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À Émilie,

i



ii



Remerciements
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m’avoir épaulé tout au long de ces trois années et quelques.

Je remercie profondément Alexander Merkurjev et Jean-Pierre Tignol de m’avoir
fait l’honneur d’être rapporteurs de ma thèse tout comme je remercie sincèrement
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Introduction (version française)

Un problème général en mathématiques est de classifier des objets, à isomorphisme
près. Notons Obj l’ensemble des objets considérés. Quand ceux-ci sont trop com-
pliqués à comprendre directement, on cherche des invariants, c’est-à-dire des ap-
plications de l’ensemble des classes d’isomorphisme de ces objets vers un ensemble
d’objets mieux connus et on espère obtenir des invariants assez d’information
pour permettre la classification. Dans le cas de structures algébriques (comme les
algèbres, les formes quadratiques, les variétés algébriques, etc), elles sont souvent
définies sur un corps et stables par extension des scalaires. Fixons un corps de base
k0. Il est naturel de considérer le foncteur Obj : k/k0 7→ Isok(Obj), où, pour toute
extension de corps k/k0, Isok(Obj) désigne l’ensemble des classes d’isomorphisme
des objets définis sur k.

Pour commencer, considérons comme foncteur des objets, le foncteur Quadnk0 des
classes d’isométrie des formes quadratiques non dégénérées, de rang fixé n ≥ 1 sur
une extension de corps quelconque k/k0. Alors, pour les formes quadratiques, le
discriminant, l’algèbre de Clifford (ou l’algèbre de Clifford paire, selon que l’une
ou l’autre est centrale simple sur le corps de base), l’invariant de Hasse-Witt ou
la signature (si k0 ⊂ R) sont invariants par isométrie (cf. [12] ou [10] pour les
définitions). Quand k0 = Q, les formes quadratiques non dégénérées sur Q sont
classifiées à isométrie près par le rang, le discriminant, l’invariant de Hasse-Witt et
la signature (cf. par exemple [21]). Cependant, cette classification n’est pas vraie
pour un corps arbitraire (cf. [9]). On peut alors se demander s’il existe d’autres
invariants qui permettraient d’obtenir une classification complète.

Remarquons d’abord que le discriminant, l’algèbre de Clifford (paire) et l’invariant
de Hasse-Witt induisent des transformations naturelles du foncteur Quadnk0 vers
un foncteur de cohomologie galoisienne H i(k,Z/2Z). En effet, le groupe de coho-
mologie galoisienne H1(k,Z/2Z) est isomorphe au groupe des classes de carrés de k
et le groupe de cohomologie galoisienne H2(k,Z/2Z) est isomorphe au sous-groupe
des éléments de 2-torsion dans le groupe de Brauer de k, qui classifie les algèbres
centrales simples d’indice une puissance de 2 sur k à équivalence de Brauer près
(cf. [10]; remarquons aussi que Merkurjev a prouvé que ce groupe est engendré
par les classes de produits tensoriels d’algèbres de quaternions sur k, cf. [27] pour
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une preuve). On peut alors se demander s’il y a d’autres invariants à valeurs
dans de tels groupes de cohomologie. Avant de donner la réponse pour les formes
quadratiques, considérons la situation plus générale suivante.

Soit G un schéma en groupes algébrique lisse sur k0. Si k/k0 est une exten-
sion de corps, le premier ensemble de cohomologie galoisienne H1(k,G) est en
bijection avec l’ensemble des classes d’isomorphisme de G-torseurs sur k. Dans
de nombreux cas particuliers, ces ensembles classifient aussi d’autres structures
algébriques intéressantes. On en présente ici quelques exemples (on remarque que
le mot ”classifie” ci-dessous signifie ”est en bijection avec l’ensemble des classes
d’isomorphisme de”) :

(a) quand le schéma en groupes G est fini et constant, pour toute extension
k/k0, l’ensemble H1(k,G) classifie les G-algèbres galoisiennes sur k;

(b) quand G = On est le schéma en groupes orthogonal sur k0 (i.e. associé au
groupe orthogonal de la forme quadratique unité 〈1, ..., 1〉 de rang n sur k),
l’ensemble H1(k,G) classifie les formes quadratiques non dégénérées de rang
n sur k;

(c) quand G = Sn est le groupe symétrique sur n éléments, l’ensemble H1(k,G)
classifie les algèbres étales de rang n sur k.

Soit Γk0 le groupe de Galois absolu sur k0 et soit C un Γk0-module fini. On
introduit le foncteur de cohomologie galoisienne abélienne

H∗(./k0, C) : k/k0 7→ H∗(k,C) =
⊕
i∈N

H i(k,C)

de la catégorie des extensions de corps de k0 à la catégorie des ensembles (plus
précisément, ce foncteur est à valeurs dans la catégorie des groupes abéliens et
on compose ici par le foncteur d’oubli). On considère alors les morphismes de
foncteurs de Obj vers H∗(./k0, C). On les appelle invariants cohomologiques des
objets sur k0 à coefficients dans C. Dans la suite, on utilise principalement comme
foncteur d’objets le foncteur de cohomologie galoisienne

H1(./k0, G) : k/k0 7→ H1(k,G)

de la catégorie des extensions de corps de k0 vers la catégorie des ensembles et
on note Invk0(G,C) l’ensemble des invariants cohomologiques de G sur k0 à coef-
ficients dans C.

Revenons maintenant au foncteur Quadnk0 . Pour toute extension k/k0 et toute
forme quadratique non dégénérée diagonale q = 〈α1, . . . , αn〉, avec α1, . . . , αn des
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classes de carrés dans k, on pose

wi(q) =
∑

1≤j1<...<ji≤n
(αj1) · · · · · (αji).

On remarque d’abord que cette définition n’est pas restrictive puisque toute classe
d’isométrie de formes quadratiques (non dégénérées) contient (au moins) une forme
diagonale. De plus, wi(q) est bien définie (si deux formes quadratiques diagonales
sont isométriques, leurs images par wi sont égales). Cela induit donc des invari-
ants cohomologiques wi ∈ Invk0(On,Z/2Z) appelés invariants de Stiefel-Whitney.
Dans [24], Serre a décrit la structure du groupe Invk0(On,Z/2Z): il est muni d’une
structure de H∗(k0,Z/2Z)-module libre, dont une base est donnée par les invari-
ants de Stiefel-Whitney wi pour 0 ≤ i ≤ n. Néanmoins, les formes quadratiques
non dégénérées ne sont pas classifiées, à isométrie près, par leurs invariants coho-
mologiques à coefficients dans Z/2Z. Dans [19], Scharlau a donné des exemples
de corps k et de formes quadratiques q et q′ qui ne sont pas isométriques et pour
lesquelles pour tout 0 ≤ i ≤ n, wi(q) = wi(q

′).

Soit n ≥ 1. Serre a montré dans [24] que le groupe des invariants cohomologiques
des n-formes de Pfister à coefficients dans Z/2Z est un H∗(k0,Z/2Z)-module libre
avec une base donnée par {1, en}, où

en(〈〈α1, ..., αn〉〉) = (α1) · · · · · (αn).

De plus, Serre a donné la description du groupe des invariants cohomologiques des
algèbres d’octonions, des formes hermitiennes ou des algèbres d’Albert (cf. [24],
18.4, 21.6 or 22.5).

Plus récemment, dans [14] et dans [15], MacDonald a déterminé une base du
groupe des invariants cohomologiques du schéma en groupes des automorphismes
d’une algèbre de Jordan centrale simple scindée de degré impair.

Remarquons aussi qu’une classification complète est connue pour les formes quadra-
tiques sur un corps quelconque (à isométrie près). Grâce à la conjecture de Milnor
prouvée par Voevodsky (cf. [16] pour l’énoncé et [26] et [18] pour la preuve), les
invariants en (définis ci-dessus pour les formes de Pfister) classifient complètement
les formes quadratiques sur un corps de base quelconque. En effet, deux formes
quadratiques q1 et q2 sont isométriques si et seulement si q1− q2 est hyperbolique
et si les classes de cohomologie en(q1 − q2) s’annulent pour tout n ≥ 0. Remar-
quons que ces invariants en ne sont pas définis pour toute forme quadratique et
ne peuvent pas définir des invariants cohomologiques dans Invk0(On,Z/2Z) (sauf
pour n = 0 et n = 1).

Revenons à la situation où G est un schéma en groupes algébrique lisse sur k0.
Pour les groupes algébriques connexes simplement connexes absolument simples,
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Rost a montré que le groupe des invariants normalisés cohomologiques de G de
degré 3 à coefficients dans Q/Z(2) est fini cyclique et engendré par un invariant
canonique RG appelé invariant de Rost (voir la contribution de Merkurjev de [24]).

On considère à présent le cas où G est un groupe fini. Les invariants coho-
mologiques de certains groupes finis peuvent être utiles pour résoudre le problème
de Noether. On rappelle qu’on dit que le problème de Noether est vrai pour le
groupe G sur le corps k0 s’il existe un plongement ρ : G → GLn(k0) tel que, si
Kρ est le sous-corps de k0(X1, ..., Xn) fixé par G, alors Kρ est k0-rational. Serre
a démontré dans [24], 33.10, que s’il existe un invariant cohomologique de G sur
k0 qui est à la fois non ramifié et non constant, alors le problème de Noether est
faux pour G sur k0. En utilisant cette propriété, Serre a prouvé que le problème
de Noether est faux pour tout groupe ayant un 2-sous-groupe de Sylow cyclique
d’ordre ≥ 8 sur Q (cf. [24], 33.16).

Cependant, on ne connâıt actuellement que très peu de résultats sur les invariants
cohomologiques des groupes finis. Dans [24], Serre a décrit les invariants coho-
mologiques des groupes 2-élémentaires et du groupe symétrique. Le but de cette
thèse est de généraliser le travail de Serre sur les invariants cohomologiques du
groupe symétrique aux groupes de Coxeter finis.

Dans le chapitre 1, on rappelle les résultats classiques de cohomologie galoisienne,
dans les cas non-abélien et abélien, en y ajoutant les résultats principaux sur les
applications résidu; on expose ensuite les principaux outils sur les invariants co-
homologiques décrits dans [24].

Dans le chapitre 2, on donne des exemples explicites d’invariants cohomologiques,
en rappelant d’abord les résultats de Serre sur les invariants cohomologiques des
groupes 2-élémentaires, du groupe orthogonal et du groupe symétrique. En parti-
culier, on donne la description de Serre des invariants cohomologiques de Sn, où
n ≥ 1. Soit n ≥ 1. On pose, pour tout 0 ≤ i ≤ n,

wi : H1(./k0,Sn)→ H∗(./k0,Z/2Z)

(L) 7→ wi(TrL(x2))
.

Cet invariant wi est appelé le ie invariant de Stiefel-Whitney. Dans [24], 25.13,
Serre a montré que, pour tout corps k0 de caractéristique différente de 2 et pour
tout n ≥ 2, le H∗(k0,Z/2Z)-module Invk0(Sn,Z/2Z) est libre et une base est
donnée par la famille {wi}0≤i≤[n

2
].

On établit ensuite quelques résultats sur les invariants cohomologiques de certains
groupes de réflection simples, comme le groupe de Weyl de type G2, le groupe de
Coxeter de type H3 et les groupes diédraux Dn avec n qui n’est pas divisible par
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4 ainsi que le groupe diédral D4.

L’objectif du chapitre 3 est d’établir un principe général d’annulation pour les
invariants cohomologiques des groupes de Coxeter finis en caractéristique zéro.
On remarque d’abord que, pour décrire les invariants cohomologiques du groupe
symétrique, Serre a énoncé le principe de déploiement suivant (cf. [24], 24.9).

Théorème (Serre, 2003). Soit k0 un corps tel que char(k0) ne divise pas l’ordre
de C et soit n ≥ 2. Soit aussi a ∈ Invk0(Sn,Z/2Z). Supposons que, pour toute
extension k/k0, ak(E) = 0 dès que E est une k-algèbre étale isomorphe à un
produit direct de k-algèbres étales de rang ≤ 2. Alors a = 0.

Passons maintenant à la généralisation de ce résultat aux groupes de Coxeter
finis en caractéristique zéro. On rappelle qu’un groupe de Coxeter fini W est
un groupe de réflection réel, c’est-à-dire qu’il existe une représentation linéaire
fidèle ρ : W ↪→ GL(V ) dans un espace vectoriel réel V de dimension finie, tel
que W est engendré par des réflections de V . Remarquons que réflection signifie
ici un endomorphisme r de V tel que le rang de r− idV est égal à 1 et que r2 = idV .

Soit G un groupe fini et H ⊂ G un sous-groupe. Si a ∈ Invk0(G,C), le com-

posé H1(./k0, H) // H1(./k0, G)
a // H∗(./k0, C) définit un invariant de H,

appelé la restriction de a à H.

Dans [24] 25.15, Serre a énoncé un principe d’annulation pour les invariants coho-
mologiques des groupes de Weyl. On prouve dans cette thèse une généralisation
de ce principe aux groupes de Coxeter finis.

Théorème (Serre, 2003). Soit W un groupe de Coxeter fini et soit k0 un corps
de caractéristique zéro contenant un sous-corps sur lequel la représentation réelle
de W comme groupe de réflection est réalisable. Soit C un Γk0-module fini et
a ∈ Invk0(W,C). Supposons que toute restriction de a à un sous-groupe abélien de
W engendré par des réflections est nul. Alors a = 0.

On remarque que cette hypothèse sur le corps de base k0 est automatiquement
satisfaite pour les groupes de Weyl puisque toute représentation irréductible réelle
d’un groupe de Weyl est réalisable sur le corps des rationnels Q. Cependant,
pour d’autres groupes de Coxeter, ce n’est pas le cas (par exemple, si W = Dn
est le groupe diédral d’ordre 2n, la représentation géométrique réelle standard
ρ : W → GL2(R) est réalisable sur Q(cos(2π

n )) mais pas sur Q).

On note enfin qu’on retrouve exactement le principe de déploiement à partir du
principe d’annulation dans le cas des groupes de Weyl de type An.

Dans le chapitre 4, on s’intéresse aux groupes de Weyl de type Bn ou Cn. Soit
n ≥ 2 W un groupe de Weyl de type Bn (on note qu’un groupe de Weyl de type
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Cn est isomorphe à W ). Soit k un corps de caractéristique différente de 2. Alors
H1(k,W ) est en bijection avec l’ensemble des classes d’isomorphisme des paires
(L,α), où L est une k-algèbre étale et α une classe de carrés dans L. On pose,
pour tout 0 ≤ i ≤ n,

wi : H1(./k0,Sn)→ H∗(./k0,Z/2Z)

(L,α) 7→ wi(TrL(x2))
.

De plus, on remarque que, pour toute paire (L,α) ∈ H1(k,W ), la classe d’isomorphisme
de la forme quadratique TrL(αx2) ne dépend pas du choix d’un représentant dans
la classe de carrés de α. Posons alors

w̃i : H1(./k0,Sn)→ H∗(./k0,Z/2Z)

(L,α) 7→ wi(TrL(αx2))
.

Ces invariants sont aussi appelés invariants de Stiefel-Whitney de W .

Théorème. Soit k0 un corps de caractéristique zéro, tel que −1 et 2 sont des
carrés dans k0. Soit n ≥ 2 et W un groupe de Weyl de type Bn. Alors le
H∗(k0,Z/2Z)-module Invk0(W,Z/2Z) est libre avec une base donnée par la famille

{wi · w̃j}0≤i≤[n
2

],0≤j≤2([n
2

]−i).

Dans le chapitre 5, on s’intéresse aux groupes de Weyl de type D. Soit W un
groupe de Weyl de type Dn (n ≥ 4). On a la suite exacte

1 //W //W ′
p // Z/2Z // 1 ,

où W ′ est un groupe de Weyl de type Bn et p : (ε1, ..., εn, σ) 7→
n∏
i=1
εi.

Soit k0 un corps de caractéristique différente de 2. Si a ∈ Invk0(W ′,Z/2Z), alors
ResWW ′(a) est un invariant cohomologique de W . Ainsi, pour 0 ≤ i ≤ n, ResWW ′(wi)
est un invariant de W est encore noté wi. De même, pour 0 ≤ i ≤ n, ResWW ′(w̃i)
est un invariant de W et est encore noté w̃i.

Théorème. Soit k0 un corps de caractéristique zéro. Soit n ≥ 4 et W un groupe
de Weyl de type Dn. Alors le H∗(k0,Z/2Z)-module Invk0(W,Z/2Z) est libre de
base

{wi · w̃j}0≤i≤[n
2

],0≤j≤2([n
2

]−i) et j pair .
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Introduction

A general problem in mathematics is to classify objects, up to isomorphism. Let
us denote by Obj the set of the objects. When it is too complicated, we look
for invariants, i.e. maps from the set of isomorphism classes of the objects to a
set of well-understood objects and we hope to get from invariants enough infor-
mation to allow classification. Concerning algebraic structures (such as algebras,
quadratic forms, algebraic varieties, etc) they are often defined over a field and
stable by scalar extension. Let k0 be a base field. It is natural to consider the
functor Obj : k/k0 7→ Isok(Obj), where, for any k/k0, Isok(Obj) denotes the set of
isomorphism classes of the objects defined over k.

Let us first consider the functor Quadnk0 of the isometry classes of the non-
degenerate quadratic forms of fixed rank n ≥ 1 over an arbitrary extension field
k/k0 as the functor of the objects. Then, for quadratic forms, the discriminant,
the Clifford algebra (or the even Clifford algebra, depending on which is central
simple over the base field), the Hasse-Witt invariant or the signature (if k0 ⊂ R)
are invariant under isometry (see [12] or [10] for definitions). When k0 = Q, the
non-degenerate quadratic forms over Q are classified by the rank, the discriminant,
the Hasse-Witt invariant and the signature up to isometry (see for instance [21]).
However, this classification does not hold for an arbitrary field (see [9]). We then
may wonder whether there are other invariants so that a complete classification
would be obtained.

Let us first note that the discriminant, the (even) Clifford algebra and the Hasse-
Witt invariant yield some natural transformations from the functor Quadnk0 to
some Galois cohomology functor H i(k,Z/2Z). Indeed, the Galois cohomology
group H1(k,Z/2Z) is isomorphic to the group of the square-classes in k and the
Galois cohomology group H2(k,Z/2Z) is isomorphic to the 2-torsion part of the
Brauer group of k, which classifies the central simple algebras of index a power of
2 over k up to Brauer equivalence (see [10]; note also that Merkurjev proved that
this group is generated by the classes of tensor products of quaternion algebras
over k, see [27] for a proof). We then may wonder whether there should be some
other invariants with values in such cohomological groups. Before giving the an-
swer for quadratic forms, let us look at a more general situation.
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Let G be a smooth algebraic group scheme over k0. If k/k0 is a field extension
over k0, the first Galois cohomology set H1(k,G) is in bijection with the set of the
isomorphism classes of G-torsors over k. In many particular cases, these sets also
classify many other interesting algebraic structures. Here are a few examples (note
that the word ”classifies” below means ”is in bijection with the set of isomorphism
classes of”) :

(a) when the group scheme G is finite constant, for any k/k0, the set H1(k,G)
classifies Galois G-algebras over k;

(b) when G = On is the orthogonal group scheme over k0 (i.e. associated with
the orthogonal group of the unit quadratic form 〈1, ..., 1〉 of rank n over k),
the set H1(k,G) classifies non-degenerate quadratic forms of rank n over k;

(c) when G = Sn is the symmetric group on n letters, the set H1(k,G) classifies
étale algebras of rank n over k.

Let Γk0 denote the absolute Galois group over k0 and let C be a finite Γk0-module.
Let us introduce the abelian Galois cohomology functor

H∗(./k0, C) : k/k0 7→ H∗(k,C) =
⊕
i∈N

H i(k,C)

from the category of the field extensions over k0 to the sets category (to be pre-
cise, this functor has values in the abelian groups category and we compose here
by the forgetful functor). We then consider morphisms of functors from Obj to
H∗(./k0, C). Such morphisms are called cohomological invariants of the objects
over k0 with coefficients in C. In the sequel, we mainly use the Galois cohomology
functor

H1(./k0, G) : k/k0 7→ H1(k,G)

from the category of field extensions over k0 to the category of sets as the functor
of objects and we denote by Invk0(G,C) the set of the cohomological invariants of
G over k0 with coefficients in C.

Let us come back to the functor Quadnk0 . For any k/k0, for any non-degenerate
diagonalized quadratic form q = 〈α1, . . . , αn〉, with α1, . . . , αn ∈ k×/k×2, we set

wi(q) =
∑

1≤j1<...<ji≤n
(αj1) · · · · · (αji).

Note first that this definition is not restrictive since any isometry class of non-
degenerate quadratic forms contains (at least) a diagonalized form. Note also that
wi(q) is well-defined (if two diagonalized quadratic forms are isometric, their image
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by wi are equal). It yields some cohomological invariants wi ∈ Invk0(On,Z/2Z)
called Stiefel-Whitney invariants. In [24], Serre described the structure of the
group Invk0(On,Z/2Z): it carries a structure of free H∗(k0,Z/2Z)-module, with a
basis given by the Stiefel-Whitney invariants wi for 0 ≤ i ≤ n. Nevertheless, the
non-degenerate quadratic forms are not classified by their cohomological invari-
ants with coefficients in Z/2Z. In [19], Scharlau gave examples of fields k and of
quadratic forms q and q′ which are non isometric and such that for any 0 ≤ i ≤ n,
wi(q) = wi(q

′).

Let n ≥ 1. Serre proved in [24] that the group of the cohomological invariants of
the n-fold Pfister forms with coefficients in Z/2Z is a free H∗(k0,Z/2Z)-module
with a basis {1, en}, where

en(〈〈α1, ..., αn〉〉) = (α1) · · · · · (αn).

Note also that Serre gave the description of the group of cohomological invariants
of the octonion algebras, of hermitian forms or of Albert algebras (see [24], 18.4,
21.6 or 22.5).

More recently, in [14] and in [15], MacDonald determined a basis for the coho-
mological invariants of the automorphism group scheme of a split central simple
Jordan algebra of odd degree.

Let us also note that a complete classification is known for quadratic forms over
an arbitrary field (up to isometry). Thanks to Milnor’s conjecture proved by Vo-
evodsky (see [16] for the statement and [26] and [18] for the proof) the invariants
en (defined above for Pfister forms) completely classify quadratic forms over an
arbitrary base field. Indeed, two quadratic forms q1 and q2 are isometric if and
only if q1 − q2 is hyperbolic and the cohomology classes en(q1 − q2) all vanish for
any n ≥ 0. Note that these invariants en are not defined for any quadratic form
and then can not yield cohomological invariants in Invk0(On,Z/2Z) (unless n = 0
and n = 1).

Let us come back to the situation where G is a smooth algebraic group scheme
over k0. For absolutely simple simply connected algebraic groups, Rost proved
the group of the normalized cohomological invariants of G of degree 3 with coeffi-
cients in Q/Z(2) is finite cyclic and generated by a canonical invariant RG called
the Rost invariant (see Merkurjev’s part of [24]).

Let us now consider the case where G is a finite group. The cohomological in-
variants of finite groups may be useful to solve Noether’s problem. Let us recall
that we say that Noether’s problem is true for the group G over the field k0 if
there exists an embedding ρ : G → GLn(k0) such that, if Kρ is the subfield of
k0(X1, ..., Xn) fixed by G, then Kρ is k0-rational. Serre proved in [24], 33.10, that
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if there exists a cohomological invariant of G over k0 which is unramified and
non constant, then Noether’s problem is false for G over k0. Using this property,
Serre proved that Noether’s problem is false for any group with a cyclic 2-Sylow
subgroup of order ≥ 8 over Q (see [24], 33.16).

However, very few is known about cohomological invariants of finite groups. In
[24], Serre described the cohomological invariants of 2-elementary groups and of
symmetric groups. The aim of this thesis is to generalize the work from Serre
about cohomological invariants of symmetric groups to finite Coxeter groups.

In Chapter 1, we recall the background on Galois cohomology in both non-abelian
and abelian cases, including the framework of residue maps; then we state the
main tools on cohomological invariants described in [24].

In Chapter 2, we provide examples of cohomological invariants, first recalling re-
sults of Serre on cohomological invariants of 2-elementary groups, of the orthogo-
nal group and of the symmetric group. In particular, we recall Serre’s description
of the cohomological invariants of Sn, where n ≥ 1. Let n ≥ 1. Set, for any
0 ≤ i ≤ n,

wi : H1(./k0,Sn)→ H∗(./k0,Z/2Z)

(L) 7→ wi(TrL(x2))
.

This invariant wi is called the ith-Stiefel-Whitney invariant. In [24], 25.13, Serre
proved that, for any field k0 of characteristic different from 2 and for any n ≥ 2,
the H∗(k0,Z/2Z)-module Invk0(Sn,Z/2Z) is free with basis {wi}0≤i≤[n

2
].

We then provide some computations to describe the cohomological invariants of
some simple reflection groups, such as the Weyl group of type G2, the Coxeter
group of type H3 and the dihedral groups Dn for n not divisible by 4 and for n = 4.

The aim of Chapter 3 is to state a general vanishing principle for the cohomological
invariants of the finite Coxeter groups in characteristic zero. Note first that, to
describe the cohomological invariants of the symmetric groups, Serre stated the
following splitting principle (see [24], 24.9).

Theorem (Serre, 2003). Let k0 be a field such that char(k0) does not divide the
order of C and let n ≥ 2. Let also a ∈ Invk0(Sn,Z/2Z). Assume that, for every
extension k/k0, ak(E) = 0 whenever E is an étale k-algebra isomorphic to a direct
product of étale k-algebras of rank ≤ 2. Then a = 0.

Let us now state the generalization of this result to finite Coxeter groups in char-
acteristic zero. Let us recall that a finite Coxeter group W is a finite real reflection
group, i.e. there exists a faithful linear representation ρ : W ↪→ GL(V ) in a finite
dimensional real vector space V , such that W is generated by reflections of V .
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Note that by reflection, we mean an endomorphism r of V such that the rank of
r − idV is equal to 1 and that r2 = idV .

Let G be a finite group and let H ⊂ G be a subgroup. If a ∈ Invk0(G,C), the com-

positum H1(./k0, H) // H1(./k0, G)
a // H∗(./k0, C) defines an invariant of

H, called the restriction of a to H.

In [24] 25.15, Serre stated a vanishing principle for the cohomological invariants
of the Weyl groups. We prove in this thesis a generalization of this principle to
finite Coxeter groups.

Theorem (Serre, 2003). Let W be a finite Coxeter group and let k0 be a field
of characteristic zero containing a subfield on which the real representation of
W as a reflection group is realizable. Let C be a finite Γk0-module and let a ∈
Invk0(W,C). Assume that every restriction of a to an abelian subgroup of W
generated by reflections is zero. Then a = 0.

Note also that this assumption on the base field k0 is automatically satisfied for
Weyl groups since any irreducible real representation of a Weyl group is realizable
over the field of rationals Q. However, for other Coxeter groups, this is not the
case (for instance, if W = Dn is the dihedral group of order 2n, the standard
geometric real representation ρ : W → GL2(R) is realizable over Q(cos(2π

n )) but
not over Q).

Note finally that we recover exactly Theorem from Theorem 3.1 in case of Weyl
groups of type An.

In Chapter 4, we deal with Weyl groups of type Bn or Cn. Let now n ≥ 2
and let W be a Weyl group of type Bn (note that the Weyl group of type Cn
is isomorphic to W ). Let k be a field of characteristic different from 2. Then
H1(k,W ) is in bijection with the set of the isomorphism classes of the pairs (L,α)
up to isomorphism, where L is an étale k-algebra and α a square class in L. Set,
for any 0 ≤ i ≤ n,

wi : H1(./k0,Sn)→ H∗(./k0,Z/2Z)

(L,α) 7→ wi(TrL(x2))
.

Moreover, note that, for any (L,α) ∈ H1(k,W ), the isomorphism class of the
quadratic form TrL(αx2) does not depend on the choice of a representative in the
square class α. Now set

w̃i : H1(./k0,Sn)→ H∗(./k0,Z/2Z)

(L,α) 7→ wi(TrL(αx2))
.

These invariants are also called Stiefel-Whitney invariants of W .
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Theorem. Let k0 be a field of characteristic zero, such that −1 and 2 are squares
in k0. Let n ≥ 2 and let W be a Weyl group of type Bn. Then the H∗(k0,Z/2Z)-
module Invk0(W,Z/2Z) is free with basis

{wi · w̃j}0≤i≤[n
2

],0≤j≤2([n
2

]−i).

In Chapter 5, we deal with Weyl groups of type D. Let now W be a Weyl group
of type Dn (n ≥ 4). We have the exact sequence

1 //W //W ′
p // Z/2Z // 1 ,

where W ′ is a Weyl group of type Bn and p : (ε1, ..., εn, σ) 7→
n∏
i=1
εi.

Let k0 be a field of characteristic different from 2. If a ∈ Invk0(W ′,Z/2Z), then
ResWW ′(a) is a cohomological invariant of W . Thus, for 0 ≤ i ≤ n, ResWW ′(wi) is an
invariant of W and is still denoted by wi. Likewise, for 0 ≤ i ≤ n, ResWW ′(w̃i) is
an invariant of W and is still denoted by w̃i.

Theorem. Let k0 be a field of characteristic zero. Let n ≥ 4 and let W be a Weyl
group of type Dn. Then the H∗(k0,Z/2Z)-module Invk0(W,Z/2Z) is free with basis

{wi · w̃j}0≤i≤[n
2

],0≤j≤2([n
2

]−i) and j even .
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Chapter 1

Galois cohomology

RÉSUMÉ

Dans ce chapitre, on commence par définir le premier ensemble de cohomolo-
gie galoisienne d’un groupe et on rappelle que ces ensembles classifient diverses
structures algébriques, notamment les algèbres étales, les algèbres étales pointées,
les torseurs ou les algèbres galoisiennes. Dans une deuxième partie, on introduit
les groupes de cohomologie galoisienne dans le cas abélien munis notamment de
l’opération cup-produit, puis on donne les principales propriétés d’applications
nommées résidus, qui joueront un rôle crucial tout au long de cette thèse. Dans
une troisième et dernière partie, on définit les invariants cohomologiques et on
expose les principaux outils décrits dans [24], tels que, par exemple, les torseurs
versels.

1.1 Non abelian Galois cohomology

1.1.1 Cohomology of profinite groups

In this section, let us recall the basic results without proof. For further details,
we let the reader see [1], Chapter II.

For all this section, let Γ be a profinite group. Recall that it is a topological
group which is isomorphic to the inverse limit of an inverse system of finite groups
(endowed with the product topology).
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Definition 1.1. Let A be a set endowed with the discrete topology. A left action
of Γ on A is called continuous if the stabilizer of each element a ∈ A

StabΓ(a) = {γ ∈ Γ | γ.a = a}

is an open subgroup in Γ.

We call Γ-set any set A endowed with a continuous left action of Γ. We call Γ-
group any group A which is a Γ-set and such that Γ acts by group morphisms on
A. A morphism of Γ-sets (resp. Γ-groups) f : A → B is a map (resp. a group
morphism) such that, for any γ ∈ Γ and any a ∈ A, f(γ.a) = γ.f(a).

Definition 1.2. Let A be a Γ-group A. We call 0th cohomology set of Γ with
coefficients (or with values) in A the set AΓ consisting of the Γ-invariant elements
of A. We sometimes denote it by H0(Γ, A).

Definition 1.3. Let A be a Γ-group. A 1-cocycle or simply a cocycle of Γ with
values in A is a continuous map

α : Γ→ A

γ 7→ αγ

such that, for all γ, γ′ ∈ Γ, αγγ′ = αγγ.αγ′. We denote by Z1(Γ, A) the set of
the cocycles of Γ with values in A. The constant map γ 7→ 1 is called the trivial
cocycle.

Remark. If Γ trivially acts on A, then a cocycle is just a group homomorphism
from Γ to A.

Lemma 1.1. Let A be a Γ-group and let α : Γ→ A be a cocycle. For any a ∈ A,
the map

αa : Γ→ A

γ 7→ aαγγ.a
−1

is also a cocycle.

Definition 1.4. Two cocycles α, α′ are cohomologous (denoted by α ∼ α′) if there
exists a ∈ A such that α′ = αa.

It is easily seen that ∼ is an equivalence relation on Z1(Γ, A).

Definition 1.5. We denote by H1(Γ, A) the set of equivalence classes Z1(Γ, A)/ ∼
and we call it the first cohomology set of Γ with coefficients in A.

The set H1(Γ, A) is a pointed set (i.e. a set with a distinguished element called
base point, here the cohomology class of the trivial cocycle 1).
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Proposition 1.1. Let A and B be two Γ-groups and let f : A→ B be a morphism
of Γ-groups. Then, for any cocycle α ∈ Z1(Γ, A), the map

β : Γ→ B

γ 7→ f(αγ)

is a cocycle with values in B and the cohomology class of β only depends on the
cohomology class of α, which yields a map

f∗ : H1(Γ, A)→ H1(Γ, B).

Let B be a Γ-group and let A ⊂ B be a Γ-subgroup. Let B/A denote the set of
the right cosets of B modulo A. Then B/A is a Γ-set and the natural projection
B → B/A yields by restriction a map BΓ → (B/A)Γ. Let us define a map
(B/A)Γ → H1(Γ, A). Let b.A ∈ (B/A)Γ. Since b.A is invariant by Γ, then for any
γ ∈ Γ, (γb).A = b.A and we have (b−1γ.b).A = b−1.(γb.A) = b−1.(b.A) = A, thus
α : γ 7→ b−1γ.b is a map from Γ to A.

Lemma 1.2. This map is a cocycle with values in A and its cohomology class
does not depend on the choice of b in the coset b.A.

Before going further, let us define a morphism of pointed sets : let (E, e), (F, f)
be some pointed sets. A morphism of pointed sets Φ : (E, e) → (F, f) is a map
Φ : E → F such that Φ(e) = f . We call kernel of Φ the preimage of the base point
f and we denote it by Ker(Φ). Note that Ker(Φ) = 1 does not imply that the map
Φ is injective ! Finally, we say that a sequence of morphisms of pointed sets

(E, e)
Φ // (F, f)

Ψ // (G, g)

is exact if Ker(Ψ) = Im(Φ).

Corollary 1.1. The induced map (B/A)Γ → H1(Γ, A) given by the previous con-
struction is a morphism of pointed-sets. We denote it by δ0 and we call it 0th

connecting map.

Proposition 1.2. Let B be a Γ-group and let A ⊂ B be a Γ-subgroup. Then the
following sequence of pointed Γ-sets is exact

1 // AΓ f∗ // BΓ g∗ // (B/A)Γ δ0 // H1(Γ, A)
f∗ // H1(Γ, B) .

Corollary 1.2. There is a bijection between the kernel ker(H1(Γ, A)→ H1(Γ, B))
and the orbit of the group BΓ in (B/A)Γ (where BΓ acts by multiplication on the
left on (B/A)Γ).

Definition 1.6. If k is a field, the absolute Galois group Γk = Gal(ksep/k) (where
ksep denotes a separable closure of k) is a profinite group. The ith Galois coho-
mology set is the group H i(Γk, A) and is denoted by H i(k,A) for i = 0, 1.

Note that we will define at section 1.2 some cohomology sets of any higher degree
when the Γ-group is abelian.
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1.1.2 Galois cohomology of algebraic group schemes

This section and the following directly follows the approach of [12], VII,29. We
assume that the reader knows the scheme language (at least over a field). Unless
stated otherwise, all the schemes considered here are affine and we will not precise
it in general. Let us recall the definition of an algebraic group scheme : if k is a
field, let Algk denote the category of the associative commutative unital k-algebras.

Definition 1.7. Let k be a field and let G : Algk → AbGrps be a covariant functor
with values in the category of abelian groups. Then G is an (affine) algebraic group
scheme if it is representable as a functor Algk → Sets by a k-algebra of finite type.

Let G be an algebraic group scheme over k. Then the absolute Galois group Γk
of k continuously acts on G(ksep). Hence, the cohomology sets H0(k,G(ksep)) and
H1(k,G(ksep)) are well-defined. Let us denote by

H i(k,G) = H i(k,G(ksep)) for i = 0, 1.

Note that, in particular, H0(k,G) = G(ksep)Γk = G(k).

Any algebraic group scheme homomorphism f : G → H (which is nothing but a
morphism of functors) between two algebraic group schemes G and H, yields by
functoriality a Γk-homomorphism of G(ksep) in H(ksep) and so a group homomor-
phism H0(k,G)→ H0(k,H) and a morphism of pointed sets

H1(k,G)→ H1(k,H).

Let us now give an important example of algebraic group schemes : the general
linear group.

Example 1.1. Let V be a finite dimensional k-vector space. We define the alge-
braic group scheme GL(V ) to be the functor sending a k-algebra L to the group of
the invertible elements of the algebra Endk(V )⊗k L (where Endk(V ) denotes the
k-algebra of endomorphisms of V ). Thus, we get that, for any k-algebra L,

GL(V )(L) = GL(VL)

where VL = V ⊗k L.

Let G be an algebraic group scheme over k and let ρ : G → GL(V ) be a linear
representation of G (i.e. an algebraic group scheme homomorphism : for any k-
algebra L, we denote by ρ(L) the linear representation G(L) → GL(VL) given by
ρ). Let us fix v ∈ V and let us identify V with a k-subspace of Vsep = V ⊗k ksep.

Definition 1.8. An element v′ ∈ Vsep is called a twisted ρ-form of v if

v′ = ρsep(g)(v)

for some g ∈ G(ksep), with ρsep = ρ(ksep).
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Let us now consider the category Ã(ρ, v) whose objects are the twisted ρ-forms of v
and whose arrows v′ → v′′ are the elements g ∈ G(ksep) such that ρsep(g)(v′) = v′′.
This category is a connected groupoid (i.e. every arrow has an inverse and there
exists at least one arrow between any two objects). Let us denote by A(ρ, v) the
groupoid whose objects are the twisted ρ-forms v′ of v that belong to V (seen as
a k-subspace of Vsep) and whose arrows v′ → v′′ are the elements g ∈ G(k) such

that ρ(g)(v′) = v′′. Hence, if X denotes the Γk-set of the objects of Ã(ρ, v), XΓk

is the set of the objects of A(ρ, v). Moreover, the set of the orbits of G(k) in XΓk

is the set Isom(A(ρ, v)) of the isomorphism classes of A(ρ, v). It is a pointed set
with base point the isomorphism class of v.

Let us denote by AutG(v) the stabilizer of v. It is a subgroup of the algebraic
group scheme G. Since G(ksep) transitively acts on X, the Γk-set X is identified
with the set of the cosets of G(ksep) modulo AutG(v)(ksep). By Corollary 1.2, we
get a natural bijection between the kernel of H1(k,AutG(v))→ H1(k,G) and the
orbit XΓk/G(k). Thus, we get the following proposition.

Proposition 1.3. If H1(k,G) is trivial, there is a natural bijection of pointed sets

Isom(A(ρ, v))→̃H1(k,AutG(v))

1.1.3 Classification of algebraic structures and first cohomology
sets

Let us recall Hilbert’s 90th Theorem (see [12], Theorem 29.2). Recall that a
separable algebra over a field k is a k-algebra which is isomorphic to a direct
product of finite dimensional simple (i.e. containing no non-trivial two-sided ideal)
k-algebras.

Theorem 1.1. For any associative separable k-algebra A, the first cohomology set
H1(k,GL1(A)) is trivial.

Let A be a finite dimensional k-algebra. The multiplication in A yields a linear
map v : A⊗k A→ A. Let V denote the k-vector space Homk(A⊗k A,A) and let
G = GL(A) be the linear group of A, seen as a k-vector space. Let us consider the
representation ρ : G→ GL(V ) given by

ρ(g)(v′)(x⊗ y) = g ◦ v′(g−1(x)⊗ g−1(y))

for any g ∈ G, any v′ ∈ V and any x, y ∈ A. A linear map g ∈ G is an algebra
automorphism of A if and only if ρ(g)(v) = v. Therefore, the algebraic group
schemes Autalg(A) and AutG(v) are equal. A twisted ρ-form of v is a k-algebra A′,
which is equal as a k-vector space to A (but not necessarily as a k-algebra), such
that the ksep-algebras A′sep = A′⊗k ksep et Asep = A⊗k ksep are isomorphic. Hence,

by Proposition 1.3 and by Hilbert’s 90th Theorem, since GL1(End(V )) = GL(V ),
we get the following result (see [12], 29.8).
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Proposition 1.4. The Galois cohomology set H1(k,Autalg(A)) is in bijection with
the set of the isomorphism classes of the k-algebras A′ ∈ Algk such that

A′sep 'ksep Asep.

Let us explicit the bijection : if β : Asep→̃A′sep is a ksep-isomorphism, the corre-
sponding cohomology class is represented by the cocycle

αγ = β−1 ◦ (Id⊗ γ) ◦ β ◦ (Id⊗ γ−1)

for all γ ∈ Γk. Conversely, a cohomology class represented by a cocycle α in
Z1(k,Autalg(A)) corresponds to the isomorphism class of

A′ = {x ∈ Asep | αγ ◦ (Id⊗ γ)(x) = x,∀γ ∈ Γk}.

Let us state the following corollary of Hilbert’s 90th Theorem ([12], 29.5).

Corollary 1.3. Let k be a field and let K : V = V0 ⊃ V1 ⊃ · · · ⊃ Vk be a flag
of finite dimensional k-vector spaces. Let also G be its algebraic group scheme of
automorphisms over k. Then H1(k,G) = 1.

Let k be a field and let us consider pairs (A,L) consisting of a k-algebra A and
a subalgebra L ⊂ A. An isomorphism of pairs (A′, L′) ' (A,L) is a k-algebra
isomorphism A′ ' A which restricts to an isomorphism L′ ' L. Let G be the
group scheme of automorphisms of the flag of vector spaces A ⊃ L. The group G
acts on the space Homk(A⊗k A,A) as in Proposition 1.4 and, if m : A⊗k A→ A
is the multiplication map, the group scheme AutG(m) coincides with the group
scheme Autalg(A,L) of automorphisms of the pair (A,L). Since H1(k,G) = 1 by
Corollary 1.3, Proposition 1.3 yields the following result (see [12], 29.12).

Proposition 1.5. The Galois cohomology set H1(k,Autalg(A,L)) is in bijection
with the set of the isomorphism classes of the pairs (A′, L′) defined above such that

(A′, L′)sep 'ksep (A,L)sep.

Étale algebras

Let us recall the definition of an étale algebra (see [2], V.34 Théorème 4, V.29
Corollaire, V.47 Proposition 1 and V.36 Proposition 3 for proofs and further de-
tails).

Proposition 1.6. Let L be a finite dimensional commutative k-algebra. The
following assertions are equivalent :

(i) L ' K1 × · · · × Kr where, for i = 1...r, Ki/k is a finite separable field
extension of k.
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(ii) Lksep ' ksep × · · · × ksep

(iii) the quadratic form
qL : L→ k

x 7→ TrL/k(x
2)

is non-degenerate.

(iv) the order of the set X(L) = Homk(L, ksep) is exactly dimk(L).

If moreover the field k is assumed to be infinite, conditions (i) to (iv) are equivalent
to :

(v) L ' k[X]/(f), where f is a polynomial with coefficients in k with only simple
roots in an algebraic closure of k.

Definition 1.9. We say that a k-algebra L is étale if it satisfies one of the equiv-
alent assertions of Proposition 1.6 and the integer dimk(L) is called the degree or
the rank of L .

Note that it directly follows from Proposition 1.6 that étale algebras remain étale
after scalar extension.

Proposition 1.7. The Galois cohomology set H1(k,Sn) is in bijection with the
set of the isomorphism classes of étale k-algebras of degree n. Moreover, the
cohomology class of the trivial cocycle is sent on the isomorphism class of the split
k-algebra kn.

Note that we consider Sn as a constant algebraic group scheme here with a trivial
action of the absolute Galois group on Sn(ksep) = Sn. We let the reader refer to
[12], 29.9 for another proof.

Proof. Let n ≥ 1 and let A = k × · · · × k = kn. The k-algebra A is clearly
étale with degree n and Asep = knsep, so the k-algebras A′, such that the ksep-
algebras A′ ⊗k ksep and knsep are isomorphic, are exactly the étale k-algebras. By
Proposition 1.4, we have to compute the ksep-points of the algebraic group scheme
Autalg(k

n). Any ksep-algebra automorphism of knsep sends an idempotent (i.e. an
element e of knsep such that e2 = e) to an idempotent. Yet any idempotent of
knsep may be written eI =

∑
i∈I
ei, where I belongs to the subsets of {1, ..., n} and

where {ei}i∈I denotes the canonical basis of knsep (as a ksep-vector space). Since the
formula eI .eJ = eI∩J is obvious, it is now clear that to determine a ksep-algebra
automorphism of knsep is the same as to determine the images of the ei, i = 1...n.
Let f be a ksep-point of Autalg(k

n). Then f(ei) = eIi for some Ii ⊂ {1, ..., n}. Since
f is injective and f(0) = 0, for all i = 1...n, f(ei) 6= (0, ..., 0), which proves that Ii
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is non-empty. Furthermore, if i 6= j ∈ {1, ..., n}, 0 = f(ei.ej) = eIi .eIj = eIi∩Ij , so
Ii ∩ Ij = ∅. Eventually, we get that ∪

i∈I
Ii = {1, ..., n} since

(1, ..., 1) = f(1, ..., 1) = f(
n∑
i=1

ei) =
n∑
i=1

f(ei) =
n∑
i=1

eIi = e∪ni=1Ii

(we used the obvious formula eI + eJ = eI∪J). Hence, (I1, ..., In) is a partition
of the set {1, ..., n} with no empty term. Thus, each Ii is a singleton and f
permutes the ei for i = 1...n. Therefore, the set of the ksep-points of Autalg(k

n)
injects into Sn. Moreover, if σ ∈ Sn, the algebra homomorphism ei 7→ eσ(i) is
an automorphism. It then shows that the group of the ksep-points of Autalg(k

n) is
isomorphic to Sn. This concludes the proof of Proposition 1.7.�

Pointed étale algebras

Let k be a field of characteristic different from 2. We call pointed étale k-algebra
of rank n any couple (L,α) with L an étale k-algebra of rank n and α a square-
class in L×. Let L,L′ be étale k-algebras of rank n and let α, α′ be square-
classes respectively in L× and in L′×. A morphism of pointed étale algebras
(L,α)→ (L′, α′) is a homomorphism f : L[

√
α]→ L′[

√
α′] of k-algebras such that

f(L) ⊂ L′ and f(
√
α) = λ

√
α′ for some λ ∈ L′ (note that by L[

√
α], we mean the

k-algebra k[X]/(X2 − α)). Note that you can find a proof of the following result
in [22].

Proposition 1.8. Let k be any field of characteristic different from 2. The set of
the isomorphism classes of the pointed étale k-algebras of rank n is in bijection with
the set H1(k,W ), where W is a Weyl group of type Bn (see Appendix A). Moreover
the cohomology class of the trivial cocycle is mapped onto the isomorphism class
of the pair (kn, 1).

Proof. By Proposition 1.5, as the pairs (L,α) are exactly the twisted k-forms
of (kn, 1) up to isomorphism, we just have to see that the automorphism group
of (kn, 1) is W . Note that kn[

√
1] = k2n and that Autk(k

2n) = S2n. Let us call
1, 2, ..., 2n the 2n factors of k2n and let us consider the elements of Autk(k

n, 1) as
permutations of {1, ..., 2n}. We have the morphism

Φ : Autk(k
n, 1)→ Autkk

n

f 7→ f|kn .

Then it is easily seen that Ker(Φ) consists of the permutations fixing the subsets
{1, 2}, {3, 4}, ..., {2n−1, 2n}. Thus Ker(Φ) is isomorphic to (Z/2Z)n. It yields the
exact sequence

1 // (Z/2Z)n // Autk(k
n, 1)

Φ // Sn
// 1 .
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Moreover, the inclusion Sn = Autk(k
n) ↪→ W splits this exact sequence and Sn

acts on Ker(Φ) by permuting the subsets {1, 2}, {3, 4}, ..., {2n− 1, 2n}. Therefore
Autk(k

n, 1) 'W . �

More explicitely, the isomorphism class of (L,α) is represented, as a cohomology
class, by the cocycle

ϕL,α :
Γk →W

γ 7→
(
(ε1(γ), ..., εn(γ)), σγ

)
where, for any γ ∈ Γk:

σγ is the permutation induced by the action of γ on X(L) = Hom(L, ksep)

εi(γ) = 1 if γ does not exchange factors 2i−1 and 2i in L[
√
α]⊗k ksep ' k2n

sep,
εi(γ) = −1 otherwise.

Interpretation of H1(k,W ) when W is a Weyl group of type Dn

Let n ≥ 4, let W be a Weyl group of type Dn (see Appendix A). We associate to
W its root system

S = {±ei ± ej | 1 ≤ i < j ≤ n}.

Let us denote by W ′ the Weyl group of type Bn corresponding to the root system

S′ = {±ei,±(ei ± ej) |, 1 ≤ i ≤ n, 1 ≤ j 6= i ≤ n}.

We clearly have an inclusion W ⊂W ′. More precisely, W is the kernel of the map

p : W ′ → Z/2Z(
(ε1, ..., εn), σ

)
7→

n∏
i=1

εi.

Let k be a field of characteristic different from 2. As we saw in the case of a Weyl
group of type Bn (see Proposition 1.8), the pointed set H1(k,W ′) classifies pairs
(L,α) up to isomorphism where L is étale of rank n and α a square-class in L×.

Proposition 1.9. The image of the map H1(k,W ) → H1(k,W ′) corresponds
to the pairs (L,α) such that any representative of α has norm 1 in L over k.
Moreover, the image of the cohomology class of the trivial cocycle corresponds to
the isomorphism class of the pair (kn, 1).

Proof. By Proposition 1.2, we have the following long exact sequence :

· · · → Z/2Z→ H1(k,W )→ H1(k,W ′)→ H1(k,Z/2Z).
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The image of H1(k,W )→ H1(k,W ′) is then equal to the kernel (i.e. to the preim-
age of 1) of H1(k,W ′)→ H1(k,Z/2Z). Let us write H1(k,W ′)→ H1(k,Z/2Z) in
terms of pointed étale algebras. Let us recall that the bijection

k×/k×2 ' H1(k,Z/2Z)

is given by : for any b ∈ k×, the square-class of b maps to the cohomology class
of the cocycle ϕb, where

ϕb : Γk → Z/2Z

γ 7→ γ(
√
b)√
b
.

Let (L,α) ∈ H1(k,W ′). We want to find β ∈ k×/k×2 such that, if b ∈ k× denotes
a representative of β, for every γ ∈ Γk,

γ(
√
b)√
b

=

n∏
i=1

εi(γ).

Note that this quantity does not depend on the choice of such a representative in
the square-class β.

Let a ∈ L× be any representative of α. Let us show that b = NL/k(a) agrees.

Then NL/k(a) =
n∏
i=1
ai where the ai are the images of a by the different morphisms

from L to ksep. Let γ ∈ Γk. We have : γ(
√
b)√
b

=
n∏
i=1

γ(
√
ai)√
ai)

and, as
√
a generates

E = L[
√
α] over L,

E ⊗k ksep ' ksep(
√
a1)× · · · × ksep(

√
an),

so
γ(
√
ai)√
ai

is equal to 1 if γ does not exchange the two factors of ksep(
√
ai) ' k2

sep,

−1 otherwise. Therefore, it is equal to εi(γ).

To conclude, the cocycle image of (L,α) (with values in Z/2Z) corresponds to the
square-class of NL/k(a) and then the kernel of the map H1(k,W ′)→ H1(k,Z/2Z)
consists of the pairs (L,α) such that the square-class of NL/k(a) is trivial (where
a denotes any representative of α in L×). �

In the sequel, we will denote by NL/k(α) the square-class of NL/k(a) where a is
a representative of α in L×. Note that triples (L,α, ∂L,α) (where L is an étale

k-algebra, α a square-class such that NL/k(α) = 1 and ∂L,α : k(
√
NL/k(α))→ k2

an isomorphism of k-algebras) are classified by the cohomology set H1(k,W ), up
to a good notion of isomorphisms on these triples (see [13]).
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1.1.4 Torsors and Galois algebras

This section is directly inspired from [12], 18.B and 28.D.

G-torsors and H1(k,G)

Definition 1.10. Let k be a field and let G be a Γk-group. A G-torsor T over k is
a non-empty Γk-set endowed with a simply transitive right action of G, compatible
with the action of Γk, i.e. for any γ ∈ Γk, any g ∈ G and any t ∈ T ,

γ.(xg) = (γ.x)g.

Let us denote by G − TorsΓk the set of the G-torsors over k. A morphism of
G-torsors is a map which is G-equivariant and Γk-equivariant.

Example 1.2. If α ∈ Z1(k,G) is a cocycle, let us endow the set Tα = G with the
following Γk and G-actions : for any γ ∈ Γk and any x, g ∈ G, γ ?α x = αγγ.x and
xg = xg. Then Tα is a G-torsor over k.

In fact, every G-torsor is isomorphic to a torsor Tα :

Proposition 1.10. The map α 7→ Tα yields the following bijection :

H1(k,G)→̃Isom(G− TorsΓk).

Galois algebras

In this paragraph, G is a finite group considered here as a constant algebraic
group scheme. We consider étale k-algebras L endowed with an action of G by
k-automorphisms. Such algebras are called G-algebras over k. Let us denote by
LG the subalgebra of the G-invariant elements

LG = {x ∈ L | ∀g ∈ G, g(x) = x}.

Let L be a G-algebra over k and set X(L) = Homk(L, ksep). Then X(L) is a Γk-set
and the map

Autk(L)→ Autk(X(L))

α 7→ (ξ 7→ ξ ◦ α)

is a group isomorphism, with Autk(X(L)) the set of the bijections of X(L) com-
patible with the Γk action.

Proposition 1.11. Let L be a G-algebra over k. Then LG = k if and only if G
acts transitively on X(L).

Definition 1.11. Let L be a G-algebra over k such that | G |= dimk(L). We say
that L is a Galois G-algebra if LG = k.
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By Proposition 1.11, a G-algebra L over k is Galois if and only if | G |= dimk(L)
and the G-action on X(L) is simply transitive, which is equivalent to the fact that
X(L) is a G-torsor over k.

Example 1.3. Let L be a Galois G-algebra over k. If L is a field, we get that
G = AutAlgk(L). Therefore, we have a Galois G-algebra structure on a field L
if and only if L/k is a Galois field extension isomorphic to G. The G-algebra
structure is then given by an isomorphism G ' Gal(L/k).

Furthermore, we have the following correspondence.

Proposition 1.12. Let G be a finite group. The categories of Galois G-algebras
and G-torsors are anti-equivalent. In particular, for any field k, the set H1(k,G)
classifies Galois G-algebras up to isomorphism.

1.2 Abelian Galois cohomology

Let us recall the construction of the higher Galois cohomology groups in the abelian
case. For further details, we let the reader refer to [1], Chapter II and [20].

1.2.1 Higher profinite cohomology groups

Let Γ be a profinite group.

Definition 1.12. We call Γ-module any abelian Γ-group.

Let A be a Γ-module. Note that the set Z1(Γ, A) of the 1-cocycles of Γ with
coefficients in A is an abelian group with the pointwise multiplication of maps.
Since this operation is compatible with the cohomology equivalence relation, the
set H1(Γ, A) inherits of an abelian group structure.

Let n ≥ 0 and let denote by Cn(Γ, A) the set of continuous maps from Γn to A
(note that by convention C0(Γ, A) = A). Let us define a map

dn : Cn(Γ, A)→ Cn+1(Γ, A)

by induction by : for any a ∈ A,

d0(a) : γ 7→ γ.a− a,

for any f ∈ Cn(Γ, A),

dn(f) : (γ1, ..., γn+1) 7→ γ1.fγ2,...,γn+1+
n∑
i=1

(−1)ifγ1,...,γiγi+1,...,γn+1+(−1)n+1fγ1,...,γn .
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Definition 1.13. A n-cocycle of Γ with values in A is a continuous map α
in Cn(Γ, A) such that dn(α) = 0 and αγ1,...,γn = 0 whenever γi = 1 for some
i ∈ {1, ..., n}.
A map α ∈ Cn(Γ, A) is a n-coboundary of Γ with values in A if there exists
β ∈ Cn−1(Γ, A) such that α = dn−1(β) and βγ1,...,γn = 0 whenever γi = 1 for some
i ∈ {1, ..., n}.

Note that, for n = 1, the notion of 1-cocycle is exactly the notion of cocycle, de-
fined in Section 1.1. Note also that by convention, a 1-coboundary is a continuous
map in the image of d0 : A→ C1(Γ, A).

We denote the set of n-cocycles by Zn(Γ, A) and the set of n-coboundaries by
Bn(Γ, A). It is easily checked that Zn(Γ, A) is an abelian subgroup of Cn(Γ, A)
and that Bn(Γ, A) is a subgroup of Zn(Γ, A) (we have dndn−1 = 0).

Definition 1.14. The quotient group Zn(Γ, A)/Bn(Γ, A) is denoted by Hn(Γ, A)
and called the nth cohomology group of Γ with coefficients in A. Moreover, two
n-cocycles are cohomologous if they have same image in Hn(Γ, A).

The constant map
Γn → A

(γ1, ..., γn) 7→ 1

is a n-cocycle and is called the trivial n-cocycle.

Proposition 1.13. Let A,B be Γ-modules and let f : A→ B be a group morphism
compatible with the Γ-actions and let n ≥ 0. For any n-cocycle α ∈ Zn(Γ, A), the
map f?(α) = f ◦ α is a n-cocycle and the map

f? : Hn(Γ, A)→ Hn(Γ, B)

[α] 7→ [f?(α)]

is a well-defined group morphism.

Proposition 1.14. For any short exact sequence of Γ-modules

0 // A
f // B

g // C // 0 ,

there are some group morphisms δn : Hn(Γ, C) → Hn(Γ, A) called connecting
maps such that the following long sequence starting from n = 0 is exact.

0 // · · · // Hn(Γ, A)
f? // Hn(Γ, B)

g? // Hn(Γ, C)
δn // Hn+1(Γ, A) // · · ·
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Relations to subgroups

Let Γ be a group, let Γ′ be a subgroup of Γ and let A be a Γ-module. Let us
denote by ι : Γ′ → Γ the inclusion map. Then A also is a Γ′-module, Γ′ acting on
A by restricting the action of Γ. For any n-cocycle α ∈ Zn(Γ, A), it is easily seen
that the map α̃ : (γ′1, ..., γ

′
n) 7→ αγ′1,...,γ′n belongs to Zn(Γ′, A). Furthermore, the

following proposition holds.

Proposition 1.15. Keeping notation above, for any integer n ≥ 0, the map α 7→ α̃
yields a map Hn(Γ, A)→ Hn(Γ′, A), called restriction map and denoted by ResΓ′

Γ .

Note that when n = 0, the restriction map is the inclusion map AΓ ↪→ AΓ′ .

Let now Γ′ be an open subgroup of Γ of finite index m in Γ and let A be a Γ-
module. Then, for any n ≥ 0, we can construct maps Hn(Γ′, A)→ Hn(Γ, A) called
corestriction map and denoted by CorΓ′

Γ via the cocycles. We just give here the
construction in degree 0 (the reader may refer to [8] for the general construction).
Let {γ1, ..., γm} be a system of representatives of the cosets of Γ modulo Γ′. In
degree 0, the map is given by

AΓ′ → AΓ

a′ 7→
m∑
j=1

γj .m

Proposition 1.16. Let Γ be a profinite group, let Γ′ be an open subgroup of Γ
that has finite index m in Γ and let A be a Γ-module. Then the map

Cor ◦ Res : Hn(Γ, A)→ Hn(Γ, A)

is the multiplication by m for any n ≥ 0.

Cup-products

Let Γ be a profinite group and let A and B be Γ-modules. We endow the tensor
product A⊗ZB of the following Γ-module structure : for any a ∈ A, for any b ∈ B
and for any γ ∈ Γ, γ.(a⊗ b) = (γ.a)⊗ (γ.b).

Proposition 1.17. Let i, j ≥ 1, let α ∈ Zi(Γ, A) and β ∈ Zj(Γ, B) be two
cocycles. The map

Γi+j → A⊗Z B

(γ1, ..., γi+j) 7→ αγ1,...,γi ⊗ γ1 · · · γi.βγi+1,...,γi+j
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is a (i + j)th cocycle and its cohomology class only depends on the cohomology
classes of α and β. Moreover, the induced map

· : H i(Γ, A)×Hj(Γ, B)→ H i+j(Γ, A⊗Z B)

is Z-bilinear.

Definition 1.15. This map · is called the cup-product.

Note that for i = j = 0, the cup-product is the natural map AΓ×BΓ → (A⊗B)Γ.

The cup-product satisfies the following functorial properties : for any i, j ≥ 0 and
any morphism of Γ-modules A→ A′, the following diagram commutes

H i(Γ, A)×Hj(Γ, B) //

��

H i+j(Γ, A⊗B)

��
H i(Γ, A′)×Hj(Γ, B) // H i+j(Γ, A′ ⊗B)

.

Note that similar diagrams commute in the second variable.

Proposition 1.18. The cup-product is an associative, anti-commutative, Z-bilinear
and graded operation (note that by anti-commutative, we mean a · b = (−1)ij(b ·a)
where we identify A⊗B with B ⊗A).

More generally, given three Γ-modules A,B,C and a Γ-homomorphism A×B → C,
we also call cup-product the pairings

H i(Γ, A)×Hj(Γ, B)→ H i+j(Γ, C)

(by composing the cup-product defined above with H i+j(Γ, A⊗B)→ H i+j(Γ, C)).

Abelian Galois cohomology

To end this paragraph, let us apply these cohomological constructions to Galois
groups. Let k be a field. Recall that Γk denotes its absolute Galois group. As
already said in Section 1.1, Γk is a profinite group. Let also C be a Γk-module.
For any integer n ≥ 0, we denote by Hn(k,C) the cohomology group Hn(Γk, C).
For any n ≥ 0 and any separable field extension K/k (resp. finite separable field
extension), we also denote by ResK/k (resp. by CorK/k) the restriction map (resp.
corestriction map) of K/k.
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1.2.2 Galois cohomology modulo 2

Let k be a field of characteristic different from 2. By definition, if [α] and [β] are
in Hn(k,Z/2Z), then [α] + [β] = [αβ]. In particular, 2[α] = 0. Let us identify the
first cohomology group H1(k,Z/2Z) (see for instance [1]).

Proposition 1.19. The cohomology group H1(k,Z/2Z) is isomorphic to k×/k×2.

More precisely, for any a ∈ k×, let us denote by xa ∈ k×sep satisfying x2
a = a. For

any γ ∈ Γk, there exists a unique εγ ∈ Z/2Z such that

γ(xa)

xa
= (−1)εγ .

Then the abelian group homomorphism

k× → H1(k,Z/2Z)

a 7→
(
γ 7→ εγ

)
is surjective and has kernel k×2.

If a ∈ k×, we denote by (a) the cohomology class in H1(k,Z/2Z) in correspon-
dence with square-class of a in k× (via the previous identification). Therefore, we
have the equality (ab) = (a) + (b) for any a, b ∈ k×.

Moreover, the map
Z/2Z× Z/2Z→ Z/2Z

(ε1, ε2) 7→ ε1ε2

is Z-bilinear so we will consider in the sequel the cup-product

· : H i(k,Z/2Z)×H i(k,Z/2Z)→ H i+j(k,Z/2Z).

Let us end this section by giving useful formulae for the cup-products of cohomol-
ogy classes in H1(k,Z/2Z).

Proposition 1.20. For all a, b ∈ k×, the following properties hold :

(i) (a) · (b) = (b) · (a).

(ii) (a) · (b) = 0 if and only if b is a norm of k(
√
a)/k (where k(

√
a)/k = k if a

is a square in k×).

(iii) (a) · (1− a) = 0

(iv) (a) · (−a) = 0

(v) (a) · (a) = (a) · (−1).
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1.2.3 Residue maps

We let the reader refer to [10], Chapter 6 for the general construction of the residue
maps in Galois cohomology. This section follows the approach of [24], Chapters
II and III.

Residue map for the Galois cohomology of a local field: the complete
case

Let K be a field endowed with a discrete valuation v. Let us denote by k the
residue field with respect to v. We set ΓK = Gal(Ksep/K) and Γk = Gal(ksep/k).
Assume that K is complete. The valuation v extends uniquely to Ksep and the
residue field of Ksep is an algebraic closure of k. This yields a surjection ΓK → Γk.
Let us denote by IK its kernel, and let us call it the inertia group of (K, v). Then
the exact sequence

1 // IK // ΓK // Γk // 1

is split.

For the end of this section, let C be a finite Γk-module whose order is non-divisible
by the residue characteristic. Then C is also a ΓK-module with trivial action of
I.

Theorem 1.2. For any integer i ≥ 0, there exists a map

ri : H i(K,C)→ H i−1(k,Hom(IK , C))

such that the sequence

0 // H i(k,C)
π // H i(K,C)

ri // H i−1(k,Hom(IK , C)) // 0 (1.1)

is exact.

Let n be an integer not divisible by the characteristic of the residue field k and
such that nC = 0. We set C(−1) = Hom(µn, C) where Hom denotes here the
continuous homomorphisms. This Γk-module is called the −1th-Tate’s twist of C.
Note that this definition does not depend on the choice of n. We may show that

C(−1) ' Hom(IK , C).

We can then write the exact sequence (1.1)

0 // H i(k,C)
π // H i(K,C)

ri // H i−1(k,C(−1)) // 0 . (1.2)

For any α ∈ H i(K,C), the element ri(α) is called the residue of α. For x ∈ K×,
we denote by (x)n the class of x in K×

/
K×n = H1(K,µn). We then get the

following decomposition
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Proposition 1.21. Let π be a uniformizing element of K. Every α ∈ H i(K,C)
may be uniquely written as

α = α0 + (π)n · α1,

with α0 ∈ H i(k,C) and α1 ∈ H i−1(k,C(−1)). Moreover, ri(α) = α1.

Residue map for the Galois cohomology of a local field: the non-
complete case

Let us consider now a more general situation : we do not assume anymore that
K is complete. Keeping the previous notation, we choose an extension ṽ of the
valuation v fromK toKsep (it is not unique but two such extensions are conjugate).
Let us denote by Decṽ the corresponding decomposition group {γ ∈ ΓK | γ.ṽ = ṽ}.
Let us denote by Kv the completion of K for the valuation v and by Ksep,ṽ the
completion of Ksep with respect to ṽ. The subfield Ksep.Kv is the biggest algebraic
subextension of Kv in Ksep,ṽ. By Krasner’s Lemma, Ksep.Kv is separably closed.
We then identify it with (Kv)sep. We have

Decṽ = Gal(Ksep.Kv/Kv) = Gal((Kv)sep/Kv) = ΓKv .

Let C be a finite ΓK-module whose order is non-divisible by the characteristic
of k. Assume that C is ”unramified” at v, i.e. that the inertia group of Decṽ
trivially acts on C. Let α ∈ H i(K,C) and let us denote by αv its image in
H i(Kv, C) = H i(Decṽ, C). We define the residue rv(α) of α to be the residue of
αv in H i−1(k,C(−1)) (note that K and Kv have the same residue field k).

Definition 1.16. If rv(α) 6= 0, we say that α is ramified at v. If rv(α) = 0, we
say that α is unramified at v. In the latter case, αv may be identified with an
element of H i(k,C), denoted by α(v) and called the value of α at v.

Hence, we get two canonical maps which link the Galois cohomology of K to the
Galois cohomology of its residue field k, with respect to the valuation v :

rv : H i(K,C)→ H i−1(k,C(−1))

the residue at v and
ker(rv)→ H i(k,C)

the value at v. When K is complete, the exact sequence (1.2) implies that the
residue map is surjective and that the value map is an isomorphism.
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Residue maps and restriction maps

Let us now state a functoriality property for the residue maps. Let (K, v) be a
field endowed with a discrete valuation. Let us denote by k its residue field. We
do not assume K to be complete for v. Let C be a finite ΓK-module with order
prime to the residue characteristic which is not ramified at v. Let K ′/K be a field
extension and let v′ be an extension of v to K ′, with ramification index e and
residue field k′. We have the residue maps rv : H i(K,C) → H i−1(k,C(−1)) and
r′v : H i(K ′, C)→ H i−1(k′, C(−1)).

Proposition 1.22. Residue maps are compatible with restriction maps:

(i) the following diagram commutes

H i(K,C)
rv //

��

H i−1(k,C(−1))

e.
��

H i(K ′, C)
rv′ // H i−1(k′, C(−1))

where the right vertical map is given by the multiplication by e of the natural
map H i−1(k,C(−1))→ H i−1(k′, C(−1)).

(ii) The following diagram commutes

ker(rv) //

��

H i(k,C)

��
ker(rv′) // H i(k′, C)

Residue map for the Galois cohomology of a rational field

Let k be a field. Let us first consider the Galois cohomology of k(t), where t is an
indeterminate over k. Let P1 = P1(k). The function field of P1 is K = k(t). A
closed point P of P1 identifies with a discrete valuation v on K, which is trivial
on k given by

v : K → Z
f 7→ ordP (f)

.

Let V be the set of these valuations. Assume that C is a finite Γk-module whose
order n is not divisible by the characteristic of k. Let us denote, for any v ∈ V , by
Kv the completion of K at v. It is a local field and its residue field k(v) is a finite
extension of k. We then have a residue map rv : H i(K,C)→ H i−1(k(v), C(−1)).

Lemma 1.3. Let α ∈ H i(K,C). The set of the valuations where α is ramified is
finite.
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Therefore, the following map is well-defined :

⊕rv : H i(K,C)→ ⊕
v∈V

H i−1(k(v), C(−1))

α 7→ (rv(α))v∈V .

Theorem 1.3. The following sequence is exact

0 // H i(k,C)
π // H i(K,C)

⊕rv //
⊕
v∈V

H i−1(k(v), C(−1))

c // H i−1(k,C(−1)) // 0,

where c denotes the direct sum of the corestriction maps

Cor : H i−1(k(v), C(−1))→ H i−1(k,C(−1)).

Definition 1.17. An element of H i(K,C) is constant if it lies in the image of
H i(k,C)→ H i(K,C). The equation c ◦ (⊕rv) = 0 is called the residue formula.

The point at the infinity of P1 defines a place denoted by ∞, with residue field
k(∞) = k. The corresponding corestriction map is then the identity. Hence, we
get from Theorem 1.3:

Corollary 1.4. The following sequence is exact

0 // H i(k,C)
π // H i(K,C)

⊕
v∈V \{∞}

rv

//
⊕

v∈V \{∞}
H i−1(k(v), C(−1)) // 0 .

Definition 1.18. An element α ∈ H i(K,C) is unramified (resp. unramified out-
side 0,∞) if its residue at any v ∈ V (resp. at any v ∈ V \ {0,∞}) is zero.

By the residue formula, α ∈ H i(K,C) is unramified if its residues over the affine
line are all zero. We denote by H i

unr(K,C) (resp. by H i
unr, outside{0,∞}(K,C)) the

corresponding group. Corollary 1.4 shows that any unramified element α belongs
to H i(k,C), which means that H i

unr(K,C) = H i(k,C).

If α ∈ H i
unr, outside{0,∞}(K,C) has residue α1 ∈ H i−1(k,C(−1)) at 0, then the

cohomology class α− (t)n.α1 is unramified.

Corollary 1.5. Let α ∈ H i
unr, outside{0,∞}(K,C). Then α may be uniquely written

α0 + (t)n.α1, with α0 ∈ H i(k,C) and α1 ∈ H i−1(k,C(−1)). Moreover, we have
rv0(α) = α1.
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To end this section, let us generalize these results to the Galois cohomology of
k(t1, ..., tn). Recall that C is a finite Γk-module with order prime to the charac-
teristic of the residue field.

Theorem 1.4. Let n ≥ 1 and let K = k(t1, ..., tn) be a rational field with n
indeterminates.

(i) The natural map H i(k,C)→ H i(K,C) is injective.

(ii) Let α ∈ H i(K,C) be an element whose residues are zero at any discrete
valuations of K, which are trivial on k (they correspond to the irreducible
hypersurfaces of the affine space Aff n of dimension n). Then α is constant
(i.e. lies in the image of the map H i(k,C)→ H i(K,C)).

1.3 Cohomological invariants

Let us now introduce the notion of cohomological invariants (we still follow here
the approach of [24], Chapter I). Let k0 be a field and let G be a smooth algebraic
group scheme over k0. We consider the functor H1(./k0, G) from the category of
the field extensions of k0 to the category of the sets, given by

H1(./k0, G) : k/k0 7→ H1(k,G).

Let now C be a finite Γk0-module whose order is not divisible by the character-
istic of k0. We denote by H∗(./k0, C) the functor from the category of the field
extensions of k0 to the category of the abelian groups, given by

H∗(./k0, C) : k/k0 7→ H∗(k,C) =
⊕
i≥0

H i(k,C).

Since we have seen in the previous section that the functor H is quite well under-
stood, we want to understand the functor A thanks to the functor H.

Definition 1.19. A cohomological invariant of G over k0 with coefficients in C is
a morphism of functors from H1(./k0, G) to H∗(./k0, C) is called a cohomological
invariant of G over k0 with coefficients in C. The group of all these cohomological
invariants is denoted by Invk0(G,C).

Note that we consider the functor H∗(./k0, C) with values in the category of sets.
Rephrasing Definition 1.19, a ∈ Invk0(G,C) if and only if, for any extension k/k0,
there is a map ak : H1(k,G)→ H∗(k,C) and if for any extensions k/k0 and k′/k,
the following diagrams commute

H1(k,G)
ak //

��

H∗(k,C)

��
H1(k′, G)

ak′ // H∗(k′, C)

.
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Definition 1.20. Let α ∈ H∗(k0, C). For any extension k/k0, let (aα)k be the con-
stant map with value the image of α by the restriction map H∗(k0, C)→ H∗(k,C).
These maps clearly define an invariant aα called a constant invariant.

It then yields a natural embedding H∗(k0, C) ↪→ Invk0(G,C).

Definition 1.21. An element a ∈ Invk0(G,C) is normalized if ak0([1]) = 0, where
[1] denotes the cohomology class of the trivial cocycle in H1(k0, G).

Proposition 1.23. Every cohomological invariant a ∈ Invk0(G,C) may be writ-
ten in a unique way as the sum of a constant invariant and a normalized invariant.

1.3.1 Cohomological invariants and ramification

Before going further, let us give the more general definition of a torsor over a
smooth variety.

Definition 1.22. Let G be a smooth algebraic group scheme over k0 and let X be
a smooth variety over k0. A G-torsor over X is a locally flat scheme T of finite
type over X such that G acts freely (at right) on T and such that the map

G×X T → T ×X T

(g, t) 7→ (t, tg)

is an isomorphism.

Let K/k0 be a field extension with a discrete valuation v on K. Let us denote by
R its valuation ring and by k its residue field. Assume that R contains k0; thus,
R, K and k are k0-algebras (for k, via the compositum k0 ↪→ R → k). Assume
moreover that K is complete for v.

Let Tk be a G-torsor over k. Then there is a G-torsor over R denoted by TR whose
special fiber is Tk and this torsor is unique up to isomorphism (see [7], p.401,
Prop. 8.1). Furthermore, since every G-torsor over R yields by basis extension
a G-torsor over K, this defines a map i : H1(k,G) → H1(K,G). We then state
Rost’s compatibility theorem (see [24], 11.1).

Theorem 1.5. If a ∈ Invk0(G,C), the following diagram commutes :

H1(k,G)
i //

ak
��

H1(K,G)

aK
��

H(k,C)
j // H(K,C)

,

where j denotes the natural map induced by the quotient map ΓK → Γk.
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We do not assume anymore that K is complete. It is still true that every G-torsor
T over R yields a G-torsor Tk over k and a G-torsor TK over K. We have the
following result (see [24], 11.7).

Theorem 1.6. For any a ∈ Invk0(G,C), if α denotes a(TK), then

(i) the residue of α at v is zero.

(ii) the value of α at v is a(Tk).

1.3.2 Cohomological invariants and versal torsors

Let us define the notion of versal torsor (see [24], 5.1).

Definition 1.23. Let k0 be a field and let G be a smooth algebraic group scheme
over k0. A versal G-torsor is a G-torsor P over an extension field K/k0 such
that there exist a smooth irreducible variety X over k0 with function field K and
a G-torsor Q→ X with basis X satisfying the two following properties :

(i) the fiber of Q at the generic point of X is P ;

(ii) for any field extension k/k0 with k infinite, for any G-torsor T over k and
for any open non-empty subvariety U of X, there exists x ∈ U(k) whose fiber
Qx is isomorphic to T (i.e. the set {x ∈ X(k) | Qx ' T} is dense in X).

Then a cohomological invariant is uniquely determined by its value on a versal
torsor (see [24], 12.3).

Theorem 1.7. Let k0 be a field, let G be a smooth algebraic group scheme over
k0 and let P ∈ H1(K,G) be a versal torsor over k0. Let a, b be two cohomological
invariants in Invk0(G,C). If a(P ) = b(P ) in H∗(K,C), then a = b.

Note that Theorem 1.7 shows that the map

Inv(G,C)→ H∗(K,C)

a 7→ a(P )

is injective. Hence, we may see the set Invk0(G,C) as a subgroup of H∗(K,C).
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Chapter 2

Examples

RÉSUMÉ

Dans ce chapitre, on fournit des exemples explicites d’invariants cohomologiques,
en rappelant d’abord les résultats de Serre sur les invariants cohomologiques des
groupes 2-élémentaires, du groupe orthogonal et du groupe symétrique. En partic-
ulier, on définit les invariants de Stiefel-Whitney pour les formes quadratiques ainsi
que pour le groupe symétrique et qui forment une base du module des invariants
cohomologiques de ces groupes. Ensuite, on calcule explicitement les invariants
cohomologiques du groupe alterné A5 et du groupe de Coxeter exceptionnel de
type H3, puis des groupes diédraux Dn où n n’est pas divisible par 4 et enfin du
groupe diédral D4, isomorphe au groupe de Weyl de type B2.

2.1 Cohomological invariants of 2-elementary abelian
groups

This section follows the approach of [24], 16. We only consider here invariants with
coefficients in Z/pZ, where p is a prime number different from the characteristic
of the base field k0 (most of time, we will take p = 2). In this situation, the cup-
product endows the group Invk0(G,Z/pZ) with the structure of a H∗(k0,Z/pZ)-
module. In the sequel, we describe this module structure in several cases.
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2.1.1 Cohomological invariants of Z/2Z

In this paragraph, all the fields considered have characteristic different from 2.
Recall that, for any field k (of characteristic different from 2),

H1(k,Z/2Z) ' k×/k×2

(see Section 1.2.2). Let k0 be a field. It is easily seen that, for any field extension
k/k0, the maps

H1(k,Z/2Z)→ H0(k,Z/2Z),

ϕ 7→ 1

yield a cohomological invariant of Z/2Z, denoted by 1. Likewise, for any extension
k/k0 the identity maps

id : H1(k,Z/2Z)→ H1(k,Z/2Z)

also yield a cohomological invariant of Z/2Z, denoted by id.

We then have the following result (see [24], 16.2)

Proposition 2.1. The H∗(k0,Z/2Z)-module Invk0(Z/2Z),Z/2Z) is free with basis
{1, id}.

2.1.2 Cohomological invariants of a direct product of groups

Let G and G′ be smooth algebraic group schemes over k0 and let p be a prime
number different from char(k0). We set C = Z/pZ here. Then we have the
following statement (see [24], Exercise 16.5).

Proposition 2.2. Let us assume that there exists a family (aj)j∈J of elements
of Invk0(G,Z/pZ) such that, for every field extension k/k0, the images of the aj
(j ∈ J) in Invk(G,Z/pZ) form an H∗(k,Z/pZ)-basis of Invk(G,Z/pZ). Then there
is an H∗(k0,Z/pZ)-linear automorphism

Invk0(G,Z/pZ)⊗H∗(k0,Z/pZ) Invk0(G′,Z/pZ) ' Invk0(G×G′,Z/pZ).

Proof. Since, for any extension k/k0, H1(k,G×G′) ' H1(k,G)×H1(k,G′), we
denote the elements of H1(k,G×G′) by pairs of cohomology classes (α, α′) with
α ∈ H1(k,G) and α′ ∈ H1(k,G′).

If a ∈ Invk0(G,Z/pZ) and a′ ∈ Invk0(G′,Z/pZ), we can define a cohomological
invariant a · a′ of Invk0(G×G′,Z/pZ) via the maps

ak · a′k : H1(k,G×G′)→ H∗(k,Z/pZ)

(α, α′) 7→ ak(α) · a′k(α′)
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where k runs through all field extensions over k0. This yields a map Θ from
Invk0(G,Z/pZ) × Invk0(G′,Z/pZ) to Invk0(G × G′,Z/pZ). Since the cup-product
endows the groups Invk0(G,Z/pZ) and Invk0(G′,Z/pZ) with the structure of an
H∗(k0,Z/pZ)-H∗(k0,Z/pZ)-bimodule, then the cup-product endows the tensor
product Invk0(G,Z/pZ)⊗H∗(k0,Z/pZ) Invk0(G′,Z/pZ) with the structure of a module
over H∗(k0,Z/pZ). Moreover, since the cup-product is Z-bilinear and associative,
the map Θ is H∗(k0,Z/pZ)-bilinear. We then get from Θ a map

cG,G′ : Invk0(G,Z/pZ)⊗H∗(k0,Z/pZ) Invk0(G′,Z/pZ)→ Invk0(G×G′,Z/pZ),

which is H∗(k0,Z/pZ)-linear. Let us show that cG,G′ is an isomorphism. Let us
prove, for instance, the surjectivity of this map (the proof of the injectivity being
left to the reader since it may be proved similarly to the surjectivity).

Let a ∈ Invk0(G×G′,Z/pZ). Let k/k0 be a field extension and let α′ ∈ H1(k,G′).
Then, for any field extension k′/k, the maps

(ak,α
′
)k′ : H1(k′, G)→ H∗(k′,Z/pZ)

α 7→ ak′(α,Resk′/k(α
′))

clearly define a cohomological invariant ak,α
′ ∈ Invk(G,Z/pZ). By assumption,

the images of the elements of the family (aj)j∈J (that we still denote by aj , j ∈ J)
form a basis of Invk(G,Z/pZ). Therefore, there are some uniquely determined

coefficients ck,α
′

j ∈ H∗(k,Z/pZ) (for j ∈ J) such that ak,α
′

=
∑
j∈J

ck,α
′

j · aj . Now set

j ∈ J and let us show that the maps

(cj)k : H1(k,G′)→ H∗(k,Z/pZ)

α′ 7→ ck,α
′

j

define a cohomological invariant of G′ over k0, when k runs through all field ex-
tensions over k0.

Let k be an extension of k0 and let k′ be an extension of k. We then have to show
the commutativity of the diagram

H1(k,G′)
(cj)k //

Resk′/k
��

H∗(k,Z/pZ)

Resk′/k
��

H1(k′, G′)
(cj)k′
// H∗(k′,Z/pZ)

i.e. for any cohomology class α′ ∈ H1(k,G′), Resk′/k(c
k,α′

j ) = c
k′,Resk′/k(α′)

j .
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Let α′ ∈ H1(k,G′). We have

a(k′,Resk′/k(α′)) =
∑
j∈J

c
k′,Resk′/k(α′)

j · aj

We also have, for any extension k′′/k,

Resk′k′′/k′′ ◦ (a(k,α′))k′′ = Resk′k′′/k′′
(∑
j∈J

ck,α
′

j · (aj)k′′
)

=
∑
j∈J

Resk′/k(c
k,α′

j ) · (aj)k′k′′ ◦ Resk′k′′/k′′

since the aj (j ∈ J) are cohomological invariants over k.

Note first that Resk′./. ◦ (ak,α
′
). is a cohomological invariant of G over k′. Indeed,

if k′′/k′ is an extension, Resk′k′′/k′′ ◦ (ak,α
′
)k′′ = (ak,α

′
)k′′ and we are done since

ak,α
′

is a cohomological invariant of G.

Let us show that the cohomological invariants ak
′,Resk′/k(α′) and Resk′./. ◦ (ak,α

′
).

of G over k′ are equal. Let k′′/k′ be a field extension and let α ∈ H1(k′′, G). We
have

Resk′k′′/k′′ ◦ (ak,α
′
)k′′(α) = ak,α

′

k′′ (α) = a′′k(α,Resk′′/k(α
′))

and
(ak

′,Resk′/k(α′))k′′(α) = ak′′
(
α,Resk′′/k′(Resk′/k(α

′))
)
.

Yet it is well-known (see for example [1], p.93) that as k′′/k′/k is a tower of
extensions,

Resk′′/k = Resk′′/k′ ◦ Resk′/k,

which proves the equalities between the two considered invariants.

Therefore, we get that∑
j∈J

c
k′,Resk′/k(α′)

j · aj = ak
′,Resk′/k(α′) = Resk′./. ◦ (ak,α

′
).

=
∑
j∈J

Resk′/k(c
k,α′

j ) · aj

Thus, as the family (aj)j∈J makes up an H∗(k′,Z/pZ)-basis of Invk′(G,Z/pZ), it
is in particular a free family, so we obtain that, for any j ∈ J ,

c
k′,Resk′/k(α′)

j = Resk′/k(c
k,α′

j ).

Therefore, for any j ∈ J , cj is a cohomological invariant of G′ over k0 with coeffi-
cients in Z/pZ. We then can conclude that a =

∑
j∈J

cj ·aj , which is a cohomological
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invariant in Invk0(G × G′,Z/pZ) and it obviously lies in the image of cG,G′ (a
preimage is

∑
j∈J

aj ⊗ cj , up to a sign coming from the anti-commutativity of the

cup-product). �

Let us apply Proposition 2.2 to 2-elementary abelian groups. Let G = (Z/2Z)n.
Recall that

H1(k,G) ' H1(k,Z/2Z)× · · · ×H1(k,Z/2Z) and that H1(k,Z/2Z) ' k×/k×2.

Let I ⊂ {1, ..., n}. For any k/k0, let us define

(aI)k : H1(k,G)→ H i(k,Z/2Z)

(x1, ..., xn) 7→ (xI)

where i denotes the cardinality of I and (xI) denotes the cup product of the (xi)’s,
i ∈ I. It is clear that these maps define a cohomological invariant of G.

Actually, these invariants form a basis of Invk0(G,Z/2Z) ([24], Theorem 16.4),
which can easily be proved by induction from Proposition 2.1 and Proposition 2.2.

Corollary 2.1. Let n ≥ 1 and G = (Z/2Z)n. Then the H∗(k0,Z/2Z)-module
Invk0(G,Z/2Z) is free with basis (aI)I⊂{1,...,n}.

2.2 Restriction to subgroups

This section is directly inspired from [24], Chapter V. We recall here some tools
to determine the cohomological invariants of an algebraic group scheme G thanks
to the invariants of some subgroups.

Let k0 be a field, let G be a smooth algebraic group scheme over k0 and let C
be a finite Γk0-module whose order is not divisible by char(k0). Let us define the
restriction of invariants.

Definition 2.1. If a ∈ Invk0(G,C) and if H is a subgroup of G, the restriction
ResHG (a) of a to H is the compositum of the two following morphisms of functors :

H1(./k0, H) // H1(./k0, G)
a // H∗(./k0, C) .

Let us study the image of the restriction map. Let us denote by N the normalizer
of H in G. For any g ∈ N(k0), the inner map

ig : H → H

h 7→ ghg−1
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is an automorphism of H. Thus N(k0) acts on Invk0(H,C) : if a ∈ Invk0(G,C)
and g ∈ N(k0), we set, for any extension k/k0,

g.a : H1(k,G)→ H∗(k,C).

[ϕ] 7→ ak([ig ◦ ϕ])

Note that in order to lighten the notation, we have made the confusion between
g ∈ N(k0) and its image in N(k). We then have the following proposition (see
[24], 13.2).

Proposition 2.3. The following properties hold :

1. The action of N(k0) factors through N(k0)/H(k0).

2. If a ∈ Invk0(H,C) lies in the image of the restriction map ResHG , then a is
fixed by N(k0)/H(k0).

This proposition leads us to look for subgroups H of G with injective restriction
map ResHG and/or such that the image of the restriction map is exactly the set of
the H-invariants fixed by N(k0)/H(k0).

For the rest of this section, let G be a finite group (viewed as a constant algebraic
group scheme). Let H be a subgroup of G. Recall that C has finite order. Let us
state the following important result (see [24], Corollary 15.4).

Proposition 2.4. If the index [G : H] is prime to the order of C, then the re-
striction map ResHG : Invk0(G,H)→ Invk0(H,C) is injective.

This applies in particular when H is a p-Sylow subgroup of G and C is a p-group.
Let us look at a special case where the image of the restriction map is exactly the
invariants fixed by the normalizer (see [24], Example 15.7).

Proposition 2.5. Let G be a finite group, let H be a p-Sylow subgroup of G and
let C be a p-group. Assume that H is abelian. Then an invariant a ∈ Invk0(H,C)
lies in the image of the restriction map ResHG if and only if a is fixed under the
action of N/H.

Let us end this section by giving an example of such submodules fixed under the
action of a normalizer.

Example 2.1. Let n ≥ 2 and let W be a Weyl group of type Bn (see A). Its asso-
ciated root system is S = {±ei,±ei± ej , 1 ≤ i 6= j ≤ n}. Set S0 = {±e1, ...,±en}.
The subgroup H0 of W generated by the reflections corresponding to the roots
in S0 is clearly isomorphic to (Z/2Z)n. By Corollary 2.1, the family of invariants
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{aI}I⊂{1,...,n} is a basis of the H∗(k0,Z/2Z)-module Invk0(H0,Z/2Z). Let us iden-
tify the invariants fixed by the normalizer N0 of H0. Since W permutes the lines
Rei (1 ≤ i ≤ n), we have N0 = W . Moreover, we have the exact split sequence

1 // H0
//W // Sn

// 1 .

Thus, N0/H0 ' Sn and acts on H0 by permuting the coordinates. Proposition
2.6 then follows easily.

Proposition 2.6. For 0 ≤ i ≤ n, the cohomological invariants

a
(0)
i =

∑
I⊂{1,...,n};|I|=i

aI

form a basis of the submodule Invk0(H0,Z/2Z)N0/H0.

2.3 Cohomological invariants of On

Let k be a field of characteristic different from 2 and let n ≥ 1. Let us recall
that H1(k,On) classifies, up to isomorphism, the non-degenerate quadratic forms
of rank n over k. Recall also that any quadratic form q of rank n over k is
isomorphic to a diagonal quadratic form q ' 〈α1, ..., αn〉 for αi ∈ k× (see e.g.
[21]). For any 0 ≤ i ≤ n, if q ' 〈α1, ..., αn〉, set

wi(q) =
∑

1≤j1<...<ji≤n
(αj1) · · · · · (αji)

One may show (see [6]) that, for 0 ≤ i ≤ n, wi(q) is well-defined and only depends
on the isomorphism class of q. It then yields cohomological invariants of the
orthogonal group On of the unit quadratic form of rank n, called Stiefel-Whitney
invariants. Then Serre described completely the cohomological invariants of the
quadratic forms in term of these Stiefel-Whitney invariants (see [24], 17.3).

Theorem 2.1 (Serre, 2003). Let k0 be a field of characteristic different from
2. Then the Stiefel-Whitney invariants wi for 0 ≤ i ≤ n form a basis of the
H∗(k0,Z/2Z)-module Invk0(On,Z/2Z).

2.4 Cohomological invariants of Sn

Let k0 be a field of characteristic different from 2 and let n ≥ 2. Let us recall that,
for any field extension k/k0, the set H1(k,Sn) classifies étale k-algebras of rank
n, up to isomorphism (see Proposition 1.7).
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Definition 2.2. For every extension k/k0, we will call multiquadratic étale k-
algebra any étale k-algebra which is isomorphic to a direct product of étale k-
algebras of rank ≤ 2.

In [24], 24.9, Serre gave a splitting principle for cohomological invariants of the
symmetric group Sn.

Theorem 2.2. Let k0 be a field of characteristic different from 2 and let n ≥ 2.
Let also C be any finite Γk0-module whose order is not divisible by char(k0). Let
a ∈ Invk0(Sn, C). Then a = 0 if and only if ak(E) = 0 for every multiquadratic
étale algebra E of rank n over any field extension k/k0.

In other words, the values of an invariant on the multiquadratic étale algebras
completely determines this invariant. The proof essentially relies on the existence
of a versal Sn-torsor with rational base field over k0.

We may also reformulate the splitting principle as follows. Let

H = 〈(12), (34), ..., (2[
n

2
]− 1, 2[

n

2
])〉.

Then, for any k/k0, the image of the map H1(k,H)→ H1(k,Sn) exactly coincides
with the set of isomorphism classes of multiquadratic étale k-algebras. Therefore,
Theorem 2.2 states that the map

ResHSn : Invk0(Sn, C)→ Invk0(H,C)

is injective.

The following corollary is an immediate consequence of Theorem 2.2 (see [24],
24.12).

Corollary 2.2. For any normalized invariant a ∈ Invk0(Sn, C), we have 2a = 0.

The determination of the cohomological invariants of Sn with coefficients in a
Γk0-module C of odd order then follows.

Corollary 2.3. Let C be a finite Γk0-module of odd order. Any cohomological
invariant of Sn over k0 with coefficients in C is constant.

Proof. Let m be the order of C. Thanks to Proposition 1.23, we just have to check
that the only normalized invariant is the zero invariant. Let a ∈ Invk0(Sn, C) be
normalized. By Corollary 2.2, 2a = 0. Moreover, for any i ≥ 0 and any extension
k/k0, H i(k,C) is a m-torsion group (it is easily checked for instance on the cocy-
cles). Thus, m.a = 0. Since m is odd and 2a = 0, we get that a = 0. �
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This allows us to consider only Γk0-modules with even order. Let us take the
simplest one: C = Z/2Z. Let us define some cohomological invariants of Sn.
Recall that étale algebras are characterized by their trace form (see Proposition
1.6): for any field k of characteristic different from 2, a k-algebra E of rank n is
étale if and only if the trace form qE : x 7→ TrE/k(x

2) is a non-degenerate quadratic
form. Now set, for any 0 ≤ i ≤ n,

wi : H1(./k0,Sn)→ H∗(./k0,Z/2Z)

(E) 7→ wi(qE)
.

This invariant wi is called the ith Stiefel-Whitney invariant of Sn. Then Serre
proved that a basis of the module Invk0(Sn,Z/2Z) is given by some Stiefel-Whitney
invariants (see [24], 25.13).

Theorem 2.3 (Serre, 2003). Let k0 be a field of characteristic different from 2
and let n ≥ 2. Then the H∗(k0,Z/2Z)-module Invk0(Sn,Z/2Z) is free with basis
{wi}0≤i≤[n

2
].

Let us sketch the proof of Serre. Thanks to the splitting principle, we are now able
to completely describe the set Invk0(Sn,Z/2Z). By Proposition 2.3, the image of
the map ResHSn is contained in Invk0(Sn,Z/2Z)N/H , where N denotes the normal-
izer of H in Sn. Let us note that N/H ' S[n

2
]. By Theorem 2.2, we already

know that this map is injective. Then, to completely determine the cohomological
invariants of Sn with coefficients in Z/2Z, it is enough to show that the image of

the restriction map ResHSn is exactly Invk0(Sn,Z/2Z)
S[n2 ] . Yet, a direct computa-

tion shows that the restrictions of the Stiefel-Whitney invariants to H generate

the H∗(k0,Z/2Z)-module Invk0(Sn,Z/2Z)
S[n2 ] .

2.5 Cohomological invariants of A5 and of the Coxeter
group of type H3

Let G = A5 be the alternating group on 5 letters, let k0 be a field of characteristic
different from 2 and let C = Z/2Z. Note that any 2-Sylow subgroup of A5 is
isomorphic to (Z/2Z)2. Let us denote by H the 2-Sylow subgroup of A5 gener-
ated by the double transpositions (12)(34) and (13)(24). By Proposition 2.4 and
Proposition 2.5, we get an isomorphism

Invk0(A5,Z/2Z) ' Invk0(H,Z/2Z)N/H ,

where N denotes here the normalizer of H in A5. An easy computation shows
that N = A4 the alternating group over the set {1, 2, 3, 4}. Therefore, N/H is
isomorphic to Z/3Z: N/H = {H, (123).H, (132).H}. Thus, the module of the
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cohomological invariants of A5 is the submodule of the cohomological invariants
of (Z/2Z)2, fixed under the action of (123) and (132) (see the beginning of Section
2.2).

Corollary 2.1 states that the cohomological invariants of (Z/2Z)2 form a free
H∗(k0,Z/2Z)-module with basis 1, a{1}, a{2} and a{1,2}, where a{1} is the first
projection, a{2} the second projection and a{1,2} = a{1} · a{2}. More precisely, for
any extension k/k0,

a{1} : (x1, x2) 7→ (x1)

a{2} : (x1, x2) 7→ (x2)

and a{1,2} : (x1, x2) 7→ (x1) · (x2).

Since H = 〈(12)(34), (13)(24)〉, via the bijection k×/k×2 → H1(k,Z/2Z), we
identify the square-class x1 with a cocycle ϕ1 : γ 7→ ((12)(34))ε1(γ) (where ε1 is
a cocycle with values in Z/2Z). Likewise, we identify the square-class x2 with a
cocycle ϕ2 : γ 7→ ((13)(24))ε2(γ) (where ε2 is also a cocycle with values in Z/2Z).
Let us study the action of (123) and (132) on a{1}. Let k/k0 be a field extension

and let ϕ : γ → ((12)(34))ε1(γ).((13)(24))ε2(γ) be any cocycle with values in H.

Since
(123)(12)(34)(132) = (14)(23) = (12)(34).(13)(24)

and
(123)(13)(24)(132) = (12)(34),

the cocycle (123).ϕ writes

(123).ϕ : γ 7→ ((12)(34))ε1(γ)+ε2(γ).((13)(24))ε1(γ).

Likewise, (132).ϕ may be written as

(132).ϕ : γ 7→ ((12)(34))ε2(γ).((13)(24))ε1(γ)+ε2(γ).

Hence,
(123).a{1} = (x1, x2) 7→ (x1x2),

(132).a{1} = (x1, x2) 7→ (x2),

so
a{1} + (123).a{1} + (132).a{1} = 0.

Likewise,

a{2} + (123)a{2} + (132)a{2} = 0 and

a{1,2} + (123)a{1,2} + (132)a{1,2} = a{1,2} + (−1) · (a{1} + a{2}).

Moreover, it is easily checked that the invariants 1, a{1} + (123).a{1} + (132).a{1},
a{2} + (123).a{2} + (132).a{2} and a{1,2} + (123).a{1,2} + (132).a{1,2} generate the
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submodule Invk0(H,Z/2Z)N/H . It then follows that Invk0(H,Z/2Z)N/H is free with
basis

1, a{1,2} + (−1) · (a{1} + a{2}).

Moreover, taking the restriction of the invariants of S5 yield cohomological invari-
ants of A5. Let us take the restriction of the Stiefel-Whitney invariant w2. We
have to identify its restriction to H. It follows from the definition of the restriction
(see Definition 2.1) that ResHA5

(ResA5
S5

(w2)) = ResHS5
(w2).

Lemma 2.1. The map H1(k,H)→ H1(k,S5) is given by (a, b) 7→ k(
√
a,
√
b)×k.

Proof. Take any k-algebra L = k(
√
a,
√
b). Then

√
a+
√
b is a primitive element

of L and the automorphism group is

Autk(L) = {id, ϕ+,− :
√
a+
√
b 7→
√
a−
√
b,ϕ−,+ :

√
a+
√
b 7→ −

√
a+
√
b,

ϕ−,− :
√
a+
√
b 7→ −

√
a−
√
b}.

Extending scalars to a separable closure ksep of k, we get

L⊗k ksep ' k[X]/(X − (
√
a+
√
b))× k[X]/(X − (

√
a−
√
b))

× k[X]/(X − (−
√
a+
√
b))× k[X]/(X − (−

√
a−
√
b))

' k4
sep.

Thus, Autk(L) can easily be identified with the subgroup H, as a subgroup of
Autksep(k

4
sep) = S4. �

Furthermore, it is easily checked that the trace form of a biquadratic k-algebra
k(
√
a,
√
b) is 〈1, a, b, ab〉. Therefore, for any a, b,∈ k×/k×2,

w2(k(
√
a,
√
b)× k) = w2(〈1, a, b, ab, 1〉)

= w2(〈a, b, ab〉)
= (a) · (b) + (a) · (ab) + (b) · (ab)
= (a) · (b) + (−1) · (ab).

Thus, we have

ResHA5
(ResA5

S5
(w2)) = a{1,2} + (−1) · (a{1} + a{2}).

In conclusion,

Proposition 2.7. Let k0 be a field of characteristic different from 2. Then the
cohomological invariants 1, ResA5

S5
(w2) form a basis of the H∗(k0,Z/2Z)-module

Invk0(A5,Z/2Z).
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Let now W be the Coxeter group associated to the root system H3 (see Appendix
A). Then W ' A5 × Z/2Z. The description of Invk0(W,Z/2Z) then follows from
Proposition 2.2.

Proposition 2.8. The H∗(k0,Z/2Z)-module Invk0(W,Z/2Z) is free of rank 4 with
a basis given by the invariants

1, ResA5
S5

(w2), idZ/2Z and ResA5
S5

(w2) · idZ/2Z,

defined via the isomorphism W ' A5 × Z/2Z.

2.6 Cohomological invariants of some dihedral groups

2.6.1 Cohomological invariants of Dn, with n odd

Let n be an odd integer and let k0 be a field of characteristic different from 2. Let us
recall the standard geometric presentation of Dn (see Apendix A): Dn is the group
of linear automorphisms of the real plane with canonical basis (e1, e2), generated
by the rotation σ of angle 2π

n and by the reflection τ with respect to the line Re1.
It is obvious that every 2-Sylow subgroup of Dn is isomorphic to Z/2Z. Let us
denote by H the 2-Sylow subgroup of Dn generated by τ . By Proposition 2.4 and
Proposition 2.5, we get the isomorphism Invk0(Dn,Z/2Z) ' Invk0(H,Z/2Z)N/H ,
where N denotes the normalizer of H in Dn. An easy computation shows that
this normalizer N is equal to H.

Proposition 2.9. Let k0 be a field of characteristic different from 2 and let n ≥ 2
be an odd integer. The H∗(k0,Z/2Z)-module Invk0(Dn,Z/2Z) is free of rank 2.

2.6.2 Cohomological invariants of Dn, with n ≡ 2 mod 4

Let n ≥ 6 such that n ≡ 2 mod 4. Then Dn ' Dn
2
× Z/2Z. By Proposition 2.2,

we get that:

Proposition 2.10. Let k0 be a field of characteristic different from 2 and let
n ≥ 6 such that n ≡ 2 mod 4. The H∗(k0,Z/2Z)-module Invk0(Dn,Z/2Z) is free
of rank 4.

Note that, when n = 6, the dihedral group D6 is isomorphic to the Weyl group
of type G2 (see Appendix A). In this particular case, we can say a little more :
D6 ' D3 × Z/2Z and D3 ' S3. Therefore, combining Theorem 2.3 with n = 3
and Proposition 2.1, we obtain that :

Proposition 2.11. Let k0 be a field of characteristic different from 2. Then the
H∗(k0,Z/2Z-module Invk0(D6,Z/2Z) is free with basis
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1, wS3
1 , idZ/2Z and wS3

1 · id
Z/2Z,

via the isomorphism D6 ' S3 × Z/2Z.

It remains to determine the case n ≡ 0 mod 4. We only consider here the case
n = 4.

2.6.3 Cohomological invariants of D4

The results of this section were presented by Serre in his minicourse at the Ascona
conference in 2007 in a different way.

Contrary to what we have done all along this chapter, we will not exhibit an in-
jective restriction map, but we will determine the cohomological invariants of D4,
by computing residues in H∗(./k0,Z/2Z) on a versal torsor.

If k = k0(c1, ..., cr) is a rational field extension over k0 with transcendance degree
r and if P is an irreducible polynomial (in the variables c1, ..., cr over k0), let us
denote by DP the irreducible divisor in Spec(k0[c1, ..., cr]) associated with P . Let
us also denote by vP the valuation vDP corresponding to the divisor DP and by
rP the residue map rvP .

Let us first state a technical lemma.

Lemma 2.2. Let l ≥ 0 and let k = k0(t, u, v1, ..., vl) be a rational field extension
over k0 with transcendence degree l + 2. If α ∈ H∗(k,Z/2Z) is not ramified at
any k0-valuation on k, except maybe at the valuations vt and vu, then there exist
c0, c1, c2, c3 ∈ H∗(k0,Z/2Z) such that

α = c0 + c1 · (t) + c2 · (u) + c3 · (u) · (t).

Proof. Set k′ = k0(t, u). If l ≥ 1, for any effective divisor D of Spec(k′[v1, ..., vl]),
α is not ramified at vD. By Theorem 1.4, α ∈ H∗(k′,Z/2Z). If now D is an
irreducible divisor of Spec(k0(t)[u]), different from Du, then α is not ramified at
vD by assumption. By Corollary 1.5, there exist some α0, α1 ∈ H∗(k0(t),Z/2Z)
such that

α = α0 + α1 · (u). (2.1)

Let now D be an irreducible divisor of Spec(k0[t]) different from Dt. Then D×A1

is an irreducible divisor of Spec(k0[u, t]) different from Dt and Du, and we have
the commutative diagram (see Proposition 1.22)

H∗(k0(t),Z/2Z)
rvD //

Resk0(t,u)/k0(t)
��

H∗(κ(D),Z/2Z)

Resκ(D)(u)/κ(D)

��
H∗(k0(t, u),Z/2Z) rv

D×A1
// H∗(κ(D)(u),Z/2Z),
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which implies

0 = rvD×A1
(α) = Resκ(D)(u)/κ(D)(rvD(α0)) + Resκ(D)(u)/κ(D)(rvD(α1)) · (u).

Since κ(D)(u)/κ(D) is purely transcendental, the map Resκ(D)(u)/κ(D) is injective,
so

0 = rD(α0) + rD(α1) · (u),

and since u is an indeterminate over κ(D),

rD(α0) = rD(α1) = 0

(it is an immediate consequence of Corollary 1.5).

Therefore, α0 and α1 are not ramified at any k0-valuation on k0(t) except maybe
at vt, so, by Corollary 1.5, there exist some c0, c1, c2, c3 ∈ H∗(k0,Z/2Z) such that

α0 = c0 + c1 · (t) and α1 = c2 + c3 · (t),

and Equation (2.1) allows us to conclude. �

Note that the dihedral group D4 is isomorphic to the Weyl group of type B2 (see
Appendix A). Let k be a field of characteristic different from 2. We will thus use
in the sequel the interpretation for the first cohomology set H1(k,D4) in terms of
pointed étale algebras (see Proposition 1.8). The cohomology classes of H1(k,D4)
identify with the pointed étale algebras (L,α), where L is an étale k-algebra of
rank 2 and α a square-class in L×. In Chapter 4, we will define some cohomological
invariants for the Weyl groups of type Bn and then describe them all. Let us define
them for the group D4. As we have seen in Section 2.4 for étale algebras, for any
pointed étale k-algebra (L,α), the trace form of L

qL,α : x 7→ TrL/k(αx
2)

define Stiefel-Whitney invariants (for 0 ≤ i ≤ 2)

wi : H1(./k0,D4)→ H∗(./k0,Z/2Z)

(L,α) 7→ wi(qL).

With pointed étale algebras (L,α), we may associate another trace form, twisted
by α

qL,α : x 7→ TrL/k(αx
2)

which is also non-degenerate. It then defines another family of Stiefel-Whitney
invariants (for 0 ≤ i ≤ 2)

w̃i : H1(./k0,D4)→ H∗(./k0,Z/2Z)

(L,α) 7→ wi(qL,α)
.
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Theorem 2.4. Let k0 be a field of characteristic different from 2. Then the set
Invk0(D4,Z/2Z) is a free H∗(k0,Z/2Z)-module with basis {1, w1, w̃1, w̃2}.

Proof. Let K = k0(t, u, v), where t, u, v are independent indeterminates. We
consider the D4-torsor

(
K(
√
t), u+ v

√
t
)

over K. This torsor is versal over k0 for
D4 (see Definition 1.23). Recall that every cohomological invariant is completely
determined by its value on a versal torsor (see Theorem 1.7). Moreover, we have
the following formulae :

w1(K(
√
t), u+ v

√
t) = (2.2t) = (t),

w̃1(K(
√
t), u+ v

√
t) = (2u.2ut(u2 − v2t)) = (t(u2 − v2t)) and

w̃2(K(
√
t), u+ v

√
t) = (2u) · (2ut(u2 − v2t)) = (2u) · (−t(u2 − v2t)).

It then remains to prove the following two facts :

(i) the family {1, (t), (t(u2 − v2t)), (2u) · (−t(u2 − v2t))} is free in the module
H∗(K,Z/2Z) over H∗(k0,Z/2Z);

(ii) if a ∈ Invk0(D4,Z/2Z), there exist d0, d1, d̃1, d̃2 ∈ H∗(k0,Z/2Z) such that

aK(K(
√
t), u+v

√
t) = d0 +d1 ·(t)+ d̃1 ·(t(u2−v2t))+ d̃2 ·(2u) ·(−t(u2−v2t)).

Let us first show (i). Let λ0, λ1, λ2, λ3 ∈ H∗(k0,Z/2Z) such that

0 = λ0 + λ1 · (t) + λ2 · (t(u2 − v2t)) + λ3 · (2u) · (−t(u2 − v2t)).

Let us take the residue at the valuation corresponding to (u2 − v2t). Then,

0 = λ2 + λ3 · (2u) = (λ2 + λ3 · (2)) + λ3 · (u).

Taking now the residue at vu, it is easily seen that λ3 = 0, which implies that
λ2 = 0. We then obtain that 0 = λ0 + λ1 · (t), so taking the residue at vt, we get
that λ1 = 0. Thus, λ0 = 0 and this proves (i).

Let us prove (ii). Let a be a cohomological invariant of D4 over k0 and set

β = aK(K(
√
t), u+ v

√
t)

and
β1 = ResK(

√
t)/K(β) = aK(

√
t)

(
K(
√
t)2, (u+ v

√
t, u− v

√
t)
)
.

Let us consider H0 ⊂ D4 (viewed as the Weyl group of type B2) the subgroup
defined in Example 2.1. It is easily seen that the image of the map

ι : H1(K(
√
t), H0)→ H1(K(

√
t),D4)
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is the set of the pointed étale algebras (K(
√
t)2, (α0, α1)), with α0, α1 some square-

classes in K(
√
t)× (see Chapter 4, Proposition 4.1 for a proof). Since the coho-

mology class associated with the pointed algebra
(
K(
√
t)2, (u+v

√
t, u−v

√
t)
)

lies
in the image of ι, we get

β1 = ResH0
W (a)K(

√
t)

(
u+ v

√
t, u− v

√
t
)
.

Therefore, since ResH0
W (a) is a cohomological invariant of H0 '

(
Z/2Z

)2
, by Exam-

ple 2.1, there are some b0, b1, b2 ∈ H∗(k0,Z/2Z) such that, for any field extension
k/k0 and for any (α1, α2) ∈ H1(k,H0), we have :

(ResH0
W (a))k(α1, α2) = b0 + b1 · (α1α2) + b2 · (α1) · (α2).

Hence, we get that

β1 = b0 + b1 · (u2 − v2t) + b2 · (u+ v
√
t) · (u− v

√
t).

Since the extension K(
√
t)/K is not ramified at the valuation corresponding to

(u2 − v2t), we have the commutative diagram (see Proposition 1.22)

H∗(K,Z/2Z)
ru2−v2t//

ResK(
√
t)/K
��

H∗(k0(u, v),Z/2Z)

id
��

H∗(K(
√
t),Z/2Z) ru+v√t

// H∗(k0(u, v),Z/2Z)

.

In the residue field associated with ru+v
√
t over K(

√
t), we have 2u = u− v

√
t,

since u+ v
√
t+ u− v

√
t = 2u. The previous commutative diagram yields that

ru2−v2t(β) = ru+v
√
t(β1) = b1 + b2 · (2u).

In particular, ru2−v2t(β) is not ramified, except maybe at vu. Now set

β′ = β + ru2−v2t(β) · (u2 − v2t).

Let us show that the cohomology class β′ is not ramified except maybe at vt and
at vu. Let D be an irreducible divisor of Spec(k0[t, u, v]) different from Dt, Du

and Du2−v2t. The cohomology class of the pointed algebra (K(
√
t), u+v

√
t) is not

ramified (i.e. lies in the image of the map H1(κ(D),D4) → H1(K(
√
t),D4), see

Definition 3.1 in Chapter 3), except maybe at the valuations corresponding to the

irreducible divisors of the discriminant of the algebra K(
√
t)
(√

u+ v
√
t
)
/K, i.e.

at vt and at vu2−v2t. Since D 6= Dt, Du2−v2t, the cohomology class of the pointed
algebra (K(

√
t), u+ v

√
t) is not ramified at vD, thus rvD(β) = 0. Hence,

rvD(β′) = rvD(β) + rvD((b1 + b2 · (2u)) · (u2 − v2t)) = 0.
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Furthermore,

ru2−v2t(β
′) = ru2−v2t(β) + ru2−v2t

(
ru2−v2t(β) · (u2 − v2t)

)
= 2ru2−v2t(β) = 0.

Hence β′ is not ramified, except maybe at vt and vu. By Lemma 2.2, there exist
c0, c1, c2, c3 ∈ H∗(k0,Z/2Z), such that

β′ = c0 + c1 · (t) + c2 · (u) + c3 · (u) · (t),

so

β = c0 + c1 · (t) + c2 · (u) + c3 · (u) · (t) + (b1 + b2 · (2u)) · (u2 − v2t).

Yet we know that ru(β) = 0, hence

0 = c2 + c3 · (t) + b2 · (u2 − v2t) = c2 + c3 · (t) + b2 · (−t).

It yields
0 = c2 + b2 · (−1) + (c3 + b2) · (t).

As the family {1, (t)} is free in the H∗(k0,Z/2Z)-module H∗(k0(t),Z/2Z), we get
that c2 = b2 · (−1) and c3 = b2. Eventually,

β = c0 + c1 · (t) + b1 · (u2 − v2t) + b2 · (2) · (u2 − v2t) + b2 · (u) · (−t(u2 − v2t))

= c0 + (c1 + b2 · (2)) · (t) + b1 · (u2 − v2t) + b2 · (2u) · (−t(u2 − v2t)).

Therefore,

β = c0 + (c1 + b1 + b2 · (2)) · (t) + b1 · (t(u2 − v2t)) + b2 · (2u) · (−t(u2 − v2t)),

This proves (ii). �

Let us end this section by giving relations between some cohomological invariants
of D4 that we will use below :

Proposition 2.12. We have the following equalities :

w2 = (2) · w1, w1 · w̃1 = (−1) · w1 and w1 · w̃2 = 0.

Proof. By [24], Theorem 12.3, we just have to check the equalities on the versal
D4-torsor T = (K(

√
t), u+ v

√
t). Let us prove for instance the first one. We have

w2(T ) = w2(〈2, 2t〉) = (2) · (2t) = (2) · (t) = (2) · w1(〈2, 2t〉).

The other equalities are left to the reader. �
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Chapter 3

Vanishing principle for finite
Coxeter groups

RÉSUMÉ

Dans ce chapitre, on énonce et prouve un principe d’annulation pour les invariants
cohomologiques d’un groupe de Coxeter fini sur un corps de caractéristique zéro
suffisamment grand. Ce principe généralise le principe de déploiement de Serre
pour les invariants cohomologiques du groupe symétrique énoncé au chapitre 2
(théorème 2.2). On notera que ce principe d’annulation était connu de Serre dans
le cas des groupes de Weyl (cf. [24], 25.15). En fin de chapitre, on prouve que,
lorsque le principe d’annulation est vrai, de la même manière que pour le groupe
symétrique, tout invariant cohomologique d’un groupe de Coxeter fini est tué par
2. On termine ce chapitre en appliquant le principe d’annulation à la cohomologie
négligeable.

In this chapter, we state and prove a general vanishing principle for the coho-
mological invariants of a finite Coxeter group. This principle generalizes Serre’s
splitting principle for the cohomological invariants of the symmetric group (The-
orem 2.2). Note also that the vanishing principle was known to Serre for Weyl
groups (see [24], 25.15).

3.1 The vanishing principle

Theorem 3.1. Let W be a finite Coxeter group and let k0 be a field of characteris-
tic zero containing a subfield on which the real representation of W as a reflection
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group is realizable. Let C be a finite Γk0-module. Let also a ∈ Invk0(W,C). Assume
that every restriction of a to an abelian subgroup of W generated by reflections is
zero. Then a = 0.

We use the strategy suggested by Serre in [24], 25.15. Recall first that a cohomol-
ogy class in H1(k,W ) corresponds to an isomorphism class of a W -torsor over k.
By Theorem 1.7, a cohomological invariant of W is completely determined by its
value on a versal torsor. Thanks to a Chevalley’s theorem, we construct a versal
W -torsor T vers with rational base field K = k0(c1, ..., cn). We then show that,
if a cohomological invariant a of W satisfies the hypothesis of Theorem 3.1, the
cohomology class a(T vers) is unramified at any place coming from an irreducible
divisor of the affine space Spec(k0[c1, ..., cn]). By Theorem 1.4, the cohomology
class a(T vers) is constant. Since a vanishes on the trivial torsor, we get that a = 0.

From now on, in Section 3.1, let W and let k0 be as in Theorem 3.1.

3.1.1 Ramification of cohomology classes of W

Let us recall what ramification means for cohomology classes in H1(k,W ). Let
R be a discrete valuation ring of valuation v, let K be its fraction field and let k
be its residue field. Assume that K is complete for the valuation v. Let us also
recall that we denote by ΓK (resp. by Γk) the absolute Galois group of K (resp.
the absolute Galois group of k). Finally, let us denote by IK the inertia group of
K and by π : ΓK → Γk the quotient morphism.

Proposition 3.1. Let α ∈ H1(K,W ). If ϕ is a cocycle representing α, then the
following assertions are equivalent :

(i) ϕ(IK) = {1W };

(ii) there is a unique group homomorphism ϕ : Γk → W such that the following

diagram is commutative : ΓK
ϕ //

π

��

W

Γk

ϕ

== ;

(iii) α belongs to the image of the natural application H1(k,W )→ H1(K,W ).

Note that this statement only depends on the cohomology class α.

Proof.

(i)⇒ (ii) Assume that ϕ(IK) = {1W }. Then ϕ factors through ϕ : ΓK/IK → W ; yet
Γk = ΓK/IK , so ϕ is the required morphism.
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(ii)⇒ (iii) The homomorphism π yields the map π∗ : H1(k,W )→ H1(K,W ), given by
[ψ] ∈ H1(k,W ) 7→ [ψ ◦ π] ∈ H1(K,W ) (where [.] denotes the cohomology
class associated to the cocycle). Moreover, by (ii), since ϕ = ϕ ◦ π, [ϕ] is a
preimage of α by π∗.

(iii)⇒ (i) Assume that α admits a preimage β ∈ H1(k,W ) by π∗. Then there is a
cocycle ψ representing β such that ϕ = ψ ◦ π, so the image of IK by ϕ is
trivial. �

Definition 3.1. We say that the cohomology class α ∈ H1(K,W ) is unramified
if α satisfies one of the three equivalent properties of Proposition 3.1.

3.1.2 A versal W -torsor with rational base field

We let the reader refer to Definition 1.23 for a definition of a versal torsor.

As elements of W are automorphisms of a vector space V ' kn0 for some n > 0
(since the representation ρ is realizable over a subfield of k0 and then extends
to k0), W naturally acts on the dual V ∗ and on the associated symmetric alge-
bra Sym(V ∗). Note that this k0-algebra is isomorphic to a polynomial algebra
k0[x1, ..., xn] with n indeterminates. We then consider the underlying action of
W on k0[x1, ..., xn] and the invariant subalgebra k0[x1, ..., xn]W . By a theorem
of Chevalley (see Appendix A, Theorem A.1), k0[x1, ..., xn]W is a polynomial k0-
algebra of transcendence degree n. In other words, k0[x1, ..., xn]W ' k0[c1, ..., cn]
for some independent indeterminates c1, ..., cn over k0.

Let us translate this situation into scheme language. Set Q = Spec(k0[x1, ..., xn])
and X = Spec(k0[c1, ..., cn]). We have a morphism f : Q→ X which is exactly the
quotient morphism Affnx → Affnx/W = Affnc . Let y be an element of k0[x1, ..., xn]
whose orbit by W has maximal order. We then localize f at the locus ∆c = f(∆x),
where ∆x = {w.y − w′.y | w 6= w′, w, w′ ∈ W}. We then get from f a morphism
Q∆x → X∆c that we still denote by f . With this localization, W acts without
fixed points on Q∆x and we still have Q∆x/W = X∆c . Hence, Q∆x is a W -torsor
with base X∆c .

We denote by K = k0(c1, ..., cn) the function field of X (which is also the function
field of X∆c) and by L = k0(x1, ..., xn) the function field of Q. Since X∆c is an
irreducible variety, let us denote by T vers the fiber of f at the unique generic point
of X∆c . Thus, T vers is a W -torsor over K, corresponding to the field extension
L/K which is Galois, with Galois group W .

Proposition 3.2. Keeping the notation above, T vers is a versal torsor for W over
k0.
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Proof. Let k/k0 be a field extension. Let T be a W -torsor over k. Then T
corresponds to a Galois W -algebra over k and we choose a generator (a1, ..., an).
We localize Q∆x at the ideal (x1 − a1, ..., xn − an) of k[x1, ..., xn]∆x . The image
x = f(x1 − a1, ..., xn − an) is a k-point of X∆c and the fiber of f in x is a W -
torsor over k isomorphic to T . Since k is infinite (k0 has characteristic zero), the
set of the generators of the Galois W -algebra is dense with respect to the Zariski
topology on Affnx, so condition 2. in Definition 1.23 is satisfied. �

Note that the isomorphism class of T vers corresponds to the cohomology class of
the natural projection

ϕvers : ΓK →W.

γ 7→ γ|L

3.1.3 Ramification of the versal torsor T vers

In this section, we want to study the ramification of the isomorphism class of the
versal torsor T vers at the different valuations on K which are trivial on k0. These
valuations are determined by the irreducible divisors of Affnc . Let D be such a
divisor. Let us denote by vD the discrete valuation on K associated to D, KD the
completion of K with respect to this valuation and k0(D) the residue field of K
for vD, which identifies with the function field of D over k0. We denote by T vers

D

the image of T vers under the application

H1(K,W )→ H1(KD,W )

[ϕ] 7→ [ϕ ◦ iD]

where iD : ΓKD → ΓK is the natural inclusion.

The aim of this paragraph is to study the ramification of the cohomology class

of T vers
D . We denote by ϕvers

D the morphism ΓKD
iD // ΓK

ϕvers
//W ; it represents

the cohomology class of T vers
D . Thus, by Proposition 3.1, we have to study the

subgroup ϕvers
D (IKD).

Since [ϕvers] is represented by the Galois extension L/K, [ϕvers
D ] is represented by

the Galois W -algebra L ⊗K KD over KD. Moreover, there is an isomorphism of
KD-algebras

L⊗K KD '
∏
ṽ|vD

Lṽ

where Lṽ denotes the completion of L with respect to the extension ṽ of vD (see
for example [17] II.8).

Let ṽD be an extension of the valuation vD to L. We denote by L̃D the comple-
tion of L with respect to this valuation. Then L̃D is a Galois extension of KD,
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with Galois group W̃ = {w ∈W, ṽD◦w = ṽD}, which is of course a subgroup of W .

Set e = (0, ..., 0, 1, 0, ..., 0) in the product
∏
ṽ|vD

Lṽ, where 1 ∈ L̃D. Then e is a

primitive idempotent of L⊗K KD and by [12], Proposition 18.18, L̃D = e.(L⊗K
KD) is a Galois W̃ -algebra (and a field) and we have the isomorphism of W -
algebras

L⊗K KD ' IndW
W̃

(L̃D).

Thus, since the induced algebra (for the Galois algebras) corresponds to the in-

clusion for the cocycles, ϕvers
D factors through W̃ :

ΓKD
ϕvers
D //

ψ
��

W

W̃
. �

== ,

where ψ is a cocycle representing the cohomology class corresponding to L̃D/KD.
It yields that ϕvers

D (IKD) = ψ(IKD). Therefore the ramification of T vers
D is ψ(IKD).

Let us denote by l(ṽD) the residue field associated with L̃D and if w ∈ W̃ , let
us denote by w the induced k0(D)-automorphism (as w respects the valuation
ṽD, w restricts to w : OṽD → OṽD , where OṽD denotes the valuation ring of
ṽD in L and sends the maximal ideal of OṽD into itself, so going to quotients,
we get an automorphism w of l(ṽD)). We then introduce the inertia subgroup

Ĩ = {w ∈ W̃ | w = idl(ṽD)} of W̃ .

Lemma 3.1. Keeping the notation above, ψ(IKD) ⊂ Ĩ.

Proof. Let us denote by k0(D) an algebraic closure of k0(D). Recall that (KD)sep
has residue field k0(D) and that (k0(D))sep is the residue field corresponding to
the biggest subextension of (KD)sep fixed by the inertia group IKD . Let γ ∈ IKD .
Then the k0(D)-automorphism γ is trivial over k0(D)sep. In other words, the
image of γ by the group homomorphism ΓKD → Γk0(D) is the identity and we
have the commutative diagram

ΓKD
//

ψ
��

Γk0(D)

res

��
W̃ // Gal(l(ṽD)/k0(D))

where horizontal maps are induced by going to quotients (by valuation theory, the
sequence

0 // Ĩ // W̃ // Gal(l(ṽD)/k0(D))) // 0
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is exact). Then the k0(D)-automorphism of l(ṽD) induced by ψ(γ) is equal to the
identity, which proves that ψ(γ) belongs to Ĩ. �

Let us now study the inertia group Ĩ and let us introduce the discriminant
Discr(L/K) of L/K. Let us recall that the isomorphism class of the versal torsor
T vers may be identified with the isomorphism class of the Galois algebra L/K, i.e.
with the set of K-embeddings of L in Ksep. Yet, these embeddings are completely
determined by the image of a primitive element y of L over K. Therefore, this
discriminant may be written as:

Discr(L/K) =
∏
t6=t′

(t(y)− t′(y)),

where t, t′ : L ↪→ Ksep.

Moreover, one can choose, as a primitive element, a polynomial in k0[x1, ..., xn]
with total degree 1 : since k0 is infinite, there exists y = a1x1 + ...+ anxn (where
ai ∈ k0 for i = 1, ..., n) such that, for all w 6= w′ ∈ W , w(y) 6= w′(y). Indeed,
as W is a group, it is enough to check that there exist a1, ..., an ∈ k0 such that
y = a1x1 + ...+ anxn and that, for all w ∈W , w(y) 6= y, which is satisfied as soon

as the vector

a1
...
an

 is not an eigenvector of any matrix representing a non-trivial

element of W in the basis (x1, ..., xn) of the dual space V ∗ ' kn0 .

From now on, y will denote a primitive element of L/K, which is a polynomial of
total degree 1 in x1, ..., xn. Let us now compute the ramification of T vers

D .

Lemma 3.2. Assume that D is an irreducible divisor which does not divide the
ideal

(
DiscrL/K

)
. Then the isomorphism class of T vers

D is unramified.

Proof. Since we have shown above that the ramification is contained in Ĩ, it is
enough to prove that Ĩ is trivial. Yet the sequence

0 // Ĩ // W̃ // Gal(l(ṽD)/k0(D))) // 0

is exact. Since D does not divide the discriminant, the extension L̃D/KD is unram-

ified, which shows that [L̃D : KD] = [l(ṽD) : k0(D)], so W̃ ' Gal(l(ṽD)/k0(D))).
Therefore, Ĩ is trivial. �

Lemma 3.3. Assume now that D is an irreducible divisor of Spec(k0[c1, ..., cn])
which divides the discriminant ideal

(
DiscrL/K

)
. Then Ĩ = 〈r〉, where r is a

reflection of W .
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Proof. Since D divides the discriminant ideal, the extension L̃D/KD is ramified,
so its inertia group Ĩ is not trivial. Let us compute it. Since ṽD is a valuation
on L = k0(x1, ..., xn), which is trivial on k0 (because it extends vD which is it-
self trivial on k0), ṽD is a valuation associated with an irreducible divisor D̃ of
Spec(k0[x1, ..., xn]); furthermore, since ṽD extends vD, the divisor D̃ is above D, so
D̃ is generated by an irreducible factor of Discr(L/K) decomposed in k0[x1, ..., xn].
Then there are two distinct elements t1, t2 ∈ T vers such that D̃ = (t1(y) − t2(y))
(we identify the image of L in Ksep with L itself; that is why we consider t1(y)
and t2(y) as polynomials in x1, ..., xn). Therefore, the valuation ṽD is described
as follows : for any f ∈ L, ṽD(f) is equal to the order of (t1(y)− t2(y)) as zero or
pole in the rational fraction f .

Let w ∈ Ĩ. Then w = idl(ṽD). Let f ∈ OṽD (i.e. which has not t1(y) − t2(y) as a
pole). As l(ṽD) = OṽD/MṽD , there is a g ∈ OṽD such that :

w(f) = f + g.(t1(y)− t2(y))

If we now write g = g0
g1

, with g0, g1 ∈ k0[x1, ..., xn] and t1(y) − t2(y) not dividing
g1, we get that

g1.(w(f)− f) = g0.(t1(y)− t2(y)).

Consider the particular case where f is a polynomial in k0[x1, ..., xn]. Then the
equality now reads in k0[x1, ..., xn] (because W acts on k0[x1, ..., xn]) and since
t1(y) − t2(y) does not divide g1, t1(y) − t2(y) divides w(f) − f . Therefore, there
is a polynomial g2 in k0[x1, ..., xn] such that

w(f)− f = g2.(t1(y)− t2(y)) (3.1)

Assume now that f is a polynomial of total degree 1. Then f identifies with a
linear form on V and as w is an automorphism of V , w(f) = f ◦ w−1 is still a
linear form on V , so via the identification Sym(V ∗) ' k0[x1, ..., xn], w(f) is still a
polynomial of total degree 1.

Let us now show that the total degree of t1(y)−t2(y) is equal to 1. First note that,
since t1(y)− t2(y) is an irreducible factor of DiscrL/K in k0[x1, ..., xn], it has total
degree ≥ 1. Assume that w 6= id. Then there is a f0 ∈ V ∗ such that w(f0) 6= f0.
Thus, w(f0) − f0 is a polynomial of total degree 0 or 1. Taking total degree in
Equation (3.1), we get that t1(y)− t2(y) has exactly total degree 1. Therefore, g2

has total degree at most 0. Thus, for any f ∈ V ∗, there exists a ∈ k0 such that

w(f)− f = a.(t1(y)− t2(y)).

We then get that w is a pseudo-reflection of V ∗ (i.e. an endomorphism such that
the rank of w − idV ∗ is equal to 1). Yet, since W is a reflection group over R, the
only pseudo-reflections in W are reflections. Therefore, the non-trivial elements
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of Ĩ are reflections.

By [23] IV.2, Corollary 2 of Proposition 7, we get that Ĩ is cyclic (note that the
residue field of l(ṽD) is an extension of k0, then has characteristic zero). Then Ĩ
is of order 2 (recall that it can not be trivial). Finally Ĩ = {1, r} (where r is a
reflection of W ). �

Let us recall that we have ϕvers
D (IKD) = ψ(IKD) ⊂ Ĩ = {1, r}. Then

ϕvers
D (IKD) = {1} or ϕvers

D (IKD) = {1, r}.

In the first case, T vers is unramified at D. In the second case, we state the key
lemma for our inductive proof of Theorem 3.1.

Lemma 3.4. Assume that ϕvers
D (IKD) = 〈r〉. Then there is a subgroup W0 of W

generated by reflections, such that ϕvers
D (ΓKD) ⊂W0 × 〈r〉 ⊂W .

Proof. Since the sequence

1 // IKD
// ΓKD

// Γk0(D)
// 1

is exact, ϕvers
D (IKD) is normal in ϕvers

D (ΓKD). Therefore, r is in the center of
ϕvers
D (ΓKD), that is to say that ϕvers

D (ΓKD) is contained in the centralizer C(r) of
r in W .

By assumption on k0, the real representation ρ : W ↪→ GL(V ) of W as a reflection
group over R yields a representation W ↪→ GL(Vk0) of W as a reflection group
over k0.

Let now e be a non-zero vector of Im(r− idV ) and let H be the hyperplane of the
fixed points of r in V . Let also w ∈W . Then w and r commute if and only if Re
and H are stable by w (see Appendix A, Proposition A.1). Assume that w and r
commute. Then, w(H) ⊂ H and w(e) = b.e for some b ∈ R. As W is finite, b is a
root of the unity in R, so b = ±1.

Let W0 = {w ∈ W | w(e) = e}. As an isotropy subgroup of W , W0 is a reflection
group over R (see Appendix A, Proposition A.2) and hence is a reflection group
over k0.

It remains to prove that C(r) 'W0 × 〈r〉. Let us first note that, since W acts by
isometries on the euclidean space VR, W0 = {w ∈ W | w(H) ⊂ H and w(e) = e}.
One can show easily that W0 and 〈r〉 are normal in C(r), that the intersection
W0 ∩ 〈r〉 is trivial and that W0.〈r〉 = C(r). Therefore, C(r) is the direct product
of W and 〈r〉. �
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3.1.4 Proof of Theorem 3.1

Let us begin with a key lemma for our proof by induction.

Lemma 3.5. Let W be a finite Coxeter group and let k0 be a field satisfying
the hypothesis of Theorem 3.1. Let W ′ be a proper subgroup of W which is also
generated by reflections. Let us assume that there is a reflection r of W which is
not in W ′ and which commutes with any reflection of W ′. If Theorem 3.1 is true
for W ′, then Theorem 3.1 is also true for W ′ × 〈r〉.

Proof. Let a ∈ Invk0(W ′ × 〈r〉, C) such that every restriction to an abelian sub-
group generated by reflections is zero. Let k/k0 be a field extension. We have the
isomorphism H1(k,W ′ × 〈r〉) ' H1(k,W ′) × H1(k, 〈r〉). Then, in the sequel of
the proof, we denote the elements of H1(k,W ′ × 〈r〉) by pairs (α, ε), where α is a
cohomology class in H1(k,W ′) and ε a square-class in H1(k, 〈r〉).

Let (α0, ε0) ∈ H1(k,W ′× 〈r〉) be such an element. For any extension k′/k, we set

(ãε0,k)k′ : H1(k′,W ′)→ H∗(k′, C)

α 7→ ak′(α, ε0)
.

It is easily seen that these maps define a cohomological invariant ãε0,k of W ′ over k.
Let k′/k be a field extension and assume that α ∈ H1(k′,W ′) lies in the image of
a map H1(k′, H ′)→ H1(k′,W ′), where H ′ is an abelian subgroup of W ′ generated
by reflections. Then (α, ε0) is in the image of H1(k′, H ′× 〈r〉)→ H1(k′,W ′× 〈r〉)
and since H ′× 〈r〉 is an abelian subgroup of W ′× 〈r〉 generated by reflections, by
assumption on a, ak′(α, ε0) = 0. Hence, (ãε0,k)k′(α) = 0. Therefore, ãε0,k satisfies
the assumption of Theorem 3.1. As Theorem 3.1 is true for W ′ (by the hypothesis
on W ′), we get that ãε0,k = 0. It then yields that ak(α0, ε0) = 0. Finally, a = 0.
�

We can now give the proof of Theorem 3.1.

Proof. For convenience, we say that a ∈ Invk0(W,C) satisfies (P ) if every re-
striction of a to an abelian subgroup generated by reflections is zero. We show
Theorem 3.1 by induction on the order m of W : if m = 1 or m = 2, it is trivial.
Let m ≥ 3. Assume that, for every integer l with 1 ≤ l < m, every cohomological
invariant of a Coxeter group which satisfies the assumption of Theorem 3.1 over
k0 of order l satisfying (P ) is zero.

Let a ∈ Invk0(W,C) satisfying (P ). We will prove that, for any irreducible divisor
D of Affnc , the residue rvD(aK(ϕvers)), at the valuation vD corresponding to the
divisor D, is zero. Then, by Theorem 1.4, aK(ϕvers) will be constant and since
ϕvers corresponds to the versal torsor T vers for W over k0, a will be constant by
Theorem 1.7. Thus, since the restrictions of a to any abelian subgroup generated
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by reflections are zero, a will vanish on the trivial torsor and we will get that a = 0.

Let D be an irreducible divisor in Spec(k0[c1, ..., cn]). Let us prove that the
residue rvD(aK(ϕvers)) is zero. We know by Lemma 3.2 and Lemma 3.3 that
ϕvers
D (IKD) = {1} or ϕvers

D (IKD) = 〈r〉 for some reflection r ∈ W . In the first case,
ϕvers
D is not ramified so, by Theorem 1.6, rvD(aK(ϕvers)) = rvD(aKD(ϕvers

D )) = 0.

Assume now that ϕvers
D (IKD) = 〈r〉. By Lemma 3.4, ϕvers

D (ΓKD) ⊂W0× 〈r〉. Since
W0 is a proper subgroup of W and a reflection group over k0, it satisfies the as-
sumptions of Theorem 3.1 so by the induction hypothesis, Theorem 3.1 is true for
W0. By Lemma 3.5, Theorem 3.1 is also true for the group W0 × 〈r〉.

Since a satisfies (P ), Res
W0×〈r〉

W (a) also satisfies (P ), so Res
W0×〈r〉

W (a) = 0. Thus,
as [ϕvers

D ] lies in the image of the map H1(KD,W0 × 〈r〉) → H1(KD,W ), we get
that aKD(ϕvers

D ) = 0. Hence, its residue rvD(aKD(ϕvers
D )) is also zero.

We then have shown that, for every irreducible divisor of Spec(k0[c1, ..., cn]),
rvD(aKD(ϕvers

D )) = 0. This concludes the proof. �

3.2 Applications

The following two applications directly generalize similar results of Serre for the
symmetric groups and were already known to Serre (see [24] 25.15).

3.2.1 Invariants are killed by 2

Recall that W is a finite Coxeter group, k0 is a field of characteristic zero contain-
ing a subfield on which the representation of W , as a reflection group is realizable.
Recall also that C is a finite Γk0-module.

Let us state a first consequence of Theorem 3.1 (generalizing [24], 24.12).

Corollary 3.1. For every normalized cohomological invariant a ∈ Invk0(W,C),
2a = 0. In particular, if C has odd order, W has no non-trivial normalized
invariant.

Proof. Let a ∈ Invk0(W,C) be a normalized cohomological invariant. By Theo-
rem 3.1, it is enough to prove that, for any abelian subgroup H of W generated
by reflections, 2ResHW (a) = 0. We prove it by induction on the order m of W . For
m = 1 or 2, it is trivial.

Let m ≥ 3. Let us denote by S a root system corresponding to W (see Appendix
A). Let H be an abelian subgroup of W generated by reflections. Then H '
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〈r1〉 × · · · × 〈rs〉 for some s ≥ 1 and for some pairwise commuting reflections
r1, ..., rs in W . Let e1 be the root in S corresponding to r1 and let W ′ be the
group generated by reflections given by the root subsystem S′ = S ∩{e1}⊥. Then
W ′ is a proper subgroup of W and a reflection group over k0. Using the induction
hypothesis with W ′ and with the normalized invariant ResW

′
W (a), we get that

2(ResW
′

W (a)) = 0.

Let H ′ = 〈r2〉 × · · · × 〈rs〉. Since H ′ ⊂W ′,

2ResH
′

W (a) = 2ResH
′

W ′(ResW
′

W (a)) = 0.

Let k be an extension of k0 and let T ∈ H1(k,H). Then T = T1 × T2, where
T1 ∈ H1(k, 〈r1〉) and T2 ∈ H1(k,H ′). Thus,

2ResH
′

W (a)k(T2) = 0.

Now set T ′ = T ′1 × T2 the H-torsor , where T ′1 is the trivial torsor in H1(k, 〈r〉).
Since T ′ = T ′1 × T2 = i∗(T2) with i : H ′ ↪→ H and i∗ : H1(k,H ′)→ H1(k,H) the
induced map, the definition of the restriction map yields

(ResHW (a))k(T
′) = ResH

′
H (ResHW (a))k(T2).

Therefore,

2ResHW (a)k(T
′) = 0.

Moreover, there is an extension k′/k of degree at most 2 such that T1 and T ′1 are
isomorphic over k′. Then T ′ and T are also isomorphic over k′. Hence,

ResHW (a)k′(Resk′/k(T )) = ResHW (a)k′(Resk′/k(T
′)),

so
Resk′/k(ResHW (a)k(T )) = Resk′/k(ResHW (a)k(T

′))

and applying the corestriction map Cork′/k, we get that

[k′ : k].ResHW (a)k(T ) = [k′ : k].ResHW (a)k(T
′)

which proves that

2ResHW (a)k(T ) = 2ResHW (a)k(T
′) = 0.

We conclude by using Theorem 3.1 to 2a.

The second part of Corollary 3.1 directly follows from the first part and from the
fact that in the ring H∗(k0, C), #C.1 = 0. �

Corollary 3.1 allows us to restrict to Γk0-modules C of even order. The most ele-
mentary one is of course Z/2Z endowed with the trivial action of Γk0 and we will
take C = Z/2Z in most of our examples.
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3.2.2 Application to negligible cohomology

Let G be a finite group and let M a finite G-module, with trivial action. Let k be
a field and x ∈ H∗(G,M). We have a natural map

(ax)k : H1(k,G)→ H∗(k,M)

[ϕ] 7→ [ϕ∗(x)]

Since G acts trivially on M , for any extension k′/k, the maps (ax)k′ define a co-
homological invariant of G over k with coefficients in M .

This gives us a family of cohomological invariants of G. We want to determine
the cohomology classes x ∈ H∗(G,M) for which these invariants are zero.

Definition 3.2. Let G be a finite group and let M be a G-module. Then a co-
homology class x ∈ H∗(G,M) is negligible if, for any field k and any (continu-
ous) homomorphism ϕ : Γk → G, we have ϕ∗(x) = 0 in H∗(k,M). We denote
by H∗negl(G,M) the subset of H∗(G,M) consisting of the negligible cohomology
classes.

In fact, as stated in the following proposition, it is enough to consider only fields
of characteristic zero (see [24], 26.1).

Proposition 3.3. An element x ∈ H∗(G,M) is negligible if ϕ∗(x) = 0 for any
field k of characteristic zero and any ϕ : Γk → G.

For any x ∈ H∗(G,M), let us denote by ax the cohomological invariant over Q
induced by x. Then Proposition 3.3 exactly says that

H∗negl(G,M) = {x ∈ H∗(G,M) | ax = 0}.

As a first example, let us give a negligibility criterion for 2-elementary groups (see
[24], Lemma 26.4).

Example 3.1. Let G be a 2-elementary group and let x ∈ H i(G,Z/2Z). Then x
is negligible if and only if the restriction of x to every subgroup of G of order ≤ 2
is zero.

The following result is clear and its proof is left to the reader.

Lemma 3.6. Let i ≥ 0 and let x ∈ H i(G,M). For any subgroup H of G,

ResHG (ax) = aResHG (x).
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The next result is the natural generalization of a result of Serre on negligible
cohomology classes of Sn (see [24], 26.3) to Weyl groups.

Theorem 3.2. Let W be a Weyl group and let M be a finite W -module, with
trivial action. Let i ≥ 0. We have the following assertions :

(1) x ∈ H i(W,M) is negligible if and only if its restrictions to the abelian sub-
groups generated by reflections are negligible.

(2) for any i > 0, for any x ∈ H i(W,M), the cohomology class 2x is negligible.

(3) An element x ∈ H i(W,Z/2Z) is negligible if and only if its restrictions to
the subgroups of order ≤ 2 of W are zero.

Proof. (1) Let x ∈ H i(W,M). By Proposition 3.3, the kernel of the natural
map

H i(W,M)→ InvQ(W,M)

x 7→ ax

is exactly H i
negl(W,M). Furthermore, since W is a reflection group over Q

(see Appendix A, Theorem A.2), Theorem 3.1 yields that ax = 0 if and only
if ResHW (ax) = 0 for any abelian subgroup H of W generated by reflections.
Thus, by Lemma 3.6, x is negligible if and only if for any abelian subgroup
H of W generated by reflections, the restriction ResHW (x) is negligible.

(2) Let i > 0 and x ∈ H i(W,M). Let us show that a2x = 2ax. For any field k
of characteristic zero and any [ϕ] ∈ H1(k,W ), (a2x)k([ϕ]) is represented by
(γ1, ..., γi) 7→ 2x(ϕ(γ1), ..., ϕ(γi)). Hence, a2x = 2ax. We conclude the proof
by using Corollary 3.1.

(3) By (1), x ∈ H i(W,Z/2Z) is negligible if and only if for any abelian subgroup
H of W generated by reflections, ResHW (x) is negligible. Then, Example 3.1
allows us to conclude. �
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Chapter 4

Cohomological invariants of the
Weyl group of type B or C

RÉSUMÉ

Dans ce chapitre, on s’intéresse aux groupes de Weyl de type B (ou C, ce sont les
mêmes). A l’aide de l’interprétation en termes d’algèbres étales pointées donnée
dans le premier chapitre, on peut définir deux familles d’invariants de Stiefel-
Whitney, ceux associés à la forme quadratique trace et ceux associés à la forme
quadratique trace tordue. L’objectif de ce chapitre est de prouver à l’aide du
principe d’annulation établi au chapitre 3 que tout invariant cohomologique d’un
groupe de Weyl de type B s’écrit comme combinaison linéaire de cup-produits
d’invariants de Stiefel-Whitney.

Let k0 be a field of characteristic different from 2 and let W be a Weyl group. Then
the cup-product endows the abelian group Invk0(W,Z/2Z) with an H∗(k0,Z/2Z)-
module structure.

Let n ≥ 2, let (e1, ..., en) be the canonical basis of Rn and let S be the root
system of type Bn : S = {±ei,±ei ± ej , 1 ≤ i 6= j ≤ n}. Let us denote by W
its Weyl group. By the classification given in Appendix A, W is isomorphic to
the semi-direct product

(
Z/2Z

)n oSn, where Sn acts on
(
Z/2Z

)n
by permuting

coordinates. Note that the Weyl group of type Cn is isomorphic to W , so both
cases B and C are the same.

The purpose of this chapter is to prove the following structure theorem for the
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H∗(k0,Z/2Z)-module Invk0(W,Z/2Z).

Theorem 4.1. Let k0 be a field of characteristic zero, such that −1 and 2 are
squares in k0, let n ≥ 2 and let W be a Weyl group of type Bn. Then the
H∗(k0,Z/2Z)-module Invk0(W,Z/2Z) is free with basis

{wi · w̃j}0≤i≤[n
2

],0≤j≤2([n
2

]−i).

4.1 The vanishing principle for Weyl groups of type
Bn

Let us start with restating the vanishing principle (Theorem 3.1) in the case of a
Weyl group of type Bn, especially in terms of pointed étale algebras (see Propo-
sition 1.8).

For any integer q such that 0 ≤ q ≤ [n2 ], let Hq be the subgroup of W associated
with the root subsystem of S :

Sq = {±e1 ± e2,±e3 ± e4, ...,±e2q−1 ± e2q,±e2q+1, ...,±en}.

Then it is easily seen that the set {Hq | 0 ≤ q ≤ [n2 ]} forms a system of represen-
tatives modulo conjugation of the maximal abelian subgroups of W generated by
reflections.

Proposition 4.1. Assume that n is even (the case n odd is similar), and let k/k0

be an extension. Let 0 ≤ q ≤ n
2 and let u1, ..., un/2, v1, ..., vn/2 be square-classes in

k×. The image of (u1, v1, u2, v2, ..., un/2, vn/2) by the map H1(k,Hq)→ H1(k,W )
is

Tq = (k(
√
u1v1)× · · · × k(

√
uqvq)× kn−2q, (u1, u2, ..., uq, uq+1, vq+1, ..., un/2, vn/2)).

Proof. For any 0 ≤ q′ ≤ q, set ϕq′ : γ 7→ γ(
√
uq′ )√
uq′

and ψq′ : γ 7→ γ(
√
vq′ )√
vq′

. For

2q + 1 ≤ q′ ≤ n
2 , set ηq′ : γ 7→


γ
(√

u
[
q′
2 ]

)
√
u
[
q′
2 ]

if q′ is odd

γ
(√

v
[
q′
2 ]

)
√
v
[
q′
2 ]

if q′ is even

. To be precise,

we then compose these morphisms ϕq′ , ψq′ and ηq′ by the group isomorphism

{±1} ∼→ Z/2Z, so that we get cocycles with values in Z/2Z. Note that we still
call ϕq′ , ψq′ and ηq′ these cocycles.

Now set

Φ : γ 7→(re1+e2)ϕ1(γ) · (re1−e2)ψ1(γ) · (re3+e4)ϕ2(γ) · (re3−e4)ψ2(γ) · · · (re2q−1+e2q)
ϕq(γ)

· (re2q−1−e2q)
ψq(γ) · (re2q+1)η2q+1(γ) · (re2q+2)η2q+2(γ) · · · (ren)ηn(γ).
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For any 0 ≤ q′ ≤ q, the maps ϕq′ and ψq′ are cocycles with values in Z/2Z
and any two re and re′ in Hq commute. Therefore, Φ is a cocycle of W over
k, representing the cohomology class image of (u1, v1, u2, v2, ..., un/2, vn/2) by the
map H1(k,Hq)→ H1(k,W ). Let us show that Φ represents the cohomology class
Tq. Indeed, if we take the first two factors γ 7→ (re1+e2)ϕ1(γ) · (re1−e2)ψ1(γ), it
corresponds to a cocycle Φ1 : γ 7→ ((ε1(γ), ε2(γ)), σ1(γ)) with values in D4 (see
Proposition 1.8). For any γ ∈ Γk,

re1−e2(e1) = e2,

re1+e2(e1) = −e2,

re1+e2 ◦ re1−e2(e1) = −e1.

Hence,
σ1(γ) = (12)ϕ1(γ)+ψ1(γ)

ε1(γ) = ϕ1(γ)

ε2(γ) = ϕ1(γ).

It is now easily seen that Φ1 represents the cohomology class (k(
√
u1v1), u1). We

then can do the same for the other factors. It then follows that Φ represents the
cohomology class Tq. �

We may now reformulate Theorem 3.1 for Weyl groups of type Bn, n ≥ 2.

Corollary 4.1. Let k0 be a field of characteristic zero, let C be a finite Γk0-
module and let a ∈ Invk0(W,C). Then a = 0 if and only if for any 0 ≤ q ≤ [n2 ],

Res
Hq
W (a) = 0. In other words, a = 0 if and only if a vanishes on the pairs

(k(
√
t1)× · · · × k(

√
tq)× kn−2q, (α1, ..., αn−q))

(for 0 ≤ q ≤ [n2 ]), where the square-class αi has a representative in k× for any
0 ≤ i ≤ n− q.

Proof. Since Γk acts trivially onW , the images of the mapsH1(k,H)→ H1(k,W )
and H1(k,H ′)→ H1(k,W ) are the same if H and H ′ are two conjugate subgroups
of W . Then the result directly follows from Theorem 3.1. �

4.2 Proof of Theorem 4.1 for n even : a generating
family

For all this section, let us assume that n is even and set m = n
2 .

Let us explain the strategy of the proof. We will show that the family of Stiefel-
Whitney invariants

{wi · w̃j}0≤i≤[n
2

],0≤j≤2([n
2

]−i)
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generates the module Invk0(W,Z/2Z) by induction on m ≥ 1. If m = 1, W ' D4

and Theorem 2.4 gives the answer. Let m ≥ 2 and let a ∈ Invk0(W,Z/2Z). Then
we show, as a consequence of Corollary 4.1 that, if we consider a particular sub-
group W0 of W isomorphic to D4×W ′, where W ′ is a Weyl group of type B2m−2,
then a is completely determined by ResW0

W (a). Since we know the invariants of

D4 and of W ′, we can write ResW0
W (a) in terms of invariants of W0, that we can

describe from invariants of D4 and W ′. Then, by a second induction on 0 ≤ q ≤ m,
we study the restrictions to Hq in order to identify ResW0

W (a) with a linear combi-
nation of the restrictions of the required Stiefel-Whitney invariants.

From now on, let k0 be any field of characteristic zero such that −1 and 2 are
squares in k0. However, much (but not all) of what follows is true, without this
assumption.

We now prove the following result by induction on m ≥ 1.

Proposition 4.2. For any m ≥ 1, if W is a Weyl group of type B2m, the family
{wi · w̃j}0≤i≤m,0≤j≤2(m−i) generates Invk0(W,Z/2Z) as an H∗(k0,Z/2Z)-module.

If m = 1, W ' D4 and Theorem 2.4 allows us to conclude.

Let m ≥ 2 and let W be a Weyl group of type B2m. Let us assume that any
Weyl group W ′ of type B2(m−1) satisfies the induction hypothesis, i.e. the fam-

ily {wW ′i · w̃W ′j }0≤i≤m−1,0≤j≤2(m−1−i) generates the module Invk0(W ′,Z/2Z) over
H∗(k0,Z/2Z).

Let W be a Weyl group of type B2m. It corresponds to a root system

S = {±ei,±ei ± ej , 1 ≤ i ≤ 2m, 1 ≤ j 6= i ≤ 2m}

Let us denote by W ′ the subgroup of W corresponding to the root subsystem

S′ = {±ei,±ei ± ej , 3 ≤ i ≤ 2m, 3 ≤ j 6= i ≤ 2m}.

It is a Weyl group of type B2m−2. Let us also denote by W0 the non-irreducible
Weyl group corresponding to the root subsystem {±e1,±e2,±e1± e2} tS′. Then
W0 is a subgroup of W isomorphic to D4 ×W ′.

Lemma 4.1. Any cohomological invariant of W over k0 with coefficients in Z/2Z
is completely determined by its restriction to W0.

Proof. By Corollary 4.1, any invariant of W is completely determined by its
restrictions to the subgroups Hq for 0 ≤ q ≤ m. Let 0 ≤ q ≤ m. The root system
Sq defined in Section 4.1 corresponding to Hq is clearly a subset of

{±e1,±e2,±e1 ± e2} t S′.
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Hence, Hq ⊂ W0. It implies that, if k/k0 is an extension and if Tq is a W -torsor
over k which lies in the image of H1(k,Hq) → H1(k,W ), then Tq also lies in the
image of H1(k,W0)→ H1(k,W ). �

4.2.1 Restrictions of the Stiefel-Whitney invariants to W0 and to
the subgroups Hq

The aim of this section is to give formulae for restrictions of Stiefel-Whitney
invariants to the subgroups W0 and Hq, q = 0, ...,m. Note that w0 = 1 = w̃0. Let
us first compute the restrictions of Stiefel-Whitney invariants to W0.

Proposition 4.3. We have the following formulae :

(i) for 1 ≤ j ≤ 2m, ResW0
W (w̃j) = w̃D4

2 · w̃W
′

j−2 + w̃D4
1 · w̃W

′
j−1 + w̃W

′
j ;

(ii) for 1 ≤ i ≤ m, ResW0
W (wi) = wW

′
i + wD4

1 · wW
′

i−1;

(iii) for 1 ≤ i ≤ m and 1 ≤ j ≤ 2(m− i),

ResW0
W (wi · w̃j) = w̃D4

2 · w
W ′
i · w̃W ′j−2+w̃D4

1 · w
W ′
i · w̃W ′j−1

+ wD4
1 · w

W ′
i−1 · w̃W

′
j + wW

′
i · w̃W ′j .

Proof. Let k/k0 be a field extension. Let (L,α) ∈ H1(k,W0). Then L = L1×L2

with L1 an étale k-algebra of rank 2 and α = (α1, α2). Thus, the quadratic
form qL,α : x 7→ TrL(αx2) decomposes into qL,α = qL1,α1 ⊕ qL2,α2 . Hence, for
0 ≤ j ≤ 2m,

wj(qL,α) =
∑

0≤i≤j
wi(qL1,α1) · wj−i(qL2,α2).

Since wi(qL1,α1) = 0 as soon as i > 2, we get that

wj(qL,α) = w2(qL1,α1) · wj−2(qL2,α2) + w1(qL1,α1) · wj−1(qL2,α2) + wj(qL2,α2)

which gives us (i). Likewise, with the quadratic form qL : x 7→ TrL(x2), we get
that, for 0 ≤ i ≤ m,

wi(qL) = w2(qL1) · wi−2(qL2) + w1(qL1) · wi−1(qL2) + wi(qL2)

Thus, (ii) follows from Proposition 2.12 using the assumption that −1 and 2 are
squares in k×0 . Since the cup-product commutes with the restriction map, For-
mula (iii) follows from (i), (ii) and from Proposition 2.12. �

Let us now consider the restrictions of Stiefel-Whitney invariants to the subgroups
Hq, for 0 ≤ q ≤ m. We do not need here the exhaustive list of all the restrictions,
so we only give those that will be useful in the sequel.

73



Lemma 4.2. Let q ∈ {0, ...,m−1}. For all q+1 ≤ i ≤ m and all 0 ≤ j ≤ 2(m−i),

Res
Hq
W (wi · w̃j) = 0.

Proof. If k is an extension of k0 and if

Tq = (k(
√
t1)× ...× k(

√
tq)× k2(m−q), (u1, ..., uq, uq+1, vq+1, ..., um, vm))

is a W -torsor over k lying in the image of H1(k,Hq)→ H1(k,W ), then

wi(Tq) = wi(〈2, 2t1, 2, 2t2, ..., 2, 2tq〉)
= wi(〈1, t1, ..., 1, tq〉)
= wi(〈t1, ..., tq〉)

which is 0 since i ≥ q + 1. �

Let us go further for the case q = 0. Recall that, for any I ⊂ {1, ..., 2m}, aI
denotes the invariant of H0 given by (x1, ..., x2m) 7→ (x)I , where (x)I is the cup-

product of the (xi) for i ∈ I (see Corollary 2.1). Recall also that a
(0)
j denotes the

invariant
∑

I⊂{1,...,2m};|I|=j
aI , for 0 ≤ j ≤ 2m (see Proposition 2.6).

Lemma 4.3. For any 0 ≤ j ≤ 2m, ResH0
W (w̃j) = a

(0)
j . In particular, the family

{ResH0
W (w̃j)}0≤j≤2m is free over H∗(k0,Z/2Z).

Proof. If k/k0 is an extension and T0 = (k2m, (u1, v1, ..., um, vm)) is a W -torsor
over k lying in the image of H1(k,H0)→ H1(k,W ), we have

w̃j(T0) = wj(〈u1, v1, ..., um, vm〉) = a
(0)
j (u1, v1, ..., um, vm).

Moreover, by Proposition 2.6, the invariants a
(0)
j form a basis of the submodule

Invk0(H0,Z/2Z)N0/H0 and this gives the freedom of {ResH0
W (w̃j)}0≤j≤2m. �

Lemma 4.4. Let 0 ≤ i ≤ m. Then, for any j > 2(m− i), wi · w̃j = 0.

Proof. Let j > 2(m−i). By Corollary 4.1, it is enough to show that the restriction
of wi · w̃j to any subgroup Hq of W (0 ≤ q ≤ m) is zero. Let 0 ≤ q ≤ m, let k/k0

be a field extension and let

Tq = (k(
√
t1)× ...× k(

√
tq)× k2(m−q), (u1, ..., uq, uq+1, vq+1, ..., um, vm))

be a W -torsor over k lying in the image of H1(k,Hq)→ H1(k,W ). We then have
to show that wi(Tq) · w̃j(Tq) = 0. By Lemma 4.2, wi(Tq) = 0 if q < i. Let us
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assume that q ≥ i. We have :

wi(Tq) · w̃j(Tq) = wi(〈t1, ..., tq〉) · wj(〈u1, u1t1, ..., uq, uqtq, uq+1, vq+1, ..., um, vm〉)

=
∑

1≤j1<...<ji≤q
(tj1) · . . . · (tji) ·

[ j∑
j′=0

wj′(〈u1, u1t1, ..., uq, uqtq〉)

· wj−j′(〈uq+1, vq+1, ..., um, vm〉)
]
.

Since the quadratic form 〈uq+1, vq+1, ..., um, vm〉 has rank 2(m − q), we have
wj−j′(〈uq+1, vq+1, ..., um, vm〉) = 0 if j − j′ > 2(m− q). So we get :

wi(Tq) · w̃j(Tq) =
∑

1≤j1<...<ji≤q
(tj1) · . . . · (tji)

·
[ j∑
j′=j−2(m−q)

wj′(〈u1, u1t1, ..., uq, uqtq〉)

· wj−j′(〈uq+1, vq+1, ..., um, vm〉)
]
.

Since j > 2(m− i), then j − 2(m− q) > 2(q − i), which gives us :

wi(Tq) · w̃j(Tq) =
∑

1≤j1<...<ji≤q
(tj1) · . . . · (tji)

·
[ j∑
j′=2(q−i)+1

wj′(〈u1, u1t1, ..., uq, uqtq〉)

· wj−j′(〈uq+1, vq+1, ..., um, vm〉)
]
.

(4.1)

Let us show that, for any 0 ≤ j ≤ q and any 2(q − i) < j′ ≤ j,

(tj) · wj′(〈u1, u1t1, ..., uq, uqtq〉)
= (tj) · wj′(〈u1, u1t1, ..., uj−1, uj−1tj−1, uj+1, uj+1tj+1, ..., uq, uqtq〉).

(4.2)

Let 2(q − i) < j′ ≤ j. For sake of simplicity, let us assume that j = 1. We have

wj′(〈u1, u1t1, ..., uq, uqtq〉) =(u1) · (u1t1) · wj′−2(〈u2, u2t2, ..., uq, uqtq〉)
+ (u1) · wj′−1(〈u2, u2t2, ..., uq, uqtq〉)
+ (u1t1) · wj′−1(〈u1, u1t1, ..., uq, uqtq〉)
+ wj′(〈u2, u2t2, ..., uq, uqtq〉),

so

wj′(〈u1, u1t1, ..., uq, uqtq〉) =(u1) · (u1t1) · wj′−2(〈u2, u2t2, ..., uq, uqtq〉)
+ (t1) · wj′−1(〈u2, u2t2, ..., uq, uqtq〉)
+ wj′(〈u2, u2t2, ..., uq, uqtq〉).
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Hence,
(t1)·wj′(〈u1, u1t1, ..., uq, uqtq〉)

= (t1) · (u1) · (u1t1) · wj′−2(〈u2, u2t2, ..., uq, uqtq〉)
+ (t1) · (t1) · wj′−1(〈u2, u2t2, ..., uq, uqtq〉)
+ (t1) · wj′(〈u2, u2t2, ..., uq, uqtq〉).

Since (t1) · (u1) · (u1t1) = 0 and (t1) · (t1) = (t1) · (−1) = 0, we get that

(t1) · wj′(〈u1, u1t1, ..., uq, uqtq〉) = (t1) · wj′(〈u2, u2t2, ..., uq, uqtq〉).

This proves (4.2). An obvious induction shows that, for any 0 ≤ j1 < ... < ji ≤ q,

(tj1) · . . . · (tji) · wj′(〈u1, u1t1, ..., uq, uqtq〉)
= (tj1) · . . . · (tji) · wj′(〈uj′1 , uj′1tj′1 , ..., uj′q−i , uj′q−itj′q−i〉)

where {j′1, ..., j′q−i} is the complementary of {j1, ...ji} in {1, ..., q}. Since the
quadratic form Q = 〈uj′1 , uj′1tj′1 , ..., uj′q−i , uj′q−itj′q−i〉 has rank 2(q − i), we get, for

any j′ > 2(q − i), that wj′(Q) = 0. Using this in Equation (4.1), we can conclude
that wi(Tq) · w̃j(Tq) = 0. �

Remark. This lemma does not hold anymore if we do not assume that −1 or 2 are
squares in k0.

Let us state the last lemma of this section.

Lemma 4.5. Let 0 ≤ q ≤ m. The family {Res
Hq
W (wq · w̃j)}0≤j≤2(m−q) is free over

H∗(k0,Z/2Z).

Proof. To show that this family of invariants is free, it is enough to prove that
the value of the invariants on a versal Hq-torsor over k0 form a free family (see
Theorem 1.7). Let t1, ..., tq, u1, ..., um, vq+1, ..., vm be independent indeterminates
over k0 and set K = k0(t1, ..., tq, u1, ..., um, vq+1, ..., vm). Let us denote by Tq the
image of the versal Hq-torsor

(u1, u1t1, ..., uq, uqtq, uq+1, vq+1, ..., um, vm)

by H1(K,Hq) → H1(K,W ). We have to show that the cohomology classes
wq(Tq) · w̃j(Tq) where 0 ≤ j ≤ 2(m− q) form a free family over H∗(k0,Z/2Z).

Let 0 ≤ j ≤ 2(m− q). We have wq(Tq) = wq(〈t1, ..., tq〉) = (t1) · . . . · (tq) and

w̃j(Tq) = wj(〈2u1, 2u1t1, ..., 2uq, 2uqtq, uq+1, vq+1, ..., um, vm〉)
= wj(〈u1, u1t1, ..., uq, uqtq, uq+1, vq+1, ..., um, vm〉)

=
∑

0≤j′≤j
wj′(〈u1, u1t1, ..., uq, uqtq〉) · wj−j′(〈uq+1, vq+1, ..., um, vm〉).
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As shown in the proof of Lemma 4.4, for any 1 ≤ j′ ≤ j,

(t1) · wj′(〈u1, u1t1, ..., uq, uqtq〉) = (t1) · wj′(〈u2, u2t2, ..., uq, uqtq〉).

Thus an easy induction shows that (t1) · . . . · (tq) · wj′(〈u1, u1t1, ..., uq, uqtq〉) = 0.
Hence,

wq(Tq) · w̃j(Tq) = (t1) · . . . · (tq) · wj(〈uq+1, vq+1, ..., um, vm〉).

Furthermore, since the monomials in (t1), ..., (tq), (u1), ..., (um), (vq+1), ..., (vm) form
a free family over H∗(k0,Z/2Z), it is easily seen that the invariants wq(Tq)·w̃j(Tq),
for 0 ≤ j ≤ 2(m− q), also form a free family over H∗(k0,Z/2Z). �

Remark. This lemma, contrary to Lemma 4.4, is still true if we do not assume
anymore that −1 or 2 are squares in k0.

4.2.2 Cohomological invariants of W0

The subgroup W0 of W is isomorphic to the direct product W (B2) ×W (Bn−2).
Therefore, since we know a basis of the module of the cohomological invariants of
D4 (see Theorem 2.4), then by Proposition 2.2 and by the induction hypothesis,
we get the description of the cohomological invariants of W0.

Corollary 4.2. The module Invk0(W0,Z/2Z) is free with basis

{wD4
l · w

W ′
i · w̃W ′j }l∈{0,1,1̃,2̃},0≤i≤m−1,0≤j≤2(m−1−i).

Note that we do not need to make the assumption here that the family

{wW ′i · w̃W ′j }0≤i≤m−1,0≤j≤2(m−1−i)

is free over H∗(k0,Z/2Z). Note also that we used (and we still do it later on) the
notation wD4

1̃
= w̃D4

1 and wD4

2̃
= w̃D4

2 in order to simplify the expressions.

Let us summarize what we got. Let a ∈ Invk0(W,Z/2Z). By Corollary 4.1, the
invariant a is completely determined by its values on the W -torsors that lie in
the image of a map H1(k,Hq) → H1(k,W ) (for 0 ≤ q ≤ m). In fact, Lemma
4.1 yields that a is completely determined by its restriction to the subgroup W0

and so by its values on the W -torsors that are the image of a W0-torsor. For any
extension k/k0, such a torsor is a W -torsor over k of the form T1 × T2, where T1

is a D4-torsor over k and T2 a W ′-torsor over k. In the sequel, we will then work
with these W -torsors of the form T1 × T2 over any extension k/k0.
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By Corollary 4.2, there exist some bl,i,j ∈ H∗(k0,Z/2Z), for any l ∈ {0, 1, 1̃, 2̃},
any 0 ≤ i ≤ m− 1 and any 0 ≤ j ≤ 2(m− 1− i) such that

ResW0
W (a) =

∑
l∈{0,1,1̃,2̃},0≤i≤m−1,0≤j≤2(m−1−i)

bl,i,j · wD4
l · w

W ′
i · w̃W ′j . (4.3)

4.2.3 Restrictions of ResW0
W (a) to Hq, for 0 ≤ q ≤ m

We now show the following proposition by induction on q ∈ {0, ...,m− 1}.

Proposition 4.4. There are some coefficients Ci,j ∈ H∗(k0,Z/2Z) such that, for
any 0 ≤ q ≤ m− 1,

ResW0
W (a) =

∑
0≤i≤q,0≤j≤2(m−i)

Ci,j · ResW0
W (wi · w̃j) + aq+1

where
aq+1 =

∑
l∈{0,1̃,2̃},q+1≤i≤m−1,0≤j≤2(m−1−i)

bl,i,j · wD4
l · w

W ′
i · w̃W ′j

+
∑

q≤i<m−1,0≤j≤2(m−1−i)

b1,i,j · wD4
1 · w

W ′
i · w̃W ′j .

In other words, at each step q of our induction, we identify parts of the sums with a
linear combination of the invariants wq ·w̃j for 0 ≤ j ≤ 2(m−q) by considering the
restriction to the subgroup Hq, where we have a lot of information about torsors,
Stiefel-Whitney invariants, etc. It then reduces the extra term aq+1. We finally
show that at rank m of the induction, the extra term has completely disappeared.

Proof. Before starting with the proof, let us sketch the main idea of the proof.
Let k/k0 be a field extension. Then H1(k,W0) ' H1(k,D4) ×H1(k,W ′), so any
W0-torsor over k writes (T1, T2) with T1 ∈ H1(k,D4) and T2 ∈ H1(k,W ′). If
moreover T2 = T ′1 × T3 with T ′1 ∈ H1(k,D4), the images of the two W0-torsors
(T1, T

′
1 × T3) and (T ′1, T1 × T3) by the map H1(k,W0)→ H1(k,W ) are obviously

the same. Therefore, ResW0
W (a) lies in the submodule of the invariants c of W0 sat-

isfiyng the equalities ck(T1, T
′
1 × T3) = ck(T

′
1, T1 × T3) for any such torsors T1, T

′
1

and T3. We then show that the restrictions of the Stiefel-Whitney invariants to
W0 generate this submodule.

Let us prove Proposition 4.4 by induction on q. Let us check the case q = 0
first : let us consider the restriction ResH0

W (a). Let k/k0 be an extension, let
T1 = (k2, (u1, v1)) be a D4-torsor over k and let T ′ = (k2m−2, (u2, v2, ..., um, vm))
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be a W ′-torsor over k so that the cohomology class associated with T1× T ′ lies in
the image of H1(k,H0)→ H1(k,W ). Hence,

ak(T1 × T ′) =
∑

l∈{0,1,1̃,2̃},
0≤i≤m−1,0≤j≤2(m−1−i)

bl,i,j · wD4
l (T1) · wW ′i (T ′) · w̃W ′j (T ′).

For any 1 ≤ i ≤ m− 1, wW
′

i (T ′) = 0 and wD4
1 (T1) = 0, so we have :

ak(T1 × T ′) =
∑

l∈{0,1̃,2̃},0≤j≤2(m−1)

bl,0,j · wD4
l (T1) · w̃W ′j (T ′).

Let us embed H0 in W0 = D4 ×W ′. Then H0 decomposes in this product in two
factors, the left one being isomorphic to (Z/2Z)2 and denoted by HD4

0 and the
right factor being an abelian subgroup of W ′ generated by reflections. We denote
it by H ′0. Note that H ′0 is for W ′ exactly what H0 is for W . Lemma 4.3 applies
here for W ′ and H ′0 :

Res
H′0
W ′(w̃

W ′
j ) = a

(0)
j =

∑
J⊂{3,...,2m},|J |=j

aJ .

For any 0 ≤ j ≤ 2(m− 1), we have

Res
H

D4
0

D4
(w̃D4

1 ) · Res
H′0
W ′(w̃

W ′
j ) =

(
a{1} + a{2}

)
·
( ∑
J⊂{3,...,2m},|J |=j

aJ
)

=
∑

J⊂{3,...,2m},|J |=j

(
a{1}·J + a{2}·J

)
and

Res
H

D4
0

D4
(w̃D4

2 ) · Res
H′0
W ′(w̃

W ′
j ) = a{1,2} ·

( ∑
J⊂{3,...,2m},|J |=j

aJ
)

=
∑

J⊂{3,...,2m},|J |=j

a{1,2}·J .

Let us come back to ResH0
W (a). We get that

ResH0
W (a) =

∑
0≤j≤2(m−1)

[
b0,0,j ·

( ∑
J⊂{3,...,2m},|J |=j

aJ
)

+b1̃,0,j ·
( ∑
J⊂{3,...,2m},|J |=j

(aJ ·{1} + aJ ·{2})
)

+b2̃,0,j ·
( ∑
J⊂{3,...,2m},|J |=j

aJ ·{1,2}
)]
.
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Moreover, ResH0
W (a) belongs to the submodule of the cohomological invariants of

H0 fixed by the group N0/H0. By Proposition 2.6, for any i = 0, ..., 2m, there
exists bi ∈ H∗(k0,Z/2Z) such that

ResH0
W (a) =

2m∑
i=0

bi · a(0)
i ,

where, for i = 0, ..., 2m, a
(0)
i =

∑
I⊂{1,...,2m},|I|=i

aI .

Furthermore, the family (aI)I⊂{1,...,2m} is free in Invk0(H0,Z/2Z) (see Proposition
2.1), so we get the following relations : for any 0 ≤ j ≤ 2(m− 1),

b0,0,j = bj , b1̃,0,j = bj+1 and b2̃,0,j = bj+2.

We can now say that

b0,0,1 = b1̃,0,0,

for any j ≥ 2, b0,0,j = b1̃,0,j−1 = b2̃,0,j−2 and

b1̃,0,2m−2 = b2̃,0,2m−3.

(4.4)

If we set a′0 = ResW0
W (a) + a1 (it is a cohomological invariant of W0), then

a′0 =
∑

l∈{0,1̃,2̃},0≤j≤2(m−1)

bl,0,j · wD4
l · w̃

W ′
j

= b0,0,0 + b0,0,1 · w̃W
′

1 + b1̃,0,0 · w̃
D4
1

+
2m−2∑
j=2

(
b0,0,j · w̃W

′
j + b1̃,0,j−1 · w̃

D4
1 · w̃

W ′
j−1 + b2̃,0,j · w̃

D4
2 · w̃

W ′
j−2

)
+ b1̃,0,2m−2 · w̃

D4
1 · w̃

W ′
2m−2 + b2̃,0,2m−3 · w̃

D4
2 · w̃

W ′
2m−3

+ b2̃,0,2m−2 · w̃
D4
2 · w̃

W ′
2m−2.

Therefore, using Relations (4.4), we get :

a′0 =b0,0,0 + b0,0,1 ·
(
w̃W

′
1 + w̃D4

1

)
+

2m−2∑
j=2

b0,0,j ·
(
w̃W

′
j + w̃D4

1 · w̃
W ′
j−1 + w̃D4

2 · w̃
W ′
j−2

)
+ b1̃,0,2m−2 ·

(
w̃D4

1 · w̃
W ′
2m−2 + w̃D4

2 · w̃
W ′
2m−3

)
+ b2̃,0,2m−2 · w̃

D4
2 · w̃

W ′
2m−2.

By Lemma 4.3, for 0 ≤ j ≤ 2m,

ResW0
W (w̃j) = w̃D4

2 · w̃
W ′
j−2 + w̃D4

1 · w̃
W ′
j−1 + w̃W

′
j ,
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thus :

a′0 =b0,0,0 · ResW0
W (w̃0) + b0,0,1 · ResW0

W (w̃1) +
2m−2∑
j=2

b0,0,j · ResW0
W (w̃j)

+ b1̃,0,2m−2 · ResW0
W (w̃2m−1) + b2̃,0,2m−2 · ResW0

W (w̃2m)

=

2m−2∑
j=0

b0,0,j · ResW0
W (w̃j) + b1̃,0,2m−2 · ResW0

W (w̃2m−1)

+ b2̃,0,2m−2 · ResW0
W (w̃2m).

This concludes the case q = 0.

Assume now that 1 ≤ q ≤ m− 1 and that the induction hypothesis is true for the
rank q − 1. By induction hypothesis (see Proposition 4.4), we want to study the
extra term aq. Note that aq is a cohomological invariant of W0. Recall that

aq =
∑

l∈{0,1̃,2̃},q≤i≤m−1,0≤j≤2(m−1−i)

bl,i,j · wD4
l · w

W ′
i · w̃W ′j

+
∑

q−1≤i≤m−1,0≤j≤2(m−1−i)

b1,i,j · wD4
1 · w

W ′
i · w̃W ′j .

We then have to show that

aq =
∑

0≤j≤2(m−q)

Cq,j · ResW0
W (wq · w̃j) + aq+1,

where Cq,j ∈ H∗(k0,Z/2Z) for 0 ≤ j ≤ 2(m − q). Let k/k0 be an extension, let
T1 = (k2, (u1, v1)) be a D4-torsor over k, let T2 = (k(

√
t2), u2)) and let

T3 = (k(
√
t3)× ...× k(

√
tq+1)× k2(m−q−1), (u3, ..., uq+1, uq+2, vq+2, ..., um, vm))

so that T2×T3 is a W ′-torsor over k. Then T1× (T2×T3) is a W0-torsor which lies
in the image of H1(k,Hq) → H1(k,W ). Since wW

′
i (T2 × T3) = wi(〈t2, ..., tq+1〉),

we get that wW
′

i (T2 × T3) = 0 if i ≥ q + 1. On the other hand, wD4
1 (T1) = 0.

Therefore, we obtain that

(aq)k(T1 × (T2 × T3)) =
∑

l∈{0,1̃,2̃},
0≤j≤2(m−1−q)

bl,q,j ·wD4
l (T1) ·wW ′q (T2 × T3) · w̃W ′j (T2 × T3).

(4.5)

Let us now consider the D4-torsor T2 = (k(
√
t2), u2) and the W ′-torsor

T1 × T3 =
(
k2 × k(

√
t3)× ...×k(

√
tq+1)× k2(m−q−1),

(u1, v1, u3, ..., uq+1, uq+2, vq+2, ..., um, vm)
)
.
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Then wW
′

i (T1 × T3) = wi(〈t3, ..., tq+1〉), so if i ≥ q, wW ′i (T1 × T3) = 0. Hence,

(aq)k(T2× (T1×T3)) =
∑

0≤j≤2(m−q)

b1,q−1,j ·wD4
1 (T2) ·wW ′q−1(T1×T3) · w̃W ′j (T1×T3).

(4.6)

Since the two W0-torsors T1 × (T2 × T3) and T2 × (T1 × T3) are isomorphic, it
follows from (4.5) and (4.6) that∑

l∈{0,1̃,2̃}0≤j≤2(m−1−q)

bl,q,j · wD4
l (T1) · wW ′q (T2 × T3) · w̃W ′j (T2 × T3)

=
∑

0≤j≤2(m−q)

b1,q−1,j · wD4
1 (T2) · wW ′q−1(T1 × T3) · w̃W ′j (T1 × T3).

(4.7)

Now set k1 = k0(u2, ..., um, t2, ..., tq+1, vq+2, ..., vm) and assume that u1 and v1 are
independent indeterminates over k1. Then the family {1, w̃D4

1 (T1), w̃D4
2 (T1)} is free

over H∗(k1,Z/2Z). We then have to collect classes wD4
l (T1) in (4.7). Denoting

in an analogous way to W ′ ⊂ W , by W ′′ the “same” subgroup of W ′,then by
Proposition 4.3 and since wD4

1 (T1) = 0, we get, for any 0 ≤ j ≤ 2(m− q) :

wW
′

q−1(T1 × T3) · w̃W ′j (T1 × T3) =w̃D4
2 (T1) · wW ′′q−1(T3) · w̃W ′′j−2(T3)

+ w̃D4
1 (T1) · wW ′′q−1(T3) · w̃W ′′j−1(T3)

+ wW
′′

q−1(T3) · w̃W ′′j (T3).

Since the family {1, w̃D4
1 (T1), w̃D4

2 (T1)} is free, we obtain from (4.7) the following
equalities : for any l ∈ {0, 1̃, 2̃},∑

0≤j≤2(m−1−q)

bl,q,j · wW
′

q (T2 × T3) · w̃W ′j (T2 × T3)

=
∑

0≤j≤2(m−q)

b1,q−1,j · wD4
1 (T2) · wW ′′q−1(T3) · w̃W ′′j−l (T3).

(4.8)

Now set k2 = k0(u3, ..., um, t3, ..., tq+1, vq+2, ..., vm) and let t2, u2 be indepen-
dent indeterminates over k2. Then the family {1, w̃D4

1 (T2), w̃D4
2 (T2)} is free in

H∗(k2,Z/2Z) (and wD4
1 (T2) = w̃D4

1 (T2)). We then have to collect these terms :
since wW

′
q (T3) = 0, by Proposition 4.3, for any 0 ≤ j ≤ 2(m− 1− q), we have

wW
′

q (T2 × T3) · w̃W ′j (T2 × T3) = wD4
1 (T2) · wW ′′q−1(T3) · w̃W ′′j (T3).

Hence, for any l ∈ {0, 1̃, 2̃}, we get from (4.8) that∑
0≤j≤2(m−1−q)

bl,q,j · wW
′′

q−1(T3) · w̃W ′′j (T3)

=
∑

0≤j≤2(m−q)

b1,q−1,j · wW
′′

q−1(T3) · w̃W ′′j−l (T3).
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We have the three following equalities:
for l = 0 :

0 =
∑

0≤j≤2(m−1−q)

(
b0,q,j + b1,q−1,j

)
· wW ′′q−1(T3) · w̃W ′′j (T3)

+ b0,q−1,2(m−q)−1 · wW
′′

q−1(T3) · w̃W ′′2(m−q)−1(T3)

+ b0,q−1,2(m−q) · wW
′′

q−1(T3) · w̃W ′′2(m−q)(T3);

(4.9)

for l = 1̃ :

0 =
∑

0≤j≤2(m−1−q)

(
b1̃,q,j + b1,q−1,j+1

)
· wW ′′q−1(T3) · w̃W ′′j (T3)

+ b1,q−1,2(m−q) · wW
′′

q−1(T3) · w̃W ′′2(m−q)−1(T3);

(4.10)

for l = 2̃ :

0 =
∑

0≤j≤2(m−1−q)

(
b2̃,q,j + b1,q−1,j+2

)
· wW ′′q−1(T3) · w̃W ′′j (T3). (4.11)

We now apply Lemma 4.4 replacing W by W ′′ and q by q − 1:

wW
′′

q−1 · w̃W
′′

j = 0 if j > 2(m− 2− (q − 1)) = 2(m− q)− 2.

Therefore,

wW
′′

q−1(T3) · w̃W ′′2(m−q)−1(T3) = 0 = wW
′′

q−1(T3) · w̃W ′′2(m−q)(T3).

Thus Relations (4.9), (4.10) and (4.11) become :
for l = 0 : ∑

0≤j≤2(m−1−q)

(
b0,q,j + b1,q−1,j

)
· wW ′′q−1(T3) · w̃W ′′j (T3) = 0; (4.12)

for l = 1̃ : ∑
0≤j≤2(m−1−q)

(
b1̃,q,j + b1,q−1,j+1

)
· wW ′′q−1(T3) · w̃W ′′j (T3) = 0; (4.13)

for l = 2̃ : ∑
0≤j≤2(m−1−q)

(
b2̃,q,j + b1,q−1,j+2

)
· wW ′′q−1(T3) · w̃W ′′j (T3) = 0. (4.14)

Assume now that t3, ..., tq+1, u3, ..., um, vq+2, ..., vm are independent indeterminates
over k0. Let us denote by H ′′q the subgroup of W ′′, defined likely to Hq ⊂ W .
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Then, replacing W by W ′′ and q by q − 1, Lemma 4.5 implies that the invari-

ants Res
H′′q
W ′′(w

W ′′
q−1 · w̃W

′′
j ) (with 0 ≤ j ≤ 2(m − 1 − q)) form a free family over

H∗(k0,Z/2Z). Since T3 is clearly the image of a versal torsor of H ′′q , we get as a
direct consequence of Theorem 1.7 that, for 0 ≤ j ≤ 2(m− 1− q), the invariants
wW

′′
q−1(T3) · w̃W ′′j (T3) form a free family over H∗(k0,Z/2Z). It then follows from

(4.12), (4.13) and (4.14) that, for any l ∈ {0, 1, 2} and any j ∈ {0, ..., 2(m−1−q)},

b
l̃,q,j

+ b1,q−1,j+l = 0. (4.15)

Reordering equalities (4.15), we get that, for any 2 ≤ j ≤ 2(m− 1− q) :

b0,q,0 =b1,q−1,0,

b0,q,1 =b1̃,q,0 = b1,q−1,1,

b2̃,q,j−2 = b1̃,q,j−1 =b0,q,j = b1,q−1,j ,

b2̃,q,2(m−1−q)−1 =b1̃,q,2(m−1−q) = b1,q−1,2(m−q)−1,

b2̃,q,2(m−1−q) =b1,q−1,2(m−q)−1.

(4.16)

Let us now come back to aq :

aq =
∑

l∈{0,1̃,2̃},q≤i≤m−1,0≤j≤2(m−1−i)

bl,i,j · wD4
l · w

W ′
i · w̃W ′j

+
∑

q−1≤i≤m−1,0≤j≤2(m−1−i)

b1,i,j · wD4
1 · w

W ′
i · w̃W ′j ,

so :
aq =

∑
l∈{0,1̃,2̃},0≤j≤2(m−1−q)

bl,q,j · wD4
l · w

W ′
q · w̃W ′j

+
∑

0≤j≤2(m−q)

b1,q−1,j · wD4
1 · w

W ′
q−1 · w̃W

′
j + aq+1.

Set a′q = aq + aq+1. Using relations (4.16), we have :

a′q = b1,q−1,0 ·
(
wW

′
q + wD4

1 · w
W ′
q−1

)
+ b1,q−1,1 ·

(
w̃D4

1 · w
W ′
q + wD4

1 · w
W ′
q−1 · w̃W

′
1 + wW

′
q · w̃W ′1

)
+

∑
2≤j≤2(m−1−q)

b1,q−1,j ·
(
w̃D4

2 · w
W ′
q · w̃W ′j−2 + w̃D4

1 · w
W ′
q · w̃W ′j−1

+ wD4
1 · w

W ′
q−1 · w̃W

′
j + wW

′
q · w̃W ′j

)
+ b1,q−1,2(m−q)−1 ·

(
w̃D4

2 · w
W ′
q · w̃W ′2(m−1−q)−1+

w̃D4
1 · w

W ′
q · w̃W ′2(m−1−q) + wD4

1 · w
W ′
q−1 · w̃W

′

2(m−q)−1

)
+ b1,q−1,2(m−q) ·

(
w̃D4

2 · w
W ′
q · w̃W ′2(m−1−q) + wD4

1 · w
W ′
q−1 · w̃W

′

2(m−q)
)
.

(4.17)
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Recall now the formulae of Proposition 4.3. For any 2 ≤ j ≤ 2(m− 1− q),

wq = wW
′

q + wD4
1 · w

W ′
q−1, (4.18)

wq · w̃1 = w̃D4
1 · w

W ′
q + wD4

1 · w
W ′
q−1 · w̃W

′
1 + wW

′
q · w̃W ′1 , (4.19)

wq · w̃j =w̃D4
2 · w

W ′
q · w̃W ′j−2 + w̃D4

1 · w
W ′
q · w̃W ′j−1 + wD4

1 · w
W ′
q−1 · w̃W

′
j

+ wW
′

q · w̃W ′j ,
(4.20)

wq · w̃2(m−q)−1 =w̃D4
2 · w

W ′
q · w̃W ′2(m−1−q)−1 + w̃D4

1 · w
W ′
q · w̃W ′2(m−1−q)

+ wD4
1 · w

W ′
q−1 · w̃W

′

2(m−q)
(4.21)

and
wq · w̃2(m−q) = w̃D4

2 · w
W ′
q · w̃W ′2(m−1−q) + wD4

1 · w
W ′
q−1 · w̃W

′
j . (4.22)

Note that we used Lemma 4.4 : wW
′

q · w̃W ′2(m−q)−1 = 0 and wW
′

q · w̃W ′2(m−q) = 0.

Therefore, using relations (4.18) to (4.22) in relation (4.17), we get that

a′q = b1,q−1,0 · ResW0
W (wq) + b1,q−1,1 · ResW0

W (wq · w̃1)

+
∑

2≤j≤2(m−1−q)

b1,q−1,j · ResW0
W (wq · w̃j)

+ b1,q−1,2(m−q)−1 · ResW0
W (wq · w̃2(m−q)−1)

+ b1,q−1,2(m−q) · ResW0
W (wq · w̃2(m−q)),

(4.23)

which yields :

a′q =
∑

0≤j≤2(m−q)

b1,q−1,j · ResW0
W (wq · w̃j). (4.24)

This ends the induction and the proof of Proposition 4.4. �

We eventually get that there exist some coefficients Ci,j ∈ H∗(k0,Z/2Z) such that

ResW0
W (a) =

∑
0≤i≤m−1,0≤j≤2(m−i)

Ci,j · ResW0
W (wi · w̃j) + am

where

am =
∑

m−1≤i≤m−1,0≤j≤2(m−1−i)

b1,i,j · wD4
1 · w

W ′
i · w̃W ′j = b1,m−1,0 · wD4

1 · w
W ′
m−1.

By Proposition 4.3, ResW0
W (wm) = wW

′
m +wD4

1 ·wW
′

m−1 and wW
′

m = 0. Hence, ResW0
W (a)

is a linear combination of the invariants ResW0
W (wi · w̃j) of W0, for 0 ≤ i ≤ m and
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0 ≤ j ≤ 2(m− i). Since the restriction to W0 completely determines the invariant
a, we get that a is a linear combination of the invariants wi · w̃j of W , 0 ≤ i ≤ m,
0 ≤ j ≤ 2(m− i). Therefore, for 0 ≤ i ≤ m, 0 ≤ j ≤ 2(m− i), the invariants wi · w̃j
of W generate the module Invk0(W,Z/2Z). This ends the proof of Proposition 4.2.

4.2.4 A basis of Invk0(W,Z/2Z)

Note that any result of this section is still true if we do not assume that−1, 2 ∈ k×2
0 .

Theorem 4.2. The family {wi · w̃j}0≤i≤m,0≤j≤2(m−i) is free over H∗(k0,Z/2Z).

Proof. Let {λi,j}0≤i≤m,0≤j≤2(m−i) be a family of coefficients of H∗(k0,Z/2Z) such
that

a =
∑

0≤i≤m,0≤j≤2(m−i)

λi,j · wi · w̃j = 0.

Let us show by induction on q ∈ {0, ...,m}, that, for any q ∈ {0, ...,m}, λq,j = 0
for any j ∈ {0, ..., 2(m− i)}.

Assume first that q = 0. Let us consider the restriction of a to H0. We have to
show that, for any 0 ≤ j ≤ 2m, λ0,j = 0. By Lemma 4.2, for any extension k/k0,
for any W -torsor T0 over k lying in the image of the map H1(k,H0)→ H1(k,W )
and for any i > 0, we have wi(T0) = 0. Thus,

ak(T0) =
∑

0≤j≤2m

λ0,j · w̃j(T0).

By Lemma 4.3, the family {ResH0
W (w̃j)}0≤j≤2m is free in the H∗(k0,Z/2Z)-module

of the invariants of H0 modulo 2. Therefore, we get that λ0,j = 0 for any
0 ≤ j ≤ 2m.

Let now 0 < q ≤ m. Let us assume that, for any 0 ≤ i < q, λi,j = 0 for any
0 ≤ j ≤ 2(m− i). Hence,

a =
∑

q≤i≤m,0≤j≤2(m−i)

λi,j · wi · w̃j .

Let us now consider the restriction Res
Hq
W (a) of a to Hq. Let k/k0 be an extension

and let Tq = (k(
√
t1)× ...× k(

√
tq)× k2(m−q), (u1, ..., uq, uq+1, vq+1, ..., um, vm)) be

a W -torsor over k lying in the image of H1(k,Hq) → H1(k,W ). By Lemma 4.2,
if i ≥ q + 1, wi(Tq) = 0. Thus,

ak(Tq) =
∑

0≤j≤2(m−q)

λq,j · wq(Tq) · w̃j(Tq).
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Therefore, Res
Hq
W (a) =

∑
0≤j≤2(m−q)

λq,j · Res
Hq
W (wq · w̃j). By Lemma 4.5, the fam-

ily {Res
Hq
W (wq · w̃j)}0≤j≤2(m−q) is free over H∗(k0,Z/2Z). We can conclude that

λq,j = 0 for every 0 ≤ j ≤ 2(m− q). This ends the induction. �

4.3 Proof of Theorem 4.1 : the case n odd

In this section we just sketch the proof of Theorem 4.1 with n odd. Let us recall
the statement.

Theorem. Let k0 be a field of characteristic zero, such that −1 and 2 are squares
in k0. Let m ≥ 1 and let W be a Weyl group of type B2m+1. Then the module
Invk0(W,Z/2Z) is free over H∗(k0,Z/2Z), with basis

{wi · w̃j}0≤i≤m,0≤j≤2(m−i).

Let W be a Weyl group of type B2m+1. Let

S = {±ei,±ei ± ej , 1 ≤ i ≤ 2m+ 1, 1 ≤ j 6= i ≤ 2m+ 1}

be the root system corresponding to W . Let

S0 = {±ei,±ei ± ej , 1 ≤ i ≤ 2m, 1 ≤ j 6= i ≤ 2m} t {±e2m+1}.

Then the reflections associated with S0 generate a subgroup W0 of W , isomorphic
to W ′×〈re2m+1〉, where W ′ is a Weyl group of type B2m. Let a ∈ Invk0(W,Z/2Z).

Mimicking the proof of the case B2m, we may show that ResW0
W (a) completely

determines a. Then we write ResW0
W (a) as cup-products of invariants of W ′ and

of Z/2Z. Looking at the restrictions to the subgroups Hq as in the case B2m, we
finally get the result. Note that computations are much easier here because of the
factor Z/2Z instead of D4.
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Chapter 5

Cohomological invariants of the
Weyl group of type Dn, n ≥ 4

RÉSUMÉ

Dans ce chapitre, on s’intéresse aux groupes de Weyl de type D. Un tel groupe
se réalisant comme sous-groupe d’un groupe de Weyl de type B, on peut définir
par restriction les deux familles d’invariants de Stiefel-Whitney. L’objectif de ce
chapitre est d’établir et de prouver à l’aide du principe d’annulation du chapitre 3
un résultat analogue à celui du chapitre précédent afin de déterminer complètement
les invariants cohomologiques des groupes de Weyl de type D.

Let n ≥ 4, W be a Weyl group of type Dn. We associate to W its root system
S = {±ei ± ej | 1 ≤ i < j ≤ n} (see Appendix A for more details).

Let us denote W ′ the Weyl group of type Bn corresponding to the root system

S′ = {±ei,±(ei ± ej) |, 1 ≤ i ≤ n, 1 ≤ j 6= i ≤ n}.

We clearly have an inclusion W ⊂W ′.

Let k be a field of characteristic zero. As we saw in Proposition 1.8, the pointed
set H1(k,W ′) is in bijection with the set of isomorphism classes of pairs (L,α)
where L is étale of rank n and α a class of squares in L∗. Furthermore, Proposition
1.9 states that the image of the map H1(k,W )→ H1(k,W ′) corresponds to pairs
(L,α) such that α has norm 1 in L.
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Moreover, we can easily construct some Stiefel-Whitney invariants, from Stiefel-
Whitney invariants of W ′ simply by taking the restriction. We then set for any
0 ≤ i ≤ [n2 ], wi = ResWW ′(wi) and for any 0 ≤ i ≤ n, w̃i = ResWW ′(w̃i).

Let us now state the structure theorem for cohomological invariants of W .

Theorem 5.1. The H∗(k0,Z/2Z)-module Invk0(W,Z/2Z) is free with basis given
by wi · w̃j, where 0 ≤ i ≤ [n2 ], 0 ≤ j ≤ 2([n2 ]− i) and j even.

5.1 The vanishing principle

Consider now S0 = {±e2i−1 ± e2i | 1 ≤ i ≤ [n2 ]}. It is a root subsystem of S. The
associated reflections generate a subgroup H of W .

Note that any maximal abelian subgroup of W generated by reflections is con-
jugated with H. The vanishing theorem for cohomological invariants of Coxeter
groups may be written in the following form.

Theorem 5.2. Let k0 be any field of characteristic zero. The restriction map
ResHW : Invk0(W,C)→ Invk0(H,Z/2Z) is injective.

Moreover, the image of this map is contained in Invk0(H,C)NH/H , where NH

denotes the normalizer of H in W (see Proposition 2.3). Let us define some
cohomological invariants of H belonging to this submodule. For any field k of
characteristic zero and any square-classes x1, ..., xn ∈ k∗/k∗2, we set

ar,s(x1, ..., xn) =
∑

1≤m1<...<mr≤n−1 odd numbers

(xm1) · (xm1+1) · · · · · (xmr) · (xmr+1)

·
( ∑

l∈Is
l∩{m1,m1+1,...,mr,mr+1}=∅

(x)l
)

where

Is = {{l1, ..., ls} ∈ Ns |1 ≤ l1 < ... < ls ≤ n and

∀0 ≤ m ≤ n

2
, {2m− 1, 2m} 6⊂ {l1, ..., ls}}.

Recall that we used the notation (x)l = (xl1) · · · · · (xls), with l = {l1, ..., ls}.

This definition yields some cohomological invariants ar,s ∈ Invk0(H,Z/2Z) for any
0 ≤ r, s and r + s ≤ n

2 .
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Lemma 5.1. The H∗(k0,Z/2Z)-module Invk0(H,Z/2Z)NH/H is free with basis
given by the invariants ar,s, for 0,≤ r, s and r + s ≤ n

2 .

Proof. If n is even, thenH ⊂W (Dn) ⊂W (Dn+1) and the normalizersNH(W (Dn))
and NH(W (Dn+1)) are equal. We then may assume n even. Let us first prove that
the family {ar,s}0≤r,s;r+s≤n

2
is free over H∗(k0,Z/2Z). Note that, for any 0 ≤ r, s

such that r + s ≤ n
2 ,

ar,s =
∑

I⊂{1,...,n}
|I|=2r+s

I contains exactly r pairs {2m−1,2m}

aI .

For any 0 ≤ r, s such that r + s ≤ n
2 , let cr,s ∈ H∗(k0,Z/2Z) such that∑

r,s

cr,s · ar,s = 0.

Then, ∑
r,s

cr,s ·
(∑
I

aI
)

= 0.

Since each subset I appearing in the decomposition of some ar,s does not appear
in the decomposition of another ar′,s′ and since the family {aI}I⊂{1,...,n} is free
(see Proposition 2.1), we get that cr,s = 0 for any 0 ≤ r, s such that r + s ≤ n

2 .
Therefore, the family {ar,s}0≤r,s;r+s≤n

2
is free over H∗(k0,Z/2Z).

Let us now prove that, for any r, s ≥ 0 such that r + s ≤ n
2 , ar,s belongs to

M = Invk0(H,Z/2Z)NH/H and that the family {ar,s}0≤r,s;r+s≤n
2

generates the
H∗(k0,Z/2Z)-module M . For sake of simplicity, let us show it for n = 4. In this
case, the subgroup H is associated with the root subsystem {±e1 ± e2,±e3 ± e4}.

Set

w(12) :e1 + e2 7→ e1 − e2; e1 − e2 7→ e1 + e2; e3 + e4 7→ e3 + e4;

e3 − e4 7→ e3 − e4;

w(34) :e1 + e2 7→ e1 + e2; e1 − e2 7→ e1 − e2; e3 + e4 7→ e3 − e4;

e3 − e4 7→ e3 + e4

w(12)(34) :e1 + e2 7→ e1 − e2; e1 − e2 7→ e1 + e2; e3 + e4 7→ e3 − e4;

e3 − e4 7→ e3 + e4

w↔ :e1 + e2 7→ e3 + e4; e1 − e2 7→ e3 − e4; e3 + e4 7→ e1 + e2;

e3 − e4 7→ e1 − e2

w↔(12) :e1 + e2 7→ e3 − e4; e1 − e2 7→ e3 + e4; e3 + e4 7→ e1 + e2;

e3 − e4 7→ e1 − e2
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w↔(34) :e1 + e2 7→ e3 + e4; e1 − e2 7→ e3 − e4; e3 + e4 7→ e1 − e2;

e3 − e4 7→ e1 + e2

w↔(12)(34) :e1 + e2 7→ e3 − e4; e1 − e2 7→ e3 + e4; e3 + e4 7→ e1 − e2;

e3 − e4 7→ e1 + e2.

Then

NH/H = {H,w(12)H,w(34)H,w(12)(34)H,w
↔H,w↔(12)H,w

↔
(34)H,w

↔
(12)(34)H}.

First note that, for any 0 ≤ r, s such that r + s ≤ 2, ar,s belongs to M . Indeed,
for instance,

a0,1 :(x1, x2, x3, x4) 7→ (x1) + (x2) + (x3) + (x4)

w(12).a0,1 :(x1, x2, x3, x4) 7→ (x2) + (x1) + (x3) + (x4)

w(34).a0,1 :(x1, x2, x3, x4) 7→ (x1) + (x2) + (x4) + (x3)

w(12)(34).a0,1 :(x1, x2, x3, x4) 7→ (x2) + (x1) + (x4) + (x3)

w↔.a0,1 :(x1, x2, x3, x4) 7→ (x3) + (x4) + (x1) + (x2)

w↔(12).a0,1 :(x1, x2, x3, x4) 7→ (x4) + (x3) + (x1) + (x2)

w↔(34).a0,1 :(x1, x2, x3, x4) 7→ (x3) + (x4) + (x2) + (x1)

w↔(12)(34).a0,1 :(x1, x2, x3, x4) 7→ (x4) + (x3) + (x2) + (x1)

or

a1,1 : (x1, x2, x3, x4) 7→(x1) · (x2) · (x3) + (x1) · (x2) · (x4)

+ (x3) · (x4) · (x1) + (x3) · (x4) · (x2)

w(12).a1,1 : (x1, x2, x3, x4) 7→(x2) · (x1) · (x3) + (x2) · (x1) · (x4)

+ (x3) · (x4) · (x2) + (x3) · (x4) · (x1)

w(34).a1,1 : (x1, x2, x3, x4) 7→(x1) · (x2) · (x4) + (x1) · (x2) · (x3)

+ (x4) · (x3) · (x1) + (x4) · (x3) · (x2)

w(12)(34).a1,1 : (x1, x2, x3, x4) 7→(x2) · (x1) · (x4) + (x2) · (x1) · (x3)

+ (x4) · (x3) · (x2) + (x4) · (x3) · (x1)

w↔.a1,1 : (x1, x2, x3, x4) 7→(x3) · (x4) · (x1) + (x3) · (x4) · (x2)

+ (x1) · (x2) · (x3) + (x1) · (x2) · (x4)

w↔(12).a1,1 : (x1, x2, x3, x4) 7→(x4) · (x3) · (x1) + (x4) · (x3) · (x2)

+ (x1) · (x2) · (x4) + (x1) · (x2) · (x4)

w↔(34).a1,1 : (x1, x2, x3, x4) 7→(x3) · (x4) · (x2) + (x3) · (x4) · (x1)

+ (x2) · (x1) · (x3) + (x2) · (x1) · (x3)

w↔(12)(34).a1,1 : (x1, x2, x3, x4) 7→(x4) · (x3) · (x2) + (x4) · (x3) · (x1)

+ (x2) · (x1) · (x4) + (x2) · (x1) · (x3).
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Let us now prove that {ar,s}0≤r,s;r+s≤2 generates M . Let a ∈ M . There exist
some coefficients cI ∈ H∗(k0,Z/2Z) for any I ⊂ {1, 2, 3, 4} such that

a =
∑

I⊂{1,2,3,4}

cI · aI

=c∅ +
4∑
i=0

c{i} · a{i} +
(
c{1,2} · a{1,2} + c{3,4} · a{3,4}

)
+
(
c{1,3} · a{1,3} + c{1,4} · a{1,4} + c{2,3} · a{2,3} + c{2,4} · a{2,4}

)
+
(
c{1,2,3} · a{1,2,3} + c{1,2,4} · a{1,2,4} + c{1,3,4} · a{1,3,4} + c{2,3,4} · a{2,3,4}

)
+ c{1,2,3,4} · a{1,2,3,4}.

Recall that the family {aI}I⊂{1,2,3,4} is free over H∗(k0,Z/2Z). Note that

w(12)(34).a{1} = a{2},

w(12)(34).a{3} = a{4},

w(12)(34).a{1,2,3} = a{1,2,4} and

w(12)(34).a{1,3,4} = a{2,3,4}.

Since w(12)(34).a = a,

c{1} =c{2},

c{3} =c{4},

c{1,2,3} =c{1,2,4} and

c{1,3,4} =c{2,3,4}.

Likewise, note that
w↔.a{1} = a{3},

w↔.a{1,2} = a{3,4},

w↔.a{1,4} = a{2,3} and

w↔.a{1,2,3} = a{1,3,4}.

Since w↔.a = a,
c{1} = c{3},

c{1,2} = c{3,4},

c{1,4} = c{2,3} and

c{1,2,3} = c{1,2,4}.

We also have w↔(12)a{1,3} = a{1,4}. Since w↔.a = a,

c{1,3} = c{1,4}.

Eventually, w↔(34)a{2,3} = a{2,4}. Since w↔.a = a,

c{2,3} = c{2,4}.
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Combining all these equalities, we get

a = c∅ · a0,0 + c{1} · a0,1 + c{1,2} · a1,0 + c{1,3} · a0,2 + c{1,2,3} · a1,1 + c{1,2,3,4} · a2,0.

Therefore, {ar,s}0≤r,s;r+s≤2 generates M . �

5.2 Cohomological invariants of W (Dn) : the case n
even

Let us first deal with the case n even.

5.2.1 Restriction of Stiefel-Whitney invariants

Let us start with computing the restrictions of the Siefel-Whitney invariants to
the subgroup H.

Lemma 5.2. (i) For any 0 ≤ i ≤ n
2 ,

ResHW (wi) =

{
a0,i + (2) · a0,i−1 if i is even

a0,i if i is odd

(ii) For any 0 ≤ i ≤ n even,

ResHW (w̃j) =

j
2∑

r=0

ar,j−2r + (2) ·
( j2−1∑
r=0

ar,j−1−2r

)
Proof. Let k/k0 be a field extension and let (L,α) ∈ H1(k,W ′) lying in the image
of the map H1(k,H) → H1(k,W ′). Then, by Proposition 4.1, there exist some
x1, ..., xn ∈ k∗ such that

L = k(
√
x1x2)× k(

√
x3x4)× ...× k(

√
xn−1xn) and α = (x1, x3, ..., xn−1).

(i) Let 0 ≤ i ≤ n
2 . Then

wi(L,α) = wi(〈2〉.〈1, x1x2, 1, x3x4, ..., 1, xn−1xn〉)

=


wi(〈x1x2, ..., xn−1xn〉) + (2) · wi−1(〈x1x2, ..., xn−1xn〉)

if i is even

wi(〈x1x2, ..., xn−1xn〉) if i is odd

Noting that wi(〈x1x2, ..., xn−1xn〉) =
∑
l∈Ii

(x)l = a0,i(x1, ..., xn), we get

wi(L,α) =

{
a0,i(x1, ..., xn) + (2) · a0,i−1(x1, ..., xn) if i is even

a0,i(x1, ..., xn) if i is odd
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(ii) Let 0 ≤ i ≤ n and assume that i is even. Hence,

w̃i(L,α) = wi(〈2〉.〈x1, ..., xn〉)
= wi(〈x1, ..., xn〉) + (2) · wi−1(〈x1, ..., xn〉)

An easy computation yields

wi(〈x1, ..., xn〉) =

i
2∑

r=max(0,i−n
2

)

ar,i−2r(x1, ..., xn) =

i
2∑

r=0

ar,i−2r(x1, ..., xn),

with the convention ar,s = 0 if r + s > n
2 . Therefore,

w̃i(L,α) =

i
2∑

r=0

ar,i−2r(x1, ..., xn) + (2) ·
( i

2
−1∑
r=0

ar,i−1−2r(x1, ..., xn)
)
. �

Let 0 ≤ i ≤ n
2 and let 0 ≤ j ≤ n− 2i with j even. We now write the restrictions

ResHW (wi · w̃j) in the basis {ar,s} of Invk0(H,Z/2Z)NH/H .

Proposition 5.1. Let 0 ≤ i ≤ n
2 and let 0 ≤ j ≤ n− 2i with j even. If i is even,

ResHW (wi · w̃j) =

j
2∑

r=max(0,j−n
2

)

min(i,j−2r)∑
t=0

(
j − 2r
t

)(
i+ j − 2r − t

j − 2r

)
(−1)·t · ar,i+j−2r−t

+ (2) ·
( j

2
−1∑

r=max(0,j−1−n
2

)

(
i+ j − 1− 2r
j − 1− 2r

)
ar,i+j−1−2r

)

+ (2) ·
( j

2∑
r=max(0,j−n

2
)

(
i− 1 + j − 2r

j − 2r

)
ar,i−1+j−2r

)
If i is odd,

ResHW (wi · w̃j) =

j
2∑

r=max(0,j−n
2

)

min(i,j−2r)∑
t=0

(
j − 2r
t

)(
i+ j − 2r − t

j − 2r

)
(−1)·t · ar,i+j−2r−t

+ (2) ·
( j

2
−1∑

r=max(0,j−1−n
2

)

(
i+ j − 1− 2r
j − 1− 2r

)
ar,i+j−1−2r

)
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Proof. From Lemma 5.2, we get the following formulae. For any 0 ≤ i ≤ n
2 and

any 0 ≤ j ≤ n− 2i with j even,
if i is even,

ResHW (wi · w̃j) =

j
2∑

r=0

a0,i · ar,j−2r + (2) ·
( j2−1∑
r=0

a0,i · ar,j−1−2r

)

+ (2) ·
( j

2∑
r=0

a0,i−1 · ar,j−2r

)
if i is odd,

ResHW (wi · w̃j) =

j
2∑

r=0

a0,i · ar,j−2r + (2) ·
( j2−1∑
r=0

a0,i · ar,j−1−2r

)
In both cases, for 0 ≤ i ≤ n

2 and 0 ≤ r, s such that r + s ≤ n
2 , we have to write

the invariant a0,i · ar,s in the basis {am,l}0≤m,l|m+l≤n
2
. The following lemma gives

the answer and allows us to end the proof of Proposition 5.1. �

Lemma 5.3. Let 0 ≤ i ≤ n
2 , 0 ≤ r, s such that r + s ≤ n

2 . Then

a0,i · ar,s =

min(i,s)∑
t=0

(
s
t

)(
i+ s− t

s

)
(−1)·t · ar,i+s−t

Proof. Let us first prove that a0,i · ar,0 = ar,i. Let k/k0 be a field extension and
let x1, ..., xn ∈ k×/k×2. Then

a0,i(x1, ..., xn) · ar,0(x1, ..., xn)

=
∑

l∈Ii;1≤m1<...<mr≤n−1 odd numbers

(x)l · (xm1) · (xm1+1) · · · · · (xmr) · (xmr+1)

=

min(r,i)∑
u=0

∑
l∈Ii−u

1≤m1<...<mr≤n−1 odd numbers

l∩{m1,m1+1,...,mr,mr+1}=∅

2u
(
r
u

)
(−1)·(u) · (x)l · (xm1) · (xm1+1) · · · ·

· (xmr) · (xmr+1)

=
∑

l∈Ii;1≤m1<...<mr≤n−1 odd numbers

l∩{m1,m1+1,m2,m2+1,...,mr,mr+1}=∅

(x)l · (xm1) · (xm1+1) · · · · · (xmr) · (xmr+1)

= ar,i.
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Likewise, we prove that

a0,i(x1, ..., xn) · ar,s(x1, ..., xn)

=
∑

l∈Ii;l′∈Is
1≤m1<...<mr≤n−1 odd numbers

l∩{m1,m1+1,m2,m2+1,...,mr,mr+1}=∅
l′∩{m1,m1+1,m2,m2+1,...,mr,mr+1}=∅

(x)l · (xm1) · (xm1+1) · · · · · (xmr) · (xmr+1) · (x)l′ .

Hence,

a0,i(x1, ..., xn) · ar,s(x1, ..., xn)

=

min(i,s)∑
t=0

∑
l∈Ii−t;l′∈Is

1≤m1<...<mr≤n−1 odd numbers

l∩{m1,m1+1,m2,m2+1,...,mr,mr+1}=∅
l′∩{m1,m1+1,m2,m2+1,...,mr,mr+1}=∅

l∩l′=∅

(
s
t

)
(−1)·t · (xm1) · (xm1+1) · · · ·

· (xmr) · (xmr+1) · (x)l · (x)l′

=

min(i,s)∑
t=0

min(i−t,s)∑
u=0

∑
l∈Ii−t−u;l′∈Is−u

1≤m1<...<mr≤n−1 odd numbers

1≤m′1<...<m′u≤n−1 odd numbers

l∩{m1,m1+1,m2,m2+1,...,mr,mr+1,m′1+1,...,m′u,m
′
u+1}=∅

l′∩{m1,m1+1,m2,m2+1,...,mr,mr+1,m′1,m
′
1+1,...,m′u,m

′
u+1}=∅

l∩l′=∅
{m1,...,mr}∩{m′1,...,m′u}=∅

l∪l′∈Is+i−t−2u

2u
(
s
t

)
(−1)·t · (xm1) · (xm1+1) · · · · · (xmr) · (xmr+1) · (xm′1)

· (xm′1+1) · · · · · (xm′u) · (xm′u+1) · (x)l · (x)l′

=

min(i,s)∑
t=0

∑
l∈Ii+s−t

1≤m1<...<mr≤n−1 odd numbers

l∩{m1,m1+1,m2,m2+1,...,mr,mr+1}=∅

(
s
t

)(
i+ s− t

s

)
(−1)·t

· (xm1) · (xm1+1) · · · · · (xmr) · (xmr+1) · (x)l

This allows us to conclude the proof of Lemma 5.3. �

5.2.2 Proof of Theorem 5.1

Let us now prove Theorem 5.1. Note that the (cohomological) degree of ar,s is
2r + s. By Proposition 5.1, every element ar,s appearing in the decomposition of
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ResHW (wi · w̃j) has degree ≤ i+ j. Indeed,

deg(ar,i+j−2r−t) = i+ j − t,
deg(ar,i+j−1−2r) = i+ j − 1,

deg(ar,i−1+j−2r) = i+ j − 1.

Moreover, if deg(ar,i+j−2r−t) = i+ j, then t = 0. We then may write

ResHW (wi · w̃j) =

j
2∑

r=max(0,j−n
2

)

(
i+ j − 2r
j − 2r

)
ar,i+j−2r +A

where A is a linear combination of cohomological invariants with degree < i+ j.

Let us write this restriction as follows

ResHW (wi · w̃j) = a j
2
,i +

j
2
−1∑

r=max(0,j−n
2

)

(
i+ j − 2r
j − 2r

)
ar,i+j−2r +A. (5.1)

We now prove by induction on the cohomological degree d ≥ 0, that for any couple
(r, s) of non negative integers, such that r + s ≤ n

2 and 2r + s = d, ar,s may be
written as a linear combination of invariants of the family

{ResHW (wi · w̃j)}0≤i≤n
2
,0≤j≤n−2i and j even.

Obviously, a0,0 = ResHW (w0 · w̃0).

Let 0 < d ≤ n
2 . Assume that for any 0 ≤ d′ < d, the induction hypothesis is

true. Let us now make a second induction. We prove by induction on r that, for
any 0 ≤ r ≤ [d2 ], ar,d−2r may be written as a linear combination of restrictions of
invariants of the family

{ResHW (wi · w̃j)}0≤i≤n
2
,0≤j≤n−2i and j even.

Let us first note that

a0,d =

{
ResHW (wd · w̃0) + (2) · ResHW (wd−1 · w̃0) if d is even

ResHW (wd · w̃0) if d is odd

which allows us to conclude the case r = 0.

Let now 0 < r ≤ [d2 ]. Let us assume that, for any 0 ≤ r′ < r, ar′,d−2r′ can be

written as a linear combination of restrictions of invariants ResHW (wi · w̃j) with
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0 ≤ i ≤ n
2 , 0 ≤ j ≤ n− 2i and j even.

By Equation (5.1),

ResHW (ws · w̃2r) = ar,s +

r−1∑
m=max(0,2r−n

2
)

(
s+ 2(r −m)

2(r −m)

)
am,s+2(r−m) +A

where A is a linear combination of ar′,s′ with 2r′ + s′ < 2r + s.

By the first induction hypothesis on A and the second induction hypothesis on
am,s+2(r−m) for max(0, j − n

2 ) ≤ m ≤ r − 1, we have

ar,s = ResHW (ws · w̃2r) +B

where B is a linear combination of invariants ResHW (wi · w̃j) with 0 ≤ i ≤ n
2 ,

0 ≤ j ≤ n− 2i and j even.

This concludes both inductions and ends the proof of Theorem 5.1 in the case
where n is even. �

5.3 Cohomological invariants of W (Dn) : the case n

odd

Let us now consider the case n odd and let prove Theorem 5.1. Let W ′′ be the
Weyl group of type Dn−1 associated with the root subsystem

{±ei ± ej | 1 ≤ i 6= j ≤ n− 1}.

Then H is a subgroup of W ′′. Therefore, by the vanishing principle (Theorem
5.2), the restriction map ResW

′′
W is injective.

For 0 ≤ i ≤ n− 1, let us denote by wW
′′

i and w̃W
′′

i the Stiefel-Whitney invariants
of the Weyl group W ′′.

By the vanishing principle (Theorem 5.2), the map ResHW ′′ is injective. Yet, for
any 0 ≤ i ≤ n−1

2 and any 0 ≤ j ≤ n − 1 − 2i with j even, the cohomological

invariants ResW
′′

W (wi · w̃j) and wW
′′

i · w̃W ′′j of W ′′ have same restriction to H, then
they are equal :

ResW
′′

W (wi · w̃j) = wW
′′

i · w̃W ′′j

By Theorem 5.1 applied to W ′′ (proved at the previous section in the case even),
the family {wW ′′i · w̃W ′′j }0≤i≤n−1

2
,0≤j≤n−1−2i,j even is a basis of Invk0(W ′′,Z/2Z).
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Therefore, the restriction map ResW
′′

W : Invk0(W,Z/2Z) → Invk0(W ′′,Z/2Z) is an
isomorphism and the family {wi · w̃j}0≤i≤n

2
,0≤j≤n−2i, with j even is sent to a basis of

Invk0(W ′′,Z/2Z). This allows us to conclude. �
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Appendix A

Reflection groups and finite
Coxeter groups

This appendix is based on the well-known references [3] and [11].

Let k be a field, let V be a vector space over k.

Definition A.1. A pseudo-reflection in V is an endomorphism r of V such that
r−idV has rank 1. A reflection in V is a pseudo-reflection of V such that r2 = idV .

Note that the only pseudo-reflections in a real vector space are reflections.

Definition A.2. A pseudo-reflection group (resp. a reflection group) over k is a
group of linear automorphisms of a k-vector space V which is generated by pseudo-
reflections (resp. reflections) in V .

Let us state Chevalley’s theorem (see [3], 5.5, Theorem 4).

Theorem A.1. Let k be a field, let V be a finite dimensional k-vector space, let
S be the symmetric algebra of V , let W be finite group of linear automorphisms
of V and let R be the subalgebra of S of the invariant elements under W . Let us
assume that the order of W is prime to the characteristic of k. Then the following
conditions are equivalent :

(i) W is generated by pseudo-reflections in V ;

(ii) S is a free graded R-module;

(iii) R is a polynomial graded k-algebra.
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Let us state some useful properties on reflections. Let us now assume that k has
characteristic different from 2. For any reflection r in V , we set V +

r = Ker(r− idV )
and V −r = Im(r − idV ). Proofs of the following proposition and its corollary can
be found in [3], V.2, Prop.3.

Proposition A.1. Let r be a reflection in V .

1. A subspace V ′ of V is stable by r if and only if V −r ⊂ V ′ or V ′ ⊂ V +
r .

2. An endomorphism u of V commutes with r if and only if V +
r and V −r are

stable by u.

Corollary A.1. Two distinct reflections r and r′ in in V commute if and only if
V −r′ ⊂ V

+
r and V −r ⊂ V +

r′ .

Definition A.3. Let W be a reflection group over k. A subgroup H ⊂W is called
an isotropy subgroup if H = {w ∈W | w(v) = v} for some v ∈ V .

Then an isotropy subgroup is a reflection group (see [11], 1.12).

Proposition A.2. Let W be a reflection group over R. Any isotropy subgroup of
W is generated by the reflections it contains. In particular, an isotropy subgroup
is a reflection group over R.

Note that this is not the case anymore for pseudo-reflection groups and even for
reflection groups over C (see for instance [4]).

Let us now give the classification of finite reflection groups over R.

Definition A.4. A Coxeter group W is a group with a given presentation of type

〈r1, .., rs | ∀i, j ∈ {1, .., s}, (rirj)mi,j = 1〉,

where ∀i, j ∈ {1, ..., s}, mi,j ∈ N ∪ {+∞} and mi,i = 1 for every i ∈ {1, ..., s}.

It is well-known that a finite group G is a Coxeter group if and only if it is a
reflection group over R (see [11]). Note that there are some reflection groups over
C which are not Coxeter groups (see for instance [3],V.5, exercise 4 or [5]).

Definition A.5. Let V be a finite dimensional R-vector space. A root system S
is a finite set of non-zero vectors in V satisfying the conditions :

1. for any α ∈ S, S ∩ Rα = {±α}
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2. for any α ∈ S, rα(S) = S, where rα denotes the orthogonal reflection on V
such that Im(rα − idV ) = Rα.

Note that a root system S yields a finite Coxeter group (the group generated by
the reflections rα, for any α ∈ S). Conversely, any finite Coxeter group can be
realized in this way, possibly for many different choices for S.

If a root system S cannot be written S1tS2, with S1 and S2 two root systems, we
say that S is irreducible. Irreducible root systems are completely classified (and
so are finite Coxeter groups) (see [11] or [3] for details).

Let (e1, ..., en) be a canonical basis of Rn. Up to linear automorphism, irreducible
root systems are classified in several types :

An (n ≥ 1) : let V be the hyperplane of Rn+1 such that the sum of coor-
dinates equal to zero. Then S = {ei − ej | 1 ≤ i, j ≤ n + 1, i 6= j}. The
Coxeter group is isomorphic to Sn+1.

Bn (for n ≥ 2) : V = Rn, S = {±ei,±ej ± el | 1 ≤ i ≤ n, 1 ≤ j < l ≤ n}.
The Coxeter group is isomorphic to the semi-direct product

(
Z/2Z

)n oSn,
where Sn acts on (Z/2Z)n by permuting coordinates.

Cn (for n ≥ 2) : V = Rn, S = {±2ei,±ej ± el | 1 ≤ i ≤ n, 1 ≤ j < l ≤ n}.
The Coxeter group is the same than in the type Bn.

Dn (n ≥ 4) : V = Rn, S = {±ei ± ej) | 1 ≤ i < j ≤ n}. The Coxeter group
W is defined by the exact sequence

1 //W //W ′
p // Z/2Z // 1 ,

where W ′ is the reflection group of type Bn and p : (ε1, ..., εn, σ) 7→
n∏
i=1

εi.

Moreover, W is isomorphic to the semi-direct product
(
Z/2Z

)n−1 oSn.

E6 : V = {(xi)1≤i≤8 ∈ R8 | x6 = x7 = −x8},

S = {±ei ± ej ,±
1

2
(e8 − e7 − e6 +

5∑
l=1

(−1)ν(l)el)

| 1 ≤ i < j ≤ 5 and
5∑
l=1

ν(l) even}

.
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E7 : let V be the hyperplane of R8 orthogonal to e7 + e8. Then

S = {±ei ± ej ,±(e7 − e8),±1

2
(e7 − e8 +

6∑
l=1

(−1)ν(l)el)

| 1 ≤ i < j ≤ 6 and
6∑
l=1

ν(l) odd}

.

E8 : V = R8,

S = {±ei ± ej ,
1

2

8∑
l=1

(−1)ν(l)el | 1 ≤ i < j ≤ 8 and

8∑
l=1

ν(l) even}.

F4 : V = R4,

S = {±ei,±ej ± el,
1

2
(±e1 ± e2 ± e3 ± e4) | 1 ≤ i ≤ 4, 1 ≤ j < l ≤ 4}.

The Coxeter group is isomorphic to the semi-direct product((
Z/2Z

)3 oS4

)
oS3,

where
(
Z/2Z

)3 oS4 is the Coxeter group of type D4 and S3 acts on it by
permuting vertices of the Dynkin diagram of D4.

G2 : let V be the hyperplane of R3 with the sum of the coordinates equal
to zero. Then

S = {±(e1 − e2),±(e1 − e3),±(e2 − e3),±(2e1 − e2 − e3),± (2e2 − e1 − e3),

± (2e3 − e1 − e2)}
.

The Coxeter group is isomorphic to the dihedral group D6 of order 12.

H3 : the Coxeter group is isomorphic to A5 × Z/2Z, where A5 denotes the
alternating subgroup of S5.

H4 : the Coxeter group is the group of isometries of the hecatonicosahedroid.

I2(m), m ≥ 3 : the Coxeter group is isomorphic to the dihedral group Dm
of order 2m.

With this classification, we get that every finite Coxeter group is isomorphic to a
direct product of Coxeter groups of type A to I.
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Definition A.6. A Weyl group W is a finite Coxeter group with a root system S
satisfying the additional integrality condition : for any α, β ∈ S, 2 (α,β)

(α,α) ∈ Z,

where (., .) denotes the usual scalar product.

Any Weyl group is isomorphic to a direct product of groups of type A to G. For
these groups, we have the important following result (see [25], Corollary 1.15).

Theorem A.2. Let W be a Weyl group. Every irreducible representation of W
is realizable over Q. In particular, Weyl groups are reflection groups over Q.

Therefore, the real representation of a Weyl group as a real reflection group is
realizable over Q. By extension of scalars, Weyl groups are reflection groups over
any field of characteristic zero. In particular, Theorem 3.1 is true for any Weyl
group and any field of characteristic zero.

Theorem A.2 is not true for a Coxeter group which is not a Weyl group. However,

Proposition A.3. Let W be a finite Coxeter group. There is a finite real extension
L of Q such that W is a reflection group over L.

Note that L = Q(
√

5) for the Coxeter groups of type H and L = Q(cos(2π
m )) for

the Coxeter groups of type I2(m), for any m ≥ 3 are the minimal fields such that
Proposition A.3 is satisfied.

More generally, let us state when a finite Coxeter group is a reflection over a fixed
field of characteristic zero. Let k0 be a field of characteristic zero. Thanks to the
previous classification, W is isomorphic to a direct product of groups of type A to
I. Then if k0 contains the minimal field extensions over Q corresponding to the
types in the decomposition of W , the representation of W as a finite reflection
group extends to k0 (and the assumption of Theorem 3.1 is satisfied).
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[4] M. Broué. Introduction to complex reflection groups and their braid groups.
Number vol. 1988 in Lecture notes in mathematics. Springer, 2010.
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RÉSUMÉ

Cette thèse traite des invariants cohomologiques en cohomologie galoisienne des
groupes de Coxeter finis en caractéristique nulle. On établit d’abord un principe
général d’annulation vérifié par tout invariant cohomologique d’un groupe de Cox-
eter fini sur un corps de caractéristique nulle suffisamment grand. On utilise en-
suite ce principe pour déterminer tous les invariants cohomologiques des groupes
de Weyl de type classique à coefficients dans Z/2Z sur un corps de caractéristique
nulle.

ABSTRACT

This PhD thesis deals with cohomological invariants in Galois cohomology of finite
Coxeter groups in characteristic zero. We first state a general vanishing principle
for the cohomological invariants of a finite Coxeter group over a sufficiently large
field of characteristic zero. We then use this principle to determine all the coho-
mological invariants of the Weyl groups of classical type with coefficients in Z/2Z
over a field of characteristic zero.
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