
HAL Id: tel-00858751
https://theses.hal.science/tel-00858751v1

Submitted on 6 Sep 2013

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Finding homogeneous collections of dense subgraphs
using constraint-based data mining approaches

Pierre-Nicolas Mougel

To cite this version:
Pierre-Nicolas Mougel. Finding homogeneous collections of dense subgraphs using constraint-based
data mining approaches. Data Structures and Algorithms [cs.DS]. INSA de Lyon, 2012. English.
�NNT : �. �tel-00858751�

https://theses.hal.science/tel-00858751v1
https://hal.archives-ouvertes.fr

No d’ordre : 2012-ISAL-0073 Année 2012

THÈSE

présentée devant

L’Institut National des Sciences Appliquées de Lyon

pour obtenir

Le Grade de Docteur

Spécialité

Informatique

École Doctorale : Informatique et Mathématiques

par

Pierre-Nicolas Mougel

F I N D I N G H O M O G E N E O U S C O L L E C T I O N S O F
D E N S E S U B G R A P H S U S I N G C O N S T R A I N T- B A S E D

D ATA M I N I N G A P P R O A C H E S

Application to the Analysis of Scientific Collaboration

Networks and Protein Interaction Graphs

Soutenance le 14 Septembre 2012 devant le jury :

Jean-François Boulicaut INSA de Lyon Examinateur
Bruno Crémilleux Université de Caen Examinateur
Florent Masseglia INRIA Sophia Antipolis Rapporteur
Dino Pedreschi Università di Pisa, IT Rapporteur
Pascal Poncelet Université de Montpellier 2 Examinateur
Christophe Rigotti INSA de Lyon Directeur
Céline Rouveirol Université Paris-Nord Examinateur

Pierre-Nicolas Mougel: Finding Homogeneous Collections of Dense Sub-
graphs Using Constraint-Based Data Mining Approaches, PhD Thesis, ©
October 2009–September 2012

supervisor:
Christophe Rigotti

time frame:
October 2009–September 2012

A B S T R A C T

The work presented in this thesis deals with data mining approaches
for the analysis of attributed graphs. An attributed graph is a graph
where properties, encoded by means of attributes, are associated to
each vertex. In such data, our objective is the discovery of subgraphs
formed by several dense groups of vertices that are homogeneous with
respect to the attributes.

More precisely, we define the constraint-based extraction of collec-
tions of subgraphs densely connected and such that the vertices share
enough attributes. To this aim, we propose two new classes of patterns
along with sound and complete algorithms to compute them efficiently
using constraint-based approaches. The first family of patterns, named
Maximal Homogeneous Clique Set (MHCS), contains patterns satisfy-
ing constraints on the number of dense subgraphs, on the size of these
subgraphs, and on the number of shared attributes. The second class
of patterns, named Collection of Homogeneous k-clique Percolated
components (CoHoP), is based on a relaxed notion of density in order
to handle missing values.

Both approaches are used for the analysis of scientific collaboration
networks and protein-protein interaction networks. The extracted pat-
terns exhibit structures useful in a decision support process. Indeed,
in a scientific collaboration network, the analysis of such structures
might give hints to propose new collaborations between researchers
working on the same subjects. In a protein-protein interaction network,
the analysis of the extracted patterns can be used to study the rela-
tionships between modules of proteins involved in similar biological
situations. The analysis of the performances, on real and synthetic data,
with respect to different attributed graph characteristics, shows that the
proposed approaches scale well for large datasets.

iii

R É S U M É

Ce travail de thèse concerne la fouille de données sur des graphes
attribués. Il s’agit de graphes dans lesquels des propriétés, encodées
sous forme d’attributs, sont associées à chaque sommet. Notre objectif
est la découverte, dans ce type de données, de sous-graphes organisés
en plusieurs groupes de sommets fortement connectés et homogènes
au regard des attributs.

Plus précisément, nous définissons l’extraction sous contraintes d’en-
sembles de sous-graphes densément connectés et tels que les sommets
partagent suffisamment d’attributs. Pour cela nous proposons deux
familles de motifs originales ainsi que les algorithmes justes et complets
permettant leur extraction efficace sous contraintes. La première famille,
nommée Ensembles Maximaux de Cliques Homogènes, correspond à
des motifs satisfaisant des contraintes concernant le nombre de sous-
graphes denses, la taille de ces sous-graphes et le nombre d’attributs
partagés. La seconde famille, nommée Collections Homogènes de
k-cliques Percolées emploie quant à elle une notion de densité plus
relaxée permettant d’adapter la méthode aux données avec des valeurs
manquantes.

Ces deux méthodes sont appliquées à l’analyse de deux types de
réseaux, les réseaux de coopérations entre chercheurs et les réseaux
d’interactions de protéines. Les motifs obtenus mettent en évidence
des structures utiles dans un processus de prise de décision. Ainsi,
dans un réseau de coopérations entre chercheurs, l’analyse de ces
structures peut aider à la mise en place de collaborations scientifiques
entre des groupes travaillant sur un même domaine. Dans le contexte
d’un graphe de protéines, les structures exhibées permettent d’étudier
les relations entre des modules de protéines intervenant dans des
situations biologiques similaires. L’étude des performances en fonction
de différentes caractéristiques de graphes attribués réels et synthétiques
montre que les approches proposées sont utilisables sur de grands jeux
de données.

v

P U B L I C AT I O N S

Most of the ideas presented in this thesis appeared previously in the
following publications:

international conferences

[CMB09] Loïc Cerf, Pierre-Nicolas Mougel, and Jean-Francois Bouli-
caut. Agglomerating Local Patterns Hierarchically with
ALPHA. In Proc. of the ACM Int. Conf. on Information and
Knowledge Management (CIKM), pages 1753–1756, November
2009.

[MPR+10] Pierre-Nicolas Mougel, Marc Plantevit, Christophe Rigotti,
Olivier Gandrillon, and Jean-Francois Boulicaut. Constraint-
Based Mining of Sets of Cliques Sharing Vertex Properties.
In Proc. of the Workshop on Analysis of Complex NEtworks
(ACNE) co-located with ECML PKDD, pages 48–62, Septem-
ber 2010.

[MRG12a] Pierre-Nicolas Mougel, Christophe Rigotti, and Olivier Gan-
drillon. Finding Collections of k-Clique Percolated Com-
ponents in Attributed Graphs. In Proc. of the Pacific-Asia
Conference on Knowledge Discovery and Data Mining (PAKDD),
pages 181–192, April 2012.

[MRG12b] Pierre-Nicolas Mougel, Christophe Rigotti, and Olivier Gan-
drillon. Finding Collections of Protein Modules in Protein-
Protein Interaction Networks . In Proc. of Bioinformatics and
Computational Biology (BICoB), March 2012.

national conferences

[MPR+11] Pierre-Nicolas Mougel, Marc Plantevit, Christophe Rigotti,
Olivier Gandrillon, and Jean-Francois Boulicaut. Extraction
sous Contraintes d’Ensembles de Cliques Homogènes. In
Proc. of Conférence Francophone sur l’Extraction et la Gestion
des Connaissances (EGC), pages 443–454, January 2011.

posters

[MPR+10] Pierre-Nicolas Mougel, Marc Plantevit, Christophe Rigotti,
Olivier Gandrillon, and Jean-Francois Boulicaut. A Data
Mining Approach to Highlight Relations Between Func-
tional Modules. In Integrative Post-Genomics (IPG), Novem-
ber 2010.

vii

A C K N O W L E D G M E N T S

J’aurais aimé remercier toutes les personnes que j’ai pu rencontrer
et avec qui échanger a été si agréable. Même si je n’ai pas la place
pour remercier tout le monde, je souhaiterais commencer avec des amis
qui me sont très chers. Tout d’abord à Lolie, pour tous les meilleurs
moments. Merci également à Dora et Vince avec qui j’espère avoir
encore longtemps l’occasion de passer des soirées. Merci aussi Ben
pour un nombre de raisons qui ajouterait sûrement quelques pages à
ce manuscrit. Merci à Arnaud et Simon, les amis de l’INSA, avec qui il
est très agréable de discuter recherche ou d’autres sujets.

Merci aussi à tous les doctorants avec qui j’ai partagé le bureau
501.319 pour les discussions, pas toujours scientifiques, mais à chaque
fois agréables, Loïc, Ngan, Stephan, Bérénice et Élise. Merci à tous les
membres des équipes Turing / Combining / actuellement DM2L et
Beagle pour leurs conseils et les discussions, et tout particulièrement
à Jean-François sans qui je n’aurais peut-être pas pu faire cette thèse
ainsi que pour sa direction scientifique exceptionnelle de l’équipe.

Cette thèse n’aurait pas été possible sans Christophe, que je remercie
non seulement pour son apport et ses qualités scientifiques, mais égale-
ment pour ses nombreux conseils dans des domaines pas uniquement
scientifiques et le temps passé à me les offrir. Merci aussi pour cette
bonne humeur continuelle qui a permis de rendre ces trois années très
agréables.

Mes remerciements vont aussi à mes rapporteurs, Dino Pedreschi
et Florent Masseglia pour leur temps et leurs remarques ainsi qu’aux
autres membres du jury, Céline Rouveirol, Jean-François Boulicaut,
Bruno Crémilleux, et Pascal Poncelet pour avoir bien voulu participer.
Merci également aux membres des projets ANR Bingo2 (ANR-07-
MDCO-014) et REHMI (financé par l’institut rhône-alpin des systèmes
complexes) et en particulier à Olivier Gandrillon pour son expertise
précieuse en biologie. Merci également aux membres du projet Foster
(ANR-2010-COSI-012-02) avec qui j’aurai le plaisir de continuer mes
travaux de recherche en Post-Doctorat.

Enfin, merci aux personnes avec qui j’ai passé un bout de ma vie.
Sandie, qui a dû supporter mon coté geek et de longs monologues
pendant la rédaction du manuscrit. Mes frères et ma choupinette pour
des longs monologues un peu plus anciens, mon père qui m’a transmis
sa passion de l’informatique et ma maman qui a permis que tout cela
se réalise.

ix

C O N T E N T S

i introduction 1
Context . 3
Problem . 5
Contribution . 6
Organization of the thesis 6

ii state of the art 9
outline . 11

1 local pattern mining in binary relations 13
1.1 The binary relation context 13
1.2 Local patterns in binary relations 14

1.2.1 Frequent itemsets 14
1.2.2 Frequent closed itemsets 16
1.2.3 Frequent closed error-tolerant itemsets 16
1.2.4 Constraints on patterns and pattern sets 17

2 local pattern mining in graphs 19
2.1 The graph context . 19

2.1.1 Graph measures 20
2.2 Local patterns in graphs 20

2.2.1 Cliques and maximal cliques 21
2.2.2 Quasi-cliques . 22
2.2.3 k-clique percolated components 23

3 mining attributed graphs 27
3.1 The attributed graph context 27
3.2 Global approaches in attributed graphs 28
3.3 Local patterns in attributed graphs 30

3.3.1 Application specific approaches 30
3.3.2 General frameworks 30

conclusion . 33

iii a pattern as a collection of subgraphs 35
introduction . 37

4 mining collections of cliques 41
4.1 Pattern definition . 41

4.1.1 The homogeneity constraint: Chomo
α 42

4.1.2 The topology constraint: C
clique
γ,κ 42

4.1.3 The separation constraint: Csep 43
4.1.4 Reducing the collection of patterns 43

4.2 Finding all Maximal Homogeneous Clique Sets 44
4.2.1 Algorithm generate and test 44
4.2.2 Enumeration tree pruning techniques 48
4.2.3 Implementation . 53

4.3 Experiments . 54
4.3.1 Scientific collaboration network dataset 54
4.3.2 Interpretation of MHCSs from DBLP 55
4.3.3 Performance study on DBLP datasets. 57
4.3.4 Evaluation on synthetic datasets 60
4.3.5 Comparison of the prunings to baseline algorithms 61

5 mining collections of k-pcs 65

xi

xii contents

5.1 Pattern definition . 65
5.2 Finding all CoHoP patterns 66

5.2.1 A naive algorithm 66
5.2.2 Enumeration tree pruning techniques 67
5.2.3 Algorithm description 68
5.2.4 Implementation . 69

5.3 Experiments . 69
5.3.1 Illustration of the patterns interest 70
5.3.2 Performance study 72
5.3.3 Evaluation on synthetic datasets 75
5.3.4 Comparison with baseline algorithm 75

conclusion . 79

iv application to molecular biology 81
introduction . 83

6 application to molecular biology 85
6.1 The dataset . 85
6.2 Evaluation of the pattern collection 85

6.2.1 The L2L Measure 85
6.2.2 Global evaluation of complete collections of patterns 88
6.2.3 Interpretation . 88

6.3 Performance evaluation 94
conclusion . 99

v conclusion 101
Summary of our contributions 103
Future directions of work 103

Appendix 107
a dataset description 109

a.1 The BioData datasets . 109
a.2 The DBLP datasets . 109

b a pattern extraction/visualisation software 115
b.1 Presentation of the interface 115
b.2 Extraction of the patterns 116
b.3 Browsing the collection of patterns 116
b.4 Pattern visualisation . 117

b.4.1 Centrality measures 117
b.4.2 Visualisation parameters 117
b.4.3 Layout . 117

c table of symbols 119
c.1 Notation in the binary relation setting 119
c.2 Notation in the graph setting 119
c.3 Notation in the Boolean attributed graph setting 120

vi bibliography 121

L I S T O F F I G U R E S

Figure 1 An example of attributed graph. 4
Figure 2 The graph part corresponding to the attributed

graph presented Figure 1. The solid lines struc-
ture is formed by vertices being pairwise connected. 5

Figure 3 An example collection of subgraphs illustrating
the type of patterns we propose to extract. 7

Figure 4 An example of binary relation over the domain
O = {o1, o2, o3, o4} and codomain I = {i1, i2, i3,

i4, i5}. A value 1 at the intersection of a row and
a column depicts the fact that the corresponding
object and item are related in the relation, other-
wise they are not related. The order of the rows
and columns is arbitrary. 13

Figure 5 An example of graph, with the set of vertices
{A,B,C,D, E}. 19

Figure 6 Example of path graph. 24
Figure 7 An example of attributed graph with vertices

{A,B,C,D, E} and three attributes: colour ∈ {red,

yellow, blue, purple}, age ∈ R, and music ∈
{pop, jazz, classic, rock}. 27

Figure 8 An example of Boolean attributed graph with
vertices {A,B,C,D, E} and five Boolean attributes:
pop, jazz, rock, pop, blues. Only attributes having
value True are represented in the graph. 28

Figure 9 Example of Boolean attributed graph representing
a social network (same as Figure 1). 38

Figure 10 Example of MHCS pattern in the Boolean at-
tributed graph presented in Figure 9. 39

Figure 11 Example of Boolean attributed graph. Vertices
are identified by capital letters and attributes are
identified by attributes ai, i ∈ {1, . . . , 6}. 41

Figure 12 Enumeration tree corresponding to the attributed
graph presented Figure 11. 47

Figure 13 Enumeration tree with pruning techniques 1, 2,
3, 4, and 5 corresponding to the attributed graph
presented Figure 11 for constraints Chomo

2 and
C
clique
2,3 . 50

Figure 14 A pattern related to conferences INFOCOM and
SenSys. Each colour denotes a clique of at least κ
vertices. A vertex in several colours is contained
in multiple cliques. Vertices in light grey are not
contained in a clique of at least κ vertices. 56

Figure 15 A pattern related to conferences ACM SIGMOD,
CIKM, EDBT, ICDE, ICDM, and SDM. Each colour
denotes a clique of at least κ vertices. A vertex in
several colours is contained in multiple cliques.
Vertices in light grey are not contained in a clique
of at least κ vertices. 56

xiii

xiv List of Figures

Figure 16 Runtime for different sets of parameters on DBLP1,
DBLP2, and DBLP3. 58

Figure 17 Number of MHCS for different sets of parameters
on DBLP1, DBLP2, and DBLP3. 59

Figure 18 Runtime for the collections of datasets S#vert,
SavgDeg, S#attr, SavgAtt and S#hcs. 62

Figure 19 Runtime for different pruning techniques on the
datasets DBLP2 and DBLP3. The scale is logarith-
mic for the runtime. 64

Figure 20 A Boolean attributed graph illustrating the Co-
HoP patterns. Vertices are identified by cap-
ital letters and attributes are identified by ai,
i ∈ {1, . . . , 5}. Only attributes having value True
are displayed. 65

Figure 21 Two patterns extracted from DBLP3 with k = 4,
γ = 7, and α = 3. Each colour corresponds to a
k-PC. A vertex in several colours is contained in
multiple k-PCs. 71

Figure 22 Runtime for different sets of parameters on DBLP1,
DBLP2, and DBLP3. 73

Figure 23 Number of CoHoP for different sets of parameters
on DBLP1, DBLP2, and DBLP3. 74

Figure 24 Runtimes for the extraction of CoHoP patterns in
the collections of datasets S#vert, SavgDeg, S#attr,
SavgAtt and S#CoHoP 76

Figure 25 Runtime for the extraction of CoHoP patterns
using different pruning techniques on DBLP2 and
DBLP3. The scale is logarithmic for the runtime. 78

Figure 26 Screen copy from SQUAT and STRING databases,
showing information about gene CRX (HUGO
nomenclature). 86

Figure 27 Cumulative distributions of p-values (on dataset
BioData400 with α, γ and κ varying) in number of
MHCSs extracted (left column) and in percentage
of the MHCSs extracted (right column). P-value
scale is logarithmic. The vertical dotted line corre-
sponds to the significance level using Bonferroni
correction (i.e., ≈ 2.4× 10−5). 89

Figure 28 Cumulative distributions of p-values (on dataset
BioData400 with α, γ and κ varying) , in number
of CoHoPs extracted (left column) and in per-
centage of the CoHoPs extracted (right column).
P-value scale is logarithmic. The vertical dotted
line corresponds to the significance level using
Bonferroni correction (i.e., ≈ 2.4× 10−5). 90

Figure 29 MHCS extracted from dataset BioData400 with α

= 3, κ = 4 and γ = 3. All genes are overexpressed
in 3 biological situations corresponding to normal
activities of retinal cells. 92

List of Figures xv

Figure 30 MHCS extracted from dataset BioData400 with α

= 3, κ = 4 and γ = 3. All genes are overexpressed
in 4 biological situations corresponding to nor-
mal activities of white blood cells. In the table,
signal transduction and regulation process are short
names for respectively small GTPase mediated sig-
nal transduction and positive regulation of cytokine
biosynthetic process. 93

Figure 31 A CoHoP extracted from dataset BioData400 with
α = 4, k = 3 and γ = 3. The genes are overex-
pressed in four biological situations related to
breast carcinoma cell line, ZR75. 94

Figure 32 A CoHoP extracted from dataset BioData400 with
α = 4, k = 3 and γ = 3. The genes are over-
expressed four biological situations related to
antigen-purified CD14+ monocytes. 95

Figure 33 Extraction runtime for MHCSs and CoHoPs using
different sets of parameters on BioData150 and
BioData400. 96

Figure 34 Number of extracted MHCSs and CoHoPs using
different sets of parameters on BioData150 and
BioData400. The line is not drawn if no pattern
are output for a set of parameters. 97

Figure 35 A general and a more specific CoHoP in a biblio-
graphic dataset. 104

Figure 36 Example of subgraph where all vertices share two
common attributes except vertex E. 105

Figure 37 Example of multidimensional network with at-
tributes associated to the nodes. 106

Figure 38 The multidimensional network presented Figure 37
where edge labels are encoded by means of Boolean
attributes in an attributed graph. 106

Figure 39 Example of structure which might be found in
the graph presented Figure 38. It is formed by
two groups of three vertices sharing two vertex
attributes (rock and jazz) and two edge attributes
(friend and colleague). 106

Figure 40 The largest connected component of BioData400.
Each colour corresponds to a module according
to the modularity definition of [9]. 110

Figure 41 Degree and attribute distribution for the datasets
BioData150 and BioData400. All the scales are
logarithmic. 110

Figure 42 The largest connected component of DBLP3. Each
colour corresponds to a module according to the
modularity definition of [9]. 112

Figure 43 Degree and attribute distribution for the datasets
DBLP1, DBLP2, and DBLP3. All the scales are
logarithmic. 113

Figure 44 The different parts of the interface 115
Figure 45 The collection of patterns view. 116
Figure 46 Panels used to customize pattern visualisation. . 117
Figure 47 A CoHoP pattern displayed using the five avail-

able layouts. 118

L I S T O F TA B L E S

Table 1 Measures describing datasets DBLP1, DBLP2, and
DBLP3. 55

Table 2 Memory consumption over all experiments re-
ported Figure 16. 57

Table 3 Parameters used to generate the synthetic datasets. 61
Table 4 The five set of parameters with α between 3 and

9, γ between 5 and 9, and k between 3 and 6 that
lead to a number of CoHoPs between 50 and 100
in DBLP3. 70

Table 5 Memory consumption over all experiments re-
ported in Figure 22. 72

Table 6 Parameters used to generate the synthetic datasets. 75
Table 7 Several characteristics of the datasets BioData150

and BioData400. 87
Table 8 Main characteristics of the datasets BioData150

and BioData400. Dashes denote prohibitive run-
time or memory consumption. 109

Table 9 Main characteristics of the datasets DBLP1, DBLP2,
and DBLP3. Dashes denote prohibitive runtime
or memory consumption. 111

Table 10 Summary of the notation used in the binary rela-
tion setting . 119

Table 11 Summary of the notation used in the graph setting119
Table 12 Summary of the notation used in the Boolean

attributed graph setting 120

xvi

Part I

I N T R O D U C T I O N

introduction 3

context

Scientific research is built from many previous results and the results
presented in this thesis are not an exception. This work is based on
previous results in the data mining community. This domain of study
has emerged in the nineties at the boundaries of several other fields of
research. Among these fields, probably the main ones were database,
artificial intelligence and statistics. At that time, one of the main
objective of data mining was to support the analysts in the knowledge
discovery process.

Since then, while the original objectives of data mining remain, new
challenges have occurred [36, 83]. The results presented in this thesis
deal mainly with four challenges presented in the next paragraphs.
However the data mining community has also to deal with other prob-
lems such as privacy, data visualisation, or data distribution over multi-
ple computers, that are not tackled in this work.

Performance scaling

The efficiency challenge is strongly tied with one of the objective
of data mining, being able to treat large and continuously growing
volumes of data. The advance in hardware is of little help for this
aim. Many algorithms in data mining have an exponential complexity
with respect to the size of the data. For example, it is the complexity
of most algorithms performing subset enumeration. Reducing algo-
rithm complexity is then always a great challenge for the data mining
community.

Domain knowledge

Another objective is to give the possibility to the experts to use their
knowledge during the extraction process. Using this knowledge allows
not only to get more meaningful results but it might also be used to
avoid the cost of finding something which is not relevant for the expert.
As a consequence, this challenge is linked with the efficiency. Being able
to exploit expert knowledge in the extraction process is still an open
problem. A common solution toward this aim is to specify the kind of The inductive query

framework proposed
in [41] is an attempt
to address this
problem in a general
manner.

information one wants to find by means of constraints that are then
used to focus on more relevant results. Moreover, these constraints can
also be used actively during the extraction to reduce the computational
cost.

Handling imperfect data

Another great challenge is to take into account missing values in the
data. Several factors can generate missing values. This can happen, for
example, during the data collection process. This can also be due to
the data preprocessing. Indeed the raw data are usually transformed
before they can be used by a data mining algorithm. Such preprocessing
(e.g., binarization) can lead to loss of information and consequently to
missing values. Taking into account the fact that values may be missing
is then important.

Analysis of complex data

The last problem tackled by this thesis is the analysis of complex data
objects, like web pages, genes or spatio temporal objects descriptions.
Among the data model used, graphs have been shown to be a very
general one, useful to encode many datasets. A large number of

4 introduction

data mining algorithms have already been proposed for the analysis
of graphs. More recently, several works have been dedicated to the
analysis of graph extensions as for example dynamic graphs [74], multi
dimensional graphs [8] or attributed graphs.

In this thesis, our object of study is this last extension mentioned:
the attributed graphs. For short, an attributed graph is a graph (i.e.,
a collection of vertices connected by edges) such that properties areIn the literature, the

term node is
sometimes used

instead of vertex. In
this thesis, we will

use the term vertex.

associated to each vertex. The properties can have different domain of
values, for example Boolean, numeric (e.g., age, weight), or categorical
(e.g., season, colour). Our work will consider the case where the domain
of the attributes is Boolean.

An example of attributed graph is given in Figure 1. These data
represent a group of individuals with their relationships and their
musical tastes. The kind of relationships can be for example friendship,
geographic closeness, or being member of the same organization. In the
attributed graph representation of these data, each person corresponds
to a vertex denoted by a capital letter. The relationships between
persons are represented by edges. The musical tastes (e.g., rock, pop)
of each person is encoded by means of attributes having either value
True or False (i.e., the domain of the attributes is Boolean). A person
associated to an attribute having value True denotes the fact that this
person enjoys the corresponding style of music. Note that in Figure 1,
only attributes having value True are represented. For example, the
person corresponding to vertex G (top right of the figure), is in relation
with the persons denoted by vertices C, E, F, and H and enjoys rock,
folk and jazz music styles.

A

B

C D

E F

G

H

I

J

K

L

M

N

O

P

Q

R

rock

folk

jazz

rock

folk

blues

jazz

rock

folk

jazz

rock

folk

jazz rock

folk

blues

folk

blues

rock

folk

jazz

rock

folk

folk

blues

blues

jazz

rock

jazz

pop

rock

folk

pop

blues

rock

folk

rock

folk

pop

rock

folk

pop

jazz

rock

folk

pop

rock

folk

pop

blues

Figure 1.: An example of attributed graph.

To sum up, the context of this thesis is the analysis of attributed
graphs with the objectives of being efficient, being able to handle
missing values, and allowing the experts to use their knowledge during
the extraction process. Given this context, the next section presents the
problem tackled in this thesis.

introduction 5

problem

In this thesis, we focus on providing a method for the discovery
of structures in attributed graphs. This problem specification is very Here, the term

structure is used in a
general sense, and

does not refer to the
discovery of

structures in
documents as

structure mining in
XML documents.

general and must be defined more precisely. In fact, it raises the
question “what can be considered as a relevant structure in an attributed
graph ?”

An example of well studied structure is a collection of properties or
items shared by the same set of objects. In a dataset of persons (the
objects) together with their musical tastes (the items), such a structure
corresponds to a set of music styles enjoyed by a group of persons. This
structure formed by a set of items, usually named itemset, occurring
frequently with a set of objects, has been studied in data mining under
the name frequent itemsets, and its extensions frequent closed itemset [70]
or error tolerant frequent closed itemsets [18] among others.

Structures formed by groups of objects such that there are many
connections between them have also been well studied in the context
of graphs. Considering only the graph part of the attributed graph
presented in Figure 1, Figure 2 highlights such collection of objects. The
notion of many connections has been defined in several ways. One of
these definitions is the notion of cliques [52] (a collection of objects all
pairwise connected, as the subgraph in solid lines depicted in Figure 2).
Since this definition is very restrictive, several extensions have been
proposed to allow missing connections within the structure, for example
quasi-cliques [51] or k-clique percolated components [67].

A

B

C D

E F

G

H

I

J

K

L

M

N

O

P

Q

R

Figure 2.: The graph part corresponding to the attributed graph presented Fig-
ure 1. The solid lines structure is formed by vertices being pairwise
connected.

In this thesis, we focus more particularly on attributed graphs. As
said previously, an attributed graph can be viewed as entities which
are both in relationship (i.e., the graph) and associated to several prop-
erties (i.e., the attributes). Intuitively, from what have been previously
considered, an interesting structure could be a collection of objects
sharing attribute values and being strongly connected. Such structure
has been studied for example in [58] and can be considered as local
in the sense that it is usually formed by a small number of objects

6 introduction

compared to the size of the whole dataset. However, it is possible to
consider structures at an intermediate level of analysis, even if there
is no strict definition of what is an intermediate level. In this thesis,
we consider that a structure formed by several dense subgraphs can
reasonably be placed at an intermediate level of analysis. Our work
is placed at such intermediate level. More precisely, our structure of
interest is formed by several groups of objects strongly connected and
similar with respect to the values of their attributes.

contribution

Our main contribution consists in the definition of two classes of
patterns used to discover collections of dense subgraphs sharing similar
Boolean attributes. In Figure 3 the highlighted collection of three groups
formed by densely connected vertices sharing attributes rock and folk
illustrates the kind of patterns we propose to extract.

The first class of patterns, named Maximal Homogeneous Clique Set
(MHCS), is based on cliques. To the best of our knowledge, it is the
first attempt to find collections of dense subgraphs. The second class
of patterns is named Collection of Homogeneous k-clique Percolated
components (CoHoP). This class of patterns allows to take into account
missing values in the data in the sense that the vertices in a subgraph
are not required to be fully pairwise connected.

In order to compute the collections of MHCS and CoHoP patterns,
we propose a sound and complete algorithm for each class of patterns.
These algorithms take advantage of several pruning techniques based
on constraint properties in order to reduce the search space. We also
provide formal proof of correctness for these algorithms.

We present experimental results in two real world contexts, a scien-
tific collaboration network and a protein-protein interaction network.
These experiments demonstrate the practical interest of these classes of
patterns. We also study the performances of our algorithms using large
real and synthetic datasets. The results show that our approaches are
able to handle real size datasets and scale well with respect to several
attributed graph characteristics.

We also develop a pattern extraction and visualisation software. This
tool allows to filter the collection of patterns and highlight vertices with
respect to several graph characteristics.

The MHCS patterns have been introduced in [59, 61] and the Co-
HoP patterns in [62]. Their application to protein-protein interaction
networks have been presented respectively in [60] and [63].

organization of the thesis

In the following part (Part ii), we propose a state of the art on the
analysis of attributed graphs using data mining techniques. Since
the interest for such context is rather recent in data mining, only few
approaches have been proposed. In order to get a broader overview, we
also consider the discovery of groups of properties in binary relations
(Section 1) and the discovery of groups of connected objects in graphs
(Section 2). In the attributed graph context (Section 3), we present
existing approaches to find groups either at a global level (clusters) or
at a more local level (dense subgraphs).

introduction 7

A

B

C D

E F

G

H

I

J

K

L

M

N

O

P

Q

R

rock

folk

jazz

rock

folk

blues

jazz

rock

folk

jazz

rock

folk

jazz rock

folk

blues

folk

blues

rock

folk

jazz

rock

folk

folk

blues

blues

jazz

rock

jazz

pop

rock

folk

pop

blues

rock

folk

rock

folk

pop

rock

folk

pop

jazz

rock

folk

pop

rock

folk

pop

blues

Figure 3.: An example collection of subgraphs illustrating the type of patterns
we propose to extract.

Part iii details the main contributions of this thesis. Section 4 fo-
cuses on the Maximal Homogeneous Clique Sets and Section 5 on
the Collection of Homogeneous k-clique Percolated components. The
organization of these two sections are similar. First, we present the
definition of our classes of patterns. Next, we present an extraction al-
gorithm using several pruning techniques and demonstrate their safety.
Finally, we present experimental results on bibliographical data in order
to give practical examples of patterns in real datasets and study the
scalability of our approaches on synthetic datasets.

Part iv proposes an application of both MHCS and CoHoP patterns
in the context of molecular biology. Using a domain specific measure,
we experimentally show that a large number of extracted patterns
contain information in agreement with previous knowledge in biology.
We also provide biological interpretations, obtained in collaboration
with a domain expert, for several MHCS and CoHoP patterns. Finally,
we present the performances of our algorithms on these datasets for
various settings.

Part v concludes with a short summary of the results, and proposes
several possible future works extending the results presented in this
thesis.

Appendix A gives several characteristics describing the datasets used
in the previous experiments. Appendix B describes the software which
have been developed in order to extract and visualise collections of
patterns. Appendix C details the symbols used in this thesis. Finally,
the references are given in Part vi.

Part II

S TAT E O F T H E A RT

O U T L I N E

In this state of the art, we present previous works regarding the
analysis of attributed graphs. Since the interest for this task is rather
recent, we also consider other contexts to provide a broader overview.
More precisely, we present techniques to find groups of properties, the
so-called itemsets, and to find groups of objects connected in a graph.

In Section 1, we present classes of local patterns in the binary relation
setting. These classes of patterns aim at finding set of attributes (the
items) shared by several objects. Even though the data mining tasks
have evolved since these first results, many recent approaches still share
ideas with these works.

In Section 2, we consider the graph setting. In such context, we
first present several graph measures used to characterize the structure
of a graph. Then, we present three classes of patterns corresponding
to groups of connected objects, namely cliques, quasi-cliques, and k-
clique percolated components. The objective of this section is to give
an overview of structures commonly used to exhibit dense subgraphs.

Section 3 presents several data mining tasks in the context of at-
tributed graphs with a more general scope, from clustering to local
pattern extraction. The objective of this section is to present the existing
approaches to find groups in attributed graphs.

For each context, we discuss the efficiency of the presented ap-
proaches and the techniques used to handle missing values.

11

1L O C A L PAT T E R N M I N I N G I N B I N A RY R E L AT I O N S

1.1 the binary relation context

A binary relation is used to depict the fact that an element from a
set is related to an element from another set. More precisely, a binary
relation consists in a collection of ordered pairs defined as follows.

Definition 1 (Binary Relation) Given two arbitrary sets O = {o1, . . . , on}

and I = {i1, . . . , im} called respectively domain and codomain, a binary rela-
tion R is a subset of the Cartesian product O× I, where the Cartesian product
of O and I is

O× I = {(o1, i1), . . . , (o1, im), . . . , (on, i1), . . . , (on, im)}

Example 1 Figure 4 depicts a binary relation over two sets O and I. The
ordered pair (o1, i3) is in the relation whether (o1, i4) is not.

In the data mining context, the elements of the domain O and of the
codomain I are usually named respectively objects and items. A typical
example of binary relation is a set of market baskets. In such data,
the set of items is the products available and the set of objects is the
customers. The relation will then associate a product i to a customer o
when the customer o has bought product i. In such context, the binary
relation presented Figure 4 depicts, for instance, the fact that customer
o4 bought products i2, i3, and i5.

i1 i2 i3 i4 i5

o1 1 1 1 1

o2 1 1 1

o3 1 1

o4 1 1 1

Figure 4.: An example of binary relation over the domain O = {o1, o2, o3, o4}

and codomain I = {i1, i2, i3, i4, i5}. A value 1 at the intersection of a
row and a column depicts the fact that the corresponding object and
item are related in the relation, otherwise they are not related. The
order of the rows and columns is arbitrary.

In the following, we will consider a binary relation R defined over
two arbitrary sets O and I named respectively objects and items. Let us
introduce some preliminary definitions. An itemset is a subset of I and
a k-itemset is an itemset of size k. The two following functions f and g

are defined to associate a set of items (respectively objects) to a set of
objects (respectively items).

Definition 2 (Functions f and g) Let R be a binary relation defined over
two sets O and I. The functions f : 2O → 2I and g : 2I → 2O are defined as:

f(O) = {i ∈ I | ∀o ∈ O, (o, i) ∈ R}

g(I) = {o ∈ O | ∀i ∈ I, (o, i) ∈ R}

13

14 state of the art

Given I an itemset and O a set of objects, f(O) is the set of items
associated to all objects in O and g(I) is the set of objects associated
to all items in I. The support of an itemset I, denoted supp(I), is the
number of objects related to all items in I, i.e., supp(I) = |g(I)|.

Example 2 In the binary relation presented Figure 4, f({o1, o2}) = {i2, i3},
g({i2, i3}) = {o1, o2, o4}, and supp({i2, i3}) = 3.

1.2 local patterns in binary relations

An exhaustive presentation of local patterns in binary relations is out
of the scope of this state of the art. Instead, in the next subsections three
well studied examples of local patterns are described, namely frequent
itemsets, frequent closed itemsets and fault-tolerant closed itemsets.
The reader interested in a more complete survey on local patterns
mining in binary relations can refer to [33]. Within this presentation,
we will focus on the algorithmic aspects of several local pattern mining
algorithms, and compare the relative interest of the presented classes
of patterns.

1.2.1 Frequent itemsets

A frequent itemset as introduced in [3] is a set of items co-occurring
frequently in the data. This somehow trivial definition has produced
one of the most studied local pattern in data mining. An itemset is
considered frequent if it is formed by items shared by a set of objects
sufficiently large.

Definition 3 (Frequent itemset) Let σ ∈ N be a minimal support thresh-
old. An itemset I ⊆ I is a frequent itemset if and only if the frequencyThe minimum

support threshold is
sometimes given as a

ratio relative to the
number of objects in

the relation.

constraint C
freq
σ is satisfied, with C

freq
σ (I) ≡ supp(I) > σ.

Example 3 In the binary relation presented Figure 4, with a minimum sup-
port threshold σ = 2, the itemset {i2, i3} is frequent while {i1, i2} is not.

The first application to frequent itemsets, proposed together with the
problem of mining frequent itemsets, was the discovery of association
rules. An association rule can help to discover relationships between
entities in a dataset. In the market basket context, an association rule
represents the fact that, when one buys some given products, then
it is likely that she/he will also buy some other products indicated
by the rule. As it is possible to derive efficiently the collection of
association rules from the collection of frequent itemsets, it has been a
major application of frequent itemset mining. A survey on association
rule mining is proposed in [40].

Mining frequent itemsets

Shortly after the publication of the introductory article on the fre-
quent itemsets problem, Agrawal et al. proposed the Apriori algorithm
to compute more efficiently the complete collection of frequent item-
sets [2]. The general idea of Apriori is to generate a set of candidate
itemsets, check whether or not they satisfy the frequency constraint,
and build new candidate itemsets from the previous frequent itemsets.
More formally, let Ck and Fk be respectively the collection of candi-
date k-itemsets and the collection of frequent k-itemsets. The Apriori
algorithm performs the following four steps iteratively:

1 local pattern mining in binary relations 15

1. Compute the support of each itemset in Ck

2. Add to Fk the itemsets in Ck verifying C
freq
σ

3. Generate Ck+1 from Fk

4. Increment k and go to 1.

This process is described as Algorithm 1. The algorithm starts with
k = 1 (Ck is the collection of all singletons itemsets) (lines 1 and 2).
Once a value of k for which Ck is empty is found (line 3) the algorithm
stops and the complete collection of frequent itemsets is the collection
of frequent itemsets found for each values of k (line 7). As all candidate
k-itemsets are enumerated before (k + 1)-itemsets, the enumeration
is performed level-wise. This algorithm uses the anti-monotonicity
property of the support, i.e., if an itemset is not frequent, then none The

anti-monotonicity
property of the
support is also named
downward closure in
the literature.

of its superset are frequent. From this property, it is not necessary to
construct candidate itemsets which are supersets of a non frequent
itemset. Therefore, the (k+ 1)-itemset candidate generation (line 5) is
performed by computing the union of frequent itemsets sharing the
same k− 1 prefix with respect to an arbitrary order defined over the
items. To compute the support of each itemset (line 4), Apriori scans
the set of all objects, and increment the support of an itemset I for each
objects o such that I ⊆ f({o}).

Algorithm 1: Apriori
Input: R ⊆ O× I, σ
k← 11

Ck ← { {i} | i ∈ I }2

while Ck 6= ∅ do3

Fk ← {C ∈ Ck | C
freq
σ (C)}4

Generate Ck+1 from Fk5

k← k+ 16

output ∪k−1
x=1Fx7

Even though this algorithm has received a lot of attention from the
data mining community, it suffers from several drawbacks. Conse-
quently, there have been many attempts to devise more efficient algo-
rithms for the frequent itemset mining task. For example, the algorithm
Eclat [91] improves the computation of the support. Instead of scan-
ning the collection of objects, it is generally more efficient to compute
the support of an itemset using the intersection of the lists of objects
associated to some of the subsets of the itemset. In this case, keeping in
memory all objects associated to 1-itemsets and 2-itemsets could exceed
main memory size. Fortunately, using a depth-first strategy can greatly
reduce the required amount of memory needed, especially for small
values of k.

Another great improvement of Apriori is the algorithm FP-growth
proposed in [37]. Most of the time, it can reduce considerably the
runtime by representing the dataset using a frequent pattern tree struc-
ture (FP-tree) and performing projections of the database over the
enumerated itemsets.

16 state of the art

1.2.2 Frequent closed itemsets

In many practical applications, the collection of frequent itemsets
can be extremely large. One of the reason for this behaviour is the fact
that every subset of a frequent itemset is also frequent. Therefore, the
collection of frequent itemsets is usually too large for human browsing.
Another consequence of this behaviour is the prohibitive extraction
time for some datasets. The frequent closed itemsets defined as follows
allow to diminish these drawbacks.

Definition 4 (Closed itemset and frequent closed itemset) Let I be an
itemset, f ◦ g(I) is called the closure of I. The set I is a closed itemset if and
only if the following closure constraint Cclosed is satisfied:

C
closed(I) ≡ f ◦ g(I) = I

The itemset I is a frequent closed itemset if and only if it satisfies the con-

junction of constraints Cclosed(I)∧ C
freq
σ (I), with σ ∈ N a minimal sup-

port threshold.

Example 4 In the binary relation presented Figure 4, since g({i2, i3}) =

{o1, o2, o4} and f({o1, o2, o4}) = {i2, i3}, the itemset {i2, i3} is closed.

The closure operator ensures the maximality of the closed itemset
among the other itemsets associated to the same set of objects, where
maximal means not being the subset of any other set.

The introductory work on frequent closed itemsets in data mining
has been proposed independently in [70] and [92]. However, in the
field of formal concept analysis, the same structure was already studied
under the name formal concept (see [28] for a survey on formal concept
analysis).

An interesting property of the frequent closed itemsets is that they
are an exact condensed representation of the frequent itemset. An
exact condensed representation allows to represent exactly the same
information about the support in a more succinct way. There have been
several other works on condensed representations of frequent patterns,
either exact or approximated, e.g., maximal frequent itemset [15, 34, 90],
non-derivable itemsets [16], key patterns [5], and δ-free-sets [13].

Mining frequent closed itemsets

The first frequent closed itemset mining algorithm has been proposed
by Pasquier et al. in [70]. It constructs the collection of closed itemsets
in an Apriori manner using frequent generators. A generator is an
itemset not being a superset of any other itemset having the same
closure. The frequent closed sets are the closures of these generators.

A very efficient algorithm is the CLOSET algorithm [71] that uses a
depth-first strategy and extends the FP-Growth projection technique to
mine frequent closed itemsets.

1.2.3 Frequent closed error-tolerant itemsets

While the frequent closed itemsets usually allow to reduce the col-
lection of patterns by several orders of magnitude, most of the time
the collection remains still to numerous to be exploited directly by a
human. Indeed, in a collection of frequent closed itemset, many pat-
terns are very similar to each other and are due to a few missing values.

1 local pattern mining in binary relations 17

For example, in the binary relation presented Figure 4, {i2, i3, i5} and Missing values can
have several sources,
for example, it might

be intrinsic to the
system under study

or due to the
preprocessing, as for

instance a
binarization threshold

used to obtain a
binary relation from

numerical data.

{i2, i3}, associated respectively to the objects {o1, o4} and {o1, o2, o4},
are both closed itemsets. This is due to the absence of the ordered pair
(o2, i5) in the relation. If (o2, i5) would have been present, then {i2, i3}

would not be closed while {i2, i3, i5} would still be a closed itemset.
In [82], the authors demonstrate that the number of frequent itemsets

exponentially grows with the number of missing values. To take into
account missing values in data and avoid pattern flooding, closed error-
tolerant itemsets (closed ET-itemsets for short) have been proposed. The
general idea is to allow a certain number of missing ordered pairs (o, i)

among the items and the objects used to build a pattern. A closed
ET-itemset is defined not as a single set of items but as an ordered
pair formed by an itemset and a set of objects. Considering a closed
ET-itemset (O, I) ∈ 2O × 2I, the error tolerance threshold is a bounded
number of missing ordered pairs in the relation R∩ (O× I).

Several ways of counting the number of missing ordered pairs have
been proposed. The error tolerance threshold can be either absolute or
relative to the size of the pattern. The threshold can also be applied
either to each object or item separately, or to the whole pattern. In the Using a threshold for

the whole pattern has
been shown to
provide poor results
in [76].

following definition the threshold is absolute and applied to each object
and item separately.

Definition 5 (closed ET-itemset, frequent closed ET-itemset) Given an
error tolerance threshold δ ∈N, an ordered pair (O, I) ∈ 2O × 2I is a closed
ET-itemset if and only if it satisfies the two following constraints:

Cconnected(O, I) ≡

{

∀o ∈ O, | I \ f({o})| 6 δ

∀i ∈ I, | O \ g({i})| 6 δ

CET−max(O, I) ≡ ∀(O ′, I ′) ∈ 2O × 2I, (O, I) 6= (O ′, I ′),

(O ⊆ O ′ ∧ I ⊆ I ′)⇒ ¬Cconnected(O ′, I ′)

(O, I) ∈ 2O × 2I is a frequent closed ET-itemset if and only if it is a closed
ET-itemset and |O| > σ, with σ ∈N a minimal support threshold.

The Cconnected constraint ensures that for all items (respectively
objects) in the pattern, the number of objects (respectively items) in the
pattern which are not associated to it is at most δ. Note that while it
is not the case here, the error tolerance threshold can be different for
the set of items and the set of objects. The CET−max constraint ensures
the maximality of the pattern in the sense that there is no ordered pair
formed by supersets satisfying the Cconnected constraint.

Example 5 In the relation presented Figure 4, with an error tolerance thresh-
old δ = 1 and a minimum frequency threshold σ = 2, the ordered pair
({o1, o2, o4}, {i2, i3, i5}) is a frequent closed ET-itemset. Indeed, only the
ordered pair (o2, i5) is missing in the relation to have all associations be-
tween {o1, o2, o4} and {i2, i3, i5}. The ordered pairs ({i2, i3, i5}, {o1, o4})

and ({i2, i3}, {o1, o2, o4}) are not frequent closed ET-itemset since they are
not maximal.

1.2.4 Constraints on patterns and pattern sets

Constraints are important in local pattern mining tasks. On one hand,
they allow the analyst to inject domain knowledge in the extraction

18 state of the art

process. On the other hand, some constraint properties can be used to
enumerate more efficiently the patterns. Regarding domain knowledge,
the frequency constraint is very simple, and most of the time not
sufficient. Other more complex constraints have been proposed in
the literature (e.g. [81]). An example of such constraint is the area
constraint which bounds the product of the number of items in an
itemset and the number of associated objects. In most cases, such
constraints do not satisfy to the anti-monotonicity property and require
more sophisticated handling to use them actively in order to reduce the
search. Difference classes of constraints have been studied along with
techniques to use them in the enumeration process.

Most of these classes have been developed for itemset mining, and
several of them have been reused and/or adapted to other kinds of local
patterns (e.g., sequential patterns). Among the most representative ear-
liest classes that have been studied, we have the monotone constraints
and the convertible constraints. A monotone constraint is simply the
negation of an anti-monotone constraint. For such a constraint, if it is
satisfied by an itemset, this implies that all supersets of this itemset
also satisfy the constraints. Handling these monotone constraints can
lead to important execution time gains, in particular when using data
reduction techniques [11, 12]. In the class of the convertible constraints,
we find constraints that exhibit some monotonic or anti-monotonic be-
haviour with respect to the order of enumeration of the patterns. From
an operational point of view, this means that there exists an enumera-
tion ordering to produce the patterns to be tested that guaranties one
of the following properties: for all patterns P ′ produced by expanding
a pattern P, P ′ will be such that (1) if P satisfies the constraint then P ′

also satisfies it (monotonic behaviour), or (2) if P does not satisfy the
constraint then the same holds for P ′ (anti-monotonic behaviour).

Since these works, other classes of constraints have been identified,
with the aim to push (i.e., to use actively) more and more complex
constraints, as for instance, the loose anti-monotone constraints [10], the
flexible constraints [81], or the piecewise anti-monotone constraints [17].

The constraints are also used when considering a collection of pat-
terns. This is one of the objectives of the approaches named pattern
set [73] or pattern teams [46]. Such approaches aim at finding a col-
lection of patterns which is relevant with respect to a given optimality
criterion that can be expressed by means of constraints. For example,
the coverage [30] or the minimum description length [78] criterion aim
at finding a collection of patterns which best describes the data.

2L O C A L PAT T E R N M I N I N G I N G R A P H S

2.1 the graph context

A graph consists in a set of vertices and a set of edges linking the
vertices. It is generally used to depict the relationships between entities
of the same type. Graphs have been widely used to model an important
number of data. Typical applications using graphs are (non exhaus-
tive list) the analysis of communication networks, disease spreading,
social networks, protein protein interaction networks, World Wide Web,
structure of chemical compounds. This wide range of applications has
motivated a strong interest in the analysis of graphs. One of the oldest
problem regarding graphs is the seven bridges problem of Königsberg
published in 1741 [25]. Since then, many research fields including
physics, biology, sociology, and computer science have been using
graph theory to solve problems.

Various classes of graphs have been defined, for example directed
or undirected, weighted or unweighted. In this section, we focus
on undirected and unweighted graphs, however most of the work
presented here have been extended to other classes of graphs. The
next section will focus on attributed graphs, a class of graphs where
information are associated to vertices. An undirected with no self-loop
and unweighted graph is called simple graph [32]. Here we use the
term graph for simple graph.

Definition 6 (Graph) A graph G = (V,E) is an ordered pair formed by a
set of vertices V and a set of edges E representing relationships between the
vertices, where an edge is a set of two different vertices in V.

Example 6 Figure 5 depicts a graph with the set of vertices {A,B,C,D, E}.
The set {A,C} is an edge of the graph while {A,E} is not.

D

B

E

C

F

A

Figure 5.: An example of graph, with the set of vertices {A,B,C,D, E}.

We will use the following standard vocabulary in the context of a
graph G = (V,E). The neighbourhood of a vertex v, denoted Γ(v), is the
set of vertices directly connected to v, i.e., Γ(v) = {v ′ ∈ V | {v, v ′} ∈ E}.
The degree of a vertex v is |Γ(v)|. The order of a graph is its number
of vertices, i.e., |V|, while its size is |E|. The density of a graph denoted
by ρ(G) is the ratio between the number of edges and the number of
possible edges, i.e., ρ(G) = |E|

|V |·(|V |−1)/2
. The subgraph induced by a set

of vertices V ⊆ V, is denoted G[V] and is defined as G restricted to the
vertices in V and including only edges between vertices in V .

19

20 state of the art

2.1.1 Graph measures

Before data mining techniques started to be adapted to study graphs,
other fields of research were interested in the analysis of graphs. Several
approaches focus on macroscopic properties which are of great use to
understand the global structure of a graph.

A common approach in graph analysis is to study the degree distri-
bution. It is the probability distribution of the vertex degree over the
whole graph, sometimes presented as a cumulative degree distribution.
It has been shown that for a large class of graphs the degree distri-
bution follows a power law. Typical example of graphs having such
degree distribution are the world wide web, metabolic networks, and
telephone call graphs [66]. The diameter of a graph is the size of the
longest shortest path between every pair of vertices. In other words, it
is the minimum number of edges that must be traversed between the
two most distant vertices.

Other approaches study how vertices tend to group together. The
clustering coefficient is a common measure to quantify whether or not
vertices tend to cluster together. It is defined as the ratio between the
number of triangle (a triangle is three vertices pairwise connected) and
the number of possible triangle containing a given vertex. For a vertex
v, the clustering coefficient is

|{{n1, n2} ∈ E | n1 ∈ Γ(v)∧n2 ∈ Γ(v)}|

|Γ(v)| · (|Γ(v)|− 1)/2

The average clustering coefficient gives an overview for the whole
graph. It is computed as the mean of the vertices clustering coefficient.

Other measures try to quantify the relative importance of a given
vertex. They are called centrality measures. The betweenness centrality
has been proposed in [26]. It is used to measure the overall importance
of a vertex in a communication process between any two vertices in the
graph. It is defined as the average number of shortest paths that pass
trough the vertex under study. Such measure is important for example
in a computer network to capture the notion of bottleneck. The closeness
centrality proposed in [75] quantify the time it will take for a vertex
to communicate with all other vertices in the graph. For a vertex v it
is defined as |V|−1

∑

u∈V,u 6=v d(u,v)
where d(u, v) denotes the length of the

shortest path between vertices u and v.

2.2 local patterns in graphs

While graph measures tend to reflect general topological character-
istics of a given graph or vertex, it does not allow to automatically
discover interesting subgraphs. Similarly to what has been presented
in the binary relation context, local pattern mining in graphs allows to
uncover potentially interesting structures in the data. Here we present
three classes of local patterns in graphs, namely cliques, quasi-cliques
and k-clique percolated components. We also present typical extraction
algorithms for maximal cliques and k-clique percolated components.

2 local pattern mining in graphs 21

2.2.1 Cliques and maximal cliques

A clique is usually defined as a set of vertices such that all vertices
are pairwise connected in the graph. Such structure has been studied
since 1935 [23] and many theoretical results have been obtained since
then. From [56], the maximum number of maximal cliques in a graph
with degree n > 2 is

3n/3 if n modulo 3 is equal to 0

4× 3⌊n/3⌋−1 if n modulo 3 is equal to 1

2× 3⌊n/3⌋ if n modulo 3 is equal to 2

The formal definition of cliques and maximal cliques follows.

Definition 7 (Cliques and Maximal Cliques) Given G = (V,E) a graph,
C ⊆ V is a clique if and only if G[C] is a complete subgraph, i.e., all vertices In the literature, a

clique is also defined
as a complete
subgraph, i.e.,
including the edges.
The term clique is
also found in the
sense maximal clique.

are pairwise connected in G. It is a maximal clique of G if and only if it is not
a subset of any other clique in G.

Example 7 In the graph presented Figure 5, AB is a clique, but it is not
maximal since it is a subset of the maximal clique ABC.

The cliques capture strong structure in the graph since every vertex
has to be connected with the others. For example, in a social network a
clique would be a group of person where everyone has a relationship
with all other members of the group. We will use the following vocabu-
lary. A k-clique is clique with exactly k vertices, and a k-maximal clique
is a maximal clique with at least k vertices. The collection of cliques,
k-cliques, maximal cliques, and k-maximal cliques in a graph G are
denoted respectively C(G), Ck(G), Cmax(G), and Ckmax(G).

2.2.1.1 Mining maximal cliques

Several algorithms have been proposed to extract maximal cliques
in a graph using different strategies [31, 53, 84]. Here, we will present
the algorithm CLIQUES [84] which has a worst case time complexity of
O(3n/3) for a graph having degree n. This is optimal in the sense that in
a graph containing n vertices, there can be no more than 3n/3 maximal
cliques [56]. The standard technique to compute a maximal clique
consists in expanding a set of vertices C known to be a clique (possibly
a single node clique) with a vertex v ∈ V connected to all vertices in C,
and repeat the same expansion on set C∪ {v} until no new vertex can
expand the current set. Let Vext be the set of vertices that can be used
to expand the current set C, i.e., Vext = {v ∈ V \C | ∀c ∈ C, {v, c} ∈ E}.
Clearly, when Vext is empty, then C is a maximal clique, otherwise, C
can be extended with a vertex from Vext to build a larger clique.

The CLIQUES algorithm is based on this idea, and follows an enu- We can extend the
algorithm to extract
k-maximal cliques by
testing line 2 that C
satisfies |C| > k.
Moreover, an
additional pruning
can be made, by
requiring line 4 that
the condition
|C∪Vcand| > k is
also satisfied.

meration tree that expands each single vertex clique at the first level, in
a depth-first way, and that stops an enumeration branch when a maxi-
mal clique is obtained. The CLIQUES algorithm extends the standard
technique with two prunings as presented in Algorithm 2.

The first pruning consists in avoiding to add a vertex that has already
been used to extend C in a previous branch of the enumeration tree. In
order to do so, a set Vcand is used, containing the candidate vertices
that are the vertices from Vext which have not been previously used to
extend C (line 8).

22 state of the art

The second pruning technique reduces the number of vertices in
Vcand. It is based on the following observation. Given C the clique
considered at the current node of the enumeration tree and u ∈ Vext a
vertex which can extend C, since all maximal cliques containing C∪ {u}
have been enumerated in the previous branches or will be enumerated
in the subtree rooted at the current node, and because these maximal
cliques contains also the vertices in Vcand being in the neighbourhood
of u (i.e., vertices in Vcand ∩ Γ(u)), then it is not necessary to extend
C at the current node of the tree with a vertex from Vcand ∩ Γ(u).
The corresponding pruning technique consists in selecting the vertex
u ∈ Vcand maximising the size of the intersection between Γ(u) and
Vcand (line 3) and to consider only the vertices from Vcand not being in
the neighbourhood of u (lines 4 and 5) as candidates to extend C. Then,
the enumeration goes on in the loop by extending C with each vertex
in Vcand \ Γ(u) (this includes u) on lines 6 and 7. Notice that choosing
the vertex u that maximizes |Vcand ∩ Γ(u)| leads to the smallest size for
Vcand \ Γ(u), and thus to the smallest number of branches to expand
the current node.

For a graph G = (V,E), the parameters of the initial call to CLIQUES

are Vext = V, Vcand = V, and C = ∅.

Algorithm 2: CLIQUES
Input: Vext, Vcand, C
if Vext = ∅ then1

C is a maximal clique2

else
u = arg maxv∈Vext

|Vcand ∩ Γ(v)|3

while Vcand \ Γ(u) 6= ∅ do4

Pick a vertex v from Vcand \ Γ(u)5

C = C∪ {v}6

CLIQUES(Vext ∩ Γ(v), Vcand ∩ Γ(v), C)7

Vcand = Vcand \ {v}8

C = C \ {v}9

2.2.2 Quasi-cliques

Since in many cases there is missing edges in the data, or one might
want to find dense but not necessarily complete subgraphs, it is nec-
essary to define classes of patterns allowing a bounded number of
missing edges. Two definitions for such class of patterns are commonly
used: pseudo-cliques and quasi-cliques. The Pseudo-clique definition
is based on a minimal density threshold applied on a subgraph as a
whole, whereas the quasi-clique definition allows a bounded number
of missing edges for each vertex. We recall the formal definitions of
pseudo-cliques, quasi-cliques, and corresponding maximality.

Definition 8 (δ-pseudo-clique, maximal δ-pseudo-clique) Given a min-
imal density threshold δ ∈ [0, 1], C ⊆ V is a δ-pseudo-clique if and only if

the conjunction of constraints C
p−clique
δ (C)∧Cconnected(C) is satisfied,

where

C
p−clique
δ (C) ≡ ρ(G[C]) > δ (with ρ the density introduced p.19)

Cconnected(C) ≡ ∀v ∈ C, Γ(v)∩C 6= ∅

2 local pattern mining in graphs 23

A δ-pseudo-clique is maximal if it is not a subset of another δ-pseudo-
clique.

The C
p−clique
δ constraint requires that the density within the sub-

graph induced by the pseudo-clique is greater than the minimal density
threshold δ. Since a subgraph can be dense but not being connected (for
example, a graph formed by a large clique and another disconnected
vertex), it is necessary to add the Cconnected constraint to ensure the
connectivity of the subgraph induced by the pseudo-clique.

Example 8 In the graph presented Figure 5, with a minimal density thresh-
old δ = 0.8, ABCE is a δ-pseudo-clique since the induced subgraph has a
density of 5/6. Moreover it is maximal since adding either vertex D or F

reduce the density under the density threshold.

Definition 9 (δ-quasi-clique, maximal δ-quasi-clique) Given δ ∈ [0, 1]

a minimum degree threshold, C ⊆ V is a quasi-clique if and only if the con- While parameter δ
does not express a
density threshold, one
can derive a bound
since the maximal
number of missing
edges in a δ-quasi
clique C is δ · |C|.

junction of constraints C
q−clique
δ (C)∧ Cconnected(C) is satisfied, where

C
q−clique
δ (C) ≡ minv∈C (|Γ(v)∩C|) > ⌈δ· (|C|− 1)⌉

Cconnected(C) ≡ ∀v ∈ C, Γ(v)∩C 6= ∅

A δ-quasi-clique is maximal if it is not a subset of another δ-quasi-clique.

Example 9 In the graph from Figure 5, with a minimum degree threshold
δ = 0.6, BCDE is a δ-quasi-clique since all vertices are connected to at least
two other vertices. It is also maximal since adding either A or F would violate

C
q−clique
δ .

The C
q−clique
δ constraint ensures that each vertex in a quasi-clique is

connected to at least a given fraction of the vertices in the quasi-clique.
For this reason, as argued in [80], it is usually preferable to extract
quasi-cliques instead of pseudo-cliques.

2.2.2.1 Mining quasi-clique

Several algorithms have been proposed to mine pseudo-cliques [1] or
quasi-cliques [51, 93]. Probably the most efficient quasi-clique mining
algorithm is Quick presented in [51]. The enumeration technique is
similar to the one presented in Algorithm 2, with additional pruning
techniques allowing to reduce the number of vertices which can possibly
extend a quasi-clique.

2.2.3 k-clique percolated components

The k-clique percolated components (named also k-clique percolation
cluster [29] or k-clique-community [47]) have been defined in [67] to
find communities in graphs. This class of patterns aims to merge
cliques to form larger connected patterns. More precisely, the idea
behind k-clique percolated components is to merge k-cliques sharing
k− 1 vertices into a single pattern. It ensures that two patterns will not
share more than a user defined number of vertices.

The definition of k-clique percolated component given in [20] can be
reformulated as follows using an equivalence relation over the cliques.

24 state of the art

Definition 10 (Adjacency relation) Let G be a graph and Ra be the ad-
jacency relation over the k-cliques in G. Two k-cliques are related by Ra if
and only if they have an intersection of at least k− 1 vertices. Let Rt

a be the
transitive closure of Ra.

The relation Ra is symmetric and reflexive, so Rt
a is symmetric,

reflexive, and transitive. Consequently, Rt
a is an equivalence relation.

Definition 11 (k-clique percolated component (k-PC)) A k-clique per-
colated component (k-PC) is the union of all k-cliques in a class of equivalence
over Rt

a.

Example 10 Consider the 3-PC (i.e., k = 3) in the graph presented in Fig-
ure 5. The graph contains four 3-cliques, ABC, BCE, BDE, and CEF. Since
ABC, BCE share two vertices (|ABC∩BCE| = k− 1), they can be merged.
However, this union would not be maximal since CEF share two vertices with
BCE. Indeed, BCE also share two vertices with BDE and ABC, and thus the
graph contains only one 3-PC, ABCDEF.

We will denote Ckpc(G) the collection of all k-PCs in an attributed
graph G. Note that this definition does not ensure that the inducedNote that with

k = 2, the 2-PCs are
the connected

components having at
least 2 vertices.

subgraph is very dense. Consider the graph given Figure 6. The whole
graph is a 2-PC, each 2-clique shares one vertex with an adjacent 2-
clique. However, it is clear that such graph is not very dense. Instead of
enforcing graph density, the k-PC definition enforces the fact that each
vertex can be reached from any other through well connected subset of
vertices [67].

A B C D E

Figure 6.: Example of path graph.

2.2.3.1 Mining k-clique percolated components

Together with the introduction of k-clique percolated components
in [67], the authors proposed an algorithm to compute the k-PCs. Their
algorithm computes the k-PCs using the following three steps:

1. Compute the collection of k-maximal cliques (i.e., the maximal
cliques containing at least k vertices, as introduced p.21);

2. Build a binary matrix representing the adjacency relation between
the k-maximal cliques;

3. Compute the connected components of the adjacency relation
using the matrix.

The k-PCs are then these connected components. Note that since all
k-cliques in a k-maximal clique are necessarily adjacent, these steps use
directly the k-maximal cliques instead of the k-cliques. For simplicity,
Algorithm 3 uses a binary relation instead of a matrix, however, since
the order of the rows and columns in the matrix are arbitrary, the
principle remain identical.

On line 1, the collection of k-maximal cliques is computed and storedAny k-maximal
clique mining

algorithm, like
CLIQUES presented

previously, can be
used to compute

Ckmax on line 1.

in Ckmax. The lines 2 to 5 build the adjacency relation Ra by adding
an ordered pair (C1, C2) in Ra if C1 and C2 share at least k− 1 vertices.
Lines 6 to 14 compute the k-PCs from Ra by computing the transitive
closure of the relation. The idea is to pick a first k-maximal clique

2 local pattern mining in graphs 25

and expend it until there is no more adjacent k-maximal cliques (loop
lines 10 to 13). A k-PC is then the union of all adjacent k-maximal
cliques.

Algorithm 3: CFinder
Input: G
Ckmax ← Ckmax(G)1

Let Ra = ∅ be a binary relation over Ckmax ×Ckmax2

for (C1, C2) ∈ Ckmax ×Ckmax do3

if |C1 ∩C2| > k− 1 and C1 6= C2 then4

Ra ← Ra ∪ {(C1, C2)}5

while Ckmax 6= ∅ do6

choose a k-maximal clique C in Ckmax7

kcliques_in_kpc← ∅8

adj← {C}9

while adj 6= ∅ do10

kcliques_in_kpc← kcliques_in_kpc∪ adj11

Ckmax ← Ckmax \ adj12

adj = {C2 ∈ Ckmax | ∃C1 ∈ adj s.t. (C1, C2) ∈ Ra}13

output ∪C∈kcliques_in_kpc14

A second algorithm has been proposed in [47] to extract k-PCs.
Instead of computing the k-maximal cliques, it computes the k-cliques
using the following property. If there is an edge between two vertices u

and v, and if there is a (k− 2)-clique C formed by the vertices being in
the neighbourhood of both u and v, then C∪ {u, v} is a k-clique. To use
this property efficiently, the authors propose an incremental method.
More precisely, the algorithm starts with a graph with no edge and
it adds iteratively the edges from the original graph. For each edge
{u, v} it checks if a (k− 2)-clique is found in the neighbourhood shared
by u and v. If so, this (k− 2)-clique can be extend by vertices u and v

to form a new k-clique. Then, to extract the k-PCs from the k-cliques,
the algorithm builds a graph where the vertices are (k − 1)-cliques
and there is an edge between two vertices if the corresponding (k− 1)-
cliques are part of the same k-clique. The k-PCs are then the connected
components of this graph and an algorithm similar to Algorithm 3
lines 2 to 14 can be used to compute them. Depending on the graph to
process, this algorithm can be faster than Algorithm 3. On the one hand,
it replaces the computation of all maximal cliques (Algorithm 3 line 1)
by an enumeration of the edges. On the other hand, the adjacency
graph used can be larger and then can require more time to compute
the connected components.

3M I N I N G AT T R I B U T E D G R A P H S

3.1 the attributed graph context

Graphs where information are associated to vertices have been used
in different works under various names including, for example, at-
tributed graphs [80], itemset-associated graphs [77], graphs with fea-
ture vectors [58], informative graphs [57]. Even though the names are
different, all these data types can be model using the attributed graphs.

For example, an itemset-associated graphs as defined in [77] is a
simple graph where a set of labels is associated to each vertex. By
encoding each label using a Boolean attribute it is possible to build
an attributed graph where each vertex is attached to a set of attribute
values, such that an attribute will have value True for a vertex if the
corresponding label is associated to the vertex in the itemset-associated
graphs, and False otherwise.

For the sake of simplicity, we will use the term attributed graph for
such structure and define the corresponding attribute domain depend-
ing on the task performed.

A

red,25,pop

B

yellow,14,jazz

C

blue,23,classic

D

blue,35,rock

E

purple,42,rock

Figure 7.: An example of attributed graph with vertices {A,B,C,D, E} and
three attributes: colour ∈ {red, yellow, blue, purple}, age ∈ R, and
music ∈ {pop, jazz, classic, rock}.

Definition 12 (Attributed graph) An attributed graph is denoted G = (V,

E,A,F) where V is the set of vertices, E is the set of edges, A = {A1, . . . , An}

is the set of attributes, and F : V 7→ dom(A1)× · · · × dom(An) is a func-
tion associating to each vertex a tuple of attribute values, with dom(Ai) the
domain of attribute Ai.

Since for many applications, the domain of the attributes can be
restricted to Boolean values, we also define the Boolean attributed graph
context. It is a specialisation of the attributed graphs where the domain
of the attributes is {True, False}.

Definition 13 (Boolean Attributed graph) A Boolean attributed graph is
denoted G = (V,E,A,atb) where V is the set of vertices, E is the set of edges,
A is the set of Boolean attributes, and atb : V 7→ 2A is a function associating
to each vertex the Boolean attributes having value True for this vertex.

The vocabulary defined previously in the context of a simple graph
remains identical in the context of an attributed graph. The following
notation will be used in the context of a Boolean attributed graph. The

27

28 state of the art

A

pop, jazz

B

jazz, blues

C

rock, pop

D

jazz, rock, pop

E

blues,rock

Figure 8.: An example of Boolean attributed graph with vertices {A,B,C,D, E}

and five Boolean attributes: pop, jazz, rock, pop, blues. Only at-
tributes having value True are represented in the graph.

set of attributes having value True for all vertices in a set of vertices V

is denoted Atb(V), i.e., Atb(V) = ∩v∈Vatb(v). The graph induced by
the vertices sharing a set of attributes X is denoted G[[X]], i.e., G[[X]] =
G[{v ∈ V | X ⊆ atb(v)}], and G[[X]] is called the subgraph of G induced by
the set of attributes X.

Example 11 Consider the Boolean attributed graph presented in Figure 8.
Only vertices C and D share attributes rock and pop, and then we have
Atb({C,D}) = {rock, pop}. As only vertices A and D share attributes pop

and jazz, the subgraph induced by the set of attributes {pop, jazz} and de-
noted G[[{pop, jazz}]] is G[{A,D}].

3.2 global approaches in attributed graphs

As mentioned in the introduction of this thesis, a common approach
when analysing data is to perform a clustering. Clustering is the
process of partitioning data objects into several groups with respect to
a similarity measure, such that the objects within a group are similar to
each other and dissimilar to data objects from other groups [55]. This
task has been well studied in the context of binary relations and graphs
without attributes. By taking into account both the graph topology
and the attributes, the result of the clustering is expected to be more
relevant than a clustering based solely on graph topology or attributes
value. Let us give an overview of the clustering methods for attributed
graphs.

Connected k-center

The connected k-center problem proposed in [24] is a first clustering
approach in attributed graphs. It extends the k-center problem to
attributed graphs. The original k-center problem consists in finding
if there exists k cluster centroids such that the distance between all
vertices within a cluster and its centroid is at most r. In the connected
k-center problem, as proposed in [24], the distance between the vertices
is based on the value of the attributes. To take into account graph
topology, a connectivity constraint is added. This constraint requires
that each subgraph induced by a cluster is a connected component.

To solve the connected k-center problem, the NetScan algorithm is
proposed. This algorithm is similar to K-Medoids [43]. At first, k

medoids are selected from the set of vertices. In a second step, the
vertices are assigned to the closest cluster if they are within a distance r

from the medoids and the connectivity constraint is satisfied. The third
step consists in computing new medoids for each cluster. As long as

3 mining attributed graphs 29

there is vertices not assigned to a cluster, the algorithm increases r (the
maximum radius of a cluster), and goes on from the second step.

SA-Cluster: Structural/Attribute similarities clustering

In the work presented in [95] and extended in [96], the authors intro-
duce another attributed graph clustering approach. One of the interests
of their approach is based on the idea that attributes are not equally
discriminative. For example, in a social network a gender attribute is
less likely to discriminate a community than hobbies. Consequently, it
might be interesting to associate more weight to some attributes while
less importance is given to the others.

Here the domains of the attributes in the attributed graph are categor-
ical, i.e., not restricted to Boolean values. To take into account both the
structure of the graph and the attributes, the authors propose to build
an attribute augmented graph where each possible attribute values
correspond to a new vertex. Such vertex is named attribute vertices. In It is supposed that the

attributes have
disjoint domains,
eventually after an
appropriated value
renaming.

such graph, the number of new attribute vertices is then the number of
distinct values for all the attributes. A structure vertex v (a vertex of
the original graph) is connected to an attribute vertex if v has the value
corresponding to this attribute vertex.

In this attributed augmented graph, the similarity between two struc-
tural vertices u and v is then computed using a random walk. The
idea of a random walk is to start from a vertex and move to another
vertex, possibly an attribute vertex, in the neighbourhood of v with a
given probability. Two vertices are similar if it is possible to reach one
from the other in a small expected number of steps. Clearly, with such
technique, adding paths through attribute vertices between structural
vertices allows to take into account attribute values when computing
the vertices similarity. The clustering based on this similarity measure
follows the K-Medoids clustering method [43].

The weight of the attributes are equal in the first iteration and up-
dated at each iteration of the K-Medoids algorithm. If the vertices
within a cluster tend to have the same value for an attribute, the weight
associated to this attribute is increased, otherwise it is decreased. The
attribute weight is then used to compute the probability of moving
through this attribute vertex in the random walk. The extension pro-
posed in [96] improves the runtime for the random walk computation
by performing an incremental update of the random walk distance
matrix.

Connected X Clusters

One drawback of the two previous approaches is that the user must
provide K, the number of clusters while in general this number is not
a priori known. To overcome this problem, the Connected X Clusters
method has been proposed in [57] in order to perform a graph clustering
using attribute values without specifying the number of clusters. The
idea is to perform an initial clustering with a large number of clusters
and then to merge the clusters by pairs until all clusters have been

merged. The number of initial centroids is set to ⌈k · ln
(

k
−ln(p)

)

⌉ with

k = ⌈ |G|m ⌉, m the minimal size of a cluster and p the probability that
each true cluster is represented by at least one initial centroid. At each
iteration, the algorithm considers all pairs of clusters (such that the
two clusters shared at least a vertex) as a possible merge. Then, the
merge that leads to the best clustering quality is performed. To assess

30 state of the art

this quality, the authors propose a measure called the Joint Silhouette
Coefficient extending the standard Silhouette Coefficient [44]. This
measure takes into account both the edges of the graphs between the
objects and their attribute values.

3.3 local patterns in attributed graphs

Approaches targeted toward more local structure than a whole clus-
tering have been proposed in the context of an attributed graph. For
example, in [85] and [88], the authors propose matching techniques
to find subgraphs within an attributed graph that best match a graph
query. In this section, we will consider the mining of local pattern in
attributed graphs.

3.3.1 Application specific approaches

The first results proposed regarding the discovery of local patterns in
attributed graphs were application oriented. Indeed, the idea of using
both the topology and the attributes has emerged early in molecular
biology for the discovery of functional modules [38, 94, 86]. A functional
modules is usually defined as a group of cellular components (e.g.,
proteins) and their interactions such that this group can be associated
to a specific biological function [39].

Another early application of attributed graphs was the analysis of
social networks [21]. This work proposes to enrich the communities
discovered in a social network with attributes. The patterns, corre-
sponding to communities, are based on the union of cliques containing
a given vertex. Once all patterns have been extracted, the corresponding
communities are labelled with the attribute values considered to be
representative using the attributes values associated to the objects form-
ing the community. Note that this approach does not use the attribute
information during the community detection process. Consequently,
the communities discovered are not necessarily homogeneous with
respect to the attributes values.

3.3.2 General frameworks

A few years after these applications, several works have tackled the
problem of extending well studied graph local patterns to the context
of attributed graphs in a more general way. This led to new classes
of patterns: the cohesive patterns, the proximity patterns, the itemset-
sharing subgraph set, and the structural correlation patterns.

Cohesive Patterns

In [58], the authors propose one of the first extension of dense graph
mining to take into account the attributes. They use the term feature
instead of attribute, however the concept remains identical. A feature
vector graph is an attributed graph where the graph is undirected and
unweighted and a categorical attribute corresponds to each feature.

Their patterns of interest are named Cohesive Patterns. Such a pattern
is defined as a subgraph induced by a pseudo-clique (i.e., connected
subgraph having density above a threshold) and being homogeneous.
The homogeneity corresponds to a subspace cohesion function s :

2V × 2A ×R 7→ {True, False} which returns True if and only if a set of

3 mining attributed graphs 31

vertices associated to a subset of attributes and a real number used as
a threshold is considered homogeneous. This function is not imposed
by the framework, the only constraint is that the function must be
anti-monotone. I.e., with V ⊂ V ′ two sets of vertices, X ⊂ X ′ two sets
of attributes, and x a real value, the function must hold s(V,A, x) ⇒
s(V ′, A ′, x). For example, a subspace cohesion function might return
True if and only if all vertices share the same value for the given set of
attributes.

Proximity pattern

In [45] the authors propose the proximity pattern mining task. While
cohesive patterns focus on dense subgraphs, proximity patterns are
more related to frequent itemset mining. A proximity pattern is defined
as a set of attributes such that (1) the vertices associated to these at-
tributes are tightly connected in the graph and (2) they occur frequently.
The interest of such pattern is to consider not only the attributes asso-
ciated to a vertex (which would be similar to the traditional frequent
itemset mining problem) but also the attributes associated to the ver-
tices in the neighbourhood. It is sensible since in most contexts an
object is influenced by its neighbourhood.

In order to find such patterns, the authors propose two models:
the neighbour association model and the information propagation
model. Since the authors experimentally show that the first model is
not tractable in practice, we present only the information propagation
model. The idea is to consider that the graph represents the reality at
a given timestamp. After a while, the information (i.e., the attributes)
will propagate in the graph until it reach a stable state. The proximity
patterns are then the frequent set of attributes in the attributed graph
at the stable state.

Subspace Clustering

In [35], the authors propose a subspace clustering method allowing
arbitrary shape of the clusters. Differently to the method proposed While the term

clustering is used in
the name of the
pattern, one can
consider it as a local
pattern since its
validity is evaluated
independently from
the other patterns, a
characteristic of local
patterns as proposed
in [73].

in [58], based on quasi-clique, they propose a density measure based
on the size of the neighbourhood within the pattern.

To take into account both graph topology and attributes, they define
two neighbourhoods for a vertex. One is the graph k-neighbourhood
defined for a vertex as the set of vertices reachable in the graph by a
path of size at most k. The other one is the ǫ-neighbourhood defined
in the attribute space. More precisely, the ǫ-neighbourhood of a vertex
v is the set of vertices such that the distance in the attribute space
between v and these vertices is lesser than a given threshold ǫ, i.e.,
{u ∈ V | dist(atb(u),atb(v)) 6 ǫ}, with dist an arbitrary distance
measure in the attribute space.

Itemset-sharing subgraph set

In [27] and [77] the authors propose the itemset-sharing subgraph set
enumeration problem. An itemset-sharing subgraph set is defined as
the collection of connected components in the subgraph induced by a
non empty set of attributes, with a minimum bound, θS, on the number
of vertices in the connected components. Note that this definition
does not require the subgraph to be very dense. The itemset-sharing
subgraph set enumeration problem consists then in finding all itemset-
sharing subgraph sets such that (1) the set contains at least θF connected

32 state of the art

components and (2) the vertices forming the pattern share at least θI
attributes.

Structural Correlation Pattern

The work presented in [79] and extended in [80] and [54] introduces
the structural correlation patterns. This class of patterns is based on a
structural correlation measure for a set of attributes. For short, a set of
attributes is considered to be structurally correlated if, in the subgraph
induced by this set of attributes, a sufficient percentage of vertices are in
dense subgraphs. More precisely, the structural correlation measure for
a set of attributes is the ratio between the number of vertices being in a
δ-quasi-clique in the subgraph induced by this set of attributes and the
number of vertices in this subgraph. Using this structural correlation
measure, it is possible to express how attribute values are related to the
existence of dense components.

A structural correlation pattern is then defined as a δ-quasi-clique along
with a set of attribute such that (1) the vertices share at least σ attributes,
(2) the δ-quasi-clique contains at least minsize vertices, and (3) the
structural correlation measure corresponding to the set of attributes
is above a threshold ǫmin. This definition is similar to the cohesive
patterns proposed in [58] since both are based on quasi-cliques being
homogeneous with respect to the attributes. However, the structural
correlation measure ensures that the attribute values associated to a
pattern are strongly associated to the presence of δ-quasi-cliques.

C O N C L U S I O N

In this state of the art we presented several data mining approaches
for the analysis of attributed graphs. Since it is a relatively recent task
in data mining we proposed to enlarge the scope to binary relations
and graphs.

In the binary relation context, we considered groups of properties oc-
curring frequently together. Three typical examples of such structures
were presented: frequent itemsets, frequent closed itemsets and fre-
quent error-tolerant closed itemsets. The objective was to present what
has been considered as a group of properties associated to objects in
the literature and the general concepts to extract such structures. In the
graph setting, we introduced several graph measures used to character-
ize a graph. We also presented structures formed by groups of objects
connected in a graph. Three examples of well studied structures were
presented, namely, cliques, quasi-cliques, and k-clique percolated com-
ponents. Our objective was to give an overview of common structures
used to characterize dense or strongly connected subgraphs. Finally, we
presented several data mining tasks in the context of attributed graphs
with a wider scope, from clustering to local pattern extraction. The
objective was to present existing approaches to find groups of vertices
in attributed graphs. The interest of such structures is that their rele-
vancy is evaluated not only from their topology within the graph but
also from the values of the attributes associated to the vertices. Among
the presented local patterns in attributed graphs, some are formed by
a single dense subgraph being homogeneous (e.g., cohesive patterns,
proximity patterns) while the itemset-sharing subgraph set is formed
by a collection of subgraphs not required to be dense.

The approach proposed in this thesis is at the boundaries of these
previous works. More precisely, we propose to study structures formed
by collections of homogeneous and dense subgraphs. The discovery of
such patterns will be studied in the next part with the objectives of
being efficient, tolerant to missing values, and to allow the experts to
specify the structures of interest by mean of constraints.

33

Part III

A PAT T E R N A S A C O L L E C T I O N O F
S U B G R A P H S

I N T R O D U C T I O N

The analysis of attributed graphs opened the possibility to take into
account more information than just simply the topology of the graph.
Up to now, using both graph topology and the attributes associated to
vertices has allowed to propose new classes of patterns. The relevancy
of these patterns is evaluated not only from the structure within the
graph, but also from some measure with respects to the attributes.
The fact that the relevancy of a pattern is evaluated by two measures
leads to another interesting property. Indeed, when two measures
of interest are available, it is possible to group the relevant patterns
with respect to the first measure when they are similar with respect
to the second measure. In our work we will develop this idea, to
find not a single group of vertices but structures that are organized
in several groups. For example, consider a measure of density and a
measure of homogeneity. It is possible to look for a set of dense groups
whose union is homogeneous. In the context of a social network, that
would be several communities 1 sharing common interests instead of
a single community having similar interests. From now on, we will
consider that a collection of subgraphs is homogeneous when the union
of the vertices forming the subgraphs is homogeneous. In the next
two sections, we consider the Boolean attributed graph context, and
propose two pattern definitions in order to find collections of subgraphs
which are both dense and homogeneous: the Maximal Homogeneous
Clique Sets and the Collections of Homogeneous k-clique Percolated
components.

The Maximal Homogeneous Clique Sets

The first patterns we introduce are the Maximal Homogeneous Clique
Sets (MHCS for short). The term maximal refers to the fact that the
patterns are the most general. Homogeneous refers to the homogeneity
of the vertices within the pattern. The term clique refers to the density
constraint on the vertices, and the term sets refers to the fact that we
seek a collection of subgraphs instead of a single subgraph. More
precisely, a MHCS is a group of cliques satisfying constraints on the
number of separated cliques, the size of the cliques and the number
of attributes shared by all vertices. The constraints on the minimal
size and the minimum number of shared attributes are similar to the
ones proposed in [27] for the Itemset-Sharing Subgraph problem (see
Section 3.3.2).

We present an example of such pattern in the Boolean attributed
graph presented Figure 9, already introduced page 4 but reproduced
here to ease the reading. This dataset represents a set of individuals
and relationships between them. Each person corresponds to a ver-
tex denoted by a capital letter, and the relationships are represented
by edges. Such relationships might represent friendship, geographic
closeness, or being member of the same organization. Moreover, the
musical tastes (e.g., Rock, Pop) of each person is encoded by means of
Boolean attributes. A person associated to an attribute having the value

1. If we adopt a density-based definition of communities. See [19] for an overview of
the different definitions of communities.

37

38 a pattern as a collection of subgraphs

True represents the fact that this person enjoy the corresponding style
of music. In Figures 9 and 10, only attributes having value True are
represented.

In this setting, consider the MHCSs formed by a collection of at least
two 4-maximal cliques sharing at least two attributes. The collection
of set of vertices {ABCD,EGH,M,NOPQR} is such a MHCS. Indeed, it
contains two cliques with at least four vertices (ABCD and NOPQR)
and all the vertices share the attributes rock and folk. The vertex F,
which might be used to build the 4-maximal clique EFGH, is not in
the pattern since it does not share these two attributes with the other
vertices. Note that the clique EGH and the single vertex clique M are
also in the pattern even if they have less than four vertices. While
the κ-maximal cliques form the core part of the pattern, the smaller
cliques point out vertices sharing the same two attributes but being
more isolated.

As a comparison with other local patterns in attributed graphs,
ABCD or NOPQR might be considered as maximal cohesive pat-
terns [58] or structural correlation patterns [79] using reasonable pa-
rameters. Indeed, all vertices in ABCD share attributes rock, folk and
jazz. Considering NOPQR the vertices share attributes rock, folk, and
pop. Note that even though both ABCD and NOPQR share attributes
rock and folk, these two patterns would not be considered as related in
the output when looking for cohesive patterns or structural correlation
patterns.

A

B

C D

E F

G

H

I

J

K

L

M

N

O

P

Q

R

rock

folk

jazz

rock

folk

blues

jazz

rock

folk

jazz

rock

folk

jazz rock

folk

blues

folk

blues

rock

folk

jazz

rock

folk

folk

blues

blues

jazz

rock

jazz

pop

rock

folk

pop

blues

rock

folk

rock

folk

pop

rock

folk

pop

jazz

rock

folk

pop

rock

folk

pop

blues

Figure 9.: Example of Boolean attributed graph representing a social network
(same as Figure 1).

Extension to tolerate missing edges in the groups

We have seen in the state of the art that local patterns approaches
have tend to evolve to take into account missing values in the data.
For example closed frequent patterns gave rise to frequent closed error
tolerant itemsets, and cliques to quasi-cliques. Following the same
trend, we extend the MHCS approach to allow missing edges within
the cliques forming the pattern.

a pattern as a collection of subgraphs 39

A

B

C D

E F

G

H

I

J

K

L

M

N

O

P

Q

R

rock

folk

jazz

rock

folk

blues

jazz

rock

folk

jazz

rock

folk

jazz rock

folk

blues

folk

blues

rock

folk

jazz

rock

folk

folk

blues

blues

jazz

rock

jazz

pop

rock

folk

pop

blues

rock

folk

rock

folk

pop

rock

folk

pop

jazz

rock

folk

pop

rock

folk

pop

blues

Figure 10.: Example of MHCS pattern in the Boolean attributed graph presented
in Figure 9.

Being able to find dense but not necessarily complete subgraphs
(tolerating missing edges) allows to (1) avoid finding very similar
subgraphs and (2) do not “miss” groups due to the presence of a few
missing edges. Removing an edge in

a k-maximal clique
leads to two
(k− 1)-maximal
cliques having k− 2

vertices in common.

Two methods are commonly used to find dense subgraphs with
missing edges: quasi-cliques (see Section 2.2.2), and k-PC, (k-clique
percolated components, see Section 2.2.3). Compared to the definitions
of quasi-cliques, the definition of k-PCs ensures that two complete
subgraphs sharing many common vertices are merged in the same
k-PC (i.e., in the same group of vertices).

So, we propose a definition of patterns based on k-PCs where a
pattern is a Collection of Homogeneous k-clique Percolated component (Co-
HoP for short). The term collection refers to the fact that we want
several subgraphs, homogeneous refers to the attributes shared by the
vertices forming the pattern and k-clique percolated component refers to
the topology of the subgraphs.

Outline

In the next section (Section 4.1), we give a constraint based definition
of the MHCS patterns. The interest of the constraints is illustrated with
several examples. Then, we refine our first pattern definition to remove
redundant patterns.

In Section 4.2, we propose a correct algorithm based on subgraph
enumeration to extract all patterns. From a naive approach which
is intractable in practice, we improve the efficiency by using several
pruning techniques. A formal proof of the correctness is given for each
pruning.

Experiments are presented on bibliographic data in Section 4.3. We
give several examples of MHCSs and illustrate how they can be used
to support decisions regarding the selection of a research supervisor,
the selection of article reviewers, and the elaboration of scientific collab-
orations. We also perform a quantitative evaluation of our algorithm

40 a pattern as a collection of subgraphs

showing that the extraction remains possible for large attributed graphs.
The runtime evolution is also studied with respect to different graph
structures and user parameters using synthetic graphs. Finally, we
study the impact on runtime of each pruning techniques compared to
a baseline algorithm.

Then, we extend the MHCS definition to find collections of homoge-
neous subgraphs with missing edges, namely k-PCs (Section 5.1). We
propose an extraction algorithm based on subgraph enumeration using
several pruning techniques (Section 5.2). We perform the same type of
experiments as for the MHCSs, considering also a network of scientific
collaborations and synthetic datasets (Section 5.3).

4M I N I N G C O L L E C T I O N S O F C L I Q U E S H AV I N G
H O M O G E N E O U S V E RT I C E S

4.1 pattern definition

In this section, we first recall the Boolean attributed graph setting.
Then we propose a constraint based definition of the Homogeneous
Clique Set (HCS) pattern and illustrate the interest of the constraints.
Finally, we introduce the Maximal Homogeneous Clique Sets (MHCS)
patterns.

Before giving a formal definition of our pattern of interest, let us recall
the Boolean attributed graph setting as presented in Section 3 of the
state of the art. A Boolean attributed graph is denoted G = (V,E,A,atb)

where V is the set of vertices, E is the set of edges, A is the set of Boolean
attributes, and atb : V→ 2A is the function returning for a vertex the
set of attributes having value True. We denote G[V] the subgraph of G
induced by the set of vertices V ⊆ V and G[[A]] the subgraph induced
by the set of vertices having value True for all attributes in A ⊆ A.

For notational convenience, we will also define the next two functions.

Definition 14 (Functions vert and CAtb) Let x be an attribute. The func-
tion vert(x) = {v ∈ V | x ∈ atb(v)} is the set of vertices having value
True for the attribute x. Let M be a collection of sets of vertices. Then,
CAtb(M) =

⋂

V∈M(∩v∈Vatb(v)) is the set of attributes shared by all ver-
tices in M.

A

a1a2a3a4a6

B

a1a2a4a6

C

a1a2a4a6

D

a1a2a3a4a5

E

a1a3a4a5

F

a1a3a4a5

J

a3a5a6

H

a3a4a5a6

G

a3a4a5

I

a3a4a5

A

a1a2a3a4a6

B

a1a2a4a6

C

a1a2a4a6

D

a1a2a3a4a5

E

a1a3a4a5

F

a1a3a4a5

J

a3a5a6

H

a3a4a5a6

G

a3a4a5

I

a3a4a5

Figure 11.: Example of Boolean attributed graph. Vertices are identified by
capital letters and attributes are identified by attributes ai, i ∈
{1, . . . , 6}.

For the sake of simplicity in the examples, a set of vertices is simply
denoted by the sequence of letters corresponding to the vertices.

Example 12 In the example of Boolean attributed graph presented Figure 11,
vert(a6) = ABCJH. Considering M = {DEF,A,GHI} a collection of set of
vertices, CAtb(M) = {a3, a4}.

In a Boolean attributed graph dataset, our goal is to find collections
of homogeneous cliques. Each pattern is a collection of set of vertices,
such that:

41

42 a pattern as a collection of subgraphs

– the vertices are homogeneous in the sense that they share some
attributes (attributes having value True for all vertices);

– the pattern contains several large groups of strongly connected
vertices (the other groups in the pattern can be small and even
reduced to a single vertex);

– the cliques in the pattern are separated (two groups in the pattern
cannot be merge trivially to form another group).

These patterns, termed homogeneous clique sets (HCS) are defined as
follows:

Definition 15 (Homogeneous Clique Set) Let κ, α, and γ be three strictly
positive integers, and G be a Boolean attributed graph. A collection of cliques
M = {C1, . . . , Cn} ⊆ C(G) is an Homogeneous Clique Set (HCS) if and only

if the three following constraints Chomo
α ,C

clique
γ,κ and Csep are satisfied:

– Chomo
α (M) ≡ |CAtb(M)| > α, i.e., all vertices share at least α at-

tributes;
– C

clique
γ,κ (M) ≡ |{C ∈M | |C| > κ}| > γ, i.e., M contains at least γ

cliques of size at least κ;
– Csep(M) ≡M = Cmax

(

G[
⋃

C∈M]
)

, i.e., M is the collection of max-
imal cliques in the subgraph induced by all the vertices appearing in
M.

Before presenting the interest of each constraint, let us give an exam-
ple of a HCS using the toy dataset presented Figure 11.

Example 13 (Homogeneous Clique Set) Consider the set of cliques M =

{ABCD,DEF}. It satisfies the constraint Chomo
2 since all vertices are asso-

ciated to attributes a1 and a4. It also satisfies C
clique
2,3 as the set contains

two cliques having at least three vertices. Finally, as cliques are maximal in
G[ABCDEF], then P also satisfies Csep, and thus is a HCS. Note that since
cliques can overlap, vertex D is in two cliques.

We will now illustrate the interest of each constraint.

4.1.1 The homogeneity constraint: Chomo
α

This constraint ensures that all vertices in a pattern share a set of
attributes. This set of attributes ensures the homogeneity of the pattern.The homogeneity

threshold is absolute,
however one can
obtain a relative

threshold by dividing
α by |A|.

Since α is the minimal number of shared attributes, the higher is α, the
more homogeneous the patterns will be.

Example 14 (Constraint Chomo
α) Consider the attributed graph presented

Figure 11. As the set of cliques {ABCD,DEF,GHI} is built on vertices asso-
ciated to attributes a4, this set satisfies Chomo

1 . More stringent constraints
Chomo
α can be used to focus on sets of cliques that are more homogeneous,

i.e., that share more attributes. For instance, the set of cliques {DEF,GHI}

satisfies Chomo
3 as all vertices are associated to attributes a3, a4, and a5,

while this constraint is not satisfied by {ABCD,DEF,GHI}.

4.1.2 The topology constraint: C
clique
γ,κ

This constraint is used to avoid small patterns, i.e., collections of
small subgraphs or collections of few large subgraphs. The analyst
might want to avoid such patterns as they usually do not provide
valuable information. The parameter γ define the minimal number of

4 mining collections of cliques 43

cliques in the pattern having a size of at least κ vertices. Note that
a pattern might contain cliques with less than κ vertices as long as
there is at least γ cliques of size κ. The cliques of size at least κ have a
straightforward interest as forming the core part of the pattern (large
groups of strongly connected vertices). The cliques of size less than κ

are kept in the pattern since they point out vertices sharing the same
attributes but being more isolated. In the experiments, we will present
several patterns illustrating the interest of these isolated groups (see
Section 4.3). However, if needed the cliques with less than κ vertices
can be removed using a simple post-processing.

Example 15 (Constraint C
clique
γ,κ) The vertices A,B,C,H, and J share at-

tributes a6. Using these vertices we can build the HCS {ABC,H, J} satisfy-

ing C
clique
1,3 . On the dataset of Figure 11, a more stringent constraint would

be C
clique
2,3 , to ask for at least 2 groups of size 3. Then {ABC,H, J} is no

longer retrieved as a HCS, while we still obtain, for instance, {A,DEF,GHI}

(sharing attributes a3 and a4).

4.1.3 The separation constraint: Csep

This constraint is needed to avoid that a single large clique could Note that this does
not require that the
cliques are maximal
cliques of the whole
graph G

be counted as a collection of smaller cliques, since it could hardly be
considered as an interesting collection cliques. The Csep constraint
requires that the union of two cliques within a pattern is not a clique
itself. The following example illustrates this case using the graph
presented Figure 11.

Example 16 (Constraint Csep) Consider the vertices A,B,C and D shar-
ing attributes a2 and a4. Using these vertices, we can build a set of four
cliques of size three {ABC,ABD,ACD,BCD} that would satisfy the con-

straint C
clique
4,3 . However, since ABCD is itself a clique, the collection

{ABC,ABD,ACD,BCD} does not satisfy Csep.

4.1.4 Reducing the collection of patterns

A common issue when extracting patterns is to provide small and
easy to browse collections [14]. By definition, a set of HCSs can contain
redundant patterns, in the sense that, when we know the parameters
κ and γ, some patterns can be directly derived from others. Indeed,
consider any set of cliques M ′ obtained by removing some vertices
from a HCS M. If M ′ satisfies C

clique
γ,κ and Csep then M ′ is also a

HCS. This is illustrated by the following example.

Example 17 (Redundant patterns) In Figure 11, using vertices sharing
attributes a1 and a4, we can build a HCS {ABCD,DEF} satisfying the con-

straints Chomo
2 , C

clique
2,3 , and Csep. We can also build four other HCSs sat-

isfying the same constraints by removing any vertex from the clique ABCD,
e.g., {ACD,DEF}.

Since the number of HCSs formed by cliques which are subsets
of cliques in another HCS can be large, such redundant patterns are
discarded by focusing on maximal HCSs only.

Definition 16 (Maximal Homogeneous Clique Set) A Maximal Homo-
geneous Clique Set (MHCS) is a HCS which is maximal with respect to the

44 a pattern as a collection of subgraphs

partial order � defined as follows. Given M1 and M2 two HCSs, M1 �M2

if and only if for all C1 ∈M1 there exists C2 ∈M2 such that C1 ⊆ C2.

Notice that antisymmetry does not hold for � in an arbitrary collec-
tion of sets, and thus � is not necessarily a partial ordering relation.
However, in the case of a collection of HCSs, the relation � is a partial
order as stated by the following property.

Property 1 On a collection of HCSs, the relation � is a partial order.

Proof 1 The relation is trivially reflexive and transitive. To show antisym-
metry, consider M1 and M2 two HCSs such that M1 �M2 and M2 �M1.
Suppose that M1 6= M2, then there exists C in M1 that is different from all
sets in M2. And since M1 �M2, there exists C ′ in M2 such that C ⊂ C ′.
As, M2 �M1, there exists C ′′ in M1 such that C ′ ⊆ C ′′. So, C ⊂ C ′′, but
this cannot hold since by definition of a HCS M1 must satisfy Csep. Thus
M1 = M2.

Example 18 (Maximal Homogeneous Clique Set) The two sets of cliques
{ABCD,DEF} and {A,DEF,GHI}, sharing respectively attributes {a1, a4}

and {a3, a4}, are MHCSs in the graph depicted Figure 11, for constraints

Chomo
2 and C

clique
2,3 . Satisfying the same constraints, there are other HCSs

that are not maximal ones, as for instance {ABC,DEF} and {DEF,GHI}.

4.2 finding all maximal homogeneous clique sets

In this section we present a sound and complete algorithm to find
all MHCSs in a given dataset. For the sake of clarity, three versions of
the algorithm are proposed. A naive generate and test approach is first
presented and several pruning techniques are then incorporated in two
successive versions. The final version is given as Algorithm 8.

4.2.1 Algorithm generate and test

Let G = (V,E,A,atb) be a Boolean attributed graph. The algorithm
enumerates in a depth first way subgraphs of G together with the sets of
attributes shared by the vertices of these subgraphs. The extraction of all
MHCSs is done in two steps. The main step consists in the extraction of
all MHCSs together with some non maximal HCSs (ExploreSubgraphs1,
Algorithm 4), and then a second step filters out these non maximal
patterns (ExtractMHCS, Algorithm 5).

Before presenting the naive algorithm, let us define the function Vert

which is an extension of vert for a set of attributes instead of a single
attribute.

Definition 17 Vert. The function Vert : 2A 7→ 2V is defined as Vert(A) =
⋂

a∈A vert(a). It maps a set of attributes A to the set of vertices associated
to all the attributes in A.

Example 19 In the attributed graph presented Figure 11, Vert(a1a4a5) =

DEF since all these vertices and only them are associated to attributes a1, a4,
and a5.

In the recursive function ExploreSubgraphs1, the first parameter Ge is
the current enumerated (sub-)graph to be tested, As is a set of attributes
already known to be shared by all vertices of Ge, Vr is the set of vertices

4 mining collections of cliques 45

remaining in Ge, and Ac is the set of candidate attributes that remain
under consideration to find attributes shared by Ge or by subgraphs of
Ge. The initial call to ExploreSubgraphs1 is made in ExtractMHCS with
parameter Ge set to the whole graph, As = ∅, Vr = V, and Ac = A.

Starting from the whole graph and with Ac = A, Algorithm 4 enu-
merates all subsets As ⊆ A (all sets of attributes that can be shared)
together with the subgraph Ge of G composed of the vertices associated
to all the attributes in As. For each of the enumerated subgraph, the
algorithm first checks on line 2 if the set of maximal cliques of the
subgraph is considered to be a HCS (i.e., contains at least γ cliques
having κ vertices and if the vertices are already known to share at least
α attributes). If so, the pattern is added to the result HCSs. In this
preliminary version of the algorithm no pruning is performed here,
and the enumeration always goes on (lines 4 to 8).

This enumeration uses the set Ac containing the attributes that re-
main candidates as attributes shared by the current graph or its sub-
graphs. While Ac is not empty, an attribute y is picked and removed
from Ac, and a set of vertices V

′

r is built by restricting the current set of
vertices Vr to the vertices associated to attribute y. The set of attributes
known to be shared by the vertices in V

′

r is then simply A
′

s = As ∪ {y}.
Then function ExploreSubgraphs1 is called recursively on Ge[V

′

r] (the
subgraph of Ge induced by the set of vertices V

′

r).

Algorithm 4: ExploreSubgraphs1
Input: Ge, As, Vr, Ac

HCSs← ∅1

if |As| > α and |{C ∈ Cmax(Ge) | |C| > κ}| > γ then2

HCSs← {Cmax(Ge)}3

while Ac 6= ∅ do4

Pick and remove an element y from Ac5

V
′

r ← Vr ∩ vert(y)6

A
′

s ← As ∪ {y}7

HCSs← HCSs ∪ ExploreSubgraphs1(Ge[V
′

r], A
′

s, V
′

r, Ac)8

return HCSs9

Algorithm 5: ExtractMHCS
Input: G, an attributed graph
HCSs← ExploreSubgraphs1(G, ∅, V, A)1

output RemoveNonMaximalHCSs(HCSs)2

In order to illustrate the general recursive scheme, and to introduce
the pruning techniques, let us define the underlying enumeration tree.

Definition 18 (Node in the enumeration tree) A node i in the enumer-
ation tree represents a recursive call to ExploreSubgraphs1 in Algorithm 4.
A total order < is defined on the nodes, based on the calling sequence during
an execution, i.e., given i and j two nodes in the enumeration tree, i < j if
and only if the call to ExploreSubgraphs1 for node i is done before the call
to ExploreSubgraphs1 for node j. A node i is the father of a node j and j is
a child of i if and only if the call to ExploreSubgraphs1 corresponding to j

is done line 8 in the call corresponding to i. The ancestor relation is simply

46 a pattern as a collection of subgraphs

the transitive closure of relation father. Parameters of the call corresponding
to node i are denoted using i as superscript: Gi

e, Ai
s, Vi

r, and Ai
c.

Example 20 (Enumeration tree) Figure 12 depicts a part of an enumera-
tion tree that could be obtained on the graph presented Figure 11. The labels
on the branches correspond to the attribute y picked to generate the calls.
The nodes are identify by arbitrary increasing integers reflecting the call-
ing sequence (order < on nodes). For instance node 0 is the initial call to
ExploreSubgraphs1 (the ancestor of all nodes), node 33 is a call performed
before the call corresponding to node 49, and node 56 is a child of node 49. In
Figure 12, for the nodes at depth 1 and the nodes on the left-most branch, two
input parameters of the call are indicated: Vr (vertices in the current graph),
and Ac (remaining candidate attributes). Each possible subset of attributes
is enumerated together with the subgraph induced by the vertices sharing
these attributes. The other subgraphs are not enumerated, e.g., the subgraph
induced by the vertices {B,C,D, E, F,G,H, I, J}.

To establish the completeness of the enumeration, we need the prop-
erties stated by the following lemmas.

Lemma 1 For all MHCS M in a Boolean attributed graph G we have M =

Cmax(G[[CAtb(M)]]).

Proof 2 Let M be a MHCS in a Boolean attributed graph G. By defini-
tion M = Cmax(G[

⋃

C∈M]). Let M ′ = Cmax(G[[CAtb(M)]]) and sup-
pose that M 6= M ′. Then M ′ satisfies Csep by construction, and since the
set of attributes shared by the vertices in M ′ is CAtb(M) and M satisfies
Chomo
α , then M ′ satisfies Chomo

α . By definition of functions Vert and
CAtb,

⋃

C∈M ⊆ Vert(CAtb(M)), so G[
⋃

C∈M] is an induced subgraph of

G[[CAtb(M)]]. So, M ′ satisfies C
clique
γ,κ since M satisfies C

clique
γ,κ , and then

M ′ is a HCS such that M � M ′. This is not possible since M is a MHCS.
Whence, M = M ′.

Since for a node i in the enumeration tree, Algorithm 4 enumerates all
subgraphs Gi

e[Vert(X)] such that X ⊆ Ai
c, then the following property

is straightforward.

Lemma 2 For all node i in the enumeration tree, if there exists A ⊆ Ai
c and

M a MHCS such that M = Cmax(G
i
e[Vert(A)]), then M is obtained in the

subtree rooted at node i.

The following theorems state the correctness of the extraction process.

Theorem 1 Algorithm 4 outputs all MHCSs and only HCSs.

Proof 3 Let G be an attributed graph and M a MHCS in G. Consider the
root (i = 0) of the enumeration tree explored by Algorithm 4, then we have
G0
e = G and A0

c = A. Let A = CAtb(M), then we know by Lemma 1 that
M = Cmax(G[Vert(A)]). And finally, Lemma 2 ensures that M is obtained
in the subtree rooted at i = 0.

In addition, since the Algorithm 5 filters out non maximal HCS, we
have the following property.

Theorem 2 Algorithm 5 is correct.

4 mining collections of cliques 47

0

1

2
a2

26a4

a1
33

34
a3

42a4

a2

49

50
51 52a6

a5

53a6
a4

54 55
a6a5

56
a6

a3

57

58 59a6

a5

60a6

a4

61 62
a6

a5

63

a6

V63
r = ABCHJ

A63
c = ∅

V61
r = DEFGHIJ

A61
c = a6

V49
r = ADEFGHIJ

A49
c = a4a5a6

V33
r = ABCD

A33
c = a3a4a5a6

V1
r = ABCDEF

A1
c = a2a3a4a5a6

V57
r = ABCDEFGHI

A57
c = a5a6

V2
r = ABCD

A2
c = a3a4a5a6

:

:

:

:

:

:

Figure 12.: Enumeration tree corresponding to the attributed graph presented Figure 11.

48 a pattern as a collection of subgraphs

4.2.2 Enumeration tree pruning techniques

Five safe pruning techniques are used. Algorithm 6 extends Algo-
rithm 4 and introduced the first four pruning techniques. For the sake
of clarity, the fifth pruning technique is described in Algorithm 8 as an
extension of Algorithm 6.

For each technique, we discuss its safety, and illustrate the corre-
sponding pruning on an enumeration tree presented Figure 13 and
obtained for the dataset of Figure 11 under constraints Chomo

2 and
C
clique
2,3 .

pruning 1 (Algorithm 6 line 2): This pruning checks that there is at
least γ maximal cliques with at least κ vertices in Gi

e. If it is not the case
no subgraph of Gi

e can satisfy C
clique
γ,κ , and thus the subtree rooted at i

can be pruned. Considering node 33, we have V33
r = {A,B,C,D}. Since

G33
e (the subgraph induced by {A,B,C,D}) does not contain at least

two maximal cliques with three vertices, the subtree rooted at node 33
is pruned.

pruning 2 (Algorithm 6 lines 3 and 4): Attributes from Ai
c shared

by all vertices in Vi
r are added to Ai

s and removed from Ai
c. This

prunes the tree by avoiding to pick these attributes to create new
children of node i. Removing these attributes from Ai

c does not change
the collection of different subgraphs enumerated in the tree, since if
we pick such an attribute y to create a child we have Gi

e[V
i
r ∩ vert(y)]

that is equal to Gi
e itself. Finally, since these attributes are added

to Ai
s, then

∣

∣Ai
s

∣

∣ is the correct total number of attributes shared by
all vertices of the graph at enumeration node i. Considering node
1, we have A1

c = {a2, a3, a4, a5, a6} and V1
r = {A,B,C,D, E, F}. Since

V1
r ⊆ vert(a4), attribute a4 is added to A1

s and removed from A1
c

(lines 3 and 4). And thus, the branch rooted at node 1 corresponding to
attribute a4 is pruned.

pruning 3 (Algorithm 6 line 7): If the set of attributes shared by all
vertices has a cardinality greater than or equal to α (line 5), and as the
current graph already satisfies to the test of line 2, then it contains a
HCS M = {Cmax(Ge)} that is collected in the result line 6. In this case,
since all attributes shared by all vertices of Gi

e has been removed from
Ai

c (line 4) then all graphs in the subtree rooted at i will contain strictly
less vertices than Gi

e and thus cannot lead to HCS M ′ such that M �M ′.
Whence, the subtree rooted at i does not contain a maximal HCS and
can be pruned (line 7). Considering node 54, we have A54

s = {a3, a4}

and V54
r = {D,E, F,G,H, I, J}. Since the set of cliques {DEF,GHI, J} is a

HCS, no subgraph of G54
e can contains a MHCS, thus the subtree rooted

at node 54 is pruned.

The fourth pruning technique requires the following property.

Lemma 3 Given a Boolean attributed graph G = (V,E,A,atb) with |V| <

max
(

κ, ⌈3log(γ)
log(3)

⌉
)

, a set of cliques of G cannot satisfy C
clique
γ,κ ∧ Csep.

Proof 4 Since a HCS satisfies C
clique
γ,κ , it contains at least one clique with κ

vertices, and thus the corresponding graph has at least κ vertices. Moreover
[56] demonstrates that the maximum number of maximal cliques in a graph

4 mining collections of cliques 49

with n vertices is 3n/3, and so, a graph must have at least ⌈3log(γ)
log(3)

⌉ vertices

to contain γ maximal cliques.

pruning 4 (Algorithm 6 lines 8 and 9): Attributes and vertices
which are not valid candidates to build a MHCS are removed from Ai

c

and Vi
r:

1. All current vertices share
∣

∣Ai
s

∣

∣ attributes, thus to be part of a HCS
satisfying Chomo

α , a remaining vertex must have at least α−
∣

∣Ai
s

∣

∣

more attributes. Moreover, these α−
∣

∣Ai
s

∣

∣ attributes must be in
Ai

c (the candidate attributes to be shared by the vertices of the
graphs in the enumeration subtree rooted at i). Any vertex that
does not satisfy to this condition (line 8) can be safely removed.

2. As stated by Lemma 3, to contain a HCS satisfying C
clique
γ,κ ∧

Csep a graph must have a number of vertices greater than or equal

to max
(

κ, ⌈3log(γ)
log(3)

⌉
)

. Then, an attribute associated in Gi
e to less

vertices than this lower bound cannot be an attribute shared by
the vertices of a HCS found in the subtree rooted at i. Thus it can
be removed from the remaining candidate attributes Ai

c (line 9).

To illustrate these reductions of Ai
c and Vi

r, let us consider node 61.
We have A61

c = {a6}, V61
r = {D,E, F,G,H, I, J}, and A61

s = {a5}. Since
no attribute in A61

c is shared by all vertices in V61
r , then A61

s and A61
c

are not modified by lines 3 and 4. Since α = 2 and |As| = 1, then
line 8 keeps in V61

r only vertices associated to at least one attribute in
A61

c . Thus, V61
r is reduced to {H, J}. On line 9, for γ = 2 and κ = 3

we have max
(

κ, ⌈3log(γ)
log(3)

⌉
)

= 3, and since
∣

∣vert(a6)∩V
61
r

∣

∣ = 2 (i.e.,

attribute a6 appears only on two vertices in V61
r) then a6 is removed

from A61
c . So, the branch rooted at node 61 corresponding to attribute

a6 is pruned.

Algorithm 6: ExploreSubgraphs2
Input: Ge, As, Vr, Ac

HCSs← ∅1

if |{C ∈ Cmax(Ge) | |C| > κ}| > γ then // Pruning 12

S← {l ∈ Ac | Vr ⊆ vert(l)} // Pruning 23

Ac ← Ac\S ; As ← As ∪ S // Pruning 24

if |As| > α then5

HCSs← {Cmax(Ge)}6

else // Pruning 37

Vr ← {v ∈ Vr | |atb(v)∩Ac| > α− |As|} // Pruning 48

Ac ← {l ∈ Ac | |vert(l)∩Vr| > max
(

κ, ⌈3log(γ)
log(3)

⌉
)

}9

// Pruning 4

while Ac 6= ∅ do10

Pick and remove an element y from Ac11

V
′

r ← Vr ∩ vert(y)12

A
′

s ← As ∪ {y}13

HCSs← HCSs ∪ ExploreSubgraphs2(Ge[V
′

r], A
′

s, V
′

r,14

Ac)

return R15

It should be pointed out that a possible extension of Pruning 4 is
to propagate incrementally the reduction over Vr and Ac until no

50 a pattern as a collection of subgraphs

0k

1
V1

r = ABCDEF

A1
c = a2a3a4a5a6

2
a2

26

a4

Pruning 2

a1
33

V33
r = ABCD

A33
c = a3a4a5a6

Pruning 1

34
a3

42a4

a2

49

j

50
51 52a6

a5

53a6
a4

54

V54
r = DEFGHIJ

A54
c = a6

55 Pruning 3
a6a5

56
a6

a3

z

57

i ′
58

V58
r = DEFGHI

A58
c = a6

A58
done = a1a2a3

i

59a6

a5

Pruning 5

60a6

a4

61

V61
r = DEFGHIJ

A61
c = a6

62
a6

Pruning 4

a5

63

a6

:

:

:

:

:

:

Figure 13.: Enumeration tree with pruning techniques 1, 2, 3, 4, and 5 corresponding to the
attributed graph presented Figure 11 for constraints Chomo

2 and C
clique
2,3 .

4 mining collections of cliques 51

more attribute or vertex can be removed. This extension, described
as Algorithm 7, can replace lines 8 and 9 in Algorithm 6. However,
when tested on real datasets and parameter settings corresponding to
the experiments presented Section 4.3, the gain due to this extension
is counterbalanced by its computing overhead (processing times with
and without this extension were not significantly different). So, this
incremental reduction has not been retained here.

Algorithm 7: Extension of Pruning 4

repeat1

V
prev
r ← Vr; Aprev

c ← Ac2

Vr ← {v ∈ Vr | |atb(v)∩Ac| > α− |As|}3

Ac ← {a ∈ Ac | |vert(a)∩Vr| > max
(

κ, ⌈3log(γ)
log(3)

⌉
)

}4

until Vprev
r 6= Vr or A

prev
c 6= Ac ;

The safety of the pruning techniques embedded in Algorithm 6 is
established by the following lemma.

Lemma 4 The property stated by Lemma 2 also holds for the enumeration
trees obtained with Algorithm 6.

Proof 5 Pruning 1 and Pruning 4 remove subtrees that cannot lead to a
HCS. Pruning 2 safely remove elements from Ai

c (avoiding some duplicated
graph during enumeration). Pruning 3 remove subtrees that cannot lead to
a maximal HCS. So, for any node i in the enumeration tree, if there exists
L ⊆ Ai

c and M a MHCS such that M = Cmax(G
i
e[Vert(L)]), then by

Lemma 2 we still have the guaranty that M is obtained in the subtree rooted
at node i.

The fifth pruning technique (Pruning 5) avoids redundant enumera-
tion of some MHCSs. It is presented in Algorithm 8 which is similar
to Algorithm 6 apart from line 14 that is replaced by lines 13 to 15
in the new algorithm. This pruning uses a set Ai

done which contains
for a node i the attributes used to build all immediate children of the
ancestors of i apart from the attributes in the branch leading to i itself.
For example, the set A54

done corresponding to node 54 is {a1, a2, a4}.
The set Ai

done is updated line 15 of Algorithm 8. An example of enu-
meration tree with Adone values is given Figure 13. Given i a node
corresponding to a call with input parameters Ai

done and Vi
r such that

there exists an attribute z ∈ Ai
done that is associated to all vertices of

Vi
r. Then, as stated by the following lemma, the MHCSs that could

be obtained in the subtree rooted at i are redundant. Thus, in the call
corresponding to the father of i, Pruning 5 line 13 of Algorithm 8 avoids
the generation of i.

Lemma 5 (Redundancy of Algorithm 6) Given i a node in the enumer-
ation tree corresponding to Algorithm 6, and an attribute z ∈ Ai

done such
that Vi

r ⊆ vert(z). If M is a MHCS obtained in the subtree rooted at i, then
M is also obtained in a subtree rooted at a node j, such that j < i and j is not
an ancestor of i.

Proof 6 Let M be a MHCS obtained in the subtree rooted at node i and let
z be an attribute in Ai

done such that Vi ⊆ vert(z). If M is obtained in
the subtree, this implies that there exists a subgraph G of Gi

e for which the

52 a pattern as a collection of subgraphs

algorithm computes M as Cmax(Ge). Thus there exists A ⊆ Ai
c such that

M = Cmax(G
i
e[Vert(A)]).

Let us now show that M is also obtained in a subtree rooted at a node
j defined as follows. Let node k be the ancestor of i in which attribute z

was picked, node j is the node corresponding to the call made from k for this
attribute z. Finally, let node i ′ be the child of k in the branch leading to i

(notice that i ′ can be i itself if i is a child of k). Figure 13 gives an example
of such nodes with i = 58, k = 0, i ′ = 57, j = 49, and z = a3.

Let V = {v ∈ Vk
r |

∣

∣atb(v)∩Ak
c

∣

∣ > α −
∣

∣Ak
s

∣

∣} be the reduced set of
vertices computed line 8 during the call corresponding to node k. The call

corresponding to j is made with V
j
r = V ∩ vert(z). As Vi

r ⊆ V (V is used
in node k to generate i ′ ancestor of i) and Vi

r ⊆ vert(z) (by hypothesis),

then Vi
r ⊆ V

j
r. Thus Gi

e is an induced subgraph of G
j
e, and then M =

Cmax(G
j
e[Vert(A)]).

Since i ′ has the same father as j and j < i ′, we have Ai ′
c ⊂ A

j
c and thus

Ai
c ⊂ A

j
c (i ′ is an ancestor of i). So, A ⊆ A

j
c.

Whence, there exists A ⊆ A
j
c such that M = Cmax(G

j
e[Vert(A)]), and

by Lemma 4, we know that M is obtained in the subtree rooted at j.

The completeness of Algorithm 8 is stated by the following lemma.

Lemma 6 In the enumeration tree explored by Algorithm 8, if a subtree T

rooted at a node i (including i itself) is pruned using Pruning 5 and a MHCS
M would be obtained in T then M is obtained in a subtree rooted alabt node
j, with j < i and j is not an ancestor of i.

Proof 7 Proof is immediate by strong induction. The property holds for n =

0, i.e. the root of the whole enumeration tree, since the root cannot be pruned
by Pruning 5. Let n be any node in the enumeration tree. Suppose that for
all node k < n Lemma 6 holds. Let us show that the property also holds for
n. Let T be a subtree rooted at n and pruned using Pruning 5. Let M be a
MHCS that would be obtained in T . Then from Lemma 5 there is a subtree
rooted at n ′ < n in which M is obtained by Algorithm 6. If this branch has
not been pruned by Pruning 5, then we obtained M with Algorithm 8. If this
branch has been pruned by Pruning 5, then by induction hypothesis, there
exists a subtree rooted at n ′′ < n ′ in which M is obtained with Algorithm 8.

Notice that Pruning 5 can also avoid the enumeration of non-maximal
HCSs, but in this case there is no need to prove that they have already
been obtained, since we are not interested in such HCSs.

Example 21 (Enumeration tree with Pruning 5) In the enumeration tree
using Pruning 5 presented Figure 13, consider node 58. The set A58

done

contains all the attributes used to build all immediate children of the ances-
tor of node 58 apart from the attributes in the branch leading to node 58,
i.e., A58

done = {a1, a2, a3}. Considering attribute a3 in A58
done, we have

vert(a3) = {A,D, E, F,G,H, I, J} and V58
r = {D,E, F,G,H, I}. As all ver-

tices in V58
r are also in vert(a3), the pruning criterion for Pruning 5 is

satisfied line 13 during the call corresponding to node 57, and thus node 58
is pruned.

The following theorem states the correctness of the final extraction
algorithm given as Algorithm 9. It is a direct consequence of Lemma 6.

Theorem 3 Algorithm 9 returns all MHCSs and only MHCSs.

4 mining collections of cliques 53

Algorithm 8: ExploreSubgraphs
Input: Ge, As, Vr, Ac, Adone

HCSs← ∅1

if |{C ∈ Cmax(Ge) | |C| > κ}| > γ then // Pruning 12

S← {l ∈ Ac | Vr ⊆ vert(l)} // Pruning 23

Ac ← Ac\S ; As ← As ∪ S // Pruning 24

if |As| > α then5

HCSs← {Cmax(Ge)}6

else // Pruning 3

Vr ← {v ∈ Vr | |atb(v)∩Ac| > α− |As|} // Pruning 47

Ac ← {l ∈ Ac | |vert(l)∩Vr| > max
(

κ, ⌈3log(γ)
log(3)

⌉
)

}8

// Pruning 4

while Ac 6= ∅ do9

Pick and remove an element y from Ac10

V
′

r ← Vr ∩ vert(y)11

A
′

s ← As ∪ {y}12

if ∀z ∈ Adone,V
′

r * vert(z) then // Pruning 513

HCSs← HCSs ∪ ExploreSubgraphs(Ge[V
′

r], A
′

s, V
′

r,14

Ac, Adone)
Adone ← Adone ∪ {y}15

return HCSs16

Algorithm 9: ExtractMHCS
Input: G = (V,E,A,atb)

HCSs← ExploreSubgraphs(G, ∅, V, A, ∅)1

output RemoveNonMaximalHCSs(HCSs)2

4.2.3 Implementation

The RemoveNonMaximalHCSs post-processing used to remove from a
collection of HCSs non maximal ones has been implemented using
the two following optimizations. First, it is not necessary to check
maximality over the whole collection, since the HCSs whose vertices
share exactly α labels are necessarily maximal and do not need to be
tested. The second optimization is based on the following property.
To compare two HCSs it is not required to test the pairwise inclusion
of all cliques in the two HCSs, but it is sufficient to test the inclu-
sion of the unions of these cliques: given M1 and M2, two HCSs,
M1 ≺ M2 if

⋃

C1∈M1
⊂

⋃

C2∈M2
. In our experiments, the runtime

of RemoveNonMaximalHCSs was negligible with respect to the extraction
time. Post-processing runtimes are given in Section 4.3.

The algorithm used to compute maximal cliques is CLIQUES [84]
presented page 21 as Algorithm 2. Two improvements were made to
use CLIQUES in our main extraction algorithm. The first one is used on
line 2 in Algorithm 8 to avoid the computation of all maximal cliques.
The algorithm stop once a set of cliques satisfying C

clique
γ,κ ∧ Csep has

been found. The second optimization consists in verifying that there

is at least max
(

κ, ⌈3log(γ)
log(3)

⌉
)

vertices connected to at least κ - 1 other
vertices in the enumerated graph, otherwise it is not possible to satisfy
C
clique
γ,κ ∧ Csep.

54 a pattern as a collection of subgraphs

4.3 experiments

In this section we report the results of our experiments. They were
performed using a network of collaborations of researchers associated
to the conference and journals where they have published. Another
set of experiments in the context of molecular biology is presented
in Section 6. Experiments were also realized on synthetic datasets to
measure the impact of graph structure over time performance, and are
described in Section 4.3.4.

All experiments were performed on a PC running GNU/Linux with
a 3 GHz Core 2 Duo CPU and 8 GB of main memory installed (no
more than 800 MB used in the experiments as shown in Section 4.3.3).
The algorithm has been implemented using Scala 2.9 1. This algorithm
has been embedded in a tool, described in Appendix B, that allows to
browse and visualise the collections of MHCSs.

This section is organized as follows. First we present the datasets,
then we illustrate the interest of MHCS in real data. The next section
presents quantitative results with respect to runtime, memory usage
and number of patterns extracted. The impact of graph structure over
performance is studied later using a synthetic dataset. Finally we
present the runtime improvement for each pruning technique with
respect to a baseline algorithm.

4.3.1 DBLP: a scientific collaboration network dataset

Here we give a short description of the scientific collaboration net-
work datasets. We use the public DBLP database 2. This database
contains rather exhaustive bibliographic information on most computer
science conferences and journals. It has been extensively used as an
experimental dataset by many researchers. From this database, we built
three attributed graphs, DBLP1, DBLP2, and DBLP3. Several graph
characteristics are presented on Table 1 and an exhaustive description
is given in Appendix A. The vertices in an attributed graph correspond
to authors, an edge representing a coauthor relationship. The attributes
are the conferences and journals where the authors have published. All
data from DBLP up to august 2011 was used to build the datasets.

DBLP1 and DBLP2 are used to assess the performances of the algo-
rithm. Consequently, we wanted large datasets even if the extracted
patterns might not be very meaningful. On the other hand, in DBLP3

we kept only what can be considered as strong cooperation between
researchers and strong engagement in a specific research field. DBLP1

contains all coauthor relationships, and an author is associated to all
journals and conferences where she/he has published at least once
(all editions of a conference are aggregated under the same conference
name). In DBLP2 (resp. DBLP3) we have an edge between two au-
thors only if they have coauthored at least two (resp. three) articles,
and an author is associated to journals and conferences where she/he
has published at least two (resp. three) times. In DBLP2 and DBLP3,
authors with empty attribute list are removed (authors that have never
published twice/three times in the same journal or conference).

1. Scala is a language running over a Java virtual machine.
2. http://dblp.uni-trier.de/

http://dblp.uni-trier.de/

4 mining collections of cliques 55

DBLP1 DBLP2 DBLP3

Vertices 997,050 266,125 127,386

Attributes 5,963 5,309 3,980

Edges 3,427,683 650,205 234,896

Avg. degree 6.88 4.89 3.69

Maximum degree 1014 240 149

Avg. attributes/vertex 3.06 2.44 2.15

Maximum attributes 302 112 68

Table 1.: Measures describing datasets DBLP1, DBLP2, and DBLP3.

4.3.2 Interpretation of MHCSs from DBLP

The interest of our approach is illustrated with two patterns extracted
from DBLP3. On this dataset, we first search for MHCSs formed by
relatively large communities so, κ, the minimal size of the core cliques,
is set to 5. We want at least two groups of core cliques (i.e., γ = 2) and
we do not require them to be very homogeneous so we set α to 2. With
this parameter setting, we found 498 MHCSs. Among them, we focus
on the patterns related to the conference IEEE International Conference
on Computer Communications (INFOCOM). It is a major conference
on the topic of computer communications. Five MHCSs among the
extracted collection are related to this conference and we present in
Figure 14 the one having the smallest number of vertices.

This pattern contains 18 maximal cliques, two containing at least five
vertices (i.e., the core cliques):

– {Yuan He, Mo Li, Xiang-Yang Li, Yurhao Liu, Zheng Yang}, bottom
left of Figure 14

– {Tarek F. Abdelzaher, Qing Cao, Lin Gu, Tian He, Liqian Luo, John
A. Stankovic, Gang Zhou}, top of Figure 14

Using ArnetMiner and the web pages of the authors, we consider the ArnetMiner
(http://
arnetminer.org/)
is a web site used to
index and search
academic networks.

affiliations of the authors. The first core clique is formed by authors who
have all been working in Virginia, while the second core clique is formed
by four out of five authors affiliated to the university of Tsinghua in
China (the fifth author is also affiliated to a university in China). A
third group of vertices at the bottom left of Figure 14 is structured as
several 3-cliques with large overlaps. It corresponds to seven authors:
Deborah Estrin, Ramesh Govindan, John S. Heidemann, Ahmed Helmy,
Polly Huang, Bhaskar Krishnamachari, and Scott Shenker. All these
authors are currently affiliated to universities in the west coast of the
United States of America, four being more particularly located in the
university of Southern California.

We also consider MHCSs being more homogeneous and containing
more core cliques while relaxing the constraint on the size of the core
cliques. To perform the extraction, we looked for patterns with at least
5 cliques of 3 vertices and 6 shared attributes (α = 6, κ = 3, and γ = 5).
Using this parameter setting, 718 patterns were extracted. Among them,
8 patterns are related to the data mining conference IEEE International
Conference on Data Mining (ICDM). We present in Figure 15 one of the
extracted MHCSs having the smallest number of vertices.

http://arnetminer.org/
http://arnetminer.org/

56 a pattern as a collection of subgraphs

Figure 14.: A pattern related to conferences INFOCOM and SenSys. Each colour denotes a clique
of at least κ vertices. A vertex in several colours is contained in multiple cliques.
Vertices in light grey are not contained in a clique of at least κ vertices.

Ke Wang

Christian Böhm

Hans-Peter Kriegel

Philip S. Yu

Christos FaloutsosJeffrey Xu Yu

Jian Pei

Peer Kröger

Haixun Wang

Jiawei Han

Figure 15.: A pattern related to conferences ACM SIGMOD, CIKM, EDBT, ICDE, ICDM, and
SDM. Each colour denotes a clique of at least κ vertices. A vertex in several colours is
contained in multiple cliques. Vertices in light grey are not contained in a clique of at
least κ vertices.

4 mining collections of cliques 57

DBLP1 DBLP2 DBLP3

Mean 1,207 Mb 421 Mb 198 Mb

Max 1,886 Mb 735 Mb 416 Mb

Standard deviation 175 Mb 84 Mb 46 Mb

Table 2.: Memory consumption over all experiments reported Figure 16.

This pattern contains seven maximal cliques and, among them, five
contains at least three vertices (the core cliques):

– {Jiawei Han, Jian Pei, Ke Wang, Philip S. Yu}
– {Haixun Wang, Jeffrey Xu Yu, Philip S. Yu}
– {Jiawei Han, Ke Wang, Jeffrey Xu Yu, Philip S. Yu}
– {Jian Pei, Haixun Wang, Philip S. Yu}
– {Christian Böhm, Hans-Peter Kriegel, Peer Kröger}
Two groups are forming this pattern. One is formed by Christian

Böhm, Hans-Peter Kriegel and Peer Kröger, all these authors working
in the same university located in Germany. The second group is formed
by people located in North America (working in the same universities
at some time). These two groups are connected by Christos Faloutsos,
who is not part of any κ-clique in this pattern but still associated to the
same conferences. This vertex has a betweenness centrality measure
of 4.5 (the betweenness centrality measure is presented page 20 in the
state of the art).

The main interest of such MHCSs is to exhibit a local structure of
groups sharing similar interests. Knowing such structures can be useful,
for instance, to help reviewer selection for projects, or to set up new
scientific collaborations (a task also considered in [7], using different
approaches).

4.3.3 Performance study on DBLP datasets.

The runtime, number of extracted patterns, and maximal memory
consumption are reported for extractions done on DBLP1, DBLP2, and
DBLP3 with different parameter settings.

Concerning time performances, Figure 16 shows that the extractions
can be made in less than one minute on DBLP2 and DBLP3 even when
constraints are weakly selective. On DBLP1, the runtime is presented
only for κ > 4. The worst case is obtained for α = 7, κ = 4, and γ =
3 and requires about one hour. Presented runtime take into account
the post-processing needed to remove non-maximal MHCSs. This post-
processing requires less than one second for all reported experiments.

When α (i.e., the minimum number of shared attributes) increases,
runtime increases until it reach a maximum, then start to decrease. This
behaviour is due to the fact that at first there are more combinations
of attributes of size n+ 1 compares to the combinations of size n, thus
maximal cliques have to be compute on more subgraphs and runtime
increases with α. In a second phase, the runtime decreases when α

increases since large set of attributes are less likely to be shared by
enough vertices to satisfy C

clique
γ,κ , and thus are more likely to be

pruned during the enumeration. Moreover for κ, γ fixed and large
values of α, the runtime tends to stabilize. One can also notice that for

58 a pattern as a collection of subgraphs

 0

 500

 1000

 1500

 2000

 2500

 3000

 3500

 4000

 1 2 3 4 5 6 7 8 9

R
u

n
ti
m

e
 (

in
 s

e
c
o

n
d

s
)

α

κ = 4
κ = 5
κ = 6
κ = 7

(a) Runtimes on DBLP1 with γ = 3

 0

 100

 200

 300

 400

 500

 600

 700

 800

 900

 1000

 2 3 4 5 6 7 8 9

R
u

n
ti
m

e
 (

in
 s

e
c
o

n
d

s
)

γ

κ = 4
κ = 5
κ = 6
κ = 7

(b) Runtimes on DBLP1 with α = 3

 10

 20

 30

 40

 50

 60

 1 2 3 4 5 6 7 8 9

R
u

n
ti
m

e
 (

in
 s

e
c
o

n
d

s
)

α

κ = 3
κ = 4
κ = 5
κ = 6
κ = 7

(c) Runtimes on DBLP2 with γ = 3

 10

 20

 30

 40

 50

 60

 2 3 4 5 6 7 8 9

R
u

n
ti
m

e
 (

in
 s

e
c
o

n
d

s
)

γ

κ = 3
κ = 4
κ = 5
κ = 6
κ = 7

(d) Runtimes on DBLP2 with α = 3

 2

 4

 6

 8

 10

 12

 1 2 3 4 5 6 7 8 9

R
u

n
ti
m

e
 (

in
 s

e
c
o

n
d

s
)

α

κ = 3
κ = 4
κ = 5
κ = 6
κ = 7

(e) Runtimes on DBLP3 with γ = 3

 2

 4

 6

 8

 10

 12

 2 3 4 5 6 7 8 9

R
u

n
ti
m

e
 (

in
 s

e
c
o

n
d

s
)

γ

κ = 3
κ = 4
κ = 5
κ = 6
κ = 7

(f) Runtimes on DBLP3 with α = 3

Figure 16.: Runtime for different sets of parameters on DBLP1, DBLP2, and DBLP3.

4 mining collections of cliques 59

 1

 10

 100

 1000

 10000

 100000

 1e+06

 1 2 3 4 5 6 7 8 9

N
u

m
b

e
r

o
f

M
H

C
S

s

α

κ = 4

κ = 5

κ = 6

κ = 7

(a) # MHCS on DBLP1 with γ = 3

 1

 10

 100

 1000

 10000

 100000

 1e+06

 2 3 4 5 6 7 8 9

N
u

m
b

e
r

o
f

M
H

C
S

s

γ

κ = 4

κ = 5

κ = 6

κ = 7

(b) # MHCS on DBLP1 with α = 3

 1

 10

 100

 1000

 10000

 100000

 1 2 3 4 5 6 7 8 9

N
u

m
b

e
r

o
f

M
H

C
S

s

α

κ = 3

κ = 4

κ = 5

κ = 6

κ = 7

(c) # MHCS on DBLP2 with γ = 3

 1

 10

 100

 1000

 10000

 100000

 2 3 4 5 6 7 8 9

N
u

m
b

e
r

o
f

M
H

C
S

s

γ

κ = 3

κ = 4

κ = 5

κ = 6

κ = 7

(d) # MHCS on DBLP2 with α = 3

 1

 10

 100

 1000

 10000

 100000

 1 2 3 4 5 6 7 8 9

N
u

m
b

e
r

o
f

M
H

C
S

s

α

κ = 3

κ = 4

κ = 5

κ = 6

κ = 7

(e) # MHCS on DBLP3 with γ = 3

 1

 10

 100

 1000

 10000

 100000

 2 3 4 5 6 7 8 9

N
u

m
b

e
r

o
f

M
H

C
S

s

γ

κ = 3

κ = 4

κ = 5

κ = 6

κ = 7

(f) # MHCS on DBLP3 with α = 3

Figure 17.: Number of MHCS for different sets of parameters on DBLP1, DBLP2, and DBLP3.

60 a pattern as a collection of subgraphs

α = 1, the values of κ seems to have a smaller impact on runtime. This
is because when α = 1 the enumeration stops on the second level of the
enumeration tree and the pruning based on γ or κ are not used.

Regarding the number of output patterns, Figure 17 shows that it
shrinks fast when parameters κ, α, or γ increase. For values of κ 6 5

and α > 1, increasing κ by two reduces the size of the collection of
patterns by one order of magnitude.

Regarding main memory usage, only maximal memory consumption
during each extraction is considered. Table 2 summarizes the results
for all experiments reported in this section.

4.3.4 Evaluation on synthetic datasets

In this section we describe an experimental evaluation of the algo-
rithm using synthetic datasets. The goal of these experiments is to
study runtime evolution with regards to different graph structures and
user parameters. The generation of synthetic data which model accu-
rately graph structure is an active research area. Several models has
been proposed to mimic graph structures, however as far as we know,
only two approaches allows the generation of attributed graphs [50, 58].
Both models use an existing attributed graph which determines the
structure of the generated data. As we wanted to set the parameters
given on Table 3 for each datasets, these models did not fit our needs.

The model used to generate synthetic data is simple. An attributed
graph is first generated with four parameters:

– #vert: number of vertices
– #attr: number of different attributes
– avgDeg: average vertex degree
– avgAtt: average number of attributes having value True per vertex
For the generation of the vertices and edges, we used the well stud-

ied Erdős-Rényi random graph model [22]. This model requires two
parameters, the first is simply the number of vertices #vert, and the
second one is the probability p for each pair of vertices to be con-
nected by an edge. We set p to #edges/#edgesMax where #edges was
the expected number of edges and was equal to #vert× avgDeg/2,
and #edgesMax was the maximum number of possible edges, i.e.,
#edgesMax = #vert× (#vert− 1)/2.

Then, the attributes were associated randomly to the vertices as
follows: for each vertex v and each attribute x, x was associated to v

with the probability avgAtt/#attr.
For the generation, we took a reference parameter setting that was

close to the characteristics of the BioData400 dataset used in the ex-
periments presented in Section 6 in order to start from a real setting.
However, we did not intend to mimic the BioData400 structure (perfor-
mances on this kind of structures are presented in Section 6). The values
retained for the reference parameters were #vert = 15, 000; #attr = 500;
avgDeg = 20; and avgAtt = 10.

Due to the random generation process, it is unlikely that such syn-
thetic datasets contain some MHCS, except trivial ones. Thus a number
#hcs of HCSs were injected in the dataset. These HCSs were generated
randomly according to three parameters k, g and s, as follows. Each of
these HCSs contained k× g vertices, structured in the form of g cliques
of size k, and with s attributes shared by all vertices. Note that the
injected HCSs might be non-maximal in the resulting dataset if the orig-

4 mining collections of cliques 61

S#vert S#attr SavgDeg SavgAtt S#hcs

#vert 5,000-25,000 15,000 15,000 15,000 15,000

#attr 500 200-800 500 500 500

avgDeg 20 20 10-30 20 20

avgAtt 10 10 10 5-25 10

#hcs 300 300 300 300 100-500

Table 3.: Parameters used to generate the synthetic datasets.

inal graph contains vertices sharing the same set of attributes. However,
except for trivial cases (low values of #attr and s), this is not likely to
occur, and then these injected HCSs are expected to be MHCSs. The
number of injected patterns #hcs was used as an additional generation
parameter, and we used #hcs = 300 as a reference value.

We generated several datasets, by changing in turn each parameter
(#vert, #attr, avgDeg, avgAtt and #hcs), within a range encompassing
its reference value. Let var be one of the parameter, we denote Svar the
collection of datasets obtained by varying this parameter var. For each
collection, the constant parameter values and the range of the parameter
that was changed, are given in Table 3. In each dataset, we did not only
perform a single pattern injection, but we built four derived datasets
by adding four different sets of random HCSs using the four following
parameters settings: (1) s = 2, k = 6, g = 2, (2) s = 2, k = 6, g = 4, (3)
s = 4, k = 6, g = 2 and (4) s = 4, k = 6, g = 4.

Then, the MHCSs were extracted on each of these derived datasets
using parameters α = s, γ = g and κ = k, so as to retrieve the patterns
that have been injected. The runtimes and the precise values used
within each range for #vert, #attr, avgDeg, avgAtt and #hcs can be
found Figure 18. Each point of the graphs of Figure 18 corresponds
to the average of the runtime over ten different random generations
of the data. The runtime remained stable with a maximal standard
deviation of 0.26 for each point. The curves show that the extraction
were tractable in practice on this graph model, for a wide range of
parameter values.

Concerning the number of extracted patterns, the number of MHCSs
obtained was always equal to the number of injected HCSs, except for
a few experiments. In the worst case, we had a difference of 6 patterns.
For each apparently missing pattern, we observed that this difference
came from two injected HCSs sharing the same attributes and forming
a single MHCS, and thus only one pattern was obtained instead of two.

4.3.5 Comparison of the prunings to baseline algorithms

In this section we compared the effects of each pruning techniques
(pruning 1 to 5 introduced Section 4.2) on runtime. In order to perform
this comparison, we proposed five versions of the extraction algorithm
based on a baseline algorithm. This baseline algorithm is similar to
the generate and test version presented as Algorithm 4 except for two
simple additional verifications. First, a test ensures that Vr contains at
least κ vertices (less than κ vertices cannot form a pattern satisfying
C
clique
γ,κ). A second test checks that the number of shared attributes or

62 a pattern as a collection of subgraphs

 1

 2

 3

 4

 5

 6

 7

 8

 5000 10000 15000 20000 25000

R
u

n
ti
m

e
 (

in
 s

e
c
o

n
d

s
)

Number of vertices

α=2,γ=2,κ=6
α=2,γ=4,κ=6
α=4,γ=2,κ=6
α=4,γ=4,κ=6

 1

 2

 3

 4

 5

 6

 7

 8

 10 15 20 25 30

R
u

n
ti
m

e
 (

in
 s

e
c
o

n
d

s
)

Average vertex degree

α=2,γ=2,κ=6
α=2,γ=4,κ=6
α=4,γ=2,κ=6
α=4,γ=4,κ=6

 1

 2

 3

 4

 5

 6

 7

 8

 100 200 300 400 500 600 700 800 900

R
u

n
ti
m

e
 (

in
 s

e
c
o

n
d

s
)

Number of Attributes

α=2,γ=2,κ=6
α=2,γ=4,κ=6
α=4,γ=2,κ=6
α=4,γ=4,κ=6

 2

 4

 6

 8

 10

 12

 14

 5 10 15 20 25

R
u

n
ti
m

e
 (

in
 s

e
c
o

n
d

s
)

Average number of attributes with value true per vertex

α=2,γ=2,κ=6
α=2,γ=4,κ=6
α=4,γ=2,κ=6
α=4,γ=4,κ=6

 1

 2

 3

 4

 5

 6

 7

 8

 100 150 200 250 300 350 400 450 500

R
u

n
ti
m

e
 (

in
 s

e
c
o

n
d

s
)

Number of MHCS

α=2,γ=2,κ=6
α=2,γ=4,κ=6
α=4,γ=2,κ=6
α=4,γ=4,κ=6

Figure 18.: Runtime for the collections of datasets S#vert, SavgDeg, S#attr, SavgAtt and S#hcs.

4 mining collections of cliques 63

candidate attributes (i.e., |Ac ∪As|) is at least α, otherwise the homo-
geneity constraint cannot be satisfied (this baseline algorithm is given
as Algorithm 10).

Algorithm 10: Baseline
Input: Ge, As, Vr, Ac

HCSs← ∅1

if |As| > α and |{C ∈ Cmax(Ge) | |C| > κ}| > γ then2

HCSs← {Cmax(Ge)}3

while Ac 6= ∅ do4

Pick and remove an element y from Ac5

V
′

r ← Vr ∩ vert(y)6

A
′

s ← As ∪ {y}7

if
∣

∣

∣
V

′

r

∣

∣

∣
> κ and |Ac ∪As| > α then8

HCSs← HCSs ∪ Baseline(Ge[V
′

r], A
′

s, V
′

r, Ac)9

return HCSs10

We incrementally added the pruning techniques to the baseline algo-
rithm, starting from Pruning 1 to Pruning 5. The version incorporating
all prunings from 1 to 5 is then the same as the one presented as
Algorithm 8 page 53.

The experiments were only run over DBLP2 and DBLP3 since extrac-
tion runtimes using only Pruning 1 were prohibitive on DBLP1. The
results are presented Figure 19. We observe that adding step by step
the prunings 1 to 4 improves the runtime in most cases. Considering
Pruning 5, one can notice that when the runtime of prunings 1 + 2 + 3 +
4 is low, adding Pruning 5 can slightly increase the runtime, but when
the runtime of prunings 1 + 2 + 3 + 4 is larger, then adding Pruning 5
can reduce it substantially (see Figure 19a).

In the next section, we will now introduce a second family of patterns
related to the MHCS but being less restrictive on the connectivity of
the different groups of vertices in the patterns.

64 a pattern as a collection of subgraphs

 1

 10

 100

 1000

 10000

 4 5 6 7 8

R
u

n
ti
m

e
 (

in
 s

e
c
o

n
d

s
)

α

pruning 1
prunings 1 and 2

prunings 1,2, and 3
prunings 1,2,3 and 4

all prunings

(a) DBLP2 with γ = 2 and κ = 3.

 1

 10

 100

 1000

 10000

 4 5 6 7 8

R
u

n
ti
m

e
 (

in
 s

e
c
o

n
d

s
)

α

pruning 1
prunings 1 and 2

prunings 1,2, and 3
prunings 1,2,3 and 4

all prunings

(b) DBLP2 with γ = 3 and κ = 3.

 1

 10

 100

 1000

 10000

 4 5 6 7 8

R
u

n
ti
m

e
 (

in
 s

e
c
o

n
d

s
)

α

pruning 1
prunings 1 and 2

prunings 1,2, and 3
prunings 1,2,3 and 4

all prunings

(c) DBLP2 with γ = 2 and κ = 4.

 1

 10

 100

 1000

 10000

 4 5 6 7 8

R
u

n
ti
m

e
 (

in
 s

e
c
o

n
d

s
)

α

pruning 1
prunings 1 and 2

prunings 1,2, and 3
prunings 1,2,3 and 4

all prunings

(d) DBLP2 with γ = 3 and κ = 4.

 1

 10

 100

 4 5 6 7 8

R
u

n
ti
m

e
 (

in
 s

e
c
o

n
d

s
)

α

pruning 1
prunings 1 and 2

prunings 1,2, and 3
prunings 1,2,3 and 4

all prunings

(e) DBLP3 with γ = 2 and κ = 3.

 1

 10

 100

 4 5 6 7 8

R
u

n
ti
m

e
 (

in
 s

e
c
o

n
d

s
)

α

pruning 1
prunings 1 and 2

prunings 1,2, and 3
prunings 1,2,3 and 4

all prunings

(f) DBLP3 with γ = 3 and κ = 3.

 1

 10

 4 5 6 7 8

R
u

n
ti
m

e
 (

in
 s

e
c
o

n
d

s
)

α

pruning 1
prunings 1 and 2

prunings 1,2, and 3
prunings 1,2,3 and 4

all prunings

(g) DBLP3 with γ = 2 and κ = 4.

 1

 10

 4 5 6 7 8

R
u

n
ti
m

e
 (

in
 s

e
c
o

n
d

s
)

α

pruning 1
prunings 1 and 2

prunings 1,2, and 3
prunings 1,2,3 and 4

all prunings

(h) DBLP3 with γ = 3 and κ = 4.

Figure 19.: Runtime for different pruning techniques on the datasets DBLP2 and DBLP3. The
scale is logarithmic for the runtime.

5M I N I N G C O L L E C T I O N S O F K - C L I Q U E
P E R C O L AT E D C O M P O N E N T S

5.1 pattern definition

We now define a family of patterns similar to the MHCSs, but based
on k-clique percolated components and being more tolerant on the
connectivity.

A

a1a2a4a5

B

a1a2

C

a1a2a4a5

D

a1a4a5

E

a4a5

F

a1a2a3a4a5

G

a1a2a3

H

a1a3a4a5

I

a4a5

K a4a5

J a4a5

A

a1a2a4a5

B

a1a2

C

a1a2a4a5

F

a1a2a3a4a5

G

a1a2a3

H

a1a3a4a5

J a4a5

Figure 20.: A Boolean attributed graph illustrating the CoHoP patterns. Vertices
are identified by capital letters and attributes are identified by ai,
i ∈ {1, . . . , 5}. Only attributes having value True are displayed.

As mentioned in the state of the art page 24, a k-clique percolated
component (termed also k-clique-community), k-PC for short, intro-
duced in [67] is a relaxed version of the cliques. A k-PC is the union
of all k-cliques that can be reached from each other through a series of
adjacent k-cliques. Compared to other fault-tolerant clique definitions,
a particularity of the k-PCs is to enforce the fact that each vertex can
be reached from any other vertex through highly connected subset of
vertices [67]. In the context of social networks, it represents a commu-
nity of individuals where each person, even if not directly connected to
another member, can easily find a way to communicate with him/her.

Example 22 Let us look for 4-PCs in the attributed graph presented Fig-
ure 20. It contains three 4-cliques (i.e., k = 4): ABCD, DEFG, and EFGH.
As DEFG and EFGH share three vertices, these two cliques form a 4-PC. The
clique ABCD does not share enough vertices with the other cliques so the col-
lection of 4-PCs is {ABCD,DEFGH}. If we look for 3-PCs, all single 3-clique
except IJK can be merged. So, the collection of 3-PCs is {ABCDEFGH, IJK}.

We now define a new family of patterns similar to the MHCSs, but
based on k-PCs. Let k, α, and γ be three strictly positive integers, we

65

66 a pattern as a collection of subgraphs

define a pattern called a Collection of Homogeneous k-PCs (CoHoP) as
a pattern satisfying three conditions:

1. the vertices are homogeneous, in the sense that they share at least
α attributes;

2. the collection contains at least γ k-PCs;

3. all k-PCs sharing the same set of attributes are in the collection.

These patterns are defined more precisely as follows.

Definition 19 (Collection of Homogeneous k-PCs (CoHoP)) Let k, α,
and γ be three strictly positive integers, with k > 2, and G an attributed
graph. A collection M of sets of vertices is a CoHoP in a graph G if and only
if it satisfies the three following constraints:

– Chomo
α (M) ≡ |CAtb(M)| > α (the vertices in M are homogeneous);

– C
kpc
γ,k (M) ≡

∣

∣Ckpc(G[∪C∈M])
∣

∣ > γ, i.e., M contains at least γ k-PCs;
– Cmax(M) ≡ M = Ckpc(G[[CAtb(M)]]), i.e., M contains all k-PCs

sharing the attributes in CAtb(M) and only these k-PCs.

Before comparing the constraints used to define MHCS and CoHoP
patterns, let us give an example of CoHoP pattern.

Example 23 In the attributed graph presented Figure 20, consider the Co-
HoP patterns satisfying constraints Chomo

2 (i.e., all vertices share at least

two attributes), C
kpc
2,3 (i.e., at least two 3-PCs) and Cmax. The collection of

set of vertices {ACD,DEFH, IJK} satisfies these constraints. Indeed, all ver-
tices share attributes a4 and a5. Moreover, the collection is formed by three

3-PCs so C
kpc
2,3 is satisfied. Finally, there is no other 3-PC in the attributed

graph induced by the attributes {a4, a5}, thus Cmax is also satisfied.

5.2 finding all cohop patterns

We first present a naive algorithm enumerating all subgraphs possibly
containing a pattern. Then we show how we can safely reduce the
subgraphs enumeration, and we describe the corresponding algorithm.
Implementation techniques are discussed in Section 5.2.4.

5.2.1 A naive algorithm

While Definition 19 is very declarative, we establish a more construc-
tive definition of the CoHoP patterns as follows.

Lemma 7 Let k, α, and γ be three strictly positive integers, with k > 2,
and G be an attributed graph with A the set of Boolean attributes in G. A
collection M of sets of vertices is a CoHoP if and only if there exists X ⊆ A

such that M = Ckpc(G[[X]]), |X| > α, and |M| > γ.

Proof 8 First, consider a CoHoP M. By direct application of Definition 19,
there exists X = CAtb(M) ⊆ A such that M = Ckpc(G[[X]]), |X| > α, and
|M| > γ. Now we prove the converse. Consider X a set of attributes satisfying
|X| > α, and M a collection of sets of vertices such that M = Ckpc(G[[X]])
and |M| > γ. Since M = Ckpc(G[[X]]), then X ⊆ CAtb(M), and each k-PC
of G[[CAtb(M)]] is included in or equal to a k-PC of G[[X]]. Since all vertices
in M are also in G[[CAtb(M)]], then each k-PC member of the collection
M = Ckpc(G[[X]]) is included in or equal to a k-PC of G[[CAtb(M)]]. Thus
M = Ckpc(G[[X]]) = Ckpc(G[[CAtb(M)]]) and M is a CoHoP.

5 mining collections of k-pcs 67

To compute all patterns, a naive algorithm can enumerate the sub-
graphs Ge = G[[X]] for all non empty sets of attributes X, and for each
Ge compute all k-PCs in Ge. Then, if |X| > α and if there is at least
γ k-PCs in Ge, this collection of k-PCs is a CoHoP. From Lemma 7,
this algorithm is correct. However, with this enumeration technique,
2|A| − 1 subgraphs will have to be enumerated (there are 2|A| − 1 non
empty subsets of A). The following pruning techniques are used to
avoid the enumeration of some subgraphs.

5.2.2 Enumeration tree pruning techniques

In order to avoid the enumeration of subgraphs that do not contain
CoHoP patterns, we propose four safe pruning techniques. For each of
them, we show its safety and give an example.

pruning 1 This pruning techniques allows to reduce the set of
vertices under consideration. Indeed, only vertices in a k-maximal-
clique can form a pattern, so the other vertices can be discarded.

Lemma 8 Let G be an attributed graph. Only vertices in a k-maximal-
clique of G can form a CoHoP in G or in any subgraph of G.

Proof 9 Direct, since a vertex which is not in a k-maximal-clique cannot
be in any k-PC.

Example 24 When extracting CoHoPs with k = 3, consider the subgraph
G[[{a1, a2}]] in the attributed graph presented Figure 20. It is formed by
the set of vertices {A,B,C, F,G}. In this subgraph, F and G are not in a
3-maximal clique and consequently cannot be in a 3-PC.

pruning 2 From the following property, this pruning allows to stop
the enumeration once a subgraph containing less than γ k-maximal-
cliques is found.

Lemma 9 Let G be an attributed graph. If G does not contains at least γ

k-maximal-cliques, then neither G nor any subgraph of G can contain a
CoHoP.

Proof 10 Let G be an attributed graph having less than γ k-maximal-cliques.
Since all k-cliques in a k-maximal-clique are in the same k-PC, then the
number of k-maximal-cliques cannot be greater than the number of k-PCs.
So, G cannot contain γ k-PCs and thus cannot contain a CoHoP. The same
holds for any subgraph of G, since a subgraph of G cannot contain more k-
maximal-clique than G.

Example 25 Consider the subgraph G[[{a1, a3}]] formed by the vertices F, G,
and H in the attributed graph presented Figure 20. As this subgraph contains
only one k-maximal-clique, if γ > 2 the enumeration of the subgraphs of
G[[{a1, a3}]] can stop since the Ckpc constraint would not be satisfied.

pruning 3 This pruning is used to avoid the enumeration of an
attribute shared by all the vertices in the graph under consideration.

Lemma 10 Let G be an attributed graph, X the set of attributes shared by all
vertices in G and x /∈ X an attribute having value True for all vertices in G,
then we have G[[X∪ {x}]] = G.

68 a pattern as a collection of subgraphs

Proof 11 Straightforward, since by definition all vertices share the attributes
in X∪ {x}.

Example 26 Consider the subgraph G[[{a1, a4}]] in the attributed graph pre-
sented Figure 20. It is formed by the set of vertices {A,C,D, F,H}. As at-
tribute a5 has also value True for all these vertices, we have G[[{a1, a4, a5}]] =
G[[{a1, a4}]].

pruning 4 According to the following lemma, we can avoid the
enumeration of graphs (and their subgraphs) if they are induced by
sets of attributes shared by an insufficient number of vertices to contain
a CoHoP.

Lemma 11 Let G be an attributed graph and x an attribute shared by less
than k vertices in G. Then, the graph G[[{x}]] and all its subgraphs cannot
contain a CoHoP.

Proof 12 Since |vert(x)| < k, G[[{x}]] and its subgraphs contains less than
k vertices thus they cannot contain a k-clique and by extension a CoHoP.

Example 27 In the attributed graph presented Figure 20, consider the sub-
graph G[[{a5}]]. Among the vertices forming this subgraph, the attribute a3

has value True only for two vertices, F and H. Consequently, for a value of
k > 3, no subgraph of G[[{a5}]] induced by the attribute a3 can form a CoHoP
pattern.

5.2.3 Algorithm description

A recursive function FindCoHoP, that takes advantage of Pruning 1
to 4 is presented as Algorithm 11. The input of the algorithm for the
first call is the whole attributed graph, i.e., Ge = G, and Ac, the set of
candidate attributes that remain under consideration to find attributes
shared by subgraph, is set to A.

Line 1 checks that there is at least γ k-maximal-cliques in Ge. If it
is not the case, from Lemma 9 no subgraph of Ge including Ge itself
can contain a k-PC. Line 2 computes the set Vr of vertices possibly
containing a k-PC as the union of all k-maximal-cliques in Ge according
to Lemma 8. Line 3 checks (1) if there is at least α attributes shared
by all vertices in Vr (

∣

∣∩v∈Vr
atb(v)

∣

∣ > α) and (2) if there is at least γ
k-PCs (

∣

∣Ckpc(Ge[Vr])
∣

∣ > γ). If so, the collection of k-PCs is a CoHoP,
and is output on line 4. On line 5, attributes from Ac shared by all
vertices in Vr are removed from Ac. Removing these attributes does
not change the collection of enumerated subgraphs, since if we pick
such an attribute x we have Ge[Vr ∩ vert(x)] that is equal to Ge[Vr]

itself in the recursive call to FindCoHoP (line 9). On line 6, attributes
shared by less than k vertices in Vr are removed from Ac, according to
Lemma 11. This avoids unnecessary calls to FindCoHoP with subgraphs
having not enough vertices. Lines 7 to 9 perform a standard recursive
enumeration scheme to produce in a depth-first way, and element by
element (the x that is picked), all subsets of Ac. While Ac is not empty,
an attribute x is picked (line 8) and function FindCoHoP is called with
the subgraph of Ge induced by the set of vertices in Vr sharing attribute
x, i.e., Ge[Vr ∩ vert(x)].

Theorem 4 Algorithm 11 returns all CoHoP patterns and only CoHoP pat-
terns.

5 mining collections of k-pcs 69

Algorithm 11: FindCoHoP
Input: Ge, Ac

if |Ckmax(Ge)| > γ then // Pruning 21

Vr = ∪C∈Ckmax(Ge) // Pruning 12

if
∣

∣∩v∈Vr
atb(v)

∣

∣ > α and
∣

∣Ckpc(Ge[Vr])
∣

∣ > γ then3

output Ckpc(Ge[Vr])4

Ac ← {x ∈ Ac | Vr * vert(x)} // Pruning 35

Ac ← {x ∈ Ac | |vert(x)∩Vr| > k} // Pruning 46

while Ac 6= ∅ do7

Pick and remove an attribute x from Ac8

FindCoHoP(Ge[Vr ∩ vert(x)], Ac)9

Proof 13 Lemma 7 and Lemmas 8 to 11 (safety of the pruning) ensure the
completeness of Algorithm 11. Line 3 ensures its soundness.

Note that a given CoHoP might be output several times by Algo-
rithm 11. Such duplicates are removed in a simple post-processing
step.

5.2.4 Implementation

Since vertices in a pattern must share at least one attribute (α >

1), usually it is not necessary to compute the k-maximal-cliques on
the whole attributed graph. So, the first level of the enumeration is
computed using only lines 6 to 9 of Algorithm 11, with Vr the set of all
vertices of the input attributed graph.

The algorithm used to compute the collection of k-PCs in a graph is
described as Algorithm 3 in Section 2.2.3.1 of the state of art [29, 67].
It first builds a matrix representing the adjacency relation between the
k-cliques, then computes the connected components from this matrix,
which are the k-PCs. The algorithm used to compute the k-maximal-
cliques is CLIQUES [84] described as Algorithm 2 in Section 2.2.1.1
of the state of the art. Both the collection of k-maximal-cliques (i.e.,
Ckmax(Ge)) and the collection of k-PCs (i.e., Ckpc(Ge[Vr])) are com-
puted only once for a given attributed graph Ge on respectively lines 1
and 3. Further use of Ckmax(Ge) and Ckpc(Ge[Vr]) on lines 2 and 4
use the collections previously computed. Moreover, the computation
of the k-PCs is done on line 3 only if the vertices in Vr share at least α
attributes (i.e.,

∣

∣∩v∈Vr
atb(v)

∣

∣ > α).

5.3 experiments

In this section we report experiments on the bibliographic datasets
already presented in the Section 4, DBLP1, DBLP2, and DBLP3.

First, we present two examples of CoHoP patterns found in DBLP3.
Next, we present and discuss the performances of the algorithm. The
impact of several graph characteristics over runtime is studied using
a synthetic dataset. Finally we present the runtime improvement for
each pruning technique with respect to a baseline algorithm.

All experiments were performed on a PC running GNU/Linux with
a 3 GHz Core 2 Duo CPU and 8 GB of main memory installed. The

70 a pattern as a collection of subgraphs

α γ k # CoHoP

5 7 3 51

3 7 4 57

4 9 3 79

3 6 4 84

5 6 3 85

Table 4.: The five set of parameters with α between 3 and 9, γ between 5 and 9,
and k between 3 and 6 that lead to a number of CoHoPs between 50
and 100 in DBLP3.

algorithm has been implemented using Scala 2.9. This algorithm has
also been embedded in the software presented in Appendix A.

5.3.1 Illustration of the patterns interest

Let us first define some vocabulary in the context of a network of
researchers. In [67] the authors consider that a k-PC is a community
in the sense that “it consists of several complete subgraphs that tend
to share many of their nodes”. Consequently, we will use the term
community for a k-PC. We will also say that two communities are
connected if there is an edge between both communities.

To set the parameters α, γ, and k we wanted between 3 and 9 shared
attributes and a value of γ between 5 and 9. Concerning parameter
k, in [29, 67, 68] the authors advice to use a value between 3 and 6.
Moreover, we wanted a relatively small collection of CoHoP patterns
but still containing different structures, so we required a collection
containing 50 to 100 CoHoPs. Table 4 presents the five parameters
settings, within the parameters ranges given above, that satisfy these
constraints in DBLP3. Among these parameters, we selected k = 4,
γ = 7, and α = 3, i.e., CoHoPs with at least seven 4-PCs where all
authors have published in the same three conferences or journals.

With this parameters setting, 57 CoHoPs were extracted. To illustrate
the kind of patterns that were retrieved, we focus on two patterns
presented in Figures 21a and 21b.

The pattern in Figure 21a contains seven 4-PCs, all authors having
published in conferences or journals related to medical imaging. The
authors N. Ayache, H. Delingette, G. Malandain, S. Ourselin, X. Pennec,
and P. M. Thompson form a community connected to all other com-
munities except one and is the core of a star-based topology. Knowing
such a structure is useful to make some decisions. For instance having
researchers of the core community as partners in a project, or choosing
this community as a destination for a post-doc position could be a great
opportunity to benefit from contacts with all the other groups. We alsoArnetMiner

(http://
arnetminer.org/)

is an application
providing the

relationship (e.g.,
coauthor, adviser,
advisee) between

researchers.

investigated the role of the authors connecting two communities (i.e.,
the endpoints of edges connecting two communities) in this pattern
using ArnetMiner. We found that four of these bridging nodes [64] were
advisers of at least half of the authors of their respective communities.
So they are likely to be senior researchers and this is coherent with the
fact that they appear as bridges between communities.

http://arnetminer.org/
http://arnetminer.org/

5 mining collections of k-pcs 71

Guido Gerig
Martin Styner

Hervé Delingette

D. Louis Collins

Stephen M. Pizer

Daniel Rueckert

Simon R. Arridge

David J. Hawkes

Zhuowen Tu

Ron Kikinis

Denis Rivière

Lawrence H. Staib

Alan C. Evans

James S. Duncan

Sébastien Ourselin

Julia A. Schnabel

Arthur W. Toga

Grégoire Malandain
William M. Wells III

Stephen R. Aylward

Albert J. Sinusas

Xavier Pennec

Nicholas Ayache

Derek L. G. Hill

Paul M. Thompson

Jean-Francois Mangin

Martha Elizabeth Shenton

Yonggang Shi

Xenophon Papademetris

Carl-Fredrik Westin

Sarang C. Joshi

(a) Seven 4-PCs concerning conferences IPMI, ISBI, MICCAI and journal IEEE Trans. Med.
Imaging.

Roberto Gretter

Elmar Nöth Francis Kubala

Anton Batliner

Kiyohiro Shikano

Ascensión Gallardo-Antolín

Mauro Cettolo

Tsuyoshi Morimoto

John Makhoul

Diego Giuliani

Keiichi Tokuda

Long Nguyen

Ralf Kompe

Victor Zue

Toshiyuki Takezawa

Marcello Federico

Gilles Adda

Gernot A. Fink

Akira Kurematsu

Gerhard Sagerer

Shigeki Sagayama

Fabio Brugnara

James R. Glass

Joseph Polifroni

Jean-Luc Gauvain

Heinrich Niemann

Lori Lamel

Ricardo de Córdoba

Takao Kobayashi

José Manuel Pardo

Franz Kummert

Stephanie Seneff

José Colás

Tadashi Kitamura

Juan Manuel Montero

Helen M. Meng

Daniele Falavigna

Richard M. Schwartz

Volker Warnke

Javier Macías Guarasa

Maurizio Omologo

Javier Ferreiros

Takashi Masuko

Martine Adda-Decker

(b) Nine 4-PCs concerning conferences INTERSPEECH, ICSLP, and EUROSPEECH.

Figure 21.: Two patterns extracted from DBLP3 with k = 4, γ = 7, and α = 3. Each colour
corresponds to a k-PC. A vertex in several colours is contained in multiple k-PCs.

72 a pattern as a collection of subgraphs

DBLP1 DBLP2 DBLP3

Mean 1,298 Mb 507 Mb 243 Mb

Max 2,264 Mb 884 Mb 489 Mb

Standard deviation 235 Mb 140 Mb 61 Mb

Table 5.: Memory consumption over all experiments reported in Figure 22.

In the second CoHoP, presented Figure 21b, all authors have pub-
lished at least three times in three conferences related to speech commu-
nication / spoken language (EUROSPEECH, INTERSPEECH, ICSLP).
It contains nine communities, seven of them not being connected to
any other. It is interesting to notice that EUROSPEECH and ICSLP
were two conferences organized over a decade from 1990 to 1999 and
merged in 2000 giving rise to the INTERSPEECH conference (still active
in 2011). This indicates that the part of the research activity denoted
by the pattern is very homogeneous in terms of research domain. In
addition, since all researchers of the pattern have published at least
three times in EUROSPEECH, ICSLP and INTERSPEECH, this means
that the pattern depicts an activity over two decades, and that these
researchers are likely to have been active in the domain over a rather
long period. Moreover, from the personal pages of the authors, we
found out that in most cases a community is formed by people work-
ing in the same research institute. So, here most communities are
formed by researchers working in the field of speech processing and
not strongly publishing with researchers from other institutes. Such
structure with disconnected groups of people sharing similar interest
might be interesting for several tasks. For instance, it can give hints to
funding agencies to set up long term development strategies of collabo-
ration networks. It can also be helpful, in a normal day-to-day activity,
like finding reviewers for a article, by suggesting experts in the same
domain as the authors, but having no closed collaborations (no strong
coauthor relationship) with these authors, and also eventually having
no closed collaborations with the other experts (picking them in other
disconnected groups).

5.3.2 Performance study

Concerning time performances, Figure 22 show that the extraction
can be made in less than 20 minutes when k > 4 on the three datasets.
Indeed, the extraction requires less than a few tens of seconds on DBLP2

and DBLP3 for all recommended k values (between 3 and 6). On the
DBLP1 dataset (using the complete DBLP database) the extractions can
take several thousands of seconds, but remain feasible. We can also
notice that, as expected, for weaker constraints (lower values of α, γ,
and k) the runtime increases.

Regarding the number of output patterns, Figure 23 shows that it
shrinks fast when parameter values increase (i.e., stronger constraints).
In particular, when k increases by two, the size of the collection of
patterns decreases by more than one order of magnitude in all settings.

For the main memory usage, Table 5 reports the maximal memory
consumption during each extraction reported in this section.

5 mining collections of k-pcs 73

 0

 500

 1000

 1500

 2000

 2500

 3000

 3500

 4000

 4500

 1 2 3 4 5 6 7 8 9

R
u

n
ti
m

e
 (

in
 s

e
c
o

n
d

s
)

α

k = 3
k = 4
k = 5
k = 6

(a) Runtimes on DBLP1 with γ = 3

 0

 500

 1000

 1500

 2000

 2500

 3000

 3500

 4000

 4500

 2 3 4 5 6 7 8 9

R
u

n
ti
m

e
 (

in
 s

e
c
o

n
d

s
)

γ

k = 3
k = 4
k = 5
k = 6

(b) Runtimes on DBLP1 with α = 3

 10

 20

 30

 40

 50

 60

 70

 1 2 3 4 5 6 7 8 9

R
u

n
ti
m

e
 (

in
 s

e
c
o

n
d

s
)

α

k = 3
k = 4
k = 5
k = 6

(c) Runtimes on DBLP2 with γ = 3

 10

 20

 30

 40

 50

 60

 70

 2 3 4 5 6 7 8 9

R
u

n
ti
m

e
 (

in
 s

e
c
o

n
d

s
)

γ

k = 3
k = 4
k = 5
k = 6

(d) Runtimes on DBLP2 with α = 3

 1

 2

 3

 4

 5

 6

 7

 8

 9

 10

 1 2 3 4 5 6 7 8 9

R
u

n
ti
m

e
 (

in
 s

e
c
o

n
d

s
)

α

k = 3
k = 4
k = 5
k = 6

(e) Runtimes on DBLP3 with γ = 3

 1

 2

 3

 4

 5

 6

 7

 8

 9

 10

 2 3 4 5 6 7 8 9

R
u

n
ti
m

e
 (

in
 s

e
c
o

n
d

s
)

γ

k = 3
k = 4
k = 5
k = 6

(f) Runtimes on DBLP3 with α = 3

Figure 22.: Runtime for different sets of parameters on DBLP1, DBLP2, and DBLP3.

74 a pattern as a collection of subgraphs

 1

 10

 100

 1000

 10000

 100000

 1e+06

 1e+07

 1 2 3 4 5 6 7 8 9

N
u

m
b

e
r

o
f

C
o

H
o

P
s

α

k = 3

k = 4

k = 5

k = 6

(a) # CoHoP on DBLP1 with γ = 3

 1

 10

 100

 1000

 10000

 100000

 1e+06

 1e+07

 2 3 4 5 6 7 8 9

N
u

m
b

e
r

o
f

C
o

H
o

P
s

γ

k = 3

k = 4

k = 5

k = 6

(b) # CoHoP on DBLP1 with α = 3

 1

 10

 100

 1000

 10000

 100000

 1e+06

 1 2 3 4 5 6 7 8 9

N
u

m
b

e
r

o
f

C
o

H
o

P
s

α

k = 3

k = 4

k = 5

k = 6

(c) # CoHoP on DBLP2 with γ = 3

 1

 10

 100

 1000

 10000

 100000

 1e+06

 2 3 4 5 6 7 8 9

N
u

m
b

e
r

o
f

C
o

H
o

P
s

γ

k = 3

k = 4

k = 5

k = 6

(d) # CoHoP on DBLP2 with α = 3

 1

 10

 100

 1000

 10000

 100000

 1 2 3 4 5 6 7 8 9

N
u

m
b

e
r

o
f

C
o

H
o

P
s

α

k = 3

k = 4

k = 5

k = 6

(e) # CoHoP on DBLP3 with γ = 3

 1

 10

 100

 1000

 10000

 100000

 2 3 4 5 6 7 8 9

N
u

m
b

e
r

o
f

C
o

H
o

P
s

γ

k = 3

k = 4

k = 5

k = 6

(f) # CoHoP on DBLP3 with α = 3

Figure 23.: Number of CoHoP for different sets of parameters on DBLP1, DBLP2, and DBLP3.

5 mining collections of k-pcs 75

S#vert S#attr SavgDeg SavgAtt S#CoHoP

#vert 5,000-25,000 15,000 15,000 15,000 15,000

#attr 500 200-800 500 500 500

avgDeg 20 20 10-30 20 20

avgAtt 10 10 10 5-25 10

#CoHoP 300 300 300 300 100-500

Table 6.: Parameters used to generate the synthetic datasets.

5.3.3 Evaluation on synthetic datasets

In this section we describe an experimental evaluation of the algo-
rithm using synthetic datasets as made for the MHCSs in Section 4.3.4.

The synthetic datasets generator and the generation parameters are
the same as the ones used in the experiments for MHCS presented
in Section 4.3.4 except for the injected patterns. Here the number of
patterns is #CoHoP and three parameters control their structure: s, l,
and g.

All the injected CoHoP are structured such that they are formed by
g l-PCs. A l-PC is built by inserting g overlapping l-cliques in the
graph. Each l-clique share at most l− 1 vertices with the other l-cliques.
More precisely, the l-cliques are built from a previous l-clique (except
the first one which is picked at random) by removing a vertex and
adding a new vertex not present in any other l-clique forming the
injected CoHoP. The vertices forming the CoHoPs were then randomly
associated to s attributes. Table 6 summarizes the parameters settings
used for all synthetic datasets. These settings are similar to the ones
used for the MHCSs. From each random dataset, we obtained four
derived datasets by injecting four sets of random CoHoPs obtained
with the four following settings: (1) s = 2, l = 6, and g = 2, (2) s = 2,
l = 6, and g = 4, (3) s = 4, l = 6, and g = 2, and (4) s = 4, l = 6, and
g = 4. As for the experiments on the MHCSs, we used s, l, and g as
values for the extraction parameters and set α = s, k = l, and γ = g.
The corresponding runtimes are given Figure 24 where each point is
the average runtime of extractions over ten different random datasets.

These results show that the runtime scales well with respect to the
parameters of the attributed graph generation: number of vertices,
attributes and CoHoPs, average vertex degree and average number of
attributes with value True per vertex.

5.3.4 Comparison with baseline algorithm

Here we study the gain of each pruning techniques regarding the
runtime. We proposed four versions of the algorithm based on a
baseline algorithm corresponding to the naive version proposed in
Section 5.2.1. As for the MHCSs, we incrementally added the pruning
techniques to the baseline algorithm, starting from Pruning 1 to Pruning
4. The algorithm version using prunings 1+2+3+4 is then the same as
the one presented as Algorithm 11.

The experiments were only run over DBLP2 and DBLP3 since extrac-
tion runtimes using only Pruning 1 were prohibitive on DBLP1. For the

76 a pattern as a collection of subgraphs

 1

 2

 3

 4

 5

 6

 7

 8

 5000 10000 15000 20000 25000

R
u

n
ti
m

e
 (

in
 s

e
c
o

n
d

s
)

Number of vertices

α=2,γ=2,k=6
α=2,γ=4,k=6
α=4,γ=2,k=6
α=4,γ=4,k=6

 1

 2

 3

 4

 5

 6

 7

 8

 10 15 20 25 30
R

u
n

ti
m

e
 (

in
 s

e
c
o

n
d

s
)

Average vertex degree

α=2,γ=2,k=6
α=2,γ=4,k=6
α=4,γ=2,k=6
α=4,γ=4,k=6

 1

 2

 3

 4

 5

 6

 7

 8

 100 200 300 400 500 600 700 800 900

R
u

n
ti
m

e
 (

in
 s

e
c
o

n
d

s
)

Number of Attributes

α=2,γ=2,k=6
α=2,γ=4,k=6
α=4,γ=2,k=6
α=4,γ=4,k=6

 1

 2

 3

 4

 5

 6

 7

 8

 5 10 15 20 25

R
u

n
ti
m

e
 (

in
 s

e
c
o

n
d

s
)

Average number of attributes with value true per vertex

α=2,γ=2,k=6
α=2,γ=4,k=6
α=4,γ=2,k=6
α=4,γ=4,k=6

 1

 2

 3

 4

 5

 6

 7

 8

 100 150 200 250 300 350 400 450 500

R
u

n
ti
m

e
 (

in
 s

e
c
o

n
d

s
)

Number of CoHoP

α=2,γ=2,k=6
α=2,γ=4,k=6
α=4,γ=2,k=6
α=4,γ=4,k=6

Figure 24.: Runtimes for the extraction of CoHoP patterns in the collections of datasets S#vert,
SavgDeg, S#attr, SavgAtt and S#CoHoP .

5 mining collections of k-pcs 77

same reason, the runtimes without any pruning were not collected. The
results are presented in Figure 25. We observe that using incrementally
the Pruning 1 to 4 improves significantly the runtime in most cases.

78 a pattern as a collection of subgraphs

 1

 10

 100

 1000

 10000

 4 5 6 7 8

R
u

n
ti
m

e
 (

in
 s

e
c
o

n
d

s
)

α

pruning 1
prunings 1 and 2

prunings 1,2, and 3
all prunings

(a) DBLP2 with γ = 2 and k = 3.

 1

 10

 100

 1000

 10000

 4 5 6 7 8

R
u

n
ti
m

e
 (

in
 s

e
c
o

n
d

s
)

α

pruning 1
prunings 1 and 2

prunings 1,2, and 3
all prunings

(b) DBLP2 with γ = 3 and k = 3.

 1

 10

 100

 4 5 6 7 8

R
u

n
ti
m

e
 (

in
 s

e
c
o

n
d

s
)

α

pruning 1
prunings 1 and 2

prunings 1,2, and 3
all prunings

(c) DBLP2 with γ = 2 and k = 4.

 1

 10

 100

 4 5 6 7 8

R
u

n
ti
m

e
 (

in
 s

e
c
o

n
d

s
)

α

pruning 1
prunings 1 and 2

prunings 1,2, and 3
all prunings

(d) DBLP2 with γ = 3 and k = 4.

 1

 10

 100

 4 5 6 7 8

R
u

n
ti
m

e
 (

in
 s

e
c
o

n
d

s
)

α

pruning 1
prunings 1 and 2

prunings 1,2, and 3
all prunings

(e) DBLP3 with γ = 2 and k = 3.

 1

 10

 100

 4 5 6 7 8

R
u

n
ti
m

e
 (

in
 s

e
c
o

n
d

s
)

α

pruning 1
prunings 1 and 2

prunings 1,2, and 3
all prunings

(f) DBLP3 with γ = 3 and k = 3.

 1

 10

 4 5 6 7 8

R
u

n
ti
m

e
 (

in
 s

e
c
o

n
d

s
)

α

pruning 1
prunings 1 and 2

prunings 1,2, and 3
all prunings

(g) DBLP3 with γ = 2 and k = 4.

 1

 10

 4 5 6 7 8

R
u

n
ti
m

e
 (

in
 s

e
c
o

n
d

s
)

α

pruning 1
prunings 1 and 2

prunings 1,2, and 3
all prunings

(h) DBLP3 with γ = 3 and k = 4.

Figure 25.: Runtime for the extraction of CoHoP patterns using different pruning techniques on
DBLP2 and DBLP3. The scale is logarithmic for the runtime.

C O N C L U S I O N

In this section we presented the main contributions of this thesis.
In the Boolean attributed graph setting, we defined two classes of
patterns in order to find sets of homogeneous groups, namely, the
Maximal Homogeneous Cliques Sets (MHCS) and the Collections of
Homogeneous k-clique Percolated components (CoHoP).

Both the MHCSs and the CoHoPs are based on constraints specify-
ing a minimum number of shared attributes (the homogeneity) and a
minimum number of large groups forming a pattern. However, their
definitions differ in several points. These classes of patterns require
a different topology for the groups, a MHCS is formed by complete
subgraphs while a CoHoP is made of k-clique percolated components.
Moreover, a CoHoP is formed only by groups containing at least k ver-
tices, whereas a MHCS can collect small additional contextual groups
(i.e., groups containing less than k vertices). The definition of maximal-
ity used for the MHCSs also requires that a MHCS cannot be include
in another MHCS.

Notice that the cliques of a MHCS M obtained with parameters α, γ
and κ cannot always be used to build a CoHoP satisfying parameters
α, γ and k = κ. This is because two cliques of M containing more than
κ vertices can be merged (if they shared at least k vertices) in a single
k-PC. So, it is possible that the subgraph induced by the vertices in M

contains less than γ k-PCs, and cannot form a CoHoP. Thus, there is no
direct relationship between the number of MHCSs and the number of
CoHoPs. Depending on the data and for a parameter setting α, γ and
k = κ, we can obtain more MHCSs or more CoHoPs.

In order to compute the collections of patterns, we proposed two
sound and complete algorithms. These algorithms reduce the search
space by taking advantage of several pruning techniques, for which we
prove the safety.

The performance of these algorithms is studied using large real
and synthetic datasets. The results show that both approaches scale
well with respect to different attributed graph characteristics. We also
presented several examples of usage for both classes of patterns for the
analysis of a network of scientific collaborations.

Beyond the design of the algorithms and their implementation as
research prototypes, we also developed a fully fledge software tool in
order to ease the visualisation and browsing of the MHCSs and CoHoPs
(software presented in Appendix B).

79

Part IV

A P P L I C AT I O N T O M O L E C U L A R B I O L O G Y

I N T R O D U C T I O N

The accumulation of large protein-protein interaction (PPI) networks
and the need for their analysis has lead to the emergence of new re-
search domains in systems biology. Recently, the simultaneous use
of both PPI networks and gene related properties such as biological
functions [69], species [49] or expression in biological situations [86] has
provided biological contexts from which meaningful structures can be
extracted. When using both PPI networks and the biological functions
associated to genes, an important number of methods have been pro-
posed to extract functional modules (a short overview is proposed in [86]
and [94]). They are usually defined as a group of cellular component
(e.g., proteins) and their interactions that can be associated to a specific
biological function [39].

Our application, made in collaboration with an expert in biology
(Dr. Olivier Gandrillon 1), draws its motivation from the result in [89]
stating that it is not possible to infer the PPI network using only gene co-
expression data. Since genes co-expressed in the same set of biological
situations do not necessarily produce proteins in interaction, one can
deduce that there might be several groups of interacting proteins,
or protein modules whose corresponding genes are overexpressed in
the same biological situations. Such groups might have strong inner
interaction, and few or no interactions with proteins in other protein
modules. Then, when analysing a protein module, it is possible to get a
larger picture by retrieving the other modules of proteins produced by
genes involved in the same set of biological situations. Studying such
structures might also be useful when studying biological questions
regarding modular cell biology as proposed in [39]. Such questions
might be, for instance: Why protein modules overexpressed in similar
situations are disconnected? How do connections between modules
change during evolution?

Given this context, the MHCS and CoHoP patterns fit well for the
analysis of such data. The proteins are encoded as vertices, and their
interactions as edges. Boolean attributes, representing the biological
situations, are associated to each protein. These attributes encode the
fact that the protein is considered to be overexpressed or not in a given
biological situation. In such setting, a MHCS or a CoHoP is a collection
of protein modules where all proteins correspond to genes that are
overexpressed in a same set of biological situations.

In the following sections, we report experimental results in two
biological datasets using both MHCS and CoHoP patterns. We will
use the term pattern to refer to both MHCSs and CoHoPs. After a
description of the datasets we propose a measure based on a p-value
to assess the biological interestingness of the extracted patterns. Then,
we focus on four patterns, two MHCSs and two CoHoPs, and we
provide a biological interpretation of these patterns. Finally, we present
quantitative results regarding the runtime and the number of output
patterns.

1. Centre de Génétique et de Physiologie Moléculaire et Cellulaire, CNRS UMR 5534,
Villeurbanne.

83

6A P P L I C AT I O N T O M O L E C U L A R B I O L O G Y

6.1 the dataset

We built two datasets, BioData150 and BioData400, by processing and
merging information from two databases: STRING 1 [42] and SQUAT 2

[48]. STRING integrates data on protein-protein interactions from differ-
ent sources (e.g., genomic data, co-expressions, other wet experiments,
literature). Evidences of interaction are weighted depending on the
source, and a confidence score between 150 and 1000 is given. The
dataset BioData150 have been built using all reported interactions (i.e.,
with a confidence threshold of 150). The second dataset, BioData400,
uses all interaction with a confidence higher or equal to 400, that is the
default STRING selection threshold. For the sake of model simplicity,
we kept only proteins for which correspond a unique gene encoding
the protein (this is the case for most of the proteins). So, the graph
can also be interpreted as a gene-gene interaction graph, and in the
following we will use both the terms genes and proteins to refer to the
vertices.

SQUAT is a public database of Boolean gene expression data re-
sulting from SAGE experiments [87]. A complete description of the
discretization process is available in [6].

Both databases follow the HUGO 3 nomenclature (see Figure 26) to
encode gene names, so this nomenclature was used to link them. In
our experiments, only Human species genes and their corresponding
proteins were used. For these genes we have expression data in SQUAT
for 486 biological situations. Several measures describing the datasets
are presented in Table 7. A more complete description of the data is
available in Appendix A.

The qualitative experiments were performed using the BioData400
since we want to consider only the interactions between the proteins
for which we have a relatively high confidence. The BioData150 dataset
is used for the quantitative experiments in order to compare the perfor-
mances with BioData400 which have a lower average degree.

6.2 evaluation of the pattern collection

6.2.1 The L2L Measure

An important difficulty of experiments on real datasets is the qualita-
tive evaluation of the whole collection that is output, without having to
ask to an expert to interpret/to assess the patterns one by one. Different
statistical approaches exist to measure pattern significance, however
in most cases they do not take in account domain information. In the
case of the patterns extracted from the bibliographic dataset, we are
not aware of typical tool to assess such collections, but fortunately, for

1. http://string-db.org/, snapshot of November 2009.
2. http://bsmc.insa-lyon.fr/squat/, snapshot of November 2009
3. http://www.genenames.org/

85

http://string-db.org/
http://bsmc.insa-lyon.fr/squat/
http://www.genenames.org/

86 application to molecular biology

(a) Screen copy of the SQUAT access web site. It represents three biological situations,
termed libraries, where the gene CRX is overexpressed.

(b) A protein protein interaction network containing gene CRX from the STRING access
web site.

Figure 26.: Screen copy from SQUAT and STRING databases, showing information about gene
CRX (HUGO nomenclature).

6 application to molecular biology 87

BioData150 BioData400

Vertices 15,571 15,571

Attributes 486 486

Edges 458,713 155,784

Avg. degree 58.92 20.01

Maximum degree 1500 496

Avg. attributes/vertex 11.46 11.46

Maximum attributes 92 92

Table 7.: Several characteristics of the datasets BioData150 and BioData400.

sets of genes, as the ones contained in the MHCSs and CoHoPs found
in the biological dataset, some methods have already been designed.

So, it is possible to performed such systematic evaluation on complete
collections of patterns for various parameter settings. To this aim, we
used the p-value measure as computed by the L2L method [65], a
well known tool designed to facilitate the interpretation of microarray
experiments results. The measure is built using predefined list of genes,
where each list is a list of genes known to be involved in a similar
biological process (e.g., transcription, biological regulation, vision).

The L2L p-value for a set of genes G and an L2L list of genes L

is the probability to obtain the overlap of size at least |G∩ L| if the
elements in L were chosen uniformly at random (the null hypothesis).
It is computed with the following cumulative binomial distribution, as
recommended in [65]:

p-value = 1−

q−1
∑

x=0

(

n

x

)

px(1− p)n−x

The number of trials, n, is the number of genes in L; the number of
success, q, is the number of genes of L contained in G; and for one trial
the probability of success, p, is the number of genes in G divided by
the number of different genes in the union of the lists (13,746 genes 4).

For a given pattern, we took as set G the set of all genes in this
pattern. Then, among all L2L lists, we retained the list, noted LG, that
led to the lowest p-value with respect to G. So, LG was the list such
that the observed intersection G ∩ LG was the less likely to occur by
chance. The pattern was then simply associated to this L2L list LG and
to the corresponding p-value. We set a base significance level of 0.05.
Multiple hypothesis testing (one test against each L2L list) increased the
odds to have a low p-value by chance. So, we adjusted the significance
level using the common Bonferroni correction (simply dividing the base
significance level by the number of tests). Since we used the 2, 075 lists
of L2L being related to biological functions, this correction resulted in
a significance threshold of 0.05/2075 ≈ 2.4× 10−5. Then, for a pattern
associated to a list LG, if the corresponding p-value was lesser than
the adjusted significance threshold, we considered that the pattern was
significantly related to the biological function associated to LG in L2L.

4. We used a snapshot of the L2L lists based on the biological process reported in
Gene Ontology. It contains 2,075 lists corresponding to a total of 13,746 different genes.

88 application to molecular biology

6.2.2 Global evaluation of complete collections of patterns

The global evaluation of the collection of patterns has been performed
using BioData400 in order to consider only the protein interactions for
which we have a high confidence. Figure 27 and 28 present cumulative
distributions of the number of respectively MHCS and CoHoP patterns
extracted for different values of α, γ, κ, and k, according to their
associated p-value. For most parameter settings (16 out of 20), at
least 70 % of the patterns correspond to a p-value lesser than the
adjusted significance threshold. The four cases that do not lead to such
promising collections of patterns are among the weakest constraint
settings. Indeed, this is observed for the MHCSs (see Figure 27), when
κ = 2 and for the CoHoPs (see Figure 28), when k = 2 or α = 2 or γ = 2.
We can notice that when the values of the parameters increase (i.e.,
the selection constraints are stronger), this also increases most of the
times the percentage of patterns with a p-value below the significance
threshold (i.e., patterns significantly related to a biological function by
the L2L measure). This is an interesting evidence, advocating that these
constraints are appropriate and meaningful in this application.

6.2.3 Interpretation

6.2.3.1 Analysis of two MHCSs

The previous experiments, run to assess whole sets of extracted
patterns, helped us then to set the parameters to find a meaningful
and easy to browse collection (i.e., rather small and containing patterns
having low p-values). As shown Figure 27, three collections were such
that 90% of the MHCSs have a p-value lesser than or equal to 10−10.
So, we choose to focus on one of these collections, and selected the one
obtained for the thresholds α = 3, κ = 4 and γ = 3. It contained 10
MHCSs, and here we present two of them.

The first MHCS is depicted Figure 29. For the sake of readability,
Figure 29a shows the core cliques only (cliques having at least κ ver-
tices), and all interactions (all cliques excluding isolated vertex) are
given Figure 29b. This MHCS contains 17 cliques of size at least 4, and
all genes are overexpressed in 3 biological situations that correspond to
normal activities of retinal cells. This MHCS has the lowest L2L p-value
(1.3× 10−25) of the whole collection, and this p-value corresponds to
the L2L list entitled sensory perception of light stimulus 5. This advocate
for the biological coherence of the pattern since the common biological
situations are retinal cell activities. With respect to the structure of the
interaction graph, the MHCS reveals in Figure 29a that the core cliques
are connected together, in particular through genes CRX and RHO, as
confirmed in the Table 29c where it can be verified that CRX and RHO
belong to all core cliques, except one. More global information about
the structure are given Figure 29b that contains all interactions in the
pattern and shows that most of these interactions occur within the core
cliques (63 edges out of 87).

Additionally, the Table 29c also gives a finer grain L2L scoring of
the core part of the pattern. For each core cliques (column 3), its own
L2L measure has been computed and the table reports the retained

5. Sensory perception of light stimulus is defined as the series of events required for
an organism to receive a sensory light stimulus, convert it to a molecular signal, and
recognize and characterize the signal.

6 application to molecular biology 89

 1

 10

 100

 1000

 1
e
−

1
4

 1
e
−

1
2

 1
e
−

1
0

 1
e
−

0
8

 1
e
−

0
6

 0
.0

0
0
1

 0
.0

1

 1

N
u
m

b
e
r

o
f
M

H
C

S
s

p−value

α=2, γ=3, κ=3
α=3, γ=3, κ=3
α=4, γ=3, κ=3
α=5, γ=3, κ=3

 0

 20

 40

 60

 80

 100

 1
e
−

1
4

 1
e
−

1
2

 1
e
−

1
0

 1
e
−

0
8

 1
e
−

0
6

 0
.0

0
0
1

 0
.0

1

 1

P
e
rc

e
n
ta

g
e
 o

f
M

H
C

S
s

p−value

α=2, γ=3, κ=3
α=3, γ=3, κ=3
α=4, γ=3, κ=3
α=5, γ=3, κ=3

 1

 10

 100

 1000

 1
e
−

1
4

 1
e
−

1
2

 1
e
−

1
0

 1
e
−

0
8

 1
e
−

0
6

 0
.0

0
0
1

 0
.0

1

 1

N
u
m

b
e
r

o
f
M

H
C

S
s

p−value

γ=2, α=3, κ=3
γ=3, α=3, κ=3
γ=4, α=3, κ=3

 0

 20

 40

 60

 80

 100

 1
e
−

1
4

 1
e
−

1
2

 1
e
−

1
0

 1
e
−

0
8

 1
e
−

0
6

 0
.0

0
0
1

 0
.0

1

 1

P
e
rc

e
n
ta

g
e
 o

f
M

H
C

S
s

p−value

γ=2, α=3, κ=3
γ=3, α=3, κ=3
γ=4, α=3, κ=3

 1

 10

 100

 1000

 10000

 1
e
−

1
4

 1
e
−

1
2

 1
e
−

1
0

 1
e
−

0
8

 1
e
−

0
6

 0
.0

0
0
1

 0
.0

1

 1

N
u
m

b
e
r

o
f
M

H
C

S
s

p−value

κ=2, α=3, γ=3
κ=3, α=3, γ=3
κ=4, α=3, γ=3

 0

 20

 40

 60

 80

 100

 1
e
−

1
4

 1
e
−

1
2

 1
e
−

1
0

 1
e
−

0
8

 1
e
−

0
6

 0
.0

0
0
1

 0
.0

1

 1

P
e
rc

e
n
ta

g
e
 o

f
M

H
C

S
s

p−value

κ=2, α=3, γ=3
κ=3, α=3, γ=3
κ=4, α=3, γ=3

Figure 27.: Cumulative distributions of p-values (on dataset BioData400 with α, γ and κ varying)
in number of MHCSs extracted (left column) and in percentage of the MHCSs
extracted (right column). P-value scale is logarithmic. The vertical dotted line
corresponds to the significance level using Bonferroni correction (i.e., ≈ 2.4× 10−5).

90 application to molecular biology

 1

 10

 100

 1000

 1
e
−

1
4

 1
e
−

1
2

 1
e
−

1
0

 1
e
−

0
8

 1
e
−

0
6

 0
.0

0
0
1

 0
.0

1

 1

N
u
m

b
e
r

o
f
C

o
H

o
P

s

p−value

α=2, γ=3, k=3
α=3, γ=3, k=3
α=4, γ=3, k=3
α=5, γ=3, k=3

 0

 20

 40

 60

 80

 100

 1
e
−

1
4

 1
e
−

1
2

 1
e
−

1
0

 1
e
−

0
8

 1
e
−

0
6

 0
.0

0
0
1

 0
.0

1

 1

P
e
rc

e
n
ta

g
e
 o

f
C

o
H

o
P

s
p−value

α=2, γ=3, k=3
α=3, γ=3, k=3
α=4, γ=3, k=3
α=5, γ=3, k=3

 1

 10

 100

 1
e
−

1
4

 1
e
−

1
2

 1
e
−

1
0

 1
e
−

0
8

 1
e
−

0
6

 0
.0

0
0
1

 0
.0

1

 1

N
u
m

b
e
r

o
f
C

o
H

o
P

s

p−value

γ=2, α=3, k=3
γ=3, α=3, k=3
γ=4, α=3, k=3

 0

 20

 40

 60

 80

 100

 1
e
−

1
4

 1
e
−

1
2

 1
e
−

1
0

 1
e
−

0
8

 1
e
−

0
6

 0
.0

0
0
1

 0
.0

1

 1

P
e
rc

e
n
ta

g
e
 o

f
C

o
H

o
P

s

p−value

γ=2, α=3, k=3
γ=3, α=3, k=3
γ=4, α=3, k=3

 1

 10

 100

 1000

 1
e
−

1
4

 1
e
−

1
2

 1
e
−

1
0

 1
e
−

0
8

 1
e
−

0
6

 0
.0

0
0
1

 0
.0

1

 1

N
u
m

b
e
r

o
f
C

o
H

o
P

s

p−value

k=2, α=3, γ=3
k=3, α=3, γ=3
k=4, α=3, γ=3

 0

 20

 40

 60

 80

 100

 1
e
−

1
4

 1
e
−

1
2

 1
e
−

1
0

 1
e
−

0
8

 1
e
−

0
6

 0
.0

0
0
1

 0
.0

1

 1

P
e
rc

e
n
ta

g
e
 o

f
C

o
H

o
P

s

p−value

k=2, α=3, γ=3
k=3, α=3, γ=3
k=4, α=3, γ=3

Figure 28.: Cumulative distributions of p-values (on dataset BioData400 with α, γ and κ varying)
, in number of CoHoPs extracted (left column) and in percentage of the CoHoPs
extracted (right column). P-value scale is logarithmic. The vertical dotted line
corresponds to the significance level using Bonferroni correction (i.e., ≈ 2.4× 10−5).

6 application to molecular biology 91

p-value (column 1) and the name of the corresponding L2L list (column
2). In this table, the name perception of light is simply a short name
used for sensory perception of light stimulus. As mentioned above, this
biological process was associated to the whole pattern, but the table
shows that it is also associated to most of the core cliques of the pattern
in isolation. For the other core cliques, two are associated to the more
specific process of phototransduction and the last one is associated to the
more general process of sensory perception.

A different kind of structures is illustrated by a second MHCS pre-
sented Figure 30. Here, the core cliques of the patterns, depicted
Figure 30a, show that the pattern is structured around two separated
components (no direct interaction between the genes of these two
groups), and the context, given Figure 30b, points out that most of the
interactions are not in the core cliques (35 edges out of 98).

Additionally, from a structural point of view, Figure 30a reveals that
gene MYD88 seems to act as a local hub for the core cliques. This is
confirmed by Figure 30c), where MYD88 is the only genes appearing in
all core cliques (except in the isolated one).

For this MHCS all biological situations in which the genes are overex-
pressed correspond to activities of cells from the immune system, more
precisely, they are all overexpressed simultaneously in four situations
corresponding to normal activities of white blood cells. Here again,
this is very coherent with the L2L list associated to the whole MHCS
(p-value of 3.29× 10−15) that is entitled immune response. The L2L lists
which correspond to the different core cliques that compose this MHCS
are given Fig. 30c. While one of the core clique is tagged (as the whole
MHCS) as being involved in the general immune response process,
three other are associated to more specific immune responses: response
to virus and inflammatory response. Finally two other core cliques form
a set of genes involve in a regulation process and the last one (the one
not directly connected to the other core cliques) is associated to a signal
transduction process.

6.2.3.2 Analysis of two CoHoPs

Similarly to what have been done for the MHCSs, we used the
results presented Figure 28 to set the parameters, but we also wanted
the CoHoPs to share as much biological situations as possible. The
parameter setting α = 4, γ = 3 and k = 3 provides a collection of 25
CoHoPs with at least 70% of them having a p-value that satisfies to the
significance threshold retained (Figure 28, top right graph).

We describe two CoHoPs from this collection.
The first one is presented Figure 31. It is associated to the L2L list

“mitochondrial electron transport, NADH to ubiquinone” with a p-value
of 9.86× 10−10, and describes a group of genes that are simultaneously
overexpressed in four biological situations of a specific breast carcinoma
cell line (ZR75). Three groups of genes appear in the pattern as three k-
PCs. This exhibits three protein modules, all corresponding to different
very specific functions, as shown by the three associated L2L lists given
Table 31b (and confirmed by the expert), but all being active in the
same four biological situations.

The CoHoPs can also contain groups with similar functions, as for
instance the second CoHoP presented Figure 32. This CoHoP is asso-
ciated to the L2L list “intracellular signalling cascade” with a p-value

92 application to molecular biology

GNGT1

PDE6G

RBP3

PRPH2

ROM1

SAG

CRX

RLBP1PDE6AABCA4

GNB1

GUCA1A

RHO

CNGB1

TULP1

RCVRN

RDH8

(a) Only κ-maximal cliques. A colour corresponds to each κ-maximal clique,
vertices in multiple colours are part of several 4-maximal cliques.

NETO1

GNGT1

GDI1

PDE6G

RBP3

PRPH2

WIF1

ROM1

SEPW1

SAG

GUCA1B

DRD4

CRX

ALDOC

ATP6V0C

RLBP1

PDE6A

VSX1

ENO2
CP

ABCA4

PPEF2

PPP3CC
GNB1

GUCA1A

PPA1

RHO

CNGB1

TULP1 SYP

RCVRN

TF

RDH8

VAMP2

ATP1B2

GNG13

CA2

(b) All cliques except single node cliques. A colour corresponds to each κ-maximal
cliques. Vertices in grey are not in a 4-maximal cliques.

p-value L2L list Protein module

9.89× 10−13 perception of light CNGB1,CRX,PDE6A,RHO,RLBP1,TULP1

8.09× 10−11 perception of light CRX,PDE6A,PDE6G,RHO ROM1

8.09× 10−11 perception of light CRX,RBP3,RCVRN,RHO,SAG

8.09× 10−11 perception of light CNGB1,CRX,PRPH2,RHO,TULP1

8.09× 10−11 perception of light ABCA4,CNGB1,CRX,PDE6A,TULP1

8.09× 10−11 perception of light CRX,PRPH2,RHO,ROM1,TULP1

8.09× 10−11 perception of light CRX,PDE6A,RHO,ROM1,TULP1

8.09× 10−11 perception of light CNGB1,CRX,PDE6A,PDE6G,RHO

2.91× 10−09 phototransduction CRX,RCVRN,RHO,TULP1

5.69× 10−09 phototransduction CRX,GNGT1,RCVRN,RHO,SAG

6.71× 10−09 perception of light RBP3,RDH8,RHO,RLBP1

6.71× 10−09 perception of light CNGB1,CRX,GUCA1A,RHO

6.71× 10−09 perception of light CRX,PRPH2,RHO,SAG

6.71× 10−09 perception of light CRX,RBP3,RHO,RLBP1

1.63× 10−08 perception of light CRX,GNGT1,GUCA1A,RHO,SAG

1.63× 10−08 perception of light CRX,GNB1,PDE6A,PDE6G,RHO

7.36× 10−05 sensory perception CRX,GNB1,GNGT1,RHO

(c) p-value and L2L list for the cliques having at least 4 vertices

Figure 29.: MHCS extracted from dataset BioData400 with α = 3, κ = 4 and γ = 3. All genes are
overexpressed in 3 biological situations corresponding to normal activities of retinal
cells.

6 application to molecular biology 93

ARHGAP4

RHOT2

STAT1

ARHGDIB

TNFAIP2 IRF8

TLR8CCR2

S100A9 UNC93B1

GMIPTLR5

MYD88

TNFAIP8L2

RAC2

CD4

(a) Only 4-maximal cliques. A colour corresponds to each κ-maximal clique, vertices in multiple colours are
part of several 4-maximal cliques.

CD244

LYST

ARHGAP4

RHOT2

CAPZB
DECR1

CIDEB

HCK

DOK2

STAT1

POU2F2

ADRBK1

TNFRSF1B

SCAP

CAPZA2

CD300LF
FCER1G

OAS1

IL27RA

PIK3AP1

ARHGDIB

TNFAIP2

IRF8

SELPLG

OAZ2

TLR8

DOCK2

SIPA1L1 CD300C
PSME2

CSNK2B

TRIM22
ANAPC4

PSMB10

EFHD2

HADHA

HCLS1

FUT7

HK3

CCR2

S100A9

UNC93B1

WAS RXRA

GMIP

PILRA

TNFRSF14

ARPC5

PLCB2

TLR5

CD48
FMNL1

PIAS4

MYD88

NADK

TNFAIP8L2

RAC2

FPR1

CD4

NAGK

BTK

(b) All cliques except single node cliques. A colour corresponds to each κ-maximal cliques. Vertices in grey
are not in a 4-maximal cliques.

p-value L2L list Protein module

1.22× 10−07 response to virus IRF8,MYD88,STAT1,TLR8

1.22× 10−07 response to virus MYD88,STAT1,TLR8,UNC93B1

4.39× 10−07 signal transduction ARHGAP4,ARHGDIB,GMIP,RAC2,RHOT2

4.15× 10−06 inflammatory response CCR2,CD4,MYD88,S100A9

8.83× 10−06 regulation process CCR2,CD4,MYD88,TNFAIP8L2

8.83× 10−06 regulation process CCR2,CD4,MYD88,TNFAIP2

4.11× 10−05 immune response IRF8,MYD88,STAT1,TLR5

(c) L2L list (middle column) having the best p-value (left column) for each protein module (right column)
forming the CoHoP.

Figure 30.: MHCS extracted from dataset BioData400 with α = 3, κ = 4 and γ = 3. All genes are
overexpressed in 4 biological situations corresponding to normal activities of white
blood cells. In the table, signal transduction and regulation process are short names for
respectively small GTPase mediated signal transduction and positive regulation of cytokine
biosynthetic process.

94 application to molecular biology

FUS

NDUFA3

ERCC4POLR2H

POLR2J
UBE2C

PSMA7

NDUFB3 NDUFAB1

TH1L

NDUFA9

PSMA6

NDUFS8

NFX1

RPS19
(a) Protein protein interaction network for 15 proteins forming the three

protein modules in the CoHoP. A colour corresponds to each k-PC.

p-value L2L list Protein module

4.15× 10−12 mitochondrial electron transport, NDUFA3,NDUFA9,NDUFAB1

NADH to ubiquinone NDUFB3,NDUFS8

1.75× 10−05 ubiquitin-dependent PSMA6,PSMA7,RPS19,UBE2C

protein catabolic process

6.45× 10−03 negative regulation of transcription ERCC4,FUS,NFX1,POLR2H,POLR2J

TH1L

(b) L2L list (middle column) having the best p-value (left column) for each protein module (right column)
forming the CoHoP.

Figure 31.: A CoHoP extracted from dataset BioData400 with α = 4, k = 3 and γ = 3. The genes
are overexpressed in four biological situations related to breast carcinoma cell line,
ZR75.

of 3.51× 10−7. It contains three k-PCs associated to the L2L lists given
Table 32b, all corresponding to functions involved in signalling path-
ways, according to the expert knowledge. We can also notice that if we
had considered MHCS instead of CoHoP, the groups formed by four
vertices in Figure 31 (UBE2C, PSMA6, RPS19, PSMA7) and Figure 32
(ADRBK1, PPP1R9B, RGS2, PLCB2) would have been split since they
are formed by 3-cliques.

6.3 performance evaluation

Here we present a quantitative evaluation of the MHCSs and CoHoPs
patterns on the biological datasets. The experiments were performed
on a PC running GNU/Linux with a 3 GHz Core 2 Duo CPU and 8 GB
of main memory installed. Regarding runtime, Figure 33 shows that all
extractions can be made in less than 6 seconds and that the runtime is
smaller when extracting CoHoP patterns compared to MHCS, except
when α = 1.

6 application to molecular biology 95

CCR2

PLCB2

CD4

GMIP

TLR8

RGS2

ARHGDIB

TNFRSF1B

SECTM1
PSME2

IL27RA

IRF8

RHOG

JAK2

SRGAP2

STAT1

PPP1R9B

ADRBK1

ARHGAP4

MYD88

STAT5B

RAC2

TNFAIP8L2

S100A9UNC93B1

(a) Protein protein interaction network for 15 proteins forming the three protein modules in the
CoHoP. A colour corresponds to each k-PC.

p-value L2L list Protein module

1.02× 10−07 JAK-STAT cascade CCR2,CD4,IL27RA,IRF8,JAK2,MYD88,PSME2

S100A9,SECTM1,STAT1,STAT5B,TLR8

TNFAIP8L2,TNFRSF1B,UNC93B1

1.55× 10−05 Rho protein signal ARHGAP4,ARHGDIB,GMIP,RAC2

transduction RHOG,SRGAP2

5.91× 10−05 regulation of G-protein ADRBK1,PLCB2,PPP1R9B,RGS2

(b) L2L list (middle column) having the best p-value (left column) for each protein module (right column)
forming the CoHoP.

Figure 32.: A CoHoP extracted from dataset BioData400 with α = 4, k = 3 and γ = 3. The
genes are overexpressed four biological situations related to antigen-purified CD14+
monocytes.

96 application to molecular biology

 1

 2

 3

 4

 5

 6

 2 3 4 5 6 7 8 9

R
u
n
ti
m

e
 (

in
 s

e
c
o
n
d
s
)

γ

κ = 3
κ = 4
κ = 5
κ = 6

(a) MHCSs on BioData150 with α = 3.

 1

 2

 3

 4

 5

 6

 2 3 4 5 6 7 8 9

R
u
n
ti
m

e
 (

in
 s

e
c
o
n
d
s
)

γ

k = 3
k = 4
k = 5
k = 6

(b) CoHoPs on BioData150 with α = 3.

 1

 2

 3

 4

 5

 6

 1 2 3 4 5 6 7 8 9

R
u
n
ti
m

e
 (

in
 s

e
c
o
n
d
s
)

α

κ = 3
κ = 4
κ = 5
κ = 6

(c) MHCSs on BioData150 with γ = 3.

 1

 2

 3

 4

 5

 6

 1 2 3 4 5 6 7 8 9

R
u
n
ti
m

e
 (

in
 s

e
c
o
n
d
s
)

α

k = 3
k = 4
k = 5
k = 6

(d) CoHoPs on BioData150 with γ = 3.

 1

 2

 3

 4

 5

 6

 2 3 4 5 6 7 8 9

R
u
n
ti
m

e
 (

in
 s

e
c
o
n
d
s
)

γ

κ = 3
κ = 4
κ = 5
κ = 6

(e) MHCSs on BioData400 with α = 3.

 1

 2

 3

 4

 5

 6

 2 3 4 5 6 7 8 9

R
u
n
ti
m

e
 (

in
 s

e
c
o
n
d
s
)

γ

k = 3
k = 4
k = 5
k = 6

(f) CoHoPs on BioData400 with α = 3.

 1

 2

 3

 4

 5

 6

 1 2 3 4 5 6 7 8 9

R
u
n
ti
m

e
 (

in
 s

e
c
o
n
d
s
)

α

κ = 3
κ = 4
κ = 5
κ = 6

(g) MHCSs on BioData400 with γ = 3.

 1

 2

 3

 4

 5

 6

 1 2 3 4 5 6 7 8 9

R
u
n
ti
m

e
 (

in
 s

e
c
o
n
d
s
)

α

k = 3
k = 4
k = 5
k = 6

(h) CoHoPs on BioData400 with γ = 3.

Figure 33.: Extraction runtime for MHCSs and CoHoPs using different sets of parameters on
BioData150 and BioData400.

6 application to molecular biology 97

 1

 10

 100

 1000

 10000

 2 3 4 5 6 7 8 9

N
u
m

b
e
r

o
f
M

H
C

S
s

γ

κ = 3

κ = 4

κ = 5

κ = 6

(a) # MHCSs on BioData150 with α = 3.

 1

 10

 100

 1000

 10000

 2 3 4 5 6 7 8 9

N
u
m

b
e
r

o
f
C

o
H

o
P

s

γ

k = 3

k = 4

k = 5

k = 6

(b) # CoHoPs on BioData150 with α = 3.

 1

 10

 100

 1000

 10000

 1 2 3 4 5 6 7 8 9

N
u
m

b
e
r

o
f
M

H
C

S
s

α

κ = 3

κ = 4

κ = 5

κ = 6

(c) # MHCSs on BioData150 with γ = 3.

 1

 10

 100

 1000

 10000

 1 2 3 4 5 6 7 8 9

N
u
m

b
e
r

o
f
C

o
H

o
P

s

α

k = 3

k = 4

k = 5

k = 6

(d) # CoHoPs on BioData150 with γ = 3.

 1

 10

 100

 1000

 2 3 4 5 6 7 8 9

N
u
m

b
e
r

o
f
M

H
C

S
s

γ

κ = 3

κ = 4

κ = 5

κ = 6

(e) # MHCSs on BioData400 with α = 3.

 1

 10

 100

 1000

 2 3 4 5 6 7 8 9

N
u
m

b
e
r

o
f
C

o
H

o
P

s

γ

k = 3

k = 4

k = 5

k = 6

(f) # CoHoPs on BioData400 with α = 3.

 1

 10

 100

 1000

 1 2 3 4 5 6 7 8 9

N
u
m

b
e
r

o
f
M

H
C

S
s

α

κ = 3

κ = 4

κ = 5

κ = 6

(g) # MHCSs on BioData400 with γ = 3.

 1

 10

 100

 1000

 1 2 3 4 5 6 7 8 9

N
u
m

b
e
r

o
f
C

o
H

o
P

s

α

k = 3

k = 4

k = 5

k = 6

(h) # CoHoPs on BioData400 with γ = 3.

Figure 34.: Number of extracted MHCSs and CoHoPs using different sets of parameters on
BioData150 and BioData400. The line is not drawn if no pattern are output for a set
of parameters.

C O N C L U S I O N

In this part, we applied our results in the context of a protein-protein
interaction networks with biological situations associated to the proteins.
Using a p-value measure, we experimentally shown that for reasonable
ranges of parameters, most of the extracted groups are coherent with
the current knowledge in biology.

Moreover, in collaboration with a domain expert, we were able to
interpret several patterns. We also provided a performance evaluation
showing that the MHCSs and CoHoPs can be extracted in a few seconds
for real settings.

Due to the data collection process, which might lead to missing
values, the CoHoP patterns seems to be well adapted for the discovery
of set of groups in these data (a dense subgraph with a few missing
edges is less likely to be counted as several groups). Moreover, the
presented runtimes indicate that extracting CoHoPs was faster than
extracting MHCSs in most experiments on these data. However, the
MHCSs remain interesting when one wants to find sets of groups
formed by objects being all pairwise connected.

99

Part V

C O N C L U S I O N

C O N C L U S I O N

In this thesis, we proposed to identify collections of homogeneous
groups in attributed graphs. This work complete the existing ap-
proaches that consider patterns formed by either (1) a single dense
homogeneous group or (2) a set of homogeneous but not necessarily
dense groups.

summary of our contributions

Our main contribution is the definition of two classes of patterns
used to compute homogeneous collections of dense subgraphs.

We first proposed the Maximal Homogeneous Clique Sets (MHCS),
which are formed by collections of cliques where the vertices are homo-
geneous with respect to the values of the attributes. The second class
of patterns, named Collection of Homogeneous k-clique Percolated
components (CoHoP) extends the MHCS in order to allow missing
values in the pattern. They are based on a relaxed notion of density
which allows the subgraphs not to be fully pairwise connected. Two
constraint-based algorithms were proposed in order to compute the
complete collections of patterns. These algorithms take advantage of
several pruning techniques, for which we provided proof of correctness,
to reduce the search space. The practical interest of the MHCSs and
the CoHoPs are presented in two contexts, a scientific collaboration
network and a protein protein interaction network. The scalability and
the performances of our algorithms were also studied by performing
experiments on synthetic datasets and large real datasets.

We also developed a software tool in order to extract, visualise
and browse collections of patterns. This software has been used by
another group of researchers for the analysis of large texts. Their
results have been published in [72]. They propose to extract CoHoP
patterns in an attributed graph where the vertices represent sentences
and the attributes associated to a vertex are the lexical units in the
corresponding sentence. They show that the CoHoPs can be used to
study the structures called sentence networks in linguistic.

future directions of work

Browsing general and specific patterns

A possible improvement for the analysis of CoHoP patterns is to give
the ability to browse the collection of more general or more specific
patterns. More precisely, given X a CoHoP pattern associated to a
set of attributes, another pattern is considered more general if it is
associated to a subset of these attributes and more specific if it is
associated to a superset of these attributes. The more general patterns
give the context of the pattern X with respect to some attributes, while a
more specific ones highlights a subpart of X (a subgraph sharing more
attributes). Indeed, very preliminary browsing facilities have already
been implemented in our visualisation software. An example of results
is presented Figure 35.

103

104 conclusion

(a) Conference BDA.

(b) Conferences BDA and EGC.

Figure 35.: A general and a more specific CoHoP in a bibliographic dataset.

conclusion 105

Tolerating missing values in the attribute space

Another track of improvements would be to allow missing attributes
in the set of shared attributes. Indeed, in our pattern definitions, a
vertex connected to all vertices of a group in a pattern, but sharing
all the attributes of a pattern except one, would not be part of the
pattern. Such tolerance would be particularly useful in the context of
the application of the MHCS and CoHoP to protein interaction networks
presented Section 6. The measurement of gene expression is particularly
difficult and can lead to fail to identify with sufficient confidence some
situations where a gene is overexpressed. This will result in missing
values in the set of situations associated to the corresponding protein
in the data collected.

One way to avoid this problem would be to extend the definition
of our patterns in order to find structures such as the one presented
Figure 36. Using parameters α = 2, γ = 2, and k = 3 or κ = 3, in this
example, since attributes a2 is not shared by vertex E, the homogeneity
constraint would not be satisfied for both the MHCS and the CoHoP
patterns.

C

a1a2

A

a1a2

B

a1a2

D

a1a2

F

a1a2

E

a1

Figure 36.: Example of subgraph where all vertices share two common at-
tributes except vertex E.

Extension to other data structures

As mentioned in the introduction of this thesis, a challenge in data
mining is the ability to handle complex data. Toward this aim, we
could extend our approach to handle Boolean attributes, not only on
the vertices, but also on the edges of the graphs. For instance, this
could be used to encode multidimensional networks [8] (a multidimen-
sional network is a network containing different kinds of relationships
between its nodes). For example, consider the multidimensional net-
work depicted Figure 37 with attributes associated to vertices (rock,
pop, and jazz), and where the edges represent three different kinds
of relationships: friendship, geographic closeness or being colleague
at work. This network can be encoded as the attributed graph, with
Boolean attributes associated to the edges, given Figure 38. Then, an
extension of the MHCS and CoHoP patterns to handle these data could
help to identify structures in groups sharing attributes on the vertices
and on the edges like the one shown Figure 39.

106 conclusion

A

B

C

D E

F

G

pop

rock,jazz

rock,pop,jazz

rock,jazz rock,jazz

rock,pop,jazz

rock,jazz

cl
os
e

friendclose

co
llea

g
u
e

frien
d

friend

colleague

fri
en

d

co
lle
ag

ue

friend

close

colleague

fri
en

dco
lle
ag

ue

friendcolleague

frien
d

clo
se

co
llea

g
u
e

Figure 37.: Example of multidimensional network with attributes associated to the nodes.

A

B

C

D E

F

G

pop

rock,jazz

rock,pop,jazz

rock,jazz rock,jazz

rock,pop,jazz

rock,jazz

cl
os
e

friend,close

frien
d
,co

llea
g
u
e

friend,colleague

fri
en

d,
co

lle
ag

ue

friend,close,

colleague

fri
en

d,
co

lle
ag

ue

friend,colleague

frien
d
,clo

se,co
llea

g
u
e

Figure 38.: The multidimensional network presented Figure 37 where edge labels are encoded by
means of Boolean attributes in an attributed graph.

B

C

D E

F

G

rock,jazz

rock,jazz

rock,jazz rock,jazz

rock,jazz

rock,jazz

frien
d
,co

llea
g
u
e

friend,colleague

fri
en

d,
co

lle
ag

ue

friend,colleague
fri
en

d,
co

lle
ag

ue

friend,colleague

frien
d
,co

llea
g
u
e

Figure 39.: Example of structure which might be found in the graph presented Figure 38. It is
formed by two groups of three vertices sharing two vertex attributes (rock and jazz)
and two edge attributes (friend and colleague).

A P P E N D I X

107

AD ATA S E T D E S C R I P T I O N

In this appendix, we provide a description of the dataset properties.
Most results were obtained using the Gephi software [4] available at
https://gephi.org/.

a.1 the biodata datasets

We first present the graph characteristics for the datasets used in the
application to molecular biology. Note that due to the dataset construc-
tion method, only the number of edges is different between BioData150
and BioData400. Table 8 summarizes several graph characteristics for
both datasets. Figure 40 displays the largest connected component of
BioData400. The other components are not displayed since most of them
are much smaller and reduce graph understanding. Figure 41 presents
the distribution of the degree and the distribution of the number of
attribute having value True for BioData150 and BioData400.

Measure BioData150 BioData400

Vertices 15,571 15,571

Attributes 486 486

Avg. degree 58.92 20.01

Max. degree 1500 496

Avg. attributes/vertex 11.46 11.46

Max. attributes/vertex 92 92

Connected Components (CC) 6,288 5,759

Vertices in the largest CC 9805 9267

% Vertices in the largest CC 63% 59.5%

Number of maximal cliques - 122,186

Vertices in the largest clique - 139

Average clustering coefficient 0.19 0.15

Triangles 6,267,990 1,081,691

Modularity [9] - 0.474

Diameter - 8

Table 8.: Main characteristics of the datasets BioData150 and BioData400.
Dashes denote prohibitive runtime or memory consumption.

a.2 the dblp datasets

Graph characteristics corresponding to the bibliographic dataset are
presented Figure 9. Figure 42 displays the largest connected component
of DBLP3. The other components are much smaller and are not dis-
played to ease graph visualisation. Figure 43 presents the distribution

109

https://gephi.org/

110 appendix

Figure 40.: The largest connected component of BioData400. Each colour corresponds to a module
according to the modularity definition of [9].

 1

 10

 100

 1000

 1 10 100 1000 10000

n
u

m
b

e
r

o
f

v
e

rt
ic

e
s

vertex degree

(a) Vertex degree distribution for BioData150

 1

 10

 100

 1000

 10000

 1 10 100

n
u

m
b

e
r

o
f

v
e

rt
ic

e
s

number of attributes having value true

(b) Attributes distribution for BioData150

 1

 10

 100

 1000

 1 10 100 1000

n
u

m
b

e
r

o
f

v
e

rt
ic

e
s

vertex degree

(c) Vertex degree distribution for BioData400

 1

 10

 100

 1000

 10000

 1 10 100

n
u

m
b

e
r

o
f

v
e

rt
ic

e
s

number of attributes having value true

(d) Attributes distribution for BioData400

Figure 41.: Degree and attribute distribution for the datasets BioData150 and BioData400. All the
scales are logarithmic.

A dataset description 111

of the degree and the distribution of the number of attribute having
value True for DBLP1, DBLP2 and DBLP3.

Measure DBLP1 DBLP2 DBLP3

Vertices 997,050 266,125 127,386

Attributes 5,963 5,309 3,980

Edges 3,427,683 650,205 234,896

Avg. degree 6.88 4.89 3.69

Max. degree 1,014 240 149

Avg. attributes/vertex 3.06 2.44 2.15

Max. attributes/vertex 302 112 68

Connected Components (CC) 93,644 44,047 28,236

Vertices in the largest CC 817,717 198,980 86,643

% Vertices in the largest CC 82% 74.8% 68%

Number of maximal cliques - 273,810 128,572

Vertices in the largest clique - 55 45

Average clustering coefficient 0.6 0.41 0.32

Triangles 7,250,116 773,379 213,285

Modularity [9] - 0.78 0.818

Diameter - 27 28

Table 9.: Main characteristics of the datasets DBLP1, DBLP2, and DBLP3.
Dashes denote prohibitive runtime or memory consumption.

112 appendix

Figure 42.: The largest connected component of DBLP3. Each colour corresponds to a module
according to the modularity definition of [9].

A dataset description 113

 1

 10

 100

 1000

 10000

 100000

 1e+06

 1 10 100 1000 10000

n
u
m

b
e
r

o
f
v
e
rt

ic
e
s

vertex degree

(a) Vertex degree distribution for DBLP1

 1

 10

 100

 1000

 10000

 100000

 1e+06

 1 10 100 1000

n
u
m

b
e
r

o
f
v
e
rt

ic
e
s

number of attributes having value true

(b) Attributes distribution for DBLP1

 1

 10

 100

 1000

 10000

 100000

 1 10 100 1000

n
u
m

b
e
r

o
f
v
e
rt

ic
e
s

vertex degree

(c) Vertex degree distribution for DBLP2

 1

 10

 100

 1000

 10000

 100000

 1e+06

 1 10 100 1000

n
u
m

b
e
r

o
f
v
e
rt

ic
e
s

number of attributes having value true

(d) Attributes distribution for DBLP2

 1

 10

 100

 1000

 10000

 100000

 1 10 100 1000

n
u
m

b
e
r

o
f
v
e
rt

ic
e
s

vertex degree

(e) Vertex degree distribution for DBLP3

 1

 10

 100

 1000

 10000

 100000

 1 10 100

n
u
m

b
e
r

o
f
v
e
rt

ic
e
s

number of attributes having value true

(f) Attributes distribution for DBLP3

Figure 43.: Degree and attribute distribution for the datasets DBLP1, DBLP2, and DBLP3. All
the scales are logarithmic.

BA PAT T E R N E X T R A C T I O N / V I S U A L I S AT I O N
S O F T WA R E

In order to ease the extraction, the browsing and the visualisation of
the collections of patterns, we developed a dedicated software tool. It
has been implemented using the Java 1.6 language.

b.1 presentation of the interface

The interface is composed of a taskbar (at the top in Figure 44)
allowing to set extraction parameters and the three following views:

– Pattern visualisation (at the left in Figure 44);
– The collection of patterns (at the bottom right in Figure 44);
– Vertex measures (at the top right in Figure 44);
The view layout is highly customizable since it is based on the library

Docking Framework 1. Docking allows for example to resize and move
views or even group views using tabs.

Figure 44.: The different parts of the interface

In the next sections, the parts of the interface are described, along
with their functionalities.

1. The Docking Framework library is available at http://dock.javaforge.com/.

115

http://dock.javaforge.com/

116 appendix

b.2 extraction of the patterns

The first step to use the software is to perform a pattern extraction
(either MHCS or CoHoP patterns). The taskbar at the top of the window
allows to set the extraction parameters. The user has to define:

– the dataset of interest;
– the value for parameter k (CoHoP) or κ (MHCS) (“size” in the

interface);
– the value for parameter γ (“number of groups” in the interface).
– the value for parameter α (“min common attributes” in the inter-

face).
– the task, either MHCSs or CoHoPs extraction.

Once all parameters are defined, the extraction can be performed by
clicking the “Run” button at the right side of the taskbar. In fact, for
a given set of parameters the extraction will be performed only the
first time. Once the extraction has finished, the collection of patterns is
saved into a file. Further extractions using the same settings will use
this file instead of recomputing the collection of patterns from the data.

b.3 browsing the collection of patterns

Once the collection of patterns is computed, it is displayed on the
view presented Figure 45 using a tabular form. Each row corresponds
to a pattern. A row contains the following information:

– names of the vertices forming the pattern;
– names of the attributes associated to the vertices;
– number of vertices;
– number of attributes;
– number of k-PCs for the CoHoP patterns or k-maximal cliques for

the MHCS patterns.
It is possible to sort the collection of patterns according to any of these
values by clicking on their corresponding column header.

Figure 45.: The collection of patterns view.

This view allows to filter the collection patterns. The available filters
allow to find patterns containing a single vertex, several vertices, or a
given attribute. It also allows to keep only patterns having a minimal
number of vertices, attributes, maximal cliques for a MHCS, or k-PCs
for a CoHoP.

B a pattern extraction/visualisation software 117

b.4 pattern visualisation

Clicking on the row corresponding to a pattern will display the
subgraph induced by the vertices forming the pattern in the graph view.
Graph visualisation is based on the Jung library 2. This library allows
to easily zoom in/out, translate, and rotate a graph. More actions are
available to customize graph appearance using the panels presented
Figure 46.

(a) Visualisation (b) Layout settings (c) Vertex size settings

Figure 46.: Panels used to customize pattern visualisation.

b.4.1 Centrality measures

The panel presented Figure 46c allows to easily set the visualisation
of several vertex centrality measures (e.g., degree, betweenness). The
higher is the measure, the larger the vertex radius will be. For more
information on vertex centrality measures refer to the Section 2.1 of the
state of the art.

b.4.2 Visualisation parameters

Several graphical options are also available using the panel presented
Figure 46a. The user can, for example, change the colour of the vertices,
display or not the name of the vertices or change the shape used for the
edges. She/he can also give a different colour to each maximal clique
(MHCS) or k-PC (CoHoP).

b.4.3 Layout

A common problem for graph visualisation is choosing the right
layout. To give the most liberty to the user, she/he can select a layout
and edit its parameters. The available layouts are:

– Spring;
– Force directed (Fruchterman-Reingold);
– Circular layout;
– Self-Organized Map;
– Kamada Kawai.

Figure 47 gives an overview of these layout by presenting a CoHoP
pattern using each layout algorithm. The reader interested in more
information regarding these layouts can refer to the Jung library docu-
mentation (http://jung.sourceforge.net/doc/api/index.html).

2. http://jung.sourceforge.net/

http://jung.sourceforge.net/doc/api/index.html
http://jung.sourceforge.net/

118 appendix

Dion Hoe-Lian Goh

Matt Jones

Michael Clausen

David Bainbridge

Christian Fremerey

Gilberto Pedrosa

Sarantos Kapidakis

Hugo Manguinhas

José Luis Borbinha

Edward A. Fox

Steve Jones

Frank M. Shipman III

Marcos André Gonçalves
Chew-Hung Chang

Lillian N. Cassel

Norbert Fuhr

Ian H. Witten

Christos Papatheodorou

Ee-Peng Lim

David Damm

Nuno Freire

Claus-Peter Klas

Aixin Sun

Bruno Martins

Weiguo Fan

Richard Furuta

Meinard Müller

András Micsik

Frank Kurth

Rao Shen

Naga Srinivas Vemuri

Lois M. L. Delcambre

Yin Leng Theng

Sally Jo Cunningham

László Kovács

(a) Spring

Dion Hoe-Lian Goh

Matt Jones

Michael Clausen

David Bainbridge

Christian Fremerey

Gilberto Pedrosa

Sarantos Kapidakis

Hugo Manguinhas
José Luis BorbinhaEdward A. FoxSteve Jones

Frank M. Shipman III

Marcos André Gonçalves

Chew-Hung Chang

Lillian N. Cassel

Norbert Fuhr

Ian H. Witten

Christos Papatheodorou

Ee-Peng Lim

David Damm

Nuno Freire

Claus-Peter Klas

Aixin Sun

Bruno Martins

Weiguo Fan
Richard FurutaMeinard MüllerAndrás Micsik

Frank Kurth

Rao Shen

Naga Srinivas Vemuri

Lois M. L. Delcambre

Yin Leng Theng

Sally Jo Cunningham

László Kovács

(b) Circular

Dion Hoe-Lian Goh

Matt Jones

Michael Clausen

David Bainbridge

Christian Fremerey

Gilberto Pedrosa

Sarantos Kapidakis

Hugo Manguinhas

José Luis Borbinha

Edward A. Fox

Steve Jones

Frank M. Shipman III

Marcos André Gonçalves

Chew-Hung Chang

Lillian N. Cassel

Norbert Fuhr

Ian H. Witten

Christos Papatheodorou
Ee-Peng Lim

David Damm

Nuno Freire

Claus-Peter Klas

Aixin Sun

Bruno Martins

Weiguo Fan

Richard Furuta

Meinard Müller

András Micsik

Frank Kurth

Rao Shen Naga Srinivas Vemuri

Lois M. L. Delcambre

Yin Leng Theng

Sally Jo Cunningham

László Kovács

(c) Kamada Kawai

Dion Hoe-Lian Goh

Matt Jones

Michael Clausen

David Bainbridge

Christian Fremerey

Gilberto Pedrosa

Sarantos Kapidakis

Hugo Manguinhas

José Luis BorbinhaEdward A. Fox

Steve Jones

Frank M. Shipman III

Marcos André Gonçalves

Chew-Hung Chang

Lillian N. Cassel

Norbert Fuhr

Ian H. Witten

Christos Papatheodorou

Ee-Peng Lim

David Damm

Nuno Freire

Claus-Peter Klas

Aixin Sun

Bruno Martins
Weiguo Fan

Richard Furuta

Meinard Müller

András Micsik

Frank Kurth

Rao Shen

Naga Srinivas Vemuri

Lois M. L. Delcambre

Yin Leng Theng

Sally Jo Cunningham László Kovács

(d) Self-organized map

Dion Hoe-Lian Goh

Matt Jones

Michael Clausen

David Bainbridge

Christian Fremerey

Gilberto Pedrosa

Sarantos Kapidakis

Hugo Manguinhas

José Luis Borbinha

Edward A. Fox

Steve Jones

Frank M. Shipman III

Marcos André Gonçalves

Chew-Hung Chang

Lillian N. Cassel

Norbert Fuhr

Ian H. Witten

Christos Papatheodorou

Ee-Peng Lim

David Damm Nuno Freire

Claus-Peter Klas

Aixin Sun

Bruno Martins

Weiguo Fan

Richard Furuta

Meinard Müller

András Micsik

Frank Kurth

Rao Shen

Naga Srinivas Vemuri

Lois M. L. Delcambre

Yin Leng Theng

Sally Jo Cunningham

László Kovács

(e) Force directed

Figure 47.: A CoHoP pattern displayed using the five available layouts.

CTA B L E O F S Y M B O L S

c.1 notation in the binary relation setting

Symbol Description

O An arbitrary set of objects

I An arbitrary set of items

R ⊆ O× I A binary relation defined over O× I

f : 2O 7→ 2I The set of items associated to all the objects

f(O) = {i ∈ I | ∀o ∈ O, (o, i) ∈ R}

g : 2I 7→ 2O The set of objects associated to all the items

g(I) = {o ∈ O | ∀i ∈ I, (o, i) ∈ R}

supp : 2I 7→ R The number of objects related to all the items

supp(I) = |g(I)|

itemset A subset of I

k-itemset An itemset of size k

Table 10.: Summary of the notation used in the binary relation setting

c.2 notation in the graph setting

Symbol Description

V An arbitrary set of vertices

E An arbitrary set of edges

G A graph formed by vertices V and edges E

G[V] The subgraph induced by the set of vertices V

C(G) The collection of cliques in G

Ck(G) The collection of cliques having exactly k vertices in G

Cmax(G) The collection of maximal cliques in G

Ckmax(G) The collection of maximal cliques having

at least k vertices in G

ρ(G) The density of G

ρ(G) =
|E|

|V |·(|V |−1)/2

Γ(v) The neighbours of vertex v

Γ(v) = {v ′ ∈ V | {v, v ′} ∈ E}, v ∈ V

Table 11.: Summary of the notation used in the graph setting

119

120 appendix

c.3 notation in the boolean attributed graph setting

Symbol Description

V An arbitrary set of vertices

E An arbitrary set of edges

A A set of Boolean attributes

atb : V 7→ 2A The set of attributes having value True for

the given vertex

G A Boolean attributed graph

G = (V,E,A,atb)

Atb : 2V 7→ 2A The attributes having value True for

all given vertices

CAtb : 22
V
7→ 2A The attributes having value True for all

the vertices in the union of the sets given

vert : A 7→ 2V The set of vertices having True for the attribute

Vert : 2A 7→ 2V The set of vertices having True for all

the given attributes

G[V] The subgraph induced by the set of vertices

G[[A]] The subgraph induced by the set of attributes

G[[A]] = G[{v ∈ V | A ⊆ atb(v)}]

C(G) The collection of cliques in G

Ck(G) The collection of k-cliques in G

Cmax(G) The collection of maximal cliques in G

Ckmax(G) The collection of k-maximal cliques in G

Table 12.: Summary of the notation used in the Boolean attributed graph setting

Part VI

B I B L I O G R A P H Y

[1] James Abello, Mauricio G C Resende, and Sandra Sudarsky. Mas-
sive Quasi-Clique Detection. In Proc. of Latin American Symposium
on Theoretical Informatics, pages 598–612. Springer-Verlag, 2002.
(Cited on page 23.)

[2] Rakesh Agrawal and Ramakrishnan Srikant. Fast Algorithms for
Mining Association Rules. In Proc. of Int. Conf. on Very Large Data
Bases (VLDB), pages 487–499, 1994. (Cited on page 14.)

[3] Rakesh Agrawal, Tomasz Imielinski, and Arun Swami. Mining
association rules between sets of items in large databases. In Proc.
of Int. Conf. on Management of Data (SIGMOD), pages 207–216.
ACM, 1993. (Cited on page 14.)

[4] Mathieu Bastian, Sebastien Heymann, and Mathieu Jacomy.
Gephi : An Open Source Software for Exploring and Manipu-
lating Networks. In Proc. of Int. AAAI Conf. on Weblogs and Social
Media, pages 361–362. The AAAI Press, 2009. (Cited on page 109.)

[5] Yves Bastide, Rafik Taouil, Nicolas Pasquier, Gerd Stumme, and
Lotfi Lakhal. Mining Frequent Patterns with Counting Inference.
SIGKDD Explor. Newsl., 2(2):66–75, 2000. (Cited on page 16.)

[6] Céline Becquet, Sylvain Blachon, Baptiste Jeudy, Jean-François
Boulicaut, and Olivier Gandrillon. Strong-association-rule mining
for large-scale gene-expression data analysis: a case study on
human SAGE data. Genome Biology, 3(12):1–16, 2002. (Cited on
page 85.)

[7] Nesserine Benchettara, Rushed Kanawati, and Céline Rouveirol.
A Supervised Machine Learning Link Prediction Approach for
Academic Collaboration Recommendation. In Proc. of ACM Conf.
on Recommender systems (RecSys), pages 253–256. ACM, 2010.
(Cited on page 57.)

[8] Michele Berlingerio, Michele Coscia, Fosca Giannotti, Anna Mon-
reale, and Dino Pedreschi. Foundations of Multidimensional
Network Analysis. In Proc. of Int. Conf. on Advances in Social
Networks Analysis and Mining (ASONAM), pages 485–489. IEEE
Computer Society, 2011. (Cited on pages 4 and 105.)

[9] Vincent D Blondel, Jean-Loup Guillaume, Renaud Lambiotte,
and Etienne Lefebvre. Fast unfolding of communities in large
networks. Statistical Mechanics: Theory and Experiment, 2008(10):
P10008, 2008. (Cited on pages xv, 109, 110, 111, and 112.)

[10] Francesco Bonchi and Claudio Lucchese. Pushing Tougher Con-
straints in Frequent Pattern Mining. In Proc. of European Conf. on
Machine Learning and Princ. and Pract. of Knowledge Discovery in
Databases (ECML/PKDD), pages 114–124. Springer-Verlag, 2005.
(Cited on page 18.)

[11] Francesco Bonchi, Fosca Giannotti, Alessio Mazzanti, and Dino
Pedreschi. Exante: Anticipated data reduction in constrained
pattern mining. In Proc. of European Conf. on Machine Learning
and Princ. and Pract. of Knowledge Discovery in Databases (ECM-
L/PKDD), pages 59–70. Springer-Verlag, 2003. (Cited on page 18.)

124 bibliography

[12] Francesco Bonchi, Fosca Giannotti, Alessio Mazzanti, and Dino
Pedreschi. Efficient breadth-first mining of frequent pattern with
monotone constraints. Knowledge and Information Systems (KAIS),
8(2):131–153, 2005. (Cited on page 18.)

[13] Jean-François Boulicaut, Artur Bykowski, and Christophe Rigotti.
Free-Sets: A Condensed Representation of Boolean Data for the
Approximation of Frequency Queries. Data Mining and Knowledge
Discovery (DMKD), 7(1):5–22, 2003. (Cited on page 16.)

[14] Björn Bringmann and Albrecht Zimmermann. One in a million:
picking the right patterns. Knowledge and Information Systems
(KAIS), 18(1):61–81, 2009. (Cited on page 43.)

[15] Doug Burdick, Manuel Calimlim, and Johannes Gehrke. MAFIA:
A Maximal Frequent Itemset Algorithm for Transactional
Databases. In Proc. of Int. Conf. on Data Engineering (ICDE), pages
443–452. IEEE Computer Society, 2001. (Cited on page 16.)

[16] Toon Calders and Bart Goethals. Mining All Non-Derivable Fre-
quent Itemsets. In Proc. of European Conf. on Machine Learning
and Princ. and Pract. of Knowledge Discovery in Databases (ECM-
L/PKDD), pages 74–85. Springer-Verlag, 2002. (Cited on page 16.)

[17] Loïc Cerf, Jérémy Besson, Céline Robardet, and Jean-François
Boulicaut. Data-Peeler: Constraint-Based Closed Pattern Mining
in n-ary Relations. In Proc. of SIAM Int. Conf. on Data Mining
(SDM), pages 37–48. SIAM, 2008. (Cited on page 18.)

[18] Hong Cheng, Philip S Yu, and Jiawei Han. Approximate Frequent
Itemset Mining In the Presence of Random Noise. In Soft Com-
puting for Knowledge Discovery and Data Mining, pages 363–389.
Springer-Verlag, 2008. (Cited on page 5.)

[19] Michele Coscia, Fosca Giannotti, and Dino Pedreschi. A Classifi-
cation for Community Discovery Methods in Complex Networks.
Statistical Analysis and Data Mining (SADM), 4(5):512–546, 2011.
(Cited on page 37.)

[20] Imre Derényi, Gergely Palla, and Tamás Vicsek. Clique percola-
tion in random networks. Physical Review Letters, 94(16):2–5, 2005.
(Cited on page 23.)

[21] Nan Du, Bin Wu, Xin Pei, Bai Wang, and Liutong Xu. Community
Detection in Large-Scale Social Networks. In Proc. of WebKDD
and SNA-KDD workshop on Web mining and social network analysis,
pages 16–25. ACM, 2007. (Cited on page 30.)

[22] Paul Erdös and Alfréd Rényi. On Random Graphs. Publicationes
Mathematicae, 6:290–297, 1959. (Cited on page 60.)

[23] Paul Erdös and George Szekeres. A combinatorial problem in
geometry. Compositio Mathematica, 2:463–470, 1935. (Cited on
page 21.)

[24] Martin Ester, Rong Ge, Byron J Gao, Zengjian Hu, and Boaz
Ben-Moshe. Joint cluster analysis of attribute data and relation-
ship data: the connected k-center problem. ACM Transactions on
Knowledge Discovery from Data (TKDD), 2(2):1–35, 2008. (Cited on
page 28.)

bibliography 125

[25] Leonard Euler. Solutio problematis ad geometriam situs pertinen-
tis. Commentarii academiae scientiarum Petropolitanae, 8:128–140,
1741. (Cited on page 19.)

[26] Linton C Freeman. A set of measures of centrality based upon
betweenness. Sociometry, 40(1):35–41, 1977. (Cited on page 20.)

[27] Mutsumi Fukuzaki, Mio Seki, Hisashi Kashima, and Jun Sese.
Finding Itemset-Sharing Patterns in a Large Itemset-Associated
Graph. In Proc. of Pacific-Asia Conf. on Knowl. Discov. and Data
Mining (PAKDD), volume 1, pages 147–159. Springer-Verlag, 2010.
(Cited on pages 31 and 37.)

[28] Bernhard Ganter, Gerd Stumme, and Rudolf Wille. Formal Con-
cept Analysis: Foundations and Applications. Springer-Verlag, 2005.
(Cited on page 16.)

[29] Wei Gao, Kam-Fai Wong, Yunqing Xia, and Ruifeng Xu. Clique
Percolation Method for Finding Naturally Cohesive and Over-
lapping Document Clusters. In Proc. of Int. Conf. on Computer
Processing of Oriental Languages (ICCPOL), volume 4285, pages
97–108. Springer-Verlag, 2006. (Cited on pages 23, 69, and 70.)

[30] Floris Geerts, Bart Goethals, and Taneli Mielikäinen. Tiling
databases. In Proc. of Discovery Science (DS), pages 278–289.
Springer-Verlag, 2004. (Cited on page 18.)

[31] Alain Gély, Lhouari Nourine, and Bachir Sadi. Enumeration
aspects of maximal cliques and bicliques. Discrete Applied Mathe-
matics, 157(7):1447–1459, 2009. (Cited on page 21.)

[32] Alan Gibbons. Algorithmic graph theory. Cambridge University
Press, 1982. (Cited on page 19.)

[33] Bart Goethals. Frequent Set Mining. In The Data Mining
and Knowledge Discovery Handbook, chapter 17, pages 377–397.
Springer-Verlag, 2005. (Cited on page 14.)

[34] Karam Gouda and Mohammed Javeed Zaki. GenMax: An Ef-
ficient Algorithm for Mining Maximal Frequent Itemsets. Data
Mining and Knowledge Discovery (DMKD), 11(3):1–20, 2005. (Cited
on page 16.)

[35] Stephan Günnemann, Brigitte Boden, and Thomas Seidl. DB-
CSC: A Density-Based Approach for Subspace Clustering in
Graphs with Feature Vectors. In Proc. of European Conf. on Machine
Learning and Princ. and Pract. of Knowledge Discovery in Databases
(ECML/PKDD), pages 565–580. Springer-Verlag, 2011. (Cited on
page 31.)

[36] Jiawei Han and Micheline Kamber. Data mining: concepts and
techniques. Morgan Kaufmann, 2 edition, 2005. (Cited on page 3.)

[37] Jiawei Han, Jian Pei, and Yiwen Yin. Mining Frequent Patterns
without Candidate Generation. In Proc. of Int. Conf. on Man-
agement of Data (SIGMOD), pages 1–12. ACM, 2000. (Cited on
page 15.)

126 bibliography

[38] Daniel Hanisch, Alexander Zien, Ralf Zimmer, and Thomas
Lengauer. Co-clustering of biological networks and gene ex-
pression data. Bioinformatics, 18(Suppl 1):145–154, 2002. (Cited
on page 30.)

[39] Leland H Hartwell, John J Hopfield, Stanislas Leibler, and An-
drew W Murray. From molecular to modular cell biology. Nature,
402(6761 Suppl):C47–52, 1999. (Cited on pages 30 and 83.)

[40] Jochen Hipp, Ulrich Güntzer, and Gholamreza Nakhaeizadeh.
Algorithms for Association Rule Mining - A General Survey and
Comparison. SIGKDD Explor. Newsl., 2(1):58–64, 2000. (Cited on
page 14.)

[41] Tomasz Imielinski and Heikki Mannila. A database perspective
on knowledge discovery. Communications of the ACM, 39(11):
58–64, 1996. (Cited on page 3.)

[42] Lars J Jensen, Michael Kuhn, Manuel Stark, Samuel Chaffron,
Chris Creevey, Jean Muller, Tobias Doerks, Philippe Julien,
Alexander Roth, Milan Simonovic, Peer Bork, and Christian von
Mering. STRING 8 - a global view on proteins and their func-
tional interactions in 630 organisms. Nucleic acids research, 37
(Suppl 1):412–416, 2009. (Cited on page 85.)

[43] Leonard Kaufman and Peter Rousseeuw. Clustering by means
of medoids. Statistical Data Analysis Based on the L1 Norm, pages
405–416, 1987. (Cited on pages 28 and 29.)

[44] Leonard Kaufman and Peter Rousseeuw. Finding Groups in Data:
an introduction to cluster analysis. Wiley Interscience, 1990. (Cited
on page 30.)

[45] Arijit Khan, Xifeng Yan, and Kun-Lung Wu. Towards proximity
pattern mining in large graphs. In Proc. of Int. Conf. on Manage-
ment of Data (SIGMOD), pages 867–878. ACM Press, 2010. (Cited
on page 31.)

[46] Arno J Knobbe and Eric K Y Ho. Pattern Teams. In Proc. of Euro-
pean Conf. on Machine Learning and Princ. and Pract. of Knowledge
Discovery in Databases (ECML/PKDD), pages 577–584. Springer-
Verlag, 2006. (Cited on page 18.)

[47] Jussi M Kumpula, Mikko Kivela, Kimmo Kaski, and Jari Saramaki.
A sequential algorithm for fast clique percolation. Physical Review
E, 78(2):1–8, 2008. (Cited on pages 23 and 25.)

[48] Johan Leyritz, Stéphane Schicklin, Sylvain Blachon, Céline Keime,
Céline Robardet, Jean-François Boulicaut, Jérémy Besson, Rug-
gero G Pensa, and Olivier Gandrillon. SQUAT: A web tool to
mine human, murine and avian SAGE data. BMC Bioinformatics,
9(1):1–12, 2008. (Cited on page 85.)

[49] Zhi Liang, Meng Xu, Maikun Teng, and Liwen Niu. Comparison
of protein interaction networks reveals species conservation and
divergence. BMC Bioinformatics, 7(1):457, 2006. (Cited on page 83.)

bibliography 127

[50] Christoph Lippert, Nino Shervashidze, and Oliver Stegle. Rela-
tional models for generating labeled real-world graphs. In Proc.
of Int. Workshop on Mining and Learning with Graphs, pages 1–3,
2009. (Cited on page 60.)

[51] Guimei Liu and Limsoon Wong. Effective Pruning Techniques
for Mining Quasi-cliques. In Proc. of European Conf. on Machine
Learning and Princ. and Pract. of Knowledge Discovery in Databases
(ECML/PKDD), pages 33–49. Springer-Verlag, 2008. (Cited on
pages 5 and 23.)

[52] R. Ducan Luce and Albert D Perry. A method of matrix analysis
of group structure. Psychometrika, 14(2):95–116, 1949. (Cited on
page 5.)

[53] Kazuhisa Makino and Takeaki Uno. New Algorithms for Enumer-
ating All Maximal Cliques. In Proc. of Scandinavian Workshop on
Algorithm Theory (SWAT), pages 260–272. Springer-Verlag, 2004.
(Cited on page 21.)

[54] Wagner Jr Meira. Structural Correlation Pattern Mining for Large
Graphs. PhD thesis, Universidade Federal de Minas Gerais, 2010.
(Cited on page 32.)

[55] Tom M Mitchell. Machine Learning. McGraw-Hill, 1997. (Cited
on page 28.)

[56] J. W. Moon and L. Moser. On cliques in graphs. Israel Journal of
Mathematics, 3:23–28, 1965. (Cited on pages 21 and 48.)

[57] Flavia Moser, Rong Ge, and Martin Ester. Joint cluster analysis
of attribute and relationship data withouta-priori specification of
the number of clusters. In Proc. of Int. Conf. on Knowledge discovery
and Data Mining (KDD), pages 510–519. ACM Press, 2007. (Cited
on pages 27 and 29.)

[58] Flavia Moser, Recep Colak, Arash Rafiey, and Martin Ester. Min-
ing Cohesive Patterns from Graphs with Feature Vectors. In Proc.
of SIAM Int. Conf. on Data Mining (SDM), pages 593–604. SIAM,
2009. (Cited on pages 5, 27, 30, 31, 32, 38, and 60.)

[59] Pierre-Nicolas Mougel, Marc Plantevit, Christophe Rigotti, Olivier
Gandrillon, and Jean-François Boulicaut. Constraint-Based Min-
ing of Sets of Cliques Sharing Vertex Properties. In Proc. of
Workshop on Analysis of Complex NEtworks (ACNE) co-located with
ECML/PKDD, pages 1–14, 2010. (Cited on page 6.)

[60] Pierre-Nicolas Mougel, Marc Plantevit, Christophe Rigotti, Olivier
Gandrillon, and Jean-François Boulicaut. A Data Mining Ap-
proach to Highlight Relations Between Functional Modules. In
Proc. of Integrative Post-Genomics (IPG), page 1, 2010. (Cited on
page 6.)

[61] Pierre-Nicolas Mougel, Marc Plantevit, Christophe Rigotti, Olivier
Gandrillon, and Jean-François Boulicaut. Extraction sous Con-
traintes d’Ensembles de Cliques Homogènes. In Proc. of Extraction
et Gestion de la Connaissance (EGC), pages 443–454, 2011. (Cited
on page 6.)

128 bibliography

[62] Pierre-Nicolas Mougel, Christophe Rigotti, and Olivier Gan-
drillon. Finding Collections of k-Clique Percolated Components
in Attributed Graphs. In Proc. of Pacific-Asia Conf. on Knowl. Dis-
cov. and Data Mining (PAKDD), pages 181–192. Spinger-Verlag,
2012. (Cited on page 6.)

[63] Pierre-Nicolas Mougel, Christophe Rigotti, and Olivier Gan-
drillon. Finding Collections of Protein Modules in Protein-Protein
Interaction Networks. In Proc. of Bioinformatics and Computational
Biology (BiCOB), pages 1–7, 2012. (Cited on page 6.)

[64] Katarzyna Musial and Krzysztof Juszczyszyn. Properties of
Bridge Nodes in Social Networks. In Proc. of Int. Conf. on Com-
putational Collective Intelligence (ICCCI), pages 357–364. Springer-
Verlag, 2009. (Cited on page 70.)

[65] John C Newman and Alan M Weiner. L2L: a simple tool for
discovering the hidden significance in microarray expression
data. Genome Biology, 6(9):1–18, 2005. (Cited on page 87.)

[66] Mark E J Newman. The Structure and Function of Complex
Networks. SIAM Review, 45(2):167, 2003. (Cited on page 20.)

[67] Gergely Palla, Imre Derényi, Illés Farkas, and Tamás Vicsek.
Uncovering the overlapping community structure of complex
networks in nature and society. Nature, 435(7043):814–818, 2005.
(Cited on pages 5, 23, 24, 65, 69, and 70.)

[68] Gergely Palla, Imre Derényi, Illés Farkas, and Tamás Vicsek.
Uncovering the overlapping community structure of complex
networks in nature and society - Supplementary information.
Nature, 435(7043), 2005. (Cited on page 70.)

[69] Jayesh Pandey, Mehmet Koyuturk, and Ananth Grama. Func-
tional characterization and topological modularity of molecular
interaction networks. BMC Bioinformatics, 11(Suppl 1):S35, 2010.
(Cited on page 83.)

[70] Nicolas Pasquier, Yves Bastide, Rafik Taouil, and Lotfi Lakhal. Dis-
covering Frequent Closed Itemsets for Association Rules. In Proc.
of Int. Conf. on Database Theory (ICDT), pages 398–416. Springer-
Verlag, 1999. (Cited on pages 5 and 16.)

[71] Jian Pei, Jiawei Han, and Runying Mao. CLOSET: An Efficient
Algorithm for Mining Frequent Closed Itemsets. In Proc. of ACM
SIGMOD Workshop on Research Issues in Data Mining and Knowl-
edge Discovery, pages 21–30. ACM, 2000. (Cited on page 16.)

[72] Solen Quiniou, Peggy Cellier, Thierry Charnois, and Dominique
Legallois. Fouille de graphes sous contraintes linguistiques pour
l’exploration de grands textes. In Proc. of Traitement Automatique
des Langues Naturelles (TALN), pages 253–266, 2012. (Cited on
page 103.)

[73] Luc De Raedt and Albrecht Zimmermann. Constraint-Based
Pattern Set Mining. In Proc. of SIAM Int. Conf. on Data Mining
(SDM), pages 237–248. SIAM, 2007. (Cited on pages 18 and 31.)

bibliography 129

[74] Céline Robardet. Constraint-based Pattern Mining in Dynamic
Graphs. In Proc. of IEEE Int. Conf. on Data Mining (ICDM), pages
950–955. IEEE Computer Society, 2009. (Cited on page 4.)

[75] Gert Sabidussi. The centrality index of a graph. Psychometrika, 31
(4):581–603, 1966. (Cited on page 20.)

[76] Jouni K Seppänen and Heikki Mannila. Dense itemsets. In
Proc. of Int. Conf. on Knowledge discovery and Data Mining (KDD),
volume 4, pages 683–688. ACM, 2004. (Cited on page 17.)

[77] Jun Sese, Mio Seki, and Mutsumi Fukuzaki. Mining networks
with shared items. In Proc. of Int. Conf. on Information and Knowl-
edge Management (CIKM), pages 1681–1684. ACM, 2010. (Cited
on pages 27 and 31.)

[78] Arno Siebes, Jilles Vreeken, and Matthijs van Leeuwen. Item Sets
That Compress. In Proc. of SIAM Int. Conf. on Data Mining (SDM),
pages 393–404. SIAM, 2006. (Cited on page 18.)

[79] Arlei Silva, Wagner Jr Meira, and Mohammed Javeed Zaki. Struc-
tural correlation pattern mining for large graphs. In Proc. of
Workshop on Mining and Learning with Graphs (MLG), pages 119–
126. ACM, 2010. (Cited on pages 32 and 38.)

[80] Arlei Silva, Wagner Jr Meira, and Mohammed Javeed Zaki. Min-
ing attribute-structure correlated patterns in large attributed
graphs. Proc. of the VLDB Endowment, 5(5):466–477, 2012. (Cited
on pages 23, 27, and 32.)

[81] Arnaud Soulet and Bruno Crémilleux. An Efficient Frame-
work for Mining Flexible Constraints. In Proc. of Pacific-Asia
Conf. on Knowl. Discov. and Data Mining (PAKDD), pages 661–671.
Springer-Verlag, 2005. (Cited on page 18.)

[82] Xing Sun and Andrew B Nobel. Significance and Recovery of
Block Structures in Binary Matrices with Noise. In Proc. of Conf.
on Learning Theory (COLT), pages 109–122. Springer-Verlag, 2006.
(Cited on page 17.)

[83] Pang-Ning Tan, Michael Steinbach, and Vipin Kumar. Introduction
to Data Mining. Addison-Wesley Longman Publishing Co., Inc., 1
edition, 2005. (Cited on page 3.)

[84] Etsuji Tomita, Akira Tanaka, and Haruhisa Takahashi. The worst-
case time complexity for generating all maximal cliques and
computational experiments. Theoretical Computer Science (TCS),
363(1):28–42, 2006. (Cited on pages 21, 53, and 69.)

[85] Hanghang Tong, Brian Gallagher, Christos Faloutsos, and Tina
Eliassi-rad. Fast Best-Effort Pattern Matching in Large Attributed
Graphs. In Proc. of Int. Conf. on Knowledge discovery and Data
Mining (KDD), pages 737–746. ACM, 2007. (Cited on page 30.)

[86] Igor Ulitsky and Ron Shamir. Identification of functional modules
using network topology and high-throughput data. BMC Systems
Biology, 1(1):1–17, 2007. (Cited on pages 30 and 83.)

130 bibliography

[87] Victor E Velculescu, Lin Zhang, Bert Vogelstein, and Kenneth W
Kinzler. Serial Analysis of Gene Expression. Science, 270(5235):
484–487, 1995. (Cited on page 85.)

[88] Lei Xu and Irwin King. A PCA approach for fast retrieval of
structural patterns in attributed graphs. IEEE Trans. on Systems,
Man, and Cybernetics, 31(5):812–817, 2001. (Cited on page 30.)

[89] Ramon Xulvi-Brunet and Hongzhe Li. Co-expression networks:
graph properties and topological comparisons. Bioinformatics, 26
(2):205–214, 2010. (Cited on page 83.)

[90] Guizhen Yang. The Complexity of Mining Maximal Frequent
Itemsets and Maximal Frequent Patterns. In Proc. of Int. Conf. on
Knowledge discovery and Data Mining (KDD), pages 344–353. ACM,
2004. (Cited on page 16.)

[91] Mohammed Javeed Zaki. Scalable Algorithms for Association
Mining. IEEE Trans. on Knowledge and Data Engineering (TKDE),
12(3):372–390, 2000. (Cited on page 15.)

[92] Mohammed Javeed Zaki and Mitsunori Ogihara. Theoretical
Foundations of Association Rules. In Proc. of ACM SIGMOD
Workshop on Research Issues in Data Mining and Knowledge Discov-
ery, pages 1–8. ACM, 1998. (Cited on page 16.)

[93] Zhiping Zeng, Jianyong Wang, Lizhu Zhou, and George Karypis.
Coherent closed quasi-clique discovery from large dense graph
databases. In Proc. of Int. Conf. on Knowledge discovery and Data
Mining (KDD), pages 797–802. ACM, 2006. (Cited on page 23.)

[94] Shihua Zhang, Xuemei Ning, and Xiang-sun Zhang. Identification
of functional modules in a PPI network by clique percolation
clustering. Computational Biology and Chemistry, 30(6):445–451,
2006. (Cited on pages 30 and 83.)

[95] Yang Zhou, Hong Cheng, and Jeffrey Xu Yu. Graph Clustering
Based on Structural/Attribute Similarities. In Proc. of Int. Conf.
on Very Large Data Bases (VLDB), pages 718–729. Springer-Verlag,
2009. (Cited on page 29.)

[96] Yang Zhou, Hong Cheng, and Jeffrey Xu Yu. Clustering Large
Attributed Graphs: An Efficient Incremental Approach. In Proc.
of IEEE Int. Conf. on Data Mining (ICDM), pages 689–698. IEEE
Computer Society, 2010. (Cited on page 29.)

	Abstract
	Résumé
	Publications
	Acknowledgments
	Contents
	List of Figures
	List of Tables
	Introduction
	 Context
	 Problem
	 Contribution
	 Organization of the thesis

	State of the Art
	outline
	1 Local Pattern Mining in Binary Relations
	1.1 The binary relation context
	1.2 Local patterns in binary relations
	1.2.1 Frequent itemsets
	1.2.2 Frequent closed itemsets
	1.2.3 Frequent closed error-tolerant itemsets
	1.2.4 Constraints on patterns and pattern sets

	2 Local Pattern Mining in Graphs
	2.1 The graph context
	2.1.1 Graph measures

	2.2 Local patterns in graphs
	2.2.1 Cliques and maximal cliques
	2.2.2 Quasi-cliques
	2.2.3 k-clique percolated components

	3 Mining Attributed Graphs
	3.1 The attributed graph context
	3.2 Global approaches in attributed graphs
	3.3 Local patterns in attributed graphs
	3.3.1 Application specific approaches
	3.3.2 General frameworks

	conclusion

	A Pattern as a Collection of Subgraphs
	introduction
	4 Mining Collections of Cliques
	4.1 Pattern definition
	4.1.1 The homogeneity constraint: Chomo
	4.1.2 The topology constraint: Cclique
	4.1.3 The separation constraint: Csep
	4.1.4 Reducing the collection of patterns

	4.2 Finding all Maximal Homogeneous Clique Sets
	4.2.1 Algorithm generate and test
	4.2.2 Enumeration tree pruning techniques
	4.2.3 Implementation

	4.3 Experiments
	4.3.1 Scientific collaboration network dataset
	4.3.2 Interpretation of MHCSs from DBLP
	4.3.3 Performance study on DBLP datasets.
	4.3.4 Evaluation on synthetic datasets
	4.3.5 Comparison of the prunings to baseline algorithms

	5 Mining Collections of kpcs
	5.1 Pattern definition
	5.2 Finding all CoHoP patterns
	5.2.1 A naive algorithm
	5.2.2 Enumeration tree pruning techniques
	5.2.3 Algorithm description
	5.2.4 Implementation

	5.3 Experiments
	5.3.1 Illustration of the patterns interest
	5.3.2 Performance study
	5.3.3 Evaluation on synthetic datasets
	5.3.4 Comparison with baseline algorithm

	conclusion

	Application to Molecular Biology
	introduction
	6 Application to Molecular Biology
	6.1 The dataset
	6.2 Evaluation of the pattern collection
	6.2.1 The L2L Measure
	6.2.2 Global evaluation of complete collections of patterns
	6.2.3 Interpretation

	6.3 Performance evaluation
	conclusion

	Conclusion
	 Summary of our contributions
	 Future directions of work

	Appendix
	A Dataset Description
	A.1 The BioData datasets
	A.2 The DBLP datasets

	B A Pattern Extraction/Visualisation Software
	B.1 Presentation of the interface
	B.2 Extraction of the patterns
	B.3 Browsing the collection of patterns
	B.4 Pattern visualisation
	B.4.1 Centrality measures
	B.4.2 Visualisation parameters
	B.4.3 Layout

	C Table of Symbols
	C.1 Notation in the binary relation setting
	C.2 Notation in the graph setting
	C.3 Notation in the Boolean attributed graph setting

	Bibliography

