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Résumé en français

Cette thèse présente des travaux de recherche de métrologie en ligne de faisceaux
de rayons X dans les installations synchrotrons. Deux approches principales ont été
étudiées pour extraire la phase d’un front d’onde X : les méthodes dans le domaine X
utilisant des réseaux de diffraction et celles utilisant l’effet speckle. L’interféromètre
à réseaux X est l’outil le plus répandu et représentatif de la première catégorie. Ses
performances et son potentiel furent étudiés dans diverses situations de métrologie en
ligne. Les méthodes utilisant le speckle X sont des techniques originales développées
au cours de ce projet. Elles utilisent des membranes faites de petits grains diffusants,
dont seule la distribution statistique est connue, pour permettre la modulation du front
d’onde. Les différentes techniques furent déployées expérimentalement sur les lignes
de lumière BM05 de l’ESRF et B16 de Diamond Light Source. Leurs implémentations
servirent à la caractérisation de différents composants optiques utilisés pour manipuler
les faisceaux synchrotron X et à l’étude de la faisabilité de micro imagerie par contraste
de phase avec les sus citées techniques.

Abstract in english

This thesis presents research and development work on synchrotron X-ray at-
wavelength metrology methods. Two approaches for measuring the phase of an X-
ray wavefront were studied: the grating-based and the speckle-based methods. The
X-ray grating interferometer is the most widespread technique representative of the
first category. Its performance and potential in various situations encountered in at-
wavelength metrology were investigated. Speckle methods are X-ray phase sensing
techniques newly developed during this thesis project. They make use of membranes
with small features, whose statistical distribution is the only known specification, to
modulate the beam wavefront. The different methods were deployed experimentally
at the beamlines BM05 of the ESRF and B16 of the Diamond Light Source. Their
implementation permitted the characterization of various kinds of optical elements
used to manipulate synchrotron X-ray beams as well as the feasibility study of micro
phase contrast imaging using the two methods described above.
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1 Introduction

1.1 Context

Since the first experiments taking advantage of X-ray sources based on synchrotron
radiation, the interest for the X-ray beam properties provided by such facilities has
kept growing. Synchrotron X-ray sources now offer X-ray beams with unprecedent
intensity, collimation and coherence properties. Through various specific techniques,
these beams permit the investigation of matter and its structure down to the atomic
scale. Naturally, new developments and improvements on the source stimulate con-
stant efforts to provide ever better instruments and methods to take full advantage of
the source properties. This fact is particularly true in the field of nano-spectroscopy
and high resolution X-ray imaging. Indeed, looking at a sample at the nanoscale puts
strong challenges on aspects such as the beam coherence, the quality of the optics and
the stability and positioning of the investigated sample at the nanometer scale. The
constant progress observed in the fields of mechanics and X-ray sources during the
last decades instills confidence into the researchers ability to meet these requirements.
Nonetheless, substantial achievements on the performance of X-ray optics elements
are needed until routine nanoscale experiments to become possible.

The performance criteria of X-ray optics include the capacity to concentrate the beam
in a nanometer size area and the ability to propagate the beam wavefront emitted
by the source through the optics without introducing optical aberration. The optical
elements used in the hard X-ray regime differ in many aspects from the ones employed
with visible light. As a matter of fact, because the wavelength for X-rays is several
orders of magnitude smaller than the one of visible light, the shape profile and the
surface roughness quality factors of the optics must be improved by the same order of
magnitude.



1. INTRODUCTION

Adaptive optics is an alternative approach to obtain the desired shape. Instead of
using a monolithic mirror, the reflective surface is mechanically distorted to correct
for manufacturing imperfections as well as for the unavoidable defects and instabilities
of the beam. The beam defects are the sum of the imperfections coming from the
various elements present in the beam, including the windows, and even the source.
Thus, the production of diffraction limited experiments requires metrology capable of
taking the effective state of the beam into account with an accuracy approaching the
atomic length scale.

Online or at-wavelength metrology methods are seen as the natural path to this en-
deavor as they account for the X-ray optics effective performance affected, for instance,
by the thermal load and the mechanical strains of any object present along the X-ray
beam path. This can only be accurately known by investigating the beam itself.
Owing to this intrinsic principle, the development of high sensitivity, high resolution
at-wavelength methods is a cornerstone for nano-experiments to become routine.

Techniques analyzing the X-ray propagation direction may find applications beyond
beam and optics metrology; when the spatial resolution of a metrology method is
high enough, one can think for instance of exploiting the technique for imaging ap-
plications. Imaging methods sensitive to the beam propagation direction are called
phase contrast imaging methods by opposition to the absorption imaging ones. Phase
contrast imaging techniques are presently under thorough investigations as they are
able to image the inner structure of light materials, such as biological samples, that
show only low absorption contrast. The possibility of transposing imaging methods
to metrology and vice versa is a subject of high interest to both communities, as they
take advantage of the same principle, i.e. the monitoring of beam propagation.

1.2 Projects and work

While metrology laboratory instruments are reaching the repeatability and accuracy
necessary to characterize diffraction limited hard X-rays optics, at-wavelength meth-
ods are still at an early development stage. Hence, in industrial optical production, the
metrology is still performed using visible light instruments. In fact, only a few tech-
niques based on visible light are effectively transposable to the X-ray regime. While
the short wavelength of X-rays is expected to provide online metrology techniques
with a higher accuracy than visible light based instruments, their routine implemen-

2 ESRF - Diamond - UdG



1.2. PROJECTS AND WORK

tation at synchrotrons is slowed down by technical issues. These constraints will be
explained in the first part of this manuscript. The synchrotron physics and principles
will be exposed in Chapter 2, while the instrumentation will be detailed in Chapter
3. Chapter 4 will then be dedicated to a quick overview of the phase sensing methods
that were available at the time this project started.

The core work of this thesis aims at fulfilling, at least partly, the demands the commu-
nity had for at-wavelength methods and their use for optical characterization during
routine experiments. At the beginning of the project, two main at-wavelength tech-
nique categories were identified as interesting candidates: grating based methods and
speckle technique. Since both method categories had their advantages and issues,
parallel development was conducted on each of them.

The X-ray grating interferometer (XGI) was already a well known instrument in the
synchrotron community. This device had proven great imaging capacities in phase
contrast experiments. Today, the XGI is appreciated for its high phase sensitivity,
in the order of a fraction of a wavelength, and also for the scattering map it is able
to provide when imaging a non homogeneous sample. A more complete description
of the grating interferometry technique is provided in Chapter 5. Nevertheless, only
few works were carried out on the use of the XGI for metrology purpose. One goal of
this thesis project was to push the metrology possibilities of the grating interferometer
further for beam and optics characterization, using either the one or two dimensional
versions.

The second kind of method considered uses near-field speckle. Many methods of
the visible domain take advantage of the speckle effect obtained when using coherent
light, to provide accurate metrology measurements. In contrary, no metrology method
based on the use of speckle was available with X-rays at the inception of this thesis.
The idea was to use a particular X-ray speckle regime labeled as ’near-field’ speckle,
characterized by the property to be space invariant upon propagation and independent
of the source features. A large part of the thesis project consisted in setting up a
technique that would make use of these invariant speckle grains. Indeed, their shape
is similar to needles matching the trajectory of the rays, and so, by numerical tracking
of pixels subset between speckle images, it was possible to infer the path of the photons.
The outcome showed that the newly developed method, named XST, an acronym for
X-ray Speckle Tracking, presents many advantages over previously available online
metrology methods. The development of XST and the breakthrough it brought to the
field of beam and optics characterization will be detailed in Chapter 6.

S. Bérujon 3



1. INTRODUCTION

As unexpected, the work conducted on these two kinds of methods ended up merging
into a single one. The unification of the XGI and XST speckle method will be explained
in Chapter 7 where the XGI will be described as a special case of a more general method
that uses any near field pattern containing high spatial frequency features.

A last method for characterizing reflective optics, based on a grating, will be described
in Chapter 8. Although this method may seem, at first glance, related to the XGI, its
principle is quite different. Full description of the technique and discussions related to
the XGI methods will be exposed in this chapter.

The third part of this manuscript will aim at describing applications of the methods
previously described and developed. Study cases of transmission X-ray optical ele-
ments such as the Fresnel zone plate (FZP) and the Compound Refractive Lens (CRL)
investigated using at-wavelength metrology methods will be presented in Chapter 9.

Chapter 10 will briefly present an ESRF development program initiated in 2005 that
aims at producing nanofocusing mirrors starting from a flat silicon substrate.

Chapter 11 is dedicated to the application of online metrology to X-ray adaptive optics,
or, more precisely, correctable bimorph and KB bender mirrors. Beam focusing and
wavefront correction using reflective optics is an active topic within the synchrotron
X-ray community. Demonstration of the efficiency of the at-wavelength metrology
methods and their proper implementation for adaptive optics will be demonstrated.

The imaging potential of the developed method will be investigated. The emphasis will
be put on the spatial resolution aspect of the methods with respect to the sensitivity
obtained when using the technique for metrology purposes. Some illustrative imaging
study cases are presented within the second part of this manuscript, while deeper
investigation work are presented in Chapter 12, especially about micro phase contrast
imaging.

A summary of the accomplished work is ending this manuscript together with a dis-
cussion on the perspectives for further developments.

4 ESRF - Diamond - UdG



Introduction en Français

Contexte

Depuis les premières expériences scientifiques ayant su exploiter les propriétés uniques
des faisceaux de rayons X produits par rayonnement synchrotron, l’intérêt montré par
les chercheurs pour l’utilisation de tels faisceaux s’est révélé toujours croissant. Les
sources de rayonnement synchrotron offrent aujourd’hui des faisceaux de rayons X aux
propriétés de luminance et de cohérence sans précédents qui permettent, grâce à des
techniques diverses, d’investiguer la matière à l’échelle nanométrique. Naturellement,
les développements et progrès apportés aux accélérateurs motivent de façon perma-
nente des développements équivalents dans les techniques et les instruments afin de
bénéficier de façon optimale de ces avancées. Ces développements sont observés en
particulier dans les domaines de la nanospectroscopie et de l’imagerie X à haute réso-
lution pour lesquels les propriétés de cohérence des faisceaux, la qualité des optiques
et la stabilité mécanique sont des facteurs cruciaux.

Alors que les avancées apparues dans les domaines de la mécanique et des sources per-
mettent aujourd’hui de satisfaire un certain nombre d’exigences imposées par l’échelle
nanométrique, d’importants challenges demeurent encore concernant la réalisation des
éléments optiques.

La performance des optiques pour rayons X est d’une grande importance pour trans-
porter de la lumière X de la source à l’échantillon sans en dégrader la qualité de son
front d’onde, en particulier lorsqu’il s’agit de réduire la taille du faisceau par focalisa-
tion. La très courte longueur d’onde des rayons X durs et leur faible interaction avec la
matière imposent des solutions optiques très différentes de celles employées avec la lu-
mière visible. Les erreurs de forme et de rugosité des optiques doivent être diminuées de
quatre ordres de grandeurs par rapport à celles des optiques visibles pour espérer obte-
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nir les performances attendues par la diminution de la longueur d’onde. Les optiques
adaptatives sont une alternative parfois employée dans le régime X pour approcher
la forme parfaite recherchée. Au lieu d’utiliser un substrat monolithique, la technique
utilise un miroir déformable pour lequel l’application de distortions locales permet de
corriger certaines imperfections de conception. Ce genre d’optique offre aussi la possi-
bilité de compenser des imperfections du faisceau incident, induites, par exemple, par
les défauts des objets présents sur la trajectoire du faisceau. Ainsi, la production de
miroirs parfaits, c’est à dire aux performances seulement limitées par la diffraction,
nécessite de disposer d’une métrologie capable à la fois de tenir compte de l’état réel
du faisceau X sonde et de fournir une précision approchant l’échelle atomique.

La métrologie en ligne ou dite « à la longueur d’onde » utilise les rayons X pour la
mesure et donc tient compte de l’état du faisceau incident : ainsi elle est pressentie par
la communauté scientifique comme la méthode la plus amène d’atteindre ces objectifs
exigeants. La métrologie en ligne permet, par exemple, de considérer et d’inclure les
charges thermiques ou mécaniques d’un système dans son environnement réel, contrai-
rement à l’usage d’un instrument de metrologie utilisant la lumière visible. De par leur
principe, les méthodes de métrologie en ligne et l’amélioration de leurs performances
sont amenées à jouer un role essentiel dans la réalisation en routine d’experiences à
l’échelle nanométrique.

Les techniques permettant d’analyser la direction de propagation des photons à l’in-
térieur d’un faisceau X trouvent aussi des applications en dehors du champ de la
métrologie. L’imagerie par contraste de phase en est l’exemple le plus probant : au lieu
d’utiliser l’absorption des rayons X par les objets, cette technique d’imagerie mesure
la distorsion du front d’onde avec une haute résolution spatiale. Ce type de méthode
s’avère tres attractif pour l’imagerie de l’intérieur de tissus mous, tels que des échan-
tillons biologiques, lequels ne fournissent que peu de contraste par absorption. Du
fait que la phase du front d’onde est là aussi la quantité mesurée, la perspective de
transposer les techniques de métrologie à l’imagerie et vice versa est particulièrement
interessante.

Projets et buts

Les instruments de métrologie employés aujourd’hui dans les laboratoires dédiés per-
mettent d’obtenir des mesures de précision et de répétabilité suffisantes pour la pro-
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duction d’optique de rayons X aux performances quasiment uniquement limitées par
la diffraction. Il en est toutefois autrement des méthodes de métrologie en ligne, les-
quelles en sont encore à un stade primitif de développement. Cet état de fait est plus
particulièrement observable dans le milieu industriel de production des optiques X où,
actuellement, la métrologie employée est systématiquement basée sur des instruments
optiques opérant dans le spectre visible ou proche de celui-ci. Un frein important au
développement de la métrologie à la longueur d’onde de travail réside dans la grande
difficulté à transposer ou importer des techniques traditionnelles de l’optique visible
dans le régime des rayons X durs. La faible interaction des rayons X avec la ma-
tière limite grandement le potentiel des méthodes optiques traditionnelles qui seraient
transposées dans ce régime. Ainsi, en dépit de la courte longueur d’onde des rayons X,
supposée offrir des performances de métrologie supérieure, les niveaux de performances
théoriques ne sont toujours pas atteints.

Les contraintes engendrées par l’utilisation de rayonnement synchrotron seront abor-
dées dans la première partie de ce manuscrit. Les principes de physique des sources
synchrotron seront expliqués dans le chapitre 2 et l’instrumentation employée sera
présentée dans le chapitre 3. Le chapitre 4 sera consacré à une revue des méthodes
de métrologie à la longueur d’onde disponibles au commencement de ce projet. Le
but de ce projet de recherche était de combler, du moins en partie, le besoin de la
communauté synchrotron en méthodes de métrologie en ligne, en vue de la caractéri-
sation d’optique au cours d’expériences de routine. Au commencement du projet, deux
techniques distinctes ont été identifiées comme des candidates prometteuses : l’inter-
férométrie à réseaux et les techniques utilisant le speckle. Du fait que chacune de ces
méthodes possedait son lot d’avantages et d’inconvénients, et surtout de spécificités,
elles ont été développées en parallèle.

L’interférométrie était, déjà avant le commencement de ces recherches, une technique
bien connue et largement utilisée par la communauté synchrotron. Elle a su prouver
ses capacités d’imagerie par contraste de phase, capacités maintenant utilisées lors
d’expériences en routine. Comparativement à d’autres méthodes de phase, l’interféro-
mètre à réseaux est apprécié pour sa très bonne sensibilité, de l’ordre d’une longueur
d’onde, et pour la cartographie de la dégradation de cohérence qu’elle fournit dans
le cas d’échantillons inhomogènes. Une plus ample description de l’interférométrie à
réseaux X sera fournie dans le chapitre 5. En dépit d’une utilisation dans de nombreux
domaines, peu de travaux se sont attachés à son usage en métrologie, et ce malgré
des expériences pionnières en 2005 démontrant son potentiel pour la caractérisation
d’optiques en réflexion. Le but du projet était ainsi d’améliorer et d’optimiser les pos-
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sibilités de l’interféromètre pour la caractérisation d’optiques X, que ce soit avec les
réseaux, anciens, à une dimension ou avec les nouveaux à deux dimensions.

La seconde catégorie de méthodes retenue est basée sur l’utilisation de speckle en
champ proche. De nombreuses techniques de métrologie utilisent déjà l’effet speckle
dans le domaine visible, lequel est facilement observable dès lors que de la lumière em-
ployée est cohérente. En revanche, aucune méthode en ligne n’utilisait l’effet speckle X
au début de ce projet. L’exploitation du speckle en champ proche est intéressante du
fait de ses propriétés de propagation uniforme ainsi que de son indépendance vis-à-vis
des caractéristiques de la source. Une part importante du projet a consisté à dévelop-
per et à mettre au point une technique tirant avantage de ce type de speckle. La forme
en aiguille des grains de speckle en champ proche a pu être utilisée comme traceur
de trajectoires des rayons X. En appliquant des algorithmes de suivi entre des petits
ensembles locaux de pixels, il a été possible de déduire les trajectoires des photons. La
nouvelle méthode établie, nommée ’X-ray speckle tracking’, présente plusieurs avan-
tages en comparaison avec les méthodes disponibles au préalable. Les percées réalisées
avec la technique de speckle en champ proche seront présentées dans le Chapitre 6.

A partir de l’étude des méthodes utilisant le speckle et les réseaux, une théorie beau-
coup plus globale regroupant ces deux approches a été développée, conduisant à une
nouvelle technique dite globale, laquelle est développée dans le Chapitre 7. Il y est
notamment démontré comment l’interféromètre à réseau, vu dans le contexte de cette
nouvelle théorie, représente un cas particulier de cette méthode globale.

Une autre méthode pour la caractérisation d’optique pour rayons X en réflexion sera
aussi décrite dans le Chapitre 8. Bien que celle-ci puisse, au premier abord, sembler
similaire à l’interférométrie à réseaux, son principe en est pourtant distinct.

La troisième et dernière partie de ce manuscrit vise à présenter différentes applications
expérimentales des méthodes étudiées dans la partie II. Des caractérisations en ligne
de différents optiques X y sont décrites. Il s’agit par exemple, dans le Chapitre 9, de
la caractérisation de lentilles réfractives et de zones de Fresnel.

Le Chapitre 10 présente brièvement un programme de développement initié en 2005 à
l’ESRF et visant à produire des miroirs focalisant à l’échelle nanométrique, en partant
de substrats plans en silicium.

Le Chapitre suivant est dédié aux applications de la métrologie en ligne aux optiques
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adaptatives. Dans le domaine synchrotron, ces miroirs sont du type bimorphe ou à
courbure dynamique. La focalisation de faisceaux utilisant ces optiques est un sujet
d’intérêt pour les lignes de lumière synchrotron. L’implémentation et la démonstration
de l’efficacité des méthodes développées pour l’optimisation des optiques adaptative
de rayons X seront fournies dans le Chapitre 11.

Le potentiel des méthodes développées pour les applications de microscopie a été
étudié, en particulier concernant les aspects relatifs à la sensitivité et à la résolution
spatiale. Des études de cas d’imagerie de phase sont présentées dans la seconde partie
de ce manuscrit et des résultats de recherches plus poussés en microscopie seront fournis
dans le Chapitre 12.

Un résumé des travaux accomplis et des résultats obtenus conclura ce manuscrit ; il
sera suivi d’une discussion sur les perspectives possibles dans le domaine.
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Part I

Present status of synchrotron
at-wavelength metrology





2 Background in synchrotron X-ray
beams

The substantial investment made in third generation synchrotron facilities is justified
by the various advantages synchrotron sources present over traditional X-ray sources.
A common given factor to assess the quality of the source is its brilliance, a figure
that quantifies the intensity in photons per second per surface unit, per 0.1% energy
bandwidth and per angular divergence. In addition to the brilliance of synchrotron X-
ray sources, many orders of magnitude higher than the one of laboratory sources, the
synchrotron X-ray beam is partially coherent. That implies that two electromagnetic
waves generated by the source can interfere with each other creating an usable contrast
intensity pattern. To realize the stakes and challenges in X-ray optics and metrology,
one has to understand how X-rays are produced, propagate and interact with matter.

In this chapter we will make a short presentation of the X-ray sources and of syn-
chrotron radiation, explain how X-rays interact coherently with themselves and with
matter and present two means of predicting their propagation in free space. One
striking and important effect of the X-ray free space propagation known as the Talbot
effect, will be presented in the last section of this chapter.

2.1 X-ray sources

One can find several kinds of hard X-rays source, i.e delivering photon energies in the
[5− 200] keV range. Most experiments exploiting X-rays are nowadays still conducted
using X-ray tubes or synchrotron radiation based sources. However, X-ray laser via
Compton scattering, free electron laser (FEL) or laser-plasma interaction based sources
are for instance new or promising technologies for the production of X-rays.
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Figure 2.1: Schematic diagram of an X-ray tube.

2.1.1 X-ray tubes

The discovery of the X-rays by Wilhelm C. Röntgen in 1899 resulted from an exper-
imental setup which we would call today X-ray tube. It consisted of a glass tube
maintaining electrodes under vacuum. Röntgen observed that when an electric dis-
charge was strong enough to free electrons from the cathode, the acceleration of these
electrons towards the anode followed by their collision was generating radiation. The
capacity of such radiation to go through matter soon awarded him a Nobel prize.
Later, the X-ray tube technology experienced a lot of technical improvements among
which the cooling of the anode and the development of filament based cathodes (cf.
Fig. 2.1), that are still employed in nowadays tubes.

From a more physical point of view, X-rays from a tube are produced within two
phenomena: Bremsstrahlung and fluorescence. Bremsstrahlung corresponds to the
deceleration of the electrons when colliding the anode followed by a drastically slow
down process due to electron-atom interaction. This effect results in the emission
of electromagnetic radiation whose properties depend on the voltage applied between
electrodes and on the amount of electrons colliding the anode. The spectrum of the
emitted radiation is continuous and almost constant in intensity.

In addition to the X-rays generated by Bremsstrahlung effect, an X-ray tube produces
radiation through ionization of the bounded electrons in the anode material. The re-
combination of the vacancy in the atomic electron configuration with an electron from
an upper shell leads to the emission of short wavelength radiation. This fluorescence
phenomenon creates sharp peaks in the emission spectrum that are characteristic of
the anode material.
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Typical voltages applied to the electrodes range from 10 keV to 100 keV with currents
up to 0.5 A. The flux of the emitted X-ray beam is proportional to the electron current.
However, as the temperature of the anode increases with the current, the evacuation
of the heat generated on the anode, which represents 99% of the electron energy, puts
technical limitations on the maximum beam intensity that can be generated.

The X-ray tubes found nowadays differ mostly from their cooling system and target
material. As no such source was intended to be used during this thesis no further
description will be provided on this topic. However, the development of the metrology
techniques described further in this manuscript was done keeping in mind their poten-
tial adaptability to X-ray tube sources. Such accomplishment would extend their use
to the broad community of users of laboratory sources.

2.1.2 Synchrotron sources

In a synchrotron, X-rays are produced from a

X-rays 

electrons 

Figure 2.2: Sketch of a bending magnet.

physical effect equivalent to Bremsstrahlung oc-
curring in an X-ray tube: the electromagnetic
field emission is promoted by the acceleration
of charged particles. The difference between
Bremsstrahlung and synchrotron radiation lies in
the speed of the accelerated particles. While the
electrons in an X-ray tube are accelerated to en-
ergies up to 100 keV to emit radiation isotropically, the ones produced in a third
generation synchrotron have a quasi relativistic speed with an energy of several GeV.
Seen from an observer at rest, the electromagnetic field emitted by the particle is then
collimated in a narrow cone with an ellipse as base. Using the Lorentz equations,
one can demonstrate that the opening angle of the synchrotron radiation emission is
inversely proportional to the energy of the accelerated electrons. The vertical opening
angle of the radiation cone is usually expressed as 1

γ
, where γ is the energy of the

accelerated electrons in unit of the rest mass energy that is: γ = Ec
mec

where me is the
electron rest mass and Ec the energy of the photons. Therefore, the faster the elec-
trons, the less diverging the X-ray beam emitted will be, thus making the synchrotron
source much more brilliant one than the X-ray tube source.

In practice, a synchrotron is not circular but made of straight sections separated by
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short curved sections. Both beamline BM05 at ESRF and B16 at Diamond Light
Source use X-rays produced in bending magnets as sketched in Fig. 2.2. These mag-
netic dipoles, located in the curves of the storage ring, apply permanent magnetic
fields: the field lines are oriented vertically to the moving direction of the electrons,
generating an angular deviation of the electrons as displayed in Fig. 2.3. Passing
through the magnetic field −→B at a velocity v, the electrons are deviated by the Lorentz
force −→Fl = e−→v ×

−→
B that gives them a circular motion. This motion corresponds to a

constant tangential acceleration that causes the emissions of an electromagnetic field
from the charged particle.

The energy spectrum emitted by a bending magnet, such as the ones of ESRF BM05
and Diamond B16, is large, covering a spectrum from few eV to more than a hundred
of keV. The characteristic energy Ec of these sources is defined by the storage ring
properties and corresponds approximately to the peak of radiated power in the energy
spectrum. Its mathematical definition is given by [1]:

Ec = 3
2~γωo

where ω0 is the electron circular frequency inside the storage ring and ~ the reduced
Planck constant.

At the ESRF beamline BM05, X-rays are created by a dipole applying a magnetic
field of 0.85 T onto the electrons of the 6 GeV storage ring. The characteristic X-ray
energy is of 19.9 keV for a total emitted power of ∼ 350 W for the usual intensity of
200 mA circulating in the ring. At beamline B16 of Diamond, the magnets induce a
field of 1.4 T at the 3 GeV electrons position, giving a characteristic energy of 8 keV.
Characteristic electron beam sizes and divergences for the two beamlines are summed

electron bunch

curvature radius
X-rays

Figure 2.3: Trajectory of the electrons in a bending magnet (Sketch courtesy of R. Kluender).
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σx σy σ′x σ′y Flux
(µm) (µm) (µrad) (µrad) (ph./s/0.1%BW)

Diamond B16 53.7 23.7 81.4 2.6 4× 1011

ESRF BM05 86 12.7 98 3 3.5× 1011

Table 2.1: Machine parameters (rms) of the ESRF BM5 and Diamond B16 bending magnets for E = Ec.
Horizontal σx(µm) and vertical σy(µm) source sizes, and horizontal σ′

x(µrad) and vertical σ′
y(µrad)

electron beam divergences.

up in Table 2.1.

A more efficient alternative to the bending magnets for producing synchrotron X-
rays consists of using an insertion device, placed in one of the straight sections of the
storage ring [2]. Instead of making the electrons describing a single piece of arc like in a
bending magnet, the insertion device forces the electrons to execute oscillations in the
horizontal planes (see Fig. 2.4). Such trajectories are obtained by making the electrons
passing through an array of permanent magnets alternating polarity. Because the total
radiated waves seen by an observer is the superposition of all the rays generated in
each arc of the insertion device, the beam produced by such a source is much more
intense than the one produced by a bending magnet on the same electrons.

There are basically two kinds of insertion devices: wigglers and undulators. Within
wigglers, radiation emitted from the N arcs of the electron trajectory will be summed
incoherently and the device will act as the sum of N bending magnets: the emitted
spectrums will be equivalent to the one of a bending magnet but N times more intense.

Conversely, within an undulator the spatial frequency of the magnets is tuned to have
the electrons oscillate in phase along the magnet of the device. The final intensity they
produce is the coherent sum of all radiations emitted, i.e. the square of the amplitude
sum. Undulator technology permits to obtain much greater beam brilliance thanks to
a better beam collimation and a quasi monochromaticity. The energy radiated in this
kind of insertion device is localized in spectrum peaks: the first largest peak is found
around the fundamental designed frequency and the other peaks are harmonics of it.

As all experiments described in this manuscript were conducted on bending magnet
source beamlines, no further description of the radiation emitted by the insertion
device will be given here. However, the interested reader can see Ref. [3, 4] for more
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Figure 2.4: Sketch of an insertion device.

information.

2.2 X-ray coherence

One of the most striking property of synchrotron radiation from a third generation
facility is coherence: this phenomenon permits the creation of observable contrast
interferences. What we describe more specifically under the term coherence is actually
the correlation between wave-fields at two different points in space and/or time. In a
coherent beam, correlation between photon states occurs in a stationary way, i.e both
temporally and spatially, leading to recordable interference patterns.

The coherent nature of synchrotron radiation is essential for most methods presented
in this manuscript. Almost all techniques employed and developed here use the beam
coherence to take advantage of interference patterns to obtain high contrast from
non absorbing objects. It should be noticed that, because laboratory sources are not
coherent, the techniques of this project are not directly transposable and applicable
to X-ray tube sources.

The statistical relation between two complex field functions u1(x1, t1) and u2(x2, t2)
can be expressed with the function < u1(x1, t1)u∗2(x2, t2) > where < . > denotes the
temporal average and ∗ the complex conjugate. From this notation, two aspects of
the coherence for contrast to arise are distinguishable: the first one is the longitudinal
or temporal coherence and the second one is the transverse coherence, referring to the
spatial properties of the source.
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2.2.1 Longitudinal or temporal coherence

Temporal coherence relates to the monochromaticity of the source: when a detector
records the superposition of different wavelength waves, the total collected intensity
is the temporal sum of the waves. For interferences to arise and be observable, the
waves have to be in phase. When the phase difference between waves gets larger, the
interference visibility decreases and finally vanishes at anti-phase. This interference
visibility can be described by the modulus of the normalized self coherence function
[5]:

γt(τ) = < u(t)u∗(t+ τ) >
< u(t)u∗(t) > (2.1)

For a pure monochromatic beam (∆λ = 0), wavefields would be perfectly correlated
at any time over an infinite propagation distance: one can show that |γ(0)| = 1 and
decreases monotonically to 0.

Using τ = ll
c

= 1
∆ν where ∆ν is the difference between the two frequencies of waves,

the characteristic longitudinal coherence length can be expressed, assuming a gaussian
line in the spectrum, by:

ll = λ2

2∆λ (2.2)

This equation defines the distance at which, after propagation, two waves with wave-
lengths λ1 and λ2 will be out of phase by a factor π/2. At this distance, directly
related to the energy bandwidth of the X-ray beam, waves will interfere partially and
|γ(τ)| = 1

2 . Thus, the monochromaticity is defined by the ratio ∆λ
λ

or equivalently
with ∆E

E
.

As seen previously, a bending magnet source emits a very large spectrum while an
undulator spectrum is peaked with peaks having a width ∆E/E of several percents.
To create in practice a high monochromaticity, beamlines use monochromators to select
a narrow energy peak and obtain an energy resolution higher than the undulator peak.
In the[10-20] keV range, the achievable longitudinal coherence length goes up to 10
µm (∆E/E ≈ 10−5), but it is usually of ∼ 1 µm (∆E/E ≈ 10−4). This last energy
selectivity corresponds to the use of Si(111) crystal based monochromators that are a
reasonable choice for flux and setup simplicity (cf. 3.2.4).
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2.2.2 Transverse or spatial coherence

While the degree of temporal coherence is particularly important in spectroscopy, for
imaging applications it is the level of spatial coherence that matters. Indeed, in spite
of a small source size, the short wavelength of the X-rays makes synchrotron beams
only partially spatially coherent which imposes stringent conditions on the observation
of wave interferences.

The transverse coherence length in a given spatial plane is linked to the source size s
and to the distance z to it. Considering here a pure quasi-monochromatic wave, the
mutual intensity of waves at two point x1 and x2 in a plane located at a distance z
from the source is defined by:

J(x1, x2) =< u(x1)u∗(x2) > (2.3)

When x1 = x2, the mutual intensity is equal to the usual observable intensity: I(x1) =
|u(x1)|2. The complex coherence factor γs is the normalized version of the mutual
intensity:

γs(x1, x2) = J(x1, x2)√
J(x1, x1)J(x2, x2)

(2.4)

Following the same principle as for the normalized self coherence function, we have
γs = 1 when x1 = x2, i.e when two waves originate from the same source point. The
function γ then decreases to 0 as ∆x = x2 − x1 increases. The function of Eq. 2.4 is
used to predict and qualify the visibility of an interference pattern.

One standard theorem in optics to predict the coherence propagation function for an
extended partial coherent source, is the Van Cittert theorem set in 1941. This theorem,
later extended to a more generalized version by Goodman, is mathematically expressed
by:

Jz(x1;x2) = κ(x)
λ2z2 exp

(
i2πx∆x
λz

)
Ĩ0

(
∆x
λz

)
(2.5)

where z is the observation distance from the source, Ĩ0 is the Fourier transform of the
function I0, and x = x1+x2

2 . This relation expresses the spatial coherence property of
the radiation emitted from a planar incoherent source in terms of the two-dimensional
Fourier transform of the source intensity distribution. One important consequence
brought up by the theorem is that the spatial coherence length can be improved upon
free propagation in space. For these reasons, long beamlines are built at synchrotron
facilities to increase the spatial coherence length.
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The transverse coherence length lt is more generally defined by the distance separating
two points(x1, x2) such that |γs(x1, x2)| = 1

2 . At an observation distance z from the
source and from Eq. 2.5, lt can be approximated in function of the FWHM size s of
the source as:

lt ≈
λz

2s (2.6)

Typical transverse coherence lengths at sample positions and for E = 14.5 keV are
given for the Diamond’s beamline B16 and the ESRF BM05 in Table 2.2. Due to
the asymmetry of the source shape, one can easily predict a discrepancy between the
transverse coherence lengths in the vertical and horizontal directions, and hence a
different interference fringe visibility behavior along the two directions.

Vertical Horizontal
(µm) (µm)

Diamond B16 (z ∼ 47 m) 28 11
ESRF BM05 (z ∼ 40 m) 25 10

Table 2.2: Typical transverse coherence lengths measured at sample position after a double crystal
monochromator at E = 14.5 keV.

2.3 X-ray interaction with matter

An optical wave, which can be described by a complex field function u(x, y, z) =
u0(x, y, z)eiωteiφ(x,y,z), is defined by four parameters: its amplitude u0, its frequency
w/2π, its phase φ and its polarization. In the hard X-ray regime, polarization prop-
erties of synchrotron light are exploited for magnetic studies with techniques using
reflection geometry such as resonant and non-resonant magnetic X-ray scattering. For
an experiment using a quasi-monochromatic beam, the wavelength or wave frequency
is usually defined by either using a monochromator (cf. 3.2.4) or by taking advan-
tage of a peaked source spectrum (cf. 2.1.2). Thus, the two parameters of interest
for an X-ray imaging or a metrology experiment are the amplitude and the phase.
As mentioned previously, the cause of the decrease of amplitude of a wave is called
absorption and a change of its phase is called phase shift. For a given material and a
given X-ray pulsation ω, the optical wave interaction with matter is described by the
complex refractive index:

nλ(x, y, z) = 1− δω(x, y, z) + iβω(x, y, z) (2.7)
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This notation is often employed for X-rays because the small interaction of X-rays with
matter, n being very close to unity. In this equation, β and δ are real numbers denoting
respectively the attenuation and the phase shift induced upon X-ray transmission
through matter. Thus, the propagation of a wave-field in a material along the z
direction is following the equation:

u(x, y, z) = u(x, y, 0)ei
2π
λ

∫ z
0 nw(x,y,z)dz

= u(x, y, 0)ei 2π
λ e−i

2π
λ

∫ z
0 δdze−

2π
λ

∫ z
0 βdz

(2.8)

As detectors are sensitive only to the intensity of the beam, i.e the sum of the square
waves amplitude (see 3.3), the attenuation of the waves after a propagation distance
is defined by:

Abs(x, y, z) = |u(x, y, z)|2
|u(x, y, 0)|2 = e−

4π
λ

∫ z
0 βdz (2.9)

And the phase shift is:

δφ(x, y, z) = 2π
λ

∫
δw(x, y, z)dz (2.10)

The transmission function T is sometimes used to define the propagation effect through
an object of the wave-field:

T (x, y, z) = Abs(x, y, z)e−iδφ (2.11)

and then:
uo(x, y) = T (x, y)uinc(x, y) (2.12)

One can show that β(ω) and δ(ω) increase with the material electron density (higher for
materials of higher atomic number Z), and proportionally to λ2. By definition, under
vacuum, no interaction exists and β = δ = 0. A complete mathematical description on
how to calculate the refractive index of the elements can be found in [6]. In practice,
these values are obtained directly from a data booklet or an equivalent dedicated
software.

For low-Z materials, such as the ones composing biological tissues, when increasing the
energy, the β value of the material drops much quicker than the δ value. Indeed, at
energies far enough from the absorption edges, the material absorption value decrease
with the photon energy following a law proportional to β(λ) ∝ λ4 ∝ 1

E4 while the δ
value decreases only at a rate β(λ) ∝ λ2 ∝ 1

E2 [6]. In imaging, techniques sensitive
to the phase shift rather than the attenuation, find great interest for the study of
light materials and dose-sensitive samples. As shown in Fig. 2.5, the δ/λ ratio for
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Figure 2.5: Ratio δ/β for light elements

some materials can reach up to a factor 1000 for hard X-rays, which translates into an
important gain in contrast when imaging the phase shift rather than the absorption.
Phase sensitive techniques are also of interest to distinguish materials having similar
attenuation coefficients.

α 

Object 

X-rays 

Figure 2.6: Definition of the refraction angle

As stated previously, detectors are not directly sensitive to the phase shift (cf. 3.3).
Nevertheless, the latter can be recovered from the measurement of the refraction effect
induced by a phase shift. A beam wavefront is defined as the surface W for which
φ(W ) is constant so that φ = 2π

λ
W . One can show that X-rays propagate in the

direction normal to the wavefront surface. Thus, using geometrical considerations [7],
the refraction angle α (see Fig. 2.6) can be linked to the phase gradient of the beam
by the equation:

α(x, y) = ∇W = λ

2π∇φ(x, y) = ∇
∫
δω(x.y.z)dz (2.13)

where ∇ is the nabla operator, i.e here the gradient operator.

This equation is the base for most of the work presented in this manuscript. By
measuring the deflection angle α, one can recover, after integration, the wavefront
and then the δ value of the sample. For metrology purpose, the photon propagation
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direction being the key information for analyzing optics defects, the wavefront surface
W is used and analyzed directly as it is homogeneous to a length. Conversely for phase
imaging, the goal being to map the δ factors of a sample, the calculated map will be
usually expressed in term of the phase shift δφ.

2.4 X-ray beam propagation

Having discussed the way synchrotrons produce X-rays, we now envisage their propa-
gation in free space. The following will adopt an optical point of view and distinguish
two regimes of light propagation: the near field or Fresnel regime and the far field or
Fraunhofer regime.

2.4.1 Near-Field

The near field is the region located at short distance beyond a diffracting aperture
where the Fresnel approximation defined below holds.

An optical wave u can be represented as a sinusoidal function of time and space, which
is, for convenience, often written as a complex form:

u(x, y, t) = U(x, y, t)ei(k.r−2πωt) (2.14)

where k is the wavevector with wavenumber k = 2π
λ

and ω = E/~ is the carrier
frequency. The wavevector k expresses the propagation light direction while the car-
rier frequency ω is proportional to the X-ray energy and can be calculated using the
relation:

E = hc

λ
(2.15)

In equation 2.14, because the detector acquisition time is performed at a scale much
larger than 1/ω, the carrier frequency component is often dropped. Furthermore,
changing the spatial dependency of the wave with a phase factor from an origin, one
can write:

u(x, y) = U0e
i(k.r−φ(x,y)) (2.16)

In this equation U0 represents the magnitude amplitude of the wave at the origin.
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Photo-detectors, called here detectors, are only sensitive to the radiant power falling
onto their sensitive surface S, i.e to the square magnitude of the optical wave ampli-
tude:

I(S) =< |u2(S, t)| > (2.17)

where the bracket denotes the averaging over the acquisition time. One can infer from
this property, that absorption contrast imaging will be a straight-forward process while
phase sensing will be a more complex one. Indeed, sample X-ray absorption can be
calculated from the ratio of the intensities falling onto the detector when the sample
is in and out of the beam. Meanwhile, the photons phase information is lost when
taking the modulus of the wave amplitude.

Σ

n

P1

P0 x

y

z

x

y

θ

r

Figure 2.7: Geometric consideration for X-ray free space propagation.

As displayed in Fig. 2.7, we consider a wavefield u0(x, y) in a plane of an aperture Σ:
the Huygens-Fresnel states that at a point of a plane located further away from an
aperture, the wavefield is equal to the superposition of all the incoming sub-waves
from the aperture. More mathematically, the calculation of the wavefield u1(x, y)
at the point P1 located at a distance z from the aperture, can be done using the
Huygens-Fresnel equation derived using the first Rayleigh-Sommerfeld approximation
[8, 9]:

u1(x, y) = 1
iλ

∫
Σ
u0(x0, y0)e

ik.r

|r|
cos(n, r)dx0dy0 (2.18)

where r is the propagation vector from (x0, y0) to (x, y) and cos(n, r) = cos(Θ) is the
obliquity factor for a source located far away from the diffracting aperture plane Σ.

This equation can be simplified in the case of small diffraction angles Θ, also named
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the paraxial approximation. This condition is almost always fulfilled in the hard X-ray
regime because of the angles involved in the X-ray regime are small, i.e in the order or
less than a few milliradians. Considering this approximation and noting |r| = r, Eq.
2.18 can be simplified with:

cos(n, r) = z

r
(2.19)

and using a Taylor expansion:

r =
√
z2 + (x− x0)2 + (y − y0)2 (2.20)

At the first order approximation, we obtain:

r ≈ z + (x− x0)2

2z + (y − y0)2

2z (2.21)

Because z >> (x − x0) and z >> (y − y0), r can be approximated by z in the de-
nominator of equation 2.18. Yet, such substitution is not permitted in the exponential
factor as this one changes really quickly even for a fraction of radian. Substituting Eq.
2.19 and 2.21 in Eq. 2.18, we end up with the Fresnel diffraction formulae:

u1(x, y) = eikz

iλz

∫
Σ
u0(x0, y0) exp

{
i
k

2z [(x− x0)2 + (y − y0)2]
}
dx0dy0 (2.22)

Noticing that Eq. 2.22 is a convolution operation, one can express the electromagnetic
field downstream the aperture using:

u(x, y) =
∫ ∫ ∞

−∞
u(ξ, ν)h(x− ξ, y − ν)dξdν (2.23)

where h is the convolution kernel:

h(x, y) = eikz

iλz
exp

[
i
k

2z (x2 + y2)
]

(2.24)

In this case h is the impulse response of free space propagation: its use in the Fourier
space permits to reduce the calculation of the field to the multiplication with the
propagator H(f, g) = F [h(x, y)] = exp[−iπλz(f 2 + g2)].

26 ESRF - Diamond - UdG



2.4. X-RAY BEAM PROPAGATION

2.4.2 Far-Field

The far field regime or Fraunhofer approximation describes the limit of the Fresnel
equation when the source and the observer are infinitely distant from the illuminated
object. With X-rays, neutrons or electrons that have a very short wavelength, Fraun-
hofer diffraction patterns can be directly obtained by, for instance, observing a small
aperture from a distance located a few meters away from it. In Eq. 2.22, if in addition
to the Fresnel conditions, we consider a collimated beam and z >>

k(ξ2 + ν2)max
2 ,

then the equation of the field can be written under the form [8]:

u(x, y) = eikzei
k

2z (x2+y2)

iλz

∫ ∫ ∞
−∞

u0(ξ, ν)e−i 2π
λz

(xξ+yν)dξdν (2.25)

Aside from the multiplication phase factor in front of the integral, this expression
corresponds to the Fourier transform of the aperture distribution. A criterion usually
employed to judge the validity of the Fraunhofer approximation is to satisfy z >> 2D2

λ
where D is the aperture diameter. This distance corresponds to several meters in the
hard X-ray regime for a characteristic aperture of a few tens of microns.

The far field regime is used in several X-ray techniques, including in X-ray crystal-
lography [10], ptychography [11, 12] and coherent diffraction imaging [13]. All these
techniques permit to achieve very high spatial resolution representation of an object
structure because of the large scattering vectors measurable upon propagation. Again,
as detectors are only sensitive to intensity, the phase retrieval problem remains the
key issue which can be solved using different approaches [14, 15].

Although ptychography was reported as a usable technique for online metrology [16,
17], no experiment or any attempt was made to work in the far field regime during the
course of this project. All the techniques explored in this manuscript used the near
field regime, that is at quite short distance from the aperture.

2.4.3 The Talbot self imaging effect

One important effect arising from the Fresnel diffraction was discovered by Lord Talbot
in the 19th century [18]. When illuminating a periodic structure with a coherent quasi-
monochromatic plane wave, perfect images of the structure are replicated at regular
distances: they are called self-images. Sub-images having a multiple of the frequency
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are also observable at fractional distances. This effect intervenes in many optical
techniques using visible light and also in the X-ray regime as we shall see with the
grating interferometer.

The Talbot effect occurs for both absorbing and phase objects. For a collimated
beam and in the paraxial approximation, the standard Talbot distance is defined for
a structured object with a period p by [18]:

ZT = 2p2

λ
(2.26)

z 

X-rays 

X-rays 



22p
Zt 

Zt/2 Zt/16 0 

Absorption grating 

Phase grating 

Zt 

(a) 

(b) 

Figure 2.8: Simulation of a Talbot carpet for: (a) an absorption grating (b) a π-phase grating. One can
notice the different bright planes where the periodic patterns are replicated for the absorption and phase
grating.

In the X-ray regime, conditions to observe the Talbot effect are easily fulfilled and
the phenomenon is often encountered. Theoretically, the two limit cases are usually
distinguished, namely for an absorbing periodic object and for its phase equivalent.
In reality, objects act as a superposition of these two situations. Let us consider here
the common case of a periodic object with a duty cycle ω = 0.5. For an absorbing
structure, the diffracting pattern will be replicated every half Talbot length, and,
doubled in frequency each time the distance ZT is divided by a factor two. A Talbot
carpet simulated for such an absorption grating is shown in Fig. 2.8.(a). For a phase
object, the replication behavior of the pattern is also dependent on the phase shift
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induced by the structure [19]. At an exact distance ZT away from the periodic object,
no contrast is observable. The self-images of the structure are only replicated at
fractional orders of the Talbot distance. An illustration for a π phase shift grating is
displayed in Fig. 2.8-(b).

In order to differentiate planes where a same spatial frequency is observed, fractional
Talbot distances have been defined with:

ZTn = n

m
ZT (2.27)

with n and m some integers. For instance, for a π-phase shift grating, m = 16 and the
fractional Talbot order n is defined by: ZTn = np2

8λ , n = 1, 3, 5, .... At each distance
ZTn, a periodic pattern of frequency f = 2/p will be observable.

An abundant literature dealing with the Talbot effect and the fractional Talbot dis-
tances for various kinds of structures and different duty cycles, is available. The reader
can find information on developments and mathematical derivations of the effect in
Ref. [20, 21, 22, 19, 23].

During this project, the Talbot effect manifestation was encountered in several circum-
stances: the π-phase shift grating of the grating interferometer is one of them, and the
speckle another case. Indeed, the Talbot effect is a general effect not restricted to the
case of perfect periodic structure. The Fourier transform permits to decompose any
pattern into a superposition of periodic structures, for which the Talbot effect applies
individually. Hence, for a given distance, only certain spatial frequencies of an object
can be sensed by phase contrast.

As an illustration of this Talbot effect for general objects, Fig. 2.9 [24] shows an
image of Brownian particles recorded at a certain distance from the object and its
corresponding spectrum. From the sample features, the spectrum was expected to
be continuous with presence of most frequencies. However, one can observe rings
in the amplitude spectrum. They reflect the amplification and annihilation of some
frequencies by the Talbot effect. At a certain distance z, each scattering vector q from
the object is modulated by the Talbot transfer function [24]: 2 sin2 q

2z

2k . To recover all
the spectrum information of an object, one needs to collect several images at different
z positions as performed, for instance, with the holotomography technique (cf. Sec.
4.3).
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(a) (b) 

Figure 2.9: Influence of the Talbot effect on the spatial spectrum of a speckle pattern. (a) Recorded
image of a speckle pattern, containing various spatial frequencies. (b) Module of the Fourier spectrum of
the image: due to the Talbot effect, rings corresponding to specific frequencies are highly visible, alternated
with spatial frequencies for which the corresponding images are invisible.
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3 Synchrotron instrumentation

In this chapter are presented the instruments and the optics available at synchrotrons.
The first section describes the beamline layouts and more specifically the two used
during this project: the ESRF Instrumentation Facility BM05 and the Diamond Test
beamline B16. The main purpose of this thesis being the online characterization of var-
ious synchrotron optical elements, the next section presents a short description of their
principles. Since any data acquisition requires a detector, knowledge of its technology
is important as well to understand the limitations and the errors it can introduce. The
last section of this chapter shortly presents the laboratory based metrology instruments
available and used for X-ray optics characterization at synchrotrons.

3.1 Synchrotrons Beamlines

3.1.1 The ESRF BM05 beamline

Most experiments performed at the ESRF were carried out at the Bending Magnet
beamline BM05. This beamline is schematically represented in Fig. 3.1 and the
specifications are more detailed in Ref. [25].

The X-ray photons of the beamline are produced by a 0.85 T bending magnet on a
6 GeV storage ring. The photon flux and spectrum of the source is continuous as
described in Sec. 2.1.2: the peak flux is of 2.7 × 1013ph./s/mrad2/0.1%BW with a
spectrum varying from 6 to 60 keV and with a critical X-ray energy of 19.9 keV . The
X-rays first pass through the front end and a first beryllium window at a distance of 23
m from the source. This one is used to isolate the high vacuum (pressure 10−10 hPa) of
the storage ring from the in-vacuum section of the beamline (10−9 hPa) ending at ∼ 24
m from the source with a second Beryllium window. Downstream this element, the
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various monochromators and the beam pipes in the optics hutch are operated under
a slowly flowing He-atmosphere.

All the experiments conducted during this project used monochromatic beams; the
photon energy was selected, depending on the experiment, with either one of the two
available monochromators:

• The Si(111) double crystal monochromator is located at 27 m from the source.
The beam is reflected sequentially on two nearly perfect silicon crystals with a
well polished surface, rendering a spectral selectivity of ∆E/E ≈ 2.10−4, i.e
the one of the Darwin width of the silicon 111-reflections. The two independent
crystals are water cooled.

• The two-bounce multilayer monochromator is located at 29 m from the source.
This monochromator consists of two silicon mirrors coated with Ru/B4C layers.
Its spectral selectivity is ∆E/E ≈ 2.10−2 and, like the other monochromator,
is water cooled.

Some attenuators can be inserted along the beam upstream these monochromators
although rarely used for this work because of flux issues, and to avoid additional beam
wavefront aberrations.

The X-rays enter the experimental hutch at 31 m from the source. Right after a pair
of secondary slits selecting the beam coming from one or the other monochromator,
a kapton window ends the He-filled beam pipe and the beam starts traveling in air.
At this level a fast shutter allows short X-ray exposure times on the sample (down to
5 ms), and is also compulsory when using a CCD technology based detectors to avoid
electronics reading errors.

The detector used was usually placed 8 m downstream the shutter, on a versatile gran-
ite based Multi-Purpose Platform (MPP). This station allows the mounting on three
independent towers of the optics under investigation, diagnostic devices and detector.
Each of the towers is equipped with a set of motors to allow various translation and
rotation movements.

The Online Mirror Surfacing Station (cf. Sec. 10), when in use, was placed right
before the (MPP) horizontal diffractometer, i.e ∼ 39 m from the source. The station
was also equipped with a set of motors allowing the accurate positioning of the mirror
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3.1. SYNCHROTRONS BEAMLINES

sample with respect to the X-ray beam for online metrology.

To reduce the photon absorption caused by the long propagation distance of the X-
rays in air in the experimental hutch, pipes filled with flowing He were occasionally
mounted between the Kapton window and the sample. One has to realize that each
additional pipe introduces two additional Kapton windows along the beam path.

Several pairs of slits located at different positions along the beamline are available to
clip the beam to a desired size.
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3.1. SYNCHROTRONS BEAMLINES

3.1.2 The Diamond Test beamline B16

Experiments at Diamond Light Source were conducted at the Test Beamline B16. This
is a flexible and general purpose beamline where a variety of experimental configura-
tions can be set up with relative ease. A schematic of the beamline optical layout is
shown in Fig. 3.2 and further details can be found in Ref. [26].

On this beamline, the X-ray photons are produced by a bending magnet on the Dia-
mond 3 GeV storage ring where the electron current is maintained constant, nominally
at 300 mA, by operating the machine in a top-up mode. One special feature of the
beamline is that no window separates the beamline and the storage ring, and all the
permanent optical components of the beamline are at ultra high vacuum. The first
and the only window (200 µm thick Be) is located 43m downstream from the source,
and is used to separate the UHV of the beamline from the ambient atmosphere of the
Experimental hutch. The X-ray beam exits from this Be window.

The beamline comprises two monochromators mounted in series – either one can be
brought into the synchrotron beam to provide monochromatic X-rays of different band-
widths, or they can be used in tandem, when the monochromatic beam with a very
high harmonic-suppression is generated. One monochromator is based on the more
commonly used Si(111) crystals and configured as a double crystal monochromator
(DCM), that provides a fixed-exit X-ray beam for all photon energies in the 4 - 30 keV
range. The other monochromator, Double Multilayer Monochromator (DMM) is based
on synthetic multilayers (Ni/B4C for < 8 keV and Ru/B4C for 8 - 25 keV) and is also
configured in a double bounce geometry. The Si DCM is located at 22 meters from the
source and 25 m upstream from the optics table where the sample and analyzer used
in the present project were mounted. The energy resolution of this monochromator is
∆E/E ∼ 10−4 rendering a photon flux of 2× 109 ph/sec at the sample position.

The multilayer monochromator has about two orders of magnitude larger spectrum
bandwidth (∆E/E ≈ 2%) and provides much higher photon flux (∼ 70 times) com-
pared to the Si DCM.

A dynamically bent toroidal focusing mirror is also available in the optics hutch of
the beamline and is able to provide a focused beam with high flux anywhere between
20 m downstream the mirror and infinity. Despite offering the possibility to increase
the flux by a factor >100, this mirror degrades a lot the beam wavefront, restricting
its use mainly for spectroscopy technique rather than imaging ones. Therefore, this
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mirror was not used in the experiments described in this thesis.

A series of filters of different materials located between the source and the monochro-
mator are available to reduce the photon flux and/or harden the beam if desired.

The experimental hutch of B16 has two experimental stations: a 5-axis diffractometer
located at 44 m from the source and a versatile optics table located at ∼ 3 m down-
stream of the diffractometer. The main experimental station employed for the present
project was the versatile optics table located 47 m from the source. This equipment
is mechanically very robust and has three independent towers allowing 3 translations
and 3 rotations each to samples and optical analyzers. The upstream diffractometer
was also used sometimes to install some conditioning pre-optics for our experiments.
A high level of automation and remote control is available on all Diamond beamlines,
with motors and detectors being controlled through the EPICS and the GDA data
acquisition software [27, 28].
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3.2 X-ray optical elements

This chapter provides a brief description of the various optics and elements used to
handle synchrotron X-ray beams. Their utility varies from focusing, to maintaining
vacuum or select the energy, but they are all introducing wavefront errors. Knowing
their principle is essential for beam characterization but also for correction and op-
timization. Indeed, optics imperfections generate optical or wavefront errors in the
working beam that degrade the quality of the sample data collection.

A large number of tables, sometimes biased, comparing the performance of X-ray
optical elements can be found in the literature. Yet, the next section only presents the
advantages of each optics. No attempt will be made to compare their performance. The
purpose of this thesis is to measure optics for metrology purpose and, in this endeavor,
their parameters were more important than their relative performance. Hence, only a
brief description of the basic working principles of several kinds of optics is provided
in the next sections.

The parameters used to describe the goodness of a focusing optics is usually the focal
spot size and the irradiance gain.

3.2.1 Mirror

For X-ray mirrors to be efficient, they operate under total reflection, for instance at
grazing incidence on a heavy metal, or at higher angle from the bandwidth produced
by a multilayer coating alternating layers exhibiting a density contrast between them.
Mirrors are achromatic optics presenting usually a large aperture while bent mirrors
can have a short focusing distance. The most common application of mirrors is focus-
ing; such optics have experimentally demonstrated their ability to reach the diffraction
limit [29] whilst also offering a good efficiency.

The optimal shape of a focusing mirror is described by the ellipse having as foci the
source and the focal point. A more complete mathematical description of the shape,
slope and curvature of an elliptical focusing mirror is given in appendix B. The general
equation of optics also applies for X-ray mirror and becomes:

1
q

+ 1
p

= 1
f

= 2 sin Θ
R

(3.1)
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3.2. X-RAY OPTICAL ELEMENTS

In this equation, p is the distance from the mirror center to the object, q the the one
to the image, f is the focal distance, Θ the grazing incidence angle and R the mirror
radius of curvature.

Figure 3.3 shows the two kinds of errors that affect the X-ray mirror performance. The
surface roughness corresponds to the high spatial frequency errors from the perfect
mathematical shape. They generate diffused scattered light that spreads the energy
around the specularly reflected beam. Surface roughness can be characterized with
Atomic Force microscopy or by grazing incidence X-ray scattering methods [1].

Errors over longer spatial periods are considered as shape errors (cf. Fig. 3.3.(b)). The
mirror figure profile deviations from the perfect elliptical shape create focusing errors
arising from the wavefront aberrations induced upon mirror reflection. The thesis
work carried out at BM05 on the Ion Beam Figuring of mirrors was restricted to the
measurement and correction of these kinds of errors.

(a) (b) 

Θ 

Θ 

Specular 

Diffuse 

scattering 

beam 

beam 

Θ +εrr 

Θ 

Specular 

Mirror 

Mirror 

Figure 3.3: Factors of mirror performance degradations. (a) Micro roughness corresponds to deviations
from the perfect ellipse at high spatial frequency. These errors are responsible for the diffuse scattering
that reflects photons outside the desired specular direction. (b) Slope error corresponds to the long spatial
periods that create focusing errors and optical aberrations

3.2.2 Compound Refractive Lens

As seen in Sec. 2.3, X-rays interact weakly with matter, the optical refractive index δ
being very small and moreover n < 1. For these reasons, the design of X-ray converging
lenses is unconventional when compared to visible ones. The lenses used with X-
rays are transmission refractive systems. Contrary to visible light optics, a higher
convergence is here obtained by increasing the thickness. Hence a X-ray Compound
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Refractive Lens (CRL) is thinner on its axis and thicker on its edges. Because the
effect of X-ray refraction is weak, a series of lenses must be stacked together to obtain
a workable focal length [30]. Beryllium is usually the material of choice to produce
CRLs as its low absorption enables the serial accumulation of many lenses whilst
limiting intensity losses [31]. Nevertheless, as more lenses are stacked together, the
effective aperture of the CRLs diminishes, sometimes making the transmitted photon
flux become an issue. Synchrotron users appreciate the CRL for its ease of alignment
(on-axis element). As the index of refraction depends on the energy (∝ λ2), the X-ray
refractive lens is a chromatic system.

The optimal focusing shape of a lens is an ellipse [32] that can be approximated in the
apex region by a parabola (see Fig. 3.4):

y = x2

2R = x2

2fδ (3.2)

where R is the lens radius of curvature at the apex. When using a stack of 2N lenses,
the focal length can be calculated using the relation:

f2N = R

2Nδ (3.3)

y 

x 

R 
f 

Be (n <1 )  

Figure 3.4: Single compound refractive lens geometry.

3.2.3 Fresnel Zone Plate

Fresnel Zone Plates are diffractive optics available in the visible domain since a long
time [33] and adapted to the hard X-ray regime a decade ago when they demonstrated
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good performance and efficiency at moderate energy (< 10 keV)) [34].

The Zone Plate principle is shown in Fig. 3.5: the light is concentrated in a focal point
by means of concentric diffracting rings whose widths are arranged so that the rays
that may pass trough the lens reach the focal point with the same phase (constructive
interference). In addition to the FZP lens itself, a central stop placed on the optical
axis stops the part of the beam which has not interfered with the lens (zeroth order)
and an order sorter aperture is placed few millimeters upstream the focus to select
the desired diffraction order. The smallest focal size achievable with FZP is imposed
by the narrowest ring width producible. FZPs are often made with electron beam
lithography technology permitting nowadays an outermost zone of ∼ 20 nm.

The definition parameters of a FZP are usually the size of its narrowest ring ∆rn and
its diameter D. From these parameters, one can derive the focal length for a given
wavelength λ (chromatic optics):

f = ∆rnD
λ

(3.4)

f 
D 

Δrn 

Figure 3.5: Fresnel Zone Plate principle: the incident rays are diffracted by the concentric rings with
radius rn =

√
nλf . Thus, only the X-rays that present the same phase (up to a factor nλ/2) may reach

the focal point.

3.2.4 Monochromator

The energy tunability is one major advantage of synchrotron sources. To select a
particular photon energy from the large spectrum band delivered, monochromators
are employed in the hard X-ray regime. Monochromaticity can be expressed in term
of wavelength or energy bandwidth: ∆λ/λ or ∆E/E.
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The first kind of monochromator uses the Bragg diffraction from high quality crys-
tals [35] (Fig. 3.6.(a)). These monochromators are often composed of pair of parallel
crystals cooled with liquid nitrogen or water to maintain the direction of the inci-
dent beam (useful when using a long beamline). The typical bandwidth of a Si(111)
monochromator, such as the ones used at ESRF and Diamond, is about ∆E/E ∼ 10−4,
which corresponds to a longitudinal coherence of ∼ 1µm, calculated using the relation:
λ2/∆λ. In the case of the DLS B16 and the ESRF BM05, Bragg diffraction is obtained
by reflection on the Si crystals. At higher energies (> 45 keV), when the absorption
becomes weak, it is common to use Laue diffraction (transmission through the crystal)
to limit the size of the crystals.

Substrate 

Multilayer 

X-rays 

Reflected beam 

(b) (a) 

Ɵ 

X-rays 

Reflected beam 

Crystal 

Ɵ 

Figure 3.6: Monochromator operating in the kinematical approximation. (a) In a crystal based monochro-
mator, the X-ray energy is selected according to Bragg’s law. (b) In a multilayer monochromator, each
high-density layer diffracts the X-rays, coherently for a specific energy according to a corrected Bragg’s
law.

The second kind of monochromator takes advantages of layers stacked with alterna-
tive density by deposition on a substrate [36, 37]; their effect is equivalent to Bragg
reflectors with an intrinsic bandwidth 100 times wider as compared to a perfect crys-
tal (Fig. 3.6.(b)). Typical multilayer monochromators such as the ones available at
ESRF BM05 and Diamond B16 are produced by alternative sputtering of Ruthenium
and Boron carbide layers [Ru/B4C]70 to act as a one-dimensional synthetic crystal.
Each individual layer is a few nanometer thick. As for a crystal monochromator, a
multilayer monochromator is usually made of a pair of reflective elements, each one
being cooled.

The bandwidth of a multilayer monochromator (∆E/E ≈ 2%) being two orders of
magnitude larger than the one of a Si(111) monochromator, the reflected flux is also
increased by the same amount. When the energy selectivity was a crucial parameter,
for instance when using a FZP or CRLs, the double crystal monochromator was chosen.
Conversely, when flux was the main issue, the multilayer monochromator was given
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favor.

For both kinds of monochromators, all surface and bulk imperfections are leading to
wavefront and coherence damage upon double reflection of the beam. Additionally, the
heat accumulated through photon absorption can, despite the cooling system, be an
important cause of material distortion and wavefront aberration. Furthermore, when
using a multilayer monochromator, the higher angle of operation as compared to total
reflection makes the reflection more sensitive to the mirror substrate imperfections,
thus generating phase errors resulting in contrast fringes.

3.2.5 Other optics

Among other focusing optics, one can mention kinoform lenses made from clever etch-
ing design to diminish the absorption in the optics without degrading its focusing
performance [38]. Similarly, silicon or diamond compound refractive lenses can be pro-
duced from a single wafer with XUV lithography. None of these optics were employed
or characterized because of their small aperture (< 50 µm) and the ultra brilliant
source they require for getting a workable flux.

Although usually not considered as optical elements, windows located along the beam
path act as dephasors that damage the wavefront. At third generation synchrotrons,
windows transparent to x rays are used to maintain part of a beamline under vacuum
or Helium and are made of Beryllium or Carbon. Despite the careful attention given to
their polishing quality, in-depth defects still lead to the creation of optical aberrations
and beam coherence degradation [39].

3.3 X-ray detectors

Two kinds of detectors for X-rays are distinguishable: integrating and counting detec-
tors. One can find a deeper interpretation of these differences and their implications
for the X-ray signal measurements in Ref. [7]. For most of our experiments, 2D high
spatial resolution was the determinant requirement. CCD based imaging detectors
coupled to scintillator and microscope optics were our choice detector.
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CCD detector

Charge-coupled devices (CCD) are two dimensional integrator devices and the ones
used with x-rays are not different. For X-rays, instead of direct illumination, these
chips are coupled to a thin scintillator that converts the X-ray intensity into visible
light, recorded then through the magnification of a visible microscope optics by the
CCD.

At the ESRF, the traditionally employed CCD based detector is the FReLoN [40] (Fast
Read out Low Noise) camera which has a chip with a 15 µm pixel size. It is used in
combination with one of two different Peter optics and eye pieces. One optical system
results in an effective pixel size of 5.8 µm while the second one is a microscope optics
providing an effective pixel size of ∼ 0.8 µm. Despite the low efficiency provided by
such system (indirect detection), the FReLoN camera was selected and appreciated
for its low noise level and its then good electronics signal to noise ratio.

At Diamond light source, the choice of a CCD detector is offered between two cameras:
an X-ray eye with a 6.4 µm pixel size or a PCO 4000 [41] camera, coupled to switchable
Peter optics that provide different effective pixels size ranging from 0.18 µm to 1.8 µm.

Because of the CCD technology, these camera have to be used in combination with
a shutter to avoid artifacts occurring when the chip is simultaneously collecting light
and reading the electronic levels. Since visible optics is employed to obtain high
magnification, such camera is not free from optical aberrations: the recorded images
present distortions that can, and in some case must, be compensated for.

Diodes

Silicon diodes are employed at synchrotrons as current detectors : electrons excited
within the Si crystal by the X-rays are ejected from their relaxed position to the
continuum medium, creating a measurable pico Ampere order current, proportional
to the X-ray photon flux.

One common use of such detector for online metrology is its combination with an
absorbing object edge. Such experimental set up is often called knife edge technique.
It consists of scanning an absorbing edge across the focal point of an optical system
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to infer the beam width.

Others

Pixel detectors are more recent 2D photon-counting detectors that provide very large
dynamics, although offering quite large pixels (∼ 50 µm). These detectors are already
widely used for either large field of view imaging, far field imaging or reflectivity ex-
periments where dynamics and sensitivity are the most relevant parameters. However,
in the course of this project, the limited spatial resolution they offer prevented their
use.

It is worth mentioning several other kinds of X-ray detectors including gas detectors
and scintillator-based system. Yet, apart from some alignment works, such detectors
have rarely been used during this project.

3.4 Metrology laboratories

Modern synchrotrons are nowadays usually equipped with metrology laboratories ded-
icated to the characterization of reflective optics. They use a clean room environment
with good temperature stability. As presented in Sec. 3.2.1, factors affecting the perfor-
mance of mirrors are roughness and shape errors. Therefore, a metrology lab is usually
equipped with instruments permitting the measurement of both. For the roughness
characterization of a mirror surface polished for X-ray applications, devices such as
Atomic Force Microscope (AFM) and micro-interferometers are employed. For char-
acterizing the mirror shape, two main classes of dedicated devices are employed: Long
Trace Profiler (LTP) or Nanometer Optical Measuring machine (NOM) and visible
light interferometers. They all permit the characterization of slope and shape errors
of planar or curved mirrors over spatial frequencies ranging from 1 mm−1 to 1 m−1.

Visible light metrology tools, that benefit from several decades of development, are
nowadays able to achieve sub-nanometer accuracy. Thus, data obtained from metrol-
ogy labs were often used for comparison and validation of the at-wavelength developed
methods. Nevertheless, this comparison finds its limits, especially at the sub micro-
radian range accuracy, when the off-line optical characterization measurements cannot
be made under real working conditions. That includes for instance a bulky optical
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support or a thermal load condition that cannot be simulated within the clean room
environment of an optical laboratory.

Surface profilometers

LTP and NOM are widespread instruments that can measure surface slopes in one
direction with sub nanometer accuracy. The instruments have found interest in the
X-ray community because meter long mirrors, even with an aspherical shape, can be
characterized with a sub-microradian sensitivity and without employing any stitching
process.

As shown in Fig. 3.7, a LTP system uses a pencil beam interferometer to measure
the surface slope profile. Thanks to prisms, two sets of pencil beam pairs are created
to shed light on the test surface and the instrument reference surface. While the two
beams within a pair interfere with each other, the two pairs of beams do not interfere
with each other. The reference flat is used to compensate for mechanical errors. The
position changes of the beams falling onto a linear array detector permit to calculate
the angular deviation of the light caused by the test surface. Further, an integration
allows the reconstruction of the surface shape from the measured slope profile. Since
the LTP probe beams are generated by visible laser light, the spatial resolution of the
instrument is limited to a few millimeters.

Figure 3.7: Schematic of the ESRF LTP
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A NOM, as shown for instance in Fig. 3.8, has a slightly different concept: it uses
a pentaprism located in the moving head. A collimated beam produced by a LED
source and narrowed by slits is deflected perpendicularly by the scanning pentaprism,
reflected from the surface under test and deflected again by the pentaprism towards
an objective. The light recorded on a two dimensional CCD detector is used to recover
the surface slope by monitoring the lateral displacement of the slit image on the CCD
array.

(a) (b) 

Figure 3.8: (a) Schematic of the Diamond NOM (cf. Ref. [42]) (b) Operator of the Diamond NOM in
the clean room metrology lab.

The ESRF LTP [43] is a custom built instrument that has a precision on the slope
error better than 0.2 µrad rms. The Diamond NOM, also a custom built instrument,
provides sub-nanometer accuracy on mirror shape for mirrors up to 1.5 m in length [42].

Interferometers

Interferometers employed to measure optical shapes are usually of the Fizeau type.
This arrangement uses a transmission reference object to create interferences, from
which information on the shape difference between the test object and the reference
are obtained [44]. Fizeau interferometers have the advantage of an light optical path
identical for the test and reference beams, apart from the beam splitting surface of
the transmission object. When measuring curved surfaces, it is necessary to tune the
reference beam of the interferometer by substituting a spherical transmission to the flat
transmission. This operation is required to compensate for the effect of probe beam
decollimation induced by the surface under test. Because the number of transmission
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spheres available to optimize the measurement is limited, Fizeau interferometers show
limitations for measuring strongly focusing X-ray optics.

Fizeau interferometers provide a typical accuracy of a few nanometers over a 100 mm
long surface. For larger optics, stitching methods are employed to recover the shape of
the mirror over its full length. When measuring X-ray mirrors, these interferometers
are appreciated over LTPs/NOMs because of the two dimensional map of the surface
they provide instead of a one dimensional slope.
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4.1 Introduction

As exposed in the introduction, synchrotron beamline optics must keep pace with the
remarkable advances in source technology, to constantly improve the optical surface
quality. Every endeavor to measure and compensate for optical defects at the toler-
ance scale defined by the wavelength of operation is needed to avoid brightness and
coherence losses along the synchrotron beamlines. Indeed, accurate surface metrology
and in situ alignment are nowadays limiting the development of nanofocusing optics.
To manufacture X-ray mirrors that preserve the beam coherence and the wavefront
shape, it is important to benefit from metrology methods capable of assessing the
surface quality in X-ray terms and under working conditions. Taking a deeper look
into the measurements being performed, the needs can be different from beamline to
beamline. Stringent requirements are encountered on beamline exploiting the coher-
ence or focusing the beam to a nanometer size, wherein sub-micro radian measurement
accuracy is necessary.

Yet, the wavelength of hard x rays, at the Angström (0.1 nm) level, can also be an
asset. With such a short wavelength, the diffraction limit imposed by the probing
light is much smaller than the one of visible light instruments. Theoretically, the
mirror shape characterization at high spatial frequency using X-ray-based methods is
expected to be superior to that of the traditional instruments presented in the previous
chapter [9].

At-wavelength metrology is today regarded as a corner stone toward the achievement
of diffraction limited X-ray optics. While several in-situ at-wavelength methods are
already available and used at synchrotrons a number of them are still at an early
development stage. Some specifications of X-ray mirrors with diffraction limited fo-
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cusing performance are displayed in Table 4.1 [45]. These figures illustrate the level
of requirements put on the metrology measurement accuracy. One must be able to
sense a figure error smaller than 1 nm on the surface height and 0.1 µrad on the sur-
face slope with a spatial wavelength shorter than 1 mm. Concerning roughness, the
metrology must be able to assess Angström order inhomogeneity of the surface for
spatial frequencies as high as 1/20 nm−1.

Error category Specification Spatial Wavelength
Height Error ≤ 2.0 nm rms 1 mm - 1 m
Slope Error ≤ 0.25 µrad rms 1 mm - 1 m

Mid-Spatial Roughness ≤ 0.2 nm rms 2 µm - 1 mm
High-Spatial Roughness ≤ 0.4 nm rms 20 nm - 2 µm

Table 4.1: Surface specifications for X-ray mirrors.

Whilst X-ray characterization methods of optical surface roughness such as X-ray
diffuse scattering are already mature [1, 46], some others for the measurement of the
longer spatial wavelengths for figure error assessment and for beam phase sensing were
limited for years to simplistic schemes, like the pencil beam technique [47, 48]. More
advanced schemes and techniques started to be developed only less than ten years ago
with new instruments such as the Hartmann sensor and the grating interferometer. In
parallel, phase sensing has seen its interest growing exponentially with a large spread
due to applications in phase contrast imaging.

Phase sensing is often performed measuring the wavefront W (x, y, z), the surface de-
fined by points of the beam having a constant phase φ(W ) = cst. As a matter of fact,
the wavefront contains information on both the propagation direction of the light and
the optical delay between rays. Several techniques have been developed to measure
the wavefront and recover the beam phase. We describe briefly below the different
kinds of phase sensitive techniques available in the X-ray regime.

4.2 Method categories

Scanning vs full field techniques

For instrumentation reasons, scanning methods were the first to be implemented and
routinely used. X-ray microscopy was highly promoted around 1948 with the emer-
gence of the mirror setup conceived by Kirkpatrick and Baez [49]. By concentrating
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the photons into a narrow point and scanning an object across it, one can measure
for each step the absorption and fluorescence signals, and then generate maps of the
sample properties. Conversely, full-field imaging microscope renders simultaneously
the information for all points or detector pixels. Its realization is done by placing
the sample either upstream the focusing optics to benefit from an optimal depth of
focus, or, few millimeters downstream the focal point to benefit from a large magnifi-
cation factor. In full-field imaging techniques, two dimensional imaging detectors are
employed as in traditional visible photography.

Despite offering the advantage of mapping both the absorption and the fluorescence
signals from a sample, scanning techniques are limited by the X-ray optics focusing
performance and require as many exposures of the sample as the number of points
in the constructed map. Today, although X-ray scanning microscopes are still widely
used, new methods put a strong emphasis on schemes that are tomography compatible
and dose efficient by reducing the amount of sample exposures thus giving preference
to full-field approaches.

Far-field vs near field techniques

In section 2.4, two different descriptions of light propagation were introduced. Each
one holds for respectively short or long distances from the diffracting aperture.

An imaging technique operating in the near field is also called a real space method:
images used within these methods mirror directly the illuminated object. Conversely,
far field methods, or reciprocal space methods, record intensities corresponding to
the square modulus of the sample Fourier transformed scattering function. Far field
techniques have demonstrated the potential to image samples with a spatial resolution
as high as a single nanometer. Coherent diffraction imaging is the most widespread far
field imaging technique nowadays [50, 51, 52] but one can also mention ptychography
[11, 53]. This last method is actually a hybrid one using simultaneously real and
reciprocal space information. Far field techniques present the advantage to not require
any specific optics but, on the other hand, have severe requirements on beam brilliance
and coherence, fulfilled with the arrival of new X-FEL instruments, to reach their full
potential.

Because no far field technique were used during this project no further description of
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the coherent diffractive imaging and ptychography techniques will be given.

All techniques presented in the following parts of the manuscript fall into the near field
category; the detector is located at a distance z << D2/λ where D is the characteristic
beam aperture. With D of the order of 1 mm, any positioning of the detector within
the few meters downstream the aperture is considered as near field. In the techniques
presented, the signals of both the transmitted and scattered parts of the beam are
recorded, in contrast to far field methods where the direct beam is rejected and only
the scattered part with large scattering wave-vectors is used.

Deflection vs propagation methods

Phase sensing technique are either sensitive to the first or second derivatives of the
beam wavefront: no direct measurement of the beam phase is possible. Propagation
techniques (cf. 4.3.2) are sensitive to the Laplacian of the wavefront ∆W while deflec-
tion techniques measure its gradient ∇W . This makes deflection methods generally
better suited to homogenous samples with a slowly varying optical index, wherein no
sharp edges are present, whilst propagation methods can achieve high spatial resolu-
tion.

4.3 Available techniques

4.3.1 Crystal interferometry

The crystal interferometer was the first phase instrument proposed in the X-ray regime
[54]. This device is directly inspired and is fully equivalent to the one used within the
visible domain. Its principle is indeed the same: the beam is split into two branches
thanks to single crystals and the separated beams propagate over an equal distance
before interfering further in a plane downstream where a detector is positioned. The
investigated sample is placed in one of the branches and the analysis of the interference
pattern distortions from the reference one permits the recovery of the sample phase
shift [9]. Such interferometer has been used for tomography [55] and showed interesting
possibilities for soft tissue imaging. Nevertheless, the device has severe mechanical
stability requirements that get even stronger when increasing the energy to investigate
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thicker samples.

4.3.2 Propagation-based imaging

TIE and CTF based methods

Transport of Intensity Equation (TIE) based and Contrast Transfer Function (CFT)
methods are two slightly different online propagation phase contrast imaging methods.
These techniques are sensitive to the Laplacian of the wavefront, i.e. the wavefront
second derivative. The setup does not require any optical element, only a detector
placed at a short distance from the sample (near field): the recorded interferences
resulting from sample edges diffraction are then used to reconstruct the full phase
map of the sample [56, 57]. These techniques usually require the taking of images of
the sample at different distances in order to record all spatial frequencies because of the
Talbot effect [23]. However, under certain conditions and using specific algorithms,
one can perform phase imaging from images recorded at a single distance [58, 59].
Langer et al. [60] have studied in details the difference between the TIE and CFT
approaches, that are otherwise, similar in many aspects.

Analyzer-based imaging

Phase contrast imaging using the techniques of the previous section can be enhanced
by the use of a crystal to study samples that are either homogeneous or present only
a small phase shift. In this technique, a highly selecting crystal is oriented in such
a way that the incident X-ray beam is reflected using the side (highest slope) of the
crystal Darwin curve: the small deviation of the rays in the sample is thus translated
into a variation of diffracted intensity. This method was demonstrated successful in
the study of biological samples where natural phase contrast is small [61].
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4.3.3 Deflection-based phase sensing technique

Pencil beam technique

The pencil beam was the first and probably still the most used phase sensing technique
within synchrotrons [47, 48]. Despite being at first sight a bit crude, this technique was
shown to be very efficient and easy to implement. The method requires a simple setup
and works with incoherent light, making it usable on any beamline with a minimum
of instrumentation. The technique consists of sequentially and spatially sampling the
X-ray beam using a pair of slits. Looking at where the different generated beamlets
fall on an imaging detector, one can retrieve the propagation direction of the photons
at each point, which is also in optics the beam wavefront gradient. This technique
is nowadays spread worldwide on beamlines to perform routine online metrology and
alignment work.

Hartmann sensors

Displa

cemen

t vector 

α 

Detector Grid holes 

Figure 4.2: A Hartmann sensor: the beam is sampled with a grid of holes that permit to calculate the
trajectory of the beam for each aperture position.

X-ray Hartmann [62, 63] sensors are directly inspired and adapted from the visible
domain where such instruments have found great interest in adaptive optics. The
instrument is equivalent in principle to the pencil beam technique: in a Hartmann
sensor, all beamlets are created and analyzed simultaneously thanks to an absorbing
grid replacing the scanning of a pair of slits. An X-ray mask with holes is placed in front
of an imaging detector and, from previous calibrations, one can calculate the deviation
of each beamlet from its expected position. This way, the propagation direction of the
photons can be known for each grid hole position, and the beam phase reconstructed.
This device is regarded with high interest within X-FEL facilities because it permits
the wavefront error calculation from each image generated by each independent pulse.

54 ESRF - Diamond - UdG



4.4. DEVELOPMENT MATTERS

However at synchrotrons, the instrument is a bit less attractive as the spatial resolution
is limited by the spacing of the grid holes and the calibration can be tedious.

Coded apertures

Coded apertures can be seen as a specific combination of grating-detector. First
developed for laboratory sources, the instrument works with incoherent illumination
as no optical interference is used. The coded aperture technique uses two absorption
gratings to sort out and detect the photons that are deviated by the sample [64, 65]:
the recorded signal corresponds to the refracted part of the beam, i.e the wavefront
gradient. At the early stage of development, the instrument was sensitive to the
refraction in only one dimension. The progress of the instrument has permitted to
overcome this limitation and refraction can now be measured simultaneously in the
two orthogonal directions.

Grating interferometry

The grating interferometer was introduced in the hard X-ray regime ten years ago
[66, 67] and the first experiments of such devices were conducted in parallel at the
ESRF beamline BM05 and Spring-8 in Japan. It offers several advantages, among
which a fine sensitivity and low requirements on coherence and mechanical stability.
Being one important topic of this thesis, the method will be described in more details
in the next chapter.

4.4 Development matters

When developing a new imaging technique and beyond the never ending search for
higher sensitivity and better resolution, several parameters can be taken into account
when working with X-rays, as developed below.

As already stated, one important aspect when setting up a new X-ray technique is to
find a versatile one, i.e. that applies to a large number of applications, and prefer-
ably not restricted to, e.g., the case of the synchrotron source. Indeed, as most X-ray
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laboratory sources are tube-based technology with a large emittance, one challenge is
to find the technique or instrument that is tolerant with their larger source size and
divergence compared to synchrotron source, as well as with the lower brilliance. That
means the technique should not have strong requirements on longitudinal and trans-
verse coherence in addition to be photon efficient. Grating interferometry and coded
aperture are for instance two success stories of techniques ported from synchrotron to
laboratory sources [68, 65].

Another point of interest for a new X-ray method is its applicability in the new X-
FEL facilities, under construction or under commissioning worldwide. These new
instruments aim at investigating, among other phenomena, the very short time scale
domain or the imaging of non crystalline matter. In that endeavor, techniques able
to bring information about the sample from a single X-ray pulse are regarded with
the greatest interest. Indeed, ’beams’ delivered by an X-FEL source consist of very
intense short (∼ fs) independent pulses that are expected to accumulate information
about samples, that are even, in some experiments, destroyed by the traversing of the
intense X-ray pulse itself [69]. Hence, each recorded pulse is unique from its generation
and for the information collected when passing through the sample: that forces the
data analysis to be done and corrected independently for each pulse before employing
further statistical interpretation tools.

The last important point for biological imaging is the dose or number of photons
absorbed by the sample exposed to X-rays. Although the topic receives little mention
in this manuscript, the reader should be aware that important ongoing works are
performed worldwide in an attempt to reduce the dose delivered to the sample when
imaging it, especially for medical purpose [70].
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5 Grating interferometry

Since the inception of this project, the X-ray grating interferometer was regarded as
a very promising candidate to perform online metrology. Previous work [71] already
showed the potential of the device for metrology, that since, was employed at many
synchrotron beamlines worldwide and more recently at the X-FEL [72]. The device
was shown to be very stable mechanically whilst also benefiting from the maturity of
the numerical processing methods imported from visible light interferometry [73, 74].
Nevertheless, further developments were still necessary for routine optics characteri-
zation.

In this chapter, the investigations carried out on X-ray grating interferometers (XGI)
will be presented. In the frame of the metrology project, the core of the research was
dedicated to the study of the sensitivity and spatial resolution of the device. The next
sections will present the XGI working principles and the results of our investigations.

5.1 Principles

The X-ray grating interferometer is a device imported from the visible light domain [75,
76, 77] that became operable in the X-ray regime thanks to the successful production
of X-ray gratings.

An X-ray grating interferometer (see Fig. 5.1) consists of two gratings and an imaging
detector: the first grating, noted G1, is a phase grating and the second one, noted
G2, is an absorption grating. The first one is used to split the beam in different
directions corresponding to the grating diffraction orders, mainly the 0th and +/-1st

orders. Then, these different beams interfere downstream creating a fringe pattern.
The distortion of this pattern from a perfect one permits the recovery of the phase
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distortion present in the incoming beam. According to the Talbot effect described in
Sec. 2.4.3, the interferences of G1 are only visible at specific distances. Thus, the
optimization of the signal to noise ratio of the data collected imposes to place the
second grating at a distance corresponding to a maximum of fringe visibility of the
interferences, aka Talbot distance.

Two kinds of interferometer are now available: the most wide spread is the 1D inter-
ferometer composed of gratings made of parallels lines, and since more recently, the
two dimensional grating interferometer designed with two dimensional patterns [78].
Their operating principle however remains equivalent in concept.

- Distorted G1 pattern 

- G2 = analyser grating 

2D CCD 
detector 

beam 

G1 = Phase 
grating 

G2 = Absorption 
grating 

G1 
G2 

CCD 
Δl 

β 

Figure 5.1: A 1D X-ray grating interferometer: a phase grating and an absorption grating with matching
pitch are placed in front of an imaging detector at a distance ∆l. The superposition of the small fringes
created by the two gratings give rise to larger ones.

Depending on the relative angle β between the two gratings around the beam axis,
interferometers can be used in two distinct modes. When the angle is set to β = 0, the
interferometer is used in the so called phase stepping mode. Within this processing
method, the two gratings are perfectly aligned generating a null fringe, i.e with no
visible Moiré fringes, by aliasing of the two fringes periods. In this mode, several
images are necessary for each projection phase recovery as it will be described in Sec.
5.3.

Conversely, when one grating is slightly rotated relatively to the other, i.e. β 6= 0,
some Moiré fringes become visible in the recorded images. A Fourier analysis of the
pattern permits the beam phase recovery for each single image, but sometimes at the
cost of phase retrieval artifacts. This second processing method will be discussed in
Sec. 5.4.
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5.2 The gratings

X-ray gratings are nowadays produced by XUV lithography or white light laser on thin
silicon or tungsten substrates or by electron beam writing followed by a wet etching
process. One can find X-ray gratings with pitch ranging from 2 µm to more than tens
of microns. Absorption gratings are produced the same way as phase gratings but have
in addition their grooves filled with a heavy material using electroplating [79, 80].

The interference contrast of a grating depends on the phase shift it introduces and its
duty cycle [81]. A complete description of the grating diffraction efficiency is provided
in Ref. [82]. The Fresnel diffraction patterns obtained with gratings have been deeply
investigated and described [83, 21]. The optimization of the signal to noise ratio
obtained with a grating interferometer is achieved by maximizing the contrast of the
Talbot pattern [19].

With a minimal grating substrate thickness of 50 µm, the double traditional grating
arrangement can show significant absorption when working at low or moderate energy
(E ≤ 8 kEV). While the integration time can be increased to avoid the interference
signal to noise ratio level, it is achieved at the cost of a greater dose for the sample.
Setups with only one grating have been presented to avoid this drawback of particular
importance when analyzing biological tissue [84].

Conversely, at higher energy, the efficiency of the grating can fall due to the weaker
interaction of X-rays with matter. This creates a demand for gratings with very high
aspect ratio capable of generating π or π/2 phase shift on highly energetic photons,
such as the one employed for human body imaging [85]. An alternative approach has
been attempted replacing the couple absorption grating/scintillator by a structured
scintillator [86].

5.3 The phase stepping mode

Phase stepping is a wide spread category of methods within interferometry [87] con-
sisting of taking several images while varying the phase of the beam interference from
one image to the next by a known amount. Schemes with 3, 4, 5 and then n images
were developed, bringing each time more accuracy and better robustness to noise and
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shift miscalibrations [88].

For XGI metrology, the technique and algorithm employed during the project was the
one described in Ref. [89]. It consists of scanning a grating by translating it over a
distance of an integer number of grating periods and taking an image at each regular
position. The phase is then extracted using a Fourier transform of the signal seen and
recorded separately within every detector pixel during the scan. The motion of the
scanned grating is obtained using a piezo stage permitting nanometer accuracy of the
grating positioning.

In this mode, the gratings are oriented exactly parallel to each other and have pitches
such that, when illuminated with the reference beam, the generated Moiré fringes have
an infinite period, i.e close to the null fringe.

G1 G2 

beam 

Detector 

α v 

ex 

ey 

Δl 

Figure 5.2: The deflection angle in the grating interferometer. The wavefront gradient of the beam
translates into a deviation of the interference created by G1 and then into a modification of the flat
pattern.

The recovery of the phase shift introduced by the presence of a sample is done using
the mathematical derivation presented below. We denote ∆l the intergrating distance,
p1 the pitch of the first grating, p2 the one of the second grating, ϕ the phase of the
beam, λ the wavelength and Φ the fringe phase extracted from a scan using the phase
shifting method. Considering the projection of the problem on a basis (ex, ey) as
sketched in Fig. 5.2, we have:

α(x) = |vx(x)|
∆l = 1

∆l
Φx

2π .p2 (5.1)

Then using the relation: α = ∇W.ex = k−1 ∇ϕ(x).ex [90] with k the wavenumber
k = 2π

λ
, one can derive the grating interferometer equation:

k−1∇ϕ(x).ex = Φx(x)
2π∆l p2 (5.2)
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Or:
∂ϕ(x)
∂x

= p2

λ

Φ(x)
∆l (5.3)

When working differentially, the reference or flat field is removed to isolate the contri-
bution of the incoming beam. For this, the phase Φref calculated when no sample is
in the beam, is subtracted to the one obtained in presence of the sample:

∂ϕ(x)
∂x

= p2

λ

(Φsample(x)− Φref (x))
∆l

(5.4)

This last equation is the common relation used in the literature for the description of
the X-ray beam phase recovery with the XGI [91, 92, 93, 94, 95]. However, we will see,
using two alternative approaches in section 5.6 and then Chapter 7, that Eq. (5.4) is
actually an approximation.

As we shall see in Sec. 5.5, because of the tricky phase unwrapping problem, it is
particularly important to use gratings with perfectly matching pitches, i.e tuned to
the G1 interference magnification.

The phase stepping mode is nowadays the most used for X-ray grating interferometry
imaging and tomography [96, 97, 70].

5.4 The Moiré pattern analysis mode

The ’Moiré fringes’ mode is the alternative working scheme to the phase stepping
mode. This mode is obtained by setting a small angle β. In this case, Moiré fringes
are generated by superposition of the effect of both gratings. When the interferences
generated by G1 in the plane of the second (analyzer) grating G2 match approximately
the pitch of the latter, large resolvable Moiré fringes are created by aliasing [98, 99].
Denoting d1 the period of the interference created by G1 in the plane of G2 having a
pitch d2, the final Moiré fringes will have a period |d1d2|

|d1−d2| .

The phase of each image is recovered using a phase retrieval method. In interferometry
the Fourier methods [100] are the most employed. Despite some small processing
artifacts, the method is fast, easy to implement and quite robust. More sophisticated
methods using adapted filter or wavelets can be also employed providing access to
bigger calculation resources [101, 102]. Again, the fringe phase extracted from the
image will be denoted Φ.
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When using Takeda’s method [100], one can remove the fringe modulation component
by shifting, in the Fourier space, the spectrum peak to the center. This processing sim-
plifies drastically the unwrapping process necessary for reconstructing the continuous
phase map (cf. Sec. 5.5).

Because he XGI Moiré mode requires only a single exposure of the sample, this working
mode is for instance suitable for the analysis of dynamic samples [103].

Two dimensional mapping of the local radius of curvature

The method to accurately calculate the wavefront curvature from XGI and without
previous information on the beam characteristics is detailed in Ref. [99]. Although
the mathematical development exposed therein is sufficient to calculate the averaged
curvature over one direction, one can show that the mathematical derivation can be
easily extended to a two dimensional map. Considering the parameters defined in Fig

Figure 5.3: Moiré fringes formation from tilted grating.

5.3, the intensity patterns of periods d1 and d2 created by respectively by G1 and G2
can be written as:

I1 = a cos2
[
π

d1
(y cos β + x sin β)

]
= a cos2A

I2 = b cos2
[
π

d2
(y cosα + x sinα)

]
= a cos2B

(5.5)
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Using the same method as in [98, 99], the total recorded intensity is:

I = I1 × I2 = ab cos2A cos2B

= ab

4

[
1 + cos(2B + 2A)

2 + cos(2B − 2A)
2 + cos 2B + cos 2A

] (5.6)

In this equation, only the third term, denoted Im, contributes to the large observable
Moiré fringes:

Im ≈ cos(2B − 2A) = cos
[2π
d1

(y cos β + x sin β)− 2π
d2

(y cosα + x sinα)
]

= cos
[2π
d2

((γ cos β − cosα)y − (sinα− γ sin β)x)
] (5.7)

with the period ratio γ = d2

d1
. The periods of the resolved Moiré fringes in the basis

(x,y) are:

dmx = d2

γ sin β − sinα

dmy = d2

cosα− γ cos β

(5.8)

Using dmy = tan Θ.dmx , the average inclination Θ of the fringes in an image calculated

using the fringe phase, tan Θ = γ(x, y) cos β − cosα
sinα− γ sin β , and combining Eq. 5.8 with 5.7,

one can calculate the orientation of the fringes calculated from the recovered phase
through the fringes angle Θm:

γ2 =
(
d2

dmx
+ sinα

)2

+
(

tan Θ d2

dmx
+ cosα

)
(5.9)

As explained in Ref. [99], the inclination angles α and β can be retrieved by performing
a rotation scan and fitting the extracted values of dmx to the reorganized equation
depending on only one angle:

1 + d2
2

d2
mx

(1 + tan Θ2) + 2 d2

dmx
(sinα tan Θ + cosα)− γ2 = 0 (5.10)

1 + d2
2

d2
mx

(1 + tan Θ2) + 2 d2

dmx

(
cos β(tan2 Θ− 1)

)
− 1− γ2 = 0 (5.11)

After the recovery of the angular parameters, one can calculate the Θm(x, y) value for
each pixel using the Moiré fringe phase Φ. Considering the surrounding pixels of (k, l),

the local fringe orientation is equal to: Θm(k, l) = arctan
(
dmx
2π

Φ(k, l + 1)− Φ(k, l)
Spix

)
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where Spix is the detector pixel size. When the grating pitches are chosen such that
γ(x, y) = 1 + ∆l

R(x, y) , for instance when p1 = 2p2 and G1 is a π-phase shift grating,
one can eliminate the γ parameter and derive the beam curvature in the direction
perpendicular to the grating lines:

Rx(x, y) = ∆l cos β(1− tan Θm(x, y) tan β)
tan Θm(x, y)(sinα− sin β) + (cosα− cos β) (5.12)

This equation allows to calculate the beam local curvature at each detector pixel posi-
tion. When removing the carrier frequency in the Fourier space, the spatial resolution
of the technique is limited by the fringe spacing, otherwise it is limited by the shear
(cf. Sec. 5.6).

5.5 Phase unwrapping

The problem of phase unwrapping arises whenever a profile is measured with an inter-
ferometry system and the fringe phase is extracted using non fringe tracing methods
[100]. As the phase recovery methods often use trigonometric (arctan or arccos) func-
tions, the measured angular phase map Φ2π(x, y) produces pixels folded into a [−π : π]
interval:

Φ2π(x, y) = [Φ(x, y) + ε0(x, y)] mod 2π (5.13)

where Φ(x, y) is the total phase at a given point and ε0(x, y) the measurement error.
Hence, for phase maps having a dynamic range higher than 2π, the measured phase
values become discontinuous and exhibit indefinite values of integral multiples of 2π.
To obtain a continuous phase distribution, i.e. a distribution that conforms to a
physical surface, phase unwrapping processes are necessary in all directions (cf. Fig
5.4).

More precisely, the unwrapping process consists of determining to which pixels multi-
ples of 2π should be added to produce a phase map as much continuous as possible. In
the last decades great interest was devoted to phase unwrapping, owing to numerous
applications in the fields of interferometry, magnetic resonance imaging and synthetic
aperture radar interferometry. Nonetheless, phase unwrapping remains today an active
research area of digital image processing. Whilst the unwrapping problem is easy to
understand, it is a very difficult problem to settle because of the following difficulties:
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Figure 5.4: a) Phase profile with discontinuities generated from the extraction method. (b) Location of
phase jumps. (c) Corrected phase profile with full range values.

• noise can produce jumps between pixels that are not real (artefacts)

• when the phase gradient becomes important, the algorithm may identify a jump
and add 2π to the value of the surrounding pixels while it should actually be
kept as it is to preserve the correct physical gradient.

• unwrapping methods are usually very sensitive to error propagation and accu-
mulation

Whatever the unwrapping approach used, including the methods from the graph theory
[104, 105, 106], Fourier methods [107, 108] and genetic algorithms [109], it will, most
of the time, only produce an estimation of the solution. For metrology purpose, the
preferred methods are the ones that do not modify the phase value (apart from a factor
multiple of 2π), i.e that do not smooth or change the shape of the phase. Thus, basic
and graph category methods are usually the methods of choice.

Generally speaking, robust unwrappers require long processing times using digital
computers contrary to fast phase unwrappers highly sensitive to noise.

5.6 Study of the shear effect

This section is a reprint of a short paper made for the proceedings of the interna-
tional workshop on X-ray and Neutrons Phase Imaging with Gratings held in 2011
in Tokyo. Although not offering a straight solution to the problem, this short con-
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tribution describes one important limitation when using the grating interferometer
for at-wavelength metrology, especially for characterizing reflective optics. The paper
also gives a more exact method to derive the XGI equation for data acquired using
the phase stepping mode (cf. Sec. 5.3, Eq. 5.4).

Shearing interferometer spatial resolution for at-wavelength hard
X-ray metrology

Sebastien Berujon, Hongchang Wang, Eric Ziegler and Kawal Sawhney

Grating interferometers are very attractive tools to perform at-wavelength metrology
as they are able to measure wave front gradients with tens of nanoradians sensitivity
with a low sensitivity to mechanical vibrations [79, 71, 95, 110, 99]. The ideal on-
line X-ray metrology tool should be able to resolve spatial frequencies up to values
affecting the X-ray performance of the optics. In the case of X-ray reflective optics
characterization, the small grazing incidence angle of the incoming X-ray beam is re-
ducing the beam aperture by a factor of several hundreds with respect to the mirror
length, so that wave front sampling is becoming a severe issue. To increase the spatial
resolution of the X-ray grating interferometer, one would be tempted to decrease the
pitch grating and the detector pixel size. However, in the conventional way of using a
phase grating, the shear effect limits the accessible spatial wavelength range. Indeed
the shear, defined in the plane of the phase grating by the distance between two inter-
fering rays in the plane of pattern recording, limits the resolvable wave front feature
size.

The shear is defined by the two rays of different diffraction orders interfering in the
plane of the second grating, noted G2 (see Fig. 5.5). For example, when using a phase
grating introducing a π phase shift, the interferences in the plane of G2 are mainly
produced by the −1 and 1 diffraction order, making the shear scaling as [76]:

s = 2 λ
p1
Zt (5.14)

where p1 is the pitch of the first phase grating. To maximize the contrast the inter-
grating distance, noted Zt, is often set to a value corresponding to a partial Talbot
order Zt = np2

1/8λ, n = 1, 3, 5, ....

The variation of the phase δϕ of the interferences generated in the plane of G2 is equal
to the wave front difference in the plane of G1 from any point separated by the shear
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Figure 5.5: Illustration of the shearing distance. The shear is defined as the distance separating two rays
in the plane of G1 that interfere in the plane of G2.

amount [90]:
∆W (x) = W (x+ s

2)−W (x− s

2) = δϕ

2πλ (5.15)

This wave front difference can be approximated to the average wave front slope over
the shear length:

∆W (x) = s
∂W (x)
∂x

+ ε(x) = δϕ

2πλ (5.16)

where ε(x) is derived from the Taylor expansion for a central finite difference:

ε(x) =
∞∑
k=1

W 2k+1(x)
(2k + 1)! s

2k (5.17)

When working with a π phase shifting grating, the error in the approximation is then
proportional to the third derivative of the wave front multiplied by the shear square
distance. This value can usually be neglected in the case of a smooth wave front or
when the detector pixel size is many times larger than the shear value [111]. Working
with a grating inducing a phase shift different from π, e.g. with a phase shift of π/2,
can reduce the shear distance as the interferences are created by the ±1 and 0th order.
However the approximate finite difference used in Eq. 5.15 is no longer centered and
the approximation error is then function of s′ = s/2 and ∂2W (x)/∂x2.

Note that when neglecting ε(x), the general interferometer equation can be retrieved
from equation 5.14 and 5.16:

α(x) = ∂W (x)
∂x

' δϕ

2π
pλ

4p1
(5.18)

∂φ(x)
∂x

' p1

λ

δϕ

2δl (5.19)

where α is the local propagation direction of the photons. The shearing transfer
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function can also be translated in the Fourier space by [112]:

F [∆W (x)](ξ) = exp(iπξs)F [W (x)](ξ)− exp(−iπξs)F [W (x)](ξ) (5.20)

F [W ′(x)](ξ) = T (ξ)F [W (x)](ξ) (5.21)

where:
T (ξ) = 2isin(πξs)

s
(5.22)

From this last equation we see that the shearing transfer function acts as a low pass
filter of the wave front spatial frequencies. For spatial frequencies such that s < ξ,
aliasing effects can occur.
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Figure 5.6: Setup of the experiment

The online characterization of a flat reflective optics was conducted at Diamond Light
Source Test beamline B16 [26]: the wave front of a hard X-ray beam after reflection on
a silicon substrate was measured using the grating interferometer at different Talbot
order distances, hence different shear amount (Eq. 5.14). X-rays with an energy of E
= 14.5 keV (∆E/E ∼ 10−4) were produced by a bending magnet on a 3 GeV storage
ring, located at 50 m from the sample under study. The gratings had a pitch of
p1 = 4 µm for the first phase grating and d2 = 2 µm for the second absorbing
grating. The setup of the experiment is displayed in Fig. 12.6. The detector was a
CCD detector with indirect illumination rendering a pixel size of 0.9 µm. The sample
under study was a 100 mm long flat mirror made of silicon. The grazing incidence
angle of the incoming beam onto the mirror was of Θinc = 0.1 deg.

The two gratings were first aligned parallel to each other. Then a phase stepping scan
was performed collecting 32 images when moving the first grating by a total amount of
2p1 = 8µm. This stack of image allowed to accurately recover the phase of the Moiré
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fringes δϕ recorded by the detector [89]. From equation 5, the wave front slope was
calculated and the slope error derived after removal of the linear trend.

0.00 0.07 0.14

-0.3

0.0

0.3

Figure 5.7: Illustration of the shear effect. The same measurement operated at different distances render
a slope error profile which is getting smoother as the shear distance increase.

Figure 5.7 shows the calculated wave front slope error from the collected data for
different Talbot order distances, that correspond to different shear distance. The
shearing distance in our experimental configuration was linearly increased as described
by Eq. 5.14, from 7 µm for the 7th order to 13 µm at the 13th order. From Eq. 5.18,
it is evident that a better sensitivity is obtained when increasing the inter-grating
distance. We also observed that a larger inter-grating distance and then a larger
shear distance allows one to reduce the sensitivity of the device to the surface defects
of the first grating [113]. However, the drawback of increasing shearing distance is
observable by comparison of the four different curves: the higher spatial frequency
features disappear as one would expect, letting only the larger features of the mirror
slope error for larger shear distance. In that case, the spatial resolution on the wave
front is limited by the shear distance. Due to the grazing incidence angle used, the
corresponding spatial resolution of the technique on the mirror is decreased by a factor
1/sin(Θinc). As a consequence (Nyquist theorem), slope error defects smaller than
4 mm in the longitudinal direction can not be resolved when working at the 7th Talbot
distance order and above.

For metrology purpose, grating interferometers show limitations on the achievable
spatial resolution: the shear effect limits the size of the wave front features that can
be resolved. One would be tempted to work at lower order to reduce this shear
distance, but this would be at the cost of a higher sensitivity to noise. One way to
divide the shear consists of changing the phase shift induced by the grating and of
working at a different Talbot order distance. Nevertheless, this configuration is also
made at either the cost of a decrease in contrast and/or of unwanted contribution of
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the second derivative to the measured wave front gradient.

5.7 Comments

As seen in this chapter, one important limitation of the device for metrology purpose
is the shear that limits the spatial resolution. The choice of intergrating distance sets
a trade off between the sensitivity of the device and its resolution. For some advanced
schemes exploited with visible light [112], their extrapolation in the X-ray regime is
difficult and no real solution has yet been found. One of the best solutions one can
think of is the replacement of the phase grating by an absorption one. Such modi-
fication of the XGI would make it usable for the zeroth diffraction order to create a
structured pattern, in a manner similar to the first Ronchi interferometer. This tech-
nique would be also comparable to the coded aperture technique currently developed.
The drawback of using two absorption gratings is an important flux decay that would
have to be compensated by a longer integration time.

Further in this manuscript will be presented some applications of the XGI to optics
characterization and micro sensing using the presented working modes.
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6 The X-ray Speckle Tracking
technique

This chapter is dedicated to an original technique developed in the course of this
thesis project. This new X-ray phase sensing method was inspired from the work of
R. Cerbino on a phenomenon recently described in the X-ray regime: the near field
speckle. The background, some theoretical aspects and applications of such kind of
speckle is briefly presented in the first part. Next, the method is explained through a
reprint of the paper describing the method.

6.1 X-ray speckle and near field speckle

6.1.1 Background

Starting from the 1960s with the invention of the laser, techniques using random in-
tensity patterns, named speckle, have been deeply investigated and developed. They
are now widely used in scientific and industrial applications such as imaging or metrol-
ogy. A speckle pattern consists of intensity contrast features arising from the mutual
interference of coherent radiation that is randomly scatterered. It can be described as
the sum of random phasors:

I(Q, t) ∝ Sc(Q, t) ∝ |
∑

eiQRj(t)|2 (6.1)

The statistical scatterers can either be particles in suspension, transmissive diffusing
light objects or rough surfaces from which light is scattered.

There are numerous techniques using speckle including interferometric holography and
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electronic speckle pattern interferometry (ESPI) in the field of metrology [114, 115]
and stellar speckle astronomy and speckle imaging in the field of astrophysics [116].

Although speckle can be considered as a mature field of optics, it was only introduced in
the X-ray community a few years ago with the technique of X-ray Photon Correlation
Spectroscopy (XPCS). This technique is an adaptation of the Photon Correlation
Spectroscopy and Dynamic Light Scattering techniques used in visible light. It allows
the investigation of dynamics of systems and size distribution profiles of particles
through statistical analysis.

Correlation of speckle in the near field

In most speckle based techniques, the relevant parameter of interest is the transverse
correlation length that can be predicted with the Van-Cittert theorem [117]. The
knowledge of this coherence length is of great importance for the treatment of the
speckle pattern, either to use it as an information carrier or to suppress it when the
effect is considered as noise. In the new XST technique, the wavefield correlation
length that matters the most is the one upon propagation. Indeed, we will show
that the correlation of the wavefield, and then the speckle pattern, upon propagation
permits to use the speckle grain shapes as ’needles’ matching the ray trajectories.

The normal in-depth correlation length ∆z of speckle was in-

Figure 6.1: Membranes
used to generate speckle in
a X-ray beam

vestigated and described for visible light by Leushacke and
Kirchner in [118] and shown to be in the order of ∆z ≈
λ(z/D)2 where D is the aperture of the diffuser and z the
distance of the observation plane from it.

However, at the beginning of this century, Giglio et al. showed
that the observable speckle in the near field had properties
different from the previously described one in the far field
[119, 120]. Near field speckle (NFS), i.e at very short distances
from a scattering object, are correlated in depth over a much
longer distance. This implies that the speckle grains do not
change in size and shape upon propagation. X-ray NFS is

easy to obtain in the X-ray regime due to the very short wavelength of the photons:
the distances involved are much larger than in the visible regime and the near field
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assumptions can hold true for several meters beyond an aperture. The theoretical
properties of the correlation of light in this region was mathematically described by
R. Cerbino [121] and the experimental description for hard X-rays presented a couple
of years later [24].

Apart from the XST technique, a couple of other techniques take advantage of NFS.

6.1.2 Other use of the X-ray NFS

Complex fluids investigation

Colloids in fluid can be investigated at synchrotrons using techniques such as small-
angle X-ray scattering (SAXS) and XPCS [122]. Henceforth, near field X-ray speckle
is offering a new solution for the study of colloidal suspensions in dense, optically
turbid and/or absorbing media. The idea of investigating colloids fluids with X-ray
NFS is motivated by the larger range of scattering wavevector accessible, especially on
the lower end, where the scattering is difficult to isolate from the strong direct beam
[24, 123].

Probing the coherence beam properties with speckle from Brownian particles

The idea of characterizing the transverse coherence of an X-ray beam using Brownian
particles was introduced in the original paper of R. Cerbino et al. introducing X-ray
NFS [24]. The concept was then put into practice for the first time in the following
year [124] on an X-ray undulator beam by Alaimo et al.. The experiment consisted of
imaging at various short distances a sample containing Brownian particles. Next, the
images were processed using Fourier transforms and statistical calculation, allowing
the recovery of the transverse coherence lengths in the plane of the sample.

I take here the opportunity to mention that, in Ref. [124], the data analysis did not take
into account the contribution of a focusing mirror, thus explaining the curious results
obtained that authors interpreted as the presence of an undulator made of two parts.
Similar measurements performed at the ESRF BM05 showed a bump comparable to
the one observed by Aliamo et al. despite the absence of a focusing mirror and of an
undulator.
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6.2 The X-ray Speckle Tracking technique

6.2.1 Introductory remarks

The following section is a reprint of the paper presenting the developed X-ray speckle
tracking technique published in the journal Physical Review Letters and entitled Two-
Dimensional X-Ray Beam Phase Sensing. Despite a long review process, only few
modifications were brought to the manuscript. Meanwhile, a competitive group set an
analogous technique in the principle [125]. From the comparison of the two method
descriptions, the reader may notice several differences in the approach, in particular
regarding the location of the membrane, the description of the speckle features, the
working modes and the achievable accuracy.

6.2.2 First paper

Two-dimensional X-ray beam phase sensing

Authors: Sebastien Berujon, Eric Ziegler, Roberto Cerbino and Luca Peverini

We present a new method to analyze quantitatively the wave front of a partially coherent
x-ray beam. The technique is based on the use of two-dimensional speckle patterns
combined with digital image correlation algorithms and offers a pixel size resolution,
a high accuracy, and a reduced sensitivity to mechanical vibrations thanks to a very
simple setup. The requirements on transverse and longitudinal coherence are also low.
Finally, we show how the method can be used for phase contrast imaging applications
by a single sample exposure process.

For both beam metrology and phase contrast imaging purposes, the X-ray phase sens-
ing techniques are the subject of investigations worldwide. Indeed, several X-ray tech-
niques based on the coherence properties of the beam, are strongly affected by the
local beam characteristics, limiting their performance or degrading their result qual-
ity. Thus, the development of tools able to characterize the wave front with accuracy
in the order of the X-ray wavelength is required. In parallel, thanks to a high power
of penetration, the X-ray photons are able to probe the inner structure of materials.
Hard X-ray imaging techniques sensitive to the phase are then the object of special
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efforts, as they permit to image thick samples or samples presenting a low absorption.

Currently, various techniques such as pencil beam deflectometry, shearing interferom-
etry, Hartmann wave front sensing and transport of intensity equation (TIE) based
methods are available to record and analyze quantitatively the phase of an X-ray beam
wave front, or more precisely its derivative. Among them and apart from the basic
pencil beam technique, the grating interferometer (GI) [66] is the most widely used
advanced instrument due to its accuracy and low requirement on mechanical stability.
Nevertheless, the device still suffers one weakness: it is able to measure the wave front
gradient in only one direction at a time despite ongoing work [78]. Based on a different
principle, the Hartmann sensor [63], does not have this problem: it is able to derive
wave front slopes in both directions from a single acquisition. On the other hand, it
presents a limited resolution and requires a delicate calibration. TIE based techniques
[126] are simple to set but include complex calculations of the data which can suffer
from analysis artifacts. Concerning qualitative X-ray phase contrast imaging, the most
widespread techniques are presently grating interferometry [91], coherent diffraction
imaging [11] and propagation-based techniques [56]. However, they all share the same
problem that they require several exposures of the sample to reconstruct one phase
image.

The X-ray speckle tracking technique (XST) overcomes these limitations, offering a 2D
gradient in a single measurement, a pixel size resolution and an accuracy equivalent to
the one of the instruments mentioned previously. The setup is reduced to a minimum,
requiring only a random phase object and a 2D detector to resolve the high-spatial
frequency features contained in the object. A solid membrane, easy to align and with
low sensitivity to vibrations, produces a random intensity pattern (speckle) that is
static. By recording this random pattern two times in planes located at two different
distances from the membranes or in the same plane at two different time intervals, the
ray paths or their evolution can be tracked using a digital image correlation algorithm
(DIC) capable of subpixel accuracy (cf. Pan [127]). The validation of the method has
been realized on a synchrotron bending magnet source at beamline BM05 of the ESRF.
The fact that it works with a multilayer monochromator proves that the longitudinal
coherence requirement is low.

The XST method can be understood as a high spatial frequency intensity modulation
of the wave front using motionless speckle to trace the geometrical path of the light
passing through each pixel of the detector. The key idea is represented in Fig. 6.2:
each image subset contains a distinct speckle pattern, that acts as a singular marker,
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Figure 6.2: DIC principle. The position of a speckle subset of few pixels is tracked from one image to
the next using a cross correlation criterion.

and can be numerically tracked between images taken at different times or in different
planes in space.

The use of speckle can be found in many X-ray techniques, such as X-ray photon
correlation spectroscopy and coherent diffraction imaging. Contrary to those meth-
ods, the XST technique uses the near field speckle also present in the X-ray regime
as demonstrated by Cerbino et al. [24]: these speckle grains have the property to
not change in size and shape over a distance along the propagation direction that is
inversely proportional to the wavelength and therefore is much larger for X-rays than
for visible light [121]. With X-rays, the distance between planes (Fig.6.2) becomes
large enough to use numerical algorithms to follow the speckle trajectories. Indeed the
curvature of the near field speckle trajectories coincide with the curvature of the beam.
In practice, the distance z over which speckles of size d can be tracked in depth, is not
limited to the deep Fresnel region as described by Cerbino (zNF < dD/λ, where D is
the transversal coherence size and λ the wavelength) but can go until z = D2/λ, corre-
sponding to the transition between the Fresnel and far field regimes [117]. Above that
distance, the distortion of the tracked subsets becomes too important comparatively to
the robustness of the algorithms employed. An additional effect that we can naturally
benefit from is the divergence of the X-ray beam: for a beam of divergence α, the near
field distance is increased by a factor 1/(1− αd/λ) and the geometrical magnification
of the speckle pattern is small enough to obtain usable correlation coefficients in the
numerical algorithms. Hence, the tracking gives excellent results over a range that can
vary from several centimeters to many meters, depending on the X-ray energy, the size
of the scattering objects and the beam divergence, as we shall demonstrate with the
examples below. To produce a speckle pattern, we used membranes with dephasing
objects smaller than the transverse beam coherence but large enough to be resolved
with our detector. These membranes, e.g. biological filtering membranes or abrasive
paper, are thermally stable under monochromatic X-ray beam.
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Figure 6.3: Two possible configurations. In configuration (a), the sample is removed to obtain a reference
beam and work differentially, while in configuration (b) two shots are taken at different distances from the
membrane to act as a Hartmann sensor, the sample remaining in the beam.

Two configurations are presented in Fig. 6.3. In each case, only two speckle images
are acquired, allowing the monitoring of the ray path for each pixel using the DIC
algorithms. One should understand the fundamental difference between those configu-
rations. The scheme in Fig. 6.3.(a), labeled “differential configuration”, uses a reference
speckle image plus another image with a phase object introduced in the beam path.
When using this setup, the displacement vectors calculated give information about
the wave front distortion introduced by the phase object only. The alternative setup
in (b), labeled “absolute configuration”, uses two images taken at different planes in
space. In this latter case, calculation from the two speckle images will give access to
the quantitative wave front at one of the image planes, comprising the distortion to
the wave front induced by the elements present along the beam path: optical elements,
windows, etc... Anyhow, the displacement vector can be compared in both setups to
the one used in a Hartmann sensor, i.e. the shifting of a spot from its theoretical
position.

The DIC algorithms [127] are usually used to describe the distortion of a material
under mechanical strain. The so-called mapping function is commonly employed, to
define the motion of a subset centered on a given pixel Pini = (x0, y0) in the unitary
base (x,y):

x′0 = x0 + ξ(x0, y0)

y′0 = y0 + τ(x0, y0)
(6.2)

where ξ(x0, y0) and τ(x0, y0) reflect both the translation of the target subset as well as
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its distortion from the reference subset in (x0, y0). The DIC scheme is usually a two
steps procedure. The first one is the calculations of the displacement vectors of the
subsets with pixel accuracy. Those results are then used as an input for the second
step in which a subpixel accuracy algorithm is applied. Indeed, these algorithms are
able to calculate displacements with a reproducibility of a hundredth of a pixel when
providing an initial guess within one pixel radius from the final solution.

Among the algorithms able to calculate the displacement vector of a subset within
a one pixel accuracy [127], the zero-normalized cross-correlation (ZNCC) is the best
choice. The ZNCC criterion evaluates a similarity factor between a subset of M points
in the reference image f and a target subset centered on (α, β) in a second image g:

C(α, β) =
M∑

x=−M

M∑
y=−M


[
f(x, y)− f

]
[g(x′, y′)− g]

∆f∆g

 (6.3)

where f and g are the mean value of the subsets and ∆f and ∆g their respective
standard deviation. Then, for each subset around a given pixel, the displacement
vector is the one that verifies ν =

−−−−−−−→
(Pini, Pmax) where Pmax = (α0, β0) and C(α0, β0) =

max(α,β) C(α, β). This correlation criterion being the least sensitive one to spatial and
temporal intensity variations in the beam, offers the best choice in terms of robustness.
This allows one to perform wave front analysis and imaging downstream a moderately
absorbing sample. For the second step, several DIC algorithms with subpixel accuracy
have been developed over the last few decades (cf. [127]). In the following experiments,
for time consumption issue, we used the MATLAB c© peak finder algorithm that, like
the other algorithms of its class, does not consider the deformation of the subset,
treating only the rigid translation of the subset ν and:

ξ(x0, y0) = ν.x = νx

τ(x0, y0) = ν.y = νy
(6.4)

While this is enough to characterize the first order gradient of the wave front using
Eq.6.5, taking the subsets distortion into account would provide additional information
about the second derivative of the wave front, i.e. the wave front curvature [128].

Once the ray paths have been calculated, the phase recovery is done in both configu-
rations, using the relationship linking the local angular deviation of the beam, i.e. the
wave front slope, to the gradient of the phase in both directions:

Θn '
νx,y
∆l = ∂W (x, y)

∂n
= λ

2π
∂φ(x, y)
∂n

, n ∈ {x, y} (6.5)
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Figure 6.4: (a) Reconstruction of the ESRF BM05 wave front after double reflection on Si(111) monochro-
mator.(b) Wave front departure from a perfect spherical wave front.

The attainable accuracy depends directly on the resolution dpix of the 2D detector, and
on the working distance ∆l between two image planes or between the membrane and
the detector according to the configuration used (Fig. 6.3). The smallest deviation
that can be measured is given by: Θmin = dpix × δCCC/∆lmax where δCCC is the
pixel accuracy of the Cross Correlation Criterion. In the experimental setup we used,
δCCC ≤ 0.05 pixel, ∆lmax = 200 mm and dpix = 0.8 µm, leading to a theoretical
accuracy of Θmin ∼ 0.1 µrad, which is already as good as the current GI and Hartmann
instrument. A further gain in accuracy of one order of magnitude would already be
reachable using a smaller pixel size detector, and/or by placing the detector further
away from the membrane.

A series of experiments were conducted at beamline BM05 of the ESRF, where the X-
rays are produced by a bending magnet on a 6 GeV electron storage ring. The working
energy was set to E = 17keV (λ = 0.073 nm) either with a multilayer monochromator
(∆E/E = 10−2) or with a double flat Si(111) monochromator (∆E/E = 10−4). With
the experimental station placed at 40 m from the source, the transverse coherence
length is approximately 9 µm horizontally and 25 µm vertically [129]. The diver-
gence of the beam is 2.4 mrad horizontally and 180 µrad vertically. The beamline
specifications are detailed in Ref. [25].

A first simple illustration of the method, using the scheme of Fig. 6.3.(b), is given in
Fig. 6.4: (a) is the reconstruction of the beam wave front after the Si(111) monochro-
mator. Slits were used to set the beam size to 2.5× 2.5 mm2. The field of view of the
camera permits to analyze the beam with a micrometer resolution over several square
millimeters. The wave front error from the perfect spherical wave front is shown in
Fig. 6.4.(b). We can observe that, over the full aperture, the wave front error is much
larger than the wavelength. However, the dephasing over any area of size 9× 25 µm2

(coherence area) is never larger than λ/2.
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Calc. distance
Direct Beam 40.5 m 40.7 m
Bent mirror f = 350 mm 352 mm
Monolithic mirror f = 60 mm 60.5 mm

Table 6.1: Comparison between direct length measurements and their determination by the present
technique.

Using the same configuration, we compared the wave front derived from the XST
technique when various optical elements were inserted in the beam. The 2D detector
was mounted on a precision translation stage with a reproducibility of 1 µm. The
X-ray energy was defined with a multilayer monochromator. An abrasive paper made
of SiC powder with a mean grain size of 5 µm was placed at 34 m from the source, i.e.
6.5 m upstream from the detector. For the direct beam measurement, images of the
speckle pattern produced by the abrasive paper were imaged at two different positions
separated by a distance ∆l = 200 mm. The coupling of a Frelon CCD camera to
an optical system (indirect illumination) was equivalent to using a detector with a
pixel size of 0.8 µm (effective pixel size). From these two images, the wave front was
numerically reconstructed [130] and fitted to an ellipsoid. The same procedure was
repeated after insertion of either a dynamically-bent mirror or a monolithic focusing
mirror. This time the effective pixel size was of 5.8 µm, the membrane was situated
around the focal point of the mirror and ∆l = 120 mm. The calculated values for the
wave front curvature are presented in Table 6.1; they are in good agreement with the
experimental conditions. As phase information can be collected for every pixel, 2D
phase imaging becomes realizable. Phase imaging is of great interest for sample with
low absorption, e.g. made of light materials, or sample made of different materials
with similar attenuation coefficients. For this experiment, the scheme in Fig. 6.3.(a)
was used with the sample placed on a translation stage and a fixed cellulose acetate
membrane with a pore size of 0.8 µm located 600 mm downstream to generate the
speckle pattern. The 2D detector arrangement had an effective pixel size of 0.8 µm

and was placed ∆l = 940 mm downstream from the membrane. The sample situated
at a distance of 40.5 m from the source, consisted of a PMMA cone introducing a
phase gradient. The cone radius was 4 mm and the opening angle ϑ = 140 deg. The
complete field of view of the detector was illuminated. The tip of the cone and the
detector were both centered with respect to the beam. Sequentially, a first exposure
was acquired with the sample present; a second one was acquired after sample removal.
The displacement vectors were then calculated for every pixel and the wave front
reconstructed. Absorption, estimated to be β ≈ 10−10, had no effect; nevertheless the
displacements of the speckle allowed a perfect reconstruction of the cone (Fig. 6.5). At
a distance of 940 mm, the radial displacements of the speckle subsets in the cone, equal
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to 0.41 pixel, correspond to an angular deviation of 0.35 µrad. From the expression
linking δ to the wave front gradient ∂W (xij ,yij)

∂x
= δ × tan((π − ϑ)/2), we obtain δ =

9.6 × 10−7 which is in very good agreement with the refractive term of the optical
index for PMMA at 17 keV [131].

When imaging a low absorbing
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Figure 6.5: Displacement vector field at center(a) and phase-
map reconstruction of the cone sample(b). The blurs in the
phase map correspond to phase accidents that are due to the
presence of micro air bubbles in the glue of the sample holder.

sample, one can get direct access
to the absorbtion map by simply
dividing the two images recorded.
However, an important point to
take care when imaging strongly
absorbing sample or when using
very low flux, is to have a mini-
mum of counts per pixel to ensure
trustable correlation calculations
in the DIC algorithm. Moreover,
one has to be aware of the size limit of the phase objects that can be resolved; at the
position of the membrane, the features of the wave front need to be larger than the
speckle grains to not disturb too strongly the speckle pattern. A simple way to over-
come this limit and gain resolution, is to insert an optical focusing element into the
beam and adjust the membrane and sample positions to obtain the required speckle
size and sample features through magnification.

Since the beam passes through the membrane with almost no absorption and only one
exposure is required for the sample, the sketch shown on Fig. 6.3.(a) is dose efficient,
therefore suitable to the analysis of biological tissues for which the dose absorbed is
an issue.

In conclusion, we have exposed the basis and some illustrations of an efficient technique
for accurate quantitative two dimensional phase sensing of a partially coherent X-ray
beam. The presented examples open perspectives for the XST method at synchrotron
and X-FEL sources, for instance in bio-imaging and inverse ray tracing. The optical
simplicity of the experimental configuration may seem to be tempered by the extensive
need for computing time. This is actually not a true limitation considering that the
used algorithms are perfect candidates for parallel implementations on, for example,
some of the new GPU clusters available on the market.
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Figure 6.6: Digital image correlation geometry consideration.

6.2.3 Wavefront local curvature

In the previous paper, only the rigid translation of the subsets was considered in the
peak finder DIC algorithm, and we used:

ξ(x0, y0) = u , τ(x0, y0) = v (6.6)

However, as already mentioned, the consideration of the subset distortions provides
additional information on the local higher derivatives of the wavefront. For instance,
in order to extract the local curvature in the pixel (i, j) defined by κij = 1

Rij
≈ ∇2W ,

one has to consider the second order subset distortion [127]:

ξ(x0, y0) = u+ ux∆x+ uy∆y

τ(x0, y0) = v + vx∆x+ vy∆y
(6.7)

In this set of equations, ∆x = xi − x0 and ∆y = yj − y0 are the distances from the
subset center P0 to a point p′ of the subset. The coefficients noted ux, uy, vx and vy

are the first-order displacement gradients of the reference subset, and ux and vy can
also be seen as the magnification Mij of a subset between images.

To extract the subset distortion coefficients characterized by the coefficient
{ux, uy, vx, vy}, more advanced tracking algorithms, like the ones of the Newton-
Raphson category, can be employed.
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Using the relation Mij = 1 + ∆l
Rij

, the local curvatures in the (x,y) base of a subset

centered in P (xi, yj), becomes then:

κxij = ux − 1
∆l , κyij = vy − 1

∆l (6.8)

6.2.4 Detector distortion

The detectors used in this project to record the images were based on the CCD tech-
nology, the camera using indirect illumination, a scintillator converting the X-rays
into visible light. Despite the good quality of the visible light microscope objective
employed to image the scintillator, distortion still occurs from this optics. To charac-
terize it and then correct for this unwanted effect, one can use the XST technique to
calculate the imaging system distortion.

The idea is two take two images of the same speckle pattern but translating the detector
by a small quantity t between the two acquisitions. The expected transformation
between the images is therefore a rigid translation of all subsets and for a distortion
free detector we shall have vij = −t , ∀{i, j}.

For a very small displacement ~t, the local distortion factor of the calculated wavefront
gradient (γx, γy) in the basis (x,y) is :


γxij ,=

vij.ex

t.ex

γyij ,=
vij.ey

t.ey

(6.9)

In the differential mode, because the local detector distortion is locally small (<2 %
even in the corners) and the displacement vectors ~v have a maximum amplitude of a
few pixels, the error induced by the detector distortion on the measurement can be
neglected. However, this distortion will have to be taken into account for restoring the
original image shape.

When working in the absolute mode, the subsets in two images corresponding to the
same speckle may be located in area of the detector field of view sufficiently distant
from each other to call for a compensation of the detector distortion induced by the
detector.
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In this context, new array detectors free from distortion can be seen as natural solutions
to this problem.

6.3 Broader comments

Deflection based techniques (DBT) are phase sensitive methods that calculate local
angles α in the near field to recover the corresponding local gradient of the wavefront
W through the basic equation: α = |∇.W | [9]. For this reason, among others [132],
they differ from the propagation based ones that are sensitive to ∆W , that is the
second derivative of the wavefront, in other words its curvature.

As seen previously, DBT includes the grating based methods, such as shearing interfer-
ometry, Hartmann and coded aperture devices, and from now on the speckle tracking
methods. These techniques all share the principle of wavefront modulation with fea-
tures whose spatial frequencies are high in comparison to the ones of the object under
investigation, in order to retrieve the local deflection angle.

Since the making up of the XST technique, alternative techniques made also a number
of significant advances. At this stage it may be interesting to put the XST techniques
in perspective with its competitors, although some aspects were already mentioned
previously.

Until recently X-ray shearing interferometers [132, 91, 99, 133, 92], based on phase
and absorption gratings [79] and the use of coherent light to generate interferences
could only measure the wavefront gradient in one direction because of the challenging
fabrication of 2D gratings. This issue being now overcome [94, 95], devices can now
measure the phase gradient in two directions within a single scan. Advantages of such
a device include the possibility of operating with a laboratory source [68], the ability
of providing a scattered phase map [134] and finally the possibility of using a second
analyzer grating. The latter is of great interest when using a large detector pixel
size and hence a large field of view, because it creates large interference fringes that
translate the irresolvable small fringes created by the phase grating in a resolvable
pattern [134].

A mode where the two gratings are not parallel as described in Sec. 5.4, also permits
to recover the beam phase in a single image [103]. However, although this mode is
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suitable for time resolved experiments, i.e for the study of dynamic samples, it still
suffers from several processing drawbacks. Another way of achieving quantitative
single shot imaging consists of removing the second grating in combination with the
use of a more resolving detector [135]. New schemes were also realized showing how
to minimize the dose delivered to the sample when performing grating interferometry
tomography [70]. Other work [136] showed a way of weakening the constraint of precise
positioning of the second grating by widening the spectral bandwidth. Regarding
microscopy applications, it is worth noticing that the shear effect inherent to this device
will always limit the spatial resolution to values of several micrometers, whereas this
effect is not experienced when working with a pixel size larger than the shear distance
[91, 133, 71, 75].

Instead of using the grating diffraction effect, coded aperture [64, 65] and Hartman
instruments [63, 62] put the effort on tracking the propagation direction of beamlets
created by some absorbing grid patterns. Great progress has been realized with these
devices, both on the hardware (grating and detector) and on the processing methods.
Thanks to a pre-calibration, they are also able to provide quantitative phase analysis
from data acquired from a single exposure.

As mentioned earlier, the XST technique presented [137] in this chapter also falls in the
deflection angle category. Beyond its advantages of using a simple setup without any
grating, as also mentioned by Morgan et al. in some approaching parallel development
[125], the technique is perfectly suited to the study of a dynamic sample. Here, neither
the shear effect, nor the aperture separation distance are factors limiting the spatial
resolution. Moreover, membranes producing statistically uncorrelated speckle of any
size can be found on the market. Hence, a detector with improved resolution will
readily allow resolving smaller spatial features of the sample. Another perspective for
improving the technique would consist of replacing the phase object with an object with
similar spatial features but presenting some (small) absorption, in order to match the
degree of coherence available. Such substitution would permit the use of the technique
with a laboratory source and access a greater community of users and applications.

The field of DBT being presently very active, referencing recent advances made by
other groups within the past year was necessary for a fair evaluation/comparison of
the various techniques and to clarify the complementary aspects of our method with
alternative approaches. This section emphasizes the point that the XST technique
can address applications requiring high resolution as we shall see in Sec. 12.2 (down
to the nanometer scale) and is well suited to the study of dynamic samples. It is also
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underlines that grating interferometers are better suited to applications involving a
large field of view, considering their ability to detect features at a scale below the one
of the detector thanks to the analyzer grating and the scattering effect [138, 139, 140].
Finally coded aperture and assimilated methods, thanks to the incoherent light they
use, can find many applications with laboratory sources for single shot imaging [141].
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generalized scheme

7.1 Introductory remarks

This chapter introduces a new method that will make a cross-over between the XST
and XGI approaches. It can be understood as a generalization of the XGI. The key
idea is to consider a speckle pattern as being the superimposition of a series of fringe
patterns with multiple spatial frequencies, as depicted by the Fourier transform. More
mathematically advanced processing would permit the recovery of the phase and of
scattering maps in a way similar to the XGI. Like XST, this imaging method works
either differentially to suit the study of a transmission sample or optics, or in absolute
mode when characterizing the phase state of an X-ray beam.

This method is also based on speckle, i.e a pattern seen as a sum of random phasors.
Yet, the XST technique and the new generalized scheme are different in approach
although they both fall in the deflection technique category as sketched in Fig. 7.1.
The quantity measured within XST and the new generalized scheme are not fully
equivalent as represented by the angle α in Fig. 7.1.(a) and (b). For the XST technique
(Fig. 7.1.(a)), the measured angle is located in the plane of the wavefront modulator
and corresponds to the propagation direction of the light. By contrast, in the XGI
and generalized schemes, the measured angle is located in the plane of the detector as
we shall see in the next section. While this latter quantity is only an approximation
for the light propagation direction, it holds true for small angles, which is the case for
the X-ray regime.

The rest of this chapter is a reprint of the paper entitled "X-ray multi modal imag-
ing using a random phase object", published in the journal Physical Review A

http://pra.aps.org/abstract/PRA/v86/i6/e063813
http://pra.aps.org/abstract/PRA/v86/i6/e063813
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and describing the method together with some examples of applications.
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Figure 7.1: Fundamental difference between the XST technique (a) and the generalized scheme (b).

7.2 Second paper

X-ray multi modal imaging using a random phase object

Authors: Sebastien Berujon, Hongchang Wang and Kawal Sawhney

We demonstrate an extension of the X-ray grating interferometer three modal imag-
ing method to a generalized stepping scheme using a phase object with small, random
features. The method allows the recovery of the absorption, scattering and two dimen-
sional phase image of the sample from a raster scan of the phase object. An additional
extension of the method to recover the effective wavefront curvature is also described.
The technique provides fine sensitivity, high spatial resolution and has only low require-
ments on spatial and longitudinal coherence of the X-ray beam. Imaging modes and
processing methods are explained, and an experimental demonstration of the technique
is provided by imaging a feather and the quantitative characterization of a compound
refractive lens.
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7.2. Second PAPER

7.2.1 Introduction

Imaging has been one of the main applications of x rays since their discovery. Whilst
the highly penetrating nature of x rays is commonly used to reveal the interior of
material objects, the scientific community has also exploited the short wavelength of
x rays to image sample features down to the nanometer scale. To achieve high spatial
resolution or image light material, new X-ray imaging techniques exploiting the phase
of the waves were developed over the two last decades [132]. One such technique is
X-ray grating interferometry.

The use of X-ray grating interferometers (XGI) has quickly spread following the adap-
tation of the device from visible optics [75, 76] to hard x rays [66, 91, 132] and the
demonstration of coherence mapping. Today, a large community takes advantages of
this device using both synchrotron and laboratory sources [68, 92]. Indeed, its imaging
capabilities make it very attractive: in addition to an absorption map of the sample,
it also provides the phase shift and the scattering map induced by the sample [134] on
an X-ray beam.

The phase shift corresponds to both the delay and the local angular deflection on the
photon beam propagation by the sample. Recovering this valuable information directly
permits the deduction of the refractive index δ of the sample. Such information is of
particular interest for low-Z materials where the value of δ is many orders of magnitude
larger than the absorption factor β of the optical index n = 1− δ − iβ.

For many years grating interferometers were limited to the measurement of the phase
gradient in only one direction due to the technical challenges in fabricating two di-
mensional gratings. However, the issue has recently been overcome [94] allowing the
recovery of the two directional phase map in a single scan. A few researchers also
reported the possibility of using XGI in a magnification geometry in an attempt to
improve the spatial resolution of the device for imaging purposes [142, 110].

The idea of mapping the scattering properties of an object came out only a few years
after the extension of the grating interferometer to the X-ray regime [134]. The prin-
ciple is to calculate the local reduction of the coherence which arises from small angle
scattering in the sample. The mapping of this scattering effect is also sometimes called
dark-field image and reflects the degree of inhomogeneity at the nanometer scale inside
the sample.
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Figure 7.2: Schematic of a two dimensional X-ray grating interferometer. Gratings are placed in an X-ray
beam downstream from a sample to create an interference pattern. The distortion of this pattern from the
one obtained when no sample is inserted into the beam, permits the recovery of the phase shift induced
by the sample.

A schematic of an XGI is shown in Fig. 7.2. The grating interferometer is also
sometimes called the ’shearing interferometer’ because it relies on a phase grating to
split or ’shear’ the beam into two diffracting orders. The two parts of the beam then
interfere further downstream from the phase grating, creating a fringe pattern. The
position and amplitude of these interference fringes allow the calculation of the phase
shift and absorption of the sample. Often the pixel size of the detector is larger than
the grating period, and placing a second absorbing grating with a tuned pitch in front
of the detector creates larger resolvable Moire fringes due to the aliasing effect. For
accurate phase retrieval, the XGI is usually used in a scanning mode where several
images are acquired whilst moving one of the gratings relative to the other in a plane
transverse to the beam. In interferometry such a process is called phase stepping [87].
From these images, Fourier methods are used to recover the beam gradient through
the fringe phase calculation.

The fabrication of the XGI’s gratings is a technical challenge [79], especially when
the gratings are designed to work at high energy. The grating lines are required to
have a period of a few microns to achieve good sensitivity and spatial resolution of the
device. At the same time, the aspect ratio needs to be very high to induce a phase
shift large enough to produce a workable contrast, leading to line depths ranging from
15 µm to more than 100 µm when designed to introduced π phase shift at high energy
[85]. These gratings are usually made by electron beam writing or XUV lithography
and wet etching on silicon substrate. The second absorbing grating has its lines filled
with heavy elements such as gold deposited by electroplating. Hence, the grating pitch
limits the spatial resolution of the interferometer, whilst the absorption of the device
at lower X-ray energies may sometimes be an issue. Finally, as one might expect, the
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quality of the grating can affect the results [113].

In spite of the advantages of the XGI, researchers are still exploring and developing
improved or derived methods [143, 64]. These efforts are motivated by the desire to
image matter at ever higher spatial resolutions whilst diminishing and minimizing the
X-ray dose delivered to the sample.

A new X-ray beam phase sensing technique has recently been developed for imaging
and metrology purposes: this technique [137, 125] relies on the use of X-ray near-
field speckle [24] combined with cross-correlation algorithms. In addition to several
other advantages, the technique has been shown to provide a few tens of nanoradians
sensitivity in the measurement of wavefront gradients, and spatial resolution on the
micron scale. Despite promising possibilities for imaging using the differential mode,
in which the contribution of the sample on the phase of the X-ray beam is isolated,
the technique suffers from several drawbacks, including: measurements are limited
by the magnification of the speckle upon propagation whilst using the absolute mode
to recover the effective phase of the beam; the spatial resolution of the technique is
limited by the size of the speckle grains; and finally scattering maps are not accessible,
unlike with XGI.

We propose a generalized method, derived from the XGI that uses any phase generated
pattern or speckle rather than a periodic grating. Here a simple membrane with ran-
dom features replaces the phase grating. Using a complete mathematical description
of the stepping scheme, we show that the requirement of a grating with a perfectly
known pitch, as employed in the XGI, is not essential. The method provides the two
dimensional beam phase gradient, employs a simple setup, and achieves higher spatial
resolution than the current XGI devices. It is also shown that the XGI is a special
case of the generalized method presented.

7.2.2 Theory

Basis

The concept of this paper is to consider a sample as a time invariant system represented
as a transfer function h, which is linked to the optical index n of the sample. For the
following, we consider a monochromatic beam propagating through a sample in the
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z direction of a frame (x,y, z) and with transverse coherence lengths of the order
or smaller than the sample features. Placing an imaging detector downstream of
the sample, the intensity collected Idet at a point T = (x0, y0) will be equal to the
square modulus of the probing wave u0 convoluted with the optical transfer function
hT (x, y) = h(x0, y0, x, y) [5, 8]:

Idet(x0, y0) = |u(x0, y0)|2

=

∣∣∣∣∣∣
+∞∫∫
−∞

h(x0, y0, x, y)u0(x, y)dxdy

∣∣∣∣∣∣
2

=
+∞∫∫∫∫
−∞

hT (x1 − x0, y1 − y0)h∗T (x2 − x0, y2 − y0)

< u0(x1, y1)u∗0(x2, y2) > dx1dy1dx2dy2

(7.1)

One approximation is made for the following treatment: the small transverse coherence
length of the beam is neglected and the field correlation function 〈u(x1, y1)u∗(x2, y2)〉 =
I0(x1+x2

2 , y1+y2
2 )ψ0(x1−x2, y1−y2) is taken as incoherent illumination. This means that

ψ0(x1 − x2, y1 − y2) ≈ κδ(x1 − x2, y1 − y2) with δ representing the Dirac distribution.
Whilst this approximation for the width of the function ψ0 does not affect the beam
phase sensing, the partial coherence of the X-ray beam will be responsible for some
edge contrast in the absorption image. Denoting F as the Fourier transform operator,
Eq. 7.1 can be then written using the convolution theorem and the two functions
F [|h|2] = H and F [|u0|2] = Ĩ0 [5, 8]:

Idet(x0, y0) = κ

+∞∫∫
−∞

|hT (x− x0, y − y0)|2I0(x, y)dxdy

= F−1
[
κH(x0, y0, ξ, ν).Ĩ0(ξ, ν)

] (7.2)

The way to recover the optical transfer function h of the sample is to feed the system

gref gsamp

H /

arg(H)

|H|

~ ~

Figure 7.3: Processing representation
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with a reference signal |u0|2, which is a two dimensional (2D) pattern, and compare
this with the signal collected at the exit of the system. Figure 7.3 schematically
describes this scheme which is a common problem in physics and signal processing.
More precisely, it consists of estimating the transfer function H(x0, y0, ξ, ν) = HT (ξ, ν)
of the sample which is applied to the reference signal, and to do so for each pixel T
determined by the index pair (k, l):

Hkl = g̃sampkl

g̃refkl

(7.3)

where the operator ∼ denotes the Fourier transform of the function g̃ =
F [g(x, y)](ξ, ν). The functions gref (x, y) and gsamp(x, y) respectively describe the
2D optical intensity recorded when the sample is out of the beam(flat field reference)
and when the sample is introduced into the beam. These functions reflect physical
recorded signals and are then bounded by a finite subspace Γ of size Γx × Γy. Thus,
the Fourier transform is treated in the following in the exponential Fourier series limit:

g̃(ξ, ν) = 1
Γ

∫
Γ
g(x, y)e−i2π(ξx+νy)dxdy (7.4)

with ξ = p/Γx , ν = q/Γy , (p, q) ∈ Z2 the set of integers.

We show how to recover |H|, which represents the absorption and decrease of coherence
brought about by the sample, and also demonstrate that the argument arg(H) relates
to the beam gradient.

Stepping scheme

Instead of considering a grating producing interference, consider a phase object with
high frequency features creating local phase shifts on a partially coherent wavefront.
As with many propagation based contrast imaging techniques [23, 144, 126], the object
will create interference contrast after propagation over a short distance z due to the
local curvature of the beam. This phenomena can be described by the Transport of
Intensity Equation [145]:

2π
λ

∂I

∂z
= −∇.(I∇ϕ) (7.5)

with λ the wavelength. In Eq. 7.5, I is the recordable intensity and ∇ represents the
transverse nabla operator in the plane (x,y) perpendicular to the beam propagation
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direction z. The phase of the beam is ϕ, and a surface defined by ϕ(x, y, z) = cst is
the wavefront W .

When interferences arise from spatially uncorrelated features, it creates a random
interference pattern called speckle [117]. With hard x rays and up to a certain prop-
agation distance, a more specific form of speckle is obtained: the ’near field speckle’.
This kind of speckle, used here, has been demonstrated to be closely related to the
form and structure of the scattering object [24].

The experimental setup consists of mounting a phase object with small features, down-
stream of a removable sample, on a piezo motor that allows translation in the two
transverse directions of the X-ray beam. Likewise, a 2D detector able to resolve the
near-field speckle pattern is placed into the beam. In this manner one can perform the
so-called stepped two dimensional raster scan of the phase object. In the following,
each scans consists ofM×N points, defining a surface Γ of the high frequencies phase
modulating scanned object.

Performing such scans, one records image stacks defining a 4 dimensional signal, which
is used for the recovery of the transfer function. Indeed, performing two similar raster
scans, one with the sample in the beam, and the other without the sample, one obtains
two sets of 2D data for each pixel: (k, l): gsampkl when the sample is in the beam; and
grefkl when the sample is removed (this is often referred to as the flat field reference).

The average intensity µ, the standard deviation σ and the energy ε collected in a
recorded pattern g in a given pixel are defined by:

µ = 1
Γ

∫
Γ
g = g̃(0, 0)

σ =
√

1
Γ

∫
Γ
(g − µ)2

ε2 =
+∞∑
−∞
|g̃|2 =

∫
Γ
|g|2

(7.6)

Absorption imaging

An absorption image is defined as the ratio of the number of photons falling on a pixel
of the detector with and without the sample present in the X-ray beam. Retrieval of
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Figure 7.4: Schematic of a generalized stepping imaging setup. A phase object with small features is
mounted on a 2D piezo motor beyond the sample, and a highly resolving detector is placed at a distance
d. The 2D raster scans of the scattering object allows one to calculate the scattering vector v for each
pixel when the sample is introduced into the beam.

the attenuation A image is calculated by taking the ratio of the energy collected in
each pixel in the scans:

A(k, l) = 1− εsampkl

εrefkl
(7.7)

Because the x rays are only partially coherent, most of the recorded signal comes from
non-interfering, background light. Using the approximation ε ≈ µ, one can retrieve
the formulae based on the use of the Fourier transformed signals:

A(k, l) ≈ 1− µsamp
µref

= 1− |g̃
samp
kl (0, 0)|
|g̃refkl (0, 0)|

= 1− |H(0, 0)|
(7.8)

Phase imaging

In the hard X-ray regime, due to the weak interaction of the photons with matter,
deflection angles induced by the refraction are usually very small, i.e. much less than a
degree. When an object is introduced into the X-ray beam, the propagation direction
of the light will be slightly changed, and the speckle pattern recorded will be modified
relative to its reference ’version’ when no sample was present. This idea is the basis of
many deflection angle technique such as the Hartmann sensor [62], the X-ray Speckle
Tracking technique [137], or the XGI [90] in which wavefront gradients are measured
through displacement of intensity modulation pattern. The deflection angle α is equal
to the wavefront gradient α = |∇W |, and the transverse local shift v of the pattern
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will be equal to [73]:
v = d.∇W = d

λ

2π∇ϕ (7.9)

where d is the propagation distance from the reference phase objet to the detector.
Hence, the recovery of the shift v between recorded signals as shown in Fig. 7.4 can
lead to the knowledge of α and the local beam phase.

Here, the recovery of v is achieved using Eq. 7.3 by separating the amplitude and
phase of the transfer function H:

g̃sampkl = Hkl.g̃
ref
kl = |Hkl|.g̃refkl .e

−iδΦkl (7.10)

In this expression, the argument ofH, δΦ(ξ, ν) = arg(H(ξ, ν)) is, according to the shift
theorem, the delay between the two signals gref and gsamp. A traditional method to
derive this phase component is to use the 2D cross-correlation operation with the two
recorded signals. Dropping the pixel subscripts for the sake of clarity, and separating
the orthogonal components of δΦ(ξ, ν) = δΦx(ξ) + δΦy(ν), we have:

gsamp ? gref ⇔ g̃∗samp.g̃ref

= |H(ξ, ν)|.|g̃ref (ξ, ν)|2e−i(δΦx(ξ)+δΦy(ν))
(7.11)

where ? denotes the correlation operator, and ∗ the complex conjugate. Using the
phase fn the exponential part of this last equation, one can deduce v using the shift
theorem:

v = δΦx(ξ)
2πξ ex + δΦy(ν)

2πν ey (7.12)

And finally combining Eq. 7.9 and Eq. 7.12, one can calculate the beam phase gradient
in the two orthogonal directions:

∂ϕ

∂x
= k

d
(v.ex) = k

d
.
δΦx(ξ)

2πξ
∂ϕ

∂y
= k

d
(v.ey) = k

d
.
δΦy(ν)

2πν

(7.13)

where in this set of equations k stands for the wavenumber k = 2π/λ. In practice,
for a better accuracy in Eq. 7.12, one uses the frequencies (ξmax, νmax) corresponding
to the peak of maximum cross-spectral power max(ξ,ν)>0(|H(ξ, ν)|.|g̃ref (ξ, ν)|2). In
Eq. 7.11, one can also note that δΦ = Φsamp − Φref with Φsamp = arg (g̃samp) and
Φref = arg (g̃ref ).

After calculating the local phase gradients for each pixel, the global reconstruction of
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the beam phase can be performed by simultaneously integrating the two transverse
gradient maps [130, 146].

Darkfield imaging

The darkfield image, sometimes called the scattering image, is a map of the local
decrease of coherence of the beam induced by passing through the sample [134]. With
the XGI, the variation of coherence in the section of the beam illuminating a given
pixel is calculated by taking the ratio between the fringe amplitude of the sample scan
and the reference scan, normalized by the absorption.

From a more general perspective, the partial beam coherence variation affects the
amplitude of the interference created by the wavefront modulation pattern [5]. In
other words, the coherence effect translates into the standard deviation of the recorded
intensity pattern. Hence, to quantitatively map the coherence decrease C due to
the sample scattering properties, one can calculate the ratio of the signal standard
deviations between the two scans. Furthermore, this ratio has to be normalized by the
absorption to account for the lower number of photons falling on the detector when
the sample is inserted in the beam. The values of interest for the two signals are then
the normalized standard deviation µ/σ, aka coefficient of variation, which leads to the
expression of the scattering factor:

1− C = ζkl = µ(grefkl )
µ(gsampkl )

σ(gsampkl )
σ(grefkl )

(7.14)

From the definition of σ in Eq.7.6 and dropping once again the subscript kl for the
sake of clarity, one can write:

ζ2 =
µ2
ref

µ2
samp

.

∫
g2
samp − µ2

samp∫
g2
ref − µ2

ref

=
µ2
ref

µ2
samp

.
ε2samp − µ2

samp

ε2ref − µ2
ref

(7.15)
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Measurement of the effective local wavefront curvature

It is sometimes necessary to know the effective second derivative of a wavefront beam,
i.e its local curvature. From Eq. 7.5, the beam phase second derivative is responsible
for the creation of interference in a coherent beam. While this phenomena is used in
some propagation techniques sensitive to ∆W , for other applications it can lead to
unwanted interference contrast or optical distortions.

As described for the X-ray speckle tracking related technique [137], one can identify
different modes when working with near field speckle. A differential working concept
has been described so far, which allows us to isolate the optical transfer function of the
sample. Now, to recover the absolute second derivative one used the cross correlation
operation between signals collected simultaneously in different pixels. This process
has the advantage of not requiring a reference signal and then, when used as such, can
be used to monitor the quality of a probing beam.

When performing a raster scan of a surface Γ of a membrane much larger than the
pixel size of the detector, the patterns recorded in nearby pixels are very similar. Each
pixel will see the same pattern but at different times, as depicted schematically in Fig.
7.5. If we consider a perfectly collimated beam (Fig. 7.5.(a)), the collected signals in
two different pixel (k, l) and (k + r, l + s) of size Spix are connected by:

gk+r,l+s(x, y) = Υkl(r, s)gkl(x− rSpix, y − sSpix) (7.16)

where Υ accounts for the difference of both intensity and coherence in the probing
beam at the position of the pixels. We choose to ignore this factor because it accounts
for an amplitude modulation factor that does not distort the signal shape.

Similarly, for a non-collimated beam, with different local ray propagation directions,
Eq. 7.16 becomes from Fig. 7.5.(b) with χ = χx.ex + χy.ey the delay between the
signals recorded in the two different pixels:

gk+r,l+s(x, y) = gkl(x− χx, y − χy) (7.17)

Expanding χ from Eq. 7.16 and using the Fourier shift theorem, we obtain:

g̃k+r,l+s =g̃kl(ξ, ν)× e−i2πSpix(ξr+νs)

× e−i2π(ξ(χx−rSpix)+ν(χy−sSpix))
(7.18)
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Figure 7.5: (a) The blue (dark gray) and the red (light gray) area on the phase object represent the
pattern seen by two different pixels when scanning this object in a collimated X-ray beam: in this case the
pixels are adjacent and (r, s) = (1, 0). (b) A similar sketch for the case of a non collimated beam. The
distance χ is defined as the offset between the similar part of the recorded pattern.

While the term in the first exponential matches the distance on the detector separating
the considered pixels, the second is related to the local curvature of the beam. Indeed,
as we have from Fig. 7.5.(b):

|χ| = Spix
√
r2 + s2 + d.(α2 − α1) (7.19)

Noting χ′ = χ−Spix
√
r2 + s2 = χ− δSr,s and as for small angles |∇α| = ∇2W (x, y) ≈

1/R(x, y):

R ≈
(
δα

δSr,s

)−1

(7.20)

By projection on the transverse vectors (ex, ey), the orthogonal local radii are:

Rx ≈
d.rSpix
χ′x

, Ry ≈
d.sSpix
χ′y

(7.21)
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Thus, calculating the shift between signals collected in two nearby pixels, and using the
cross correlation algorithm, one can recover the local second derivative of the beam.
Compared to the X-ray speckle tracking technique in absolute mode, this new method
is not limited by the magnification of the beam when the distortion of the speckle
pattern between images becomes too large. This means that using this stepping mode,
larger propagation distances d can be used, providing improved angular sensitivity.

The grating case

Grating interferometry is a special case of the technique presented here, where the
random probing pattern is replaced with a well known and regular pattern, allowing
simplified Fourier analysis [91, 89]. For instance, consider the case of the 2D gratings
with pitches in the order of 2 to 8 microns for the first phase grating G1 [94]. Ap-
proximating the square profile of the grating lines to a sinusoidal shape, the intensity
distribution of the pattern produced by the grating interferometer and recorded by
the detector in pixel (k, l) can be approximated to:

gkl(x, y) = B1 cos
(2π
P
x+ Φx

)
× cos

(2π
P
y + Φy

)
+B2 (7.22)

with B1, B2,Φx,Φy and P some constants associated to each (k, l). From the transform
defined by Eq. 7.4 :

g̃kl(ξ, ν) =
∑

(p,q)∈[[−1,0,1]]2
apqδ

(
ξ − p

P
, ν − q

P

)
(7.23)

were δ denotes now the dirac distribution and where ap,q are complex numbers. One
can also note that a0,0 = µ. Hence for phase imaging, the cross-correlation operation
of Eq. 7.11, reduces in Fourier space to:

gsamp ? gref ⇔ g̃∗samp · g̃ref
=

∑
(p,q)∈[[−1,0,1]]2

arefp,q a
samp
p,q ∗

(7.24)

Denoting Φx = arg(a1,0), Φy = arg(a0,1), the two components of the transverse dis-
placement of the projected pattern with respect to the reference are:

vx = (Φsamp
x − Φref

x )
2π × P

vy =
(Φsamp

y − Φref
y )

2π × P
(7.25)
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Equation 7.25 is similar to Eq. 7.13 when using a single spatial frequency ξ = ν = 1
P
.

Finally, we retrieve the traditional general phase grating interferometer equation in
the plane of G1 [94]:

∇ϕ · ex/y = 2π
λ
∇W · ex/y = P

λ

(Φsamp
x/y − Φref

x/y)
d

(7.26)

When using a second absorbing grating G2 with the same orientation as G1, and with
a pitch P ′ very close to P , by the aliasing process, the frequencies of the fringes in
one image are rescaled [74]. The superposition of the two patterns created by G1
and G2 generates a new pattern with a larger fringe period equal to |P

′−P |
PP ′ , but does

not affect the phase distortion induced by the beam. The use of a second grating is
motivated by two advantages: it removes or simplifies the phase unwrapping process
necessary when employing a single grating; and a detector with larger pixels can be
used, enabling usually a larger field of view.

Concerning dark-field imaging with the grating interferometer, the application of for-
mulae 7.15 to the spectrum of the patterns recorded with the XGI, directly leads to
the directional scattering imaging formulae already present in the literature [94]:

ζx = µref
µsamp

|a1,0
samp|

|a1,0ref |
, ζy = µref

µsamp

|a0,1
samp|

|a0,1ref |
(7.27)

and equivalently for the diagonal directions.

Spatial resolution and sensitivity limitations

When using a grating interferometer combined with a high resolving detector, the
spatial resolution of the device is limited by the shear distance [91, 133]. It is defined,
in the plane of G1, by the distance separating two photons interfering in the plane of
the detector. In near field speckle, because all the spatial frequencies of the spectrum
contribute to the phase contrast, with an energy transmission predominance in the
lower frequencies, the shear effect does not become a limitation when working with
random patterns [117]. While the contrast from a phase grating is obtained through the
interferences of the zeroth and first diffraction orders, for near field speckle the contrast
is instead obtained from the self interference scheme [24]. The spatial resolution of the
proposed method is then limited by the detector.

However, higher derivatives of the wavefront can also have an effect on the spatial
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resolution of the system. As showed in Fig. 7.4, the measured angle α of the technique
is defined in the plane of the detector. So, when the wavefront gradient is strong, the
vector v becomes larger than a detector pixel and limits the local spatial resolution.
While a short distance d avoids a large vector v, it can also affect the wavefront phase
sensitivity. One solution to this resolution limitation is to scan the detector instead
of the membrane, which requires high-resolution, heavy-duty motion stages. Such a
method would actually be an over-sampled version of the XST technique [137] where
the quantity measured is equivalent to the one obtain with the Hartmann sensor.

The choice of the average speckle grain size is not strict providing that the detec-
tor can resolve the features: it only has a small influence on the accuracy of the
cross-correlation algorithms that are employed [127]. In any case, various scattering
membranes made of small phase objects are commercially available, for instance as
biological filters.

Concerning the angular sensitivity δθ of the deflection measurement, it varies with d
and with the smallest measurable vector v. Denoting Sscan as the piezo scan step, and
δs as the sub-step accuracy achievable in the cross-correlation process, the angular
sensitivity is δθ = δsSscan/d. This relation shows that one can optimize the sensitivity
of the method either using a larger propagation distance and/or recording images
within scans of smaller steps.

Nevertheless, if one opts for diminishing the scanning step size or increasing its number,
it should be kept in mind that the number of recorded images increases at a square law
rate, equivalently to the 2D XGI. An alternative to this 2D scan image number increase
is that when the propagation distance or expected deflection of the wavefront is small,
one can use the stepping scheme by performing only two orthogonal scans as with a
1D XGI [147]. This approximation has shown good efficiency when the pattern shift
is a fraction of the speckle grain size. The rate of increase law makes the 1D grating
interferometer of great interest. Indeed, such a device projects and separates the 2D
gradient onto two orthogonal components, rendering the required image number law
increasing at a O(2n) rate. This law should be compared to the O(n2) images law
necessary with the 2D XGI or the presented generalized scheme when increasing the
steps number for noise robustness and accuracy.
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7.2.3 Experimental Application

A set of experiments were performed at the Test beamline B16 at Diamond Light
Source where the X-ray are produced by a bending magnet on the 3 GeV storage ring
[26].

Numerical implementation aspects

The numerical implementation of the theory described in this paper is a straightfor-
ward translation of the equations to discrete space: well known numerical recipes
have been used for the implementation of the technique on a standard desktop
computer. Considering each pixel (k, l) independently, the intensity signal col-
lected during the scan will describe a 2D pattern gkl(xm = mSx, yn = nSy) with
(m,n) ∈ [[0,M − 1]] × [[0, N − 1]] and (Sx, Sy) are the piezo motor scan steps in the
two transverse directions. The calculation of the signal delay described by Eq. 7.11,
necessary for the calculation of the beam local phase shift, can be performed either in
real space or Fourier space. In Fourier space, discrete Fourier transforms are typically
performed using the Fast Fourier Transform algorithm which significantly reduces the
number of operations and thereby the calculation time. Spectral leakage that can arise
from the transformation can be reduced by previous zero padding of g. This signal
can be then expressed from its 2D Fourier series:

g(xm, yn) = 1
MN

M−1,N−1∑
p,q=0

ap,qe
[i2π( pmM + qn

N )] (7.28)

and the corresponding arguments of ap,q can be used for the recovery of the phase, as
with the XGI. However, it can be more interesting to perform the operation described
by Eq. 7.11 in the real space, with sub-step accuracy [127]. This processing method
becomes of particular interest when the wavefront gradient is strong, because it allows
one to avoid the unwrapping process that can sometimes become problematic.

Setup

A double multilayer monochromator, located 22 meters from the source, was used to
select x rays of an energy E = 15 keV (∆E/E ≈ 10−2) which illuminated samples
located at a distance of 50 m from the source. Samples were mounted on a multi-

S. Bérujon 105



7. UNIFICATION OF THE METHODS: A GENERALIZED SCHEME

translation and rotation station that allowed easy alignment and removal from the X–
ray beam. Another stage on the optics table had several biological filtering membranes
mounted on it. Membranes were fixed on a two dimensional translation piezo motor
capable of displacements with nanometer accuracy. Finally, the last stage of the optics
table was occupied by the detector. The camera was a CCD detector imaging an X-ray
scintillator through a microscope objective, resulting in a pixel size of 0.9 µm. Care
was taken to ensure that the resolution of the detector was sufficient to resolve the
speckle features in each image. A schematic of the experiment is shown in Fig. 7.4.

Characterization of a 2D CRL

Differential wavefront slope

The technique described in Sec. 7.2.2 was first applied to the characterization of a 2D
compound refractive lens (CRL) to evaluate the quantitative accuracy of the method
and for comparison [148, 95]. The CRL under test was a single Be refractive lens
with an ellipsoidal shape and a design radius at the apex of R = 200 µm. The
theoretical focal length f = R/2δ of this lens is 66 m [6]. Two orthogonal wavefront
gradients induced by the CRL were derived using two sets of 16x16 images acquired
while scanning a cellulose acetate membrane of 1 µm size pores. The results are
shown in Fig. 7.6. The focal lengths derived from the measurements are 65.98 m in the
vertical, and 64.87 m in the horizontal plane. While there is very good agreement with
the theoretical value in the vertical plane, the values differ by 1.5% in the horizontal.
Whilst considering if such level of error is acceptable, one should remember that the
bandwidth of the monochromator was of ∼ 2%.

In Fig. 7.6, one can see that no speckle pattern is present in the wavefront gradient
maps, as they are only used as information carrier.

Absolute wavefront curvature

To illustrate the efficiency of the method explained in section 7.2.2, the local radius
of curvature of the beam after passing through the Be CRL is plotted in Fig. 7.7.
Despite the high quality of the lens, the wavefront slope of the transmitted beam is
not monotonous due to imperfections in the incoming beam, especially in the vertical
direction where phase defects from the multilayer monochromator are visible. These
results show the feasibility and validity of the method as a quantitative absolute wave-
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Figure 7.6: Differential characterization of a 2D CRL. (a)-(b) First image of the scan respectively with
and without the sample inserted in the beam. The bounded squares show the patterns recorded in each
of the scan in the pixel marked T . (c) Horizontal and (d) vertical differential wavefront slopes.

front measuring tool, which could be used for metrology purposes.

Imaging of a feather

As a ’real’ sample illustration case, the three modal imaging of a bird feather was
performed using this technique. The setup was identical to that employed for the
characterization of the CRL in section 7.2.3. The propagation distance remained at
d = 520 mm. Two raster scans of 32x32 images were recorded, moving a scattering
membrane made of cellulose acetate with 1 µm pore size. Absorption, phase and
scattering images were retrieved from the collected data and the results are displayed
in Fig. 7.8. From the small visible details, one can get an idea of the spatial resolution
of the system (pixel size = 0.9 µm ) and the fine sensitivity of the method for phase
contrast imaging.

7.2.4 Conclusion and Perspectives

We have demonstrated, theoretically and experimentally, the extension of the three
modal imaging scheme from a grating interferometer to a more generalized method that
allows the use of any phase objects. The grating case has been showed to be a special
case of this general scheme. The proposed technique offers better spatial resolution
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Figure 7.7: (a) Effective second derivative of the X-ray beam wavefront after propagation through the
CRL. (b) Effective wavefront slope obtained by integrating the measured beam’s second derivative. The
inset shows the effect of the multilayer monochromator phase errors on the amplitude of the fringes. The
dashed and plain lines show respectively an horizontal and a vertical cut across the CRL.

compared to the XGI, and does not require an X-ray grating, which can be expensive
and difficult to purchase for high energy experiments. However, as previously exposed,
the XGI and notably the 1D case, still offers noticeable advantages such as a smaller
number of required exposures and a capability to work with a larger field of view.

As a future development, one can already think about using the method in a mag-
nifying geometry to access nanometer resolutions. Indeed, as one can find grains of
any size to generate speckle, the achievable resolution when using a magnifying optic
is expected to be pushed down near the diffraction limit. In parallel, the advantage
of this technique is that it can be used for very strong gradients, as the unwrapping
process can be totally avoided by performing cross correlation in real space. Another
idea is to replace the phase object that generates the speckle by a statistical absorption
object in order to use the technique with a totally incoherent X-ray beam. We expect
that this technique find many applications for micro phase contrast imaging and can
be soon exploited in a tomography process to render 3D object.
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Figure 7.8: (a) Vertical and (b) horizontal differential wavefront gradients. (c) Scattering image. (d)
Absorption image. One can see in the absorption and scattering images horizontal stripes due to the
multilayer monochromator instabilities.
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8 Advanced deflectometry with
gratings

8.1 Introductory remarks

The next section is a reprint of the paper entitled Grating based at-wavelength metrol-
ogy of hard X-ray reflective optics published in the Optics Letters.

The technique presented herein relies on the deflectometry principle employed for 3D
mapping with visible optics for quite a long time [149, 150]. These techniques have
been deeply investigated and enhanced in the 80’s thanks to the expansion of modern
computing [151, 152, 88, 153, 154, 155, 156]. Their principle is based on the projection
of fringe patterns with gratings, to measure through Moiré fringes analysis, the angle
of deflection induced in an optical system. Many of these schemes and algorithms are
today routinely used to characterize optics but also to map 3D objects [74, 73].

When implementing such technique on X-ray reflective optics, the main difficulty lies
in the grazing incidence that must be used to obtain the total reflection of X-rays on
the surface. Likewise, X-ray grating manufacturing is a technical challenge, especially
for absorption gratings. For the experimental technique presented in the next section,
an absorption grating with grooves filled with nickel was employed: the quality of
the deposition is much better with such lighter elements than with, for instance, gold
leading to the generation of better quality fringe patterns.

The measured quantity with the following method is comparable to the one obtained
with LTP instruments, i.e. the tangential slope. Similarly the sagittal slope is not
accessible. Though, the measured mirror focuses photons in only one dimension, the
presented online method can provide the 2D map of the tangential mirror gradient.

http://www.opticsinfobase.org/ol/abstract.cfm?uri=ol-37-21-4464
http://www.opticsinfobase.org/ol/abstract.cfm?uri=ol-37-21-4464
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While, in theory, the method is expected to give access to better spatial resolution and
sensitivity, one can still question the several micro-radians discrepancy between the
LTP and online measurements. This actually underlines the need in online metrol-
ogy for an efficient temperature stabilization system and a non strained mounting,
equivalently to what can be found in metrology labs.

8.2 Third paper

Grating based at-wavelength metrology of hard X-ray reflective op-
tics

Authors: Sebastien Berujon and Eric Ziegler

A mean of characterizing the tangential shape of a hard X-ray mirror is presented.
Derived from a group of methods operating under visible light, its application in the
X-ray domain using an X-ray absorption grating allows recovery of the mirror shape
with nanometer accuracy and sub-millimeter spatial resolution. The method works with
incoherent light, does not require any a priori information about the mirror charac-
teristics and allows shape reconstruction of X-ray reflective optics under thermal and
mechanical working conditions.

Metrology techniques and instruments capable of characterizing hard X-ray optics are
of paramount importance in the development of optics operating at the diffraction
limit needed to image matter at the nanoscale [157]. Indeed, with a wavelength four
orders of magnitude smaller than the one of visible light, an aberration-free wavefront
calls for an optics with a quality enhanced by the same order of magnitude, and,
for the development of a metrology method capable of characterizing such optical
surfaces. Metrology is usually performed with visible light using instruments such as
long trace profilers (LTP) and interferometers [43]. Nevertheless, in the production of
hard X rays nanofocusing optics, information on the effective performance of the optics
can only be provided by at-wavelength metrology techniques [158, 159, 160]. Various
techniques have been proposed for the online characterization of reflective surfaces,
based so far either on coherent iterative methods [161] or derived from measurements
of the wavefront gradient [91] to accurately determine the beam phase error after mirror
reflection. However, for a professional in mirror surfacing, direct information on the
distribution of surface slopes as provided by the laboratory instruments, remains the
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Figure 8.1: Sketch of the experiment. An absorption grating is placed at a short distance a from the
mirror while an imaging detector is placed upstream at d0 � L. An example image of the structured light
produced by the grating after reflection on a mirror is also displayed.

most pertinent quantity of interest for improving X-ray optics.

Here, we propose an improved version of the moiré deflectometry techniques first de-
scribed by Kafri in the 80’s [151, 152, 162] and largely investigated, developed and used
since then [153, 163, 164]. To our knowledge, despite the fact that wavefront metrology
is often performed at various synchrotrons using grating interferometer [91], no surface
mapping method has ever been presented in the hard X-ray regime. The technique
presented uses an X-ray absorption grating complemented by some basic considera-
tions on X-ray deflection techniques [47] further enhanced using specific mathematical
treatments. The method provides access to the tangential slope of the surface with
a sub-millimeter sampling resolution, i.e. one order of magnitude better than instru-
ments such as LTP. Moreover, it is applicable in the case of strongly focusing optics.
The technique was demonstrated during an experiment at the ESRF beamline BM05.

The setup used is sketched in Fig. 12.1. The investigated reflective optics was aligned
into the X-ray beam at a distance R = 40.6 m from the bending magnet source. For
our experiment, the sample under study was an uncooled silicon mirror produced by
the Zeiss company with a length L = 50 mm and a strongly focusing shape (f =
60 mm). The incidence angle Θinc was precisely calibrated using the X-ray beam with
Θinc = 0 when the optical surface has its two longitudinal edges aligned with the
photons propagation direction. To use the total external reflection effect of the X-rays
on the silicon, the mirror was then tilted by a few milliradians. A 2D CCD detector
with indirect illumination and a pixel size Spix = 5.8 µm was placed at a distance
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d0 = 807 mm, i.e much further downstream the optics focal plane. Choosing a large
distance d0 optimizes the sensitivity to the measured deflection angles. In the case of a
focusing optics, the sampling resolution also substantially increases with this distance,
thanks to a magnification effect. An X-ray absorption grating was mounted on a piezo-
electric driven translation stage in front of the reflective optics. The constant-space
grating was realized in a silicon wafer by soft X-ray lithography [85]. The grating lines
were spaced with a pitch p = 4.8 µm and the grooves filled with Nickel for absorption.
More generally, the grating pitch must be adapted to get a resolvable pattern in the
plane of the detector: a too small pitch will lead to an unresolved moiré pattern while
a large pitch will decrease the angular sensitivity of the device. Although diffraction
would make a negligible background noise, it was set to a minimum by minimizing the
distance a. For our experiment, the photon energy was set to a value of 12 keV using
a double multilayer monochromator. In this case the relative energy bandwidth was
of a few percents. However, as the method uses incoherent light, a modification of the
bandwidth would not affect the result, but only the intensity level at the detector.

The grating was scanned using the
2D 
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Figure 8.2: Geometrical considerations.

piezo actuator in the direction perpen-
dicular to the grating lines and an im-
age was recorded for each position of
the grating. A stack of 64 images was
generated over a scan length five times
longer than the grating period. Be-
cause the grating used was constant
along the z axis direction, the prob-
lem was considered invariant along the
mirror sagittal direction and restricted
to the two dimensional plane defined
by the basis (x,y) having its origin
attached to the mirror surface center.
The phase Φj of the projected fringes
was then recovered for each detector
pixel of row j using the method ex-

plained in Ref. [89].

The mathematical retrieval of the mirror slope was done iteratively. Given that no a
priori knowledge about the mirror shape is provided to the method, the first step of the
profile recovery is made on the initial assumption that the surface is flat, as displayed
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in Fig. 8.2.(a). In this first approximation, the height and abscissa positions of a point
on the mirror surface would be then linearly linked. This means that before falling
onto a detector pixel of row j, any photon that crossed the grating was reflected at a
point of the optical surface having a height yj and an abscissa x0

j . These coordinates
are respectively equal to:

yj = Φ(j)
2π p and x0

j = Φ(j)
2π

p

tan(Θinc)
(8.1)

From these two relations, the surface slope at a given point is calculated, in the
approximation of the small X-ray angles involved, with [47]:

Sl0(x0
j) = 1

2
Y det
j − yj
d0 − x0

j

(8.2)

where Y det
j = j × Spix + ϑ, the height position of the pixel in row j on the detector

with ϑ = 2d0 ·Θinc.

So far, the mathematical relation 8.2 can be compared to the one of the pencil beam
technique [47]. However, as it does not take the curvature of the mirror into account,
our method uses an additional iterative step to correct for the error this approximation
induced. The approach is illustrated in Fig. 8.2.(b). In first approximation, it was con-
sidered that a ray with a height yj falls on the surface at a position xj = yj/ tan(Θinc).
In reality, the ray also travels across the area colored in red before hitting the opti-
cal surface. This red area corresponds to the contribution of the curved surface as
compared to a flat one. When working at grazing incidence with hard X rays, this
contribution corresponds to an error on the abscissa location of many millimeters for
an optics with a sag of a few tens of micrometers.

The proposed iterative step of our method solves this issue using a fixed point method
in which the mirror slope Sln(xj) of iteration n is calculated using:

Sln+1(xn+1
j ) = 1

2
Y det
j − yj

(d0 − xn+1
j )

(8.3)

where xn+1 is obtained through the inversion of the height mirror function hn+1 as-
sumed to increase monotonically and calculated with the previous slope:

hn+1(x) =
∫ x

0
Sln(X) dX ⇒ xn+1

j = h−1
n+1(yj) (8.4)
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From the Banach fixed point theorem, the convergence of the method to the true
position of xj is ensured if the iterative function hn+1 is k-Lipschitz with k < 1 [165].
This translates into the hypothesis conditions that the mirror shape is defined by a
continuous function and its derivative, i.e its slope, majored by k. However, because
the mirror reflection of the hard X-ray photons operates only at grazing incidence
angle, this last condition will always be satisfied.

Lastly, the divergence of the incoming probe beam has to be considered and accounted
for. In this aim, the wavefront at the grating plane is assumed to be spherical with
a radius R: considering the small aperture of the optical system < 0.3 mm and the
low optical aberrations of the beam provided by a third generation synchrotron X-ray
beamline, this assumption corresponds to an error below 0.1 µrad. Hence, the beam
wavefront W at the grating plane has a tangential slope ∇W · y ≈ y/R. As shown
in Fig. 8.2.(c), the calculated mirror slope Slcalc(xj) has then to be corrected by the
quantity Slcorr = yj/R for each calculated point and iteration n.

The mirror total slope profile was calculated and the slope error profiles from the
perfect ellipse defined by the parameters (p = 51.59 m, q = 59 mm, θ = 6.31 mrad)
derived from scans recorded at different grazing incidence angles are plotted in Fig. 8.3.
For comparison, the mirror profile derived from measurements acquired with a classical
LTP [43] metrology instrument is displayed.
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Figure 8.3: Mirror slope error measured with LTP and X-ray grating profilometry for different incidence
angles.

The deviation between the LTP and the online measurements does not exceed few
microradians for any of the measured cases: this small amount already confirms the
very good agreement of our method with the metrology laboratory tools, while further
comparison has to be tempered by the measuring conditions. Indeed several param-
eters may affect the measured data such as the thermal, mechanical stability (mirror
clamping) or the footprint of the LTP probe beam (≈ 3 mm). The largest deviations,
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observed on the mirror borders, may be due to edges diffraction effects and to a lower
reflected photons flux resulting from higher incidence angle values on the mirror focus
side.

The theoretical sensitivity δSl of this geometrical method depends on the propagation
distance, the grating pitch as well as the sensitivity of the phase recovery method
and δSl = (Φmin.p)/d0. Some work [89] demonstrated that the phase Φmin can be
recovered with an accuracy better than one hundredth of a period, leading in our
case to a sensitivity below 60 nrad. However, the slope error profiles obtained from
measurements performed at different incidence angles differed by ∼ 2.6 µrad rms
while it is less than 1 µrad rms for the central part of the mirror. This discrepancy
can be partially attributed to the varying thermal load when the incidence angle
is getting higher. Due to space constraints, the propagation distance was limited
to d0 = 807 mm. However, enlarging this distance would improve both sampling
resolution and sensitivity.

It is important to recall that the presented technique does not put any requirement on
the coherence properties of the X-ray source, since the contrast of the recorded moiré
fringes is only due to the use of the zeroth diffraction order of the grating.

In conclusion, we expect the X-ray moiré deflectometry technique to be used for ac-
curate online mirror characterization. Using the present experimental stage, the sen-
sitivity is comparable to the one provided by light metrology instruments, with the
additional advantage of a better sampling resolution and the possibility of optics char-
acterization under working conditions. This technique will open up perspectives, for
instance, in the optimization of adaptive optics or correction of reflective optics.
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9 Transmission optics
characterization

In this chapter are described some applications of the previously presented methods
for the characterization of diffractive and refractive transmission optics.

9.1 2D CRL characterization with XST and XGI

This section is based on some work published in the Journal of Physics: Conference
Series as contribution to the conference on Synchrotron Radiation Instrumentation
held in 2012 in Lyon.

Authors: Sebastien Berujon, Hongchang Wang and Kawal Sawhney

We describe here the characterization of a two dimensional focusing compound refrac-
tive lens (CRL). The characterization was performed by both XST and XGI techniques
in equivalent configurations and the results were compared.

The CRL was made of Beryllium and had a parabolic shape with a design radius of
curvature R = 200 µm at the apex. The CRL, the metrology components (grating or
membrane) and the detector were mounted on the three different motorized stations
of the B16 versatile table, allowing for each one, six degrees of freedom. The detector
used was based on a PCO 4000 camera. Because the measurement of the displacement
vector ν depends directly on the detector sampling grid, the effective pixel size was
accurately measured as Pix = 0.9 µm. The membrane used was made of cellulose
nitrate with a pore size of ∼ 5 µm size. The distance between the membrane and
the detector, as schematically shown in Fig. 9.1, was chosen to be δl = 455 mm. The

http://iopscience.iop.org/1742-6596/425/5/052020
http://iopscience.iop.org/1742-6596/425/5/052020
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Figure 9.1: Sketch of the 2D CRL characterization principle.

beam energy was set to 15 keV using the Si 111 double crystal monochromator of the
beamline. It was possible to remove the CRL out of the beam to measure the influence
of the beamline optics on the wavefront.

(a) (b) (c)  

Figure 9.2: (a) Reference image with a zoom of a small area of speckle pattern. (b) Sample image. (c)
Displacement vector field plot.

The XST technique was applied by recording two images, with and without the CRL
in the beam (see Fig. 9.2 (a) and (b)). A sub-pixel accuracy zero normalized cross-
correlation algorithm was then employed to calculate the displacement vector for each
pixel from the two images of size 1200x1200 pixels (see Fig. 9.2 (c)). The wave-
front gradient and the wavefront were calculated using the method described in 6.2.2.
The reconstructed wavefront is shown in Fig. 9.3.(a) and the vertical central line of
the wavefront gradient is displayed in Fig. 9.3.(b). For comparison, the wavefront
distortion was also measured using a 1D grating interferometer. The methodology
employed for the CRL characterization is similar to the one described in [95, 148].
In this experiment, two sequential phase stepping scans to measure the gradient in
the two orthogonal directions transverse to the beam were performed in exactly the
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same equivalent configuration as when performing the XST technique. The integrating
distance was set to the 7th Talbot order of phase grating (π phase shift) with 4 µm
pitch. The measured wavefront gradient of the vertical central line derived by the XGI
technique is also displayed in Fig. 9.3.(b) for comparison.

(a) (b) 

Figure 9.3: (a) Wavefront reconstruction from XST data. (b) Wavefront gradient measured with the
grating interferometer and with the XST technique.

The results from XGI and XST techniques agree well with each other. The radius
of curvature of the lens at the apex was calculated to be of 195 µm using linear
fitting from XST data, which is close to the theoretical value of 200 µm. Using
the above experimental parameters, the angular sensitivity of the XST method is
expected to be: Sα = εCCPix

δl
= 60 nrad when taking the cross-correlation algorithm

accuracy εCC as equal to 0.03 pixel, which is more than reasonable. This sensitivity
is corroborated by the standard deviation value of the wavefront gradient in an area
of known constant phase which was below 45 nrad. Considering the micrometer size
spatial resolution, this corresponds to a wavefront accuracy better than λ/100. Because
of the experimental constraints, the distance ∆l was chosen as equal to 455 mm, but an
increase of this distance would further improve the angular sensitivity. The sharpness
of the features of the XST measurements compared to the XGI data is due to the higher
spatial resolution of the method; working at the 7th Talbor order with the XGI, the
spatial resolution is of ∼ 14 µm, while the sampling rate of the XST technique is in
the order of a few micrometers.
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9.2 1D CRL characterization with XST

Mono dimensional Beryllium focusing lenses have recently become available from
Lengeler et al. [31, 166]. Prototype lenses manufactured for NSLS-II, Brookhaven
were tested at Diamond beamline B16. The experiment aimed at evaluating the pos-
sibility of correcting beam astigmatism by rotating the lens along the Ω axis (vertical
axis for vertical focusing lens), as shown in Fig. 9.4. The lens characterization was
done using both the XGI [167] and the XST technique in differential mode presented
here.

The CRL had a radius of curvature at the apex of R = 500 µm, rendering a focal length
of f = R

2δBe
= 165 m at the used energy of E = 15 keV (∆E/E ∼ 10−4). The CRL

was mounted on the optics table of the beamline experimental hutch and a speckle
membrane was placed at a short distance from it. The PCO 4000 camera was then
used to record the speckle images when the CRL was removed out of the beam path,
and, when the CRL was inserted into the beam with various orientation angles Ω. The
CRL focal length was calculated from the extracted wavefront gradient derived with
XST for each rotation angle, and the values fitted to a sinusoidal function as shown in
Fig. 9.4. The goodness of the fit confirms the validity of the model. The results show
that a fine tuning of the astigmatism can be performed by ajusting the orientation
angle of the 1D-CRL with respect to the incident beam. Such compensation is of great
interest when focusing beams from non stigmatic beams or optics.

9.3 Replacement of a beryllium window

During the ESRF shutdown in the winter of 2011, a beryllium window of the BM05
beamline was replaced by a new one. This beryllium strip is located at the exit of the
optics hutch to separate the parts of the beamline operated under vacuum and helium.
The previous one had been in place for more than 10 years and had been subject to a
high intense X-ray dose, which might then have damaged its original quality.

The opportunity was taken to measure the wavefront before and after the window
replacement to evaluate the effect of this replacement especially on the wavefront low
spatial frequencies. For this, the XST technique in the absolute mode was applied
in equivalent conditions before and after the window replacement. The calculated
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Figure 9.4: XST measurement of the astigmatism generated by a 1D CRL. On the left side are displayed
two images used in the XST technique: the top one is an image with the lens inserted in the beam path
whilst the bottom one is the reference beam.

wavefront distortions are shown in Fig. 9.5.

One can observe that the wavefront distortion amplitudes are equivalent in both mea-
surements. In addition, the same general shape is recognizable, suggesting that this
replacement did not significantly improve the large spatial wavelength aberration.

Because the interaction of the hard x rays with matter is small, i.e. δ ≈ 10−6, several
micrometers of matter are necessary to induce a phase shift of 2π radians in trans-
mission making the windows unlikely to create large optical aberration. However at
a much smaller scale, the polishing and homogeneity quality of the beryllium strip
plays an important role in the diffuse scattering behavior of the optics and can be
responsible for strong coherence degradation.
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Figure 9.5: Effect of Beryllium windows replacement on the wavefront

9.4 Fresnel Zone Plate investigation with a 2D XGI

A Fresnel zone plate (FZP) provided by C. David and S. Rutishauser from the Paul
Scherrer Institut (PSI) in Switzerland, was investigated in working conditions at the
Diamond beamline B16 using a two dimensional grating interferometer (2D XGI).

A FZP with a diameter of 200 µm and an outermost zone of 100 nm was placed into
the beam. An order sorter aperture was employed to select only the first diffraction
order (cf. Sec. 3.2.3). The FZP was then illuminated with photons at an energy of
8.2 keV defined using the double crystal monochromator. The magnified beam was
then analyzed using the 2D XGI combined with the X-ray Eye CCD detector (pixel
size of 6.4 µm). The G1 and G2 gratings had pitch of respectively p1 = 3.576 µm and
p2 = 2 µm. The intergrating distance was set to the third Talbot order (∆l = 36.4 mm)
and scans of 16x16 images were recorded. The data were processed using Eq. 5.4
applied in the two orthogonal directions as explained in Ref. [94] and the wavefront
reconstructed by two dimensional integration [130].

The wavefront reconstructions calculated from two scans using two different illumi-
nations (from different areas of the incoming beam) are displayed in Fig. 9.6 (a-b).
Because the grating pitches did not match upon magnification, a spherical compo-
nent was observed in the reconstructed images corresponding to the deviation of the
wavefronts from the perfect spherical wave having a magnification M = 2

3.576/2 . The
wavefront errors with respect to the best ellipsoid was calculated (Fig. 9.6) from the
previous images.
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Figure 9.6: (a- b) Partial wavefront measured using the 2D XGI downstream the FZP illuminated with
two different areas of the X-ray beam. (c-d) Optical wavefront abberation after ellipsoid removal from
a-b.

The wavefront errors calculated for two different area of the beam are in the order or
below the Å, i.e smaller than the wavelength. When using the grating interferometer
in an absolute mode, i.e without removing flat field reference, it is difficult to separate
the contribution to the error due to the incoming beam imperfections from the one
caused by the optics defects. In addition, the contribution of the XGI itself should
also be taken into account. Conversely, when working in the differential mode, the
contributions of both the XGI and the incoming beam vanish.

The difficulty of characterizing an FZP optics arises mainly from the strong magnifica-
tion they provide and from the fact that there is no simple way to isolate the incoming
wavefront defects from the optics imperfections. This drawback usually prevents from
extracting information pertinent for improving the fabrication of an FZP. This issue
is also encountered when measuring other strongly focusing optics such as mirrors.

9.5 Conclusions

Transmission optics normally provides good focusing performance while being com-
paratively easier to align than reflective optics. However, they have usually a lower
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9. TRANSMISSION OPTICS CHARACTERIZATION

efficiency compared to, e.g., grazing incidence mirrors. While transmission optics
deforms only weakly the wavefront low spatial frequencies, surface roughness and
inhomogeneities in the material bulk (high spatial frequency features) may lead to
coherence degradation.

From the on-line metrology investigations presented here, it is seen that transmission
optics does not create significant optical aberrations. As a matter of fact, due to
the small interaction of x -rays with matter, a phase shift error of 2π in the X-ray
regime is equivalent to an optical path in excess of 10 µm through a light element
material (E > 10 keV). Considering that current technology permits manufacturing of
transmission optics with a sub-micrometer accuracy, it is unlikely to find important
wavefront aberrations generated by such optics.

Conversely, reflective optics can generate much larger optical aberrations due to their
intrinsic principle of operation. For instance, a single Angström of a mirror shape
error creates upon reflection in the X-ray regime a phase shift larger than 2π radians.
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10 The ESRF Ion Beam Figuring
project

The ESRF Ion Beam Figuring project (IBF) aims at producing high quality focusing
X-ray mirrors with the assistance of on line metrology. Its concept consists of etching
flat substrates using ion erosion to reach a given stigmatic mirror shape. Care is taken
to not degrade the surface roughness. The eroded surface eventually receives a heavy
metal or multilayer coating to increase the reflectivity efficiency and the incidence
angle of operation.

Evaluation of surface figure and 
finish levels 

Metrology 
Surface corrections using 
non-contact techniques 

On-line mirror surfacing 
tool Feedback 

 loop  

Figure 10.1: The OLMS iterative scheme.

One key idea of this profiling method for the achievement of a shape error free sur-
face, is to operate the figuring iteratively, assessing the goodness of the etching with
online metrology at regular steps [160, 168, 169]. As sketched in Fig. 10.1, two distinc-
tive operations are successively iterated; the metrology measurements and the etching
operation. This feedback loop is implemented to achieve minimization of the sur-
face figure error, targeting intermediate surface profiles during the iterations. Online
metrology methods are employed to measure the surface errors in order to quantify
the required corrections, both to eliminate the present error and to compensate for
the one predicted for the following iterations.

The figuring station available at the ESRF BM05 is sketched in Fig. 10.2. Its principle
is the following: a flat substrate is positioned in a vacuum chamber (10−7 hPa) on a
movable support and precision motors are available for the fine alignment of the mirror
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in the beam. The station is equipped with a plasma ion beam for the etching of the
substrate. An other important equipment is a pair of movable blades located in front
of the substrate and acting as a screen. These blades are controlled through servo
motors allowing independent control of their speed. The distance between the blades
and the substrate is reduced to minimize the effects of the edges of the blades on the
etching foot print. The primary goal of this thesis, in the frame of the IBF project,

Sputter 

Growth

X-ray 
windows

Metrology

Ion Source

Monochromator

Slits

windows

Source

Figure 10.2: Sketch of the online mirror surfacing station on a beamline.

aimed at developing online metrology tools that could be integrated in the iterative
process. This translated in the development of X-ray metrology mapping technique
with sensitivity better than 0.1 µrad. One constraint of the process was also that the
measured mirrors do not systematically present a focusing shape: the development of
the method presented in Sec. 8 was for instance motivated by this problematic.
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11 Adaptive optics

This chapter deals with the use of at-wavelength metrology methods for tuning adap-
tive optics. At synchrotron, one can take full advantage of deformable mirrors pro-
viding the presence of an online metrology method. Here we will present how the
new developed techniques can contribute to the optimization of deformable focusing
optics.

11.1 Interest and principle

The first approach to X-ray adaptive optics in this project occurred at an early stage of
the project with the first experiment being the online characterization of a KB bender
available at the ESRF BM05. The principle of adaptive optics consists of the defor-
mation of a reflective surface shape with the aim of i) improving or correcting residual
optical shape error after its manufacturing process and ii) correcting or reducing the
influence of the incoming beam optical aberrations.

(a) (b) 

Actuators  
(pico motors) 

beam 

Actuators  
(piezo motors) 

beam 

Figure 11.1: (a) The ESRF BM05 KB bender and (b) the Diamond superpolished bimorph mirror.

At synchrotrons, two kinds of reflective adaptive optics are employed:
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• Dynamically-bent mirrors: These mirrors are equipped with mechanical mo-
tor actuators placed at each extremity of the mirror surface (2-moment bender).
The substrate shape is designed so the mirror distorts into a shape approaching
an ellipse when applying the correct force on each actuator. The possibility of
applying small displacement increments through actuators permits to obtain a
surface figure which is then kept under static strain over a long period of time.
These mirrors are usually mounted in a KB configuration, i.e with two mirrors
set perpendicular to each other [49]. To achieve better focusing efficiency, the
optics is installed at a large distance from the source and a short distance from
the focused image where the sample under study will be located. The Kirk-
Patrick bender mirror of the ESRF BM05 in its protective chamber is shown in
Fig. 11.1.(a).

• Bimorph mirrors: These mirrors use electrically activated piezo actuators
maintained under tension to hold the shape of a relatively elastic surface. The
design consists of a multitude of actuators distributed all along the surface and is
suitable also for long mirrors (>1 m). One drawback of this principle is the quite
long timescale necessary to reach a stable position after a change command is
sent. A photo of a bimorph tested at Diamond B16 is displayed in Fig. 11.1.(b).

As mirrors, both devices are achromatic and require at-wavelength online metrology
for their optimization. The next two sections present some original speckle based work
on online characterization and optimization of the two optics shown in Fig. 11.1.

11.2 The ESRF KB bender

The XST technique was first tested for adaptive optics characterization using the
ESRF BM05 KB bender. The goal was to measure the mirror slope change (response
function) when applying various commands to the pico-motor actuators. At the early
stage of this project, only the vertical mirror of the KB system was used, reducing the
problem to two 1-dimensional ones.

The experimental setup consisted of the insertion of a speckle generator membrane
downstream the mirror (here at a distance of 405 mm) and the placement of a FReLoN
CCD camera at a distance of 1400 mm from the mirror center. The non optimized
mirror focal distance was approximately 350 mm. The wavefront slope change when
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11.2. THE ESRF KB BENDER

activating an actuator was derived using the XST technique in the differential mode
(see Sec. 6.2.2). Two images were taken before and after the sending of a displacement
command to each of the actuators. The calculation of the deflection angles using
the speckle subset displacements, allowed the characterization of the wavefront slope
evolution per actuator step increment. For an efficient and reliable numerical tracking
of the speckle, the wavefront distortion between images was kept small, using only
moderate command steps, i.e in the order of ten pico-motor steps. The actuators
response functions in the plane of the membrane and per unit of command extracted
are displayed in Fig. 11.2.
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Figure 11.2: KB bender actuator response functions on the beam wavefront slope (a) and wavefront (b),
per unit of command and measured at the detector position.

From the magnification factor of the probe beam in the plane of the membrane (here
M ≈ 1

7), one can recover the mirror slope deformation per command unit: approxi-
mately equal to the wavefront slope differential in the plane of the membrane divided
by 2M. In our case, that leads to surface slope response functions in the order of a
single micro radian. It is worth mentioning that, despite its interest for the design and
manufacturing of mechanical benders, the characteristic distortion function of the mir-
ror surface is not mandatory for online optimization. Indeed, under beamline working
conditions, the mirror follows the principle of common adaptive optics: the optimiza-
tion loop of the benders use only the wavefront aberration information to reduce the
shape error.

Thus, these results confirmed the possibility of employing online speckle methods to
optimize adaptive optical elements.
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11.3 The Diamond super-polished bimorph mirror

X-ray bimorph mirrors are used at synchrotrons to focus the X-ray beams in different
configurations. Indeed, their main advantage lies in their highly deformable surface
and the presence of multiple actuators to permit users to conveniently change the focal
distance and adapt the probing beam properties to their experiment. Because of the
grazing incidence imposed in the hard X-ray regime, combined with the high number
of actuators, online metrology of such device is a complex task, however mandatory
to exploit their full potential.

The Diamond optics group has designed and got fabricated a unique super polished
bimorph mirror [170] that has been the subject of deeper experimental characteriza-
tion and optimization during this thesis project. This 120 mm long mirror substrate
was fabricated by SESO (Societé Européenne de Systèmes Optiques) and mounted on
8 piezo actuators. The actuators can be activated with nanometer accuracy thanks to
modern highly stable electronic power supplies. Subsequently, the substrate received
treatments from the JTEC company in Osaka, Japan: its surface was polished us-
ing the Elastic Emission Machining (EEM) process [171] that provided an Angström
surface roughness and nanoradians order figure slope error from an elliptical designed
shape. The silicon optical surface remaining uncoated, the reflectivity is obtained by
operating under total reflection of X-rays. Online characterization and optimization of
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Figure 11.3: Experimental setup for the optimization of the Diamond super polished bimorph mirror.

the mirror behavior was carried out at the Diamond beamline 16. The XST technique
combined with the generalized scheme based also on speckle, permitted to improve the
focusing parameters of the bimorph mirror by comparison to the parameters obtained
using the laboratory and online pencil beam methods.
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The experimental setup consisted of mounting the mirror on the first stage of the
optics table of the experimental hutch (see Sec. 3.1.2). As schematically displayed
in Fig. 11.3, a speckle generator membrane was placed at approximately twice the
vertical focal distance (2f ≈ 600 mm) downstream the mirror. The PCO camera was
placed at the furthest possible distance from the membrane, i.e. d = 600 mm. As
the membrane was located one focal length away from the focus, the magnification
between the incoming beam size and the one at the membrane position was expected
to be M ≈ 1 when the mirror was focused. This configuration gave approximately a
direct equivalence, apart from the factor 2, between the measured wavefront slope and
mirror slope.

Figure 11.4: Bimorph mirror actuators response functions on the wavefront slope (top) and wavefront
(down).

The mirror shape optimization is a three step process, two of them being operated
iteratively:

1. First, the actuator response functions are characterized using the XST technique
in the differential mode (cf. Sec. 6.2.2). For this, 9 images are acquired: equiva-
lently to the characterization of the ESRF bender an actuator increment is sent
between each image acquisition. The XST is then applied to each consecutively
taken pair of images and the differential wavefront slope corresponding to each
actuator extracted. The calculated gradient maps are averaged along the hori-
zontal dimension and these functions stored in a matrix A of size 8 × n, where
n is the number of deflection points calculated in the vertical direction. In our
case, 300 points were used. The wavefront gradient actuators response functions
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are displayed in Fig. 11.4. By comparison with the previous characterization of
the BM05 KB bender, one can notice that one unit of command applied on the
bender has a larger influence on the surface than a 10 V command sent to the
bimorph mirror presented here.

2. Next, the effective beam wavefront is measured using the generalized scheme
presented in 7.2.2. This processing method has several advantages: it permits
to keep the detector static and to use a large membrane to detector distance d
because the speckle size between images does not change contrary to the XST
technique in the absolute mode. The second derivative is then calculated from
stacks of 30 images and the wavefront slope error recovered by integration.

3. Last, the wavefront error calculated is minimized using the actuators response
functions employing a zonal inversion matrix method, well known in the field
of adaptive optics [172]. Noting y the wavefront slope error from the second
process step and x the piezo correction that needs to be applied, the problem is
equivalent to the linear problem solving y = Ax. This equation is solved in the
least square sense by matrix inversion: x = A−1y. Because the matrix A is not
square and singular with computer working precision, the inversion is operated
in the Moore-Penrose pseudo inverse sense using a singular value decomposition
[173]. The calculated command x is sent to the system and the process reiterated
from point 2.
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Figure 11.5: Successive voltages applied during the adaptive mirror focusing optimization.

While the first step of the method is only operated once, the next two steps need itera-
tions to compensate for the non perfect linearity of the system. Nevertheless, because
of the high sampling resolution and the good sensitivity of the method to wavefront er-
ror measurements and response function determination, the process converges in only
few iterations.

136 ESRF - Diamond - UdG
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During the experiment, mirror focusing was attempted for two different configurations:
E1 = {p = 46.5m, q = 0.40m, θ = 3mrad} and E2 = {p = 46.5m, q = 0.33m, θ =
2.5mrad}.

In Fig. 11.5 are shown the successive calculated voltages for the optimization of the
E1 configuration. The red curve shows the optimal voltage configuration calculated
using Diamond-NOM measurements. One can notice the convergence and the profile
similarity with the commands calculated from the metrology lab measurements.

After the final iteration, the focus size
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Figure 11.6: Bimorph mirror correctable modes.

was measured using the knife edge tech-
nique. For configuration E1, the fo-
cus size was 0.84 µm and in configura-
tion E2 it was 0.52 µm. For compar-
ison, optimizations using the slit scan
technique [47] managed to reach respec-
tively 1.01 µm and 0.77 µm: despite
being more simple to implement, the
smaller number of wavefront character-
ization points provided by the pencil
beam technique, limits the achievable
performance of the optimization process[174]. Figure 11.6 shows the correctable zones
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Figure 11.7: Response function of the adaptive mirror actuators on the mirror local curvature.

of the system. They are obtained by matrix inversion of the actuator response func-
tions and permit to visually evaluate the length of the smallest correctable wavefront
error. In the case of the 120 mm long mirror and 8 actuators, the smallest wavefront
zone correctable is of 40 mm length. More actuators would be required to compensate
for higher spatial frequency defects.
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In visible optics, the local radius R of a mirror with negligible thickness changes in
proportion to the applied voltage V and is given by: R = V dp

t2
where t is the thickness

of the substrate and dp is the coefficient of the piezo-electric tensor. Because of this
linear relation between the voltage and R, bimorphs are well suited for integration
with a wavefront curvature sensor. In theory a perfect punctual actuator would have
a very local influence on the mirror surface. In Fig. 11.7, the actuators’ influence on
the (inverse) mirror surface curvature are plotted. One can observe two interesting
points. First, the actuators located on the focus side have smaller influence on the
mirror surface: one explanation can be the larger strains in the material located on the
focus side of the mirror. The second point is regarding the ’over shoot’ on the sides of
the gaussian peaks: they are probably due to the stiffness of the substrate preventing
from a Dirac distribution shape behavior of the actuators response.

Conclusions

It has been demonstrated that online metrology technique with enhanced sensitivity
and wavefront sampling allows one to achieve excellent optimization of adaptive optics.
Because of its easiness of mechanical implementation and their high performance, the
speckle based methods are expected to become valuable tools at new nano-experiment
beamlines using adaptive optics.
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12 Sub-micro imaging

In this chapter, sub-micron phase contrast imaging with the two techniques studied in
this thesis are presented. Such microscopy techniques are motivated by the need for
imaging methods capable of resolving the inner of the matter at the sub-micrometer
scale.

12.1 Micro phase contrast imaging using the 2D XGI

12.1.1 Introductory remarks

The following section presents the implementation of the newly introduced 2D XGI for
submicrometer phase contrast imaging. This work has been published in the Optics
Letters under the title "X-ray submicrometer phase contrast imaging with
a Fresnel zone plate and a two dimensional grating interferometer".
This paper results from a collaboration with S. Rutishauser and C. David from the
Paul Scherrer Institute, Switzerland, who have designed and produced both the Fresnel
Zone Plate and the 2D gratings. This work was carried out before the germination of
the generalized scheme presented in Sec. 7.2. It permitted to reveal the high sensitivity
and stability of the device.

12.1.2 Fourth paper

http://www.opticsinfobase.org/ol/abstract.cfm?uri=ol-37-10-1622
http://www.opticsinfobase.org/ol/abstract.cfm?uri=ol-37-10-1622
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X-ray sub-micron phase contrast imaging with a Fresnel Zone Plate
and a two dimensional grating interferometer.

Authors: Sebastien Berujon, Hongchang Wang, Ian Pape, Kawal Sawhney, Simon
Rutishauser and Christian David

The application of a two dimensional grating interferometer - Fresnel Zone Plate com-
bination for quantitative sub-micron phase contrast imaging is reported. The combina-
tion of the two optical elements allows quick recovery of the phase shift introduced by a
sample in a hard X-ray beam, avoiding artifacts observed when using the 1D interferom-
eter for sample with features oriented in the unsensitive direction of the interferometer.
The setup provides sub-micron resolution due to the optics magnification ratio and a
fine sensitivity in both transverse orientations due to the 2D analysis gratings. The
method opens up possibilities for sub-micro phase contrast tomography of microscopic
objects made of light and/or homogeneous materials with randomly oriented features.

Hard X-ray phase contrast imaging has been subject to an increasing interest over the
last decade as it allows imaging of the inner structure of weakly absorbing -low-Z-
objects, which display poor contrast in traditional absorption radiography. In parallel,
the development of adapted focusing optics has opened the imaging methods of the
matter at the nanometer scale to many fields. Phase microscopy is regarded as one of
the most valuable tools in the prospect of a better understanding of materials. Several
techniques have been described to measure quantitatively the distortion of hard X-
ray beam wavefronts passing through a sample. The drawback for most of those
techniques is that they usually use specific optics [175], require a fully coherent beam
[11] or become less quantitative in certain cases [176, 144]. In contrast, X-ray grating
interferometers provide a high accuracy on the X-ray wave front gradient measurement:
they have a low sensitivity to vibrations and do not have any stringent requirement on
transversal and longitudinal coherence [66, 91, 68]. Advantage has been taken of this
technique to design an X-ray microscopes when used in a combination with a Fresnel
Zone Plate (FZP) [110]. Tomography with a one-dimensionally Talbot interferometer
and a FZP has even been performed using a comparable setup to the one displayed
here [177]. However, this design of interferometers, comprising of one dimensional
gratings, displays reconstruction artifacts when applied to many real situations, due
to the lack of sensitivity of the device to one of the transverse dimension.

Recently, a 2D grating interferometer has been introduced into the X-ray regime which
allows simultaneously the recovery of both the horizontal and vertical beam phase gra-
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Figure 12.1: Setup of the experiment. In our case L0 = 47.5 m, L1 = 30 mm, L2 = 129 mm,
L3 = 930 mm, and L4 = 64 mm.

dient, eliminating most of the common reconstruction artifacts usually encountered
with the 1D interferometer. Indeed, the most serious errors associated with the un-
wrapping of strong gradient and the 1d integration process have now been overcome
thanks to the sensitivity of the device to object which were not visible before because
positioned parallel to the grating lines [178, 94, 78]. In this letter, we demonstrate that
it is possible to perform sub-micron phase microscopy using a FZP and the 2D grating
interferometer. We show that the technique both provides the spatial resolution that is
obtained when working with absorption-contrast microscopy, and also provides the de-
phasing profile of a sample with a high sensitivity independent of the orientation of the
sample features. As the increase in contrast compared with absorption radiography is
many orders of magnitude for light elements, this device is expected to provide access
to a better knowledge of light materials which possess randomly oriented features.

(a) (b)50 µm

+p+p

(c)

+p
a

b

c

Figure 12.2: Three images from the raster scan. The three images (a), (b) and (c) correspond to three
acquisitions taken at different positions of the grating during the scan. The intensity in the point p during
the scan is displayed at the bottom right where are also shown the corresponding position of the three
images.

As a focusing optics for hard X-rays, the FZP is a good choice due to the relatively
good efficiency and short focal distance; the latter gives the high magnification ratio
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that such kind of optics offers. Moreover, it provides magnification ratios which are
equal in both directions, which is required by the equivalent pitches in the two direction
of the 2D gratings.

Our experimental setup is presented in Fig. 12.1. The sample was composed of a
bunch of carbon fibers which were attached to a Kapton foil. An imaging configu-
ration putting the sample upstream the FZP, has been preferred over the projection
microscope, in order to minimize the blurring occurring from the defocusing effect
[177]. The sample was therefore placed at a distance L0 = 47.5 m from the bend-
ing magnet source and at a distance L1 ≈ 30 mm upstream of the FZP. The energy
of the X-rays was 8.2 keV selected by means of a double Si(111) monochromator
(∆E/E ' 10−4) located 15 m from the source. The FZP used to focus the beam was
made using the process described in Ref. [179]: it offered an aperture of D = 200 µm
while its smallest zone was of ∆r = 100 nm. At 8.2 keV , the FZP was then focusing
the beam at a distance L2 = 129 mm from the FZP. No central stop was used on the
zone plate but an order sort aperture (OSA) with a diameter of φ = 10 µm was placed
in the focal plane in order to remove the higher orders leaving only the first diffraction
order.

The 2D grating interferometer works on the principle of a "standard" grating interfer-
ometer with a phase grating and an absorption grating. The first grating G1 separates
the beam into the −1 and 1 order to create interference between these two diffraction
orders. The absorption grating G2 is then used to resolve the interference pattern
which is usually too small to be resolved directly by the detector [91]. The distortion
of this recorded pattern from the expected one permits to calculate accurately the
phase gradient of the wave front. The pitch of the first grating p1 = 3.576 µm was
chosen to be less than twice pitch of the second grating p2 = 2.000 µm. This choice
was made considering the beam divergence downstream the FZP, which is responsi-
ble for the magnification of the spatial period of the Talbot interference pattern. To
obtain a magnification ratio that almost matched the second grating pitch p2 and the
magnified interference pattern, the first grating of the interferometer was placed at a
distance L3 = 930 mm downstream the focus and the intergrating distance was set to
the fifth order (N = 5) Talbot distance when considering the divergence of the beam
ZT5 = L3/(8L3λ/p

2
1 − 1) ≈ L4 = 61 mm. The magnification ratio obtained was then

M ≈ 7.6. The detector used was a CCD device coupled with a scintillator forming
an indirected illumination system, providing an effective pixel size of Spix = 6.4 µm.
To avoid any diffraction artefact from the second grating, the detector was placed
as close as possible to the absorption grating, i.e. ∼ 15 mm. The extraction of the
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interferences phase was done using the method described by Zanette et al. [78]: a
raster scan of 8 x 8 points of the first grating was made over one period of the grating
in each direction thanks to two piezo motors. Images corresponding to three different
points of the scan are presented in Fig. 12.2. A small change in intensity of the images
of the scan can be seen: for each pixel the intensity is varying periodically along both
directions as shown at the bottom right of Fig. 12.2. From this image stack, the use
of a bidirectional Fourier process permits to recover the phase information Φ of the
interference pattern created by G1. To deal with the zeroth order (direct beam) and
the spherical aperture of the lens, a mask was used in the data processing to select
only the pixels of interest identified by two thresholds.
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Figure 12.3: Calculated deflection angle in µrad (a) vertical gradient. (b) Horizontal gradient. As the
profile cuts mirror it, one can notice the difference of visibility of the fibers depending on their orientation.

The two orthogonal difference wave front gradient maps were reconstructed using the
relationship between the wave front gradient ∇W and the phase difference Φsamp −
Φrefof the scan with and without the sample [94, 91, 68]:

∇W · ex/y = p2

2π
(Φsamp

x/y − Φref
x/y)

L4

These two difference gradient maps are displayed in Fig. 12.3. It can be seen that
the very low visibility of the vertical features in the horizontal wave front gradient
map and vice versa: this demonstrates the advantage of the two dimensional grating
interferometer over the previous traditional single dimensional interferometer used so
far. When working using a 1D grating interferometer, the gradient map is lost in one
direction: the insensitivity of the device to objects oriented parallels to the lines of the
grating, combined with some unavoidable measurement noise, often created some, as
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yet, unrecoverable errors in the reconstruction process [78].

The final wave front was reconstructed by solving the Poisson equation, using simul-
taneously the vertical and horizontal gradients in a pseudo inversion matrix algorithm
[180]. The calculated wave front, as well as the equivalent dephasing is displayed in
Fig. 12.4. The refractive index of the carbon fibers at 8.2 keV being δ = 6.8 × 10−6

and its absorption index being β = 1.07×10−8, their ratio is of δ/β = 635 (Ref. [131]).
The expected phase shift for our carbon fiber with a diameter of ≈ 11 µm is π: this
fits very closely to the values calculated in the reconstruction and demonstrating the
quantitative accuracy of the method whatever the orientation of the imaged objects.
The spatial resolution is theoretically limited either by the shear 2∆s ≈ Np1/2 in
the plane of the first grating, or by the detector resolution ∼ 2Spix. In the first case,
where the shear is larger than the pixel size, the limit in resolution in the sample plane
becomes ∼ Np1/(2M(L3 +L4)/L3). Whereas in the second case this limit is 2Spix/M .
For our experiment, the pixel size being larger than the shear (∆s ≈ 2.6 µm), the
resolution was of ∼ 840 nm.

nm

rad-2-4-6

-.04-.08-.12-.16

50 µm
-π 0

rad

(b)

(c)

(a)

Figure 12.4: (a) Wave front reconstruction from the two directional gradient and corresponding wave
front phase shift. The profile shown on the side corresponds to a cut following the dashed. (b) Absorption
image (c) Dark field image.

Fig. 12.4 shows two different contrast images that can be obtained using the 2D GI
grating interferometer. The absorption image (b) is an image taken after propagation,
and therefore partial coherence is responsible for the contrast at the edges of the sample
features. As the electron density difference between the rods and surrounding medium
is very smooth, only little edge contrast is available in the absorption image (b) and
in the dark field image (c). Oppositely, differential phase contrast allows quantitative
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analysis of homogeneous part of sample, even when these ones are larger than the
transverse coherence length.

Compared to our setup, one can already gain in resolution using a stronger focus-
ing FZP and/or putting the 2D interferometer further from the focal point. How-
ever, as the beam wave front becomes smoother as the photon diverge, the work-
ing magnification ratio is limited by the decreases of the angular sensitivity: fol-
lowing the same method as in Ref. [92], this angular sensitivity Ψ scales here as
Ψ = L2L5/(p2(L3 +L5)) ∼ 1/M . Therefore, depending on the sample spatial frequen-
cies and phase distortions, the setup must be optimized to find the best compromise
between the researched resolution and sensitivity. In our case, the sensitivity of the
device, defined by the standard deviation of the refracted angle in a constant phase
area, was of 70 nrad.

In conclusion, the high and quantitative sensitivity and the sub-micron resolution of
the 2D grating interferometer microscope make this technique a promising candidate
for sub-microns analysis of complex samples made of light materials and different
feature orientations through radiography and soon tomography.

12.2 Micro phase contrast imaging using XST

12.2.1 Introductory remarks

Soon after the demonstration of sub-micrometer phase contrast imaging with the 2D
XGI, the question of a comparable feasibility with the XST technique arised. The
equivalent technique was implemented to try to get a better resolution. The fol-
lowing contribution will show that contrary to the XGI, this can be done without
sacrificing the sensitivity. The sample imaged in this reprint entitled "X-Ray phase
microscopy using the Speckle Tracking technique" and published in the
Applied Physics Letters, are micrometer size spheres that have characteristic sizes ten
times smaller than the fiber samples used in the previous section. Again, despite
the good focusing performance of the FZP, one had to deal with the moderate flux
transmission efficiency of the optics. It is worth mentioning that the spheres imaged
therein are at the limit of what is probably feasible with the photon flux provided by
a bending magnet and focused by a narrow spectrum band focusing optics.
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12.2.2 Fifth paper

X-Ray phase microscopy using the Speckle Tracking technique

Authors: Sebastien Berujon, Hongchang Wang, Ian Pape, Kawal Sawhney

Hard X-ray phase microscopy using the Speckle Tracking technique is presented and the
practical implementation of this microscope explained. It is demonstrated that the spa-
tial resolution of the Speckle Tracking technique can be pushed down to the nanometer
scale without sacrificing the angular sensitivity, which is in the tens of nanoradians
range. Moreover, the method is suitable for the analysis of dynamic samples. Ex-
perimental demonstration of the method is given for the case of phase imaging of
micrometer size polystyrene spheres using a Fresnel zone plate as a magnifying optical
element.

For the last decade, hard X-ray microscopy has been viewed with an increasing inter-
est as large scale facilities like synchrotrons offer beams with improved intensity and
quality. Indeed, because of their short wavelength, hard X-rays theoretically allow
the imaging of matter up to a limit set by the diffraction far below the visible light
wavelength, i.e in the order of few tens of nanometers. Meanwhile, X-ray phase con-
trast imaging has also benefited from intensive efforts, and now permits the imaging
of materials made of light elements with a sensitivity many orders of magnitude higher
than the one obtained with absorption contrast [132]. In addition, researchers have
put increasing efforts in the development of techniques that can map the phase shift
induced by a sample from a single exposure of it, as they allow the analysis of dynamic
samples [143, 181].

Several methods are now-a-days used by the synchrotron community to perform X-
ray microscopy. One of the most employed techniques is X-ray scanning microscopy
in which a sample is moved across the focal point of a beam. Despite presenting the
advantage of providing both the absorption and fluorescence maps of a sample, the
technique spatial resolution is limited by the smallest focal spot size achievable and
requires one exposure of the sample for each map point. The scanning Zernike phase
contrast microscope is an improvement of the method providing in addition an en-
hanced phase contrast signal and that has recently been made available in the hard
X-ray regime [176]. Nevertheless, because of their better compatibility with tomogra-
phy processes, new full field imaging methods are today regarded with higher interest.
New reciprocal space (far field) techniques such as coherent diffraction imaging [50, 51]
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and ptychography [12, 11] have recently been developed, demonstrating the ability of
nanometer scale spatial resolution. However, they also require a large number of sam-
ple exposures and put strong requirements on the beam stability, coherence and flux.
Real space, near field, phase imaging technique are methods commonly employed that
use the partial coherence of third generation synchrotron sources. Propagation based
techniques for instance are sensitive to the second derivative of the phase [56, 144, 58].
This kind of technique is easy to implement but can suffer from artifacts when imaging
homogeneous sample. Phase sensitive methods relying on the principle of high spatial
frequency wavefront modulation and deflection angle calculation such as grating inter-
ferometry [67, 91, 94], coded apertures [182] or Hartmann-like instruments [183, 143]
are phase imaging techniques sensitive to the beam phase gradient and having demon-
strated several advantages. Nevertheless, when used in combination with a magnifying
optic, the gain in spatial resolution in these techniques is obtained at the cost of a
reduced sensitivity [142]. Various kind of alternative attempts have been made but
they suffer from the requirements of specific optics or beam coherence [184, 176].

The recently introduced X-ray Speckle Tracking (XST) technique [137, 125] fall in
the full field technique category, and also use the principle of high spatial frequency
wavefront modulation. It benefits from many advantages such as low requirements on
longitudinal and transversal coherence and the ability to provide the two dimensional
gradient of a beam wavefront distortion from a single exposure of the sample and the
subsequent phase imaging of dynamic samples. We show here that, using a magni-
fying optical element, the resolution of the technique can be enhanced far below the
detector pixel size and without degrading the sensibility of the device. An experimen-
tal verification is provided below in an experiment consisting of imaging polystyrene
spheres.

(2)

Pi

(1)

v
Pi

Pt

Figure 12.5: Illustration of the DIC algorithm. Image (1): reference speckle pattern (direct beam); image
(2): displaced pattern (sample present).

In order to get around the trade off between angular sensitivity and spatial resolution
usually encountered in deflection angle based techniques [142, 92], one has to consider
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the XST basic principle: an x-ray speckle pattern is generated using a membrane
illuminated by the partially-coherent light produced by third generation synchrotrons
[24, 117]. A first image of this pattern is recorded with the direct beam (no sample).
Next, the sample is inserted in the beam, modifying the beam propagation direction
and hence distorting the speckle pattern recorded in a second image. The next step
of the data processing uses digital imaging correlation (DIC) algorithms [127] whose
principle is illustrated in Fig. 12.5. A subset centered around a given pixel is selected
in the first image. Then, this piece of speckle pattern is moved across the second
image to find a subset with similar speckle features in the second image. This step
is performed using a cross correlation algorithm which allows to track similar subset
from one image to the other with a subpixel accuracy [127] and hence calculate an
accurate displacement vector v for each subset. For each pixel (i, j) the wavefront
gradient is calculated using the relationship:

−→
∇ ·W (i, j) =

−→vij
L3

(12.1)

where −→v = −−→PiPt. The deflection angle in the base (x,y) introduced by the sample are
then Θx(i, j) = vij·x

L3
and Θy(i, j) = vij·y

L3
.

The method proposed here is to apply the XST technique in a magnifying setup to
recover the dephasing profile of micrometer size objects of light material from a single
exposure. As a demonstration, sub-micron imaging using XST has been performed
at beamline B16 of Diamond Light Source. The objective was to characterize with a
high spatial resolution polystyrene spheres, which had a design radius on the order
of one micron. A Fresnel Zone Plate (FZP) was used to get the high magnification
ratio. The FZP was chosen for its ease of alignment and the short focal length it
provides. The one used for the experiment was made from Au with a zone height of
1 µm on a silicon nitride membrane. Its diameter was of 200 µm and its outermost
zone width was 100 nm. Its fabrication and a more more complete description of
it is provided in Ref. [179]. An order sorting aperture with a 10 µm diameter was
placed just upstream of the focal plane to select only the first diffraction order of the
FZP. The photon energy was set to E = 11 keV (λ = 0.11 nm) by a double crystal
monochromator (∆E

E
∼ 10−4). At this working energy, the efficiency of the FZP was

of ∼ 10 % [179]. The sample, a speckle generating membrane with 0.45 µm pore size,
the FZP and the detector were all mounted on independent tri-axis translation stages
of a single versatile table located at ∼ 50 m from the bending magnet source of the
Diamond Light Source 3 GeV storage ring. A schematic of the experiment is shown
in Fig. 12.6. The specifications of the beamline are described in Ref. [26]. The sample
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FZP

L1 L2

L3

Figure 12.6: Sketch of the setup of the experiment (not to scale). In our case the distance from the focal
point to the sample was of L1 ' 8 mm, the membrane was located L2 = 172 mm beyond the sample
and the detector at a distance L3 = 3985 mm from this membrane.

was placed only a few millimeters (L1 ' 8 mm) beyond the focal plane of the FZP to
get a very high magnification ratio. The other distances were set to L2 = 172 mm for
the distance from the sample to the membrane and L3 = 3985 mm for the distance
from the membrane to the detector. These distances correspond to a magnification
M ' 500 of the sample in the plane of the detector and an equivalent pixel size of
13 nm. Moreover, the magnification of the speckle in the plane of the detector and the
magnification of the sample in the plane of the speckle generating membrane should be
also considered. From these physical parameters, one can calculate that the spheres
image would be magnified by a factor ∼ 22 in the plane of the membrane. This
matches well with the criterion that the frequencies of the carriers, i.e the speckle
grain size, must be higher than the one of the investigated object in the plane of the
scattering pattern. In addition, the speckle grains were magnified by a factor ∼ 23,
having a typical size of 10 µm in the plane of the detector, making then the speckle
pattern resolvable by the camera with a 6.4 µm effective pixel size.

Following the same method as in Ref. [92], the angular sensitivity defined by Ψ = |v|
α
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can be calculated in the case of the XST in a magnifying geometry setup. In other
words, this sensitivity factor expresses the size of the measurable displacement vector
for a given deflection angle and then, knowing the smallest vector v, the achievable
sensitivity can be measured [137]. For this calculation, we consider (see Fig. 12.7) a
ray passing through the sample and being deflected by an angle α (ray plot in green)
and a ray passing the same point A in the plane of the membrane when no sample is
present in the beam (ray plot in red). The norm of the displacement vector is then
the distance separating the point of impact on the detector of these two rays.

Object

Membrane Detector

L3L2L1

v Pi

Pt
α1

α2

α

δ∆

Secondary 
source A

Figure 12.7: Geometrical consideration for the calculation of the angular sensitivity.

With the notation of Fig. 12.7, the following equations can be extracted:

α = α1 + α2

∆ = α1L1 = α2(L2 + L3)

δ = α2L3 = |v| L1 + L2

L1 + L2 + L3

Eliminating α1 and α2, the calculation ends up to:

Ψ = |v|
α

= L1L3

L1 + L2
(12.2)

As one would expect, the sensitivity increases with an increase of the distance L3 and
a decrease of the distance L2. For smaller L2 values, membranes with smaller grain
size would be required to satisfy the criteria on the spatial frequencies of the speckle
to remain higher than those of the sample features. This is however not an issue as
commercial filter membranes are available in a wide range of pore sizes ranging from
0.2 µm to > 8 µm. This therefore relaxes the requirement on the placement of the
membrane unlike some other techniques [142] and hence allows to get a high sensitivity
by minimizing L2.

The raw images are shown in Fig. 12.8. The top images are recorded data and were used
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Figure 12.8: (a) Speckle image without any sample in the beam (reference image). (b) Speckle image
with the sample in the beam (object image). (c) Absorption image calculated with the two previous speckle
images. (d) Absorption image obtained without the scattering membrane in the beam. (e) Horizontal
wavefront gradient. (f) Vertical wavefront gradient.

to calculate the differential beam phase. Image (a) was acquired without any sample
present in the beam (reference image) while image (b) was recorded with the sample
introduced in the beam (object image). From these two images, an absorption image
can be calculated from the ratio of the pixel counts in each pixel. For comparison, the
absorption image obtained when the speckle membrane is present in the beam (c) and
when it is not (d) are displayed side by side in Fig. 12.8: as the displacement of the
speckle pattern is smaller than the grain size, the absorption image obtained with the
membrane resembles the one obtained without the membrane in the beam.

The vertical (e) and horizontal (f) wavefront gradients were derived after calculating
the displacement vector for each subset of 21 pixel width centered on each pixel using
Eq. 12.1. It can be observed that the speckle grains frequencies have disappeared from
the image.
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Figure 12.9: (a) Reconstructed map of the phase shift introduced by the micron thick polystyrene spheres.
One can clearly distinguish the two spheres. (b) Image from an atomic force microscopy scan of some of
the polystyrene spheres.

The reconstructed phase shift map calculated using a 2D Fourier integration scheme
[146], is shown in Fig. 12.9.(a) where the two polystyrene spheres are distinguishable
and a liquid interface can be seen between them. For this wavefront reconstruction,
particular care was taken for the integration step in the algorithm to match the equiv-
alent pixel size of the detector in the plane of the wavefront sampling, i.e in the plane
of the membrane (270 nm in our case). The maximum phase shift induced by the
spheres is equal to ∼ 0.022 λ while the expected value would be 0.016 λ for a single
micron size sphere, considering the decrement from unity of the real part of the refrac-
tive index of the polystyrene spheres to be δ = 1.96e − 6. Atomic Force Microscopy
scans performed on the same spheres revealed a maximum size of 1.5 µm (peak to
valley value) as shown in Fig. 12.9.(b), which eventually corroborates well with our
X-ray measurements. In addition, the standard deviation in an area of known constant
phase is approximately 20 nrad: that indicates the good sensitivity and stability of
the method. Considering that our DIC algorithm has an accuracy of better than 0.05
pixel, the smallest displacement vector measurable was of < 320 nm suggesting using
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Eq. 12.2 a sensitivity value better than 90 nrad.

As a conclusion, the technique demonstrates untouched sensitivity to phase shift when
increasing the spatial resolution through magnification. The process still requires
a single exposure of the sample that makes the technique very attractive to study
dynamic samples. Moreover, there is a scope to further increase the sensitivity of
the technique by at least one order of magnitude, by a combination of increasing the
distance L3 and using a smaller pixel-size detector. If the flux density becomes an
issue then the FZP can be replaced by a more efficient optics like a reflecting mirror,
which will substantially increase both the focusing efficiency and the usable energy
bandwidth[137]. The method presented is hence very attractive for nanoscale imaging
of both static and dynamic samples made of light materials, such as the ones of interest
in the field of biology and medical sciences.

12.3 Conclusions

The successful demonstration of sub-micron phase contrast imaging by two differ-
ent techniques has been presented. One could notice similarity on several aspects:
both are full field techniques employing a FZP as focusing element and measuring
the differential wavefront gradient by wavefront modulation. Nevertheless, the XGI
implementation was arranged such that the sample was located in focus and the XST
implementation within an out-of-focus projection geometry. While the first geometry
set up provides better edge contrast the second permits the use of a larger magnifica-
tion ratio.

It is worthwhile to discuss here about the advantages that the generalized scheme of
Sec. 7.2 would offer in a similar configuration. The membrane scanning scheme is
expected to provide, equivalently to the micro imaging XST method, a fine sensitivity
thanks to the possibility of tuning the size of the speckle grains and of employing a long
propagation distance. In addition, a really high resolution is achievable using a high
magnification ratio: similar to the 2D XGI scheme, it would have a pixel size resolution.
As a future perspective, it is reasonable to think about potential achievement of sub
50-nm size structure resolution using the projection setup and a large bandwidth, high
flux efficiency focusing optics.
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13 Conclusions

This thesis aimed at developing at-wavelength metrology methods usable at syn-
chrotrons. The project was motivated by the demand for X-ray phase sensing methods
to further improve the manufacturing process and therefore the performance of X-ray
optics. The investigated methods were near field methods based on the use of either
gratings or speckle. Grating interferometry, an already quite spread method in the
synchrotron community for imaging, still required additional work for routine metrol-
ogy applications. Studies were carried out on this device and a derivative method
for mirror characterization was developed. Regarding speckle based method, no such
method was previously available in the X-ray regime. However, recent advances opened
up perspectives for the development of a class of techniques using randomly scatter-
ing phase objects. Performance and possible applications of the techniques were then
studied.

13.1 Scientific contribution

Several new methods have been developed during this project. Although they first
aimed at investigating the quality and performance of optical elements, the improved
sensitivity and spatial resolution of the developed methods permitted to widen the
field of applications to microscopy.

The following methods were investigated or improved:

• Grating interferometry: The grating interferometer was a device already
widespread in the hard X-ray community at the time of the project inception.
Several competitive groups still spend important resources in the development
and improvement of the XGI, with for instance new applications at X-FEL fa-
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cilities. The effort in this project was put on the improvement of the spatial res-
olution and sensitivity of the device to push its metrology performance forward.
Most of the XGI work in this project consisted in optimization and application
to metrology cases in the frame of optics characterization.

• X-ray Speckle Tracking technique: The XST technique is an original tech-
nique developed at the beginning of the project and, since then, has been
employed for various applications. Despite the simultaneous publication of a
strongly related technique by a competitive group [125], extensive developments
of our technique permitted us to keep an edge over competition. For instance,
demonstration of the technique’s ability for micro imaging, optics characteriza-
tion and adaptive optics optimization were achieved.

• X-ray generalized stepping scheme: This new technique can be seen as a
merging of the XST and XGI techniques, borrowing principles from both tech-
niques. This advanced scheme then provides several advantages in terms of
spatial resolution and sensitivity. Despite being only at its early development
stage, the technique lets one envisage several applications and improvements:
considering the high magnification ratio accessible combined with the moderate
flux requirements, the method is a promising candidate for micro-imaging at
moderate brilliance beamlines.

• X-ray grating deflectometry: The development of this method, novel in the
hard X-ray regime, was motivated by the Ion Beam Figuring project of the ESRF
with the goal of determining online the profile of mirrors. The technique uses
a single absorption grating and is conceptually related to both the LTP instru-
ment and the pencil beam technique. Thanks to the more advanced numerical
processing schemes, one can access higher accuracy than the pencil beam tech-
nique combined with a greatly improved sampling resolution. The technique is
expected to be of interest to optics manufacturing applications as it provides fine
metrology maps of reflective optics under real working environment.

The applications attempted and presented in this thesis relate to both metrology and
microscopy topics. In carrying out the presented research, special emphasis was put
on deriving higher sensitivity and greater resolution. The XST and XGI methods were
both employed for online metrology of transmission optics and then further for X-ray
microscopy. In parallel, the work carried out on the ESRF IBF project permitted
to progress on the potential of the at-wavelength metrology as a feedback for an X-
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ray optics manufacturing process. During the final period of this thesis project, the
effectiveness of the developed techniques was exemplified by the successful optimization
of a high quality super-polished adaptive optics.

13.2 Perspectives and opinions

The core of this Ph.D. work concerns phase sensing and despite the quite ambitious
title given to the XST paper [137], it would be pretentious to claim the existence of
an absolute phase sensing method. Each technique finds applications depending on
its specific advantages as already discussed in Sec. 6.3. Nonetheless, some further
personal points of view are added here. They result from the experience acquired in
the course of this three year project.

• Online characterization of X-ray mirrors is a complex task due to the necessity
of employing grazing incidence. The grating based deflectometry method devel-
oped is a sophisticated version of the pencil beam technique that provides im-
proved sampling resolution and sensitivity for reflective optics characterization.
Even though further mechanical and environmental optimization are required for
achieving routine sub micro-radian measurements. The technique can replace,
at small additional cost, the crude pencil beam technique by substituting an
absorption grating to the probing pair of slits.

• Regarding the XGI, there is no doubt that it presents several important advan-
tages for imaging applications. However, at-wavelength metrology applications
do not directly benefit from these advantages. I have now a somewhat sceptical
opinion of the XGI’s ability to measure absolute wavefront using the phase step-
ping mode. This opinion comes about from the experience of analyzing several
XGI data wherein measurement artifacts due to the grating defects were un-
avoidable: they became problematic especially when the device was used in an
absolute mode, i.e in the absence of flat field substraction. It seems to me that
these defects are inherent to the production of gratings and preclude artefact-free
measurements, especially at low Talbot working orders. In parallel, the shear
distance induced by the use of a phase grating as a beam splitter may become an
important drawback for metrology applications as it limits the wavefront sam-
pling resolution of the measurements. It would be worthwhile to make further
progress on the grating metrology methods based on only absorption gratings,
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as it would be a way to by-pass the shear effects, although at the cost of reduced
usable photons.

The speckle techniques are original ones and the pioneer experiments presented in this
manuscript definitely deserve further systematic studies to assess their potentials. It
is in my opinion too early to draw some serious comparison with, for instance, the
XGI, subject of investigation for nearly ten years.

• The new stepping generalized scheme will mainly find applications at syn-
chrotrons: it offers the same advantages as the 2D XGI, i.e the phase and
scattering mapping of an object, but at a much lower investment cost. One
aspect that will make it favorite over its 2D XGI cousin for certain applications
is its spatial resolution. As a matter of fact, the method can be applied in a
very high magnification geometry and does not suffer from grating shear limita-
tion. Nevertheless, this stepping scheme requires a detector able to resolve the
wavefront intensity modulation features, contrary to the 2D XGI. As seen in the
theoretical part of the method description (cf. Sec. 7.2.2), the technique is based
on an intrinsically incoherent principle. There are then possibilities of employ-
ing absorption patterns instead of phase ones in the general stepping scheme to
make it compatible with laboratory sources. In contrast, the 2D XGI, which is
a special case of the stepping scheme, is likely to find applications at laboratory
sources when one wants to map objects at a scale smaller than the detector pixel
size.

• The X-ray speckle tracking technique will, in my opinion, reach a large com-
munity of users both for metrology and for imaging purposes. As a metrology
instrument, the XST technique is surely an efficient alternative to the pencil
beam technique. Such substitution would simplify the experimental setup and
provide higher sensitivity and beam phase monitoring. For imaging, the tech-
nique will find applications when a single exposure process is desired to retrieve
the phase. Here, we expect the XST technique to be more robust and efficient
than the 2D XGI in the Moiré mode and usable in tomography and in general,
to image dynamic processes. I also believe XST has the potential of becoming
a valuable tool for applications where the XGI is presently employed, such as at
the new compact X-ray sources [185] and X-Free Electron Laser instruments [72]
where pulse to pulse variations need to be measured.
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As a final word, it is important to point out that at-wavelength metrology is still in its
infancy. For a long time, laboratory metrology instruments were able to provide the
accuracy necessary for the production of state of the art X-ray optics. Now that the
metrology has become the limiting factor in the production of the present and future
nanofocusing optics, the use of high-resolution online at-wavelength metrology meth-
ods is the way forward. Important improvements in this field are therefore expected.
May this contribution be valuable to the community and generate further advances.
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Conclusion en français

Cette thèse avait pour but le développement de méthodes de métrologie à la longueur
d’onde pour synchrotrons. Elle était motivée par le besoin de méthodes sensibles à la
phase des faisceaux de rayons X pour la fabrication d’optiques pour faisceau X de gé-
nération supérieure. Les méthodes étudiées s’appuyaient soit sur le speckle en champ
proche, soit sur l’utilisation de réseaux. Au commencement de ce projet l’interféro-
métrie à réseaux était déjà une méthode d’imagerie répandue dans les synchrotrons.
Toutefois, elle nécessitait encore des améliorations pour pouvoir être utilisée comme
instrument de métrologie en ligne de façon routinière. Divers travaux ont été effectués
sur cet instrument et une méthode dérivée a été mise au point pour la caractérisation
d’optiques X travaillant en réflexion. Concernant les méthodes utilisant le speckle,
aucune n’était disponible dans le domaine des rayons X durs. Toutefois, des décou-
vertes récentes laissaient entrevoir des possibilités pour l’exploitation de ce phénomène
observable lorsque l’on place un objet diffractant dans un faisceau synchrotron partiel-
lement cohérent. Les performances et les applications possibles des techniques ont donc
nécessité une étude approfondie pour les rendre utilisables par le plus grand nombre.

Contribution scientifique

Plusieurs méthodes nouvelles ont été mises au point au cours de cette thèse. Bien que
leur but premier concernât la caractérisation en ligne d’optiques, la précision et la
résolution spatiale des nouvelles techniques développées ont permis des applications
de microscopie.

Les méthodes suivantes ont été conçues ou améliorées.

• L’interférométrie à réseaux : Les interféromètres à réseaux étaient des ins-
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truments déjà assez répandus dans le milieu synchrotron au début de ce projet,
plusieurs groupes consacrant des ressources conséquentes au développement et
à l’amélioration de l’interféromètre, par exemple pour son utilisation au sein
des nouvelles installations X-FEL. Au cours de ce projet, l’effort a été mis sur
l’amélioration de la sensibilité et de la résolution spatiale de l’instrument afin
d’optimiser ses performances pour la métrologie de routine. Plusieurs applica-
tions de l’interféromètre furent mises en œuvre pour la caractérisation en ligne
d’optiques pour rayons X.

• Le suivi de speckle X : La méthode de suivi de speckle est une technique
originale de mesure de la phase d’un faisceau de rayons X. Elle a été mise au point
au début de cette thèse et ensuite largement employée. Une méthode comparable
fut publiée simultanément par un groupe concurrent [125], mais des améliorations
constantes nous ont permis de garder une avance sur nos concurrents. Ainsi,
la démonstration a été faite de l’efficacité de la technique pour la microscopie
de rayons X, la caractérisation d’éléments optiques et l’optimisation d’optiques
adaptatives.

• La méthode à pas généralisée : Cette nouvelle technique peut être interprétée
comme l’intersection de la technique du suivi de speckle en ligne et de l’inter-
férométrie à réseaux ; elle emprunte des principes aux deux techniques. Cette
procédure de traitement élaborée fournit plusieurs avantages en termes de réso-
lution spatiale et de précision. En dépit de sa jeunesse, les études préliminaires
laissent envisager de multiples applications. Du fait du grossissement important
accessible avec cette technique et des faibles contraintes en flux qu’elle impose,
des applications d’imagerie à l’échelle nanométrique peuvent être envisagées.

• La deflectometrie à réseaux : Cette méthode fut mise au point afin de pouvoir
déterminer en ligne le profil de surface d’un miroir X. Cette problématique était
soulevée notamment par le projet IBF conduit au sein de l’ESRF. La technique
est basée sur l’utilisation d’un seul réseau en absorption et peut être concep-
tuellement rapprochée de la technique du faisceau en pinceau. Grâce à des mé-
thodes numériques plus avancées, elle permet de dépasser les performances de la
technique du faisceau en pinceaux, non seulement en termes de précision, mais
aussi de résolution. Cette méthode trouve des applications dans le domaine de
la production d’optiques où des cartes topographiques de haute précision et en
conditions réelles de fonctionnement sont nécessaires.
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13.2. PERSPECTIVES AND OPINIONS

Les applications présentées dans ce manuscrit concernent les domaines de la métrologie
et de la microscopie. Au cours des recherches, les efforts portèrent plus particulière-
ment sur l’optimisation de la résolution des méthodes. Les capacités des techniques
ont été démontrées dans de multiples applications. Ainsi, les deux techniques de suivi
de speckle et d’interférométrie furent employées pour la caractérisation métrologique
en ligne d’optiques en transmission et pour la microscopie. En parallèle, les travaux
conduits sur le projet IBF de l’ESRF ont permis l’étude de l’intégration de la métro-
logie en ligne dans la boucle de production d’optique pour rayons X. Vers la fin du
projet, l’efficacité des méthodes développées pour l’optimisation d’optique adaptative
fut démontrée dans le cas d’un miroir bimorphe multi-electrodes de haute qualité.
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A Symbols and acronyms

Acronym
ESRF European Synchrotron Radiation Facility
DLS Diamond Light Source
XGI X-ray Grating Interferometer
XST X-ray Speckle Tracking
CRL Compound Refractive Lens
FZP Fresnel Zone Plate
LTP Long Trace Profiler
NOM Nanometer Optical Measuring machine
KB Kirkpatrick-Baez system
AFM Atomic Force Microscope
CCD Charge-Coupled Device
X-FEL X-ray Free Electron Laser
TIE Transport of Intensity Equation
GPU Graphics Processing Unit
DBT Deflection Based Techniques
IBF Ion Beam Figuring
EEM Elastic Emission Machining

Table A.1: Symbols table

Symbol
λ Wavelength
E Photon energy
∇ The del operator
G1 Phase grating of the XGI
G2 Absorption grating of the XGI

p1 and p2 Grating pitch
W Beam wavefront
ϕ Beam phase
Φ Moiré fringes phase
k Wavenumber
k Wavevector

Table A.2: Symbols table
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B Ellipse equation useful for mirror
shaping

The general ellipse equation in the base (eu, ev) is:

x2
eu

a2 + y2
ev

b2 = 1 (B.1)

Retaining only the negative solution (mirror oriented reflective side up):

yev = −b
√

1− x2
eu

a2 (B.2)

The source and focus position are defined by:

SX0 +X0F = p+ q = cst (B.3)

Considering the point of the ellipse p1, one can derive the relation linking a to p + q
by:

p+ q = (a− c) + a+ c = 2a

a = p+ q

2
(B.4)

When considering the point p2, we have: p = q = a and then:

a2 = b2 + c2 (B.5)

b

acSource

Focus

p
q

ey

ex
θ

O eu

ev

α ψp1

p2

Figure B.1: Geometry considerations for the derivation of the ellipse equations. S, F are respectively the
source and focal point while M is the center of the mirror.
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Using the Al-Kashi formulae in the triangle SFX0:

c = 1
2
√
p2 + q2 − 2pq cos(π − 2Θ) (B.6)

And the expression of b with p and q is:

b2 = a2 − c2

= 1
2pq(1 + cos 2Θ)

And so
b = √pq sin Θ (B.7)

In the triangle SFM , the following relation hold:

sin(π − 2Θ)
p

= sinα
2c (B.8)

leading to
α = arcsin

(
p

2c sin(π − 2Θ)
)

(B.9)

The rotation angle Ψ between the ellipse axis (eu, ev) and the mirror axis (ex, ey) is:

Ψ = α−Θ (B.10)

The coordinate of the point M are:

x0 = c− q cosα

y0 = −b
√

1− x2
0
a2

(B.11)

After rotation and translation to the base (ex, ey) centered in M , the relation of the
base vectors of the two bases at the first order approximation are:

xeu = x0 + xex cos Ψ− yey sin Ψ ≈ x0 + xex cos Ψ
yev = y0 + yey cos Ψ + xex sin Ψ

(B.12)

Then:

yev = −b
√

1− x2
eu

a2 (B.13)

becomes by substitution of the coordinates:

y0 + yey cos Ψ + xex sin Ψ = −b

√√√√1−
(
x0 + xex cos Ψ

a

)2

(B.14)

and finally:

yey = − 1
cos Ψ

b
√√√√1−

(
x0 + xex cos Ψ

a

)2

+ y0

− xex tan Ψ (B.15)
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And from a straight forward derivation, the slope is:

Sl = y′ey = b

a

x0 + xex cos Ψ√
a2 − x2

0 − 2x0x cosµ− x2 cos2 µ
− tan Ψ (B.16)

However, these two last equations correspond to the mirror profile and slope in the
referential of the mirror center(which is not the deepest point). For the etching process,
the target slope has to be considered when the mirror is set horizontally, or more
precisely, with its two extrema at the same altitude. To account for this, another
rotation has to be performed with an angle:

Θ = −atan
(
yey(L2 )− yey(−L

2 )
L

)
(B.17)

where L is the mirror length. This is also equivalent to:

Slflat = Sl− < Sl > (B.18)

where the operator < . > denotes the average value over the definition space.
Beside that, the theoretical radius of the ellipse is defined by :

Rth = 2
sinΘ

(
pq

p+ q

)
(B.19)
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C XST data processing
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Pixel accuracy step: Perform Zero-Normalized 

Cross-Correlation and find the integer number 

of pixel displacement (νx_pix, νy_pix) 

Sub-pixel accuracy step: adjust (νx_pix, νy_pix) 
to the hundredth of pixel displacement

Select a small subset 

around pixel (p,q)

Ref. Image

Select a large subset 

around pixel (p,q)

Sample image

Calculate wavefront gradient value (cf eq. 4): 

( , ) xW p q

x L

ν∂ =
∂ ∆

(νx, νy) = Pixel_Size * (νx_pix , νy_pix) 

DIC

Store gradients in matrix (2 x m x n) 

For � � � �( , ) 1, * 1,p q m n∈

Reconstruct wavefront from gradient

( , ) yW p q

y L

ν∂ =
∂ ∆

With two acquisition of size (m*n)

p

qq

p

XST implementation steps 
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