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Abstract

Intersections are the most complex and dangerous areas of the road network. Statistics show that

most road intersection accidents are caused by driver error and that many of them could be avoided

through the use of Advanced Driver Assistance Systems. In this context, vehicular communications are

a very promising technology. The sharing of information between vehicles over wireless links allows

vehicles to perceive their environment beyond the field-of-view of their on-board sensors. Thanks to

this enlarged representation of the environment in time and space, situation assessment is improved

and dangerous situations can be detected earlier.

This thesis tackles the risk estimation problem from a new perspective: a framework is proposed

for reasoning about traffic situations and collision risk at a semantic level, while classic approaches

typically reason at a trajectory level. Risk is assessed by estimating the intentions of drivers and

detecting conflicts between them, rather than by predicting the future trajectories of the vehicles

and detecting intersections between them. More specifically, dangerous situations are identified by

comparing what drivers intend to do with what drivers are expected to do according to the traffic rules.

The reasoning about intentions and expectations is performed in a probabilistic manner, in order to

take into account sensor uncertainties and interpretation ambiguities.

This framework can in theory be applied to any type of traffic situation; here we present its application

to the specific case of road intersections. The proposed motion model takes into account the mutual

influences between the maneuvers performed by vehicles at an intersection. It also incorporates

information about the influence of the geometry and topology of the intersection on the behavior

of a vehicle. The approach was validated with field trials using passenger vehicles equipped with

Vehicle-to-Vehicle wireless communication modems, and in simulation. The results demonstrate that

the algorithm is able to detect dangerous situations early and complies with real-time constraints.

iii





Résumé

Les intersections sont les zones les plus dangereuses du réseau routier. Les études d’accidentologie

montrent que la plupart des accidents aux intersections sont causés par des erreurs des conducteurs, et

qu’une majorité d’accidents pourraient être évités grâce à l’utilisation de systèmes d’aide à la conduite.

Dans ce cadre, les communications inter-véhiculaire sont une technologie particulièrement promet-

teuse. Le partage d’informations entre les véhicules via des liens sans fil permet à chaque véhicule de

percevoir son environnement au-delà des limites de champ de vision de ses capteurs embarqués. Il

en résulte une représentation de l’environnement plus étendue dans l’espace et dans le temps, ce qui

améliore la compréhension de situation et permet d’anticiper le danger.

Cette thèse aborde le problème de l’estimation du risque sous un angle nouveau : elle propose une

structure de raisonnement pour analyser les scènes routières et le risque de collision à un niveau

sémantique, contrairement aux approches classiques qui raisonnent au niveau des trajectoires. Le

risque est calculé en estimant les intentions des conducteurs et en détectant les conflits, sans avoir à

prédire les trajectoires futures des véhicules. Plus précisément, la détection des situations dangereuses

est basée sur la comparaison entre ce que les conducteurs ont l’intention de faire et ce que les conducteurs

devraient faire d’après les règles de la circulation. Ce raisonnement est réalisé de manière probabiliste

afin de prendre en compte les incertitudes sur les mesures capteur et les ambigüités sur l’interprétation

de la scène.

En théorie ce raisonnement peut être appliqué à tout type de scène routière ; dans cette thèse nous

présentons son application aux intersections. Le modèle proposé prend en compte l’influence que la

manœuvre d’un véhicule exerce sur la manœuvre des autres véhicules. Il incorpore aussi des informa-

tions sur l’influence de la géométrie et topologie de l’intersection sur le comportement d’un véhicule.

L’approche proposée a été validée par des tests en environnement réel avec des véhicules commu-

nicants, ainsi qu’en simulation. Les résultats montrent que l’algorithme est capable de détecter les

situations dangereuses et qu’il est compatible avec des applications sécuritaires temps-réel.
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Information and communication technologies are an integral part of modern vehicles. There has been

a rapid introduction of navigation maps and exteroceptive sensors, with the underlying objective of

using driver assistance systems to reduce the number of road accidents. Despite major advances in

road safety, accidents at road intersections remain a challenge.

Wireless vehicular communications open new opportunities for safety-related applications and Intelli-

gent Transportation Systems (ITS). The sharing of information between vehicles and the infrastructure

extends the perception horizon of a vehicle, beyond the field-of-view limitations of on-board sensors.

The research contributions described in this thesis address the problem of situation assessment and

risk estimation for road traffic situations, with a focus on safety applications at road intersections and

Vehicle-to-Vehicle wireless communications.
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1.1. Context: connected vehicles for road safety

The remainder of this chapter is organized as follows. Section 1.1 provides the overall context by

describing the issues related to safety at road intersections and the fundamentals of wireless vehicular

communications. The problem is formulated in Section 1.2, including a description of the challenges

tackled by this thesis and a presentation of the classic approaches. Section 1.3 describes the contribu-

tions resulting from this research. Finally, Section 1.4 presents the thesis outline.

1.1 Context: connected vehicles for road safety

This section presents the motivations for using wireless communication between vehicles to improve

safety at road intersections. First, accident statistics are used to identify the context in which acci-

dents typically occur. Next, wireless vehicular communications are presented and their potential for

reducing the number of accidents at road intersections is outlined.

1.1.1 Accidents at road intersections

Accident statistics have been gathered over the years by different governmental and non-governmental

organizations. They are fundamental for the design of safety mechanisms and applications. In this

thesis, we use this information to determine the typical conditions and causes of road intersection

accidents. The sources used are: the World Health Organization [17] for world statistics, the Euro-

pean Road Safety Observatory [18], TRACE project [19], and PReVENT-INTERSAFE project [20] for

statistics in Europe, and the U.S. Department of Transportation [21, 22, 23] for statistics in the U.S..

1.1.1.1 Background

Road safety is a major societal challenge. The World Health Organization (WHO) estimates that the

total number of road accident fatalities is approximately 1.3 million every year, with a further 20 to 50

million injured. Road crashes are the ninth cause of death or disability in the world, and it is predicted

that it will move to the fifth place by 2030.

In Europe 2 million people are injured in road accidents every year, and the number of fatalities is

about 50,000. The cost is estimated at e180 billion a year, or 2.1% of Europe’s Gross Domestic Product

(GDP).

In the U.S. road accidents are the leading cause of death for people between the ages of 4 and 34. The

economic impact of road accidents is estimated by the National Highway Traffic Safety Administration

(NHTSA) at $230.6 billion a year, or 1.6% of the U.S.’s Gross Domestic Product (GDP).
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Chapter 1. Introduction

1.1.1.2 Frequency

Comparatively to their density on the road network, intersections are the location of many accidents.

In Europe in 2004, accidents at intersections represented 43% of all road accidents, 21% of fatalities,

and 34% of the seriously injured (see Figure 1.1).

Figure 1.1. Distribution of road accidents at intersections and out of intersections [1].

These numbers vary across the different countries: in the United Kingdom, more than one third of

the overall road accident fatalities occur at intersections, whereas in Greece fatalities at intersections

are a minority. In the U.S. intersection-related accidents represent more than 20% of road accident

fatalities, and more than 50% of the combined fatal and injury crashes occur at intersections. In Japan

intersection crashes figures are even more devastating: they represent 58% of all road traffic accidents

and 30% of road traffic fatalities.
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1.1. Context: connected vehicles for road safety

1.1.1.3 Context

This section presents statistics on the context in which accidents at road intersections occur.

Road geometry: Most accidents occur at X-shaped intersections (39%), followed by T-shaped and

Y-shaped intersections (25%), roundabouts (5%), and railroad crossings (1%).

Urban/rural areas: Road intersection accidents occur mainly in rural areas (80%).

Traffic control: There is a high variation in the occurrence of accidents at signalized and unsignal-

ized intersections across countries. In the UK 58% of accidents happen at give-way intersections,

while this case represents less than 10% of intersection accidents in France. Accidents at intersections

controlled by traffic lights vary between 20% in the UK and 60% in France. Accidents at intersec-

tions ruled by traffic lights tend to be less severe than the ones at stop or give-way intersections. In

the U.S. 74% of intersection accidents occur at intersections with some type of traffic control device

in place: 46% at intersections controlled by traffic lights, 16% at two-way-stop intersections, 6% at

four-way-stop intersections, and 5% at intersections with some other type of control.

Environmental conditions: Most accidents at road intersections occur in daylight conditions (70%),

with good visibility (85%), and on a dry road (75%).

Involved actors: In most cases accidents at road intersections involve two vehicles (75%). The case

with one pedestrian and one vehicle represents 10% of accidents.

Driver’s age group: Young (or inexperienced) drivers and the elderly are the most often involved in

intersection-related accidents. For persons older than 80, half of fatal crashes occur at intersections.

Driving situation: The vehicle configuration with respect to the intersection layout was studied in

detail in the PReVENT-INTERSAFE project [20]. Figure 1.2 summarizes the results. The scenario

where the two vehicles involved in the accident crossed path (scenario a) is more frequent and more

severe than any other scenario.
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Figure 1.2. Distribution of common accident scenarios in Germany and France [2].
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1.1. Context: connected vehicles for road safety

1.1.1.4 Causes

The causes of accidents at road intersections have been investigated in the TRACE project [19]. Driver

error was identified as being at the origin of 90% of accidents. From the statistics displayed in Fig-

ure 1.3, the major factors are:

• The “internal conditions”: non respect of the regulations, or misinterpretation of the situation.

• The “driver behavior”: typically perception failures. The driver took a quick look, or his attention

was focused on something else than the other vehicle, or he did not look.

• The “driver state”: the driver’s capacities were impaired, e.g. by stress, alcohol, tiredness.

Figure 1.3. Distribution of accident causes [1].

1.1.2 Wireless vehicular communications

The concept of sharing information between vehicles goes back to the 1939 World Fair, where the

Futurama exhibit by General Motor envisioned that communications would make road traffic safer

and more efficient in the future. The sharing of information between vehicles (Vehicle-to-Vehicle com-

munications, V2V) or between vehicles and infrastructure (Vehicle-to-Infrastructure communication,

V2I) allows a vehicle to perceive its environment beyond the limits of the field-of-view of its on-board

sensors. The numerous applications of Vehicle-to-X communication (V2X) for road safety, traffic man-

agement, and sustainable transportation explain the growing interest shown by governments and

vehicle manufacturers.
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In this section, the potential of V2X communications for road safety is addressed. Example V2X-based

safety applications are listed, followed by the functional requirements for these applications and a

comparison of the different wireless communication technologies which could be used for sharing

information between vehicles.

1.1.2.1 The potential of V2X communications for road safety

A study about the trend in the number of road accidents between 1980 and 2000 indicates that passive

safety measures have had a significant impact on reducing the number of road traffic fatalities, as

shown in Figure 1.4.

Measure Accident reduction

Seat belt use 15-20%

Alcohol countermeasures 15-20%

Specific measures for vulnerable road users 30-40%

Actions targeting the infrastructure 5-10%

Education / training / communication 7-18%

Figure 1.4. Impact of passive safety measures on the reduction of the number of accidents

[3].

The introduction of Advanced Driver Assistance Systems (ADAS) in vehicles is expected to prevent an

even larger number of accidents [24]. These electronic systems are designed to help drivers manage

traffic situations safely. Examples of current ADAS are Adaptive Cruise Control, Adaptive Lighting,

Night Vision Enhancement, Lane Departure Detection and Warning, Braking and Stability Control

Assistance.

The potential of V2X-based ADAS should be even greater than standalone ADAS, as shown in Fig-

ure 1.5. The sharing of information leads to a better representation of the environment and to an

extended perception horizon, since the system can “see” beyond the limitations of on-board sensors.

It is estimated that V2X applications may potentially address up to 81% of crash scenarios [25].

The next paragraphs present a list of safety-oriented applications developed using V2X technologies,

starting with general safety applications and then applications specifically designed for road intersec-

tions.

7



1.1. Context: connected vehicles for road safety

Figure 1.5. Expected reduction in the number of accidents, and associated technologies [4].

General safety applications: Numerous safety applications using V2X technologies have been demon-

strated through different projects in Europe, the U.S., and Japan. The example safety applications

presented below are part of the European FOT project DRIVE-C2X and are currently under test [5].

This set of applications focuses on driver warning, and does not consider actions on the vehicle’s

commands such as automatic braking:
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Illustration Description

Approaching emergency vehicle

Wireless communications are used to broadcast messages about

approaching emergency vehicles which claim the right-of-way.

The information can be displayed on the head unit or another

display device and may also be augmented by audio or haptic

signals.

Emergency electronic brake lights

The goal is to avoid rear-end collisions which can occur if a

vehicle driving ahead suddenly brakes, especially in dense

driving situations or in situations with decreased visibility. The

driver will be warned before he is able to realize that the vehicle

ahead is braking hard, especially if he/she does not see the

vehicle directly (vehicles in between).

Slow vehicle warning

This system warns the driver in case of a significant speed

difference with the vehicle in front. The goal is to avoid or

mitigate rear-end collisions.

Motorcycle warning

This system warns the driver if it detects a motorcycle nearby

and the distance between the two vehicles is lower than a

predefined safety margin.
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1.1. Context: connected vehicles for road safety

Road works warning

V2X devices mounted in areas where road works are taking place

send messages to approaching vehicles, warning them of a

potentially dangerous situation.

In-vehicle signage

V2X devices mounted on traffic signs and in critical areas of the

road network send messages to approaching vehicles, warning

them of a potentially dangerous situation.

Car breakdown warning

This function enhances the safety of vehicles by detecting an

upcoming disabled vehicle or by warning other/following cars

that the own car is about to stop. The information is relayed to

vehicles driving towards the location where the incident

occurred.

Obstacle warning

The presence of an obstacle along a road could be detected by a

vehicle’s on-board sensors or entered manually by a driver. This

information is broadcasted to vehicles nearby.

Figure 1.6. Set of applications targeted by the DRIVE-C2X project [5].
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Safety applications at road intersections: A major issue for safety applications at road intersections

is the potential occlusion of part of the scene due to the geometry of the intersection, the presence of

obstacles like trees, buildings, etc. Some of the vehicles can be detected by on-board exteroceptive

sensors like cameras, radars or lasers, but others will be occluded or simply be beyond the field of view

of the sensors. V2X communications do not suffer from this limitation, as illustrated in Figure 1.7.

Figure 1.7. V2X communications (in red) overcome the field-of-view limitations of on-board

sensors (in green) at road intersections.

In the depicted situation, a forward-looking on-board sensor only discloses the presence of the vehicle

in front (red car) while V2V communications detect the cars reaching and leaving the intersection on

the sides. This extended perception horizon is crucial at intersections, where danger could come from

the sides (cross-traffic) as well as from the front and back. One could argue that the same perception

coverage (360°) could be obtained without vehicular communications by equipping vehicles with

several cameras, lasers, or radars, however the cost would be prohibitive.

Another unique feature of vehicular communications is that they provide information which could

never be sensed by on-board perception systems, such as the driver’s actions on the vehicle controls

(e.g. accelerator pedal, turn signals), or the destination entered in the navigation system. Access to

such information is very useful to infer the intentions of the drivers, and therefore facilitates situation

understanding.

As an example, the use cases adressed by the Cooperative Intersection Collision Avoidance Systems

(CICAS) project in the U.S. are presented below [6]:
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Illustration Description

Intersection assistant - Left turn across path

This function addresses safety problems due to a driver’s poor

judgment of gaps in oncoming traffic. It warns a driver when it is

unsafe to make a left turn, taking into account oncoming vehicles

as well as the presence of pedestrians or other road users. Gaps

are assessed with infrastructure sensors.

Intersection assistant - Crossing path

This function addresses safety problems due to a driver’s poor

judgment of lateral gaps in traffic. It enhances the driver’s

decision through information and warnings about the available

gap. The information is conveyed via a dynamic sign. Gaps are

assessed with infrastructure sensors.

Violation detection - Traffic signal

The objective is to assist drivers in avoiding crashes in the

intersection by warning the driver of an impending violation of a

traffic signal. The V2X-equipped intersection broadcasts the

signal phase and timing information. Based on speed and

distance to the stop location, the system detects whether or not

the driver will violate the traffic signal.

Violation detection - Stop sign

The objective is to assist drivers in avoiding crashes in the

intersection by warning the driver of an impending violation of a

stop sign. Based on speed and distance to the stop location, the

system detects whether or not the driver will violate the stop

sign.

Figure 1.8. Set of applications targeted by the CICAS project [6].
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1.1.2.2 Functional requirements for V2X communications

The addition of V2X communications to the existing ADAS enables a number of new vehicle safety

applications, as shown in the previous section. For these applications to be feasible in practice, the

technology used for wireless communication should meet the requirements listed below.

Latency: Time is critical for safety applications, therefore they have strong latency requirements.

While some of the applications described in Figure 1.6 for non-intersection scenarios could bear a few

seconds’ delay, the applications described in Figure 1.8 for road intersections are all time-critical and

require a transmission delay lower than 100 ms [26].

Minimum frequency: The update rate (i.e. rate at which new information is sent/received) should

be at least 10 Hz [26].

Communication range and packet losses: Nodes should be able to communicate when they are

less that 300 m apart [26], with a packet error rate smaller than 10%.

Mobile nodes: V2X devices should be capable to operate in a rapidly varying environment. The

communication needs to be maintained between moving nodes under difficult and fast changing prop-

agation conditions.

Two-way communication: A V2X unit should be able to dialog with another unit or with multiple

units.

Information: Precise timestamp and location information are crucial for safety applications, so that

each vehicle can create a real-time virtual map of the environment and calculate whether there is a

risk.

Privacy: The communication process should guarantee the anonymity of the users.

1.1.2.3 Technologies for V2X communications

The communication protocol used for V2X-based safety applications should meet the requirements

stated above, and should also be common between the different brands and different countries. At

this point, three technologies are considered:
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4G cellular (or LTE) is an evolution of the GSM/UMTS standards for wireless communication using

mobile phones. It provides a significantly higher capacity and performance compared to the previous

cellular communication standards, with a theoretical peak downlink data rate of 300 Mbps and latency

of 5 ms. In practice, the downlink data rate has been observed to be 10-30 Mbps, and the latency

around 100 ms [27].

Figure 1.9. Cellular-based wireless vehicular communications.

5.9 GHz DSRC (Dedicated Short Range Communications) is a set of protocols and standards dedi-

cated to short and medium-range wireless communications for ITS. A DSRC network consists of Road

Side Units (RSUs) and On Board Units (OBUs) sharing information in the 5.9 GHz band. Typically, a

RSU is static and located at one specific point of the infrastructure. OBUs are mounted on vehicles

are are therefore mobile nodes. The communication between the nodes is done in an ad-hoc manner,

i.e. it is peer-to-peer and does not rely on access points (contrary to cellular communications). More

details about the 5.9 GHz DSRC standard are provided in Appendix A.

Figure 1.10. DSRC-based wireless vehicular communications.
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Two-way satellite allows two distant users to both send and receive data via satellite, through what

is named the Very Small Aperture Terminal (VSAT) service.

Figure 1.11. Satellite-based wireless vehicular communications.

The performance of these technologies are compared in Figure 1.12. The latency achieved by satellite

communications is well above 100 ms, therefore this technology is only considered for applications

which are not time-critical and can bear a delay of several seconds. Even then, the cost can be

prohibitive. DSRC was designed to provide high data transfer rates and a low latency in small com-

munication zones, therefore it matches all the requirements stated above. DSRC is also relatively

inexpensive to deploy (no license fee). While the evolution from 2G to 3G and the deployment of 4G

improved the performance of cellular communications in terms of transmission rates and delay, the

link setup latency is still lower with DSRC. The major issues with non peer-to-peer communications

are the availability of networks in rural areas, the time needed to initiate communication, and the

radio interferences which can occur when mobile stations are within reach of more than one base

station [27]. Finally, another advantage of DSRC is that it does not share the medium with other

unbounded services. The remainder of this section centers on DSRC communications.

4G cellular 5.9 GHz DSRC Two-way satellite

Range Cell tower coverage 100-1000 m Thousands of km

Data rates 75-300 Mbps 3-27 Mbps 1-40 Mbps

Latency <100 ms 200µs >1000 ms

Cost $ None $$$

Figure 1.12. Comparison of the different wireless communication technologies [7].

15



1.1. Context: connected vehicles for road safety

1.1.2.4 Technical issues and deployment

The DSRC technology is undergoing Field Operational Tests (FOT) in Europe with the DRIVE-C2X

project [28], in the U.S. with the Safety Pilot project [29], and in Japan with the ASV-5 project [30].

These large-scale projects aim at testing a variety of applications relying on DSRC and analyzing how

the technology scales to a large number of vehicles. The results will help understand the limitations,

user acceptance, and safety benefits of V2X applications.

Technical issues: Despite the progress made, several technical issues still need to be addressed

before connected vehicles can be deployed. In particular, communication performance is severely im-

paired in non line-of-sight conditions due to inherent limitations of the radio channel [31, 32]. This is

an issue for applications related to road intersection safety. Further, the ability of DSRC communica-

tions to scale in the presence of many vehicles still needs to be validated in real conditions [33, 34].

Other technical issues include data security and privacy [35]. Finally, further standardization work is

required to ensure the interoperability between the different platforms.

Deployment: The deployment of DSRC is an economically challenging endeavor, as it faces the clas-

sic “chicken and egg” problem [36]. Why should vehicle manufacturers invest in the development

and integration of DSRC devices in vehicles when there is no guarantee that there would be any

infrastructure-based devices to communicate with? Similarly, why should road infrastructure stake-

holders invest in the installation DSRC devices on the infrastructure when there is no guarantee that

there would be any in-vehicle devices with which to communicate?

One solution to this problem is to enforce the deployment of DSRC through regulations issued by

governments. In the U.S., the results obtained by the ongoing Field Operational Tests shall serve as

a base for the government to decide on the future of this technology, including the potential role

of the government in its deployment [29]. A summary of the U.S. Department of Transportation’s

considerations about the deployment of DSRC is provided on their website [37].

The introduction of DSRC shall be gradual, and the rate of increase of the market penetration will

depend on the deployment strategies. It shall take years before the majority of vehicles are equipped

with DSRC devices, an issue to consider when deploying DSRC-based applications. This is illustrated

by the graph in Figure 1.13. It is forecast that the initial applications (first 5 years) will be service-

related, since these do not require a great penetration rate. Traffic management applications should

be deployed next (5-8 years), followed by DSRC-based driving assistance functions (after 8 years).
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Figure 1.13. Forecast deployment of DSRC [8].

1.2 Problem formulation

In the previous section, statistical data was used to justify our decision to address road intersection

safety. Accidents at intersections represent 43% of the total number of road accidents, and contrary

to the popular belief most of them occur during normal traffic conditions (i.e. daylight, dry roads)

and in rural areas. Statistics show that X-shaped intersections, T-shaped intersections and Y-shaped

intersections are the most dangerous, and that driver error is at the origin of the majority of acci-

dents. The potential of wireless vehicular communications to reduce the number of accidents at road

intersections was presented, along with a list of potential V2X-based safety applications. It was shown

that through the sharing of information between vehicles (V2V) and with the infrastructure (V2I),

the driver’s situational awareness horizon can be extended. This is a fundamental advantage over

on-board sensors when dealing with dangerous situations at road intersections.

It is predicted that V2V will have a larger impact than V2I on road safety: according to Najm et al. [25]

V2V could address 79% of accidents, against 26% for V2I. This thesis only addresses road intersection

safety using V2V communications. In this section we formulate the problem within the context of a

typical ‘Intelligent vehicle’ architecture, to partition the problem and to define the scope of this thesis.
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1.2.1 Scope

Figure 1.14 shows the architectural framework within which our research problem is defined.

Figure 1.14. Intelligent vehicle architecture, based on the JDL model [9]. The hatched area

defines the focus of this thesis.

The different components are defined as follows:

Data sources: Sources of information about the ego-vehicle, the surrounding environment, and the

context.

• The proprioceptive sensors provide information about the state of the ego-vehicle such as its

position, speed, or the state of the turn signal.

• The exteroceptive sensors return information about the environment. For example, a laser scan-

ner gives the distance to the closest object in the directions the beams point at.

• V2V communications allow the sharing of information between vehicles.

• Databases contain information about the context. They include digital maps, which are available

today as part of vehicle navigation (guidance) systems and store information about the road

geometry, topology, signalization, etc. Other databases can store information on typical driver

behavior (e.g. typical speed profiles, gap acceptance behaviors). Databases are fundamental for

reasoning about situations and risk, as they help establish the relationships between the entities

in the scene.
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Processing: The information provided by the data sources is processed in order to extract useful

characteristics of the current situation and make a decision about the necessity to intervene.

• Object assessment

This process combines the information provided by the data sources to detect the different

entities in the scene and to estimate their attributes.

In the context of road safety, it consists in estimating the location and velocity of vehicles and

pedestrians in the scene.

• Situation assessment

The goal of this process is to establish the relationships between the different entities, by ana-

lyzing the observed events.

In the context of road safety, it consists in inferring the intentions of drivers and pedestrians

from their joint motion with respect to the road network.

• Risk assessment

The purpose of this process is to draw inferences about potential dangers.

In the context of road safety, the risk that the current situation will result in a collision has to be

assessed.

• Decision making

It is the process of selecting the best actions to address the potential threats detected in the

previous process.

In the context of road safety, it consists in taking the appropriate actions to avoid or mitigate

accidents when a dangerous situation is detected.

Output: The output of the decision making process can be directed to the drivers through a Human-

Machine Interface (HMI), or can take the form of a direct action on the vehicle.

• Human-Machine Interface

Its goal is to enhance the driver’s situational awareness without distracting him from the driving

task.

• Vehicle control

Examples of direct actions on the vehicle are autonomous braking, autonomous steering.
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Our research and contributions focus on situation assessment and risk assessment. In this work

exteroceptive sensors are not considered, therefore the detection of other entities is done through

V2V communications only. Off-the-shelf DSRC modems are used, therefore issues concerning the

communication protocols are not addressed in this research. Similarly, the choice of a strategy after

a dangerous situation is detected (deciding what action should be taken) is not in the scope of this

work.

1.2.2 Challenges and classic approaches

1.2.2.1 Challenges

This thesis is concerned with the formulation of algorithms which can assess the situation and estimate

the risk at road intersections. The reasoning is based on the use of proprioceptive vehicle data, shared

information between vehicles, and map data. Within this context there are two major sources of

difficulty:

1. The uncertainties inherent to the input data

Due to inherent limitations of sensors, a degree of uncertainty is associated with the estimation

of the ego-vehicle state (e.g. vehicle position). These estimates are shared between vehicles

through V2V communication, but at times due to communication latencies or other factors these

estimates will not be available. In addition digital maps might store inaccurate information in

terms of road geometry or other parameters.

2. The complexity of traffic situations at road intersections

Road intersection situations are highly dynamic and involve complex interactions between vehi-

cles. The motion of the vehicles is influenced not only by their physical properties, but also by

high-level factors such as driver intention, the layout of the intersection, the presence of other

vehicles, the traffic rules. These factors cannot be modeled in an exact manner; this is known

as the model incompleteness problem [38]. The incompleteness of the model has to be trans-

formed into uncertainty in the reasoning, so that the ambiguities in the interpretation can be

addressed.

Therefore, in order to reliably assess situations and risks, it is necessary to take into account the un-

certainties in the input data and in the reasoning. However this results in complex models whose
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computational needs may not be compatible with the real-time constraints of vehicular safety applica-

tions. Therefore, a tradeoff has to be found between the computational complexity of models and

their ability to represent complex, uncertain, and highly dynamic situations.

1.2.2.2 Classic approaches

The most standard approach for risk assessment in road traffic scenarios consists in predicting the

likely future trajectories of the vehicles in the scene using vehicle motion models, and then checking

if these trajectories intersect. Once the uncertainties associated to the input data and the future

sequence of events are incorporated, there exists a large number of possible future trajectories. The

whole process becomes computationally demanding and makes it difficult to comply with real-time

constraints. In the literature, this issue is addressed by either ignoring the uncertainties or assuming

independence between vehicles:

1. Ignoring the uncertainties

One solution is to assume that sensors provide perfect data and that the models used to assess

the situation and risk are flawless. By excluding uncertainties, the computation of risk becomes

simpler. However this results in a large sensitivity with respect to the input data, therefore the

output of such models can be unstable and unreliable [39].

2. Assuming independence between vehicles

The other solution is to ignore the mutual influences between the motion of the vehicles. By this

means the computational complexity is greatly decreased, since the reasoning about a vehicle’s

behavior is performed independently of the behavior of the other vehicles. However the inde-

pendence assumption has some drawbacks. They are studied in Appendix B on toy examples,

and can be summarized as follows:

• Situation assessment is affected by the independence assumption: some maneuvers become

indistinguishable.

• Risk assessment is affected by the independence assumption: the value of risk is overesti-

mated, which affects the sensitivity of the risk assessment.
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1.3 Contributions

The problem addressed in this thesis is situation and risk assessment at road intersections. The previ-

ous section identified that the main difficulties arise from the complexity of traffic situations at road

intersections and from the uncertainties inherent to the input data. In order to match the real-time

constraints of vehicular safety applications, it is current practice to either ignore the uncertainties or

assume independence between the vehicles in the scene. Neither of these solutions are satisfactory,

since they have a significant impact on the ability of an algorithm to assess the current situation and

its risk.

The approach proposed in this thesis takes into account both the inter-vehicle dependencies and the

uncertainties, while keeping the computational complexity compatible with real-time execution. This

is achieved through a novel formulation of risk combined with a context-aware motion model for

vehicles negotiating an intersection. Our contributions are summarized below:

1. A novel formulation of risk: comparing intention and expectation

The classic approach to risk estimation consists in using a motion model to predict the future tra-

jectories of the vehicles in the scene and to check whether or not they intersect. However, this

process is computationally too expensive to be executed in real-time with “advanced” motion

model. Instead, simpler models are used which either ignore uncertainties or assume indepen-

dence between the vehicles in the scene.

As an alternative to this classic ‘Trajectory prediction + collision detection’ approach for risk

estimation, we propose to detect dangerous situations by comparing what drivers intend to do

with what they are expected to do. This is made possible by explicitly representing the traffic

rules in the motion model.

A major advantage of this approach compared with the classic approach is that the computation

of the future trajectories and their collision points is avoided, therefore the use of “advanced”

motion model is no longer incompatible with real-time risk assessment. The proposed approach

can in theory be applied to any type of traffic situations. In this thesis an implementation is

proposed for the specific case of road intersections.

2. A context-aware motion model for vehicles at a road intersections which

(a) Accounts for the interactions between vehicles.

Instead of making the classic assumption that vehicles’ trajectories are independent, we

model their mutual influences by introducing a prior knowledge that drivers tend to respect
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traffic rules. The motion model therefore takes into account the priority rules and the

presence of other vehicles to better interpret a vehicle’s behavior.

The advantages are twofold. Firstly, we are able to better estimate the maneuver intention

of the drivers, which means our situation assessment capabilities are improved. Secondly,

risk is estimated with a higher sensitivity. We avoid risk overestimation while still being

able to detect dangerous situations as early.

(b) Accounts for the influences of the intersection layout on the behavior of the vehicles.

The geometrical and topological characteristics of the intersection are automatically ex-

tracted from the digital map and exploited in our motion model. The constraints exerted

by the road network on the behavior of the vehicles are taken into account. We show that

this allows us to identify situations where a vehicle’s behavior is inconsistent, which to our

knowledge has not be done before.

3. A framework designed for real traffic conditions

The framework for reasoning about situations and risk at road intersections has been designed

to be compatible with real-world constraints. It is generic in the sense that theoretically it

can be applied to any intersection layout (geometry, topology) and any number of vehicles.

Uncertainties in the input data, which are inherent to real sensors, are taken into account. The

algorithm has been tested in real-time on passenger vehicles involved in realistic hazardous

situations at a real intersection.

1.4 Thesis outline

The remaining of this thesis is structured as follows:

Chapter 2 - Risk assessment at road intersections: state of the art presents related work on risk

estimation at road intersections, with an emphasis on methods based on trajectory prediction. The

motion models used for trajectory prediction are categorized into three families: ‘Physical entities’

motion models, ‘Maneuvering entities’ motion models, and ‘Interacting maneuvering entities’. The

advantages and drawbacks are described for each category, followed by a review of the different ways

to compute a risk value based on the predicted trajectories.
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Chapter 3 - Proposed motion model and risk estimation The proposed approach for modeling

traffic situations is described in this chapter, as well as the proposed method for risk estimation. Firstly,

the approach is described in the context of general traffic situations. Secondly, an implementation is

proposed for road intersections. The description of the algorithm follows the four steps of the Bayesian

Programming formalism: 1) Definition of the variables, 2) Definition of the joint distribution, 3)

Definition of the parametric forms of the conditional probability terms, 4) Definition of the question(s)

relevant for risk assessment.

Chapter 4 - Experiments and results This chapter is concerned with the evaluation of the proposed

approach. For this purpose, a combination of simulations and field experiments were carried out. In

order to evaluate our approach for risk assessment, both a ‘functional performance’ and a ‘safety

performance’ evaluation are performed, i.e. both the system’s ability to detect dangerous situations

and its ability to avoid accidents are analyzed. Next, the importance of context for situation and risk

assessment at road intersections is studied.

Chapter 5 - Conclusions The final chapter summarizes the thesis and the achievements of this work.

Perspectives for future developments are provided.
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Chapter 2. Risk assessment at road intersections: state of the art

The literature of collision prediction for ITS has its roots mostly in the robotics domain, which can

seem surprising since cars have existed for longer than robots1. The reason is that artificial intel-

ligence algorithms are an integral part of robots and therefore have been the focus of many works

in the robotics domain, while the “intelligent” part of the driving task was left entirely to the driver

until recently. Robotics and ITS share many research problems, as both are concerned with sensor-

equipped mobile platforms which should localize themselves, perceive the environment, understand

the situation, assess its risk, make decisions, etc. It is therefore natural that methods developed for

robotic applications should be adopted by the ITS domain.

The adaptation of these algorithms to the prediction of road traffic accidents is not straightforward,

mainly because most of them were designed for unconstrained environments while the road network

is a highly constrained environment. It is important to account for this difference, especially in in-

tersection areas where the complexity of the layouts and of the traffic rules make the progression of

vehicles particularly constrained, interactive, and dynamic.

By far the most popular approach to collision risk estimation in robotics is the ‘Trajectory pre-

diction + collision detection’ approach, and it is the prevailing approach among the ITS research

community. It is composed of two steps:

1. Predict the potential future trajectories for all the moving entities in the scene. This is done with

a motion model.

2. Detect collisions between pairs of trajectories, and derive a risk estimate based on the overall

chance of collision.

The first three sections of this chapter focus on Step 1. Motion prediction has been the focus of

many works in robotics, and presenting a review of existing approaches from a mathematical point of

view would be redundant with previously published surveys. Instead we propose a classification at a

conceptual level, based on the different ways to explain a vehicle’s motion. Three families of motion

models have been identified and are presented in this chapter:

• ‘Physical entities’ motion models are the simplest models, they represent vehicles as dynamic

entities governed by the laws of physics and are described in Section 2.1.

• ‘Maneuvering entities’ motion models are more advanced as they consider that the future motion

of a vehicle is influenced by the maneuver that the driver intends to perform. These models are

presented in Section 2.2.

1The first modern car is generally considered to be Karl Benz’s Motorwagen from 1885. Shakey, the first mobile robot
capable of reasoning and reacting to its environment, was build in 1970 at SRI.
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• ‘Interacting maneuvering entities’ motion models take into account the inter-dependencies be-

tween vehicles’ maneuvers. Such advanced representations are used only in a few works, which

are reviewed in Section 2.3.

The three families of motion models are illustrated in Figure 2.1. In these examples, the ‘Physical en-

tities’ motion model assumes a constant speed and orientation for the cars, the ‘Maneuvering entities’

motion model assumes that the black car goes straight and the blue car turns left, the ‘Interacting

maneuvering entities’ motion model assumes that the black car goes straight, that the blue car turns

left and that the joint motion of the cars is constrained by the traffic rules.

The fourth section addresses Step 2, i.e. the different approaches for detecting collisions between the

predicted trajectories and for evaluating the risk of the situation.

Figure 2.1. Examples of motion prediction with the different types of motion models.

2.1 ‘Physical entities’ motion models

‘Physical entities’ motion models represent vehicles as dynamic entities governed by the laws of

physics. Future trajectories are computed using dynamic and kinematic models linking some control
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inputs (e.g. steering, acceleration), car properties (e.g. weight), external conditions (e.g. friction

coefficient of the road surface) to the evolution of the state of the vehicle (e.g. position, heading,

speed).

Extensive work has been done on such ‘Physical entities’ motion models for vehicles, and they remain

the most commonly used motion models for trajectory prediction and collision risk estimation in the

context of road safety. Models are more or less complex depending on how fine the representation

of the dynamics and kinematics of a vehicle is, how uncertainties are handled, whether or not the

geometry of the road is taken into account, etc.

This section is divided into three parts. In the first part, the most standard evolution models are

described. The second part provides a review of the different methods for predicting trajectories using

these evolution models. Finally, the limitations of ‘Physical entities’ motion models are addressed.

2.1.1 Evolution models

2.1.1.1 Dynamic models

Dynamic models describe motion based on Lagrange’s equations, taking into account the different

forces that affect the motion of a vehicle, such as the longitudinal and lateral tire forces, or the road

banking angle [40].

Car-like vehicles are governed by complex physics (effect of driver actions on the engine, transmis-

sion, wheels etc.), therefore their derived dynamic models can get extremely large and involve many

internal parameters of the vehicle. Such complex models are relevant for control-oriented applica-

tions, but for applications such as trajectory prediction simpler models are preferred. They are often

based on a “bicycle” representation, which represents a car as a two-wheeled vehicle with front-wheel

drive moving on a 2-D plane. Examples of such simple dynamic models are found in several works

[41, 42, 43, 44, 45, 46].

2.1.1.2 Kinematic models

Kinematic models describe a vehicle’s motion based on the mathematical relationship between the

parameters of the movement (e.g. position, velocity, acceleration), without considering the forces

that affect the motion. The friction force is neglected, and it is assumed that the velocity at each

wheel is in the direction of the wheel [40]. Kinematic models are far more popular than dynamic

models for trajectory prediction because they are much simpler and usually sufficient for this type of
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applications (i.e. applications which are not vehicle control). In addition the internal parameters of

a vehicle needed by dynamic models are not observable by exteroceptive sensors, which rules out the

use of dynamical models for ITS applications involving other vehicles than the ego-vehicle.

A survey of kinematic models for car-like vehicles was done by Schubert et al [47]. The simplest

of these are the Constant Velocity (CV) and Constant Acceleration (CA) models, which both assume

straight motion for vehicles [11, 48, 49, 50, 10]. The Constant Turn Rate and Velocity (CTRV) and

Constant Turn Rate and Acceleration (CTRA) models take into account the variation around the z-axis

by introducing the yaw angle and yaw rate variables in the vehicle state vector [51, 52, 53, 50, 54, 48].

The complexity remains low as the velocity and yaw rate are decoupled. By considering the steering

angle instead of the yaw rate in the state variables, one obtains a “bicycle” representation, which

takes into account the correlation between the velocity and the yaw rate. From this representation,

the Constant Steering Angle and Velocity (CSAV) and the Constant Steering Angle and Acceleration

(CSAA) can be derived.

2.1.2 Trajectory prediction

The evolution models described above can be used for trajectory prediction in various ways, the main

difference being in the handling of uncertainties.

2.1.2.1 Single trajectory simulation

A straightforward manner to predict the future trajectory of a vehicle is to apply an evolution model

(see Section 2.1.1) to the current state of a vehicle, assuming that the current state is perfectly known

and that the evolution model is a perfect representation of the motion of the vehicle. This strategy

can be used with dynamic models [41] or kinematic models [10, 49, 54]. This process is illustrated in

Figure 2.2.

The advantage of this single forward simulation is its computational efficiency, which makes it suitable

for applications with strong real-time constraints. However the predictions do not take into account

the uncertainties on the current state nor the errors introduced by the evolution model, and as a

result the predicted trajectories are not reliable for long term prediction. In addition, predicting future

motion using a single trajectory fails to represent the variety of possible maneuvers at an intersection

(e.g. turn left, right).
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Figure 2.2. Trajectory prediction with a Constant Velocity motion model (source: [10]).

2.1.2.2 Gaussian noise simulation

Uncertainty on the current vehicle state and on its evolution can be modeled by a normal distribution

[11, 53, 48, 50]. The popularity of the “Gaussian noise” representation of uncertainty is due to its

use in the Kalman Filter (KF). Kalman filtering is a standard technique for recursively estimating a

vehicle’s state from noisy sensor measurements. It is a special case of Bayesian filtering where the

evolution model and the sensor model are linear2, and uncertainty is represented using a unimodal

normal distribution. In a first step (prediction step) the estimated state at time t is fed to the evolution

model, resulting in a predicted state for time t+ 1 which takes the form of a Gaussian distribution. In

a second step (update step) the sensor measurements at time t + 1 are combined with the predicted

state into an estimated state for time t + 1, which is also a Gaussian distribution. Looping on the

prediction and update steps each time a new measurement is available is called tracking3.

By looping on the prediction step, one can obtain for each future timestep a mean and covariance

matrix for the state of the vehicle, which can be transformed into a mean trajectory with associ-

ated uncertainty (normal distribution at each timestep) [11, 53, 52]. This process is illustrated in

Figure 2.3.

2Extensions of the Kalman Filter exist which deal with non-linear models. A comparison of their performances for trajectory
prediction is done in [55].

3More details about probabilistic filtering can be found in [56].
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Figure 2.3. Trajectory prediction with a Constant Velocity motion model and Gaussian noise

simulation. Ellipses represent the uncertainty on the predicted positions (source: [11]).

Compared to the “single trajectory simulation” approaches, these techniques have the advantage that

they represent the uncertainty on the predicted trajectory. However they suffer form a similar limita-

tion in the sense that modeling uncertainties using a unimodal normal distribution is insufficient to

represent the different possible maneuvers at an intersection.

A solution to this problem is to represent uncertainty using mixtures of Gaussians. Switching Kalman

Filters (SKF) [57] can be used for this purpose. They rely on a bank of Kalman Filters to represent the

possible evolution models of a vehicle and switch between them [48, 58, 59]. An alternative to the

SKF is to use heuristics to switch between the different kinematic models depending on the situation

[50].

2.1.2.3 Monte Carlo simulation

In the general case, i.e. when no assumption is made on the linearity of the models or on the Gaus-

sianity of the uncertainties, the analytical expression for the distribution on the predicted states is

usually not known. Monte Carlo methods provide tools to approximate this distribution. The idea

is to randomly sample from the input variables of the evolution model in order to generate potential

future trajectories. In order to take into account the layout of the intersection, weights are applied

to the generated trajectories to penalize the ones which do not respect the constraints of the road

network.

The evolution models described in Section 2.1.1 can be used for Monte Carlo simulation by sampling

on the inputs instead of considering them to be constant. Typical inputs to be sampled from are the
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acceleration and steering angle or lateral deviation. In order to take into account the feasibility of a

maneuver, one can either remove the generated trajectory samples with a higher lateral acceleration

than what is physically allowed [12], or take into account the physical limitations of a vehicle in the

evolution model so that the inputs are distributed in a more realistic manner and the post-processing

step for removing unfeasible trajectories is not needed [45, 60]. Example predicted trajectories are

displayed in Figure 2.4.

Monte Carlo simulation can be used to predict a vehicle’s trajectory either from a perfectly known

current state or from an uncertain current state estimated by a tracking algorithm.

Figure 2.4. Trajectory prediction (green area) with Monte Carlo simulation (source: [12]).

2.1.3 Limitations

Since they only rely on the low level properties of motion (dynamic and kinematic properties),

‘Physical entities’ motion models are limited to short-term motion prediction. Typically, they will

be unable to anticipate any change in the motion of the car caused by the execution of a particular

maneuver (e.g. slow down, turn at constant speed, then accelerate to make a turn at an intersection),

or changes caused by external factors (e.g. slowing down because of a vehicle in front). This short-

coming is problematic especially at road intersections. Situations in these areas are highly dynamic,

therefore it is necessary to be able to anticipate changes in order to predict trajectories in a reliable

manner.

2.2 ‘Maneuvering entities’ motion models

‘Maneuvering entities’ motion models represent vehicles as independent maneuvering entities,

i.e. they assume that the motion of a vehicle on the road network corresponds to a series of

maneuvers executed independently from the other vehicles. Here, a maneuver is defined as “a

physical movement or series of moves requiring skill and care” [61]. The word “behavior” is sometimes
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used in the literature for the same purpose [62, 63, 64, 65, 66], but for the sake of clarity the word

“maneuver” will be used throughout this document.

Trajectory prediction with ‘Maneuvering entities’ motion models is based on the early recognition of

the maneuvers that drivers intend to perform. If one can identify the maneuver intention of a driver,

one can assume that the future motion of the vehicle will match that maneuver. Thanks to this a

priori, trajectories derived from this scheme are more relevant and reliable in the long term than the

ones derived from ‘Physical entities’ motion models.

‘Maneuvering entities’ motion models are either based on prototype trajectories or based on maneuver

intention estimation. The first part of this section introduces prototype trajectories and how they can

be used for trajectory prediction. Approached based on maneuver intention estimation are covered

in the second part of this section. Finally, the limitations of ‘Maneuvering entities’ motion models are

analyzed.

2.2.1 Prototype trajectories

The idea is that the trajectories of vehicles on the road network can be grouped into a finite set of

clusters, each cluster corresponding to a typical motion pattern. Example clusters are displayed in

Figure 2.5.

Figure 2.5. Clustered trajectories: each cluster corresponds to a typical motion pattern

(source: [13]).

Motion patterns are represented using prototype trajectories which are learned from data during a
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training phase. Subsequently prediction can be performed online given a partial trajectory by finding

the most likely motion pattern(s) and using the prototype trajectories as a model for future motion.

2.2.1.1 Representation

Motion patterns are represented using prototype trajectories which are learned from sample (previ-

ously observed) trajectories.

Because the road network is a structured environment, it is generally assumed that the motion patterns

can be identified in advance (they can for example be extracted from a digital map, by identifying

all the possible maneuvers at a given location). In this case no clustering process is needed, i.e.

each trajectory in the training dataset is already assigned to a cluster4. Starting from there, several

possibilities exist for representing a motion pattern based on the sample trajectories.

One solution is to compute a unique prototype trajectory for each motion pattern, by agglomerating

the previously observed trajectories. For example, a stochastic representation of a motion pattern can

be derived by computing the mean and standard deviation of the sample trajectories [70]. Another

way to account for the variations in the execution of a motion pattern is to have several prototypes

for each class, e.g. a subset of the training samples [71].

More recently, several works showed that Gaussian Processes (GPs) are well-suited for representing

motion patterns in the context of road traffic [72, 73, 63]. GPs can be seen as a generalization of

Gaussian probability distributions. They model a process as a Gaussian distribution over a function.

When applied in the context of vehicle trajectories, the assumption is that the trajectories in the

learning dataset are sample functions from a Gaussian Process. Therefore the learning consists in

fitting a Gaussian distribution over these functions. The main advantages of GPs are their robustness

to noise in the observed trajectories (compared to the approaches presented above) and their ability to

represent the variations in the execution of a motion pattern in a consistent and probabilistic manner.

For example, a GP featuring the function f(t) = (x, y), with t the time and (x, y) the 2D coordinates

of the vehicle will be able to partially account for variations in the speed of execution of a maneuver

[63]. An alternative is to use the function f(x, y) = (∆x/∆t,∆y/∆t), which maps locations to velocities

and therefore removes any time-dependent aspect from the model [72, 73]. The variability in the

velocity due to varying traffic conditions is captured in the covariance function of the GP. However

this capacity to represent the inherent variations of a pattern comes at a price; a naive implementation

4For readers interested in a state of the art of clustering, a comparative survey of the most popular methods was presented
by Morris and Trivedi [67]. In particular, road traffic situations were investigated by Buzan et al. [68], Hu et al.[69], and
Atev et al. [13].
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of a GP has a complexity of O(n3), where n is the number of training input points.

2.2.1.2 Trajectory prediction

Starting from the partial trajectory executed by a vehicle so far, prediction can be performed by com-

paring it with the learned motion patterns, selecting the most likely one(s) and using the prototype

trajectories as a model for future motion.

First, metrics need to be defined to measure the distance of a partial trajectory to a motion pattern.

When motion patterns are represented by Gaussian Processes, the distance is computed as the prob-

ability that the partial trajectory corresponds to the GP, by integrating over the possible futures of

the trajectory [72, 73, 63]. When motion patterns are represented by a finite set of prototype trajec-

tories, the distance of a partial trajectory to a motion pattern is measured by its similarity with the

prototype trajectories. A number of metrics have been defined to measure the similarity between two

trajectories, including the average Euclidian distance between points of the trajectories [69], the mod-

ified Hausdorff [13], the Longest Common Subsequence (LCS) [68] and its translation-and-rotation

invariant version the Quaternion-based Rotationally Invariant LCS [71].

The simplest solution to predict future motion after the distance to each motion pattern has been

computed is to select the most likely motion pattern and to use it as a unique model [69]. Alternatively

it is possible to consider a mixture of motion patterns: a probability distribution over the different

motion patterns is computed, and then either the different motion models are combined (weighted)

into one [72], or a set of potential future trajectories are generated with associated weights [73, 71].

2.2.1.3 Limitations

For a long time, the main limitation of prototype trajectories was their strictly deterministic represen-

tation of time. Indeed, when motion patterns are represented using a finite set of trajectories it is

impossible to model the great variation in the execution of a motion pattern. In order to be able to

recognize maneuvers involving a waiting period at a stop line for example, one has to resort to hard

thresholds to identify waiting intervals and ignore them when computing the distance between two

trajectories. Handling more subtle variations in velocity like the ones caused by heavy traffic is still an

issue for such models.

To a certain extent, the introduction of Gaussian Processes solved this problem by allowing a time-

independent representation of motion patterns [72, 73]. However GPs suffer from other limitations.

In addition to their heavy computational burden, they lack the ability to take into account the physical
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limitations of a vehicle and therefore may generate unrealistic sample trajectories. To our knowledge

the only solution to this problem proposed in the literature is the one introduced by Aoude et al

[73], which uses a Rapidly-exploring Random Tree (RRT) algorithm to randomly sample points to-

ward dynamically feasible trajectories, using as inputs the current state of the vehicle and the sample

trajectories generated by the GPs.

Another difficulty when using prototype trajectories is their adaptation to different intersection lay-

outs. Because each motion model is trained for a specific intersection geometry and topology, they can

be reused only at intersections with a similar layout. For example, motion models learned at a one-

lane X-shaped intersection cannot be used on a two-lane X-shaped intersection because the motion

patterns are not the same.

2.2.2 Maneuver intention estimation and maneuver execution

An alternative to trajectory prototypes is to first estimate the maneuver intention of the driver (e.g.

waiting at the stop line, following another vehicle, executing a left turn) and then predict the succes-

sive physical states so that they correspond to a possible execution of the identified maneuver.

A major advantage over trajectory prototypes is that there is no need to match the partial trajectory

with a previously observed trajectory. Instead, higher-level characteristics are extracted and used to

recognize maneuvers, which makes the recognition process more flexible.

2.2.2.1 Maneuver intention estimation

Many cues can be used to estimate the maneuver intention of a driver, for example the physical state

of the vehicle (position, speed, heading, acceleration, yaw rate, turn signal, etc.), information about

the road network (geometry and topology of the intersection, speed limit, traffic rules, etc.), driver

behavior (head movement, driving style, etc.). Maneuver intention estimation has been investigated

by many works; this survey focuses on the ones concerned with intersection-related maneuvers.

Context and heuristics can be used to determine what maneuvers are likely to be performed in the

near future in a deterministic manner [74]. For classifying maneuvers in more complex scenarios,

discriminative learning algorithms are very popular, such as Multi-Layer Perceptrons (MLP) [66] or

Support Vector Machines (SVM) [75]. An equally popular alternative is to break down each maneuver

into a chain of consecutive events and to represent this sequence of events using a Hidden Markov

Model (HMM). The transition probabilities between the different events can be learned from data,

as well as the observation model (i.e. the relationship between the non-observable events and the
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available observations). For a new sequence of observations, the maneuver intention is estimated by

comparing the likelihood of the observations for each HMM [76, 62, 63].

A comparative review of works on maneuver intention estimation is provided in Figure 2.6.

Estimated maneuvers Estimation method Features

Greene et al. [74]
Stop, go straight, left

turn, right turn
Heuristics

Position, velocity, state of the

nearby traffic light

Tamke et al. [77]
Go straight, left turn,

right turn
Heuristics Turn signal

Aoude et al. [75] Safe, errant SVM-BF

Distance to intersection,

speed, longitudinal

acceleration

Garcia-Ortiz et al.

[66]

Stopped, brake, keep

speed
MLP

Speed, gas and brake pedal

information, distance to

intersection, state of traffic

light

Aoude et al. [62] Compliant, violating HMM

Distance to intersection,

speed, longitudinal

acceleration

Tay [63]
Go straight, overtake,

left turn, right turn
Hierarchical HMM Position, speed

Berndt et al. [76]
Go straight, left turn,

right turn
HMM Steering angle

Figure 2.6. Comparative review of works on maneuver intention estimation.

2.2.2.2 Maneuver execution

Trajectories are predicted so that they match the identified maneuver(s).

This can be done in a deterministic manner, by deriving the input controls (in this case the steering

angle) corresponding to the recognized maneuver and then generating a single trajectory from a

kinematic motion model [77]. One issue with this strictly deterministic approach is that it cannot take

into account uncertainties on the current vehicle state, on the maneuver which is being performed or
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on the execution of this maneuver.

In order to explore the space of the potential executions of a maneuver in a probabilistic manner, GPs

or RRTs can be used (see Figure 2.7). A GP can be learned for each maneuver from training data and

used in a generative manner to create sample trajectories for each maneuver [63, 78]. Alternatively,

a RRT tree can be grown by sampling points in the input space of the vehicle’s evolution model,

applying a bias in the sampling according to the estimated maneuver intentions [75]. This method

has the advantage that it always generates dynamically feasible trajectories for a maneuver.

As an alternative to trajectories, reachable states can be used to represent the future motion of vehi-

cles. This representation can be stochastic [79] or geometric [74] (see Figure 2.7).

(a) RRT (source:[75]). (b) GP (source:[78])

(c) Stochastic reachable states (source:

[79])
(d) Segmented cones (source: [74])

Figure 2.7. Maneuver execution using four different approaches.
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2.2.3 Limitations

In practice, the assumption that vehicles move independently from each other does not hold. Vehi-

cles share the road with other vehicles, and the maneuvers performed by one vehicle will necessarily

influence the maneuvers of the other vehicles. Inter-vehicle dependencies are particularly strong at

road intersections, where priority rules force vehicles to take into account the maneuvers performed

by the other vehicles. Disregarding these dependencies can lead to erroneous interpretations of the

situations, and affects the evaluation of the risk. This problem is studied in more detail in Appendix B.

2.3 ‘Interacting maneuvering entities’ motion models

‘Interacting maneuvering entities’ motion models represent vehicles as maneuvering entities which

interact with each other, i.e. the motion of a vehicle is assumed to be influenced by the motion

of the other vehicles in the scene. Taking into account the dependencies between the vehicles leads

to a better interpretation of their moves compared with the ‘Maneuvering entities’ motion models

described in the previous section. As a result, it contributes to a better understanding of the situation

and a more reliable evaluation of the risk.

Despite this, there are few ‘Interacting maneuvering entities’ motion models in the literature. They

are either based on prototype trajectories or based on Dynamic Bayesian Networks. Both solutions

are presented in this section, followed by the limitations of ‘Interacting maneuvering entities’ motion

models.

2.3.1 Models based on trajectory prototypes

For methods relying on trajectory prototypes, inter-vehicles influences cannot be taken into account

during the learning phase because the resulting number of motion patterns would quickly become

intractable.

However, it is possible to take into account the mutual influences during the matching phase by assum-

ing that drivers have a strong tendency to avoid collisions when they can [80]. Pairs of trajectories

which lead to an unavoidable collision are penalized in the matching process, and as a result safe

trajectories are always considered to be more likely than hazardous ones.

This approach is an elegant workaround for taking into account inter-dependencies when using trajec-

tory prototypes. However the issue of modeling other types of influences remains, since the influence
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of one vehicle on the trajectory of another cannot be modeled directly.

2.3.2 Models based on Dynamic Bayesian Networks

All the other ‘Interacting maneuvering entities’ motion models we are aware of are based on Dynamic

Bayesian Networks (DBN).

Pairwise dependencies between multiple moving entities can be modeled with Coupled HMMs (CHMMs)

[81]. However, since the number of possible pairwise dependencies grows exponentially with the

number of entities, the complexity is not manageable in the context of road intersection situations. A

solution to simplify the model is to make CHMMs asymetric by assuming that the surrounding traffic

affects the vehicle of interest, but not vice versa [82].

The fact that influences between vehicles are regulated by traffic rules is exploited by Agamennoni

et al. [14, 83, 84]. Multi-agent influences are decomposed as log-linear combinations of pairwise

dependencies, with pairwise dependencies of the type “vehicles on a smaller road yield to vehicles on

the main road”. This is illustrated in Figure 2.8.

Figure 2.8. Trajectory prediction with an ‘Interacting maneuvering entities’ motion model.

The model is able to predict that Agent 35 should yield to Agent 17 (source: [14]).

Finally, a general probabilistic framework for tracking vehicles and predicting their future motion was

introduced by Gindele et al. [64]. Instead of modeling pairwise dependencies, the model accounts

for mutual influences by using factored states. The causal dependencies between the vehicles are
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modelled as a function of the local situational context, which reduces greatly the computational com-

plexity. The approach was validated on simulated highway scenarios, but could in theory be applied

to road intersections.

2.3.3 Limitations

The ‘Interacting maneuvering entities’ motion models are the most comprehensive models proposed

so far in the literature. They allow longer-term predictions compared to ‘Physical entities’ motion

models, and are more reliable than ‘Maneuvering entities’ motion models since they account for the

dependencies between the vehicles. However, this exhaustiveness has some drawbacks: computing

all the potential trajectories of the vehicles with these models is computationally expensive and not

compatible with real-time risk assessment. For this reason, none of the motion models presented in

this section have been applied to collision risk estimation.

2.4 Collision detection and risk computation

In the previous sections, motion models were introduced which can be used to predict the future

motion of vehicles. Following this, algorithms are needed which can assess the risk of the situation

based on these predictions.

A primary element of the problem is the detection of a collision between two individual trajectories.

This “collision detection” function is at the base of the computation of risk. The different methods for

this purpose are reviewed in the first part of this section.

The computation of a global risk value relies on the “collision detection” function, but is not straight-

forward. An important aspect of risk assessment is the definition of semantics for the term “risk”.

Indeed, the variable of interest to characterize risk is not the same depending on the context of the

final application (e.g. driver warning, autonomous driving). This matter is addressed in the second

part of this section.

2.4.1 Collision detection

Given the future trajectories of two vehicles, many tools exist to extract information regarding the oc-

currence of a collision. While the most basic methods only provide basic information such as whether,

where and when a collision will occur, the more advanced ones can compute its probability, type,

severity, etc.
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2.4.1.1 Binary collision detection

In the special case of linear ‘Physical entities’ motion models, the analytical solution for the state of

the vehicles at a specific time can easily be derived by solving the linear differential equations of the

motion model. It follows that the intersection point between two trajectories can be computed in an

efficient manner [49, 10].

However, in the general case the motion equations are too complex for a closed-form solution to be

derived. One solution is to approximate each trajectory by a piecewise-straight line trajectory [54]. A

more common approach is to discretize the trajectories and to check iteratively for a collision at each

discrete timestep. Following this reasoning, collisions can be detected in a simple manner by defining

a threshold on the distance between two points (from two trajectories at the same timestep) [75].

In order to take into account the shape of the vehicles, this threshold can be replaced by a condition

on the “overlap between the shapes of the two vehicles”. Although the exact shape is not always

mentioned [60, 77], vehicles are often represented as polygons [41, 45, 63, 46, 12]. If information

is available about the uncertainty on the state of the vehicles, and if this uncertainty is Gaussian, an

ellipse can be used instead of a polygon by applying a threshold on the standard deviations [11, 53].

In order to simplify the calculation of the intersection area, ellipses can be approximated by a set of

circles [11] or by a set of points [53].

2.4.1.2 Probabilistic collision detection

Few works carry out collision detection in a probabilistic manner.

For a normally distributed uncertainty on the current state, a solution based on stochastic linearization

via the unscented transformation has been proposed [85].

In the case of stochastic reachable states, the collision probability can be computed on a discretized

position space by calculating the probability that the center of both vehicles is in the same cell, for all

the possible combinations of cells [60]. With the geometric version of reachable states, the collision

probability can be measured as the percentage of overlap between the geometric shapes representing

the future motion of vehicles [74].

2.4.1.3 Other collision indicators

By analyzing further the predicted trajectories and their intersecting points, it is possible to derive

some indicators which give more information about the potential collision.
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Popular indicators of the criticality of a potential collision are the velocity of the vehicles [46, 86], the

amount of overlap between the shapes representing the vehicles [11], and the configuration of the

collision [11].

The information provided by these indicators can be used to determine the best way to mitigate or

avoid the potential collision.

2.4.2 Risk computation

The computation of risk relies on the detection of collisions between pairs of trajectories (approaches

presented above), and is application-dependent. Indeed the variable of interest is not the same if the

goal of the application is to assess the criticality of a situation to decide if an intervention is necessary

on the ego-vehicle, or if the goal is to estimate the hazard level of different maneuvers to decide which

one the ego-vehicle should execute. The first application is typical of ADAS, while the second one can

be useful both for ADAS and for autonomous driving.

2.4.2.1 Binary risk computation

The computation of risk can be binary. In this case, risk is assigned the value 0 or 1 depending on

whether there exists a collision-free maneuver that the driver can perform. Determining whether such

a maneuver exists can be done in two ways.

The first one consists in computing escape maneuvers (i.e. how the vehicle should steer, brake or

accelerate to avoid the collision) and check whether these maneuvers are feasible (with “feasible”

meaning that the steering, braking or accelerating does not exceed the physical limitations of the

vehicle) [41].

The second one is to consider the entire space of combined steering, braking and accelerating maneu-

vers, and to perform an optimized search for collision-free trajectories [46].

2.4.2.2 Probabilistic risk computation

Risk can be computed in a probabilistic manner, taking into account the uncertainty on the future

motion of vehicles.

When the future motion of a vehicle is represented by a probability distribution on sample trajec-

tories (which is typically the case with approaches relying on Monte Carlo simulations or Gaussian

Processes), it is possible to compute risk as the “probability of a collision in the future” by integrating
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over all the possible future trajectories and detecting collisions between each possible pair. This ap-

proach provides a lot of flexibility in the handling of uncertainties. For example, for a ‘Maneuvering

entities’ motion model the calculation can either sum over both the maneuvers and their executions,

or assume that the maneuvers are known and sum on the possible executions only [63]. Further,

depending on the final application one can compute the risk of colliding with a specific vehicle or

sum over all the vehicles and obtain a global collision risk [63]. If the collision detection is done in a

probabilistic manner (as in Section 2.4.1), the uncertainty about the collision can also be taken into

account in the calculation.

2.4.2.3 Other risk indicators

Several risk indicators exist which can complement the collision risk. They are generally based on a

measure of the “Time-To-X” (or TTX) where X corresponds to a relevant event in the course toward

the collision.

• Time-To-Collision (TTC)

The most standard indicator is the Time-To-Collision, which corresponds to the time remaining

before the collision occurs5. It can be used as an indication of what action (if any) should be

taken [52, 87, 11, 41, 45]. For example, when the TTC is still large it might be preferable to

inform or warn the driver rather than to apply the brakes. For autonomous emergency braking

applications, the TTC can be compared with the time required for the vehicle to come to a full

stop in order to decide when to apply the brakes [88]. For driver warning applications, the driver

reaction time needs to be added to the time to stop the vehicle [10]. The TTC can also be used

as a tool to identify the least dangerous maneuver for an autonomous vehicle, by assuming that

the risk of executing a specific trajectory for the autonomous vehicle is inversely proportional to

the earliest TTC (the TTC is calculated for all the possible trajectories of the other vehicles in

the scene) [75].

• Time-To-React (TTR)

A closely related indicator is the Time-To-React , which corresponds to the time available for the

driver to act before the collision is inevitable. The idea is to simulate different driver actions

(such as braking, accelerating, steering) and to identify the latest moment at which one of these

maneuvers is able to avoid the collision [77, 49].

5The term Time-To-Collision is often used to refer specifically to collision detection methods which assume a constant velocity
for the vehicles. Here the alternative definition of the Time-To-Collision is used, where it corresponds to the time remaining
before the collision occurs.
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2.5 Other approaches and conclusions

This chapter focused on the ‘Trajectory prediction + collision detection’ approach for the problem

of estimating the risk of a situation at an intersection. This final section reviews the few methods

which do not rely on trajectory prediction, and concludes on the status and remaining issues for risk

assessment at road intersections.

2.5.1 Other approaches

2.5.1.1 Knowledge-Based Systems

An intuitive approach is to define a set of rules which detect danger based on the context and on the

current observations of the state of the vehicles.

The rules can be simple heuristics on acceptable speeds when approaching an intersection [39], or

can include more advanced concepts such as the semantics of the location, weather conditions or

the level of fatigue of the driver [89]. Rule-based systems are a particular case of Knowledge-Based

Systems (KBS), which aim at providing a complete framework for knowledge acquisition, knowledge

representation, reasoning and decision making. For example, knowledge can be stored in the form of

databases (containing detailed historical facts), expert knowledge bases (identified rules, norms, and

patterns), case bases (a set of solved case studies), ontologies (formal description of domain-specific

concepts) [90].

Because context is explicitly taken into account in KBS, the characteristics of the environment can

easily be incorporated. However an established limitation of these systems is their inability to account

for uncertainties (both on the data and on the model).

2.5.1.2 Data mining techniques

An alternative is use accident databases to learn typical collision patterns between two vehicles. This

way potentially dangerous configurations can be identified when they occur again.

Data mining techniques have been used to map the relationship between vehicles states (input) and

collision risk (output) directly [91, 92].

However obtaining the data to learn from remains an issue, since real data is not available and simula-

tions will not be representative of real accident situations. Another limitation is that these techniques
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learn collision patterns between pairs of vehicles without putting them in context with the other ve-

hicles. Since the relationships between the different vehicles in the scene are not modeled, some

dangerous situations will be detected very late (e.g. vehicle A following vehicle B and getting closer,

preparing to overtake vehicle B, while a vehicle C is driving on the same road but in the opposite

direction).

2.5.2 Conclusions

With the objective to improve road safety, the automotive industry is evolving toward more “intel-

ligent” transportation systems. One of the major current challenges for vehicles is to be capable of

detecting dangerous situations and react accordingly. In this respect the field of ITS benefited from

the research conducted over the last 40 years in the mobile robotics domain, as they share a number

of scientific problems (e.g. localization, perception, navigation). However, a notable particularity

of the road network compared with other environments is that it is very structured, with specific

rules governing the behavior of the traffic participants. This difference is not always acknowledged in

approaches proposed in the literature.

The most common approach for risk estimation is based on the ‘Trajectory prediction + collision de-

tection’ steps. First, a motion model is used to predict the likely future trajectories of the vehicles

in the scene. Then all the combinations of future trajectories are inspected for collisions, and risk is

computed based on the detected collisions. The motion model plays an important role: the model

should be sophisticated enough that complex situations can be represented, but should also allow the

computation of risk in real-time. ‘Physical entities’ motion models allow for an efficient computation

of the risk, but are limited to short-term collision prediction. ‘Maneuvering entities’ motion models

provide a more reliable estimation of long-term motion and risk by introducing a higher-level reason-

ing, but they ignore the dependencies between the vehicles in the scene. ‘Interacting maneuvering

entities’ account for these dependencies, but their computational complexity make them incompatible

with real-time risk assessment with the ‘Trajectory prediction + collision detection’ approach.

Overall the difficulty is that in order to estimate risk at an intersection it is necessary to reason at a

high level about a set of interacting maneuvering entities, taking into account uncertainties as well as

the context of the road network. This high-level reasoning is computationally expensive, and when it

is followed by trajectory prediction and collision detection the whole process is no longer compatible

with real-time applications. Therefore we argue that an important challenge for future risk assessment

algorithms is to be able to integrate contextual information and to account for uncertainties, while
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keeping the complexity manageable.

In the next chapter, a novel approach to risk estimation at road intersection is proposed which attempts

to tackle this challenge. The risk estimation problem is formulated in such a way that it is no longer

necessary to predict the future trajectories of the vehicles to compute the collision risk of a situation.

By avoiding the time-consuming computation of the future trajectories and their collision points,

we make the use of ‘Interacting maneuvering entities’ motion models compatible with real-time risk

assessment.
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The state of the art review conducted in the previous chapter led to the conclusion that an important

challenge for risk assessment algorithms is to find a tradeoff between the amount of information which

is taken into account in the motion model (constraints imposed by the road network, dependencies

between vehicles’ maneuvers, uncertainties) and the complexity of the computation.

This work proposes an alternative to the classic ‘Trajectory prediction + collision detection’ approach

to risk estimation. The idea is to detect dangerous situations by comparing what drivers intend to do

with what they are expected to do according to the traffic rules. The time-consuming computation

of the future trajectories and their collision points is avoided, and the use of advanced motion model

is no longer incompatible with real-time risk assessment. More precisely, we propose an ‘Interacting

maneuvering entities’ motion model for vehicles in the form of a Dynamic Bayesian Network (DBN)

where driver intentions and traffic rules are explicitly represented. The risk of a situation is estimated

by performing Bayesian inference on the relevant variables given some observations.

This chapter describes the proposed motion model and risk estimation strategy. Section 3.1 introduces

the principles behind the proposed approach, first in the general context of road traffic situations and

then in the specific context of road intersections. The final four sections are dedicated to the detailed

description of the DBN proposed for risk estimation at road intersections. The DBN is described in 4

steps, following the Bayesian Programming formalism [93]:

1. Define the variables (Section 3.2),

2. Define the joint distribution (Section 3.3),
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3. Define the parametric forms of the conditional probability terms (Section 3.4),

4. Define the question(s) relevant for risk assessment (Section 3.5).

3.1 Overview of the proposed approach

In this work the motion of a vehicle is represented using a Markov State Space Model (MSSM). Markov

State Space Models belong to the family of Dynamic Bayesian Networks. They describe continuous

motion using a set of state variables, a set of measurement variables, and a set of conditional prob-

ability functions. The state variables are hidden (not observed) and are inferred from the successive

measurements. The conditional probability functions specify the evolution of the state between two

timesteps, and specify the dependencies between the measurement variables and the state variables.

This section is organized in three parts. First, some background is provided about the use of MSSMs to

represent the motion of vehicles on the road. Then the proposed MSSM is introduced in the context

of general traffic situations. The application of this general framework to the specific case of road

intersections is presented in the last part.

3.1.1 Background: representing vehicle motion with MSSMs

MSSMs have been used successfully in the past to represent vehicle motion [94, 64, 14, 63, 62]. They

have the advantage of being very flexible: one motion pattern can be represented in many different

ways with MSSMs. The complexity of the model depends on the choice of variables and on the form

of the conditional probability functions. For this reason, the specification of the variables is a very

important step in the design of MSSMs. The set of variables should be comprehensive enough that

complex situations can be represented, but the relationships between them should be simple enough

that inference on the hidden state variables can be performed in real-time.

There are two ways of representing maneuvering vehicles with MSSMs: either with a single MSSM

[64, 14] or with a set of MSSMs [94, 63, 62].

3.1.1.1 With a single MSSM

In this case, the motion of a vehicle is typically modeled based on three layers of abstraction:

• Level 1: the highest level corresponds to the maneuver performed by the vehicle (e.g. overtake,

turn right). The variables at this level are discrete and hidden (not observable).
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We will call I the conjunction of these variables.

Int therefore represents the maneuver being performed by vehicle n at time t. We call it I as

“Intention”, since the maneuver performed by a vehicle reflects the intended maneuver of the

driver.

• Level 2: this level corresponds to the physical state of the vehicle (e.g. position, speed). The

variables at this level are hidden (not observable).

We will call Φ the conjunction of these variables.

Φn
t therefore represents the physical state of vehicle n at time t.

• Level 3: the lowest level corresponds to the measurements available (e.g. measurement of the

vehicle’s position). The variables at this level are observable. They often correspond to a noisy

version of a subset of the physical variables.

We will call Z the conjunction of these variables.

Zn
t therefore represents the measurements of the state of vehicle n at time t.

The dependencies between these variables can take a variety of forms. A general form is shown in

Figure 3.1. Well-known models such as Hidden Markov Models or Switching Markov Models belong

to the family of MSSMs and are derived from this general model by making further independence

assumptions.

Figure 3.1. Graphical representation of a base MSSM modeling the motion of a vehicle n

between time t− 1 and t.
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3.1.1.2 With a set of MSSMs

In this case, each possible maneuver is modeled by a dedicated MSSM. A maneuver is broken into a

sequence of “primitive” maneuvers, with constraints on their order and duration. In order to represent

this, a fourth level of abstraction is added between level 1 (maneuver intention) and level 2 (physical

state):

• Level 1.5: this level corresponds to the primitive maneuver performed by the vehicle (e.g. slow

down). The variables at this level are discrete and hidden (not observable).

We will call Π the conjunction of these variables.

Πn
t therefore represents the primitive maneuver performed by vehicle n at time t.

Any type of MSSM can be used to represent each maneuver, but HMMs are by far the most popular.

The graphical representation of a model relying on a set of HMMs to represent maneuvering vehicles

is shown in Figure 3.2.

Figure 3.2. Graphical representation of a HMM-based motion model for a vehicle n.

3.1.1.3 Accounting for dependencies between vehicles

Vehicle do not move on the road independently from each other: their joint motion is regulated by

traffic rules. Traffic rules are “compulsory for all participants in road traffic [...]. [They] establish
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the meaning of the signals of traffic lights and traffic controllers, road signs, and road markings and

describe the movements of participants in road traffic in the most typical conditions and situations.

The rules regulate the positioning of vehicles on the roadway, the changing of position, passing,

stopping, parking, and traversing intersections and railroad crossings.” [95].

The base MSSMs (described above) do not account for the dependencies between the vehicles, but

solutions have been proposed in the literature.

In the case of a single MSSM, the solution proposed in the literature [64, 14] is to make the current

intended maneuver of a driver dependent on the previous “situational context”, i.e. dependent on the

previous intended maneuvers and physical states of all the vehicles in the scene. The corresponding

graphical model is shown in Figure 3.3. The multi-vehicle dependencies implicitly encode the traffic

rules, since the latter regulate the joint motion of vehicles on the road. For example if vehicle n is

approaching a give-way intersection, and there are vehicles with right-of-way approaching the same

intersection, we can assume based on traffic rules that there is a high probability that the driver of

vehicle n intends to stop at the intersection and a low probability that he intends to proceed in the

intersection. Another example is a vehicle n following a vehicle m on the highway: if vehicle m slows

down, there is a high probability that vehicle n will either slow down or change lanes to overtake

vehicle m, and there is a low probability that vehicle n will remain on the same lane with the same

speed.

Figure 3.3. Graphical representation of a MSSM which accounts for the dependencies be-

tween the vehicles. Bold arrows represent multi-vehicle dependencies, i.e. the influences of

the other vehicles on vehicle n.
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In the case of a set of HMMs, an extension has been proposed in the form of Coupled HMMs

(CHMMs) [81]. Each type of interaction between two vehicles is represented by two HMMs whose

primitive maneuvers influence each other (see graphical model in Figure 3.4). For example, the

interaction “vehicle n overtakes vehicle m” will be represented with one CHMM where the primitive

maneuver executed by vehicle m (e.g. “slow down”) will influence the primitive maneuver executed

by vehicle n (e.g. “change lane left”) and vice-versa.

Figure 3.4. Graphical representation of a CHMM-based motion model.
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3.1.2 Proposed approach for general traffic situations

Our risk assessment method is based on a single MSSM. Sets of HMMs were discarded for complexity

reasons: as was mentioned in the previous chapter, the fact that a CHMM is needed for each possible

interaction between two vehicles is not compatible with real-time applications. We propose a novel

manner to take into account vehicle interactions in MSSMs. The resulting motion model makes it

possible to estimate the risk of a situation without computing the future trajectories of the vehicles.

3.1.2.1 Proposed MSSM

The core idea is the following: instead of implicitly encoding the traffic rules in the multi-vehicle

dependencies (as in Figure 3.3), we introduce an intermediate layer in the MSSM which explicitly

represents what traffic rules expect from drivers in the current context. This is represented in Fig-

ure 3.5.

Figure 3.5. Graphical representation of the proposed MSSM. Bold arrows represent multi-

vehicle dependencies, i.e. the influences of the other vehicles on vehicle n.

The expected maneuver En
t represents the behavior expected from a vehicle according to the traffic

rules. It is a conjunction of variables analogous to the intended maneuver Int : every variable in the

conjunction Int has an equivalent in the conjunction En
t . As can be seen in the graph, the expected

maneuver En
t is derived from the previous situational context and has an influence on the intended

maneuver Int .
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Our model of interactions between vehicles is similar to the solutions proposed in the literature (Fig-

ure 3.3) in the sense that the dependencies between the vehicles are modeled by making the current

intended maneuver Int dependent on the previous “situational context”. The difference is that the

dependency is not direct in our case: the expected maneuver En
t is inserted as an intermediate.

The previous “situational context” influences what the driver is expected to do, which in turn

influences what the driver intends to do.

3.1.2.2 Proposed risk estimation strategy

Modeling explicitly what is expected from a vehicle at time t creates new possibilities for the estimation

of the risk of a situation. Instead of using the MSSM to predict the future trajectories of the vehicles,

we use it to jointly infer what drivers currently intend to do (It) and what they are expected

to do (Et). The risk of a situation is computed based on the probability that intentions and

expectations do not match, given the measurements:

P ([Int 6= En
t ]|Z0:t) (3.1)

This novel approach to risk assessment reflects the fact that most accidents are caused by driver error

[1], and matches the intuitive notion that “dangerous” situations are situations where drivers are

acting differently from what is expected of them.

Based on Eq. 3.1, a variety of safety-oriented applications can be derived.

Detection of hazardous vehicles: A “hazard probability” can be computed for every vehicle in the

scene using Eq. 3.1. Subsequently, actions can be triggered depending on the value of the risk. An

example ADAS application would be to warn all the drivers in the area when the risk is higher than a

predefined threshold, i.e. if:

∃n ∈ N : P ([Int 6= En
t ]|Z0:t) > λ (3.2)

The warning message could be adapted to the level of risk, so that the driver is aware of the urgency

of the situation.

If autonomous braking is considered, there are even more possibilities. Inference on the Dynamic

Bayesian Network proposed in this work can provide relevant information about the situation, beyond
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the risk value. The maneuvers at the origin of the danger can be identified, and since our model is

generative it is then possible to predict the time and location of the accident by predicting the future

trajectories of the vehicles involved in the accident. Depending on the risk value and on the time

remaining before the collision, applications using our approach could trigger gradual responses to

danger: e.g. warning the driver when the risk is moderate, slowing down the vehicle autonomously

when the risk is high and there is not enough time to warn the driver, or applying emergency braking

autonomously when a collision is imminent.

Risk of a specific maneuver: The risk of a specific maneuver Int can be computed for a vehicle n:

P (

N
⋃

m=1

[Imt 6= Em
t ]|Int Z0:t) (3.3)

This is an important feature for autonomous driving, but also for ADAS. One application is to find the

best escape maneuver in a dangerous situation. Another one is to assist the driver for tasks such as

changing lanes on the highway or negotiating an intersection by computing the risk of each possible

maneuver and informing the driver about how safe each maneuver is.

Other applications: The proposed model can be used to estimate the intended maneuver of a driver,

or to predict future trajectories. These are useful features for numerous applications which need to

reason about traffic situations [96].

3.1.2.3 Note on trajectory prediction

In Section 3.1.2.2, we suggest using the proposed motion model to predict the future trajectories of

vehicles. This can seem contradictory with the angle taken so far in this thesis about risk estimation:

we stated repeatedly that one of the main advantages of our approach is that it does not require to

predict the trajectories of the vehicles in the scene to compute the risk of a situation.

Both statements are actually compatible. The ‘Trajectory prediction + collision detection’ approach

described in the state-of-the-art chapter relies on trajectory prediction to compute the risk. One issue

is that predicting all the potential trajectories of all the vehicles for all their potential maneuvers

and then checking for a collision between all the possible pairs of trajectories is very time-consuming

and not always compatible with real-time risk estimation. When we suggest predicting trajectories in

Section 3.1.2.2, the context is very different. The risk of the situation has already been estimated (by

58



Chapter 3. Proposed motion model and risk estimation

comparing the intention Int with the expectation En
t ), along with the vehicle(s) causing the danger and

their intended maneuver(s). The purpose of trajectory prediction here is to obtain some additional

information about the collision such at the time remaining before it occurs. In this context trajectory

prediction is performed only for specific vehicles performing a specific maneuver, the computational

requirements are therefore very low.

We believe that trajectory prediction is complementary to our method. The difference with state-

of-the-art approaches is that trajectory prediction is optional in our case: it is performed after risk

estimation if the application requests additional information about the collision (see example in Sec-

tion 3.1.2.2).

3.1.3 Application to road intersections

The model presented above could in theory be applied to any traffic situations, by defining the vari-

ables Int , En
t , Zn

t , and Φn
t accordingly.

Here the focus is on risk estimation at unsignalized road intersections, i.e. intersections ruled by

anything but traffic lights (stop, give-way, priority to the right). More specifically we address accidents

caused by traffic sign violations. All intersection layouts (geometry, topology) are considered. As an

example, the list of accident scenarios addressed in this work are depicted in Figure 3.6 for X-shaped

intersections.

The case of signalized road intersections (i.e. controlled by traffic lights) is not addressed, although

the model described below can very easily be extended to traffic light violation cases. Neither rear-end

collisions or driver error in the lateral execution of the maneuver (such as a hazardous lane change)

are addressed in this work, but extensions of the motion model to handle these cases are proposed in

the conclusion of this chapter.

The proposed model for risk estimation at road intersections is described in the remaining sections.

The description follows the Bayesian Programming formalism: first the variables are defined, then the

proposed joint distribution, the parametric forms, and finally the calculation of risk.
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Figure 3.6. List of accident scenarios addressed at X-shaped intersections.

3.2 Variable definition

This section proposes definitions for the intended maneuver Int , the expected maneuver En
t , the phys-

ical state Φn
t , and the measurements Zn

t , in the context of road intersections.

3.2.1 Intended maneuver I
n

t

As was mentioned in the previous section, driver error in the lateral direction is not addressed in this

work. The focus is on errors in the longitudinal execution of the maneuver. Since we want to be

able to reason on the lateral motion and on the longitudinal motion separately, we make a distinction

between the lateral and longitudinal components of a maneuver in our specification of the intended

maneuver Int .
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3.2.1.1 Lateral component

For the lateral component, we exploit the fact that intersections are highly structured areas where the

lateral motion of vehicles is constrained by the geometry and the topology of the intersection.

It is assumed that a digital map of the road network is available. From this digital map we extract

a set of “courses”, where a course is defined for each authorized maneuver at the intersection as the

typical path that is followed by a vehicle when executing that particular maneuver. The concept of a

course is illustrated in Figure 3.7. For details about the extraction of courses from digital maps, see

Appendix C.

Figure 3.7. Illustrative example for the "course" concept. The courses originating from one

road are displayed as blue arrows.

The variable representing the lateral component of a maneuver is defined as:

• Icnt ∈ {ci}i=1:NC
: the driver’s intended lateral motion, which will also be called the driver’s

intended course in the context of road intersections. It corresponds to the course followed by

vehicle n at time t. {ci}i=1:NC
is the set of possible courses at the intersection, extracted from

the digital map.

3.2.1.2 Longitudinal component

For the longitudinal component, we exploit the fact that intersections are highly structured areas

where the longitudinal motion of vehicles is constrained by the geometry and the topology of the
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intersection as well as by the traffic rules.

For a vehicle n at time t we define two possible intentions with respect to the motion in the longitudinal

direction: go and stop. The variable representing the longitudinal component of a maneuver is defined

as:

• Isnt ∈ {go, stop}: the driver’s intended longitudinal motion, which will also be called the

driver’s intention to stop in the context of road intersections. It corresponds to the driver’s

intention regarding the longitudinal execution of the maneuver.

Isnt = go means that the driver intends to adapt its speed to the layout of the intersection only.

In other words, the driver intends to negotiate the intersection as if there were no constraints

from the traffic rules (stop, give-way). This is typically the case for vehicles which have priority:

drivers will adapt their speed to the topology and the geometry of the intersection (slowing

down to make a turn) but will not slow down to stop or yield to another vehicle.

Isnt = stop means that the driver intends to adapt its speed to the layout of the intersection

(similarly to Isnt = go), but will also adapt his speed so that he can stop at the intersection.

Typically, this behavior will be adopted by vehicles approaching a stop intersection with the in-

tention to respect the stop, and by vehicles which do not have the right-of-way at an intersection

and intend to yield to another vehicle.

3.2.2 Expected maneuver E
n

t

In the general framework presented in Section 3.1.2, each variable in the conjunction Int has an

equivalent in the conjunction En
t . The purpose is twofold: to model the influences of the surrounding

vehicles on the maneuver performed by a vehicle, and to compute the risk based on the probability

that the expected maneuver and the intended maneuver do not match.

If this principle is applied to our problem, the expected maneuver En
t should contain two variables:

the “expected lateral motion” (analogous to Icnt ) and the “expected longitudinal motion” (analogous

to Isnt ). However in our case it is not necessary to include an “expected lateral motion” variable, for

two reasons. The first reason is that in the context of road intersections the dependencies between the

vehicles mostly concern the longitudinal motion: whether a driver will stop or not at the intersection

is influenced by the presence of other vehicles, but the course followed by a driver is not. Therefore

it is reasonable to assume independence between the lateral motion of vehicles. The second reason is

that, as mentioned earlier, this work addresses risks in the longitudinal direction only. Therefore for a

vehicle n at time t we define the following variable:
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• Esnt ∈ {go, stop}: the expected longitudinal motion, which will also be called the expectation

to stop in the context of road intersections. It corresponds to the expected longitudinal motion

of the vehicle according to the traffic rules.

The definition of Esnt = go and Esnt = stop are analogous to the definitions provided for the

Isnt = go and Isnt = stop in the previous section; the only difference is that is corresponds to

what the driver should do (according to the traffic rules) instead of what he intends to do:

Esnt = go means that the driver should adapt his speed to the layout of the intersection only.

Esnt = stop means that the driver should adapt his speed to the layout of the intersection, and

should also adapt his speed so that he can stop at the intersection.

3.2.3 Measurements Z
n

t

In this work, the following measurements of the state of a vehicle n ∈ N at time t are available:

• Pmn
t = (Xmn

t Y mn
t θm

n
t ) ∈ R

3: the measured pose, i.e. the position and orientation of the

vehicle in the Universal Transverse Mercator (UTM) coordinate system.

• Smn
t ∈ R: the measured speed of the vehicle.

• Tmn
t ∈ {left, right, none}: the measured turn signal state of the vehicle.

The pose and speed measurements are obtained through a combination of GPS (Global Positioning

System) and IMU (Inertial Measurement Unit) measurements, and the turn signal state is read on the

CAN-bus of each vehicle. These measurements are shared by each vehicle via V2V communication,

and are therefore accessible by all the vehicles in the scene1. However, the model presented here can

be applied independently of the type of sensors. For example, if the vehicles do not communicate, the

information about the other vehicles could be obtained via embedded exteroceptive sensors such as

cameras, lasers, radars, or a combination of those.

3.2.4 Physical state Φ
n

t

Based on the available measurements (see previous section), the following variables are selected to

represent the physical state of a vehicle n ∈ N at time t:

1More details about the measurements and about the sharing of information between vehicles in our experiments are given
in the results chapter (Chapter 4).
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• Pn
t = (Xn

t Y
n
t θnt ) ∈ R

3: the true pose of the vehicle.

• Sn
t ∈ R: the true speed of the vehicle.

• Tn
t ∈ {left, right, none}: the true turn signal state of the vehicle.

3.2.5 Summary and notations

The variables of our DBN were defined by adapting the general model proposed in Section 3.1.2 to

the context of road intersections. The following variables were defined for a vehicle n ∈ N at time t:

• For the intended maneuver: Int = (Icnt Is
n
t )

Icnt represents the driver’s intended lateral motion, i.e. the path that the vehicle will follow to

negotiate the intersection. Isnt represents the driver’s intended longitudinal motion, i.e. whether

or not he intends to stop at the intersection.

• For the expected maneuver: En
t = Esnt

Esnt represents the expected longitudinal motion, i.e. whether or not the driver is expected to

stop at the intersection according to the traffic rules.

• For the measurements: Zn
t = (Pmn

t Sm
n
t Tm

n
t )

The variables correspond to the measurements available in this work.

• For the physical state: Φn
t = (Pn

t S
n
t T

n
t )

The variables represent the true states behind the measurements.

The variables Zn
t and Φn

t were defined according to the measurements available, and the variables

Int and En
t were defined with the objective to detect dangerous situations at a road intersection by

comparing driver intention and driver expectation, as illustrated in Figure 3.8 with some example

scenarios.
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(a) Dangerous case: B

should stop to yield to

A, but does not intend

to stop

(b) Non-dangerous

case: B does not need

to stop, and does not

intend to stop

(c) Non-dangerous

case: B should stop to

yield to A, and is

stopped

(d) Dangerous case: B

should have stopped

to yield to A, but

proceeded instead

Figure 3.8. Detection of dangerous situations by comparing intention Isnt and expectation

Esnt : example scenarios.

In the next sections we carry on with the specification of the DBN, still following the Bayesian Pro-

gramming formalism. For more clarity in the equations, in the remaining of this thesis a bold symbol

will be used to represent the conjunction of variables for all the vehicles in the scene. For example,

for a variable X:

X , (X1...XN ) (3.4)

with Xn the variable associated with vehicle n.

3.3 Joint distribution

For the general model proposed in Figure 3.5, the joint distribution over all the vehicles is as follows:

P (E0:TI0:TΦ0:TZ0:T) = P (E0I0Φ0Z0)

×
T
∏

t=1

×
N
∏

n=1

[

P (En
t |It−1Φt−1)× P (Int |Φn

t−1I
n
t−1E

n
t )

×P (Φn
t |Φn

t−1I
n
t−1I

n
t )× P (Zn

t |Φn
t )
]

(3.5)
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In this section we adapt this general model to road intersection situations, with the variables defined

in the previous section. We start by making the following classic independence assumptions:

For the intended maneuver: The current intended lateral motion and intended longitudinal motion

are conditionally independent given (Φn
t−1I

n
t−1E

n
t ). Therefore the following simplification is obtained:

P (Int |Φn
t−1I

n
t−1E

n
t ) = P (Icnt |Φn

t−1I
n
t−1E

n
t )× P (Isnt |Φn

t−1I
n
t−1E

n
t ) (3.6)

For the physical state: The current pose, speed and turn signal state are conditionally independent

given (Φn
t−1I

n
t−1I

n
t ). Therefore the following simplification is obtained:

P (Φn
t |Φn

t−1I
n
t−1I

n
t ) = P (Pn

t |Φn
t−1I

n
t−1I

n
t )× P (Sn

t |Φn
t−1I

n
t−1I

n
t )× P (Tn

t |Φn
t−1I

n
t−1I

n
t ) (3.7)

For the measurements: A classic sensor model is used, i.e. the measurements are conditionally

independent given the physical quantities they are associated with. Therefore the following simplifi-

cation is obtained:

P (Zn
t |Φn

t ) = P (Pmn
t |Pn

t )× P (Smn
t |Sn

t )× P (Tmn
t |Tn

t ) (3.8)

After applying these independence assumptions, and taking into account that En
t = Esnt , the joint

distribution (Equation 3.5) becomes:

P (E0:TI0:TΦ0:TZ0:T) = P (E0I0Φ0Z0)

×
T
∏

t=1

×
N
∏

n=1

[P (Esnt |It−1Φt−1)

× P (Icnt |Φn
t−1I

n
t−1Esnt )× P (Isnt |Φn

t−1I
n
t−1Esnt )

× P (Pn
t |Φn

t−1I
n
t−1I

n
t )× P (Sn

t |Φn
t−1I

n
t−1I

n
t )× P (Tn

t |Φn
t−1I

n
t−1I

n
t )

×P (Pmn
t |Pn

t )× P (Smn
t |Sn

t )× P (Tmn
t |Tn

t )] (3.9)
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3.4 Parametric forms

In this section the parametric forms of the conditional probability terms in Equation 3.9 are described,

along with the hypotheses they build on.

3.4.1 Expected longitudinal motion Es
n

t

The expected longitudinal motion of a vehicle is derived from the previous intended course, pose and

speed of all the vehicles in the scene:

P (Esnt |It−1Φt−1) = P (Esnt |Ict−1Pt−1St−1) (3.10)

What is expected of vehicles on the road is regulated by traffic rules, but a lot is left to the judgment

of the driver. If we take as an example give-way intersections in France, the rules specify that the

driver which does not have the right-of-way must “yield to vehicles driving on the other road(s) and

make sure there is no danger before entering the intersection”2. There exists no formula to calculate

whether it is legal or not for a driver to enter an intersection at time t in a specific context. Instead,

our expectation model is based on typical driver behavior, i.e. on a statistical analysis of what drivers

consider to be acceptable. The necessity for a vehicle to stop given the context is derived using

probabilistic gap acceptance models [97, 98]:

P ([Esnt = stop]|[Ict−1 = ct−1][Pt−1 = pt−1][St−1 = st−1]) = f(ct−1, pt−1, st−1) (3.11)

with ct−1 the conjunction of courses for the N vehicles in the scene (i.e. ct−1 = (c0t−1...c
N
t−1)),

pt−1 the conjunction of positions for the N vehicles in the scene (i.e. pt−1 = (p0t−1...p
N
t−1)), st−1

the conjunction of speeds for the N vehicles in the scene (i.e. st−1 = (s0t−1...s
N
t−1)), and f a function

which computes the probability that the gap available for vehicle n to execute its maneuver is sufficient

given the previous situational context (ct−1, pt−1, st−1). For a vehicle n heading towards a give-way

intersection, the calculation is detailed below and illustrated in Figure 3.9 on an example:

1. Project forward (or backward) the position of vehicle n until the time tn when it reaches the

intersection, using the vehicle’s previous state (cnt−1, p
n
t−1, s

n
t−1) and a constant speed model.

2Original version in French (Code de la route - Article R415-7 ): "A certaines intersections indiquées par une signalisation
dite cédez le passage, tout conducteur doit céder le passage aux véhicules circulant sur l’autre ou les autres routes et ne s’y
engager qu’après s’être assuré qu’il peut le faire sans danger.".
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2. Let VROW be the set of vehicles whose maneuvers have the right-of-way w.r.t. the maneuver

of vehicle n. For each vehicle m ∈ VROW project forward (or backward) the position of ve-

hicle m until the time tm when it reaches the intersection, using the vehicle’s previous state

(cmt−1, p
m
t−1, s

m
t−1) and a constant speed model.

3. Find the vehicle k ∈ VROW which is the most likely to cause vehicle n to stop, by finding the

smallest positive time gap available for vehicle n to execute its maneuver:















k = argmin
m∈VROW

(tm − tn), for tm − tn ≥ 0

gmin = tk − tn
(3.12)

4. The necessity for vehicle n to stop at the intersection is calculated as the probability that the gap

gmin is not sufficient, using a probabilistic gap acceptance model:

• For merging cases, the following gap acceptance model is used [97]:

f(ct−1, pt−1, st−1) = 1.0− 1

1 + e−λ(ln(gmin)+(1−α)ln(skt−1)−ln(γ))
(3.13)

with gmin the gap computed in the previous step, skt−1 the speed of vehicle k at time t− 1,

and (λ, α, γ) the parameters of the logistic function set to the average values λ = 3.611,

α = 0.602, γ = 19.347 [97].

• For other cases, the following gap acceptance model is used (adapted from [98]):

f(ct−1, pt−1, st−1) = 1.0− 1.05

1 + ( gmin

δ
)σ

(3.14)

with gmin the gap computed in the previous step and (δ, σ) the parameters of the logistic

function set to the values δ = 6.1, σ = −4.0.

For a vehicle approaching a stop intersection the calculation is similar, except the probability that the

vehicle is expected to stop is set to 1 until it reaches the intersection (i.e. P ([Esnt = stop]|Ict−1Pt−1St−1) =

1), and after that point the last two steps of the calculation above are used (i.e. steps 3 and 4).

This context-aware reasoning about the necessity for a vehicle to stop at the intersection will allow

us to detect vehicles running stop signs, or vehicles entering an intersection when they should have

waited for another vehicle to pass (as illustrated earlier in Figure 3.8). A similar calculation can be

done for intersections controlled by traffic lights, but this is not the focus of this work.
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Previous situational context:

pose, speed, and intended course of

vehicle n (blue car), vehicle i (black car),

and vehicle j (yellow car).

Steps 1 and 2

Step 3
k = i

gmin = 3 s

Step 4

P ([Esnt = stop]|[Ict−1 = ct−1][Pt−1 =

pt−1][St−1 = st−1])

= 1.0− 1

1+e
−λ(ln(gmin)+(1−α)ln(sk

t−1
)−ln(γ))

= 0.92

Figure 3.9. Computation of P (Esnt |Ict−1Pt−1St−1) in an example situation.

3.4.2 Intended longitudinal motion Is
n

t

A number of different strategies could be applied for the intended longitudinal motion model, to

model drivers’ habits in terms of compliance with traffic rules. In this work, the model is based on the

comparison between the previous intention Isnt−1 and the current expectation Esnt :

P (Isnt |Φn
t−1I

n
t−1Esnt ) = P (Isnt |Isnt−1Esnt ) (3.15)
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If the driver’s intention at time t − 1 coincides with what is currently expected of him, it is assumed

that the driver will comply with a probability Pcomply. Otherwise a uniform prior (0.5) is assumed:

Isnt−1 Esnt P ([Isnt = go]|Isnt−1Esnt ) P ([Isnt = stop]|Isnt−1Esnt )

go go Pcomply 1.0− Pcomply

go stop 0.5 0.5

stop go 0.5 0.5

stop stop 1.0− Pcomply Pcomply

When setting the value of Pcomply, it is important to understand that different values correspond to

different psychological models of drivers:

• Pcomply ∈ [0.0 0.5[ corresponds to the assumption that most of the time drivers disobey the rules.

• Pcomply = 0.5 means that there is no prior assumption about whether drivers follow the rules or

not.

• Pcomply ∈]0.5 1.0] corresponds to the assumption that most of the time drivers comply with the

rules.

The probability Pcomply is set to Pcomply = 0.9 to reflect our assumption that chances are high that

the driver will comply, but ideally it should be learned from data.

3.4.3 Intended lateral motion Ic
n

t

In the general case of a vehicle driving from point A to point B on the road network, the lateral motion

will change with time as one maneuver is performed after another. In this thesis the focus is on road

intersections, and the possible lateral motions were defined as a set of possible courses. Courses cover

the entire maneuver at the intersection (approaching phase + execution inside the intersection + exit

phase), and there is no reason to believe that a driver will change his mind about the course he wants

to follow. For this reason, it is assumed that the probability of a course at time t is dependent on the

previous intended course only (Cf. Equation 3.16) and that drivers keep the same intention between

two timesteps with probability Psame, all the other courses being equally probable (Cf. Equation 3.17).

P (Isnt |Φn
t−1I

n
t−1Esnt ) = P (Icnt |Icnt−1) (3.16)
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P ([Icnt = cnt ]|[Icnt−1 = cnt−1]) =











Psame if cnt = cnt−1

1.0−Psame

NC−1 otherwise

(3.17)

The value of Psame was set manually to Psame = 0.9 to indicate that drivers rarely change their

intended course, but should ideally be learned from data.

3.4.4 Pose P
n

t

It is assumed that a vehicle performing a maneuver will follow the course corresponding to that

maneuver. The evolution of the pose of a vehicle is computed from its previous pose, previous speed,

and current intended course:

P (Pn
t |Φn

t−1I
n
t ) = P (Pn

t |Pn
t−1S

n
t−1Ic

n
t ) (3.18)

The likelihood of a pose is defined as a trivariate normal distribution with no correlation between x,

y and θ:

P (Pn
t |[Pn

t−1 = pnt−1][S
n
t−1 = snt−1][Ic

n
t = cnt−1]) = N (µxyθ(p

n
t−1, s

n
t−1, c

n
t−1), σxyθ) (3.19)

where µxyθ(p
n
t−1, s

n
t−1, c

n
t−1) is a function which computes the mean pose (µx, µy, µθ), and σxyθ =

(σx, σy, σθ) is the standard deviation. These terms are described in the paragraphs below.

Mean: The mean pose (µx, µy, µθ) is computed by combining two models. The first model is a

classic Constant Velocity (CV) model: a pose is computed from pnt−1 and snt−1 by assuming that the

speed and orientation of the vehicle is constant between t− 1 and t. The second model uses the pose

computed by the Constant Velocity model and projects it orthogonally on the course cnt−1. The poses

computed by the two models are averaged to produce a final predicted pose. Mixing these two models

makes a compromise between the current physical state of the vehicle and the “ideal” pose that the

vehicle would have if following the course perfectly.

The drawback of computing a pose as described above is that the physical limitations of the vehicle

are not taken into account: this calculation predicts that the vehicle will “jump” in the direction of the

course cnt−1. It can seem like a more elaborate path following model would be more representative of

the true behavior of a vehicle. For example, a Proportional-Integral-Derivative (PID) controller could

be applied on a “bicycle” model (see Section 2.1) to take into account the physical limitations of the

71



3.4. Parametric forms

vehicle when it tries to follow the course. In practice in our experiments, taking into account the

physical limitations of the vehicle systematically led to worse results compared with the simple model

proposed above. The reasons for that are analyzed in Appendix E.

Standard deviation: The standard deviation values were manually set to σx = σy = 0.2m and

σθ = 0.1 rad, but should ideally be learned from data.

3.4.5 Speed S
n

t

It is assumed that drivers adapt their speed to their intentions and to the geometry of the road. The

evolution of the speed of a vehicle is computed from its previous speed, previous pose, and current

intended maneuver:

P (Sn
t |Φn

t−1I
n
t ) = P (Sn

t |Sn
t−1P

n
t−1Ic

n
t Is

n
t ) (3.20)

The distribution on Sn
t is assumed normal and defined as:

P (Sn
t |[Sn

t−1 = snt−1][P
n
t−1 = pnt−1][Ic

n
t = cnt ][Is

n
t = isnt ])

= N (µs(s
n
t−1, p

n
t−1, c

n
t , is

n
t ), σs(s

n
t−1, p

n
t−1, c

n
t , is

n
t ))

(3.21)

where µs(s
n
t−1, p

n
t−1, c

n
t , is

n
t ) is a function which computes the mean speed and σs(s

n
t−1, p

n
t−1, c

n
t , is

n
t ) is

a function which computes the standard deviation. The paragraph below describes the speed profiles

which were used as a model for the evolution of the speed, and is followed by the description of the

calculation of the mean speed and the standard deviation.

Generic speed profiles: A number of statistical analyses of the behavior of drivers approaching an

intersection can be found in the literature, e.g. [99]. From these it is possible to derive generic speed

profiles for vehicles negotiating an intersection. For each possible pair (cnt , is
n
t ), it is possible to

define typical speed profiles of the type f : d → s where d is the distance to the intersection and s is

the speed of the vehicle. We define:











sA : d→ s

sM : d→ s

(3.22)
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with sA the average speed profile and sM the maximum speed profile (i.e. the highest speed at which

it is possible to execute the maneuver). The constraints imposed by the geometry of the road are

taken into account: the values in the speed profiles are bounded by the highest speed at which it is

physically possible for a vehicle to drive on course cnt . More specifically, the upper bound smax for

course cnt is calculated as:

smax =
√
µ× g × r (3.23)

with µ the coefficient of friction (set to a conservative value of 0.65), g = 9.81m/s² is the gravity, and

r the radius of curvature of course cnt . In Figure 3.10 the general aspect of the speed profiles is shown.

(a) Maneuver (cnt , is
n

t = stop) (b) Maneuver (cnt , is
n

t = go)

Figure 3.10. Example average and maximum speed profiles generated for a maneuver

(cnt , is
n
t = stop) and for a maneuver (cnt , is

n
t = go).

Mean: The evolution of the speed of a vehicle is predicted using the following model (illustrated in

Figure 3.11):

µs(s
n
t−1, p

n
t−1, c

n
t , is

n
t ) = sA(dt)−

sA(dt)− sM (dt)

sA(dt−1)− sM (dt−1)
× (sA(dt−1)− snt−1) (3.24)

with dt−1 the previous distance to the intersection calculated by projecting the pose pnt−1 on course

cnt , and dt the current distance to the intersection calculated with a constant velocity model as dt =

dt−1 + snt−1 ×∆t.
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This calculation accounts for some variations in the driving styles. Indeed, for one combination

(cnt , isnt ), the predicted speed will depend on the previous speed and therefore is different for a

“sporty” driver and for a “relaxed” driver, while still following the pattern defined for the pair (cnt , is
n
t ).

This is illustrated in Figure 3.11.

(a) “Sporty” driver (b) “Relaxed” driver

Figure 3.11. Example calculation of µs(s
n
t−1, p

n
t−1, c

n
t , is

n
t ) following Equation 3.24, for two

different values of the previous speed snt−1.

Standard deviation: The standard deviation is set dynamically based on the difference between the

average and maximum speed at the current distance: σs(s
n
t−1, p

n
t−1, c

n
t , is

n
t ) = f(sA(dt)− sM (dt)).

3.4.6 Turn signal state T
n

t

The presence of a turn signal is assumed to be dependent on the previous pose of the vehicle, and on

both the previous and the current course followed by the driver, so as to consider that turn signals

can be used to indicate a turn or to indicate an intention to change lanes:

P (Tn
t |Φn

t−1I
n
t−1I

n
t ) = P (Tn

t |Pn
t−1Ic

n
t−1Ic

n
t ) (3.25)

The computation is based on an analysis of the geometrical and topological characteristics of the inter-

section. In particular, we are interested in extracting the relationships between the different entrance
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lanes (leading to the intersection) and exit lanes (leaving from the intersection) of the maneuvers. To

this end, the following functions are defined (and illustrated in Figure 3.12):

• entrance(c) returns the entrance lane of course c,

• exit(c) returns the exit lane of course c,

• angle(eni, exj) returns the angle between entrance lane eni and exit lane exj ,

• most(eni, exj) is true if exit lane exj is the leftmost or rightmost exit lane that can be reached

from entrance lane eni,

• unique(eni) is true if only one exit lane can be reached from entrance lane eni,

• side(eni, enj) returns 0 if entrance lane eni and entrance lane enj do not belong to the same

road, 1 if enj is located to the right of eni, and 2 if enj is located to the left of eni.

Figure 3.12. Example results for entrance(), exit(), angle(), most(), unique(), and side().

The pseudocode for the computation of the probability in Equation 3.25 is displayed in Figure 3.13,

detailed in the paragraphs below, and illustrated in Figure 3.14.
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1 ent−1 = entrance(cnt−1)

2 ext−1 = exit(cnt−1)

3 ent = entrance(cnt )

4 ext = exit(cnt )

5 IF ent−1 6= ent

6 IF side(ent−1, ent) == 0

7 P (Tn
t |[Pn

t−1 = pnt−1][Ic
n
t−1 = cnt−1][Ic

n
t = cnt ]) = f (pnt−1 , angle(ext−1, ext) , γ )

8 ELSE

9 P (Tn
t |[Pn

t−1 = pnt−1][Ic
n
t−1 = cnt−1][Ic

n
t = cnt ]) = f (pnt−1 , side(ent−1, ent) , β )

10 ELSE

11 P (Tn
t |[Pn

t−1 = pnt−1][Ic
n
t−1 = cnt−1][Ic

n
t = cnt ])

12 = f (pnt−1 , angle(ent, ext) , most(ent, ext) , unique(ent) , α)

Figure 3.13. Pseudocode for the computation of the probability of a turn signal given the

previous pose pnt−1, the previous intended course cnt−1, and current intended course cnt .

Illustrative examples are provided in Figure 3.14.

The first case (line 6 to line 9) handles the situations where the turn signal indicates an intention

to change lanes, since the entrance lane of the previous and current intended courses are different.

When the current intended course is not legal (line 7, ent−1 and ent do not belong to the same road,

therefore cnt is not a course that is authorized for a vehicle approaching from ent−1), the probability of

the turn signal is a function of the angle between the exit of the previous intended course cnt−1 and the

exit of the current intended course cnt . When the current intended course is legal (line 9, ent−1 and

ent belong to the same road), the probability of the turn signal is a function of the relative position of

ent−1 and ent (left or right lane change).

The second case (line 11 to line 12) handles the situations where the turn signal is used to indicate

an intention to make a turn. In this situation, the probability of a turn signal is computed as a function

of the angle between the entrance lane and exit lane of the course. The function considers that the

chance that a driver uses the turn signals is higher if the exit lane is on the extreme left or extreme

right, and lower if the entrance lane gives access to a unique exit lane.

76



Chapter 3. Proposed motion model and risk estimation

γ, ζ and ξ are multivariate constant variables which represent the probability that a driver puts on

a turn signal in various scenarios (e.g. γ is the probability that a driver puts on a turn signal while

taking a forbidden path). They were set manually, but should ideally be learned from data.

Figure 3.14. Examples of turn signal probabilities for different situations. The correspond-

ing line number in the pseudocode is indicated above each image. The probability of the

turn signal state being left, none, or right is displayed below each image.

3.4.7 Measured pose Pm
n

t

The uncertainties on the measurements of the pose are modeled using a classic sensor model. A

trivariate normal distribution is assumed, centered on the true state and with no correlation between

x, y and θ:

P (Pmn
t |[Pn

t = pnt ]) = N (pnt , σxyθ) (3.26)

with σxyθ = (σx, σy, σθ) the standard deviation. It was manually set to σx = σy = 2m and σθ =

π/6 rad, according to the specifications of our sensors (GPS + IMU).

3.4.8 Measured speed Sm
n

t

The speed measurements given by our sensors (GPS + IMU) are accurate enough that the uncertainties

can be ignored (accuracy < 1m/s). Therefore a Dirac function is used for the speed sensor model:

P ([Smn
t = smn

t ]|[Sn
t = snt ]) = δ(snt − smn

t ) (3.27)
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3.4.9 Measured turn signal state Tm
n

t

The turn signal state measurements given by the CAN-bus of a vehicle are reliable enough that the

uncertainties can be ignored. Therefore a Kronecker delta function is used for the turn signal state

sensor model:

P ([Tmn
t = tmn

t ]|[Tn
t = tnt ]) = δtnt tmn

t
(3.28)

3.4.10 Summary

Throughout this section a number of independence assumptions were made. As a result the joint

distribution in Equation 3.9 becomes:

P (E0:TI0:TΦ0:TZ0:T) = P (E0I0Φ0Z0)

×
T
∏

t=1

×
N
∏

n=1

[P (Esnt |Ict−1Pt−1St−1)

× P (Icnt |Icnt−1)× P (Isnt |Isnt−1Esnt )

× P (Pn
t |Pn

t−1S
n
t−1Ic

n
t )× P (Sn

t |Sn
t−1P

n
t−1Ic

n
t Is

n
t )× P (Tn

t |Pn
t−1Ic

n
t−1Ic

n
t )

×P (Pmn
t |Pn

t )× P (Smn
t |Sn

t )× P (Tmn
t |Tn

t )] (3.29)

3.5 Bayesian risk estimation

We propose to detect dangerous situations by comparing what drivers intend to do with what they

are expected to do. When applied to the specific case of road intersections (defined in Section 3.1.3),

this principle leads to computing the risk based on the probability that a driver does not intend to stop

while he is expected to:

P ([Isnt = go][Esnt = stop]|Pm0:tSm0:tTm0:t) (3.30)

Exact inference on such a non-linear non-Gaussian model is not tractable. A number of solutions

exist for approximate inference, the most popular being variational methods [100] and Markov Chain

Monte Carlo (MCMC) methods [101]. Here, inference is performed using the classic Sequential
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Importance Sampling (SIR) filter (also known as bootstrap filter or condensation algorithm) [102].

The inference equations are provided in Appendix F.

The bootstrap filter approach was implemented and tested for scenarios involving two vehicles (see

the results in Chapter 4). A good compromise between computation time and quality of the estimation

for two vehicles was achieved for a number of particles Nparticles = 400.

3.6 Conclusions

3.6.1 Summary

This chapter introduced the proposed approach for risk estimation. Our solution is based on a Markov

State Space Model which represents the joint motion of vehicles on the road. As opposed to the

MSSMs proposed in the literature, ours represents explicitly both what drivers intend to do and what

they are expected to do. This model allows to detect dangerous situations by comparing intentions and

expectations, without having to compute the future trajectories of the vehicles. As mentioned in the

previous chapter, to our knowledge there exists no ‘Interacting maneuvering entities’ motion model

in the literature which is compatible with real-time constraints. The main source of computational

complexity of state-of-the-art approaches is the prediction of future trajectories and their collision

points. The MSSM proposed in this thesis offers a solution to this problem and therefore makes

‘Interacting maneuvering entities’ motion model compatible with real-time safety applications.

The proposed approach can in theory be applied to any type of traffic situation. An implementation

for unsignalized road intersections was proposed in this chapter. The algorithm was described in

four steps, following the Bayesian Programming formalism. The model takes into account the mutual

influences between the maneuvers performed by the vehicles, and can be used with an arbitrary

number of vehicles. It models the influence of the topology and the geometry of the intersection on

the behavior of a vehicle, and therefore can automatically adapt to any intersection layout.

3.6.2 Discussion

In this section we address the possible application of the proposed approach to non-intersection traffic

situations. As an example, we consider highway driving. The model defined above for road intersec-

tion situations is used as a base, and we investigate the extensions needed to apply it in the context

of highways. We identified the following needs:
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1. In the case of road intersections, we decomposed the possible maneuvers into their lateral and

longitudinal component (see Section 3.2). We included both components in the intention, but

only the longitudinal component in the expectation. This was done for two reasons:

• In the specific context of road intersections, it is reasonable to assume that the presence of

other vehicles does not influence the lateral motion of a vehicle.

• The focus of this work was on accidents caused by traffic sign violations; driver errors in

the lateral direction were not addressed.

For highway traffic situations, the lateral component has to be included in the expectation. The

independence assumption for the lateral motion is no longer valid, since lane change maneu-

vers are highly dependent on the relative positions and speeds of the surrounding vehicles.

Hazardous lane changes constitute a major risk in highway traffic situations, therefore driver

errors in the lateral direction should be addressed if the model is to be used in this context.

2. In the case of road intersections, we characterized the longitudinal motion of a vehicle by the

driver’s intention to stop only (see Section 3.2.1). This is sufficient if the focus is on traffic

sign violation scenarios, but should be extended if rear-end collisions are to be addressed (at

intersections or on a highway). A solution would be to define an additional possible value for

the intended longitudinal motion to represent the necessity for a vehicle to adapt its speed to

the vehicle in front.

Following these recommendations, the intended maneuver Int = (Icnt Is
n
t ) and the expected maneuver

En
t = (Ecnt Esnt ) could be defined as follows:

• Icnt ∈ {ci}i=1:NC
: the driver’s intended lateral motion, corresponding to the course followed

by vehicle n at time t. {ci}i=1:NC
the set of possible courses is extracted from the digital map,

with a course defined as the centerline of a lane on a highway and branching out into several

courses near an intersection.

• Isnt ∈ {go, follow, stop}: the driver’s intended longitudinal motion, corresponding to the

driver’s intention regarding the longitudinal execution of the maneuver.

Isnt = go means that the driver intends to adapt its speed to the geometry of the road only. This

behavior is sometimes called “free flow” in the context of highways.

Isnt = follow means that the driver intends to adapt its speed to the geometry of the road

(similarly to Isnt = go), but will also adapt his speed so that he does not run into the vehicle
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in front. The model for the evolution of the speed (Section 3.4.5) should take into account the

relative speed and distance to the vehicle in front. For example, the Intelligent Driver Model

[103] could be implemented.

Isnt = stop means that the driver intends to adapt its speed to the layout of the intersection

(similarly to Isnt = go), but will also adapt his speed so that he can stop at the next intersection.

• Ecnt ∈ {ci}i=1:NC
: the expected lateral motion. The definition is analogous to the definition

of the intended lateral motion Icnt ; the only difference is that is corresponds to what the driver

should do (according to the traffic rules) instead of what he intends to do.

• Esnt ∈ {go, follow, stop}: the expected longitudinal motion. The definition is analogous to the

definition of the intended longitudinal motion Isnt ; the only difference is that is corresponds to

what the driver should do (according to the traffic rules) instead of what he intends to do.

This extended model could be used to evaluate the risk of situations in the context of highways or road

intersections. By comparing driver intention Int = (Icnt Is
n
t ) and driver expectation En

t = (Ecnt Esnt ) it is

possible to predict dangerous situations such as a vehicle changing lanes when it should not, a vehicle

failing to adapt its speed to the vehicle in front, or a vehicle violating the rules at a road intersection.
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In the previous chapter, a Dynamic Bayesian Network (DBN) was proposed to model the motion of

vehicles at road intersections. By performing inference on the relevant variables, it is possible to

extract high-level information about the current situation (e.g. intended maneuvers of the drivers)

and about the risk of the situation. Unlike the standard approaches in the literature, our approach

does not rely on trajectory prediction to estimate the risk. Instead, risk is computed based on the

comparison between what drivers intend to do and what they are expected to do.

The first two sections of this chapter are concerned with the evaluation of our risk estimation ap-

proach. Evaluating the performance of risk assessment algorithms is not straightforward: the ground

truth of the risk of a situation is not available, therefore the evaluation cannot be conducted on the

output of the algorithm directly. Instead it is generally conducted at the “application” level, by apply-

ing a threshold on the risk value to separate dangerous and non-dangerous situations. The algorithm

is then evaluated based on the rate of false alarms, the rate of missed detections, and the collision

prediction horizon. More specifically in this chapter, dangerous and non-dangerous situations are clas-

sified using the “hazard probability” criterion introduced in Section 3.1.2.2. The idea is to compute a

“hazard probability” for every vehicle in the scene by comparing the driver’s intention to stop Isnt with

the expectation to stop Esnt . Subsequently a situation is classified as dangerous if the hazard probability

is higher than a threshold for at least one vehicle, i.e. iff:

∃n ∈ N : P ([Isnt = go][Esnt = stop]|Pm0:tSm0:tTm0:t) > λ (4.1)

The threshold λ is set with the double objective to detect dangerous situations as early as possible and

to avoid false alarms in non-dangerous situations.

Another difficulty for testing risk assessment algorithms is that dangerous situations are difficult to

reproduce with real vehicles. Simulation can be used instead, but there are some limitations as to how

realistic the simulated accident scenarios can be. The strategy adopted in this work was to conduct

experiments both in simulation and with real vehicles. In Section 4.1, trajectories are simulated

for vehicles involved collisions at a two-way stop intersection. Statistics are drawn about how early

before the collision our algorithm is able to detect the danger. A preliminary study about the impact

of different accident avoidance strategies is also presented. Section 4.2 describes the experimental

setup for the field trials that were carried out. Two passenger vehicles were equipped with wireless

communication modems and used to test the online execution the algorithm, for realistic scenarios at

a T-shaped give-way intersection.
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Chapter 4. Experiments and results

The aim of the final two sections is to evaluate the importance of contextual information in motion

models. In Section 4.3 we compare two versions of our model to evaluate the impact of the classic

assumption that vehicles move independently on the road. In Section 4.4 we show that taking into

account the layout of the intersection allows us to recognize complex situations where a vehicle’s

behavior is inconsistent.

4.1 Functional and safety evaluation in simulation

Simulation can generate a large number of trajectories of vehicles involved in crashes at road in-

tersections. This kind of data is very difficult to obtain with real vehicles: reproducing accidents is

dangerous and costly, and collecting a database of real-life accidents would take a tremendous amount

of time since accidents are rare events.

4.1.1 Evaluation strategy

A distinction should be made between functional performance and safety performance [86]. The

former concerns the ability of the system to perform the functions it was designed for. The latter

relates to the consequences in terms of safety after some action was taken based on the output of the

system. More specifically, in our case:

• The functional performance is the the ability of the system to separate dangerous situations and

non-dangerous situations. It is evaluated based on three criteria:

1. The rate of false alarms, i.e. non-dangerous situations classified as dangerous by the algo-

rithm,

2. The rate of missed detections, i.e. dangerous situations classified as non-dangerous by the

algorithm,

3. The collision prediction horizon, i.e. how early before a collision the algorithm is able to

classify the situation as dangerous. The collision prediction horizon Tprediction is defined as:

Tprediction = tcollision − tdetection (4.2)

with tcollision the time at which the collision happens and tdetection the earliest time when

Equation 4.1 is true. This is illustrated in Figure 4.1.
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Figure 4.1. Definition of the collision prediction horizon Tprediction.

The results of the functional performance evaluation are presented in Section 4.1.2.

• The safety performance can be measured as the impact of the system on the reduction or miti-

gation of accidents.

As was mentioned in Section 1.2.1 the focus of this thesis is situation assessment and risk estima-

tion, and accident avoidance / mitigation strategies are out of the scope of this work. However,

a preliminary study was conducted to assess the safety potential of four different strategies. The

safety impact of each strategy was evaluated by looking at the percentage of accidents which

could be avoided in the dataset if that specific strategy was triggered on a vehicle after a dan-

gerous situation is detected by the algorithm.

The results of this study are presented in Section 4.1.3.

4.1.1.1 Data generation

The PreScan simulator [104] provides tools to create a custom road layout and to specify trajectories

for vehicles driving on that road. The user can then synchronize the trajectories of two vehicles so that

they intersect at a specific location. In order to generate realistic data, the simulated road network

was replicated from a real intersection, as shown in Figure 4.2. The type of intersection, an X-shaped

intersection with two stops, was chosen because it is a very common layout worldwide.
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Figure 4.2. PreScan interface for simulating road traffic scenarios.

Ideal perception capabilities were assumed for the tests in simulation. The wireless communication

link between the vehicles was assumed to never suffer packet losses and to provide instantaneous data

transmission. The position measurements were also assumed to be perfect, i.e. the true position was

used directly as a measurement without adding any noise.

The turn signal state was assumed to be equal to none for both vehicles all the time. The goal was to

test the scenarios where the intended course of the drivers is not given away by the presence of a turn

signal.

4.1.1.2 Test scenarios

Both dangerous and non-dangerous scenarios were simulated, all of them involving a Priority Vehi-

cle (PV) driving on the main road and an Other Vehicle (OV) performing various maneuvers. The

scenarios are illustrated in Figure 4.3 and in Figure 4.4, and described below.
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Figure 4.3. Dangerous scenarios tested in simulation.
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Figure 4.4. Non-dangerous scenarios tested in simulation.
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4.1. Functional and safety evaluation in simulation

The dangerous scenarios were defined in order to cover 70% of all accident scenarios at road in-

tersections in Europe [105]. Four maneuvers were considered for the Other Vehicle: merging right

(Scenarios A1, A2), merging left (Scenarios B1, B2), crossing (Scenarios C1, C2), and left turn across

path (Scenario D). For each of these maneuvers except for the last one, there is a priority violation

scenario and a stop violation scenario. A priority violation scenario is a situation where the Other

Vehicle stops at the stop line but then proceeds into the intersection when it should have yielded to

the Priority Vehicle, causing an accident. Such accidents are typically caused by the driver of the Other

Vehicle failing to notice the presence of the Priority Vehicle, or misjudging the speed and distance of

the Priority Vehicle [1]. A stop violation scenario is a situation where the Other Vehicle does not stop

at the stop sign, causing an accident. Such accidents are typically caused by the driver of the Other

Vehicle failing to notice the presence of the stop sign, or choosing to ignore it [1]. There is no stop

violation scenario for the left turn across path maneuver since the regulation does not require the

Other Vehicle to stop when executing this maneuver. A total of 240 instances of these scenarios were

simulated, by varying the speed profiles of the Other Vehicle and the synchronization between the

trajectories of the two vehicles.

For the non-dangerous scenarios, the same number of trajectories were generated for the same config-

urations as for the dangerous scenarios, this time without violating the traffic rules and with a safety

distance of 3 seconds: the vehicles were always at least 3 seconds apart when passing the point where

their paths intersected (Scenarios E, F, G, H).

4.1.2 Functional performance evaluation

As mentioned in Section 4.1.1 the functional performance is evaluated based on three criteria: the

rate of false alarms, the rate of missed detections, and the collision prediction horizon. The threshold

separating dangerous and non-dangerous situations was set to λ = 0.3, which was found to be optimal

for these criteria (see precision and recall analysis in Appendix D). This value was used for all the tests

presented in this thesis.

4.1.2.1 False alarms and missed detections

There were no false alarms, i.e. no non-dangerous situations classified as dangerous by the algorithm.

There were no missed detections, i.e. no dangerous situations classified as non-dangerous by the

algorithm.
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4.1.2.2 Collision prediction horizon

The distribution of the collision prediction horizon is displayed in Figure 4.5 for the 240 dangerous

tests. The corresponding percentage of detected collisions as a function of the time remaining before

the collision is shown in Figure 4.6.

Figure 4.5. Distribution of the collision prediction horizon Tprediction.

Figure 4.6. Percentage of detected collisions as a function of the time-to-collision.

The graphs show that every collision in the dataset was predicted at least 0.6 s before it occurred,

and that a majority of collisions are predicted between 2 s and 3 s ahead of time. In 80% of the cases

the algorithm is able to predict collisions at least 2 s before they occur. Based on these results, the

potential benefits on safety are discussed in Section 4.1.3.
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The next two paragraphs investigate further the functional performance by looking at the impact of

the type of violation and the impact of the type of maneuver.

Impact of the type of violation: In order to analyze the influence of the type of violation on the

functional performance of our algorithm, results for priority violation scenarios (Scenarios A1, B1, C1,

D) are compared with results for stop violation scenarios (Scenarios A2, B2, C2). Figure 4.7 displays

the percentage of detected collisions as a function of the time-to-collision for both types of violations.

Figure 4.7. Comparison of the performance for priority violations scenarios (A1, B1, C1, D)

and stop violations scenarios (A2, B2, C2).

On average, collisions which are caused by a stop violation are detected 1 s earlier than the ones

caused by a priority violation. All of them are detected more than 1.5 s before the crash, against 0.6 s

for priority violations. This is explained by the fact the Other Vehicle’s intention to violate the stop

is given away by the evolution of the vehicle’s speed while it is approaching the intersection, while

priority violations can be detected only as the Other Vehicle accelerates to enter the intersection.

Impact of the type of maneuver: In order to analyze the influence of the type of maneuver executed

by the Other Vehicle on the functional performance of our algorithm, results for the four dangerous

maneuvers present in our dataset are compared: merging right (Scenarios A1, A2), merging left

(Scenarios B1, B2), crossing (Scenarios C1, C2), and left turn across path (Scenario D). Figure 4.8

displays the percentage of detected collisions as a function of the time-to-collision for the four types

of maneuver.
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Figure 4.8. Comparison of the performance for the different types of maneuver executed

by the Other Vehicle: merging right (Scenarios A1, A2), merging left (Scenarios B1, B2),

crossing (Scenarios C1, C2), and left turn across path (Scenario D).

The graph shows that 100% of the collisions are predicted at least 1.5 s before they occur for crossing

and merging maneuvers. This means that all the collisions which were detected less than 1.5 s in

advance in the previous graphs (Figure 4.5 and Figure 4.7) correspond to left turn across path ma-

neuvers. These results highlight the fact that collisions caused by a priority violation during a left turn

across path maneuver are more difficult to predict than other collisions. Indeed, contrary to crossing

and merging maneuvers there is no marking on the road to indicate where a vehicle making a left turn

across path should stop to yield to a vehicle with right-of-way. As a result there is a lot of variation

in the way vehicles execute a left turn across path maneuver, and this makes it more challenging to

estimate the intentions of drivers. The high variation in driver behavior during left turn across path

maneuvers has been pointed out in the past by other works [98].

4.1.3 Safety performance evaluation

As was mentioned in the evaluation strategy (Section 4.1.1), safety performance evaluation is out of

the scope of this work. The purpose of the preliminary study conducted below is to give an indication

of the safety potential of different strategies when they are triggered after our algorithm detects a

dangerous situation. For this purpose, four basic strategies were selected:

1. Autonomous emergency braking on the Priority Vehicle

2. Autonomous emergency braking on the Other Vehicle
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3. Warning the driver of the Priority Vehicle

4. Warning the driver of the Other Vehicle

In this study the efficiency of a strategy is measured as its ability to avoid the accident. Accident

mitigation (i.e. the reduction of the strength of the collision) would be another relevant criterion, but

it is not addressed in this work.

In order to assess whether or not an upcoming accident can be avoided by triggering a specific strategy

at time t, we compute the time needed by the vehicle to reach a full stop; this is the Time-To-Stop

(TTS). If the TTS is smaller than the time remaining before the collision, the collision is considered to

be avoidable.

When autonomous emergency braking is applied, the TTS is computed as follows [105]:

TTS =
st
δ
+ Tmachine (4.3)

with st the speed of the vehicle at time t, δ = 7m/s² the deceleration, and Tmachine = 0.4 s the average

braking system response time [105].

When the strategy is to warn the driver instead of applying emergency braking, the response time of

the driver has to be taken into account in the computation of the TTS [105]:

TTS =
st
δ
+ Tmachine + Tdriver (4.4)

with Tdriver = 1.4 s the average driver brake response time [105].

The results in terms of percentage of avoided accidents for the different strategies are displayed in

Figure 4.9 and commented below.

• Auto-brake is always more efficient than driver warning, since the brakes are applied immedi-

ately after the danger is detected.

• In priority violation scenarios, actions on the Other Vehicle are always more efficient than actions

on the Priority Vehicle. The reason is that the speed of the Other Vehicle is much lower than

the speed of the Priority Vehicle at the instant when the violation is detected (the Other Vehicle

was stopped and is accelerating to enter the intersection). A lower speed leads to a smaller TTS,

which is why accidents are more easily avoided with actions triggered on the Other Vehicle.
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• Actions on the Priority Vehicle have a significantly different impact in stop violation instances

and in priority violation instances, while the difference is small for the Other Vehicle. Once

again this can be explained by the speed difference.

The Priority Vehicle drives at the same speed in stop violation instances and priority violation

instances, therefore the TTS is constant. However stop violations are detected earlier (see Fig-

ure 4.7), which leaves more time for the vehicle to stop compared with priority violation in-

stances. As a result, on average 66.1% of accidents are avoidable by triggering an action on the

Priority Vehicle in stop violation scenarios, but only 17.4% in priority violation scenarios.

The Other Vehicle drives at a higher speed in stop violations instances, compared with priority

violation instances. The TTS is therefore higher in stop violation scenarios, and one could expect

a lower percentage of avoided collisions in stop violation instances. However stop violations are

detected earlier than priority violations (see Figure 4.7), which compensates for the high speed

of the vehicle. As a consequence, the results are very similar for stop violations and priority

violations: on average 83.9% of accidents are avoidable by triggering an action on the Other

Vehicle in stop violation scenarios, and 80.6% in priority violation scenarios.

• The outermost numbers are obtained for priority violation instances: while 99.3% of the colli-

sions in the dataset could be avoided by applying emergency braking on the Other Vehicle, only

0.7% could be avoided by warning the driver of the Priority Vehicle.

These results show the necessity to take into account the configuration of the accident when selecting

an avoidance strategy.

Auto-brake

on OV

Warn driver

of OV

Auto-brake

on PV

Warn driver

of PV

% of avoided accidents

(stop violations)
93.1% 74.7% 90.8% 41.4%

% of avoided accidents

(priority violations)
99.3% 61.8% 34.0% 0.7%

Figure 4.9. Percentage of avoided collisions depending on the type of violation and on the

action taken when a danger is detected.
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4.2 Robustness evaluation with field trials

In the previous section, simulated trajectories were used to evaluate the ability of our algorithm to

detect dangerous situations. An analysis of the collision prediction horizon allowed us to characterize

the efficiency of the algorithm in different situations, as well as the potential of different strategies to

avoid accidents after the algorithm detected a dangerous situation. Simulation has the advantage that

it can generate a large number of colliding trajectories, while this type of data is difficult to obtain with

real vehicles. However our simulated data is not fully representative of real-life situations, mainly for

two reasons:

1. There is little variation in the generated trajectories. All of them are very smooth, while real

trajectories are rarely so. Besides, in practice there exists different driving styles, and drivers

do not all negotiate an intersection in the same way (e.g. variations in the deceleration and

acceleration profile).

2. The perception capabilities are assumed to be perfect. The wireless communication link be-

tween the vehicles was not simulated, which means the evaluation conducted in the previous

section assumes perfect communication (no packet loss, instantaneous data transmission). The

position measurements were also assumed to be perfect, i.e. they correspond to the real posi-

tion of the vehicles. In real situations the positioning is not perfect and communication errors

result in missing measurements for our algorithm, which can make the risk estimation process

challenging.

For these reasons, it is important to validate the algorithm not only in simulation but also with real

data. The objective of the evaluation conducted in this section is to validate the online functioning of

the algorithm as well as its robustness to imperfect or missing input data.

4.2.1 Evaluation strategy

The field trials were conducted at a real road intersection with two passenger cars sharing information

via wireless communication links. Our risk estimation algorithm was run online in one of the vehicles.

Both dangerous and non-dangerous situations were created in order to evaluate the ability of our

algorithm to analyze situations and estimate the risk in real-time.

Whenever the algorithm detected a dangerous situation (see definition in the introduction, Equa-

tion 4.1), an auditory and a visual warning were triggered. The goal of the auditory warning was to
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catch the attention of the driver, while the visual warning provided the driver with some information

about the nature of the detected danger (see Figure 4.10).

(a) (b) (c)

Figure 4.10. Images displayed by the HMI of the vehicle running the risk estimation algo-

rithm. (a) Image displayed when the system predicts a collision with a vehicle coming from

the left. (b) Image displayed when the system predicts no collision. (c) Image displayed

when the system predicts a collision with a vehicle coming from the right.

The driver of the vehicle running the risk estimation algorithm was instructed to brake as soon as the

warning appeared, while the driver of the other vehicle was instructed to not brake and continue the

maneuver. Naturally, the driver of the car running the risk assessment algorithm was instructed to

brake before a crash became unavoidable even if no warning was triggered. Moreover, in order to

avoid confusions in the drivers’ roles, each driver who took part in the trials was assigned one vehicle

for the entire series of tests: a person either drove the car running the algorithm and had to brake in

case of danger, or drove the other car and never had to perform emergency braking.

As with the tests in simulation, the performance of the algorithm was evaluated by looking at these

three criteria:

1. The rate of false alarms, i.e. non-dangerous situations where the algorithm triggered a warning,

2. The rate of missed detections, i.e. dangerous situations where the algorithm did not trigger a

warning,

3. The collision prediction horizon, i.e. how early before a collision the algorithm triggers a warn-

ing. Since we did not create real collisions, the actual collision prediction horizon could not be

computed. Instead we looked at whether or not the algorithm was able to trigger a warning

early enough to avoid accidents in dangerous situations.
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4.2.1.1 Experimental setup

The tests were carried out at a T-shaped give-way intersection in a rural area near Guyancourt

(France). As can be seen in Figure 4.11 it is a blind intersection, i.e. the vehicles approaching the

intersection on the main road an on the secondary road cannot see each other until they reach the

intersection.

Figure 4.11. Test intersection in Guyancourt: T-shaped give-way intersection. The view

is obstructed by the vegetation, therefore the drivers cannot not see each other while ap-

proaching the intersection.

A Renault Espace and a Renault Laguna passenger vehicles were equipped with Cohda MK2 DSRC

modems and shared their pose, speed and turn signal state information at a rate of 10 Hz. In each

vehicle the pose and speed information was obtained via an IXSEA LandINS GPS + IMU unit with a

precision of σ = 2m for the position. The CAN-bus provided the turn signal state information. The

position, orientation, speed, turn signal state, and DSRC messages were recorded in both vehicles

during the experiments.

The system architecture in the test vehicles is illustrated in Figure 4.12. The Perception PC is responsi-

ble for reading information from the different sensors, reading and writing the messages received and

sent by the V2V modem, and forwarding the relevant information to the Application PC. The Percep-

tion PC is equipped with an Intel Core 2 Duo 1.6 GHz processor, and 2 GB memory. The Application PC

runs the risk estimation algorithm, and is present in the Laguna test vehicle only. It is equipped with
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an Intel Core 2 Duo 2.26 GHz processor, and 3.48 GB memory. No attempt was made to optimize the

code; in its current state the algorithm is implemented in C++ and runs at 10 Hz. The interactions

between the different components of this architecture, as well as the logging of data, are handled by

Intempora’s RTMaps software [106] which runs on both the Perception PC and the Application PC.

(a) Espace test vehicle

(b) Laguna test vehicle

Figure 4.12. System architecture in the test vehicles.

Antenna placement: In order to optimize the communication performance, two antennas were used

on each vehicle and placed on the rooftop at the front and at the back of the vehicle (see photo in

Figure 4.13). The number of antennas and their placement has a large impact on the communication

performance [107].

Figure 4.13. Antenna placement on the test vehicles.
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DSRC performance tests: Some communication tests were conducted before the risk estimation

tests, in order to evaluate the communication performance of our modems at the test site. Indeed, the

efficiency of DSRC varies greatly with the environmental context, and no performance results have

ever been reported in the context of a blind intersection where the obstacles to the communication

are not buildings but a dense vegetation.

During the DSRC performance tests, one vehicle drove on the main road at 50 km/h and the other one

on the secondary road at 30 km/h, both vehicles reaching the intersection at approximately the same

time. The percentage of received packets as a function of the relative distance between the vehicles

(calculated with the Haversine formula) is plotted in Figure 4.14.

Figure 4.14. Percentage of received packets as a function of the relative distance.

The results show a 100% packet reception when the relative distance between the vehicles is 50 m or

less. This would not be acceptable for safety applications at high speed [108], but it is sufficient for

our risk assessment tests since we limited the speed to 60 km/h for safety reasons.

It is important to keep in mind that our rural blind intersection scenario is one of the most challenging

environments for DSRC. The signal is reflected on the vegetation and scattered in all directions (back

to the sender car or towards the open field nearby), making communication difficult. Even the ‘multi-

path estimation’ algorithm used by the Cohda modems to counter the multi-path effect offers no

benefit in this situation.

4.2.1.2 Test scenarios

The purpose of the field trials was to evaluate the ability of our algorithm to correctly interpret a

situation and estimate the risk in real-time for typical situations at an intersection. Both dangerous

and non-dangerous scenarios were tested, all of them involving a Priority Vehicle (PV) driving on the

main road and an Other Vehicle (OV) performing various maneuvers. The scenarios are illustrated in

Figure 4.15 and Figure 4.16, and described below.
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Figure 4.15. Dangerous test scenarios for the field trials.

Figure 4.16. Non-dangerous test scenarios for the field trials.
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For the dangerous scenarios, two maneuvers were considered for the Other Vehicle: merging left

(Scenario 1) and left turn across path (Scenario 2).

For the non-dangerous scenarios, tests were run for the same configurations as for the dangerous

scenarios, but this time without violating the traffic rules (Scenarios 3, 4). An additional scenario

was tested, where the Other Vehicle makes a right turn while the Priority Vehicle is approaching the

intersection from the right (Scenario 5).

In total 90 dangerous and 20 non-dangerous tests were run. We alternated between 6 different drivers

both for the Priority Vehicle and the Other Vehicle. In order to generate some diversity in the scenario

instances, the drivers of the Other Vehicle were not given precise instructions about the execution of

the maneuvers; they were told to execute the maneuver in a manner that they felt was dangerous

or non-dangerous depending on the scenario. As a results we obtained some significant variations

in the instances of the scenarios. As an example, the range of variation of the position and speed

for the Priority Vehicle when the Other Vehicle violates the priority in the dangerous scenarios are

displayed in Figure 4.17. In addition to the variations in positions and speeds, we obtained variations

in the behavior of the Other Vehicle when approaching the intersection: in some instances the driver

stopped at the intersection before executing his maneuver, and in some other instances proceeded

without stopping.

Out of the 90 dangerous trials, 60 were performed with the warning system running on the Priority

Vehicle, and 30 with the warning system running on the Other Vehicle.

(a) Scenario 1 (b) Scenario 2

Figure 4.17. Range of variation of D (distance to the intersection) and S (speed) for the

Priority Vehicle when the Other Vehicle violates the priority in the two dangerous scenarios.
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4.2.2 Results

The first part of this section reports the observations made on-site during the field trials. In the

second part, screenshots of offline replays are used to give an idea of the system’s behavior on specific

examples.

4.2.2.1 On-site observations

The first tests with dangerous and non-dangerous situations were performed without using turn signals,

but we found that this was too risky in dangerous scenarios (Scenarios 1, 2). The system was always

able to trigger a warning before the accident became unavoidable, but too late to run our tests in safe

conditions. This observation backs up the results obtained in simulation, which showed that driver

warning is not an efficient strategy in priority violation scenarios. Of course the scenarios tested in

simulation and in the field trials are different, but the priority violation scenarios are similar enough

that we can draw parallels: Scenario 1 is of the same nature as Scenarios A1 and B1 (priority violation

during a merging maneuver), and Scenario 2 is of the same nature as Scenario D (priority violation

during a left turn across path maneuver).

For safety reasons, the subsequent dangerous scenarios tests were always performed with the Other

Vehicle indicating its maneuver with a turn signal. Thanks to the presence of the turn signal, there is

less uncertainty on the driver’s intended course. Warnings are triggered earlier, which makes the field

trials safer. For every of the 90 test runs, the system was able to issue a warning early enough that the

driver avoided the collision by braking.

Turn signals were not used in non-dangerous scenarios (Scenarios 3, 4, 5). In the 20 test instances

there was no false alarm, i.e. no warning was ever triggered by the system.

4.2.2.2 Replay of sample examples

Figure 4.18 shows a sample dangerous left turn across path scenario during which we recorded the

view from inside the Priority Vehicle. The danger is detected as soon as the Other Vehicle starts to

execute the left turn. The driver of the Priority Vehicle receives a warning indicating that a dangerous

situation was detected and that the danger comes from a vehicle on the left side.
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Figure 4.18. Dangerous situation detected during the field trials (Scenario 2). The left

column displays the position, heading and turn signal state of the vehicles. When the system

detects a dangerous situation, the vehicle causing the danger is displayed in red. The right

column shows the view from inside the Priority Vehicle.
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The scenario in Figure 4.19 (a) is a sample non-dangerous scenario. There is no false alarm, even

when the Other Vehicle proceeds into the intersection and the Priority Vehicle is approaching at high

speed (t = 3.1 s).

(a) Non-dangerous scenario

(Scenario 5)

(b) Dangerous scenario

(Scenario 1) with

poor localization

(c) Dangerous scenario

(Scenario 1) with

communication loss

Figure 4.19. Sample scenarios recorded during the field trials. When the system detects a

dangerous situation, the vehicle causing the danger is displayed in red.

The scenario in Figure 4.19 (b) is a sample dangerous scenario with challenging errors in the localiza-

tion of the Other Vehicle. The position measurements are shifted several meters in the North direction,

105



4.3. The importance of context - Interactions between vehicles

and as a result it appears as if the car is still behind the give-way line when in reality it has already

entered the intersection. Nevertheless the system is able to detect the danger, thanks to the fact that

the algorithm handles measurement uncertainties.

The scenario in Figure 4.19 (c) is a sample dangerous scenario with wireless communication issues.

The communication between the two cars is lost during 1 s after the first message was received (at

t = 0.1 s). Between t = 0.2 and t = 1.2 s, the Priority Vehicle does not receive any new measurements

to indicate the intentions of the Other Vehicle. When the second message is received, the Other Vehicle

is already in the middle of the intersection (t = 1.3 s). The system is able to detect immediately that

this is a dangerous situation.

Since we did not go so far as to create real collisions, the statistical analysis which was performed on

the simulated data cannot be performed on the real data. However, the field trials proved that our

approach can operate with success in real-life situations where passenger vehicles share data via a V2V

communication link. The experiments also showed the robustness of the algorithm. The tests involved

6 different drivers, who were not given specific instructions about the execution of the scenarios. The

algorithm was able to detect dangerous situations despite bad localization and communication errors,

and did not trigger any false alarms.

4.3 The importance of context - Interactions between vehicles

The two previous sections evaluated the ability of the proposed risk estimation algorithm to assess the

risk of a situation. This section and the next one focus on evaluating the importance of taking into

account the context in motion models for situation assessment and risk estimation.

We claimed throughout this thesis that it is necessary to account for the mutual influences between

the vehicles’ maneuvers to correctly interpret situations and risks. This claim is supported by the

analytical study conducted on example scenarios in Appendix B. The conclusions of this study is that

accounting for inter-dependencies between the vehicles:

• Should in theory lead to a better estimation of drivers’ maneuver intentions

• Should in theory not delay or prevent the detection of dangerous situations

• Should in theory lead to a better sensitivity of the risk assessment

The purpose of this section is to evaluate these claims with real data. To this end, we will compare

the performances of two version of our motion model: the ‘Interacting vehicles’ motion model and the
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‘Independent vehicles’ motion model.

The ‘Interacting vehicles’ motion model corresponds to the model presented in the previous

chapter and evaluated in the previous sections in simulation and in field trials. This model takes into

account the dependencies between the vehicles by making the intended longitudinal motion (Isnt )

dependent on the expected longitudinal motion (Esnt ):

P (Isnt |Φn
t−1I

n
t−1Esnt ) = P (Isnt |Isnt−1Esnt ) (4.5)

Details were given in the previous chapter in Section 3.4.2.

The ‘Independent vehicles’ motion model ignores the dependencies between the vehicles. The

assumption that vehicles move independently on the road is implemented by removing the link be-

tween Esnt and Isnt from the ‘Interacting vehicles’ motion model. The assumption that “drivers tend

to comply with traffic rules” made in the ‘Interacting vehicles’ motion model is replaced by a more

conservative assumption independent of the traffic rules.

Two solutions were explored. The first one assumes that “no prior knowledge is available about

a driver’s intention to stop”. Therefore the intended longitudinal motion for a vehicle n at time t

becomes a uniform distribution:

P (Isnt |Φn
t−1I

n
t−1Esnt ) = P (Isnt ) = 0.5 (4.6)

The second ones assumes continuity in the driver’s intended longitudinal motion:

P (Isnt |Φn
t−1I

n
t−1Esnt ) = P (Isnt |Isnt−1) =











Psame if Isnt = Isnt−1

1.0− Psame otherwise

(4.7)

with Psame the probability that the driver’s intention stays the same between two timesteps.

Both solutions were implemented and tested, and it was found that they lead to very similar results

when compared with the ‘Interacting vehicles’ motion model. In this section, only the results obtained

with the “no prior knowledge” assumption (Equation 4.6) will be described, but the conclusions drawn

also apply to the model which assumes “continuity in the intention” (Equation 4.7).

The differences between the ‘Interacting vehicles’ motion model and the ‘Independent vehicles’ motion

model are summarized on the graphical model and joint distribution in Figure 4.20.

107



4.3. The importance of context - Interactions between vehicles

(a) Graphical representation (b) Joint distribution

Figure 4.20. The differences between the ‘Interacting vehicles’ motion model and the ‘Inde-

pendent vehicles’ motion model are shown in the graphical representation and in the joint

distribution. The elements shown in red do not exist in the ‘Independent vehicles’ model.

4.3.1 Evaluation strategy

The comparative evaluation was done using the data recorded during the field trials. As described in

Section 4.2, the field trials were conducted with two vehicles involved in typical dangerous and non-

dangerous situations at an intersection. The logs recoded during the field trials were replayed offline

to compare the ‘Independent vehicles’ motion model and the ‘Interacting vehicles’ motion model.

During the field trials, the Other Vehicle always indicated its intended course using the turn signal

for dangerous scenarios. This was done for safety reasons, as explained in Section 4.2.2. The turn

signals were removed from the replays so that we could compare the ability of each model to infer the

intended course of drivers without the strong clue given by the turn signal.

The performances of the two models were measured by looking at their ability to:

• Correctly estimate the intended course of the drivers: This is measured by P ([Icnt = cnGT ]), with

cnGT the ground truth for the maneuver of vehicle n (the ground truth course is defined by the

scenario).

• Correctly assess the situation in general: This will be reflected by Neff , the effective sample size

of the particle filter.
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• Correctly assess the risk: In the case of a dangerous situation, this means detecting that the

situation is dangerous as early as possible. Therefore the detection time tdetection should be as

early as possible. In the case of a non-dangerous situation the risk should not be overestimated:

this feature can be evaluated by monitoring P ([Isnt = go][Esnt = stop]).

4.3.2 Qualitative evaluation

In this section, the performance differences between the two models are analyzed on sample instances

of a non-dangerous scenario and of a dangerous scenario.

Qualitative evaluation on a non-dangerous scenario (Figure 4.21)

Figure 4.21. Estimated intended course (left graph) and risk (right graph) associated to the

Other Vehicle in a sample instance of a non-dangerous scenario (Scenario 5). Screenshots of

the situation at t1, t2, and t3 are displayed above the graphs.

In this scenario the Other Vehicle makes a right turn at the intersection while the Priority Vehicle
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is approaching the intersection from the right. The Other Vehicle can execute its maneuver without

considering the Priority Vehicle since the two vehicles always stay on different lanes. The graphs can

be broken into three phases:

• Before time t1, both vehicles are driving toward the intersection. The Other Vehicle is slowing

down, but this does not give any indication about the driver’s intended course since all the

potential courses require slowing down. For this reason both motion models consider that a left

turn and a right turn are equally likely. The risk is considered low by the two models, since the

Other Vehicle seems to comply with the traffic rules.

• Between time t1 and time t2, the Other Vehicle is proceeding into the intersection. At the

beginning, the heading of the car does not give any clue about the intended course of the driver.

A left turn would clearly be a violation of the priority rules, since there is not enough time

to merge before the Priority Vehicle reaches the intersection. At this stage, the ‘Independent

vehicles’ motion model has no way to tell whether the driver of the Other Vehicle intends to turn

left or right. For this reason, the risk value reaches 0.5. The ‘Interacting vehicles’ motion model

favors the right turn as the most likely intention of the Other Vehicle, and as a result the risk

remains low.

• Between time t2 and time t3, the Other Vehicle executes its maneuver inside the intersection.

The clues provided by its position and heading leave less and less doubt about the intended

course. Both motion models are able to estimate correctly the intended course of the driver.

Making a right turn while the Priority Vehicle is approaching is not against the rules, therefore

the risk remains low.

In this non-dangerous scenario, the difference between the two motion models is visible in the time

interval t1 − t2. The ‘Interacting vehicles’ motion model is able to predict the intended course of

the Other Vehicle earlier, and to keep the risk value low. The ‘Independent vehicles’ motion model

produces a peak in the risk value. As a consequence, the threshold λ which is used to separate

dangerous situations from non-dangerous situations (see Equation 4.1) has to be set to a different

value for the two motion models. As was mentioned earlier, it was set to λ = 0.3 for the ‘Interacting

vehicles’ motion model. In the case of the ‘Independent vehicles’ motion model, λ has to be set to a

value higher than 0.5 in order to avoid systematic false alarms in situations like the one in Figure 4.21.

A statistical analysis of our results led us to set λ = 0.65 for the ‘Independent vehicles’ motion model.

It corresponds to the lowest value which does not trigger any false alarm on the dataset. In dangerous

situations, the value of the risk varies in the range [0.3 1.0] if the ‘Interacting vehicles’ motion model
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is used, and in [0.65 1.0] if the ‘Independent vehicles’ motion model is used. Therefore the sensitivity

of the risk estimation [109] is significantly better with the motion model which accounts for the

dependencies between the vehicles.

Qualitative evaluation on a dangerous scenario (Figure 4.22)

Figure 4.22. Estimated intended course (left graph) and risk (right graph) associated to the

Other Vehicle in a sample instance of a dangerous scenario (Scenario 1). Screenshots of the

situation at t1, t2, and t3 are displayed above the graphs.

In this scenario the Other Vehicle makes a left turn at the intersection while the Priority Vehicle is

approaching the intersection from the right. This is a priority violation case, and without an emergency

braking the situation would have resulted in a crash. The graphs can be broken into four phases:

• Before time t1, the situation is the same as in the non-dangerous scenario presented above.

• Between time t1 and time t2, the Priority Vehicle is approaching the intersection and the Other

Vehicle remains stationary at the give-way line. Over this interval, the probability that the Other
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Vehicle will turn left increases with the ‘Interacting vehicles’ motion model and stays stable with

the ‘Independent vehicles’ motion model. The ‘Interacting vehicles’ motion model is able to

interpret the stillness of the Other Vehicle as an indication that the driver’s intention is to turn

left. A human observing the scene would reach the same conclusion, since there is no reason for

the Other Vehicle to wait at the give-way line if its intention is to turn right. The ‘Independent

vehicles’ motion model does not have this ability, since it assumes independence between the

vehicles.

• At time t2, the Other Vehicle accelerates to enter the intersection. At first, the heading of the car

does not give any clue about the intended course of the driver. The probability for the maneu-

ver intention remains stable fore the ‘Independent vehicles’ motion model, while the probability

that the vehicle is turning left decreases with the the ‘Interacting vehicles’ motion model. In-

deed, turning right is compatible with the priority rules while turning left is not, therefore it

is the preferred interpretation. Here again, a human would reach the same conclusion as the

‘Interacting vehicles’ motion model. The value of the risk reaches 0.5 with the ‘Independent

vehicles’ motion model and remains low with the ‘Interacting vehicles’ motion model, similarly

to the non-dangerous scenario studied in the paragraph above. After one second the heading

of the Other Vehicles reflects the fact that the driver intends to make a left turn. Both motion

models are able to catch this clue, and the value of risk rises fast. Using the values of λ defined

above, we can see that the two models are able to predict the collision at exactly the same time

tdetection = t3.

• After time t3, the probability that the Other Vehicle intends to turn left keeps on rising steadily as

more clues about the driver’s intended course (position, heading) become available. The same

observation can be made for the risk, which becomes maximal a few hundred milliseconds later.

In this dangerous scenario, the two motion models initially have a different interpretation of the

behavior of the Other Vehicle but they detect the danger at the same time.

The objective of this section was to analyze qualitatively the behavior of the ‘Independent vehicles’

motion model and the ‘Interacting vehicles’ motion model in sample scenarios. The results are in

accordance with the claim made at the beginning of the section. In the non-dangerous scenario, taking

into account the dependencies between the vehicle improves the estimation of a driver’s intended

course. The assumption that drivers generally respect traffic rules does not prevent or delay the

detection of the dangerous situation, and improves the sensitivity of the risk estimation.
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In the next section, statistical results are derived using the whole field trials data.

4.3.3 Statistical results

We computed statistical results over the 90 dangerous and 20 non-dangerous test instances from the

field trials in order to verify if the differences observed on specific instances in the previous section can

be generalized. The comparison between the ‘Independent vehicles’ motion model and the ‘Interacting

vehicles’ motion model is carried out by subtracting the results obtained by the two models. We define:







































∆P ([Ict = cGT]) = P ([Ict = cGT])
Int − P ([Ict = cGT])

Ind

∆Neff = (Neff Int −Neff Ind)/Nparticles

∆tdetection = tIntdetection − tInddetection

∆P ([Ist= go][Est= stop]) = P ([Ist= go][Est= stop])Int − P ([Ist= go][Est= stop])Ind

where the superscript indicates the motion model used for the calculation (Int for ‘Interacting vehicles’

and Ind for ‘Independent vehicles’). The number of efficient particles is divided by the total number

of particles Nparticles so that a relative value between 0 and 1 is obtained. The results are displayed

in Figure 4.23 and commented below.

Estimation of the intended course: In dangerous situations, the two approaches perform similarly

on average. When there is no danger, the two approaches estimate the intended course equally well

53% of the time. However the ‘Interacting vehicles’ motion model leads to a better estimation on

average and performs better 42% of the time.

From the case-based reasoning conducted in Appendix B.2 and from the qualitative evaluation per-

formed in the previous section, we know that the situations where the ‘Interacting vehicles’ motion

model performs better are either 1) when a vehicle is waiting at the entrance of an intersection for

a priority vehicle to pass or 2) when a vehicle is proceeding into an intersection while a vehicle with

priority is approaching the intersection.

The ability to estimate the intended course of a driver is crucial for intelligent vehicles. In this the-

sis, the estimated intended course is used to compute the risk of a situation, but there are other

applications. An autonomous vehicle negotiating an intersection needs to adapt its behavior to the

maneuvers performed by the other vehicles, for example it has to decide whether or not to proceed

into the intersection based on the priority rules and on the intended maneuvers of the other vehicles.
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Figure 4.23. Comparative results between the ‘Independent vehicles’ motion model and
the ‘Interacting vehicles’ motion model, for dangerous scenarios (top) and non-dangerous

scenarios (bottom).
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Neff: Accounting for the dependencies between the vehicles has a positive and significant impact on

the number of efficient particles both when the situation is dangerous and when it is not. In both cases

the performance is increased 57% of the time and mostly equivalent the rest of the time.

These results validate our modeling of how vehicles influence each other. Indeed, the value of Neff

reflects the quality of the tracking, which itself is dependent on how well the motion model matches

the actual motion of the vehicles.

Risk estimation: The plot of ∆P ([Ist= go][Est= stop]) shows that the risk is systematically lower

when estimated using the ‘Interacting vehicles’ motion model in non-dangerous situations. The reason

behind it is the assumption that drivers tend to respect traffic rules. A direct consequence is that the

threshold λ has to be set to a different value for the two models, and that the sensitivity of the risk

assessment is better with the ‘Interacting vehicles’ motion model. This was explained in more detail

in Appendix B.2 and in Section 4.3.2.

In dangerous situations, one could expect that the ‘Interacting vehicles’ motion model would be less

conservative than the ‘Independent vehicles’ motion model because of the assumption that drivers

tend to respect traffic rules. However in 42% of the cases the warning is issued at the exact same time

by the two approaches. On average the ‘Interacting vehicles’ motion model even detects dangerous

situations slightly earlier. The sample dangerous situation studied in the previous section illustrates

why: in dangerous situations the risk starts rising earlier with the ‘Independent vehicles’ motion model,

but since the threshold λ is different for the two approaches the final danger detection time is similar.

4.4 The importance of context - Intersection layout

The work presented in this section was conducted during a 3-month internship in the Stanford Arti-

ficial Intelligence Laboratory. Like the previous section, this section focuses on evaluating the impor-

tance of taking into account context in motion models for situation assessment and risk estimation.

The previous section addressed the importance of accounting for the dependencies between the vehi-

cles in the motion model. This section focuses on the benefits of taking into account the geometry and

topology of the intersection when estimating a driver’s intended course in the presence of turn signals.

The motion model proposed in this thesis models the influence of the layout of the intersection on the

turn signal state (see Section 3.4.6), and we will show using real data that this modeling allows us

to handle complex situations where the vehicle’s behavior is inconsistent. Since our risk estimation

approach relies on the estimated intended course of the drivers, taking into account the layout of the
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intersection also has consequences on the quality of the risk assessment. However we did not evaluate

this impact; this section focuses on the impact on the estimation of the intended course Ic.

4.4.1 Evaluation strategy

Data was collected in Stanford (U.S.) at the two road intersections shown in Figure 4.24. This type of

layout is very standard in the U.S.: four-way-stop intersections with multiple entrance and exit lanes

in each road. Some lanes are reserved for specific maneuvers, as indicated by the arrows painted on

the road surface. Our goal was to collect real trajectories of vehicles negotiating relatively complex

intersections where the layout of the intersection provides clues about the maneuver intention of

drivers. We tested the ability of our algorithm to estimate the intended course of drivers in two types

of situations: situations where the driver puts a turn signal which is consistent with the executed

maneuver, and situations where it is inconsistent. This way we were able to investigate the ability

of the algorithm to balance the clues provided by the turn signal state and the clues provided by the

layout of the intersection in challenging situations.

The tests were performed using an early version of the DBN. The early model is based on the same

principles as the model presented in the previous chapter, except the kinematic behavior of the vehicles

is not modeled: only the relationships between the pose of a vehicle, its turn signal state, and the

intended course of the driver are represented. Implementation details can be found in [110, 111].

Working with this simplified model made it easier to analyze the results and to identify the benefits of

taking into account the intersection layout in the model.

Figure 4.24. Test intersections in Stanford: four-way-stop intersections with multiple en-

trance and exit lanes in each road.
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4.4.1.1 Data collection

Data was collected using the autonomous car “Junior”, a replica of the robotic car which took sec-

ond place at the DARPA Urban Challenge in 2007 [112]. The vehicle is a Volkswagen Passat wagon

equipped with a variety of sensors including a Velodyne 64-beam laser rangefinder, four cameras, six

radars, two one-beam laser scanners, and an inertial GPS system. The autonomous navigation capa-

bilities of the car arise from the software modules implemented on it, e.g. mapping and localization,

object detection, trajectory planning and control [113].

In this work, Junior was used as a data collection platform. We parked the car by the side of the

intersection of interest (so that to not disrupt traffic) and recorded Velodyne data while normal traffic

was proceeding (see Figure 4.25). The trajectories of 42 vehicles were manually annotated offline

using Stanford’s Velodyne data labeling tool.

Figure 4.25. "Junior", the autonomous car used for data collection. The Velodyne laser

rangefinder mounted on the roof top provides a 3D point cloud of the car surroundings.

4.4.1.2 Test scenarios

The aim was to test our algorithm on two types of scenarios:

• Consistent behavior scenarios:

A vehicle is approaching, then negotiating the intersection. The turn signal state of the vehicle

is consistent with the executed maneuver (see examples in Figure 4.26).

• Inconsistent behavior scenarios:

A vehicle is approaching, then negotiating the intersection. The turn signal state of the vehicle

is not consistent with the executed maneuver (see examples in Figure 4.26).
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Figure 4.26. Examples of consistent and inconsistent behavior scenarios.

Two scenario instances were generated for each of the 42 recorded trajectory: one with a consistent

turn signal and one with an inconsistent turn signal. For example, a left turn trajectory was labeled

with a left turn signal (or no turn signal) to generate a consistent behavior scenario instance, and with a

right turn signal to generate an inconsistent behavior scenario instance. The labels were automatically

generated for each trajectory in order to incorporate some randomness, and the turn signal state was

assumed to stay the same for the whole trajectory.

4.4.2 Qualitative evaluation

The objective is to evaluate the algorithm’s ability to make reliable interpretations of a vehicle’s be-

havior in consistent and inconsistent scenarios. Figure 4.27 shows the output of the algorithm for a

left turn maneuver scenario. In this example the allowed maneuvers for a vehicle approaching the

intersection from the south are: turn left / go straight from the left lane and turn right / go straight

from the right lane.
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(a) Consistent behavior scenario

(b) Inconsistent behavior scenario

Figure 4.27. Estimation of the intended course in a consistent behavior scenario and in

an inconsistent behavior scenario. The size of the green disks located on the exit lanes is

proportional to the probability that the driver intends to reach that exit lane.

The results can be interpreted as follows:

Consistent behavior scenario: The vehicle reaches the intersection through the left lane with the

left turn signal on (a1, a2). The algorithm interprets this as a high probability that the driver’s in-

tention is to turn left, and a much smaller probability that the driver’s intention is to go straight.

The probability for a right turn is negligible. The algorithm becomes increasingly confident that the

driver’s intention is to turn left as the vehicle makes its way through the intersection, thanks to the

clues given by the vehicle’s position and heading (a3, a4).
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Inconsistent behavior scenario: The vehicle reaches the intersection through the left lane with the

right turn signal on (b1, b2). When the vehicle is still far away from the intersection (b1), this behavior

is interpreted as an intention to change lanes. There is also a chance that the vehicle is actually on

the right lane (i.e. positioning error), which is why the probability of turning right is higher than

the probability of going straight. When the vehicle gets closer to the intersection (b2) the algorithm

has no preferred interpretation because this behavior makes little sense. A human would come to the

same conclusion and consider all maneuvers to be equally likely. As the vehicle executes the maneuver

inside the intersection it becomes more and more obvious that the vehicle will turn left since the other

maneuvers are no longer feasible, therefore the uncertainty of the algorithm’s estimation decreases

(b3, b4).

The algorithm was tested qualitatively on the 42 trajectories, and this led to the conclusion that it is

able to reason about the intended course of drivers in a reliable manner even in complex scenarios

where the behavior of the vehicle is inconsistent. In the next section, a statistical analysis of these

results is performed.

4.4.3 Statistical results

Conventionally the performance of an algorithm which estimates a driver’s intended course is eval-

uated by looking at how early and/or frequently it is able to make correct predictions. A prediction

is considered correct if the true course is found to be much more probable than the others, incor-

rect otherwise. This approach is not appropriate in our case because we evaluate our algorithm in

situations where it is not reasonable to expect such correct predictions. For example in situation b2

of Figure 4.27 it is not possible for the algorithm (or for a human) to estimate the driver’s intended

course with high certainty from the clues provided by the map and the vehicle’s behavior. Our evalu-

ation metrics should take this into account, and reflect that a large uncertainty on the output is to be

expected in this situation.

We define cA ∈ {ci}i=1:NC
the most probable intended course according to the algorithm at time t,

cB ∈ {ci}i=1:NC
the second most probable intended course according to the algorithm at time t, and

cGT ∈ {ci}i=1:NC
the ground truth course (i.e. the course which is eventually followed by the driver).

We consider three possible labels for a prediction at time t:

• Correct: P (cA)− P (cB) > 0.2 and cA = cGT .

• Incorrect: P (cA)− P (cB) > 0.2 and cA 6= cGT .
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• Undecidable: P (cA)−P (cB) ≤ 0.2. Intuitively, undecidable predictions correspond to cases where

the algorithm is not able to interpret a vehicle’s behavior.

The statistical evaluation was run on the 42 trajectories for both types of scenarios (consistent / incon-

sistent). The graphs in Figure 4.28 show the obtained results and are commented below.

(a) Consistent behavior scenarios (b) Inconsistent behavior scenarios

Figure 4.28. Percentage of correct, incorrect, and undecidable predictions as a function of the

distance to the exit of the intersection for consistent behavior scenarios and for inconsistent

behavior scenarios.

Consistent behavior scenarios: There are no incorrect predictions, which is not surprising since

the behavior of the vehicles is never misleading in consistent behavior scenarios. The occasional

undecidable predictions originate from situations where a vehicle is temporarily driving in between

two lanes and the clue given by the turn signal (or the absence of turn signal) is not discriminating

enough to identify which exit the driver is aiming at.

Inconsistent behavior scenarios: In these scenarios the turn signal information is misleading, which

explains why the intended course is identified correctly much later than in the consistent scenarios.

The graph can be broken into three phases:
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• Phase 1 corresponds to the early approach phase, when the vehicle is still more than 10 m away

from the entrance of the intersection. On average 55% of the predictions are incorrect and 45%

are undecidable. The incorrect predictions correspond situations where there exists a consistent

explanation for the presence of the turn signal. An example is the situation b1 of Figure 4.27:

the vehicle is still far away from the intersection, so the right turn signal is interpreted as an

intention to change lanes. A human would make the same interpretation, but it turns out to

be an incorrect prediction. Another example is a vehicle on the left lane with the left turn

signal on that eventually goes straight. The undecidable predictions correspond to cases where

the algorithm cannot find a consistent explanation for the vehicle’s behavior. As a result the

uncertainty on the intended course is high.

• Phase 2 corresponds to the end of the approach phase, when the vehicle is less than 10 m away

from the entrance of the intersection. The trend in this phase is for the percentage of undecidable

predictions to rise quickly while the percentage of incorrect predictions drops considerably. This

inversion (incorrect predictions being replaced by undecidable predictions) is explained by the

fact that as vehicles get closer to the intersection it is less and less likely that the drivers intend

to change lanes. This is illustrated by situations b1 and b2 in Figure 4.27: the algorithm’s

prediction is incorrect in b1 (Phase 1), and undecidable in b2 (Phase 2) because there no longer

exists a consistent explanation for the vehicle’s behavior.

• Phase 3 corresponds to the execution of the maneuver inside the intersection. The position

and heading of the vehicles provide new clues which compete with the misleading turn signal

information. As the vehicles get closer to an exit lane, a larger number of maneuvers become

unfeasible and therefore the algorithm is able to identify the driver’s intention despite the mis-

leading turn signal information. We observe a steady rise of the percentage of correct predictions

until it reaches 100% approximately 10 m away from the exit of the intersection.

By incorporating information about the intersection layout, our model is able to 1) correctly estimate

a driver’s intended course in cases where there are enough clues to identify it and 2) keep the un-

certainty on the prediction high when clues are lacking or inconsistent. The ability to assess that the

situation is uncertain is crucial, since the level of confidence in the output can be used for making

decisions at an applicative level.
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4.5 Conclusions

4.5.1 Summary

The performance of the proposed risk assessment algorithm was evaluated based on the rate of false

alarms, the rate of missed detections, and the collision prediction horizon. Tests were conducted both

in simulation and in real conditions with passenger cars.

Our simulations assumed ideal perception and communication, and considered typical accident sce-

narios at a two-way-stop X-shaped intersection. An analysis of the collision prediction horizon led to

the following main conclusions:

1. In our dataset, the proposed algorithm did not trigger any false alarm and was able to predict

collisions at least 0.6 s before they occurred.

2. All the “late” detections (less than 1.5 s before the collision) correspond to left turn across path

maneuvers.

3. Accidents caused by stop violations are detected on average 1 s earlier than the ones caused by

priority violations.

4. There is a great variation in the efficiency of the different accident avoidance strategies which

could be triggered after a dangerous situation is detected. The strategy should be selected de-

pending on the situation (stop violation or priority violation).

Field trials were conducted using two vehicles equipped with off-the-shelf V2V wireless communica-

tion modems. Six different drivers took part in the experiments to recreate realistic dangerous and

non-dangerous situations. The risk estimation algorithm proposed in the previous chapter was run

online in one of the vehicles, and triggered a warning for the driver when it detected a dangerous situ-

ation. No false alarms were triggered in non-dangerous situations. In dangerous situations the warning

was always triggered early enough that accidents were avoided by performing an emergency braking.

The field trials proved that our approach can operate with success in real-life situations and trigger

warnings in real time. They also showed the robustness of the algorithm, since the experiments were

carried out with several drivers, a positioning system with a precision of σ = 2m, and challenging

wireless communication conditions.

The second half of this chapter focused on evaluating the importance of context in motion models.

In Section 4.3 we showed that accounting for the dependencies between the vehicles’ maneuvers im-

proves the estimation of the drivers’ intended course and improves risk assessment, while the collision

123



4.5. Conclusions

detection time is not affected. Section 4.4 evaluated the ability of our algorithm to estimate the in-

tended course of drivers in challenging situations where the driver’s behavior is inconsistent. The

results showed that our model is able to balance the information provided by the turn signal state

and by the layout of the intersection and to adapt the uncertainty of its output depending on the

concordance of the different clues.

4.5.2 Discussion

The evaluation conducted in this thesis focused on two aspects:

1. The functional performance, safety performance, and robustness of the proposed risk assessment

algorithm.

2. The benefits obtained by taking into account context in motion models.

Some other aspects were not investigated, such as the quantitative impact of communication limita-

tions on the algorithm’s performance. Such a study could be conducted in simulation, using a network

simulator (e.g. ns-2 [114] or ns-3 [115]) to generate realistic communication errors. Another relevant

study would be the impact of the driving style: our model was designed to adapt to different driving

styles to a certain extent (see Section 3.4.5) and our algorithm was tested with several drivers, but

this aspect was not investigated in detail. Extreme situations like drivers committing violations at very

low or very high speeds would be interesting to test.

Further, the algorithm’s performance could be evaluated in more complex scenarios. The evaluations

presented in this chapter involved a maximum of two vehicles, but in theory the algorithm can be

used with an arbitrary number of vehicles. Similarly, four different intersection layouts were tested in

this work but the algorithm can in theory be applied to any intersection geometry and topology. In

the future, experiments should be performed with more vehicles and more intersections to prove the

generality of our approach.

No performance comparisons with state-of-the-art algorithms were presented in this work. In order

to be compared, risk assessment algorithms must be tested on the same dataset. To the best of our

knowledge there exists no publicly available dataset on which risk assessment algorithms have been

tested and the results published. The non-availability of a dataset with real accidents can be explained

by the difficulty to collect data, but simulation could be used as a mean to generate collision data

which could be used by the ITS community to compare risk estimation algorithms. In the future we
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would like to investigate this matter, as well as ways to standardize the performance evaluation of risk

assessment algorithms.
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5.1 Summary

The topic addressed by this thesis is situation assessment and risk estimation for road traffic situations,

with a focus on road intersections and connected vehicle safety applications.

The context of this research was described in Chapter 1. Using statistical studies on road accidents,

we showed that intersections are the most dangerous areas of the road network and that wireless

vehicular communications have the potential to improve safety. In this work, Vehicle-to-Vehicle com-

munications (V2V) were used as a tool to extend the perception horizon of vehicles. We identified two

main challenges for situation assessment and risk estimation at road intersections. Firstly, traffic situ-

ations at road intersections are very difficult to model. They are highly dynamic and involve complex

interactions between the vehicles: drivers adapt their maneuvers according to the presence of other

vehicles, the layout of the intersection, and the traffic rules. Secondly, there is uncertainty both in

the available measurements and in the interpretation that should be made of a situation. Therefore,

the challenge is to propose a comprehensive reasoning framework which reflects the complexity of
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road intersection situations while keeping the computational complexity compatible with real-time

constraints.

State-of-the art approaches to the risk estimation problem were reviewed in Chapter 2. The classic

approach is based on vehicle motion models. Likely future trajectories are computed for every vehicle

in the scene, then risk is calculated as the likelihood that these trajectories will collide. The main

drawback is that this process is computationally expensive, since there are many possible trajectories

for each vehicle in the scene. In order to keep the complexity manageable, it is common practice to

simplify the problem either by ignoring uncertainties (in the data and / or in the motion model) or by

assuming independence between the motion of the vehicles. The first solution leads to overconfident

predictions, while the second one limits the ability to interpret of a vehicle’s behavior.

A novel approach to risk assessment was proposed in Chapter 3. It consists of a general framework

for reasoning about traffic situations and risk which explicitly models the intentions of drivers and

what is expected of them according to the current context and traffic rules. The proposed approach

is based on the comparison between intentions and expectations. This intuitive formulation of risk

is very flexible in terms of applications and has the advantage that it does not require predicting

the future trajectories of the vehicles. Inference on intentions and expectations is performed using a

Dynamic Bayesian Network, taking into account uncertainties in the input data and uncertainties in

the reasoning. This general framework was implemented for the specific case of road intersections.

In the proposed motion model, the influence of the geometry and topology of the road intersection is

taken into account, as well as the dependencies between the motion of the vehicles. What is expected

of a driver at an intersection is derived from the estimated context (maneuvers performed by drivers

and state of their vehicles), using the priority rules at the intersection and probabilistic gap acceptance

models.

The proposed model was evaluated in Chapter 4 using simulation and trials in real situations. The

performance of the risk estimation was measured at an applicative level, by defining a threshold on the

risk to separate dangerous and non-dangerous situations. Simulation was used to analyze statistically

the collision prediction horizon for typical collision scenarios. The results showed the ability of the

algorithm to detect dangerous situations before a collision occurs, and showed that some scenarios

are more challenging than others (e.g. priority violations during a left turn across path maneuver are

detected later). A preliminary study was conducted to assess the potential of different strategies for

avoiding collisions once a dangerous situation has been detected. We found that strategies perform

very differently depending on the configuration of the accident. An experimental setup was built to

test the algorithm in real conditions with several drivers. Two passenger vehicles were equipped with
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wireless communication modems to enable the sharing of information about their current states. The

algorithm ran in real-time on one of the vehicles and warned the driver when dangerous situations

arose. Despite localization errors and communication losses, the warnings were always triggered early

enough that the upcoming collision could be avoided with an emergency braking. The importance of

taking into account the layout of the intersection and the dependencies between the vehicles was

evaluated using real data replayed offline. Two versions of our algorithm were compared in order to

evaluate the consequences of the standard assumption of independence between the vehicles. The

results confirmed our claim that accounting for the dependencies leads to a better estimation of the

drivers’ intentions and to a better sensitivity of risk assessment. We also showed that our algorithm

can estimate the intended course of drivers in challenging situations where the driver’s behavior is

inconsistent, thanks to the information extracted from the digital map.

5.2 Conclusions

After conducting this research, our two main conclusions are the following:

• Context should and can be taken into account in algorithms addressing road safety.

This statement can be broken into two parts, which are commented below:

– Context should be taken into account in algorithms addressing road safety

The advantages of taking into account the layout of the intersection and the dependencies

between vehicles were highlighted using toy examples, and were evaluated quantitatively

using real data. The results showed that incorporating information about the current local

context allows us to interpret complex situations such as a vehicle yielding to another

vehicle or vehicles exhibiting inconsistent behaviors.

– Context can be taken into account in algorithms addressing road safety

We showed that taking into account context is not incompatible with real-time constraints.

To the best of our knowledge, no risk estimation algorithm has been proposed in the past

which accounts for the mutual influences between the vehicles and has been shown to run

in real-time. The proposed approach reaches this goal by computing the risk without the

need to predict the future trajectories of vehicles.
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• Risk is not only about trajectories intersecting.

Throughout this thesis, risk estimation was presented as a tool to predict collisions. This is the

most common interpretation of risk, however we believe that predicting collisions is only part

of the road safety problem.

While classic approaches estimate the risk of a situation by predicting the future trajectories

of vehicles and looking for collisions, our approach suggests that risk is about drivers behaving

differently from what is expected. This formulation extends the concept of risk beyond collisions.

For example, a vehicle proceeding in an intersection when only a short gap is available will not

necessarily result in a collision, but most drivers will consider it to be dangerous since they

expected the vehicle to wait for a longer gap. If the classic definition of risk is used, a warning

in this situation will be considered as a false alarm.

This thesis focused on the prediction of collisions, but we think that our formulation of risk

opens new opportunities for safety-related ADAS applications.

5.3 Perspectives

Future work will include additional performance evaluation, as mentioned in the previous chapter.

Further, the contributions presented in this thesis can be extended in the following directions:

• The first one addresses context-aware motion models for vehicles.

Motion models are at the core of most risk assessment algorithms, however they often fail to

account for the context in which the vehicles evolve. The motion model proposed in this thesis

takes a step toward context-awareness by taking into account the influence of the traffic rules,

the interactions with the other vehicles, and the layout of the road network on the motion of

vehicles. Additional information could be incorporated into the motion model to improve the

ability to infer driver intentions.

– Drivers’ actions such as pressure on pedals, steering, gear shifting are strong indicators of

their intentions. Monitoring these actions would allow us to anticipate the motion of a

vehicle, and therefore to estimate the intentions of drivers earlier. For example, a driver

preparing to to enter an intersection will turn the steering wheel before the vehicle’s orien-

tation reveals his intention.
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– Further, the parameters of the motion model could be made context-dependent and driver-

dependent. For example the windshield wipers running indicate that it may be raining,

and in this case the speed profiles could be adapted to reflect that the stopping distance of

vehicles will be longer than in dry weather. Another example is light sensors, which can

identify day and night context.

The speed profiles and gap acceptance models used in Chapter 3 correspond to average

driver behavior, and would be more representative of a driver’s actual behavior if they

were to be learned for each driver.

– Another source of information which could be considered is Vehicle-to-Infrastructure (V2I)

communications. One of the purpose of roadside wireless communication units is to pro-

vide vehicles with local contextual information such as additional information about the

layout, the state of the traffic lights, temporary modifications of the traffic rules, etc. [116].

Incorporating this information into the reasoning would improve situation understanding.

– Finally, sensor fusion should be considered in order to have a comprehensive understanding

of the situation. The work presented here builds a representation of the environment using

proprioceptive sensors, maps, and V2V communication, but does not integrate information

about potential non-communicating objects in the scene. Pedestrians, non-communicating

vehicles, obstacles on the road, etc. can be detected using exteroceptive sensors (e.g.

cameras, lasers, radars). This information and its associated uncertainty can be combined

with a vehicle’s own representation of the scene to make it more reliable (through the

redundancy of information) and more complete (through additional information about

non-communicating entities).

• The second one addresses the application of the proposed risk estimation approach to other

scenarios.

In Section 3.1.2 we proposed that dangerous road traffic situations shall be detected based on

the comparison between what drivers intend to do and what is expected of them. The remaining

of the thesis focused on unsignalized road intersections, and we showed that the proposed

approach is able to detect dangerous situations caused by the non-respect of traffic rules. We

believe that the concept of comparing intention and expectation is relevant for a number of other

applications.

– The proposed motion model could be extended to other types of intersections, such as

roundabouts or intersections controlled by traffic lights. For each new type of intersection,
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a new “expected longitudinal motion” model would have to be defined to match the traffic

rules. For roundabouts, that model would take the form of a probabilistic gap acceptance

model, similarly to the intersections addressed in this thesis. For intersections controlled

by traffic lights, the probability that a vehicle should stop would be a function of the time

needed by the vehicle to reach the intersection and of the dynamic state of the traffic light.

The design of these new models could be based on previous work in the literature such as

[117] for roundabouts and [118, 119] for traffic lights.

– The idea of comparing intention and expectation can also be used in traffic situations which

are not related to intersections. Examples were given in Section 3.6.2 for highway traffic

situations. Rear-end collisions and hazardous lane changes on a highway could be pre-

dicted by monitoring the driver’s intention to change lanes or to follow the vehicle in front.

If a driver gets too close to the vehicle in front and does not seem to intend to change lanes

or to adapt its speed, there is a risk of a rear-end collision. If a driver intends to change

lanes while another vehicle is approaching, there is a risk of sideways collision.

• The third addresses the design of safety applications for Advanced Driver Assistance Systems

(ADAS) and Autonomous Driving.

Our framework provides tools for reasoning about situations and risk, but risk estimation is

only part of the solution to make roads safer. Following the detection of dangerous situations,

decisions have to be made to enhance the safety of drivers. This is not an easy task, as it raises

a number of questions in terms of user acceptance, liability, and ethics.

– The approach formulated in this thesis is relevant to both ADAS and Autonomous Driving

applications. The motion model can be used to estimate the risk of a situation and to infer

relevant information about potential collisions such as the vehicles involved, the configu-

ration (e.g. frontal or side collisions), the imminence (time-to-collision), and the severity

(depending on the speed of the vehicles). These indicators are valuable for safety applica-

tions, as they help to make decisions about which action(s) to take to avoid or mitigate the

upcoming collision.

For example they can be used by an ADAS to decide if the driver should be warned, when,

and how. An ADAS could also use these indicators to decide that a direct action on the

brakes is necessary and take control over (part of) the vehicle’s commands, as it is the case

in Automated Braking Systems.

In the case of Autonomous Driving applications, the vehicle can adapt its maneuver to
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reduce the risk, for example by slowing down or by taking a less risky course.

– If the driver is left in control of the vehicle, the difficulty is to convey information from

the computer to the human. The computer is in possession of a large amount of infor-

mation regarding the specifics of the danger. It is also capable of computing the risk of

potential avoidance maneuvers. However the driver can process only a limited amount of

information, and time is critical. The system can either warn the driver (providing infor-

mation about the situation to the driver, who then decides what to do) or send the driver

an injunction (e.g. “apply emergency braking now”).

In the first case (warning) the information has to be cut down and simplified before it is

displayed (no probabilities, simple graphics as in Figure 4.10).

In the second case (injunction) the system itself decides of the appropriate action, which

could save some time. However there are some liability issues, since the final situation

(collision avoided or not) will be partially imputable to the system.

– If the vehicle is partially or totally computer-controlled, similar liability issues exist.

Ethics is a major challenge, as the computer would have to make decisions related to life

and death of humans in critical situations. This issue is linked to the problem of driver

acceptance: part of the reluctance that some drivers have to leave the control of their car

to a computer is caused by the lack of trust in the machine’s capabilities.

On a technical level, the advantages of letting the computer control part of the vehicle in

specific cases are numerous. As was mentioned in the previous paragraph, the computer

has access to a lot of information which could be used to handle dangerous situations

in an efficient manner. But beyond emergency situations, we believe that much of the

power of computer control in vehicles resides in preventive measures. In particular, it

could address situations where the risk is rising but is not high enough to warn the driver

or apply emergency braking. In this case, the computer could make the vehicle slow down.

Even small changes in speed have a significant impact in the severity of an accident, and

they are likely to be easily accepted by drivers.
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Appendix A

DSRC standards

5.9 GHz DSRC is a set of protocols and standards dedicated to short and medium-range wireless

communications for ITS. Standardization work started in 1999 when the U.S. Federal Communication

Commission allocated part of the 5.9 GHz band to wireless vehicular communications. Subsequently

the ASTM and the IEEE jointly developed the IEEE 802.11p standard, also known as the Wireless

Access to Vehicular Environment (WAVE) standard. This standard is based on the IEEE 802.11a

(WiFi) standard, but was designed to operate with mobile nodes.

Standards for the other layers of the OSI model are being developed by a number of standards orga-

nizations, which are listed in Figure A.1. Some standards have already been finalized while others

are in the development or approval process. A list of these standards and their development status is

available on the U.S. Department of Transportation’s website [120].
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Figure A.1. Organizations involved in the development of standards for DSRC.

Communication channels: DSCR channels are divided into two categories: a control channel and

several service channels. The control channel is reserved for broadcasting periodic messages and for

coordinating the communications which take place on the service channels. The service channels are

used for occasional exchanges of information. The frequencies allocated for DSRC applications in

Europe and in the U.S. are shown in Figure A.2, along with the envisioned channel assignments.
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Figure A.2. Bandwidth allocated for DSRC applications in Europe and in the U.S. [15, 16].

Messages specifications: Two types of messages are under standardization.

• Periodic messages: they are short messages which are periodically broadcasted in the control

channel by all ITS stations located in an ad-hoc network, at a frequency varying between 2 Hz

and 10 Hz depending on the time criticality of locally managed applications. These messages

contain key information such as the station type, 3D position, heading, velocity, current dynamic

and static states, capabilities.

– In Europe, the standardized periodic message is the Cooperative Awareness Message (CAM)

[121].

– The equivalent message in the U.S. is the Basic Safety Message (BSM) [122].

• Event-driven messages: they are sent only when specific safety-related events are detected, e.g.

an immobilized vehicle on the road, bad weather conditions, road / traffic problems, drivers

with a dangerous behavior. The messages are broadcasted at a frequency varying between 2 Hz

and 10 Hz until the event that caused the signal to be triggered disappears. Messages can be

relayed by other ITS stations and that way be propagated to some predefined geographical areas.

– In Europe, the standardized event-driven message is the Decentralized Notification Mes-

sage (DENM) [121].

– In the U.S., the equivalent messages have different names depending on the event type (ex:

Emergency Vehicle Alert (EVA), Road Side Alert (RSA)) [122].
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Appendix B

The importance of context

The motion of vehicles on the road is strongly constrained by the local context, i.e. by the shape of the

road layout and by the presence of other vehicles. The latter is particularly true at road intersections,

where priority rules force vehicles to take into account the maneuvers performed by the other vehicles.

Therefore, a motion model representing vehicles as entities evolving independently from each other

in an unconstrained environment will be valid for short-term motion only. For long-term motion

prediction it is necessary to take into account the local context of the road network, i.e. to take

into account the constraints imposed by the layout of the road network and by the traffic rules

on the collective motion of vehicles in the scene. This statement is justified in the sections below,

using example real-life scenarios. Section B.1 analyzes the necessity to take into account the layout

of the intersection. Section B.2 analyzes the necessity to take into account the interactions between

vehicles.
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B.1. Intersection layout

B.1 Intersection layout

For a vehicle approaching a road intersection, it is common practice to interpret the presence of a turn

signal as an intention to make a turn [77]. In reality turn signals cannot be interpreted that directly,

as illustrated in Figure B.1.

Figure B.1. Example situation where it is necessary to take into account the layout of the

intersection to interpret correctly the yellow vehicle’s behavior.

In this image, the situation is the following: the yellow vehicle is approaching the intersection with

the left turn signal on. Without any information about the intersection layout, it will be (incorrectly)

assumed that the driver intends to turn left. Taking into account the geometrical and topological

characteristics of the intersection allows us to understand that the actual intention of the driver is to

go straight. Indeed, left turns are allowed only from the leftmost lane but this lane is too far away

to be reached by the yellow car, and the only two reachable lanes located on the left of the car are

reserved for vehicles going straight.

This example highlights the importance of taking into account the geometrical and topological char-

acteristics of the road intersection when interpreting turn signals and estimating driver intention.

B.2 Interactions between vehicles

As mentioned in the state of the art (Chapter 2), most of the existing motion models assume indepen-

dence between the vehicles. This simplification is generally motivated by the complexity reduction

that it provides. However, ignoring the mutual influences between vehicles in the motion model leads

to limitations for situation assessment and risk assessment. These consequences are analyzed below,
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based on simple traffic scenarios at typical road intersections.

B.2.1 Intuition

When driving, one has to analyze other traffic participants’ behavior and infer their intentions in order

to adapt one’s behavior to the current situation and to the traffic rules. Humans performing this task

will assume that the other drivers generally respect the traffic rules. In other words, when the motion

of a vehicle in the scene is compatible with several maneuvers, the maneuvers which match the

traffic rules will be considered by a human to be more likely than the other ones. This assumption

leads to a better understanding of situations.

This statement is illustrated in Figure B.2.

Figure B.2. Example situation where it is necessary to take into account the dependencies

between the vehicles to interpret the black car’s behavior.

The situation involves two cars at a two-way stop intersection: the white car is approaching on the

main road and driving at constant speed, while the black car is waiting at the stop line. In order to

interpret correctly the black car’s behavior, it is necessary to take into account both the layout of the

intersection and the dependencies between the two cars:

• Algorithms which do not use layout information generally assume that slowing down when

approaching an intersection is an indication that the driver intends to make a turn. An algorithm

which takes into account the layout will be able to understand that in this case the black car

is slowing down because of the stop, and that this behavior should not be interpreted as an

intention to make a turn.

153



B.2. Interactions between vehicles

• When the black car remains stationary after reaching the stop line, an algorithm which takes

into account the presence of the white car will able to interpret this behavior as an indication

that the driver’s intention is to go straight or to turn left. Indeed, these two maneuvers involve

waiting for the white car to pass while there is no reason to wait before making a right turn.

In comparison, an algorithm which assumes independence between the two vehicles will not be

able to infer anything about the driver’s maneuver intention.

In the next two sections, a more detailed study of the impact of the independence assumption on

situation assessment and risk assessment is carried out, using example scenarios at a T-shaped give-

way intersection.

B.2.2 Case study: non-dangerous scenario

An analysis is conducted on an example non-dangerous scenario and illustrated in Figure B.3.

Figure B.3. Non-dangerous scenario: impact of the independence assumption on situation

assessment and risk estimation. The thicker the arrows, the higher the probability for a

maneuver.
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A vehicle is proceeding in a T-shaped intersection from the secondary road while another vehicle is

approaching at high speed from the right, without decelerating. A human observing the scene would

conclude that the blue car is executing a right turn, and that the black car is driving at high speed

because it has priority and intends to go straight at the intersection. This is actually a very common

scenario; in this case a warning would be considered to be a false alarm. Taking into account the

dependencies between the vehicles or not leads to very different outputs:

• Figure B.3, top row: the maneuvers of the vehicles are estimated independently from each other,

based only on each vehicle’s behavior and using knowledge about the layout of the intersection.

Maneuvers 1 and 2 are therefore equally probable for the blue car, and maneuver 4 is much

more probable than maneuver 3 for the black car. Let us assume that the following probabilities

are obtained:

Blue vehicle Black vehicle

Maneuver 1 0.5 -

Maneuver 2 0.5 -

Maneuver 3 - 0.1

Maneuver 4 - 0.9

For the sake of simplicity in the calculation of the collision risk, let us assume that the pairs of

maneuvers (1,3) and (1,4) result in a collision with 100% certainty. The collision risk can then

be computed as:

Collision_risk = 0.5× 0.1 + 0.5× 0.9 = 0.5 (B.1)

• Figure B.3, bottom row: this time, the dependencies between the vehicles are taken into account

in the maneuver intention estimation process. This additional information does not change the

interpretation of the black car’s behavior but allows us to identify that the blue car is probably

performing maneuver 2. Let us assume that the following probabilities are obtained:

Blue vehicle Black vehicle

Maneuver 1 0.1 -

Maneuver 2 0.9 -

Maneuver 3 - 0.1

Maneuver 4 - 0.9

155



B.2. Interactions between vehicles

Still assuming that the pairs of maneuvers (1,3) and (1,4) result in a collision with 100% cer-

tainty, the collision risk can then be computed as:

Collision_risk = 0.1× 0.1 + 0.1× 0.9 = 0.1 (B.2)

For the same non-dangerous situation, the first approach estimates that the collision risk is 0.5 and the

second one that it is 0.1. Therefore the sensitivity of the risk assessment [109] is different between the

two approaches: in non-dangerous situations the calculated risk reaches comparatively higher values

with the independence assumption, therefore the threshold λ used by applications to separates non-

dangerous situations from dangerous situations has to be set to a higher value. This has significant

consequences on safety applications. For example, let us consider an application which can control the

brakes of the car and slows the car down when it detects danger ahead, i.e. when Collision_risk ∈
[λ 1.0]. A small λ results in a large range of variation of the Collision_risk value in dangerous

situations (see Figure B.4). It is then possible to adjust the action on the brakes (from soft to hard

braking) depending on the value of Collision_risk. Comparatively, a larger λ results in a smaller

range of variation of the Collision_risk value in dangerous situations and will limit the choices of

action to “no action” and “emergency braking”.

Figure B.4. Sensitivity of the risk assessment: the range of variation of Collision_risk in

dangerous and non-dangerous situations depends on the value set for λ.

It is also interesting to note that the difference between the two approaches is even more significant

in X-shaped intersections. If we consider the same non-dangerous situation as in Figure B.3 but with a

X-shaped intersection instead of a T-shaped intersection, the risk value computed by the first method

will be 0.66, and still 0.1 with the second method.
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B.2.3 Case study: dangerous scenario

One can wonder about potential drawbacks of the assumption that “drivers generally respect traffic

rules”. Won’t such an assumption prevent or delay the detection of dangerous situations? Here we

focus on a simple example scenario and show that a system that makes this assumption is still able to

detect dangerous situations where a driver does not comply with the traffic rules.

The scenario depicted in Figure B.5 is similar to the previous one except for the presence of a third

car.

Figure B.5. Dangerous scenario: impact of the independence assumption on situation as-

sessment and risk estimation. The thicker the arrows, the higher the probability for a ma-

neuver.

The yellow car is approaching the intersection from the main road at constant speed, in the opposite

direction compared to the black car. This time, the traffic rules do not provide any indication on the

maneuver performed by the blue car, since neither executing maneuver 1 nor executing maneuver 2

is in accordance with the traffic rules. It will be concluded that both maneuvers are equally probable,

whether independence is assumed between the vehicles or not. The estimated collision risk will be

high in both cases.

One can also wonder what would happen in the scenario of Figure B.3 if the blue car happened to

turn left in the end. In this case, shortly after the car enters the intersection, the clues given by its

position and orientation will counterbalance the traffic rules. The laws of physics (turning limitations

of the car) will leave no doubt on the driver’s intention, and the estimated collision risk will be high.
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B.3. Summary

B.3 Summary

The goal of this appendix was to state the importance of contextual information in motion models.

Context refers here to the layout of the intersection and to the presence of other vehicles. The ne-

cessity to take into account the geometrical and topological characteristics of the intersection was

demonstrated on a real-life example for the interpretation of turn signals. The advantages of account-

ing for the mutual influences between vehicles’ maneuvers was illustrated by a real-life example, and

then analyzed in more detail on toy examples. By comparing a model which assumes independence

between vehicles with a model which assumes that drivers generally respect traffic rules, we reached

the conclusion that accounting for the inter-dependencies between the vehicles:

1. Should in theory lead to a better estimation of drivers’ maneuver intentions

2. Should in theory not delay or prevent the detection of dangerous situations

3. Should in theory lead to a better sensitivity of the risk assessment

These claims are evaluated in the results chapter (Chapter 4) using data collected at real intersections.
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Digital maps

In this work it is assumed that a digital map of the road network is available from which we can extract

high-level features of road intersections such as the set of authorized maneuvers and the traffic rules

that apply. In our early experiments we used the Road Network Definition Format (RNDF) format

[123], while our more recent work uses the OpenStreetMap (OSM) [124] format. Some alternatives

exist, for example Navteq [125] and TomTom [126] commercial maps. It has also been shown that

such maps can be inferred from position data [127, 128].

This appendix focuses on the RNDF and OSM formats since they are the ones used in this work. In

the first section some definitions are provided about the representation of the road network in digital

maps. In the second section, the procedure for extracting high-level features of the intersection from

a digital map is described. The last section provides the xml code for one of our test intersection as

an example.

C.1 Definitions

Both RNDF and OSM formats are based on a very standard representation of the road network con-

sisting of nodes, ways, relations, and attributes:

• A node is a single geospatial point defined by its XYZ-coordinates in the Universal Transverse

Mercator (UTM) coordinate system.

• A way is an ordered set of nodes.

• The logical or geographic relationships between nodes and/or ways are defined by relations.

• Nodes, ways and relations can have attributes, which describe the characteristics of an element.
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C.2. High-level features

This representation is illustrated in Figure C.1.

Figure C.1. Illustrative example of the node and way concepts in digital maps.

The RNDF format provides strict guidelines as to the generation of the maps (e.g. nodes are to be

placed at the center of lanes, there is a predefined list of attributes which must be set for every node

and way), while the OSM format leaves a lot of freedom in the representation of the road network.

C.2 High-level features

A set of high-level features can be extracted from digital maps:

• Authorized maneuvers

A maneuver at an intersection is defined as the process of entering the intersection through

one lane and exiting the intersection through another lane. A maneuver is authorized iff it

corresponds to a legal move. The information about the authorized maneuvers can be encoded

in different manners in digital maps. For example in the RNDF format a way is defined for

each authorized maneuver, while in the OSM format ways are sometimes shared by multiple

maneuvers and the information about authorized moves is encoded in the attributes of the ways

(e.g. “number of lanes”, “right turn only from right lane” attributes).

• Courses

For each authorized maneuver at an intersection, a course is defined as the typical path for

executing that particular maneuver. Depending on how precise the digital map is, ways can be

used directly as typical paths or they will have to be interpolated to make them smoother (e.g.

using splines).

• Priority rules
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A priority rule defines which maneuver has priority with respect to another maneuver. A prior-

ity rule can either be explicitly encoded through a relation between two ways or be implicitly

encoded through attributes of nodes (e.g. “give way”, “stop” attributes).

This representation is illustrated in Figure C.2. The corresponding xml code for the digital map is

given in Section C.3.

Figure C.2. Example digital map, superimposed on the corresponding satellite image. This

intersection is defined by 6 courses (represented by 6 ways). The corresponding XML code

is provided in Section C.3.

C.3 XML code

<?xml version= ’ 1.0 ’ encoding= ’UTF−8 ’ ?>

<osm version= ’ 0.6 ’ generator= ’JOSM ’>

<node id= ’−82 ’ timestamp= ’2012−04−09T23:17:21Z ’ v i s i b l e= ’ t rue ’ l a t= ’

48.72659483361505 ’ lon= ’ 2.0010682466535825 ’ />

<node id= ’−80 ’ ac t i on= ’ modify ’ timestamp= ’2012−04−09T23:17:21Z ’ v i s i b l e= ’ t rue ’

l a t= ’ 48.726599870381015 ’ lon= ’ 2.0011008755352964 ’ />

<node id= ’−78 ’ ac t i on= ’ modify ’ timestamp= ’2012−04−09T23:17:21Z ’ v i s i b l e= ’ t rue ’

l a t= ’ 48.726599898457174 ’ lon= ’ 2.0011008118373046 ’ />

<node id= ’−72 ’ ac t i on= ’ modify ’ timestamp= ’2011−07−12T09:21:40Z ’ v i s i b l e= ’ t rue ’

l a t= ’ 48.72657426510799 ’ lon= ’ 2.0011052987503395 ’>
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<tag k= ’name ’ v= ’ 31 ’ />

</node>

<node id= ’−70 ’ ac t i on= ’ modify ’ timestamp= ’2011−07−12T09:21:40Z ’ v i s i b l e= ’ t rue ’

l a t= ’ 48.726581573167174 ’ lon= ’ 2.0011220022874583 ’>

<tag k= ’name ’ v= ’ 2 ’ />

</node>

<node id= ’−68 ’ ac t i on= ’ modify ’ timestamp= ’2011−07−12T06:47:18Z ’ v i s i b l e= ’ t rue ’

l a t= ’ 48.72678097971454 ’ lon= ’ 2.001184386557687 ’>

<tag k= ’name ’ v= ’ 41 ’ />

</node>

<node id= ’−66 ’ ac t i on= ’ modify ’ timestamp= ’2011−07−12T06:47:18Z ’ v i s i b l e= ’ t rue ’

l a t= ’ 48.7266095123778 ’ lon= ’ 2.0011055362211323 ’>

<tag k= ’name ’ v= ’ 51 ’ />

</node>

<node id= ’−64 ’ ac t i on= ’ modify ’ timestamp= ’2011−07−12T06:47:18Z ’ v i s i b l e= ’ t rue ’

l a t= ’ 48.7265597738326 ’ lon= ’ 2.001126172491377 ’>

<tag k= ’name ’ v= ’ 23 ’ />

</node>

<node id= ’−60 ’ ac t i on= ’ modify ’ timestamp= ’2011−07−12T06:47:18Z ’ v i s i b l e= ’ t rue ’

l a t= ’ 48.726595190421726 ’ lon= ’ 2.0010863034655095 ’>

<tag k= ’name ’ v= ’ 45 ’ />

</node>

<node id= ’−56 ’ ac t i on= ’ modify ’ timestamp= ’2011−07−12T06:47:18Z ’ v i s i b l e= ’ t rue ’

l a t= ’ 48.72659903650132 ’ lon= ’ 2.0010386126670845 ’>

<tag k= ’ e x i t ’ v= ’ 3 ’ />

<tag k= ’name ’ v= ’ 4 ’ />

</node>

<node id= ’−52 ’ ac t i on= ’ modify ’ timestamp= ’2011−07−12T06:47:18Z ’ v i s i b l e= ’ t rue ’

l a t= ’ 48.7270559598962 ’ lon= ’ 2.001310841399108 ’>

<tag k= ’name ’ v= ’ 40 ’ />

</node>

<node id= ’−50 ’ ac t i on= ’ modify ’ timestamp= ’2011−07−12T06:47:18Z ’ v i s i b l e= ’ t rue ’

l a t= ’ 48.72704294841827 ’ lon= ’ 1.9989236160232802 ’>

<tag k= ’name ’ v= ’ 6 ’ />

</node>
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<node id= ’−48 ’ ac t i on= ’ modify ’ timestamp= ’2011−07−12T06:47:18Z ’ v i s i b l e= ’ t rue ’

l a t= ’ 48.72591792978391 ’ lon= ’ 2.00429861403403 ’>

<tag k= ’name ’ v= ’ 0 ’ />

</node>

<node id= ’−46 ’ ac t i on= ’ modify ’ timestamp= ’2011−07−12T06:47:18Z ’ v i s i b l e= ’ t rue ’

l a t= ’ 48.72589496670608 ’ lon= ’ 2.0042798065757887 ’>

<tag k= ’name ’ v= ’ 24 ’ />

</node>

<node id= ’−44 ’ ac t i on= ’ modify ’ timestamp= ’2011−07−12T06:47:18Z ’ v i s i b l e= ’ t rue ’

l a t= ’ 48.72702102734542 ’ lon= ’ 1.998907013430011 ’>

<tag k= ’name ’ v= ’ 20 ’ />

</node>

<node id= ’−40 ’ ac t i on= ’ modify ’ timestamp= ’2011−07−12T08:32:15Z ’ v i s i b l e= ’ t rue ’

l a t= ’ 48.726586401284486 ’ lon= ’ 2.001100560347422 ’>

<tag k= ’name ’ v= ’ 3 ’ />

</node>

<node id= ’−34 ’ ac t i on= ’ modify ’ timestamp= ’2011−07−12T08:32:15Z ’ v i s i b l e= ’ t rue ’

l a t= ’ 48.72660858523698 ’ lon= ’ 2.001104321734558 ’>

<tag k= ’name ’ v= ’ 44 ’ />

</node>

<node id= ’−32 ’ ac t i on= ’ modify ’ timestamp= ’2011−07−12T08:32:15Z ’ v i s i b l e= ’ t rue ’

l a t= ’ 48.726569430972624 ’ lon= ’ 2.001179982778936 ’>

<tag k= ’name ’ v= ’ 1 ’ />

</node>

<node id= ’−30 ’ ac t i on= ’ modify ’ timestamp= ’2011−07−12T08:32:15Z ’ v i s i b l e= ’ t rue ’

l a t= ’ 48.72659903517921 ’ lon= ’ 2.001152566459314 ’>

<tag k= ’name ’ v= ’ 11 ’ />

</node>

<node id= ’−28 ’ ac t i on= ’ modify ’ timestamp= ’2011−07−12T08:32:15Z ’ v i s i b l e= ’ t rue ’

l a t= ’ 48.72661341520267 ’ lon= ’ 2.0011490250825235 ’>

<tag k= ’ e x i t ’ v= ’ 2 ’ />

<tag k= ’name ’ v= ’ 12 ’ />

</node>

<node id= ’−26 ’ ac t i on= ’ modify ’ timestamp= ’2011−07−12T08:32:15Z ’ v i s i b l e= ’ t rue ’

l a t= ’ 48.72704658161592 ’ lon= ’ 2.0013440908419757 ’>

<tag k= ’name ’ v= ’ 14 ’ />

163



C.3. XML code

</node>

<node id= ’−18 ’ ac t i on= ’ modify ’ timestamp= ’2011−07−12T08:32:15Z ’ v i s i b l e= ’ t rue ’

l a t= ’ 48.7265728137508 ’ lon= ’ 2.001086262802265 ’>

<tag k= ’name ’ v= ’ 30 ’ />

</node>

<node id= ’−16 ’ ac t i on= ’ modify ’ timestamp= ’2011−07−12T08:32:15Z ’ v i s i b l e= ’ t rue ’

l a t= ’ 48.72661341884052 ’ lon= ’ 2.0011486219077823 ’>

<tag k= ’ e x i t ’ v= ’ 2 ’ />

<tag k= ’name ’ v= ’ 34 ’ />

</node>

<node id= ’−10 ’ ac t i on= ’ modify ’ timestamp= ’2011−07−12T08:32:15Z ’ v i s i b l e= ’ t rue ’

l a t= ’ 48.72658521809297 ’ lon= ’ 2.0011601593408055 ’>

<tag k= ’name ’ v= ’ 10 ’ />

</node>

<node id= ’−6 ’ ac t i on= ’ modify ’ timestamp= ’2011−10−05T08:13:13Z ’ v i s i b l e= ’ t rue ’

l a t= ’ 48.72658062288928 ’ lon= ’ 2.0010276651917884 ’>

<tag k= ’ entrance ’ v= ’ 2 ’ />

<tag k= ’name ’ v= ’ 25 ’ />

</node>

<way id= ’−94 ’ ac t i on= ’ modify ’ timestamp= ’2011−07−12T06:47:18Z ’ v i s i b l e= ’ t rue ’>

<nd r e f= ’−52 ’ />

<nd r e f= ’−68 ’ />

<nd r e f= ’−66 ’ />

<nd r e f= ’−78 ’ />

<nd r e f= ’−40 ’ />

<nd r e f= ’−72 ’ />

<nd r e f= ’−64 ’ />

<nd r e f= ’−46 ’ />

<tag k= ’name ’ v= ’ 15 ’ />

<tag k= ’ speed_ l im i t ’ v= ’ 50 ’ />

</way>

<way id= ’−92 ’ ac t i on= ’ modify ’ timestamp= ’2011−07−12T06:47:18Z ’ v i s i b l e= ’ t rue ’>

<nd r e f= ’−52 ’ />

<nd r e f= ’−68 ’ />

<nd r e f= ’−34 ’ />

<nd r e f= ’−80 ’ />
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<nd r e f= ’−60 ’ />

<nd r e f= ’−82 ’ />

<nd r e f= ’−56 ’ />

<nd r e f= ’−50 ’ />

<tag k= ’name ’ v= ’ 14 ’ />

<tag k= ’ speed_ l im i t ’ v= ’ 50 ’ />

</way>

<way id= ’−90 ’ ac t i on= ’ modify ’ timestamp= ’2011−07−12T06:47:18Z ’ v i s i b l e= ’ t rue ’>

<nd r e f= ’−48 ’ />

<nd r e f= ’−32 ’ />

<nd r e f= ’−70 ’ />

<nd r e f= ’−40 ’ />

<nd r e f= ’−56 ’ />

<nd r e f= ’−50 ’ />

<tag k= ’name ’ v= ’ 10 ’ />

<tag k= ’ speed_ l im i t ’ v= ’ 70 ’ />

</way>

<way id= ’−88 ’ ac t i on= ’ modify ’ timestamp= ’2011−07−12T06:47:18Z ’ v i s i b l e= ’ t rue ’>

<nd r e f= ’−44 ’ />

<nd r e f= ’−6 ’ />

<nd r e f= ’−64 ’ />

<nd r e f= ’−46 ’ />

<tag k= ’name ’ v= ’ 12 ’ />

<tag k= ’ speed_ l im i t ’ v= ’ 70 ’ />

</way>

<way id= ’−86 ’ ac t i on= ’ modify ’ timestamp= ’2011−07−12T08:32:15Z ’ v i s i b l e= ’ t rue ’>

<nd r e f= ’−48 ’ />

<nd r e f= ’−32 ’ />

<nd r e f= ’−10 ’ />

<nd r e f= ’−30 ’ />

<nd r e f= ’−28 ’ />

<nd r e f= ’−26 ’ />

<tag k= ’name ’ v= ’ 11 ’ />

<tag k= ’ speed_ l im i t ’ v= ’ 70 ’ />

</way>

<way id= ’−84 ’ ac t i on= ’ modify ’ timestamp= ’2011−07−12T08:32:15Z ’ v i s i b l e= ’ t rue ’>
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<nd r e f= ’−44 ’ />

<nd r e f= ’−6 ’ />

<nd r e f= ’−18 ’ />

<nd r e f= ’−72 ’ />

<nd r e f= ’−70 ’ />

<nd r e f= ’−16 ’ />

<nd r e f= ’−26 ’ />

<tag k= ’name ’ v= ’ 13 ’ />

<tag k= ’ speed_ l im i t ’ v= ’ 70 ’ />

</way>

<r e l a t i o n id= ’−102 ’ ac t i on= ’ modify ’ timestamp= ’2011−10−05T08:13:14Z ’ v i s i b l e= ’

t rue ’>

<member type= ’ way ’ r e f= ’−90 ’ r o l e= ’ 1 ’ />

<member type= ’ way ’ r e f= ’−84 ’ r o l e= ’ 0 ’ />

<member type= ’ way ’ r e f= ’−94 ’ r o l e= ’ 0 ’ />

<member type= ’ way ’ r e f= ’−92 ’ r o l e= ’ 0 ’ />

</ r e l a t i o n>

<r e l a t i o n id= ’−100 ’ timestamp= ’2011−10−05T08:13:14Z ’ v i s i b l e= ’ t rue ’>

<member type= ’ way ’ r e f= ’−86 ’ r o l e= ’ 1 ’ />

<member type= ’ way ’ r e f= ’−84 ’ r o l e= ’ 0 ’ />

</ r e l a t i o n>

<r e l a t i o n id= ’−98 ’ timestamp= ’2011−10−05T08:13:14Z ’ v i s i b l e= ’ t rue ’>

<member type= ’ way ’ r e f= ’−88 ’ r o l e= ’ 1 ’ />

<member type= ’ way ’ r e f= ’−94 ’ r o l e= ’ 0 ’ />

</ r e l a t i o n>

<r e l a t i o n id= ’−96 ’ timestamp= ’2011−10−05T08:13:14Z ’ v i s i b l e= ’ t rue ’>

<member type= ’ way ’ r e f= ’−84 ’ r o l e= ’ 1 ’ />

<member type= ’ way ’ r e f= ’−94 ’ r o l e= ’ 0 ’ />

</ r e l a t i o n>

</osm>
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Precision and recall analysis

For evaluation purposes in Chapter 4, a threshold λ is applied on the risk value to separate dangerous

and non-dangerous situations. In order to set the value of λ, we used the simulated dataset presented

in Section 4.1 and conducted an analysis on the precision, recall, and smallest collision prediction

horizon for different values of λ. The selected value for λ was subsequently used for all the tests

presented in Chapter 4.

D.1 Metrics

Precision: For one value of λ, the precision if defined as follows.

Precision =
NC

NC +NF
(D.1)

with NC the number of correct detections and NF the number of false alarms.

A correct detection corresponds to a dangerous scenario instance where the risk exceeded λ at some

point before the collision occurred.

A false alarm corresponds to a non-dangerous scenario instance where the risk exceeded λ at some

point.

Recall: For one value of λ, the recall if defined as follows.

Recall =
NC

NC +MD
(D.2)

with NC the number of correct detections and MD the number of missed detections.
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A correct detection corresponds to a dangerous scenario instance where the risk exceeded λ at some

point before the collision occurred.

A missed detection corresponds to a dangerous scenario instance where the risk never exceeded λ.

Smallest collision prediction horizon: For one value of λ, we find the smallest Tprediction (see

definition in Equation 4.2) among all the dangerous scenario instances.

D.2 Results

The precision, recall, and smallest collision prediction horizon were computed for values of λ between

0.0 and 1.0. The results are shown in Figure D.1. Optimal values for the precision and recall are

obtained for λ = 0.3 and λ = 0.35. The threshold was set to λ = 0.3 since the collision prediction

horizon is larger.
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λ Precision Recall Smallest Tprediction (s)

0.05 0.7 1.0 3.4

0.1 0.7 1.0 1.6

0.15 0.73 1.0 1.0

0.2 0.79 1.0 0.8

0.25 0.89 1.0 0.6

0.3 1.0 1.0 0.6 ← Selected value

0.35 1.0 1.0 0.4

0.4 1.0 0.996 0.0

0.45 1.0 0.996 0.0

0.5 1.0 0.987 0.0

0.55 1.0 0.983 0.0

0.6 1.0 0.970 0.0

0.65 1.0 0.965 0.0

0.7 1.0 0.957 0.0

0.75 1.0 0.957 0.0

0.8 1.0 0.948 0.0

0.85 1.0 0.939 0.0

0.9 1.0 0.918 0.0

0.95 1.0 0.900 0.0

Figure D.1. Precision, recall, and smallest collision prediction horizon for different values

of λ.
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Accounting for physical limitations in

the evolution model

In Section 3.4.4 we discuss about two possible models for the evolution of the pose of a vehicle.

Model 1 is a combination of two simple models. The first one predicts the pose at time t by applying

a Constant Velocity (CV) model to the pose at time t − 1. The second one projects the pose obtained

with the CV model on the course that the driver intends to follow. The poses computed by the two

models are averaged to produce a final predicted pose.

Model 2 is a more advanced path following model which takes into account the physical limitations

of the vehicle. The predicted pose at time t is one which is physically reachable by the vehicle. For

example, this path-following behavior could be implemented using a Proportional-Integral-Derivative

(PID) controller.

In our experiments, Model 1 led to better estimations of the intentions of drivers. The objective of this

appendix is to explain why, using the example situation depicted in Figure E.1.
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(a) Model 1 (b) Model 2

Figure E.1. Two different models for the evolution of the pose: (a) Combination of a

Constant Velocity model and a projection model. (b) Path following model taking into

account the physical limitations of the vehicle.

Analysis of the situation in Figure E.1: For cnt−1 = c1, the predicted pose at time t is very similar

with the two models : both prediction are located very close to course c1.

For cnt−1 = c2, the predictions are very different. With Model 1, the predicted pose consists in a “jump”

towards course c2. With Model 2, the predicted pose consists in a sharp steering.

As a result, the driver’s intention will be better estimated with Model 1. The true intent of the driver is

obviously to make a left turn at the intersection, so the measurement of the pose of the vehicle at time

t will be close to course c1. With Model 1, the blue prediction is far enough from the measurement

that the algorithm will be able to conclude that the intended course of the driver is c1. This is not

the case with Model 2: course c1 is of course more likely, but the blue prediction is still close to the

measurement and the algorithm will not be able to discard course c2 as a potential intended course.

Hints for future work: We showed on a toy example why taking into account the physical limita-

tions of the vehicle for the evolution of the pose is not suitable with the motion model proposed in
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this thesis. In this paragraph, a solution is suggested to incorporate the physical limitations without

the drawback mentioned above.

The idea is the following: in situations like the one in Figure E.1, it should be possible to discard

course c2 in another part of the motion model. If unlikely courses are discarded in another part of the

motion model, it is no longer a problem to use a model like Model 2 for the evolution of the pose.

In order to discard unlikely courses, we could modify the joint distribution proposed in Equation 3.29

to make the current intended course Icnt dependent of the previous pose Pn
t−1. Instead of the “continu-

ity” model proposed for the intended course in Section 3.4.3, a model of the form P (Icnt |Icnt−1P
n
t−1)

could be defined where courses which are far from the previous pose are very unlikely to be the

current intended course.
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Inference for risk estimation

Inference in Equation 3.30 is performed using a bootstrap filter [102]. This recursive filtering ap-

proach is based on the approximation of the probability density function (pdf) by a set of weighted

samples called particles. The set of Nparticles particles at time t is denoted:

{Hi,t, wi,t}i=1:Nparticles
(F.1)

with Hi,t the state of particle i at time t and wi,t the weight of particle i at time t.

The set of particles has to be initialized when the first measurements are received. Then, each time

some new measurements Zt become available, the set of particles is adapted following 3 steps:

1. In the prediction step, the state of each particle at time t is predicted from its state at time t− 1,

based on a proposal function π. In the bootstrap filter, the transition prior is used as a proposal

function:

π(Ht|H0:t−1Z0:t) = P (Ht|Ht−1Zt−1) (F.2)

2. In the update step, the measurements at time t are used to modify the weight of each particle so

that it reflects the likelihood of the predicted state:

wi,t ∝ wi,t−1 × P (Zt|Zt−1Hi,t−1:t) (F.3)

3. In the resampling step, a new set of particles is generated based on their weight in order to avoid

their degeneracy and focus on particles with more likely states.
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In the next sections, the bootstrap filter is applied to our inference problem.

Firstly, in order to optimize the efficiency of the inference process, the joint distribution is simplified.

Since P (Smn
t |Sn

t ) is a Dirac function (see Section 3.4.8), it is possible to replace Sn
t by Smn

t and to

remove P (Smn
t |Sn

t ). Similarly, Tn
t can be replaced by Tmn

t and P (Tmn
t |Tn

t ) can be removed. The

joint distribution proposed in Equation 3.29 becomes:

P (E0:TI0:TΦ0:TZ0:T) = P (E0I0Φ0Z0)

×
T
∏

t=1

×
N
∏

n=1

[P (Esnt |Ict−1Pt−1Smt−1)

× P (Ict|Ict−1)× P (Isnt |Isnt−1Esnt )× P (Pn
t |Pn

t−1Sm
n
t−1Ict)

×P (Pmn
t |Pn

t )× P (Smn
t |Smn

t−1P
n
t−1IctIs

n
t )× P (Tmn

t |Pn
t−1Ict−1Ict)

]

(F.4)

F.1 Variables

In our problem the hidden variable Ht and the observed variable Zt are defined as:











Ht = (EstIctIstPt)

Zt = (PmtSmtTmt)

(F.5)

F.2 Initialization

The initial values of the particles H0 = (es0, c0, is0, p0) are computed based on the first set of

observations Z0 = (pm0, sm0, tm0).

First, for each vehicle n ∈ N a distribution on the intended course P (Icn0 ) is computed based on the

“pose measurement model” defined in Section 3.4.7. The projection of the measured pose pmn
0 on the

intended course cn0 is used as an input:

P ([Icn0 = cn0 ]) ∝ P ([Pmn
t = pmn

0 ]|[Pn
t = proj(pmn

0 , c
n
0 )]) (F.6)

with proj(p, c) the orthogonal projection of the pose p on course c.

Then, for each particle i the initial values (esi,0, ci,0, isi,0, pi,0) are computed as follows:
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Appendix F. Inference for risk estimation

1. For each vehicle n ∈ N , draw a value for the intended course based on the distribution computed

above:

cni,0 ∼ P (Icn0 ) (F.7)

2. For each vehicle n ∈ N , draw a value for the pose using the “pose model” defined in Sec-

tion 3.4.4. Since the value of the previous pose is not known, the projected pose is used instead

and a null speed is assumed:

pni,0 ∼ P (Pn
t |[Pn

t−1 = proj(pmn
0 , c

n
i,0)][S

n
t−1 = 0.0][Icnt = cni,0]) (F.8)

3. For each vehicle n ∈ N , draw a value for the expectation to stop using the “expected longitudinal

motion model” defined in Section 3.4.1. The values computed in the previous steps are used as

an input:

esni,0 ∼ P (Esnt |[Ict−1 = ci,0][Pt−1 = pi,0][St−1 = sm0]) (F.9)

4. For each vehicle n ∈ N , draw a value for the intention to stop using the “intended longitudinal

motion model” defined in Section 3.4.2. Since the value of the previous intention to stop is not

known, a random value is generated. For the expectation to stop, the value computed in the

previous step is used.

isni,0 ∼ P (Isnt |[Isnt−1 = random][Esnt = esni,0]) (F.10)

F.3 Recursive risk computation

1. Prediction step

The general equation for the prediction step was given above (Equation F.2) and is recalled

below in the context of our problem:

π(Ht|H0:t−1Z0:t) = P (EstIctIstPt|Est−1Ict−1Ist−1Pt−1Pmt−1Smt−1Tmt−1) (F.11)
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F.3. Recursive risk computation

In our case (see joint distribution in Equation F.4), this equation simplifies as:

π(Ht|H0:t−1Z0:t) =

N
∏

n=0

[

P (Esnt |Ict−1Pt−1Smt−1)× P (Icnt |Icnt−1)

×P (Isnt |Isnt−1Esni,t)× P (Pn
t |Pn

t−1Sm
n
t−1Ic

n
t )
]

(F.12)

2. Update step

The general equation for the update step was given above (Equation F.3) and is recalled below

in the context of our problem:

wi,t ∝ wi,t−1 × P (PmtSmtTmt|Pmt−1Smt−1Tmt−1Est−1:tIct−1:tIst−1:tPt−1:t)

(F.13)

In our case (see joint distribution in Equation F.4), this equation simplifies as:

wi,t ∝ wi,t−1 ×
N
∏

n=1

P (Pmn
t |Pn

t )× P (Smn
t |Smn

t−1P
n
t−1Ic

n
t Is

n
t )× P (Tmn

t |Pn
t−1Ic

n
t−1Ic

n
t ) (F.14)

3. Resampling

A systematic resampling approach was adopted.

Finally, the risk as defined in Equation 3.30 can be approximated by summing the weights of the

particles which verify the condition ([Isni,t = go], [Esni,t = stop]):

P ([Isnt = go][Esnt = stop]|Pm0:tSm0:tTm0:t) =
∑

i: ([Isni,t=go], [Esni,t=stop])

wi,t (F.15)
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