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RÉSUMÉ 

 

Mécanismes de photo-commutation réversible des protéines fluorescents 
(RSFPs) FARO, A. R. 2012. 232 pages. Thèse – Institut de Biologie Structurale Jean-Pierre 
Ebel, CEA, Université e Joseph Fourier, Grenoble, FRANCE 2012. 

 

La propriété d’être réversiblement commutable de certaines protéines fluorescentes 
homologues à la ύόP ouvre un vaste champ d’applications possiblesμ notamment le bio-
stockage de données à haute densité et la microscopie à super résolution. Parmi ces protéines, 
on trouve plusieurs variantes de la GFP, notamment la protéine jaune YFP, et des protéines 
fluorescentes issues d'espèces marines Anthozoaires, comme Dronpa ou Padron. Plusieurs 
études structurales indiquent que ces protéines fluorescentes photochromiques commutent par 
isomérisation et protonation couplées du chromophore. Cependant, la synchronisation entre 
ces deux événements, le détail des mécanismes de photo-commutation, et le rôle de la 
dynamique conformationelle restent incomplètement compris. Par l'utilisation combinée de la 
cristallographie cinétique et de la spectroscopie optique in cristallo à basse température, nous 
avons comparé le comportement des protéines YFP, Dronpa et IrisFP, et nous avons étudié en 
détail le mécanisme photo-physique de commutation chez la protéine Padron. Contrairement à 
Dronpa et IrisFP, la photo-commutation d’YόP est plus efficace à basse température qu’à 
température ambiante. σos résultats suggèrent que le mécanisme de commutation d’YόP 
n'implique pas de changement conformationel majeur, mais plutôt une protonation photo-
induite du chromophore ne nécessitant pas d'isomérisation. Au contraire, les études réalisées 
sur la protéine Padron nous ont permis de montrer que, dans ce cas, l’isomérisation du 
chromophore peut se produire indépendamment de sa protonation, et, étonnamment, à 
température cryogénique. De plus, deux états intermédiaires ont pu être caractérisés au cours 
du processus de photo-commutation. La protéine Padron a permis de mettre à jour le premier 
marqueur codable génétiquement qui soit efficacement photo-commutable à température 
cryogénique. 

 
 
 

Mot-clés: protéines fluorescentes, photo-commutation, RSFPs, états intermédiaires, 
protonation photo-induite, cryo-nanoscopie. 

 

 

 

 
 

 



 
 

 
 

RESUMO  
 
 
Mecanismo de foto comutação reversível de proteínas fluorescentes 
(RSFPs) FARO, A. R. 2012. 232 páginas. Tese – Institut de Biologie Structurale Jean-Pierre 
Ebel, CEA, Université e Joseph Fourier, Grenoble, FRANCE 2012. 

 
 
A propriedade de ser reversivelmente comutável de algumas proteínas fluorescentes 

homólogas à GFP abre um vasto campo para possíveis aplicações: principalmente a 
bioestocagem de dados de alta densidade e a microscopia de super-resolução. Entre estas 
proteínas se encontra diversas variantes da GFP, em especial variante amarela YFP, e 
proteínas fluorescentes provenientes de espécies marinhas Antozoárias, como Dronpa e 
Padron. Diversos estudos estruturais indicam que estas proteínas fluorescentes fotocrômicas 
comutam por meio da união da isomerização mais a protonação do cromóforo. No entanto a 
sincronização entre estes dois eventos, detalhes do mecanismo, e o funcionamento da 
dinâmica conformacional permanecem desconhecidos. Através da combinação da 
cristalografia cinética e da espectroscopia óptica in cristallo à baixas temperaturas, nos 
comparamos o comportamento das proteínas YFP, Dronpa e IrisFP e estudamos em detalhe o 
mecanismo foto-físico de comutação da proteína Padron. De forma contrária à Dronpa e 
IrisFP, a foto-comutação da YFP é mais eficaz à baixa temperatura que a temperatura 
ambiente. Nossos resultados sugerem que o mecanismo de foto-comutação da YFP não 
envolve grandes mudanças conformacionais, mas uma protonação induzida do cromóforo que 
não necessita da isomerização. Inversamente, os estudos realisados com Padron nos permitiu 
mostrar que, neste caso, a isomerização do cromóforo pode ser produzida independentemente 
da protonação e surpreendentemente à temperatura criogênica. No mais, dois estados 
intermediários puderam ser caracterizados durante o processo de foto-comutação. A proteína 
Padron permitiu desenvolver o primeiro marcador geneticamente codável que foto-comuta 
eficazmente à temperatura criogênica.  

 
 
 

Palavras-chave: proteínas fluorescentes, fotocomutação,  RSFPs, estados intermediários, 
protonação foto induzida, crio-nanoscopia 
 

 
 

 

 

 

 



 
 

ABSTRACT  

 

Reversible photoswitching mechanism of the Fluorescent Proteins (RSFPs). 
FARO, A. R.2012. 232 pages. Thesis – Institut de Biologie Structurale Jean-Pierre Ebel, 
CEA, Université e Joseph Fourier, Grenoble, FRANCE 2012 

 

The property to be reversible switchable of some homologues fluorescents protein of 
GFP open a large field for possible applications: such as, high-density data bio-storage and 
super-resolution microscopy. Between these proteins, we find several variants of GFP, such as 
yellow fluorescent protein, YFP, and fluorescents protein from marine Anthozoary species, as 
Dronpa or Padron. Several structural studies suggest that these fluorescent proteins switch via 
isomerization coupled with the protonation of the chromophore. However, the 
synchronization between these processes, the detail about the photo-switching mechanism, 
and the role of conformational dynamics remains unclear. In combination of the kinetic 
crystallography and the optic spectroscopy in cristallo at low temperature, we have compared 
the YFP behavior, Dronpa and IrisFP, and we have studied in detail the photo-physic 
mechanism of Padron switching. In contrast to Dronpa and IrisFP, the YFP photoswitching is 
more efficient at low temperature than at room temperature. Our results suggest that theYFP 
switching is not associated to large structural rearrangements, but mostly a photo-induced 
protonation of the chromophore without isomerization. On the contrary, the studies done with 
Padron allowed us to show, in this case, the chromophore isomerization can be produced 
independently of the protonation, at cryo-temperatures. Moreover, two intermediate states 
were revealed in the photo-pathway.  Padron fluorescent protein allows to advance the first 
genetically inserted dye, being photo-switchable at cryogenic temperature.       

  
 

 

Keywords: fluorescent proteins, photoswitching, RSFPs, intermediate state, photo induced 
protonation, cryo-nanoscopy. 
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1.1 FLUORESCENT PROTEINS: WHO ARE THEY ?  
 

Fluorescent proteins (FPs) are the homologous proteins of Green Fluorescent Protein 

(GFP), the first noticed fluorescent protein. The GFP was discovered in the mid 1970s, when 

O. Shimomura (Shimomura et al., 1962; Shimomura, 1995) took an interest in  understanding 

the nature of the brightness of the jellyfish Aequorea Victoria, and isolated what he 

considered to be the source of the light. After four decades, this protein family continues to be 

extensively studied due to its qualities in the dyes world. Two factors are advantageous with 

FPs:  
 compared to synthetic dyes, the FPs have the advantage that they can be genetically 

inserted in the organism of interest, providing non-invasive and specific labeling.      

 compared to other proteins that can also fluoresce, they do not require any cofactor except 

molecular oxygen.  

The structure responsible for light emission is the chromophore, p-

hydroxybenzylideneimidazolinone (HBDI), positioned in the center of the protein scaffold 

(Figure 1.1). 

 

Figure 1.1) Size comparison between (i) Cartoon representation of the Green Fluorescent 
Protein (GFP) (A) top view and (B) in overall (the chromophore is represented in stick), (ii)  
E. coli cell and (iii ) Fluorescent jellyfish.  
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1.1.1 FLUORESCENT PROTEINS IN NATURE   

Homologues of GFP were identified in several marine organisms in the phylum 

Cnidaria, including Hydrozoa and reef-corals of the class Anthozoa (Matz et al., 1999; Labas 

et al., 2002). These proteins were also identified in evolutionarily distant species from 

Arthropoda (Shagin et al., 2004), Chordata (Deheyn et al., 2007; Li et al., 2009), and 

Ctenophora (Haddock et al., 2010) (Figure 1.2). 

 

  
Figure 1.2) Unrooted tree for the four phyla, Cnidaria, Arthropoda, Chordata, Ctenophora, in 
which homologues of GFP were found. Cnidaria phylum groups the two biggest classes, 
Anthozoa and Hydrozoa. 

 

The biological function of fluorescent proteins remains unclear. It is possible that the 

GFP function is not necessarily associated with light emission, since non-fluorescent GFP 

homologues have been described in Hydrozoa and Anthozoa (Alieva et al., 2008; Gurskaya et 

al., 2003). Several authors proposed different hypotheses to explain the biological function of 

FPs, based on experimental evidences that are not completely accepted. Alieva et al have 

reported an evolutionary study using 40 different fluorescent proteins from reef corals (class 

Anthozoa) (Alieva et al., 2008). Based on a probabilistic sampling approach, they proposed 

that FPs play a biological role in the context of a symbiosis with other marine organisms, for 

example a photoprotection role (Field et al., 2006). An alternative explanation was given by 

Agmon and co-authors (Shinobu et al., 2010). They have published the high-resolution GFP 
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structure at 0.9 Å, where they have identified several proton wires including a proton-

collecting apparatus. In their view, GFP works as a proton pump capable of direct light 

conversion into proton gradients. Lukyanov and co-authors (Bogdanov et al., 2009) have also 

suggested a biological function of GFPs. Upon 488 nm illumination in the presence of 

electron acceptors, GFP undergoes green-to-red photo conversion through a two-electron 

oxidation process. Based on oxidative redding of GFPs from diverse species, they suggested 

that the function of GFP is to induce a light-driven electron transfer. The three hypotheses 

described above are only some of the possibilities for the biological function of FPs. In 

addition, the possibility that FPs may act in more than only one biological role in nature is not 

excluded. 

 

1.1.2  FLUORESCENT PROTEINS IN SCIENCE  

It is thanks to its scientific applications that FPs won their important reputation. The 

Nobel prize of Chemistry was awarded to Osamu Shimomura, Martin Chalfie and Roger 

Tsien in 2008 (Nobelprize.org, 2008) for the discovery and development of GFP and its 

variants (Figure 1.3). These proteins then quickly became widely used markers that allow the 

spatio-temporal tracking of the dynamic behavior of living systems at the molecular level 

(Ehrenberg, 2008). 

 

       

Figure 1.3) The Nobel Prize in Chemistry 2008: Osamu Shimomura, Martin Chalfie, Roger 
Y. Tsien 
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The wide rainbow of FP biosensors offers the possibility to perform multicolor imaging 

experiments (Livet et al., 2007) and to develop pairs of dyes suitable for studies based on 

Föster resonance energy transfer (FRET) (Chudakov et al., 2010). The development of red 

fluorescent proteins (RFP), triggered by the discovery of homologues GFP from Anthozoa, 

was an important improvement for applications in imaging living cells and tissues that 

require low spectral activity in UV-to-green spectral region (Subach et al., 2011a). The 

fluorescent proteins from Anthozoa also provide more sophisticated imaging techniques 

through the development of Photo-Transformable Fluorescent Proteins (PTFPs), which 

possess the advantage to display spectral properties that can be modulated by actinic 

illumination. Within the PTFPs group, photo-activatable fluorescent proteins (PAFPs) and 

photo-convertible fluorescent proteins (PCFPs) are particularly useful to achieve single 

molecule localization-based super resolution microscopy and to probe dynamic cellular events 

in living cells via pulse-chase imaging. For example, performing powerful variants of the 

fluorescence recovery after photobleaching techniques (FRAP). In this thesis, we have 

studied the photo-switchable fluorescent proteins (RSFPs). These proteins can switch between 

a fluorescent and a non-fluorescent form repeatedly. RSFPs are promising nano-devices for 

the development of rewritable data storage (Grotjohann et al., 2011). Moreover, they allow 

photochromic FRET and facilitate super-resolution microscopy techniques, such powerful 

variants of stimulated emission depletion (STED) microscopy (Hell and Wichmann, 1994; 

Klar et al., 2000; Willig et al., 2011) and structured illumination microscopy (SIM ) (Rego et 

al., 2012). όurther details about these RSόP’s applications are described later in the text (see 

subchapter 1.4).  
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1.2 HOW DO FLUORESCENT PROTEINS WORK ?  
 
1.2.1  CHROMOPHORE FORMATION  

 
The molecular structure of GFP is constituted of 230 amino acids, which adopt a 

secondary structure essentially made of ȕ-strands that fold into a nearly cylindrical ȕ-barrel, 

with 4.2 nm and 2.4 nm dimensions (Tsien, 1998) (Figure 1.1). Concomitantly with protein 

folding, a series of chemical reactions called maturation generate the chromophore that will 

be buried in the middle of the central helix and formed from the combination of three amino 

acids residues, Ser65-Tyr66-Gly67 (Figure 1.4).  

 

Figure 1.4) Schematic diagram of the autocatalytic process of formation of the chromophore 
from the amino acids Ser65-Tyr66-Gly67 in the GFP (Zhang et al., 2006).  

 

 

The maturation of the chromophore is an autocatalytic process, where in the first step 

the cyclization of Gly and Ser is favored by the confinement inside of the ȕ-barrel. Kinetic 

studies of hydrogen peroxide release, combined with mass spectroscopy analysis, have 

revealed that the second and limiting step during in vitro GFP maturation is an oxidation step 
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(Zhang et al., 2006). The hydrogen peroxide is the product of the oxidation reaction that 

requires molecular oxygen to occur. During oxidation, a hydroxylated cyclic imine is formed 

(Pouwels et al., 2008). Finally, dehydration converts the imine to the double-bonded 

imidazolinone ring yielding the fully conjugated mature chromophore. This step of reaction is 

probably assisted by the nature of Tyr66, since the mutation of this residue does not interfere 

with the cyclization or oxidation steps, but only with the dehydration (Zhang et al., 2006). 

 

The maturation of the chromophore is a common process between all fluorescent proteins 

that may vary from hours to a few days depending on FP. Indeed, depending on the group of 

proteins other steps occur, as Verkhusha and other authors have demonstrated recently 

(Bravaya et al., 2012). In particular, they have shown that red-variants of fluorescent proteins, 

such as DsRed, TagRFP, fluorescent timers and PAmCherry, pass by a blue anionic 

intermediate structure, through a single oxidation step, before the mature chromophore is 

formed. 

 

Once synthesized, the mature chromophore is relatively well shielded from the 

environment by the ȕ-barrel. It is stabilized by a complex network of electrostatic, H-bonding, 

van der Waals or stacking interactions with its surrounding residues. This stabilization of the 

chromophore is strongly responsible for the high fluorescence emission. Due to this, the 

chromophoric moiety in the absence of the ȕ-barrel does not fluoresce under normal 

conditions (Niwa et al., 1996). Similarly, the denaturation product of fluorescent proteins is 

not fluorescent although FPs recover their fluorescence when they refold (Ward and Bokman, 

1982). 

 

Several residues have a central importance in both the maturation process and the ability 

to fluoresce. In the chromophore triad, only the amino-acid Gly67 is essential to ensure 

maturation. Tyr66 can be mutated to a tryptophan or to a histidine, giving origin to two other 
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fluorescent proteins, the cyan variant (CFP) and the blue variant (BFP) (Tsien, 1998). The 

GFP brightness is improved  ≈ 10 times upon excitation at 488 nm, when Ser65 is mutated 

into a threonine (Heim et al., 1995). The F64L is known to improve the folding efficiency, 

which is advantageous for living cell experiments (Cormack et al., 1996). The S65T and/or 

F64L mutations in the fluorescent proteins from Aequorea victoria (AFPs) yields the 

enhanced fluorescent proteins (eGFP, eBFP, eCFP and eYFP). Other residues are 

fundamental in changing the behavior of GFP, such as E222 and S205 and their roles will be 

described later in the text.   

 

1.2.2  SPECTROSCOPIC BEHAVIOR OF GFPS  

The GFP absorption spectrum is constituted of two broad bands: one band with a 

maximum at ~ 398 nm and another with a maximum at ~ 478 nm (Heim et al., 1994, 1995; 

Tsien, 1998). At physiological pH, the ratio between these bands is six to one. The 398 nm 

band is associated to the protonated form of the chromophore (A form ). The 478 nm band is 

associated with the anionic form of chromophore (B form). The chromophore in its anionic 

conformation is highly fluorescent. It exhibits a strong emission peak at 503 nm. The 

protonated chromophore is intrinsically weakly fluorescent. However, when it is excited near 

its absorption maximum, it exhibits an emission peak close to the B fluorescence peak (Heim 

et al., 1994).   

 

Figure 1.5) Spectroscopic behavior of GFP (Tsien, 1998).  
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1.2.3  EXCITED STATE PROTON TRANSFER (ESPT) 

Boxer and co-worker in 1996 were the first to explain why excitation of the protonated 

band produces a fluorescence emission similar to that of the anionic band (Chattoraj et al., 

1996). Their hypotheses are based on the analysis of steady-state absorbance and fluorescence 

emission spectra and also on ultrafast time-resolved fluorescence excitation with and without 

deuterium isotopic labeling at low temperatures. The phenomenon is being caused by a proton 

transfer occurring in the excited state (ESPT) between the hydroxybenzylidene moiety of the 

chromophore and the nearby H-bond network, leaving the chromophore in an anionic 

intermediate I state which is structurally close to A and spectroscopically close to B (Fang et 

al., 2009) (Figure 1.6). 

 

 
 

Figure 1.6) Excited state proton transfer between hydroxybenzylidene moiety of the 
chromophore and the nearby H-bond network in the GFP.  
 
 

 
 This first mention of ESPT was done without knowing the precise molecular structure 

of GFP. Some months later, two different teams published the first molecular structure of 

GFP (Ormo, 1996; Yang et al., 1996). Together with the GFP structure, the Tsien group also 

introduced a yellow variant of eGFP, called eYFP (Ormo, 1996) .  
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1.3 REVERSIBLE PHOTOSWITCHING OVER THE 
YEARS  

 

1.3.1 PHOTOSWITCHING AT THE SINGLE MOLECULES LEV EL  

The first time that the reversible photoswitching of a fluorescent protein was described 

in the literature was through single molecules experiments on YFP, done by Dickson et al in 

1997 (Dickson et al., 1997). At physiological pH, the YFP absorption spectrum displays only 

a deprotonated band at 514 nm corresponding to the anionic chromophore (B form). The 

YFPa differs from GFP by three amino acid residues S65G/T203Y/S72A (Figure 1.7). The 

highly polarizable phenol of Tyr203 assumes an almost coplanar ʌ–ʌ stacking with the 

chromophore allowing a red shift of ≈ 20 nm of the fluorescence emission (Ȝem = 527 nm) 

(Wachter et al., 1998).  

 

  

Figure 1.7) Chromophore of YFP (PDB: 1YFP) (Wachter et al., 1998).  

 
Dickson et al. showed that single immobilized YFP proteins are light-driven to a long-

lived non-fluorescent state (off-state) after long exposure (̚106 photons) at 488 nm. The 

protein can recover its emission (on-state) after some minutes in the dark, or upon 

illumination at 405 nm. This means that, at the single molecule level, the on-off switching 

cycles can be repeated in a controlled way by alternation of illumination with 488 nm and 

                                                 
a YFP used in Dickson (Dickson et al., 1997) et al is a variant of the YFP 10C described in Wachter et al 
(Wachter et al., 1998) with an extra mutation V68L.   
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405 nm light. The photoswitching was also demonstrated for the variant S65G/S72A/T203F 

(denoted T203F) of GFP, but it exhibits a less efficient activation/inactivation of the 

fluorescence than YFP (Dickson et al., 1997). 

 

In this work the authors discuss the blinking: another process that also involves the 

reversible transformation from a fluorescent state to the non-fluorescent state. In contrast to 

the photoswitching, photoblinking is the stochastic fluctuation of the fluorescence, is 

essentially uncontrolled, and takes place on a much faster timescale than the switching. 

Blinking can be observed upon continuous illumination with a single wavelength, reminiscent 

of spectral and amplitude fluctuation, noticed also in other fluorophores, at the single 

molecule level (Lu and Xie, 1997).  

 

 

1.3.2  PHOTOSWITCHING AT ENSEMBLES OF MOLECULES LEVEL  

 
i. Photoswitching at low and ultra-low temperature   
 

On and off photoswitching in fluorescent proteins at the ensemble level was observed 

at ultra-low temperature on GFP and some red-shifted derivatives, using hole-burning 

spectroscopy (Creemers et al., 1999, 2000; Creemers, TM H Lock et al., 2002). Many of the 

thermally induced conversions are blocked at low temperature and, therefore, discrimination 

amongst individual species is facilitated (Creemers et al., 2000). The structured spectra 

obtained at low temperature allow to identify the protonated (A), the anionic (B) and the 

intermediate (I) states and to propose the pathway of photo-conversion between them.  

 

The intermediate state I between B and A states, proposed to explain the ESPT, was 

first observed for GFP. It was also found in the photo-mechanism of red-shifted derivatives: 

RS-GFP (F64M, S65G and Q69L) and YFP (S65G, V68L, S72A and T203Y). Summarizing, 
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the authors suggest that illumination at the anionic excitation peak (≈ 488 nm) can excite the 

B and I forms. When excited, B can fluoresce or eventually be converted to the I state. In turn, 

if the I state is excited it can fluoresce or be converted to the B or A forms. At wavelengths 

less than the protonated excitation peak maximum (≈ 44θ nm), the A state can be exited to 

fluoresce or be re-converted to the I form. The reaction can be described by:  

 
 

 

As shown in Figure 1.7, RS-GFPb exhibits an excitation peak at 495 nm (blue line) 

and an emission peak at 503 nm (red line). These bands are ascribed to the intermediate state I 

due to its spectroscopic similarities with that of GFP. Upon illumination at 495 nm, we 

observe the intermediate state reduction with concomitantly an increase of the B and A states 

and a reduction of the fluorescence (Figure 1.8a). Upon illumination at 434 nm, the A-peak 

decreases whereas the I-peak increases (not shown). Subsequent illumination into I increases 

the population of A again (Figure 1.8b). 

 

 

Figure 1.8) Scheme of RS-GFP model at 1.6 K. Reprinted from (Creemers, TM H Lock et al., 
2002). (A) Interconversion from I to A and B upon illumination 495 nm with concomitantly 
reduction of fluorescence. (B) Decrease of the A band upon illumination 434 nm and 
subsequent increase upon illumination at 495 nm. 
                                                 
b In the paper Creemers and co-authors have described RS-GFP as Red Shifted-GFP (Delagrave et al., 1995), not 
to be confounded with rs-GFP published recently (Grotjohann et al., 2011).  

A I B
k1 k2

k-1
k-2



1    INTRODUCTION 
_________________________________________________________________________________________ 
 

34 
 

 The approach based on low temperature spectroscopy, used to decipher the reaction 

pathway in these works (Creemers et al., 1999, 2000; Creemers, TM H Lock et al., 2002), is 

close with the approach that will be used in the Results chapter of this Thesis (see Chapters 

2.1 and 2.2).  

 

ii . Partial photoswitching at room temperature  
 

Miyawaki and Tsien have observed that in cells expressing eYFP and in pure protein 

solutions after bleaching at 540 nm, it is possible to recover partially the fluorescence. About 

20% of the initial fluorescence is retrieved by illuminating at 340 nm at room temperature 

(Miyawaki and Tsien, 2000). Furthermore, the recovery can be induced by thermal relaxation, 

as well as by actinic illumination. However, in these bulk experiments, photoswitching is not 

induced with the same illumination scheme as in single-molecule experiments. Surprisingly, 

illumination at 405 nm does not recover the fluorescence, in contrast, it induces further decay 

(McAnaney et al., 2005; Sinnecker et al., 2005).  

 

Based on stopped-flow, pressure-jump and time-resolved experiments, McAnaney et 

al. have detailed the kinetics of protonation, photobleaching and photoactivation in YFP 10C 

(McAnaney et al., 2005). At room temperature, they observed only a weak recovery of the 

fluorescence, similar to the observation by Miyawaki and Tsien (Miyawaki and Tsien, 2000).  

They described two absorption peaks at 340/460 nm that would be responsible for 

fluorescence recovery after illumination, and differ from the protonated peak at 390 nm. In 

the same year, another observation of photo-switching upon illumination at various 

wavelengths of samples of eYFP, citrine, CFP and GFP, was described in Sinnecker et al. 

They showed that a dynamical equilibrium between a reversibly and a non-reversibly photo-

bleached population is established after prolonged exposure followed by thermal relaxation 

(Sinnecker et al., 2005).  
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The common feature of all these processes is the fact that photoswitching in these GFP 

derivatives is only weakly reversible, 10 – 40% depending on the experimental conditions. A 

possible interpretation for these results would be the presence of non-interchangeable 

populations in the photo-pathway of these proteins: one reversibly photoswitchable and the 

other not. For example, a first anionic fluorescent state, B1, could undergo reversible 

switching to a weak or non-fluorescent state A, and concomitantly another B2 anionic state 

would only be able to undergo irreversible bleaching to a dark state, D.  

 

  

The structural mechanisms that could be responsible for these effects are not clear. In 

all cases, protonation of the chromophore can be observed by inspecting the absorption 

spectrum. However, the sole protonation cannot explain the long-lived dark state, and this 

process needs to couple to at least a minimal structural rearrangement (McAnaney et al., 

2005). Isomerization of the chromophore has been hypothesized as being the responsible 

structural rearrangement causing this effect (Weber et al., 1λλλν σifosı et al., β00γ). Although 

Raman results have showed spectroscopic signatures suggesting such cis-trans isomerization 

in other variants of YFP (EYQ1) (Luin et al., 2009), further evidence is missing to understand 

the partial photo-switching. To date, for AFPs, there are no structural results showing 

isomerization of the chromophore (trans conformation). It is, however, a common consensus 

that the matrix of the chromophore should play a fundamental role in switching mechanisms 

(Follenius-Wund et al., 2003; Maddalo and Zimmer, 2006; Fang et al., 2009). 

 

 

 

k1 k2

k-1

DB2A B1
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1.3.3 DISCOVERY OF THE FLUORESCENT PROTEINS FROM  
CORALS 

 
 

In 1999 Lukyanov and co-authors announced the discovery of GFP homologues 

isolated from reef corals (Matz et al., 1999). Although these proteins display a -barrel 

tertiary structure similar to GFP, the new chromophore and amino acid interactions not only 

extend the existing FP color palette, but also reveal unprecedented photo-physical properties 

(Lukyanov et al., 2000). These new fluorescent proteins are “photo-transformable” (PTFPs): 

proper actinic illumination can modulate their fluorescence behavior. This property introduces 

unique possibilities for precision labeling and tracking of objects of interest in living systems, 

enhancement of signal-to-noise ratio, and, most importantly, super-resolution fluorescence 

imaging (Chudakov et al., 2010). Because of these unprecedented developments, anthozoan 

PTFPs led to a second revolution in the FP field. They can be classified in three groups: 

Photo-Activatable Fluorescent Proteins (PAFPs) and Photo-Convertible (PCFPs) exhibit non-

reversible photo-transformations, whereas Photo-Switchable Fluorescent Proteins (RSFPs), 

our objet of study, display reversible photoswitching between a fluorescent on state and a 

non-fluorescent off state.       

 

i.   Photo-Activatable FPs (PAFPs) 

Photo-Activatable FPs are initially in a non-fluorescent state and are transformed into 

a fluorescent state upon actinic illumination with violet light (405 nm). The FPs belonging to 

this group are: PAmRFP1 (Verkhusha and Sorkin, 2005), PA-GFPc (Patterson and Lippincott-

Schwartz, 2002), PA-mCherry (Subach et al., 2010a), PS-CFP, PS-CFP2 (Chudakov et al., 

2004), and PA-TagRFP (Subach et al., 2010b). Typically, PAFPs, before illumination, are in a 

protonated state and are converted to an anionic state upon relatively strong UV- illumination. 

                                                 
c PA-GFP is a variant of the WT-GFP cloned from hydrozoan.   
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Attenuated photochromatic behavior is also observed in WT-GFP and it is potentialized in 

PA-GFP with the T203H substitution, that affects the side chain conformation of Glu222 

(Figure 1.9). Glu222 is rotated away from His203 and occupies a slightly different position 

than that in WT (Henderson et al., 2009). Both mass spectroscopy and crystallographic data 

suggest that photo-activation in PA-GFP is caused by oxidative decarboxylation of E222 

driven by high-energy UV light (Henderson et al., 2009). This is followed by a reorganization 

of a H-bond network, resulting in favoring the anionic state of the chromophore. A similar 

decarboxylation reaction is observed in PA-mCherry (Subach et al., 2010a), and in PS-CFPs 

(Chudakov et al., 2004). The relative efficiencies of decarboxylation are explained in terms of 

the Kolbe-type mechanism in which the excited state of the chromophore acts as an oxidant 

by accepting an electron from E222 (Bell et al., 2003). Thanks to their ability to be 

irreversibly activated, PAFPs are appropriate for tracking experiments in the cell (Chudakov 

et al., 2010).  

 
 

 

Figure 1.9) Photo-Activatable FPs (PAFPs). Irreversible photo-transformation from the non-
fluorescent protonated state to the fluorescent anionic state of chromophore based on 
oxidative decarboxylation of Glu222 upon illumination with high-energy UV light.  
Representative spectra of this class are based on PA-GFP photo-activation, excitation (solid 
lines) and emission (dashed lines). 
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ii. Photo-Convertible FPs   
 

Photo-Convertible FPs are initially in a first, typically green, fluorescent state and upon 

actinic illumination are irreversibly converted to another state, typically red, fluorescent state 

(Figure 1.10).  

 

 

 
 

Figure 1.10) Photo-Convertible FPs (PCFPs). Irreversible photo-transformation from the 
green fluorescent anionic state to the red fluorescent anionic state of chromophore based on 
backbone cleavage, via a ȕ-elimination reaction, between σĮ and ωĮ of His62 upon 
illumination with high-energy UV light. Representative spectra of this class are based on 
Kaede photo-conversion, excitation (solid lines) and emission (dashed lines). 

 

 

The FPs belonging to this group are: Kaede (Matz et al., 1999), EosFP (Wiedenmann et 

al., 2004), mEosFP (Gurskaya et al., 2006), mEos2 (Mckinney et al., 2009), KikGR (Tsutsui 

et al., 2005), Dendra2 (Gurskaya et al., 2006), IrisFP (Adam et al., 2008, 2011), Nijid (Adam 

et al., 2011), PSmOrange (Subach et al., 2011b). Kaede was the first fluorescent protein to 

exhibit this green to red photo-conversion property upon illumination with UV-violet light 

(Matz et al., 1999). To date the conversion was observed typically from green to red, but it 

was observed also from cyan to green (PS-CFP2) (Evrogen, 2007). The mechanism 

                                                 
d Iris and Niji FPs are a special characteristic to posses both photo-conversion and photoswitching behavior 
(Adam et al., 2008, 2011). 
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accounting for photo-conversion is based on protein backbone cleavage, via a ȕ-elimination 

reaction, between σĮ and ωĮ of Hisθβ (Mizuno et al., 2003; Wiedenmann and Nienhaus, 

2006; Lelimousin et al., 2009), that follows from photon absorption in the protonated state of 

the chromophore. This irreversible peptide cleavage results in a subsequent extension of the 

chromophoric conjugated electron system, inducing a red-shifted emission peak. 

 

iii. Reversibly-Photoswitchable Fluorescent Proteins (RSFPs) 

Reversibly-Photoswitchable Fluorescent Proteins (RSFPs) are initially in a 

fluorescent/non-fluorescent state, and upon illumination they are reversibly switched to a non-

fluorescent/fluorescent state. The FPs belonging to this group and some of their photo-

physical properties are shown in Table 1.1.  

 

RSFPs that switch to the non-fluorescent state upon illumination in the absorbance 

band of the fluorescent state are called “negatively switchable”μ they show a decrease of 

fluorescence upon excitation. Dronpa is the most well-known representative of this subclass. 

In contrast, RSFPs that switch to the fluorescent state upon illumination in the absorbance 

band of the fluorescent state are called “positively switchable”μ they show an increase of 

fluorescence upon excitation. Well-known members of this subclass are asFP595 and Padron. 

RSFPs have representative proteins in both Hydrozoan and Anthozoan classes.  

 

Several molecular structures have suggested that the structural mechanism accounting 

for the photoswitching is a cis-trans isomerization of the chromophore. Spectroscopically, 

photoswitching manifests itself by a light induced interconversion between the anionic and 

the protonated absorption bands. However, recently, a completely different mechanism than 

coupled chromophore isomerization and protonation was observed for a new RSFP, named 

Dreiklang. In the following, we detail further each RSFP sub-class by reviewing asFP595 and 

Dronpa.  
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Table 1.1) Properties of principal RSFPs developed  to date.  
 

 

*mutation M159A; †other structures of Dronpa: 2IVO, 2IE2, 2GXO, 2GX2, 2POX, 2Z1O, 2Z6X, 2Z6Z; 
Ыother structures of asFP595: 2A50, 

2A52, 2A53; λnot deposited in PDB (see Material and Methods Chapter 4.5.4). Chromophore triad (Chr. triad), excitation and emission 
wavelengths (Ȝexc/Ȝem), extinction coefficient (İ), fluorescence quantum yield (Ɏfluo), photoswitching quantum yield (Ɏsw),  References 
(Ref): (1) (Henderson et al., 2007); (2) (Ando et al., 2004; Andresen et al., 2007); (3, 4) (Stiel et al., 2007); (5, 7, 8, 9, 16, 17, 18) (Adam et 
al., 2011); (6, 15) (Adam et al., 2008); (7)(Fuchs et al., 2010); (10, 12) (Bizzarri et al., 2010); (11) (Grotjohann et al., 2011); (13, 20) 
(Bogdanov et al., 2009); (14) (Subach et al., 2010c); (19) (Brakemann et al., 2010); (21) (Lukyanov et al., 2000); (22) (Chudakov et al., 
2003a); (23) (Brakemann et al., 2011). 

________________________________________________________________________________________________________________________________________________________ 

 

 

 

1.3.4  POSITIVE PHOTOSWITCHI NG: ASFP595   

The fluorescent protein asFP595 from Anemonia sulcata was discovered in 2000, in 

the course of investigations to find homologues of GFP in organisms other than Hydrozoans 

(Lukyanov et al., 2000; Andresen et al., 2005). Amongst the fluorescent proteins from reef 

corals, asFP595 was the first observed to exhibit reversible photoswitching (Chudakov et al., 

2003b). Upon actinic illumination at 568 nm, asFP595 was observed to dramatically increase 

its fluorescence (Chudakov et al., 2003b). Due to this property it was called a “kindling 

Protein (Class) - Chr. Struct. Strct. Ȝexc/Ȝem İ Ɏfluo pKa Ɏsw Ɏsw Actinic Ref

Source organism triad (on ) (off ) (M-1cm-1)  (onїoff ) (offїon ) Ligh 

mTFP0.7 (A) - Clavularia sp. AYG 2OTB 2OTE 453 / 488 60 000 0.50 4.0 ND ND 458/405 1

Dronpa (A) - Echinophy sp. CYG 2Z6Z † 2POX 503 / 517 94 100 0.67 5.3 3.0 X 10 -4 7.0 X 10 -1 458/405 2

rsFastLime (A) - Echinophy sp. CYG ND ND 496 / 518 39 094 0.77 ND ND ND 458/405 3

bsDronpa (A) - Echinophy sp. CYG ND ND 460 / 504 45 000 0.50 ND ND ND 458/405 4

mEosFP * (A) - L. Hemprichii HYG ND ND 487 / 512 98  600 0.52 4.3 2.6 X 10 -3 1.5 X 10 -1 458/405 5

Iris (A) - L. Hemprichii HYG 2VVH 2VVI 488 / 516 57 800 0.48 5.7 3.2 X 10 -3 1.5 X 10 -1 458/405 6

mIrisFP (A) - L. Hemprichii HYG ND ND 486 / 516 74 000 0.60 5.7 2.2 X 10 -3 1.5 X 10 -1 458/405 7

NijiFP (A) - Dendronephthya sp. HYG ND ND 469 / 507 41 100 0.64 7.0 1.8 X 10 -3 1.5 X 10 -1 458/405 8

Drenda2 * (A) - Dendronephthya sp. HYG ND ND 471 / 504 51 100 0.55 6.5 1.1 X 10 -3 8.0 X 10 -2 458/405 9

Mut2q (H) - A. victoria AYG ND ND 496 / 507 54 000 0.28 6.0 4.7 X 10 -3 2.6 X 10 -2 478/405 10

rsGFP (H) - A. victoria TYG ND ND 493 / 510 47 000 0.36 6.5 ND ND 458/405 11

EYQ1 (H) - A. victoria SYG ND% ND 510  / 524 73 000 0.72 6.9 1.8 X 10 -4 6.0 X 10 -2 514/405 12

rsCherryRes (A) - Dicosoma sp. MYG ND ND 572 / 608 84 000 0.01 5.5 ND ND 550/450 13

rsTagRFP (A) - E. quadricolor MYG 3U8C 3U8A 567 / 585 36 800 0.11 6.6 ND ND 570/445 14

Iris (A) - L. Hemprichii HYG 2VVJ ND 551 / 580 27 000 0.50 6.8 2.0 X 10 -3 5.0 X 10 -2 561/440 15

mIrisFP (A) - L. Hemprichii HYG ND ND 546 / 578 26 000 0.44 7.0 4.0 X 10 -4 1.5 X 10 -1 561/440 16

NijiFP (A) - Dendronephthya sp. HYG ND ND 526 / 569 42 000 0.65 7.3 1.0 X 10 -3 1.5 X 10 -1 561/440 17

Drenda2 * (A) - Dendronephthya sp. HYG ND ND 528 / 562 45 000 0.75 6.8 3.2 X 10 -3 1.0 X 10 -2 561/440 18

Padron (A) - Echinophyllia sp. CYG 3LS3 3LSA 503 / 522 43 000 0.64 ND ND ND 405/488 19

rsCherry (A) - Dicosoma sp. MYG ND ND 572 / 610 80 000 0.02 6.0 ND ND 450/550 20

asFP595 (A) - A. sulcata MYG 2A56‡ 2A53 572 / 595 56 200 0.001 ND ND ND 450/568 21

KFP1 (A) - A. sulcata MYG ND ND 590 / 600 59 000 0.07 ND ND ND 458/532 22

Dreiklang (H) - A. victoria GYG 3ST4 (2) 3ST3 511 / 529 83 000 0.41 7.2 ND ND 405/365 23

Negative swicthing

Positive swicthing

Decoupled swicthing
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fluorescent protein” (Figure 1.11). The kindling phenomenon can be slowly reversed by 

thermal relaxation or instantly by irradiation with blue-light (Chudakov et al., 2003b). 

 

 

 
 

 

Figure 1.11) Positively photo-switchable FPs. Reversible photo-transformation from the non-
fluorescent state to the fluorescent state of chromophore based on trans-cis isomerization of 
the chromophore upon illumination at 488 nm to switch on and at 405 nm to switch off. 
Representative spectra of this class are based on Padron photo-switching, excitation (solid 
lines) and emission (dashed lines). 
 
 
 
 The first application in fluorescence microscopy taking advantage of reversible 

switching employed asFP595 to introduce a point-scanning technique relatively similar to 

STED, and called RESOLFT (REversible Saturable Optical Linear Fluorescence Transitions) 

(Hofmann et al., 2005). However, asFP595 has a very weak fluorescence quantum yield 

(<0.001) and it is an obligate tetramer, which considerably limits its practical use for 

biological applications. 

 

AsFP595 has been subjected to a number of mechanistic investigations. Like for 

AFPs, a cis-trans isomerization of the chromophore was soon proposed to account for 

kindling and back-relaxation to the dark state. The cis (fluorescent) to trans (non-fluorescent) 

isomerization of the chromophore was confirmed by X-ray crystallography for the wild-type 
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asFP595, as well for the variants asFP595-S158V (Andresen et al., 2005) and asFP595-

A143S (designated KFP) (Andresen et al., 2005; Quillin et al., 2005; Wilmann et al., 2005). 

The single mutation A143S confers to the protein a long-lived bright state and an 

enhancement of the fluorescence quantum yield, likely because the side chain of Ser143 

stabilizes the cis conformation of the chromophore (Quillin et al., 2005).  

 

Based on molecular dynamics calculations, a Hula-Twist motion was suggested as the 

isomerization mechanism (Andresen et al., 2005). Unfavorable steric clashes were predicted 

for simple one-bond rotations of the chromophore (Quillin et al., 2005). Contrary to negative 

RSFPs, only very limited rearrangements of the chromophore pocket were noticed between 

the trans and the cis configurations, consistent with the observation of kindling at 150 K, 

below the glass transition temperature of solvent (Schüttrigkeit, 2006).  

 

Schäfer and co-authors have studied how the chromophore protonation state controls 

photoswitching in asFP595 by performing ab initio calculations and QC/MM molecular 

dynamics simulations (Schäfer et al., 2007, 2008). It was suggested that cis-trans 

isomerization occurs in the neutral state of the chromophore, followed by a dark state 

equilibration to a zwitterionic fluorescent cis state (Schäfer et al., 2008). However, this study 

did not rule out the possibility that the chromophore may also photo-isomerize in its anionic 

state. 

 

Other fluorescent proteins exhibit positive photoswitching, for example rsCherry and 

Padron. RsCherry (and its negative-switching counterpart rsCherryRev) was rationally 

engineered from the known structure of mCherry (Stiel et al., 2008). It emits at 610 nm and 

can be switched on/off using blue/yellow illumination, respectively. In contrast with asFP595, 

rsCherry is monomeric, extending possible applications using red-RSFPs. 
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i. Padron    
 

Padron was introduced by Andresen et al. in 2008 as being the positive switching 

counterpart of Dronpa (Andresen et al., 2008). Padron was generated by site-directed 

saturation mutagenesis of rsFastLime (Dronpa: Val157Gly) at eight positions. Notably, the 

sole exchange of the Met residue at the position 159 to a Tyr residue is sufficient to confer the 

positive switching mechanism (Andresen et al., 2008). The scientific interest of this protein 

stems from the fact that, together with Dronpa, Padron allows the implementation of, multi-

label far-field fluorescence nanoscopy (Andresen et al., 2008; Willig et al., 2011). Recently, 

dual-label monochromatic STED nanoscopy of living cells using Padron and Dronpa reached 70 ׽ nm (Padron) and 90 ׽ nm (Dronpa) spatial resolution (Willig et al., 2011). The positive 

photoswitching mechanism of Padron will be extensively studied in the Results Chapter, 

leading to the central results of this thesis work (see Results and Discussion Chapter 2.2).  

 

 

1.3.5 NEGATIVE PHOTOSWITCHI NG:  DRONPA 

 
Dronpa is a mutant of fluorescent protein cloned from a coral Pectiniidae. This RSFPs 

satisfies most requirements for being a suitable dye for imaging applications: it is monomeric, 

displays a high fluorescence quantum yield (0.67 compared to 0.001 for asFP595), has a high 

extinction coefficient (94100 cm-1M-1 versus 56200 cm-1M-1 for asFP595), exhibits a good on-

off contrast of the fluorescence (≈ κ0%) and shows a moderate photoswitching quantum yield 

of 10-4 e (Habuchi et al., 2005). The ensemble of studies carried out with Dronpa forms the 

basis of our present knowledge of the RSόP’s mechanisms (Bourgeois and Adam, 2012).  
 

                                                 
e Photoswitching from on-state to off-state 
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The absorption spectrum of Dronpa displays a predominant peak at 503 nm at high pH 

conditions ( > 7.5). This peak (called B) is associated to the anionic form of the chromophore. 

pH titration converts the B peak to a peak at 388 nm (called A) corresponding to the 

protonated form of the chromophore, while the protein passes from a fluorescent 

(Ȝem = 503 nm) to a non-fluorescent state (Ando et al., 2004; Habuchi et al., 2005). Similarly, 

upon illumination of the anionic absorption band, we observe a decrease of this band, 

concomitantly with an increase of the protonated band. Dronpa photoswitches from a 

fluorescent (on-state) to a non-fluorescent state (off-state), obeying the principle of negative-

switching (Ando et al., 2004; Habuchi et al., 2005). Thermal relaxation (t1/2) occurs in about 

840 minutes (Stiel et al., 2007). However, fluorescence emission can be quickly recovered by 

illuminating the protonated band (Figure 1.12). Evidence of ESPT in back-switching has 

been demonstrated by ultra-fast absorption spectroscopy (Fron et al., 2007). Furthermore, the 

existence of an intermediate state along the back switching pathway has been proposed 

(Habuchi et al., 2005; Fron et al., 2007). The photoswitching of Dronpa at the single-molecule 

level is fast, easy to detect, and in accord with observations in bulk solutions (Habuchi et al., 

2005). 

 
 
Figure 1.12) Negatively photo-switchable FPs. Reversible photo-transformation from the 
fluorescent anionic state to the non-fluorescent protonated state of chromophore based on cis-
trans isomerization of the chromophore upon illumination at 488 nm to switch off and at 
405 nm to switch on. Representative spectra of this class are based on Dronpa photo-
switching, excitation (solid lines) and emission (dashed lines). 
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Several molecular structures of Dronpa have been published (Wilmann et al., 2006; 

Andresen et al., 2007; Nam et al., 2007; Stiel et al., 2007; Lummer et al., 2011). These 

structures show that in the fluorescent state the chromophore is in the cis conformation and 

after actinic illumination the chromophore is non-fluorescent in the trans conformation. Thus, 

on to off photoswitching involves isomerization of the chromophore. The p-hydroxyphenyl 

ring of the chromophore loses its interaction with Ser142. Other structural rearrangements in 

the chromophore surrounding accompany the isomerization. The −stacking interaction of the 

p-hydroxyphenyl ring with His193 is replaced by a ʌ−cation interaction with Arg66. Arg66 is 

relocated to a position beneath the chromophore. Furthermore, the tightly H-bonded triad 

Glu144-His193-Glu211 in the cis configuration is replaced by the Glu144-Arg66-Glu211 

triad in the trans configuration (Andresen et al., 2007).  

 

Photoswitching seems clearly based on the fact that the chromophore is found in a 

trans conformation in the off state. However, the trans conformation per se cannot be 

responsible for the lack of fluorescence, since there exist FPs that are fluorescent in their trans 

isomers (Petersen et al., 2003; Violot et al., 2009). Other investigations based on NMR results 

have also suggested the importance of the structural flexibility in photoswitching behavior 

(Mizuno et al., 2008). The non-planarity and the weak attachment of the chromophore to the 

protein matrix could harm the fluorescence (Andresen et al., 2007). In fact, the flexibility of 

the chromophore and its protein environment is directly connected to radiationless decays (Li 

et al., 2010). However, chromophore protonation also plays a key role. Indeed, while 

isomerization of the chromophore is observed by X-ray crystallography, spectroscopically it 

is the protonation of the chromophore which is detected. In this context one of the central 

questions about the mechanism of RSFPs arises. What is the primary event in 

photoswitching? A hypothesis is that the protonation and deprotonation of the chromophore 

require minimal structural change of the molecule and could be the primary event triggering 
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the isomerization (Habuchi et al., 2005). Another hypothesis is that the cis-trans isomerization 

of the chromophore provides a series of structural rearrangements changing the electrostatic 

surface potential, and consequently the protonation equilibria at the chromophore (Andresen 

et al., 2007). Alternatively, another suggestion for the photoswitching mechanism would be 

the coupling of the protonation and isomerization events by electron delocalization during 

torsion around the dihedral angle Ĳ (Olsen et al., 2010). The torsion around the dihedral angle 

Ĳ has also been suggested as the primary event in trans-cis isomerization that may occur or 

not accompanied of the ESPT process (Li et al., 2010).     

 

Although apparently the products of photo-induced protonation and pH-induced 

protonation seem identical, the fact that the pH-induced protonated state cannot switch on 

whatever the intensity or duration of the illumination 405 nm show that they are not (Ando et 

al., 2004). The difference between the pH-induced protonated state and the photo-induced 

protonated state was confirmed by ultrafast absorption spectroscopy (Fron et al., 2007). The 

results show that the photo-induced protonated state has two additional time constants in the 

photo-conversion pathway, associated to the ESPT and relaxation of the protein environment.  

 

1.3.6 DECOUPLED PHOTOSWITCHING :  DREIKLANG    

A new fluorescent protein, which exhibits neither positive nor negative reversible 

photoswitching, was recently published by the Jakobs group (Brakemann et al., 2011). 

Dreiklang can be activated and inactivated with wavelengths which differ from that used to 

excite the fluorescence. The photo-switching mechanism was proposed to be based on 

hydration and dehydration of the chromophore imidazolinone group. Further discussion and 

structural details can be seen in Results Chapter 2.3.3 iii.  
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1.3.7 PARTIAL PHOTOSWITCHIN G FPS OUT OF THE RSFPS 
   GROUP 

 
There are other fluorescent proteins that, although not referred to as RSFPs, exhibit 

reversible photoswitching. For example, eYFP is not mentioned as a RSFP, but switches 

between on- and off- states. The main difference is that the achieved photoswitching contrast 

is much weaker. 

 

Tsien’s group has reported (Shaner et al., 2008) partial fluorescence recovery for several 

FPs: TagRFP, mOrange, mCherry, tdTomato, mKO, mKate, mCerulean , mVenus, EYFP, 

Citrine , YPet , Topaz, mEGFP. The phenomenon is similar to that previously observed with 

eYFP (Miyawaki and Tsien, 2000), eBFP, eCFP, Citrine and eGFP (Sinnecker et al., 2005). It 

is possible that the partial photoswitching observed for these proteins has a common 

mechanistic origin, but this remains unknown.  
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1.4 APPLICATIONS OF RSFPS  
 
1.4.1  DATA -STORAGE  
 

The property of RSFPs to switch between on and off states can simulate the binary 

information 0-1 used in data-storage. The data-storage field aims to encode the largest amount 

of information in the smallest region. RSFPs constitute molecular switches that can be used as 

rewritable nano-devices where each molecule could be ascribed to one bit (Dickson et al., 

1997). Over the years, the construction of nano-devices based on RSFPs has been suggested 

by different groups, including Tsien’s group (Tsien, 1998), Moerner’s group (Dickson et al., 

1997) and others investigators (Andresen et al., 2005; Sauer, 2005; Schafer et al., 2008). A 

practical implementation has been proposed by Adam et al. in a feasibility study using protein 

crystals as highly-condensed 3D devices (Adam et al., 2010). Recently, the Hell’s group 

showed that, using an efficient RSFP (rs-GFP) and employing the RESOLFT concept allows 

writing at the nanoscale with focused visible light (Grotjohann et al., 2011).  

 

1.4.2 SUPER-RESOLUTION M ICROSCOPY  

The spatial resolution in classical fluorescence microscopy is diffraction-limited 

according to the Abbe-Rayleigh criterion by two factors: the wavelength of light Ȝ and the 

finite numerical aperture of the microscope objective (n sinĮ).  

 

Įn
resolution  Spatial

sin2
X


 

 

In optical fluorescence microscopy the used wavelength varies from 400 to 650 nm 

and advanced objective lenses may have a numerical aperture of up to 1.6. Therefore, images 

obtained with this technique are limited to a lateral resolution of  ≈ 200 nm.  
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In the last two decades, first using point scanning (Hell and Wichmann, 1994) and 

then using wide-field illumination (Betzig et al., 2006) several techniques of far-field super-

resolution imaging have succeeded to overcome the diffraction limit of optical microscopy. In 

the following, we discuss the two principal classes of super-resolution fluorescence 

microscopy, STED-like and PALM-like, and we show how RSFPs have contributed to 

improve these techniques.   

 
 
i. Stimulated Emission Depletion (STED)    

 

In 1994, Hell and Wichmann described a super-resolution technique based on 

STimulated Emission Depletion (STED) microscopy, the first far-field imaging technique to 

overcome the resolution limit (Hell and Wichmann, 1994). The concept of STED is based on 

two principles: (1) a nonlinear dependence of the fluorescence emission upon illumination 

and (2) a spatially structured illumination (Klar et al., 2000). 

 

(1) Several physical phenomena respond in a nonlinear way to external input 

parameters; it is the case of the fluorescence emission rate in the regime of high intensity 

illumination (MW/cm² - GW/cm²). Upon high intensity illumination, the fluorophores are 

saturated in the excited state (typically the triplet state) and a higher photon flux does not 

allow exciting them more. In practice the STED technique induces this effect via rapid 

switching between two laser sources. The first laser excites the fluorophores (Figure 1.13 A) 

and the second one (called the STED-beam) depletes the excited state by stimulated emission 

before fluorescence takes place (Figure 1.13 B) (Hell and Wichmann, 1994).  

 

(2) The spatially structured illumination is obtained by precisely shaping the laser 

beams. The pattern of the second laser differs from that of the first one, because it assumes a 

donut-shaped beam (Figure 1.13 B). Thereby only the molecules in the outer region of the 
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first beam are illuminated and depleted by the second beam, effectively narrowing down the 

point spread function (Figure 1.13 C).   

 
 

 

Figure 1.13) STED microscopy. (A) Excitation beam (B) STED beam (C) Effective 
fluorescence spot (D) Comparison between Confocal and STED images of single pTDI 
molecules, reprinted from (Hotta et al., 2010).   
 

 

The combination of (1) and (2) results in a small region of molecules that remains 

fluorescent (Figure 1.13 C). The spatial resolution achieved is calculated by:  

Isat

maxIĮn

resolution  Spatial



1sin2

X  

Imax is the maximum intensity used in the STED-beam and Isat is associated to an inherent 

property of the dye that says how saturable is the fluorophore (Hell and Wichmann, 1994; 

Klar et al., 2000). Thus, in order to improve spatial resolution, Imax needs to be increased, or 

Isat needs to be decreased (Fernández-Suárez and Ting, 2008). Assuming that Imax is an 

instrumentation-limited parameter and that high-intensity illumination is not a suitable 

condition for in vivo experiments, it is a better choice to reduce Isat. All nonlinear phenomena 

between two molecular states of the fluorophore are in principle suitable for STED-like super-

resolution imaging: reversible photoswitching is a nonlinear process for which Imax is 

considerably lower. In this context the RSFPs appear as an asset for super-resolution 

microscopy based on STED experiments.     
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The RSFP property was used to advantage for the first time in 2005, using asFP595, in 

a technique called REversible Saturable Optical Linear Fluorescence Transition (RESOLFT) 

(Hofmann et al., 2005). This technique allows breaking the diffraction barriers with 

considerable reduction of the light intensity. The same concept of nonlinearity of RSFPs has 

been explored to enhance the potential of Saturated Structured Illumination Microscopy SSIM 

(Gustafsson, 2005; Rego et al., 2012).  

 

In practice the RESOLFT set up resembles that of STED: (i) the donut-shaped laser 

turns off the proteins, that are initially in the on-state, in the peripheral region of the exciting 

beam (ii) by probing the fluorescence with an unmodified (Gaussian) laser beam fluorescence 

can be collected from this region (iii) finally, the proteins are reset to their fluorescent state in 

order to restart the cycle (Figure 1.14) (Dedecker et al., 2007).  

 

 

 

Figure 1.14) STED based on RESOLFT microscopy. (A) RSFPs in the fluorescent states (B) 
are illuminated with the donut mode beam (C) in order to turn off the proteins in the outer 
region of the first beam, (D) probing the fluorescence with a STED beam (E) reduces the 
effective fluorescent spot. (F)  The proteins are switched on and this cycle is repeated n times 
depending on the protein photo-fatigue. Scheme based on (Dedecker et al., 2007). 
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The achieved resolution depends on the number of switching cycles that the RSFP can 

withstand before bleaching (Dedecker et al., 2007). For this reason, the RSFP development 

seeks proteins more resistant to photo-fatigue. The recent discovery of rs-GFP, hundred times 

more photo-resistant than Dronpa, has allowed super-resolved images in living brain slices 

with about a million times lower light intensities than before (Grotjohann et al., 2011). In the 

same line, Dreiklang via decoupled excitation mechanism, presents remarkable reduction of 

photo-fatigue, being a promising RSFP for future RESOLFT applications (Brakemann et al., 

2011). The protein IrisFP, developed in our lab, also displays very strong resistance to photo 

fatigue (Adam et al., 2008).  

 

The fact of some RSFPs exhibit pairs of negatively and positively photoswitchable 

proteins, such as Dronpa and Padron, is advantageous for dual-label super-resolution. 

Information about two different molecules-of-interest can be achieved using a single STED 

set-up (single excitation, STED wavelength and single detection channel). STED microscopy 

in microtubules labeled with Dronpa and Padron has demonstrated the applicability of this 

technique (Willig et al., 2011).  

 

 
 
ii. Photo-Activated Localization Microscopy (PALM)    
 

The concept of Photo-Activated Localization Microscopy (or PALM-like techniques) 

results from the capacity to localize a single emitter with high accuracy if a sufficient number 

of photons are collected from this emitter (Thompson et al., 2002; Betzig et al., 2006). To 

isolate single molecules in a densely labeled image, stochastic switching, or 

activation/conversion followed by bleaching of fluorescence, is performed by proper 

illumination of PTFPs (Hess et al., 2006) (Figure 1.15). The final super-resolved image is 

reconstructed from the stack of many accurate single-molecule localized images 
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(Figure 1.15 Aiii ). To reach a specified resolution, the overall density of labeling should 

fulfill the Nyquist criterion.  

 

 

Figure 1.15) PALM microscopy. (A) n-step stochastic activation and excitation (ii, iii) of the 
initially off (i) fluorophores, and image reconstruction (iv) after PSF fitting. Comparison of 
the limited classic microscopy resolution (B) and PALM super resolution (C). Comparison 
between (D) TIRF and (E) PALM images, reprinted from (Betzig et al., 2006). 

 

 

Two factors are central to collect high quality PALM data. To enhance the localization 

of a single molecule, it is important that the background fluorescence be close to zero, and 

that the photon output from single fluorophores be maximized (Fernández-Suárez and Ting, 

2008). Importantly, the use of RSFPs can bias the reconstructed image if the effect of multiple 

switching is not considered (Flors et al., 2007; Annibale et al., 2011b). Data processing for 

RSFP-PALM experiments needs to discriminate between bleached and switched molecules, 

so that molecules that undergo multiple switching events are counted only once (Annibale et 

al., 2011a). Clustering artifacts in PALM image due to residual reversible switching of mEos2 

fluorophores have been described by Annibale and co-authors (Annibale et al., 2010).  
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However, the use of RSFPs in PALM super-resolution applications can present 

advantages for some studies. For example, it facilitates two-color experiments (Shroff et al., 

2007). Typically, the experiment starts by collecting PALM data on EosFP in the red channel. 

Once all EosFP molecules are bleached, it continues by collecting another PALM dataset on 

Dronpa in the green channel (Shroff et al., 2007). Recently, quantitative multicolor super-

resolution microscopy, also using Dronpa and EosFP, has aided to understand more about the 

HIV-1 virus (Lehmann et al., 2011). Notably, the super-resolved images elucidated the 

interaction between the tetherin protein and the HIV-1 virus. 

 

RSFPs are also attractive dyes for the studies of fast diffusion or transporting of 

signaling molecules in live cells. In these cases, the switching property represents an 

alternative control of deactivation, instead of bleaching, in order to ensure the optimal 

fluorophore density, essential for discrimination between the molecules (Ando et al., 2004; 

Habuchi et al., 2005). For example, Dronpa made possible the visualization of a single neuron 

from other neurons in a complex network (Aramaki and Hatta, 2006). The significance of G-

actin concentration in the assembly of actin filaments and in the expansion of cells has also 

been investigated by imaging techniques using Dronpa (Kiuchi et al., 2011). Furthermore, the 

reversible switching of Dronpa has allowed the characterization of the nucleocytoplasmic 

transport of RNA in Transgenic Plants (Lummer et al., 2011).  

 

Note that most biological imaging experiments using a RSFP were carried out with 

Dronpa. This is because until now, this protein has represented the most reliable dye as 

compared to the others RSFPs. However, with the recent discovery of rs-GFP (Grotjohann et 

al., 2011), that switches hundred times more than Dronpa, and Dreiklang (Brakemann et al., 

2011), with its exceptional decoupled excitation mechanism, it is expected that novel 

applications using RSFPs will take advantages of these novel proteins.    
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1.5 GOALS OF THIS THESIS 

 
Fluorescent proteins have been a powerful tool to study living organisms at the 

microscopic (and nanoscopic) scales. In particular, the reversible switching property of some 

fluorescent proteins provides remarkable advantages in some imaging applications and even 

for future biotechnological applications such as the development of high-density data-storage 

media. To rationally engineer new RSFPs with enhanced properties, it is essential to elucidate 

how the photo-switching mechanism works. Isomerization accompanied by protonation of the 

chromophore are the principal structural and spectroscopic manifestations of photoswitching 

in most RSFPs. However, the mechanistic details of these processes are not completely clear. 

The aim of this thesis work is to study some of the key questions related to the photo-

switching mechanism: How is the isomerization correlated to the protonation of the 

chromophore? Do these processes necessarily occur together, or is there a temporal order 

between them? Intermediate states may also exist along the photoswitching pathway, as 

evidenced in the back switching reaction of Dronpa (Fron et al., 2007). However, so far, 

intermediate states were not structurally observed. We have addressed these questions by 

employing a combination of low-temperature X-ray crystallography and in crystallo optical 

spectroscopy.  

 

1.5.1 M ETHODOLOGY OF RESEARCH  

Optical spectroscopic experiments unveil the kinetic behavior of photo-reactions. 

However, using this technique, little or no mechanistic information can be obtained. In 

contrast, standard X-ray crystallography provides an atomic scale description of a single 

protein state, which is static. However, structural changes along the reaction pathway can be 

obtained by “kinetic crystallography”, whereby functional activity is directly triggered in the 



1    INTRODUCTION 
_________________________________________________________________________________________ 
 

56 
 

crystal. Comparison of datasets collected by flash-cooling the sample before or at different 

time points after triggering allows extracting conformational motions. The technique is mostly 

suited to photosensitive proteins such as FPs. For such proteins, a dynamical structural view 

can be obtained by correlating kinetic X-ray crystallography, in crystallo optical spectroscopy 

and simulation techniques such as molecular dynamics or hybrid quantum mechanics / 

molecular mechanics approaches (Arcizet et al., 2011). Applying this methodology in 

different physico-chemical conditions allows walking in the energy landscape of the protein. 

In particular, experiments performed at low temperature allow to slow down the reaction and 

facilitate cryo-trapping of intermediate states (Yang et al., 2011). 

 

In our group, the use of coupled kinetic X-ray crystallography and in crystallo 

spectroscopy has aided in elucidating our understating of fluorescent proteins, such as  IrisFP 

(Adam et al., 2008; Adam et al., 2009), Keima (Violot et al., 2009), or Killer-red (Carpentier 

et al., 2009). The approach was also applied to other light-activated proteins such as 

protochlorophyllide oxidoreductase (POR) (Durin et al., 2009).  

 

1.5.2 PHOTOSWITCHING AT CRYO -TEMPERATURE  

Finally, in the context of the experiments carried out at low temperature, another 

interesting question to be asked is about the temperature-dependence of photoswitching. Is it 

possible to observe photoswitching at cryo-temperature (typically 100 K)? This question 

pertains to the extension of super-resolution microscopy to cryogenic conditions. This would 

offer a number of advantages, including the possibility to develop correlated studies with 

cryo-electron tomography. 
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2.1 NEW VIEW ABOUT ENHANCED YELLOW 
FLUORESCENT PROTEIN  
 
2.1.1 OUTLOOK OF EYFP CHAPTER 

Reversible photoswitching of Fluorescent Proteins (FPs) consists in the capacity, upon 

alternate illumination, to turn the fluorescence emission off/on (Figure 2.1). This property has 

been observed in some FPs, such as eGFP, eYFP, Citrine and eCFP. The resemblance 

between these protein features on the one hand and the reversible photoswitching displayed 

by the RSFPs group on the other has prompted us to seek a common mechanism for these two 

groups of proteins. However it has been noted that even the best switcher amongst eYFP, 

eGFP and eCFP has a very low efficiency when compared to other RSFPs. To compare the 

properties of these two groups, in particular eYFP, IrisFP and Dronpa, experiments on these 

proteins and mainly the yellow variant were carried out at room and at low temperature. Our 

choice to study eYFP is based both on the number of existing publications and on the switch 

behavior which seems to be more pronounced than on eGFP and eCFP. We will see that at 

low temperature, in contrast to room temperature, eYFP can switch more efficiently than 

Dronpa or IrisFP. 

 

Figure 2.1) Low-temperature reversible photoswitching between anionic and neutral 
chromophore states is demonstrated in a number of photochromic fluorescent proteins (Faro 
et al., 2008). 
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2.1.2  ROOM TEMPERATURE DYNAMICS OF EYFP 

At pH 7.5 eYFP exhibits only one fluorescent state with an absorption peak at 514 nm 

attributed to the anionic form of the chromophore. In analogy to eGFP this state is called B. 

The excitation of B induces fluorescence emission at 527 nm (Figure 2.2). At low pH the 

protonated form of the chromophore appears exhibiting an absorption peak at 390 nm (called 

A). A change from basic to acid pH induces interconversion from the B state to the A state 

with an isosbestic point at 442 nm at room temperature.  

 

 

Figure 2.2) Absorbance (red solid line) and fluorescence emission (red dashed line) spectra of 
eYFP in fluorescent state before illumination at 514 nm (0.2 W/cm²) and after as a mixture of 
eYFP in fluorescent and photo-induced non-fluorescent state (black solid line). Data collected 
in solution at 260 K.  

 

The protonated form of the chromophore upon excitation decays in three routes 

(Figure 2.3): (i) a direct radiationless mode to the A ground state; (ii) a radiative mode via 

excited state proton transfer (ESPT) from A* to I*, an intermediate state; and (iii) a weak 

fluorescence emission at 460 nm. In the case of eYFP, unlike GFP, the ESPT has a limited 

rate constant and for this reason the fluorescence quantum yield of A is weak (McAnaney et 

al., 2005). 
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Figure 2.3) Scheme of the protonated and deprotonated states in ground and excited states of 
EYFP. In contrast with eGFP, fluorescence emission due to ESPT is weak.   
 

The hypothesis considering the isomerization of the chromophore as a central process 

in photoswitching of Dronpa and IrisFP (Andresen et al., 2007; Stiel et al., 2007; Adam et al., 

2008) is accepted within the scientific community (see Chapter Introduction). McAnaney et. 

al. (McAnaney et al., 2005) by carrying out stopped-flow and pressure-jump experiments 

have suggested a complete kinetic model for eYFP, according to which the photoswitching 

occurs in two-steps: a rapid phase of some picoseconds associated to the protonation and a 

slow phase representing the isomerization of the chromophore. According to them, in the 

eYόP’s case, the term “isomerization” refers to rearrangement of amino acids residues, but 

not necessarily to cis-trans isomerization of the chromophore as in the case of RSFPs. In 

regard of the different mechanistic proposals described above, our first experiment is the 

comparison of all three FPs: eYFP, Dronpa and IrisFP.    

 

All the parameters are set to compare the photoswitching efficiencies of Dronpa, 

IrisFP and eYFP at room temperature. The power density of the actinic laser (≈ 0.3 - 

0.4 W/cm2) and the concentration of the protein is the same in all three cases. Both Dronpa 

and IrisFP switch off upon illumination at wavelengths absorbed by the proteins in their 

fluorescent states (negative photoswitching). Since the deprotonated peak has a maximum at 

approximately ~ 500 nm, the actinic laser used is 488 nm to turn Dronpa and IrisFP off. 

Admitting the hypothesis that eYFP exhibits a negative photoswitching, the actinic laser used 
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is 514 nm. To turn the fluorescence on, the actinic laser used is 405 nm in all three cases 

because of the similar protonated bands of the three proteins, extending between 385 – 

410 nm. We could expect that eYFP will exhibit a photoswitching mechanism similar to 

Dronpa and IrisFP because of Dickson’s observation for this protein in single molecules 

experiments (Dickson et al., 1997), but we will see below that the result differs from the one 

expected. The comparison of IrisFP, Dronpa and eYFP photoswitching is shown in Figure 

2.4.   

 

Figure 2.4) Comparison of the photoswitching cycle of IrisFP, Dronpa, eYFP at room 
temperature. (A) IrisFP and (B) Dronpa were illuminated with 488 nm laser light to switches 
off (0.29 W/cm² and 0.39 W/cm², respectively, for IrisFP and Dronpa; teal lines above the x-
axis) and with 405 nm laser light (0.3 W/cm², violet lines) to switches on. (C) eYFP was 
alternatively illuminated with 514 nm (0.2 W/cm², green) and 405 nm (0.45 W cm-2, violet 
lines) light. (D) eYFP was alternatively illuminated with 514 nm and 355 nm light for 
reactivation. A high power density of 0.04 kW/cm² was used to accelerate the reaction. Short 
delays (white lines) were applied before illuminations at 355 nm to control the absence of fast 
spontaneous fluorescence recovery. The emission of fluorescence was probed at 474, 494 and 
530 nm for IrisFP, Dronpa and eYFP, respectively. Fluorescence excitation wavelengths were 
the same as those used for actinic illumination. 
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IrisFP is the most efficient photoswitcher amongst the three proteins, displaying many 

cycles with a high contrast (90%) within an interval of 500 seconds (Figure 2.4 A). The 

contrast between the fluorescence minima and maxima is a parameter of evaluation of the 

switching capacities, requesting however the proper method to measure it.  In the same time 

interval, Dronpa switches only twice with a worse contrast than IrisFP, < 90% (Figure 2.4 B).  

 

No significant switching is observed in the ensemble average for eYFP with the 

actinic lasers 514 nm - 405 nm, contrary to the single molecule observation (Dickson et al., 

1997). The 405 nm laser does not recover the fluorescence. In fact, it deactivates the 

fluorescence even more than upon illumination only at 514 nm (Figure 2.4 C). The result 

obtained here, with fluorescence decreasing upon 405 nm is close to the results published by 

Sinnecker et al, where the laser at 405 nm also switches off instead of activating the 

fluorescence (Sinnecker et al., 2005). After illumination at 405 nm, a new cycle at 514 nm is 

applied and we observe that the laser, supposed to deactivate, induces on switching of the 

fluorescence.    

 

A slight recovery of the eYFP fluorescence is obtained with the laser at 355 nm 

(Figure 2.4 D). This result matches with the action spectrum obtained by McAnaney et al 

(McAnaney et al., 2005). They provide evidence that this protein can be switched back only 

with light at wavelengths < 395 nm, with a maximum recovery of 25 %. This property of 

eYFP seems to be the same effect observed in the new yellow fluorescent protein Dreiklang 

(Brakemann et al., 2011), which  will be discussed in the last chapter (see Results  and 

Discussion Chapter 2.3.3 iii). In this same experiment, we also observe that during the short 

delays, without illumination, a slight and spontaneous fluorescence recovery takes place.  

 

The discrepancy between the eYFP single molecule and ensemble average results 

suggests that the back-switching upon illumination at 405 nm is a rare event. Single molecule 
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experiments allow to identify some properties that cannot be observed in the ensemble 

experiments. In bulk absorption, the less likely events are hard to detect because the emitted 

signal is swamped into the averaged ensemble. Dronpa, in contrast to eYFP, has a more 

efficient photoswitching detected in both bulk measurements and at the single molecule level 

(Habuchi et al., 2005). For eYFP, upon illumination at 355 nm a slight back-switching is 

observed, but we do not have the equivalent experiment at the single molecule level. Maybe, 

single molecule experiments using a 355 nm laser instead of 405 nm would allow to observe a 

much higher frequency of molecules that return to fluoresce. 

 

The photoswitching observed for the three proteins is coherent with the yields reported 

in the literature: 10-2 for IrisFP (Adam et al., 2008), 10-4 for Dronpa (Andresen et al., 2007) 

and 10-6 for eYFP (Dickson et al., 1997). Our data emphasize the differences between the 

three proteins, but they do not provide evidence about the mechanism that renders eYFP 

switchable. The same spectroscopic comparison between the proteins can be reproduced at 

low temperature. We expect that at low temperature protein dynamics will be decelerated and 

that the reduced thermal energy available will inhibit conformational changes such as 

isomerization of the chromophore. 

 

 
2.1.3 LOW TEMPERATURE DYNAMICS OF EYFP 

 
i. Fluorescence emission   
 

The eYFP photoswitching experiment carried out at room temperature (RT) was 

reproduced at cryo-temperature (100 K). In contrast to RT, a slight photoswitching is 

observed upon alternating between the actinic lasers 514 nm - 405 nm (Figure 2.5).  
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Figure 2.5) Photoswitching cycle of eYFP at 100 K following the fluorescence emission 
evolution probed at 530 nm. The protein was alternatively illuminated with 514 nm 
(0.3 kW/cm², green lines above the x-axis) and 405 nm (0.04 kW/cm², violet lines) lasers 
light.  

 

We highlight two points in this curve: (1) in the first cycle the protein lost about 75 % 

of its fluorescence upon illumination at 514 nm and recovered only 5 - 10 % after exposure at 

405 nm, (2) in the following cycles the ratio between bleached molecules and recovered 

molecules seems to be much lower and remain about constant.  

 

Two processes can occur during fluorescence decay: photobleaching and a reversible 

photoswitching. Because the numbers of recovered molecules is about the same for all cycles, 

we assume the existence of two populations that are not interconvertible at this temperature. 

One population is susceptible to bleaching and another is susceptible to switching. Once the 

bleach-sensitive molecules are bleached only the reversible population participates to the 

reaction. However, the exposure time at η14 nm in the second and third cycle was ≈ γ0% 

longer than the first one, which may this fact be compensated for a decrease in the recovered 

fraction.   

 

In Figure 2.6, we show the spectral changes of the fluorescence emission during the 

photoswitching process. The actinic lasers used are 514 nm/405 nm (~ 0.3 kW/cm² and 
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0.04 kW/cm², respectively) for photoswitching and 488 nm and 405 nm for excitation (see 

Chapter Methods).  

 

Figure 2.6) Fluorescence emission spectrum during photoswitching cycle of eYFP at 100 K. 
Excitation at 488 nm (A) or 405 nm (B) of the starting (black dashed line), switched (red solid 
line) and backswitched (blue solid line) EYFP. The fluorescence spectra were normalized on 
the maximum peak of EYFP before illumination. The arrows represent the direction of the 
photo-transformation. 
 

 
 

At the start of the experiment, t0, at pH 7.5, the protein solution excited at 488 nm 

produces high fluorescence emission at 527 nm (black dashed line). At t1, the fluorescence is 

turned off (red solid line), and then at t2, it is recovered by illumination at 405 nm, with a 

contrast of ~ 20% (blue solid line - Figure 2.6 A). The same experiment can also be 

performed exciting the sample at 405 nm. At t0, the shape of the emission spectrum resembles 

the one obtained upon exciting at 488 nm (black dashed line). This is reasonable, since there 

is no protonated species, but the blue shifted part of the anionic band is probably still excited. 

Another explanation would be that the ESPT process at low temperature is more prominent 

than at room temperature (McAnaney et al., 2005).  After 5 minutes of 514 nm exposure, at t1, 

a strong fluorescence at 480 nm is observed overlapped with the emission from the 

deprotonated state (red solid line). This remarkable blue fluorescence emission must likely 

originate from the protonated state. Finally, at t2, after illumination at 405 nm, we still observe 
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a fluorescence emission with peak maxima at 480 nm, overlapped with the 527 nm peak, from 

the protonated and deprotonated states respectively (blue solid line - Figure 2.6 B).  However, 

a considerable reduction of the fluorescence from the protonated peak is observed.  

 

ii. Absorbance    
 

Analyzing now the absorbance spectra, we observe that the band shape becomes more 

structured at low temperature, but the absorbance maxima remain almost the same: at 514 nm, 

associated to the deprotonated state of the chromophore and at 410 - 385 nm, associated to the 

protonated state of the chromophore (Figure 2.7).  

 

 
Figure 2.7) Time series of absorption spectra during photoswitching of eYFP flash cooled at 
100 K. (A) switched by illumination with 514 nm laser light (0.3 kW/cm²). (Inset) Kinetic 
traces of the absorption at 510 nm (black) and 405 nm (blue); solid lines correspond to fitting 
with a bi-exponential kinetic model. (B) Time evolution of the absorption spectra during 
back-switching with 405 nm laser light (0.04 kW/cm²). (Inset) Kinetic traces of the 
absorption at 510 nm (black) and 405 nm (blue). Spectra were normalized to the EYFP 
absorption at 510 nm before illumination. They are chronologically plotted according to the 
color bar (from blue to red). The arrows represent the direction of the photo-transformation. 
 
 
 
 

Figure 2.7 shows the time series of absorption spectra during photoswitching. We 

observe the decrease of the deprotonated and the increase of the protonated absorption bands 



2    RESULTS AND DISCUSSION 
_________________________________________________________________________________________ 
 

68 
 

upon actinic illumination at 514 nm and the reverse interconversion upon illumination at 

405 nm. Comparing with the spectrum obtained at room temperature the isosbestic point at 

100 K is blue-shifted by 5 nm, to 437 nm.  

 

 The interconversion between the anionic and the protonated absorption bands is 

consistent with the fluorescence emission switching described above. However, the 

observation of increased photoswitching at low temperature is a surprising result especially in 

view of the fact that at room temperature eYFP photoswitching is negligible. Some 

quantitative evaluation was performed subsequently to elucidate the phenomenon.   

 

 

iii. Quantitative evaluation    

 
During switching at 514 nm the disappearance of the anionic form and the appearance 

of the protonated form are best fitted by a bi-exponential kinetic model (Figure 2.7 A insert). 

The reaction exhibits a fast and a slow phase, maybe associated to the switching and the 

bleaching of the non interchangeable populations. The rate constants for the fast phase are 

compatible between them: k = 0.03 s-1 for the protonated band rise and k = 0.02 s-1 for the 

anionic band decay, respectively. In contrast, during back-switching under 405 nm light, the 

disappearance of the protonated form and the appearance of the anionic form cannot be 

adequately fit by either mono-, bi-, or stretched-exponential processes (Figure 2.7 B insert). 

 

Quantum yield of photo-transformation  are determined as the ratio of the number of 

molecules transformed by the number of photons absorbed by these molecules before 

transformation (Braslavsky, 2007). It can be calculated using the fast phase ascribed on-off 

switching. The final equation is a function of the rate of the reaction k=1/Ĳ, the power density

  1
P

S
, where S is the beam cross section (if spot surface is small than sample surface) and 
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P the effective laser power, the energy of light  hc  with Planck constant, h, speed of light, c, 

wavelength, Ȝ, the Avogadro constant, NAv and the extinction coefficient, İ.  

 

10Ĳ
ĭ

 ln

Nhc

P 

S

absorbed  photons of  amount

 tranformed  molecules of  amount AV
 

 
 

The effective laser power P should take the absorption through the sample layer 

crossed by the beam before reaching the probed volume. Considering the thickness of this 

layer and the measured optical density of the samples, we estimated that P Ĭ P0/10, with P0 

the measured laser power. 

 

The quantum yield of the reaction was calculated as 10-6  for the switching and 10-4 for 

the back-switching, values considered low compared with other switching quantum yields 

calculated at room temperature. However, at cryo-temperature the thermal energy available is 

much reduced as well as other photo-processes, such as photobleaching. Therefore, the 

measured value for switching corresponds to a significant process. 

 

The linear dependence between the reaction rate and the laser power density indicates 

that the photo-switching at low temperature seems to be triggered by the absorption of only 

one photon (Figure 2.8). This result suggests that the reaction at low temperature could have 

the same photo-physical basis as that at room temperature.  
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Figure 2.8) Low-temperature photoswitching of EYFP proceeds via a 1-photon absorption 
process. The rate of photoswitching at 100 K is reported as a function of the 514 nm laser 
power density. The plotted rates (1/Ĳ) were obtained by fitting the time course of the 510 nm 
absorbance with a bi-exponential kinetic model. Ĳ corresponds to the rate of the rapid phase. 
The solid line shows the slope best fitting the data. 
 
 
 

iv. Thermal relaxation  

 
Fluorescence recovery is induced by 405 nm illumination and also by thermal 

relaxation, meaning that the energetic barriers can be overcome in the ground state. Two 

hours after the photoswitching at low temperature (Figure 2.9 - blue solid line and insert), the 

anionic band is partially recovered by thermal relaxation in the dark at 100 K (Figure 2.8 - 

red solid line). Increasing the temperature above the glass transition relieves another small 

population able to return to a fluorescent state (Figure 2.9 - green dashed line). However, a 

large fraction of the population seems to be permanently photo-bleached, because increasing 

the temperature provides only partial recovery of the anionic form, overall.     
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Figure 2.9) Spectral evolution during temperature-driven back-switching of EYFP. EYFP 
(black dotted line) was illuminated 3 min at 514 nm (0.3 kW/cm², blue solid line) and left in 
the dark at 100K for 10 hours (red solid line). The resulting product was warmed up to 180K 
(180K/h) and then cooled down to 100K (green dashed line). (Inset) Kinetic trace of the 
thermal recovery at 100 K, measured at 510 nm. The arrows represent the direction of the 
photo-transformation. 
 

 
 
 

The photoswitching mechanism observed in eYFP at low temperature possesses the 

same spectroscopic features as those observed for RSFPs at room temperature, that is 

illumination of the deprotonated band induces a non-fluorescent state concomitant with an 

increase of the protonated band. Likewise, illumination of the protonated band recovers 

fluorescence emission and populates the deprotonated band. Thus, at low temperature eYFP is 

a negative photo-switcher. However, the photoswicthing quantum yield is still very weak 

compared to the values for IrisFP or Dronpa at room temperature. In order to understand 

further the eYFP photoswitching at low temperature, we addressed the follow questions: (1) Is 

the phenomenon observed here the same as the photo-induced or pH-induced protonation at 

RT? (2) Do Dronpa and IrisFP exhibit significant reversible switching at 100 K? 
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2.1.4 COMPARISON OF PROTONATED STATES OF EYFP. 

 
In Figure 2.10, we compare the absorption and the emission spectra obtained upon 

photo-induced protonation at room and at low temperature and upon pH-induced protonation. 

The comparison of the different protonated forms of eYFP is done by collecting all spectra at 

cryo-temperature in order to prevent spectral changes due the temperature difference.  

Immediately after being acidified at pH 6 or photo-switched at room temperature, the eYFP 

samples were flash-cooled at 100 K. 

 

 

Figure 2.10) Spectral signatures of the different protonated forms of eYFP. (A) Absorbance 
spectra of eYFP at acidic pH (blue line) and at neutral pH after switching with 514 nm laser 
light at low temperature (red line) and at close to room temperature (black dashed line). (B) 
όluorescence emission spectra (Ȝexc = 405 nm) of eYFP at acidic pH (blue line) and at neutral 
pH after switching with 514 nm laser light at low temperature (red line) and at close to room 
temperature (black dashed line).  
 

Upon inspection of the absorbance spectra we observe that the population ratio 

between the protonated and deprotonated forms differs for each protonation pathway. For 

acid-induced protonation the conversion from the anionic to the protonated form was almost 

complete.  For photo-induced protonation at room temperature, much of the anionic peak was 

likely bleached during the illumination, which must explain the reduced protonated peak. 
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Furthermore, the photo-induced protonated peak produced at room temperature is broader and 

smoother than the others.  

 

The emission spectra are normalized relative to the yellow fluorescence present in all 

three profiles (527 nm). This peak overlaps with the blue fluorescence from the protonated 

species. The photo-induced protonated state produced at low temperature exhibits almost 

similar amount of blue and yellow emission. In the case of pH-induced protonation, the blue 

emission is slightly stronger. Surprisingly, the photo-induced protonated state at room 

temperature exhibits a much stronger blue emission at 480 nm. This can be associated to the 

blue eYFP species that has been described in the literature to produce artefacts in acceptor 

photobleaching FRET experiments (Valentin et al., 2005; Kirber et al., 2007). 

 

 Except for their amplitudes, the pH-induced protonated state and the photo-induced 

protonated state produced at low temperature display stringing similar spectral shapes. 

However, upon actinic illumination at 405 nm a clear difference between these states appears 

(Figure 2.11).   

 

 

Figure 2.11) Comparison of spectral evolution of protonated state of eYFP. Before (pH-
induced protonated form, blue line; photo-induced protonation produced at low temperature, 
red dashed line) and after 405 nm illumination at 100K (pH-induced protonated form blue 
line, grey line; photo-induced protonation produced at low temperature, pink dashed line). All 
spectra were recorded at 100K. The arrows represent the direction of the photo-
transformation. 
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Whereas the pH-induced protonated state can only be bleached, the photo-induced 

protonated state can be back-switched. The protonated band of the pH-induced protonated 

state remains with the same profile after illumination. In opposition, after illumination the 

photo-induced protonated peak gets broader, like the photo-induced protonated species at RT. 

It is possible that the main difference comes from the structural rearrangements of the 

chromophore or the close environment that take place in the pH-induced protonation pathway, 

as suggested by McAnaney et al, and that low temperature prevents the reverse reaction 

(McAnaney et al., 2005). This works similar to Dronpa for which the pH-induced protonated 

species cannot be back-switched to a fluorescent form at room temperature, independently of 

the laser intensity or exposure time (Habuchi et al., 2005).  

 

Overall, the photo-induced protonated state produced at low temperature differs from 

the other protonated states. We propose that at low temperature small conformational 

rearrangements are likely to be responsible for the observed photo-induced protonation.    

 

2.1.5 COMPARISON BETWEEN E YFP, DRONPA AND IRISFP  
AT L OW TEMPERATURE  

 

In Figure 2.12 we compare the on - off photoswitching of IrisFP, Dronpa and eYFP 

using the same concentration of the protein and the same laser power density. At room 

temperature IrisFP is a better switcher than Dronpa and eYFP, the latter one exhibiting a 

negligible switching at the ensemble level. At 100 K, however, upon illumination, eYFP goes 

rapidly to a non-fluorescent state and can be back-switched as shown in Figure 2.5. In 

contrast, Dronpa and IrisFP exhibit the opposite performance at low temperature. The 

quantum yield for photo-induced protonation at 100 K is 10-6 for eYFP, 4 × 10-7 for Dronpa 

and 9 × 10-8 IrisFP. 
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Figure 2.12) Decay of anionic absorption peak of IrisFP (followed at 474 nm black line), 
Dronpa (at 494 nm; green line) illuminating at 488 nm and eYFP (at 514 nm; yellow line) 
illuminating at 514 nm at 100 K.  
 

Actinic illumination of Dronpa at 488 nm at 100 K, like in the case of eYFP, induces a 

slight increase of the protonated band, and illumination at 405 nm induces a small recovery of 

the anionic band (Figure 2.13). The same result can be observed illuminating IrisFP at 100 K 

(Figure 2.14). 

 

Figure 2.13) Time series of absorption spectra during photoswitching of Dronpa flash cooled 
at 100 K. (A) switched by illumination with 488 nm laser light (0.3 kW/cm²). (B) Time 
evolution of the absorption spectra during back-switching with 405 nm laser light 
(0.04 W/cm²). They are chronologically plotted according to the color bar (from blue to red). 
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Figure 2.14) Time series of absorption spectra during photoswitching of IrisFP flash cooled 
at 100 K. (A) switched by illumination with 488 nm laser light (0.3 kW/cm²). (B) Time 
evolution of the absorption spectra during back-switching with 405 nm laser light 
(0.04 W/cm²). They are chronologically plotted according to the color bar (from blue to red). 

 
 

 The photo-induced protonation seems a common feature between Dronpa, IrisFP and 

eYFP upon actinic illumination at 100 K. We refer to this process as photo-induced 

protonation, because our observations are only based on optical spectroscopic data. 

However, we know that this reversible protonated long-lived dark-state need to be stabilized 

by a least some degree of conformational changes, in the chromophore and/or in the close 

amino acid environment. We observe that ground state relaxation occurs, likely towards the 

anionic conformation of origin, allowing fluorescence recovery. Therefore in view of the 

reduced thermal energy available at 100 K, we suggest conformational rearrangements that 

accompany photo-induced protonation should be of very small amplitude.   

 

The photoswitching mechanisms at room and at low temperature seem to be anti-

correlated, since we observed an inversion of relative switching performance of IrisFP, 

Dronpa and eYFP. It is well known that Dronpa and IrisFP have a photoswitching mechanism 

based on cis-trans isomerization of the chromophore at room temperature (Andresen et al., 
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2007; Adam et al., 2008). Our results therefore suggest that the isomerization of the 

chromophore is not the structural mechanism responsible for photoswitching at low 

temperatures.  Rather, photo-induced protonation appears to be driving force at these cryo-

temperatures 

   
 

2.1.6  THE FIRST EXPERIMENT WITH PADRON FLUORESCENT  
  PROTEIN  

 
Padron fluorescent protein also shows reversible photoswitching at room temperature. 

To extend the results obtained with Dronpa and IrisFP, we decided to apply the same protocol 

for Padron, i.e., actinic illumination after the protein was flash-cooled at 100 K. 

Unexpectedly, illumination at 514 nm resulted in the appearance of an intriguing blue-shifted 

absorption peak (Figure 2.15).   

 

 

Figure 2.15) Absorbance spectra of Padron. Initial spectrum of the crystal flash cooled at 
100 K (black solid line) and after few seconds of irradiation at 514 nm (0.1 kW/cm²) (red 
line). Uncommon peak observed at 480 nm. 
 

Motivated by this strange result, we decided to study this protein in more details in order to 

understand the underlying mechanism (see next Chapter 2.2).  
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2.2  MECHANISTIC INVESTIGATION OF PADRON,  
AN INTRIGUING PHOTOSWITCHER  

 
 
2.2.1 OUTLOOK O F PADRON CHAPTER  

The study of Padron presented in this subchapter originated from a comparative 

experiment with the other fluorescent proteins at low temperature, which revealed Padron to 

be an interesting case to study the photoswitching mechanism. A large series of experiments 

led us to obtain some answers about essential aspects of the photo-switching mechanism: 

How is the isomerization correlated to the protonation of the chromophore? Do these 

processes necessarily occur together, or is there a temporal order between them? 

Spectroscopic and crystallographic results of Padron at cryo-temperature allowed us to 

suggest a kinetic model based on cis-trans isomerization decoupled from the protonation of 

the chromophore, accounting activation of Padron at 100 K (Figure 2.16). This subchapter is 

the most extensive of my thesis and presents original views about reversible photoswitching 

mechanisms. 

 

 

 

Figure 2.16) Low-Temperature Chromophore Isomerization Reveals the Photoswitching 
Mechanism of the Fluorescent Protein Padron (FARO ET AL., 2011). 
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2.2.2  PADRON CHARACTERIZATION  

 

i. Biomolecular sequence of Padron  
 

Andresen et. al. who published the first studies on Padron have described two variants 

of this protein, Padron and Padron* (Andresen et al., 2008). The first variant possesses the 

mutations T59M, V60A, N94I, P141L, G155S, V157G, M159Y, and F190S relative to 

Dronpa and, at low temperature (269 K), 15% of the total population of Padron is a dimer 

(Andresen et al., 2008). For the second mutant, Padron*, the dimerization tendency is 

suppressed by exchanging hydrophobic residues with hydrophilic ones outside of the ȕ-barrel 

interface (mutations T59M, V60A, N94H, I100S, P141R, G155S, V157G, M159Y, F190S, 

K222N relative to Dronpa FP). In our laboratory, experiments were carried out with the first 

variant of Padron. These studies include expression, purification, crystallization, 

spectroscopic and crystallographic analysis. According to Andresen and co-authors, Padron is 

less stable than Padron* at low temperature, but it possesses better photo physical behaviors 

such as photoresistance as well as a bigger contrast between the fluorescent and non-

fluorescent states. A third variant of Padron (Padron0.9) was also reported recently for 

structural studies (Brakemann et al., 2010). In contrast with Padron*, the dimerization is 

intentionally enhanced in Padron0.9 in order to favor the crystallization (Brakemann et al., 

2010). The amino acid sequences of Dronpa and all the variants of Padron (Padron, Padron* 

and Padron0.9) are shown below (Figure 2.17). 
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Figure 2.17) Amino acid sequence alignment of Dronpa (Habuchi et al., 2005), Padron 
(Andresen et al., 2008), Padron*(Andresen et al., 2008) and Padron0.9 (Brakemann et al., 
2010). Conserved amino acid residues are highlighted in violet. 
 
 
 
ii. Crystalline packing of Padron 

 
The crystal structure of non-fluorescent Padron was solved at 2.2 Å resolution (PDB 

code 3ZUF) and that of fluorescent Padron at 2.35 Å resolution (PDB code 3ZUJ). In the 

condition of the experiments, all the crystals of Padron are orthorhombic and belong to the 

P21212 space group. The Matthews coefficient analysis shows that the asymmetric unit 

contains ~ 48 % of solvent and six monomers (A to F). Each monomer has the conventional 

11 ȕ-barrel fold (GFP-like). Monomers are packed in pairs, facing each other with a contact 

area of ~ 830 Å² (A/B, D/E and C/F interfaces, Figure 2.18A). The dimer D/C is packed with 

the E/F one with a contact area of 1570 Å² (Figure 2.18B). Finally, a small contact surface 

links the last dimer to the others with an area of 322 Å² (C/D/E/F and A/B interfaces, 

Figure 2.18C).  



2    RESULTS AND DISCUSSION 
_________________________________________________________________________________________ 
 

82  
 

 

Figure 2.18) Contacts interface between different oligomers of Padron. Spheres represent the 
principal hydrogen bonds crossing protein interfaces. (A) Interface between the monomers A 
and B (similar for D/E and C/F). (B) Interface between the dimers D/C and E/F. (C) Interface 
between F/E/D/C and A/B. This analysis was done with the PISA server at EMI-MSD 
http://www.ebi.ac.uk/msd/.   
 
 
 

In crystals of fluorescent proteins from the Anthozoa class, such as those of IrisFP 

(Adam et al., 2008) and most crystal structures of Dronpa (Andresen et al., 2007; Nam et al., 

2007; Stiel et al., 2007), the monomers are usually grouped in tetramers. In spite of the fact 

that monomers are packed as hexamers in the Padron asymmetric unit, the same common 

motif of four monomers can be found when the unit cell is extended (Figure 2.19).   

 
Figure 2.19) Crystalline packing of Padron: the colored structures represent the 6 monomers 
of the asymmetric unit. The gray structures are the expansion of the crystalline network. 
Highlighted with black dashed lines are the usual motifs of 4 monomers that can be often 
found in other crystalline arrangements of FPs from Anthozoa class. 
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Two crystal structures of Dronpa, PDB code 2Z6Z (Mizuno et al., 2008) and 2IE2 

(Wilmann et al., 2006) have similar packing than Padron and their crystallization conditions 

are also similar, which suggests that this condition favors P21212 packing. Details about the 

crystallographic data processing are found in the Annex 2. 

 

The residues mutated to produce Padron0.9 (Y116C and K198I) are not placed in the 

chromophore pocket of the protein, which probably corroborates the fact that the 

spectroscopic behavior of Padron is not modified in Padron0.9 (Figure 2.20 A, B).  

 

 

Figure 2.20) Comparison of crystalline packing of (A) Padron0.9 (Brakemann et al., 2010) 
and (B) Padron (Faro et al., 2011).  In color cartoon the asymmetric unit, in gray cartoon 
neighbor molecules. The red spheres represent the mutated residues and the chromophore. (C) 
Crystal structures of bright-Padron (blue cartoon) and bright-Padron0.9 (green cartoon) 
superposed, in sticks the chromophore and mutated residues of Padron and Padron0.9 (Y116C 
and K198I).  
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In Padron0.9, exchanging the hydrophobic side-chain of the tyrosine 116 to a cysteine 

does not seem to directly affect the contact between the monomers because it is placed behind 

the chromophore inside the ȕ-barrel (Figure 2.20 C). In contrast, the lysine 198 mutated to 

isoleucine is pointed to the exterior of the protein, but it does not participate to the contact 

interfaces. It is not evident to understand the influence of these mutations in the 

oligomerization pattern of Padron0.9, although they were claimed by Brakemann to facilitate 

the crystallization. The crystallization of Padron in our laboratory also might be a result of the 

dimerization tendency, as observed with Padron0.9. Comparison of the Padron and Padron0.9 

structures in their bright and dark states reveal no significant modifications (Figure 2.20 C). 

The root mean square deviation (RMSD) between the two proteins for the chain A (all atoms) 

is 0.32 Å for the bright state and 0.30 Å for the dark state.  

 

 

2.2.3  PHOTOSWITCHING MECHANISM OF PADRON AT ROOM  
TEMPERATURE  
 
 

i. Fluorescence emission and absorbance of Padron in the equilibrium 
state at room temperature 
 
At physiological pH (7.5), Padron exists as a mixture of two different states: 

fluorescent and non fluorescent. A different spectroscopic signature is associated to each of 

these states. The absorbance spectrum of Padron in its fluorescent state (“bright-Padron”) 

shows two absorption bands, one band with a maximum at ~ 390 nm corresponding to the 

neutral form of the chromophore while the other, with a maximum at ~ 503 nm, corresponds 

to its anionic form (Figure 2.21, red solid line). Bright-Padron fluoresces at 518 nm (Figure 

2.21, red dashed line). In contrast, the spectrum of Padron in its non-fluorescent state (“dark-

Padron”) exhibits only one absorption band at 504 nm (Figure 2.21, black line) and a very 
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weak fluorescence at 518 nm. Therefore, dark-Padron is a much weaker emitter than bright-

Padron. For this reason and despite the fact that Padron is never completely turned off in its 

dark conformation, we will use the terminology “non-fluorescent” rather than “weakly 

fluorescent”.   

     

Figure 2.21) Absorbance spectra (solid line) and fluorescence spectrum (dashed line) of a 
crystalline sample of Padron at room temperature; Bright Padron (red line) and Dark Padron 
(black line). 
 
 

Two points need to be emphasized regarding the absorption spectra of Padron. The 

first point previously described in the introductory chapter (see Chapter Introduction 1.3.3 iii) 

is that the dark state of FPs is often attributed to the neutral form of the chromophore, which 

is associated to the absorption band around ~ 400 nm. However, the absorption spectrum of 

dark-Padron does not display such a neutral band, and this “exotic” behavior will be further 

discussed in the next subchapter. The second point is that the position of the 500 nm band is 

very similar for both bright and dark forms, but the anionic band of the bright-Padron is 

narrower (Figure 2.21).  
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ii. Padron behavior upon photo-activation at room temperature 

Spectroscopically, Padron exhibits a positive reversible photoswitching. 

Illumination into the long-wavelength absorption band (~ 488 nm) increases the population of 

the on-state protein and therefore enhances fluorescence whereas upon excitation at 405 nm, 

the protein switches off  (Figure 2.22). Due to this “kindling” property, Padron is classified as 

a positive photoswitching protein. This name is in opposition with the properties of the 

fluorescent protein Dronpa that shows the inverse mechanism (negative photoswitching). 

Other proteins such as asFP595 (K. Lukyanov et al., 2000)  and rsCherry (Stiel et al., 2008) 

present such kindling mechanisms. Like others RSFPs, the on/off fluorescence cycle of 

Padron can be repeated several times by alternating the actinic wavelengths. 

 

Figure 2.22) Padron positive photoswitching mechanism. 

 

Structurally, photoswitching of Padron is characterized by isomerization of the 

chromophore. The crystal structure of dark-Padron collected at 100 K shows a chromophore 

in a trans conformation forming a hydrogen bond (2.63 Å) between its hydroxyl-benzylidene 

ring and Tyr159 (Figure 2.23 A). The crystal structure of bright-Padron, also collected at 

100 K, reveals that the chromophore is in its cis configuration and that the chromophoric p-

hydroxyphenyl ring is H-bonded (2.86 Å) to Ser142. Apart for the different configuration of 

the chromophore and significant structural changes in the conformation of the Met59 residue, 

the two structures are highly similar (Figure 2.23 B). Comparison of all the atoms of bright 

and dark states of Padron affords a RMSD of only 0.54 Å.   
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Figure 2.23) Crystal structure of Padron in (A) Fluorescent (blue) and non-fluorescent (grey) 
state, with chromophore and close environment. The structures in cis and in trans 
conformations of the chromophore display only few differences in surrounding amino acids.  
(B) Overall top and frontal views of the X-ray structures of Padron. 

 

 
iii . Comparison of Dronpa and Padron  

 
For Dronpa, the cis- anionic configuration of the chromophore is fluorescent and 

exhibits an absorption band at 503 nm. The trans- neutral conformation of the chromophore is 

non-fluorescent and exhibits only an absorption band at 405 nm. Thus Dronpa, which shares 

great sequence and structural homologies with Padron has its photoswitching associated with 

the cis/trans isomerization of the chromophore and the interconversion between neutral and 

anionic absorption bands (Ando et al., 2004; Andresen et al., 2005; Stiel et al., 2007). Could 

the comparison of the spectroscopic and structural data of Dronpa help us to interprete the 

switching mechanisms of Padron? 

 

Structurally, bright-Dronpa resembles bright-Padron (Figure 2.24 A), but in the 

structures of the dark states the conformations of some residues are different (Figure 2.24 B). 
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In Dronpa, after illumination at 488 nm, the chromophore is isomerized from cis to trans and 

His193 and Arg66 are displaced, creating a different H-bond network. In Padron, only few 

structural rearrangements are observed between the cis and trans isomer structures, notably 

the different orientation of Met59. The position of the amino acid matrix around the protein is, 

unlike Dronpa, mostly conserved after isomerization.  

  

 

Figure 2.24) Superposition of Padron and Dronpa in (A) the bright state (blue- Padron and  
red- Dronpa) and (B) the dark state (white-Padron and pallet pink Dronpa). The main 
differences are observed in the dark structure residues His193 and Arg66.    
 
    

The main difficulty in figuring out the photoswitching mechanism of Padron consists 

in understanding how the chromophore isomerization couples with the UV-vis absorption 

spectra, in particular the interconversion of the anionic and neutral bands during 

photoswitching. The model described for Dronpa at physiological pH associated the cis 

conformation to the anionic bright state and the trans conformation to the neutral dark state. 

However, for Padron, both bright and dark forms display an anionic band in the absorption 

spectrum in addition to the neutral band in the cis state. As a consequence three spectroscopic 

states exist, and we could expect also three different chromophore conformations, but only 

two were obtained. Depending on the resolution of X-ray structures, some protein 
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conformations may not be well defined. Probably this is the case for Padron: the two different 

cis isomer forms of the chromophore probably differ only minimally.  

 

Bizarri et al. have suggested a model where the neutral and anionic states of the 

chromophore exist in both cis and trans configurations (Bizzarri et al., 2010). This model 

rationalizes the Padron spectroscopic behavior. Bright-Padron probably has a part of its 

population in the cis- protonated conformation and another part in the cis- anionic 

conformation, while dark-Padron’s population is in a fully trans deprotonated conformation 

(Figure 2.25).  

 

 

Figure 2.25) Scheme of the hypothetical deconvolution of Dronpa and Padron absorption 
spectrum. (A) Dronpa-like spectrum with two states: trans neutral dark state (1) and cis 
anionic bright state (2) and  (B) Padron-like spectrum with three states: cis- protonated state 
(1) and another part in the cis- anionic state (2), while dark-Padron’s population is in a fully 
trans deprotonated state (3).  

 

 
Up to now, the spectroscopic and structural results provide the end points of the 

mechanism, that is, the spectroscopic states and the different conformations of the 

chromophore before and after switching. However, we have few information about how the 

photoswitching occurs, notably the order of the isomerization and protonation events. These 

points will be  detailed in the next subchapters based on a cryo-trapping approach. 

A) 
B) 
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iv.   Padron0.9: Brakemann et al.  

 In March 2010, Brakemann et al. published the following paper: “Molecular basis of 

the light-driven switching of photochromic fluorescent protein Padron”, in which they 

obtained results similar to ours, but using Padron0.9, instead of Padron (Brakemann et al., 

2010). Some of the experiments present in this paper had been done in parallel with our work 

on Padron, for example the crystal structures of Padron0.9. Despite the overlap between the 

works, the methodological and scientific insights described in Brakemann et al helped us 

significantly to advance our own work about the photoswitching of Padron.    

 

Depending on pH, Padron can display either several or only one conformation of the 

chromophore. They interpreted the equilibrium between anionic and protonated states at pH 

7.5 based on titration experiments that give a pKa ~ 6.0 for the bright-Padron and a pKa ~ 4.5 

for the dark-Padron. This explains why, at physiological pH, bright-Padron displays both 

absorbance bands, whereas dark-Padron displays only an anionic absorption band. Another 

insight brought from their paper is the idea to work with a pure state, that is, a homogeneous 

population of proteins that exhibits a well defined spectroscopic behavior. It is simpler to 

interpret the evolution of a spectral series, if the initial population is homogeneous. For 

Padron, a fully trans dark-state can be induced through actinic illumination during some time. 

Illumination at 405 nm at room temperature during a few seconds leads the protein to a “pure” 

non-fluorescent state. We will see that it is an important step implemented in my experiments 

in the following subchapters.  

 

Another issue discussed by the authors is the fact that distinct absorption spectra in the 

fluorescent and the non-fluorescent state do not constitute an essential requirement for 

efficient photoswitching in FPs. They obtained a mutant L141P from Padron0.9 that, despite 

the quite similar absorption spectra in the fluorescent and non-fluorescent states, remains 

efficiently photo-switchable (comparing the contrast of fluorescence emission between dark 
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and bright states). We agree that the probabilities of isomerization rather than the distinct 

absorption spectra in the fluorescent and the non-fluorescent states are the determining factors 

for switching. However, we diverge from their explanation, concerning the cause of non-

fluorescence in the trans state of Padron. They propose that in general the distortion of the 

chromophore calculated by the modulus of the sum of the Ĳ and ĳ angles is an indication for 

the non-fluorescence. In fact for, the structures of Padron obtained in this work, the values of 

|Ĳ + ĳ| are 8.0 (1.2) and 18.11 (2.4) for the fluorescent and non-fluorescent states, respectively. 

But, in our point of view, the trans conformation of the chromophore is non-fluorescent 

mainly because the energy of an absorbed photon is spent in the attempt to twist the 

chromophore (see Next Subchapter). The ensemble of results obtained for Padron0.9 suggests 

that a light-driven cis-trans isomerization of the chromophore can be the fundamental 

switching mechanism of Padron, but experimental evidence is still lacking. 

 

Despite the broad overlap between works on Padron and Padron0.9 by our two 

laboratories, the publication of Brakemann et al. was positively received by us. We used their 

good ideas, such as to start each experiment with a pure non-fluorescent state and we could 

explore more points that remained unclear, such as the relation between protonation and 

isomerization in Padron mechanism.  
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2.2.4 PHOTOSWITCHING MECHANISM OF PADRON AT LOW  
TEMPERATURE  

 
i.   Motivation to continue Padron’s study at low temperature  

Experiments with Padron have also been carried out at low temperature in order to 

better understand the photoswitching mechanism. We have described previously in Chapter 

eYFP 2.1 that crystalline samples of Padron excited at 514 nmf  at 100 K generate an 

intriguing absorption spectrum displayed by the red line in Figure 2.26 g. More specifically 

we observe that (i) a small increase in the neutral band with a maximum at ~ 390 nm has 

occurred (ii) a strong and unexpected peak is detected with a maximum at 483 nm with a 

slight shoulder band at 450 nm (iii) a little peak at 500 nm remains. Note that for this 

experiment the absorption spectrum before illumination (in black) displays already a mixture 

of states because the Padron sample was not previously illuminated at 405 nm. The 

appearance of the absorbance band at 483 nm, never observed at room temperature, motivated 

us to further investigate the photoswitching mechanism of Padron. 

    

 

Figure 2.26) Absorbance spectra of Padron at 100 K. Initial spectrum of a crystal flash cooled 
at 100 K, without previous illumination at 405 nm (black line). Spectrum after few seconds of 
illumination at 514 nm (0.1 kW/cm²) (red line).  

                                                 
f At the beginning of the Padron investigation, the use of the 514 nm laser, instead of 488 nm, was a procedure 
adopted in order to facilitate eYFP experiments that use this wavelength.  
g The Figure 2.26 is the same as the Figure 2.15, I put it here again to facilitate the reading.  
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ii. Walking in the energy landscape and scrutinizing Padron mechanism  

 
Spectroscopically, Padron displays different states during reversible photo-

switching.  We have seen that the excitation of the crystalline samples of Padron at 514 nm 

and at 100 K results in the appearance of an intriguing absorption band at 483 nm and the 

nature of this peak has yet to be determined. The major difference between the experiment 

described earlier and the one shown below is the preliminary sample illumination at 405 nm at 

room temperature to ensure a single optical off state of the protein.   

 

At the beginning of the experiment, the absorption signature of crystalline samples of 

dark-Padron (Btrans)
h is similar with the ones determined previously at room temperature, 

because a change in temperature alone is not sufficient to alter the absorption spectrum 

(Figure 2.27 A, black line). The excitation of the red edge of the anionic absorption band 

(514 - 532 nm) of dark-Padron at 100 K induces fluorescence (Figure 2.27 D, green line) and 

increases the absorption at 483 nm as shown in the previous experiment (Figure 2.27 A, 

green line). There is no appearance of the protonated band as observed before (Figure 2.26). 

We therefore conclude that the 483 nm peak corresponds to an intermediate species which is 

blue-shifted relative to Btrans and appears to have a long absorption tail. We call this 

intermediate state I cis. By analogy with the absorption shape of other deprotonated bands, we 

suggest that Icis is also an anionic form of the chromophore. Therefore, our results suggest that 

this reaction Btrans ĺ 
Icis occurs only between deprotonated species. This is clearly different 

from the reaction observed at room temperature, where after activation part of the 

chromophore also exists in the protonated state.  

 

In the conditions of the experiment, the intermediate Icis is not very stable and without 

illumination, it relaxes in a few minutes to another state named Bcis,LT  (Figure 2.27 B, blue 

                                                 
h The reasons for the indices of the states denoted in this part will be clear in the following 
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line). This final state Bcis,LT exhibits a very similar fluorescence emission as Icis (Figure 2.27 

E, blue line). The absorption spectrum of Bcis,LT resembles that of  Btrans, but the anionic band 

of Bcis,LT is narrower and its extinction coefficient bigger. An important point in Figure 2.27 A 

is that the peak at 504 nm is higher than the initial absorption band, corresponding to the Btrans 

state. This is consistent with the formation of a fraction of Bcis,LT species already during 

illumination with 532 nm light, which it is probably not the result of thermal relaxation from 

Icis because the duration of the excitation is not long enough to allow a substantial relaxation. 

An explanation for this observation would be that Bcis,LT is also generated by light and not 

only by thermal relaxation. The entire reaction at 100 K can be represented by this kinetic 

model: 

               cis,

k

k
 cis

k

k
trans LTB IB

2

2

1

1 


 

where k1, k2, k-1, k-2, are the rate constants of the reaction which are potentially all dependent 

on light and temperature conditions. The illumination of Padron samples at 532 nm, therefore 

may increase all rate constants. Consequently, the absorption spectra can display a mixture of 

Btrans, Bcis,LT and Icis species. This last observation will be important in the next chapters.    

 

Heating the crystal for a few seconds (annealing), after the relaxation process by 

interrupting the nitrogen flux that keeps the protein crystal frozen after Bcis,LT production, 

results in the instantaneous recovery of the protonated state (Figure 2.27 C, red line). In 

addition, after the annealing procedure, the crystalline samples of Padron continue to 

fluoresce, but the spectral emission is shifted to the blue by 10 nm (Figure 2.27 F, red line).  

 

The complete kinetic reaction described during this subchapter and the respective 

optical properties of the different states are summarized below. The quantitative results about 

this model will be discussed in the next subchapter 2.2.4. 
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Figure 2.27) Spectroscopic signature of Padron along with its off-on photoswitching pathway, 
recorded in crystallo with previous illumination at 405 nm at RT. (A, B, C) Absorbance 
spectra (in top) and (A) Illumination at 532 nm (0.5 kW/cm2) at 100 K of the Padron off state 
(Btrans, black line) yields a first intermediate (Icis, blue line). (B) Spontaneous relaxation of Icis 
in the dark at 100 K yields a second intermediate (Bcis,LT, blue line) (intermediate spectra 
shown in thin lines). (C) Subsequent increase of the temperature (100 K ĺ β40 K) transforms 
Bcis,LT into ABcis (mixture of Acis,RT and Bcis,RT, red line). (D, E, F) the corresponding 
emission spectra (in bottom) to each step is shown in absorption (in top). Btrans (black line), 
Icis (green line), Bcis,LT (blue line) and ABcis (red line). Excitation at 488 nm (2.5 mW/cm2). 
 
 
 The results shown here provide valuable information about the mechanism of Padron. 

Firstly, the off to on photo-activation can take place at low temperature. Secondly, the 

activation mechanism is associated to an intermediate that relaxes in a few minutes to another 

more stable state at low temperature. Finally, at room temperature, the fluorescent state 

exhibits a protonated band which is absent at low temperature. These results suggest that the 
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protonation is completely decoupled from activation at low temperature. Would the 

isomerization be the key to the mechanism of photoswitching?          

 

Structurally, at 100 K, photoswitching of Padron involves chromophore 

isomerization. The crystallographic experiments described below request the assistance of a 

complementary spectroscopic set-up to probe the spectroscopic states of Padron’s 

chromophore during the reaction. The absorption spectra of the crystals are measured before 

and after excitation at the same position as where they are exposed to X-rays at 100 K (Figure 

2.28).  

 

Figure 2.28) Absorbance spectra before (black line) and after (green line) illumination at 
532 nm and at 100 K.  
 
 

We have seen in the last subchapter that Padron does not exist as one isolated state, 

but as a mixture of the three different states (Btrans, Icis and Bcis,LT) and this fact needs to be 

taken into account for those crystallography experiments. 

Three crystal structures of the Icis/Bcis,LT states were obtained in different conditions: 

for two data-collections the crystal was first illuminated and X-ray data-sets were collected 

afterwards; for the third data-collection the crystal was illuminated during the X-ray exposure. 

All results show the chromophore in its cis conformation, suggesting that the same 

isomerization mechanism “from trans to cis” occurs at 100 K, as it is observed in the 

experiments carried out at room temperature.  
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Since the actinic laser and X-ray radiation are used on the same crystal, it is important 

to consider that the isomerization of the chromophore might be induced either by the one or 

the other. Based on control experiments, we have concluded that X-rays do not interfere with 

photoswitching. Indeed, no electron density in the conformation of the chromophore is 

observed when the crystal is not exposed to the actinic laser and no difference density is 

observed between two data-sets collected consecutively on a crystal kept in the dark. 

Therefore, the hypothesis of isomerization of the chromophore generated by the X-ray 

radiation has been discarded.  

 

Collection of a data-set for one crystal of Padron takes eighteen minutes at the ID14-1 

beamline of the European Synchrotron Radiation Facility (ESRF). It is longer than the time of 

protein relaxation from Icis to Bcis,LT, which occurs in about fifteen minutes. Is it possible that 

the Icis state be actually a trans isomer of the chromophore that has relaxed to the cis 

configuration during data collection? The answer will depend on the proportions of Icis and 

Bcis,LT generated during the excitation and the X-ray data collection. However, it is not easy to 

determine ratios between different states, since the best crystals for X-ray measurements are 

not well suited for spectroscopy, because of their high optical density. As a conclusion, the 

time resolution of this experiment is not sufficient to ensure that the first intermediate after 

illumination is entirely in its cis conformation. A time-resolved crystallographic experiment 

has been set-up in order to solve this problem.  

 
 

A new experiment was carried out at the Swiss Light Source (SLS) in the expectation 

to increase the structural contrast between the Icis and Bcis,LT states. The beamline X10SA also 

comprises a spectrophotometer set-up and it has the advantage of having a high-speed 

PILATUS pixel detector (see Annex 2). Three data-sets have been collected on a unique 

crystal to ensure that the results would not be altered by the non-homogeneity of different 
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crystals. Owing to the better time resolution of this detector (1-2 minutes/collect), we can 

propose that the highest population during the reaction is obtained for (i) Btrans state in the 

first data-set collected prior to illumination, (ii) Icis state immediately after actinic illumination 

at 100 K at 523 nm for one minute (2 kW/cm2) and (iii) Bcis,LT state in the data-set collected 

40 minutes after relaxation in the dark. In the next chapter we will estimate the real proportion 

between these states, but from now on, for simplicity, the terms “ψtrans”, “Icis” and “ψcis,LT” 

will be used to refer to the precise instant of the photoswitching reaction. 

 

The new experiment at the SLS has allowed to obtain differences between electron 

density maps (Fobs - Fobs) of the forms (Icis - Btrans) and (Bcis,LT - Icis) (see Material and Methods 

Chapter 4.5.3). The “Icis - Btrans” map shows strong evidence that the off-on mechanism for 

Padron is associated with the trans to cis chromophore isomerization. The photoisomerization 

at 100 K occurs with weak conformational changes of the matrix, as it has also been observed 

at room temperature. The electron density of the sulfur atom from the flexible methionine 

(Met59) is displaced in opposition with the movement of the chromophore (Figure 2.29). 

This structural rearrangement is probably required for the isomerization to occur. Other 

smaller motions of Met93 and Ile195 flanking Met59 are most likely associated to a slight 

distortion of the ȕ-barrel (Figure 2.30). The analysis of the differences observed between the 

electron density maps of Icis and Bcis,LT  will be discussed in the following. 
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Figure 2.29) Crystal structures in states Btrans (non-fluorescent - white cartoon) and Icis 
(fluorescent – green cartoon) are shown, with the chromophore and key residues of the 
chromophore pocket (except Arg66, omitted for clarity) represented in ball and stick mode, 
and the protein matrix in cartoon mode. Isomerization is evident from the experimental 
difference electron density map (yellow, -4.ηıν blue, +4.ηı) computed from data sets recorded 
on the same crystal before and after actinic illumination at 532 nm at 100 K. 

 

 

Figure 2.30) (A) Other residues that show a difference in the electron density maps before 
(Btrans) and after (Icis) actinic illumination at 532 nm at 100 K including small movements of 
Met93 and Ile195 (yellow, -4.ηıν blue, +4.ηı). (B, C) Frontal and bottom views of the 
monomer of Padron, showing the overall difference electron density maps.  
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 There are other indications about the chromophore isomerization mechanism at 

100 K. Isabelle Demachy (Laboratoire de Chimie Physique – Paris, FRANCE) and her team 

(Gabriella Jonasson, Jacqueline Ridard and Bernard Lévy) are also interested in the 

isomerization mechanism of Padron (Faro et al., 2011). They carried out an experiment about 

the trans to cis isomerization at room and low temperature via molecular dynamics 

simulations. Their approach is based on the analytical equations of the force field that 

describe the chromophore CYG of Padron in its first exited state S1. These equations allow to 

simulate during a few pico to nanoseconds the chromophore dynamics considering potential 

energy calculated by taking into account protein constraints (Jonasson et al., 2011). Two 

parameters are monitored during the system evolution, the dihedral angles ĳ and Ĳ (Figure 

2.31) of the imidazolinone-benzylidene bridge bond in the chromophore. The effects of 

adding/removing H-bonds in the chromophore surrounding are also evaluated. The average 

between several simulations, with different initial positions, gives the statistics about the 

probability of the trajectories taken by the chromophore.   

 

Figure 2.31) Chromophore of Padron CYG and the dihedral angles ĳ and Ĳ, the arrows show 
the rotations involved. 

 

The planar chromophore is stabilized in the local minimum region in the energy 

landscape at the initial time in the ground state. In the excited state S1, it can escape from this 

position via tilt and twist distortion in ĳ and Ĳ angles in some picoseconds, with most of the 

trajectories occurring in the upper half of the chromophore pocket by the twist in the Ĳ angle, 

as it was also seen in Dronpa (Li et al., 2010). However, in the conditions of the experiments 
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(100 K) no more than a partial torsion of the chromophore (|Ĳ | ~ ιη°) is observed, 

accompanied by a slight imidazolinone ring movement and the conservation of hydrogen 

bonds that support the phenolate ring. Thus, no complete isomerization could be observed. 

However, the energetic barrier could be overcome when these hydrogen bonds between the 

phenolate oxygen atom and Tyr159 and Wat9 are forced to be ruptured. At room temperature, 

without these hydrogen bonds, 2% of the chromophore population exceeds the threshold angle 

(90°), from which it is easier to go to the cis conformation than to return to trans. By analogy 

with the result at room temperature, at 100 K we can think that isomerization may occur as 

well although with a much reduced quantum yield. This hypothesis is reinforced by the idea 

that photon absorption induces a transient heating of the chromophore for a few picoseconds 

(Garman and McSweeney, 2007). Our collaborators also showed that a clash occurs between 

the chromophore and Met59 during the isomerization, and this explains the displacing of the 

methionine visualized in the crystallographic data. According to their result the anionic 

chromophore of Padron in the trans configuration does not fluoresce because the energy is 

rapidly dissipated through non-radiative ground state recovery from the twisted to the planar 

trans configuration. Their results, therefore, support our experimental observations. Further 

information about this work can be found in Faro et al. (Faro et al., 2011) (Annex 2).  

 

A similar experiment with Dronpa showed that isomerization at 100 K is not 

common for all RSFPs. The chromophore isomerization at low temperature is possible for 

Padron, but it is unclear if this property is common to all reversibly switching fluorescent 

proteins. To answer this question, an experiment similar to that performed with Padron has 

been carried out with its parent Dronpa. However, despite the high similarities between the 

two proteins, Dronpa displays negative photoswitching, that is, upon illumination at 

wavelengths absorbed by the protein in its fluorescent state the protein switches off, contrarily 
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to Padron. For this reason, it is not possible to reproduce the exact same experiment: either we 

focus onto the on to off mechanism, which is different from Padron (off to on) or we 

illuminate the protonated band, exciting the anionic chromophore, which is also different 

from Padron for which the anionic band is excited. We decided to focus on the on to off 

mechanism. Two data-sets were collected before (Fo
B) and after (Fo

A) illumination at 521 nm 

for 3 minutes at 16 kW/cm2 and at cryotemperature. The differences in the electron density 

maps Fo
A  - Fo

B do not reveal any chromophore isomerization at cryo-temperature (Figure 

2.32). It shows only the absence of electron around the residue Glu211, likely due to the 

radiation damage as was observed in IrisFP (Adam et al., 2009).  

 

 

Figure 2.32) Crystal structure of Dronpa recorded under similar experimental conditions as 
that yielding Icis in Padron. The structure of Dronpa in its fluorescent on-state is shown in 
white and the structure obtained upon actinic illumination at 100 K with a 521 nm laser light 
is shown in brown.  

 

 
Maybe a better choice to perform this experiment would have been to attempt 

switching from off to on, instead of on to off, because in the off state the fluorescence quantum 

yield is smaller. Indeed, one reason that contributes to a low quantum yield is that the 
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absorbed energy which could otherwise be spent radiatively is channeled in attempts to twist 

the chromophore, possibly favoring isomerization (Li et al., 2010), as in Padron’s case.  

 

In chapter eYFP 2.1, we have shown that Dronpa crystalline samples display a slight 

photochromism at low temperature, and we suggested that this effect was due to a photo-

induced protonation of the chromophore. The structural results obtained here corroborate this 

interpretation, since the chromophore isomerization does not occur at 100 K. This absence of 

isomerization is likely due to the much larger conformational change of the protein matrix 

observed upon chromophore isomerization in Dronpa at room temperature as compared to 

Padron, notably the complete reorganization of the H-bond network involving His194 and 

Arg66.  

 

 The subtle structural difference between Icis and Bcis,LT states could be meaningful 

and the experiment should be reproduced in the future. One of the aims for collecting data 

at the SLS was to check whether the spectroscopic difference between Icis and Bcis,LT 

correlates with a structural modification. In the first analysis of the difference in the electron 

density maps, there were no remarkable results. However, averaging the difference electron 

density map over the six monomers present in the asymmetric unit filters the noise and 

amplifies the signal, revealing a difference electron density map that can be associated to 

structural movements occurring during Icis to Bcis,,LT relaxation. Then, should this averaged 

difference electron density maps be considered as a meaningful result? It is important to 

distinguish between possible experimental artifacts and the actual consequence of the 

relaxation from Icis to Bcis,,LT. There are pros and cons arguments related to each of these 

hypotheses. 

 

First, critics can be formulated by noting that the main features in the non averaged 

electron difference density map differ among the monomers. It was necessary to average the 
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data in order to visualize some difference electron densities that made sense. In our first data-

sets “Icis - Btrans”, the chromophore’s movement originating from the light action was obvious 

in the difference density maps without any need for averaging. The lack of sufficient signal-

to-noise ratio can result from the limited resolution and quality of the data. We also have 

observed in previous difference electron density maps a clear correlation between negative 

and positive densities, revealing a relocalization of the electrons between the two structures. 

However, for the present data, most of the difference densities were “single” (either positive 

or negative) without any strong counterpart. In addition, the negative density around Asp192 

is a possible evidence that some radiation damage occurred.  

 

In contrast to the previous arguments suggesting that the result should be interpreted as 

noise or damage, there are also some positive evidences appearing in our data that are a strong 

justification for repeating this experiment with better quality crystals. The set of difference 

electron densities features is superimposed to specific H-bond network located mostly on the 

ȕ-barrel. In Dronpa, this region was described previously as the opening in the ȕ-barrel, 

connecting the chromophore with the bulk solvent (Stiel et al., 2007). Indeed for Padron, the 

network is directly linked to the cis (fluorescent) configuration of the chromophore (Figure 

2.33) in which the LTciscis BI ,
 
relaxation occurs. Furthermore, Agmon et al. (Shinobu et 

al., 2010) have shown with a high resolution structure of GFP  that the residue Asn146 is an 

important pathway for protons exit, when the crystal is photoactivated. A structural 

superposition of the GFP and the Icis/Bcis,LT structure of Padron shows that Glu140 of Padron 

is the equivalent Asn146 for GFP. A strong positive electron density is localized between the 

Glu140 and Ala160 residues (Figure 2.33). 

 

One explanation for the presence of positive electron density, while negative density is 

absent, is the global ordering of H-bonds. The electron excess (positive density) could be 
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explained by H-bonds rigidifying upon  the LTciscis BI ,
 
relaxation due to a decrease in B-

factors. Mizuno et al (Mizuno et al., 2008) have suggested through NMR analysis that the 

same flexible region in the ȕ-barrel is involved during the photoswitching reaction in Dronpa. 

They noticed the influence of the residue Glu140 and others in the protein distortion, exactly 

in the region where we observed stronger difference densities. Therefore, the absorption shift 

between Icis and the relaxed Bcis,LT state could be associated to a ȕ-barrel contraction. 

 

In conclusion, we decided not to consider these results for publication due the lack of 

sufficient signal-to-noise ratio. However, these results merit to be discussed here because they 

are in accordance with previous results found in the literature (Stiel et al., 2007; Mizuno et al., 

2008; Shinobu et al., 2010) and because they open perspectives for future experiments. 

 

 

 

Figure 2.33) Crystal structures in states Icis (green cartoon) with the chromophore CYG and 
key residues represented in ball and stick mode. The average difference electron density map 
(blue mesh, ι.ηı) between the data set collected after relaxation (ψcis,LT) and the data set 
collected before actinic illumination (Icis) is superposed over the structure. The H-bond 
networks between the key residues are represented in dashed black lines.  
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Spectroscopic difference between Icis and Bcis,LT states. How to explain almost 

identical fluorescence emission spectra from two different absorbance spectra? To 

discuss this question it is important to first consider the arguments that allow us to conclude 

that Icis is fluorescent.  In the absorption evolution during thermal relaxation, we observe the 

interconversion between Icis and Bcis,LT. The same relaxation observed via fluorescence 

evolution shows no change in the fluorescence emission spectra. If Bcis,LT was fluorescent and 

Icis non-fluorescent, during relaxation (Icis ĺ Bcis,LT) we should have observed an increase of 

the fluorescence, depending on the ratio between the population of Icis and Bcis,LT. We 

therefore conclude that Icis and Bcis,LT exhibit the same fluorescence. We do not know how to 

explain the reason for this similarity between the fluorescence spectra of Icis to Bcis,LT. We can 

speculate about a possible excited state reaction that rapidly converts Icis to Bcis,LT and for this 

reason, when Icis is excited we observe the fluorescence emission of  Bcis,LT, a process similar 

to ESPT in GFP for example. In line with this hypothesis Icis state would not be fluorescent. 

Further investigation needs to be done in order to elucidate the exact nature of the 

intermediate state Icis.  

 

2.2.5 THE PHYSICAL MODEL OF PADRON PHOTOSWITCHING  

A photo-physical model that rationalizes all experimental findings on Padron can be 

proposed (Figure 2.34). (1) In the beginning, the protein is in the Btrans deprotonated non-

fluorescent form, and upon actinic illumination this species goes to the S1 excited state that 

relaxes to the Icis,LT metastable intermediate state(2). Depending on the experimental 

conditions the Icis,LT intermediate goes to the stable deprotonated bright state  Bcis,LT via 

excited state or thermal relaxation in the ground state (3) Another energetic barrier forbids the 

protonation equilibrium ABcis state to be reached at 100 K (4). Equilibration becomes possible 

around 180 K (5). 
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Figure 2.34) Photo-physical model of Padron photoswitching 

 
    

2.2.6  QUANTITATIVE EVALUATION OF PADRON 
 M ECHANI SM 

 

The obtained results have revealed the mechanism of photoactivation of Padron at low 

temperature, but no quantitative evaluation has been performed so far. Based on qualitative 

observations, we have proposed a kinetic model that induces interconversion of three states at 

low temperature. In order to validate this model, the aim of this subchapter is to submit it to 

quantitative evaluation. Recapitulating, the model describes the off to on mechanism of 

Padron photoswitching at low temperature by: 
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According to the structural evidences, we assume that the rate constant k-1 is negligible 

(k-1 = 0). Indeed, the fact that all the crystallographic results obtained from different crystals, 

exhibit the chromophore in cis configuration after actinic illumination at 532 nm suggests that 

the Btrans population completely disappears upon activation at 100 K. If a significant 
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population of Btrans would remain, we would expect to observe part of the chromophore in 

trans configuration in density maps, but this is not the case.  

 

The appearance of Icis necessitates light. For this reason, we consider thermal 

activation of k1 negligible. In contrast, the rate constant k2 has both thermal and light sensitive 

contributions.     
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where A1, A0 are constants, Plaser is the laser power ,  İ is the extinction coefficient ,  ǻE is the  

activation energy, k is the Boltzmann constant and T is the temperature. 

 

i.  Spectral deconvolution of  Btrans, Icis and Bcis,LT 
 

All collected absorption spectra showing the Icis state also exhibit a non-negligible 

remaining peak at 500 nm, that is, a significant population of Btrans and/or Bcis,LT. We discuss 

now the procedure for the estimation of the real proportion between the Btrans, Icis and Bcis,LT 

states for a record spectra, obtained through spectral deconvolution. However, we note that 

this analysis is not highly accurate, since the spectrum of Btrans is very similar to that of Bcis,LT.  

 

Data collection is performed in two phases. In a first phase, a crystalline sample of 

Padron is illuminated during a few seconds, and in a second phase the reaction is let to 

equilibrate. Both phases are carried out at a temperature of 100 K. Spectral deconvolution 

requires some considerations to be applied: the first one is that the total population of 

molecules remains constant during the experiment. The second consideration is that we 

assume that after illuminating at 405 nm at room temperature and before the actinic 

, 

and 
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illumination at 532 nm, at instant t0, the absorption spectrum corresponds to the signature of 

the pure state Btrans: 

         )(t(t)+ (t)(t) 0,  B      I       B      B transcisLTcistrans 
 

 
In addition, we assume that after illumination and relaxation, the system reaches 

equilibrium and the final population is the Bcis,LT state. As described previously, Bcis,LT 

exhibits a higher extinction coefficient as compared to Btrans. Furthermore, according to the 

previous considerations the pure spectra of Btrans and Bcis,LT are available, but not that of Icis. 

 

To calculate the pure absorption spectrum of Icis, we need to subtract the total 

spectrum obtained in the instant t1, right after actinic laser illumination at 532 nm (300 s; 

0.5 kW/cm2) where Icis is maximum, with the spectra SBtrans (t1) and SBcis,LT (t1) 
with accurate 

proportions.  It is very difficult to determinate the exact proportions, because the Btrans and the 

Bcis,LT peaks are too similar. However, based on the crystallographic results, the population of 

Btrans is negligible at t1 and we chose to subtract only SBcis,LT (t1). 

 
)(t)(t)(t 0LT,B11I cisTotalcis SSS 

 

 
Figure 2.35 shows the proportion between the populations, for one specific spectrum 

coming from a successful experiment. The criterion used to chose the Ȗ factor is to obtain no 

negative values for the spectrum of Icis. The absorption peak at 278 nm has been taken as a 

reference to normalize the spectra. Assuming that at t1 [Btrans] = 0, we obtain Ȗ = 0.61, that is, 

there is 61% of Bcis,LT and 39% of Icis. 
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Figure 2.35) Absorption spectra for the states Icis (blue line) and Bcis,LT (red line). 
 

 
 

The modest amount of Icis produced is consistent with our unsuccessful attempts to 

obtain a pure state. In addition, this result also explains the weak signal-to-noise obtained in 

the difference electron density maps between Icis and Bcis,LT: even for successful experiments 

such as that performed at SLS only a small part of the collected data represent the true 

difference between Icis and Bcis,LT.  

 

ii. Rates of off to on transformations at low temperature 
 
We stored all time-series of absorption spectra in a new experiment similar to the 

previous one: we carried out actinic illumination at 532 nm in a first phase, followed by 

relaxation at cryo-temperature in a second phase. To analyze these data, we extracted the rate 

constants by monitoring the peak evolutions at maxima 504 nm and 488 nm (method 1). Both 

curves were fitted by a monoexponential model, with rate constants 0.028 (0.004) s-1 and 

0.033 (0.003) s-1 respectively. When the actinic light is stopped, in the second phase of the 

experiment, we observe the relaxation process by monitoring the 483 nm band disappearance 

and the recovery of the 504 nm band, which this time is most likely associated with the 

increase of Bcis,LT. Both the decrease of the 483 nm band and the increase of the 504 nm band 



2.2   M ECHANISTIC INVESTIGATION OF PADRON, AN INTRIGUING PHOTOSWITCHER                           
__________________________________________________________________________________________ 

111 
 

were fitted with a monoexponential kinetic model with k = 0.0020 (0.0001) s-1 

and k = 0.0014 (0.0001) s-1 (Figure 2.36).  

 

This analysis by Method 1 involves errors due to absorption band overlaps, which 

were not taken into account. Moreover, we have noticed that during the first phase, the 

photoswitching of Padron reaction is more complex than simply Btrans to Icis. During 

illumination, the 483 nm peak increase and the 504 nm peak decay are associated to the 

transformation from Btrans to Icis, but also to the transformation to Bcis,LT. Method 1 was 

applied in the publication of the results (Faro et al., 2011). The inaccuracy of method 1 affects 

mostly the first phase of the experiment, as in the second phase without illumination, the 

model involves only the transformation between Icis and Bcis,RT. An rigorous extraction of the 

rate constants will require the deconvolution of the absorption spectra, so as, to obtain the 

contribution of the individual species.   

 

 
Figure 2.36) Evolution of the peak absorbance of Btrans (504 nm, black dots) and Icis (483 nm, 
green squares) during illumination at 523 nm (0.15 kW/cm²) at 100K. Fitting with 
monoexponential kinetic models are also shown in black. 
 
  
 

 

Up to now, we have described Padron photo-activation by analyzing absorbance time-

series. In our laboratory, because of the experimental set-up, it is easier to record fluorescence 
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emission spectra than absorbance spectra. However, the rates extracted from the fluorescence 

data are subject to a numbers of artefacts, since at high laser power the response of the photo-

reaction is not linear. In the case of Padron, a considerable disadvantage of fluorescence data 

compared to absorbance data is that the information about the thermal relaxation phase of the 

reaction is not discernible. Indeed, the fact that Icis and Bcis,LT seek to have the same 

fluorescence emission spectra prevents to easily distinguish them, resulting in a flat 

fluorescence trace during the dark phase of the reaction (Figure 2.37). 

 

 

Figure 2.37) Evolution of the peak emission band width at 514 - 530 nm during 
photoactivation at 532 nm of the crystalline sample of Padron at 100 K.  
 
 
 
iii. Quantum yield of photoactivation  

We have described in Chapter 2.1.3 iii the quantum yield of photo-transformation that 

was calculated considering an irreversible photoreaction Aĺ B. However, if concomitantly 

with this process the inverse reaction occurs (B ĺ A), the measured quantum yield will not be 

an effective quantum yield, but an apparent quantum yield.  

 

Indeed, let us consider now the photoreaction χ ļ ψ with rate constants k1 and k-1. 

The concentration of A decays with:  
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If only A is present initially, then [A] + [B] = [A]0. The solution for this differential equation 
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Therefore, the apparent rate of decay of A is k1 + k-1 and an apparenrent yield is obtained 

 ln10LP

VNhc
kk   app 

  )( 11  

The quantum yield is related to the apparent one by: 
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Note that the photoactivation of the reversible reaction displays an apparent quantum 

yield bigger than the effective quantum yield. It is interesting to emphasize that the effective 

quantum yield of activation, does not normally depend on the wavelength. However, as the 

interconversion rates depend on the wavelength, the apparent quantum yield will also depend 

on it. For example, Padron photoactivation significantly differs upon illumination at 532 nm 

or 488 nm. 

 

The Padron photoactivation quantum yield was calculated by analyzing the 504 nm 

absorption peak decay, upon illumination at 532 nm at low temperature, and upon 

illumination at 488 nm at room temperature. The obtained values are ~5 x 10-6 at low 

temperature and ~2 x 10-4 at room temperature assuming non reversible reaction. We cannot 

compare directly these two values, because at room temperature the overall reaction to Bcis,LT 

is involved, while at cryo-temperature only the first step of the reaction Btrans ĺ Icis is 

involved. Also, as described above for the case of a reversible AB reaction, effective quantum 

yields may quite strongly differ from the apparent values, depending on the exact reaction 
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pathway. However, we can propose qualitatively that the chromophore isomerization occurs 

much more easily at room temperature than at 100 K, in agreement with the simulation results 

discussed in subchapter 2.2.4 iii . 

 

 

iv. Watching the protonation of Padron 

In Figure 2.27 C, we have shown that when the Bcis,LT state is heated to room 

temperature for a few seconds, its absorption spectrum, with only the anionic band, becomes 

instantly a spectrum displaying two bands. We suppose that this new absorption spectrum 

corresponds to the ABcis state, a mixture of Acis,RT (protonated) and Bcis,RT (deprotonated), the 

same states produced upon photoswitching at room temperature. This hypothesis is based on 

the resemblance between the spectrum obtained in this way and the spectrum shape obtained 

upon photoswitching at room temperature. Another argument that supports this hypothesis is 

the fact that low temperature induces a slow down, rather than a change, in the reaction 

(Moffat and Henderson, 1995; Yang et al., 2011). If, instead of the annealing procedure, a 

gradual increase of the temperature (6 K/min) is applied in the dark, it is possible to watch the 

protonation process occurring (Figure 2.38 A, B).  

 

                   

Figure 2.38) (A) Evolution of Padron absorption spectrum during temperature increase 
(100 K ĺ 240 K), transformation from Bcis,LT (green line) into ABcis (mixture of Acis,RT and 
Bcis,RT, red line) at ~180K (intermediate spectra shown in thin lines). (B) Rise of the 
absorbance band of the neutral chromophore (at 390 nm) during temperature elevation. The 
curves are corrected in accordance with the variation of the isosbestic point at 445 nm. 

A) B) 
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Below 180 K a weak variation in the deprotonated peak is observed. Above this 

temperature the protonated species appears. This can be associated to the global change of the 

protein dynamics that occurs at the glass transition temperature (Durin et al., 2009). This is a 

strong result, because it connects the chromophore protonation step with the release of the 

bulk solvent freedom at this temperature, also associated with unlocking of protein dynamics.  

 

Agmon and coauthors have described a temperature transition of GFP fluorescence 

(Leiderman et al., 2006). In their model, the chromophore phenolate proton moves along an 

unidimensional proton wire inside the protein during the ESPT process (towards Glu222). 

This behavior is observed at low temperature until a temperature around 230 K. Above this 

temperature, the proton escapes to the exterior and then moves free in three dimensions. They 

have attributed this transition to a conformational change in the GFP structure. These effects 

described by Agmon and coauthors could be linked with our observations. However, the 

temperature transition measured in their work is 230 K. This may be due to the fact that the 

transition temperature depends also on the solvent in which the crystal is soaked. 

 

v. Spectroscopic results on solution samples.  

The experiments described so far were carried out with crystalline samples. The principal 

results obtained in crystallo, showed in Figure 2.27, were reproduced in solution samples of 

Padron (Figure 2.39). We could identify the same spectroscopic states along the 

photoswitching reaction at 100 K, one non-fluorescent state and three fluorescents states 

(Figure 2.39 D). This demonstrates that these states are not specific to the crystalline phase. 

Overall, the results of the two experiments are consistent with each other. However, there is 

an exception for the relaxation from Icis to Bcis,RT that we will discuss in the following. 

Considering the model that we applied to crystalline data, we have: Btrans undergoes 

isomerization to Icis and Bcis,LT states upon actinic illumination (Figure 2.39 A). This is 
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followed by Icis relaxation to Bcis,LT in the ground state (Figure 2.39 B). Finally, the ABcis 

state is obtained by an annealing procedure or by slowly rising the temperature 

(Figure 2.39 C).  

 
Figure 2.39) (A) Spectroscopic signature of Padron along its off-on photoswitching pathway, 
recorded in solution samples. (A, B, C) Absorbance spectra (A) Illumination at 532 nm 
(1.6 kW/cm2) at 100 K of the Padron off state (Btrans, black line) yields a first intermediate 
(Icis, green line). (B) Spontaneous relaxation of Icis in the dark at 100 K yields a second 
intermediate (Bcis,LT, blue line) (C) Subsequent annealing procedure (100 K ĺ β40 K) 
transforms Bcis,LT into ABcis (mixture of Acis,RT and Bcis,RT, red line) (D) Corresponding 
fluorescence emission spectra: Btrans (black line), Icis (green line), Bcis,LT (blue line) and ABcis 

(red line). Excitation at 488 nm (2.5 mW/cm2). 
 

Comparison of Icis relaxation, upon gradual increase of temperature in solution 

and crystal samples, show a difference in energetic barrier. At 100 K, it was observed that 

in crystallo the relaxation occurs in about 15 - 30 minutes, while in solution the relaxation is 

much longer (3 hours). Therefore, one possible explanation is that the activation barrier for 

this step measured in solution is higher than in crystals. A gradual increase of temperature 
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(6 K/min) during the relaxation of Icis further highlights this difference between solution and 

crystalline samples. The experiment consists in following the 390 nm and 504 nm absorption 

peaks, right after Icis has been produced, upon rising the temperature from 100 K to 230 K. 

We observe that the protonated band remained almost constant until 200 K, and increases 

only at the glass transition temperature, as was observed in the crystal experiments 

(Figure 2.40, red squares). Concerning the evolution of the 504 nm absorption peak, we can 

distinguish three phases (Figure 2.40, black cycles): The first one, between 100 – 120 K, 

where the Bcis,LT absorption peak remains practically constant. The second phase, at 

temperatures above 120 K, where the Icis to Bcis,LT transformation occurs, until 200 K. Finally, 

a third phase above 200 K when this 504 nm peak decays, as a result of the establishment of 

equilibrium between Bcis,RT  and Acis,RT.  

 

Figure 2.40) Evolution of Icis to Bcis,LT and ABcis,LT thermally-induced by a temperature ramp 
from 100 K to 220 K in solution.  
 
 
 The first phase between 100 K and 120 K is only observed in solution experiments as 

in crystal, Icis relaxes quite rapidly to Bcis,LT at 100 K. This could result from the solvent 

composition and/or from the difference in viscosity, or even from a conformational selection 

process occurring in the crystal (see Chapter Material and Methods).  
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Figure 2.41) Arrhenius representation of the thermally-induced relaxation of Icis to Bcis,LT in 
solution. The logarithm of the relaxation rate Icis ė Bcis,LT is reported as a function of the 
inverse temperature. The plotted rates k were obtained by fitting the decay of Icis (500 -
 507 nm absorbance band) during relaxation in the dark by a mono exponential model. The 
solid red lines show the slope best fitting the data for two temperature windows where the 
reaction appears to show a linear behavior. 

 

 
To estimate the activation free energy barrier separating Icis from Bcis,LT, we measured 

the absorption spectral series of spontaneous relaxation from Icis to Bcis,LT, in the dark at 

different temperatures using solution samples. For each time-series, the 483 nm absorption 

decay was fitted by a monoexponential decay model, in order to obtain the value of the rate 

constant k2 its thermally activated part. An Arrhenius plot is then produced by the logarithm 

of k2 as a function of the inverse temperature (Figure 2.41).  

 

According to these measurements, two phases for the relaxation Icis to Bcis,LT are 

observed. The value for the free energy barrier is ~3.8 kJ/mol for temperatures between 120 K 

- 170 K. That means that above 120 K, the thermally activated term of k2 becomes influent in 

the reaction process. We note that this experiment is very difficult to perform because it 

requires highly reproducible solution sample. 
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vi. One-photon process   
 

It is important to verify that the reaction presents the same behavior at room and at low 

temperature, to support the hypothesis that it is the same process. Activation could indeed 

arise from absorption of one or several sequential photons. If the phenomenon is generated by 

the absorption of one photon only, the activation rate changes linearly with the applied power 

density. On the contrary, in the case of two sequential photons, the activation rate will change 

quadratically as a function of the power density. Therefore, we measured the power 

dependence of the observed rates at low and at room temperature. Both results show a linear 

behavior, suggesting one photon process (Figure 2.42 A and B, respectively). This can be 

interpreted as an evidence that the photoswitching mechanism in not altered at cryo-

temperature, but only slowed down. This result supports the validity of our low temperature 

approach.  

 

 
 
Figure 2.42) Photoactivation of Padron occurs via a 1-photon absorption process at low to 
room temperature. (A) At 100 K, the photoactivation rate reports on the buildup of Icis (actinic 
laser at 532 nm). (B) At room temperature, the rate reports on the buildup of ABcis (actinic 
laser at 488 nm). 
 
 
 
 
 
 
 
 

A) B) 
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2.2.7   EXPLORING  THE PADRON M ECHANISM  

After having established a possible kinetic model accounting for the photoswitching 

mechanism of Padron, we will study the influence of some external parameters on 

photoswitching. In this subchapter, we present how the complexity of the kinetic model 

results in unexpected behaviors under specific conditions. 

    

i. Effects of the laser power on Padron photoactivation.  

We noted that depending on the power of the actinic laser, the intermediate state (Icis) 

was or was not observed. During photo-activation at low-temperature, the absorbance peak at 

483 nm, associated to Icis, can only be seen when the power of the laser is sufficiently high. 

However, illumination at 532 nm also transforms Icis to Bcis,LT and for very high laser powers, 

again we do not observe the intermediate state anymore. Therefore, the value of the laser 

power used, in the experiment at 100 K, should be restricted to a specific range of values to 

visualize Icis in the absorbance spectrum. In the condition of our experimental set-up, the laser 

power varied between 2 - 20 mW at the focus.   

 

At laser powers below the inferior limit, the result is interpreted by the fact that k1 

becomes < k2. In order to observe Icis, the laser power should be strong enough to populate the 

intermediate faster than it relaxes to Bcis,LT , that is k1 > k2. At laser powers above the superior 

limit , the situation is more complex. Both k1 and k2 have a photo induced term that rises with 

the laser power, and k2 has also a thermally activated term that rises with temperature. It is 

possible that k2 rises more than k1due to laser induced heating of the sample (see Annex 2 - 

SI).  
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ii. Effects of the temperature on Padron photoactivation.  

Upon photoactivation at 532 nm, depending on the temperature, we could observe or 

not the Icis intermediate state (Figure 2.43). The Icis absorption band decreases with the 

increase of the temperature, to the rise of the thermally activated term in k2.  

 

This results in k1 < k2 and the first step of the reaction is not rate limiting. At high 

temperature, it is thus more difficult to visualize the spectrum of Icis. This is consistent with 

the fact that at room temperature Icis cannot be observed at all (with our set-up), since  

k2 >> k1. 

 

 

 

Figure 2.43) Padron photo-activation from Btrans (black line) to Icis/Bcis,LT (gray lines) (A) at 
140 K only a little 483 nm band appears (B) at 170 K after illumination at 532 nm the band of 
the intermediate-form increases, note that band produced is thinner than the first one (C) at 
190 K the deprotonated band increase was observed as well, note that the protonated band 
starts to grow-up.      

 

By increasing the temperature, the lifetime of Icis becomes shorter. For example at 

170 K, the temperature is not sufficiently high to allow protonation, but it is already too high 

for Icis to be observed. Therefore, the absorption spectral time series displays only the increase 

of the deprotonated band, which is measurable because the extinction coefficient of Bcis,LT is 

higher than that of Btrans.  At first glance, this result appeared very strange to us. 

 

B) A) C) 
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iii. Effects of the wavelength on Padron photoactivation.  

The usual wavelength used in the microscopy experiments to switch on Padron or 

switch off  Dronpa is 488 nm (Willig et al., 2011), because of the high extinction coefficients 

at this wavelength. Thus, we expected also an efficient activation of Padron using the 488 nm 

laser at low temperature this is indeed the case (Figure 2.44). However, comparing with the 

experiment performed at 532 nm, at 488 nm it was impossible to visualize the intermediate 

state. In fact, Padron activation at cryo-temperature was observed with 532, 523, 514, 488 and 

473 nm lasers and Icis appeared only with the less energetic wavelengths 532, 523, and 

514 nm.  

 

                     

Figure 2.44) Fluorescence emission spectrum of Padron photoactivation at 488 nm at low 
temperature..  

  

These results are reasonable, regarding the fact that the light-activated parts of the rate 

constants depend on extinction coefficients. Thus the choice of the actinic wavelength may 

change the rates, so as to afford k1 >> k2, so that it is possible observe Icis. However, if  the 

wavelength is chosen so that k2 >> k1, the observation of Icis is impaired. The spectral overlap 

between the different states also will critically influence this effect. όor Padron’s case, the 

separation between Btrans and Icis absorption peaks is relatively small (with maxima at 503 nm 

and 483 nm). At 473 nm or 488 nm, Icis has a high extinction coefficient, resulting in its fast 

transformation to Bcis,LT  (Figure 2.45). Therefore,  k2 > k1, and Icis is not observed. 
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Conversely, at 514 - 532 nm Icis is only weakly light sensitive, whereas Btrans and Bcis,LT are 

strongly light sensitive. Thus, k2 < (k1, k-2) and Icis can be observed. Overall, the wavelength 

should be chosen according to the goal of the experiment.  

 

 

 

Figure 2.45) Scheme example of the overlapped spectra in Padron’s case. Highlighted in the 
red circle the region where the extinction coefficients of the three states are closer. 

 
 
 

2.2.8 PADRON BACK -PHOTOSWITCHING AT 100 K  

We are interested to study now the vanishing of the fluorescence emission process, 

and not only to the first kindling. Careful study of the back-switching reaction at 100 K is 

needed to complete the photoswitching understanding. The results of the back reaction 

described below reveal an interesting aspect of Padron properties.  

 

At room temperature, the Padron chromophore thermally switches off in the dark by 

cis-trans isomerization in 150 minutes, whereas this is almost an instantaneous process, when 

illumination with 405 nm laser is used (Andresen et al., 2008). Similarly, we could expect that 

the back-switching is also possible at cryo-temperature, obviously at a lower frequency. In 

line with this hypothesis, we analyzed how the Padron kinetic model may lead to fluorescence 
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deactivation. Considering the states Btrans, Icis and Bcis,LT, the two only ways to turn the 

fluorescence off are: for a particular condition k-1 is not negligible; and/or for a particular 

condition there exists a pathway that directly links Bcis,LT to Btrans with a rate constant k-3 

(Figure 2.46).  

 

 

               cis,
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Figure 2.46) Padron kinetic model emphasizing possible back-switching rates to Btrans 
highlighted with red squares. 
 
 
 

Evaluating the photo-activated part of k-3 is difficult because of the close overlap 

between Bcis,LT and Btrans spectra. Evaluating, the thermally-activated part of k-3 is also 

problematic: in view of the relaxation time taken to back-switching Padron at room 

temperature. Probably at low temperature it would take much more time, if it happens at all, 

and the unsuitability of the experimental design would not allow to confidently monitor the 

effect. Thus, our first attempt to switch back the reaction was to evaluate k-1 by illuminating 

Icis at 473 nm.  

 

A crystalline sample of Padron was activated at 532 nm at 100 K to produce the Icis 

state, followed by illumination at 473 nm to switch back to Btrans. The 532/473 nm actinic 

lasers are alternated and the fluorescence evolution is probed by exciting at 473 nm, a 

wavelength at which the fluorescence of Icis is enhanced comparatively to Bcis,LT due to its 

higher extinction coefficient at this wavelength (Figure 2.47). 

 

k-3 
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Figure 2.47) Low temperature on and off photoswitching. Activation of the protein is 
performed at 532 nm (green lines) and back-switching at 473 nm (cyan lines). 
 
 
 

Upon 532 nm actinic illumination, the fluorescence increases with the k1, k2 and k-2 

rate constants, following the model Btrans ļ Icis ļ  Bcis,LT. When the laser is changed to 

473 nm, the fluorescence evolves with the k1’, k2’, k-2’ and k-1’ rate constants. The first time 

473 nm laser is switched on, we observe a fluorescence rise, followed by a subsequent 

decrease. This behavior is not reproduced during the subsequent cycles. However, a small 

fraction of the molecules seem to undergo photoswitching.  

 

Assuming that, after the first illumination at 532 nm, Btrans = 0 according to our 

crystallographic results, we do not know how to interpret the fluorescence rise induced by the 

first illumination at 473 nm. It could however be due to a residual population of Btrans 

chromophore that is efficiently activated by this laser. During the following cycles, the 

fluorescence oscillation can be explained by a reversible change in the population of Icis and 

Bcis,LT . In summary, this experiment does not allow to conclude for a significant value of k-1 

at 473 nm. In a second experiment, we tried to stimulate back photoswitching by employing 

further blue shifted light at 405 nm.  
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Indeed, the photoswitching of Padron was observed by alternating actinic illumination 

532/405 nm, even without the protonated band (Figure 2.48).  

 

 

Figure 2.48) In crystallo Padron photoswitching at cryo–temperature (100 K). Activation of 
the protein is performed at 532 nm (green lines) and back-switching at 405 nm (violet lines) 
(10 points FFT smoothing).  

 

 
Upon 532 nm the fluorescence increases and it decreases upon illumination at 405 nm 

at 100 K in crystallo. Thus, the photoswitching can be performed at low temperatures. 

However, the profile that the fluorescence emission assumes during laser alternation is quite 

peculiar. The contrast between fluorescent and non-fluorescent forms is reduced along the 

cycles. Our model with three states can explain this profile, considering that upon illumination 

at 405 nm Icis could reversible switching to non-fluorescent state Btrans, and concomitantly Icis 

would be able to undergo to Bcis,LT. 
 

 

The model confidence is tested by simulating Padron photoswitching with a Matlab 

homemade program that takes the rate constants as input. In order to populate Icis during 

activation phase, we took k1, k-2  > k2,  as we have described previously. Because of the 

fluorescence emission extinction we suggest that Btrans needs to be produced during the back-

switching, so k-1 should be relevant as well as k2. Simulation of Padron photoswitching is 

shown in Figure 2.49 and the used rate constants on Table 2.1.   
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Table 2.1) Rate constants used in simulation of Padron photoswitching shown in Figure 4.49 

 k1 k-1 k2 k-2 

switching 0.002

 
0.000

 
0.0001

 
0.001

 back- switching 0.010

 
0.100

 
0.0150

 
0.000

  
 

  
Figure 2.49) Simulation of Padron photoswitching, based on the model LTciscistrans BIB ,

 
The rate constants are shown on Table 2.1. 

 

 
 

The photoswitching was observed for solution samples only above 120 K with 

attenuated efficiency (Figure 2.50). Indeed, we have described that protein energy landscape 

should differ between solutions and crystalline samples.  

 
 

 

Figure 2.50) Padron photoswitching at 120 K in solution sample. Activation of the protein is 
performed at 532 nm and back-switching at 405 nm 
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One possible explanation for the diminished efficiency obtained in solution samples 

would be that Icis to Bcis,LT are fast relative to the conversion of Icis to Btrans during the back-

switching.  That is, in solution experiment k2 should be higher than that of in crystal. We have 

simulated this hypothesis and the result is shown in Figure 2.50 and the rate constants on 

Table 2.2. 

 

Table 2.2) Rate constants used in simulation of Padron photoswitching shown in Figure 4.48 

 k1 k-1 k2 k-2 

switching 0.001

 
0.000

 
0.0005

 
0.001

 back- switching 0.010

 
0.100

 
0.0200

 
0.000

  

 
Figure 2.51) Simulation of Padron photoswitching, based on the model RTciscistrans BIB ,

 
The rate constants are shown on Table 2.2. 
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2.3 EITHER PHOTOISOMERIZATION , 
PHOTOPROTONATION OR DEHYDRATION ARE 

IMPLICATED IN THE SWITCHING  
 

2.3.1 SUBCHAPTER OUTLOOK  

 The photoswitching behavior in fluorescent proteins has allowed to go beyond the 

classical microscopy limit. Recent advances in understanding the photoswitching mechanisms 

have shown potential aspects that can be explored to develop more performant variants in the 

future. In this chapter, reversible photoswitching is discussed, first focusing on structural 

aspects and then on kinetic features. Some preliminary experiments are shown in order to 

illustrate the dissertation. The framework presented here may be of interest to fluorescent 

protein imaging applications and also for fundamental research about dynamics of proteins. 

 

2.3.2  PHOTOSWITCHING MECHANISMS  
 

Understanding the fundamental mechanism that allows a fluorescent protein to be 

reversibly photoswitchable could give the key to further control this property. However, there 

is not a single one but various mechanisms that may confer photoswitching to a fluorescent 

protein. The essential features involved are: cis-trans isomerization of the chromophore, 

protonation of the chromophore hydroxybenzylidene moiety, and dehydration/hydration of 

the chromophore imidazolinone ring. Although various mechanisms are known to exist, there 

are similarities between them. Structurally, they all involve a temporary distortion of the 

chromophore to a non-fluorescent conformation. Kinetically, the achievable photoswitching 

speed and contrast depend on the intrinsic on/off switching quantum yields and on the 

presence of putative intermediate states along the photo-pathway. They also depend on 

extrinsic parameters such as laser power, laser wavelength, temperature or pH. 
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2.3.3   STRUCTURAL POINT OF VIEW  
 
 

i. Isomerization of the chromophore 
 
 Reversible cis-trans isomerization of the chromophore is the most prominently 

observed structural manifestation of photoswitching in RFSPs. In solution, the p-HBI 

synthetic chromophore undergoes rapid cis-trans isomerization that requires low energy to 

occur (Voliani et al., 2008). This mechanism works as an efficient radiationless deactivation 

pathway to release absorbed energy, resulting in very low fluorescence yield (Mandal, Tahara, 

& Meech, 2004; Weber et al., 1999). Although chromophore isomerization is an intrinsic 

mechanism, the tendency to isomerize inside the ȕ-barrel is generally considerably lower due 

to a much reduced conformational freedom of the chromophore (Maddalo & Zimmer, 2006).  

However, under certain configurations, the tendency to isomerize remains high and competes 

with the ability to fluoresce (Olsen and McKenzie, 2009). This can explain the weak or strong 

fluorescence in various isomer conformations of a single FP. 

 

To date, whenever cis-trans isomerization has been invoked to account for 

photoswitching, the trans isomer has been found to be associated to the non-fluorescent form 

and the cis isomer to the fluorescent form. Although the two isomeric states (cis and trans) 

provide two completely different networks of electrostatic interactions for the chromophore, 

this is usually not sufficient to account for the difference in fluorescence brightness between 

these two states. There is an ensemble of conditions that is able to affect the fluorescence 

emission: chromophore planarity, rigidity, protonation state, potential ESPT pathways, and 

tendency to isomerize. Empirical proposals were made to quantify the ability of an anionic 

chromophore to fluoresce, depending on the tilt and twist angles between the cyclic moieties 

(Brakemann et al., 2010). Excited-state molecular dynamics can be a useful tool to monitor 
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chromophore torsion upon photon-excitation, which directly relates to fluorescence quantum 

yield.   

 

Many mutations in the amino acid residues close to the chromophore can be rationally 

designed to assist the isomerization of the chromophore. Bizzari et al. have shown that a 

single mutation of glutamate E222 by a glutamine residue turns some GFP derivatives into 

RSFPs (Bizzarri et al., 2010). E222 is the final acceptor in the ESPT pathway in GFP. 

Altering this pathway may promote isomerization to become an important channel for 

deactivation. In these E222Q GFP-variants, as in other RSFPs, both switching and back-

switching can be photo-induced. Back-switching can also occur via thermal relaxation. In 

turn, back and forth switching can be induced in the ground state via pH titration (Bizzarri et 

al., 2010).  Despite the structural and spectral similarities between the photo-induced and pH-

induced non-fluorescent forms, these species differ, similar to what was shown with Dronpa 

using ultrafast spectroscopy (Fron et al., 2007). The results of the experiments carried out 

with E222Q variants allowed to propose that the chromophore populates both isomeric 

conformations: cis and trans and that it also exhibits an anionic and a protonated state for 

each conformation (Bizzarri et al., 2010). In collaboration with the Prof. Ranieri Bizzarri, we 

solved the molecular structure of the photo-switchable yellow variant EYQ1, containing the 

E222Q mutation (see Material and Methods Chapter 4.5.4). Although we have obtained the 

chromophore in cis configuration at high resolution (Figure 2.52), a detailed structural 

analysis was not pursued since we could not obtain the trans structure in similar 

crystallization conditions.   
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Figure 2.52) Comparison of crystal structures of EYQ1 (E222 – cyan) and the variant Q222 
(green). The H-bonds are represented with dashed lines (E222 – blue) and (Q222 –red). The 
reduced amount of water molecules in the variant Q222 could be due to the lower resolution. 

 

We can emphasize two structural points about crystalline EYQ1. First, we could not 

efficiently photoswitch the crystal, and we observed the chromophore in the cis configuration 

after actinic illumination. However, the crystallization conditions resulted in halides 

molecules docking into the ȕ-barrel close to the chromophore, similar to what was observed 

with YFP (Wachter, Yarbrough, Kallio, & Remington, 2000). The presence of halide 

molecules positioned in the region normally occupied by the chromophore in its trans 

conformation reduces the efficacy of EYQ1 photoswitching. This strongly suggests, although 

indirectly, that cis-trans isomerization is indeed involved in EYQ1 switching. Second, in our 

structure, His148 appears to populate two conformations that may hint at the structural 

rearrangement that allows the switching. Nevertheless, further structural studies need to be 

done to understand EYQ1 photoswitching structurally, preferably with crystals grown in the 

absence of halides molecules.   

 

Recently, Grotjohann et al. introduced to the scientific community a new RSFP named 

rsEGFP (Grotjohann et al., 2011). It is a GFP variant carrying five mutations, although only 

one mutation (Q69L) seems to be essential to confer photoswitching. The crystal structure is 
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not yet published, but based on the GFP structure (Shinobu et al., 2010) the region where the 

glutamate is located seems to be a strategic position to modulate chromophore twisting. 

Mutating the long side chain of a glutamine by the shorter side chain of a leucine release some 

space for easy cis-trans isomerization of the chromophore (Figure 2.53). Of course, the 

interactions between the chromophore and the other mutated amino acids also play important 

roles in making rsGFP efficiently photoswitchable.    

 

 
Figure 2.53) Illustration of the hypothetic chromophore twisting into GFP cavity, where the 
Gln69 residue can probably disfavor the isomerization mechanism. The Glu222 and Ser205 
are put as reference and the Val163 is another mutated residue to Ser in the rsGFP. GFP 
structure from PDB 2WUR (Shinobu et al., 2010). 
 

The common point between EYQ1 and rsGFP is that they extend cis-trans 

isomerization of the chromophore as a photoswitching mechanism to the Hydrozoan FPs 

(Bizzarri et al., 2010; Grotjohann et al., 2011). This mechanism so far had only been observed 

in Anthozoan FPs (Ando et al., 2004) to the Hydrozoan FPs (Bizzarri et al., 2010; Grotjohann 

et al., 2011). However, we note that so far a direct structural proof of cis trans isomerization 

is lacking in these two proteins. 

 

Chromophore isomerization has generally been observed coupled with chromophore 

protonation (Andresen et al., 2005, 2007; Subach et al., 2010c). Our work on Padron 

suggested that isomerization may be the driving event leading in a second step to 
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chromophore protonation. However, photoswitching may also result from the process of 

direct photo-induced protonation. 

 

ii. Photo induced protonation 

Shaner et al. have shown that several fluorescent proteins exhibit a partial switching 

behavior induced by illumination (Shaner, Lin, McKeown, et al., 2008). These results were 

obtained in cells expressing the proteins or directly in protein solutions by laser scanning 

confocal microscopy. The fluorescence decays upon actinic illumination and a partial 

recovery occurs after a period without illumination. These results resemble those obtained by 

Sinnecker et al. (Sinnecker et al., 2005) in experiments carried out with eYFP, Citrine, eCFP 

and eGFP. Although cis-trans isomerization has been suggested to explain the partial 

photoswitching (Weber et al., 1999), there are some observations that go against this 

hypothesis. First, this group of proteins exhibits weak switching contrast compared with the 

RSFPs. Second, in the Protein Data Bank, no structure of trans isomers is found for these 

proteins. We can analyze further the eYFP case because it has been extensively studied in the 

literature and also because we worked with this protein (see Chapter Results and Discussion 

2.1).    

 

We have suggested that the mechanism of eYFP photoswitching involves only a small 

structural rearrangement, because the cryo-temperature does not prevent switching, but on the 

contrary enhances it. However, a clear protonation of the chromophore is observed 

spectroscopically, and thus we call this mechanism photo-induced protonation. In contrast, in 

RSFPs for which chromophore isomerization has been confirmed, such as Dronpa, IrisFP or 

even Padron, the switching efficiency is considerably reduced at low temperature. We 

obtained structural hints that photoswitching in eYFP is probably not associated to 

chromophore isomerization. Two crystal structures were solved for eYFP, one after 
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illumination and another at low pH, at resolutions of 1.8 Å and 2.3 Å, respectively. After 5 

minutes of illumination at 523 nm (100 mW/cm2) at room temperature, the crystal was flash-

cooled. The molecular structure shows that the chromophore is in cis conformation and that 

the residue Glu222 does not interact directly with the imidazolinone ring. A similar eYFP 

conformation is obtained also at low pH condition (3.6) (see Material and Methods Chapter 

4.5.4). This rearrangement of Glu222 as compared to the structure at physiological pH is 

consistent with the reorganization of the hydrogen bond network linking the 

hydroxybenzylidene moiety of the chromophore to the glutamate, suggesting the formation of 

a neutral (protonated) chromophore. Therefore, our data suggest that chromophore 

isomerization is not the mechanism responsible for eYFP photoswitching. However, it cannot 

be excluded that cis-trans isomerization events occur, but are too rare to be detected 

structurally (Figure 2.54).   

 

 

Figure 2.54) Comparison of crystal structures of EYFP: 1YFP from PDB (Wachter et al., 
1998) at pH 7.5 (yellow); low pH-protonated at 3.6 (A1 - white) and photo-induced 
protonated (A2 - blue). The H-bonds are represented with dashed lines for A1 and A2 (blue) 
and for 1YFP (yellow). 
 
 Following in the text, we describe the RSFP Dreiklang, a variant from Citrine that in 

turn is an eYFP variant. Dreiklang photoswitching is based on photo-induced dehydration and 
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hydration of the chromophore. To the small differences between these proteins, there is the 

possibility that the photoswitching mechanism detected in eYFP is similar to that of 

Dreiklang. 

 

In conclusion, we speculate that the mechanism responsible for partial photoswitching 

in eYFP involves protonation of the chromophore followed by a structural rearrangement that 

is not chromophore isomerization, and is small in amplitude. Some implications of a partial 

photoswitching behavior can be predicted by a kinetic model discussed in the next chapter.    

 

iii. Imidazolinone-ring hydration (“Dreiklang mechanism”)  

 Brakemann et al. (Brakemann et al., 2011) engineered a new fluorescent protein, 

called Dreiklang. This innovative protein exhibits on and off-switching with alternated actinic 

light completely decoupled from the excitation light. This protein is a variant of Citrine 

obtained by the following mutations: V61L, F64I, Y145H, N146D. The design of Dreiklang 

started with extensive random mutagenesis, in order to enhance this “decoupled” behavior, 

which was somewhat already exhibited by eYFP and Citrine (McAnaney et al., 2005). 

Dreiklang switches off efficiently upon illumination at 405 nm and switches on upon 

illumination at 365 nm. Fluorescence emission is excited at 515 nm, at a much lower energy 

wavelength. Upon 405 nm illumination, an absorption band develops at 340 nm, allowing 

back switching to the fluorescent state upon illumination of this band. The proposed 

photoswitching mechanism is based on the chromophore distortion caused by the hydration 

and dehydration of the C65  atom of the imidazolinone ring (Dreiklang numbering). In its 

bright form, the protein adopts a structure similar to that of other yellow fluorescent proteins. 

There is a water molecule (Wata) that stabilizes the C65 and consequently the imidazolinone 

in the fluorescent form of the chromophore is planar. Upon 405 nm illumination, this water 
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molecule is used to hydrate the imidazolinone, inducing a non-planar tetrahedral geometry 

(Figure 2.55). 

 

Figure 2.55) (A) Dreiklang structure PDB 3ST2 and 3ST3 (Brakemann et al., 2011), 
fluorescent state in green cartoon and non fluorescent state with the  tetrahedral geometry of 
the imidazolinone ring (gray cartoon) (B) fluorescent state and the interaction between the 
residues (C)  non fluorescent state and the interaction between the residues. 

 

The Dreiklang behavior offers several advantages for imaging applications. The 

decoupling of excitation and actinic wavelengths allows to maximize the photon-output 

during image acquisition, since the readout laser does not induce switching prematurely like 

in other negative RSFPs. Dreiklang is therefore a promising prototype of a new generation of 

RSFPs.   

  

2.3.4   K INETIC POINT OF VIEW  

It has been demonstrated in the literature that several “standard” fluorescent proteins 

are subject to partial photoswitching (Shaner, Lin, Mckeown, et al., 2008).  

 

Photoswitching behaviors have also been noticed in PCFPs, which typically exhibit an 

irreversible green to red photo-conversion. For example, this is the case of mEos2 (Annibale 

et al., 2010) and of proteins derived from IrisFP. In the case of mEos2, single molecules 
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experiments by Annibale et al have shown that a non-negligible fraction of supposedly 

bleached molecules recover their fluorescence upon illumination at 405 nm or thermal 

relaxation, like RSFPs. This effect can be the cause of clustering artifacts in PALM 

experiment. Alternatively, residual photoswitching (or long lasting blinking) can be used to 

advantage, such as in the case of dark state shelving strategies proposed by Moerner and co-

authors (Lew et al., 2011) 

 

Based on our learned experience with photoswitching of eYFP and Padron, we discuss 

below some consequences of partial photoswitching in FP behavior, with a kinetic point of 

view. This residual photoswitching can be the cause the artifacts, such as in the case of 

mEoS2, but it can be used as advantage, such as the case of Moerner and co-authors described 

following.   

 

i. Power- dependent active intermittency  

Moerner and co-authors (Lew et al., 2011) have used partial fluorescence recovery 

after illumination of eYFP to improve the resolution of fluorescence microscopy. They call 

the technique “super-resolution by power-dependent active intermittency” (SPRχI). Partial 

photoswitching provides sufficient active control to reduce the concentration of fluorophores, 

as needed to achieve super-resolution imaging. In addition, the molecules temporarily shelved 

into a reversible dark state are protected against photobleaching. The population of shelved 

molecules increases with high intensity laser pumping. The authors characterized the eYFP 

behavior through bulk solvent experiments, which allowed them to choose the appropriate 

laser power to perform photoswitching at the single molecule level. In their experiment, the 

fluorescence emission decreases during 0.5 seconds of illumination at 480 nm and a partial 

population of the molecules recovers its fluorescence during 1 second without illumination. 

This eYFP behavior is similar to that first observed by Miyawaki (Miyawaki & Tsien, 2000) 
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and Sinnecker et al (Sinnecker et al., 2005) and further described by Shaner (Shaner, Lin, 

Mckeown, et al., 2008). The mechanism responsible for this eYFP partial switching is 

accurately fitted by a three-states model. The long-lived dark state has a lifetime which is 

longer than most triplet lifetimes and, for this reason, cannot be considered a common triplet 

state. Rather, it could be the photo-induced protonated state described earlier in this thesis.  

 

 Based on Moerner’s experiment, let's create a hypothetic kinetic scheme to illustrate 

the influence of power-dependent active intermittency. The simulated experiment consists in 

following the evolution of eYFP emission upon alternating periods with illumination at 

488 nm and periods without illumination, at room temperature.  Our model is only valid at the 

ensemble level. We assume a system with three states: a fluorescent state B that can be 

converted to a reversible dark state A, but that can also bleach to an irreversible dark state D. 

The rate constants of the reaction are k1, k-1 and k2. 

 

Assuming first-order kinetics, the evolution of B is described by the following differential 

equation: 

     BA
dt

dB
2   11 kkk

 

 

At physiological pH, we assume that B represents the fluorescent anionic state, and that the 

initial concentrations are [B] = 100%, [D] = 0% and [A] = 0%. Consequently in the absence 

of illumination k1 and k2 are equal to zero. Moreover, we suppose that in the absence of 

illumination the rate constant k-1 is 0.05 s-1, based on the relaxation rate constant after partial 

switching observed in eYFP (Sinnecker et al., 2005) and in our observations. 

 

 Upon illumination, the rate constants k1 and k2 depend on actinic illumination:  

B AD
k1

k-1

k2
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AV
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where ࢥ is the quantum yield, PD is the power density, Ȝ is the actinic wavelength, h is the 

Planck constant, c the velocity of light, NAV  the Avogadro's number, and İȜ is the extinction 

coefficient at wavelength, Ȝ. 

 

  The extinction coefficient of A at 488 nm is very close to zero. For this reason, we 

consider that k-1 is light independent. The extinction coefficient of B at 488 nm is 

approximately 42000 M-1cm-1. We suppose that the photobleaching quantum yield is equal to 

10-6, based on typical bleaching yields of fluorescent proteins (Dickson et al., 1997). The off-

switching quantum yield is taken to be 1.5x10-6, based on our calculus at room temperature 

(see Results and Discussion Chapter 2.1.3 iii). It is known that for very high intensity of 

illumination, rate constants may change in a non-linear way. Our model is thus only valid for 

moderate intensities, at which reaction rates change linearly. The laser power and the final 

rate constants used in the simulation are shown in Table 2.3. We observe different levels of 

partial switching depending on the laser power used for actinic intermittent illumination 

(Figure 2.56).  

 

Table 2.3) Rate constants values of a hypothetic experiment performed with eYFP  

 P(W/cm²) k1(s
-1) k-1(s

-1) k2(s
-1) NDARK /NUNBLEACHED  

 

(i) 25 0.015 0 .05 0.009 0.001 

(ii)  500 0.296 0.05 0.197 0.033 
(iii)  3000 1.777 0 .05 1.185 0.470 
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Figure 2.56) Simulation of eYFP switch alternating between with and without illumination (i) 
fluorescence evolution associated to weak power intensity illumination (25 W/cm² - blue) (ii)  
fluorescence evolution associated to medium power intensity illumination (500 W/cm² - 
green) and (iii)  fluorescence evolution associated to high power intensity illumination 
(3 kW/cm² - red). The reversible fraction recovered from the dark state during the first cycle 
is denoted by horizontal lines.   
 

 

We note that both photoswitching and photobleaching increase with laser power. To 

conclude, the laser intensity used in spectroscopy experiments at the single molecule or at the 

ensemble level needs to be carefully chosen, because it can alter the FP behavior if the latter 

is able to switch. To prevent artifacts due the partial photoswitching, it is recommend to 

reduce the used power density. In contrast, if the aim of the experiment is to take advantage of 

photoswitching, it is recommended to increase the laser power.    

 

 

ii. Time- dependent active intermittency 

For long imaging experiments, photo-stability is a crucial characteristic (Shaner, 

Steinbach, & Tsien, 2005). Figure 2.57 A shows a simulated photo-bleaching experiment 

with a non photo-switchable fluorescent protein, where the gray area is proportional to the 

number of photons collected. To increase the imaging time, it is possible to insert intervals 
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without illumination (Figure 2.57 B). However, the temporal resolution is damaged because 

no information can be collected during the blind periods.  

 
Figure 2.57) Scheme about the fluorescence emission collected during the time (A) Upon 
continuous illumination and (B) with interval without illumination.   

 

 

However, if the same experiment is performed with a photo-switchable protein, there 

can be an advantage in spreading data collection time in this way. The intervals between 

illumination periods can be used to recover molecules that are shelved (but not irreversibly 

bleached).  

 

In Figure 2.58, we simulate the effects obtained with 1 s of illumination alternate with 

different time intervals without illumination (continuous, 2 s; 4 s; 8 s; 16 s; 32 s and 64 s). We 

use the same kinetic model as in the last paragraph: a bright state (B) interconverts to a 

reversible dark state (A) or to an irreversible dark state (D). The reactions were simulated 

with the same inputs as those used in Figure 2.56 (green line: k1 = 0.296 s-1; k2= 0.197s-1; k-1 

=  0.05 s-1). Total time of actinic illumination is 5 s for all experiments, only the period 

without illumination changes.  The area upon actinic illumination is measured and plotted in 

function of the period without illumination. It can be seen that when the interval without 

illumination is long, the area measured is bigger.  The optimal situation is obtained when the 

interval without illumination is close to the dark-state relaxation time.  
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Figure 2.58)  Total area measured as a function of different periods without illumination. 
Illumination pulse is equal 1 second applied five times. 

 

 
Experimentally, the rate of relaxation of the dark state can be measured by first 

switching off the sample and then collecting the fluorescence increase after different dark time 

intervals. We carried out this experiment with Citrine (Figure 2.59).  

 

 

Figure 2.59) Exposure of Citrine sample at 405 nm followed by thermal relaxation recovery 
at room temperature. Similar experiment reproduced three times with different samples. 

 

 In this experiment, the sample was illuminated during 20 seconds with a 405 nm laser 

(1 W/cm²) and the amount of recovered fluorescence was measured at different times. We 

obtained consistent results using three different samples. Fitting by a kinetic monoexponential 
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model yields Ĳ = 45 s in conformity with the value found by Sinnecker, eYFP and Citrine 

Ĳ = 54 s and Ĳ = 25 s respectively (Sinnecker et al., 2005).  The experimental reproducibility 

suggests that the collected data are not property of a particular sample.  

 

Indeed the photoswitching can aid to improve the number of photons collected per unit 

time is shown in Figure 2.60, using the same conditions as those of Figure 2.56 (red line: 

k1 = 1.777 s-1; k2 = 1.185 s-1, k-1 = 0.05 s-1). It can be seen that higher number of photons can 

be collected per unit time than when alternate illumination is used. The photons missed during 

the intervals without illumination (Figure 2.60 area gray, a) are more than compensated by 

the fluorescence recovered (Figure 2.60 hatched transparent area, b).  

 

 

Figure 2.60) Simulation of eYFP photobleaching upon continuous illumination (gray area) 
and with periods (2 s) without illumination (hatched area).The gray area a represent the 
photons missed during dark period (2.84) and the hatched transparent area b represent the 
photons gained with the fluorescence recovery (2.98).    
 

 
Furthermore, the observed behavior depends not only on of intervals without 

illumination, but also on the intervals upon actinic illumination. In the next simulation, we 

show the effects of changing the alternation time from 1:1 s to 2:1 s  (Figure 2.61). 
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Figure 2.61) Simulation of eYFP photobleaching using as input the same rate constants for 
both reactions (similar to Figure 2.56 laser power ii), changing only the time interval with and 
without illumination from 1 s and 1 s (red line) to 2 s and 1 s (blue line).    

 

 
Shaner et al. in their partial photoswitching experiment have observed nearly 100% 

recovery after very short periods of bleaching, and whereas less recovery could be achieved 

after longer periods (Shaner, Lin, Mckeown, et al., 2008). Our hypothesis about the influence 

of time interval with and without illumination on the recovered fraction is consistent with 

their findings. To properly use the described strategy, it is recommended to precisely evaluate 

the photobleaching and the photoswitching kinetics of the reaction.  

 
To conclude, power-dependent active intermittency can be employed together with 

time-dependent active intermittency to alter the photo-physical behavior of reversibly 

photoswitchable fluorescent proteins.  
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2.3.5   ENDPOINTS 
 

i.  Cryo-nanoscopy 

 In the two Results chapters, eYFP (2.1) and Padron (2.2), we have detailed the 

behavior of two fluorescent proteins that are able to photoswitch at low temperature. 

Although their cryo-photoswitching quantum yield is low compared to the typical switching 

yield of RSFPs at room temperature, our findings are a first step forwards a new super-

resolution branch: cryo-nanoscopy.  

 

The cryo-nanoscopy consists in super-resolution imaging microscopy, which is optical 

imaging at a resolution of a few tens of nanometers, and at a temperature of 80-100 K via 

liquid or nitrogen gas. In this aim the development of fluorophores photo-activated at cryo-

temperatures, such as Padron and eYFP, is essential. Despite of the implementation of cryo-

nanoscopy requires more sophisticated set-up than conventional microscopes, several 

expected advantages (described below) have prompted us to investigate cryo-photoactivated 

FPs in order to make this technique available.  

 

Remarkable numbers of experiments in PALM imaging are performed using fixed 

cells (Betzig et al., 2006; Lee et al., 2011; Kopek et al., 2012). Several factors, such as 

chemical composition of fixation products and time of fixation, can induce harmful effects on 

the structural organization of cells during cell fixation, especially at the scale of a few tens of 

nanometers. In contrast, the cryo-fixation is a less offensive technique, based on the rapid 

water vitrification into crystalline state, preserving the structural integrality of cells 

(Hurbain and Sachse, 2011). In addition, the cryo-fixation of cells can allow to cryo-trapping 

a specific biologic state of the cell dynamic, similar as in the crystallography experiments. 
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The vitrified samples can be used both for fluorescence and cryo-electron microscopy, 

which is the aim of correlative microscopy (Carlson and Evans, 2011). Another advantage of 

the cryo-nanoscopy is that at low temperature, both photo-bleaching and cellular damage are 

reduced (Bouchet-Marquis and Hoenger, 2011). Improving the photo-stability of the 

fluorophore leads a higher number N of collected photons per fluorophore, which results in 

better single molecule localization (localization error proportional to N/1 ). Thus, it is 

expected an improvement of the spatial resolution due the low temperature experiment.  

 

Furthermore, reduction of conformational dynamics of the fluorophore by lowering 

the temperature has been shown to improve the quantum yield (Abbyad et al., 2007). The 

cryo-nanoscopy can also take advantage of the quantum yield improvement to extend the 

number of the chromophores available to the imaging experiments.   

 

ii. Parameter- dependent active intermittency 

 Many parameters induce alterations in the photoswitching behavior, such as pH, 

viscosity, or, as we have seen before, temperature or photo excitation pattern. Understanding 

how photoswitching is influenced by all these parameters is important to characterize the FP 

behavior, to prevent artifacts or to enhance imaging experiments. In this chapter, we have 

presented some cases where the laser power density, and/or the on- and off- exposure time 

have allowed to modify the photoswitching pattern. The influences of the physical parameters 

discussed here could be combined together, as well as with other parameters not discussed 

here, for example pH (Bizzarri et al., 2010; Hendrix, Flors, Dedecker, Hofkens, & 

Engelborghs, 2008; McAnaney, Shi, et al., 2005). Together with fluorescent protein 

engineering, the approach described here could aid to improve the super-resolution 

microscopy field.  
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3.1   GENERAL CONCLUSION  
 
  
 We have presented the study of switching mechanisms focused on the photo-physical 

behavior of two fluorescent proteins, eYFP and Padron. The experiments were performed 

using kinetic X-ray crystallography combined with optical spectroscopy, methodology 

previously developed in our laboratory. Here, we have introduced an innovation in this 

method, working with fast detection, in order to obtain a short-time-averaged molecular 

structure.  Experiments performed at cryotemperatures (Ĭ100 K) were an important feature 

of this work. This approach has proven to be a good strategy to slow down the photo-reaction, 

and to trap states of interest useful for understanding the photo-switching mechanism. 

 

 While most publications about RSFPs claim that the protonation combined with the 

isomerization of the chromophore is the principle manifestation of photoswitching, our 

findings show that protonation and isomerization are not necessarily coupled. In the case of 

eYFP, the photo-switching mechanism seems to be associated with large structural 

rearrangements and, mostly, a photo-induced protonation of the chromophore without 

isomerization. In the case of Padron, the photoswitching at 100 K involves the isomerization 

between anionic forms of the chromophore. Understanding more about the switching 

mechanism of the FPs can lead to rational development of new dyes, as well as to 

enhancement of available imaging techniques. In particular, our results contribute to the 

development of a new and promising branch of the super-resolution microscopy, the cryo-

nanoscopy.      

 
 

i.  eYFP and the photo-induced protonation  

The photo-switching behavior of eYFP was first observed through single molecule 

experiments by Dickson et al. at room temperature (Dickson et al., 1997). At the ensemble 
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level, a partial photoswitching takes places via thermal relaxation after actinic illumination 

(Sinnecker et al., 2005). In concordance with others groups (McAnaney et al., 2005), we have 

presented here that the fluorescence emission recovery is possible only with 355 nm actinic 

lasers, and that the contrast between bright and dark states is negligible compared to Dronpa 

and IrisFP. In contrast, at 100 K, eYFP switches remarkably by altering 514 nm and 405 nm 

lasers; whereas Dronpa and IrisFP show only low switchable behavior. We have presented 

that the photo-induced protonation at 100 K is a common process for eYFP, Dronpa and 

IrisFP. Because of the opposite photo-switching behavior of these fluorescent proteins at low 

temperature and at room temperature, we deduce that structural mechanisms responsible for 

the switching are not the same at both temperatures. In view of the reduced thermal energy 

available at 100 K, we suggest that the conformational rearrangements that accompany photo-

induced protonation involve only the very small amplitude fluctuations possible at low 

temperatures. As evidence, we have obtained two crystal structures of eYFP: one at low pH, 

and another after actinic illumination at 523 nm switched the protein to dark state. Both 

structures show the chromophore in cis conformation, similar to the structure obtained by the 

protein at basic pH (Wachter et al., 1998). 

 

ii.  Padron and the photo-induced isomerization  

The positive-switching FP, Padron, was able to switch at room temperature and, 

surprisingly, at 100 K as well. Our structural results suggest that the mechanism of switching 

at cryo-temperature is also based on the chromophore isomerization from trans to cis. Already 

with Dronpa, no chromophore isomerization was observed upon illumination at low 

temperature. Probably, the particularity of the Padron behavior at 100 K comes from the fact 

that minor structural rearrangements are needed to accomplish the isomerization. Salient for 
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Padron is Met59, which limits the isomerization of the chromophore; whereas for Dronpa it is 

Arg66 and His193 which need to be relocated.   

Spectroscopically, we have observed that during actinic illumination, the non-

fluorescent anionic absorption peak at 504 nm, Btrans, is converted to a fluorescent anionic 

peak at 481 nm, Icis; and to another fluorescent anionic peak, Bcis,LT, also at 504 nm. Bcis,LT 

differs from Btrans  by a bigger extinction coefficient and a thinner band. The protonated peak 

at 396 nm remains unaltered during the anionic peak conversion. Concomitantly with this 

photo-reaction and even after illumination, a thermal relaxation occurs from Icis to Bcis,LT. In 

spite of differing spectroscopic observations of these three states, structural differences 

between Icis and Bcis,LT are not observed. The crystal structures collected instantly and 40 

minutes after actinic illumination are very similar. Each showed positive electron densities 

when averaging over the six monomers present in the asymmetric unit. We could therefore 

not conclude if this result is involved in the relaxation of Icis to Bcis,LT, or if it is only an 

artifact. In perspective, it will be interesting to reproduce and enhance this experiment, since it 

can reveal the structural mechanism which transforms Icis to Bcis,LT.  

 

 After photo-conversion, increasing the temperature allows the protein to assume 

structural conformations previously unavailable. This results in an augmentation of the 

protonated band (Acis,RT), and a small blue-shift of the anionic band (Bcis,RT ). We have 

suggested a kinetic model in order to account for the behavior of Padron at these different 

temperatures, laser powers and wavelengths. The back-switching was achieved less efficiently 

with 473 nm lasers, and more efficiently with 405 nm lasers, despite the absence of a 

protonated band. 
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3.2   PERSPECTIVES 
 

 We describe below possible future directions for the study about photoswitching 

mechanism, based on the results and discussion presented in this work.  

 
 
i.  Partial photoswitching of fluorescent proteins 
 
 Several fluorescent proteins seem to exhibit some degree of photoswitching, such as 

eYFP (see Introduction Chapter 1.3.7). Certainly, it will be interesting to investigate further 

the origin of this phenomenon. Is it associated with the isomerization of the chromophore? 

We have shown in Chapter 2.3.4 that even without structural details about the mechanism, it 

is possible to profit from this feature in order to enhance the spectroscopic experiments.   

 
 
ii.  The intermediate state of Padron  
 
 Some questions about the intermediate state of Padron remain open. 1) Is Icis really 

fluorescent (chapter 2.2.4)? 2) What are the structural changes that allow the conversion from 

Icis to Bcis,LT (chapter 2.2.4)? 3) How does the back-switching at 405 nm affect Icis state? 4) Is 

it possible to obtain more efficient back-switching illuminating at red-shifted wavelengths 

( 405 nm < Ȝ < 473 nm)?  Further experiments are needed to answer these questions.  

 
 
iii .  Olsen’s insight  
 

After the publication of our results with Padron (Faro et al., 2011), we had the pleasure 

of receiving an e-mail from Dr. Olsen, of University of Queensland, Australia, commenting 

on our work. Dr. Olsen has published several theoretical studies of fluorescent proteins, using 

quantum chemistry calculations to characterize the relevant electronic states which mediate 
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the photoswitching mechanism. We consider it appropriate to present the email (Figure 3.1 

below), as a perspective of our work.  

 

 
Dear Prof. Bourgeois,  
 
I read with very much interest your recent article "Low Temperature Chromophore 
Isomerization Reveals the Photoswitching Mechanism of the Fluorescent Protein Padron" 
(JACS 133 16362 (2011)).  This work raises some very interesting questions about a very 
interesting protein.  In particular, I note that the intermediate state I_cis, apparently an anionic 
chromophore in the cis state, can be switched back to B_trans (also an anion) by excitation at 
405nm.  As you point out in the supplement, this excitation would normally be attributed to a 
neutral chromophore, but there is no evidence for protonation of the chromophore in I_cis. 
 
I may be able to shed some insight into this issue.  In the attached CPL paper, my colleague 
and I argue that theories of color in arylmethane dyes predict that the anionic GFP 
chromophore should have a higher excited state associated with its charge-resonant electronic 
structure.  We also show that the excitation energy of this state, calculated by a CASPT2 
quantum chemistry model, lies at similar wavelengths to the lowest-lying excitation of the 
neutral chromophore.  I have also attached a JCP paper that shows that this excited state plays a 
crucial role in the description of the photoisomerization reaction in the anion. 
 
It may be that the higher excited state of the anion is responsible for the 405nm switching of 
I_cis.  This could be experimentally tested, because the transition to the higher excited state of 
the anion should have polarized orthogonal to the low-lying transition (see paper).  If the 
photoreaction could be observed in the crystalline state, then the dependence of the switching 
on the excitation polarization could test this idea. 
 
Many thanks again for a very enjoyable and enlightening paper. 
 
Best Regards, 
 
Seth Olsen 
 
 

Figure 3.1) Digital letter (e-mail) written by Olsen sent for us. The articles cited for him refer 
to CPL (Olsen and McKenzie, 2010) and JPC (Olsen and McKenzie, 2009).  

 

It would be interesting in the future to perform the experiment suggested by Olsen, in 

order to verify his hypothesis and perhaps to extend to other FPs a similar behavior observed 

with Padron. This would present a good opportunity to gather theoretical and experimental 

investigations, and to advance the research about fluorescent proteins.  
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iv.  asFP595 
 
 The molecular structures of asFP595 were solved in bright and dark states (Andresen 

et al., 2005). Similarly to Padron, there is little difference between the bright and dark 

structures, except by the chromophore isomerization. It would be interesting to perform 

similar experiments to those described in Chapter 2.2.4 with asFP595, in order to verify our 

hypothesis that the photo-switching is able to occur at 100 K to minor structural 

rearrangements. Another experiment to be performed with Padron and asFP595 will be their 

characterization at single molecule level at cryo-temperature, in order to verify our results of 

cryo-activation.     

 

 

 



 

 
 

 

 

Chapter 4 

 

MATERIAL AND METHODS 



 

 
 



4.1   OUTLOOK OF MATERIAL AND METHODS                                                                                                              
__________________________________________________________________________________________ 
 

159 
 

4.1 OUTLOOK OF MATERIAL AND METHODS  
 
 
This chapter describes the experimental procedures used along this thesis period 

(Figure 4.1). We put emphasis on particular cases for which specific procedures were 

required. We also describe some problems that occurred during our investigation or that could 

occur in similar studies, expecting that these informations will be useful for future researches. 

Details about the experimental protocols used in the eYόP and Padron’s experiments can be 

found in the Annex 2 and 1, respectively (Faro et al., 2011; Faro et al., 2008). 

       

 

Figure 4.1) Scheme about the typical procedure used during this thesis: (i) Expression of the 
fluorescent protein; (ii) Crystallization of fluorescent protein; (iii) Spectroscopic 
characterization of fluorescent protein; (iv) X-ray crystallographic experiments and (v and vi) 
low temperature X-ray crystallography and in crystallo optical.  
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4.2 MOLECULAR BIOLOGY  

4.2.1 THE EYFP GENE 

For convenience, fluorescent proteins are expressed in prokaryotic cells (E. coli). In 

this purpose the eYFP gene (peYFP) is inserted in the expression vector plasmid pET15b. 

This vector includes the DNA sequence of: T7 phage promoter inducible by IPTG, 

ampicilline resistance, polyhistidine-tag (that is added at the N-terminal protein sequence), 

two restriction sites, NdeI and BamHI, etc (Figure 4.2).  

 

  
 

Figure 4.2) pET-15b vector (Novagen Vector, Darmstadt, Allemagne) simplified 
representation.  
 

For the cloning, the initial peYFP plasmid of 3000 bp (Figure 4.3a) that included the 

eYFP gene of 700 bp (Figure 4.3b) was provided to by François Parcy from iRTSV (Institut 

de Biologie Structurale – FRANCE).  eYFP gene is extracted by PCR and inserted into the 

pET15b vector (Figure 4.3). To this aim, we designed two oligonucleotides primers which 

include the restriction sites specific to NdeI and BamHI enzymes respectively. The final DNA 

product from the PCR amplification and digestion (with NdeI and BamHI enzymes) is 

inserted into the pET15b thanks to the T4DNA ligase.   
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Figure 4.3) Scheme about the eYFP insertion into pET-15b. (A) peYFP plasmid and eYFP 
gene (yellow) (B) PCR amplification (C) peYFP plasmid including the restriction sites of the 
NdeI (red) and BamHI enzymes (violet)  (D) pET15b and (E) final plasmid of eYFP gene 
inserted into pET15b.       

 

 
 

4.2.2  DRONPA, PADRON AND EYQ1 GENES 

The gene of Dronpa (Dronpa 2 and Dronpa 3) and Padron were provided by our 

collaborator Peter Dedecker (Katholieke Universiteit Leuven - BELGIUM). They are cloned 

and expressed into pRSET vector (Ando et al., 2004). The gene of EYQ1 was provided by our 

collaborator Ranieri Bizzarri (Scuola Normale Superiore - ITALY). It is cloned and expressed 

into IBA vector (IBA GmbH, Göttingen, Germany) (Bizzarri et al., 2010).  
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4.3 BIOCHEMISTRY TO PRODUC E FPS  
 
 
4.3.1 EYFP HETEROLOGOUS TRANSFORMATION OF  

 ESCHERICHIA COLI BACTERIA  
 

Once the gene is inserted in the pET15b vector, the next step is the heterologous 

transformation of the bacteria Escherichia coli host with the plasmid (BL21-DE3). In this 

transformation process, 100 - 200 µL of bacterial competent cells treated with CaCl2 to be 

porous to DNA and 3 - 1 µL (at ≈ η0ng/µL) of recombinant plasmids are mixed together. 

Then, the pET15-eYFP plasmid is introduced in the bacteria by heat shock: 90 s at 42° C 

followed by 90 s in ice. After that, Lysogeny Broth culture medium (LB) is added (1 mL), in 

order to induce the cells to express the antibiotic gene resistance. The bacterial culture 

(100 µL) is plated on agar petri dishes (20 mL) with the antibiotic ampicilline (50 µg/mL), in 

order to induce a genetic selection. Only, the transformed bacteria survive in this antibiotic 

condition. All the fluorescent proteins IrisFP, Dronpa, Padron and EYQ1 were also 

transformed in BL21 (DE3) using the same protocol that was used for eYFP transformation. 
 

We have noticed that when the plates are illuminated with UV-light green 

fluorescence is observed indicating that despite the absence of expression inductor IPTG 

some FPs are expressed. It is associated to the phenomenon called leak.  

 

 

4.3.2 WORKING IN THE DARK  
 

Our goal of working with fluorescent proteins is to understand its behaviors upon 

illumination. Hence, to obtain a reliable and reproducible result, we performed the following 

steps of the fluorescent protein expression and purification without light exposure. We have 
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adopted a procedure to envellope all chemical apparatus with a tin foil, in order to block the 

light and to avoid unsuitable phototranformations. 

 

4.3.3 EXPRESSION OF FLUORESCENT PROTEINS 
 
To over-express fluorescent proteins, the recombinant bacteria are grown in the culture 

medium LB with the selection antibiotic to select the colonies that contain the plasmid. 

Typically, a large volume of culture medium (~ 4 L) is inoculated with a small volume of an 

over-night preculture (50 mL). The culture medium is incubated in optimal conditions for 

bacterial reproduction (37 °C, 200 rpm). The cells growth until to the beginning of the 

exponential phase corresponding to the optimal population density, measured through sample 

optical density equal to 0.6 probed at 600 nm. At this stage, the over-expression of the gene is 

induced by adding 1mM of IPTG or Anhydrotetracycline in the case of EYQ1. The 

expression time and temperature of induction depends on the fluorescent protein, because 

during this step, chromophore maturation occurs concomitantly with protein folding in the 

(see Chapter Introduction 1.2.1). In eYόP’s case, the protein induction takes over-night at 

37 °C. For IrisFP, because of the slow chromophore maturation the induction step takes few 

days and requires low temperatures (around 4 °C). The expression protocol of Padron and 

Dronpa are described in the Annex 2. 

 
After induction, the bacteria are pelleted by centrifugation (4 °C, 4000 rpm) and 

diluted in lysis buffer (50 mM Hepes pH7.5, 300 mM NaCl, 15 mM imidazole). Fluorescent 

protein as eYFP (Wachter et al., 2000) and even IrisFPi exhibit alteration in its photochromic 

behavior in presence of the halides ions. For this reason, we recommend, when necessary, to 

exchange the typical hydrochloric acid (HCl) used to adjust the pH of the buffer by acetic 

                                                 
i Experiment carried out in our laboratory, result not shown. 
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acid. The cell pellet can be stored at -20 ºC or immediately submitted to the next step of 

process: the protein purification. 

 

4.3.4  PROTEIN PURIFICATION  

 The procedure to obtain a pure protein starts with the lysis of the bacterial wall via 

ultrasound pulses (10 pulses of 30 s with 30 s interval). The cell lysis reduces the viscosity of 

the solution, causing a change of color from opaque to translucent and then to bright. The cell 

membrane and organelle pellet are separated from the soluble part, via centrifugation (4 °C, 

15000 rpm). This fraction is mostly made of a mixture of soluble proteins, including the 

fluorescent protein of interest (crude extract). Because the fluorescent proteins have a strong 

color (yellow for eYFP, green for Dronpa and IrisFP and red for Padron) no clear increase of 

the brightness of the color sample strongly suggest that the lysis was not efficient or the 

protein was not expressed. 

 

We have used two steps to purify the protein, first immobilized metal affinity 

chromatography (IMAC) followed by molecular size exclusion chromatography. In both 

purifications steps, the protein track is controlled by the high-pressure chromatography 

systems monitoring the absorbance at 280 nm. Other wavelengths can be used in order to 

avoid the photobleaching or to discriminate the FP from the other proteins. The selected 

fractions can be collected manually or automatically. 

 

i. Immobilized metal affinity chromatography (IMAC) 
 
 IMAC technique consists in adding a charged metal, cobalt (Co2+) in our case, to the 

resin of the column (Clontech Laboratories, California, USA). The His-tag N-terminal of the 

protein carries electron lone pairs that coordinate the cobalt. Therefore the protein binds to the 
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column. It is eluted by competition with imidazole that mimics the side chain of the His.  To 

reduce unspecific binding of the proteins the crude extract sample is loaded and washed in 

presence of 15 mM of Imidazole. The fluorescent protein is eluted using a gradient of 

imidazole (15 – 300 mM). At some point, the imidazole concentration is sufficiently high to 

compete with the protein, resulting in its release from the column. We have noticed that after 

several purifications, the color resin remains fluorescent even after elution. To avoid this 

problem we recommend to filter (0.4 µm porous) the crude extract before to start the 

purification, or to add DNAse to the crude extract in order to reduce the viscosity, by cleaving 

the remaining DNA.     

 

Despite the fact that the protein obtained in this experimental step is diluted, the sample can 

be tested by spectroscopic analysis. A second purification step is applied, using the molecular 

size exclusion chromatography method. 

 

ii.   Molecular size exclusion Chromatography (gel filtration) 
 
  This purification method is based on protein separation by molecular size. This 

purification step, together with the previous steps, ensures to obtain the protein’s purity 

needed for crystallization trials. The columns used is High Load 16/60 Superdex 75 gel-

filtration and Hiload 16/60 Superdex 200 gel-filtration (GE healthcare, Pennsylvania, USA). 

 

 Using this purification method, the imidazole is removed from the protein solution, so 

no dialysis method is needed.  

 

4.3.5  FLUORESCENT PROTEIN STORAGE  
 

The condition of storage depends on the Fluorescent Protein produced and its finality. 

There is not one general rule for fluorescent protein storage, but most of them posseses a good 
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stability, even at room temperature. Generally, the protein that will be used for spectroscopy 

experiments can be stored during a long period in the dark (several months, at 4 °C). In 

principle for crystallization, technique that requires higher protein integrity, the protein can be 

stored for months as well. However, if the crystallization results are negatives it is not 

possible to identify if the problem comes from the storage time or because the crystallization 

condition is not accurate. One recommendation is to centrifuge the protein, during 10 minutes 

13000 g, before preparing the crystallization assay. We note that sometimes, when using old 

proteins (8 months) in well established crystallization protocol, the crystal does not appear. In 

this case, the sample is loaded on gel filtration to obtain more homogeneous protein. 
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4.4 CRYSTAL GROWTH  

 

4.4.1  PROTEIN CRYSTALLIZATION  
 
The crystallization process consists in a phase transition from the disordered to the 

ordered state of the protein molecules. In the ordered state the molecules are periodically 

positioned in the space, in all 3 dimensions. This transition occurs typically with the gradual 

increase of the protein saturation level. It must occur sufficiently slowly, so that the system 

adopts the most periodic configuration among other energetically favorable ones. During the 

crystallization process, the sample overtakes the supersaturation state (a metastable state) 

close to the liquid-solid transition, promoting the appearance of a small group of ordered 

molecules (nucleation). The nucleation is the origin of the crystalline network. In the 

following step of the crystallization, other molecules come around the nucleus and the crystal 

grows in non super saturated solution.  

 

The protein crystallization depends on several physico-chemical parameters. A slight 

change in the crystallization conditions can decide on the appearance or not of the crystal. 

Crystallization trials are based on the study of the protein solubility as a function of the 

physico-chemical parameters (phase diagram). The principal parameters which influence the 

protein solubility are the temperature, the pH value and the precipitant agent (salt or organic 

solvent). In the crystallization attempts a common (unsuccessful) result is protein 

precipitation (or aggregation), that is, a solid state in which the protein molecules are 

disarranged (Figure 4.4 A). Another result frequently obtained from crystallization attempts 

is the formation of multi-crystals that grow attached (Figure 4.4 B). In most of the cases, 

these multi-crystals are inappropriate for X-ray crystallographic experiments. Some 
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techniques take advantage of multi-crystals to enhance the crystallization conditions. This was 

the case for Padron crystallization, as that will be described below. 

    

 
Figure 4.4) Protein crystallization. (A) Protein precipitates (B) Multi-crystal of Dronpa (C) 
Crystal of Padron 
 

 

4.4.2 OPTIMIZING PADRON CRYSTALLIZATION BY SEEDING  
 
Seeding techniques consist in using crystal germs to induce the crystal growth into 

another drop than the original one. There are three main procedures to seed: streakseeding, 

which uses a streakseeder (whisker); microseeding, which uses diluted crushed crystals; and 

macroseeding, which uses small macro-crystals as a seed. The crystallization sample of the 

new drop is similar to the one in which the seed crystal has been grown or frequently it has a 

lower concentration of the precipitant agent in order to slow down crystallization.  

 

The first crystals of Padron were grown in solution of 500 mM of Mg(NO3)2, 50 mM 

of Hepes and 26% PEG 3350. We have used the streakseeding procedure to optimize the 

quality of crystals. In practice, we pull germs by touching smoothly crystal clusters of Padron 

with a clean whisker, which next is put in contact with the pre-equilibrated drops prepared on 

the previous day. Optimized crystals grow in lower PEG concentration 16% PEG 3350. The 

crystals take one day to grow up and start to degrade after 2 - 10 weak (Figure 4.4 C). 
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4.4.3 CRYSTALLIZATION CONDITIONS  
 

Despite the high structural homology between fluorescent proteins, the crystallization 

process is not restricted to a limited small group of crystallization conditions. We noted that 

sometimes, for a fluorescent protein variant with a single or few mutations, a different 

crystallization condition is required. The crystallization conditions that allowed us to obtain 

crystals are shown on Table 4.1.   

 

We obtained several crystallization conditions for EYQ1. Most of them contain 

Polyethylene glycol (PEG) as precipitant agent and all of them contain halide molecules. Our 

hypothesis is that the halide atoms help to stabilize one conformation of the protein.  Indeed, 

in the EYQ1 structure the halide atom is placed close to the chromophore, similarly to what 

was found for YFP (Wachter et al., 2000) .  

 
 

Table 4.1) Table of the crystallization conditions of the protein used during this thesis  
 

Protein Temp. Method Reprod. Optimization Crystallization buffer 

eYFP 20 °C hanging 
drop 

non low pH 
 

0.2 M Sodium fluoride 
20% PEG 3350 

 

EYQ1 20 °C hanging 
drop 

yes Non 
0.2 M Magnesium 

chloride, 
20% PEG 3350 

Padron 20 °C hanging 
drop 

yes streakseeding 
500 mM Mg(NO3)2, 

50 mM Hepes (pH 7.5), 
16* - 26% PEG 3350 

Dronpa 20 °C hanging 
drop 

yes streakseeding 

 
80 mM Mg(NO3)2, 

100 mM Tris (pH 7.2), 
18% PEG 3350 

* The low concentration of precipitant agents required for streakseeding optimization. 
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The crystallization can be considered as a method of purification, where only the 

similar molecules are selected to constitute the protein network. However, the crystallization 

can generally not discriminate between different conformations of a single FPs. For example, 

a single crystal can be constituted of both dark-Dronpa with the chromophore in trans and 

bright-Dronpa with the chromophore in cis. 

 

The obtained crystallization conditions have often PEG as precipitant agents. 

Depending on the PEG concentration and mass, it also provides cryo-protection, saving from 

additional manipulations (soaking in the cryoprotectant) that may damage the crystal.  

 

4.4.4 SPONTANEOUS CRYSTAL BLEACHING OVER TIME  
 

We have observed that some protein crystals become transparent during long time 

storage. The explanation found is the acidification of the crystallization medium. Indeed, 

measuring the crystallization pH after long storage time, we have noticed a lower value than 

in the initial condition. Concerning the fluorescent proteins studied here, at low pH the 

protonated state of the chromophore is favored, which can explain the crystal transparency. 

This hypothesis was confirmed when adding a small amount of Sodium hydroxide (1 µL, 

weakly concentrated) into the crystal drop. We have observed that the crystal recovers its 

color almost instantly after the addition of NaOH. The cause of acidification is yet unknown, 

since the phenomenon is generally not reproducible. It could be due to bacterial 

contamination. As the sample acidification is a spontaneous and slow process, the chances to 

damage the crystal are smaller. We could take advantage of this to solve the crystal structure 

of eYFP in the protonated state at pH 3.6 (see Results and Discussion Chapter 2.3.3). The 

appearance of a transparent crystal was noticed only six months after the drop preparation. In 

spite of being a good way to obtain the protonated crystal, it is a hard task to reproduce such 

experiment because of the long crystallization time.  
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4.5 CRYSTALLOGRAPHY  
 
4.5.1 SOME CRYSTALLOGRAP HY CONCEPTS 

The next step after obtaining the protein crystal is to collect X-ray diffraction data in 

order to solve the molecular structure of the protein. The crystal is exposed to X-ray beam that 

has appropriate wavelength “to see” interatomic distances (0.7-1.5 Å). The use of a crystal 

rather than an amorphous solid for X-ray measurements originates from the necessity to 

obtain coherent interferences of the scattered beam in order to potentiate the collected signal.  

 

If a single molecule is irradiated, the diffraction pattern observed is the Fourier 

transform of the molecular structure. However, the diffraction pattern of a protein crystal 

lattice is also a lattice in reciprocal space, which defines restricted spatial positions where the 

scattered beam can be observed. The diffraction by a molecule in a crystal lattice is given by 

the structure factor equation. 
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where N is the number of atoms, f j  is the scatter factor associated to the jth atom at the 

position,  xj, yj, zj  and h, k, l are the integers associated to the reciprocal lattice considered.  

 

The electron density, , can be calculated from the Fourier transform of the 

diffraction pattern. 
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In order to calculate the electron density, the structure factor vectors are needed. 

However, the physical observable is not the vetorial structure factor, but the scattered 

intensities *)()()( hkl hklhklI FF . Thus, all the information on the phase is lost. There are 
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several methods to solve the phase problem: molecular replacement is one of the most 

common and most appropriate for FPs.   

 
 

4.5.2 MODEL BUILDING AND M ODEL REFINEMENT OF FPS 

Molecular replacement uses as input a model of a structure homologue to the structure 

to be solved and structure factor amplitudes of the observed diffraction pattern (obsF ). The 

closer is the homologue structure to the real structure, the better will be the statistics of the 

molecular replacement. Due the high structural homology between all fluorescent proteins, 

molecular replacement is sufficient to solve the phase problem. However, the fact that highly 

homologous models are used as input can bias the calculated coordinates of the new model.  

 

Model bias results from using an atomic model to calculate crystallographic phases, in 

which case the resulting electron density map will tend to have the features present in the 

model even if they are not actually present in the structure (Terwilliger et al., 2008). For FPs, 

in order to reduce the model bias in important regions such as the chromophore or mutated 

residues, we have removed these parts in the input model. Refinement from a model omitting 

incorrectly placed atoms should reduce this bias, but a memory of their positions can still 

remain and the resulting map may retain incorrect features. To reduce this memory effect, we 

have included in the refinement strategy a simulated annealing step.    

  
Simulated annealing works by computationally increasing the temperature at which 

the model is “shaken”, so that it can escape local energy minima (Brunger and Adams, 2002b) 

and converge to the correct structure. The same principle is used to calculate “omit maps” as 

way to validate the specific molecular structure of special importance modeling of a local.  
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The strategy performed to obtain the structures, and the programs used for model 

building and refinement are shown in Figure 4.5.  

 

 

Figure 4.5) Strategy and the programs used in model building and refinement. All 
crystallographic data sets were integrated and scaled with XDS (Kabsch, 1988). The starting 
model phases depend on the protein (see text), molecular replacement was performed with 
PHASER (Mccoy, 2007). Model refinements were performed with PHENIX (Afonine, P.V., 
Grosse-Kunstleve, 2005) using simulated annealed maps (Brunger and Adams, 2002a) to 
avoid introducing model bias.  
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4.5.3 KINETIC X-RAY CRYSTALLOGRAPHY  

Kinetic X-ray crystallography consists in triggering functional activity directly in the 

crystalline state and in collecting two (or more) crystallographic data-sets at different instants 

along the protein reaction pathway to access their differences. We can watch the movements 

performed by the protein by gathering several static structures in different states. Trapping of 

a particular state is achieved by rapidly cooling the crystal in order to stop large 

conformational movements (freeze-trapping). This approach is suited for photosensitive 

proteins, such as FPs, because the triggering source is light and it can be operated even at low-

temperatures contrary to subtract diffusion for example. Model bias in kinetic X-ray 

crystallography is avoided by comparing only experimental data that is by calculating 

difference electron density maps of the form Fobs (t1) – Fobs (t2). It is preferable to use the same 

crystal to minimize systematic errors and facilitate the interpretation of difference electron 

density maps.    

 

i. Fobs - Fobs difference electron density maps 

Fobs - Fobs difference maps were calculated using Bayesian q-weighting (Ursby and 

Bourgeois, 1997). Using a CCP4 script the difference map can be calculated by first merging 

the mtz files from two different data-sets using the program CAD  and a third containing the 

calculated phases form the model. Next, the structure factor amplitudes are scaled using the 

program RSTATS. For experiment with low signal-to-noise due to subtle structural 

differences it is advantageous to use Bayesian q-weighting to provide better estimations of 

difference amplitudes (Ursby and Bourgeois, 1997). Finally, the difference positions in 

reciprocal space (HKL) are calculated using the program FFT. 
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4.5.4  X-RAY DATA COLLECTION  

 

i. eYFP 

 X-ray diffraction data sets from eYFP were collected at the European Synchrotron 

Radiation Facility (ESRF) on beamline ID14-1 (Wed Mar 31, 8–9 p.m., 2010), with an ADSC 

Q4 detector (ADSC, California, USA). Two crystals of eYFP were collected: (1) The 

structure of the pH-induced protonated form of eYFP (A1) was obtained by flash-cooling a 

crystal that grew at pH 3.6 by spontaneous acidification of the crystallization medium. (2) 

That of the photo-induced protonated form of eYFP (A2) was obtained by soaking a crystal 

(like A1) in a crystallization medium at pH 8 and illuminating at 514 nm (20 min; 0.3 W/cm²) 

at room temperature prior to flash-cooling. Due to the needs for further investigations and 

eventually reproduction of the X-ray experiments, the structural data were not deposited in the 

Protein Data Bank (PDB). Data collection statistics and refinement parameters are 

summarized in Table 4.2 and in Table 4.3. 

 
Table 4.2) Crystallographic data collection statistics of eYFP 
 

  eYFP (A1) eYFP (A2) 

Space group P 212121 

Cell dimension, (Å) 
a=51.66   b=62.85  c=69.32      ɲс90.00    ɴсϵϬ͘ϬϬ    ɶс90.00 

a=51.58   b=62.23  c=69.22      ɲс90.00    ɴс90.00    ɶс90.00 

Wavelength, (Å) 0.933 0.933 

Resolution, (Å) 2.3 1.8 

No. uniq. reflections 10235 27008 

Completeness, (%) 97.39 89.86 

Rsym, (%)  26.3 nd ¶ 

Mean Iͬʍ;IͿ  6.94 nd ¶ 

Wilson Bfactor , (Å²) 33.21 18.54 
 
‡  

j h j h
jhhjh IIIRsym ,,

 

¶  Preliminary data that need to be processed again. 
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Table 4.3)  Model refinement statistics of eYFP 
 

  eYFP (A1) eYFP (A2) 

Rwork , (%) #  0.2406 0.1869 

Rfree , (%) ȴ 0.3005 0.2252 

RMSD bond length, (Å) 0.008 0.006 

 RMSD bond angles, (°) 1.191 1.287 
 

#  
h h obscalobswork FFFR  

ǻ Rfree  is calculate is calculated with a small fraction (5 %) of reflections chosen to be part of a test group. 
 
 

ii . EYQ1 

X-ray diffraction data sets from EYQ1 were collected at the European Synchrotron 

Radiation Facility (ESRF) also on beamline ID14-1 (Thu Jul 01, 3 – 4 a.m., 2010). This 

protein was crystallized in a medium that contains halide atoms, which likely inhibits the 

photoswitching efficiency. The reproduction of the X-ray experiment with a crystal grown in 

a different crystallization medium is required. This is one of the reasons for which this crystal 

structure was not deposited in the PDB. Data collection statistics and refinement parameters 

are summarized in Table 4.4 and in Table 4.5. 

 

Table 4.4) Crystallographic data collection statistics of EYQ1 

  EYQ1 

Space group P 1 

Cell dimensions 
a=45.27 Å  b=56.550 Å   c=56.560 Å   

ɲсϳϭ͘ϳϲ       ɴсϳϱ͘ϯϮ      ɶсϳϱ͘ϭϵ 

Wavelength, (Å) 0.933 

Resolution, (Å) 1.36 

No. uniq. reflections 101382 

Completeness, (%) 93.28 

Rsym, (%) 4.3 

MĞĂŶ Iͬʍ;IͿ 14 

Wilson Bfactor , (Å²) 8.31  
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Table 4.5) Model refinement statistics of EYQ1 

  EYQ1 

Rwork , (%) #  0.1677 

Rfree , (%) ȴ 0.1839 

RMSD bond length, (Å) 0.006 

 RMSD bond angles, (°) 1.362 
 

 
 
 

iii . Padron and Dronpa 

 Details about the X-ray data collections of Padron and Dronpa are described in the 

Annex 2 (Supporting information). 
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4.6 SPECTROSCOPY 

4.6.1 SPECTROSCOPIC SETUP  

i. Spectroscopic setup: microspectrophotometry 

Absorption and fluorescence spectra from crystals and thin films solution samples 

were recorded using a microspectrophotometry set-up in the Cryobench laboratory of the 

IBS/ESRF (Grenoble, France) (Royant et al., 2007) for eYFP experiments and in the Pixel 

laboratory IBS/iRTSV (Grenoble, France) (Arcizet et al., 2011 in French) for Padron 

experiments. 

 

The microspectrophotometry setup allows studying macromolecular crystals at 

cryogenic temperatures and offers the opportunity to study nano-volumes of solution samples, 

which can be easily flash-cooled to the glassy state with only a moderate amount of cryo-

protectant. In practice, this device is constituted by: two mirror objectives face-to-face and the 

third one at 90° from the others (magnification ratio 1:4 for Cryobench and Pixel 

laboratories); one goniometer with a magnetized support to mount the standard cryoloops in 

objectives focus; one HR2000+ CCD-based spectrometer (Ocean Optics, Dunedin, FL, USA) 

in Cryobench lab and AvaSpec-ULS2048 (Avantes, Eerbeek, the Netherlands) in Pixel lab; 

one microscope to visualize the sample; and one cryocooling device to control the 

temperature samples varying between 100 K and 300 K, Oxford Series 700 in Cryobench and 

600 in Pixel lab (Oxford, UK) (Figure 4.6). 

  
The light sources, such as white lamp and lasers, and the spectrometer can be 

connected to the objectives using optical fibers (100 – 600 µm of diameter) and a pulse 

generator allows controlling the exposure time for measurements as a function of time. The 

spectrometer readout can also be controlled by a computer (Figure 4.7). For a typical 
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experiment using the microspectrophotometry setup, the sample, crystal or solution, is fished 

using a cryoloops, and rapidly put on the goniometer support being so that the sample is 

instantly flash-cooled in the flux of gaseous nitrogen at 100 K. Using the goniometer, the 

samples are manually centered in the Pixel lab and in an automated way in the Cryobench, 

which facilitates the alignment.        

 

Figure 4.6) Microspectrophotometry setup: (A) in the Pixel laboratory (B) in the Cryobench 
laboratory (C) three mirror objectives (i), microscope objective to visualize the sample (ii ), 
cryocooling device (iii ) and goniometer (iv); (D) cryoloop with a crystal of EQY1.   

 

 

Figure 4.7) Scheme of microspectrophotometry components. The computer is connected with 
the microscope, with the photospectrometer and with the pulse generator (in the Cryobench 
laboratory, the cryocooling device can also be controlled by a computer). The sample is 
centered in focus between the objectives (Obj) that are connected to the light sources and to 
the spectrophotometer by optical fibers. The microscope allows visualizing the sample, which 
is essential for the alignment. One objective (Obj) and the goniometer are omitted to facilitate 
the visualization. 
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ii. Light source set-up   

In the Cryobench laboratory, the laser is directly coupled into the fiber and some 

filters can be inserted in the light pathway inside the objective. In the Pixel laboratory, an 

ensemble of mirrors (flip-mounted), beam splitters, dichroic filters and collimators allow the 

coupling  of all lasers at 405, 523 532 nm (DPSS lasers, Changchun New Industries 

Optoeletronics Tech, Changchun, China) and 488 nm (Argon ion laser, Melles Griot, 

Albuquerque, USA) and/or a broadband halogen-deuterium source (AvaLight-DH-S-BAL, 

Avantes, Eerbeek, the Netherlands) into a 100 - 200 µm diameter optical fiber (Figure 4.8).  

 

 
 

Figure 4.8) Scheme of the light source in the Pixel laboratory. DC450(494): dichroic mirrors 
with a cut-off at the wavelength 450 nm (494 nm), Objective (Obj),  flip-mounted mirror, 

 beam split ter cube (50/50), collimators. 
 
 
 The advantage of this optical setup is that all the lasers and the white lamp are coupled 

into a single optical fiber, which ensures the illuminations of the same sample region for all 

spectroscopic experiments. Both absorption and fluorescence emission measurements were 

performed by direct transmission from the objective connected to the light sources (Obj1) to 

the objective connected to the spectrophotometer (Obj2), positioned face-to-face. In direct 
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transmission mode, we expected an easier observation of the same sample region than when 

using the perpendicular objective (Obj3). To prevent a spectrophotometer damage caused by 

high power laser emitted from the Obj1, we used notch filters mounted on a mobile holder 

before the Obj2. The notch system is put and removed manually, for this reason it is easier to 

measure the fluorescence emission than the absorbance spectra, when the experiment requires 

alternation with the actinic laser (Figure 4.9).  

  

Figure 4.9) Scheme of illumination setup. The sample is positioned in focus on axis of two 
objectives (Obj1, Ob2j). Absorption and fluorescence emission are measured by direct light 
transmission, the last one using a notch filter to block the laser wavelength. 
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We have studied the photoswitching behaviour of a number of photochromic fluorescent proteins at

cryo-temperature. Spectroscopic investigations at the ensemble level showed that EYFP, Dronpa and

IrisFP all exhibit reversible photoswitching at 100 K, albeit with a low quantum yield. The

photophysics of the process were studied in more details in the case of EYFP. The data suggest that

photoinduced protonation of the chromophore is responsible for off-switching at cryo-temperature, and

thus is possible in the absence of significant conformational freedom. This finding is consistent with the

hypothesis that chromophore protonation may precede large amplitude conformational changes such

as cis–trans isomerisation during off-photoswitching at room temperature. However, our data suggest

that low-barrier photoinduced protonation pathways may in fact compete with room-temperature

off-switching reactions in photochromic fluorescent proteins. The occurrence of reversible

photoswitching at low-temperature is of interest to envisage cryo-nanoscopy experiments using

genetically encoded fluorophores.

Introduction

Photochromism in fluorescent proteins (FPs) was discovered more

than 10 years ago in a seminal work by Dickson et al.,1 who

showed that the fluorescence properties of yellow fluorescent

proteins (YFPs) could be reversibly modified upon illumination

at specific wavelengths. In the last few years, an impressive

number of photochromic FPs (also called reversibly switchable

FPs (RSFPs)), have been discovered or engineered, including

Dronpa,2,3 variants thereof,4,5 mTFP0.7,6 rsCherryRev,7 and,

recently, cerFP505 from a deep-sea ceriantharian.8 Most RSFPs

display negative photoswitching, that is, fluorescence off-switching

resulting from illumination at wavelengths absorbed by the protein

in its fluorescent state. However, the palette of RSFPs also includes

asFP595,9 Padron10 and rsCherry,7 which, in contrast, display

positive switching. RSFPs, switching reversibly between a dark

and a fluorescent state, are distinguished from photoconvertible

fluorescent proteins (PCFPs), such as Kaede11 or EosFP,12 which

undergo an irreversible colour change from green to red upon

illumination with violet light. Recently, a single mutant of EosFP,

named IrisFP, has been shown to be an efficient photoswitcher

combining the properties of RSFPs and PCFPs.13 Interestingly, the

combination of off-switching and intramolecular Förster energy

transfer (FRET) promotes reversible switching in tetrameric

IrisFP between red and green colours.13
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RSFPs offer interesting perspectives as biotechnological tools,

for example as potential high-density optical data storage

media.14 However, their major impact, together with PCFPs,

has concerned the development of super-resolution microscopy

through PALM/STORM approaches.15 RESOLFT point scan-

ning nanoscopy schemes, which allow utilizing reduced laser

power density as compared to STED microscopy, have also been

developed based on RSFPs.16,17

Despite the widespread interest of photochromic fluorescent

proteins, the exact photophysical mechanisms leading to the light-

induced reversible but thermally stable loss of fluorescence remains

poorly understood. Cis–trans isomerisation of the chromophore

has been directly observed in a number of crystallographic

structures6,9,13,18 and was evidenced by Raman experiments.19

However, chromophore isomerisation need not be a common

feature of all RSFPs. Mizuno et al. proposed in a recent NMR

experiment that off-switching in Dronpa involves a disordering

of the chromophore following light-induced protonation of its

phenol moiety.20 In fact, a common property of all RSFPs

appears to be that the chromophore in the photoswitched state is

protonated.21 This is corroborated by the blue-shifted absorbance

of the switched-state, which in all cases closely resembles that of

the acid-induced state, although the two states actually differ.19,22

What is the primary event in on-off photoswitching, therefore,

remains an open question. This is in contrast to back photo-

switching, which can be explained by excited state proton transfer

(ESPT). ESPT is a well known process by which the pKa of the

chromophore phenol group decreases dramatically in the excited

state.23 In back photoswitching, light induced deprotonation of the

chromophore by ESPT may facilitate subsequent conformational

relaxation (such as trans–cis isomerisation), leading back to the

stable fluorescent state.6 The high quantum yield of this process

(>0.1) is consistent with efficient ESPT in the singlet excited state
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S1. It is interesting to envisage a symmetrical mechanism for on-off

switching, that is, a light-induced protonation of the chromophore

followed by structural changes. In this case, a significant rise of the

chromophore pKa in the excited state would be required as a first

reaction step, a mechanism opposed to standard ESPT. The much

lower yield observed experimentally for off-switching as compared

to on-switching, typically <10-3, is consistent with the idea that

such “paradoxical” ESPT could take place in the triplet state T1.
20

Indeed, molecules excited in the triplet state are less acidic than in

the singlet state (see note added in proof).24

In order to decipher the mechanisms of photoswitching in

RSFPs, it is useful to work at low-temperatures (LT). Photo-

switching of organic dyes at temperatures as low as 1.4 K has been

described at the single-molecule level, highlighting e.g. spectral

diffusion processes.25 Evidence for LT reversible photoswitching

in GFP mutants between anionic and neutral states of the chro-

mophore has also been provided by hole-burning experiments.26,27

In the case of EYFP, it was proposed that reversible conversion

occurs from the anionic B-state or from the neutral A-state to

an anionic intermediate-like I-state absorbing at a maximum of

~460 nm.28

In the present work, we have used UV-vis spectroscopy at the

ensemble level to demonstrate that reversible photoswitching can

be achieved at 100 K between A and B states in a number of RSFPs,

as a result of a light-induced protonation of the chromophore,

in agreement with the previous hole-burning experiments.27,28 At

this temperature, due to the glassy state of the solvent, no large

structural rearrangement of the chromophore and protein matrix

is possible, indicating that significant conformational freedom is

not required to achieve light-induced chromophore protonation.

We show results from three different RSFPs, but we elaborate on

EYFP to evaluate the mechanism of LT switching in more detail.

EYFP is the first FP for which photoswitching was observed,1

has been studied in great detail27–34 and has been recently used

in PALM nanoscopy.35 We provide evidence that the nature of

the light-induced protonated off-state at 100 K differs from that

achieved upon illumination or acidification at room temperature

(RT). Although our results are consistent with photoinduced

protonation being the driving step in the RT switching pathway

of RSFPs, we suggest that low-barrier photoinduced protonation

pathways rather compete with RT off-switching reactions in these

fluorescent proteins

Experimental

Expression and purification of the proteins

EYFP (Clontech, Mountainview, CA, USA) was cloned in a pET-

15b vector using the appropriate restriction sites and expressed in

E. coli BL21(DE3). It corresponds to the EGFP mutant S65G,

V68L, S72A and T203Y36 and contains the N terminal sequence

(M)GSSHHHHHHSSGLVPRGSHM. Cells were grown in LB

medium, to an absorbance (A600 nm) of 0.5–0.8 prior to induction for

15 h at 30 ◦C by the addition of 1 mM IPTG. After centrifugation,

the cell pellet was re-suspended in 50 mM Tris-HCl pH 8.0,

300 mM NaCl, 15 mM imidazole plus Complete EDTA-free

antiprotease (Roche Applied Sciences) and lysed by sonication.

The protein was purified by chromatography on a cobalt affinity

column (Clontech) followed by gel filtration on a High Load 16/60

superdex 75 column (Amersham Biosciences) in 50 mM Tris-HCl

pH 8.0 and 300 mM NaCl. To remove Cl- ions (which are known

to alter the EYFP properties37), and to adjust the pH, buffer

exchanges were performed using ultrafiltration (Microcon YM-

10). The deprotonated form of EYFP was prepared in 50 mM

Hepes pH 7.5 and the protonated form in 50 mM MES pH 6.0.

Final pH values were adjusted with acetic acid.

Dronpa and IrisFP were kindly provided by Atsushi Miyawaki

(RIKEN BSI, Japan) and Gerd Ulrich Nienhaus (Karlsruhe Uni-

versity, Germany), respectively, and were prepared as previously

described.13,20

Absorption and fluorescence spectroscopy

Experiments were carried out at the Cryobench laboratory of the

IBS/ESRF (Grenoble, France). For a detailed description of the

setup used, see Royant et al.38 and Durin et al.39 Briefly, absorption

and fluorescence emission spectra were recorded at 100 K or

295 K (RT) using a CCD-based spectrometer (HR2000+, Ocean

Optics, Dunedin, FL, USA). Absorption measurements were

realized using light from a broad band halogen–deuterium source

(Mikropack DH2000-BAL, Ocean Optics) and optical fibers of

100 mm diameter connected to the two face-to-face objectives

of the microspectrophotometer. Fluorescence excitation, as well

as actinic illumination, were performed using an argon ion laser

(514 nm or 488 nm, 532-MAP-A01, Melles-Griot, Carlsbad, CA,

USA), a solid state diode laser (405 nm, OZ-1000, OZ optics,

Ottawa, Canada) or a YAG laser (355 nm, NV-10210-110, JDS

Uniphase, Milpitas, CA, USA).

For the low-temperature experiments, samples consisted of thin

films (~20 mm optical path) of amorphous solutions, flash-frozen

in cryo-loops typically used as sample holders in macromolecular

crystallography experiments. Flash-cooling was realized with a

nitrogen gas stream maintained at 100 K (Oxford cryostream,

Series 700, Oxford, UK). Temperature ramps at a rate of 180 K h-1

were generated with this device. Solutions of EYFP, IrisFP and

Dronpa were used at 1.7 mM, 1.4 mM and 0.9 mM concentrations,

respectively. Such concentrations were necessary to ensure suffi-

cient optical density considering the very thin samples. Moreover,

these concentrations are relevant because they are in the same

range as those in cells expressing fluorescent proteins used for

cell imaging.40 We verified in the case of EYFP that a three-

fold reduced protein concentration did not measurably change

the kinetics of LT switching (not shown). Glycerol (30 to 50%)

was used as a cryo-protectant to prevent crystalline ice formation,

which would interfere with spectroscopic measurements. In this

setup, 200 mm-diameter fibres from the lasers were connected to

the third objective of the microspectrophotometer, achieving a 90◦

geometry and a laser spot size on the sample of ~50 mm diameter.

For room temperature experiments, a 0.2 mL droplet of

protein was mounted in a cell made of two cover slips

sealed together with silicon grease, especially designed for the

microspectrophotometer.41 In this setup, laser illumination of the

sample was achieved through a 200 mm-diameter fibre brought

in close contact to the sample via a fibre holder. This allowed to

achieve a laser spot size at the sample of ~0.4 mm diameter, i.e.

larger than the sample diameter. Thus, the entire sample could

be illuminated, an important consideration at RT when diffusion

occurs in the liquid state.
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Data analysis

Data were processed using a home-made routine based on the

IDL software (Boulder, CO). Absorption spectra were corrected

for background using a straight-slope baseline subtraction. Areas

of overlapping absorbance peaks in Fig. 7 were calculated by non-

linear least-square Gaussian fitting.

Quantum yield calculations

Quantum yields for LT switching were calculated based on time

course experiments. Decay kinetics were fitted with mono- or

biexponential models. In the latter case, only the fast phase

was considered representative of the reversible protonation pro-

cess (the slow phase is associated to non reversible bleaching

processes).42 The quantum yields U were obtained from the

following formula:

(1)

with Planck constant, h, speed of light, c, sample cross section, S,

Avogadro’s constant, NAv, inverse rate constant t , effective laser

power, P, wavelength, l, and extinction coefficient, e. The effective

laser power P was obtained from the laser power P0 measured at

the sample surface by taking into account absorption through

the sample layer crossed by the beam before reaching the probed

volume. Considering the thickness of this layer and the measured

optical density of the samples, we estimated that P ª P0/10.

Results and discussion

Photochromic fluorescent proteins were investigated at the en-

semble level using the microspectrophotometer of the Cryobench

laboratory.43 This device, normally dedicated to the study of

macromolecular crystals at cryogenic temperatures, offers the

opportunity to study nano-volume solution samples, which can

be easily flash-cooled to the glassy state with only a moderate

amount of cryo-protectant. Three different RSFPs exhibiting

vastly different photoswitching capabilities where investigated:

IrisFP, a very efficient photoswitcher (Uon-off ª 10-2),13 Dronpa,

a moderately efficient photoswitcher (Uon-off ª 10-4),3 and EYFP, a

weak photoswitcher (Uon-off ª 10-6).1

Photoswitching at RT

First, the photoswitching efficiencies of the three proteins were

compared at room temperature. Using similar illumination power

density (ª0.4 W cm-2), strong differences between the proteins

were immediately apparent (Fig. 1). Whereas IrisFP could be

reversibly photoswitched multiple times within a time window

of ~500 s, with a contrast between the on and off states >

90%, Dronpa could only be switched twice with a lower contrast

(~85%), and EYFP could not be reversibly switched at all using

514 nm and 405 nm light. In fact, illumination of EYFP with

405 nm light induced even more pronounced off-switching than

with 514 nm light alone. This additional loss of fluorescence

was spontaneously recovered by thermal relaxation (Fig. 1C).

The lack of back-switching of EYFP at the ensemble level with

405 nm light differs from observations made at the single molecule

Fig. 1 Room temperature photoswitching of IrisFP, Dronpa and EYFP.

(A) IrisFP and (B) Dronpa were illuminated with 488 nm laser light (0.29

W cm-2 and 0.39 W cm-2, respectively, for IrisFP and Dronpa; grey lines

above the x-axis) while 405 nm laser light (0.3 W cm-2, black lines) was

switched on and off. (C) EYFP was alternatively illuminated with 514 nm

(0.2 W cm-2, grey) and 405 nm (0.45 W cm-2, black lines) light. (Inset)

Similar experiment with 355 nm light for reactivation. A high power density

of 0.04 kW cm-2 was used to accelerate the reaction. Short delays (white

lines) were applied before illuminations at 355 nm to control the absence

of fast spontaneous fluorescence recovery. The emission of fluorescence

was measured at 474, 494 and 530 nm for IrisFP, Dronpa and EYFP,

respectively. Fluorescence excitation wavelengths were the same as those

used for actinic illumination.

level,1,35 but is consistent with previous findings by Sinnecker

et al.,30 and by McAnaney et al.29 who provided evidence that this

protein can be reversibly switched only to a limited extent (ª25%),

with back-switching requiring light at wavelengths <390 nm. In

fact, when applying 355 nm laser light instead of 405 nm for
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back switching, EYFP fluorescence could be partly recovered, as

expected (Fig. 1C, inset). The discrepancy between the behaviour

of EYFP at the ensemble and single molecule levels might originate

from an intrinsic bias in the selection of fluorescent molecules in

single molecule experiments. It is possible that back switching

by 405 nm light be only effective in some rare conformational

states of the protein slowly interconverting with highly populated

states that rather undergo irreversible bleaching or follow different

switching pathways. Other factors, such as the level of oxygenation,

the cellular environment,35 the presence of a polymer matrix,1 the

salt content,37 or the used light intensities may also play a role.

Photoswitching at 100 K of EYFP

A very different switching behaviour of EYFP was obtained at

cryogenic temperature: when a nano droplet of a concentrated

solution of EYFP was flash-cooled to 100 K and submitted to a

sequence of illumination at 514 nm (~0.3 kW cm-2) and 405 nm

(~0.04 kW cm-2), a minor but significant fraction (about 5%) of the

molecules underwent multiple reversible switching (Fig. 2). Inter-

estingly, this fraction was apparently resistant to photobleaching

and did not interconvert to other proteins states during the

experimental time, as the amount of fluorescence recovery in each

cycle stayed approximately constant (see arrows on Fig. 2). This

can be explained by the lack of major conformational fluctuations

at 100 K.

Fig. 2 Photoswitching of EYFP at 100 K. The protein was alternatively

illuminated with 514 nm (0.3 kW cm-2, grey lines above the x-axis) and

405 nm (0.06 kW cm-2, black lines) laser light. At each cycle, an arrow

shows the amount of fluorescence recovery during 405 nm illumination.

Next, the low-temperature photoswitching of EYFP was char-

acterized in more detail. A time series of absorption spectra

was recorded during illumination with 514 nm light at 100 K

(Fig. 3A). A clear phototransformation was observed, from the

anionic, deprotonated state of the chromophore (state B), to a

presumably neutral state characterized by a broad absorbance

band featuring maxima at 385 nm and 410 nm, and extending to

the UV range. We refer to this absorption band as A3 (by reference

to A1 and A2, which are common notations for acid-induced and

RT switched states, respectively). The absorbance data exhibit

a crisp isosbestic point at 437 nm, consistent with a single

step interconversion process. The phototransformation kinetics,

extracted at the peak absorption of the B-band and at 405 nm for

the A3-band are shown in the inset of Fig. 3A. The decay of the

anionic band is essentially biphasic, with a rapid phase followed

by a slower phase. The build-up of A3 is also best described with a

bi-exponential process, with the rate of the rapid phase (k =

0.03 s-1) matching that of the fast decay of B (k = 0.02 s-1). Based

on these kinetics, the quantum yield of the rapid interconversion

process was estimated to be Uon-off, 100 K ª 10-6. Although this

quantum yield is very small, it has to be considered in view of the

considerably reduced rate of photobleaching at the used tempera-

ture, and is therefore significant. The neutral states photoinduced

at 100 K are essentially non-fluorescent when excited at 488 nm,

but exhibit blue fluorescence upon excitation in cryo-conditions

with 405 nm light (Fig. 3C, D). Upon actinic illumination of A3

with 405 nm light at 100 K, back photoswitching occurs rapidly,

although to a limited extent (Fig. 3B). The decay of the 405 nm

component and the rise of the peak absorption of the B-band

(Fig. 3B, inset) cannot be adequately fit by either mono-, bi-

, or stretched-exponential processes. Nevertheless, the quantum

yield for back photoswitching could be estimated to be Uoff-on, 100 K

ª 10-4. Recovery of the fluorescent state B also slowly occurs

in the dark at 100 K (t1/2 ª 2 h, Fig. 4). The recovery is more

pronounced and strongly accelerated upon temperature increase.

These results suggest that different pathways may lead from A3

to B, which are thermally activated to a different extent and may

involve intermediate species. In total, ~40% of the molecules are

eventually able to back convert to the B-state.

Despite the moderate laser power density used in the described

experiments, we verified that the B to A3 low temperature photo-

switching results from a ground-state (one-photon) absorption

process. This is demonstrated in Fig. 5, in which the rate of

photoswitching is shown to be proportional to the used laser power

density. Therefore, a two-step absorption process, which could be

expected from the increase at low temperature of excited states

lifetimes (such as that of the triplet state T1), and which has been

shown to trigger photoconversion in other fluorescent proteins,44,45

can be ruled out.

States A1, A2¢ and A3 differ

To further characterize the EYFP A3 band, we compared it to two

other absorbance states corresponding to a neutral chromophore,

A1 and A2¢. A1 was obtained by buffer acidification, whereas A2¢

was achieved by illumination at 514 nm at close to ambient temper-

ature (in conditions similar to those used in Fig. 1; thus it should

be noted that A2¢ here refers to a mostly non-reversibly switched

state and therefore is not called A2 as for other RSFPs). Samples

of EYFP in those states were brought to 100 K and absorption

and fluorescence emission spectra were recorded. Superpositions

of the normalised spectra from A1, A2¢ and A3 are shown in

Fig. 6. It is seen that A1 and A3 share similar vibronic structures,

clearly resolved at low-temperature (Fig. 6A). In contrast, A2¢

exhibits a broader, smoother and blue shifted absorption profile.

Similar fluorescence emission originate from all three species upon

excitation by 405 nm light (Fig. 6B). The emission spectra display a

double-humped blue fluorescence, accompanied by residual yellow

fluorescence possibly due to direct excitation of molecules left in

the B-state, or to limited excited state proton transfer (ESPT).

Interestingly, we note that the blue fluorescence by A2¢, which is

largely composed of irreversibly switched molecules in a neutral

state (Fig. 1), might relate to the spurious “blue species” previously

noticed in EYFP and corrupting FRET experiments through

contamination of the ECFP channel.33,34,46 Whereas A1 and A3
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Fig. 3 Spectral evolution of EYFP during photoswitching at 100 K. (A) Time evolution of the absorption spectra of EYFP switched by illumination

with 514 nm laser light (0.3 kW cm-2). (Inset) Kinetic traces of the absorption at 510 nm (black) and 405 nm (blue); solid lines correspond to fitting

with a bi-exponential kinetic model. (B) Time evolution of the absorption spectra during backswitching with 405 nm laser light (0.04 kW cm-2). (Inset)

Kinetic traces of the absorption at 510 nm (black) and 405 nm (blue). Spectra were normalized to the EYFP absorption at 510 nm before illumination.

They are chronologically plotted according to the colour bar (from blue to red). (C,D) Fluorescence spectra upon excitation at 488 nm (C) or 405 nm (D)

of the starting (black dashed line), switched (grey solid line) and backswitched (black solid line) EYFP. The fluorescence spectra were normalized on the

maximum peak of EYFP before illumination.

Fig. 4 Spectral evolution during temperature-driven backswitching of

EYFP. EYFP (dotted line) was illuminated 3 min at 514 nm (0.3 kW cm-2,

grey solid line) and left in the dark at 100 K for 10 h (black solid line). The

resulting product was warmed up to 180 K (180 K h-1) and then cooled

down to 100 K (dashed line). (Inset) Kinetic trace of the thermal recovery

at 100 K, measured at 510 nm.

may not be easily distinguished based on the LT absorption or

fluorescence spectra, a strong difference exists between them. In-

deed, contrary to A3, A1 cannot be back-converted to the B-state

Fig. 5 Low-temperature photoswitching of EYFP proceeds via a 1-pho-

ton absorption process. The rate of photoswitching at 100 K is reported

as a function of the 514 nm laser power density. The plotted rates (1/t)

were obtained by fitting the time course of the 510 nm absorbance with a

biexponential kinetic model. t corresponds to the rate of the rapid phase.

The solid line shows the slope best fitting the data.

upon excitation at 405 nm at 100 K (Fig. 6C). Excitation of

this species at cryo- temperature only results in photobleaching.
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Fig. 6 Spectral signatures of the different protonated forms of EYFP. (A)

Absorbance spectra of EYFP at acidic pH (A1, black line) and at neutral

pH after switching with 514 nm laser light at low temperature (A3, grey

line) and at close to room temperature (A2¢, dashed line). (B) Fluorescence

emission spectra (lexc = 405 nm) of EYFP at acidic pH (black line) and

at neutral pH after switching with 514 nm laser light at low temperature

(grey line) and at close to room temperature (dashed line). (C) Spectral

evolution of EYFP before (A1, black line; A3 black dashed line) and after

405 nm illumination at 100 K (A1, grey line; A3 grey dashed line). All

spectra were recorded at 100 K.

Taken together, these results suggest that pronounced structural

differences exist between states A1/A2¢ and B, whereas structural

differences between states A3 and B are small. In the case of A1,

this finding is fully consistent with pH jump experiments carried

out at room temperature which showed that EYFP protonation

occurs in two steps with a fast intermediate occurring first,

followed by some slower step involving larger conformational

rearrangements.29 In summary, our data demonstrate that the A1,

A2¢ and A3 absorbance bands are essentially made of distinct

EYFP species.

Is A3 involved in the reaction path from B to A2¢?

In order to investigate whether A3 could be an intermediate on

the pathway leading from B to A2¢, a temperature dependent

absorption microspectrophotometry (TDAM) experiment was

conducted.39 After a nano-droplet of EYFP was flash cooled to

100 K, a series of absorption spectra were recorded continuously

while a temperature ramp from 100 to 260 K was applied at

180 K h-1, under continuous illumination with 514 nm light

(Fig. 7). Although these data only allow a qualitative assessment

of the phototransformations involved, they suggest the following

evolution of the sample. At cryo-temperatures (from 100 K to

~110 K), a buildup of A3 is clearly observed. However, from

110 K onwards, back conversion from A3 to B takes place,

possibly driven by thermal activation as observed in Fig. 4.

A new intermediate state builds-up, displaying peak absorption

at 447 nm, and reaching a maximum at 155 K. Interestingly,

this intermediate is reminiscent of the I-intermediate previously

identified in low-temperature work and proposed to be involved

in the EYFP photoconversion pathways.28 From ~160 K, the

I-like intermediate, as well as residual molecules in the B-state

convert into the A2¢ state, which reaches full occupancy from

~200 K onwards. A quantitative chemical kinetic model of the

B → A2¢ phototransformation pathway cannot be easily extracted

from these data, notably due to the inherent coupling between

time and temperature in TDAM experiments. Importantly, it

remains unclear whether the A3 species is involved in this pathway.

Although at first glance the data would suggest that A3 is not

involved, since it essentially back transforms to B before A2¢ starts

being produced, this is not necessarily the case, as it may reappear

Fig. 7 Temperature dependent absorption microspectrophotometry of

EYFP photoswitching. Evolution of the absorption spectra of EYFP

submitted to a temperature gradient from 100 to 260 K (180 K h-1, colour

bar) during illumination at 514 nm (113 W cm-2). (Inset) Temperature

dependant evolution of the area of absorption bands centered at 400 nm

(A-states; grey line), 445 nm (I-state; dashed line) and 514 nm (B-state;

black line).
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Fig. 8 Spectral evolution during photoswitching of Dronpa and IrisFP at 100 K. Time evolution of the absorption spectra after switching of (A) Dronpa

and (B) IrisFP by illumination with 488 nm laser light (356 W cm-2). Backswitching of (C) Dronpa and (D) IrisFP by illumination with 405 nm laser light

(40 W cm-2). The spectra are plotted chronologically according to the colour bars (from blue to red).

as a non rate-limiting intermediate (non visible in the TDAM

data) at higher temperatures. In contrast, a I-like intermediate is

definitively identified along the B to A2¢ pathway and its further

characterization will be of interest in future studies. Interpretation

of the above-described experiment in terms of the mechanism

of reversible switching at RT is impaired by the fact that A2¢ is

mostly composed of non-reversibly switched molecules (possibly

the EYFP “blue species”33,34,46). Therefore, whether or not A3 is

implicated in the switching mechanism of those molecules that

can be reversibly switched by 514 nm and 405 nm light, as

observed at the single molecule level, cannot be concluded from

this experiment. Nevertheless, additional insight can be obtained

by comparing different RSFPs, as described below.

Photoinduced protonation in Dronpa and IrisFP

Low-temperature photoswitching in two other RSFPs, Dronpa

and IrisFP, was investigated in a similar manner as that used

for EYFP. Remarkably, the two proteins display reversible

low-temperature photoswitching attributable to a photoinduced

protonation of the chromophore (Fig. 8). The photoswitching

kinetics at 100 K, however, are much slower as compared to

the case of EYFP (Fig. 9). Whereas the quantum yield for low-

temperature photoinduced protonation is ~10-6 for EYFP, it is

Fig. 9 Comparison of low-temperature photoswitching between EYFP,

Dronpa and IrisFP. Absorption time-courses are plotted at 474 nm for

Dronpa (dashed line), 494 nm for IrisFP (black line) and 514 nm for

EYFP (grey line).

~4 ¥ 10-7 for Dronpa, and ~9 ¥ 10-8 for IrisFP. Therefore, by

comparison with the results shown in Fig. 1, a clear anticorrelation

emerges between the photoswitching efficiencies at RT and at

100 K. This suggests that a low activation barrier for photoinduced

protonation possibly disfavours efficient photoswitching at room

temperature. We hypothesize that photoinduced protonation

leading to A3 may act as a leakage pathway through which RSFPs

escape bi-stable RT photoswitching. Further experiments will

be needed to verify this assumption. The idea that, in RSFPs,

low-temperature photoswitching mechanisms are decoupled from,
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Fig. 10 Schematic diagram of the photoswitching of RSFPs. B, deproto-

nated form; A1, pH-induced protonated form; A2, reversibly switched pro-

tonated form photo-induced at room-temperature; A3 reversibly switched

protonated form photo-induced at low-temperature. Photoswitching path-

ways from B to A2 or A3 are shown by black arrows. The photoswitching

pathways from A2 or A3 to B are shown by red arrows.

and compete with those at room temperature, is sketched in

Fig. 10. Nevertheless, this tentative conclusion does not exclude the

possibility that RT photoswitching could be triggered by another

mechanism of photoinduced protonation rather than by cis–trans

isomerisation, as proposed for Dronpa.20 Which photophysical

event triggers photoswitching in RSFPs, therefore, still remains

an open question (see note added in proof).

Conclusions

We have shown that reversible photoswitching occurs to a certain

extent in a number of photochromic fluorescent proteins at cryo-

temperature. Such photoswitching exhibits a low quantum yield

and competes with other non-reversible phototransformations. A

feature common to all RSFPs investigated is that low-temperature

photoswitching involves a protonation of the chromophore. The

occurrence of light-induced protonation at 100 K, a temperature at

which conformational dynamics in proteins are largely inhibited,

suggests that minor structural changes accompany the charge

transfer process. Proton transfer to the hydroxybenzilidene group

of the chromophore must therefore arise from nearby proton

donors, possibly through proton tunnelling. In the case of GFP,

Leiderman et al.47 have shown that hydrogen-bond networks, e.g.

formed between water molecules and Glu222, Asp82 and Glu5,

provide proton wires even at low temperature. In the studied

RSFPs, such proton donors are actually available, as judged from

previous structural studies. In EYFP, His148 and a water molecule

are in direct contact to the chromophore hydroxybenzylidene

group.32 In Dronpa, Ser142 H-bonds this group, and a network of

residues may also be involved, including Glu140, His194, Ile195

and a water molecule.20 In the case of IrisFP, Ser142 also H-bonds

the chromophore, as well as a chain of water molecules leading

directly into bulk solvent.13

We have also shown that LT photoinduced protonation results

from a ground state absorption process. It is difficult to envisage

the proton transfer in the singlet excited state, due to the drastic

increase in the chromophore phenol group acidity known to take

place in this excited state. Rather, we suggest that photoinduced

protonation takes place in the triplet state, in agreement with

previous proposals.20,27,28 The significant reaction yield at 100 K

might be linked to the increase of the triplet state lifetime

as the temperature is lowered. Phosphorescence spectroscopy

investigations would be useful to confirm the involvement of the

triplet state.

The observation that chromophore protonation can occur

in the absence of pronounced structural modification, and in

particular without chromophore isomerisation, would suggest

that protonation might precede further large scale structural

relaxation such as cis–trans isomerisation during photoswitching

at ambient temperature. However, our data hint that photoinduced

protonation may rather divert RSFPs from their useful switching

pathway. Based on this idea, it would be interesting to test

how destabilization of the network of putative proton donors

to the chromophore by rational engineering may alter the RT

photoswitching properties of RSFPs.

The complexity and variety of the switching mechanisms ob-

served in this work emphasizes the conformational heterogeneity

commonly found in RSFPs and PCFPs. The superposition of

states with differing photophysical properties has been also high-

lighted in a number of GFP members48–51 and probably constitutes

a general property of fluorescent proteins. Understanding the

mechanisms leading to particular species is greatly facilitated when

their molecular structures can be solved at near-atomic resolution.

In the case of the various protonated species discussed here,

subtle structural differences could be revealed. However it has

to be kept in mind that the accuracy of structural models derived

from crystallographic studies strongly depends on the achievable

occupation of the species of interest relative to other species in the

crystal. To this aim, in crystallo-spectroscopy and crystallography

must go hand in hand.52

Finally, low temperature reversible photoswitching of ge-

netically encoded fluorophores may find applications in cryo-

nanoscopy schemes, a potentially useful method for correlative

imaging in structural biology.53–55

Note added in proof

Recently, two papers provided new insight into the interplay

between cis–trans isomerization and chromophore protonation in

RSFPs.56,57

Abbreviations

EYFP Enhanced Yellow Fluorescent Protein

PAFP PhotoActivatable Fluorescent Protein

RSFP Reversibly Switchable Fluorescent Protein

PCFP PhotoConvertible Fluorescent Protein

PALM PhotoActivated Localization Microscopy

STORM STochastic Optical Reconstruction Microscopy

RESOLFT REversible Saturable OpticaL Fluorescence Transi-

tions

STED STimulated Emission Depletion (microscopy)

TDAM Temperature Derivative Absorption Microspec-

trophotometry

FRET Förster Resonance Energy Transfer

LT Low-temperature

RT Room-temperature
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ABSTRACT: Photoactivatable fluorescent proteins are
essential players in nanoscopy approaches based on the
super-localization of single molecules. The subclass of
reversibly photoswitchable fluorescent proteins typically
activate through isomerization of the chromophore coupled
with a change in its protonation state. However, the inter-
play between these two events, the details of photoswitching
pathways, and the role of protein dynamics remain incom-
pletely understood. Here, by using a combination of struc-
tural and spectroscopic approaches, we discovered two
fluorescent intermediate states along the on-switching path-
way of the fluorescent protein Padron. The first intermedi-
ate can be populated at temperatures as low as 100 K and
results from a remarkable trans�cis isomerization of the
anionic chromophore taking place within a protein matrix
essentially deprived of conformational flexibility. This inter-
mediate evolves in the dark at cryotemperatures to a second
structurally similar but spectroscopically distinct anionic
intermediate. The final fluorescent state, which consists of
a mixture of anionic and neutral chromophores in the cis
configuration, is only reached above the glass transition
temperature, suggesting that chromophore protonation
involves solvent interactions mediated by pronounced dy-
namical breathing of the protein scaffold. The possibility of
efficiently and reversibly photoactivating Padron at cryo-
temperatures will facilitate the development of advanced
super-resolution imaging modalities such as cryonanoscopy.

Reversibly photoswitchable fluorescent proteins (RSFPs)
have received particular attention because of their utility in

nanoscopy,1 contrast-enhancing imaging schemes,2 and biotech-
nological applications.3 RSFPs can be repeatedly photoswitched
between a fluorescent on state and a nonfluorescent off state by
illumination with visible light of appropriate wavelengths. The
molecular mechanisms of the switching processes, however,
remain incompletely understood, and no intermediates along
the switching reaction pathways have been experimentally iden-
tified. Here, by using a combination of low-temperature X-ray
crystallography, in crystallo optical spectroscopy, and molecular

dynamics simulations, we investigated the on-switching pathway
of the fluorescent protein Padron4 and discovered two fluores-
cent intermediates along the pathway. Upon illumination at 100K,
the trans anionic chromophore characteristic of the Padron off
state, Btrans, activates to a first intermediate Icis, which displays a
spectroscopically distinct cis anionic configuration. Icis relaxes in
the dark to a second intermediate Bcis,LT, also cis anionic, which
upon an increase in temperature above the glass transition
temperature (Tg) in turn evolves to ABcis, a mixture of Bcis,
the fluorescent on state, and Acis, a nonfluorescent protonated
form of the chromophore. The observation of Icis reveals that,
remarkably, trans�cis chromophore isomerization can take place
in Padron at 100 K, a temperature at which protein dynamics is
essentially arrested. Furthermore, the data show that trans�
cis chromophore isomerization can occur in Padron through a
mechanism entirely decoupled from a protonation change of the
chromophore benzylidene moiety. Thus, Padron is capable of
dramatic fluorescence photoactivation at cryotemperatures.

Whereas most RSFPs display negative photoswitching,
that is, fluorescence off-switching results from illumination at
wavelengths absorbed by the protein in its fluorescent state,
Padron and some other RSFPs5,6 display positive switching, that
is, illumination at such wavelengths enhances fluorescence on-
switching. The X-ray structures of Padron in its off and on states
[Figure S1 in the Supporting Information (SI)] closely resemble
those of Padron0.9 (a mutant of wild-type Padron that favored
crystallization)7 and reveal trans and cis configurations of the
chromophore, respectively, with surprisingly little rearrangement
of the chromophore pocket between the two states. In its trans
configuration and at physiological pH, a nonfluorescent anionic
form of the chromophore (Btrans; λabs = 504 nm) is maintained
by H-bonding of the benzilidene phenolate to Tyr159 and a
water molecule. Upon illumination of Btrans at 523�532 nm at
100 K, a blue-shifted absorbance peak grows (λabs = 481 nm;
Figure 1A), reminiscent of low-temperature photoconversion
processes that have been described in green fluorescent protein
and some mutants.8 Time-resolved cryocrystallographic data
(Tables S1 and S2 in the SI) reveal a concomitant trans�cis
isomerization of the chromophore (Figure 2 and Figure S2), with
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only minor structural changes of the protein matrix detectable at
the resolution of our data (2.7 Å). A clear displacement of
Met59, located above the chromophore, is seen, accompanied
by smaller motions of Met93 and Ile195 flanking Met59, which
suggests that isomerization might couple with a slight deforma-
tion of the β-barrel. Molecular dynamics simulations at 100 K
are consistent with these findings. They reveal that upon
excitation in the rigid protein matrix, pronounced twisting of
the Btrans chromophore around the imidazolinone bridge bond
occurs, exclusively in the upper half of the chromophore pocket.
This also accounts for the nonfluorescence of this anionic
chromophoric state. The simulations suggest that residual back-
bone dynamics are necessary to break the H-bonding of the
hydroxybenzilidene moiety to complete the isomerization and
that a significant motion of Met59 is required (see Figure S3 and
the discussion in the SI).

The formed Icis intermediate is brightly fluorescent at λem =
524 nm and relaxes in minutes in the dark at 100 K to a second
intermediate Bcis,LT, which has an absorbance signature similar to

but narrower than that of Btrans (λabs = 504 nm) and fluoresces
like Icis (λem = 524 nm) (Figure 1B,D and Figure S4).

Crystallographic analysis of Bcis,LT shows no detectable struc-
tural difference in comparison with Icis, consistent with a low free-
energy barrier between the two states that likely involves only
minor conformational rearrangements. Altered electrostatics or
H-bonding networks in the strained protein matrix following
chromophore isomerization are likely to be responsible for the
blue-shifted absorption spectrum of Icis. Interestingly, illumina-
tion of Icis at 405 nm is able to switch the chromophore back to a
nonfluorescent (presumably trans) state. Thus, alternate excita-
tion of Padron at 532 and 405 nm at 100 K results in partially
reversible fluorescence photoswitching (Figure 1D). This photo-
cycle apparently involves Btrans, Icis, and Bcis,LT as the main
players (for details, see the SI and Figure S5). We note that
illumination of Padron at 100 K at 488 nm (the wavelength
typically used for room-temperature microscopy of this protein)
still activates fluorescence (Figure S4) but prevents efficient
population of Icis, presumably because at this wavelength Icis
displays a strong extinction coefficient and thus either converts
to Bcis,LT or switches back to Btrans.

Like the BtransfABcis process at room temperature (RT), the
reaction Btrans f Icis at 100 K involves a one-photon absorption
process (Figure S6) that displays a quantum yield of∼5� 10�6

instead of ∼2 � 10�4 at RT. The Icis f Bcis,LT relaxation rate
increases with temperature, following an Arrhenius law over
the temperature range 120�160 K with a low free-energy barrier
of ∼3.8 kJ/mol (Figure S7). Above a temperature of ∼180 K,
typical of Tg in proteins, the fluorescence emission is blue-shifted
to 510 nm (Figure 1D and Figure S4), and the absorbance band
at 504 nm decreases concomitantly with a significant rise of a
broad absorption band centered at ∼396 nm (Figure 1C). This

Figure 1. Spectroscopic signature of Padron along its off�on photo-
switching pathway, recorded in crystallo. (A, B, C) Absorbance spectra.
(A) Illumination of the Padron off state (Btrans, black line) at 523 nm
(0.15 kW/cm2) at 100 K yields a (partially populated) first intermediate
(Icis, green line). Inset: evolution of the peak absorbances of Btrans
(blackb) and Icis (green 9). Fits with monoexponential kinetic models
are also shown with black lines. (B) Spontaneous relaxation of Icis in the
dark at 100 K yields a second intermediate (Bcis,LT, blue line). Inset:
evolution of the peak absorbances of Icis (greenb) and Bcis,LT (blue9).
Fits with monoexponential kinetic models are also shown with black
lines. (C) A subsequent increase in the temperature (100 K f 240 K)
transforms Bcis,LT into ABcis (mixture of Acis,RT and Bcis,RT, red line) at
∼180 K. Inset: rise of the absorbance band of the neutral chromophore
during temperature elevation. In panels A-C, intermediate spectra are
shown as thin lines. (D) Emission spectra of Padron in Btrans (black line),
Icis (green line), Bcis,LT (blue line), andABcis (red line). Excitation at 488nm
(2.5 mW/cm2). Inset: Padron reversible photoswitching at 100 K upon
alternate actinic irradiation at 532 nm (1.2 kW/cm2, green bars) and
405 nm (0.03 kW/cm2, violet bars) and with excitation at 488 nm (2.5
mW/cm2). All spectra except intermediate spectra in (C) were collected at
100 K. Absorbance spectra were normalized at 280 nm. Spectra recorded in
solution are presented in Figure S4. Fluorescence spectra were normalized
according to the results in solution.

Figure 2. Low-temperature chromophore isomerization in Padron.
Crystal structures in states Btrans (nonfluorescent, white color) and Icis
(fluorescent, green color) are shown, with the chromophore and key
residues of the chromophore pocket (except Arg66, omitted for clarity)
represented in ball-and-stick mode and the protein matrix in cartoon
mode. Isomerization is evident from the experimental difference elec-
tron density map (yellow,�4.5σ; blue, +4.5σ) computed from data sets
recorded on the same crystal before and after actinic illumination at
532 nm at 100 K.

http://pubs.acs.org/action/showImage?doi=10.1021/ja207001y&iName=master.img-000.jpg&w=220&h=216
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reveals relaxation of Bcis,LT to the mixture of the neutral (Acis;
λabs = 396 nm) and anionic (Bcis; λabs = 502 nm) species of the
chromophore normally observed at room temperature in the
Padron on state. The structural similarity of Bcis,LT and the
on-state mixture ABcis at the resolution of our diffraction data
(2.35 Å) suggests that the relaxation process does not involve
pronounced conformational rearrangements, although dynami-
cal breathing must be required for efficient proton transfer
(probably from the bulk solvent) following isomerization, in line
with recent proposals.7

A proposed model for off�on photoswitching in Padron is
recapitulated in Figure 3. This model brings new insight into the
photoswitching mechanisms in RSFPs. First, photoswitching has
to date been described as correlated changes in chromophore
protonation and isomerization,5,9�11 but the interplay between
these two changes has remained debated.12�17Our data strongly
suggest that in the case of Padron, protonation of the benzylidene
moiety of the chromophore is not needed in the process of
chromophore trans�cis isomerization but rather follows that
step. Different scenarios might hold in other RSFPs. Second,
the occurrence of chromophore isomerization in Padron at
cryotemperatures, which involves a much larger displacement
than in other photoreceptors,18,19 is remarkable in terms of
protein dynamics and is unique among RSFPs. In Dronpa (see
Figure S8 and the discussion in the SI),10 mTFP0.7,9 and
IrisFP,11 cis�trans isomerization involves major conformational
rearrangements of residues Glu144, His193, Glu211, and Arg66
(Padron numbering), all situated in the lower half of the
chromophore pocket. These structural changes are incompatible
with the essentially stalled protein dynamics at 100 K. In contrast,
Padron seems to be tuned in such a way that isomerization may
occur in the upper half of the pocket, involving only subtle
motions of Met59 and the neighboring protein scaffold, compa-
tible with low-temperature protein dynamics. The positively
switchable RSFP asFP595 also exhibits only minor conforma-
tional rearrangements upon chromophore isomerization,5 and it
will be interesting to investigate the cryoswitching properties of
this protein, particularly in view of the anionic-to-zwitterionic
activation mechanism suggested by theoretical investigations.20

The possibility of photoactivating Padron at cryotemperatures
opens the door to the development of cryonanoscopy, which
would offer a number of advantages, including reduced photo-
bleaching, sample preservation, freeze-trapping of transient cellu-

lar states, and potential correlative light cryoelectron microscopy
studies. Furthermore, brighter fluorescence activation is obtained
than at ambient temperature, since no fluorescence loss follows
from substantial chromophore protonation as observed upon
photoswitching at room temperature and at physiological pH.
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Materials and Methods 

Expression and purification 

Padron was expressed in Escherichia coli (strain BL21). The bacterial culture was grown 

at 310 K to OD600 nm = 0.6. Overexpression was induced by adding 0.1 mM IPTG and 

incubating overnight at 295 K. After centrifugation, the cell pellet was resuspended in a 

solution containing 50 mM Hepes (pH 7.5) and 150 mM NaCl, and then lyzed by sonication. 

The His-tagged recombinant protein was purified in two steps, using a pre-packed Talon 

metal affinity column (Clontech Laboratories, California, USA) and then a Hiload 16/60 

Superdex 200 gel-filtration column (GE healthcare, Pennsylvania, USA). Fractions suitable 

for spectroscopic characterization and crystallization trials were concentrated to 0.8 mM in 

50 mM Hepes (pH 7.5).  

Crystallization  

Micro-crystals were first grown at 293 K by the hanging drop method, using 500 mM 

Mg(NO3)2, 50 mM Hepes (pH 7.5), 26%  PEG 3350 as crystallization buffer. Crystallization 

drops were prepared by mixing 1 L of protein solution with 2 L of the crystallization 

buffer. Optimized crystals were then obtained by micro-seeding in the same buffer, except 

that a reduced amount of PEG 3350 was used (16%). The orange colored crystals displayed a 

rhombohedral shape with typical dimensions 30  30  70 µm3.  
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Cryoprotection 

For optical spectroscopy, crystals were rapidly transferred to a cryoprotectant solution 

(20% glycerol, 500 mM Mg(NO3)2, 50 mM Hepes (pH 7.5), 24% PEG 3350) before being 

flash-frozen in gaseous nitrogen at 100 K. For X-ray diffraction, crystals were directly frozen 

in liquid or gaseous N2, as glycerol was found to deteriorate the quality of diffraction. 

Residual ice formation did not pose a problem for successful processing of the diffraction 

data, but had to be completely avoided to record high-quality optical spectra.  

For solution spectroscopy, thin films (~20 µm thickness) of Padron solution (0.05 – 

5 mM) containing 33% glycerol were rapidly frozen in gaseous N2 at 100 K.  

 

X-Ray data collection 

X-ray diffraction standard data sets were collected at the European Synchrotron 

Radiation Facility (ESRF) on beamlines ID14-2 and ID23-2, with an ADSC Q4 (ADSC, 

California, USA) and a MarCCD detector (Rayonix, Illinois, USA), respectively. Time-

resolved data-sets were collected at the Swiss Light Source (SLS) at the beamline X10SA, 

taking advantage of the high-speed PILATUS pixel detector. Diffraction experiments on 

ID14-2 and X10SA were combined with online microspectrophotometry1,2 to allow crystal 

photo-activation and/or spectroscopic monitoring (Figure S2) by UV-vis absorbance 

measurements.  

Atomic coordinates and structure factors amplitudes of Padron in states Btrans, ABcis and 

Icis have been deposited in the Protein Data Bank (www.pdb.org) under the PDB accession 

codes 3ZUF, 3ZUJ and 3ZUL. 

Although Padron is essentially nonfluorescent in its native state, all crystals or solution 

samples were first illuminated by 405 nm light at room temperature (5 min; 1 W/cm2) to 

ensure a reproducible, fully nonfluorescent, starting state (Btrans,RT). The structure of Btrans was 

obtained upon flash-cooling a crystal some seconds after the illumination at 405 nm. That of 

ABcis was obtained by illuminating a crystal at 405 nm and then at 514 nm (5 min; 

0.3 W/cm2) at room temperature prior to flash-cooling. Except for the chromophore isomeric 

state and the conformation of Met59, both structures display a very similar chromophore 

environment, and show an overall RMSD of 0.54 Å (all atoms) over the 6 monomers in the 

asymmetric unit. Comparisons of Padron (this work) and Padron0.9 (ref 3) structures in their 
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bright and dark states reveal no significant modifications (RMSD of 0.30 Å and 0.32 Å for 

Btrans and ABcis over all atoms, respectively, for chain A). 

Several diffraction data sets from Icis, Bcis,LT or mixtures thereof were collected at ESRF 

and reproducibly showed the same structural change of the chromophore. Crystals were first 

frozen in gaseous nitrogen after 405 nm illumination, and then illuminated at 523 or 532 nm 

(1 to 12 min; 0.2 to 10 kW/cm2). In view of the relatively short Icis  Bcis,LT relaxation time 

observed in crystals at 100 K by spectroscopy, it is likely that, due to the slower detector 

readout times, diffraction data sets collected at ESRF corresponded to a mixture of the two 

states. Thus, we took advantage of the high-speed PILATUS pixel detector available at SLS, 

achieving the necessary time resolution (2 min / data set), to unambiguously prove that the 

chromophore in Icis adopts a cis configuration. Three data sets were collected on a unique 

crystal, using the same procedures as described above. A first structure of Btrans was collected, 

and, immediately after actinic illumination at 100 K at 523 nm (1 min; 2 kW/cm2), a second 

data set was collected (Icis). A third data set was collected 40 minutes after relaxation in the 

dark (Bcis,LT). Experimental difference electron density maps of the form (Fobs-Fobs) between 

Btrans and Icis and between Icis and Bcis,LT were calculated with the CCP4 suite,4 using phases 

from the Btrans structure and Bayesian q-weighting of the difference structure factor 

amplitudes.5  

The absorbed dose per diffraction data set collected at SLS was calculated to be 2.0 MGy 

using RADDOSE.6 The total dose absorbed during the 3 successive data collections was thus 

6.0 MGy, corresponding to ~20 % of the Garman limit.7 No degradation of the diffraction 

quality of the crystal could be noticed between the first and the third data set. Similar 

absorbed doses are typical of data sets collected at ESRF ID14-1. A control experiment 

performed on the latter beamline showed no structural changes of the trans chromophore 

between two successive data sets collected on the same non-illuminated crystal (not shown). 

These data unambiguously show that chromophore isomerization is triggered by green light at 

100 K in Padron, and that this is not an X-ray induced radiation damage effect.  

As no significant difference electron density between Icis and Bcis,LT could be observed at 

the resolution of the data collected at the SLS, we decided to use the higher resolution ESRF 

data to refine a model of Icis, even though these data might be contaminated by a fraction of 

Bcis,LT.  
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All crystallographic data sets were integrated and scaled with XDS.8 Data collection 

statistics are compiled in Table S1. Phases of Dronpa’s structure (2Z1O) were used to 

construct a starting model of Padron, using PHASER.9 Model refinements were performed 

with PHENIX,10 using simulated annealed maps11 to avoid introducing model bias. 

Refinement parameters are summarized in Table S2.  

Figures 2, S1, S2, S8 were prepared with Pymol.12 
 

Microspectrophotometry setup 

Absorption and fluorescence emission spectra from Padron crystals and thin films 

solution samples were recorded using microspectrophotometry setups. All samples were 

mounted with standard cryoloops, except solution samples at room-temperature which were 

mounted in a polyacrylamide gel maintained between two cover-slips to minimize protein 

diffusion effects during the measurements. For off-line measurements, spectra were collected 

using a CCD based spectrometer (AvaSpec-ULS2048, Avantes, Eerbeek, the Netherlands). 

An ensemble of collimators, mirrors, beam splitters and dichroic filters allowed coupling 

lasers at 405, 523 532 nm (DPSS lasers, Chagchun New Industries Optoeletronics Tech, 

Changchun, China) and 488 nm (Argon ion laser, Melles Griot, Albuquerque, USA) and/or a 

broadband halogen-deuterium source (AvaLight-DH-S-BALL, Avantes, Eerbeek, the 

Netherlands) into a 200 µm diameter optical fiber which was connected to a reflecting 

objective of magnification ratio 1:4, yielding an illumination area on the sample of ~50 µm 

diameter. Transmitted or emitted light was collected by a second identical objective, placed 

opposite the first relative to the sample position, and connected to a 100 µm diameter optical 

fiber so as to guide light to the spectrometer.13 Notch filters were used to filter out transmitted 

laser light. Samples were cooled by a nitrogen gas cryo-stream (Oxford cryostream, Series 

600, Oxford, UK) allowing adjustment of the temperature from 100 to 300 K.  

Btrans  Icis quantum-yield calculation  

The quantum yield for the photoactivated step of Padron cryo-switching (Btrans  Icis) 

was calculated with solution samples based on absorbance timecourses such as reported in the 

inset of Figure 1A. The buildup kinetics of Icis (absorbance at 483 nm) was fitted with a 

mono-exponential model. The quantum yields ĭ was obtained from: 
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10ln
  P

NShc Av

 

 

with Planck constant, h, speed of light, c, sample cross section, S, Avogadro constant, NAv, 

inverse rate constant , effective laser power, P, wavelength, Ȝ, and extinction coefficient, İ.  

Icis  Bcis,LT activation free energy calculation 

To estimate the activation free energy barrier separating Icis from Bcis,LT,  Icis was first 

populated by light in solution samples, and then spectral series were acquired during 

spontaneous relaxation to Bcis,LT in the dark and at different temperatures. The decay of the 

483 nm absorbance was fitted by a mono-exponential model, and the activation free energy 

G* was obtained from an Arrhenius plot (Figure S6), considering only the linear range 

between 120 and 160K (see below).  

 

Spectroscopic data analysis 

Spectroscopic data were processed using homemade routines based on the IDL software 

(Boulder, CO). Absorption spectra were corrected for backround using a polynomial baseline 

subtraction. Model fitting was performed with Origin (OriginLab, Northampton, USA).  

Fluorescence emission measured in crystals is difficult to quantitatively assess due to the 

very high protein concentration which typically results in nonlinear responses due to e.g. 

inner-filtering effects. Thus, proper normalization of fluorescence spectra in crystals is not 

reliable (Figure 1D) and we chose to scale them according to solution data.  


Spectroscopic results on solution samples 

The cryo-photoswitching properties of Padron obtained in crystals (Figure 1) was 

reproduced in solution samples (Figure S4) so as to show that they are not specific to the 

crystalline state. However, we noticed a slight difference in the temperature dependence of the 

Icis  Bcis,LT step between the two phases. The activation free energy barrier for that step 

measured in solution appeared somewhat higher than in crystals. The Icis  Bcis,LT relaxation 

in solution samples was very slow and only partial at 100 K and started to proceed more 

efficiently at ~120 K, ie ~20 K higher than in crystals. As a consequence, the Icis intermediate 
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could be populated at 100 K to a much higher degree than in crystals, and its signature could 

be better characterized (Figure S4A). This difference might relate to the different solvent 

composition between the two types of samples, and/or result from some conformational 

selection occurring in the crystal. Probably due to the subtle protein dynamics involved, 

relating to the organization of the conformational landscape in tiers,14 the Icis  Bcis,LT 

relaxation did not follow an Arrhenius behaviour over the whole tested temperature range 

(100 - 180 K). A transition in Padron protein dynamics seems to occur at ~120 K under our 

experimental conditions (Figure S4E). At temperatures significantly higher than 120 K, Icis 

decays more rapidly than it is formed and thus cannot be observed anymore (Figure S4C). At 

220 K, above the glass transition temperature, chromophore protonation occurs readily and 

Bcis,LT cannot be observed anymore (Figure S4D).  

In summary, comparison of spectra collected in crystalline and solution phases strongly 

suggest that the cryo-photoswitching pathway identified in crystallo, also occurs in solution 

and involves the same intermediate states. 

Off-on photoswitching of Padron at room temperature is typically performed by 

employing actinic light at 488 nm. Instead, we used 523 or 532 nm light in our mechanistic 

investigations at cryo-temperature. This was justified by the need to uniformly excite the high 

optical density crystals. Also, the observation of Icis is compromised if 488 nm light is used, 

due to the photosensitivity of the intermediate at this wavelength. Nevertheless, 

photoactivation of Padron at 488 nm at 100 K remains possible, although at a slow rate 

(Figure S4G). We propose that at room temperature, the lifetime of Icis is so short that, at the 

typical laser powers used, photo-induced back-switching to Btrans is unlikely, making the 

activation process efficient. 

 

Details on the low-temperature Padron photocycle.  

In order to better understand the low-temperature Padron photoswitching cycle (inset of 

Figure 1D), we addressed the following questions: (i) What is the origin of the relatively poor 

switching contrast ? (ii) Is a protonated species involved in fluorescence back switching ?  

(i): A reduced switching contrast would be expected if, in addition to Btrans and Icis, Bcis,LT 

would be involved in the photocycle. In the crystalline state, illumination of Icis at 100 K at 

405 nm mostly returns the sample to Btrans (Figure S5A), but the progressively reduced 

fluorescence off-switching (Figure 1D, inset) suggests that a fraction of Bcis,LT also builds up. 
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The involvement of Bcis,LT appears clearer in solution, where Icis still completely vanishes 

upon illumination at 405 nm, while fluorescence decays only marginally (Figure S5B and C). 

Note that, after illumination at 405 nm, the absorption spectrum slightly differs from that of 

Btrans, showing a narrower main band (Figure S5B). This is consistent with a large fraction of 

Icis being transformed into Bcis,LT. In addition, Bcis,LT can apparently be transformed back into 

Btrans by illumination at 405 nm, maybe via Icis, or directly (Figure S5D). Overall , the data are 

consistent with a model in which the low-temperature Padron photocycle involves three 

species, two of which being fluorescent. 

Btrans  Icis  Bcis,LT 

Depending on the inter-conversion rates between Btrans and Icis on the one hand, and between 

Icis and Bcis,LT on the other hand, at the used wavelengths, this model results in a progressive 

buildup of Bcis,LT along switching cycles, accounting for the observed limited contrast and for 

the fact that several cycles are needed to establish a steady-state (we verified this by computer 

simulations). The inter-conversion rates seem to depend on the experimental conditions 

(solution versus crystalline phase), explaining why substantially superior switching contrast 

can be achieved in crystals as compared to solution samples. 

(ii) The fact that fluorescence back-switching is most efficient by employing 405 nm 

light (a wavelength typically absorbed by neutral chromophores) could suggest that a 

protonated chromophore species is involved in the process. However, three arguments argue 

against this hypothesis: 1/ Absorbance data collected on a thick crystal (Figure S5E) show no 

sign of a significant protonated band developing along the switching process. 2/ Fluorescence 

photoswitching can as well be achieved by employing 473 nm instead of 405 nm light, 

although the switching contrast is lower (Figure S5F). 3/ Illumination at 405 nm at 100 K of 

the neutral band of ABcis irreversibly depletes this band and results in a fluorescence increase 

rather than a decrease (not shown).  

Strictly speaking, however, we cannot completely exclude the possibility that a neutral 

species (that would be non-rate limiting and in fast equilibrium with Icis) be involved in the 

back-switching process. It could be conceived that illumination with 405 nm light depletes Icis 

to Btrans via this state. A more detailed study of the cryo-photoswitching cycle of Padron goes 

beyond the scope of the present paper. 
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Laser induced temperature elevation 

The adiabatic temperature rise of the crystals in the laser beam was estimated to be less 

than 10 K, assuming that the crystal was made of pure water and based on mCET abs /  

with Eabs the laser energy absorbed by the crystal, m the number of moles of water in the 

crystal volume and C the molar heat capacity of water (C = 75.3 JK-1mol-1). 

Although absorption of a single photon is expected to instantaneously raise the 

temperature of the chromophore by several hundreds Kelvins, molecular dynamics 

simulations carried out previously on other light-sensitive proteins15 suggest that this energy 

dissipates throughout the protein matrix on the picosecond timescale. Therefore, large-scale 

conformational motions that, typically, require much longer times to occur at room 

temperature, are believed to have no chance to take place in the frozen sample. Thus, our low-

temperature data are unlikely to be affected by this effect. This is also substantiated by our 

results on Dronpa (see below). 

 

Comparative studies on Dronpa 

For comparative purposes, a similar experimental approach as that yielding Icis in Padron 

was used on the negatively photoswitchable fluorescent protein Dronpa, except that in this 

case the crystals were not pre-illuminated at 405 nm and illumination was performed at 

521 nm for 3 minutes at 16 kW/cm2. In agreement with our previous findings by 

spectroscopy, which suggested only minor photoinduced protonation of the chromophore 

under such conditions,16 diffraction data sets collected at ESRF revealed no chromophore 

isomerization at cryo-temperature (Figure S8). 

 

Molecular dynamics simulations 

Trans-cis isomerization of Padron at low temperature 

From a molecular point of view, the photoisomerisation process requires three steps: 

first, a twist about the Imidazolinone (I) bridge bond of ± 90° induced by the S1 state energy 

profile; note that (I-bond dihedral angle) values equal to ± 90° correspond to S1 energy  

minima17,18 so the rotation should stop there. The second step involves a non-radiative ground 

state recovery. Then in the third step, the electronic driving force of the S0 state energy profile 
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tends to restore a planar geometry either in the cis or in the trans conformation depending of 

the I-bond angle value at the non-radiative process. 

We examine here if Btrans Padron is likely to allow that process by means of molecular 

dynamics simulations and energy interaction calculations. 

 

Molecular dynamics (MD) details 

The starting coordinates were taken from the Btrans crystal structure. The different 

protonation states of the triad Glu211, His193, Glu144 have been considered in MD 

simulations of the ground state. Only the combination neutral Glu144, neutral His193 

(protonated on the  nitrogen) and anionic Glu211 preserves essential X-ray structural 

features: i) the complete hydrogen bond network of the chromophore and between the triad 

residues, ii) the absence of -stacking between His193 and the chromophore phenolate ring. 

This protonation state is also the one proposed by Brakeman et al
3 on the basis of the 

chromophore pK properties.  

MD simulations of Btrans Padron excited state were performed using a specific intra 

chromophore potential for the S1 excited state recently developed and implemented17 in the 

parallel processing PMEMD module of the AMBER suite.19 This potential includes a 

coupling between the and(phenolate bridge bond) angles an important feature for 

describing how the chromophore might snake from the cis to the trans conformation inside 

the protein. In addition, this implementation allows the removal or the scaling of specific non-

bonded interactions (van der Waals or electrostatic) between specified atom pairs of the 

chromophore and/or the protein along the dynamics, a feature allowing to explore the effect of 

removing given H bonds.  

The AMBER 1999 force field “ff99” was used for all standard amino-acids. The force 

field of the anionic chromophore in its electronic ground state and the MD protocol are 

described elsewhere.17 

 

MD results 

A 10 ns-long MD simulation of Btrans Padron in the ground state at low temperature (100 

K) confirms strong permanent hydrogen bonds anchoring the chromophore (the phenolate 

oxygen atom H-bonded to Tyr159 and Wat9 and the imidazolinone carbonyl oxygen atom H-

bonded to Arg91 and Arg66). Ground state geometries were sampled as starting coordinates 
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for 30 excited state MD simulations in order to deepen the understanding of the isomerisation 

process. In all simulations, a  twist occurs within a few picoseconds: a  angle near -70° is 

reached (  = -71 ± 4°  and  = 0 ± 7°) after a time interval of 0.2 to 16 ps (average value of 3 

ps). The  twists occur exclusively in the upper half of the chromophore pocket, i.e. in the 

opposite side of the triad Glu144 – His193 – Glu211. In the twisted geometries, the 

chromophore hydrogen bond network is preserved, including unexpectedly the H-bonds of the 

phenolate oxygen to Tyr159 and Wat9. These hydrogen bonds have a strong hold on the 

chromophore, keeping it from reaching a completely perpendicular geometry (see Figure S3). 

In addition, we have found that twisted geometries beyond the perpendicular one can indeed 

be reached by removing the non-bonded interactions that give rise to these two H-bonds.  

The possibility of an actual weakening of these non-bonded interactions has been tested 

by running MD simulations at 300K. It then appears that the two H-bonds with Tyr159 and 

Wat9 actually diseappear during 2% of the time. 

The loss of these H-bond is probably related to a collective motion of the protein. Indeed, 

Wat9 is H-bonded to Ser155 and Thr175 located on strands 2 and 3 respectively.3 If these 

strands move away from the -helix, one H-bond of Wat9 (either to Ser155 or Thr175 or the 

chromophore) is cut. Such collective motions have already been mentioned for GFP.17 One 

may wonder if these collective motions occur at 100 K. The answer cannot be easily obtained 

by MD simulations. But it can be noted that if they still exist, they would rarely reach 

sufficient amplitude and this is not in contradiction with the low rate of isomerisation 

observed experimentally at low temperature. 

It is also worth mentioning that the fast twisting dynamics observed in all simulations 

agrees with the short fluorescence lifetime of the trans conformer, since the green 

fluorescence emission is strongly dimed by the twist.20 

The third step of the isomerisation has been investigated by increasing step by step the  
angle to 180° (cis conformation) in a given snapshot (where | |~75°) with no relaxation of 

the cavity. This approach was used instead of a MD simulation because no realistic 

conformation with | | > 90° was found.  

While forcing the return to the cis isomer, a strong clash occurs with Met59 when the  
torsion reaches 120°. It involves a close contact between the chromophore and the S atom of 

Met59; but the Met59 side-chain is flexible and may twist as observed in the non-relaxed Icis 

X-ray structure. A weakly unfavorable interaction occurs between His193 and the 



 11

chromophore near the cis conformation (||~180°). This is due to a slight displacement of 

His193 in the twisted and excited conformation from its position in the Btrans structure but also 

to the frozen geometry of the cavity in the present calculations. Small adjustments of His193 

and of the chromophore geometry should bypass this situation while promoting a stabilizing 

-stacking.  

On the whole, the molecular dynamics simulations are consistent with the experimental 

observations, despite the fact that the whole isomerization cannot be easily observed in the 

computer due to the low isomerization rate. 
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TABLE S1. Crystallographic data collection statistics  
 

  On (Icis) On (ABcis) Off (Btrans) On (Icis) On (Bcis,LT) Off Btrans 

Space group P 21212  

Average unit cell a = 107.78 Å, b = 180.52 Å, c = 72.17 Å  

Beamline ESRF / ID14-2 ESRF / ID14-2 ESRF / ID23-2 SLS / X10SA SLS / X10SA SLS / X10SA 

Wavelength, (Å) 0.933 0.933 0.873 0.999 0.999 0.999 

Resolution, (Å) 50.00 - 2.30 50.00 - 2.34 50.00 - 2.20 50.00 - 2.60 50.00 - 2.68 50.00 - 2.60 

No. uniq. reflections 64825 [10220] 61045 [9666] 73775 [11565] 205376 [29184] 165854 [26404] 236814 [34381]

Redundancy 4.4 [4.3] 5.2 [5.3] 3.5 [3.3] 3.8 [3.8] 3.80 [3.80] 3.9 [3.9] 

Completeness, (%) 99.4 [98.4]  98.8 [98.3] 98.4 [96.9]  95.9 [99.3]  93.7 [99.3] 97.0 [99.2]  

Rsym, (%)‡   11.3 [50.1] 7.0 [32.2] 7.8 [41.7] 16.7 [44.4] 18.0 [61.8] 16.6 [43.0] 

Mean I/ı(I) 12.4 [3.1] 19.9 [5.3] 13.42 [3.5] 5.60 [2.52] 5.45 [1.71] 5.58 [2.76] 

Wilson B factor, (Å
2) 29.20 31.87 35.80 49.84 51.02 46.41 

 

            Numbers in brackets refer to the last resolution shell.  

       ಴   
j hj h jh,hjh,sym I I -IR    

 

 
TABLE S2. Model refinement statistics 
 

  On (Icis) On (ABcis) Off (Btrans) 

Rwork (%) # 0.21 0.19 0.20 

Rfree (%) ǻ 0.25 0.30 0.24 

Mean B value, (Å²) 23.90 26.50 32.90 

RMSD bond length, (Å) 0.01 0.01 0.02 

RMSD bond angles, (°) 1.24 1.26 1.55 

Chro. Planarity,(°) $    

chain A  168.9, -1.4 173.8, 3.8 -16.3, 0.6 

chain B  167.5, -2.7  174.9, 3.3 -16.7, 1.5 

chain C  170.2, -2.6 177.4, 4.1 -20.7, 2.1 

chain D  167.4, -3.2 175.2, 3.8 -18.7, 1.7 

chain E  162.5,-2.6 174.5, 2.9 -23.4, 1.6 

chain F  170.3, -3.6 177.3, 3.4 -23.1, 2.7 

Ramachandran statistics (%) §    

allowed 99.2 99.3 99.1 

outliers 0.1 0.2 0.0 
 

# .FFF = R h h obscalobswork     

ȴ Rfree is calculated with a small fraction (5 %) of reflections chosen to be part of a test group. 
 $ Chromophore planarity was assessed by measurement of the average dihedral angles  and linking atoms N2-

CA2-CB2-CG2 and CA2-CB2-CG2-CD2, respectively.  
                § Determined by PHENIX.10          
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Figure S1: Room-temperature chromophore isomerization in Padron. Crystal structures of Padron in 
the nonfluorescent off-state B

trans
 (white) and fluorescent on-state ABcis (blue). A: zoom on the 

chromophore pocket. B and C: overall views from the side and the top of the -barrel, respectively. 
Key residues of the chromophore pocket (except Arg66 , omitted for clarity) are represented in ball 
and stick mode, and the protein matrix in cartoon mode. Water molecules are shown as red balls.  



 14

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 

Figure S2: Overall view of the structural differences between Btrans and Icis. Crystal structures of 
Padron in the non-fluorescent off-state Btrans (white) and intermediate fluorescent state Icis (green) are 
shown. A, B and C: similar representations as in Figure S1. The experimental difference electron 
density map (yellow, -4.5ı; blue, +4.5ı) computed as described in the legend of Figure 2 is shown 
over the whole structure of Padron monomer A. Difference electron densities on Met93, Met59 and 
Ile195 witness the slight conformational change undergone by the protein under cryo-
photoisomerization. No other significant difference electron density appear elsewhere, highlighting the 
satisfactory quality of the diffraction data. D: Formation of Icis in crystallo monitored by online 
microspectrophotometry on the ESRF ID14-1 beamline, before (black) and after (green) Padron 
illumination at 521 nm at 100 K. Data sets used for refinement were collected on different crystals 
treated with similar cryo-illumination protocols. 

D ) 
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Figure S3:  The hydrogen bond network in the vicinity of the phenolate oxygen of the Padron 
chromophore (green carbon atoms). The Btrans geometry (left) and the excited state twisted geometry 
(right) are shown. H-bonds are represented by blue dashed lines. 
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Figure S4: Spectroscopic properties of Padron along its off-on photoswitching pathway recorded in 
solution. (A, B, C, D) Absorbance spectra recorded at different temperatures, normalized at 280 nm. 
(A) Illumination at 532 nm (1.6 kW/cm2) at 100 K of the Padron off state (Btrans, black line) yields a first 
intermediate (Icis, green line). Inset: absorbance spectrum of the pure Icis (green), crudely obtained by 
subtracting a fraction of Btrans from the green spectrum in the main panel, and compared to that of Btrans 
(black). (B) Spontaneous relaxation of Icis in the dark at 100 K yields a second intermediate (Bcis,LT, 
blue line). However, the relaxation is incomplete and slow. (C) At 170 K, Btrans is rapidly transformed 
into Bcis,LT and Icis does not build up to a significant population. (D) At 220 K, above the glass transition 
temperature, Btrans is readily transformed into ABcis (mixture of Acis,RT and Bcis,RT, red line). At this 
temperature, neither Icis not Bcis,LT build up to significant populations. (E) Evolution of absorbances at 
504 nm (black dots) and 390 nm (red squares) during the spontaneous relaxation of Icis during 
temperature ramping (6 K/min) in the dark. Icis was light-induced at 100 K. (F) Emission spectra of 
Padron in Btrans (black line), Icis (green line), Bcis, LT (blue line) and Bcis (red line). Excitation at 
488 nm (2.5 mW/cm2). The observed red shifts as compared to the spectra collected in crystallo (see 
Figure 1D) are attributed to the effect of the crystallization medium in the latter spectra. (G) 
Photoactivation of Padron at 488 nm at 100 K (0.36 kW/cm²).  
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Figure S5: Mechanism of low-temperature Padron reversible photoswitching. (A) Absorbance spectral 
changes upon conversion from Icis (green), mostly into Btrans (black), upon illumination at 405 nm at 
100 K in the crystalline state. The curve is essentially the reverse of Figure 1A. (B) Similar data 
recorded in solution at 120 K. The absorbance spectra before illumination (black), after illumination at 
532 nm (blue) and after subsequent illumination at 405 nm (red) are shown. Inset: detailed comparison 
between the initial and final absorbance spectra, suggesting a substantial formation of the narrower 
(and slightly red-shifted) absorption band from Bcis,LT. (C) Padron photoswitching at 120 K in solution, 
upon alternate actinic irradiation at 532nm (green bars) and 405 nm (violet bars) and with excitation at 
488 nm. (D) Decay of fluorescence upon illumination of Bcis,LT with 405 nm light, recorded on a cystal. 
Bcis,LT was formed by illumination of a frozen crystal at 532 nm followed by transient excursion at 140K. 
(E) Details of absorbance spectra collected on a thick crystal upon alternate excitation at 100 K with 
green and violet lights. The starting spectrum is shown in black, spectra obtained after 405 nm 
illumination are shown in red and spectra obtained after 532 nm illumination are shown in blue. No 
absorption band from a neutral chromophore species seems to be present. (F) In crystallo Padron 
photoswitching at 100 K, upon alternate actinic irradiation at 532nm (green bars) and 473 nm (cyan 
bars) and with excitation at 488 nm. A reduced switching contrast is achieved (compare with inset of 
Figure 1D). Note the fluorescence increase during the first illumination at 473 nm, suggesting a strong 
sensitivity of Btrans to this wavelength. 
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Figure S6: Photoactivation of Padron occurs via a 1-photon absorption process at low to room 
temperature. A) At 100 K, the photoactivation rate reports on the buildup of Icis (actinic laser at 532 
nm). B) At room temperature, the rate reports on the buildup of ABcis (actinic laser at 488 nm). In both 
cases the excitation wavelength was 488 nm. Rates (1/) were calculated by fitting the rise of 
fluorescence emission (510-530 nm band) with a mono-exponential kinetic model. Solid red lines show 
the slopes best fitting the data. Relatively low power densities were used to allow fine sampling of the 
photoactivation process with the limited time-resolution of our spectrometer.        
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Figure S7: Arrhenius representation of the thermally-induced relaxation of Icis to Bcis,LT. The logarithm 
of the relaxation rate IcisĺBcis,LT is reported as a function of the inverse temperature. The plotted rates 
k were obtained by fitting the decay of Icis (501-507 nm absorbance band) during relaxation in the dark 
by a stretched exponential model. The solid red lines show the slope best fitting the data for two 
temperature windows where the reaction appears to show a linear behavior. 
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Figure S8: Crystal structure of Dronpa recorded under similar experimental conditions as that yielding 
Icis in Padron. The structure of Dronpa in its fluorescent on-state is shown in white and the structure 
obtained upon actinic illumination at 100 K with 521 nm laser light is shown in brown. No significant 
differences can be seen between the two structures. 
 

 


