  

+

e′′1 and emd(e′′1) = e′1. Then we have (e1@[σj ]j∈J , e2@[σj ]j∈J) 
+ (e′′1, e2@[σj ]j∈J)

and emd((e′′1, e2@[σj ]j∈J)) = (e′1, emd(e2@[σj ]j∈J)).
(2) emd(e2@[σj ]j∈J) e′2. Similar to the subcase above.

πi(e0): emd(e@[σj ]j∈J) = πi(emd(e0@[σj ]j∈J)). There are two ways to reduce the
embedding emd(e@[σj ]j∈J):
(1) emd(e0@[σj ]j∈J) e′0. By induction, there exists e′′0 such that e0@[σj ]j∈J  

+

e′′0 and emd(e′′0) = e′0. Then we have πi(e0@[σj ]j∈J) 
+ πi(e

′′
0) and emd(πi(e

′′
0)) =

πi(e
′
0).

(2) emd(e0@[σj ]j∈J) = (v1, v2) and emd(e@[σj ]j∈J)  vi. According to Lemma
7.4.31, there exist v′1 and v′2 such that e0@[σj ]j∈J  

∗
(Rinst) (v

′
1, v

′
2) and emd(v′i) =

vi. Then πi(e0@[σj ]j∈J) 
+ v′i. The result follows.

e1e2: emd(e@[σj ]j∈J) = emd(e1@[σj ]j∈J)emd(e2@[σj ]j∈J). There are three ways to re-
duce emd(e@[σj ]j∈J):
(1) emd(e1@[σj ]j∈J) e′1. Similar to the case of (e1, e2).
(2) emd(e2@[σj ]j∈J) e′2. Similar to the case of (e1, e2).

(3) emd(e1@[σj ]j∈J) = λ
∧i∈I ti→si
[σk]k∈K

x.e0, emd(e2@[σj ]j∈J) = v2, and emd(e@[σj ]j∈J) 

(e0@[σk]k∈P ){v2/x}, where P = {k ∈ K | ∃i ∈ I. ⊢ v2 : tiσk}. Accord-
ing to Lemma 7.4.31, we have (i) there exists e′0 such that e1@[σj ]j∈J  

∗
(Rinst)

λ
∧i∈I ti→si
[σk]k∈K

x.e′0 and emd(e′0) = e0; and (ii) there exists v′2 such that e2@[σj ]j∈J  
∗
(Rinst)

v′2 and emd(v′2) = v2. Moreover, by Lemma 7.4.28, we get ⊢ v2 : tiσk ⇐⇒ ⊢ v′2 :
tiσk, thus

{k ∈ K | ∃i ∈ I. ⊢ v2 : tiσk} = {k ∈ K | ∃i ∈ I. ⊢ v′2 : tiσk}.

Therefore, e@[σj ]j∈J  
+ (e′0@[σk]k∈P ){v

′

2/x}. Finally, by lemma 7.4.29, we have

emd(e′0@[σk]k∈P {v
′

2/x}) = emd(e′0)@[σk]k∈P {emd(v′2)/x} = e0@[σk]k∈P {v2/x}.

λ
∧i∈I ti→si
[σk]k∈K

x.e0: It cannot be reduced. Thus the result follows.

e0∈t ? e1 : e2: emd(e@[σj ]j∈J) = emd(e0@[σj ]j∈J)∈t ? emd(e1@[σj ]j∈J) : emd(e2@[σj ]j∈J).
There are three ways to reduce emd(e@[σj ]j∈J):
(1) emd(ei@[σj ]j∈J) e′i. Similar to the case of (e1, e2).
(2) emd(e0@[σj ]j∈J) = v0, ⊢ v0 : t and emd(e@[σj ]j∈J)  emd(e1@[σj ]j∈J). Ac-
cording to Lemma 7.4.31, there exists v′0 such that e0@[σj ]j∈J  

∗
(Rinst) v′0 and

emd(v′0) = v0. Moreover, by Lemma 7.4.28, ⊢ v′0 : t. So e@[σj ]j∈J  e1@[σj ]j∈J .
(3) emd(e0@[σj ]j∈J) = v0, 0 v0 : t and emd(e@[σj ]j∈J) emd(e2@[σj ]j∈J). Sim-
ilar to the subcase above.
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e0[σk]k∈K : emd(e@[σj ]j∈J) = emd(e0@([σj ]j∈J ◦ [σk]k∈K)). By induction, the result
follows.

Lemma 7.4.33. Let e ∈ E be an expression. If emd(e) e′, then there exists e′′ such
that e + e′′ and emd(e′′) = e′.

Proof. By induction and case analysis on e.

c, x: straightforward.

(e1, e2): emd(e) = (emd(e1), emd(e2)). There are two ways to reduce emd(e):

(1) emd(e1)  e′1. By induction, there exists e′′1 such that e1  
+ e′′1 and

emd(e′′1) = e′1. Then we have (e1, e2) 
+ (e′′1, e2) and emd((e′′1, e2)) = (e′1, emd(e2)).

(2) emd(e2) e′2. Similar to the subcase above.

πi(e0): emd(e) = πi(emd(e0)). There are two ways to reduce emd(e):

(1) emd(e0)  e′0. By induction, there exists e′′0 such that e0  
+ e′′0 and

emd(e′′0) = e′0. Then we have πi(e0) 
+ πi(e

′′
0) and emd(πi(e

′′
0)) = πi(e

′
0).

(2) emd(e0) = (v1, v2) and emd(e) vi. According to Lemma 7.4.31, there exist
v′1 and v′2 such that e0  

∗
(Rinst) (v′1, v

′
2) and emd(v′i) = vi. Then πi(e0)  

+ v′i.
The result follows.

e1e2: emd(e) = emd(e1)emd(e2). There are three ways to reduce emd(e):
(1) emd(e1) e′1. Similar to the case of (e1, e2).
(2) emd(e2) e′2. Similar to the case of (e1, e2).
(3) emd(e1) = λ

∧i∈I ti→si
[σj ]j∈J

x.e0, emd(e2) = v2 and emd(e)  (e0@[σj ]j∈P ){v2/x},

where P = {j ∈ J | ∃i ∈ I. ⊢ v2 : tiσj}. According to Lemma 7.4.31, we have

(i) there exists e′0 such that e1  
∗
(Rinst) λ

∧i∈I ti→si
[σk]k∈K

x.e′0 and emd(e′0) = e0; and

(ii) there exists v′2 such that e2  
∗
(Rinst) v′2 and emd(v′2) = v2. Moreover, by

Lemma 7.4.28, we get ⊢ v2 : tiσj ⇐⇒ ⊢ v′2 : tiσj , thus {j ∈ J | ∃i ∈ I. ⊢ v2 :
tiσj} = {j ∈ J | ∃i ∈ I. ⊢ v′2 : tiσj}. Therefore, e  + (e′0@[σj ]j∈P ){v

′

2/x}. Fi-
nally, by lemma 7.4.29, emd(e′0@[σj ]j∈P {v

′

2/x}) = emd(e′0)@[σj ]j∈P {emd(v′2)/x} =
e0@[σj ]j∈P {v2/x}.

λ
∧i∈I ti→si
[σj ]j∈J

x.e0: It cannot be reduced. Thus the result follows.

e0∈t ? e1 : e2: emd(e) = emd(e0)∈t ? emd(e1) : emd(e2). There are three ways to reduce
emd(e):
(1) emd(ei) e′i. Similar to the case of (e1, e2).
(2) emd(e0) = v0, ⊢ v0 : t and emd(e)  emd(e1). According to Lemma 7.4.31,
there exists v′0 such that e0  

∗
(Rinst) v

′
0 and emd(v′0) = v0. Moreover, by Lemma

7.4.28, ⊢ v′0 : t. So e e1.
(3) emd(e0) = v0, 0 v0 : t and emd(e) emd(e2). Similar to the subcase above.

e0[σj ]j∈J : emd(e0[σj ]j∈J) = emd(e0@[σj ]j∈J) and e0[σj ]j∈J  e0@[σj ]j∈J . By Lemma
7.4.32, the result follows.

Thus we have the following theorem
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Theorem 7.4.34. Let e ∈ E be an expression.

(1) if e ∗ v, then emd(e) ∗ emd(v).

(2) if emd(e) ∗ v, then there exists v′ ∈ V such that e ∗ v′ and emd(v′) = v.

Proof. (1): By induction on the reduction and by Lemma 7.4.30.

(2): By induction on the reduction and by Lemma 7.4.33.

This theorem means that the subcalculus EN is equivalent to the full calculus.
Although e[σj ]j∈J do not bring any further expressive power, they play a crucial role in
local type inference, which is why we included it in our calculus. As we explain in details
in Chapter 9, for local type inference we need to reconstruct sets of type-substitutions
that are applied to expressions but we must not reconstruct sets of type-substitutions
that are decorations of λ-expressions. The reason is pragmatic and can be shown by
considering the following two terms: (λα→αx.x)3 and (λα→αx.4)3. Every functional
programmer will agree that the first expression must be considered well-typed while
the second must not, for the simple reason that the constant function (λα→αx.4) does
not have type α → α. Indeed in the first case it is possible to apply a set of type
substitutions that makes the term well typed, namely (λα→αx.x)[{Int/α}]3, while no
such application exists for the second term. However, if we allowed reconstructions
also for decorations, then the second term could be well typed by adding the following
decoration (λα→α

[{Int/α}]
x.4)3. In conclusion, for type inference it is important to keep the

expression e[σj ]j∈J , since well-typing of e@[σj ]j∈J does not imply that of e[σj ]j∈J .
In addition, it is easy to prove that the subcalculus EN is closed under the reduc-

tion rules, and we can safely disregard (Rinst) since it cannot be applied. Then the
normalized calculus also possess, for example, the soundness property.
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Chapter 8

Type Checking

The typing rules provided in Section 7.2 are not syntax-directed because of the pres-
ence of the subsumption rule. In this chapter we present an equivalent type system
with syntax-directed rules, which is used as a guide in the next chapter to define an
inference system that infers where and whether type-substitutions can be inserted in an
expression to make it well typed. In order to define it we consider the rules of Section
7.2. First, we merge the rules (inst) and (inter) into one rule (since we prove that
intersection is interesting only to merge different instances of a same type), and then
we consider where subsumption is used and whether it can be postponed by moving it
down the derivation tree.

8.1 Merging intersection and instantiation

Intersection is used to merge different types derived for the same term. In this calculus,
we can derive different types for a term because of either subsumption or instantiation.
However, the intersection of different supertypes can be obtained by subsumption itself
(if t ≤ t1 and t ≤ t2, then t ≤ t1 ∧ t2), so intersection is really useful only to merge
different instances of a same type, as we can see with rule (inter) in Figure 7.1. Note
that all the subjects in the premise of (inter) share the same structure e[σ], and the
typing derivations of these terms must end with either (inst) or (subsum). We show
that we can in fact postpone the uses of (subsum) after (inter), and we can therefore
merge the rules (inst) and (inter) into one rule (instinter) as follows:

∆ # Γ ⊢ e : t ∀j ∈ J. σj ♯ ∆ |J | > 0

∆ # Γ ⊢ e[σj ]j∈J :
∧

j∈J

tσj
(instinter)

Let ∆ # Γ ⊢m e : t denote the typing judgments derivable in the type system with the
typing rule (instinter) but not (inst) and (inter). The following theorem proves that
the type system ⊢m (m stands for “merged”) is equivalent to the original one ⊢.

Theorem 8.1.1. Let e be an expression. Then ∆ # Γ ⊢m e : t ⇐⇒ ∆ # Γ ⊢ e : t.

Proof. ⇒: It is clear that (inst) is a special case of (instinter) where |J | = 1. We
simulate each instance of (instinter) where |J | > 1 by using several instances

143
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of (inst) followed by one instance of (inter). In detail, consider the following
derivation

. . .

. . .
∆′ # Γ′ ⊢ e′ : t′ σj ♯ ∆′

∆′ # Γ′ ⊢ e′[σj ]j∈J :
∧

j∈J t
′σj

(instinter)

... . . .
∆ # Γ ⊢ e : t

We can rewrite this derivation as follows:

. . .

. . .
∆′ # Γ′ ⊢ e′ : t′ σ1 ♯ ∆′

∆′ # Γ′ ⊢ e′[σ1] : t
′σ1

(inst)
. . .

. . .
∆′ # Γ′ ⊢ e′ : t′ σ|J | ♯ ∆

′

∆′ # Γ′ ⊢ e′[σ|J |] : t
′σ|J |

(inst)

∆′ # Γ′ ⊢ e′[σj ]j∈J :
∧

j∈J t
′σj

(inter)

... . . .
∆ # Γ ⊢ e : t

⇐: The proof proceeds by induction and case analysis on the structure of e. For each
case we use an auxiliary internal induction on the typing derivation. We label E
the main (external) induction and I the internal induction in what follows.

e = c: the typing derivation ∆ # Γ ⊢ e : t should end with either (const) or
(subsum). If the typing derivation ends with (const), the result follows
straightforward.
Otherwise, the typing derivation ends with an instance of (subsum):

. . .
∆ # Γ ⊢ e : s s ≤ t

∆ # Γ ⊢ e : t
(subsum)

Then by I-induction, we have ∆ # Γ ⊢m e : s. Since s ≤ t, by subsumption,
we get ∆ # Γ ⊢m e : t.

e = x: similar to the case of e = c.

e = (e1, e2): the typing derivation ∆ # Γ ⊢ e : t should end with either (pair) or
(subsum). Assume that the typing derivation ends with (pair):

. . .
∆ # Γ ⊢ e1 : t1

. . .
∆ # Γ ⊢ e2 : t2

∆ # Γ ⊢ (e1, e2) : t1 × t2
(pair)

By E-induction, we have ∆ # Γ ⊢m ei : ti. Then the rule (pair) gives us
∆ # Γ ⊢m (e1, e2) : t1 × t2.
Otherwise, the typing derivation ends with an instance of (subsum), similar
to the case of e = c, the result follows by I-induction.

e = πi(e
′): the typing derivation ∆ # Γ ⊢ e : t should end with either (proj) or

(subsum). Assume that the typing derivation ends with (proj):

. . .
∆ # Γ ⊢ e′ : (t1 × t2)

∆ # Γ ⊢ πi(e
′) : ti

(proj)
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By E-induction, we have ∆ # Γ ⊢m e′ : (t1 × t2). Then the rule (proj) gives
us ∆ # Γ ⊢m πi(e

′) : ti.
Otherwise, the typing derivation ends with an instance of (subsum), similar
to the case of e = c, the result follows by I-induction.

e = e1e2: the typing derivation ∆ # Γ ⊢ e : t should end with either (appl) or
(subsum). Assume that the typing derivation ends with (appl):

. . .
∆ # Γ ⊢ e1 : t1 → t2

. . .
∆ # Γ ⊢ e2 : t1

∆ # Γ ⊢ e1e2 : t2
(appl)

By E-induction, we have ∆ # Γ ⊢m e1 : t1 → t2 and ∆ # Γ ⊢m e2 : t1. Then
the rule (appl) gives us ∆ # Γ ⊢m e1e2 : t2.
Otherwise, the typing derivation ends with an instance of (subsum), similar
to the case of e = c, the result follows by I-induction.

e = λ
∧i∈I ti→si
[σj ]j∈J

x.e′: the typing derivation ∆ # Γ ⊢ e : t should end with either

(abstr) or (subsum). Assume that the typing derivation ends with (abstr):

∀i ∈ I, j ∈ J.
. . .

∆′ # Γ, (x : tiσj) ⊢ e′@[σj ] : siσj
∆′ = ∆ ∪ var(

∧

i∈I,j∈J(tiσj → siσj))

∆ # Γ ⊢ λ
∧i∈I ti→si
[σj ]j∈J

x.e′ :
∧

i∈I,j∈J(tiσj → siσj)
(abstr)

By E-induction, for all i ∈ I and j ∈ J , we have ∆′ #Γ, (x : tiσj) ⊢m e′@[σj ] :

siσj . Then the rule (abstr) gives us ∆ #Γ ⊢m λ
∧i∈I ti→si
[σj ]j∈J

x.e′ :
∧

i∈I,j∈J(tiσj →

siσj).
Otherwise, the typing derivation ends with an instance of (subsum), similar
to the case of e = c, the result follows by I-induction.

e = e′∈t ? e1 : e2: the typing derivation ∆ #Γ ⊢ e : t should end with either (case)
or (subsum). Assume that the typing derivation ends with (case):

. . .
∆ # Γ ⊢ e′ : t′







t′ � ¬t ⇒
. . .

∆ # Γ ⊢ e1 : s

t′ � t ⇒
. . .

∆ # Γ ⊢ e2 : s

∆ # Γ ⊢ (e′∈t ? e1 : e2) : s
(case)

By E-induction, we have ∆ # Γ ⊢m e′ : t′ and ∆ # Γ ⊢m ei : s (for i such
that ei has been effectively type-checked). Then the rule (case) gives us
∆ # Γm ⊢ (e′∈t ? e1 : e2) : s.
Otherwise, the typing derivation ends with an instance of (subsum), similar
to the case of e = c, the result follows by I-induction.

e = e′[σ]: the typing derivation ∆ # Γ ⊢ e : t should end with either (inst) or
(subsum). Assume that the typing derivation ends with (inst):

. . .
∆ # Γ ⊢ e′ : t σ ♯ ∆

∆ # Γ ⊢ e′[σ] : tσ
(inst)
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By E-induction, we have ∆ # Γ ⊢m e′ : t. Since σ ♯ ∆, applying (instinter)
where |J | = 1, we get ∆ # Γ ⊢m e′[σ] : tσ.
Otherwise, the typing derivation ends with an instance of (subsum), similar
to the case of e = c, the result follows by I-induction.

e = e′[σj ]j∈J : the typing derivation ∆ #Γ ⊢ e : t should end with either (inter) or

(subsum). Assume that the typing derivation ends with (inter):

∀j ∈ J.
. . .

∆ # Γ ⊢ e′[σj ] : tj |J | > 1

∆ # Γ ⊢ e′[σj ]j∈J :
∧

j∈J tj
(inter)

As an intermediary result, we first prove that the derivation can be rewritten
as

∀j ∈ J.

. . .
∆ # Γ ⊢ e′ : s σj ♯ ∆

∆ # Γ ⊢ e′[σj ] : sσj
(inst)

∆ # Γ ⊢ e′[σj ]j∈J :
∧

j∈J sσj
(inter) ∧

j∈J sσj ≤
∧

j∈J tj

∆ # Γ ⊢ e′[σj ]j∈J :
∧

j∈J tj
(subsum)

We proceed by induction on the original derivation. It is clear that each
sub-derivation ∆ # Γ ⊢ e′[σj ] : tj ends with either (inst) or (subsum). If all
the sub-derivations end with an instance of (inst), then for all j ∈ J , we
have . . .

∆ # Γ ⊢ e′ : sj σj ♯ ∆

∆ # Γ ⊢ e′[σj ] : sjσj
(inst)

By Lemma 7.4.2, we have ∆ # Γ ⊢ e′ :
∧

j∈J sj . Let s =
∧

j∈J sj . Then
by (inst), we get ∆ # Γ ⊢ e′[σj ] : sσj . Finally, by (inter) and (subsum),
the intermediary result holds. Otherwise, there is at least one of the sub-
derivations ends with an instance of (subsum), the intermediary result also
hold by induction.
Now that the intermediary result is proved, we go back to the proof of the
lemma. By E-induction on e′ (i.e., ∆ # Γ ⊢ e′ : s), we have ∆ # Γ ⊢m e′ : s.
Since σj ♯ ∆, applying (instinter), we get ∆ # Γ ⊢m e′[σj ]j∈J :

∧

j∈J sσj .
Finally, by subsumption, we get ∆ # Γ ⊢m e′[σ]j∈J :

∧

j∈J tj .
Otherwise, the typing derivation ends with an instance of (subsum), similar
to the case of e = c, the result follows by I-induction.

From now on we will use ⊢ to denote ⊢m, that is the system with the merged rule.

8.2 Algorithmic typing rules

In this section, we analyse the typing derivations produced by the rules of Section 7.2
to see where subsumption is needed and where it can be pushed down the derivation
tree. We need first some preliminary definitions and decomposition results about “pair
types” and “function types”. Intuitively a pair type is a type that ensures that every
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(terminating) expression with that type will return a pair of values. Clearly a product
type is a pair type but the opposite does not hold in general (eg, a union of disjoint
products —which in general cannot be expressed as a product— is a pair type, too).
Similarly, a function type is a type that ensures that every terminating expression of
that type will return a function and, likewise, arrow types are functions types but the
opposite may not be true. Let us study some properties of these types that will help
us to deal with the projection and application rules.

8.2.1 Pair types

A type s is a pair type if s ≤ 1× 1. If an expression e is typable with a pair type s, we
want to compute from s a valid type for πi(e). In CDuce, a pair type s is a finite union
of product types, which can be decomposed into a finite set of pairs of types, denoted as
πππ(s). For example, we decompose s = (t1 × t2)∨ (s1 × s2) as πππ(s) = {(t1, t2), (s1, s2)}.
We can then compute easily a type πππi(s) for πi(e) as πππi(s) = ti ∨ si (we used boldface
symbols to distinguish these type operators from the projections used in expressions).
In the calculus considered here, the situation becomes more complex because of type
variables, especially top level ones. Let s be a pair type that contains a top-level variable
α. Since α � 1 × 1 and s ≤ 1 × 1, then it is not possible that s ≃ s′ ∨ α. In other
terms the toplevel variable cannot appear alone in a union: it must occur intersected
with some product type so that it does not “overtake” the 1× 1 bound. Consequently,
we have s ≃ s′ ∧ α for some s′ ≤ 1× 1. However, in a typing derivation starting from
∆ #Γ ⊢ e : s and ending with ∆ #Γ ⊢ πi(e) : t, there exists an intermediary step where e
is assigned a type of the form (t1 × t2) (and that verifies s ≤ (t1 × t2)) before applying
the projection rule. So it is necessary to get rid of the top-level variables of s (using
subsumption) before computing the projection. The example above shows that α does
not play any role since it is the s′ component that will be used to subsume s to a
product type. To say it otherwise, since e has type s for all possible assignement of α,
then the typing derivation must hold also for α = 1. In whatever way we look at it, the
top-level type variables are useless and can be safely discarded when decomposing s.

Formally, we define the decomposition of a pair type as follows:

Definition 8.2.1. Let τ be a disjunctive normal form such that τ ≤ 1× 1. We define
the decomposition of τ as

πππ(
∨

i∈I τi) =
⋃

i∈I πππ(τi)

πππ(
∧

j∈P (t
j
1 × tj2) ∧

∧

k∈N ¬(tk1 × tk2) ∧
∧

α∈PV
α ∧

∧

α′∈NV
¬α′) (|P | > 0)

= πππ(
∨

N ′⊆N ((
∧

j∈P tj1 ∧
∧

k∈N ′ ¬tk1)× (
∧

j∈P tj2 ∧
∧

k∈N\N ′ ¬tk2)))

πππ((t1 × t2)) =

{

{(t1, t2)} t1 6≃ 0 and t2 6≃ 0

∅ otherwise

and the i-th projection of τ as πππi(τ) =
∨

(s1,s2)∈πππ(τ) si.
For all type t such that t ≤ 1× 1, the decomposition of t is defined as

πππ(t) = πππ(dnf((1× 1) ∧ t))

and the i-th projection of t as πππi(t) =
∨

(s1,s2)∈πππ(dnf((1×1)∧t)) si
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The decomposition of a union of pair types is the union of each decomposition.
When computing the decomposition of an intersection of product types and type vari-
ables, we compute all the possible distributions of the intersections over the products
and we discard the variables as discussed above. Finally, the decomposition of a product
is the pair of its two components, provided that both components are not empty.

The decomposition of pair types defined above has the following properties:

Lemma 8.2.2. Let ≤ be the subtyping relation induced by a well-founded (convex)
model with infinite support and t a type such that t ≤ 1× 1. Then

(1) For all (t1, t2) ∈ πππ(t), we have t1 6≃ 0 and t2 6≃ 0;

(2) For all s1, s2, we have t ≤ (s1 × s2) ⇐⇒
∨

(t1,t2)∈πππ(t)(t1 × t2) ≤ (s1 × s2).

Proof. (1): straightforward.

(2): Since t ≤ 1× 1, we have

t ≃
∨

(P,N)∈dnf(t)

((1× 1)∧
∧

j∈P\V

(tj1 × tj2)∧
∧

k∈N\V

¬(tk1 × tk2)∧
∧

α∈P∩V

α∧
∧

α′∈N∩V

¬α′)

If t ≃ 0, then πππ(t) = ∅, and the result holds. Assume that t 6≃ 0, |P | > 0
and each summand of dnf(t) is not equivalent to 0 as well. Let ptq denote the
type

∨

(P,N)∈dnf(t)(
∧

j∈P\V(t
j
1 × tj2) ∧

∧

k∈N\V ¬(tk1 × tk2)). Using the set-theoretic
interpretation of types we have that ptq is equivalent to

∨

(P,N)∈dnf(t)

(
∨

N ′⊆N\V

((
∧

j∈P\V

tj1 ∧
∧

k∈N ′

¬tk1)× (
∧

j∈P\V

tj2 ∧
∧

k∈(N\V)\N ′

¬tk2)))

This means that, ptq is a equivalent to a union of product types. Let us rewrite
this union more explicitly, that is, ptq ≃

∨

i∈I(t
i
1 × ti2) obtained as follows

∨

(P,N)∈dnf(t)

(
∨

N ′⊆N\V

(

ti1
︷ ︸︸ ︷

(
∧

j∈P\V

tj1 ∧
∧

k∈N ′

¬tk1) ×

ti2
︷ ︸︸ ︷

(
∧

j∈P\V

tj2 ∧
∧

k∈(N\V)\N ′

¬tk2) ))

We have πππ(t) = {(ti1, t
i
2) | i ∈ I and ti1 6≃ 0 and ti2 6≃ 0}. Finally, for all pair of

types s1 and s2, we have

t ≤ (s1 × s2)

⇐⇒
∨

(P,N)∈dnf(t)

(
∧

j∈P\V

(tj1 × tj2) ∧
∧

k∈N\V

¬(tk1 × tk2) ∧
∧

α∈P∩V

α ∧
∧

α′∈N∩V

¬α′) ≤ (s1 × s2)

⇐⇒
∨

(P,N)∈dnf(t)

(
∧

j∈P\V

(tj1 × tj2) ∧
∧

k∈N\V

¬(tk1 × tk2) ∧
∧

α∈P∩V

α ∧
∧

α′∈N∩V

¬α′ ∧ ¬(s1 × s2)) ≤ 0

⇐⇒
∨

(P,N)∈dnf(t)

(
∧

j∈P\V

(tj1 × tj2) ∧
∧

k∈N\V

¬(tk1 × tk2) ∧ ¬(s1 × s2)) ≤ 0 (Lemma 5.1.2)

⇐⇒
∨

(P,N)∈dnf(t)

(
∧

j∈P\V

(tj1 × tj2) ∧
∧

k∈N\V

¬(tk1 × tk2)) ≤ (s1 × s2)

⇐⇒ ptq ≤ (s1 × s2)

⇐⇒
∨

(t1,t2)∈πππ(t)

(t1 × t2) ≤ (s1 × s2)
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Lemma 8.2.3. Let s be a type such that s ≤ (t1 × t2). Then

(1) s ≤ (πππ1(s)×πππ2(s));

(2) πππi(s) ≤ ti.

Proof. (1): according to the proof of Lemma 8.2.2,
∨

(s1,s2)∈πππ(s)(s1 × s2) is equivalent
to the type obtained from s by ignoring all the top-level type variables. Then it
is trivial that s ≤

∨

(s1,s2)∈πππ(s)(s1 × s2) and then s ≤ (πππ1(s)×πππ2(s)).

(2): since s ≤ (t1 × t2), according to Lemma 8.2.2, we have
∨

(s1,s2)∈πππ(s)(s1 × s2) ≤
(t1 × t2). So for all (s1, s2) ∈ πππ(s), we have (s1 × s2) ≤ (t1 × t2). Moreover, as si
is not empty, we have si ≤ ti. Therefore, πππi(s) ≤ ti.

Lemma 8.2.4. Let t and s be two types such that t ≤ 1 × 1 and s ≤ 1 × 1. Then
πππi(t ∧ s) ≤ πππi(t) ∧πππi(s).

Proof. Let t =
∨

j1∈J1
τj1 and s =

∨

j2∈J2
τj2 such that

τj = (t1j × t2j ) ∧
∧

α∈Pj

α ∧
∧

α′∈Nj

¬α′

and τj 6≃ 0 for all j ∈ J1 ∪ J2. Then we have t ∧ s =
∨

j1∈J1,j2∈J2
τj1 ∧ τj2 . Let j1 ∈ J1

and j2 ∈ J2. If τj1 ∧ τj2 ≃ 0, we have πππi(τj1 ∧ τj2) = 0. Otherwise, πππi(τj1 ∧ τj2) =
tij1 ∧ tij2 = πππi(τj1) ∧πππi(τj2). For both cases, we have πππi(τj1 ∧ τj2) ≤ πππi(τj1) ∧πππi(τj2).
Therefore

πππi(t ∧ s) ≃
∨

j1∈J1,j2∈J2
πππi(τj1 ∧ τj2)

≤
∨

j1∈J1,j2∈J2
(πππi(τj1) ∧πππi(τj2))

≃ (
∨

j1∈J1
πππi(τj1)) ∧ (

∨

j2∈J2
πππi(τj2))

≃ πππi(t) ∧πππi(s)

For example, πππ1((Int× Int)∧ (Int× Bool)) = πππ1(0) = 0, while πππ1((Int× Int))∧
πππ1((Int × Bool)) = Int ∧ Int = Int.

Lemma 8.2.5. Let t be a type and σ be a type substitution such that t ≤ 1× 1. Then
πππi(tσ) ≤ πππi(t)σ.

Proof. We put t into its disjunctive normal form
∨

j∈J τj such that

τj = (t1j × t2j ) ∧
∧

α∈Pj

α ∧
∧

α′∈Nj

¬α′

and τj 6≃ 0 for all j ∈ J . Then we have tσ =
∨

j∈J τjσ. So πππi(tσ) =
∨

j∈J πππi(τjσ).
Let j ∈ J . If τjσ ≃ 0, then πππi(τjσ) = 0 and trivially πππi(τjσ) ≤ πππi(τj)σ. Oth-
erwise, we have τjσ = (t1jσ × t2jσ) ∧ (

∧

α∈Pj
α ∧

∧

α′∈Nj
¬α′)σ. By Lemma 8.2.4,

we get πππi(τjσ) ≤ tijσ ∧ πππi((
∧

α∈Pj
α ∧

∧

α′∈Nj
¬α′)σ) ≤ tijσ ≃ πππi(τj)σ. Therefore,

∨

j∈J πππi(τjσ) ≤
∨

j∈J πππi(τj)σ, that is, πππi(tσ) ≤ πππi(t)σ.
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For example, πππ1(((Int × Int) ∧ α){(Int × Bool)/α}) = πππ1((Int × Int) ∧ (Int ×
Bool)) = 0, while (πππ1((Int × Int) ∧ α)){(Int × Bool)/α} = Int{(Int × Bool)/α} = Int.

Lemma 8.2.6. Let t be a type such that t ≤ 1 × 1 and [σk]k∈K be a set of type
substitutions. Then πππi(

∧

k∈K tσk) ≤
∧

k∈K πππi(t)σk.

Proof. Consequence of Lemmas 8.2.4 and 8.2.5.

8.2.2 Function types

A type t is a function type if t ≤ 0 → 1. In order to type the application of a function
having a function type t, we need to determine the domain of t, that is, the set of values
the function can be safely applied to. This problem has been solved for ground function
types in [FCB08]. Again, the problem becomes more complex if t contains top-level
type variables. Another issue is to determine what is the result type of an application
of a function type t to an argument of type s (where s belongs to the domain of t),
knowing that both t and s may contain type variables.

Following the same reasoning as with pair types, if a function type t contains a
top-level variable α, then t ≃ t′∧α for some function type t′. In a typing derivation for
a judgement ∆ # Γ ⊢ e1 e2 : t which contains ∆ # Γ ⊢ e1 : t, there exists an intermediary
step where we assign a type t1 → t2 to e1 (with t ≤ t1 → t2) before using the application
rule. It is therefore necessary to eliminate the top-level variables from the function type
t before we can type an application. Once more, the top-level variables are useless when
computing the domain of t and can be safely discarded.

Formally, we define the domain of a function type as follows:

Definition 8.2.7 (Domain). Let τ be a disjunctive normal form such that τ ≤ 0 → 1.
We define dom(τ), the domain of τ , as:

dom(
∨

i∈I τi) =
∧

i∈I dom(τi)

dom(
∧

j∈P (t
j
1 → tj2) ∧

∧

k∈N ¬(tk1 → tk2) ∧
∧

α∈PV
α ∧

∧

α′∈NV
¬α′)

=

{

1 if
∧

j∈P (t
j
1 → tj2) ∧

∧

k∈N ¬(tk1 → tk2) ∧
∧

α∈PV
α ∧

∧

α′∈NV
¬α′ ≃ 0

∨

j∈P tj1 otherwise

For any type t such that t ≤ 0 → 1, the domain of t is defined as

dom(t) = dom(dnf((0 → 1) ∧ t)).

We also define a decomposition operator φφφ that —akin to the decomposition oper-
ator πππ for product types— decomposes a function type into a finite set of pairs:

Definition 8.2.8. Let τ be a disjunctive normal form such that τ ≤ 0 → 1. We define
the decomposition of τ as:

φφφ(
∨

i∈I τi) =
⋃

i∈I φφφ(τi)

φφφ(
∧

j∈P (t
j
1 → tj2) ∧

∧

k∈N ¬(tk1 → tk2) ∧
∧

α∈PV
α ∧

∧

α′∈NV
¬α′)

=

{

∅ if
∧

j∈P (t
j
1 → tj2) ∧

∧

k∈N ¬(tk1 → tk2) ∧
∧

α∈PV
α ∧

∧

α′∈NV
¬α′ ≃ 0

{(
∨

j∈P ′ t
j
1,
∧

j∈P\P ′ t
j
2) | P

′ ( P} otherwise
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For any type t such that t ≤ 0 → 1, the decomposition of t is defined as

φφφ(t) = φφφ(dnf((0 → 1) ∧ t)).

The set φφφ(t) satisfies the following fundamental property: for every arrow type
s → s′, the constraint t ≤ s → s′ holds if and only if s ≤ dom(t) holds and for all
(t1, t2) ∈ φφφ(t), either s ≤ t1 or t2 ≤ s′ hold (see Lemma 8.2.9). As a result, the
minimum type

t · s = min{s′ | t ≤ s → s′}

exists, and it is defined as the union of all t2 such that s � t1 and (t1, t2) ∈ φφφ(t) (see
Lemma 8.2.10). The type t · s is used to type the application of an expression of type
t to an expression of type s.

Lemma 8.2.9. Let ≤ be the subtyping relation induced by a well-founded (convex)
model with infinite support and t a type such that t ≤ 0 → 1. Then

∀s1, s2 . (t ≤ s1 → s2) ⇐⇒

{

s1 ≤ dom(t)

∀(t1, t2) ∈ φφφ(t) . (s1 ≤ t1) or (t2 ≤ s2)

Proof. Since t ≤ 0 → 1, we have

t ≃
∨

(P,N)∈dnf(t)

((0 → 1) ∧
∧

j∈P\V

(tj1 → tj2) ∧
∧

k∈N\V

¬(tk1 → tk2) ∧
∧

α∈P∩V

α ∧
∧

α′∈N∩V

¬α′)

If t ≃ 0, then dom(t) = 1, φφφ(t) = ∅, and the result holds. If t ≃ t1∨t2, then t1 ≤ 0 → 1,
t2 ≤ 0 → 1, dom(t) = dom(t1)∧dom(t2) and φφφ(t) = φφφ(t1)∪φφφ(t2). So the result follows
if it also holds for t1 and t2. Thus, without loss of generality, we can assume that t has
the following form:

t ≃
∧

j∈P

(tj1 → tj2) ∧
∧

k∈N

¬(tk1 → tk2) ∧
∧

α∈PV

α ∧
∧

α′∈NV

¬α′

where P 6= ∅ and t 6≃ 0. Then dom(t) =
∨

j∈P tj1 andφφφ(t) = {(
∨

j∈P ′ t
j
1,
∧

j∈P\P ′ t
j
2) | P

′ (
P}. For every pair of types s1 and s2, we have

t ≤ (s1 → s2)

⇐⇒
∧

j∈P

(tj1 → tj2) ∧
∧

k∈N

¬(tk1 → tk2) ∧
∧

α∈PV

α ∧
∧

α′∈NV

¬α′ ≤ (s1 → s2)

⇐⇒
∧

j∈P

(tj1 → tj2) ∧
∧

k∈N

¬(tk1 → tk2) ≤ (s1 → s2) (Lemma 5.1.3)

⇐⇒
∧

j∈P

(tj1 → tj2) ≤ s1 → s2 (ptq 6≃ 0 and Lemma 4.3.8 )

⇐⇒ ∀P ′ ⊆ P.



s1 ≤
∨

j∈P ′

tj1



 ∨



P 6= P ′ ∧
∧

j∈P\P ′

tj2 ≤ s2





where ptq =
∧

j∈P (t
j
1 → tj2) ∧

∧

k∈N ¬(tk1 → tk2).
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Lemma 8.2.10. Let t and s be two types. If t ≤ s → 1, then t ≤ s → s′ has a smallest
solution s′, which is denoted as t · s.

Proof. Since t ≤ s → 1, by Lemma 8.2.9, we have s ≤ dom(t). Then the assertion
t ≤ s → s′ is equivalent to:

∀(t1, t2) ∈ φφφ(t). (s ≤ t1)or(t2 ≤ s′)

that is: 


∨

(t1,t2)∈φφφ(t) s.t. (s 6≤t1)

t2



 ≤ s′

Thus the type
∨

(t1,t2)∈φφφ(t) s.t. (s 6≤t1)

t2 is a lower bound for all the solutions.

By the subtyping relation on arrows it is also a solution, so it is the smallest one.
To conclude, it suffices to take it as the definition for t · s.

We now prove some properties of the operators dom(_) and “_ · _”.

Lemma 8.2.11. Let t be a type such that t ≤ 0 → 1 and t′, s, s′ be types. Then

(1) if s′ ≤ s ≤ dom(t), then t · s′ ≤ t · s;

(2) if t′ ≤ t, s ≤ dom(t′) and s ≤ dom(t), then t′ · s ≤ t · s.

Proof. (1) Since s′ ≤ s, we have s → t · s ≤ s′ → t · s. By definition of t · s, we have
t ≤ s → t · s, therefore t ≤ s′ → t · s holds. Consequently, we have t · s′ ≤ t · s by
definition of t · s′.

(2) By definition, we have t ≤ s → t · s, which implies t′ ≤ s → t · s. Therefore, t · s is
a solution to t′ ≤ s → s′, hence we have t′ · s ≤ t · s.

Lemma 8.2.12. Let t and s be two types such that t ≤ 0 → 1 and s ≤ 0 → 1. Then
dom(t) ∨ dom(s) ≤ dom(t ∧ s).

Proof. Let t =
∨

i1∈I1
τi1 and s =

∨

i2∈I2
τi2 such that τi 6≃ 0 for all i ∈ I1 ∪ I2. Then

we have t ∧ s =
∨

i1∈I1,i2∈I2
τi1 ∧ τi2 . Let i1 ∈ I1 and i2 ∈ I2. If τi1 ∧ τi2 ≃ 0, then

dom(τi1 ∧ τi2) = 1. Otherwise, dom(τi1 ∧ τi2) = dom(τi1) ∨ dom(τi2). In both cases, we
have dom(τi1 ∧ τi2) ≥ dom(τi1) ∨ dom(τi2). Therefore

dom(t ∧ s) ≃
∧

i1∈I1,i2∈I2
dom(τi1 ∧ τi2)

≥
∧

i1∈I1,i2∈I2
(dom(τi1) ∨ dom(τi2))

≃
∧

i1∈I1
(
∧

i2∈I2
(dom(τi1) ∨ dom(τi2)))

≃
∧

i1∈I1
(dom(τi1) ∨ (

∧

i2∈I2
dom(τi2)))

≥
∧

i1∈I1
(dom(τi1))

≃ dom(t)

Similarly, dom(t ∧ s) ≥ dom(s). Therefore dom(t) ∨ dom(s) ≤ dom(t ∧ s).

For example, dom((Int → Int) ∧ ¬(Bool → Bool)) ∨ dom(Bool → Bool) = Int ∨
Bool, while dom(((Int → Int) ∧ ¬(Bool → Bool)) ∧ (Bool → Bool)) = dom(0) = 1.
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Lemma 8.2.13. Let t be a type and σ be a type substitution such that t ≤ 0 → 1.
Then dom(t)σ ≤ dom(tσ).

Proof. We put t into its disjunctive normal form
∨

i∈I τi such that τi 6≃ 0 for all i ∈ I.
Then we have tσ =

∨

i∈I τiσ. So dom(tσ) =
∧

i∈I dom(τiσ). Let i ∈ I. If τiσ ≃ 0,

then dom(τiσ) = 1. Otherwise, let τi =
∧

j∈P (t
j
1 → tj2) ∧

∧

k∈N ¬(tk1 → tk2) ∧
∧

α∈PV
α ∧

∧

α′∈NV
¬α′. Then dom(τi) =

∨

j∈P tj1 and dom(τiσ) =
∨

j∈P tj1σ ∨ dom((
∧

α∈PV
α ∧

∧

α′∈NV
¬α′)σ ∧ 0 → 1). In both cases, we have dom(τi)σ ≤ dom(τiσ). Therefore,

∧

i∈I dom(τi)σ ≤
∧

i∈I dom(τiσ), that is, dom(t)σ ≤ dom(tσ).

For example, dom((Int → Int) ∧ ¬α){(Int → Int)/α} = Int{(Int → Int)/α} = Int,
while dom(((Int → Int)∧¬α){(Int → Int)/α}) = dom((Int → Int)∧¬(Int → Int)) =
1.

Lemma 8.2.14. Let t be a type such that t ≤ 0 → 1 and [σk]k∈K be a set of type
substitutions. Then

∧

k∈K dom(t)σk ≤ dom(
∧

k∈K tσk).

Proof.
∧

k∈K dom(t)σk ≤
∧

k∈K dom(tσk) (by Lemma 8.2.13)
≤

∨

k∈K dom(tσk)
≤ dom(

∧

k∈K tσk) (by Lemma 8.2.12)

Lemma 8.2.15. Let t1, s1, t2 and s2 be types such that t1 · s1 and t2 · s2 exists. Then
(t1 ∧ t2) · (s1 ∧ s2) exists and (t1 ∧ t2) · (s1 ∧ s2) ≤ (t1 · s1) ∧ (t2 · s2).

Proof. According to Lemma 8.2.10, we have si ≤ dom(ti) and ti ≤ si → (ti · si). Then
by Lemma 8.2.12, we get s1 ∧ s2 ≤ dom(t1) ∧ dom(t2) ≤ dom(t1 ∧ t2). Moreover,
t1 ∧ t2 ≤ (s1 → (t1 · s1))∧ (s2 → (t2 · s2)) ≤ (s1 ∧ s2) → ((t1 · s1)∧ (t2 · s2)). Therefore,
(t1 ∧ t2) · (s1 ∧ s2) exists and (t1 ∧ t2) · (s1 ∧ s2) ≤ (t1 · s1) ∧ (t2 · s2).

For example, ((Int → Bool) ∧ (Bool → Bool)) · (Int ∧ Bool) = 0, while ((Int →
Bool) · Int) ∧ ((Bool → Bool) · Bool) = Bool ∧ Bool = Bool.

Lemma 8.2.16. Let t and s be two types such that t · s exists and σ be a type substi-
tution. Then (tσ) · (sσ) exists and (tσ) · (sσ) ≤ (t · s)σ.

Proof. Because t · s exists, we have s ≤ dom(t) and t ≤ s → (t · s). Then sσ ≤ dom(t)σ
and tσ ≤ sσ → (t·s)σ. By Lemma 8.2.13, we get dom(t)σ ≤ dom(tσ). So sσ ≤ dom(tσ).
Therefore, (tσ) · (sσ) exists. Moreover, since (t · s)σ is a solution to tσ ≤ sσ → s′, by
definition, we have (tσ) · (sσ) ≤ (t · s)σ.

For example, (((Int → Int) ∧ ¬α)σ) · (Intσ) = 0 · Int = 0, while (((Int →
Int) ∧ ¬α) · Int)σ = Intσ = Int, where σ = {(Int → Int)/α}.

Lemma 8.2.17. Let t and s be two types and [σk]k∈K be a set of type substitutions such
that t · s exists. Then (

∧

k∈K tσk) · (
∧

k∈K sσk) exists and (
∧

k∈K tσk) · (
∧

k∈K sσk) ≤
∧

k∈K(t · s)σk.
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Proof. According to Lemmas 8.2.16 and 8.2.15, (
∧

k∈K tσk) · (
∧

k∈K sσk) exists. More-
over,

∧

k∈K(t · s)σk ≥
∧

k∈K(tσk · sσk) (Lemma 8.2.16)
≥ (

∧

k∈K tσk) · (
∧

k∈K sσk) (Lemma 8.2.15)

8.2.3 Syntax-directed rules

Because of subsumption, the typing rules provided in Section 7.2 are not syntax-directed
and so they do not yield a type-checking algorithm directly. In simply type λ-calculus,
subsumption is used to bridge gaps between the types expected by functions and the
actual types of their arguments in applications [Pie02]. In our calculus, we identify
four situations where the subsumption is needed, namely, the rules for projections,
abstractions, applications, and type cases. To see why, we consider a typing derivation
ending with each typing rule whose immediate sub-derivation ends with (subsum). For
each case, we explain how the use of subsumption can be pushed through the typing
rule under consideration, or how the rule should be modified to take subtyping into
account.

First we consider the case where a typing derivation ends with (subsum) whose im-
mediate sub-derivation also ends with (subsum). The two consecutive uses of (subsum)
can be merged into one, because the subtyping relation is transitive.

Lemma 8.2.18. If ∆ # Γ ⊢ e : t, then there exists a derivation for ∆ # Γ ⊢ e : t where
there are no consecutive instances of (subsum).

Proof. Assume that there exist two consecutive instances of (subsum) occurring in a
derivation of ∆ # Γ ⊢ e : t, that is,

. . .

. . .
∆′ # Γ′ ⊢ e′ : s′2 s′2 ≤ s′1

∆′ # Γ′ ⊢ e′ : s′1
(subsum)

s′1 ≤ t′

∆′ # Γ′ ⊢ e′ : t′
(subsum)

... . . .
∆ # Γ ⊢ e : t

Since s′2 ≤ s′1 and s′1 ≤ t′, we have s′2 ≤ t′. So we can rewrite this derivation as follows:

. . .

. . .
∆′ # Γ′ ⊢ e′ : s′2 s′2 ≤ t′

∆′ # Γ′ ⊢ e′ : t′
(subsum)

... . . .
∆ # Γ ⊢ e : t

Therefore, the result follows.

Next, consider an instance of (pair) such that one of its sub-derivations ends with
an instance of (subsum), for example, the left sub-derivation:

. . .
∆ # Γ ⊢ e1 : s1 s1 ≤ t1

∆ # Γ ⊢ e1 : t1
(subsum) . . .

∆ # Γ ⊢ e2 : t2
∆ # Γ ⊢ (e1, e2) : (t1 × t2)

(pair)



8.2. ALGORITHMIC TYPING RULES 155

As s1 ≤ t1, we have s1 × t2 ≤ t1 × t2. Then we can move subsumption down through
the rule (pair), giving the following derivation:

. . .
∆ # Γ ⊢ e1 : s1

. . .
∆ # Γ ⊢ e2 : t2

∆ # Γ ⊢ (e1, e2) : (s1 × t2)
(pair)

s1 × t2 ≤ t1 × t2

∆ # Γ ⊢ (e1, e2) : (t1 × t2)
(subsum)

The rule (proj) is a little trickier than (pair). Consider the following derivation:
. . .

∆ # Γ ⊢ e : s s ≤ t1 × t2
∆ # Γ ⊢ e : (t1 × t2)

(subsum)

∆ # Γ ⊢ πi(e) : ti
(proj)

As s ≤ t1 × t2, s is a pair type. According to the decomposition of s and Lemma 8.2.3,
we can rewrite the previous derivation into the following one:

. . .
∆ # Γ ⊢ e : s s ≤ 1× 1

∆ # Γ ⊢ πi(e) : πππi(s) πππi(s) ≤ ti

∆ # Γ ⊢ πi(e) : ti

Note that the subtyping check s ≤ 1× 1 ensures that s is a pair type.
Next consider an instance of (abstr) (where ∆′ = ∆ ∪ var(

∧

i∈I,j∈J(tiσj → siσj)).
All the sub-derivations may end with (subsum):

∀i ∈ I, j ∈ J.

. . .
∆′ # Γ, (x : tiσj) ⊢ e@[σj ] : s

′
ij s′ij ≤ siσj

∆′ # Γ, (x : tiσj) ⊢ e@[σj ] : siσj

∆ # Γ ⊢ λ
∧i∈I ti→si
[σj ]j∈J

x.e :
∧

i∈I,j∈J(tiσj → siσj)
(abstr)

Without subsumption, we would assign the type
∧

i∈I,j∈J(tiσj → s′ij) to the abstraction,
while we want to assign the type

∧

i∈I,j∈J(tiσj → siσj) to it because of the type
annotations. Consequently, we have to keep the subtyping checks s′ij ≤ siσj as side-
conditions of an algorithmic typing rule for abstractions.

∀i ∈ I, j ∈ J. ∆′ # Γ, (x : tiσj) ⊢ e@[σj ] : s
′
ij s′ij ≤ siσj

∆ # Γ ⊢ λ
∧i∈I ti→si
[σj ]j∈J

x.e :
∧

i∈I,j∈J(tiσj → siσj)

In (appl) case, suppose that both sub-derivations end with (subsum):
. . .

∆ # Γ ⊢ e1 : t t ≤ t′ → s′

∆ # Γ ⊢ e1 : t
′ → s′

. . .
∆ # Γ ⊢ e1 : s s ≤ t′

∆ # Γ ⊢ e2 : t
′

∆ # Γ ⊢ e1 e2 : s
′ (appl)

Since s ≤ t′, then by the contravariance of arrow types we have t′ → s′ ≤ s → s′.
Hence, such a derivation can be rewritten as

. . .
∆ # Γ ⊢ e1 : t t ≤ t′ → s′

∆ # Γ ⊢ e1 : t
′ → s′ t′ → s′ ≤ s → s′

∆ # Γ ⊢ e1 : s → s′
. . .

∆ # Γ ⊢ e1 : s

∆ # Γ ⊢ e1 e2 : s
′ (appl)
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Applying Lemma 8.2.18, we can merge the two adjacent instances of (subsum) into one:

. . .
∆ # Γ ⊢ e1 : t t ≤ s → s′

∆ # Γ ⊢ e1 : s → s′
. . .

∆ # Γ ⊢ e1 : s

∆ # Γ ⊢ e1 e2 : s
′ (appl)

A syntax-directed typing rule for applications can then be written as follows

∆ # Γ ⊢ e1 : t ∆ # Γ ⊢ e2 : s t ≤ s → s′

∆ # Γ ⊢ e1e2 : s
′

where subsumption is used as a side condition to bridge the gap between the function
type and the argument type.

This typing rule is not algorithmic yet, because the result type s′ can be any type
verifying the side condition. Using Lemma 8.2.9, we can equivalently rewrite the side
condition as t ≤ 0 → 1 and s ≤ dom(t) without involving the result type s′. The first
condition ensures that t is a function type and the second one that the argument type
s can be safely applied by t. Moreover, we assign the type t · s to the application,
which is by definition the smallest possible type for it. We obtain then the following
algorithmic typing rule.

∆ # Γ ⊢ e1 : t ∆ # Γ ⊢ e2 : s t ≤ 0 → 1 s ≤ dom(t)

∆ # Γ ⊢ e1e2 : t · s

Next, let us discuss the rule (case):

∆ # Γ ⊢ e : t′
{

t′ 6≤ ¬t ⇒ ∆ # Γ ⊢ e1 : s
t′ 6≤ t ⇒ ∆ # Γ ⊢ e2 : s

∆ # Γ ⊢ (e∈t ? e1 : e2) : s
(case)

The rule covers four different situations, depending on which branches of the type-cases
are checked: (i) no branch is type-checked, (ii) the first branch e1 is type-checked, (iii)
the second branch e2 is type-checked, and (iv) both branches are type-checked. Each
case produces a corresponding algorithmic rule.

In case (i), we have simultaneously t′ ≤ t and t′ ≤ ¬t, which means that t′ = 0.
Consequently, e does not reduce to a value (otherwise, subject reduction would be
violated), and neither does the whole type case. Consequently, we can assign type 0 to
the whole type case.

. . .
∆ # Γ ⊢ e : 0

∆ # Γ ⊢ (e∈t ? e1 : e2) : 0

Suppose we are in case (ii) and the sub-derivation for the first branch e1 ends with
(subsum):

∆ # Γ ⊢ e : t′ t′ ≤ t

. . .
∆ # Γ ⊢ e1 : s1 s1 ≤ s

∆ # Γ ⊢ e1 : s

∆ # Γ ⊢ (e∈t ? e1 : e2) : s
(case)
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Such a derivation can be rearranged as:

∆ # Γ ⊢ e : t′ t′ ≤ t
. . .

∆ # Γ ⊢ e1 : s1
∆ # Γ ⊢ (e∈t ? e1 : e2) : s1 s1 ≤ s

∆ # Γ ⊢ (e∈t ? e1 : e2) : s

Moreover, (subsum) might also be used at the end of the sub-derivation for e:
. . .

∆ # Γ ⊢ e : t′′ t′′ ≤ t′

∆ # Γ ⊢ e : t′ t′ ≤ t ∆ # Γ ⊢ e1 : s

∆ # Γ ⊢ (e∈t ? e1 : e2) : s
(case)

From t′′ ≤ t′ and t′ ≤ t, we deduce t′′ ≤ t by transitivity. Therefore this use of
subtyping can be merged with the subtyping check of the type case rule. We then
obtain the following algorithmic rule.

. . .
∆ # Γ ⊢ e : t′′ t′′ ≤ t ∆ # Γ ⊢ e1 : s

∆ # Γ ⊢ (e∈t ? e1 : e2) : s

We obtain a similar rule for case (iii), except that e2 is type-checked instead of e1, and
t′′ is tested against ¬t.

Finally, consider case (iv). We have to type-check both branches and each typing
derivation may end with (subsum):

∆ # Γ ⊢ e : t′







t′ 6≤ ¬t and

. . .
∆ # Γ ⊢ e1 : s1 s1 ≤ s

∆ # Γ ⊢ e1 : s

t′ 6≤ t and

. . .
∆ # Γ ⊢ e2 : s2 s2 ≤ s

∆ # Γ ⊢ e2 : s

∆ # Γ ⊢ (e∈t ? e1 : e2) : s
(case)

Subsumption is used there just to unify s1 and s2 into a common type s, which is used
to type the whole type case. Such a common type can also be obtained by taking the
least upper-bound of s1 and s2, i.e., s1 ∨ s2. Because s1 ≤ s and s2 ≤ s, we have
s1 ∨ s2 ≤ s, and we can rewrite the derivation as follows:

∆ # Γ ⊢ e : t′







t′ 6≤ ¬t and
. . .

∆ # Γ ⊢ e1 : s1

t′ 6≤ t and
. . .

∆ # Γ ⊢ e2 : s2

∆ # Γ ⊢ (e∈t ? e1 : e2) : s1 ∨ s2
(case)

s1 ∨ s2 ≤ s

∆ # Γ ⊢ (e∈t ? e1 : e2) : s

Suppose now that the sub-derivation for e ends with (subsum):
. . .

∆ # Γ ⊢ e : t′′ t′′ ≤ t′

∆ # Γ ⊢ e : t′
{

t′ 6≤ ¬t and ∆ # Γ ⊢ e1 : s1
t′ 6≤ t and ∆ # Γ ⊢ e2 : s2

∆ # Γ ⊢ (e∈t ? e1 : e2) : s1 ∨ s2
(case)
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The relations t′′ ≤ t′, t′ � ¬t do not necessarily imply t′′ 6≤ ¬t, and t′′ ≤ t′, t′ � t do
not necessarily imply t′′ 6≤ ¬t. Therefore, by using the type t′′ instead of t′ for e, we
may type-check less branches. If so, then we would be in one of the cases (i) − (iii),
and the result type (i.e., a type among 0, s1 or s2) for the whole type case would be
smaller than s1 ∨ s2. It would then be possible to type the type case with s1 ∨ s2 by
subsumption. Otherwise, we type-check as many branches with t′′ as with t′, and we
can modify the rule into

. . .
∆ # Γ ⊢ e : t′′

{
t′′ 6≤ ¬t and ∆ # Γ ⊢ e1 : s1
t′′ 6≤ t and ∆ # Γ ⊢ e2 : s2

∆ # Γ ⊢ (e∈t ? e1 : e2) : s1 ∨ s2

Finally, consider the case where the last rule in a derivation is (instinter) and all
its sub-derivations end with (subsum):

. . .
∆ # Γ ⊢ e : s s ≤ t

∆ # Γ ⊢ e : t
(subsum)

∀j ∈ J. σj ♯ ∆

∆ # Γ ⊢ e[σj ]j∈J :
∧

j∈J tσj
(instinter)

Since s ≤ t, we have
∧

j∈J sσj ≤
∧

j∈J tσj . So such a derivation can be rewritten into

. . .
∆ # Γ ⊢ e : s ∀j ∈ J. σj ♯ ∆

∆ # Γ ⊢ e[σj ]j∈J :
∧

j∈J sσj
(instinter) ∧

j∈J sσj ≤
∧

j∈J tσj

∆ # Γ ⊢ e[σj ]j∈J :
∧

j∈J tσj
(subsum)

In conclusion, by applying the aforementioned transformations repeatedly, we can
rewrite an arbitrary typing derivation into a special form where subsumption are used at
the end of sub-derivations of projections, abstractions or applications, in the conditions
of type cases and at the very end of the whole derivation. Thus, this transformations
yields a set of syntax-directed typing rules, which is given in Figure 8.1 and forms
a type-checking algorithm directly. Let ∆ # Γ ⊢A e : t denote the typing judgments
derivable by the set of syntax-directed typing rules.

We now prove that the syntax-directed typing rules are sound and complete with
respect to the original typing rules.

Theorem 8.2.19 (Soundness). Let e be an expression. If Γ ⊢A e : t, then Γ ⊢ e : t.

Proof. By induction on the typing derivation of ∆ # Γ ⊢A e : t. We proceed by a case
analysis on the last rule used in the derivation.

(Alg-const): straightforward.

(Alg-var): straightforward.

(Alg-pair): consider the derivation

. . .
∆ # Γ ⊢A e1 : t1

. . .
∆ # Γ ⊢A e2 : t2

∆ # Γ ⊢A (e1, e2) : t1 × t2

Applying the induction hypothesis twice, we get ∆ #Γ ⊢ ei : ti. Then by applying
the rule (pair), we have ∆ # Γ ⊢ (e1, e2) : t1 × t2.
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∆ # Γ ⊢A c : bc
(Alg-const)

∆ # Γ ⊢A x : Γ(x)
(Alg-var)

∆ # Γ ⊢A e1 : t1 ∆ # Γ ⊢A e2 : t2

∆ # Γ ⊢A (e1, e2) : t1 × t2
(Alg-pair)

∆ # Γ ⊢A e : t t ≤ 1× 1

∆ # Γ ⊢A πi(e) : πππi(t)
(Alg-proj)

∆ # Γ ⊢A e1 : t ∆ # Γ ⊢A e2 : s t ≤ 0 → 1 s ≤ dom(t)

∆ # Γ ⊢A e1e2 : t · s
(Alg-appl)

∆′ = ∆ ∪ var(
∧

i∈I,j∈J

(tiσj → siσj))

∀i ∈ I, j ∈ J. ∆′ # Γ, (x : tiσj) ⊢A e@[σj ] : s
′
ij s′ij ≤ siσj

∆ # Γ ⊢A λ
∧i∈I ti→si
[σj ]j∈J

x.e :
∧

i∈I,j∈J

(tiσj → siσj)
(Alg-abstr)

∆ # Γ ⊢A e : 0

∆ # Γ ⊢A (e∈t ? e1 : e2) : 0
(Alg-case-none)

∆ # Γ ⊢A e : t′ t′ ≤ t t′ 6≤ ¬t ∆ # Γ ⊢A e1 : s1

∆ # Γ ⊢A (e∈t ? e1 : e2) : s1
(Alg-case-fst)

∆ # Γ ⊢A e : t′ t′ ≤ ¬t t′ 6≤ t ∆ # Γ ⊢A e2 : s2

∆ # Γ ⊢A (e∈t ? e1 : e2) : s2
(Alg-case-snd)

∆ # Γ ⊢A e : t′
{

t′ 6≤ ¬t and ∆ # Γ ⊢A e1 : s1
t′ 6≤ t and ∆ # Γ ⊢A e2 : s2

∆ # Γ ⊢A (e∈t ? e1 : e2) : s1 ∨ s2
(Alg-case-both)

∆ # Γ ⊢A e : t ∀j ∈ J. σj ♯ ∆ |J | > 0

∆ # Γ ⊢A e[σj ]j∈J :
∧

j∈J

tσj
(Alg-inst)

Figure 8.1: Syntax-directed typing rules

(Alg-proj): consider the derivation
. . .

∆ # Γ ⊢A e : t t ≤ 1× 1

∆ # Γ ⊢A πi(e) : πππi(t)
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By induction, we have ∆ # Γ ⊢ e : t. According to Lemma 8.2.3, we have t ≤
(πππ1(t) ×πππ2(t)). Then by (subsum), we get ∆ # Γ ⊢ e : (πππ1(t) ×πππ2(t)). Finally,
the rule (proj) gives us ∆ # Γ ⊢ πi(e) : πππi(t).

(Alg-appl): consider the derivation

. . .
∆ # Γ ⊢A e1 : t

. . .
∆ # Γ ⊢A e2 : s t ≤ 0 → 1 s ≤ dom(t)

∆ # Γ ⊢A e1e2 : t · s

By induction, we have ∆ # Γ ⊢ e1 : t and ∆ # Γ ⊢ e2 : s. According to Lemma
8.2.10, we have

t · s = min{s′ | t ≤ s → s′}

Note that the conditions t ≤ 0 → 1 and s ≤ dom(t) ensure that such a type
exists. It is clear t ≤ s → (t · s). Then by (subsum), we get ∆ #Γ ⊢ e1 : s → (t · s).
Finally, the rule (appl) gives us ∆ # Γ ⊢ e1e2 : t · s.

(Alg-abstr): consider the derivation

∀i ∈ I, j ∈ J.
. . .

∆′ # Γ, (x : tiσj) ⊢A e@[σj ] : s
′
ij s′ij ≤ siσj

∆ # Γ ⊢A λ
∧i∈I ti→si
[σj ]j∈J

x.e :
∧

i∈I,j∈J(tiσj → siσj)

with ∆′ = ∆ ∪ var(
∧

i∈I,j∈J(tiσj → siσj)). By induction, for all i ∈ I and j ∈ J ,
we have ∆′ # Γ, (x : tiσj) ⊢ e@[σj ] : s′ij . Since s′ij ≤ siσj , by (subsum), we
get ∆′ # Γ, (x : tiσj) ⊢ e@[σj ] : siσj . Finally, the rule (abstr) gives us ∆ # Γ ⊢

λ
∧i∈I ti→si
[σj ]j∈J

x.e :
∧

i∈I,j∈J(tiσj → siσj).

(Alg-case-none): consider the derivation

. . .
∆ # Γ ⊢A e : 0

∆ # Γ ⊢A (e∈t ? e1 : e2) : 0

By induction, we have ∆ #Γ ⊢ e : 0. No branch is type-checked by the rule (case),
so any type can be assigned to the type case expression, and in particular we have
∆ # Γ ⊢ (e∈t ? e1 : e2) : 0

(Alg-case-fst): consider the derivation

. . .
∆ # Γ ⊢A e : t′ t′ ≤ t

. . .
∆ # Γ ⊢A e1 : s1

∆ # Γ ⊢A (e∈t ? e1 : e2) : s1

By induction, we have ∆ # Γ ⊢ e : t′ and ∆ # Γ ⊢ e1 : s1. As t′ ≤ t, then we
only need to type-check the first branch. Therefore, by the rule (case), we have
∆ # Γ ⊢ (e∈t ? e1 : e2) : s1.

(Alg-case-snd): similar the case of (Alg-case-fst).

(Alg-case-both): consider the derivation

. . .
∆ # Γ ⊢A e : t′







t′ 6≤ ¬t and
. . .

∆ # Γ ⊢A e1 : s1

t′ 6≤ t and
. . .

∆ # Γ ⊢A e2 : s2

∆ # Γ ⊢A (e∈t ? e1 : e2) : s1 ∨ s2
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By induction, we have ∆ # Γ ⊢ e : t′, ∆ # Γ ⊢ e1 : s1 and ∆ # Γ ⊢ e2 : s2. It is clear
that s1 ≤ s1 ∨ s2 and s2 ≤ s1 ∨ s2. Then by (subsum), we get ∆ # Γ ⊢ e1 : s1 ∨ s2
and ∆ # Γ ⊢ e2 : s1 ∨ s2. Moreover, as t′ 6≤ ¬t and t′ 6≤ t, we have to type-check
both branches. Finally, by the rule (case), we get ∆ # Γ ⊢ (e∈t ? e1 : e2) : s1 ∨ s2.

(Alg-inst): consider the derivation

. . .
∆ # Γ ⊢A e : t ∀j ∈ J. σj ♯ ∆

∆ # Γ ⊢A e[σj ]j∈J :
∧

j∈J tσj

By induction, we have ∆ # Γ ⊢ e : t. As ∀j ∈ J. σj ♯ ∆, by (instinter), we get
∆ # Γ ⊢ e[σj ]j∈J :

∧

j∈J tσj .

The soundness theorem states that every typing statement that can be derived from
the syntax-directed rules also follows from the original rules. While the completeness
theorem that follows states that the syntax-directed type system can deduce for an
expression a type at least as good as the one deduced for that expression from the
original type system.

Theorem 8.2.20 (Completeness). Let ≤ be a subtyping relation induced by a well-
founded (convex) model with infinite support and e an expression. If ∆ # Γ ⊢ e : t, then
there exists a type s such that ∆ # Γ ⊢A e : s and s ≤ t.

Proof. By induction on the typing derivation of ∆ # Γ ⊢ e : t. We proceed by case
analysis on the last rule used in the derivation.

(const): straightforward (take s as bc).

(var): straightforward (take s as Γ(x)).

(pair): consider the derivation

. . .
∆ # Γ ⊢ e1 : t1

. . .
∆ # Γ ⊢ e2 : t2

∆ # Γ ⊢ (e1, e2) : t1 × t2
(pair)

Applying the induction hypothesis twice, we have ∆ # Γ ⊢A ei : si where si ≤ ti.
Then the rule (Alg-pair) gives us ∆ # Γ ⊢A (e1, e2) : s1 × s2. Since si ≤ ti, we
deduce (s1 × s2) ≤ (t1 × t2).

(proj): consider the derivation

. . .
∆ # Γ ⊢ e : (t1 × t2)

∆ # Γ ⊢ πi(e) : ti
(proj)

By induction, there exists s such that ∆ #Γ ⊢A e : s and s ≤ (t1× t2). Clearly we
have s ≤ 1×1. Applying (Alg-proj), we have ∆ #Γ ⊢A πi(e) : πππi(s). Moreover,
as s ≤ (t1 × t2), according to Lemma 8.2.3, we have πππi(s) ≤ ti. Therefore, the
result follows.
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(appl): consider the derivation

. . .
∆ # Γ ⊢ e1 : t1 → t2

. . .
∆ # Γ ⊢ e2 : t1

∆ # Γ ⊢ e1e2 : t2
(appl)

Applying the induction hypothesis twice, we have ∆#Γ ⊢A e1 : t and ∆#Γ ⊢A e2 : s
where t ≤ t1 → t2 and s ≤ t1. Clearly we have t ≤ 0 → 1 and t ≤ s → t2 (by
contravariance of arrows). From Lemma 8.2.9, we get s ≤ dom(t). So, by applying
the rule (Alg-appl), we have ∆ #Γ ⊢A e1e2 : t · s. Moreover, it is clear that t2 is
a solution for t ≤ s → s′. Consequently, it is a super type of t · s, that is t · s ≤ t2.

(abstr): consider the derivation

∀i ∈ I, j ∈ J.
. . .

∆′ # Γ, (x : tiσj) ⊢ e@[σj ] : siσj

∆ # Γ ⊢ λ
∧i∈I ti→si
[σj ]j∈J

x.e :
∧

i∈I,j∈J(tiσj → siσj)
(abstr)

where ∆′ = ∆∪ var(
∧

i∈I,j∈J(tiσj → siσj)). By induction, for all i ∈ I and j ∈ J ,
there exists s′ij such that ∆′ # Γ, (x : tiσj) ⊢A e@[σj ] : s

′
ij and s′ij ≤ siσj . Then

the rule (Alg-abstr) gives us ∆ # Γ ⊢A λ
∧i∈I ti→si
[σj ]j∈J

x.e :
∧

i∈I,j∈J(tiσj → siσj)

(case): consider the derivation

. . .
∆ # Γ ⊢ e : t′







t′ � ¬t ⇒
. . .

∆ # Γ ⊢ e1 : s

t′ � t ⇒
. . .

∆ # Γ ⊢ e2 : s

∆ # Γ ⊢ (e∈t ? e1 : e2) : s
(case)

By induction hypothesis on ∆#Γ ⊢ e : t′, there exists a type t′′ such that ∆#Γ ⊢A e :
t′′ and t′′ ≤ t′. If t′′ ≃ 0, by (Alg-case-none), we have ∆#Γ ⊢A (e∈t ? e1 : e2) : 0.
The result follows straightforwardly. In what follows, we assume that t′′ 6≃ 0.
Assume that t′′ ≤ t. Because t′′ ≤ t′, we have t′ � ¬t (otherwise, t′′ ≃ 0).
Therefore the first branch is type-checked, and by induction, there exists a type
s1 such that ∆ #Γ ⊢A e1 : s1 and s1 ≤ s. Then the rule (Alg-case-fst) gives us
∆ # Γ ⊢A (e∈t ? e1 : e2) : s1.
Otherwise, t′′ � t. In this case, we have t′ � t (otherwise, t′′ ≤ t). Then the
second branch is type-checked. By induction, there exists a type s2 such that
∆ # Γ ⊢A e2 : s2 and s2 ≤ s. If t′′ ≤ ¬t, then by the rule (Alg-case-snd), we
have ∆ # Γ ⊢A (e∈t ? e1 : e2) : s2. The result follows. Otherwise, we also have
t′′ � ¬t. Then we also have t′ � ¬t (otherwise, t′′ ≤ ¬t). So the first branch
should be type-checked as well. By induction, we have ∆ # Γ ⊢A e1 : s1 where
s1 ≤ s. By applying (Alg-case-both), we get ∆ # Γ ⊢A (e∈t ? e1 : e2) : s1 ∨ s2.
Since s1 ≤ s and s2 ≤ s, we deduce that s1 ∨ s2 ≤ s. The result follows as well.

(instinter): consider the derivation

. . .
∆ # Γ ⊢ e : t ∀j ∈ J. σj ♯ ∆

∆ # Γ ⊢ e[σj ]j∈J :
∧

j∈J tσj
(instinter)
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By induction, there exists a type s such that ∆ # Γ ⊢A e : s and s ≤ t. Then the
rule (Alg-inst) gives us that ∆ # Γ ⊢A e[σj ]j∈J :

∧

j∈J sσj . Since s ≤ t, we have
∧

j∈J sσj ≤
∧

j∈J tσj . Therefore, the result follows.

Corollary 8.2.21 (Minimum typing). Let e be an expression. If ∆ #Γ ⊢A e : t, then
t = min{s | ∆ # Γ ⊢ e : s}.

Proof. Consequence of Theorems 8.2.19 and 8.2.20.

To prove the termination of the type-checking algorithm, we define the size of an
expression e as follows.

Definition 8.2.22. Let e be an expression. We define the size of e as:

size(c) = 1
size(x) = 1

size((e1, e2)) = size(e1) + size(e2) + 1
size(πi(e)) = size(e) + 1
size(e1e2) = size(e1) + size(e2) + 1

size(λ
∧i∈I ti→si
[σj ]j∈J

x.e) = size(e) + 1

size(e∈t ? e1 : e2) = size(e) + size(e1) + size(e2) + 1
size(e[σj ]j∈J) = size(e) + 1

The relabeling does not enlarge the size of the expression.

Lemma 8.2.23. Let e be an expression and [σj ]j∈J a set of type substitutions. Then

size(e@[σj ]j∈J) ≤ size(e).

Proof. By induction on the structure of e.

Theorem 8.2.24 (Termination). Let e be an expression. Then the type-checking of
e terminates.

Proof. By induction on the sizes of the expressions to be checked.

(Alg-const): it terminates immediately.

(Alg-var): it terminates immediately.

(Alg-pair): size(e1) + size(e2) < size((e1, e2)).

(Alg-proj): size(e′) < size(π1(e
′)).

(Alg-appl): size(e1) + size(e2) < size(e1e2).

(Alg-abstr): by Lemma 8.2.23, we have size(e′@[σj ]) ≤ size(e′). Then we get

size(e′@[σj ]) < size(λ
∧i∈I ti→si
[σj ]j∈J

x.e′).

(Alg-case): size(e′) + size(e1) + size(e2) < size(e′∈t ? e1 : e2).

(Alg-inst): size(e′) < size(e′[σj ]j∈J).
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Chapter 9

Inference of Type-Substitutions

We want sets of type-substitutions to be inferred by the system, not written by the
programmer. To this end, we define a calculus without type substitutions (called
implicitly-typed, in contrast to the calculus of Section 7.1, which we henceforth call
explicitly-typed), for which we define a type-substitutions inference system. There will
be a single exception: we will not try to insert type-substitutions into decorations, since
we suppose that all λ-abstractions initially have empty decorations. The reasons for
this restriction is that we want to infer that an expression such as λα→αx.3 is ill-typed
and if we allowed to infer decorations, then the expression could be typed by inserting
a decoration as in λα→α

{Int/α}
x.3. Generally, if the programmer specifies some interface

for a function it seems reasonable to think that he wants the system to check whether
the function conforms the interface rather than knowing whether there exists a set of
type substitutions that makes it conforming. We therefore look for completeness of the
type-substitutions inference system with respect to the expressions written according
to the following grammar.

e ::= c | x | (e, e) | πi(e) | e e | λ∧i∈I ti→six.e | e∈t ? e : e | e[σj ]j∈J

We write E0 for the set of such expressions. The implicitly-typed calculus defined in this
chapter corresponds to the type-substitution erasures of the expressions of E0. These
are the terms generated by the grammar above without using the last production,
that is, without the application of sets of type-substitutions. We then define the type-
substitutions inference system by determining where the rule (Alg-inst) have to be
used in the typing derivations of explicitly-typed expressions. Finally, we propose an
incomplete but more tractable restriction of the type-substitutions inference system,
which, we believe, is powerful enough to be used in practice.

9.1 Implicitly-typed calculus

Definition 9.1.1. An implicitly-typed expression a is an expression without any type
substitutions. It is inductively generated by the following grammar:

a ::= c | x | (a, a) | πi(a) | a a | λ∧i∈I ti→six.a | a∈t ? a : a

where ti, si range over types and t ∈ T0 is a ground type. We write EA to denote the set
of all implicitly-typed expressions.

165
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Clearly, EA is a proper subset of E0.

The erasure of explicitly-typed expressions to implicitly-typed expressions is defined
as follows:

Definition 9.1.2. The erasure is the mapping from E0 to EA defined as

erase(c) = c
erase(x) = x

erase((e1, e2)) = (erase(e1), erase(e2))
erase(πi(e)) = πi(erase(e))

erase(λ∧i∈I ti→six.e) = λ∧i∈I ti→six.erase(e)
erase(e1e2) = erase(e1)erase(e2)

erase(e∈t ? e1 : e2) = erase(e)∈t ? erase(e1) : erase(e2)
erase(e[σj ]j∈J) = erase(e)

Prior to introducing the type inference rules, we define a preorder on types, which
is similar to the type variable instantiation in ML but with respect to a set of type
substitutions.

Definition 9.1.3. Let s and t be two types and ∆ a set of type variables. We define
the following relations:

[σi]i∈I 
 s ⊑∆ t
def

⇐⇒
∧

i∈I

sσi ≤ t and ∀i∈I. σi ♯ ∆

s ⊑∆ t
def

⇐⇒ ∃[σi]i∈I such that [σi]i∈I 
 s ⊑∆ t

We write s 6⊑∆ t if it does not exist a set of type substitutions [σi]i∈I such that
[σi]i∈I 
 s ⊑∆ t. We now prove some properties of the preorder ⊑∆.

Lemma 9.1.4. Let t1 and t2 be two types and ∆ a set of type variables. If t1 ⊑∆ s1
and t2 ⊑∆ s2, then (t1 ∧ t2) ⊑∆ (s1 ∧ s2) and (t1 × t2) ⊑∆ (s1 × s2).

Proof. Let [σi1 ]i1∈I1 
 t1 ⊑∆ s1 and [σi2 ]i2∈I2 
 t2 ⊑∆ s2. Then

∧

i∈I1∪I2
(t1 ∧ t2)σi ≃ (

∧

i∈I1∪I2
t1σi) ∧ (

∧

i∈I1∪I2
t2σi)

≤ (
∧

i1∈I1
t1σi1) ∧ (

∧

i2∈I2
t2σi2)

≤ s1 ∧ s2

and
∧

i∈I1∪I2
(t1 × t2)σi ≃ ((

∧

i∈I1∪I2
t1σi)× (

∧

i∈I1∪I2
t2σi))

≤ ((
∧

i1∈I1
t1σi1)× (

∧

i2∈I2
t2σi2))

≤ (s1 × s2)

Lemma 9.1.5. Let t1 and t2 be two types and ∆ a set of type variables such that
(var(t1) \∆) ∩ (var(t2) \∆) = ∅. If t1 ⊑∆ s1 and t2 ⊑∆ s2, then t1 ∨ t2 ⊑∆ s1 ∨ s2.
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Proof. Let [σi1 ]i1∈I1 
 t1 ⊑∆ s1 and [σi2 ]i2∈I2 
 t2 ⊑∆ s2. Then we construct another
set of type substitutions [σi1,i2 ]i1∈I1,i2∈I2 such that

σi1,i2(α) =







σi1(α) α ∈ (var(t1) \∆)

σi2(α) α ∈ (var(t2) \∆)

α otherwise

So we have
∧

i1∈I1,i2∈I2
(t1 ∨ t2)σi1,i2 ≃

∧

i1∈I1
(
∧

i2∈I2
(t1 ∨ t2)σi1,i2)

≃
∧

i1∈I1
(
∧

i2∈I2
((t1σi1,i2) ∨ (t2σi1,i2)))

≃
∧

i1∈I1
(
∧

i2∈I2
(t1σi1 ∨ t2σi2))

≃
∧

i1∈I1
(t1σi1 ∨ (

∧

i2∈I2
t2σi2))

≃ (
∧

i1∈I1
t1σi1) ∨ (

∧

i2∈I2
t2σi2)

≤ s1 ∨ s2

Notice that two successive instantiations can be safely merged into one (see Lemma
9.1.6). Henceforth, we assume that there are no successive instantiations in a given
derivation tree. In order to guess where to insert sets of type-substitutions in an
implicitly-typed expression, in the following we consider each typing rule of the explicitly-
typed calculus used in conjunction with the instantiation rule (Alg-inst). If instantia-
tion can be moved through a given typing rule without affecting typability or changing
the result type, then it is not necessary to infer type substitutions at the level of this
rule.

Lemma 9.1.6. Let e be an explicitly-typed expression and [σi]i∈I , [σj ]j∈J two sets of
type substitutions. Then

∆ # Γ ⊢A (e[σi]i∈I)[σj ]j∈J : t ⇐⇒ ∆ # Γ ⊢A e([σj ]j∈J ◦ [σi]i∈I) : t

Proof. =⇒: consider the following derivation:
. . .

∆ # Γ ⊢A e : s σi ♯ ∆

∆ # Γ ⊢A e[σi]i∈I :
∧

i∈I sσi σj ♯ ∆

∆ # Γ ⊢A (e[σi]i∈I)[σj ]j∈J :
∧

j∈J(
∧

i∈I sσi)σj

As σi ♯ ∆, σj ♯ ∆ and dom(σj ◦ σi) = dom(σj) ∪ dom(σi), we have σj ◦ σi ♯ ∆.
Then by (Alg-inst), we have ∆ # Γ ⊢A e([σj ◦ σi]i∈I,j∈J) :

∧

i∈I,j∈J s(σj ◦ σi),
that is ∆ # Γ ⊢A e([σj ]j∈J ◦ [σi]i∈I) :

∧

j∈J(
∧

i∈I sσi)σj .

⇐=: consider the following derivation:
. . .

∆ # Γ ⊢A e : s σj ◦ σi ♯ ∆

∆ # Γ ⊢A e([σj ]j∈J ◦ [σi]i∈I) :
∧

i∈I,j∈J s(σj ◦ σi)

As σj ◦σi ♯ ∆ and dom(σj ◦σi) = dom(σj)∪ dom(σi), we have σi ♯ ∆ and σj ♯ ∆.
Then applying the rule (Alg-inst) twice, we have ∆ # Γ ⊢A (e[σi]i∈I)[σj ]j∈J :
∧

j∈J(
∧

i∈I sσi)σj , that is ∆ # Γ ⊢A (e[σi]i∈I)[σj ]j∈J :
∧

i∈I,j∈J s(σj ◦ σi).
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First of all, consider a typing derivation ending with (Alg-pair) where both of its
sub-derivations end with (Alg-inst)1:

. . .
∆ # Γ ⊢A e1 : t1 ∀j1 ∈ J1. σj1 ♯ ∆

∆ # Γ ⊢A e1[σj1 ]j1∈J1 :
∧

j1∈J1
t1σj1

. . .
∆ # Γ ⊢A e2 : t2 ∀j2 ∈ J2. σj2 ♯ ∆

∆ # Γ ⊢A e2[σj2 ]j2∈J2 :
∧

j2∈J2
t1σj2

∆ # Γ ⊢A (e1[σj1 ]j1∈J1 , e2[σj2 ]j2∈J2) : (
∧

j1∈J1
t1σj1)× (

∧

j2∈J2
t1σj2)

We rewrite such a derivation as follows:
. . .

∆ # Γ ⊢A e1 : t1
. . .

∆ # Γ ⊢A e2 : t2
∆ # Γ ⊢A (e1, e2) : t1 × t2 ∀j ∈ J1 ∪ J2. σj ♯ ∆

∆ # Γ ⊢A (e1, e2)[σj ]j∈J1∪J2 :
∧

j∈J1∪J2
(t1 × t2)σj

Clearly,
∧

j∈J1∪J2
(t1× t2)σj ≤ (

∧

j1∈J1
t1σj1)× (

∧

j2∈J2
t1σj2). Then we can deduce that

(e1, e2)[σj ]j∈J1∪J2 also has the type (
∧

j1∈J1
t1σj1) × (

∧

j2∈J2
t1σj2) by subsumption.

Therefore, we can disregard the sets of type substitutions that are applied inside a
pair, since inferring them outside the pair is equivalent. Hence, we can use the following
inference rule for pairs.

∆ # Γ ⊢I a1 : t1 ∆ # Γ ⊢I a2 : t2
∆ # Γ ⊢I (a1, a2) : t1 × t2

Next, consider a derivation ending of (Alg-proj) whose premise is derived by
(Alg-inst):

. . .
∆ # Γ ⊢A e : t ∀j ∈ J. σj ♯ ∆

∆ # Γ ⊢A e[σj ]j∈J :
∧

j∈J tσj (
∧

j∈J tσj) ≤ 1× 1

∆ # Γ ⊢A πi(e[σj ]j∈J) : πππi(
∧

j∈J tσj)

According to Lemma 8.2.6, we have πππi(
∧

j∈J tσj) ≤
∧

j∈J πππi(t)σj , but the converse does
not necessarily hold. For example, πππ1(((t1 × t2)∨ (s1 ×α \ s2)){s2/α}) = t1{s2/α} while
(πππ1((t1×t2)∨(s1×α\s2))){s2/α} = (t1∨s1){s2/α}. So we cannot exchange the instanti-
ation and projection rules without losing completeness. However, as (

∧

j∈J tσj) ≤ 1×1
and ∀j ∈ J. σj ♯ ∆, we have t ⊑∆ 1 × 1. This indicates that for an implicitly-
typed expression πi(a), if the inferred type for a is t and there exists [σj ]j∈J such that
[σj ]j∈J 
 t ⊑∆ 1× 1, then we infer the type πππi(

∧

j∈J tσj) for πi(a). Let ∐i
∆(t) denote

the set of such result types, that is,

∐i
∆(t) = {u | [σj ]j∈J 
 t ⊑∆ 1× 1, u = πππi(

∧

j∈J

tσj)}

Formally, we have the following inference rule for projections

∆ # Γ ⊢I a : t u ∈ ∐i
∆(t)

∆ # Γ ⊢I πi(a) : u

1If one of the sub-derivations does not end with (Alg-inst), we can apply a trivial instance of
(Alg-inst) with an identity substitution σid.
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The following lemma tells us that ∐i
∆(t) is “morally” closed by intersection, in the

sense that if we take two solutions in ∐i
∆(t), then we can take also their intersection

as a solution, since there always exists in ∐i
∆(t) a solution at least as precise as their

intersection.

Lemma 9.1.7. Let t be a type and ∆ a set of type variables. If u1 ∈ ∐i
∆(t) and

u2 ∈ ∐i
∆(t), then ∃u0 ∈ ∐i

∆(t). u0 ≤ u1 ∧ u2.

Proof. Let [σjk ]jk∈Jk 
 t ⊑∆ 1 × 1 and uk = πππi(
∧

jk∈Jk
tσjk) for k = 1, 2. Then

[σj ]j∈J1∪J2 
 t ⊑∆ 1× 1. So πππi(
∧

j∈J1∪J2
tσj) ∈ ∐i

∆(t). Moreover, by Lemma 8.2.4, we
have

πππi(
∧

j∈J1∪J2

tσj) ≤ πππi(
∧

j1∈J1

tσj1) ∧πππi(
∧

j2∈J2

tσj2) = u1 ∧ u2

Since we only consider λ-abstractions with empty decorations, we can consider the
following simplified version of (Alg-abstr) that does not use relabeling

∀i ∈ I. ∆ ∪ var(
∧

i∈I

(ti → si)) # Γ, x : ti ⊢A e : s′i and s′i ≤ si

∆ # Γ ⊢A λ∧i∈I ti→six.e :
∧

i∈I

(ti → si)
(Alg-abstr0)

Suppose the last rule used in the sub-derivations is (Alg-inst).

∀i ∈ I.







. . .
∆′ # Γ, x : ti ⊢A e : s′i ∀j ∈ J. σj ♯ ∆′

∆′ # Γ, x : ti ⊢A e[σj ]j∈J :
∧

j∈J s
′
iσj∧

j∈J s
′
iσj ≤ si

∆′ = ∆ ∪ var(
∧

i∈I(ti → si))

∆ # Γ ⊢A λ∧i∈I ti→six.e[σj ]j∈J :
∧

i∈I(ti → si)

From the side conditions, we deduce that s′i ⊑∆′ si for all i ∈ I. Instantiation may be
necessary to bridge the gap between the computed type s′i for e and the type si required
by the interface, so inferring type substitutions at this stage is mandatory. Therefore,
we propose the following inference rule for abstractions.

∀i ∈ I.

{
∆ ∪ var(

∧

i∈I ti → si) # Γ, (x : ti) ⊢I a : s′i
s′i ⊑∆∪var(

∧

i∈I ti→si) si

∆ # Γ ⊢I λ∧i∈I ti→six.a :
∧

i∈I ti → si

In the application case, suppose both sub-derivations end with (Alg-inst):

. . .
∆ # Γ ⊢A e1 : t ∀j1 ∈ J1. σj1 ♯ ∆

∆ # Γ ⊢A e1[σj1 ]j1∈J1 :
∧

j1∈J1
tσj1

. . .
∆ # Γ ⊢A e2 : s ∀j2 ∈ J2. σj2 ♯ ∆

∆ # Γ ⊢A e2[σj2 ]j2∈J2 :
∧

j2∈J2
sσj2∧

j1∈J1
tσj1 ≤ 0 → 1

∧

j2∈J2
sσj2 ≤ dom(

∧

j1∈J1
tσj1)

∆ # Γ ⊢A (e1[σj1 ]j1∈J1)(e2[σj2 ]j2∈J2) : (
∧

j1∈J1
tσj1) · (

∧

j2∈J2
sσj2)
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Instantiation may be needed to bridge the gap between the (domain of the) function
type and its argument (e.g., to apply λα→αx.x to 42). The side conditions imply that
[σj1 ]j1∈J1 
 t ⊑∆ 0 → 1 and [σj2 ]j2∈J2 
 s ⊑∆ dom(

∧

j1∈J1
tσj1). Therefore, given an

implicitly-typed application a1a2 where a1 and a2 are typed with t and s respectively,
we have to find two sets of substitutions [σj1 ]j1∈J1 and [σj2 ]j2∈J2 verifying the above
preorder relations to be able to type the application. If such sets of substitutions exist,
then we can type the application with (

∧

j1∈J1
tσj1) · (

∧

j2∈J2
sσj2). Let t •∆ s denote

the set of such result types, that is,

t •∆s
def

=






u

[σi]i∈I 
 t ⊑∆ 0→1
[σj ]j∈J 
 s ⊑∆ dom(

∧

i∈I tσi)
u =

∧

i∈I tσi ·
∧

j∈J sσj







This set is closed under intersection (see Lemma 9.1.8). Formally, we get the following
inference rule for applications

∆ # Γ ⊢I a1 : t ∆ # Γ ⊢I a2 : s u ∈ t •∆s

∆ # Γ ⊢I a1a2 : u

Lemma 9.1.8. Let t, s be two types and ∆ a set of type variables. If u1 ∈ t •∆s and
u2 ∈ t •∆s, then ∃u0 ∈ t •∆s. u0 ≤ u1 ∧ u2.

Proof. Let uk = (
∧

ik∈Ik
tσik) · (

∧

jk∈Jk
sσjk) for k = 1, 2. According to Lemma 8.2.15,

we have (
∧

i∈I1∪I2
tσi) · (

∧

j∈J1∪J2
sσj) ∈ t •∆ s and (

∧

i∈I1∪I2
tσi) · (

∧

j∈J1∪J2
sσj) ≤

∧

k=1,2(
∧

ik∈Ik
tσik) · (

∧

jk∈Jk
sσjk) = u1 ∧ u2.

For type cases, we distinguish the four possible behaviours: (i) no branch is se-
lected, (ii) the first branch is selected, (iii) the second branch is selected, and (iv)
both branches are selected. In all these cases, we assume that the premises end with
(Alg-inst). In case (i), we have the following derivation:

. . .
∆ # Γ ⊢A e : t′ ∀j ∈ J. σj ♯ ∆

∆ # Γ ⊢A e[σj ]j∈J :
∧

j∈J t
′σj

∧

j∈J t
′σj ≤ 0

∆ # Γ ⊢A (e[σj ]j∈J)∈t ? e1 : e2 : 0

Clearly, the side conditions implies t′ ⊑∆ 0. The type inference rule for implicitly-typed
expressions corresponding to this case is then

∆ # Γ ⊢I a : t′ t′ ⊑∆ 0

∆ # Γ ⊢I (a∈t ? a1 : a2) : 0

For case (ii), consider the following derivation:

. . .
∆ # Γ ⊢A e : t′ σj ♯ ∆

∆ # Γ ⊢A e[σj ]j∈J :
∧

j∈J t
′σj

∧

j∈J t
′σj ≤ t

. . .
∆ # Γ ⊢A e1 : s1 σj1 ♯ ∆

∆ # Γ ⊢A e1[σj1 ]j1∈J1 :
∧

j1∈J1
s1σj1

∆ # Γ ⊢A (e[σj ]j∈J)∈t ? (e1[σj1 ]j1∈J1) : e2 :
∧

j1∈J1
s1σj1
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First, such a derivation can be rewritten as
. . .

∆ # Γ ⊢A e : t′ σj ♯ ∆

∆ # Γ ⊢A e[σj ]j∈J :
∧

j∈J t
′σj

∧

j∈J t
′σj ≤ t

. . .
∆ # Γ ⊢A e1 : s1

∆ # Γ ⊢A (e[σj ]j∈J)∈t ? e1 : e2 : s1 σj1 ♯ ∆

∆ # Γ ⊢A ((e[σj ]j∈J)∈t ? e1 : e2)[σj1 ]j1∈J1) :
∧

j1∈J1
s1σj1

This indicates that it is equivalent to apply the substitutions [σj1 ]j1∈J1 to e1 or to the
whole type case expression. Looking at the derivation for e, for the first branch to
be selected we must have t′ ⊑∆ t. Note that if t′ ⊑∆ ¬t, we would have t′ ⊑∆ 0 by
Lemma 9.1.4, and no branch would be selected. Consequently, the type inference rule
for a type case where the first branch is selected is as follows.

∆ # Γ ⊢I a : t′ t′ ⊑∆ t t′ 6⊑∆ ¬t ∆ # Γ ⊢I a1 : s

∆ # Γ ⊢I (a∈t ? a1 : a2) : s

Case (iii) is similar to case (ii) where t is replaced by ¬t.
At last, consider a derivation of Case (iv):







. . .
∆ # Γ ⊢A e : t′ ∀j ∈ J. σj ♯ ∆

∆ # Γ ⊢A e[σj ]j∈J :
∧

j∈J t
′σj

∧

j∈J t
′σj 6≤ ¬t and

. . .
∆ # Γ ⊢A e1 : s1 ∀j1 ∈ J1. σj1 ♯ ∆

∆ # Γ ⊢A e1[σj1 ]j1∈J1 :
∧

j1∈J1
s1σj1

∧

j∈J t
′σj 6≤ t and

. . .
∆ # Γ ⊢A e2 : s2 ∀j2 ∈ J2. σj2 ♯ ∆

∆ # Γ ⊢A e2[σj2 ]j2∈J2 :
∧

j2∈J2
s2σj2

∆ # Γ ⊢A (e[σj ]j∈J∈t ? (e1[σj1 ]j1∈J1) : (e2[σj2 ]j2∈J2)) :
∧

j1∈J1
s1σj1 ∨

∧

j2∈J2
s2σj2

Using α-conversion if necessary, we can assume that the polymorphic type variables of e1
and e2 are distinct, and therefore we have (var(s1) \∆) ∩ (var(s2) \∆) = ∅. According
to Lemma 9.1.5, we get s1 ∨ s2 ⊑∆

∧

j1∈J1
s1σj1 ∨

∧

j2∈J2
s2σj2 . Let [σj12 ]j12∈J12 


s1 ∨ s2 ⊑∆
∧

j1∈J1
s1σj1 ∨

∧

j2∈J2
s2σj2 . We can rewrite this derivation as







. . .
∆ # Γ ⊢A e : t′ ∀j ∈ J. σj ♯ ∆

∆ # Γ ⊢A e[σj ]j∈J :
∧

j∈J t
′σj

∧

j∈J t
′σj 6≤ ¬t and

. . .
∆ # Γ ⊢A e1 : s1

∧

j∈J t
′σj 6≤ t and

. . .
∆ # Γ ⊢A e2 : s2

∆ # Γ ⊢A (e[σj ]j∈J∈t ? e1 : e2) : s1 ∨ s2 ∀j12 ∈ J12. σj12 ♯ ∆

∆ # Γ ⊢A ((e[σj ]j∈J∈t ? e1 : e2)[σj12 ]j12∈J12) :
∧

j12∈J12
(s1 ∨ s2)σj12

As
∧

j12∈J12
(s1 ∨ s2)σj12 ≤

∧

j1∈J1
s1σj1 ∨

∧

j2∈J2
s2σj2 , by subsumption, we can deduce

that (e[σj ]j∈J∈t ? e1 : e2)[σj12 ]j12∈J12 has the type
∧

j1∈J1
s1σj1 ∨

∧

j2∈J2
s2σj2 . Hence,

we eliminate the substitutions that are applied to these two branches.
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We now consider the part of the derivation tree which concerns e. With the specific
set of substitutions [σj ]j∈J , we have

∧

j∈J t
′σj 6≤ ¬t and

∧

j∈J t
′σj 6≤ t, but it does

not mean that we have t′ 6⊑∆ t and t′ 6⊑∆ ¬t in general. If t′ ⊑∆ t and/or t′ ⊑∆ ¬t
hold, then we are in one of the previous cases (i) − (iii) (i.e., we type-check at most
one branch), and the inferred result type for the whole type case belongs to 0, s1 or
s2. We can then use subsumption to type the whole type-case expression with s1 ∨ s2.
Otherwise, both branches are type-checked, and we deduce the corresponding inference
rule as follows.

∆ # Γ ⊢I a : t′
{

t′ 6⊑∆ ¬t and ∆ # Γ ⊢I a1 : s1
t′ 6⊑∆ t and ∆ # Γ ⊢I a2 : s2

∆ # Γ ⊢I (a∈t ? a1 : a2) : s1 ∨ s2

From the study above, we deduce the type-substitution inference rules for implicitly-
typed expressions given in Figure 9.1.

9.2 Soundness and completeness

We now prove that the inference rules of the implicitly-typed calculus given in Figure
9.1 are sound and complete with respect to the type system of the explicitly-typed
calculus.

To construct an explicitly-typed expression from an implicitly-typed one a, we have
to insert sets of substitutions in a each time a preorder check is performed in the rules
of Figure 9.1. For an abstraction λ∧i∈I ti→six.a, different sets of substitutions may be
constructed when type checking the body under the different hypotheses x : ti. For
example, let a = λ(Int→Int)∧(Bool→Bool)x.(λα→αy.y)x. When a is type-checked against
Int → Int, that is, x is assumed to have type Int, we infer the type substitution
{Int/α} for (λα→αy.y). Similarly, we infer {Bool/α} for (λα→αy.y), when a is type-
checked against Bool → Bool. We have to collect these two different substitutions
when constructing the explicitly-typed expression e which corresponds to a. To this
end, we introduce an intersection operator e ⊓ e′ of expressions which is defined only
for pair of expressions that have similar structure but different type substitutions.
For example, the intersection of (λα→αy.y)[{Int/α}]x and (λα→αy.y)[{Bool/α}]x will be
(λα→αy.y)[{Int/α}, {Bool/α}]x.

Definition 9.2.1. Let e, e′ ∈ E0 be two expressions. Their intersection e⊓e′ is defined
by induction as:

c ⊓ c = c
x ⊓ x = x

(e1, e2) ⊓ (e′1, e
′
2) = ((e1 ⊓ e′1), (e2 ⊓ e′2))

πi(e) ⊓ πi(e
′) = πi(e ⊓ e′)

e1e2 ⊓ e′1e
′
2 = (e1 ⊓ e′1)(e2 ⊓ e′2)

(λ∧i∈I ti→six.e) ⊓ (λ∧i∈I ti→six.e′) = λ∧i∈I ti→six.(e ⊓ e′)
(e0∈t ? e1 : e2) ⊓ (e′0∈t ? e

′
1 : e′2) = e0 ⊓ e′0∈t ? e1 ⊓ e′1 : e2 ⊓ e′2

(e1[σj ]j∈J) ⊓ (e′1[σj ]j∈J ′) = (e1 ⊓ e′1)[σj ]j∈J∪J ′

e ⊓ (e′1[σj ]j∈J ′) = (e[σid]) ⊓ (e′1[σj ]j∈J ′) if e 6= e1[σj ]j∈J
(e1[σj ]j∈J) ⊓ e′ = (e1[σj ]j∈J) ⊓ (e′[σid]) if e′ 6= e′1[σj ]j∈J ′
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∆ # Γ ⊢I c : bc
(Inf-const)

∆ # Γ ⊢I x : Γ(x)
(Inf-var)

∆ # Γ ⊢I a1 : t1 ∆ # Γ ⊢I a2 : t2

∆ # Γ ⊢I (a1, a2) : t1 × t2
(Inf-pair)

∆ # Γ ⊢I a : t u ∈ ∐i
∆(t)

∆ # Γ ⊢I πi(a) : u
(Inf-proj)

∆ # Γ ⊢I a1 : t ∆ # Γ ⊢I a2 : s u ∈ t •∆s

∆ # Γ ⊢I a1a2 : u
(Inf-appl)

∀i ∈ I.







∆ ∪ var(
∧

i∈I

ti → si) # Γ, (x : ti) ⊢I a : s′i

s′i ⊑∆∪var(
∧

i∈I ti→si) si

∆ # Γ ⊢I λ∧i∈I ti→six.a :
∧

i∈I

ti → si
(Inf-abstr)

∆ # Γ ⊢I a : t′ t′ ⊑∆ 0

∆ # Γ ⊢I (a∈t ? a1 : a2) : 0
(Inf-case-none)

∆ # Γ ⊢I a : t′ t′ ⊑∆ t t′ 6⊑∆ ¬t ∆ # Γ ⊢I a1 : s

∆ # Γ ⊢I (a∈t ? a1 : a2) : s
(Inf-case-fst)

∆ # Γ ⊢I a : t′ t′ ⊑∆ ¬t t′ 6⊑∆ t ∆ # Γ ⊢I a2 : s

∆ # Γ ⊢I (a∈t ? a1 : a2) : s
(Inf-case-snd)

∆ # Γ ⊢I a : t′
{

t′ 6⊑∆ ¬t and ∆ # Γ ⊢I a1 : s1
t′ 6⊑∆ t and ∆ # Γ ⊢I a2 : s2

∆ # Γ ⊢I (a∈t ? a1 : a2) : s1 ∨ s2
(Inf-case-both)

Figure 9.1: Type-substitution inference rules

where σid is the identity type substitution and is undefined otherwise.

The intersection of a same constant or a same variable is the constant or the vari-
able itself. If e and e′ have the same form, then their intersection is defined if their
intersections of the corresponding sub-expressions are defined. In particular when
e is form of e1[σj ]j∈J and e′ is form of e′1[σj ]j∈J ′ , we merge the sets of substitu-
tions [σj ]j∈J and [σj ]j∈J ′ into one set [σj ]j∈J∪J ′ . Otherwise, e and e′ have different
forms. The only possible case for their intersection is they have similar structure but
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one with instantiations and the other without (i.e., e = e1[σj ]j∈J , e
′ 6= e′1[σj ]j∈J ′ or

e 6= e1[σj ]j∈J , e
′ = e′1[σj ]j∈J ′). To keep the inferred information and reuse the defined

cases above, we add the identity substitution σid to the one without substitutions (i.e.,
e′[σid] or e[σid]) to make them have the same form. Note that σid is important so
as to keep the information we have inferred. Let us infer the substitutions for the
abstraction λ(t1→s1)∧(t2→s2)x.e. Assume that we have inferred some substitutions for
the body e under t1 → s1 and t2 → s2 respectively, yielding two explicitly-typed ex-
pressions e1 and e2[σj ]j∈J . If we did not add the identity substitution σid for the
intersection of e1 and e2[σj ]j∈J , that is, e1 ⊓ (e2[σj ]j∈J) were (e1 ⊓ e2)[σj ]j∈J rather
than (e1 ⊓ e2)([σid] ∪ [σj ]j∈J), then the substitutions we inferred under t1 → s1 would
be lost since they may be modified by [σj ]j∈J .

Lemma 9.2.2. Let e, e′ ∈ E0 be two expressions. If erase(e) = erase(e′), then e ⊓ e′

exists and erase(e ⊓ e′) = erase(e) = erase(e′).

Proof. By induction on the structures of e and e′. Because erase(e) = erase(e′), the
two expressions have the same structure up to their sets of type substitutions.

c, c: straightforward.

x, x: straightforward.

(e1, e2), (e′1, e
′
2): we have erase(ei) = erase(e′i). By induction, ei⊓e

′
i exists and erase(ei⊓

e′i) = erase(ei) = erase(e′i). Therefore (e1, e2) ⊓ (e′1, e
′
2) exists and

erase((e1, e2) ⊓ (e′1, e
′
2)) = erase(((e1 ⊓ e′1), (e2 ⊓ e′2)))

= (erase(e1 ⊓ e′1), erase(e2 ⊓ e′2))
= (erase(e1), erase(e2))
= erase((e1, e2))

Similarly, we also have erase((e1, e2) ⊓ (e′1, e
′
2)) = erase((e′1, e

′
2)).

πi(e), πi(e′): we have erase(e) = erase(e′). By induction, e⊓e′ exists and erase(e⊓e′) =
erase(e) = erase(e′). Therefore πi(e) ⊓ πi(e

′) exists and

erase(πi(e) ⊓ πi(e
′)) = erase(πi(e ⊓ e′))

= πi(erase(e ⊓ e′))
= πi(erase(e))
= erase(πi(e))

Similarly, we also have erase(πi(e) ⊓ πi(e
′)) = erase(πi(e

′)).

e1e2, e′1e
′
2: we have erase(ei) = erase(e′i). By induction, ei⊓e

′
i exists and erase(ei⊓e

′
i) =

erase(ei) = erase(e′i). Therefore e1e2 ⊓ e′1e
′
2 exists and

erase((e1e2) ⊓ (e′1e
′
2)) = erase((e1 ⊓ e′1)(e2 ⊓ e′2))

= erase(e1 ⊓ e′1)erase(e2 ⊓ e′2)
= erase(e1)erase(e2)
= erase(e1e2)

Similarly, we also have erase((e1e2) ⊓ (e′1e
′
2)) = erase(e′1e

′
2).
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λ∧i∈I ti→six.e, λ∧i∈I ti→six.e′: we have erase(e) = erase(e′). By induction, e ⊓ e′ exists
and erase(e⊓e′) = erase(e) = erase(e′). Therefore (λ∧i∈I ti→six.e)⊓(λ∧i∈I ti→six.e′)
exists and

erase((λ∧i∈I ti→six.e) ⊓ (λ∧i∈I ti→six.e′)) = erase(λ∧i∈I ti→six.(e ⊓ e′))
= λ∧i∈I ti→six.erase((e ⊓ e′))
= λ∧i∈I ti→six.erase(e)
= erase(λ∧i∈I ti→six.e)

Similarly, we also have

erase((λ∧i∈I ti→six.e) ⊓ (λ∧i∈I ti→six.e′)) = erase(λ∧i∈I ti→six.e′)

e0∈t ? e1 : e2, e′0∈t ? e
′
1 : e′2: we have erase(ei) = erase(e′i). By induction, ei ⊓ e′i exists

and erase(ei⊓e
′
i) = erase(ei) = erase(e′i). Therefore (e0∈t ? e1 : e2)⊓(e

′
0∈t ? e

′
1 : e′2)

exists and

erase((e0∈t ? e1 : e2) ⊓ (e′0∈t ? e
′
1 : e′2))

= erase((e0 ⊓ e′0)∈t ? (e1 ⊓ e′1) : (e2 ⊓ e′2))
= erase(e0 ⊓ e′0)∈t ? erase(e1 ⊓ e′1) : erase(e2 ⊓ e′2)
= erase(e0)∈t ? erase(e1) : erase(e2)
= erase(e0∈t ? e1 : e2)

Similarly, we also have

erase((e0∈t ? e1 : e2) ⊓ (e′0∈t ? e
′
1 : e′2)) = erase(e′0∈t ? e

′
1 : e′2)

e[σj ]j∈J , e′[σj ]j∈J ′: we have erase(e) = erase(e′). By induction, e ⊓ e′ exists and

erase(e ⊓ e′) = erase(e) = erase(e′). Therefore (e[σj ]j∈J) ⊓ (e′[σj ]j∈J ′) exists
and

erase((e[σj ]j∈J) ⊓ (e′[σj ]j∈J ′)) = erase((e ⊓ e′)[σj ]j∈J∪J ′)
= erase(e ⊓ e′)
= erase(e)
= erase(e[σj ]j∈J)

Similarly, we also have erase((e[σj ]j∈J) ⊓ (e′[σj ]j∈J ′)) = erase(e′[σj ]j∈J ′).

e, e′[σj ]j∈J ′: a special case of e[σj ]j∈J and e′[σj ]j∈J ′ where [σj ]j∈J = [σid].

e[σj ]j∈J , e′: a special case of e[σj ]j∈J and e′[σj ]j∈J ′ where [σj ]j∈J ′ = [σid].

Lemma 9.2.3. Let e, e′ ∈ E0 be two expressions. If erase(e) = erase(e′), ∆ # Γ ⊢ e : t,
∆′ # Γ′ ⊢ e′ : t′, e ♯ ∆′ and e′ ♯ ∆, then ∆ # Γ ⊢ e ⊓ e′ : t and ∆′ # Γ′ ⊢ e ⊓ e′ : t′ .

Proof. According to Lemma 9.2.2, e⊓ e′ exists and erase(e⊓ e′) = erase(e) = erase(e′).
We only prove ∆ # Γ ⊢ e ⊓ e′ : t as the other case is similar. For simplicity, we just
consider one set of type substitutions. For several sets of type substitutions, we can
either compose them or apply (instinter) several times. The proof proceeds by induction
on ∆ # Γ ⊢ e : t.
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(const): ∆#Γ ⊢ c : bc. As erase(e′) = c, e′ is either c or c[σj ]j∈J . If e′ = c, then e⊓e′ = c,
and the result follows straightforwardly. Otherwise, we have e⊓e′ = c[σid, σj ]j∈J .
Since e′ ♯ ∆, we have σj ♯ ∆. By (instinter), we have ∆ # Γ ⊢ c[σid, σj ]j∈J :
bc ∧

∧

j∈J bcσj , that is, ∆ # Γ ⊢ c[σid, σj ]j∈J : bc.

(var): Γ ⊢ x : Γ(x). As erase(e′) = x, e′ is either x or x[σj ]j∈J . If e′ = x, then e⊓e′ = x,
and the result follows straightforwardly. Otherwise, we have e⊓e′ = x[σid, σj ]j∈J .
Since e′ ♯ ∆, we have σj ♯ ∆. By (instinter), we have ∆ # Γ ⊢ x[σid, σj ]j∈J :
Γ(x) ∧

∧

j∈J Γ(x)σj , that is, ∆ # Γ ⊢ x[σid, σj ]j∈J : Γ(x).

(pair): consider the following derivation:

. . .
∆ # Γ ⊢ e1 : t1

. . .
∆ # Γ ⊢ e2 : t2

∆ # Γ ⊢ (e1, e2) : t1 × t2
(pair)

As erase(e′) = (erase(e1), erase(e2)), e′ is either (e′1, e
′
2) or (e′1, e

′
2)[σj ]j∈J such

that erase(e′i) = erase(ei). By induction, we have ∆ # Γ ⊢ ei ⊓ e′i : ti. Then
by (pair), we have ∆ # Γ ⊢ (e1 ⊓ e′1, e2 ⊓ e′2) : (t1 × t2). If e′ = (e′1, e

′
2), then

e ⊓ e′ = (e1 ⊓ e′1, e2 ⊓ e′2). So the result follows.
Otherwise, e⊓ e′ = (e1 ⊓ e′1, e2 ⊓ e′2)[σid, σj ]j∈J . Since e′ ♯ ∆, we have σj ♯ ∆. By
(instinter), we have ∆ #Γ ⊢ (e1⊓e′1, e2⊓e′2)[σid, σj ]j∈J : (t1× t2)∧

∧

j∈J(t1× t2)σj .
Finally, by (subsum), we get ∆ # Γ ⊢ (e1 ⊓ e′1, e2 ⊓ e′2)[σid, σj ]j∈J : (t1 × t2).

(proj): consider the following derivation:

. . .
∆ # Γ ⊢ e0 : t1 × t2
∆ # Γ ⊢ πi(e0) : ti

(proj)

As erase(e′) = πi(erase(e0)), e
′ is either πi(e

′
0) or πi(e

′
0)[σj ]j∈J such that erase(e′0) =

erase(e0). By induction, we have ∆ # Γ ⊢ e0 ⊓ e′0 : (t1 × t2). Then by (proj), we
have ∆ # Γ ⊢ πi(e0 ⊓ e′0) : ti. If e′ = πi(e

′
0), then e⊓ e′ = πi(e0 ⊓ e′0). So the result

follows.
Otherwise, e ⊓ e′ = πi(e0 ⊓ e′0)[σid, σj ]j∈J . Since e′ ♯ ∆, we have σj ♯ ∆. By
(instinter), we have ∆ # Γ ⊢ πi(e0 ⊓ e′0)[σid, σj ]j∈J : ti ∧

∧

j∈J tiσj . Finally, by
(subsum), we get ∆ # Γ ⊢ πi(e0 ⊓ e′0)[σid, σj ]j∈J : ti.

(appl): consider the following derivation:

. . .
∆ # Γ ⊢ e1 : t → s

. . .
∆ # Γ ⊢ e2 : t

∆ # Γ ⊢ e1e2 : s
(pair)

As erase(e′) = erase(e1)erase(e2), e′ is either e′1e
′
2 or (e′1e

′
2)[σj ]j∈J such that

erase(e′i) = erase(ei). By induction, we have ∆ # Γ ⊢ e1 ⊓ e′1 : t → s and
∆ # Γ ⊢ e2 ⊓ e′2 : t. Then by (appl), we have ∆ # Γ ⊢ (e1 ⊓ e′1)(e2 ⊓ e′2) : s.
If e′ = e′1e

′
2, then e ⊓ e′ = (e1 ⊓ e′1)(e2 ⊓ e′2). So the result follows.

Otherwise, e⊓e′ = ((e1⊓e′1)(e2⊓e′2))[σid, σj ]j∈J . Since e′ ♯ ∆, we have σj ♯ ∆. By
(instinter), we have ∆ # Γ ⊢ ((e1 ⊓ e′1)(e2 ⊓ e′2))[σid, σj ]j∈J : s∧

∧

j∈J sσj . Finally,
by (subsum), we get ∆ # Γ ⊢ ((e1 ⊓ e′1)(e2 ⊓ e′2))[σid, σj ]j∈J : s.
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(abstr): consider the following derivation:

∀i ∈ I.
. . .

∆′′ # Γ, (x : ti) ⊢ e0 : si
∆′′ = ∆ ∪ var(

∧

i∈I ti → si)

∆ # Γ ⊢ λ∧i∈I ti→six.e0 :
∧

i∈I ti → si
(abstr)

As erase(e′) = λ∧i∈I ti→six.erase(e0), e
′ is either λ∧i∈I ti→six.e′0 or

(λ∧i∈I ti→six.e′0)[σj ]j∈J such that erase(e′0) = erase(e0). As λ∧i∈I ti→six.e′0 is well-
typed under ∆′ and Γ′, e′0 ♯ ∆′ ∪ var(

∧

i∈I ti → si). By induction, we have
∆′′ #Γ, (x : ti) ⊢ e0 ⊓ e′0 : si. Then by (abstr), we have ∆ #Γ ⊢ λ∧i∈I ti→six.e0 ⊓ e′0 :∧

i∈I ti → si. If e′ = λ∧i∈I ti→six.e′0, then e⊓e′ = λ∧i∈I ti→six.e0⊓e′0. So the result
follows.
Otherwise, e⊓ e′ = (λ∧i∈I ti→six.e0 ⊓ e′0)[σid, σj ]j∈J . Since e′ ♯ ∆, we have σj ♯ ∆.
By (instinter), we have ∆ # Γ ⊢ (λ∧i∈I ti→six.e0 ⊓ e′0)[σid, σj ]j∈J : (

∧

i∈I ti →
si)∧

∧

j∈J(
∧

i∈I ti → si)σj . Finally, by (subsum), we get ∆ #Γ ⊢ (λ∧i∈I ti→six.e0 ⊓
e′0)[σid, σj ]j∈J :

∧

i∈I ti → si.

(case): consider the following derivation

. . .
∆ # Γ ⊢ e0 : t

′







t′ 6≤ ¬t ⇒
. . .

∆ # Γ ⊢ e1 : s

t′ 6≤ t ⇒
. . .

∆ # Γ ⊢ e2 : s

∆ # Γ ⊢ (e0∈t ? e1 : e2) : s
(case)

As erase(e′) = erase(e0)∈t ? erase(e1) : erase(e2), e
′ is either e′0∈t ? e

′
1 : e′2 or

(e′0∈t ? e
′
1 : e′2)[σj ]j∈J such that erase(e′i) = erase(ei). By induction, we have

∆ # Γ ⊢ e0 ⊓ e′0 : t′ and ∆ # Γ ⊢ ei ⊓ e′i : s. Then by (case), we have ∆ # Γ ⊢
((e0 ⊓ e′0)∈t ? (e1 ⊓ e′1) : (e2 ⊓ e′2)) : s. If e′ = e′0∈t ? e

′
1 : e′2, then e ⊓ e′ =

(e0 ⊓ e′0)∈t ? (e1 ⊓ e′1) : (e2 ⊓ e′2). So the result follows.
Otherwise, e⊓ e′ = ((e0 ⊓ e′0)∈t ? (e1 ⊓ e′1) : (e2 ⊓ e′2))[σid, σj ]j∈J . Since e′ ♯ ∆, we
have σj ♯ ∆. By (instinter), we have ∆ # Γ ⊢ ((e0 ⊓ e′0)∈t ? (e1 ⊓ e′1) : (e2 ⊓
e′2))[σid, σj ]j∈J : s ∧

∧

j∈J sσj . Finally, by (subsum), we get ∆ # Γ ⊢ ((e0 ⊓
e′0)∈t ? (e1 ⊓ e′1) : (e2 ⊓ e′2))[σid, σj ]j∈J : s.

(instinter): consider the following derivation:

. . .
∆ # Γ ⊢ e0 : t σj ♯ ∆

∆ # Γ ⊢ e0[σj ]j∈J :
∧

j∈J tσj
(instinter)

As erase(e′) = erase(e0), e′ is either e′0 or e′0[σj ]j∈J ′ such that erase(e′0) =
erase(e0). By induction, we have ∆ #Γ ⊢ e0 ⊓ e′0 : t. If e′ = e′0, then e⊓ e′ = (e0 ⊓
e′0)[σj , σid]j∈J . By (instinter), we have ∆ # Γ ⊢ (e0 ⊓ e′0)[σj , σid]j∈J :

∧

j∈J tσj ∧ t.
Finally, by (subsum), we get ∆ # Γ ⊢ (e0 ⊓ e′0)[σj , σid]j∈J :

∧

j∈J tσj .
Otherwise, e⊓ e′ = (e0 ⊓ e′0)[σj ]j∈J∪J ′ . Since e′ ♯ ∆, we have σj ♯ ∆ for all j ∈ J ′.
By (instinter), we have ∆ # Γ ⊢ (e0 ⊓ e′0)[σj ]j∈J∪J ′ :

∧

j∈J∪J ′ tσj . Finally, by
(subsum), we get ∆ # Γ ⊢ (e0 ⊓ e′0)[σj ]j∈J∪J ′ :

∧

j∈J tσj .
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(subsum): there exists a type s such that

. . .
∆ # Γ ⊢ e : s s ≤ t

∆ # Γ ⊢ e : t
(subsum)

By induction, we have ∆ # Γ ⊢ e ⊓ e′ : s. Then the rule (subsum) gives us
∆ # Γ ⊢ e ⊓ e′ : t.

Corollary 9.2.4. Let e, e′ ∈ E0 be two expressions. If erase(e) = erase(e′), ∆ # Γ ⊢A

e : t, ∆′ # Γ′ ⊢A e′ : t′, e ♯ ∆′ and e′ ♯ ∆, then

1. there exists s such that ∆ # Γ ⊢A e ⊓ e′ : s and s ≤ t .

2. there exists s′ such that ∆′ # Γ′ ⊢A e ⊓ e′ : s′ and s′ ≤ t′ .

Proof. Immediate consequence of Lemma 9.2.3 and Theorems 8.2.19 and 8.2.20.

These type-substitution inference rules are sound and complete with respect to the
typing algorithm in Section 8.2, modulo the restriction that all the decorations in the
λ-abstractions are empty.

Theorem 9.2.5 (Soundness). If ∆ # Γ ⊢I a : t, then there exists an explicitly-typed
expression e ∈ E0 such that erase(e) = a and ∆ # Γ ⊢A e : t.

Proof. By induction on the derivation of ∆ # Γ ⊢I a : t. We proceed by a case analysis
of the last rule used in the derivation.

(Inf-const): straightforward (take e as c).

(Inf-var): straightforward (take e as x).

(Inf-pair): consider the derivation

. . .
∆ # Γ ⊢I a1 : t1

. . .
∆ # Γ ⊢I a2 : t2

∆ # Γ ⊢I (a1, a2) : t1 × t2

Applying the induction hypothesis, there exists an expression ei such that erase(ei) =
ai and ∆ # Γ ⊢A ei : ti. Then by (Alg-pair), we have ∆ # Γ ⊢A (e1, e2) : t1 × t2.
Moreover, according to Definition 9.1.2, we have

erase((e1, e2)) = (erase(e1), erase(e2)) = (a1, a2).

(Inf-proj): consider the derivation

. . .
∆ # Γ ⊢I a : t u ∈ ∐i

∆(t)

∆ # Γ ⊢I πi(a) : u

By induction, there exists an expression e such that erase(e) = a and ∆ # Γ ⊢A

e : t. Let u = πππi(
∧

i∈I tσi). As σi ♯ ∆, by (Alg-inst), we have ∆ # Γ ⊢A

e[σi]i∈I :
∧

i∈I tσi. Moreover, since
∧

i∈I tσi ≤ 1 × 1, by (Alg-proj), we get
∆ # Γ ⊢A πi(e[σi]i∈I) : πππi(

∧

i∈I tσi). Finally, according to Definition 9.1.2, we
have

erase(πi(e[σi]i∈I)) = πi(erase(e[σi]i∈I)) = πi(erase(e)) = πi(a)
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(Inf-appl): consider the derivation

. . .
∆ # Γ ⊢I a1 : t

. . .
∆ # Γ ⊢I a2 : s u ∈ t •∆s

∆ # Γ ⊢I a1a2 : u

By induction, we have that (i) there exists an expression e1 such that erase(e1) =
a1 and ∆#Γ ⊢A e1 : t and (ii) there exists an expression e2 such that erase(e2) = a2
and ∆ # Γ ⊢A e2 : s. Let u = (

∧

i∈I tσi) · (
∧

j∈J sσj). As σh ♯ ∆ for h ∈ I ∪ J ,
applying (Alg-inst), we get ∆ #Γ ⊢A e1[σi]i∈I :

∧

i∈I tσi and ∆ #Γ ⊢A e2[σj ]j∈J :
∧

j∈J sσj . Then by (Alg-appl), we have ∆#Γ ⊢A (e1[σi]i∈I)(e2[σj ]j∈J) : (
∧

i∈I tσi)·
(
∧

j∈J sσj). Furthermore, according to Definition 9.1.2, we have

erase((e1[σi]i∈I)(e2[σj ]j∈J)) = erase(e1)erase(e2) = a1a2

(Inf-abstr): consider the derivation

∀i ∈ I.

{ . . .
∆ ∪ var(

∧

i∈I ti → si) # Γ, (x : ti) ⊢I a : s′i
s′i ⊑∆∪var(

∧

i∈I ti→si) si

∆ # Γ ⊢I λ∧i∈I ti→six.a :
∧

i∈I ti → si

Let ∆′ = ∆ ∪ var(
∧

i∈I ti → si) and [σji ]ji∈Ji 
 s′i ⊑∆′ si. By induction, there
exists an expression ei such that erase(ei) = a and ∆′ # Γ, (x : ti) ⊢A ei : s

′
i for

all i ∈ I. Since σji ♯ ∆′, by (Alg-inst), we have ∆′ # Γ, (x : ti) ⊢A ei[σji ]ji∈Ji :∧

ji∈Ji
s′iσji . Clearly, ei[σji ]ji∈Ji ♯ ∆

′ and erase(ei[σji ]ji∈Ji) = erase(ei) = a. Then
by Lemma 9.2.2, the intersection

d
i∈I(ei[σji ]ji∈Ji) exists and we have

erase(
d

i∈I′(ei[σji ]ji∈Ji)) = a for any non-empty I ′ ⊆ I. Let e =
d

i∈I(ei[σji ]ji∈Ji).
According to Corollary 9.2.4, there exists a type t′i such that ∆′#Γ, (x : ti) ⊢A e : t′i
and t′i ≤

∧

ji∈Ji
s′iσji for all i ∈ I. Moreover, since t′i ≤

∧

ji∈Ji
s′iσji ≤ si, by

(Alg-abstr), we have ∆ # Γ ⊢A λ∧i∈I ti→six.e :
∧

i∈I(ti → si). Finally, according
to Definition 9.1.2, we have

erase(λ∧i∈I ti→six.e) = λ∧i∈I ti→six.erase(e) = λ∧i∈I ti→six.a

(Inf-case-none): consider the derivation

. . .
∆ # Γ ⊢I a : t′ t′ ⊑∆ 0

∆ # Γ ⊢I (a∈t ? a1 : a2) : 0

By induction, there exists an expression e such that erase(e) = a and ∆ # Γ ⊢A

e : t′. Let [σi]i∈I 
 t′ ⊑∆ 0. Since σi ♯ ∆, by (Alg-inst), we have ∆ # Γ ⊢A

e[σi]i∈I :
∧

i∈I t
′σi. Let e1 and e2 be two expressions such that erase(e1) = a1 and

erase(e2) = a2. Then we have

erase((e[σi]i∈I)∈t ? e1 : e2) = (a∈t ? a1 : a2)

Moreover, since
∧

i∈I t
′σi ≤ 0, by (Alg-case-none), we have

∆ # Γ ⊢A ((e[σi]i∈I)∈t ? e1 : e2) : 0
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(Inf-case-fst): consider the derivation
. . .

∆ # Γ ⊢I a : t′ t′ ⊑∆ t t′ 6⊑∆ ¬t
. . .

∆ # Γ ⊢I a1 : s

∆ # Γ ⊢I (a∈t ? a1 : a2) : s

By induction, there exist e, e1 such that erase(e) = a, erase(e1) = a1, ∆ # Γ ⊢A

e : t′, and ∆ # Γ ⊢A e1 : s. Let [σi1 ]i1∈I1 
 t′ ⊑∆ t. Since σi1 ♯ ∆, applying
(Alg-inst), we get ∆ # Γ ⊢A e[σi1 ]i1∈I1 :

∧

i1∈I1
t′σi1 . Let e2 be an expression

such that erase(e2) = a2. Then we have

erase((e[σi1 ]i1∈I1)∈t ? e1 : e2) = (a∈t ? a1 : a2)

Finally, since
∧

i1∈I1
t′σi1 ≤ t, by (Alg-case-fst), we have

∆ # Γ ⊢A ((e[σi1 ]i1∈I1)∈t ? e1 : e2) : s

(Inf-case-snd): similar to the case of (Inf-case-fst).

(Inf-case-both): consider the derivation

. . .
∆ # Γ ⊢I a : t′







t′ 6⊑∆ ¬t and
. . .

∆ # Γ ⊢I a1 : s1

t′ 6⊑∆ t and
. . .

∆ # Γ ⊢I a2 : s2

∆ # Γ ⊢I (a∈t ? a1 : a2) : s1 ∨ s2

By induction, there exist e, ei such that erase(e) = a, erase(ei) = ai, ∆#Γ ⊢A e : t′,
and ∆ # Γ ⊢A ei : si. According to Definition 9.1.2, we have

erase((e∈t ? e1 : e2)) = (a∈t ? a1 : a2)

Clearly t′ 6≃ 0. We claim that t′ � ¬t. Let σid be any identity type substitution.
If t′ ≤ ¬t, then t′σid ≃ t′ ≤ ¬t, i.e., t′ ⊑∆ ¬t, which is in contradiction with
t′ 6⊑∆ ¬t. Similarly we have t′ � t. Therefore, by (Alg-case-snd), we have
∆ # Γ ⊢A (e∈t ? e1 : e2) : s1 ∨ s2.

The proof of the soundness property constructs along the derivation for the implicitly-
typed expression a some expression e that satisfies the statement of the theorem. We
denote by erase−1(a) the set of expressions e that satisfy the statement. Notice that
⊑∆ gauges the generality of the solutions found by the inference system: the smaller
the type found, the more general the solution is. As a matter of facts, adding to the
system in Figure 9.1 a subsumption rule that uses the relation ⊑∆, that is:

∆ # Γ ⊢I a : t1 t1⊑∆t2

∆ # Γ ⊢I a : t2
(Inf-subsum)

is sound. This means that the set of solutions is upward closed with respect to ⊑∆

and that from smaller solutions it is possible (by this new subsumption rule) to deduce
the larger ones. In that respect, the completeness theorem that follows states that the
inference system can always deduce for the erasure of an expression a solution that
is at least as good as the one deduced for that expression by the type system for the
explicitly typed calculus.
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Theorem 9.2.6 (Completeness). Let e ∈ E0 be an explicitly-typed expression. If
∆ # Γ ⊢A e : t, then there exists a type t′ such that ∆ # Γ ⊢I erase(e) : t′ and t′ ⊑∆ t.

Proof. By induction on the typing derivation of ∆ # Γ ⊢A e : t. We proceed by a case
analysis on the last rule used in the derivation.

(Alg-const): take t′ as bc.

(Alg-var): take t′ as Γ(x).

(Alg-pair): consider the derivation

. . .
∆ # Γ ⊢A e1 : t1

. . .
∆ # Γ ⊢A e2 : t2

∆ # Γ ⊢A (e1, e2) : t1 × t2

Applying the induction hypothesis twice, we have

∃t′1. ∆ # Γ ⊢I erase(e1) : t
′
1 and t′1 ⊑∆ t1

∃t′2. ∆ # Γ ⊢I erase(e2) : t
′
2 and t′2 ⊑∆ t2

Then by (Inf-pair), we have

∆ # Γ ⊢I (erase(e1), erase(e2)) : t
′
1 × t′2,

that is, ∆ # Γ ⊢I erase((e1, e2)) : t
′
1 × t′2. Finally, Applying Lemma 9.1.4, we have

(t′1 × t′2) ⊑∆ (t1 × t2).

(Alg-proj): consider the derivation

. . .
∆ # Γ ⊢A e : t t ≤ 1× 1

∆ # Γ ⊢A πi(e) : πππi(t)

By induction, we have

∃t′, [σk]k∈K . ∆ # Γ ⊢I erase(e) : t′ and [σk]k∈K 
 t′ ⊑∆ t

It is clear that
∧

k∈K t′σk ≤ 1 × 1. So πππi(
∧

k∈K t′σk) ∈ ∐i
∆(t

′). Then by
(Inf-proj), we have

∆ # Γ ⊢I πi(erase(e)) : πππi(
∧

k∈K

t′σk),

that is, ∆ # Γ ⊢I erase(πi(e)) : πππi(
∧

k∈K t′σk). According to Lemma 8.2.3, t ≤
(πππ1(t),πππ2(t)). Then

∧

k∈K t′σk ≤ (πππ1(t),πππ2(t)). Finally, applying Lemma 8.2.3
again, we get πππi(

∧

k∈K t′σk) ≤ πππi(t) and a fortiori πππi(
∧

k∈K t′σk) ⊑∆ πππi(t).

(Alg-appl): consider the derivation

. . .
∆ # Γ ⊢A e1 : t

. . .
∆ # Γ ⊢A e2 : s t ≤ 0 → 1 s ≤ dom(t)

∆ # Γ ⊢A e1e2 : t · s

Applying the induction hypothesis twice, we have

∃t′1, [σ
1
k]k∈K1 . ∆ # Γ ⊢I erase(e1) : t

′
1 and [σ1

k]k∈K1 
 t′1 ⊑∆ t
∃t′2, [σ

2
k]k∈K2 . ∆ # Γ ⊢I erase(e2) : t

′
2 and [σ2

k]k∈K2 
 t′2 ⊑∆ s
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It is clear that
∧

k∈K1
t′1σ

1
k ≤ 0 → 1, that is,

∧

k∈K1
t′1σ

1
k is a function type. So

we get dom(t) ≤ dom(
∧

k∈K1
t′1σ

1
k). Then we have

∧

k∈K2

t′2σ
2
k ≤ s ≤ dom(t) ≤ dom(

∧

k∈K1

t′1σ
1
k)

Therefore, (
∧

k∈K1
t′1σ

1
k) · (

∧

k∈K2
t′2σ

2
k) ∈ t′2 •∆t

′
1.

Then applying (Inf-appl), we have

∆ # Γ ⊢I erase(e1)erase(e2) : (
∧

k∈K1

t′1σ
1
k) · (

∧

k∈K2

t′2σ
2
k),

that is, ∆ # Γ ⊢I erase(e1e2) : (
∧

k∈K1
t′1σ

1
k) · (

∧

k∈K2
t′2σ

2
k). Moreover, from

∧

k∈K2
t′2σ

2
k ≤ dom(t) we deduce that t ·(

∧

k∈K2
t′2σ

2
k) exists. According to Lemma

8.2.11, we have

(
∧

k∈K1

t′1σ
1
k) · (

∧

k∈K2

t′2σ
2
k) ≤ t · (

∧

k∈K2

t′2σ
2
k) ≤ t · s

Thus, (
∧

k∈K1
t′1σ

1
k) · (

∧

k∈K2
t′2σ

2
k) ⊑∆ t · s.

(Alg-abstr0): consider the derivation

∀i ∈ I.
. . .

∆ ∪ var(
∧

i∈I ti → si) # Γ, (x : ti) ⊢A e : s′i and s′i ≤ si

∆ # Γ ⊢A λ∧i∈I ti→six.e :
∧

i∈I ti → si

Let ∆′ = ∆ ∪ var(
∧

i∈I ti → si). By induction, for each i ∈ I, we have

∃t′i. ∆
′ # Γ, (x : ti) ⊢I erase(e) : t′i and t′i ⊑∆′ s′i

Clearly, we have t′i ⊑∆′ si. By (Inf-abstr), we have

∆ # Γ ⊢I λ∧i∈I ti→six.erase(e) :
∧

i∈I

ti → si

that is, ∆ # Γ ⊢I erase(λ∧i∈I ti→six.e) :
∧

i∈I ti → si.

(Alg-case-none): consider the derivation

. . .
∆ # Γ ⊢A e : 0

∆ # Γ ⊢A (e∈t ? e1 : e2) : 0

By induction, we have

∃t′0. ∆ # Γ ⊢I erase(e) : t′0 and t′0 ⊑∆ 0

By (Inf-case-none), we have ∆ # Γ ⊢I (erase(e)∈t ? erase(e1) : erase(e2)) : 0,
that is, ∆ # Γ ⊢I erase(e∈t ? e1 : e2) : 0.
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(Alg-case-fst): consider the derivation

. . .
∆ # Γ ⊢A e : t′ t′ ≤ t

. . .
∆ # Γ ⊢A e1 : s1

∆ # Γ ⊢A (e∈t ? e1 : e2) : s1

Applying the induction hypothesis twice, we have

∃t′0. ∆ # Γ ⊢I erase(e) : t′0 and t′0 ⊑∆ t′

∃t′1. ∆ # Γ ⊢I erase(e1) : t
′
1 and t′1 ⊑∆ s1

Clearly, we have t′0 ⊑∆ t. If t′0 ⊑∆ ¬t, then by Lemma 9.1.4, we have t′0 ≤∆ 0.
By (Inf-case-none), we get

∆ # Γ ⊢I (erase(e)∈t ? erase(e1) : erase(e2)) : 0

that is, ∆ # Γ ⊢I erase(e∈t ? e1 : e2) : 0. Clearly, we have 0 ⊑∆ s1.
Otherwise, by (Inf-case-fst), we have

∆ # Γ ⊢I (erase(e)∈t ? erase(e1) : erase(e2)) : t
′
1

that is, ∆ # Γ ⊢I erase(e∈t ? e1 : e2) : t
′
1. The result follows as well.

(Alg-case-snd): similar to the case of (Alg-case-fst).

(Alg-case-both): consider the derivation

. . .
∆ # Γ ⊢A e : t′







t′ 6≤ ¬t and
. . .

∆ # Γ ⊢A e1 : s1

t′ 6≤ t and
. . .

∆ # Γ ⊢A e2 : s2

∆ # Γ ⊢A (e∈t ? e1 : e2) : s1 ∨ s2

By induction, we have

∃t′0. ∆ # Γ ⊢I erase(e) : t′0 and t′0 ⊑∆ t′

∃t′1. ∆ # Γ ⊢I erase(e1) : t
′
1 and t′1 ⊑∆ s1

∃t′2. ∆ # Γ ⊢I erase(e2) : t
′
2 and t′2 ⊑∆ s2

If t′0 ⊑∆ 0, then by (Inf-case-none), we get

∆ # Γ ⊢I (erase(e)∈t ? erase(e1) : erase(e2)) : 0

that is, ∆ # Γ ⊢I erase(e∈t ? e1 : e2) : 0. Clearly, we have 0 ⊑∆ s1 ∨ s2.
If t′0 ⊑∆ t, then by (Inf-case-fst), we get

∆ # Γ ⊢I (erase(e)∈t ? erase(e1) : erase(e2)) : t
′
1

that is, ∆ # Γ ⊢I erase(e∈t ? e1 : e2) : t
′
1. Moreover, it is clear that t′1 ⊑∆ s1 ∨ s2,

the result follows as well.
Similarly for t′0 ⊑∆ ¬t.
Otherwise, by (Inf-case-both), we have

∆ # Γ ⊢I (erase(e)∈t ? erase(e1) : erase(e2)) : t
′
1 ∨ t′2
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that is, ∆ # Γ ⊢I erase(e∈t ? e1 : e2) : t
′
1 ∨ t′2. Using α-conversion, we can assume

that the polymorphic type variables of t′1 and t′2 (and of e1 and e2) are distinct,
i.e., (var(t′1) \ ∆) ∩ (var(t′1) \ ∆) = ∅. Then applying Lemma 9.1.5, we have
t′1 ∨ t′2 ⊑∆ t1 ∨ t2.

(Alg-inst): consider the derivation

. . .
∆ # Γ ⊢A e : t ∀j ∈ J. σj ♯ ∆ |J | > 0

∆ # Γ ⊢A e[σj ]j∈J :
∧

j∈J tσj

By induction, we have

∃t′, [σk]k∈K . ∆ # Γ ⊢I erase(e) : t′ and [σk]k∈K 
 t′ ⊑∆ t

Since erase(e[σj ]j∈J) = erase(e), we have ∆ # Γ ⊢I erase(e[σj ]j∈J) : t′. As
∧

k∈K t′σk ≤ t, we have
∧

j∈J(
∧

k∈K t′σk)σj ≤
∧

j∈J tσj , that is
∧

j∈J,k∈K t′(σj ◦
σk) ≤

∧

j∈J tσj . Moreover, it is clear that σj ◦ σk ♯ ∆. Therefore, we get
t′ ⊑∆

∧

j∈J tσj .

The inference system is syntax directed and describes an algorithm that is para-
metric in the decision procedures for ⊑∆, ∐i

∆(t) and t •∆s. The problem of deciding
them is tackled in Chapter 10 .

Finally, notice that we did not give any reduction semantics for the implicitly
typed calculus. The reason is that its semantics is defined in terms of the seman-
tics of the explicitly-typed calculus: the relabeling at run-time is an essential feature
—independently from the fact that we started from an explicitly typed expression or
not— and we cannot avoid it. The (big-step) semantics for a is then given in expres-
sions of erase−1(a): if an expression in erase−1(a) reduces to v, so does a. As we see
the result of computing an implicitly-typed expression is a value of the explicitly typed
calculus (so λ-abstractions may contain non-empty decorations) and this is unavoidable
since it may be the result of a partial application. Also notice that the semantics is
not deterministic since different expressions in erase−1(a) may yield different results.
However this may happen only in one particular case, namely, when an occurrence of a
polymorphic function flows into a type-case and its type is tested. For instance the ap-
plication (λ(Int→Int)→Boolf.f∈Bool→Bool ? true : false)(λα→αx.x) results into true

or false according to whether the polymorphic identity at the argument is instanti-
ated by [{Int/α}] or by [{Int/α}, {Bool/α}]. Once more this is unavoidable in a calculus
that can dynamically test the types of polymorphic functions that admit several sound
instantiations. This does not happen in practice since the inference algorithm always
choose one particular instantiation (the existence of principal types would made this
choice canonical and remove non determinism). So in practice the semantics is deter-
ministic but implementation dependent.

In summary, programming in the implicitly-typed calculus corresponds to program-
ming in the explicitly-typed one with the difference that we delegate to the system the
task to write the type-substitutions for us and with the caveat that doing it makes the
test of the type of a polymorphic function implementation dependent.
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9.3 A more tractable inference system

With the rules of Figure 9.1, when type-checking an implicitly-typed expression, we
have to compute sets of type substitutions for projections, applications, abstractions
and type cases. Because type substitutions inference is a costly operation, we would
like to perform it as seldom as possible. To this end, we give in this section a restricted
version of the inference system, which is not complete but still sound and powerful
enough to be used in practice.

First, we want to simplify the type inference rule for projections:

∆ # Γ ⊢I a : t u ∈ ∐i
∆(t)

∆ # Γ ⊢I πi(a) : u

where ∐i
∆(t) = {u | [σj ]j∈J 
 t ⊑∆ 1 × 1, u = πππi(

∧

j∈J tσj)}. Instead of picking

any type in ∐i
∆(t), we would like to simply project t, i.e., assign the type πππi(t) to

πi(a). By doing so, we lose completeness on pair types that contain top-level variables.
For example, if t = (Int × Int) ∧ α, then Int ∧ Bool ∈ ∐i

∆(t) (because α can be
instantiated with (Bool × Bool)), but πππt(t) = Int. We also lose typability if t is
not a pair type, but can be instantiated in a pair type. For example, the type of
(λα→(α∨((β→β)\(Int→Int)))x.x)(42, 3) is (Int × Int) ∨ ((β → β) \ (Int → Int)), which
is not a pair type, but can be instantiated in (Int × Int) by taking β = Int. We
believe these kinds of types will not be written by programmers, and it is safe to use
the following projection rule in practice.

∆ # Γ ⊢I a : t t ≤ 1× 1

∆ # Γ ⊢I πi(a) : πππi(t)
(Inf-proj’)

We now look at the type inference rules for the type case a∈t ? a1 : a2. The four
different rules consider the different possible instantiations that make the type t′ in-
ferred for a fit t or not. For the sake of simplicity, we decide not to infer type
substitutions for polymorphic arguments of type cases. Indeed, in the expression
(λα→αx.x) ∈ Int → Int ? true : false, we assume the programmer wants to
do a type case on the polymorphic identity, and not on one of its instance (otherwise,
he would have written the instantiated interface directly), so we do not try to instan-
tiate it. And in any case there is no real reason for which the inference system should
choose to instantiate the identity by Int→Int (and thus make the test succeed) rather
than Bool→Bool (and thus make the test fail). If we decide not to infer types for
polymorphic arguments of type-case expression, then since α → α is not a subtype of
Int → Int (we have α → α ⊑∅ Int → Int but α → α 6≤ Int → Int) the expression
evaluates to false. With this choice, we can merge the different inference rules into
the following one.

∆ # Γ ⊢I a : t′ t1 = t′ ∧ t t2 = t′ ∧ ¬t
ti 6≃ 0 ⇒ ∆ # Γ ⊢I ai : si

∆ # Γ ⊢I (a∈t ? a1 : a2) :
∨

ti 6≃0

si
(Inf-case’)
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Finally, consider the inference rule for abstractions:

∀i ∈ I.







∆ ∪ var(
∧

i∈I

ti → si) # Γ, (x : ti) ⊢I a : s′i

s′i ⊑∆∪var(
∧

i∈I ti→si) si

∆ # Γ ⊢I λ∧i∈I ti→six.a :
∧

i∈I

ti → si

We verify that the abstraction can be typed with each arrow type ti → si in the
interface. Meanwhile, we also infer a set of type substitutions to tally the type s′i
we infer for the body expression with si. In practice, similarly, we expect that the
abstraction is well-typed only if the type s′i we infer for the body expression is a subtype
of si. For example, the expression

λBool→(Int→Int)x.x∈true ? (λα→αy.y) : (λα→αy.(λα→αz.z)y)

is not well-typed while

λBool→(α→α)x.x∈true ? (λα→αy.y) : (λα→αy.(λα→αz.z)y)

is well-typed. So we use the following restricted rule for abstractions instead:

∀i ∈ I. ∆ ∪ var(
∧

i∈I

ti → si) # Γ, (x : ti) ⊢I a : s′i and s′i ≤ si

∆ # Γ ⊢I λ∧i∈I ti→six.a :
∧

i∈I

ti → si
(Inf-abstr’)

In conclusion, we restrict the inference of type substitutions to applications. We
give in Figure 9.2 the inference rules of the system which respects the above restrictions.
With these new rules, the system remains sound, but it is not complete.

Theorem 9.3.1. If Γ ⊢I a : t, then there exists an expression e ∈ E0 such that
erase(e) = a and Γ ⊢A e : t.

Proof. Similar to the proof of Theorem 9.2.5.
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∆ # Γ ⊢I c : bc
(Inf-const)

∆ # Γ ⊢I x : Γ(x)
(Inf-var)

∆ # Γ ⊢I a1 : t1 ∆ # Γ ⊢I a2 : t2

∆ # Γ ⊢I (a1, a2) : t1 × t2
(Inf-pair)

∆ # Γ ⊢I a : t t ≤ 1× 1

∆ # Γ ⊢I πi(a) : πππi(t)
(Inf-proj’)

∆ # Γ ⊢I a1 : t ∆ # Γ ⊢I a2 : s u ∈ t •∆s

∆ # Γ ⊢I a1a2 : u
(Inf-appl)

∀i ∈ I. ∆ ∪ var(
∧

i∈I

ti → si) # Γ, (x : ti) ⊢I a : s′i and s′i ≤ si

∆ # Γ ⊢I λ∧i∈I ti→six.a :
∧

i∈I

ti → si
(Inf-abstr’)

∆ # Γ ⊢I a : t′ t1 = t′ ∧ t t2 = t′ ∧ ¬t
ti 6≃ 0 ⇒ ∆ # Γ ⊢I ai : si

∆ # Γ ⊢I (a∈t ? a1 : a2) :
∨

ti 6≃0

si
(Inf-case’)

Figure 9.2: Restricted type-substitution inference rules
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Chapter 10

Type Tallying

All the decision procedures in the inference system presented in Chapter 9 correspond
to solving the problem to check whether, given two types t and s, there exist pairs
of sets of type-substitutions [σi]i∈I and [σj ]j∈J such that

∧

j∈J
sσj ≤

∨

i∈I
tσi

1. The
goal of this chapter is to solve this problem. We first define and solve a type tallying
problem. We then explain how we can reduce the problem with fixed cardinalities of
I and J to the type tallying problem, and provide a semi-algorithm for the original
problem. Finally, we give some heuristics to establish upper bounds (which depend on
t and s) for the cardinalities of I and J .

10.1 The type tallying problem

We first give some definitions about constraints.

Definition 10.1.1 (Constraints). A constraint (t, c, s) is a triple belonging to T ×{≤
,≥}× T . Let C denote the set of all constraints. Given a constraint-set C ⊆ C, the set
of type variables occurring in C is defined as

var(C) =
⋃

(t,c,s)∈C

var(t) ∪ var(s)

Definition 10.1.2 (Normalized constraint). A constraint (t, c, s) is said to be nor-
malized if t is a type variable. A constraint-set C ⊆ C is said to be normalized if every
constraint (t, c, s) ∈ C is normalized. Given a normalized constraint-set C, its domain
is defined as dom(C) = {α | ∃c, s. (α, c, s) ∈ C}.

A type tallying problem and its solution are defined as follows:

Definition 10.1.3 (Type tallying). Let C ⊆ C be a constraint-set and ∆ a set of
type variables. A type-substitution σ is a solution for the tallying problem of C and ∆,
noted σ 
∆ C, if σ ♯ ∆ and

∀(t,≤, s) ∈ C . tσ ≤ sσ holds and ∀(t,≥, s) ∈ C . sσ ≤ tσ holds.

1For applications the problem should be
∧

j∈J sσj ≤
∨

i∈I dom(tσi). However, we can conservatively

consider it as
∧

j∈J sσj ≤
∨

i∈I dom(t)σi.

189
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When ∆ is empty, we write σ 
 C for short.
We also define two operations on sets of constraint-sets:

Definition 10.1.4. Given two sets of constraint-sets S1,S2 ⊆ P(C), we define their
union as

S1 ⊔ S2 = S1 ∪ S2

and their intersection as

S1 ⊓ S2 = {C1 ∪ C2 | C1 ∈ S1, C2 ∈ S2}

The tallying solving algorithm can be logically decomposed in 3 steps. Let us
examine each step of the algorithm on some examples.

Step 1: normalize each constraint.
Because normalized constraints are easier to solve than regular ones, we first turn
each constraint into an equivalent set of normalized constraint-sets according to
the decomposition rules used in the subtyping algorithm (i.e., Lemmas 4.3.9 and
4.3.10). For example, the constraint c1 = (α×α) ≤ ((Int×1)× (1×Int)) can be
normalized into the set S1 = {{(α,≤, 0)}; {(α,≤, (Int × 1)), (α,≤, (1× Int))}}.
Another example is the constraint c2 = ((β × β) → (Int × Int),≤, α → α),
which is equivalent to the following set of normalized constraint-sets S2 = {{(α,≤
, 0)}; {(α,≤, (β×β)), (α,≥, (Int×Int))}}. Then we join all the sets of constraint-
sets by (constraint-set) intersections, yielding the normalization of the original
constraint-set. For instance, the normalization S of {c1, c2} is S1 ⊓ S2. It is
easy to see that the constraint-set C1 = {(α,≤, (Int×1)), (α,≤, (1×Int)), (α,≤
, (β × β)), (α,≥, (Int × Int))} is in S (see Definition 10.1.4).

Step 2: saturate each constraint-set.

Step 2.1: merge the constraints with the same type variables.
In each constraint-set of the normalization of the original constraint-set,
there may be several constraints of the form (α,≥, ti) (resp. (α,≤, ti)),
which give different lower bounds (resp. upper bounds) for α. We merge all
these constraints into one using unions (resp. intersections). For example,
the constraint-set C1 of the previous step can be merged as C2 = {(α,≤
, (Int × 1) ∧ (1 × Int) ∧ (β × β)), (α,≥, (Int × Int))}, which is equivalent
to {(α,≤, (Int ∧ β × Int ∧ β)), (α,≥, (Int × Int))}.

Step 2.2: saturate the lower and upper bounds of a same type variable.
If a type variable has both a lower bound s and an upper bound t in a
constraint-set, then the solutions we are looking for must satisfy the con-
straint (s,≤, t) as well. Therefore, we have to saturate the constraint-set
with (s,≤, t), which has to be normalized, merged, and saturated itself
first. Take C2 for example. We have to saturate C2 with ((Int × Int),≤
, (Int∧β×Int∧β)), whose normalization is {{(β,≥, Int)}}. Thus, the satu-
ration of C2 is {C2}⊓{{(β,≥, Int)}}, which contains only one constraint-set
C3 = {(α,≤, (Int ∧ β × Int ∧ β)), (α,≥, (Int × Int)), (β,≥, Int)}.

Step 3: extract a substitution from each constraint-set.
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Step 3.1: transform each constraint-set into an equation system.
To transform constraints into equations, we use the property that some set
of constraints is satisfied for all assignments of α included between s and t if
and only if the same set in which we replace α by (s∨α′)∧t2 is satisfied for all
possible assignments of α′ (with α′ fresh). Of course such a transformation
works only if s ≤ t, but remember that we “checked” that this holds at the
moment of the saturation. By performing this replacement for each variable
we obtain a system of equations. For example, the constraint set C3 is
equivalent to the following equation system E:

α = ((Int × Int) ∨ α′) ∧ (Int ∧ β × Int ∧ β)
β = Int ∨ β′

where α′, β′ are fresh type variables.

Step 3.2: solve each equation system.
Finally, using the Courcelle’s work on infinite trees [Cou83], we solve each
equation system, which gives us a substitution which is a solution of the
original constraint-set. For example, we can solve the equation system E,
yielding {(Int × Int)/α, Int ∨ β′/β}, which is a solution of C3 and thus of
{c1, c2}.

In the following sections we study in details each step of the algorithm.

10.1.1 Constraint normalization

The type tallying problem is quite similar to the subtyping problem presented in Chap-
ter 3 . We therefore reuse most of the technology developed in Chapter 3 such as, for
example, the transformation of the subtyping problem into an emptiness decision prob-
lem, the elimination of top-level constructors, and so on. One of the main differences is
that we do not want to eliminate top-level type variables from constraints, but, rather,
we want to isolate them to build sets of normalized constraints (from which we then
construct sets of substitutions).

In general, normalizing a constraint generates a set of constraints. For example, (α∨
β,≥, 0) holds if and only if (α,≥, 0) or (β,≥, 0) holds; therefore the constraint (α∨β,≥
, 0) is equivalent to the normalized constraint-set {(α,≥, 0), (β,≥, 0)}. Consequently,
the normalization of a constraint-set C yields a set S of normalized constraint-sets.

Several normalized sets may be suitable replacements for a given constraint; for
example, {(α,≤, β ∨ t1), (β,≤, α ∨ t2)} and {(α,≤, β ∨ t1), (α,≥, β \ t2)} are clearly
equivalent normalized sets. However, the equation systems generated by the algorithm
for these two sets are completely different equation systems and yield different sub-
stitutions. Concretely, {(α,≤, β ∨ t1), (β,≤, α ∨ t2)} generates the equation system
{α = α′ ∧ (β ∨ t1), β = β′ ∧ (α∨ t2)}, which in turn gives the substitution σ1 such that

σ1(α) = µx. ((α′ ∧ β′ ∧ x) ∨ (α′ ∧ β′ ∧ t2) ∨ (α′ ∧ t1))
σ1(β) = µx. ((β′ ∧ α′ ∧ x) ∨ (β′ ∧ α′ ∧ t1) ∨ (β′ ∧ t2))

2Or by s ∨ (α′ ∧ t).
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where α′ and β′ are fresh type variables (see Section 10.1.4 for more details). These
recursive types are not valid in our calculus, because x does not occur under a type
constructor (this means that the unfolding of the type does not satisfy the property that
every infinite branch contains infinitely many occurrences of type constructors). In con-
trast, the equation system built from {(α,≤, β∨t1), (α,≥, β \t2)} is α = ((β \t2)∨α′)∧
(β ∨ t1), and the corresponding substitution is σ2 = {((β \ t2) ∨ α′) ∧ (β ∨ t1)/α}, which
is valid since it maps the type variable α into a well-formed type. Ill-formed recur-
sive types are generated when there exists a chain α0 = α1 B1 t1, . . . , αi = αi+1 Bi+1

ti+1, . . . , αn = α0 Bn+1 tn+1 (where Bi ∈ {∧,∨} for all i, and n ≥ 0) in the equa-
tion system built from the normalized constraint-set. This chain implies the equation
α0 = α0 B t′ for some B ∈ {∧,∨} and t′, and the corresponding solution for α0 will
be an ill-formed recursive type. To avoid this issue, we give an arbitrary ordering on
type variables occurring in the constraint-set C such that different type variables have
different orders. Then we always select the normalized constraint (α, c, t) such that the
order of α is smaller than all the orders of the top-level type variables in t. As a result,
the transformed equation system does not contain any problematic chain like the one
above.

Definition 10.1.5 (Ordering). Let V be a set of type variables. An ordering O on
V is an injective map from V to N.

We formalize normalization as a judgement Σ ⊢N C  S, which states that under
the environment Σ (which, informally, contains the types that have already been pro-
cessed at this point), C is normalized to S. The judgement is derived according the
rules of Figure 10.1.

If the constraint-set is empty, then clearly any substitution is a solution, and,
the result of the normalization is simply the singleton containing the empty set (rule
(Nempty)). Otherwise, each constraint is normalized separately, and the normaliza-
tion of the constraint-set is the intersection of the normalizations of each constraint
(rule (Njoin)). By using rules (Nsym), (Nzero), and (Ndnf) repeatedly, we trans-
form any constraint into the constraint of the form (τ,≤, 0) where τ is disjunctive
normal form: the first rule reverses (t′,≥, t) into (t,≤, t′), the second rule moves the
type t′ from the right of ≤ to the left, yielding (t ∧ ¬t′,≤, 0), and finally the last rule
puts t∧¬t′ in disjunctive normal form. Such a type τ is the type to be normalized. If τ
is a union of single normal forms, the rule (Nunion) splits the union of single normal
forms into constraints featuring each of the single normal forms. Then the results of
each constraint normalization are joined by the rule (Njoin).

The following rules handle constraints of the form (τ,≤, 0), where τ is a single
normal form. If there are some top-level type variables, the rule (Ntlv) generates
a normalized constraint for the top-level type variable whose order is the smallest.
Otherwise, there are no top-level type variables. If τ has already been normalized (i.e.,
it belongs to Σ), then it is not processed again (rule (Nhyp)). Otherwise, we memoize
it and then process it using the predicate for single normal forms Σ ⊢∗

N C  S (rule
(Nassum)). Note that switching from Σ ⊢N C  S to Σ ⊢∗

N C  S prevents the
incorrect use of (Nhyp) just after (Nassum), which would wrongly say that any type
is normalized without doing any computation.

Finally, the last four rules state how to normalize constraints of the form (τ,≤, 0)
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Σ ⊢N ∅ {∅}
(Nempty)

Σ ⊢N {(ti ci t′i)} Si

Σ ⊢N {(ti ci t′i) | i ∈ I} 
l

i∈I

Si

(Njoin)

Σ ⊢N {(t ≤ t′)} S

Σ ⊢N {(t′ ≥ t)} S
(Nsym)

Σ ⊢N {(t ∧ ¬t′ ≤ 0)} S t′ 6= 0

Σ ⊢N {(t ≤ t′)} S
(Nzero)

Σ ⊢N {(dnf(t) ≤ 0)} S

Σ ⊢N {(t ≤ 0)} S
(Ndnf)

Σ ⊢N {(τi ≤ 0) | i ∈ I} S

Σ ⊢N {(
∨

i∈I

τi ≤ 0)} S
(Nunion)

tlv(τ0) = ∅ α′ OP ∪N S =

{

{{(α′,≤,¬tα′ )}} α′ ∈ P

{{(α′,≥, tα′ )}} α′ ∈ N

Σ ⊢N {(
∧

α∈P

α ∧
∧

α∈N

¬α ∧ τ0 ≤ 0)} S
(Ntlv)

τ0 ∈ Σ tlv(τ0) = ∅

Σ ⊢N {(τ0 ≤ 0)} {∅}
(Nhyp)

Σ ∪ {τ0} ⊢∗
N {(τ0 ≤ 0)} S τ0 /∈ Σ tlv(τ0) = ∅

Σ ⊢N {(τ0 ≤ 0)} S
(Nassum)

∧

i∈P

bi ∧
∧

j∈N

¬bj ≤ 0

Σ ⊢∗
N {(

∧

i∈P

bi ∧
∧

j∈N

¬bj ≤ 0)} {∅}
(Nbasic-T)

∧

i∈P

bi ∧
∧

j∈N

¬bj � 0

Σ ⊢∗
N {(

∧

i∈P

bi ∧
∧

j∈N

¬bj ≤ 0)} ∅
(Nbasic-F)

∀N ′ ⊆ N.















Σ ⊢N {
∧

i∈P

t1i ∧
∧

j∈N′

¬t1j ≤ 0} S1
N′

Σ ⊢N {
∧

i∈P

t2i ∧
∧

j∈N\N′

¬t2j ≤ 0} S2
N′

Σ ⊢∗
N {(

∧

i∈P

(t1i × t2i ) ∧
∧

j∈N

¬(t1j × t2j ) ≤ 0)} 
l

N′⊆N

(S1
N′ ⊔ S2

N′ )
(Nprod)

∃j ∈ N ∀P ′ ⊆ P.



























Σ ⊢N {t1j ∧
∧

i∈P ′

¬t1i ≤ 0} S1
P ′











Σ ⊢N {
∧

i∈P\P ′

t2i ∧ ¬t2j ≤ 0} S2
P ′ P ′ 6= P

S2
N′ = ∅ otherwise

Σ ⊢∗
N {(

∧

i∈P

(t1i → t2i ) ∧
∧

j∈N

¬(t1j → t2j ) ≤ 0)} 
⊔

j∈N

l

P ′⊆P

(S1
P ′ ⊔ S2

P ′ )
(Narrow)

where t and t with scripts are types, ci belongs to {≤,≥}, τ0 and τi are single normal forms, α OP ∪N
denotes α has the smallest order in P ∪ N under the ordering O, and tα′ is the type obtained from
∧

α∈P α ∧
∧

α∈N ¬α ∧ τ0 by eliminating α′.

Figure 10.1: Normalization rules

where τ is a single normal form and contains no top-level type variables. Thereby τ
should be an intersection of atoms with the same constructor. If τ is an intersection of
basic types, normalizing is equivalent to checking whether τ is empty or not: if it is (rule
(Nbasic-T)), we return the singleton containing the empty set (any substitution is a
solution), otherwise there is no solution and we return the empty set (rule (Nbasic-F)).
When τ is an intersection of products, the rule (Nprod) decomposes τ into several
candidate types (following Lemma 4.3.9), which are to be further normalized. The case



194 CHAPTER 10. TYPE TALLYING

when τ is an intersection of arrows (rule (Narrow)) is treated similarly. Note that, in
the last two rules, we switch from Σ ⊢∗

N C  S back to Σ ⊢N C  S in the premises
to ensure termination.

If ∅ ⊢N C  S, then S is the result of the normalization of C. We now prove
soundness, completeness, and termination of the constraint normalization algorithm.

To prove soundness, we use a family of subtyping relations ≤n that layer ≤ (i.e.,
such that

⋃

n∈N ≤n=≤) and a family of satisfaction predicates 
n that layer 
 (i.e.,
such that

⋃

n∈N 
n=
), which are defined as follows.

Definition 10.1.6. Let ≤ be the subtyping relation induced by a well-founded con-
vex model with infinite support ([_],D). We define the family (≤n)n∈N of subtyping
relations as

t ≤n s
def

⇐⇒ ∀η. [t]nη ⊆ [s]nη

where [_]n is the rank n interpretation of a type, defined as

[t]nη = {d ∈ [t]η | height(d) ≤ n}

and height(d) is the height of an element d in D, defined as

height(c) = 1
height((d, d′)) = max(height(d), height(d′)) + 1

height({(d1, d
′
1), . . . , (dn, d

′
n)}) =

{

1 n = 0

max(height(di), height(d
′
i), . . .) + 1 n > 0

Lemma 10.1.7. Let ≤ be the subtyping relation induced by a well-founded convex model
with infinite support. Then

(1) t ≤0 s for all t, s ∈ T .

(2) t ≤ s ⇐⇒ ∀n. t ≤n s.

(3)

∧

i∈I

(ti × si) ≤n+1

∨

j∈J

(tj × sj) ⇐⇒ ∀J ′ ⊆ J .







∧

i∈I ti ≤n
∨

j∈J ′ tj

∨
∧

i∈I si ≤n
∨

j∈J\J ′ sj

(4)

∧

i∈I

(ti → si) ≤n+1

∨

j∈J

(tj → sj) ⇐⇒ ∃j0∈J . ∀I ′⊆I .







tj0 ≤n
∨

i∈I′ ti

∨






I 6= I ′

∧
∧

i∈I\I′ si ≤n sj0

Proof. (1) straightforward.

(2) straightforward.
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(3) the result follows by Lemma 4.3.9 and Definition 10.1.6.

(4) the result follows by Lemma 4.3.10 and Definition 10.1.6.

Definition 10.1.8. Given a constraint-set C and a type substitution σ, we define the
rank n satisfaction predicate 
n as

σ 
n C
def

⇐⇒ ∀(t,≤, s) ∈ C. t ≤n s and ∀(t,≥, s) ∈ C. s ≤n t

Lemma 10.1.9. Let ≤ be the subtyping relation induced by a well-founded convex model
with infinite support. Then

(1) σ 
0 C for all σ and C.

(2) σ 
 C ⇐⇒ ∀n. σ 
n C.

Proof. Consequence of Lemma 10.1.7.

Given a set of types Σ, we write C(Σ) for the constraint-set {(t,≤, 0) | t ∈ Σ}.

Lemma 10.1.10 (Soundness). Let C be a constraint-set. If ∅ ⊢N C  S, then for
all normalized constraint-set C ′ ∈ S and all substitution σ, we have σ 
 C ′ ⇒ σ 
 C.

Proof. We prove the following stronger statements.

(1) Assume Σ ⊢N C  S. For all C ′ ∈ S, σ and n, if σ 
n C(Σ) and σ 
n C ′, then
σ 
n C.

(2) Assume Σ ⊢∗
N C  S. For all C ′ ∈ S, σ and n, if σ 
n C(Σ) and σ 
n C ′, then

σ 
n+1 C.

Before proving these statements, we explain how the first property implies the lemma.
Suppose ∅ ⊢N C  S, C ′ ∈ S and σ 
 C ′. It is easy to check that σ 
n C(∅) holds for
all n. From σ 
 C ′, we deduce σ 
n C ′ for all n (by Lemma 10.1.9). By Property (1),
we have σ 
n C for all n, and we have then the required result by Lemma 10.1.9.

We prove the two properties simultaneously by induction on the derivations of
Σ ⊢N C  S and Σ ⊢∗

N C  S.

(Nempty): straightforward.

(Njoin): according to Definition 10.1.4, if there exists Ci ∈ Si such that Ci = ∅, thend
i∈I Si = ∅, and the result follows immediately. Otherwise, we have C ′ =

⋃

i∈I Ci,
where Ci ∈ Si. As σ 
n C ′, then clearly σ 
n Ci. By induction, we have
σ 
n {(ti ci t

′
i)}. Therefore, we get σ 
n {(ti ci t

′
i) | i ∈ I}.

(Nsym): by induction, we have σ 
n {(t ≤ t′)}. Then clearly σ 
n {(t′ ≥ t)}.

(Nzero): by induction, we have σ 
n {(t ∧ ¬t′ ≤ 0)}. According to set-theory, we
have σ 
n {(t ≤ t′)}.

(Ndnf): similar to the case of (Nzero).

(Nunion): similar to the case of (Nzero).
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(Ntlv): assume α′ has the smallest order in P ∪N . If α′ ∈ P , then we have C ′ = (α′,≤
,¬tα′). From σ 
n C ′, we deduce σ(α′) ≤n ¬tα′σ. According to set-theory, we
have σ(α′)∧ tα′σ ≤n 0, that is, σ 
n {(

∧

α∈P α∧
∧

α∈N ¬α∧ τ0 ≤ 0)}. Otherwise,
we have α′ ∈ N and the result follows as well.

(Nhyp): since we have τ0 ∈ Σ and σ 
n C(Σ), then σ 
n {(τ0 ≤ 0)} holds.

(Nassum): if n = 0, then σ 
0 {(τ0 ≤ 0)} holds. Suppose n > 0. From σ 
n C(Σ)
and σ 
k C ′, it is easy to prove that σ 
k C(Σ) (*) and σ 
k C ′ (**) hold for all
0 ≤ k ≤ n. We now prove that σ 
k {(τ0 ≤ 0}) (***) holds for all 1 ≤ k ≤ n. By
definition of 
0, we have σ 
0 C(Σ ∪ {τ0}) and σ 
0 C ′. Consequently, by the
induction hypothesis (item (2)), we have σ 
1 {τ0 ≤ 0}. From this and (*), we
deduce σ 
1 C(Σ∪{τ0}). Because we also have σ 
1 C

′ (by (**)), we can use the
induction hypothesis (item (2)) again to deduce σ 
2 {(τ0 ≤ 0}). Hence, we can
prove (***) by induction on 1 ≤ k ≤ n. In particular, we have σ 
n {(τ0 ≤ 0}),
which is the required result.

(Nbasic): straightforward.

(Nprod): If
d

N ′⊆N (S1
N ′ ⊔ S2

N ′) is ∅, then the result follows straightforwardly. Oth-

erwise, we have C ′ =
⋃

N ′⊆N CN ′ , where CN ′ ∈ (S1
N ′ ⊔ S2

N ′). Since σ 
n C ′,
we have σ 
n CN ′ for all subset N ′ ⊆ N . Moreover, following Definition
10.1.4, either CN ′ ∈ S1

N ′ or CN ′ ∈ S2
N ′ . By induction, we have either σ 
n

{
∧

i∈P t1i ∧
∧

j∈N ′ ¬t1j ≤ 0} or σ 
n {
∧

i∈P t2i ∧
∧

j∈N\N ′ ¬t2j ≤ 0}. That is, for all

subset N ′ ⊆ N , we have
∧

i∈P

t1iσ ∧
∧

j∈N ′

¬t1jσ ≤n 0 or
∧

i∈P

t2iσ ∧
∧

j∈N\N ′

¬t2jσ ≤n 0

Applying Lemma 10.1.7, we have
∧

i∈P

(t1i × t2i )σ ∧
∧

j∈N

¬(t1j × t2j )σ ≤n+1 0

Thus, σ 
n+1 {(
∧

i∈P (t
1
i × t2i ) ∧

∧

j∈N ¬(t1j × t2j ) ≤ 0)}.

(Narrow): similar to the case of (Nprod).

Given a normalized constraint-set C and a set of type variables X, we define the
restriction C|X of C by X to be {(α, c, t) ∈ C | α ∈ X}.

Lemma 10.1.11. Let t be a type and ∅ ⊢N {(t,≤, 0)}  S. Then for all normalized
constraint-set C ∈ S, all substitution σ and all n, if σ 
n C|tlv(t) and σ 
n−1 C\C|tlv(t),
then σ 
n {(t,≤, 0)}.

Proof. By applying the rules (Ndnf) and (Nunion), the constraint-set {(t,≤, 0)} is
normalized into a new constraint-set C ′, consisting of the constraints of the form (τ,≤
, 0), where τ is a single normal form. That is, ∅ ⊢N {(t,≤, 0)} {C ′}. Let C ′

1 = {(τ,≤
, 0) ∈ C ′ | tlv(τ) 6= ∅} and C ′

2 = C ′ \C ′
1. It is easy to deduce that all the constraints in

C \C|tlv(t) are generated from C ′
2 and must pass at least one instance of ⊢∗

N (i.e., being
decomposed at least once). Since σ 
n−1 C \ C|tlv(t), then according to the statement
(2) in the proof of Lemma 10.1.10, we have σ 
n C ′

2. Moreover, from σ 
n C|tlv(t), we
have σ 
n C ′

1. Thus, σ 
n C ′ and a fortiori σ 
n {(t,≤, 0)}.
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Lemma 10.1.12 (Completeness). Let C be a constraint-set such that ∅ ⊢N C  S.
For all substitution σ, if σ 
 C, then there exists C ′ ∈ S such that σ 
 C ′.

Proof. We prove the following stronger statements.

(1) Assume Σ ⊢N C  S. For all σ, if σ 
 C(Σ) and σ 
 C, then there exists C ′ ∈ S
such that σ 
 C ′.

(2) Assume Σ ⊢∗
N C  S. For all σ, if σ 
 C(Σ) and σ 
 C, then there exists C ′ ∈ S

such that σ 
 C ′.

The result is then a direct consequence of the first item (indeed, we have σ 
 C(∅)
for all σ). We prove the two items simultaneously by induction on the derivations of
Σ ⊢N C  S and Σ ⊢∗

N C  S.

(Nempty): straightforward.

(Njoin): as σ 
 {(ti ci t′i) | i ∈ I}, we have in particular σ 
 {(ti ci t′i)} for all i.
By induction, there exists Ci ∈ Si such that σ 
 Ci. So σ 


⋃

i∈I Ci. Moreover,
according to Definition 10.1.4,

⋃

i∈I Ci must be in
d

i∈I Si. Therefore, the result
follows.

(Nsym): if σ 
 {(t′ ≥ t)}, then σ 
 {(t ≤ t′)}. By induction, the result follows.

(Nzero): since σ 
 {(t ≤ t′)}, according to set-theory, σ 
 {(t ∧ ¬t′ ≤ 0)}. By
induction, the result follows.

(Ndnf): similar to the case of (Nzero).

(Nunion): similar to the case of (Nzero).

(Ntlv): assume α′ has the smallest order in P ∪N . If α′ ∈ P , then according to set-
theory, we have α′σ ≤ ¬(

∧

α∈(P\{α′}) α∧
∧

α∈N ¬α∧τ0), that is σ 
 {(α′ ≤ ¬tα′)}.

Otherwise, we have α′ ∈ N and the result follows as well.

(Nhyp): it is clear that σ 
 ∅.

(Nassum): as σ 
 C(Σ) and σ 
 {(τ0 ≤ 0)}, we have σ 
 C(Σ ∪ {τ0}). By induction,
the result follows.

(Nbasic): straightforward.

(Nprod): as

σ 
 {(
∧

i∈P

(t1i × t2i ) ∧
∧

j∈N

¬(t1j × t2j ) ≤ 0)}

we have ∧

i∈P

(t1i × t2i )σ ∧
∧

j∈N

¬(t1j × t2j )σ ≤ 0

Applying Lemma 4.3.9, for all subset N ′ ⊆ N , we have

∧

i∈P

t1iσ ∧
∧

j∈N ′

¬t1jσ ≤ 0 or
∧

i∈P

t2iσ ∧
∧

j∈N\N ′

¬t2jσ ≤ 0

that is,

σ 
 {(
∧

i∈P

t1i ∧
∧

j∈N ′

¬t1j ≤ 0)} or σ 
 {(
∧

i∈P

t2i ∧
∧

j∈N\N ′

¬t2j ≤ 0)}



198 CHAPTER 10. TYPE TALLYING

By induction, either there exists C1
N ′ ∈ S1

N ′ such that σ 
 C1
N ′ or there exists

C2
N ′ ∈ S2

N ′ such that σ 
 C2
N ′ . According to Definition 10.1.4, we have C1

N ′ , C2
N ′ ∈

S1
N ′ ⊔ S2

N ′ . Thus there exists C ′
N ′ ∈ S1

N ′ ⊔ S2
N ′ such that σ 
 C ′

N ′ . Therefore
σ 


⋃

N ′⊆N C ′
N ′ . Moreover, according to Definition 10.1.4 again,

⋃

N ′⊆N C ′
N ′ ∈d

N ′⊆N (S1
N ′ ⊔ S2

N ′). Hence, the result follows.

(Narrow): similar to the case (Nprod) except we use Lemma 4.3.10.

We now prove termination of the algorithm.

Definition 10.1.13 (Plinth). A plinth i ⊂ T is a set of types with the following
properties:

• i is finite;

• i contains 1, 0 and is closed under Boolean connectives (∧,∨,¬);

• for all types (t1 × t2) or (t1 → t2) in i, we have t1 ∈ i and t2 ∈ i.

As stated in [Fri04], every finite set of types is included in a plinth. Indeed, we
already know that for a regular type t the set of its subtrees S is finite. The definition
of the plinth ensures that the closure of S under Boolean connective is also finite.
Moreover, if t belongs to a plinth i, then the set of its subtrees is contained in i. This
is used to show the termination of algorithms working on types.

Lemma 10.1.14 (Decidability). Let C be a finite constraint-set. Then the normal-
ization of C terminates.

Proof. Let T be the set of type occurring in C. As C is finite, T is finite as well. Let
i be a plinth such that T ⊆ i. Then when we normalize a constraint (t ≤ 0) during
the process of ∅ ⊢N C, t would belong to i. We prove the lemma by induction on
(|i\Σ|, U, |C|) lexicographically ordered, where Σ is the set of types we have normalized,
U is the number of unions ∨ occurring in the constraint-set C plus the number of
constraints (t,≥, s) and the number of constraint (t,≤, s) where s 6= 0 or t is not in
disjunctive normal form, and C is the constraint-set to be normalized.

(Nempty): it terminates immediately.

(Njoin): |C| decreases.

(Nsym): U decreases.

(Nzero): U decreases.

(Ndnf): U decreases.

(Nunion): although |C| increases, U decreases.

(Ntlv): it terminates immediately.

(Nhyp): it terminates immediately.

(Nassum): as τ0 ∈ i and τ0 /∈ Σ, the number |i \ Σ| decreases.

(Nbasic): it terminates immediately.
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(Nprod): although (|i \ Σ|, U, |C|) may not change, the next rule to apply must be
one of (Nempty), (Njoin), (Nsym), (Nzero), (Ndnf), (Nunion), (Ntlv),
(Nhyp) or (Nassum). Therefore, either the normalization terminates or the
triple decreases in the next step.

(Narrow): similar to Case (Nprod).

Lemma 10.1.15 (Finiteness). Let C be a constraint-set and ∅ ⊢N C  S. Then S
is finite.

Proof. It is easy to prove that each normalizing rule generates a finite set of finite sets
of normalized constraints.

Definition 10.1.16. Let C be a normalized constraint-set and O an ordering on var(C).
We say C is well-ordered if for all normalized constraint (α, c, tα) ∈ C and for all
β ∈ tlv(tα), O(α) < O(β) holds.

Lemma 10.1.17. Let C be a constraint-set and ∅ ⊢N C  S. Then for all normalized
constraint-set C ′ ∈ S, C ′ is well-ordered.

Proof. The only way to generate normalized constraints is Rule (Ntlv), where we have
selected the normalized constraint for the type variable α whose order is minimum as
the representative one, that is, ∀β ∈ tlv(tα) . O(α) < O(β). Therefore, the result
follows.

Definition 10.1.18. A general renaming ρ is a special type substitution that maps
each type variable to another (fresh) type variable.

Lemma 10.1.19. Let t, s be two types and [ρi]i∈I , [ρj ]j∈J two sets of general renam-
ings. Then if ∅ ⊢N {(s∧ t,≤, 0)} ∅, then ∅ ⊢N {((

∧

j∈J sρj)∧ (
∧

i∈I tρi),≤, 0)} ∅.

Proof. By induction on the number of (Nprod) and (Narrow) used in the derivation
of ∅ ⊢N {(s ∧ ¬t,≤, 0)} and by cases on the disjunctive normal form τ of s ∧ ¬t. The
failure of the normalization of (s ∧ t,≤, 0) is essentially due to (Nbasic-F), (Nprod)
and (Narrow), where there are no top-level type variables to make the type empty.
The case of arrows is a little complicated, as we need to consider more than two types:
one type for the negative parts and two types for the positive parts from t and s re-
spectively. Indeed, what we prove is the following stronger statement:

∅ ⊢N {(
∧

k∈K

tk,≤, 0)} ∅ =⇒ ∅ ⊢N {(
∧

k∈K

(
∧

ik∈Ik

tkρik),≤, 0)} ∅

where |K| ≥ 2 and ρik ’s are general renamings. For simplicity, we only consider |K| = 2,
as it is easy to extend to the case of |K| > 2.

Case 1: τ = τbs ∧ τbt and τ 6≃ 0, where τbs (τbt resp.) is an intersection of basic types
from s (t resp.). Then the expansion of τ is

(
∧

j∈J

τbsρj) ∧ (
∧

i∈I

τbtρi) ≃ τbs ∧ τbt 6≃ 0

So ∅ ⊢N {((
∧

j∈J τbsρj) ∧ (
∧

i∈I τbtρi),≤, 0)} ∅.
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Case 2: τ =
∧

ps∈Ps
(wps×vps)∧

∧

ns∈Ns
¬(wns×vns)∧

∧

pt∈Pt
(wpt×vpt)∧

∧

nt∈Nt
¬(wnt×

vnt), where Ps, Ns are from s and Pt, Nt are from t. Since ∅ ⊢N {τ,≤, 0)}  ∅,
by the rule (Nprod), there exist two sets N ′

s ⊆ Ns and N ′
t ⊆ Nt such that







∅ ⊢N {
∧

ps∈Ps

wps ∧
∧

ns∈N ′
s

¬wns ∧
∧

pt∈Pt

wpt ∧
∧

nt∈N ′
t

¬wnt ,≤, 0)} ∅

∅ ⊢N {
∧

ps∈Ps

vps ∧
∧

ns∈Ns\N ′
s

¬vns ∧
∧

pt∈Pt

vpt ∧
∧

nt∈Nt\N ′
t

¬vnt ,≤, 0)} ∅

By induction, we have






∅ ⊢N {
∧

j∈J

(
∧

ps∈Ps

wps ∧
∧

ns∈N ′
s

¬wns)ρj ∧
∧

i∈I

(
∧

pt∈Pt

wpt ∧
∧

nt∈N ′
t

¬wnt)ρi,≤, 0)} ∅

∅ ⊢N {
∧

j∈J

(
∧

ps∈Ps

vps ∧
∧

ns∈Ns\N ′
s

¬vns)ρj ∧
∧

i∈I

(
∧

pt∈Pt

vpt ∧
∧

nt∈Nt\N ′
t

¬vnt)ρi,≤, 0)} ∅

Then by the rule (Nprod) again, we get

∅ ⊢N {
∧

j∈J

(τs)ρj ∧
∧

i∈I

(τt)ρi,≤, 0)} ∅

where τs =
∧

ps∈Ps
(wps × vps)∧

∧

ns∈Ns
¬(wns × vns) and τt =

∧

pt∈Pt
(wpt × vpt)∧∧

nt∈Nt
¬(wnt × vnt).

Case 3: τ =
∧

ps∈Ps
(wps → vps) ∧

∧

ns∈Ns
¬(wns → vns) ∧

∧

pt∈Pt
(wpt → vpt) ∧∧

nt∈Nt
¬(wnt → vnt), where Ps, Ns are from s and Pt, Nt are from t. Since

∅ ⊢N {τ,≤, 0)} ∅, by the rule (Narrow), for all w → v ∈ Ns ∪Nt, there exist
a set P ′

s ⊆ Ps and a set P ′
t ⊆ Pt such that







∅ ⊢N {
∧

ps∈P ′
s

¬wps ∧
∧

pt∈P ′
t

¬wpt ∧ w,≤, 0)} ∅

P ′
s = Ps ∧ P ′

t = Pt or ∅ ⊢N {
∧

ps∈Ps\P ′
s

vps ∧
∧

pt∈Pt\P ′
t

vpt ∧ ¬v,≤, 0)} ∅

By induction, for all ρ ∈ [ρi]i∈I ∪ [ρj ]j∈J , we have






∅ ⊢N {
∧

j∈J

(
∧

ps∈P ′
s

¬wps)ρj ∧
∧

i∈I

(
∧

pt∈P ′
t

¬wpt)ρi ∧ wρ,≤, 0)} ∅







P ′
s = Ps ∧ P ′

t = Pt

or

∅ ⊢N {
∧

j∈J

(
∧

ps∈Ps\P ′
s

vps)ρj ∧
∧

i∈I

(
∧

pt∈Pt\P ′
t

vpt)ρi ∧ ¬vρ,≤, 0)} ∅

Then by the rule (Narrow) again, we get

∅ ⊢N {
∧

j∈J

(τs)ρj ∧
∧

i∈I

(τt)ρi,≤, 0)} ∅

where τs =
∧

ps∈Ps
(wps → vps) ∧

∧

ns∈Ns
¬(wns → vns) and τt =

∧

pt∈Pt
(wpt →

vpt) ∧
∧

nt∈Nt
¬(wnt → vnt).
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Case 4: τ = (
∨

ks∈Ks
τks) ∧ (

∨

kt∈Kt
τkt), where τks and τkt are single normal forms.

As ∅ ⊢N {(τ,≤, 0)}  ∅, there must exist at least one ks ∈ Ks and at least one
kt ∈ Kt such that ∅ ⊢N {(τks ∧ τkt ,≤, 0)}  ∅. By Cases (1) − (3), the result
follows.

The type tallying problem is parameterized with a set ∆ of type variables that
cannot be instantiated, but so far, we have not considered these monomorphic variables
in the normalization procedure. Taking ∆ into account affects only the (Ntlv) rule,
where a normalized constraint is built by singling out a variable α. Since the type
substitution σ we want to construct must not touch the type variables in ∆ (i.e.,
σ ♯ ∆), we cannot choose a variable α in ∆. To avoid this, we order the variables in C
so that those belonging to ∆ are always greater than those not in ∆. If, by choosing
the minimum top-level variable α, we obtain α ∈ ∆, it means that all the top-level
type variables are contained in ∆. According to Lemmas 5.1.2 and 5.1.3, we can then
safely eliminate these type variables. So taking ∆ into account, we amend the (Ntlv)
rule as follows.

tlv(τ0) = ∅ α′ OP ∪N S =







{{(α′,≤,¬tα′)}} α′ ∈ P \∆

{{(α′,≥, tα′)}} α′ ∈ N \∆

Σ ⊢N {(τ0 ≤ 0)} α′ ∈ ∆

Σ ⊢N {(
∧

α∈P

α ∧
∧

α∈N

¬α ∧ τ0 ≤ 0)} S
(Ntlv)

Furthermore, it is easy to prove the soundness, completeness, and termination of the
algorithm extended with ∆.

10.1.2 Constraint saturation

A normalized constraint-set may contain several constraints for the same type variable,
which can eventually be merged together. For instance, the constraints α ≥ t1 and
α ≥ t2 can be replaced by α ≥ t1 ∨ t2, and the constraints α ≤ t1 and α ≤ t2 can be
replaced by α ≤ t1 ∧ t2. That is to say, we can merge all the lower bounds (resp. upper
bounds) of a type variable into only one by unions (resp. intersections). The merging
rules are given in Figure 10.2.

After repeated uses of the merging rules, a set C contains at most one lower bound
constraint and at most one upper bound constraint for each type variable. If both lower
and upper bounds exist for a given α, that is, α ≥ t1 and α ≤ t2 belong to C, then the
substitution we want to construct from C must satisfy the constraint (t1,≤, t2) as well.
For that, we first normalize the constraint (t1,≤, t2), yielding a set of constraint-sets S,
and then saturate C with any normalized constraint-set C ′ ∈ S. Formally, we describe
the saturation process as a judgement Σp, CΣ ⊢S C  S, where Σp is a set of type pairs
(if (t1, t2) ∈ Σp, then the constraint t1 ≤ t2 has already been treated at this point),
CΣ is a normalized constraint-set (which collects the treated original constraints, like
(α,≥, t1) and (α,≤, t2), that generate the additional constraints), C is the normalized
constraint-set we want to saturate, and S is a set of sets of normalized constraints (the
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∀i ∈ I . (α ≥ ti) ∈ C |I| ≥ 2

⊢M C  (C \ {(α ≥ ti) | i ∈ I}) ∪ {(α ≥
∨

i∈I

ti)}
(MLB)

∀i ∈ I . (α ≤ ti) ∈ C |I| ≥ 2

⊢M C  (C \ {(α ≤ ti) | i ∈ I}) ∪ {(α ≤
∧

i∈I

ti)}
(MUB)

Figure 10.2: Merging rules

result of the saturation of C joined with CΣ). The saturation rules are given in Figure
10.3.

Σp, CΣ ∪ {(α ≥ t1), (α ≤ t2)} ⊢S C  S (t1, t2) ∈ Σp

Σp, CΣ ⊢S {(α ≥ t1), (α ≤ t2)} ∪ C  S
(Shyp)

(t1, t2) /∈ Σp ∅ ⊢N {(t1 ≤ t2)} S
S ′ = {{(α ≥ t1), (α ≤ t2)} ∪ C ∪ CΣ} ⊓ S
∀C ′ ∈ S ′. Σp ∪ {(t1, t2)}, ∅ ⊢MS C ′

 SC′

Σp, CΣ ⊢S {(α ≥ t1), (α ≤ t2)} ∪ C  
⊔

C′∈S′

SC′

(Sassum)

∀α, t1, t2 ∄{(α ≥ t1), (α ≤ t2)} ⊆ C

Σp, CΣ ⊢S C  {C ∪ CΣ}
(Sdone)

where Σp, CΣ ⊢MS C  S means that there exists C ′ such that ⊢M C  C ′ and
Σp, CΣ ⊢S C ′  S.

Figure 10.3: Saturation rules

If α ≥ t1 and α ≤ t2 belongs to the constraint-set C that is being saturated, and
t1 ≤ t2 has already been processed (i.e., (t1, t2) ∈ Σp), then the rule (Shyp) simply
extends CΣ (the result of the saturation so far) with {α ≥ t1, α ≤ t2}. Otherwise,
the rule (Sassum) first normalizes the fresh constraint {t1 ≤ t2}, yielding a set of
normalized constraint-sets S. It then saturates (joins) C and CΣ with each constraint-
set CS ∈ S, the union of which gives a new set S ′ of normalized constrain-sets. Each
C ′ in S ′ may contain several constraints for the same type variable, so they have to be
merged and saturated themselves. Finally, if C does not contain any couple α ≥ t1 and
α ≤ t2 for a given α, the process is over and the rule (Sdone) simply returns C ∪ CΣ.
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If ∅, ∅ ⊢MS C  S, then the result of the saturation of C is S.

Lemma 10.1.20 (Soundness). Let C be a normalized constraint-set. If ∅, ∅ ⊢MS

C  S, then for all normalized constraint-set C ′ ∈ S and all substitution σ, we have
σ 
 C ′ ⇒ σ 
 C.

Proof. We prove the following statements.

• Assume ⊢M C  C ′. For all σ, if σ 
 C ′, then σ 
 C.

• Assume Σp, CΣ ⊢S C  S. For all σ and C0 ∈ S, if σ 
 C0, then σ 
 CΣ ∪ C.

Clearly, these two statements imply the lemma. The first statement is straightforward.
The proof of the second statement proceeds by induction of the derivation of Σp, CΣ ⊢S

C  S.

(Shyp): by induction, we have σ 
 (CΣ ∪ {(α ≥ t1), (α ≤ t2)}) ∪ C, that is σ 

CΣ ∪ ({(α ≥ t1), (α ≤ t2)} ∪ C).

(Sassum): according to Definition 10.1.4, C0 ∈ SC′ for some C ′ ∈ S ′. By induction
on the premise Σp ∪ {(t1, t2)}, ∅ ⊢MS C ′  SC′ , we have σ 
 C ′. Moreover,
the equation S ′ = {{(α ≥ t1), (α ≤ t2)} ∪ C ∪ CΣ} ⊓ S gives us {(α ≥ t1), (α ≤
t2)} ∪ C ∪ CΣ ⊆ C ′. Therefore, we have σ 
 CΣ ∪ ({(α ≥ t1), (α ≤ t2)} ∪ C).

(Sdone): straightforward.

Lemma 10.1.21 (Completeness). Let C be a normalized constraint-set and ∅, ∅ ⊢MS

C  S. Then for all substitution σ, if σ 
 C, then there exists C ′ ∈ S such that σ 
 C ′.

Proof. We prove the following statements.

• Assume ⊢M C  C ′. For all σ, if σ 
 C, then σ 
 C ′.

• Assume Σp, CΣ ⊢S C  S. For all σ, if σ 
 CΣ ∪ C, then there exists C0 ∈ S
such that σ 
 C0.

Clearly, these two statements imply the lemma. The first statement is straightforward.
The proof of the second statement proceeds by induction of the derivation of Σp, CΣ ⊢S

C  S.

(Shyp): the result follows by induction.

(Sassum): as σ 
 CΣ ∪ ({(α ≥ t1), (α ≤ t2)} ∪ C), we have σ 
 {(t1 ≤ t2)}. As
∅ ⊢N {(t1 ≤ t2)}  S, applying Lemma 10.1.12, there exists C ′

0 ∈ S such that
σ 
 C ′

0. Let C ′ = CΣ ∪ ({(α ≥ t1), (α ≤ t2)} ∪ C) ∪ C ′
0. Clearly we have σ 
 C ′

and C ′ ∈ S′. By induction on the premise Σp ∪ {(t1, t2)}, ∅ ⊢MS C ′  SC′ , there
exists C0 ∈ SC′ such that σ 
 C0. Moreover, it is clear that C0 ∈

⊔

C′∈S′ SC′ .
Therefore, the result follows.

(Sdone): straightforward.
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Lemma 10.1.22 (Decidability). Let C be a finite normalized constraint-set. Then
∅, ∅ ⊢MS C terminates.

Proof. Let T be the set of types occurring in C. As C is finite, T is finite as well. Let i
be a plinth such that T ⊆ i. Then when we saturate a fresh constraint (t1,≤, t2) during
the process of ∅, ∅ ⊢MS C, (t1, t2) would belong to i×i. According to Lemma 10.1.14,
we know that ∅ ⊢N {(t1,≤, t2)} terminates. Moreover,the termination of the merging
of the lower bounds or the upper bounds of a same type variable is straightforward.
Finally, we have to prove termination of the saturation process. The proof proceeds by
induction on (|(i× i)| − |Σp|, |C|) lexicographically ordered:

(Shyp): |C| decreases.

(Sassum): as (t1, t2) /∈ Σp and t1, t2 ∈ i, |(i× i)| − |Σp| decreases.

(Sdone): it terminates immediately.

Definition 10.1.23 (Sub-constraint). Let C1, C2 ∈ 2C be two normalized constraint-
sets. We say C1 is a sub-constraint of C2, denoted as C1 ⋖C2, if for all (α, c, t) ∈ C1,
there exists (α, c, t′) ∈ C2 such that t′ c t, where c ∈ {≤,≥}.

Lemma 10.1.24. Let C1, C2 ∈ 2C be two normalized constraint-sets and C1⋖C2. Then
for all substitution σ, if σ 
 C2, then σ 
 C1.

Proof. Considering any constraint (α, c, t) ∈ C1, there exists (α, c, t′) ∈ C2 and t′ c t,
where c ∈ {≤,≥}. Since σ 
 C2, then σ(α) c t′σ. Moreover, as t′ c t, we have t′σ c tσ.
Thus σ(α) c tσ.

Definition 10.1.25. Let C ∈ 2C be a normalized constraint-set. We say C is saturated
if for each type variable α ∈ dom(C),

(1) there exists at most one form (α ≥ t1) ∈ C,

(2) there exists at most one form (α ≤ t2) ∈ C,

(3) if (α ≥ t1), (α ≤ t2) ∈ C, then ∅ ⊢N {(t1 ≤ t2)}  S and there exists C ′ ∈ S
such that C ′ is a sub-constraint of C ( i.e., C ′ ⋖ C).

Lemma 10.1.26. Let C be a finite normalized constraint-set and ∅, ∅ ⊢MS C  S.
Then for all normalized constraint set C ′ ∈ S, C ′ is saturated.

Proof. We prove a stronger statement: assume Σp, CΣ ⊢MS C  S. If

(i) for all (t1, t2) ∈ Σp there exists C ′ ∈ (∅ ⊢N {(t1 ≤ t2)}) such that C ′ ⋖ CΣ ∪ C
and

(ii) for all {(α ≥ t1), (α ≤ t2)} ⊆ CΣ the pair (t1, t2) is in Σp,

then C0 is saturated for all C0 ∈ S.
The proof of conditions (1) and (2) for a saturated constraint-set is straightforward

for all C0 ∈ S. The proof of the condition (3) proceeds by induction on the derivation
Σp, CΣ ⊢S C  S and a case analysis on the last rule used in the derivation.
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(Shyp): as (t1, t2) ∈ Σp, the conditions (i) and (ii) hold for the premise. By induction,
the result follows.

(Sassume): take any premise Σp ∪ {(t1, t2)}, ∅ ⊢S C ′′  SC′ , where C ′ ∈ S ′ and
⊢M C ′  C ′′. For any (s1, s2) ∈ Σp, the condition (i) gives us that there exists
C0 ∈ (∅ ⊢N {(s1 ≤ s2)}) such that C0 ⋖ CΣ ∪ ({(α ≥ t1), (α ≤ t2)} ∪ C). Since
S ′ = CΣ ∪ ({(α ≥ t1), (α ≤ t2)} ∪ C) ⊓ S, we have C0 ⋖ C ′′. Moreover, consider
(t1, t2). As ∅ ⊢N {(t1 ≤ t2)}  S, there exists C0 ∈ S such that C0 ⋖ C ′′.
Thus the condition (i) holds for the premise. Moreover, the condition (ii) holds
straightforwardly for premise. By induction, the result follows.

(Sdone): the result follows by the conditions (i) and (ii).

Lemma 10.1.27 (Finiteness). Let C be a constraint-set and ∅, ∅ ⊢MS C  S. Then
S is finite.

Proof. It follows by Lemma 10.1.15.

Lemma 10.1.28. Let C be a well-ordered normalized constraint-set and ∅, ∅ ⊢MS C  
S. Then for all normalized constraint-set C ′ ∈ S, C ′ is well-ordered.

Proof. The merging of the lower bounds (or the upper bounds) of a same type variable
preserves the orderings. The result of saturation is well-ordered by Lemma 10.1.17.

Normalization and saturation may produce redundant constraint-sets. For example,
consider the constraint-set {(α×β),≤, (Int×Bool)}. Applying the rule (Nprod), the
normalization of this set is

{{(α,≤, 0)}, {(β,≤, 0)}, {(α,≤, 0), (β,≤, 0)}, {(α,≤, Int), (β,≤, Bool)}}.

Clearly each constraint-set is a saturated one. Note that {(α,≤, 0), (β,≤, 0)} is redun-
dant, since any solution of this constraint-set is a solution of {(α,≤, 0)} and {(β,≤, 0)}.
Therefore it is safe to eliminate it. Generally, for any two different normalized con-
straint sets C1, C2 ∈ S, if C1 ⋖ C2, then according to Lemma 10.1.24, any solution of
C2 is a solution of C1. Therefore, C2 can be eliminated from S.

Definition 10.1.29. Let S be a set of normalized constraint-sets. We say that S is
minimal if for any two different normalized constraint-sets C1, C2 ∈ S, neither C1⋖C2

nor C2 ⋖ C1. Moreover, we say S ≃ S ′ if for all substitution σ such that ∃C ∈ S. σ 

C ⇐⇒ ∃C ′ ∈ S ′. σ 
 C ′.

Lemma 10.1.30. Let C be a well-ordered normalized constraint-set and ∅, ∅ ⊢MS C  
S. Then there exists a minimal set S0 such that S0 ≃ S.

Proof. By eliminating the redundant constraint-sets in S.
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10.1.3 From constraints to equations

In this section, we transform a well-ordered saturated constraint-set into an equivalent
equation system. This shows that the type tallying problem is essentially a unification
problem [BS01].

Definition 10.1.31 (Equation system). An equation system E is a set of equations
of the form α = t such that there exists at most one equation in E for every type variable
α. We define the domain of E, written dom(E), as the set {α | ∃t . α = t ∈ E}.

Definition 10.1.32 (Equation system solution). Let E be an equation system. A
solution to E is a substitution σ such that

∀α = t ∈ E . σ(α) ≃ tσ holds

If σ is a solution to E, we write σ 
 E.

From a normalized constraint-set C, we obtain some explicit conditions for the
substitution σ we want to construct from C. For instance, from the constraint α ≤ t
(resp. α ≥ t), we know that the type substituted for α must be a subtype of t (resp. a
super type of t).

We assume that each type variable α ∈ dom(C) has a lower bound t1 and a upper
bound t2 using, if necessary, the fact that 0 ≤ α ≤ 1. Formally, we rewrite C as follows.







t1 ≤ α ≤ 1 if α ≥ t1 ∈ C and ∄t. α ≤ t ∈ C

0 ≤ α ≤ t2 if α ≤ t2 ∈ C and ∄t. α ≥ t ∈ C

t1 ≤ α ≤ t2 if α ≥ t1, α ≤ t2 ∈ C

We then transform each constraint t1 ≤ α ≤ t2 in C into an equation α = (t1∨α′)∧ t2
3,

where α′ is a fresh type variable. The type (t1 ∨ α′) ∧ t2 ranges from t1 to t2, so the
equation α = (t1 ∨ α′) ∧ t2 expresses the constraint that t1 ≤ α ≤ t2, as wished. We
prove the soundness and completeness of this transformation.

To prove soundness, we define the rank n satisfaction predicate 
n for equation
systems, which is similar to the one for constraint-sets.

Lemma 10.1.33 (Soundness). Let C ⊆ C be a well-ordered saturated normalized
constraint-set and E its transformed equation system. Then for all substitution σ, if
σ 
 E then σ 
 C.

Proof. Without loss of generality, we assume that each type variable α ∈ dom(C) has
a lower bound and an upper bound, that is t1 ≤ α ≤ t2 ∈ C. We write O(C1) < O(C2)
if O(α) < O(β) for all α ∈ dom(C1) and all β ∈ dom(C2). We first prove a stronger
statement:

(*) for all σ, n and CΣ ⊆ C, if σ 
n E, σ 
n CΣ, σ 
n−1 C \ CΣ, and O(C \ CΣ) <
O(CΣ), then σ 
n C \ CΣ.

3 Or, equivalently, α = t1 ∨ (α′ ∧ t2). Besides, in practice, if only α ≥ t1 (α ≤ t2 resp.) and all the
occurrences of α in the co-domain of the function type are positive (negative resp.), we can use α = t1
(α = t2 resp.) instead, and the completeness is ensured by subsumption.
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Here CΣ denotes the set of constraints that have been checked. The proof proceeds by
induction on |C \ CΣ|.

C \ CΣ = ∅: straightforward.

C \ CΣ 6= ∅: take the constraint (t1 ≤ α ≤ t2) ∈ C \CΣ such that O(α) is the maximum
in dom(C \CΣ). Clearly, there exists a corresponding equation α = (t1∨α′)∧ t2 ∈
E. As σ 
n E, we have σ(α) ≃n ((t1 ∨ α′) ∧ t2)σ. Then,

σ(α) ∧ ¬t2σ ≃n ((t1 ∨ α′) ∧ t2)σ ∧ ¬t2σ
≃n 0

Therefore, σ(α) ≤n t2σ.
Consider the constraint (t1,≤, α). We have

t1σ ∧ ¬σ(α) ≃n t1σ ∧ ¬((t1 ∨ α′) ∧ t2)σ
≃n t1σ ∧ ¬t2σ

What remains to do is to check the subtyping relation t1σ∧¬t2σ ≤n 0, that is, to
check that the judgement σ 
n {(t1 ≤ t2)} holds. Since the whole constraint-set
C is saturated, according to Definition 10.1.25, we have ∅ ⊢N {(t1 ≤ t2)}  S
and there exists C ′ ∈ S such that C ′ ⋖ C, that is C ′ ⋖ CΣ ∪ C \ CΣ. More-
over, as C is well-ordered, O({α}) < O(tlv(t1) ∪ tlv(t2)) and thus O(C \ CΣ) <
O(tlv(t1) ∪ tlv(t2)). Therefore, we can deduce that C ′|tlv(t1)∪tlv(t2) ⋖ CΣ and
C ′ \ C ′|tlv(t1)∪tlv(t2) ⋖ C \ CΣ. From the premise and Lemma 10.1.24, we have
σ 
n C ′|tlv(t1)∪tlv(t2) and σ 
n−1 C

′ \C ′|tlv(t1)∪tlv(t2). Then, by Lemma 10.1.11, we
get σ 
n {(t1 ≤ t2)}.
Finally, consider the constraint-set C \ (CΣ ∪ {(t1 ≤ α ≤ t2)}). By induction, we
have σ 
n C \ (CΣ ∪ {(t1 ≤ α ≤ t2)}). Thus the result follows.

Finally, we explain how to prove the lemma with the statement (*). Take CΣ = ∅.
Since σ 
 E, we have σ 
n E for all n. Trivially, we have σ 
0 C. This can be used to
prove σ 
1 C. Since σ 
1 E, by (*), we get σ 
1 C, which will be used to prove σ 
2 C.
Consequently, we can get σ 
n C for all n, which clearly implies the lemma.

Lemma 10.1.34 (Completeness). Let C ⊆ C be a saturated normalized constraint-
set and E its transformed equation system. Then for all substitution σ, if σ 
 C then
there exists σ′ such that σ′ ♯ σ and σ ∪ σ′ 
 E.

Proof. Let σ′ = {σ(α)/α′ | α ∈ dom(C)}. Consider each equation α = (t1 ∨α′)∧ t2 ∈ E.
Correspondingly, there exist α ≥ t1 ∈ C and α ≤ t2 ∈ C. As σ 
 C, then t1σ ≤ σ(α)
and σ(α) ≤ t2σ. Thus

((t1 ∨ α′) ∧ t2)(σ ∪ σ′) = (t1(σ ∪ σ′) ∨ α′(σ ∪ σ′)) ∧ t2(σ ∪ σ′)
= (t1σ ∨ σ(α)) ∧ t2σ
≃ σ(α) ∧ t2σ (t1σ ≤ σ(α))
≃ σ(α) (σ(α) ≤ t2σ)
= (σ ∪ σ′)(α)
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Definition 10.1.35. Let E be an equation system and O an ordering on dom(E). We
say that E is well-ordered if for all equation α = tα ∈ E, we have O(α) < O(β) for all
β ∈ tlv(tα) ∩ dom(E).

Lemma 10.1.36. Let C be a well-ordered saturated normalized constraint-set and E
its transformed equation system. Then E is well-ordered.

Proof. Clearly, dom(E) = dom(C). Consider an equation α = (t1 ∨ α′) ∧ t2. Corre-
spondingly, there exist α ≥ t1 ∈ C and α ≤ t2 ∈ C. By Definition 10.1.16, for all
β ∈ (tlv(t1)∪ tlv(t2))∩ dom(C) . O(α) < O(β). Moreover, α′ is a fresh type variable in
C, that is α′ /∈ dom(C). And then α′ /∈ dom(E). Therefore, tlv((t1∨α

′)∧t2)∩dom(E) =
(tlv(t1) ∪ tlv(t2)) ∩ dom(C). Thus the result follows.

10.1.4 Solution of equation systems

We now extract a solution (i.e., a substitution) from the equation system we build from
C. In an equation α = tα, α may also appear in the type tα; such an equality reminds
the definition of a recursive type. As a first step, we introduce a recursion operator
µ in all the equations of the system, transforming α = tα into α = µxα. tα{xα/α}.
This ensures that type variables do not appear in the right-hand side of the equalities,
making the whole solving process easier. If some recursion operators are in fact not
needed in the solution (i.e., we have α = µxα.tα with xα /∈ fv(tα)), then we can simply
eliminate them.

If the equation system contains only one equation, then this equation is immediately
a substitution. Otherwise, consider the equation system {α = µxα. tα} ∪ E, where E
contains only equations closed with the recursion operator µ as explained above. The
next step is to substitute the content expression µxα. tα for all the occurrences of α in
equations in E. In detail, let β = µxβ . tβ ∈ E. Since tα may contain some occurrences
of β and these occurrences are clearly bounded by µxβ, we in fact replace the equation
β = µxβ . tβ with β = µxβ . tβ{µxα. tα/α}{xβ/β}, yielding a new equation system E′.
Finally, assume that the equation system E′ (which has fewer equations) has a solution
σ′. Then the substitution {tασ′/α} ⊕ σ′ is a solution to the original equation system
{α = µxα. tα} ∪ E. The solving algorithm Unify() is given in Figure 10.4.

Definition 10.1.37 (General solution). Let E be an equation system. A general
solution to E is a substitution σ from dom(E) to T such that

∀α ∈ dom(σ) . var(σ(α)) ∩ dom(σ) = ∅

and
∀α = t ∈ E . σ(α) ≃ tσ holds

Lemma 10.1.38. Let E be an equation system. If σ = Unify(E), then dom(σ) =
dom(E) and ∀α ∈ dom(σ). var(σ(α)) ∩ dom(σ) = ∅.

Proof. The algorithm Unify() consists of two steps: (i) transform types into recursive
types and (ii) extract the substitution. After the first step, for each equation (α =
tα) ∈ E, we have α /∈ var(tα).
Consider the second step. Let var(E) =

⋃

(α=tα)∈E
var(tα) and S = V \ S where S
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Require: an equation system E
Ensure: a substitution σ
1. let e2mu (α, tα) = (α, µxα. tα{xα/α}) in
2. let subst (α, tα) (β, tβ) = (β, tβ{tα/α}{xβ/β}) in
3. let rec mu2sub E =
4. match E with
5. |[ ] → [ ]
6. |(α, tα) :: E

′ →
7. let E′′ = List.map (subst (α, tα)) E

′ in
8. let σ′ = mu2sub E′′ in {tασ′/α} ⊕ σ′

9. in
10. let e2sub E =
11. let E′ = List.map e2mu E in
12. mu2sub E′

Figure 10.4: Equation system solving algorithm Unify()

is a set of type variables. We prove a stronger statement: ∀α ∈ dom(σ). var(σ(α)) ∩
(dom(σ) ∪ var(E)) = ∅ and dom(σ) = dom(E). The proof proceeds by induction on E:

E = ∅: straightforward.

E = {(α = tα)} ∪ E′: let E′′ = {(β = tβ{tα/α}{xβ/β}) | (β = tβ) ∈ E′}. Then there
exists a substitution σ′′ such that σ′′ = Unify(E′′) and σ = {tασ′′/α} ⊕ σ′′. By
induction, we have ∀β ∈ dom(σ′′). var(σ′′(β)) ∩ (dom(σ′′) ∪ var(E′′)) = ∅ and
dom(σ′′) = dom(E′′). As α /∈ dom(E′′), we have α /∈ dom(σ′′) and then dom(σ) =
dom(σ′′) ∪ {α} = dom(E).
Moreover, α /∈ var(E′′), then dom(σ) ⊂ dom(σ′′) ∪ var(E′′). Thus, for all β ∈
dom(σ′′), we have var(σ′′(β)) ∩ dom(σ) = ∅. Consider tασ

′′. It is clear that
var(tασ

′′) ∩ dom(σ) = ∅. Besides, the algorithm does not introduce any fresh
variable, then for all β ∈ dom(σ), we have var(tβ) ∩ var(E) = ∅. Therefore, the
result follows.

Lemma 10.1.39 (Soundness). Let E be an equation system. If σ = Unify(E), then
σ 
 E.

Proof. By induction on E.

E = ∅: straightforward.

E = {(α = tα)} ∪ E′: let E′′ = {(β = tβ{tα/α}{xβ/β}) | (β = tβ) ∈ E′}. Then there
exists a substitution σ′′ such that σ′′ = Unify(E′′) and σ = {tασ′′/α} ⊕ σ′′. By
induction, we have σ′′ 
 E′′. According to Lemma 10.1.38, we have dom(σ′′) =
dom(E′′). So dom(σ) = dom(σ′′) ∪ {α}. Considering any equation (β = tβ) ∈ E
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where β ∈ dom(σ′′). Then

σ(β) = σ′′(β) (apply σ)
≃ tβ{tα/α}{xβ/β}σ′′ (as σ′′ 
 E′′)
= tβ{tα{xβ/β}/α, xβ/β}σ′′

= tβ{tα{xβ/β}σ
′′/α, xβσ

′′/β} ⊕ σ′′

= tβ{tα({xβσ
′′
/β} ⊕ σ′′)/α, xβσ

′′/β} ⊕ σ′′

≃ tβ{tα({tβσ
′′
/β} ⊕ σ′′)/α, tβσ

′′/β} ⊕ σ′′ (expand xβ)

≃ tβ{tα({βσ
′′
/β} ⊕ σ′′)/α, βσ

′′/β} ⊕ σ′′ (as σ′′ 
 E′′)
= tβ{tασ

′′/α} ⊕ σ′′

= tβσ

Finally, consider the equation (α = tα). As

σ(α) = tασ
′′ (apply σ)

= tα{βσ
′′/β | β ∈ dom(σ′′)} (expand σ′′)

= tα{βσ/β | β ∈ dom(σ′′)} (as βσ = βσ′′)
= tα{βσ/β | β ∈ dom(σ′′) ∪ {α}} (as α /∈ var(tα))
= tα{βσ/β | β ∈ dom(σ)} (as dom(σ) = dom(σ′′) ∪ {α})
= tασ

Thus, the result follows.

Lemma 10.1.40. Let E be an equation system. If σ = Unify(E), then σ is a general
solution to E.

Proof. Immediate consequence of Lemmas 10.1.38 and 10.1.39.

Clearly, given an equation system E, the algorithm Unify(E) terminates with a
substitution σ.

Lemma 10.1.41. Given an equation system E, the algorithm Unify(E) terminates with
a substitution σ.

Proof. By induction on the number of equations in E.

Definition 10.1.42. Let σ, σ′ be two substitutions. We say σ ≃ σ′ if and only if
∀α. σ(α) ≃ σ′(α).

Lemma 10.1.43 (Completeness). Let E be an equation system. For all substitution
σ, if σ 
 E, then there exist σ0 and σ′ such that σ0 = Unify(E) and σ ≃ σ′ ◦ σ0.

Proof. According to Lemma 10.1.41, there exists σ0 such that σ0 = Unify(E). For any
α /∈ dom(σ0), clearly we have ασ0σ = ασ and then ασ0σ ≃ ασ. What remains to
prove is that if σ 
 E and σ0 = Unify(E) then ∀α ∈ dom(σ0). ασ0σ ≃ ασ. The proof
proceeds by induction on E:

E = ∅: straightforward.
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E = {(α = tα)} ∪ E′: let E′′ = {(β = tβ{tα/α}{xβ/β}) | (β = tβ) ∈ E′}. Then there
exists a substitution σ′′ such that σ′′ = Unify(E′′) and σ0 = {tασ′′/α} ⊕ σ′′. Con-
sidering each equation (β = tβ{tα/α}{xβ/β}) ∈ E′′, we have

tβ{tα/α}{xβ/β}σ = tβ{tα{xβ/β}/α, xβ/xβ}σ
= tβ{tα{xβ/β}σ/α, xβσ/β} ⊕ σ
= tβ{tα({xβσ/β} ⊕ σ)/α, xβσ/β} ⊕ σ
≃ tβ{tα({tβσ/β} ⊕ σ)/α, tβσ/β} ⊕ σ (expand xβ)

≃ tβ{tα({βσ/β} ⊕ σ)/α, βσ/β} ⊕ σ (as σ 
 E)
= tβ{tασ/α} ⊕ σ
≃ tβ{ασ/α} ⊕ σ
= tβσ
≃ βσ

Therefore, σ 
 E′′. By induction on E′′, we have ∀β ∈ dom(σ′′). βσ′′σ ≃ βσ.
According to Lemma 10.1.38, dom(σ′′) = dom(E′′). As α /∈ dom(E′′), then
dom(σ0) = dom(σ′′) ∪ {α}. Therefore for any β ∈ dom(σ′′) ∩ dom(σ0), βσ0σ ≃
βσ′′σ ≃ βσ. Finally, considering α, we have

ασ0σ = tασ
′′σ (apply σ0)

= tα{βσ
′′/β | β ∈ dom(σ′′)}σ (expand σ′′)

= tα{βσ
′′σ/β | β ∈ dom(σ′′)} ⊕ σ

≃ tα{βσ/β | β ∈ dom(σ′′)} ⊕ σ (as ∀β ∈ σ′′. βσ ≃ βσ′′σ)
= tασ
≃ ασ (as σ 
 E)

Therefore, the result follows.

In our calculus, a type is well-formed if and only if the recursion traverses a con-
structor. In other words, the recursive variable should not appear at the top level of
the recursive content. For example, the type µx. x∨ t is not well-formed. To make the
substitutions usable, we should avoid these substitutions with ill-formed types. Fortu-
nately, this can been done by giving an ordering on the domain of an equation system
to make sure that the equation system is well-ordered.

Lemma 10.1.44. Let E be a well-ordered equation system. If σ = Unify(E), then for
all α ∈ dom(σ), σ(α) is well-formed.

Proof. Assume that there exists an ill-formed σ(α). That is, σ(α) = µx. t where
x occurs at the top level of t. According to the algorithm Unify(), there exists a
sequence of equations (α =)α0 = tα0 , α1 = tα1 , . . . , αn = tαn such that αi ∈ tlv(tαi−1)
and α0 ∈ tlv(tαn) where i ∈ {1, . . . , n} and n ≥ 0. According to Definition 10.1.35,
O(αi−1) < O(αi) and O(αn) < O(α0). Therefore, we have O(α0) < O(α1) < . . . <
O(αn) < O(α0), which is impossible. Thus the result follows.

As mentioned above, there may be some useless recursion constructor µ. They
can be eliminated by checking whether the recursive variable appears in the content
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expression or not. Moreover, if a recursive type is empty (which can be checked with
the subtyping algorithm), then it can be replaced by 0.

To conclude, we now describe the solving procedure Sol∆(C) for the type tally-
ing problem C. We first normalize C into a finite set S of well-ordered normalized
constraint-sets. If S is empty, then there are no solutions to C. Otherwise, each
constraint-set Ci ∈ S is merged and saturated into a finite set SCi of well-order satu-
rated normalized constraint-sets. Then all these sets are collected into another set S ′

(i.e., S ′ =
⊔

Ci∈S
SCi). If S ′ is empty, then there are no solutions to C. Otherwise,

for each constraint-set C ′
i ∈ S ′, we transform C ′

i into an equation system Ei and then
construct a general solution σi from Ei. Finally, we collect all the solutions σi, yielding
a set Θ of solutions to C. We write Sol∆(C)  Θ if Sol∆(C) terminates with Θ, and
we call Θ the solution of the type tallying problem C.

Theorem 10.1.45 (Soundness). Let C be a constraint-set. If Sol∆(C)  Θ, then
for all σ ∈ Θ, σ 
 C.

Proof. Consequence of Lemmas 10.1.10, 10.1.17, 10.1.20, 10.1.26, 10.1.28, 10.1.33 and
10.1.39.

Theorem 10.1.46 (Completeness). Let C be a constraint-set and Sol∆(C)  Θ.
Then for all substitution σ, if σ 
 C, then there exists σ′ ∈ Θ and σ′′ such that
σ ≈ σ′′ ◦ σ′.

Proof. Consequence of Lemmas 10.1.12, 10.1.21, 10.1.34 and 10.1.43.

Theorem 10.1.47 (Decidability). Let C be a constraint-set. Then Sol∆(C) termi-
nates.

Proof. Consequence of Lemmas 10.1.14, 10.1.22 and 10.1.41.

Lemma 10.1.48. Let C be a constraint-set and Sol∆(C) Θ. Then

(1) Θ is finite.

(2) for all σ ∈ Θ and for all α ∈ dom(σ), σ(α) is well-formed.

Proof. (1): Consequence of Lemmas 10.1.15 and 10.1.27.

(2): Consequence of Lemmas 10.1.17, 10.1.28, 10.1.36 and 10.1.44.

10.2 Type-substitutions inference algorithm

In Chapter 9 , we presented a sound and complete inference system, which is parametric
in the decision procedures for ⊑∆, ∐i

∆(), and •∆. In this section we tackle the problem
of computing these operators. We focus on the application problem •∆, since the other
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two can be solved similarly. Recall that to compute t •∆s, we have to find two sets of
substitutions [σi]i∈I and [σj ]j∈J such that ∀h ∈ I ∪ J. σh ♯ ∆ and

∧

i∈I

tσi ≤ 0 → 1 (10.1)

∧

j∈J

sσj ≤ dom(
∧

i∈I

tσi) (10.2)

This problem is more general than the other two problems. If we are able to decide
inequation (10.2), it means that we are able to decide s′ ⊑∆ t′ for any s′ and t′, just by
considering t′ ground. Therefore we can decide ⊑∆. We can also decide [σi]i∈I 
 s ⊑∆

1× 1 for all s, and therefore compute ∐i
∆(s).

Let the cardinalities of I and J be p and q respectively. We first show that for
fixed p and q, we can reduce the application problem to a type tallying problem. Note
that if we increase p, the type on the right of Inequality (10.2) is larger, and if we
increase q the type on the left is smaller. Namely, the larger p and q are, the higher the
chances that the inequality holds. Therefore, we can search for cardinalities that make
the inequality hold by starting from p = q = 1, and then by increasing p and q in a
dove-tail order [Pys76] until we get a solution. This gives us a semi-decision procedure
for the general application problem. For the implementation, we give some heuristics
based on the shapes of s and t to set upper bounds for p and q (see Section 10.2.3).

10.2.1 Application problem with fixed cardinalities

We explain how to reduce the application problem with fixed cardinalities for I and J
to a type tallying problem. Without loss of generality, we can split each substitution
σk (k ∈ I ∪ J) into two substitutions: a renaming substitution ρk that maps each
variable in the domain of σk into a fresh variable and a second substitution σ′

k such
that σk = σ′

k ◦ ρk. The two inequalities then can be rewritten as

∧

i∈I

(tρi)σ
′
i ≤ 0 → 1

∧

j∈J

(sρj)σ
′
j ≤ dom(

∧

i∈I

(tρi)σ
′
i)

The domains of the substitutions σ′
k are pairwise distinct, since they are composed

by fresh type variables. We can therefore merge the σ′
k into one substitution σ =

⋃

k∈I∪J σ
′
k. We can then further rewrite the two inequalities as

(
∧

i∈I

(tρi))σ ≤ 0 → 1

(
∧

j∈J

(sρj))σ ≤ dom((
∧

i∈I

(tρi))σ)

which are equivalent to

t′σ ≤ 0 → 1

s′σ ≤ dom(t′σ)
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where t′ = (
∧

i∈I tρi) and s′ = (
∧

j∈J sρj). As t′σ ≤ 0 → 1, then t′σ must be a function
type. Then according to Lemmas 8.2.9 and 8.2.10, we can reduce these two inequalities
to the constraint set4:

C = {(t′,≤, 0 → 1), (t′,≤, s′ → γ)}

where γ is a fresh type variable. We have reduced the original application prob-
lem t •∆ s to solving C, which can be done as explained in Section 10.1. We write
AppFix∆(t, s) for the algorithm of the application problem (with fixed cardinalities)
t •∆s and AppFix∆(t, s) Θ if AppFix∆(t, s) terminates with Θ.

Lemma 10.2.1. Let t, s be two types and γ a type variable such that γ /∈ var(t)∪var(s).
Then for all substitution σ, if tσ ≤ sσ → γσ, then sσ ≤ dom(tσ) and σ(γ) ≥ tσ · sσ.

Proof. Consider any substitution σ. As tσ ≤ sσ → γσ, by Lemma 8.2.9, we have
sσ ≤ dom(tσ). Then by Lemma 8.2.10, we get σ(γ) ≥ tσ · sσ.

Lemma 10.2.2. Let t, s be two types and γ a type variable such that γ /∈ var(t)∪var(s).
Then for all substitution σ, if sσ ≤ dom(tσ) and γ /∈ dom(σ), then there exists σ′ such
that σ′ ♯ σ and t(σ ∪ σ′) ≤ (s → γ)(σ ∪ σ′).

Proof. Consider any substitution σ. As sσ ≤ dom(tσ), by Lemma 8.2.10, the type
(tσ) · (sσ) exists and tσ ≤ sσ → ((tσ) · (sσ)). Let σ′ = {(tσ) · (sσ)/γ}. Then

t(σ ∪ σ′) = tσ
≤ sσ → ((tσ) · (sσ))
= sσ → γσ′

= (s → γ)(σ ∪ σ′)

Note that the solution of the γ introduced in the constraint (t,≤, s → γ) represents
a result type for the application of t to s. In particular, completeness for the tallying
problem ensures that each solution will assign to γ (which occurs in a covariant position)
the minimum type for that solution. So the minimum solutions for γ are in t •∆s (see
the substitution σ′(γ) = (tσ) · (sσ) in the proof of Lemma 10.2.2).

Theorem 10.2.3 (Soundness). Let t and s be two types. If AppFix∆(t, s) Θ, then
for all σ ∈ Θ, we have tσ ≤ 0 → 1 and sσ ≤ dom(tσ).

Proof. Consequence of Lemmas 10.2.1 and 10.1.45.

Theorem 10.2.4 (Completeness). Let t and s be two types and AppFix∆(t, s) Θ.
For all substitution σ, if tσ ≤ 0 → 1 and sσ ≤ dom(tσ), then there exists σ′ ∈ Θ and
σ′′ such that σ ≃ σ′′ ◦ σ′.

Proof. Consequence of Lemmas 10.2.2 and 10.1.46.

4The first constraint (t′,≤, 0 → 1) can be eliminated since it is implied by the second one.
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10.2.2 General application problem

Now we take the cardinalities of I and J into account to solve the general application
problem. As stated before, we start with I and J both of cardinality 1 and explore all
the possible combinations of the cardinalities of I and J by, say, a dove-tail order [Pys76]
until we get a solution. More precisely, the algorithm consists of two steps:

Step A: we generate a constraint set as explained in Section 10.2.1 and apply the
tallying solving algorithm described in Section 10.1, yielding either a solution or
a failure.

Step B: if all attempts to solve the constraint sets have failed at Step 1 of the tallying
solving algorithm given at the beginning of Section 10.1.1, then fail (the expression
is not typable). If they all failed but at least one did not fail in Step 1, then
increment the cardinalities I and J to their successor in the dove-tail order and
start from Step A again. Otherwise all substitutions found by the algorithm are
solutions of the application problem.

Notice that the algorithm returns a failure only if the solving of the constraint-
set fails at Step 1 of the algorithm for the tallying problem. The reason is that up
to Step 1 all the constraints at issue are on distinct occurrences of type variables: if
they fail there is no possible expansion that can make the constraint-set satisfiable
(see Lemma 10.2.5). For example, the function map can not be applied to any integer,
as the normalization of {(Int,≤, α → β)} is empty (and even for any expansion of
α → β). In Step 2 instead constraints of different occurrences of a same variable
are merged. Thus even if the constraints fail it may be the case that they will be
satisfied by expanding different occurrences of a same variable into different variables.
Therefore an expansion is tried. For example, consider the application of a function of
type ((Int → Int) ∧ (Bool → Bool)) → t to an argument of type α → α. We start
with the constraint (α → α,≤, (Int → Int) ∧ (Bool → Bool)). The tallying algorithm
first normalizes it into the set {(α,≤, Int), (α,≥, Int), (α,≤, Bool), (α,≥, Bool)} (i.e.,
Step 1). But it fails at Step 2 as neither Int ≤ Bool nor Bool ≤ Int hold. However,
if we expand α → α, the constraint to be solved becomes

((α1 → α1) ∧ (α2 → α2),≤, (Int → Int) ∧ (Bool → Bool))

and one of the constraint-set of its normalization is

{(α1,≤, Int), (α1,≥, Int), (α2,≤, Bool), (α2,≥, Bool)}

The conflict between Int and Bool disappears and we can find a solution to the ex-
panded constraint.

Note that we keep trying expansion without giving any bound on the cardinalities
I and J , so the procedure may not terminate, which makes it only a semi-algorithm.
The following lemma justifies why we do not try to expand if normalization (i.e., Step
1 of the tallying algorithm) fails.

Lemma 10.2.5. Let t, s be two types, γ a fresh type variable and [ρi]i∈I , [ρj ]j∈J
two sets of general renamings. If ∅ ⊢N {(t,≤, 0 → 1), (t,≤, s → γ)}  ∅, then
∅ ⊢N {(

∧

i∈I tρi,≤, 0 → 1), (
∧

i∈I tρi,≤, (
∧

j∈J sρj) → γ)} ∅.
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Proof. As ∅ ⊢N {(t,≤, 0 → 1), (t,≤, s → γ)} ∅, then either ∅ ⊢N {(t,≤, 0 → 1)} 
∅ or ∅ ⊢N {(t,≤, s → γ)} ∅. If the first one holds, then according to Lemma 10.1.19,
we have ∅ ⊢N {(

∧

i∈I tρi,≤, 0 → 1)} ∅, and a fortiori

∅ ⊢N {(
∧

i∈I

tρi,≤, 0 → 1), (
∧

i∈I

tρi,≤, (
∧

j∈J

sρj) → γ)} ∅

Assume that ∅ ⊢N {(t,≤, s → γ)}  ∅. Without loss of generality, we consider the
disjunctive normal form τ of t:

τ =
∨

kb∈Kb

τkb ∨
∨

kp∈Kp

τkp ∨
∨

ka∈Ka

τka

where τkb (τkp and τka resp.) is an intersection of basic types (products and arrows
resp.) and type variables. Then there must exist k ∈ Kb ∪ Kp ∪ Ka such that ∅ ⊢N

{(τk,≤, 0 → 1)}  ∅. If k ∈ Kb ∪Kp, then the constraint (τk,≤, s → γ) is equivalent
to (τk,≤, 0). By Lemma 10.1.19, we get ∅ ⊢N {(

∧

i∈I τkρi,≤, 0)}  ∅, that is, ∅ ⊢N

{(
∧

i∈I τkρi,≤, (
∧

j∈J sρj) → γ)} ∅. So the result follows.
Otherwise, it must be that k ∈ Ka and τk =

∧

p∈P (wp → vp) ∧
∧

n∈N ¬(wn → vn).
We claim that ∅ ⊢N {(τk,≤, 0)}  ∅ (otherwise, ∅ ⊢N {(τk,≤, s → γ)}  ∅ does not
hold). Applying Lemma 10.1.19 again, we get ∅ ⊢N {(

∧

i∈I τkρi,≤, 0)} ∅. Moreover,
following the rule (Narrow), there exists a set P ′ ⊆ P such that







∅ ⊢N {
∧

p∈P ′

¬wp ∧ s,≤, 0)} ∅

P ′ = P or ∅ ⊢N {
∧

p∈P\P ′

vp ∧ ¬γ,≤, 0)} ∅

Applying 10.1.19, we get







∅ ⊢N {
∧

i∈I

(
∧

p∈P ′

¬wp)ρi ∧
∧

j∈J

sρj ,≤, 0)} ∅

P ′ = P or ∅ ⊢N {
∧

i∈I

(
∧

p∈P\P ′

vp)ρi ∧ ¬γ,≤, 0)} ∅

By the rule (Narrow), we have

∅ ⊢N {(
∧

i∈I

(
∧

p∈P

(wp → vp))ρi,≤, (
∧

j∈J

sρj) → γ)} ∅

Therefore, we have ∅ ⊢N {(
∧

i∈I τkρi,≤, (
∧

j∈J sρj) → γ)} ∅. So the result follows.

Let App∆(t, s) denote the algorithm for the general application problem.

Theorem 10.2.6. Let t, s be two types and γ the special fresh type variable introduced
in (

∧

i∈I tσi,≤, (
∧

j∈J sσj) → γ). If App∆(t, s) terminates with Θ, then

(1) (Soundness) if Θ 6= ∅, then for each σ ∈ Θ, σ(γ) ∈ t •∆s.
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(2) (Weak completeness) if Θ = ∅, then t •∆s = ∅.

Proof. (1): consequence of Theorem 10.2.3 and Lemma 10.2.1.

(2): consequence of Lemma 10.2.5.

Let us consider the application map even in Section 1.4 again. The types of map and
even are

map :: (α → β) → [α] → [β]
even :: (Int → Bool) ∧ ((α \ Int) → (α \ Int))

We start with the constraint-set

C1 = {(α1 → β1) → [α1] → [β1] ≤ ((Int → Bool) ∧ ((α \ Int) → (α \ Int))) → γ}

where γ is a fresh type variable (and where we α-converted the type of map). Then the
algorithm Sol∆(C1) generates a set of eight constraint-sets at Step 2 :

{γ ≥ [α1] → [β1], α1 ≤ 0}
{γ ≥ [α1] → [β1], α1 ≤ 0, β1 ≥ Bool}
{γ ≥ [α1] → [β1], α1 ≤ 0, β1 ≥ α \ Int}
{γ ≥ [α1] → [β1], α1 ≤ 0, β1 ≥ Bool ∨ (α \ Int)}
{γ ≥ [α1] → [β1], α1 ≤ 0, β1 ≥ Bool ∧ (α \ Int)}
{γ ≥ [α1] → [β1], α1 ≤ Int, β1 ≥ Bool}
{γ ≥ [α1] → [β1], α1 ≤ α \ Int, β1 ≥ α \ Int}
{γ ≥ [α1] → [β1], α1 ≤ Int ∨ α, β1 ≥ Bool ∨ (α \ Int)}

Clearly, the solutions to the 2nd-5th constraint-sets are included in those to the first
constraint-set. For the other four constraint-sets, by minimum instantiation, we can
get four solutions for γ (i.e., the result types of map even): [ ] → [ ], or [Int] → [Bool],
or [α \ Int] → [α \ Int], or [Int ∨ α] → [Bool ∨ (α \ Int)]. Of these solutions only the
last two are minimal (the first type is an instance of the third one and the second is
an instance of the fourth one) and since both are valid we can take their intersection,
yielding the (minimum) solution

([α \ Int] → [α \ Int]) ∧ ([Int ∨ α] → [Bool ∨ (α \ Int)]) (10.3)

Alternatively, we can dully follow the algorithm, perform an iteration, expand the type
of the function, yielding the constraint-set

{((α1 → β1) → [α1] → [β1]) ∧ ((α2 → β2) → [α2] → [β2])
≤ ((Int → Bool) ∧ ((α \ Int) → (α \ Int))) → γ}

from which we get the type (10.3) directly.
As stated in Section 10.1, we chose an arbitrary ordering on type variables, which

affects the generated substitutions and then the resulting types. Assume that σ1 and σ2
are two type substitutions generated by different orderings. Thanks to the completeness
of the tallying problem, there exist σ′

1 and σ′
2 such that σ2 ≃ σ′

1 ◦ σ1 and σ1 ≃ σ′
2 ◦ σ2.

Therefore, the result types corresponding to σ1 and σ2 are equivalent under ⊑∆, that is
σ1(γ) ⊑∆ σ2(γ) and σ2(γ) ⊑∆ σ1(γ). However, this does not imply that σ1(γ) ≃ σ2(γ).
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For example, α ⊑∆ 0 and 0 ⊑∆ α, but α 6≃ 0. Moreover, some result types are easier to
understand or more precise than some others. Which one is better is a language design
and implementation problem5. For example, consider the map even again. The type
(10.3) is obtained under the ordering o(α1) < o(β1) < o(α). While under the ordering
o(α) < o(α1) < o(β1), we would instead get

([β \ Int] → [β]) ∧ ([Int ∨ Bool ∨ β] → [Bool ∨ β]) (10.4)

It is clear that (10.3) ⊑∅ (10.4) and (10.4) ⊑∅ (10.3). However, compared with (10.3),
(10.4) is less precise and less comprehensible, if we look at the type [Int∨ Bool∨ β] →
[Bool ∨ β] : (1) there is a Bool in the domain which is useless here and (2) we know
that Int cannot appear in the returned list, but this is not expressed in the type.

Besides, note that the tallying algorithm will generate some solutions based on
(i) the fact that 0 → t contains all the functions, or (ii) the fact that (0 × t) or
(t × 0) is a subtype of any type. Most of these solutions would yield useless types
for the application problem. If there exist some other solutions, then any one can be
taken as the result type. For example, consider the application of a function f of type
(α → α) → (α → α) to an argument of type Int → Int. The constraint-set to be
solved is {(Int → Int ≤ α → α)}, to which there are two solutions: one is {0/α}
and the other is {Int/α}. The first one is generated from the fact (i) and yields the
useless type 0 → 0 (as it provides little information). While the second one yields the
type Int → Int, which can be taken as the result type for the application. Otherwise,
although the application is typable, it could not be used further. For instance, if f
applies to an argument e of type Int → Bool, then the constraint-set to be solved is
{(Int → Bool ≤ α → α)}, which has only one solution {0/α}. Thus, the result type
would be 0 → 0. At present, we focus on whether an expression is typable, while
whether and how the useless solutions can be eliminated is left to the implementation.

There is a final word on completeness, which states that for every solution of the
application problem, our algorithm finds a solution that is more general. However
this solution is not necessarily the first one found by the algorithm: even if we find
a solution, continuing with a further expansion may yield a more general solution.
We have just seen that, in the case of map even, the good solution is the second one,
although this solution could have already been deduced by intersecting the first minimal
solutions we found. Another simple example is the case of the application of a function
of type (α× β) → (β × α) to an argument of type (Int×Bool)∨ (Bool×Int). For this
application our algorithm returns after one iteration the type (Int∨Bool)×(Int∨Bool)
(since it unifies α with β) while one further iteration allows the system to deduce the
more precise type (Int×Bool) ∨ (Bool×Int). Of course this raises the problem of the
existence of principal types: may an infinite sequence of increasingly general solutions
exist? This is a problem we did not tackle in this work, but if the answer to the previous
question were negative then it would be easy to prove the existence of a principal type:
since at each iteration there are only finitely many solutions, then the principal type
would be the intersection of the minimal solutions of the last iteration (how to decide
that an iteration is the last one is yet another problem).

5In the current implementation we assume that the type variables in the function type always have
smaller orders than those in the argument type.
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10.2.3 Heuristics to stop type-substitutions inference

We only have a semi-algorithm for t•∆s because, as long as we do not find a solution, we
may increase the cardinalities of I and J (where I and J are defined as in the previous
sections) indefinitely. In this section, we propose two heuristic numbers p and q for the
cardinalities of I and J that are established according to the form of s and t. These
heuristic numbers set the upper limit for the procedure: if no solution is found when
the cardinalities of I and J have reached these heuristic numbers, then the procedure
stops returning failure. This yields a terminating algorithm for t •∆s which is clearly
sound but, in our case, not complete. Whether it is possible to define these boundaries
so that they ensure termination and completeness is still an open issue.

Through some examples, we first analyze the reasons why one needs to expand the
function type t and/or the argument type s: the intuition is that type connectives
are what makes the expansions necessary. Then based on this analysis, we give some
heuristic numbers for the copies of types that are needed by the expansions. These
heuristics follow some simple (but, we believe, reasonable) guidelines. First, when the
substitutions found for a given p and q yield a useless type (e.g., “0 → 0” the type
of a function that cannot be applied to any value), it seems sensible to expand the
types (i.e., increase p or q), in order to find more informative substitutions. Second,
if iterating the process does not give a more precise type (in the sense of ⊑), then
it seems sensible to stop. Last, when the process continuously yields more and more
precise types, we choose to stop when the type is “good enough” for the programmer.
In particular we choose to avoid to introduce too many new fresh variables that make
the type arbitrarily more precise but at the same time less “programmer friendly”. We
illustrate these behaviours for three strategies: increasing p (that is, expanding the
domain of the function), increasing q (that is, expanding the type of the argument) or
lastly increasing both p and q at the same time.

Expansion of t

A simple reason to expand t is the presence of (top-level) unions in s. Generally, it is
better to have as many copies of t as there are disjunctions in s. Consider the example,

t = (α → α) → (α → α)
s = (Int → Int) ∨ (Bool → Bool)

(10.5)

If we do not expand t (ie, if p is 1), then the result type computed for the application of
t to s is 0 → 0. However, this result type cannot be applied hereafter, since its domain
is 0, and is therefore useless (more precisely, it can be applied only to expressions
that are provably diverging). When p is 2, we get an extra result type, (Int → Int) ∨
(Bool → Bool), which is obtained by instantiating t twice, by Int and Bool respectively.
Carrying on expanding t does not give more precise result types, as we always select
only two copies of t to match the two summands in s, according to the decomposition
rule for arrows (ie, Lemma 4.3.10).

A different example that shows that the cardinality of the summands in the union
type of the argument is a good heuristic choice for p is the following one:

t = (α× β) → (β × α)
s = (Int × Bool) ∨ (Bool × Int)

(10.6)
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Without expansion, the result type is ((Int∨ Bool)× (Bool∨ Int)) (α unifies Int and
Bool). If we expand t, there exists a more precise result type (Int×Bool)∨(Bool×Int),
each summand of which corresponds to a different summand in s. Besides, due to the
decomposition rule for product types (ie, Lemma 4.3.9), there also exist some other
result types which involve type variables, like ((Int∨Bool)×α)∨((Int∨Bool)×(Int∨
Bool) \ α). Further expanding t makes more product decompositions possible, which
may in turn generate new result types. However, the type (Int× Bool)∨ (Bool× Int)
is informative enough, and so we set the heuristic number to 2, that is, the number of
summands in s.

We may have to expand t also because of intersection. First, suppose s is an
intersection of basic types; it can be viewed as a single basic type. Consider the
example

t = α → (α× α) and s = Int (10.7)

Without expansion, the result type is γ1 = (Int × Int). With two copies of t, besides
γ1, we get another result type γ2 = (β× β)∨ (Int \ β× Int \ β), which is more general
than γ1 (eg, γ1 = γ2{0/β}). Generally, with k copies, we get k result types of the form

γk = (β1 × β1) ∨ . . . ∨ (βk−1 × βk−1) ∨ (Int \ (
∨

i=1..k−1

βi)× Int \ (
∨

i=1..k−1

βi))

It is clear that γk+1 ⊑∅ γk . Moreover, it is easy to find two substitutions [σ1, σ2] such
that [σ1, σ2] 
 γk ⊑∅ γk+1 (k ≥ 2). Therefore, γ2 is the minimum (with respect to ⊑∅)
of {γk, k ≥ 1}, so expanding t more than once is useless (we do not get a type more
precise than γ2). However, we think the programmer expects (Int × Int) as a result
type instead of γ2. So we take the heuristic number here as 1.

An intersection of product types is equivalent to
∨

i∈I(s
i
1 × si2), so we consider just

a single product type (and then use union for the general case). For instance,

t = ((α → α)× (β → β)) → ((β → β)× (α → α))
s = (((Even → Even) ∨ (Odd → Odd))× (Bool → Bool))

(10.8)

For the application to succeed, we have a constraint generated for each component
of the product type, namely (α → α ≥ (Even → Even) ∨ (Odd → Odd)) and (β →
β ≥ Bool → Bool). As with Example (10.5), it is better to expand α → α once
for the first constraint, while there is no need to expand β → β for the second one.
As a result, we expand the whole type t once, and get the result type ((Bool →
Bool) × ((Even → Even) ∨ (Odd → Odd))) as expected. Generally, if the heuristic
numbers of the components of a product type are respectively p1 and p2, we take p1 ∗p2
as the heuristic number for the whole product.

Finally, suppose s is an intersection of arrows, like for example map even.

t = (α → β) → [α] → [β]
s = (Int → Bool) ∧ ((γ \ Int) → (γ \ Int))

(10.9)

When p = 1, the constraint to solve is (α → β ≥ s). As stated in Subsection 10.2.2,
we get four possible result types: [ ] → [ ], [Int] → [Bool], [α \ Int] → [α \ Int],
or [Int ∨ α] → [Bool ∨ (α \ Int)], and we can build the minimum one by taking the
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Table 10.1: Heuristic number Hp(s) for the copies of t

Shape of s Number Hp(s)
∨

i∈I si Σi∈IHp(si)
∧

i∈P bi ∧
∧

i∈N ¬bi ∧
∧

i∈P1
αi ∧

∧

i∈N1
¬αi 1

∧

i∈P (s
1
i × s2i ) ∧

∧

i∈N ¬(s1i × s2i ) ΣN ′⊆NHp(s
1
N ′ × s2N ′)

(s1 × s2) Hp(s1) ∗Hp(s2)
∧

i∈P (s
1
i → s2i ) ∧

∧

i∈N ¬(s1i → s2i ) 1

where (s1N ′ × s2N ′) = (
∧

i∈P s1i ∧
∧

i∈N ′ ¬s1i ×
∧

i∈P s2i ∧
∧

i∈N\N ′ ¬s2i ).

intersection of them. If we continue expanding t, any result type we obtain is an
intersection of some of the result types we have deduced for p = 1. Indeed, assume we
expand t so that we get p copies of t. Then we would have to solve either (

∨

i=1..p αi →
βi ≥ s) or (

∧

i=1..p αi → βi ≥ s). For the first constraint to hold, by the decomposition
rule of arrows, there exists i0 such that s ≤ αi0 → βi0 , which is the same constraint as
for p = 1. The second constraint implies s ≤ αi → βi for all i; we recognize again the
same constraint as for p = 1 (except that we intersect p copies of it). Consequently,
expanding does not give us more information, and it is enough to take p = 1 as the
heuristic number for this case.

Following the discussion above, we propose in Table 10.1 a heuristic number Hp(s)
that, according to the shape of s, sets an upper bound to the number of copies of t. We
assume that s is in normal form. This definition can be easily extended to recursive
types by memoization.

The next example shows that performing the expansion of t with Hp(s) copies may
not be enough to get a result type, confirming that this number is a heuristic that does
not ensure completeness. Let

t = ((true × (Int → α)) → t1) ∧ ((false × (α → Bool)) → t2)
s = (Bool × (Int → Bool))

(10.10)

Here dom(t) is (true × (Int → α)) ∨ (false × (α → Bool)). The type s cannot be
completely contained in either summand of dom(t), but it can be contained in dom(t).
Indeed, the first summand requires the substitution of α to be a supertype of Bool

while the second one requires it to be a subtype of Int. As Bool is not a subtype of
Int, to make the application possible, we have to expand the function type at least
once. However, according to Table 10.1, the heuristic number in this case is 1 (ie, no
expansions).

Expansion of s

For simplicity, we assume that dom(
∧

i∈I tσi) =
∨

i∈I dom(t)σi, so that the tallying
problem for the application becomes

∧

j∈J sσ
′
j ≤

∨

i∈I dom(t)σi. We now give some
heuristic numbers for |J | depending on dom(t).
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First, consider the following example where dom(t) is a union:

dom(t) = (Int → ((Bool → Bool) ∧ (Int → Int)))
∨(Bool → ((Bool → Bool) ∧ (Int → Int) ∧ (Real → Real)))

s = (Int → (α → α)) ∨ (Bool → (β → β))
(10.11)

For the application to succeed, we need to expand Int → (α → α) with two copies
(so that we can make two distinct instantiations α = Bool and α = Int) and Bool →
(β → β) with three copies (for three instantiations β = Bool, β = Int, and β = Real),
corresponding to the first and the second summand in dom(t) respectively. Since the
expansion distributes the union over the intersections, we need to get six copies of
s. In detail, we need the following six substitutions: {α = Bool, β = Bool}, {α =
Bool, β = Int}, {α = Bool, β = Real}, {α = Int, β = Bool}, {α = Int, β = Int},
and {α = Int, β = Real}, which are the Cartesian products of the substitutions for α
and β.

If dom(t) is an intersection of basic types, we use 1 for the heuristic number. If it is
an intersection of product types, we can rewrite it as a union of products and we only
need to consider the case of just a single product type. For instance,

dom(t) = ((Int → Int)× (Bool → Bool))
s = ((α → α)× (α → α))

(10.12)

It is easy to infer that the substitution required by the left component needs α to be
Int, while the one required by the right component needs α to be Bool. Thus, we need
to expand s at least once. Assume that s = (s1 × s2) and we need qi copies of si with
the type substitutions: σi

1, . . . , σ
i
qi . Generally, we can expand the whole product type

so that we get s1 × s2 copies as follows:

∧

j=1..q1
(s1 × s2)σ

1
j ∧
∧

j=1..q2
(s1 × s2)σ

2
j

= ((
∧

j=1..q1
s1σ

1
j ∧
∧

j=1..q2
s1σ

2
j )× (

∧

j=1..q1
s2σ

1
j ∧
∧

j=1..q2
s2σ

2
j ))

Clearly, this expansion type is a subtype of (
∧

j=1..q1
s1σ

1
j ×

∧

j=1..q2
s2σ

2
j ) and so the

type tallying succeeds.
Next, consider the case where dom(t) is an intersection of arrows:

dom(t) = (Int → Int) ∧ (Bool → Bool)
s = α → α

(10.13)

Without expansion, we need (α → α) ≤ (Int → Int) and (α → α) ≤ (Bool → Bool),
which reduce to α = Int and α = Bool; this is impossible. Thus, we have to expand s
once, for the two conjunctions in dom(t).

Note that we may also have to expand s because of unions or intersections occurring
under arrows. For example,

dom(t) = t′ → ((Int → Int) ∧ (Bool → Bool))
s = t′ → (α → α)

(10.14)

As in Example (10.13), expanding once the type α → α (which is under an arrow in s)
makes type tallying succeed. Because (t′ → s1) ∧ (t′ → s2) ≃ t′ → (s1 ∧ s2), we can in
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Table 10.2: Heuristic number Hq(dom(t)) for the copies of s

Shape of dom(t) Number Hq(dom(t))
∨

i∈I ti
∏

i∈I Hq(ti) + 1
∧

i∈P bi ∧
∧

i∈N ¬bi ∧
∧

i∈P1
αi ∧

∧

i∈N1
¬αi 1

∧

i∈P (t
1
i × t2i ) ∧

∧

i∈N ¬(t1i × t2i )
∏

N ′⊆N Hq(t
1
N ′ × t2N ′)

(t1 × t2) Hq(t1) +Hq(t2)
∧

i∈P (t
1
i → t2i ) ∧

∧

i∈N ¬(t1i → t2i ) |P | ∗ (Hq(t
1
i ) +Hq(t

2
i ))

where (t1N ′ × t2N ′) = (
∧

i∈P t1i ∧
∧

i∈N ′ ¬t1i ×
∧

i∈P t2i ∧
∧

i∈N\N ′ ¬t2i ),

fact perform the expansion on s and then use subsumption to obtain the desired result.
Likewise, we may have to expand s if dom(t) is an arrow type and contains an union in
its domain. Therefore, we have to look into dom(t) and s deeply if they contain both
arrow types.

Following these intuitions, we define in Table 10.2 a heuristic number Hq(dom(t))
that, according to the sharp of dom(t), sets an upper bound to the number of copies of
s.

Together

Up to now, we have considered the expansions of t and s separately. However, it might
be the case that the expansions of t and s are interdependent, namely, the expansion of
t causes the expansion of s and vice versa. Here we informally discuss the relationship
between the two, and hint as why decidability is difficult to prove.

Let dom(t) = t1∨ t2, s = s1∨ s2, and suppose the type tallying between dom(t) and
s requires that tiσi ≥ si, where σ1 and σ2 are two conflicting type substitutions. Then
we can simply expand dom(t) with σ1 and σ2, yielding t1σ1∨ t2σ1∨ t1σ2∨ t2σ2. Clearly,
this expansion type is a supertype of t1σ1 ∨ t2σ2 and thus a supertype of s. Note that
as t is on the bigger side of ≤, then the extra chunk of type brought by the expansion
(i.e., t2σ1 ∨ t1σ2) does not matter. That is to say, the expansion of t would not cause
the expansion of s.

However, the expansion of s could cause the expansion of t, and even a further
expansion of s itself. Assume that s = s1 ∨ s2 and si requires a different substitution
σi (i.e., siσi ≤ dom(t) and σ1 is in conflict with σ2). If we expand s with σ1 and σ2,
then we have

(s1 ∨ s2)σ1 ∧ (s1 ∨ s2)σ2
= (s1σ1 ∧ s1σ2) ∨ (s1σ1 ∧ s2σ2) ∨ (s2σ1 ∧ s1σ2) ∨ (s2σ1 ∧ s2σ2)

It is clear that s1σ1∧s1σ2, s1σ1∧s2σ2 and s2σ1∧s2σ2 are subtypes of dom(t). Consider
the extra type s1σ2 ∧ s2σ1. If this extra type is empty (e.g., because s1 and s2 have
different top-level constructors), or if it is a subtype of dom(t), then the type tallying
succeeds. Otherwise, in some sense, we need to solve another type tallying between
s ∧ (s2σ1 ∧ s1σ2) and dom(t), which would cause the expansion of t or s. This is the
main reason why we fail to prove the decidability of the application problem (that is,
deciding •∆) so far.
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To illustrate this phenomenon, consider the following example:

dom(t) = ((Bool → Bool) → (Int → Int))
∨((Bool → Bool) ∨ (Int → Int)) → ((β → β) ∨ (Bool → Bool))
∨(β × β)

s = (α → (Int → Int)) ∨ ((Bool → Bool) → α) ∨ (Bool × Bool)
(10.15)

Let us consider each summand in s respectively. A solution for the first summand is
α ≥ Bool → Bool, which corresponds to the first summand in dom(t). The second
one requires α ≤ Int → Int and the third one β ≥ Bool. Since (Bool → Bool) is not
subtype of (Int → Int), we need to expand s once, that is,

s′ = s{Bool → Bool/α} ∧ s{Int → Int/α}
= ((Bool → Bool) → (Int → Int)) ∧ ((Int → Int) → (Int → Int))

∨((Bool → Bool) → (Int → Int)) ∧ ((Bool → Bool) → (Int → Int))
∨((Bool → Bool) → (Bool → Bool)) ∧ ((Int → Int) → (Int → Int))
∨((Bool → Bool) → (Bool → Bool)) ∧ ((Bool → Bool) → (Int → Int))
∨(Bool × Bool)

Almost all the summands of s′ are contained in dom(t) except the extra type

((Bool → Bool) → (Bool → Bool)) ∧ ((Int → Int) → (Int → Int))

Therefore, we need to consider another type tallying involving this extra type and
dom(t). By doing so, we obtain β = Int; however we have inferred before that β should
be a supertype of Bool. Consequently, we need to expand dom(t); the expansion of
dom(t) with {Bool/β} and {Int/β} makes the type tallying succeed.

In day-to-day examples, the extra type brought by the expansion of s is always a
subtype of (the expansion type of) dom(t), and we do not have to expand dom(t) or s
again. The heuristic numbers we gave seem to be enough in practice.



Chapter 11

Compilation into CoreCDuce

In this chapter, we want to compile the polymorphic calculus into a variant of the
monomorphic calculus (e.g., CoreCDuce). The aim of this translation is to provide
an execution model for our polymorphic calculus that does not depend on dynamic
propagation of type substitutions. We first introduce a “binding” type-case, which
is needed by the translation (Section 11.1). Then we present the translation from our
polymorphic calculus to CoreCDuce and prove the soundness of the translation (Section
11.2). Lastly we discuss some limitations of this approach and hint at some possible
improvements (Section 11.3).

11.1 A “binding” type-case

The translation we wish to define is type-driven, and therefore expects an annotated,
well-typed expression of the polymorphic calculus. We therefore assume that we have
access to the (already computed) type of every expression. The translation relies on an
extension of the (monomorphic) type-case expression so as it features binding, which
we write (x=e)∈t ? e1 : e2, and that can be encoded as:

(λ((s∧t)→t1)∧((s∧¬t)→t2)x.x∈t ? e1 : e2)e

where s is the type of e, t1 the type of e1 and t2 the type of e2. An extremely useful and
frequent case (also in practice) is when the expression e in (x=e)∈t ? e1 : e2 is syntacti-
cally equal to the binding variable x, that is (x=x)∈t ? e1 : e2. For this particular case
it is worth introducing specific syntactic sugar (distinguished by a boldface “belongs
to” symbol): xǫ t ? e1 : e2. The reader may wonder what is the interest of binding a
variable to itself. Actually, the two occurrences of x in (x=x)∈t denote two distinct
variables: the one on the right is recorded in the environment with some type s; this
variable does not occur either in e1 or e2 because it is hidden by the x on the left; this
binds the occurrences of x in e1 and e2 but with different types, s∧t in e1 and s∧¬t
in e2. The advantage of such a notation is to allow the system to use different type
assumptions for x in each branch, as stated by the typing rule directly derived from
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the encoding:

{
t1 = Γ(x) ∧ t t2 = Γ(x) ∧ ¬t
ti 6≃ 0 ⇒ ∆ # Γ, (x : ti) ⊢C ei : si

∆ # Γ ⊢C (xǫ t ? e1 : e2) :
∨

ti 6≃0

si
(Ccase-var)

Note that x is defined in Γ but its type Γ(x) is overridden in the premises to type the
branches. With this construction, map can be defined as:

µ(α→β)→[α]→[β]m λf . λ[α]→[β]ℓ . ℓǫ nil ? nil : (f(π1ℓ),mf(π2ℓ))

If the unbinding version ∈ were used instead, then ℓ in the second branch (f(π1ℓ),mf(π2ℓ))
would still have type [α]. So πiℓ is not well-typed (remind that [α] ≃ (α, [α])∨ nil)
and thus neither is map.

In practice any real programming language would implement either ǫ (and not ∈)
or an even more generic construct (such as match_with or case_of pattern matching
where each pattern may re-bind the x variable to a different type).

11.2 Translation to CoreCDuce

We first illustrate how to translate our polymorphic calculus to CoreCDuce and then
prove that the translation is sound.

The translation we propose creates CoreCDuce expressions whose evaluation sim-
ulates the run-time type substitutions that may occur during the evaluation of an
expression of the polymorphic calculus. As a starting point, let us recall what happens
during the evaluation of an expression of the polymorphic calculus (Figure 7.2 of Sec-
tion 7.3). First, an explicit substitution is propagated using the relabeling operation
(Rule (Rinst) in Figure 7.2). This propagation stops at the lambda abstractions, which
become annotated with the propagated set of substitutions. Second, when a lambda
abstraction is applied to some argument the annotations of that lambda abstraction are
propagated to the body (Rule (Rappl)). However the type of the argument determines
which substitutions are propagated to the body. The translation from the polymorphic
calculus to CoreCDuce reproduces these two steps: (1) it first pushes the explicit sub-
stitutions into the decorations of the underlying abstractions, and (2) it encodes the
run-time choice of which substitutions to be propagated by a set of nested type-case
expressions.

Consider the following expression

(λ(α→α)→α→αf.λα→αx.fx)[{Int/α}, {Bool/α}] (11.1)

Intuitively, the type substitutions take effect only at polymorphic abstractions. So we
first push the explicit type substitutions into the decorations of the underlying abstrac-
tions. To do so, we perform the relabeling on the expression, namely the application
of @, yielding

λ
(α→α)→α→α

[{Int/α},{Bool/α}]
f.λα→αx.fx



11.2. TRANSLATION TO CORECDUCE 227

Second, we show how we encode the dynamic relabeling that occurs at application time.
In our example, the type for the whole abstraction is

((Int → Int) → Int → Int) ∧ ((Bool → Bool) → Bool → Bool)

but we cannot simply propagate all the substitutions to the body expression since this
leads to an ill-typed expression. The idea is therefore to use the “binding” type case,
to simulate different relabeling on the body expression with different type cases. That
is, we check which type substitutions are used by the type of the parameter and then
propagate them to the body expression. So the encoding of (11.1) is as follows:

λ((Int→Int)→Int→Int)∧((Bool→Bool)→Bool→Bool)f.
f ǫ (α → α){Int/α} ∧ (α → α){Bool/α} ?C[λα→α

[{Int/α},{Bool/α}]
x.fx] :

f ǫ (α → α){Int/α} ?C[λα→α
[{Int/α}]

x.fx] :

f ǫ (α → α){Bool/α} ?C[λα→α
{Bool/α}]

x.fx] :

C[λα→αx.fx]

(11.2)

where C[e] denotes the encoding of e. The first branch simulates the case where both
type substitutions are selected and propagated to the body, that is, the parameter
f belongs to the intersection of different instances of α → α with these two type
substitutions. The second and third branches simulate the case where exactly one
of the substitutions is used. Finally, the last branch denotes the case where no type
substitutions are selected. Note that this last case can never happen, since by typing,
we know that the application is well-typed and therefore that the argument is of type
Bool → Bool or Int → Int (or of course, their intersection). This last case is only here
to keep the expression syntactically correct (it is the “else” part of the last type-case)
and can be replaced with a dummy expression.

Here, we see that the “binding” type-case is essential since it allows us to “refine”
the type of the parameter of a lambda abstraction (replacing it by one of its instances).
Note also that although the binding type case is encoded using a lambda abstraction,
it is a lambda abstraction of CoreCDuce since it is not decorated.

The trickiest aspect of our encoding is that the order of the branches is essential: the
more precise the type (in the sense of the subtyping relation) the sooner it must occur
in the chain of type-cases. Indeed, consider the previous example but suppose that one
tests for (Int → Int) before (Int → Int) ∧ (Bool → Bool). For an argument of type
(Int → Int)∧ (Bool → Bool), the branch C[λα→α

[{Int/α}]
x.fx] would be evaluated instead

of the more precise C[λα→α
[{Int/α},{Bool/α}]

x.fx]. Worst, if one now tests for Bool → Bool

before (Int → Int) ∧ (Bool → Bool) and if the argument is again of type Int → Int,
then branch C[λα→α

[{Bool/α}]
x.fx] is taken (since the intersection between Int → Int and

Bool → Bool is not empty). This clearly yields an unsound expression since now f
is bound to a value of type Int → Int but used in a branch where the substitution
{Bool/α} is applied.

Definition 11.2.1. Let S be a set. We say that a sequence L = S0, . . . , Sn is a sequence
of ordered subsets of S if and only if

• P(S) = {S0, . . . , Sn}
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• ∀i, j ∈ {0, . . . , n}, Si ⊂ Sj =⇒ i > j

Given a set S, there exists several sequences of ordered subsets of S. We consider
the sequences equivalent modulo permutation of incomparable subsets and denote by
OrdSet(S) the representative of this equivalence class. In layman’s terms, OrdSet(S) is
a sequence of all subsets of S such that any subset of S appears in the sequence before
its proper subsets. We also introduce the notation:

{xǫ ti ? ei}i=1..n

which is short for






xǫ t1 ? e1 :




. . .
(

xǫ tn−1 ? en−1 :
[xǫ tn ? ] en

)











We can now formally define our translation to CoreCDuce:

Definition 11.2.2. Let C[_] be a function from E to EC , defined as

C[c] = c
C[x] = x

C[(e1, e2)] = (C[e1],C[e2])
C[πi(e)] = πi(C[e])
C[e1 e2] = C[e1] C[e2]

C[e∈t ? e1 : e2] = C[e]∈t ?C[e1] :C[e2]
C[e[σj ]j∈J ] = C[e@[σj ]j∈J ]

C[λ
∧i∈I ti→si
[σj ]j∈J

x.e] = λ∧i∈I,j∈J tiσj→siσjx.

{xǫ tP ?C[e@[σj ]j∝P ]}P∈OrdSet(I×J)

where tP =
∧

(i,j)∈P tiσj and j ∝ P means that j ∈ {k | ∃i. (i, k) ∈ P}.

We must show that this translation is faithful, that is that given an expression and
its translation, they reduce to the same value and that both have the same type. We
proceed in several steps, using auxiliary lemmas. First we show that the translation
preserves types. Then we prove that values and their translations are the same and
have the same types. Lastly we show (at the end of the section) that the translation
preserves the reduction of well-typed expressions.

We prove that the translation is type-preserving (Lemma 11.2.4). We first show an
auxiliary lemma that states that the translation of relabeled expression preserves its
type:

Lemma 11.2.3. Let e be an expression and [σj ]j∈J be a set of type-substitutions. If
∆ # Γ ⊢ e@[σj ]j∈J : t, then Γ ⊢C C[e@[σj ]j∈J ] : t.

Proof. The proof proceeds by induction and case analysis on the structure of the typing
derivation e.
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(subsum): the typing derivation has the form:

. . .
∆ # Γ ⊢ e@[σj ]j∈J : s s ≤ t

∆ # Γ ⊢ e@[σj ]j∈J : t
(subsum)

By applying the induction hypothesis on the premise, we have Γ ⊢C C[e@[σj ]j∈J ] :
s. Since s ≤ t, by subsumption, we have Γ ⊢C C[e@[σj ]j∈J ] : t.

(const) e ≡ c: here, C[e@[σj ]j∈J ] = e@[σj ]j∈J = c. Trivially, we have

Γ ⊢C C[e@[σj ]j∈J ] : bc

(var) e ≡ x: similar to the previous case.

(pair) e ≡ (e1, e2): e@[σj ]j∈J = (e1@[σj ]j∈J , e2@[σj ]j∈J) and
C[e@[σj ]j∈J ] = (C[e1@[σj ]j∈J ],C[e2@[σj ]j∈J ]). The typing derivation ends with:

. . .
∆ # Γ ⊢ e1@[σj ]j∈J : s1

. . .
∆ # Γ ⊢ e2@[σj ]j∈J : s2

∆ # Γ ⊢ (e1@[σj ]j∈J , e2@[σj ]j∈J) : (s1 × s2)
(pair)

Applying the induction hypothesis on each premise, we obtain Γ ⊢C C[ei@[σj ]j∈J ] :
si. We conclude by applying rule (Cpair), which gives us

Γ ⊢C (C[e1@[σj ]j∈J ],C[e2@[σj ]j∈J ]) : (s1 × s2)

that is Γ ⊢C C[(e1, e2)@[σj ]j∈J ] : (s1 × s2).

(proj) e ≡ πi(e
′): here, e@[σj ]j∈J = πi(e

′@[σj ]j∈J) and C[e@[σj ]j∈J ] = πi(C[e
′@[σj ]j∈J ]).

The typing derivations ends with:

. . .
∆ # Γ ⊢ e′@[σj ]j∈J : t1 × t2

∆ # Γ ⊢ πi(e
′@[σj ]j∈J) : ti

(proj)

By induction, we have Γ ⊢C C[e′@[σj ]j∈J ] : t1 × t2. We conclude this case
by applying rule (Cproj), which gives us Γ ⊢C πi(C[e

′@[σj ]j∈J ]) : ti, that is
Γ ⊢C C[πi(e

′)@[σj ]j∈J ] : ti.

(appl) e ≡ e1e2: here, e@[σj ]j∈J = (e1@[σj ]j∈J)(e2@[σj ]j∈J) and
C[e@[σj ]j∈J ] = C[e1@[σj ]j∈J ]C[e2@[σj ]j∈J ]. The typing derivation ends with:

. . .
∆ # Γ ⊢ e1@[σj ]j∈J : t → s

. . .
∆ # Γ ⊢ e2@[σj ]j∈J : t

∆ # Γ ⊢ (e1@[σj ]j∈J)(e2@[σj ]j∈J) : s
(appl)

We apply the induction hypothesis on the premises and obtain Γ ⊢C C[e1@[σj ]j∈J ] :
t → s and Γ ⊢C C[e2@[σj ]j∈J ] : t. Then the rule (Cappl) gives us the result:
Γ ⊢C C[e1@[σj ]j∈J ]C[e2@[σj ]j∈J ] : s, that is Γ ⊢C C[(e1e2)@[σj ]j∈J ] : s.
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(abstr) e ≡ λ
∧i∈I ti→si
[σk]k∈K

x.e′: unsurprisingly, this case is the trickiest. We have

e@[σj ]j∈J = λ
∧i∈I ti→si
[σj ]j∈J◦[σk]k∈K

x.e′, and the typing derivation ends with:

∀i ∈ I, j ∈ J, k ∈ K.
. . .

∆′ # Γ, (x : ti(σj ◦ σk)) ⊢ e′@[σj ◦ σk] : si(σj ◦ σk)
∆′ = ∆ ∪ var(

∧

i∈I,j∈J,k∈K ti(σj ◦ σk) → si(σj ◦ σk))

∆ # Γ ⊢ λ
∧i∈I ti→si
[σj ]j∈J◦[σk]k∈K

x.e′ :
∧

i∈I,j∈J,k∈K ti(σj ◦ σk) → si(σj ◦ σk)
(abstr)

Let us consider Definition 11.2.2 in which we replace σj by σj ◦ σk. We obtain:

C[λ
∧i∈I ti→si
[σj ]j∈J◦[σk]k∈K

x.e′] = λ∧i∈I,j∈J,k∈K ti(σj◦σk)→si(σj◦σk)x.

{xǫ tP ?C[e′@[σj ◦ σk](j,k)∝P ]}P∈OrdSet(I×J×K)

where tP =
∧

(i,j,k)∈P ti(σj ◦ σk) and (j, k) ∝ P means that ∃i. (i, j, k) ∈ P . Let
us consider the premises of the (abstr) rule. For each arrow type ti0(σj0 ◦ σk0) →
si0(σj0 ◦ σk0), we need to prove

Γ, (x : ti0(σj0 ◦ σk0)) ⊢C

{xǫ tP ?C[e′@[σj ◦ σk](j,k)∝P ]}P∈OrdSet(I×J×K) : si0(σj0 ◦ σk0)

or, said differently, that each branch of the type case is either not type-checked or
if it is, that it has type si0(σj0 ◦σk0). Let us consider any branch whose condition
type is tP .
First let us remark that if (i0, j0, k0) (the triple that defines the type of x) is
not in P , then the branch is not type-checked. Indeed, since the branches are
ordered according to OrdSet(I × J × K), if (i0, j0, k0) /∈ P , then there exists
P ′ = P ∪ {(i0, j0, k0)}. Since P ⊂ P ′ the branch whose condition type is tP ′ is
placed before the one with type tP in the type case. We can therefore deduce
that for the case tP , x has type ti0(σj0 ◦σk0)∧ tP ∧¬tP ′ ∧¬ . . . ≃ 0 (the negations
coming from the types of the previous branches –including tP ′– that are removed,
see rule (Ccase-var)). Since x has type 0 the branch is not type-checked.
Therefore we can assume that (i0, j0, k0) ∈ P and that the branch is taken. In
this branch, the type of x is restricted to:

t′P =
∧

(i,j,k)∈P

ti(σj ◦ σk) ∧
∧

(i,j,k)∈(I×J×K)\P

¬ti(σj ◦ σk)

We now only have to prove that:

Γ, (x : t′P ) ⊢C C[e′@[σj ◦ σk](j,k)∝P ] : si0(σj0 ◦ σk0)

for all t′P such that (i0, j0, k0) ∈ P and t′P 6≃ 0. Based on the premises of the rules
(abstr), by Lemma 7.4.14, we get

∆′ # (
∧

(i,j,k)∈P

Γ), (x : tP ) ⊢ e′@[σj ◦ σk](j,k)∝P :
∧

(i,j,k)∈P

si(σj ◦ σk)

Then following Lemma 7.4.8, we have

∆′ # Γ, (x : t′P ) ⊢ e′@[σj ◦ σk](j,k)∝P :
∧

(i,j,k)∈P

si(σj ◦ σk)
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on to which we can apply the induction hypothesis to obtain:

Γ, (x : t′P ) ⊢C C[e′@[σj ◦ σk](j,k)∝P ] :
∧

(i,j,k)∈P

si(σj ◦ σk)

Since (i0, j0, k0) ∈ P , we have
∧

(i,j,k)∈P si(σj ◦ σk) ≤ si0(σj0 ◦ σk0). The result
follows by subsumption.

(case) e ≡ (e0∈t ? e1 : e2): here, e@[σj ]j∈J = (e0@[σj ]j∈J∈t ? e1@[σj ]j∈J : e2@[σj ]j∈J)
and C[e@[σj ]j∈J ] = C[e0@[σj ]j∈J ]∈t ?C[e1@[σj ]j∈J ] :C[e2@[σj ]j∈J ]. The typing
derivation ends with:

. . .
∆ # Γ ⊢ e0@[σj ]j∈J : t′







t′ 6≤ ¬t ⇒
. . .

∆ # Γ ⊢ e1@[σj ]j∈J : s

t′ 6≤ t ⇒
. . .

∆ # Γ ⊢ e2@[σj ]j∈J : s

∆ # Γ ⊢ (e0@[σj ]j∈J∈t ? e1@[σj ]j∈J : e2@[σj ]j∈J) : s
(case)

By induction hypothesis, we have Γ ⊢C C[e0@[σj ]j∈J ] : t
′ and Γ ⊢C C[ei@[σj ]j∈J ] :

s. We can apply the typing rule (Ccase), which proves this case.

(instinter) e ≡ e′[σi]i∈I : here, e@[σj ]j∈J = e′@([σj ◦σi](j,i)∈(J×I)) and C[e@[σj ]j∈J ] =
C[e′@([σj◦σi](j,i)∈J×I)]. By induction on e′, we have Γ ⊢C C[e′@[σj◦σi](j,i)∈(J×I)] :
t, that is, Γ ⊢C C[(e′[σi]i∈I)@[σj ]j∈J ] : t.

Lemma 11.2.4. Let e be an expression. If ∆ # Γ ⊢ e : t, then Γ ⊢C C[e] : t.

Proof. We proceed by case on the last typing rule used to derive the judgment ∆ # Γ ⊢
e : t and build a corresponding derivation for the judgment Γ ⊢C C[e] : t.

(const): ∆ # Γ ⊢ c : bc and C[c] = c. It is clear that Γ ⊢C c : bc.

(var): ∆ # Γ ⊢ x : Γ(x) and C[x] = x. It is clear that Γ ⊢C x : Γ(x).

(pair): consider the derivation:

. . .
∆ # Γ ⊢ e1 : t1

. . .
∆ # Γ ⊢ e2 : t2

∆ # Γ ⊢ (e1, e2) : t1 × t2
(pair)

Applying the induction hypothesis on each premise, we get Γ ⊢C C[ei] : ti (for
i = 1..2). Then by applying (Cpair), we get Γ ⊢C (C[e1],C[e2]) : (t1 × t2), that
is, Γ ⊢C C[(e1, e2)] : (t1 × t2).

(proj): consider the derivation:

. . .
∆ # Γ ⊢ e : t1 × t2
∆ # Γ ⊢ πi(e) : ti

(proj)
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By induction, we have Γ ⊢C C[e] : t1×t2. Then by (Cproj), we get Γ ⊢C πi(C[e]) :
ti, and consequently Γ ⊢C C[πi(e)] : ti.

(appl): consider the derivation:

. . .
∆ # Γ ⊢ e1 : t → s

. . .
∆ # Γ ⊢ e2 : t

∆ # Γ ⊢ e1e2 : s
(pair)

By induction, we have Γ ⊢C C[e1] : t → s and Γ ⊢C C[e2] : t. Then by (Cappl),
we get Γ ⊢C C[e1]C[e2] : s, that is, Γ ⊢C C[e1e2] : s.

(abstr): consider the derivation:

∀i ∈ I, j ∈ J.
. . .

∆′ # Γ, (x : tiσj) ⊢ e@[σj ] : siσj
∆′ = ∆ ∪ var(

∧

i∈I,j∈J tiσj → siσj)

∆ # Γ ⊢ λ
∧i∈I ti→si
[σj ]j∈J

x.e :
∧

i∈I,j∈J tiσj → siσj
(abstr)

According to Definition 11.2.2, we have

C[λ
∧i∈I ti→si
[σj ]j∈J

x.e] = λ∧i∈I,j∈J tiσj→siσjx.{xǫ tP ?C[e@[σj ]j∝P ]}P∈OrdSet(I×J)

where tP =
∧

(i,j)∈P tiσj , j ∝ P means that ∃i. (i, j) ∈ P . Then for each arrow
type ti0σj0 → si0σj0 , we need to prove that

Γ, x : ti0σj0 ⊢C {xǫ tP ?C[e@[σj ]j∝P ]}P∈OrdSet(I×J) : si0σj0

Similar to the proof of Lemma 11.2.3, for every branch P such that (i0, j0) ∈ P
(since otherwise, the branch is not type-checked) and t′P 6≃ 0, we need to prove
that

Γ, x : t′P ⊢C C[e@[σj ]j∝P ] : si0σj0

where t′P =
∧

(i,j)∈P tiσj ∧
∧

(i,j)∈(I×J)\P ¬tiσj . Using Lemma 7.4.14, we get

∆′ # (
∧

(i,j)∈P

Γ), (x : tP ) ⊢ e@[σj ]j∝P :
∧

(i,j)∈P

siσj

Then following Lemma 7.4.8, we have

∆′ # Γ, (x : t′P ) ⊢ e@[σj ]j∝P :
∧

(i,j)∈P

siσj

By Lemma 11.2.3, we get

Γ, (x : t′P ) ⊢C C[e@[σj ]j∝P ] :
∧

(i,j)∈P

siσj

Since (i0, j0) ∈ P , we have
∧

(i,j)∈P siσj ≤ si0σj0 and the result follows by sub-
sumption.
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(case): consider the following derivation

. . .
∆ # Γ ⊢ e : t′







t′ 6≤ ¬t ⇒
. . .

∆ # Γ ⊢ e1 : s

t′ 6≤ t ⇒
. . .

∆ # Γ ⊢ e2 : s

∆ # Γ ⊢ (e∈t ? e1 : e2) : s
(case)

By induction, we have Γ ⊢C C[e] : t′ and Γ ⊢C C[ei] : s. Then by (Ccase), we get
Γ ⊢C (C[e]∈t ?C[e1] :C[e2]) : s, which gives Γ ⊢C C[e∈t ? e1 : e2] : s.

(instinter): consider the following derivation:

. . .
∆ # Γ ⊢ e : t σj ♯ ∆

∆ # Γ ⊢ e[σj ]j∈J :
∧

j∈J tσj
(instinter)

According to Corollary 7.4.13, we get ∆ # Γ ⊢ e@[σj ]j∈J :
∧

j∈J tσj . Then by
Lemma 11.2.3, we have Γ ⊢C C[e@[σj ]j∈J ] :

∧

j∈J tσj , that is, Γ ⊢C C[e[σj ]j∈J ] :
∧

j∈J tσj .

(subsum): there exists a type s such that

. . .
∆ # Γ ⊢ e : s s ≤ t

∆ # Γ ⊢ e : t
(subsum)

By induction, we have Γ ⊢C C[e] : s. Then by subsumption, we get Γ ⊢C C[e] : t.

Although desirable, preserving the type of an expression is not enough. The trans-
lation also preserves values, as stated by the following lemma:

Lemma 11.2.5. Let v ∈ V be a value. Then C[v] ∈ VC .

Proof. By induction on v.

c: it is clear that C[c] ∈ VC .

λ
∧i∈I ti→si
[σk]k∈K

x.e: clearly, C[λ
∧i∈I ti→si
[σk]k∈K

x.e] ∈ VC .

(v1, v2): C[v] = (C[v1],C[v2]). By induction, we have C[vi] ∈ VC . And so does
(C[v1],C[v2]) ∈ VC .

Relating arbitrary expressions of the core calculus and their translation in CoreCDuce
is tricky. Indeed, since the translation forces the propagation of type substitutions,
then expressions of the polymorphic calculus that are not well-typed may have a
well-typed translation. For instance, the expression (λα→αx.3)[{Int/α}] is not well-
typed (since the inner λ-abstraction is not), but we can deduce that its translation
C[(λα→αx.3)[{Int/α}]] has type Int → Int. To circumvent this problem, we restrict
ourselves to values for which we can show that a value and its translation have the
same minimal type:
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Lemma 11.2.6. Let v ∈ V be a value. There exists a type t such that

1. ⊢ v : t and for all s if ⊢ v : s then t ≤ s;

2. ⊢C C[v] : t and for all s if ⊢C C[v] : s then t ≤ s.

Proof. By induction on v.

c: C[c] = c. It is clear that t = bc.

λ
∧i∈I ti→si
[σj ]j∈J

x.e: according to Definition 11.2.2, we have C[v] = λ∧i∈I,j∈J tiσj→siσjx.e′.

Note that C[_] does not change the types in the interface. Therefore, t =
∧

i∈I,j∈J tiσj → siσj .

(v1, v2): C[v] = (C[v1],C[v2]). By induction, there exists ti such that (a) ⊢ vi : ti and
for all s if ⊢ vi : s then ti ≤ s, and (b) ⊢C C[vi] : ti and for all s if ⊢C C[vi] : s
then ti ≤ s. Then, let t = (t1, t2) and the result follows.

We now want to show that the translation preserves the reduction, that is that if
an expression e reduces to e′ in the polymorphic calculus, then C[e] reduces to C[e′]
in CoreCDuce. Prior to that we show a technical (but straightforward) substitution
lemma.

Lemma 11.2.7. Let e be an expression, x an expression variable and v a value. Then
C[e{v/x}] = C[e]{C[v]/x}.

Proof. By induction on e.

c:
C[c{v/x}] = C[c]

= c
= c{C[v]/x}
= C[c]{C[v]/x}

y:
C[y{v/x}] = C[y]

= y
= y{C[v]/x}
= C[y]{C[v]/x}

x:
C[x{v/x}] = C[v]

= x{C[v]/x}
= C[x]{C[v]/x}

(e1, e2):

C[(e1, e2){v/x}] = C[(e1{v/x}, e2{v/x})]
= (C[e1{v/x}],C[e2{v/x}])
= (C[e1]{C[v]/x},C[e2]{C[v]/x}) (by induction)
= (C[e1],C[e2]){C[v]/x}
= C[(e1, e2)]{C[v]/x}
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πi(e
′):

C[πi(e
′){v/x}] = C[πi(e

′{v/x})]
= πi(C[e

′{v/x}])
= πi(C[e

′]{C[v]/x}) (by induction)
= πi(C[e

′]){C[v]/x}
= C[πi(e

′)]{C[v]/x}

e1e2:
C[(e1e2){v/x}] = C[(e1{v/x})(e2{v/x})]

= C[e1{v/x}]C[e2{v/x}]
= (C[e1]{C[v]/x})(C[e2]{C[v]/x}) (by induction)
= (C[e1]C[e2]){C[v]/x}
= C[e1e2]{C[v]/x}

λ
∧i∈I ti→si
[σj ]j∈J

z.e0: using α-conversion, we can assume that tv(v) ∩
⋃

j∈J dom(σj) = ∅

C[(λ
∧i∈I ti→si
[σj ]j∈J

z.e0){v/x}]

= C[λ
∧i∈I ti→si
[σj ]j∈J

z.e0{v/x}]

= λ∧i∈I,j∈J tiσj→siσjz.{z ǫ tP ?C[(e0{v/x})@[σj ]j∝P ]}P∈OrdSet(I×J)

= λ∧i∈I,j∈J tiσj→siσjz.{z ǫ tP ?C[(e0@[σj ]j∝P ){v/x}]}P∈OrdSet(I×J) (Lemma 7.4.5)

= λ∧i∈I,j∈J tiσj→siσjz.{z ǫ tP ?C[e0@[σj ]j∝P ]{C[v]/x}}P∈OrdSet(I×J) (by induction)

= (λ∧i∈I,j∈J tiσj→siσjz.{z ǫ tP ?C[e0@[σj ]j∝P ]}P∈OrdSet(I×J)){C[v]/x}

= C[λ
∧i∈I ti→si
[σj ]j∈J

z.e0]{C[v]/x}

e0∈t ? e1 : e2:

C[(e0∈t ? e1 : e2){v/x}]
= C[(e0{v/x})∈t ? (e1{v/x}) : (e2{v/x})]
= C[e0{v/x}]∈t ?C[e1{v/x}] :C[e2{v/x}]
= C[e0]{C[v]/x}∈t ? (C[e1]{C[v]/x}) : (C[e2]{C[v]/x}) (by induction)
= (C[e0]∈t ?C[e1] :C[e2]){C[v]/x}
= C[e0∈t ? e1 : e2]{C[v]/x}

e′[σj ]j∈J : using α-conversion, we can assume that tv(v) ∩
⋃

j∈J dom(σj) = ∅

C[(e′[σj ]j∈J){v/x}] = C[(e′{v/x})[σj ]j∈J ]
= C[(e′{v/x})@[σj ]j∈J ]
= C[(e′@[σj ]j∈J){v/x}] (Lemma 7.4.5)
= C[e′@[σj ]j∈J ]{C[v]/x} (by induction)
= C[e′[σj ]j∈J ]{C[v]/x}

We can now show that our translation preserves the reductions of the polymorphic
calculus.

Lemma 11.2.8. If Γ ⊢ e : t and e e′, then C[e] ∗
C C[e′]. More specifically,

1. if e (Rinst) e
′, then C[e] = C[e′];
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2. if e (R) e
′ and (R) 6= (Rinst), then C[e] +

C C[e′].

Proof. By induction and case analysis on e.

c, x or λ
∧i∈I ti→si
[σj ]j∈J

x.e0: irreducible.

(e1, e2): there are two ways to reduce e:
(1) e1  e′1. By induction, C[e1]  

∗
C C[e′1]. Then we have (C[e1],C[e2])  

∗
C

(C[e′1],C[e2]), that is, C[(e1, e2)] 
∗
C C[(e′1, e2)].

(2) e1 = v1 and e2  e′2. By induction, C[e2] 
∗
C C[e′2]. Moreover, according to

Lemma 11.2.5, C[v1] ∈ VC . So we have (C[v1],C[e2]) 
∗
C (C[v1],C[e

′
2]), that is,

C[(v1, e2)] 
∗
C C[(v1, e

′
2)].

πi(e0): there are two ways to reduce e:
(1) e0  e′0. By induction, C[e0]  

∗
C C[e′0]. Then we have πi(C[e0])  

∗
C

πi(C[e
′
0]), that is, C[πi(e0)] 

∗
C C[πi(e

′
0)].

(2) e0 = (v1, v2) and e vi. According to Lemma 11.2.5, C[(v1, v2)] ∈ VC . More-
over, C[(v1, v2)] = (C[v1],C[v2]). Therefore, πi(C[v1],C[v2])  C C[vi], that is,
C[πi(v1, v2)] C C[vi].

e1e2: there are three ways to reduce e:
(1) e1  e′1. By induction, C[e1]  

∗
C C[e′1]. Then we have C[e1]C[e2]  

∗
C

C[e′1]C[e2], that is, C[e1e2] 
∗
C C[e′1e2].

(2) e1 = v1 and e2  e′2. By induction, C[e2]  
∗
C C[e′2]. Moreover, according

to Lemma 11.2.5, C[v1] ∈ VC . So we have C[v1]C[e2]  
∗
C C[v1]C[e

′
2], that is,

C[v1e2] 
∗
C C[v1e

′
2].

(3) e1 = λ
∧i∈I ti→si
[σj ]j∈J

x.e0, e2 = v2 and e1e2  (e0@[σj ]j∈P ){v2/x}, where P = {j ∈

J | ∃i ∈ I. ⊢ v2 : tiσj}. According to Definition 11.2.2, we have

C[e1] = λ∧i∈I,j∈J tiσj→siσjx.{xǫ tP ?C[e0@[σj ]j∝P ]}P∈OrdSet(I×J)

(recall that tP =
∧

(i,j)∈P tiσj and j ∝ P means that j ∈ {k | ∃i. (i, k) ∈ P}).
By Lemma 11.2.5, C[v2] ∈ VC . Let P0 = {(i, j) | ⊢ v2 : tiσj}. Since ⊢ v2 : tiσj ,
by Lemma 11.2.4, we have ⊢C C[v2] : tiσj . Then we get ⊢C C[v2] : tP0 .
Therefore, C[e1]C[v2]  

+
C C[e0@[σj ]j∝P0]{C[v2]/x}. Moreover, by lemma 11.2.7,

C[e0@[σj ]j∝P0]{C[v2]/x} = C[e0@[σj ]j∝P0{v2/x}], that is, C[(e0)@[σj ]j∈P {v2/x}],
which proves this case.

e0∈t ? e1 : e2: there are three ways to reduce e:
(1) e0  e′0. By induction, C[e0] 

∗
C C[e′0]. Then we have

C[e0]∈t ?C[e1] :C[e2] 
∗
C C[e′0]∈t ?C[e1] :C[e2]

that is, C[e0∈t ? e1 : e2] 
∗
C C[e′0∈t ? e1 : e2].

(2) e0 = v0, ⊢ v0 : t and e  e1. According to Lemmas 11.2.5 and 11.2.4,
C[v0] ∈ VC and ⊢C C[v0] : t. So we have C[v0]∈t ?C[e1] :C[e2] C C[e1].
(3) e0 = v0, 0 v0 : t and e  e2. By lemma 11.2.5, C[v0] ∈ VC . Accord-
ing to Lemma 11.2.6, there exists a minimum type t0 such that ⊢ v0 : t0 and
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⊢C C[v0] : t0. It is clear that t0 � t (otherwise ⊢ v0 : t). So we also have
0C C[v0] : t. Therefore, C[v0]∈t ?C[e1] :C[e2] C C[e2].

e0[σj ]j∈J : e e0@[σj ]j∈J . By Definition 11.2.2, C[e0[σj ]j∈J ] = C[e0@[σj ]j∈J ]. There-
fore, the result follows.

We can finally state the soundness of our translation:

Theorem 11.2.9. If ⊢ e : t and C[e] ∗
C vC , then

1. there exists v such that e ∗ v and C[v] = vC .

2. ⊢C vC : t.

Proof. Since ⊢ e : t, according to Theorem 7.4.17 and 7.4.16, there exists v such that
e  ∗ v and ⊢ v : t. By Lemmas 11.2.8 and 11.2.5, we have C[e]  ∗

C C[v] and
C[v] ∈ VC . From the reduction rules in Figure 2.2, the reduction is deterministic1.
Therefore, C[v] = vC . Finally, following Lemma 11.2.4, we get ⊢C vC : t.

In addition, according to Lemma 11.2.8, the translations of an instantiation ex-
pression e[σj ]j∈J and of its corresponding relabeling expression e@[σj ]j∈J are the same:
this is because the relabeling only propagates type substitutions without “changing” ex-
pressions. Therefore, restricting to the normalized calculus presented in Section 7.4.4,
the translation still possesses all the properties presented above. Note that we can use
C[e] +

C C[e′] instead of C[e] ∗
C C[e′] in Lemma 11.2.8.

11.3 Current limitations and improvements

The translation we present allows one to encode the relabeling operation using only ba-
sic monomorphic constructs and the polymorphic subtyping relation defined in Chapter
4 . While of theoretical interest, this “blunt” approach has, in our opinion, two impor-
tant drawbacks, that we discuss now before presenting some possible optimizations and
workarounds. First, it is clear that the number of type-cases generated for a function
λ
∧i∈Isi→ti
[σj ]j∈J

x.e is exponential in the product of the size of I (the set of overloaded func-

tions that forms the interface of a lambda abstraction) and the size of J (the size of the
set of substitutions applied to a lambda). This not only increases the code-size but also
yields, in the worst case, an exponential time overhead (failing all the type-cases but
the last one). Second, the translation breaks modularity, since a function is compiled
differently according to the argument it is applied to.

Next we hint at some possible improvements that alleviate the issues highlighted
above. The key idea is of course to reduce the number of type cases for the translation
of abstractions.

1Without the restriction of evaluation contexts, we can prove that the reduction satisfies congruence.
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Single Substitution. When only one substitution is present in the label of an ab-
straction, it can straightforwardly be propagated to the body expression without any
encoding:

C[λ
∧i∈I ti→si
[σ] x.e] = λ∧i∈I tiσ→siσx.C[e@[σ]]

Global Elimination. As stated in Section 7.4.1, the type variables in the domain
of any type substitution that do not occur in the expression can be safely eliminated
(Lemma 7.4.10) and so can redundant substitutions (Lemma 7.4.11), since their elimina-
tion does not alter the type of the expression. This elimination simplifies the expression
itself and consequently also simplifies its translation since fewer type cases are needed
to encode the abstraction. For instance, consider the expression

λα→α
[{Int/α,Int/β},{Int/α,Bool/β}]

x.x (11.3)

Since β is useless it can be eliminated, yielding λα→α
[{Int/α},{Int/α}]

x.x. Now since the two

type substitutions are the same (the second one being redundant), we can safely remove
one and obtain the simpler expression λα→α

[{Int/α}]
x.x. Finally since only one substitution

remains, the expression can be further simplified to λ(Int→Int)x.x.

Local Elimination. One can also work on the condition type in the generated type
cases and eliminate those that are empty. Consider the translation of (11.3):

C[λα→α
[{Int/α,Int/β},{Int/α,Bool/β}]

x.x] = λ(Int→Int)∧(Int→Int)x.

xǫ Int ∧ Int ?x :
xǫ Int ?x :
xǫ Int ?x :
xǫ 1 ?x

Clearly, the second and third branches can never be used since they are excluded by
the first branch and the last branch is trivially useless. Thus the translated expression
is equivalent to λ(Int→Int)x.x. More generally, consider a branch xǫ tP ? eP in the
translation of C[λ

∧i∈I ti→si
[σj ]j∈J

x.e]. If the type t′P = tP ∧
∧

(i,j)∈(I×J)\P ¬tiσj is 0, then the

branch will never be used. So we can eliminate it. Therefore, the translation of an
abstraction can be simplified as

λ∧i∈I,j∈J tiσj→siσjx.{xǫ tP ?C[e@[σj ]j∝P ]}P∈OrdSet(I×J)∧t′P 6≃0

No Abstractions. The reason for encoding an abstraction by a set of type cases is
to simulate the relabeling. In each branch, a modified version of e (the body of the
original function) is created where nested lambda abstractions are relabeled accordingly.
Obviously, if e does not contain any lambda abstraction whose type variable need to
be instantiated, then the type substitutions can be straightforwardly propagated to e:

C[λ
∧i∈I ti→si
[σj ]j∈J

x.e] = λ∧i∈I,j∈J tiσj→siσjx.C[e@[σj ]j∈J ]
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A Union Rule. Consider the following union typing rule

∆ # Γ, (x : s1) ⊢ e : t ∆ # Γ, (x : s2) ⊢ e : t

∆ # Γ, (x : s1 ∨ s2) ⊢ e : t
(union)

(which is sound but not admissible in our system2). This rule allows us to simplify the
translation of abstractions by combining the branches with the same relabeling

C[λ
∧i∈I ti→si
[σj ]j∈J

x.e] = λ∧i∈I,j∈J tiσj→siσjx.{xǫtP ? C[e@[σj ]j∈P ]}P∈OrdSet(J)

where tP =
∧

j∈P (
∨

i∈I ti)σj . Notice now the ti’s are combined inside each tP . The size
of the encoding now is only exponential in |J |.

2We can simulate this union rule with an explicit annotation that drives the case disjunction, see
Section 7.4 in [FCB08] for more details.
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Chapter 12

Extensions, Design Choices, and
Related Work

In this chapter, we first present some extensions and design choices, such as recursive
functions, type substitution application and/or negation arrows for Rule (abstr), open
type cases, and so on. Finally, we discuss related work.

12.1 Recursive function

It is straightforward to add recursive functions with minor modifications in our calculus.
First, we use the µ notation to denote recursive functions, that is µ

∧i∈I ti→si
[σj ]j∈J

f λx. e

(without decoration in the implicitly typed calculus), where f denotes the recursion
variable which can, thus, occur in e. Second, we add in the type environment the
recursion variable f associated with the type obtained by applying the decoration
to the interface, that is ∧i∈I,j∈J tiσj → siσj . Formally, the typing rule for recursive
functions is amended as

t =
∧

i∈I,j∈J

tiσj → siσj

∀i ∈ I, j ∈ J. ∆ ∪ var(t) # Γ, (f : t), (x : tiσj) ⊢ e@[σj ] : siσj

∆ # Γ ⊢ µ
∧i∈I ti→si
[σj ]j∈J

f λx. e : t
(abstr-rec)

This suffices for our system: the reader can refer to Section 7.5 in [FCB08] for a
discussion on how and why recursion is restricted to functions. Finally, we also need
to expand the recursive variable f during (application) reduction, that is to replace f
by the recursive function itself, which is formalized as

(Rappl-rec) (µ
∧i∈I ti→si
[σj ]j∈J

f λx. e′)v  (e′@[σj ]j∈P ){µ
∧i∈Iti→si
[σj ]j∈J

f λx. e′/f , v/x}

where P = {j∈J | ∃i∈I. ⊢ v : tiσj}

241
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12.2 Relabeling and type-substitution application

Given a type substitution σ and an expression e, the application of σ to e, denoted as
eσ, is defined as

cσ = c
(e1 e2)σ = (e1σ) (e2σ)

(λ
∧i∈I ti→si
[σj ]j∈J

x.e)σ = λ
∧i∈I ti→si
[σ′

j ]j∈J
x.eσ′

(e[σj ]j∈J)σ = (eσ′)[σ′
j ]j∈J

where σ′ = σ|dom(σ)\
⋃

j∈J dom(σj), σ
′
j = (σ◦σj)|⋃

j∈J dom(σj) and σ|X denote the restriction

of σ to X, that is {σ(α)/α | α ∈ dom(σ) ∩X}.
A concession to the sake of concision is the use of the relabeling operation ‘@’

in the premises of both “abstr” rules in Figures 7.1 and 8.1. A slightly different but
better formulation is to use as premises ... ⊢∗ eσj : siσj instead of ... ⊢∗ e@[σj ] : siσj .
Both formulations are sound and the differences are really minimalist, but this second
formulation rules out few anomalies of the current system. For instance, with the
current formulation λInt→Int

D y.((λα→α
[ ] x.42)[{Int/α}]y) is well-typed if and only if the

decoration D is a non empty set of types-substitutions (whatever they are). Indeed a
non empty D triggers the use of ‘@’ in the premises of the “abstr” rule, and this “pushes”
the type substitution [{Int/α}] into the decoration of the body, thus making the body
well typed (taken in isolation,λα→α

[{Int/α}]
x.42 is well typed while (λα→α

[ ] x.42)[{Int/α}] is

not). Although the second formulation rules out such kind of anomalies, we preferred
to present the first one since it does not need the introduction of such technically-
motivated new definitions.

There exists another solution to rule out such kind of anomalies. It is easy to
see that these two formulations differ only in the instantiations with respect to the
type-checking. Similar to the relabeling of abstractions, we can also perform a “lazy”
relabeling on the instantiations:

(e[σj ]j∈J)@[σk]k∈K = (e[σj ]j∈J)[σk]k∈K

and the propagation of substitutions occurs, whenever is needed, that is, during either
reduction:

(e[σj ]j∈J)[σk]k∈K
 e@([σk]k∈K ◦ [σj ]j∈J)

or type-checking:

∀k ∈ K.

{
∆ # Γ ⊢ e@[σ′

k] : tk
∀j ∈ J. σk

j ♯ ∆

∆ # Γ ⊢ (e[σj ]j∈J)[σk]k∈K
:
∧

k∈K

(
∧

j∈J

tkσ
k
j )

(instinter’)

where σ′
k = σk|dom(σk)\

⋃

j∈J dom(σj) and σk
j = (σk ◦ σj)|⋃

j∈J dom(σj). Note that we keep
the restriction of the composition of the substitution σk to be propagated and the
substitutions [σj ]j∈J in the instantiation to the domain of [σj ]j∈J , but push the other
substitutions into the instantiation term e within the rule (instinter’). Thus, the expres-
sion λInt→Int

D y.((λα→α
[ ] x.42)[{Int/α}]y) is not well-typed since we will check λα→α

[ ] x.42.
However, this solution would make our calculus more involved.
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12.3 Negation arrows and models

In this work we dodged the problem of the negation of arrow types. Notice indeed
that a value can have as type the negation of an arrow type just by subsumption.
This implies that no λ-abstraction can have a negated arrow type. So while the
type ¬(Bool→Bool) can be inferred for, say, (3, 42), it is not possible to infer it for
λInt→Intx.(x+3). This problem was dealt in CDuce by deducing for a λ-abstraction
the type in its interface intersected with any negations of arrow types that did not
make the type empty [FCB08]. Technically, this was dealt with “type schemas”: a
function such as λInt→Intx.x + 3 has type schema {{Int→Int}}, that is, it has ev-
ery non empty type of the form (Int→Int) ∧

∧

j∈J¬(t
′
j→s′j) (and thus, in particular,

(Int→Int) ∧ ¬(Bool→Bool)). Formally, the typing rule for abstractions in CDuce is

t =
∧

i∈I

ti → si ∧
∧

j∈J

¬(t′j → s′j) t 6≃ 0

∀i ∈ I. Γ, (f : t), (x : ti) ⊢C e : si

Γ ⊢C µ∧i∈I ti→sif λx. e : t
(Cabstr-neg)

In our context, however, the presence of type variables makes a definition such as
that of type schemas more difficult. If we take the same definition of type schemas
as CDuce, we would assign the type 0 for abstractions, which is clearly unsound. For
example, as (α → α) ∧ ¬(Bool → Bool) is not empty, we deduce that ⊢ λα→αx.x :
(α → α)∧¬(Bool → Bool). Then we can further apply the instantiation rule with the
set of type substitutions [{Bool/α}], yielding the unsound judgment ⊢ λBool→Boolx.x : 0.
Therefore, a type schema should probably denote only types that are not empty under
every possible set of type substitutions. Thus, considering negation arrows, the typing
rule for abstractions in our system is

∆′ = ∆ ∪ var(
∧

i∈I,j∈J

tiσj → siσj)

t =
∧

i∈I,j∈J

tiσj → siσj ∧
∧

k∈K

¬(t′k → s′k) t 6⊑∆ 0

∀i ∈ I, j ∈ J. ∆′ # Γ, (x : tiσj) ⊢ e@[σj ] : siσj

∆ # Γ ⊢ λ
∧i∈I ti→si
[σj ]j∈J

x.e : t
(abstr-neg)

As witnessed by CDuce, dealing with this aspect is mainly of theoretical inter-
est: it allows us to interpret types as sets of values and the interpretation forms a
model [FCB08]. In our case, as the presence of type variables, the problem becomes
more complicated. For example, there is no way to deduce either ⊢ v : α holds or
⊢ v : ¬α for any value v and any type variable α. Moreover, does the function
λInt→Intx.x + 3 has type α → α? If it does, then it can be used as a polymorphic
function, which is clearly unsound. If it does not, then we deduce that it has ¬(α → α)
and thus we get ⊢ λInt→Intx.x+3 : Int → Int∧¬(α → α). We can then apply the in-
stantiation rule with {Int/α}, yielding the unsound judgment ⊢ λInt→Intx.x+3 : 0. The
problem is that without any meaning (or assignment) of type variables, the meaning
of a non-ground type is not clear.
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Therefore, we first focus on the ground types T0 and study a possible interpretation
for the ground types1:

[t]v = {v ∈ V | ⊢ v : s, s ⊑∅ t}.

Under this interpretation, the interpretations of ground arrow types contain not only ab-
stractions with ground arrow types but also abstractions with non-ground arrow types.
For example, the interpretation of Int → Int contains not only the value λInt→Intx.e
but also the value λα→αx.e (since λα→αx.e can be instantiated as λInt→Intx.e@{Int/α}).

Next, we can prove that the interpretation is a model for ground types (and thus
V is a solution to D = C +D2 + Pf (D

2), where C =
⋃

b∈B
[b]v ∪ [1 → 0]v).

Lemma 12.3.1. Let b be a basic type, and t1, t2, t, s ∈ T0 ground types. Then

(1) [b]v = {c | bc ≤ b};

(2) [t1 × t2]v = {(v1, v2) | ⊢ v1 : si, si ⊑∅ ti};

(3) [t → s]v = {λ
∧i∈I ti→si
[σj ]j∈J

x.e ∈ V |
∧

i∈I,j∈J tiσj → siσj ⊑∅ t → s};

(4) [0]v = ∅;

(5) [t1 ∧ t2]v = [t1]v ∩ [t2]v;

(6) [¬t]v = V \ [t]v;

(7) [t1 ∨ t2]v = [t1]v ∪ [t2]v;

(8) [t]v = ∅ ⇐⇒ t ≃ 0.

Proof. (1), (2), (3): similar to the proof of Lemma 7.4.3.

(4): we prove the following statement:

∀v ∈ V .∀s ∈ T . ⊢ v : s ⇒ s 6⊑∅ 0

by induction on the typing derivation:

(const): straightforward.

(pair): v = (v1, v2), s = (s1× s2) and ⊢ vi : si. By induction on ⊢ vi : si, we have
si 6⊑∅ 0 and thus (s1 × s2) 6⊑∅ 0.

(abstr-neg): v = λ
∧i∈I ti→si
[σj ]j∈J

x.e and s =
∧

i∈I(ti → si) ∧
∧

j∈J ¬(t
′
j → s′j). One of

the premises of the rule is s 6⊑∅ 0.

(subsum): ⊢ v : s′ and s′ ≤ s. By induction on ⊢ v : s′, we have s′ 6⊑∅ 0 and thus
s 6⊑∅ 0.

Therefore, ∀v ∈ V . v /∈ [0]v, that is, [0]v = ∅.

1Another solution is that we could parameterize the typing judgment with a semantics assignment
η, which gives the interpretation for type variables (and thus non-ground types). We leave it for future
work.
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(5): we first prove the statement

if t ≤ s then [t]v ⊆ [s]v (∗).

Consider any v ∈ [t]v. There exists t′ such that ⊢ v : t′ and t′ ⊑∅ t. As t ≤ s, we
have t′ ⊑∅ s. So v ∈ [s]v. Therefore, [t]v ⊆ [s]v.
Applying (*) on t1 ∧ t2 ≤ ti, we get [t1 ∧ t2]v ⊆ [ti]v, and thus [t1 ∧ t2]v ⊆
[t1]v ∩ [t2]v.
Considering any value v in [t1]v ∩ [t2]v, there exists si such that ⊢ v : si and
si ⊑∅ ti. Then ⊢ v : s1∧s2 by Lemma 7.4.2 and s1∧s2 ⊑∅ t1∧ t2 by Lemma 9.1.4.
So v ∈ [t1 ∧ t2]v. Hence [t1]v ∩ [t2]v ⊆ [t1 ∧ t2]v.

(6): since t ∧ ¬t ≃ 0, we have

[t]v ∩ [¬t]v = [t ∧ ¬t]v = [0]v = ∅.

It remains to prove that [t]v ∪ [¬t]v = V , that is,

∀v ∈ V .∀t ∈ T0. (∃s1. ⊢ v : s1 and s1 ⊑∅ t)
or (∃s2. ⊢ v : s2 and s2 ⊑∅ ¬t).

(12.1)

We prove (12.1) by induction on v and a case analysis on the pair (v, t).
First, to simplify the proof, given a value v, we use T to denote the set

{

t ∈ T0
(∃s1. ∆ # Γ ⊢ v : s1 and s1 ⊑∆ t)
or (∃s2. ∆ # Γ ⊢ v : s2 and s2 ⊑∆ ¬t)

}

.

and prove the following statement

T contains 0 and is closed under ∨ and ¬ (and thus ∧) (∗∗).

It is clear that T is closed under ¬ and invariant under ≃. As ∆ #Γ ⊢ v : ¬0(≃ 1),
then 0 ∈ T . Consider t1, t2 ∈ T . If ∃s ∈ T . ∆ # Γ ⊢ v : s and s ⊑∆ t1 ∨ t2, then
the statement holds. Otherwise, ∀s ∈ T . ∆ # Γ ⊢ v : s ⇒ s 6⊑∆ t1 ∨ t2. Then we
have ∀s ∈ T . ∆ # Γ ⊢ v : s ⇒ s 6⊑∆ ti. Since ti ∈ T , then there exists si such
that ∆ # Γ ⊢ v : si and si ⊑∆ ¬ti. By Lemma 7.4.2, ∆ # Γ ⊢ v : s1 ∧ s2, and
by Lemma 9.1.4, s1 ∧ s2 ⊑∆ ¬t1 ∧ ¬t2, that is, s1 ∧ s2 ⊑∆ ¬(t1 ∨ t2). Thus the
statement holds as well.
Thanks to the statement (∗∗), we can assume that t is an atom a. If v and a

belong to different kinds of constructors, then it is clear that ⊢ v : ¬a. In what
follows we assume that v and a have the same kind.

v = c: we have ⊢ c : bc. As bc is a singleton type, we have either bc ≤ a or
bc ≤ ¬a. Thus, either bc ⊑∅ a or bc ⊑∅ ¬a.

v = (v1, v2),a = t1 × t2: if ∃si. ⊢ vi : si and si ⊑∅ ti, then ⊢ (v1, v2) : (s1 × s2) by
(pair) and (s1 × s2) ⊑∅ (t1 × t2) by Lemma 9.1.4. Thus (12.1) holds.
Otherwise, assume that ∀s1. ⊢ v1 : s1 ⇒ s1 6⊑∅ t1. Then by induction, there
exists s′1 such that ⊢ v1 : s′1 and s′1 ⊑∅ ¬t1. Besides, ⊢ v2 : 1 always holds.
Thus, we get ⊢ (v1, v2) : (s′1 × 1) and (s′1 × 1) ⊑∅ (¬t1 × 1) ≤ ¬(t1 × t2).
(12.1) holds as well.
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v = λ
∧i∈I ti→si
[σj ]j∈J

x.e,a = t → s: we have ⊢ v :
∧

i∈I,j∈J tiσj → siσj . If
∧

i∈I,j∈J tiσj →

siσj ⊑∅ t → s holds, thus (12.1) holds. Otherwise, we have
∧

i∈I,j∈J tiσj →
siσj 6⊑∅ t → s. Since t → s is a ground type, we deduce that

∧

i∈I,j∈J tiσj →
siσj ∧ ¬(t → s) 6⊑∅ 0. By (abstr-neg) and (subsum), we get ⊢ v : ¬(t → s).

(7): consequence of (5) and (6).

(8): ⇐: by (4).

⇒: since t is ground, we have [t]η = [t]η′ for all η and η′. So we can write [t] for
[t]η where η is any semantics assignment. We prove the following statement:

∀t ∈ T0. [t] 6= ∅ ⇒ [t]v 6= ∅

which implies that [t]v = ∅ ⇒ [t] = ∅ (ie, ∀η.[t]η = ∅). Thus t ≃ 0. Since [t] 6= ∅,
there exists at least one element d ∈ [t]. We prove the statement by induction on
d.

d = c: we have c ⊢ c : bc. Since bc is a singleton type, we have [bc] ⊆ [t] and thus
bc ≤ t. Hence bc ⊑∅ t and a fortiori c ∈ [t]v.

d = (d1, d2): we can find (P,N) ∈ dnf(t) such that d ∈
⋂

(t1×t2)∈P
[(t1 × t2)] \

⋃

(t′1×t′2)∈N
[(t′1 × t′2)]. According to set-theory, there exists N ′ ⊆ N such

that d1 ∈ [s1] and d2 ∈ [s2], where

{

s1 =
∧

(t1×t2)∈P
t1 ∧

∧

(t′1×t′2)∈N
′ ¬t′1

s2 =
∧

(t1×t2)∈P
t2 ∧

∧

(t′1×t′2)∈N\N ′ ¬t′2

By induction on di, we have [si]v 6= ∅ and thus [s1 × s2]v 6= ∅. Besides, by
Lemma 4.3.9, we get (s1×s2) ≤

∧

(t1×t2)∈P
(t1× t2)∧

∧

(t′1×t′2)∈N
(t′1× t′2) and

thus (s1 × s2) ≤ t. According to the statement (∗) in the proof of (5), we
deduce that [t]v 6= ∅.

d = {(d1, d
′
1), . . . , (dn, d

′
n)}: we can find (P,N) ∈ dnf(t) such that d ∈

⋂

(t1→t2)∈P
[(t1 →

t2)]\
⋃

(t′1→t′2)∈N
[(t′1 → t′2)]. We write t′ for

∧

(t1→t2)∈P
(t1 → t2)∧

∧

(t′1→t′2)∈N
(t′1 →

t′2). Then we get t′ � 0 and thus t′ 6⊑∅ 0. Let us take the value v =

µ∧(t1→t2)∈P (t1→t2)f. λx. fx. By (abstr-neg), we have ⊢ v : t′. Moreover, it is
clear that t′ ≤ t. Therefore v ∈ [t]v (ie, [t]v 6= ∅).

Finally, similar to the techniques used in the proof of Corollary 4.6.8, we can extend
this model to a convex value model for all the types by adding semantics assignment
ηv for type variables.

In addition, concerning the circularity problem mentioned in Section 2.1, based on
the value model, we define a new subtyping relation as

s ≤v t
def

⇐⇒ ∀η ∈ P(V )V .[s]vη ⊆ [t]vη

Then we prove that these two subtyping relations ≤ and ≤v coincide (Theorem 12.3.2),
so we close the circularity.

Theorem 12.3.2. Let t be a type. Then t ≃ 0 ⇐⇒ t ≃v 0.
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Proof. ⇒: straightforward.

⇐: we proceed by contrapositive: if ∃η.[t]η 6= ∅ then ∃ηv.[t]vηv 6= ∅. Similar to the
proof of Lemma 4.6.5, we use the procedure explore_pos(t) to construct a value v
and an assignment ηv such that v ∈ [t]vηv, where the set from which we select the
elements is V instead of D. The existence of v and ηv is ensured by ∃η.[t]η 6= ∅.

12.4 Open type cases

As stated in Section 7.1, we restrict the condition types in type-cases to closed types.
This was made by practical considerations: using open types in a type-case would have
been computationally prohibitive insofar as it demands to solve tallying problems at
run-time. But other motivations justify it: the logical meaning of such a choice is
not clear and the compilation into monomorphic CDuce would not be possible without
changing the semantics of the type-case. We leave for future work the study of type-
cases on types with monomorphic variables (ie, those in ∆). This does not require
dynamic type tallying resolution and would allow the programmer to test capabilities
of arguments bound to polymorphic type variables.

Moreover, there is at least one case in which we should have been more restrictive,
that is, when an expression that is tested in a type-case has a polymorphic type.
Our inference system may type it (by deducing a set of type-substitutions that makes
it closed), even if this seems to go against the intuition: we are testing whether a
polymorphic expression has a closed type. Although completeness ensures that in some
cases we can do it, in practice it seems reasonable to consider ill-typed any type-case
in which the tested expression has an open type (see Section 9.3).

12.5 Value relabeling

We require the semantics for our calculus to be a call-by-value one to ensure subject
reduction2 (see Section 7.3). However, the notion of reduction for instantiations is

e[σj ]j∈J  e@[σj ]j∈J

which does not conform to call-by-value, as e may not be a value. There indeed exists
a conforming one3:

v[σj ]j∈J  v@[σj ]j∈J .

This conforming reduction yields a different semantics, with respect to which the
type system can be proved to satisfy the safety property as well. This follows from
the fact that the second notation is a restricted version of the first notation. The
main difference between these two semantics is the case where the expression e ap-
plied by the set of type substitutions is/contains a type case. Take the expression

2Note that the use of call-by-name would not hinder the soundness of the type system (expressed
in terms of progress).

3In system F, the notion of reduction for instantiations is: (λα.e)[t] e{t/α}, where λα.e is a value
in system F.
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(λα→αx.x∈Int → Int ? true : false)[{Int/α}] for example. Under the first notation,
the set of type substitutions is applied to λα→αx.x∈Int → Int ? true : false first,
yielding λInt→Intx.x∈Int → Int ? true : false (note that the set of type substitutions
modifies the type of the argument of the type case). Then the type test is checked.
As the type test is passed, the expression reduces to true at last. While under the
second semantics, the type test is checked first. As the test fails, the type case reduces
to false, on which the set of type substitutions is applied, which does not affect the
value false (ie, the set of type substitutions is useless here). It looks a little strange
that the type α → α is in the scope of {Int/α} but not be affected from it. Therefore,
we prefer the first semantics. Moreover, it is more difficult to compile our calculus
to CoreCDuce with respect to the second semantics as we should not propagate the
set of type substitutions to the argument of type-cases (which is different from the
relabeling).

12.6 Type reconstruction

Finally, to make the programmers’ tasks easier, we would like to reconstruct the inter-
faces of abstractions, namely, to assign types for abstractions. Taking full advantage
of the type tallying problem, we can infer the types for expressions, and thus those
in the interfaces of abstractions. To this end, we define an implicit calculus without
interfaces, for which we define a reconstruction system.

Definition 12.6.1. An implicit expression m is an expression without any interfaces
(or type substitutions). It is inductively generated by the following grammar:

m ::= c | x | (m,m) | πi(m) | mm | µf λx.m | m∈t ?m :m

The type reconstruction for expressions has the form Γ ⊢R e : t S, which states
that under the typing environment Γ, e has type t if there exists at least one constraint-
set C in the set of constraint-sets S such that C are satisfied. The type reconstruction
rules are given in Figure 12.1.

The rules (Recon-const), (Recon-var), (Recon-pair), (Recon-proj),
(Recon-appl), and (Recon-abstr) are standard but differ from most of the type
inference of other work in that they generate a set of constraint-sets rather than a single
constraint-set. This is due to the type inference for type-cases. There are four possible
cases for type-cases ((Recon-case)): (i) if no branch is selected, then the type t0
inferred for the argument m0 should be 0 (and the result type can be any type); (ii) if
the first branch is selected, then the type t0 should be a subtype of t and the result type
α for the whole type-case should be a super-type of the type t1 inferred for the first
branch m1; (iii) if the second branch is selected, then the type t0 should be a subtype
of ¬t and the result type α should be a super-type of the type t2 inferred for the second
branch m2; and (iv) both branches are selected, then the result type α should be a
super-type of the union of t1 and t2 (note that the condition for t0 is the one that does
not satisfy (i), (ii) and (iii)). Therefore, there are four possible solutions for type-cases
and thus four possible constraint-sets. Finally, the rule (Recon-case-var) deals with
the type inference for the special binding type-case introduced in Section 11.1.
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Γ ⊢R c : bc  {∅}
(Recon-const)

Γ ⊢R x : Γ(x) {∅}
(Recon-var)

Γ ⊢R m1 : t1  S1 Γ ⊢R m2 : t2  S2

Γ ⊢R (m1,m2) : t1 × t2  S1 ⊓ S2
(Recon-pair)

Γ ⊢R m : t S

Γ ⊢R πi(m) : αi  S ⊓ {{(t,≤, α1 × α2)}}
(Recon-proj)

Γ ⊢R m1 : t1  S1 Γ ⊢R m2 : t2  S2

Γ ⊢R m1m2 : α S1 ⊓ S2 ⊓ {{(t1,≤, t2 → α)}}
(Recon-appl)

Γ, (f : α → β), (x : α) ⊢R m : t S

Γ ⊢R µf λx.m : α → β  S ⊓ {{(t,≤, β)}}
(Recon-abstr)

Γ ⊢R m0 : t0  S0 (m0 /∈ X )
Γ ⊢R m1 : t1  S1

Γ ⊢R m2 : t2  S2

S = (S0 ⊓ {{(t0,≤, 0), (0,≤, α)}})
⊔ (S0 ⊓ S1 ⊓ {{(t0,≤, t), (t1,≤, α)}})
⊔ (S0 ⊓ S2 ⊓ {{(t0,≤,¬t), (t2,≤, α)}})
⊔ (S0 ⊓ S1 ⊓ S2 ⊓ {{(t0,≤, 1), (t1 ∨ t2,≤, α)}})

Γ ⊢R (m0∈t ?m1 :m2) : α S
(Recon-case)

Γ, (x : Γ(x) ∧ t) ⊢R m1 : t1  S1

Γ, (x : Γ(x) ∧ ¬t) ⊢R m2 : t2  S2

S = ({{(Γ(x),≤, 0), (0,≤, α)}})
⊔ (S1 ⊓ {{(Γ(x),≤, t), (t1,≤, α)}})
⊔ (S2 ⊓ {{(Γ(x),≤,¬t), (t2,≤, α)}})
⊔ (S1 ⊓ S2 ⊓ {{(Γ(x),≤, 1), (t1 ∨ t2,≤, α)}})

Γ ⊢R (xǫ t ?m1 :m2) : α S
(Recon-case-var)

where α, αi and β in each rule are fresh type variables.

Figure 12.1: Type reconstruction rules

The idea of the type reconstruction is that, given an implicit expression m and a
typing environment Γ (which is always empty), we first collect the set S of constraint-
sets and then infer a possible type t which contains some fresh type variables in S. In
particular, functions are initially typed by a generic function type α → β, where α, β
are fresh type variables. Finally, to find solutions for t, we just look for any substitution
σ that satisfies any constraint-set C ∈ S. If there are no such substitutions, then m is
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not typable.
Consider an implicit version of map, which can be defined as:

µm λf . λℓ . ℓǫ nil ? nil : (f(π1ℓ),mf(π2ℓ))

The type inferred for map by the type reconstruction system is α1 → α2 and the
generated set S of constraint-sets is:

{ {α3 → α4 ≤ α2, α5 ≤ α4, α3 ≤ 0, 0 ≤ α5},
{α3 → α4 ≤ α2, α5 ≤ α4, α3 ≤ nil, nil ≤ α5},
{α3 → α4 ≤ α2, α5 ≤ α4, α3 ≤ ¬nil, (α6 × α9) ≤ α5} ∪ C,
{α3 → α4 ≤ α2, α5 ≤ α4, α3 ≤ 1, (α6 × α9) ∨ nil ≤ α5} ∪ C }

where C is {α1 ≤ α7 → α6, α3 \ nil ≤ (α7 × α8), α1 → α2 ≤ α1 → α10, α3 \ nil ≤
(α11×α12), α10 ≤ α12 → α9}. Then applying the tallying algorithm to the sets, we get
the following types for map:

α1 → (0 → α5)
α1 → (nil → nil)
0 → ((α7 ∧ α11 × α8 ∧ α12) → (α6 × α9))
(α7 → α6) → (0 → (α6 × α9))
(α7 → α6) → (0 → [α6])
0 → ((nil ∨ (α7 ∧ α11 × α8 ∧ α12)) → (nil ∨ (α6 × α9)))
(α7 → α6) → (nil → (nil ∨ (α6 × α9)))
(α7 → α6) → ((µx. nil ∨ (α7 ∧ α11 × α8 ∧ x)) → [α6])

By replacing type variables that only occur positively (see Definition 4.6.3) by 0 and
those only occurring negatively by 1, we obtain

1 → (0 → 0)
1 → (nil → nil)
0 → ((1× 1) → 0)
(0 → 1) → (0 → 0)
(1 → β) → (0 → [β])
0 → ((nil ∨ (1× 1)) → nil)
(0 → 1) → (nil → nil)
(α → β) → ([α] → [β])

All the types, except the last two, are useless4, as they provide no further information.
Thus we deduce the following type for map:

((α → β) → ([α] → [β])) ∧ ((0 → 1) → (nil → nil))

which is more precise than (α → β) → ([α] → [β]) since it states that the application
of map to any function and the empty list returns the empty list.

4Similar to the type-substitutions inference for the application problems (see Section 10.2.2), these
useless types are generated from the fact that 0 → t contains all the functions, or the fact that (0× t)
or (t× 0) is a subtype of any type, or the fact that Case (i) in type-cases is useless in practice.
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12.7 Related work

In this section we present some related work only on explicitly-typed calculi for in-
tersection type systems, constraint-based type inference, and inference for intersection
type systems.

12.7.1 Explicitly typed λ-calculus with intersection types

This section present related work on explicitly-typed calculi for intersection type sys-
tems by discussing how our term

(λα→α
[{Int/α},{Bool/α}]x.(λ

α→αy.x)x) (12.2)

is rendered.
In [Ron02, WDMT02], typing derivations are written as terms: different typed

representatives of the same untyped term are joined together with an intersection ∧.
In such systems, the function in (12.2) is written

(λInt→Intx.(λInt→Inty.x)x) ∧ (λBool→Boolx.(λBool→Booly.x)x).

Type checking verifies that both λInt→Intx.(λInt→Inty.x)x and λBool→Boolx.(λBool→Booly.x)x
are well typed separately, which generates two very similar typing derivations. The
proposal of [LR07] follows the same idea, except that a separation is kept between the
computational and the logical contents of terms. A term consists in the association of
a marked term and a proof term. The marked term is just an untyped term where term
variables are marked with integers. The proof term encodes the structure of the typing
derivation and relates marks to types. The aforementioned example is written as

(λx : 0.(λy : 1.x)x)@((λ0Int.(λ1Int.0)0) ∧ (λ0Bool.(λ1Bool.0)0))

in this system. In general, different occurrences of a same mark can be paired with
different types in the proof term. In [BVB08], terms are duplicated (as in [Ron02,
WDMT02]), but the type checking of terms does not generate copies of almost identical
proofs. The type checking derivation for the term

((λInt→Intx.(λInt→Inty.x)x)‖λBool→Boolx.(λBool→Booly.x)x)

verifies in parallel that the two copies are well typed. The duplication of terms and
proofs makes the definition of beta reduction (and other transformations on terms) more
difficult in the calculi presented so far, because it has to be performed in parallel on all
the typed instances that correspond to the same untyped term. Branching types have
been proposed in [WH02] to circumvent this issue. The idea is to represent different
typing derivations for a same term into a compact piece of syntax. To this end, the
branching type which corresponds to a given intersection type t records the branching
shape (ie, the uses of the intersection introduction typing rule) of the typing derivation
corresponding to t. For example, the type (Int→Int) ∧ (Bool→Bool) has only two
branches, which is represented in [WH02] by the branching shape join{i = ∗, j = ∗}.
Our running example is then written as

Λjoin{i = ∗, j = ∗}.λx{i=Int,j=Bool}.(λy{i=Int,j=Bool}.x)x.

Note that the lambda term itself is not copied, and no duplication of proofs happens
during type checking either: the branches labeled i and j are verified in parallel.
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12.7.2 Constraint-based type inference

Type inference in ML has essentially been considered as a constraint solving prob-
lem [OSW97, PR05]. We use a similar approach to solve the problem of type unifi-
cation: finding a proper substitution that make the type of the domain of a function
compatible with the type of the argument it is applied to. Our type unification prob-
lem is essentially a specific set constraint problem [AW93]. This is applied in a much
more complex setting with a complete set of type connectives and a rich set-theoretic
subtyping relation. In particular because of the presence of intersection types to solve
the problem of application one has to find a set of substitutions rather than a single
one. This is reflected by the definition of our ⊑ relation which is much more thorough
than the corresponding relation used in ML inference insofar as it encompasses instan-
tiation, expansion, and subtyping. The important novelty of our work comes from our
use of set-theoretic connectives, which allows us to turn sets of constraints of the form
s ≤ α ≤ t, into sets of equations of the form α = (β ∨ s) ∧ t. This set of equations is
then solved using the Courcelle’s work on infinite trees [Cou83].

12.7.3 Inference for intersection type systems

Coppo and Giannini presented a decidable type checking algorithm for simple intersec-
tion type system [CG95] where intersection is used in the left-hand side of an arrow
and only a term variable is allowed to have different types in its different occurrences.
They introduced labeled intersections and labeled intersection schemes, which are in-
tended to represent potential intersections. During an application M N , the labeled
intersection schemes of M and N would be unified to make them match successfully,
yielding a transformation, a combination of substitutions and expansions. An expan-
sion expands a labeled intersection into an explicit intersection. The intersection here
acts like a variable binding similar to a quantifier in logic. Our rule (instinter) is
similar to the transformation. We instantiate a quantified type into several instances
according to different situations (i.e., the argument types), and then combine them as
an intersection type. The difference is that we instantiate a parametric polymorphic
function into a function with intersection types, while Coppo and Giannini transform a
potential intersection into an explicit intersection. Besides, as the general intersection
type system is not decidable [CD78], to get a decidable type checking algorithm, Coppo
and Giannini used the intersection in a limited way, while we give some explicit type
annotations for functions.

Restricting intersection types to finite ranks (using Leivant’s notion of rank [Lei83])
also yields decidable systems. Van Bakel [Bak93] gave the first unification-based infer-
ence algorithm for a rank 2 intersection type system. Jim [Jim96] studied a decidable
rank 2 intersection type system extended with recursion and parametric polymorphism.
Kfoury and Wells proved decidability of type inference for intersection type systems of
arbitrary finite rank [KW99]. As a future work, we want to investigate decidability
of rank restricted versions of our calculus. A type inference algorithm have also been
proposed for a polar type system [Jim00], where intersection is allowed only in negative
positions and System F-like quantification only in positive ones.
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Chapter 13

Conclusion and Future Work

13.1 Summary

XML is a current standard format for exchanging structured data, which has been
applied to web services, database, research on formal methods, and so on. Many
recent XML processing languages are statically typed functional languages. However,
parametric polymorphism, an essential feature of such languages is still missing, or when
present it is in a limited form. In this dissertation, we have studied the techniques to
extend parametric polymorphism into XML processing languages, which consist of two
parts: a definition of a polymorphic semantic subtyping relation and a definition of a
polymorphic calculus.

In Part II, we have defined and studied a polymorphic semantic subtyping relation
for a type system with recursive, product and arrow types and set-theoretic type con-
nectives (i.e., union, intersection and negation). Instead of replacing type variables by
ground types, we assign them by subsets of the domain set. The assignments allow type
variables to range over subsets of any type. Thus we define the subtyping relation as
the inclusion of denoted sets under all the assignments for type variables. The defini-
tion is semantic, intuitive (for the programmer) and decidable. As far as we know, our
definition is the first solution to the problem of defining a semantic subtyping relation
for a polymorphic extension of regular tree types.

In Part III, we have designed and studied a polymorphism calculus, which is a
polymorphic extension of CoreCDuce and takes advantage of the new capabilities of the
subtyping definition of Part II. The novelty of the polymorphic extension is to decorate
λ-abstractions with sets of type-substitutions and to lazily propagate type-substitutions
at the moment of the reduction (and type-checking). Our calculus is also an explicitly-
typed λ-calculus with intersection (and union and negation) types, which contrasts
with current solutions in the literature which require the addition of new operators,
stores and/or pointers. In practice, the sets of type-substitutions are transparent to
the programmer. For that we have proposed an inference system that infers whether
and where type-substitutions can be inserted into an expression to make it well-typed.
Our inference algorithm is sound, complete, and semi-decision: decidability is an open
problem, yet. Finally, to provide an execution model for our calculus, we have studied
the translation from our polymorphic calculus into a variant of CoreCDuce.
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13.2 Future work

The work presented above provides all the theoretical basis and machinery needed to
start the design and implementation of polymorphic functional languages for semi-
structured data. There are several problems still to be solved or several continuations
to be studied, which are listed below.

Extensions of the type system

The first continuation concerns the definition of extensions of the type system itself.
Among the possible extensions the most interesting (and difficult) one seems to be the
extension of types with explicit second order quantifications. Currently, we consider
prenex polymorphism, thus quantification on types is performed only at meta-level. But
since this work proved the feasibility of a semantic subtyping approach for polymorphic
types, we are eager to check whether it can be further extended to impredicative second
order types, by adding explicit type quantification. This would be interesting not
only from a programming language perspective, but also from a logic viewpoint since
it would remove some of the limitations to the introspection capabilities we pointed
out in Section 3.5. This may move our type system closer to being an expressive
logic for subtyping. On the model side, it would be interesting to check whether the
infinite support property (Definition 4.6.1) is not only a sufficient but also a necessary
condition for convexity. This seems likely to the extent that the result holds for the
type system restricted to basic type constructors (ie, without products and arrows).
However, this is just a weak conjecture since the proof of sufficiency heavily relies (in
the case for product types) on the well-foundedness property. Therefore, there may
even exist non-well-founded models (non-well-founded models exist in the ground case:
see [FCB08, Fri04]) that are with infinite support but not convex. Nevertheless, an
equivalent characterization of convexity—whether it were infinite support or some other
characterization—would provide us a different angle of attack to study the connections
between convexity and parametricity.

Convexity and parametricity

In our opinion, the definition of convexity is the most important and promising theoret-
ical contribution of our work especially in view of its potential implications on the study
of parametricity. As a matter of fact, there are strong connections between parametric-
ity and convexity. We already saw that convexity removes the stuttering behavior that
clashes with parametricity, as equation (3.2) clearly illustrates. More generally, both
convexity and parametricity describe or enforce uniformity of behavior. Parametricity
imposes functions to behave uniformly behavior on parameters typed by type variables,
since the latter cannot be deconstructed. This allows Wadler to deduce “theorems for
free”: the uniformity imposed by parametricity (actually, imposed by the property of
being definable in second order λ-calculus) dramatically restricts the choice of possible
behaviors of parametric functions to a point that it is easy to deduce theorems about
a function just by considering its type [Wad89]. In a similar way convexity imposes
a uniform behavior to the zeros of the semantic interpretation, which is equivalent to
imposing uniformity to the subtyping relation. An example of this uniformity is given
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by product types: in our framework a product (t1 × ... × tn) is empty (ie, it is empty
for every possible assignment of its variables) if and only if there exists a particular ti
that is empty (for all possible assignments). We recover a property typical of closed
types.

We conjecture the connection to be deeper than described above. This can be per-
ceived by rereading the original Reynolds paper on parametricity [Rey83] in the light
of our results. Reynolds tries to characterize parametricity—or abstraction in Reynolds
terminology—in a set-theoretic setting since, in Reynolds words, “if types denote spe-
cific subsets of a universe then their unions and intersections are well defined”, which
in Reynolds opinion is the very idea of abstraction. This can be rephrased as the fact
that the operations for some types are well defined independently from the represen-
tation used for each type (Reynolds speaks of abstraction and representation since he
sees the abstraction property as a result about change of representation). The under-
lying idea of parametricity according to Reynolds is that “meanings of an expression
in ‘related’ environments will be ‘related’ ” [Rey83]. But as he points out few lines
later “while the relation for each type variable is arbitrary, the relation for compound
type expressions (ie, type constructors) must be induced in a specified way. We must
specify how an assignment of relations to type variables is extended to type expres-
sions” [Rey83]. Reynolds formalizes this extension by defining a “relation semantics”
for type constructors and, as Wadler brilliantly explains [Wad89], this corresponds to
regard types as relations. In particular pairs are related if their corresponding compo-
nents are related and functions are related if they take related arguments into related
results: there is a precise correspondence with the extensional interpretation of type
constructors we gave in Definition 4.2.6 and, more generally, between the framework
used to state parametricity and the one in our work.

Parametricity holds for terms written in the Girard/Reynolds second order typed
lambda calculus (also known as pure polymorphic lambda calculus or System F [Gir71,
Rey74]). The property of being definable in the second-order typed lambda-calculus
is the condition that harnesses expressions and forces them to behave uniformly. Con-
vexity, instead, does not require any definability property. It semantically harnesses
the denotations of expressions and forces them to behave uniformly. This seems to
suggest that convexity is a semantic property related to, albeit weaker than, what in
Reynolds approach is the definability in the second-order typed lambda-calculus, a
syntactic (rather, syntactically-rooted) property.

Although we have this intuition about the connection between convexity and para-
metricity, we do not know how to express this connection in a formal way, yet. We
believe that the answer may come from the study of the calculus associated to our
subtyping relation. We do not speak here of some language that can take advantage of
our subtyping relation and whose design space we discussed earlier in this thesis. What
we are speaking of is every calculus whose model of values (ie, the model obtained
by associating each type to the set of values that have that type) induces the same
subtyping relation as the one devised here. Indeed, as parametricity leaves little free-
dom to the definition of transformations, so the semantic subtyping framework leaves
little freedom to the definition of a language whose model of values induces the same
subtyping relation as the relation used to type its values. If we could determine under
which conditions every such language satisfied Reynolds abstraction theorem, then we
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would have established a formal connection between convexity and parametricity. But
this is a long term and ambitious goal that goes well beyond the scope of the present
work.

Decidability

The problem of the decidability of inference of type-substitutions is unsolved yet. The
property that our calculus can express intersection type systems à la Barendregt,
Coppo, and Dezani [BCD83] is not of much help: if we know that a term is well-typed,
then it is not difficult to extract from its type the interfaces of the functions occurring
in it; undecidability for intersection type systems tells us that it is not possible to decide
whether these interfaces exist; but here we are in a simpler setting where the interfaces
are given and we “just” want to decide whether they are correct. In particular, the
problem we cannot solve is when should we stop trying to expand the types of a func-
tion and of its argument. The experience with intersection types seems to suggest that
this should not be a problem since undecidability for intersection type systems is due
to expansions taking place at different depths. As Kfoury and Wells proved [KW99], it
suffices to bound the rank of the types (ie, the maximum dept —counted in terms of
arrow types— at which intersections can appear) to obtain decidability. As a matter
of fact, in our case intersections do not seem to be the main problem: unions are the
tough problem, for when we expand a union, then it distributes over intersections thus
creating new combinations of types that did not exist before. Trying to restrict our
approach only to intersection types seems unfeasible since the use of set-theoretic laws
involving a complete set of connectives is so pervasive of our approach that we do not
see how the use of unions or negations could be avoided. And in any case it would
hinder the application of this theory to XML document processing that, we recall, is
our initial motivation. The hope here is either to prove decidability (which looks as
the most likely outcome) or at least find some reasonable restrictions on types so as to
keep under control the generation of union types and thus limit the number of different
expansions to be tried by the algorithm.

In addition, as stated in Section 10.2.3, when computing App∆(t, s), the expansion
of the type t of functions would not cause the expansion of the type s of arguments.
This suggests us to expand t with a sufficient number of copies (although the number
is not clear yet) and thus we only need to consider the expansion of s, which is the case
of ⊑∆. Then a problem in mind is: whether the decidable problem of type-substitution
inference can be reduced to the decidable problem of the preorder ⊑∆.

Principal type

We did not tackle the problem that whether our inference system has principal types,
due to the unknown of the decidability of type-substitution inference. From a set-
theoretic view, this problem is clearly equivalent to deciding whether both the sets
∐i

∆(t) and t•∆s have minimums with respect to ⊑∆. Clearly, it requires the decidability
of ⊑∆. Moreover, we have proved that both sets are closed by intersection (Lemmas
9.1.7 and 9.1.8), which implies that if the minimals of these two sets exist and are finitely
many, the minimums must exist (by taking the intersection of all the minimals).
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Even if the inference of type-substitutions were decidable, it does not ease the proof
of the existence of principle types. As the example (10.6) in Section 10.2.3 shows, one
further iteration of the algorithm App∆(t, s) allows the system to deduce a more precise
type. This raises the problem: may an infinite sequence of increasingly general solutions
exist? If the answer were negative, then it would be easy to prove the existence of a
principal type, which would be the intersection of the minimal solutions of the last
iteration.

Non-determinism

The non determinism of the implicitly typed calculus has a negligible practical impact,
insofar as it is theoretical (in practice, the semantics is deterministic but implemen-
tation dependent) and it concerns only the case when the type of (an instance of) a
polymorphic function is tested: in our programming experience with CDuce we never
met a test for a function type. Nevertheless, it may be interesting to study how to
remove such a latitude either by defining a canonical choice for the instances deduced
by the inference system (a problem related to the existence of principal types), or by
imposing reasonable restrictions, or by checking the flow of polymorphic functions by
a static analysis.

Efficient compilation

On the practical side the most interesting direction of research is to study efficient
compilation of the polymorphic language. A naive compilation technique that would
implement the beta reduction of the explicitly-typed calculus as defined by (Rappl) is
out of question, since it would be too inefficient. The compilation technique described
in Chapter 11 coupled with some optimization techniques that would limit the expan-
sion in type-cases to few necessary cases can provide a rapidly available solution for
a prototype implementation that reuses the efficient run-time engine of CDuce (inter-
estingly, with such a technique the compilation does not need to keep any information
about the source: the compiled term has all the information needed). However it could
not scale up to a full-fledged language since it is not modular (a function is compiled
differently according to the argument it is applied to) and the use of the nested type-
cases, even in a limited number of cases, causes an exponential blow-up that hinders
any advantage of avoiding dynamic relabeling. We think that the solution to follow is a
smart compilation in typed virtual machines using JIT compilation techniques [Ayc03].
Since the types in the interfaces of λ-abstractions are used to determine the semantics
of the type-cases, then relabeling cannot be avoided. However relabeling is necessary
only in one very particular situation, that is in case of partial application of curried
polymorphic functions. Therefore we plan to explore compilation techniques such as
those introduced in the ZINC virtual machine [Ler90] to single out partial applications
and apply possible relabeling just to them. This can be further coupled with static
analysis techniques that would limit relabeling only to partial applications that may
end up in a type cases or escape in the result, yielding an efficient run-time on par with
the monomorphic version of CDuce.
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Type reconstruction

We have shown how to reuse the machinery developed for the inference of type-
substitutions to perform type reconstruction in Section 12.6, that is, to assign types
to functions whose interfaces are not specified. The idea is to type the body of the
function under the hypothesis that the function has the generic type α→β and deduce
the corresponding constraints. However, the work is rough and there are still many
problems to be studied.

The soundness and the termination of the reconstruction system is easy to be
proved, because of the soundness of the type tallying problem and the finiteness of ex-
pressions respectively. Completeness instead is not clear: given a well-typed implicitly-
typed expression a, it is not clear whether all the interfaces in a can be reconstructed
(since we do not consider the expansion in the reconstruction rule for applications), and
if so, whether the reconstructed types are more general than those in the interfaces.
Meanwhile, the study of whether the type-substitution inference system and the type
reconstruction system can be merged seamlessly (e.g., to use (Inf-appl) instead of
(Reg-appl)) is worth pursuing as well.

Another problem worth studying is the question of how far the type reconstruction
system can go away. Conservatively, we believe the reconstruction embraces the type
inference of ML, which is our minimum requirement. As a future work, we would
like to extend it to a type inference system for λ-calculus with intersection types. In
a nutshell, the problem of inference with intersection types is “expansion” [CDCV81,
CG92]. The key idea is to locate the possible “expansions” in types, which are the
function types inferred for abstractions (corresponding to the sets of type-substitutions
in the decorations of abstractions), and to solve the “expansions” when inferring types
for applications, where we need to tally the type for the argument with the domain of
the type for the function. Of course, general type reconstruction is undecidable, but
we reckon it should not be hard to find reasonable restrictions on the complexity of
the inferred types to ensure decidability without hindering type inference in practical
cases.

Extensions of the language

The overall design space for a programming language that could exploit the advanced
features of our types is rather large. Consequently, besides the extensions and design
choices presented in Chapter 12, there are a lot of possible variations can be consid-
ered (e.g., the use of type variables in pattern matching) and even more features can
be encoded (e.g., as explained in Footnote 3, bounded quantification can only be en-
coded via type connectives). While exploring this design space it will be interesting to
check whether our polymorphic union types can encode advanced type features such as
polymorphic variants [Gar98] and GADTs [XCC03].

Notice that the usage of values (i.e., the call-by-value semantics) ensures subject-
reduction but it is not a necessary condition: in some cases weaker constraints could
be used. For instance, in order to check whether an expression is a list of integers, in
general it is not necessary to fully evaluate the whole list: the head and the type of
the tail are all that is needed. Studying weaker conditions for the reduction rules is
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an interesting topic we leave for future work, in particular in the view of adapting our
framework to lazy languages.

Implementation issues

Finally, besides the non-determinism of the implicitly-typed calculus and the efficient
compilation problem, there exist other issues to be considered for the implementa-
tion: the order on type variables (which will affect the result type), the elimination of
the useless result types, the trade-off between precision and efficiency (when to stop
App∆(t, s)), and so on.
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