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Introduction (version frangaise)

Un probléme général en mathématiques est de classifier des objets, & isomorphisme
pres. Notons Obj I’ensemble des objets considérés. Quand ceux-ci sont trop com-
pliqués a comprendre directement, on cherche des invariants, c’est-a-dire des ap-
plications de I’ensemble des classes d’isomorphisme de ces objets vers un ensemble
d’objets mieux connus et on espere obtenir des invariants assez d’information
pour permettre la classification. Dans le cas de structures algébriques (comme les
algebres, les formes quadratiques, les variétés algébriques, etc), elles sont souvent
définies sur un corps et stables par extension des scalaires. Fixons un corps de base
ko. 11 est naturel de considérer le foncteur Obj : k/ky — Isox(Obj), ou, pour toute
extension de corps k/ko, Iso;(Obj) désigne ’ensemble des classes d’isomorphisme
des objets définis sur k.

Pour commencer, considérons comme foncteur des objets, le foncteur QuadzO des
classes d’isométrie des formes quadratiques non dégénérées, de rang fixé n > 1 sur
une extension de corps quelconque k/kg. Alors, pour les formes quadratiques, le
discriminant, 1’algebre de Clifford (ou 'algebre de Clifford paire, selon que I'une
ou l'autre est centrale simple sur le corps de base), l'invariant de Hasse-Witt ou
la signature (si kg C R) sont invariants par isométrie (cf. [12] ou [10] pour les
définitions). Quand kg = Q, les formes quadratiques non dégénérées sur Q sont
classifiées a isométrie pres par le rang, le discriminant, l'invariant de Hasse-Witt et
la signature (cf. par exemple [21]). Cependant, cette classification n’est pas vraie
pour un corps arbitraire (cf. [9]). On peut alors se demander 8’il existe d’autres
invariants qui permettraient d’obtenir une classification complete.

Remarquons d’abord que le discriminant, I’algebre de Clifford (paire) et I'invariant
de Hasse-Witt induisent des transformations naturelles du foncteur Quady, vers
un foncteur de cohomologie galoisienne H*(k,Z/27Z). En effet, le groupe de coho-
mologie galoisienne H'(k, Z/27) est isomorphe au groupe des classes de carrés de k
et le groupe de cohomologie galoisienne H?(k,Z/27) est isomorphe au sous-groupe
des éléments de 2-torsion dans le groupe de Brauer de k, qui classifie les algebres
centrales simples d’indice une puissance de 2 sur k a équivalence de Brauer pres
(cf. [10]; remarquons aussi que Merkurjev a prouvé que ce groupe est engendré
par les classes de produits tensoriels d’algebres de quaternions sur k, cf. [27] pour



une preuve). On peut alors se demander §’il y a d’autres invariants & valeurs
dans de tels groupes de cohomologie. Avant de donner la réponse pour les formes
quadratiques, considérons la situation plus générale suivante.

Soit G un schéma en groupes algébrique lisse sur ko. Si k/ko est une exten-
sion de corps, le premier ensemble de cohomologie galoisienne H'(k,G) est en
bijection avec ’ensemble des classes d’isomorphisme de G-torseurs sur k. Dans
de nombreux cas particuliers, ces ensembles classifient aussi d’autres structures
algébriques intéressantes. On en présente ici quelques exemples (on remarque que
le mot ”classifie” ci-dessous signifie "est en bijection avec I’ensemble des classes
d’isomorphisme de”) :

(a) quand le schéma en groupes G est fini et constant, pour toute extension
k/ko, 'ensemble H'(k,G) classifie les G-algebres galoisiennes sur k;

(b) quand G = O,, est le schéma en groupes orthogonal sur ky (i.e. associé au
groupe orthogonal de la forme quadratique unité (1,...,1) de rang n sur k),
I'ensemble H'(k, G) classifie les formes quadratiques non dégénérées de rang
n sur k;

(c) quand G = &, est le groupe symétrique sur n éléments, I’ensemble H' (k, G)
classifie les algebres étales de rang n sur k.

Soit I'y, le groupe de Galois absolu sur kg et soit C' un I'y,-module fini. On
introduit le foncteur de cohomologie galoisienne abélienne

H*(./ko,C) : k/ko > H*(k,C) = PH'(k,C)
€N

de la catégorie des extensions de corps de ko & la catégorie des ensembles (plus
précisément, ce foncteur est a valeurs dans la catégorie des groupes abéliens et
on compose ici par le foncteur d’oubli). On considere alors les morphismes de
foncteurs de Obj vers H*(./ko,C). On les appelle invariants cohomologiques des
objets sur kg & coefficients dans C. Dans la suite, on utilise principalement comme
foncteur d’objets le foncteur de cohomologie galoisienne

HY(./ko, Q) : k/ky — H'(k,G)

de la catégorie des extensions de corps de kg vers la catégorie des ensembles et
on note Invg, (G, C) Pensemble des invariants cohomologiques de G sur kg & coef-
ficients dans C.

Revenons maintenant au foncteur Quadj . Pour toute extension k/kq et toute
forme quadratique non dégénérée diagonale ¢ = (a1, ..., q,), avec ai,...,q, des



classes de carrés dans k, on pose

wilg)= Y, (ap)-- (aj;)-

1<j1<...<ji<n

On remarque d’abord que cette définition n’est pas restrictive puisque toute classe
d’isométrie de formes quadratiques (non dégénérées) contient (au moins) une forme
diagonale. De plus, w;(q) est bien définie (si deux formes quadratiques diagonales
sont isométriques, leurs images par w; sont égales). Cela induit donc des invari-
ants cohomologiques w; € Invy, (O, Z/27) appelés invariants de Stiefel-Whitney.
Dans [24], Serre a décrit la structure du groupe Invy, (O, Z/27Z): il est muni d’une
structure de H*(kg,Z/2Z)-module libre, dont une base est donnée par les invari-
ants de Stiefel-Whitney w; pour 0 < ¢ < n. Néanmoins, les formes quadratiques
non dégénérées ne sont pas classifiées, a isométrie pres, par leurs invariants coho-
mologiques a coefficients dans Z/2Z. Dans [19], Scharlau a donné des exemples
de corps k et de formes quadratiques ¢ et ¢’ qui ne sont pas isométriques et pour
lesquelles pour tout 0 < i < n, w;(q) = w;(¢).

Soit n > 1. Serre a montré dans [24] que le groupe des invariants cohomologiques
des n-formes de Pfister a coefficients dans Z /27 est un H*(ko, Z/27Z)-module libre
avec une base donnée par {1,e,}, ou

en(((a1; oy am))) = (an) - -+ (an).

De plus, Serre a donné la description du groupe des invariants cohomologiques des
algeébres d’octonions, des formes hermitiennes ou des algebres d’Albert (cf. [24],
18.4, 21.6 or 22.5).

Plus récemment, dans [14] et dans [15], MacDonald a déterminé une base du
groupe des invariants cohomologiques du schéma en groupes des automorphismes
d’une algebre de Jordan centrale simple scindée de degré impair.

Remarquons aussi qu’une classification complete est connue pour les formes quadra-
tiques sur un corps quelconque (& isométrie pres). Grace a la conjecture de Milnor
prouvée par Voevodsky (cf. [16] pour I’énoncé et [26] et [18] pour la preuve), les
invariants e,, (définis ci-dessus pour les formes de Pfister) classifient completement
les formes quadratiques sur un corps de base quelconque. En effet, deux formes
quadratiques ¢ et go sont isométriques si et seulement si g1 — g2 est hyperbolique
et si les classes de cohomologie e,(q1 — ¢2) s’annulent pour tout n > 0. Remar-
quons que ces invariants e, ne sont pas définis pour toute forme quadratique et
ne peuvent pas définir des invariants cohomologiques dans Invy, (Oy,, Z/2Z) (sauf
pour n =0 et n=1).

Revenons & la situation ot G est un schéma en groupes algébrique lisse sur k.
Pour les groupes algébriques connexes simplement connexes absolument simples,



Rost a montré que le groupe des invariants normalisés cohomologiques de G de
degré 3 a coefficients dans Q/Z(2) est fini cyclique et engendré par un invariant
canonique R appelé invariant de Rost (voir la contribution de Merkurjev de [24]).

On considere a présent le cas ou G est un groupe fini. Les invariants coho-
mologiques de certains groupes finis peuvent étre utiles pour résoudre le probleme
de Noether. On rappelle qu’on dit que le probleme de Noether est vrai pour le
groupe G sur le corps ko s'il existe un plongement p : G — GL, (ko) tel que, si
K, est le sous-corps de ko(X1, ..., Xy,) fixé par G, alors K, est ko-rational. Serre
a démontré dans [24], 33.10, que s'il existe un invariant cohomologique de G sur
ko qui est a la fois non ramifié et non constant, alors le probleme de Noether est
faux pour G sur kg. En utilisant cette propriété, Serre a prouvé que le probleme
de Noether est faux pour tout groupe ayant un 2-sous-groupe de Sylow cyclique
d’ordre > 8 sur Q (cf. [24], 33.16).

Cependant, on ne connait actuellement que tres peu de résultats sur les invariants
cohomologiques des groupes finis. Dans [24], Serre a décrit les invariants coho-
mologiques des groupes 2-élémentaires et du groupe symétrique. Le but de cette
these est de généraliser le travail de Serre sur les invariants cohomologiques du
groupe symétrique aux groupes de Coxeter finis.

Dans le chapitre 1, on rappelle les résultats classiques de cohomologie galoisienne,
dans les cas non-abélien et abélien, en y ajoutant les résultats principaux sur les
applications résidu; on expose ensuite les principaux outils sur les invariants co-
homologiques décrits dans [24].

Dans le chapitre 2, on donne des exemples explicites d’invariants cohomologiques,
en rappelant d’abord les résultats de Serre sur les invariants cohomologiques des
groupes 2-élémentaires, du groupe orthogonal et du groupe symétrique. En parti-
culier, on donne la description de Serre des invariants cohomologiques de &,,, ou
n > 1. Soit n > 1. On pose, pour tout 0 < i < n,

w; : H'(./ko, &) — H*(./ko, Z/27)
(L) — w;i(Trp(z?))

Cet invariant w; est appelé le i¢ invariant de Stiefel-Whitney. Dans [24], 25.13,
Serre a montré que, pour tout corps kg de caractéristique différente de 2 et pour
tout n > 2, le H*(ko,Z/2Z)-module Invy,(S,,Z/2Z) est libre et une base est
donnée par la famille {w;}o<;<[2)-

On établit ensuite quelques résultats sur les invariants cohomologiques de certains
groupes de réflection simples, comme le groupe de Weyl de type G2, le groupe de
Coxeter de type Hj et les groupes diédraux D,, avec n qui n’est pas divisible par



4 ainsi que le groupe diédral Dy.

L’objectif du chapitre 3 est d’établir un principe général d’annulation pour les
invariants cohomologiques des groupes de Coxeter finis en caractéristique zéro.
On remarque d’abord que, pour décrire les invariants cohomologiques du groupe
symétrique, Serre a énoncé le principe de déploiement suivant (cf. [24], 24.9).

Théoréme (Serre, 2003). Soit ko un corps tel que char(ky) ne divise pas l’ordre
de C et soit n > 2. Soit aussi a € Invy,(Sy,,Z/27). Supposons que, pour toute
extension k/ko, ap(E) = 0 dés que E est une k-algébre étale isomorphe a un
produit direct de k-algébres étales de rang < 2. Alors a = 0.

Passons maintenant a la généralisation de ce résultat aux groupes de Coxeter
finis en caractéristique zéro. On rappelle quun groupe de Coxeter fini W est
un groupe de réflection réel, c’est-a-dire qu’il existe une représentation linéaire
fidele p : W — GL(V) dans un espace vectoriel réel V' de dimension finie, tel
que W est engendré par des réflections de V. Remarquons que réflection signifie
ici un endomorphisme r de V tel que le rang de r —idy est égal & 1 et que 72 = idy .

Soit G un groupe fini et H C G un sous-groupe. Si a € Invy (G, C), le com-
posé HY(./kg, H) — H'(./ko, G) —*= H*(./ko,C) définit un invariant de H,
appelé la restriction de a a H.

Dans [24] 25.15, Serre a énoncé un principe d’annulation pour les invariants coho-
mologiques des groupes de Weyl. On prouve dans cette thése une généralisation
de ce principe aux groupes de Coxeter finis.

Théoréme (Serre, 2003). Soit W un groupe de Coxeter fini et soit ky un corps
de caractéristique zéro contenant un sous-corps sur lequel la représentation réelle
de W comme groupe de réflection est réalisable. Soit C' un I'y,-module fini et
a € Invy, (W, C). Supposons que toute restriction de a & un sous-groupe abélien de
W engendré par des réflections est nul. Alors a = 0.

On remarque que cette hypothese sur le corps de base kg est automatiquement
satisfaite pour les groupes de Weyl puisque toute représentation irréductible réelle
d’un groupe de Weyl est réalisable sur le corps des rationnels Q. Cependant,
pour d’autres groupes de Coxeter, ce n’est pas le cas (par exemple, si W = D,
est le groupe diédral d’ordre 2n, la représentation géométrique réelle standard
p: W — GLy(R) est réalisable sur Q(cos(22)) mais pas sur Q).

On note enfin qu’on retrouve exactement le principe de déploiement & partir du
principe d’annulation dans le cas des groupes de Weyl de type A,,.

Dans le chapitre 4, on s’intéresse aux groupes de Weyl de type B,, ou C,,. Soit
n > 2 W un groupe de Weyl de type B, (on note qu'un groupe de Weyl de type



C), est isomorphe a W). Soit k un corps de caractéristique différente de 2. Alors
H!(k,W) est en bijection avec I'ensemble des classes d’isomorphisme des paires
(L,a), ou L est une k-algebre étale et o une classe de carrés dans L. On pose,
pour tout 0 < < n,
wi : HY(. ko, S,) — H*(./ko, Z./27)
(L, ) = wi(Tr(z%))
De plus, on remarque que, pour toute paire (L, o) € H'(k, W), la classe d’isomorphisme

de la forme quadratique Trz,(cz?) ne dépend pas du choix d’un représentant dans
la classe de carrés de «. Posons alors

w; : H(./ko, &) — H*(./ko, Z/27)
(L,a) — w;(Trp (az?))

Ces invariants sont aussi appelés invariants de Stiefel-Whitney de W.

Théoreme. Soit kg un corps de caractéristique zéro, tel que —1 et 2 sont des

carrés dans kg. Soit n > 2 et W un groupe de Weyl de type B,. Alors le

H*(ko, Z/2Z)-module Invy, (W, Z/27) est libre avec une base donnée par la famille
{wi - witoci<iz)ogj<a(z1-0)-

Dans le chapitre 5, on s’intéresse aux groupes de Weyl de type D. Soit W un
groupe de Weyl de type D,, (n > 4). On a la suite exacte

1 1% W' —L2-7./27 1,

n
ou W’ est un groupe de Weyl de type By, et p: (€1,...,€n,0) — [] €.
i=1

Soit ko un corps de caractéristique différente de 2. Si a € Invy, (W', Z/2Z), alors
Res}y/(a) est un invariant cohomologique de W. Ainsi, pour 0 < i < n, Res{} (w;)
est un invariant de W est encore noté w;. De méme, pour 0 < ¢ < n, ResMW/, (w;)
est un invariant de W et est encore noté w;.

Théoréme. Soit ky un corps de caractéristique zéro. Soit n > 4 et W un groupe
de Weyl de type D,,. Alors le H*(ko,Z/2Z)-module Invy,(W,Z/2Z) est libre de
base

{wi - Wjtoci<iz)0cj<2((2]-i) et j pair -



Introduction

A general problem in mathematics is to classify objects, up to isomorphism. Let
us denote by Obj the set of the objects. When it is too complicated, we look
for invariants, i.e. maps from the set of isomorphism classes of the objects to a
set of well-understood objects and we hope to get from invariants enough infor-
mation to allow classification. Concerning algebraic structures (such as algebras,
quadratic forms, algebraic varieties, etc) they are often defined over a field and
stable by scalar extension. Let kg be a base field. It is natural to consider the
functor Obj : k/ko — Isox(Obj), where, for any k/ko, Isor(Obj) denotes the set of
isomorphism classes of the objects defined over k.

Let us first consider the functor Quady, of the isometry classes of the non-
degenerate quadratic forms of fixed rank n > 1 over an arbitrary extension field
k/ky as the functor of the objects. Then, for quadratic forms, the discriminant,
the Clifford algebra (or the even Clifford algebra, depending on which is central
simple over the base field), the Hasse-Witt invariant or the signature (if ko C R)
are invariant under isometry (see [12] or [10] for definitions). When ky = Q, the
non-degenerate quadratic forms over Q are classified by the rank, the discriminant,
the Hasse-Witt invariant and the signature up to isometry (see for instance [21]).
However, this classification does not hold for an arbitrary field (see [9]). We then
may wonder whether there are other invariants so that a complete classification
would be obtained.

Let us first note that the discriminant, the (even) Clifford algebra and the Hasse-
Witt invariant yield some natural transformations from the functor Quadj, to
some Galois cohomology functor H'(k,Z/27Z). Indeed, the Galois cohomology
group H'(k,7/27) is isomorphic to the group of the square-classes in k and the
Galois cohomology group H?(k,Z/27) is isomorphic to the 2-torsion part of the
Brauer group of k, which classifies the central simple algebras of index a power of
2 over k up to Brauer equivalence (see [10]; note also that Merkurjev proved that
this group is generated by the classes of tensor products of quaternion algebras
over k, see [27] for a proof). We then may wonder whether there should be some
other invariants with values in such cohomological groups. Before giving the an-
swer for quadratic forms, let us look at a more general situation.



Let G be a smooth algebraic group scheme over kg. If k/kg is a field extension
over ko, the first Galois cohomology set H'(k, G) is in bijection with the set of the
isomorphism classes of G-torsors over k. In many particular cases, these sets also
classify many other interesting algebraic structures. Here are a few examples (note
that the word ”classifies” below means ”is in bijection with the set of isomorphism
classes of”) :

(a) when the group scheme G is finite constant, for any k/ko, the set H'(k,G)
classifies Galois G-algebras over k;

(b) when G = O,, is the orthogonal group scheme over ky (i.e. associated with
the orthogonal group of the unit quadratic form (1,...,1) of rank n over k),
the set H'(k,G) classifies non-degenerate quadratic forms of rank n over k;

(c) when G = &,, is the symmetric group on n letters, the set H!(k, G) classifies
étale algebras of rank n over k.

Let I'y,, denote the absolute Galois group over kg and let C be a finite I'y -module.
Let us introduce the abelian Galois cohomology functor

H*(./ko,C) : k/ko > H*(k,C) = @DH' (k,C)

1€N

from the category of the field extensions over kg to the sets category (to be pre-
cise, this functor has values in the abelian groups category and we compose here
by the forgetful functor). We then consider morphisms of functors from Obj to
H*(./ko,C). Such morphisms are called cohomological invariants of the objects
over kg with coefficients in C. In the sequel, we mainly use the Galois cohomology
functor

H'Y(./ko,G) : k/ko — H' (k,G)

from the category of field extensions over kg to the category of sets as the functor
of objects and we denote by Invy, (G, C) the set of the cohomological invariants of
G over kg with coefficients in C'.

Let us come back to the functor Quady, . For any k/kg, for any non-degenerate
diagonalized quadratic form q = (a1, ..., a,), with aq,...,a, € k% /E*2, we set

wilg)= Y. (ag)e (a,)-

1<51<..<3:.<n

Note first that this definition is not restrictive since any isometry class of non-
degenerate quadratic forms contains (at least) a diagonalized form. Note also that
wj(q) is well-defined (if two diagonalized quadratic forms are isometric, their image



by w; are equal). It yields some cohomological invariants w; € Invy, (O, Z/27Z)
called Stiefel-Whitney invariants. In [24], Serre described the structure of the
group Invg, (Oy, Z/2Z): it carries a structure of free H*(ko,Z/27Z)-module, with a
basis given by the Stiefel-Whitney invariants w; for 0 < i < n. Nevertheless, the
non-degenerate quadratic forms are not classified by their cohomological invari-
ants with coefficients in Z/27Z. In [19], Scharlau gave examples of fields k and of
quadratic forms ¢ and ¢’ which are non isometric and such that for any 0 < i < n,

wi(q) = wi(q).

Let n > 1. Serre proved in [24] that the group of the cohomological invariants of
the n-fold Pfister forms with coefficients in Z/27Z is a free H*(ko,Z/27Z)-module
with a basis {1, e, }, where

en(((ar, -, an))) = (ar) - -+ - (o).

Note also that Serre gave the description of the group of cohomological invariants
of the octonion algebras, of hermitian forms or of Albert algebras (see [24], 18.4,
21.6 or 22.5).

More recently, in [14] and in [15], MacDonald determined a basis for the coho-
mological invariants of the automorphism group scheme of a split central simple
Jordan algebra of odd degree.

Let us also note that a complete classification is known for quadratic forms over
an arbitrary field (up to isometry). Thanks to Milnor’s conjecture proved by Vo-
evodsky (see [16] for the statement and [26] and [18] for the proof) the invariants
en (defined above for Pfister forms) completely classify quadratic forms over an
arbitrary base field. Indeed, two quadratic forms ¢; and ¢o are isometric if and
only if g1 — g2 is hyperbolic and the cohomology classes e, (g1 — ¢2) all vanish for
any n > 0. Note that these invariants e, are not defined for any quadratic form
and then can not yield cohomological invariants in Invg, (O, Z/2Z) (unless n =0
and n =1).

Let us come back to the situation where G is a smooth algebraic group scheme
over kg. For absolutely simple simply connected algebraic groups, Rost proved
the group of the normalized cohomological invariants of G of degree 3 with coeffi-
cients in Q/Z(2) is finite cyclic and generated by a canonical invariant R called
the Rost invariant (see Merkurjev’s part of [24]).

Let us now consider the case where G is a finite group. The cohomological in-
variants of finite groups may be useful to solve Noether’s problem. Let us recall
that we say that Noether’s problem is true for the group G over the field kg if
there exists an embedding p : G — GL, (ko) such that, if K, is the subfield of
ko(X1,...,X,,) fixed by G, then K, is ko-rational. Serre proved in [24], 33.10, that



if there exists a cohomological invariant of G over kg which is unramified and
non constant, then Noether’s problem is false for G over kg. Using this property,
Serre proved that Noether’s problem is false for any group with a cyclic 2-Sylow
subgroup of order > 8 over Q (see [24], 33.16).

However, very few is known about cohomological invariants of finite groups. In
[24], Serre described the cohomological invariants of 2-elementary groups and of
symmetric groups. The aim of this thesis is to generalize the work from Serre
about cohomological invariants of symmetric groups to finite Coxeter groups.

In Chapter 1, we recall the background on Galois cohomology in both non-abelian
and abelian cases, including the framework of residue maps; then we state the
main tools on cohomological invariants described in [24].

In Chapter 2, we provide examples of cohomological invariants, first recalling re-
sults of Serre on cohomological invariants of 2-elementary groups, of the orthogo-
nal group and of the symmetric group. In particular, we recall Serre’s description
of the cohomological invariants of &,,, where n > 1. Let n > 1. Set, for any
0 <1 <n,
w; : HY(./ko, &) — H*(./ko, Z/27)
(L) = wi(Tr (%))

This invariant w; is called the i*"-Stiefel-Whitney invariant. In [24], 25.13, Serre
proved that, for any field kg of characteristic different from 2 and for any n > 2,
the H*(ko, Z/2Z)-module Invy, (S, Z/2Z) is free with basis {w;}o<i<[n)-

We then provide some computations to describe the cohomological invariants of
some simple reflection groups, such as the Weyl group of type Ga, the Coxeter
group of type Hs and the dihedral groups ID,, for n not divisible by 4 and for n = 4.

The aim of Chapter 3 is to state a general vanishing principle for the cohomological
invariants of the finite Coxeter groups in characteristic zero. Note first that, to
describe the cohomological invariants of the symmetric groups, Serre stated the
following splitting principle (see [24], 24.9).

Theorem (Serre, 2003). Let ko be a field such that char(ko) does not divide the
order of C and let n > 2. Let also a € Invy, (S, Z/2Z). Assume that, for every
extension k/ko, ap(E) = 0 whenever E is an étale k-algebra isomorphic to a direct
product of étale k-algebras of rank < 2. Then a = 0.

Let us now state the generalization of this result to finite Coxeter groups in char-
acteristic zero. Let us recall that a finite Coxeter group W is a finite real reflection
group, i.e. there exists a faithful linear representation p : W — GL(V) in a finite
dimensional real vector space V', such that W is generated by reflections of V.
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Note that by reflection, we mean an endomorphism r of V' such that the rank of
r —idy is equal to 1 and that r? = idy .

Let G be a finite group and let H C G be a subgroup. If a € Invg, (G, C), the com-
positum H?(./ko, H) — H(./ko, G) —*= H*(./ko,C) defines an invariant of
H, called the restriction of a to H.

In [24] 25.15, Serre stated a vanishing principle for the cohomological invariants
of the Weyl groups. We prove in this thesis a generalization of this principle to
finite Coxeter groups.

Theorem (Serre, 2003). Let W be a finite Coxeter group and let ko be a field
of characteristic zero containing a subfield on which the real representation of
W as a reflection group is realizable. Let C be a finite 'y -module and let a €
Inv, (W, C). Assume that every restriction of a to an abelian subgroup of W
generated by reflections is zero. Then a = 0.

Note also that this assumption on the base field kg is automatically satisfied for
Weyl groups since any irreducible real representation of a Weyl group is realizable
over the field of rationals Q. However, for other Coxeter groups, this is not the
case (for instance, if W = D, is the dihedral group of order 2n, the standard
geometric real representation p : W — GLa(R) is realizable over Q(cos(2X)) but
not over Q).

Note finally that we recover exactly Theorem from Theorem 3.1 in case of Weyl
groups of type A,.

In Chapter 4, we deal with Weyl groups of type B, or C,. Let now n > 2
and let W be a Weyl group of type B, (note that the Weyl group of type C,
is isomorphic to W). Let k be a field of characteristic different from 2. Then
H'(k,W) is in bijection with the set of the isomorphism classes of the pairs (L, a)
up to isomorphism, where L is an étale k-algebra and « a square class in L. Set,
for any 0 <17 < n,
w; : HY(. ko, &) — H*(./ko, Z./27)
(L, a) — w;(Trp(z%))

Moreover, note that, for any (L,a) € H'(k,W), the isomorphism class of the

quadratic form Trp(ax?) does not depend on the choice of a representative in the
square class a. Now set

w; : H'Y(. ko, &y) — H*(./ko, Z/27)
(L,a) — wi(TrL(a:CQ))

These invariants are also called Stiefel-Whitney invariants of W.

11



Theorem. Let kg be a field of characteristic zero, such that —1 and 2 are squares
in ko. Let n > 2 and let W be a Weyl group of type B,,. Then the H*(ko,Z/27)-
module Invi, (W, Z/27) is free with basis

{wi - wjto<i<(z)0<i<a(2]-0)-

In Chapter 5, we deal with Weyl groups of type D. Let now W be a Weyl group
of type D,, (n > 4). We have the exact sequence

p

1 W W 7./27. 1,

n
where W' is a Weyl group of type B, and p : (€1, ..., €n,0) — [ &.
i=1

Let ko be a field of characteristic different from 2. If a € Invy, (W', Z/2Z), then
Res}i/(a) is a cohomological invariant of W. Thus, for 0 < i < n, Res{},/(w;) is an
invariant of W and is still denoted by w;. Likewise, for 0 < i < n, Res%, (w;) is
an invariant of W and is still denoted by w;.

Theorem. Let kg be a field of characteristic zero. Letn > 4 and let W be a Weyl
group of type D,,. Then the H*(ko,Z/27Z)-module Invy,(W,Z/2Z) is free with basis

{wi - wito<i<(z],0<j<2(12)-i) and j even -
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Chapter 1

Galois cohomology

RESUME

Dans ce chapitre, on commence par définir le premier ensemble de cohomolo-
gie galoisienne d’un groupe et on rappelle que ces ensembles classifient diverses
structures algébriques, notamment les algebres étales, les algebres étales pointées,
les torseurs ou les algebres galoisiennes. Dans une deuxieme partie, on introduit
les groupes de cohomologie galoisienne dans le cas abélien munis notamment de
l'opération cup-produit, puis on donne les principales propriétés d’applications
nommeées résidus, qui joueront un role crucial tout au long de cette these. Dans
une troisieme et derniere partie, on définit les invariants cohomologiques et on
expose les principaux outils décrits dans [24], tels que, par exemple, les torseurs
versels.

1.1 Non abelian Galois cohomology

1.1.1 Cohomology of profinite groups

In this section, let us recall the basic results without proof. For further details,
we let the reader see [1], Chapter II.

For all this section, let I' be a profinite group. Recall that it is a topological
group which is isomorphic to the inverse limit of an inverse system of finite groups
(endowed with the product topology).
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Definition 1.1. Let A be a set endowed with the discrete topology. A left action
of I' on A is called continuous if the stabilizer of each element a € A

Stabr(a) ={y €T |v.a=a}
s an open subgroup in I

We call T'-set any set A endowed with a continuous left action of I'. We call T-
group any group A which is a I'-set and such that I' acts by group morphisms on
A. A morphism of I'-sets (resp. I'-groups) f : A — B is a map (resp. a group
morphism) such that, for any v € I and any a € A, f(v.a) = v.f(a).

Definition 1.2. Let A be a T'-group A. We call 0" cohomology set of T' with
coefficients (or with values) in A the set AU consisting of the T'-invariant elements
of A. We sometimes denote it by H°(T, A).

Definition 1.3. Let A be a I'-group. A 1-cocycle or simply a cocycle of I' with
values in A is a continuous map

a:I'— A
o™

such that, for all v,7" € T, ayy = ayy.cr. We denote by ZH(T', A) the set of
the cocycles of I' with values in A. The constant map ~v — 1 is called the trivial
cocycle.

Remark. If T trivially acts on A, then a cocycle is just a group homomorphism
from I' to A.

Lemma 1.1. Let A be a I'-group and let o : I' — A be a cocycle. For any a € A,

the map
a:I' = A

s aavfy.a*1

s also a cocycle.

Definition 1.4. Two cocycles o, o’ are cohomologous (denoted by o ~ o) if there
exists a € A such that o = ay.

It is easily seen that ~ is an equivalence relation on Z!(T', A).

Definition 1.5. We denote by H*(T, A) the set of equivalence classes Z'(I', A)/ ~
and we call it the first cohomology set of I' with coefficients in A.

The set H'(T', A) is a pointed set (i.e. a set with a distinguished element called
base point, here the cohomology class of the trivial cocycle 1).

14



Proposition 1.1. Let A and B be two I'-groups and let f : A — B be a morphism
of T-groups. Then, for any cocycle o € Z1(T', A), the map

6:I'—> B
v flay)

is a cocycle with values in B and the cohomology class of B only depends on the
cohomology class of o, which yields a map

f.: HY(T,A) - HY(T, B).

Let B be a I'-group and let A C B be a I'-subgroup. Let B/A denote the set of
the right cosets of B modulo A. Then B/A is a I-set and the natural projection
B — B/A yields by restriction a map B" — (B/A)'. Let us define a map
(B/A)' — HY(T', A). Let b.A € (B/A)". Since b.A is invariant by T, then for any
v €T, (7b).A = b.A and we have (b~17y.b).A = b~ L.(vb.A) = b~ 1.(b.A) = A, thus
a: v+ b ty.bis a map from I to A.

Lemma 1.2. This map is a cocycle with values in A and its cohomology class
does not depend on the choice of b in the coset b.A.

Before going further, let us define a morphism of pointed sets : let (E,e), (F, f)
be some pointed sets. A morphism of pointed sets ® : (E,e) — (F, f) is a map
® : £ — F such that ®(e) = f. We call kernel of ® the preimage of the base point
f and we denote it by Ker(®). Note that Ker(®) = 1 does not imply that the map
® is injective ! Finally, we say that a sequence of morphisms of pointed sets

(B,e) 2= (F, f) > (G,g)

is exact if Ker(¥) = Im(®).

Corollary 1.1. The induced map (B/A)" — HY(T', A) given by the previous con-
struction is a morphism of pointed-sets. We denote it by 6° and we call it 0"
connecting map.

Proposition 1.2. Let B be a I'-group and let A C B be a I'-subgroup. Then the
following sequence of pointed I'-sets is exact

1— AT Lg% (gAyT L g1, A) L BT, B) .

Corollary 1.2. There is a bijection between the kernel ker(H(T', A) — H(T, B))
and the orbit of the group BY in (B/A)' (where BY acts by multiplication on the
left on (B/A)Y).

Definition 1.6. If k is a field, the absolute Galois group I'y, = Gal(ksep/k) (where

ksep denotes a separable closure of k) is a profinite group. The ith Galois coho-
mology set is the group H'(T'y, A) and is denoted by H'(k, A) for i =0,1.

Note that we will define at section 1.2 some cohomology sets of any higher degree
when the I'-group is abelian.
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1.1.2 Galois cohomology of algebraic group schemes

This section and the following directly follows the approach of [12], VII,29. We
assume that the reader knows the scheme language (at least over a field). Unless
stated otherwise, all the schemes considered here are affine and we will not precise
it in general. Let us recall the definition of an algebraic group scheme : if k is a
field, let Alg; denote the category of the associative commutative unital k-algebras.

Definition 1.7. Let k be a field and let G : Alg, — AbGrps be a covariant functor
with values in the category of abelian groups. Then G is an (affine) algebraic group
scheme if it is representable as a functor Alg, — Sets by a k-algebra of finite type.

Let G be an algebraic group scheme over k. Then the absolute Galois group I'y,
of k continuously acts on G/(ksep). Hence, the cohomology sets H°(k, G (ksep)) and
H'(k, G(ksep)) are well-defined. Let us denote by

Hi(k,G) = H'(k,G(ksep)) for i =0, 1.

Note that, in particular, HO(k,G) = G(ksep)'* = G(k).

Any algebraic group scheme homomorphism f : G — H (which is nothing but a
morphism of functors) between two algebraic group schemes G and H, yields by
functoriality a I'y-homomorphism of G(ksep) in H (ksep) and so a group homomor-
phism HY(k,G) — H°(k, H) and a morphism of pointed sets

HY(k,G) — H(k, H).

Let us now give an important example of algebraic group schemes : the general
linear group.

Example 1.1. Let V be a finite dimensional k-vector space. We define the alge-
braic group scheme GL(V) to be the functor sending a k-algebra L to the group of
the invertible elements of the algebra Endi (V) ®x L (where Endi (V) denotes the
k-algebra of endomorphisms of V). Thus, we get that, for any k-algebra L,

GL(V)(L) = GL(V2)
where Vi, =V ®; L.

Let G be an algebraic group scheme over k and let p : G — GL(V) be a linear
representation of G (i.e. an algebraic group scheme homomorphism : for any k-
algebra L, we denote by p(L) the linear representation G(L) — GL(V7) given by
p). Let us fix v € V and let us identify V with a k-subspace of Viep = V' ®, ksep.

Definition 1.8. An element v € Vsep is called a twisted p-form of v if

V' = psep(9)(v)
for some g € G(ksep), with psep = p(ksep)-
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Let us now consider the category g(p, v) whose objects are the twisted p-forms of v
and whose arrows v/ — v are the elements g € G(ksep) such that peep(g)(v') = v”.
This category is a connected groupoid (i.e. every arrow has an inverse and there
exists at least one arrow between any two objects). Let us denote by A(p,v) the
groupoid whose objects are the twisted p-forms v’ of v that belong to V' (seen as
a k-subspace of Veep) and whose arrows v’ — v” are the elements g € G(k) such
that p(g)(v') = v". Hence, if X denotes the I'y-set of the objects of A(p,v), X *
is the set of the objects of A(p,v). Moreover, the set of the orbits of G(k) in XT*
is the set Isom(A(p,v)) of the isomorphism classes of A(p,v). It is a pointed set
with base point the isomorphism class of v.

Let us denote by Autg(v) the stabilizer of v. It is a subgroup of the algebraic
group scheme G. Since G(ksep) transitively acts on X, the I'y-set X is identified
with the set of the cosets of G(ksep) modulo Autg(v)(ksep). By Corollary 1.2, we
get a natural bijection between the kernel of H'(k, Autg(v)) — H'(k,G) and the
orbit X% /G (k). Thus, we get the following proposition.

Proposition 1.3. If H(k,G) is trivial, there is a natural bijection of pointed sets
Isom(A(p,v))=H"(k, Autg(v))

1.1.3 Classification of algebraic structures and first cohomology
sets

Let us recall Hilbert’s 90" Theorem (see [12], Theorem 29.2). Recall that a
separable algebra over a field k is a k-algebra which is isomorphic to a direct
product of finite dimensional simple (i.e. containing no non-trivial two-sided ideal)
k-algebras.

Theorem 1.1. For any associative separable k-algebra A, the first cohomology set
H'(k, GL1(A)) is trivial.

Let A be a finite dimensional k-algebra. The multiplication in A yields a linear
map v : A®; A — A. Let V denote the k-vector space Homy (A ®j A, A) and let
G = GL(A) be the linear group of A, seen as a k-vector space. Let us consider the
representation p : G — GL(V) given by

p(g)(W)(z@y) =gov' (g (z) ® g (y))

for any g € G, any v € V and any x,y € A. A linear map g € G is an algebra
automorphism of A if and only if p(g)(v) = v. Therefore, the algebraic group
schemes Aut,ig(A) and Autg(v) are equal. A twisted p-form of v is a k-algebra A’,
which is equal as a k-vector space to A (but not necessarily as a k-algebra), such
that the ksep-algebras A, = A’ ®p ksep et Asep = A @}, ksep are isomorphic. Hence,

by Proposition 1.3 and by Hilbert’s 90** Theorem, since GL;(End(V)) = GL(V),
we get the following result (see [12], 29.8).
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Proposition 1.4. The Galois cohomology set H'(k, Autag(A)) is in bijection with
the set of the isomorphism classes of the k-algebras A’ € Algy, such that
A/

~
sep _ksep

Asep.

Let us explicit the bijection : if 3 : Asepiﬁlgep is a ksep-isomorphism, the corre-

sponding cohomology class is represented by the cocycle
ay=p"o(ldoy)ofo(ldoy™)

for all v € I'y,. Conversely, a cohomology class represented by a cocycle « in
Z1(k,Autaig(A)) corresponds to the isomorphism class of

A ={z € Asep | ay 0 (Id @ 7)(x) = z,Vy € Tk}

Let us state the following corollary of Hilbert’s 90'" Theorem ([12], 29.5).

Corollary 1.3. Let k be a field and let K : V =V D Vi3 D --- DV be a flag
of finite dimensional k-vector spaces. Let also G be its algebraic group scheme of
automorphisms over k. Then H'(k,G) = 1.

Let k be a field and let us consider pairs (A, L) consisting of a k-algebra A and
a subalgebra L C A. An isomorphism of pairs (A’,L') ~ (A, L) is a k-algebra
isomorphism A’ ~ A which restricts to an isomorphism L' ~ L. Let G be the
group scheme of automorphisms of the flag of vector spaces A D L. The group G
acts on the space Homy (A ®j A, A) as in Proposition 1.4 and, if m: A®; A — A
is the multiplication map, the group scheme Autg(m) coincides with the group
scheme Aut,ig(A, L) of automorphisms of the pair (A, L). Since H'(k,G) = 1 by
Corollary 1.3, Proposition 1.3 yields the following result (see [12], 29.12).

Proposition 1.5. The Galois cohomology set H'(k, Autag(A, L)) is in bijection
with the set of the isomorphism classes of the pairs (A’, L") defined above such that

(A/’ L/)sep :ksep (A7 L)sep'

Etale algebras

Let us recall the definition of an étale algebra (see [2], V.34 Théoreme 4, V.29
Corollaire, V.47 Proposition 1 and V.36 Proposition 3 for proofs and further de-
tails).

Proposition 1.6. Let L be a finite dimensional commutative k-algebra. The
following assertions are equivalent :

(i) L ~ Ky x --- X K, where, for i = l..r, K;/k is a finite separable field
extension of k.
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() Ly ~ ksep X -+ X ksep

(iii) the quadratic form
qr. : L — k

T TrL/k(a;Q)

is non-degenerate.
(iv) the order of the set X (L) = Homy, (L, ksep) is exactly dimy(L).

If moreover the field k is assumed to be infinite, conditions (i) to (iv) are equivalent
to :

(v) L ~Ek[X]/(f), where f is a polynomial with coefficients in k with only simple
roots in an algebraic closure of k.

Definition 1.9. We say that a k-algebra L is étale if it satisfies one of the equiv-
alent assertions of Proposition 1.6 and the integer dimy(L) is called the degree or
the rank of L .

Note that it directly follows from Proposition 1.6 that étale algebras remain étale
after scalar extension.

Proposition 1.7. The Galois cohomology set H'(k,&,,) is in bijection with the
set of the isomorphism classes of étale k-algebras of degree n. Moreover, the
cohomology class of the trivial cocycle is sent on the isomorphism class of the split
k-algebra k™.

Note that we consider G,, as a constant algebraic group scheme here with a trivial
action of the absolute Galois group on &,,(ksep) = &,. We let the reader refer to
[12], 29.9 for another proof.

Proof. Let n > 1 and let A = k x --- x k = k™. The k-algebra A is clearly
étale with degree n and Asep = kg, SO the k-algebras A’, such that the Keep-
algebras A’ ®j, keep and kep, are isomorphic, are exactly the étale k-algebras. By
Proposition 1.4, we have to compute the ksep-points of the algebraic group scheme
Autaig (k™). Any ksep-algebra automorphism of kg, sends an idempotent (i.e. an
element e of kg, such that e? = e) to an idempotent. Yet any idempotent of
kep may be written ey = ) e;, where I belongs to the subsets of {1,...,n} and
el
where {e; }ics denotes the canonical basis of kg, (as a ksep-vector space). Since the
formula ej.e; = ejny is obvious, it is now clear that to determine a ksep-algebra
automorphism of kg, is the same as to determine the images of the e;, i = 1...n.
Let f be a ksep-point of Autag (k™). Then f(e;) = ey, for some I; C {1,...,n}. Since
f is injective and f(0) = 0, for all i = 1...n, f(e;) # (0, ...,0), which proves that I;
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is non-empty. Furthermore, if i # j € {1,...,n}, 0 = f(e;.€j) = ef,.e; = epni;, SO
I; N I; = (). Eventually, we get that 'UIIi ={1,...,n} since
1€

n n n

L) = fL ) = FQ ) =Y fle) =Y e, =eun 1,

=1 =1 =1

(we used the obvious formula e + e; = ejuy). Hence, (I,...,I,) is a partition
of the set {1,...,n} with no empty term. Thus, each I; is a singleton and f
permutes the e; for ¢ = 1...n. Therefore, the set of the ksep-points of Aut,ig(k™)
injects into &,. Moreover, if 0 € &, the algebra homomorphism e; — e, ;) is
an automorphism. It then shows that the group of the ksep-points of Autyg (k") is
isomorphic to &,. This concludes the proof of Proposition 1.7.H

Pointed étale algebras

Let k be a field of characteristic different from 2. We call pointed étale k-algebra
of rank n any couple (L, «) with L an étale k-algebra of rank n and « a square-
class in L*. Let L,L’' be étale k-algebras of rank n and let a,a’ be square-
classes respectively in L™ and in L’*. A morphism of pointed étale algebras
(L,a) = (L', /) is a homomorphism f : L[y/a] — L'[v/&/] of k-algebras such that
f(L) € L' and f(v/a) = W</ for some A € L’ (note that by L[y/a], we mean the
k-algebra k[X]/(X? — «)). Note that you can find a proof of the following result
in [22].

Proposition 1.8. Let k be any field of characteristic different from 2. The set of
the isomorphism classes of the pointed étale k-algebras of rank n is in bijection with
the set H' (k, W), where W is a Weyl group of type By, (see Appendiz A). Moreover
the cohomology class of the trivial cocycle is mapped onto the isomorphism class
of the pair (K™, 1).

Proof. By Proposition 1.5, as the pairs (L,«) are exactly the twisted k-forms
of (K™, 1) up to isomorphism, we just have to see that the automorphism group

of (k™,1) is W. Note that k"[v/1] = k?” and that Autg(k*") = &s,. Let us call
1,2,...,2n the 2n factors of k%" and let us consider the elements of Aut(k",1) as
permutations of {1,...,2n}. We have the morphism

D : Autg(k™, 1) — Autgk”

Then it is easily seen that Ker(®) consists of the permutations fixing the subsets
{1,2},{3,4},...,{2n—1,2n}. Thus Ker(®) is isomorphic to (Z/2Z)". It yields the
exact sequence

1 —— (Z)2Z)" — Auty(k", 1) —2> &, —= 1.
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Moreover, the inclusion &,, = Autg (k™) < W splits this exact sequence and &,
acts on Ker(®) by permuting the subsets {1,2},{3,4},...,{2n — 1,2n}. Therefore
Autg(E™, 1) ~W. R

More explicitely, the isomorphism class of (L, «) is represented, as a cohomology
class, by the cocycle

. I'n—->WwW
Ple' ., ((e1(7)s - €n(7)), o)

where, for any v € T'y:

o, is the permutation induced by the action of v on X (L) = Hom(L, keep)

€i(7) = 1if v does not exchange factors 2i — 1 and 2i in L[/a] ®p ksep ~ k22,
€i(y) = —1 otherwise.

Interpretation of H'(k, W) when W is a Weyl group of type D,

Let n > 4, let W be a Weyl group of type D,, (see Appendix A). We associate to
W its root system
S={xe;+ej|1<i<j<n}.

Let us denote by W' the Weyl group of type B,, corresponding to the root system
S ={tei,x(eite;) |, 1 <i<n,1<j#i<n}
We clearly have an inclusion W C W’. More precisely, W is the kernel of the map

p: W 727

Let k be a field of characteristic different from 2. As we saw in the case of a Weyl
group of type B, (see Proposition 1.8), the pointed set H'(k, W') classifies pairs
(L, ) up to isomorphism where L is étale of rank n and « a square-class in L*.

Proposition 1.9. The image of the map H'(k,W) — H'(k,W') corresponds
to the pairs (L,a) such that any representative of o has norm 1 in L over k.
Moreover, the image of the cohomology class of the trivial cocycle corresponds to
the isomorphism class of the pair (k™ 1).

Proof. By Proposition 1.2, we have the following long exact sequence :

oo > L)27 — HY(k, W) — HY(k,W') = H'(k,7Z/27).
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The image of H'(k, W) — H*'(k, W) is then equal to the kernel (i.e. to the preim-
age of 1) of H'(k,W') — H(k,Z/27). Let us write H'(k, W') — H(k,Z/2Z) in
terms of pointed étale algebras. Let us recall that the bijection

kX k2 ~ H'(k,7./27)

is given by : for any b € k*, the square-class of b maps to the cohomology class
of the cocycle p, where
©p - Fk — Z/QZ
L 10
Vb
Let (L,a) € H'(k, W'). We want to find 8 € kX /k*? such that, if b € kX denotes
a representative of 3, for every v € I'y,

&)
1

(V) _
Vb

n

(2

Note that this quantity does not depend on the choice of such a representative in
the square-class f.

Let a € L* be any representative of . Let us show that b = NL/k,(a) agrees.
n

Then Ny, /i (a) = []a; where the a; are the images of a by the different morphisms
i=1

from L to ksep. Let v € I'y. We have : 7(\%5) =11 7(‘/@ and, as \/a generates
b iy V)
E = L[\/a] over L,
E @ ksep = ksep(\/a) XX ksep(\/ an),
r(Vai)

S0 e is equal to 1 if v does not exchange the two factors of ksep(1/ai) ~ kSer,

—1 otherwise. Therefore, it is equal to €;(7).

To conclude, the cocycle image of (L, «) (with values in Z/27) corresponds to the
square-class of Ny, /;(a) and then the kernel of the map HY(k,W') — HY(k,7/27)
consists of the pairs (L, a) such that the square-class of Ny, /;(a) is trivial (where
a denotes any representative of o in L*). ll

In the sequel, we will denote by Ny () the square-class of Ny, /i(a) where a is
a representative of a in L*. Note that triples (L, «,0r.q) (where L is an étale

k-algebra, a a square-class such that Ny /(o) =1 and 9L o @ k(1/Npjp(a)) — k2

an isomorphism of k-algebras) are classified by the cohomology set H'(k, W), up
to a good notion of isomorphisms on these triples (see [13]).
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1.1.4 Torsors and Galois algebras

This section is directly inspired from [12], 18.B and 28.D.

G-torsors and H'(k,G)

Definition 1.10. Let k be a field and let G be a T'-group. A G-torsor T over k is
a non-empty I'y-set endowed with a simply transitive right action of G, compatible
with the action of I'y, i.e. for any v €Ty, any g € G and anyt € T,

7.(29) = (v.2)?.

Let us denote by G — Torsp, the set of the G-torsors over k. A morphism of
G-torsors is a map which is G-equivariant and I'j-equivariant.

Example 1.2. If o € Z!(k,G) is a cocycle, let us endow the set T, = G with the
following I'y, and G-actions : for any v € I'y and any x,g € G, Yxq * = ay.2 and
29 = xg. Then T, is a G-torsor over k.

In fact, every G-torsor is isomorphic to a torsor 7 :

Proposition 1.10. The map o — T, yields the following bijection :

H'(k,G)~Isom(G — Torsr, ).

Galois algebras

In this paragraph, G is a finite group considered here as a constant algebraic
group scheme. We consider étale k-algebras L endowed with an action of G by
k-automorphisms. Such algebras are called G-algebras over k. Let us denote by
L% the subalgebra of the G-invariant elements

L¢ ={z e L|VgeqG, g(x) ==z}

Let L be a G-algebra over k and set X (L) = Homy (L, ksep). Then X (L) is a I';-set
and the map
Auty(L) — Auty(X (L))

a— (E—foa)

is a group isomorphism, with Auty(X (L)) the set of the bijections of X (L) com-
patible with the I'y action.

Proposition 1.11. Let L be a G-algebra over k. Then LS = k if and only if G
acts transitively on X (L).

Definition 1.11. Let L be a G-algebra over k such that | G |= dimi(L). We say
that L is a Galois G-algebra if LY = k.
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By Proposition 1.11, a G-algebra L over k is Galois if and only if | G |= dimg(L)
and the G-action on X (L) is simply transitive, which is equivalent to the fact that
X(L) is a G-torsor over k.

Example 1.3. Let L be a Galois G-algebra over k. If L is a field, we get that
G = Autajg, (L). Therefore, we have a Galois G-algebra structure on a field L
if and only if L/k is a Galois field extension isomorphic to G. The G-algebra
structure is then given by an isomorphism G ~ Gal(L/k).

Furthermore, we have the following correspondence.

Proposition 1.12. Let G be a finite group. The categories of Galois G-algebras
and G-torsors are anti-equivalent. In particular, for any field k, the set H'(k, Q)
classifies Galois G-algebras up to isomorphism.

1.2 Abelian Galois cohomology

Let us recall the construction of the higher Galois cohomology groups in the abelian
case. For further details, we let the reader refer to [1], Chapter II and [20].

1.2.1 Higher profinite cohomology groups
Let I be a profinite group.

Definition 1.12. We call I'-module any abelian I'-group.

Let A be a I'-module. Note that the set Z!(I', A) of the 1-cocycles of I' with
coefficients in A is an abelian group with the pointwise multiplication of maps.
Since this operation is compatible with the cohomology equivalence relation, the
set H(T', A) inherits of an abelian group structure.

Let n > 0 and let denote by C™(I', A) the set of continuous maps from I'" to A
(note that by convention C%(T', A) = A). Let us define a map

d, : C"(T', A) — C"T(T, A)
by induction by : for any a € A,
do(a) : v+ v.a — a,

for any f € C™(T, A),

n .
dn(f) : (717 -~-7'Yn+1) = 71‘f72,---77n+1+ 2(_1)1f717---,%%+17---7%+1+(_1)n+1f71,---,7n-
1=

24



Definition 1.13. A n-cocycle of T' with values in A is a continuous map «
in C™(I', A) such that dp(a) = 0 and oy, , = 0 whenever v; = 1 for some
ie{l,..,n}.
A map o € C™(T',A) is a n-coboundary of T' with values in A if there exists
B € C" YT, A) such that a = dp—1(B) and By, ~, = 0 whenever v; =1 for some
ie{l,..,n}.

Note that, for n = 1, the notion of 1-cocycle is exactly the notion of cocycle, de-
fined in Section 1.1. Note also that by convention, a 1-coboundary is a continuous
map in the image of dy : A — CH(T, A).

We denote the set of n-cocycles by Z™(I', A) and the set of n-coboundaries by
B"(I', A). Tt is easily checked that Z™(I', A) is an abelian subgroup of C™(T", A)
and that B™(I', A) is a subgroup of Z"(I', A) (we have d,,d,—1 = 0).

Definition 1.14. The quotient group Z™(I', A)/B™(I", A) is denoted by H™(T', A)
and called the n'™ cohomology group of T' with coefficients in A. Moreover, two
n-cocycles are cohomologous if they have same image in H"(T', A).

The constant map
m—aA

(Y15 ey Yn) — 1

is a n-cocycle and is called the trivial n-cocycle.

Proposition 1.13. Let A, B be I'-modules and let f : A — B be a group morphism
compatible with the I'-actions and let n > 0. For any n-cocycle o € Z™(T', A), the
map fi(a) = foa is a n-cocycle and the map

fx : HY(I',A) - H"(T, B)
[o] = [fi(@)]
is a well-defined group morphism.

Proposition 1.14. For any short exact sequence of I'-modules

0 At

B—21-C 0,

there are some group morphisms 6" : H"(I',C) — H™(T',A) called connecting
maps such that the following long sequence starting from n = 0 is ezact.

0> — = BT, A) L~ BT, B) %~ H"(T,C) —> H" (T, A) — ...
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Relations to subgroups

Let T be a group, let IV be a subgroup of I" and let A be a I''module. Let us
denote by ¢ : IV — T" the inclusion map. Then A also is a I'-module, I acting on
A by restricting the action of I'. For any n-cocycle o € Z"™(T", A), it is easily seen
that the map & : (7],...,7,) F @y . belongs to Z"(I", A). Furthermore, the
following proposition holds.

Proposition 1.15. Keeping notation above, for any integer n > 0, the map o — «
yields o map H™(T, A) — H"(I", A), called restriction map and denoted by Res- .

Note that when n = 0, the restriction map is the inclusion map A — AT "

Let now IV be an open subgroup of T' of finite index m in I" and let A be a I'-
module. Then, for any n > 0, we can construct maps H"(I'V, A) — H"(T', A) called
corestriction map and denoted by Corll:l via the cocycles. We just give here the
construction in degree 0 (the reader may refer to [8] for the general construction).
Let {v1,...,7m} be a system of representatives of the cosets of I' modulo I". In
degree 0, the map is given by

Al AT
m
a nyj.m
j=1
Proposition 1.16. Let I' be a profinite group, let IV be an open subgroup of T’
that has finite index m in I' and let A be a I'-module. Then the map
Coro Res: H"(I', A) —» H"(T', A)

is the multiplication by m for any n > 0.

Cup-products

Let I' be a profinite group and let A and B be I'-modules. We endow the tensor
product A®y B of the following I'-module structure : for any a € A, for any b € B
and for any y € ', 7.(a ® b) = (v.a) ® (7.b).

Proposition 1.17. Let i,j > 1, let « € ZY(T,A) and 8 € ZI(T,B) be two
cocycles. The map

't 5 A®, B

(V15 oo Yikg) = Qs @17 "Yiﬂ%+17---m+j
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is a (i 4+ j)™" cocycle and its cohomology class only depends on the cohomology
classes of a and B. Moreover, the induced map

. HY(I',A) x H'(T,B) - H" (', A ®z B)
18 Z-bilinear.
Definition 1.15. This map - is called the cup-product.

Note that for i = j = 0, the cup-product is the natural map A" x BY — (A® B)'.

The cup-product satisfies the following functorial properties : for any 4,5 > 0 and
any morphism of I'-modules A — A’, the following diagram commutes

HT, A) x HI(T,B) — H"*(T,A® B) .

| |

H(T',A') x HI (T, B) — H"I(T', A' © B)

Note that similar diagrams commute in the second variable.

Proposition 1.18. The cup-product is an associative, anti-commutative, Z-bilinear
and graded operation (note that by anti-commutative, we mean a-b = (—1)7(b-a)
where we identify A ® B with B® A).

More generally, given three I'-modules A, B, C' and a I’-homomorphism Ax B — C,
we also call cup-product the pairings

HYT',A) x H(I', B) - H" (T, C)

(by composing the cup-product defined above with H**/(T', A® B) — H**(T, C)).

Abelian Galois cohomology

To end this paragraph, let us apply these cohomological constructions to Galois
groups. Let k be a field. Recall that Ty, denotes its absolute Galois group. As
already said in Section 1.1, I'y is a profinite group. Let also C be a I'y-module.
For any integer n > 0, we denote by H"(k,C') the cohomology group H"(I'y,C).
For any n > 0 and any separable field extension K /k (resp. finite separable field
extension), we also denote by Resy /s, (resp. by Corg ;) the restriction map (resp.
corestriction map) of K/k.
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1.2.2 Galois cohomology modulo 2

Let k be a field of characteristic different from 2. By definition, if [a] and [3] are
in H"(k,Z/2Z), then [a] + [f] = [af]. In particular, 2[a] = 0. Let us identify the
first cohomology group H'(k,Z/2Z) (see for instance [1]).

Proposition 1.19. The cohomology group H'(k,7/27) is isomorphic to kX /k*?.

More precisely, for any a € £, let us denote by z, € k&, satisfying 22 = a. For
any v € I'y, there exists a unique e, € Z/2Z such that

’7;7;11) _ (71)5,‘

Then the abelian group homomorphism
kX — HY(k,Z/27)
arr (v ey)
is surjective and has kernel k*2.
If a € kX, we denote by (a) the cohomology class in H'(k,Z/27) in correspon-

dence with square-class of a in k* (via the previous identification). Therefore, we
have the equality (ab) = (a) + (b) for any a,b € k*.

Moreover, the map
7)27 X L]27 — Z.]27

(€1,€2) > €162

is Z-bilinear so we will consider in the sequel the cup-product
- HY(k,Z/27) x H'(k,7./27) — H" (k,7/27).

Let us end this section by giving useful formulae for the cup-products of cohomol-
ogy classes in H'(k,Z/27).

Proposition 1.20. For all a,b € k™, the following properties hold :
(1) (a)-(b) = (b) - (a).
(it) (a) - (b) =0 if and only if b is a norm of k(y/a)/k (where k(\/a)/k =k if a

is a square in k*).
(iii) (a) - (1—a) =0
(iv) (a)-(—a)=0
(v) (a)-(a) = (a) - (-1).
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1.2.3 Residue maps

We let the reader refer to [10], Chapter 6 for the general construction of the residue
maps in Galois cohomology. This section follows the approach of [24], Chapters
IT and TII.

Residue map for the Galois cohomology of a local field: the complete
case

Let K be a field endowed with a discrete valuation v. Let us denote by k the
residue field with respect to v. We set ' = Gal(Ksep/K) and I'y = Gal(ksep/k).
Assume that K is complete. The valuation v extends uniquely to Ksep and the
residue field of Kiep is an algebraic closure of k. This yields a surjection I'xr — I'y..
Let us denote by I its kernel, and let us call it the inertia group of (K,v). Then
the exact sequence

1 Ik I'g Iy 1
is split.
For the end of this section, let C' be a finite I',-module whose order is non-divisible

by the residue characteristic. Then C is also a I'k-module with trivial action of
1.

Theorem 1.2. For any integer ¢ > 0, there exists a map
ri s H(K,C) — H™ ' (k, Hom(Ix, C))
such that the sequence
0——> Hi(k,C) —> HY(K,C) ——= H""Y(k, Hom(Ix,C)) —=0 (1.1
15 ezxact.

Let n be an integer not divisible by the characteristic of the residue field k£ and
such that nC' = 0. We set C(—1) = Hom(uy,,C) where Hom denotes here the
continuous homomorphisms. This I'y-module is called the —1*-Tate’s twist of C.
Note that this definition does not depend on the choice of n. We may show that

C(—1) ~ Hom(Ig,C).
We can then write the exact sequence (1.1)
0 — Hi(k,C) —"> H(K,C) ——= H" 1 (k,C(~1)) —0. (1.2)

For any o € H'(K, C), the element r;() is called the residue of a. For z € K*,
we denote by (z), the class of z in K*/K*" = H'(K,p,). We then get the
following decomposition
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Proposition 1.21. Let 7 be a uniformizing element of K. Every a € H' (K, C)
may be uniquely written as

a=ag+ (7)), - a1,

with ag € H'(k,C) and oy € H 1 (k,C(—1)). Moreover, r;(a) = .

Residue map for the Galois cohomology of a local field: the non-
complete case

Let us consider now a more general situation : we do not assume anymore that
K is complete. Keeping the previous notation, we choose an extension v of the
valuation v from K to K (it is not unique but two such extensions are conjugate).
Let us denote by Decy the corresponding decomposition group {7y € I'x | 7v.v = v}.
Let us denote by K, the completion of K for the valuation v and by Kz the
completion of Ksep with respect to v. The subfield Ksep. K, is the biggest algebraic
subextension of K, in Ksp3. By Krasner’s Lemma, Ksep. K, is separably closed.
We then identify it with (K )sep. We have

Decy = Gal(Ksep. K/ Kyy) = Gal((Ky)sep/ Ky) =Tk, -

Let C be a finite I'-module whose order is non-divisible by the characteristic
of k. Assume that C is "unramified” at v, i.e. that the inertia group of Decy
trivially acts on C. Let o € HY(K,C) and let us denote by «, its image in
H(K,,C) = H'(Decy,C). We define the residue 7,(a) of a to be the residue of
a, in H=1(k,C(—1)) (note that K and K, have the same residue field k).

Definition 1.16. If r,(«) # 0, we say that « is ramified at v. If r,(a) = 0, we
say that « is unramified at v. In the latter case, o, may be identified with an
element of H'(k,C), denoted by a(v) and called the value of o at v.

Hence, we get two canonical maps which link the Galois cohomology of K to the
Galois cohomology of its residue field k, with respect to the valuation v :

ry: H(K,C) — H7Y(k,C(~1))

the residue at v and _
ker(ry,) — H'(k,C)

the value at v. When K is complete, the exact sequence (1.2) implies that the
residue map is surjective and that the value map is an isomorphism.
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Residue maps and restriction maps

Let us now state a functoriality property for the residue maps. Let (K, v) be a
field endowed with a discrete valuation. Let us denote by k its residue field. We
do not assume K to be complete for v. Let C be a finite I'x-module with order
prime to the residue characteristic which is not ramified at v. Let K'/K be a field
extension and let v" be an extension of v to K’, with ramification index e and
residue field &’. We have the residue maps r, : H(K,C) — H*"*(k,C(-1)) and
v H(K',C) — H=Y K, C(-1)).

Proposition 1.22. Residue maps are compatible with restriction maps:

(i) the following diagram commutes

H(K,C) —= H"Y(k,C(-1))

HI(K',C) =" H=L(K,C(~1))

where the right vertical map is given by the multiplication by e of the natural
map H=Y(k,C(-1)) — H=Y K, C(-1)).

(i) The following diagram commutes

ker(r,) — Hi(k, O)

.

ker(ry) — H(K',O)

Residue map for the Galois cohomology of a rational field

Let k be a field. Let us first consider the Galois cohomology of k(t), where ¢ is an
indeterminate over k. Let P; = Py(k). The function field of Py is K = k(t). A
closed point P of Py identifies with a discrete valuation v on K, which is trivial
on k given by

v:K—=7Z

f = ordp(f)
Let V be the set of these valuations. Assume that C is a finite I'y-module whose
order n is not divisible by the characteristic of k. Let us denote, for any v € V, by

K, the completion of K at v. It is a local field and its residue field k(v) is a finite
extension of k. We then have a residue map r, : H'(K,C) — H* ! (k(v),C(-1)).

Lemma 1.3. Let a € H(K,C). The set of the valuations where « is ramified is
finite.
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Therefore, the following map is well-defined :
Dry Hl(K7 C) - & Hi_l(k(v)7c(_1))
veV
a = (ry(a))vev-

Theorem 1.3. The following sequence is exact

0—= Hi(k,C) —= H(K,C) —2"*s eEBVHi—l(k(v), C(~1))

¢~ H=(k,C(-1)) ——0,

where ¢ denotes the direct sum of the corestriction maps
Cor: H Y (k(v),C(=1)) — H " (k,C(-1)).

Definition 1.17. An element of H'(K,C) is constant if it lies in the image of
Hi(k,C) — H(K,C). The equation co (®r,) = 0 is called the residue formula.

The point at the infinity of P; defines a place denoted by oo, with residue field
k(oo) = k. The corresponding corestriction map is then the identity. Hence, we
get from Theorem 1.3:

Corollary 1.4. The following sequence is exact

D Tv
0— = Hi(k,O) "= H'(K,N L @ H(k(v),0(-1)) —0.
veV\{oo}

Definition 1.18. An element o € H'(K, C) is unramified (resp. unramified out-
side 0,00) if its residue at any v € V' (resp. at any v € V' \ {0,00}) is zero.

By the residue formula, « € H'(K,C) is unramified if its residues over the affine
line are all zero. We denote by H{  (K,C) (resp. by H! (K,C)) the

unr unr, outside{0,00}
corresponding group. Corollary 1.4 shows that any unramified element « belongs

to H'(k,C), which means that H} (K,C)= H'(k,C).

unr

If « € H' (K,C) has residue a; € H* " 1(k,C(—-1)) at 0, then the

unr, outside{0,00}
cohomology class o — (t),,.1 is unramified.

Corollary 1.5. Let o € Hfmn outside{0 OO}(K, C). Then « may be uniquely written

g + (t)n.c1, with ag € H'(k,C) and oy € H~1(k,C(~1)). Moreover, we have
Too (@) = .
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To end this section, let us generalize these results to the Galois cohomology of
E(t1,...,tn). Recall that C is a finite I'y-module with order prime to the charac-
teristic of the residue field.

Theorem 1.4. Let n > 1 and let K = k(t,...,ty) be a rational field with n
indeterminates.

(i) The natural map H'(k,C) — H'(K,C) is injective.

(ii) Let « € H'(K,C) be an element whose residues are zero at any discrete
valuations of K, which are trivial on k (they correspond to the irreducible
hypersurfaces of the affine space AfF™ of dimension n). Then « is constant
(i.e. lies in the image of the map H'(k,C) — HY(K,C)).

1.3 Cohomological invariants

Let us now introduce the notion of cohomological invariants (we still follow here
the approach of [24], Chapter I). Let ko be a field and let G be a smooth algebraic
group scheme over kg. We consider the functor H'(./kg, G) from the category of
the field extensions of kg to the category of the sets, given by

HY(./ko,G) : k/kog — H' (Ek, Q).

Let now C be a finite I'y-module whose order is not divisible by the character-
istic of kg. We denote by H*(./kg,C) the functor from the category of the field
extensions of ky to the category of the abelian groups, given by

H*(./ko, C) : k/ko > H*(k,C) = EDH'(k,C).
i>0
Since we have seen in the previous section that the functor H is quite well under-

stood, we want to understand the functor A thanks to the functor H.

Definition 1.19. A cohomological invariant of G over ko with coefficients in C' is
a morphism of functors from H(./ko, G) to H*(./ko,C) is called a cohomological
invariant of G over ko with coefficients in C'. The group of all these cohomological
invariants is denoted by Invy, (G, C).

Note that we consider the functor H*(./ko, C') with values in the category of sets.
Rephrasing Definition 1.19, a € Inv, (G, C) if and only if, for any extension k/ko,
there is a map ay, : H'(k,G) — H*(k,C) and if for any extensions k/kq and k' /k,
the following diagrams commute

H'(k,G) —> H*(k,C) .

| l

HY(K,G) 2~ H* (K, C)
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Definition 1.20. Let o € H*(ko, C). For any extension k/ko, let (a®)y, be the con-
stant map with value the image of a by the restriction map H*(ko,C) — H*(k,C).
These maps clearly define an invariant a, called a constant invariant.

It then yields a natural embedding H*(ko, C) < Invg, (G, C).

Definition 1.21. An element a € Inv, (G, C) is normalized if ax,([1]) = 0, where
[1] denotes the cohomology class of the trivial cocycle in H'(ky, G).

Proposition 1.23. Every cohomological invariant a € Inv, (G, C) may be writ-
ten in a unique way as the sum of a constant invariant and a normalized invariant.

1.3.1 Cohomological invariants and ramification

Before going further, let us give the more general definition of a torsor over a
smooth variety.

Definition 1.22. Let G be a smooth algebraic group scheme over kg and let X be
a smooth variety over kg. A G-torsor over X is a locally flat scheme T of finite
type over X such that G acts freely (at right) on T and such that the map

GXXT—)TXXT
(9:1) = (¢, %)

s an tsomorphism.

Let K/ko be a field extension with a discrete valuation v on K. Let us denote by
R its valuation ring and by k its residue field. Assume that R contains kg; thus,
R, K and k are kg-algebras (for k, via the compositum ky — R — k). Assume
moreover that K is complete for v.

Let T}, be a G-torsor over k. Then there is a G-torsor over R denoted by Tr whose
special fiber is T}, and this torsor is unique up to isomorphism (see [7], p.401,
Prop. 8.1). Furthermore, since every G-torsor over R yields by basis extension
a G-torsor over K, this defines a map i : H'(k,G) — H'(K,G). We then state
Rost’s compatibility theorem (see [24], 11.1).

Theorem 1.5. If a € Inv, (G, C), the following diagram commutes :

H'(k,G) —~ H'(K,G),

H(k,C) —~ H(K,C)

where j denotes the natural map induced by the quotient map I'xy — T'y.
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We do not assume anymore that K is complete. It is still true that every G-torsor
T over R yields a G-torsor T over k and a G-torsor Tk over K. We have the
following result (see [24], 11.7).

Theorem 1.6. For any a € Inv, (G, C), if a denotes a(Tk), then

(i) the residue of o at v is zero.

(ii) the value of o at v is a(T}).

1.3.2 Cohomological invariants and versal torsors
Let us define the notion of versal torsor (see [24], 5.1).

Definition 1.23. Let ko be a field and let G be a smooth algebraic group scheme
over ko. A wersal G-torsor is a G-torsor P over an extension field K/ky such
that there exist a smooth irreducible variety X over kg with function field K and
a G-torsor Q — X with basis X satisfying the two following properties :

(i) the fiber of Q at the generic point of X is P;

(ii) for any field extension k/ko with k infinite, for any G-torsor T over k and
for any open non-empty subvariety U of X, there exists x € U(k) whose fiber
Qz 1s isomorphic to T (i.e. the set {x € X(k) | Qg >~ T} is dense in X ).

Then a cohomological invariant is uniquely determined by its value on a versal
torsor (see [24], 12.3).

Theorem 1.7. Let kg be a field, let G be a smooth algebraic group scheme over
ko and let P € HY(K,G) be a versal torsor over ky. Let a,b be two cohomological
invariants in Invg, (G, C). If a(P) = b(P) in H*(K,C), then a = b.

Note that Theorem 1.7 shows that the map

Inv(G,C) - H*(K,C)
a — a(P)

is injective. Hence, we may see the set Invy, (G, C) as a subgroup of H*(K,C).
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Chapter 2

Examples

RESUME

Dans ce chapitre, on fournit des exemples explicites d’invariants cohomologiques,
en rappelant d’abord les résultats de Serre sur les invariants cohomologiques des
groupes 2-élémentaires, du groupe orthogonal et du groupe symétrique. En partic-
ulier, on définit les invariants de Stiefel-Whitney pour les formes quadratiques ainsi
que pour le groupe symétrique et qui forment une base du module des invariants
cohomologiques de ces groupes. Ensuite, on calcule explicitement les invariants
cohomologiques du groupe alterné 25 et du groupe de Coxeter exceptionnel de
type Hs, puis des groupes diédraux D, ou n n’est pas divisible par 4 et enfin du
groupe diédral Dy, isomorphe au groupe de Weyl de type Bs.

2.1 Cohomological invariants of 2-elementary abelian
groups

This section follows the approach of [24], 16. We only consider here invariants with
coefficients in Z/pZ, where p is a prime number different from the characteristic
of the base field ky (most of time, we will take p = 2). In this situation, the cup-
product endows the group Invy, (G,Z/pZ) with the structure of a H*(ko,Z/pZ)-
module. In the sequel, we describe this module structure in several cases.
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2.1.1 Cohomological invariants of Z/27Z

In this paragraph, all the fields considered have characteristic different from 2.
Recall that, for any field & (of characteristic different from 2),

HY(k,Z/2Z) ~ k> JE*?

(see Section 1.2.2). Let ko be a field. It is easily seen that, for any field extension
k/kg, the maps
H'(k,7./27) — H°(k,Z/27),

p—=1
yield a cohomological invariant of Z /27, denoted by 1. Likewise, for any extension
k/ko the identity maps
id: H'(k,2/22) — H'(k,Z/27)

also yield a cohomological invariant of Z/27Z, denoted by id.
We then have the following result (see [24], 16.2)

Proposition 2.1. The H*(ko, Z/2Z)-module Invy,(Z/2Z),7/27Z) is free with basis
{1, id}.

2.1.2 Cohomological invariants of a direct product of groups

Let G and G’ be smooth algebraic group schemes over kg and let p be a prime
number different from char(kg). We set C' = Z/pZ here. Then we have the
following statement (see [24], Exercise 16.5).

Proposition 2.2. Let us assume that there exists a family (aj)jes of elements
of Invy, (G,Z/pZ) such that, for every field extension k/kgy, the images of the a;
(5 € J)in Invi(G,Z/pZ) form an H*(k,Z/pZ)-basis of Invi,(G,Z/pZ). Then there
is an H*(ko,Z/pZ)-linear automorphism

Invi, (G, Z/pZ) ® H* (ko 2, /pZ) Inv, (G',Z/pZ) =~ Invy, (G x G',Z/pZ).

Proof. Since, for any extension k/ko, H'(k,G x G') ~ H'(k,G) x H'(k,G’), we
denote the elements of H!(k,G x G') by pairs of cohomology classes (a, o) with
a € H'(k,G) and o/ € H'(k,G").

If a € Inv,(G,Z/pZ) and o' € Invy,(G',Z/pZ), we can define a cohomological
invariant a - a’ of Invy, (G x G',Z/pZ) via the maps

ay - aj : H'(k,G x G') — H*(k,Z/pZ)
(o, &) = ax(a) - ai(a)
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where k runs through all field extensions over kg. This yields a map © from
Invi, (G, Z/pZ) x Invg, (G',Z/pZ) to Invy, (G x G',Z/pZ). Since the cup-product
endows the groups Invy, (G,Z/pZ) and Invy,(G’,Z/pZ) with the structure of an
H*(ko,Z/pZ)-H*(ko, Z/pZ)-bimodule, then the cup-product endows the tensor
product Invy, (G, Z/pZ) @+ (ko z./pz) '0WVEo (G, Z/pZ) with the structure of a module
over H*(ko,Z/pZ). Moreover, since the cup-product is Z-bilinear and associative,
the map © is H*(ko, Z/pZ)-bilinear. We then get from © a map

ca,cr Wi (G, Z/DL) @ e (g 2. /pz) 10Wio (G, L/ PL) — Invyy (G < G, Z/pZ),

which is H*(ko,Z/pZ)-linear. Let us show that cg g/ is an isomorphism. Let us
prove, for instance, the surjectivity of this map (the proof of the injectivity being
left to the reader since it may be proved similarly to the surjectivity).

Let a € Invg, (G x G',Z/pZ). Let k/ko be a field extension and let o/ € H(k,G").
Then, for any field extension k’/k, the maps
(") - H'(K,G) — H* (K, Z/pZ)
o+ ag (o, Resy /()
clearly define a cohomological invariant ak’ Invi(G,Z/pZ). By assumption,

the images of the elements of the family (a;);es (that we still denote by a;, j € J)
form a basis of Invi(G,Z/pZ). Therefore, there are some uniquely determined

coefficients c?’a/ e H*(k,Z/pZ) (for j € J) such that a®* = EZJC?’O‘/ -a;. Now set
j
j € J and let us show that the maps

(cj)k : H'(k,G') — H*(k, Z/pZ)
o — cf’al
define a cohomological invariant of G’ over ko, when k runs through all field ex-

tensions over k.

Let k be an extension of kg and let &’ be an extension of k. We then have to show
the commutativity of the diagram

(¢j)k

H'(k,G") —> H*(k,Z/pZ)
Resk//kl lResk//k

H (K, ') ~ = H"(K, Z/p)
Cj k!

/ k' Res;/ /
i.e. for any cohomology class o/ € H'(k,G"), Resk//k(c;?’o‘ )=¢; esw/k ).
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Let o € H'(k,G"). We have

oK Respr.(a) _ k Resyr (@) 0
] J
jed

We also have, for any extension k" /k,

ReSk/k///k// O( ( ’ ))k// = Resk/k///k// Z ] CL] k//
jeJ

= ZReSk//k(C?a/) . (aj)k/k// o Resk/k///k//
jeJ

since the a; (j € J) are cohomological invariants over k.

Note first that Res ; o (a®') is a cohomological invariant of G over k’. Indeed,
if ”/k' is an extension, Resyjn o (Y = (aF*)pr and we are done since

!, . . .
a®?" is a cohomological invariant of G.

Let us show that the cohomological invariants ¥ Resw k(@) and Resyy /. o (ake).
of G over k' are equal. Let k” /K’ be a field extension and let o € H'(k",G). We
have

ReSklk///k// 0] (ak’a/)k//( ) = (IZ//OC (Oé) = CLZ(O[, Resk///k(a/))
and ) /
(ak ’Reskl/k(a ))kﬂ (a) = ag" (a, Resk///k/ (Resk//k(o/))) .

Yet it is well-known (see for example [1], p.93) that as k”/k'/k is a tower of
extensions,
ReSk///k = Resku/k/ o Resk//k,

which proves the equalities between the two considered invariants.

Therefore, we get that

k' Resys /1, (a')
C

! ! /
: aj = ak ,Resk//k(a) _ Resk/./. o (ak,a )

ko'
= ZReSk//k(Cj @ ) s Gy

jedJ

jeJ

Thus, as the family (a;);e; makes up an H*(k', Z/pZ)-basis of Invy (G, Z/pZ), it
is in particular a free family, so we obtain that, for any j € J,

k' ,Resys 1. (a) ’
) /k _ k.o
¢ = Respr /i (c;™ ).

Therefore, for any j € J, ¢; is a cohomological invariant of G’ over ky with coeffi-

cients in Z/pZ. We then can conclude that a = ) ¢;-a;, which is a cohomological
JjeJ
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invariant in Invy, (G x G',Z/pZ) and it obviously lies in the image of cq ¢ (a

preimage is ) a; ® ¢j, up to a sign coming from the anti-commutativity of the
JjeJ
cup-product). W

Let us apply Proposition 2.2 to 2-elementary abelian groups. Let G = (Z/27)".
Recall that

HY(k,G) ~ HY(k,Z/2Z) x --- x H'(k,Z/2Z) and that H*(k,Z/27) ~ k* /k*2.
Let I C {1,...,n}. For any k/ko, let us define

(ap)p : H'(k,G) — H(k,Z/27)
(xla [RXX) ‘Tn) — (QT])
where ¢ denotes the cardinality of I and (z7) denotes the cup product of the (z;)’s,
i € I. Tt is clear that these maps define a cohomological invariant of G.

Actually, these invariants form a basis of Invy,(G,Z/2Z) ([24], Theorem 16.4),
which can easily be proved by induction from Proposition 2.1 and Proposition 2.2.

Corollary 2.1. Let n > 1 and G = (Z/2Z)". Then the H*(ko,Z/2Z)-module
Invi, (G, Z/2Z) is free with basis (ar)rcqi,...n}-

2.2 Restriction to subgroups

This section is directly inspired from [24], Chapter V. We recall here some tools
to determine the cohomological invariants of an algebraic group scheme G thanks
to the invariants of some subgroups.

Let kg be a field, let G be a smooth algebraic group scheme over kg and let C
be a finite I'y,-module whose order is not divisible by char(kg). Let us define the
restriction of invariants.

Definition 2.1. If a € Invy, (G,C) and if H is a subgroup of G, the restriction
Resg(a) of a to H is the compositum of the two following morphisms of functors :

HY(./ko, H) —= H'(./ko, G) —%= H*(./ko, C) .

Let us study the image of the restriction map. Let us denote by IV the normalizer
of H in G. For any g € N(kp), the inner map
tg: H—H
h— ghg™!
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is an automorphism of H. Thus N (ko) acts on Invy, (H,C) : if a € Invg (G, C)
and g € N(ko), we set, for any extension k/ko,

g.a: H (k,G) — H*(k,C).
[e] = ak(lig o ¢])

Note that in order to lighten the notation, we have made the confusion between
g € N(ko) and its image in N (k). We then have the following proposition (see
[24], 13.2).

Proposition 2.3. The following properties hold :

1. The action of N (ko) factors through N (ko)/H (ko).

2. If a € Invy,(H,C) lies in the image of the restriction map Resg, then a is
fized by N (ko)/H (ko).

This proposition leads us to look for subgroups H of G with injective restriction
map Resg and/or such that the image of the restriction map is exactly the set of
the H-invariants fixed by N (ko)/H (ko).

For the rest of this section, let G be a finite group (viewed as a constant algebraic
group scheme). Let H be a subgroup of G. Recall that C has finite order. Let us
state the following important result (see [24], Corollary 15.4).

Proposition 2.4. If the index |G : H] is prime to the order of C, then the re-
striction map Resl : Invy, (G, H) — Invy, (H,C) is injective.

This applies in particular when H is a p-Sylow subgroup of G and C' is a p-group.
Let us look at a special case where the image of the restriction map is exactly the
invariants fixed by the normalizer (see [24], Example 15.7).

Proposition 2.5. Let G be a finite group, let H be a p-Sylow subgroup of G and
let C be a p-group. Assume that H is abelian. Then an invariant a € Invg,(H,C)
lies in the image of the restriction map Resg if and only if a is fixed under the
action of N/H.

Let us end this section by giving an example of such submodules fixed under the
action of a normalizer.

Example 2.1. Let n > 2 and let W be a Weyl group of type B, (see A). Its asso-
ciated root system is S = {£e;, +e; e, 1 <i# j <n}. Set Sy = {xeq,..., £e,}.
The subgroup Hy of W generated by the reflections corresponding to the roots
in Sy is clearly isomorphic to (Z/2Z)"™. By Corollary 2.1, the family of invariants

42



{ar}icq,...ny is a basis of the H*(ko, Z/27Z)-module Invg, (Ho, Z/2Z). Let us iden-
tify the invariants fixed by the normalizer Ny of Hy. Since W permutes the lines
Re; (1 <i<n), we have Ny = W. Moreover, we have the exact split sequence

1 H, 1% Gn 1.

Thus, Ny/Hy ~ &,, and acts on Hy by permuting the coordinates. Proposition
2.6 then follows easily.

Proposition 2.6. For 0 < i < n, the cohomological invariants

ago) = Z ar

Ic{1,...,n};|I|=12

form a basis of the submodule Invy, (Hy, 7Z,)27,)No/Ho.

2.3 Cohomological invariants of O,

Let k£ be a field of characteristic different from 2 and let n > 1. Let us recall
that H'(k, O,,) classifies, up to isomorphism, the non-degenerate quadratic forms
of rank n over k. Recall also that any quadratic form ¢ of rank n over k is
isomorphic to a diagonal quadratic form ¢ ~ (aq,...,a,) for a; € k* (see e.g.
[21]). For any 0 < i < mn, if ¢ ~ (aq, ..., ay), set

wilg) = > (ag)- (aj,)

1<j1<...<ji<n

One may show (see [6]) that, for 0 < i < n, w;(q) is well-defined and only depends
on the isomorphism class of ¢q. It then yields cohomological invariants of the
orthogonal group O,, of the unit quadratic form of rank n, called Stiefel-Whitney
invariants. Then Serre described completely the cohomological invariants of the
quadratic forms in term of these Stiefel-Whitney invariants (see [24], 17.3).

Theorem 2.1 (Serre, 2003). Let ko be a field of characteristic different from
2. Then the Stiefel-Whitney invariants w; for 0 < i < n form a basis of the
H*(ko, Z/2Z)-module Invy, (O, Z/27).

2.4 Cohomological invariants of G,
Let kg be a field of characteristic different from 2 and let n > 2. Let us recall that,

for any field extension k/ko, the set H'(k,&,,) classifies étale k-algebras of rank
n, up to isomorphism (see Proposition 1.7).
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Definition 2.2. For every extension k/ky, we will call multiquadratic étale k-
algebra any étale k-algebra which is isomorphic to a direct product of étale k-
algebras of rank < 2.

In [24], 24.9, Serre gave a splitting principle for cohomological invariants of the
symmetric group G,,.

Theorem 2.2. Let kg be a field of characteristic different from 2 and let n > 2.
Let also C be any finite I'y,-module whose order is not divisible by char(kg). Let
a € Invg, (6,,C). Then a = 0 if and only if ar(E) = 0 for every multiquadratic
étale algebra E of rank n over any field extension k/kg.

In other words, the values of an invariant on the multiquadratic étale algebras
completely determines this invariant. The proof essentially relies on the existence
of a versal G,,-torsor with rational base field over k.

We may also reformulate the splitting principle as follows. Let

n n

H = ((12),(34), ..., (2[5] — 1,2[5])>.

Then, for any k/kg, the image of the map H'(k, H) — H'(k,&,,) exactly coincides
with the set of isomorphism classes of multiquadratic étale k-algebras. Therefore,
Theorem 2.2 states that the map

Res@ : Invy, (&, C) — Invg, (H,C)
is injective.
The following corollary is an immediate consequence of Theorem 2.2 (see [24],
24.12).

Corollary 2.2. For any normalized invariant a € Invy, (S, C), we have 2a = 0.

The determination of the cohomological invariants of &, with coefficients in a
I'y,-module C' of odd order then follows.

Corollary 2.3. Let C be a finite I'y,-module of odd order. Any cohomological
invariant of &, over kg with coefficients in C' is constant.

Proof. Let m be the order of C'. Thanks to Proposition 1.23, we just have to check
that the only normalized invariant is the zero invariant. Let a € Invy, (S, C) be
normalized. By Corollary 2.2, 2a = 0. Moreover, for any ¢ > 0 and any extension
k/ko, H'(k,C) is a m-torsion group (it is easily checked for instance on the cocy-
cles). Thus, m.a = 0. Since m is odd and 2a = 0, we get that a = 0. W
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This allows us to consider only I'j,-modules with even order. Let us take the
simplest one: C = Z/2Z. Let us define some cohomological invariants of &,,.
Recall that étale algebras are characterized by their trace form (see Proposition
1.6): for any field k of characteristic different from 2, a k-algebra E of rank n is
étale if and only if the trace form gg : z — Trg /k(xQ) is a non-degenerate quadratic
form. Now set, for any 0 < i <mn,

w; : HY(. ko, Sy) — H*(./ko, Z./27)
(E) — wi(qe) '

This invariant w; is called the " Stiefel-Whitney invariant of &,,. Then Serre
proved that a basis of the module Invy, (&,,, Z/27Z) is given by some Stiefel-Whitney
invariants (see [24], 25.13).

Theorem 2.3 (Serre, 2003). Let ko be a field of characteristic different from 2
and let n > 2. Then the H*(ko, Z/2Z)-module Invy,(Sy,Z/27) is free with basis

{wito<i<rz-

Let us sketch the proof of Serre. Thanks to the splitting principle, we are now able
to completely describe the set Invy, (&, Z/27Z). By Proposition 2.3, the image of
the map Resgn is contained in Invy, (S, Z/2Z)N/H where N denotes the normal-
izer of H in &,,. Let us note that N/H ~ 6[%]. By Theorem 2.2, we already
know that this map is injective. Then, to completely determine the cohomological
invariants of &,, with coefficients in Z/27Z, it is enough to show that the image of
the restriction map Resgn is exactly Invy, (&, Z/QZ)GWZ]. Yet, a direct computa-
tion shows that the restrictions of the Stiefel-Whitney invariants to H generate

the H*(ko,Z/2Z)-module Invy, (S, Z/QZ)G[ZLE].

2.5 Cohomological invariants of 25 and of the Coxeter
group of type Hj

Let G = 25 be the alternating group on 5 letters, let kg be a field of characteristic
different from 2 and let C' = Z/27Z. Note that any 2-Sylow subgroup of 25 is
isomorphic to (Z/2Z)2. Let us denote by H the 2-Sylow subgroup of 2 gener-
ated by the double transpositions (12)(34) and (13)(24). By Proposition 2.4 and
Proposition 2.5, we get an isomorphism

Invi, (Us, Z/2Z) ~ Invy, (H, Z/22)N

where N denotes here the normalizer of H in 25. An easy computation shows
that N = 204 the alternating group over the set {1,2,3,4}. Therefore, N/H is
isomorphic to Z/3Z: N/H = {H,(123).H,(132).H}. Thus, the module of the
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cohomological invariants of s is the submodule of the cohomological invariants
of (Z/27)?, fixed under the action of (123) and (132) (see the beginning of Section
2.2).

Corollary 2.1 states that the cohomological invariants of (Z/2Z)? form a free
H*(ko,Z/2Z)-module with basis 1, a1y, agoy and ay 9y, where agyy is the first
projection, a(gy the second projection and ag 9y = a1y - aggy. More precisely, for
any extension k/ko,

a1y - (.%‘1,332) — (931)

a{g} : (1‘1,3?2) — (.%' )

and agy gy : (71, 72) = (1) - (T2).

N

Since H = ((12)(34),(13)(24)), via the bijection k*/k*?* — H(k,Z/27), we
identify the square-class 1 with a cocycle ¢; : v — ((12)(34))*() (where ¢; is
a cocycle with values in Z/27). Likewise, we identify the square-class x9 with a
cocycle g = v+ ((13)(24))2() (where € is also a cocycle with values in Z/27).
Let us study the action of (123) and (132) on ayyy. Let k/ko be a field extension

and let ¢ : v — ((12)(34))1™).((13)(24))2™) be any cocycle with values in H.

Since
(123)(12)(34)(132) = (14)(23) = (12)(34).(13)(24)

and
(123)(13)(24)(132) = (12)(34),

the cocycle (123).¢ writes
(123).0 = 7 > ((12)(34)) ) Fe2(0) ((13)(24))2 ().
Likewise, (132).¢o may be written as

(132).0 1 7 =+ ((12)(34))2(7).((13)(24)) 1 (F20).

Hence,
(123).ag1) = (w1, 72) = (7172),
(132).ag1y = (71, 72) = (22),
SO
agy + (123).ag1y + (132).ag1) = 0.
Likewise,

agay + (123)agey + (132)ayyy = 0 and
ag2y + (123)agi 9y + (132)agy 2y = aqi 2y + (—1) - (aqiy + agay)-
Moreover, it is easily checked that the invariants 1, agiy + (123).aq1y + (132).ay1y,
agay + (123).ag0y + (132).ag9y and agy oy + (123).aq1 2y + (132).a4; 9y generate the
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submodule Invy, (H,Z/2Z)N/H . Tt then follows that Invy, (H, Z/2Z)N/H is free with
basis

L, apgy+(=1) - (aqy +agay).

Moreover, taking the restriction of the invariants of &5 yield cohomological invari-
ants of As. Let us take the restriction of the Stiefel-Whitney invariant wy. We
have to identify its restriction to H. It follows from the definition of the restriction
(see Definition 2.1) that Res (Resg> (w3)) = Resg, (ws).

Lemma 2.1. The map H'(k, H) — H'(k,85) is given by (a,b) — k(y/a,Vb) x k.
Proof. Take any k-algebra L = k(y/a, Vb). Then v/a + v/b is a primitive element
of L and the automorphism group is
Auty (L) = {id, o4 — : Va+ Vb \a— \@,g0_7+ :va—+ Vb= —a+ Vb,
o :a+ Vb —a— Vb

Extending scalars to a separable closure ksep of £, we get

L @ ksep =~ K[X]/(X — (Va+ Vb)) x k[X]/(X — (Va— Vb))
x k[X]/(X — (=Va+ Vb)) x k[X]/(X — (—Va— Vb))
~ ka

sep*

Thus, Autg(L) can easily be identified with the subgroup H, as a subgroup of
Auty,, (kgep) = S4. W

Furthermore, it is easily checked that the trace form of a biquadratic k-algebra
k(y/a,v/b) is (1,a,b,ab). Therefore, for any a,b, € k* /k*2,

ws(k(va, Vb) x k) = wa((1,a,b,ab, 1))
= wy({a, b, ab))
= (a) - (b) + (a) - (ab) + (b) - (ab)
= (a) - (b) + (1) - (ab).

Thus, we have
FQeng)(ReS%S5 (’U}Q)) = a{y2} + (—1) . (a{l} + a{z}).
In conclusion,

Proposition 2.7. Let ky be a field of characteristic different from 2. Then the
cohomological invariants 1, Res%z (wq) form a basis of the H*(ko,Z/27Z)-module
Invi, (As, Z/27).
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Let now W be the Coxeter group associated to the root system Hs (see Appendix
A). Then W ~ 5 x Z/27Z. The description of Invy, (W, Z/27Z) then follows from
Proposition 2.2.

Proposition 2.8. The H*(ko,Z/27Z)-module Invy,(W,Z/2Z) is free of rank 4 with
a basis given by the invariants

1, Res%i (w2), ,'gZ/zZ and Resgi(wQ) ./L/Z/zz;

defined via the isomorphism W ~ 5 x Z/27.

2.6 Cohomological invariants of some dihedral groups

2.6.1 Cohomological invariants of D,,, with n odd

Let n be an odd integer and let kg be a field of characteristic different from 2. Let us
recall the standard geometric presentation of D, (see Apendix A): D, is the group
of linear automorphisms of the real plane with canonical basis (eq, e2), generated
by the rotation o of angle 27” and by the reflection 7 with respect to the line Re;.
It is obvious that every 2-Sylow subgroup of D, is isomorphic to Z/2Z. Let us
denote by H the 2-Sylow subgroup of I,, generated by 7. By Proposition 2.4 and
Proposition 2.5, we get the isomorphism Invy, (D, Z/2Z) ~ Invy, (H, 7./22)N/H
where N denotes the normalizer of H in D,. An easy computation shows that
this normalizer N is equal to H.

Proposition 2.9. Let kg be a field of characteristic different from 2 and let n > 2
be an odd integer. The H*(ko,Z/27Z)-module Invy, (D, Z/2Z) is free of rank 2.

2.6.2 Cohomological invariants of D,,, with n =2 mod 4

Let n > 6 such that n =2 mod 4. Then D,, ~ ]D)% x 7./27.. By Proposition 2.2,
we get that:

Proposition 2.10. Let ko be a field of characteristic different from 2 and let
n > 6 such that n =2 mod 4. The H*(ko,Z/2Z)-module Invy, (D, Z/27) is free
of rank 4.

Note that, when n = 6, the dihedral group Dg is isomorphic to the Weyl group
of type G2 (see Appendix A). In this particular case, we can say a little more :
Dg ~ D3 x Z/27Z and D3 ~ S3. Therefore, combining Theorem 2.3 with n = 3
and Proposition 2.1, we obtain that :

Proposition 2.11. Let kg be a field of characteristic different from 2. Then the
H*(ko, Z/2Z-module Invy,(Dg, Z/27) is free with basis
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1, w??’, id”/?*” and w163 - id?2,
via the isomorphism Dg ~ &3 x 7 /27.

It remains to determine the case n = 0 mod 4. We only consider here the case
n=4.

2.6.3 Cohomological invariants of D,

The results of this section were presented by Serre in his minicourse at the Ascona
conference in 2007 in a different way.

Contrary to what we have done all along this chapter, we will not exhibit an in-
jective restriction map, but we will determine the cohomological invariants of Dy,
by computing residues in H*(./ko,Z/2Z) on a versal torsor.

If k = ko(cq, ..., ¢r) is a rational field extension over kg with transcendance degree
r and if P is an irreducible polynomial (in the variables cy, ..., ¢, over ky), let us
denote by Dp the irreducible divisor in Spec(ko[ci, ..., ¢;]) associated with P. Let
us also denote by vp the valuation vp, corresponding to the divisor Dp and by
rp the residue map 7.

Let us first state a technical lemma.

Lemma 2.2. Let | > 0 and let k = ko(t,u,v1,...,v;) be a rational field extension
over ko with transcendence degree | + 2. If o € H*(k,7Z/27) is not ramified at
any ko-valuation on k, except maybe at the valuations v, and v,, then there erist
co, €1, C2,c3 € H*(ko,Z/27) such that

a=cy+cr-(t)+c2-(u)+cz-(u)-(t).

Proof. Set k' = ko(t,u). If | > 1, for any effective divisor D of Spec(k'[v1, ..., v;]),
« is not ramified at vp. By Theorem 1.4, o € H*(K',Z/2Z). If now D is an
irreducible divisor of Spec(ko(t)[u]), different from D, then « is not ramified at
vp by assumption. By Corollary 1.5, there exist some ag,an € H*(ko(t),Z/2Z)
such that

a=ag+ o (u). (2.1)

Let now D be an irreducible divisor of Spec(ko[t]) different from D;. Then D x Al
is an irreducible divisor of Spec(ko[u,t]) different from D; and D,, and we have
the commutative diagram (see Proposition 1.22)

H* (ko(t), Z)2Z) — 2~ H*(

D),7/2Z)
Resyq (t,u) /ko (1) i lReSMD)(u)/n(D)

A(
H* (ko(t,u), Z/2Z) ;—> H* (v(D)(u), Z/2Z),

T
YDxAl
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which implies

0=ry, () =Resypyw)/w(D)(Tvp(@0)) + Resg(pyw)/n(p) (Top (1)) - (u).
Since x(D)(u)/k(D) is purely transcendental, the map Res(p)(u)/x(p) is injective,
S0

0 = rp(ao) +rp(ai) - (u),
and since u is an indeterminate over k(D),
rp(ag) =rp(ar) =0

(it is an immediate consequence of Corollary 1.5).

Therefore, oy and oy are not ramified at any ko-valuation on kg(t) except maybe
at vy, so, by Corollary 1.5, there exist some cg, c1, ¢, cs € H*(ko,Z/27Z) such that

ag=co+c1-(t) and a3 = ca +c3- (1),

and Equation (2.1) allows us to conclude. B

Note that the dihedral group Dy is isomorphic to the Weyl group of type By (see
Appendix A). Let k be a field of characteristic different from 2. We will thus use
in the sequel the interpretation for the first cohomology set H!(k,D;) in terms of
pointed étale algebras (see Proposition 1.8). The cohomology classes of H'(k,Dy)
identify with the pointed étale algebras (L, «), where L is an étale k-algebra of
rank 2 and a a square-class in L*. In Chapter 4, we will define some cohomological
invariants for the Weyl groups of type B,, and then describe them all. Let us define
them for the group Dy. As we have seen in Section 2.4 for étale algebras, for any
pointed étale k-algebra (L, «), the trace form of L

QL@ Trp(az?)
define Stiefel-Whitney invariants (for 0 <i < 2)
w; : HY(. ko, Dy) — H*(./ko, Z/27)
(L,a) = wi(qr)-

With pointed étale algebras (L, «), we may associate another trace form, twisted
by «
qLa - T > TI’L/k(Oél’2)

which is also non-degenerate. It then defines another family of Stiefel-Whitney
invariants (for 0 < i < 2)

w; : H(. ko, Dy) — H*(./ko, Z/27)
(L, @) = wi(qr,a) '
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Theorem 2.4. Let ky be a field of characteristic different from 2. Then the set
Invi,(Dy, Z/27) is a free H*(ko, Z/27Z)-module with basis {1,w;,wy,wa}.

Proof. Let K = ko(t,u,v), where t,u,v are independent indeterminates. We
consider the Dy4-torsor (K (Vt),u+ v\/f) over K. This torsor is versal over ko for
Dy (see Definition 1.23). Recall that every cohomological invariant is completely
determined by its value on a versal torsor (see Theorem 1.7). Moreover, we have
the following formulae :

wi (K (Vt),u+vVt) = (2.2t) = (1),
w1 (K (Vt),u+ vvt) = (2u.2ut(u? — v*t)) = (t(u® — v*t)) and
Wa (K (V1),u+ vvt) = (2u) - (2ut(u? — v?t)) = (2u) - (—t(u® — v°t)).

It then remains to prove the following two facts :

(i) the family {1, (t), (t(u® — v*t)), (2u) - (—t(u® — v?t))} is free in the module
H*(K,7Z/27) over H*(ko,Z/27);

(i) if a € Invy, (Dy, Z/2Z), there exist do, dy,dy,dy € H*(ko,Z/27Z) such that
ax (K(VE),u+vvt) = do+dy - (t) +di - (Hu? —v*t)) +da- (2u) - (—t(u® —v?t)).
Let us first show (i). Let Ao, A1, A2, A3 € H*(ko,Z/27Z) such that
0= X0+ A - () + Ao+ (t(u?® = v2) + A3 - (2u) - (—t(u® — v?1)).
Let us take the residue at the valuation corresponding to (u? — v?t). Then,
0=Xa+A3-(2u) = (A2 + A3 (2)) + Az - (u).

Taking now the residue at v,, it is easily seen that A3 = 0, which implies that
A2 = 0. We then obtain that 0 = Ao + A1 - (¢), so taking the residue at v;, we get
that \; = 0. Thus, Ao = 0 and this proves (i).

Let us prove (ii). Let a be a cohomological invariant of D4 over kg and set
B = ax(K(Vt),u+vVt)

and

Bi = Res iy i (B) = ey (K(V?, (u+ vVt u—vvt)).

Let us consider Hy C Dy (viewed as the Weyl group of type By) the subgroup
defined in Example 2.1. It is easily seen that the image of the map

v HY(K(Vt), Hy) — HY(K(Vt),Dy)
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is the set of the pointed étale algebras (K (v/1)?, (ag, a1)), with ag, &y some square-
classes in K(v/t)* (see Chapter 4, Proposition 4.1 for a proof). Since the coho-
mology class associated with the pointed algebra (K(\/f)Q, (u4vvt, u— v\/f)) lies
in the image of ¢, we get

= Resfl}’(a)K(\/z) (u+vvt,u—ovVt).

Therefore, since Res{,}(,0 (a) is a cohomological invariant of Hy ~ (Z/ 2Z)2, by Exam-
ple 2.1, there are some by, by, be € H*(ko,Z/27) such that, for any field extension
k/ko and for any (ay,a2) € H(k, Hp), we have :

(Resti® (a))x (a1, a2) = by + by - (agag) + by - (1) - (a2).
Hence, we get that
81 ="bg+ by '(UQ—U2t)+b2'(U+’U\/7E) '(U—’U\/{f).

Since the extension K (v/t)/K is not ramified at the valuation corresponding to
(u? — v%t), we have the commutative diagram (see Proposition 1.22)

TuQ —vet

H*(K,Z/2Z) —“"S"H* (ko (u,v), Z/2Z) .
ResK(ﬁ)/Ki lid

H*(K(\V/1),7/27) mH*(ko(u, v), Z/27)

In the residue field associated with r,, 7 over K(V/1), we have 2u = u — v/1,
since u + v/t + u — vy/t = 2u. The previous commutative diagram yields that

TquUQt(/B) = TU_H,\/{(IBl) =b; +0by- (2’LL)

In particular, r,2_,2,(3) is not ramified, except maybe at v,. Now set

ﬁ, = 5 + ru27v2t(6) : ( 2 - U2t>'

Let us show that the cohomology class 8’ is not ramified except maybe at v; and
at v,. Let D be an irreducible divisor of Spec(ko[t,u,v]) different from Dy, D,
and D,2_,2;. The cohomology class of the pointed algebra (K (v/t), u-+wv+/t) is not
ramified (i.e. lies in the image of the map H'(k(D),Dy) — H'(K(v/t),Dy), see
Definition 3.1 in Chapter 3), except maybe at the valuations corresponding to the
irreducible divisors of the discriminant of the algebra K (v/t)(vu + vvt)/K, i.e.
at vy and at v,2_,2,. Since D # Dy, D,2_,2,, the cohomology class of the pointed
algebra (K (v/t),u + vv/t) is not ramified at vp, thus r,,(8) = 0. Hence,

Pup (8') = 1up (B) + 7oy (b1 + b2+ (20)) - (u® = v*t)) = 0.
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Furthermore,
ru27v2t(6,) = Tu27v2t(5) T T2 2t (ru2702t(5) : (’LL2 - U2t)) = 2ru271}2t(6) =0.

Hence 8’ is not ramified, except maybe at v; and v,. By Lemma 2.2, there exist
co, €1, 2, c3 € H*(ko,Z/27), such that

B =co+er-(t)+ea (u)+cs- (u)-(t),
S0
B=codcr-(t)+co-(u)+c3-(u)-(t)+ (by+ by - (2u)) - (u® — v°t).
Yet we know that r,(3) = 0, hence
O=co+cg-(t)+bo- (u2—v2t) =co+c3- () +by-(—1).

It yields
0=rca+by-(=1)+ (c3+b2) - ().

As the family {1, (¢)} is free in the H*(ko,Z/2Z)-module H*(ko(t),Z/27), we get
that co = bo - (—1) and c3 = by. Eventually,

B=codcr-(t)+by-(u®—0%t) +by-(2)- (u® —v%t) + by - (u) - (—t(u? — %))
=co+ (c1 +ba-(2) - (t) + by - (u? = 0%t) + by - (2u) - (—t(u® — v?1)).

Therefore,
B= ot (er+by+ o (2) - (6) + by - (H(u? — 020)) + b - (2u) - (—t(u® — %)),
This proves (ii). B

Let us end this section by giving relations between some cohomological invariants
of D4 that we will use below :

Proposition 2.12. We have the following equalities :
w2 = (2)‘w1ﬂ wy Wy = (_1> -wy and wi - wy = 0.

Proof. By [24], Theorem 12.3, we just have to check the equalities on the versal
Dy-torsor T = (K (v/t),u+ vv/t). Let us prove for instance the first one. We have

wa(T) = wa((2,2t)) = (2) - (2t) = (2) - (t) = (2) - w1 ((2, 21)).

The other equalities are left to the reader. l
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Chapter 3

Vanishing principle for finite
Coxeter groups

RESUME

Dans ce chapitre, on énonce et prouve un principe d’annulation pour les invariants
cohomologiques d’un groupe de Coxeter fini sur un corps de caractéristique zéro
suffisamment grand. Ce principe généralise le principe de déploiement de Serre
pour les invariants cohomologiques du groupe symétrique énoncé au chapitre 2
(théoréme 2.2). On notera que ce principe d’annulation était connu de Serre dans
le cas des groupes de Weyl (cf. [24], 25.15). En fin de chapitre, on prouve que,
lorsque le principe d’annulation est vrai, de la méme maniere que pour le groupe
symétrique, tout invariant cohomologique d’un groupe de Coxeter fini est tué par
2. On termine ce chapitre en appliquant le principe d’annulation a la cohomologie
négligeable.

In this chapter, we state and prove a general vanishing principle for the coho-
mological invariants of a finite Coxeter group. This principle generalizes Serre’s
splitting principle for the cohomological invariants of the symmetric group (The-
orem 2.2). Note also that the vanishing principle was known to Serre for Weyl
groups (see [24], 25.15).

3.1 The vanishing principle

Theorem 3.1. Let W be a finite Coxeter group and let kg be a field of characteris-
tic zero containing a subfield on which the real representation of W as a reflection
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group is realizable. Let C be a finite I'y,-module. Let also a € Invy, (W, C). Assume
that every restriction of a to an abelian subgroup of W generated by reflections is
zero. Then a = 0.

We use the strategy suggested by Serre in [24], 25.15. Recall first that a cohomol-
ogy class in H'(k, W) corresponds to an isomorphism class of a W-torsor over k.
By Theorem 1.7, a cohomological invariant of W is completely determined by its
value on a versal torsor. Thanks to a Chevalley’s theorem, we construct a versal
W-torsor TV with rational base field K = ko(ci,...,cn). We then show that,
if a cohomological invariant a of W satisfies the hypothesis of Theorem 3.1, the
cohomology class a(7V®"®) is unramified at any place coming from an irreducible
divisor of the affine space Spec(ko|ci, ..., cn]). By Theorem 1.4, the cohomology
class a(1V") is constant. Since a vanishes on the trivial torsor, we get that a = 0.

From now on, in Section 3.1, let W and let ky be as in Theorem 3.1.

3.1.1 Ramification of cohomology classes of W

Let us recall what ramification means for cohomology classes in H'(k, W). Let
R be a discrete valuation ring of valuation v, let K be its fraction field and let k
be its residue field. Assume that K is complete for the valuation v. Let us also
recall that we denote by 'k (resp. by I'y) the absolute Galois group of K (resp.
the absolute Galois group of k). Finally, let us denote by Ix the inertia group of
K and by 7 : 'y — I'y the quotient morphism.

Proposition 3.1. Let « € H' (K, W). If ¢ is a cocycle representing «, then the
following assertions are equivalent :

(i) p(Ik) = {lw};
(ii) there is a unique group homomorphism @ : T'y — W such that the following

. . . [
diagram is commutative : 'y ——=W ;

| A

L'y
(iii) a belongs to the image of the natural application H'(k, W) — H'(K,W).

Note that this statement only depends on the cohomology class a.

Proof.

(i)= (i1) Assume that p(Ix) = {1lw}. Then ¢ factors through @ : ' /Ix — W; yet
'y =Tk /Ik, so @ is the required morphism.
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(ii)= (iii) The homomorphism 7 yields the map 7* : H(k, W) — H'(K, W), given by
[y] € HY(k,W) = [¢p o] € H'(K,W) (where [.] denotes the cohomology
class associated to the cocycle). Moreover, by (ii), since ¢ = pom, [p] is a
preimage of o by 7*.

(iii)= (i) Assume that o admits a preimage 8 € H'(k,W) by ©*. Then there is a
cocycle 1 representing S such that ¢ = 1 o m, so the image of Ix by ¢ is
trivial. l

Definition 3.1. We say that the cohomology class o € H'(K, W) is unramified
if a satisfies one of the three equivalent properties of Proposition 3.1.

3.1.2 A versal W-torsor with rational base field

We let the reader refer to Definition 1.23 for a definition of a versal torsor.

As elements of W are automorphisms of a vector space V ~ k' for some n > 0
(since the representation p is realizable over a subfield of ky and then extends
to ko), W naturally acts on the dual V* and on the associated symmetric alge-
bra Sym(V*). Note that this kg-algebra is isomorphic to a polynomial algebra
kolx1,...,xy] with n indeterminates. We then consider the underlying action of
W on ko[z1,...,2,] and the invariant subalgebra ko[z1,...,2,]"Y. By a theorem
of Chevalley (see Appendix A, Theorem A.1), ko[z1, ..., z,]" is a polynomial ko-
algebra of transcendence degree n. In other words, ko[z1, ..., 2,]"V ~ ko[c1, ..., ca]
for some independent indeterminates ci, ..., ¢, over kg.

Let us translate this situation into scheme language. Set @ = Spec(ko[z1, ..., Zn])
and X = Spec(ko[cy, ..., cn]). We have a morphism f : @ — X which is exactly the
quotient morphism Aff} — Affl /W = Aff!. Let y be an element of ko[x1, ..., 2y)
whose orbit by W has maximal order. We then localize f at the locus A, = f(A,),
where A, = {w.y —w'.y | w # w',w,w’ € W}. We then get from f a morphism
Qa, — Xa, that we still denote by f. With this localization, W acts without
fixed points on Qa, and we still have Qa, /W = Xa.. Hence, Qa, is a W-torsor
with base Xa,.

We denote by K = ko(cy, ..., ¢,) the function field of X (which is also the function
field of Xa,) and by L = ko(z1, ..., ,) the function field of (). Since Xa_ is an
irreducible variety, let us denote by TV"™ the fiber of f at the unique generic point
of Xa,. Thus, TV is a W-torsor over K, corresponding to the field extension
L/K which is Galois, with Galois group W.

Proposition 3.2. Keeping the notation above, TV is a versal torsor for W over

ko.
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Proof. Let k/kg be a field extension. Let T be a W-torsor over k. Then T
corresponds to a Galois W-algebra over k and we choose a generator (ay, ..., ay).
We localize Qa, at the ideal (x1 — aq, ...,z — ay) of k[z1,...,2p]a,. The image
x = f(zr1 — a1,...,xn — ay) is a k-point of Xa, and the fiber of f in x is a W-
torsor over k isomorphic to 7". Since k is infinite (ko has characteristic zero), the
set of the generators of the Galois W-algebra is dense with respect to the Zariski
topology on Aff”, so condition 2. in Definition 1.23 is satisfied. B

Note that the isomorphism class of TV¢™ corresponds to the cohomology class of

the natural projection
e T — W.

Y=L

3.1.3 Ramification of the versal torsor 7TVe's

In this section, we want to study the ramification of the isomorphism class of the
versal torsor TV at the different valuations on K which are trivial on ky. These
valuations are determined by the irreducible divisors of Affy. Let D be such a
divisor. Let us denote by vp the discrete valuation on K associated to D, Kp the
completion of K with respect to this valuation and ko(D) the residue field of K
for vp, which identifies with the function field of D over kyg. We denote by T}5"™
the image of TV¢" under the application

HYK,W) — H (Kp, W)
[p] = [poip]

where ip : 'k, — 'k is the natural inclusion.

The aim of this paragraph is to study the ramification of the cohomology class

vers

of T7¥"™. We denote by 7™ the morphism I'g, P T 2w ; it represents
the cohomology class of T/F™®. Thus, by Proposition 3.1, we have to study the
subgroup ¢S (Ix,,).

Since [p"*"] is represented by the Galois extension L/K, [¢}5™] is represented by
the Galois W-algebra L ® g Kp over Kp. Moreover, there is an isomorphism of
Kp-algebras

L Kp ~ H Ly
vlvp

where L; denotes the completion of L with respect to the extension v of vp (see
for example [17] I1.8).

Let vp be an extension of the valuation vp to L. We denote by Lp the comple-
tion of L with respect to this valuation. Then Lp is a Galois extension of Kp,
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with Galois group W= {w € W,vpow = vp}, which is of course a subgroup of W.

Set e = (0,...,0,1,0,...,0) in the product [] Lz, where 1 € Lp. Then e is a
v|vp
primitive idempotent of L ®x Kp and by [12], Proposition 18.18, Lp= e.(L ®k
Kp) is a Galois W-algebra (and a field) and we have the isomorphism of W-
algebras
~ AWJ T
L®yg Kp ~ IndW(LD).

Thus, since the induced algebra (for the Galois algebras) corresponds to the in-
clusion for the cocycles, ¢}5"™ factors through W :

(p\Srs
g, —W,

1

w

where 1) is a cocycle representing the cohomology class corresponding to Lp /Kp.
It yields that ¢V5"*(Ik,) = ¥(Ik, ). Therefore the ramification of T/5™ is ¥(Ik ).

Let us denote by I(vp) the residue field associated with Lp and if w € /W7, let
us denote by w the induced ko(D)-automorphism (as w respects the valuation
Up, w restricts to w : Oy, — Of,, where Oy, denotes the valuation ring of
vp in L and sends the maximal ideal of Oy, into itself, so going to quotients,
we get an automorphism w of [(vp)). We then introduce the inertia subgroup
I= {w € W | w = idl('ﬁD)} of W

Lemma 3.1. Keeping the notation above, (I, ) C I.

Proof. Let us denote by ko(D) an algebraic closure of ko(D). Recall that (Kp)sep
has residue field ko(D) and that (ko(D))sep is the residue field corresponding to
the biggest subextension of (K p)sep fixed by the inertia group Ik . Let v € Ik .
Then the ko(D)-automorphism 7 is trivial over ko(D)sep. In other words, the
image of v by the group homomorphism 'k, — 'y (p) is the identity and we
have the commutative diagram

Urp ———— Tk

| [

W —— Gal(I(Tp) /ko(D))

where horizontal maps are induced by going to quotients (by valuation theory, the
sequence

0 I W Gal(l(Tp) /ko(D))) —= 0

99



is exact). Then the ko(D)-automorphism of [(vp) induced by () is equal to the
identity, which proves that () belongs to I. B

Let us now study the inertia group I and let us introduce the discriminant
Discr(L/K) of L/K. Let us recall that the isomorphism class of the versal torsor
TVe's may be identified with the isomorphism class of the Galois algebra L/K | i.e.
with the set of K-embeddings of L in Ksep. Yet, these embeddings are completely
determined by the image of a primitive element y of L over K. Therefore, this
discriminant may be written as:

Discr(L/K) = tl;/(t(y) —t'(y)),

where t,t' : L < Keep.

Moreover, one can choose, as a primitive element, a polynomial in ky[x1, ..., Zy]

with total degree 1 : since kg is infinite, there exists y = ayx1 + ... + anx, (where

a; € ko for i = 1,...,n) such that, for all w # v’ € W, w(y) # w'(y). Indeed,

as W is a group, it is enough to check that there exist aq,...,a, € ko such that

Y = a121 + ... + apxy, and that, for all w € W, w(y) # y, which is satisfied as soon
ai

as the vector | : | is not an eigenvector of any matrix representing a non-trivial
G

element of W in the basis (21, ..., xy) of the dual space V* =~ k.

From now on, y will denote a primitive element of L/K, which is a polynomial of
total degree 1 in z1,...,z,. Let us now compute the ramification of T75".

Lemma 3.2. Assume that D is an irreducible divisor which does not divide the
ideal (DiscrL/K). Then the isomorphism class of TY"™ is unramified.

Proof. Since we have shown above that the ramification is contained in I, , it is
enough to prove that I is trivial. Yet the sequence

0 I w Gal(l(Tp)/ko(D))) —=0

is exact. Since D does not divide the discriminant, the extension L p/Kp is unram-
ified, which shows that [Lp : Kp] = [[(vp) : ko(D)], so W =~ Gal(l(vp)/ko(D))).
Therefore, I is trivial. B

Lemma 3.3. Assume now that D is an irreducible divisor of Spec(ko[c1, ..., cn])
which divides the discriminant ideal (Discry ). Then I = (r), where v is a
reflection of W.

60



Proof. Since D divides the discriminant ideal, the extension L p/Kp is ramified,
so its inertia group I is not trivial. Let us compute it. Since vp is a valuation
on L = ko(x1,...,z5), which is trivial on kg (because it extends vp which is it-
self trivial on ko), Op is a valuation associated with an irreducible divisor D of
Spec(ko[x1, ..., xy]); furthermore, since vp extends vp, the divisor D is above D, so
D is generated by an irreducible factor of Discr(L/K) decomposed in ko[z1, ..., 2.
Then there are two distinct elements t1, ¢y € TV such that D = (t1(y) — ta2(y))
(we identify the image of L in Kgp with L itself; that is why we consider ¢;(y)
and ta(y) as polynomials in z1,...,2,). Therefore, the valuation vp is described
as follows : for any f € L, vp(f) is equal to the order of (¢1(y) — t2(y)) as zero or
pole in the rational fraction f.

Let w € I. Then w = id@,,)- Let f € Oz, (i.e. which has not t1(y) —t2(y) as a
pole). As l(vp) = Oy, /My, there is a g € Oy, such that :

w(f) = f+g.(t1(y) — t2(y))

with go, g1 € kolz1, ..., 2] and t1(y) — t2(y) not dividing

— 2
g1’

g1-(w(f) — f) = go-(t1(y) — t2(y))-

Consider the particular case where f is a polynomial in ko[z1,...,2,]. Then the
equality now reads in ko[xy, ..., x,] (because W acts on ko[z1,...,zy]) and since
t1(y) — ta(y) does not divide g1, t1(y) — t2(y) divides w(f) — f. Therefore, there
is a polynomial g in ko[z1, ..., ;] such that

w(f) = f = g2-(t1(y) — t2(y)) (3.1)

If we now write ¢
g1, we get that

Assume now that f is a polynomial of total degree 1. Then f identifies with a
linear form on V and as w is an automorphism of V, w(f) = fow™! is still a
linear form on V, so via the identification Sym(V*) ~ ko[x1, ..., x,], w(f) is still a
polynomial of total degree 1.

Let us now show that the total degree of t1(y)—t2(y) is equal to 1. First note that,
since t1(y) — t2(y) is an irreducible factor of Discry /g in ko[1, ..., 7,], it has total
degree > 1. Assume that w # id. Then there is a fo € V* such that w(fy) # fo.
Thus, w(fp) — fo is a polynomial of total degree 0 or 1. Taking total degree in
Equation (3.1), we get that ¢1(y) — t2(y) has exactly total degree 1. Therefore, g2
has total degree at most 0. Thus, for any f € V*, there exists a € kg such that

w(f) — f = a.(t1(y) — t2(y))

We then get that w is a pseudo-reflection of V* (i.e. an endomorphism such that
the rank of w — idy« is equal to 1). Yet, since W is a reflection group over R, the
only pseudo-reflections in W are reflections. Therefore, the non-trivial elements
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of I are reflections.

By [23] IV.2, Corollary 2 of Proposition 7, we get that I is cyclic (note that the
residue field of [(vp) is an extension of kg, then has characteristic zero). Then I

is of order 2 (recall that it can not be trivial). Finally I = {1,r} (where r is a
reflection of ). A

Let us recall that we have ¢S (I ) = ¥ (Ik,) C I ={1,r}. Then

P (Ixcp,) = {1} or @ys™(Ix,) = {1,7}.

In the first case, TV*"™ is unramified at D. In the second case, we state the key
lemma for our inductive proof of Theorem 3.1.

Lemma 3.4. Assume that ¢\5"(Ik,) = (r). Then there is a subgroup Wy of W
generated by reflections, such that o$*(I'k,) C Wy x (r) C W.

Proof. Since the sequence

1 IKD FKD Fko(D)Hl

is exact, ¢}\5"(Ik,) is normal in ¢}$™(I'k, ). Therefore, r is in the center of

05" (T'k,, ), that is to say that ¢}5™(I'k,,) is contained in the centralizer C(r) of
rin W.

By assumption on kg, the real representation p : W < GL(V) of W as a reflection
group over R yields a representation W — GL(Vj,) of W as a reflection group
over kg.

Let now e be a non-zero vector of Im(r —idy) and let H be the hyperplane of the
fixed points of r in V. Let also w € W. Then w and r commute if and only if Re
and H are stable by w (see Appendix A, Proposition A.1). Assume that w and r
commute. Then, w(H) C H and w(e) = b.e for some b € R. As W is finite, b is a
root of the unity in R, so b = +1.

Let Wy = {w € W | w(e) = e}. As an isotropy subgroup of W, W} is a reflection
group over R (see Appendix A, Proposition A.2) and hence is a reflection group
over kg.

It remains to prove that C(r) ~ Wy x (r). Let us first note that, since W acts by
isometries on the euclidean space Vg, Wy = {w € W | w(H) C H and w(e) = e}.
One can show easily that W, and (r) are normal in C(r), that the intersection
Wo N (r) is trivial and that Wy.(r) = C(r). Therefore, C(r) is the direct product
of W and (r). B
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3.1.4 Proof of Theorem 3.1

Let us begin with a key lemma for our proof by induction.

Lemma 3.5. Let W be a finite Coxeter group and let kyg be a field satisfying
the hypothesis of Theorem 3.1. Let W' be a proper subgroup of W which is also
generated by reflections. Let us assume that there is a reflection v of W which is
not in W' and which commutes with any reflection of W'. If Theorem 3.1 is true
for W', then Theorem 3.1 is also true for W' x (r).

Proof. Let a € Invg, (W’ x (r),C) such that every restriction to an abelian sub-
group generated by reflections is zero. Let k/ky be a field extension. We have the
isomorphism H'(k, W’ x (r)) ~ H'(k,W') x H'(k,(r)). Then, in the sequel of
the proof, we denote the elements of H'(k, W’ x (r)) by pairs (a, €), where « is a
cohomology class in H'(k,W’) and € a square-class in H'(k, (r)).

Let (ag,€0) € H'(k, W’ x (r)) be such an element. For any extension k'/k, we set

(@eo )i - HY(K W) — H*(K', C)

o — ap (o, €)

It is easily seen that these maps define a cohomological invariant a., , of W’ over k.
Let k'/k be a field extension and assume that o € H(k’, W’) lies in the image of
amap H' (K, H') — H'(K',W'), where H’ is an abelian subgroup of W’ generated
by reflections. Then («, €y) is in the image of H(k', H' x (r)) — H(K', W' x (r))
and since H' x (r) is an abelian subgroup of W’ x (r) generated by reflections, by
assumption on a, ax (o, €9) = 0. Hence, (a¢, k)i () = 0. Therefore, a,  satisfies
the assumption of Theorem 3.1. As Theorem 3.1 is true for W’ (by the hypothesis
on W), we get that a,, = 0. It then yields that ay(o, ) = 0. Finally, a = 0.
|

We can now give the proof of Theorem 3.1.

Proof. For convenience, we say that a € Invg, (W, C) satisfies (P) if every re-
striction of a to an abelian subgroup generated by reflections is zero. We show
Theorem 3.1 by induction on the order m of W : if m =1 or m = 2, it is trivial.
Let m > 3. Assume that, for every integer [ with 1 <[ < m, every cohomological
invariant of a Coxeter group which satisfies the assumption of Theorem 3.1 over
ko of order [ satisfying (P) is zero.

Let a € Invg, (W, C) satistying (P). We will prove that, for any irreducible divisor
D of Aff, the residue 7, (ax (")), at the valuation vp corresponding to the
divisor D, is zero. Then, by Theorem 1.4, ax(¢¥®") will be constant and since
©¥e"s corresponds to the versal torsor TV for W over kg, a will be constant by
Theorem 1.7. Thus, since the restrictions of a to any abelian subgroup generated
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by reflections are zero, a will vanish on the trivial torsor and we will get that a = 0.

Let D be an irreducible divisor in Spec(ko[ci,...,cn]). Let us prove that the
residue 7y, (ax(¢""®)) is zero. We know by Lemma 3.2 and Lemma 3.3 that
O (Ik,) = {1} or ¢\5"(Ik,,) = (r) for some reflection » € W. In the first case,

5™ is not ramified so, by Theorem 1.6, r,,, (ax (¢¥*")) = v, (ar, (¢157)) = 0.

Assume now that ¢}5"*(Ix,,) = (r). By Lemma 3.4, ¢\5"*(I'k,,) C Wy x (r). Since
Wy is a proper subgroup of W and a reflection group over kg, it satisfies the as-
sumptions of Theorem 3.1 so by the induction hypothesis, Theorem 3.1 is true for
Wy. By Lemma 3.5, Theorem 3.1 is also true for the group Wy x (r).

Since a satisfies (P), I?esVVOVXV<r> (a) also satisfies (P), so ResWOVXV<r>(a) = 0. Thus,
as %] lies in the image of the map H'(Kp, Wy x (r)) — H(Kp, W), we get

that ax, (¢}5"™®) = 0. Hence, its residue 7, (ax, (¢}57)) is also zero.

We then have shown that, for every irreducible divisor of Spec(ko[cy, ..., cn)),
Top (@K (©15°)) = 0. This concludes the proof.

3.2 Applications

The following two applications directly generalize similar results of Serre for the
symmetric groups and were already known to Serre (see [24] 25.15).

3.2.1 Invariants are killed by 2

Recall that W is a finite Coxeter group, kg is a field of characteristic zero contain-
ing a subfield on which the representation of W, as a reflection group is realizable.
Recall also that C' is a finite I'y,-module.

Let us state a first consequence of Theorem 3.1 (generalizing [24], 24.12).

Corollary 3.1. For every normalized cohomological invariant a € Invy, (W, C),
2a = 0. In particular, if C' has odd order, W has no non-trivial normalized
moariant.

Proof. Let a € Invg, (W, C) be a normalized cohomological invariant. By Theo-
rem 3.1, it is enough to prove that, for any abelian subgroup H of W generated
by reflections, 2Restl,(a) = 0. We prove it by induction on the order m of W. For
m =1 or 2, it is trivial.

Let m > 3. Let us denote by S a root system corresponding to W (see Appendix
A). Let H be an abelian subgroup of W generated by reflections. Then H ~
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(r1) x -+ x (rg) for some s > 1 and for some pairwise commuting reflections
r1,...,7s in W. Let e; be the root in S corresponding to 71 and let W' be the
group generated by reflections given by the root subsystem S’ = SN {e;}*. Then
W' is a proper subgroup of W and a reflection group over ky. Using the induction
hypothesis with W' and with the normalized invariant Res%,(a)7 we get that

2(Resl¥ (a)) = 0.
Let H' = (ro) x -+ x (rg). Since H' C W,
2Res{,{//(a) = 2Res{,{V/,(Res%l(a)) =0.

Let k be an extension of kg and let T € H'(k,H). Then T = T} x T», where
Ty € H'(k,(r1)) and T € H*(k, H'). Thus,

2Rest!; (a)(Th) = 0.

Now set T" = T x Ty the H-torsor , where T} is the trivial torsor in H!(k, (r)).
Since T" = T{ x Ty = i*(Tz) with i : H' < H and i* : H'(k, H') — H'(k, H) the
induced map, the definition of the restriction map yields

(Resf}:(a))x(T") = Resff (Resf{,(a))x(T2)-
Therefore,
2Restl (a)x(T") = 0.

Moreover, there is an extension k'/k of degree at most 2 such that 77 and 77 are
isomorphic over k. Then T” and T are also isomorphic over k’. Hence,

Resyy (@) (Resy 4 (T) = Resiy () (Resy i (1)),
SO
Resk//k(ResﬁIV(a)k(T)) = Resk//k(Res‘lj{,(a)k(T'))
and applying the corestriction map Corys /3, we get that
[k : k].Restl (a)(T) = [K' : k].Restl (a)(T")
which proves that
2Res! (a)(T) = 2Resfl (a)x(T") = 0.

We conclude by using Theorem 3.1 to 2a.

The second part of Corollary 3.1 directly follows from the first part and from the
fact that in the ring H*(ko,C), #C.1 =0. &

Corollary 3.1 allows us to restrict to I'y,-modules C' of even order. The most ele-
mentary one is of course Z/2Z endowed with the trivial action of I'y, and we will
take C' = Z /27 in most of our examples.
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3.2.2 Application to negligible cohomology

Let GG be a finite group and let M a finite G-module, with trivial action. Let k be
a field and € H*(G, M). We have a natural map
(ag)g : H (k,G) — H*(k, M)
(o] = [ (2)]

Since G acts trivially on M, for any extension k'/k, the maps (a; ), define a co-
homological invariant of G over k with coefficients in M.

This gives us a family of cohomological invariants of G. We want to determine
the cohomology classes x € H*(G, M) for which these invariants are zero.

Definition 3.2. Let G be a finite group and let M be a G-module. Then a co-
homology class x € H*(G, M) is negligible if, for any field k and any (continu-
ous) homomorphism ¢ : I'y — G, we have ¢*(x) = 0 in H*(k,M). We denote
by Hpop(G, M) the subset of H*(G, M) consisting of the negligible cohomology
classes.

In fact, as stated in the following proposition, it is enough to consider only fields
of characteristic zero (see [24], 26.1).

Proposition 3.3. An element © € H*(G, M) is negligible if ¢*(x) = 0 for any
field k of characteristic zero and any ¢ : 'y — G.

For any x € H*(G, M), let us denote by a, the cohomological invariant over Q
induced by x. Then Proposition 3.3 exactly says that

negl (G M) = {z € H*(G, M) | a; = 0}.

As a first example, let us give a negligibility criterion for 2-elementary groups (see
[24], Lemma 26.4).

Example 3.1. Let G be a 2-elementary group and let z € H*(G,Z/2Z). Then x
is negligible if and only if the restriction of x to every subgroup of G of order < 2
is zero.

The following result is clear and its proof is left to the reader.

Lemma 3.6. Leti > 0 and let x € H'(G, M). For any subgroup H of G,
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The next result is the natural generalization of a result of Serre on negligible
cohomology classes of &,, (see [24], 26.3) to Weyl groups.

Theorem 3.2. Let W be a Weyl group and let M be a finite W-module, with
trivial action. Let 1 > 0. We have the following assertions :

(1) x € H (W, M) is negligible if and only if its restrictions to the abelian sub-

groups generated by reflections are negligible.

(2) for any i >0, for any x € H (W, M), the cohomology class 2z is negligible.

(3) An element x € H (W, 7Z/27) is negligible if and only if its restrictions to

the subgroups of order < 2 of W are zero.

Proof. (1) Let x € HY(W,M). By Proposition 3.3, the kernel of the natural

(2)

(3)

map '
H' (W, M) — Invg(W, M)
T ay
is exactly Hiegl(W, M). Furthermore, since W is a reflection group over Q
(see Appendix A, Theorem A.2), Theorem 3.1 yields that a, = 0 if and only
if Resil.(a,) = 0 for any abelian subgroup H of W generated by reflections.
Thus, by Lemma 3.6, x is negligible if and only if for any abelian subgroup

H of W generated by reflections, the restriction Resi;(z) is negligible.

Let i > 0 and x € HY(W, M). Let us show that as, = 2a,. For any field k
of characteristic zero and any [¢] € H'(k, W), (a2.)x([¢]) is represented by
(V1y ey Vi) = 22(p(1), -y (7i)). Hence, ag, = 2a,. We conclude the proof
by using Corollary 3.1.

By (1), x € H (W, 7Z/27) is negligible if and only if for any abelian subgroup
H of W generated by reflections, Res{,{V (z) is negligible. Then, Example 3.1
allows us to conclude. B
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Chapter 4

Cohomological invariants of the
Weyl group of type B or C

RESUME

Dans ce chapitre, on s’intéresse aux groupes de Weyl de type B (ou C, ce sont les
mémes). A l'aide de Uinterprétation en termes d’algebres étales pointées donnée
dans le premier chapitre, on peut définir deux familles d’invariants de Stiefel-
Whitney, ceux associés a la forme quadratique trace et ceux associés a la forme
quadratique trace tordue. L’objectif de ce chapitre est de prouver a l’aide du
principe d’annulation établi au chapitre 3 que tout invariant cohomologique d’un
groupe de Weyl de type B s’écrit comme combinaison linéaire de cup-produits
d’invariants de Stiefel-Whitney.

Let kg be a field of characteristic different from 2 and let W be a Weyl group. Then
the cup-product endows the abelian group Invy, (W, Z/2Z) with an H*(ko,Z/2Z)-
module structure.

Let n > 2, let (e1,...,e,) be the canonical basis of R” and let S be the root
system of type By, : S = {+e;,+e; £ 5,1 < i # j < n}. Let us denote by W
its Weyl group. By the classification given in Appendix A, W is isomorphic to
the semi-direct product (Z/2Z)n X &,,, where &,, acts on (Z/2Z)" by permuting
coordinates. Note that the Weyl group of type C, is isomorphic to W, so both
cases B and C are the same.

The purpose of this chapter is to prove the following structure theorem for the
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H*(ko, Z/27Z)-module Invy, (W, Z/2Z).

Theorem 4.1. Let kg be a field of characteristic zero, such that —1 and 2 are
squares in kg, let n > 2 and let W be a Weyl group of type B,. Then the
H*(ko, Z/2Z)-module Invy,(W,Z/2Z) is free with basis

{wi - wjtoci<izyogj<a(zl-i)-

4.1 The vanishing principle for Weyl groups of type
B,

Let us start with restating the vanishing principle (Theorem 3.1) in the case of a
Weyl group of type B, especially in terms of pointed étale algebras (see Propo-
sition 1.8).

For any integer ¢ such that 0 < ¢ < [5], let H; be the subgroup of W associated
with the root subsystem of S :

Sq = {:|:€1 + €9, :|:€3 + €Chyenny :|:€2q,1 + €2¢, :|:€2q+1, ceny :I:en}.

Then it is easily seen that the set {H, | 0 < ¢ < [§]} forms a system of represen-
tatives modulo conjugation of the maximal abelian subgroups of W generated by
reflections.

Proposition 4.1. Assume that n is even (the case n odd is similar), and let k/ko
be an extension. Let 0 < q < 5 and let uy, ..., Uy 2,1, ..., Uy 2 be square-classes in
k*. The image of (u1,v1,u2,v2, ..., Up 2, Vn/2) by the map HY(k,Hy) — H'(k, W)
18

T, = (k(v/urvr) X - X k(\/ugvg) X k" 729 (u1, Uz, ..., Ug, Ug i1, Vgi1, cey Up /2, U /2))-

v(/Tq7) v(\/0,7)
Proof. For any 0 < ¢’ < ¢, set oy : v — —— and ¥y v — % For

q

(i)
VB e s odd

u ./

q
2q+1 < ¢ < 5, set ngy 1y ( ] . To be precise,
"Wy
v
(%
we then compose these morphisms ¢/, ¢y and 7y by the group isomorphism

{£1} 5 Z/27Z, so that we get cocycles with values in Z/2Z. Note that we still
call ¢4, ¥y and 1y these cocycles.

if ¢’ is even

Now set

D v ,_>(7~61+e2)901(7) ' (T.el_e2)?/)1(7) ' (T63+64)¢2(7) ' (r63—64)w2(ﬂ/) e (T62q71+€2q)¢q(7)

)Pl . (T62q+1)772q+1(’v) . (T62q+2)?72q+2(7) e (1, ),

’ (T62q71_62q n
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For any 0 < ¢’ < ¢, the maps ¢, and vy are cocycles with values in Z/27Z
and any two r. and re in H, commute. Therefore, ® is a cocycle of W over
k, representing the cohomology class image of (u1,v1, ug, v2, ..., Uy 2, Uy /2) by the
map H'(k,H;) — H'(k,W). Let us show that ® represents the cohomology class
T,. Indeed, if we take the first two factors v > (Te;1ey)¥' ) - (1) _ey)P1 V), it
corresponds to a cocycle @1 : v — ((e1(y),€2(7)),01(y)) with values in Dy (see
Proposition 1.8). For any v € Iy,

Tei—eq (el) = €2,
Tei1+eq (el) = —€9,
Tei+es ©Tej—es (61) = —€1.
Hence,
o1(v) = (12)pr+()
e1(7) = ¢1(v)
e2(7) = v1(7)-

It is now easily seen that ®; represents the cohomology class (k(\/uivy), u1). We
then can do the same for the other factors. It then follows that ® represents the
cohomology class 7,. W

We may now reformulate Theorem 3.1 for Weyl groups of type B,, n > 2.

Corollary 4.1. Let ko be a field of characteristic zero, let C' be a finite I'y,-
module and let a € Invy, (W, C). Then a = 0 if and only if for any 0 < q < [5],

Resg/q(a) = 0. In other words, a = 0 if and only if a vanishes on the pairs

(k(VE) x -+ x k(\/tg) x K" 27, (a1, ..., a—q))

(for 0 < q < [§]), where the square-class a; has a representative in k* for any
0<i<n—q.

Proof. Since I'y, acts trivially on W, the images of the maps H'(k, H) — H'(k, W)
and H'(k, H') — H'(k, W) are the same if H and H’ are two conjugate subgroups
of W. Then the result directly follows from Theorem 3.1. B

4.2 Proof of Theorem 4.1 for n even : a generating
family
For all this section, let us assume that n is even and set m = 3.

Let us explain the strategy of the proof. We will show that the family of Stiefel-
Whitney invariants

{wi - wjYo<i<(a10<i<2(12)-4)
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generates the module Invy, (W, Z/2Z) by induction on m > 1. If m =1, W ~ Dy
and Theorem 2.4 gives the answer. Let m > 2 and let a € Invy, (W, Z/2Z). Then
we show, as a consequence of Corollary 4.1 that, if we consider a particular sub-
group Wy of W isomorphic to Dy x W', where W’ is a Weyl group of type Ba,,_2,
then a is completely determined by Res%0 (a). Since we know the invariants of
Dy and of W/, we can write Res%0 (a) in terms of invariants of Wy, that we can
describe from invariants of Dy and W’. Then, by a second induction on 0 < ¢ < m,
we study the restrictions to H, in order to identify Res%0 (a) with a linear combi-
nation of the restrictions of the required Stiefel-Whitney invariants.

From now on, let ky be any field of characteristic zero such that —1 and 2 are
squares in kyg. However, much (but not all) of what follows is true, without this
assumption.

We now prove the following result by induction on m > 1.

Proposition 4.2. For any m > 1, if W is a Weyl group of type Bap,, the family
{wi - Wj Yo<i<m,o<j<2(m—i) generates Invy (W, Z/2Z) as an H*(ko,Z/2Z)-module.

If m=1, W ~ D4 and Theorem 2.4 allows us to conclude.

Let m > 2 and let W be a Weyl group of type Bs,,. Let us assume that any
Weyl group W’ of type By(m-1) satisfies the induction hypothesis, i.e. the fam-

ily {wZW, ‘{Eyvl}ogigm—l,ogjg(m—l—i) generates the module Invy, (W’ Z/27) over
H* (ko Z)2Z).

Let W be a Weyl group of type Ba,,. It corresponds to a root system
S ={fe,+e;te;,1 <i<2m,1<j#4i<2m}

Let us denote by W’ the subgroup of W corresponding to the root subsystem
S' = {+tei,+e; +e;,3<i<2m,3<j#i<2m}

It is a Weyl group of type Bapy—2. Let us also denote by Wy the non-irreducible
Weyl group corresponding to the root subsystem {+e;, tea, £e1 +eo} U S’. Then
Wy is a subgroup of W isomorphic to Dy x W”.

Lemma 4.1. Any cohomological invariant of W over ko with coefficients in Z /27
1s completely determined by its restriction to Wy.

Proof. By Corollary 4.1, any invariant of W is completely determined by its
restrictions to the subgroups H, for 0 < ¢ < m. Let 0 < ¢ < m. The root system
Sy defined in Section 4.1 corresponding to H, is clearly a subset of

{iel, +eo, te £ 62} LS’
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Hence, H, C Wy. It implies that, if k/kg is an extension and if T is a W-torsor
over k which lies in the image of H'(k, H,) — H'(k, W), then T, also lies in the
image of H'(k,Wy) — H'(k,W). B

4.2.1 Restrictions of the Stiefel-Whitney invariants to 1/, and to
the subgroups H,

The aim of this section is to give formulae for restrictions of Stiefel-Whitney
invariants to the subgroups Wy and H,, ¢ = 0,...,m. Note that wy =1 = wy. Let
us first compute the restrictions of Stiefel-Whitney invariants to Wj.

Proposition 4.3. We have the following formulae :
(i) for 1 < j <2m, Resy () = Wy* - @y + Wyt - @y + @)
(ii) for1<i<m, Res%o(wi) = wlV + w?‘l i

(iii) for 1 <i<m and 1l <j<2(m—1),

Wo ~\ _ oDa W W =Dy W W
Resy’ (w; - w;) = wy ' - w;” - wilotwyt - w; Wiy

Dy w'  ~W' w’'  ~W'
+ wl Wi ’LU‘7 + w; . 'U)] .

Proof. Let k/kg be a field extension. Let (L,a) € H(k,Wy). Then L = L x Lo
with L; an étale k-algebra of rank 2 and o = (ag,as2). Thus, the quadratic
form qro @ * TrL(axQ) decomposes into qr.o = qr,,a; ® qry,q,- Hence, for
0<7<2m,

wj(QL,a) = Z w’i(qu,al) ) wj—i(QL%az)'
0<i<y

Since w;(qr, ,a,) = 0 as soon as i > 2, we get that
wj(QL,a) = wQ(thﬂtl) ) wj*2(QL2,a2) + wl(thal) ) wjfl(QLQ,OQ) + wj (QL%OQ)

which gives us (7). Likewise, with the quadratic form g, :  +— Trp(22), we get
that, for 0 <1¢ < m,

wi(qr) = w2(qr,) - wi—2(qr,) + wi(qr,) - wi—1(qr,) + wiqr,)

Thus, (ii) follows from Proposition 2.12 using the assumption that —1 and 2 are
squares in kj . Since the cup-product commutes with the restriction map, For-
mula (%) follows from (i), (7i) and from Proposition 2.12. W

Let us now consider the restrictions of Stiefel-Whitney invariants to the subgroups
Hy, for 0 < ¢ < m. We do not need here the exhaustive list of all the restrictions,
so we only give those that will be useful in the sequel.
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Lemma 4.2. Let q € {0,...,m—1}. Forallg+1 <i<m and all0 < j < 2(m—1),
Resg} (wi . ’&7]) = 0.
Proof. If k is an extension of kg and if

Ty = (E(VE) X oo X E(\/tg) X E27D (ug, ooy Ugy Ugg 15 Vgt 15 ooy Uiny Un))
is a W-torsor over k lying in the image of H'(k, H,) — H'(k, W), then

wi(Ty) = wi((2,2t1,2,2ts,...,2,2t,))
=w;((1,t1,...,1,4))
= w;((t1, ..., 1q))
which is 0 sincet > ¢+ 1. R

Let us go further for the case ¢ = 0. Recall that, for any I C {1,...,2m}, ar
denotes the invariant of Hy given by (z1, ..., zom) — (x)7, where (z)r is the cup-
product of the (z;) for i € I (see Corollary 2.1). Recall also that a§0) denotes the

invariant > ar, for 0 < j < 2m (see Proposition 2.6).
Ic{1,....2m};|I|=j

Lemma 4.3. For any 0 < j < 2m, Reslflvo(zﬂj) = ag-o). In particular, the family
{Ii’eslvj[[,0 (W) Yo<j<am is free over H*(ko,Z/27).

Proof. If k/kg is an extension and Ty = (k*™, (u1, V1, ..., Um, Um)) is a W-torsor
over k lying in the image of H'(k, Hy) — H'(k, W), we have

&;J(TO) = wj(<U1, ULy eeny umavm>) = CLE-O)('LLL’UL "'aum7vm)‘

(

Moreover, by Proposition 2.6, the invariants a;
Invy, (Ho, Z/27)No/Ho and this gives the freedom of {Res{,{[,O (wj)}o<j<om. A

0) form a basis of the submodule

Lemma 4.4. Let 0 < i <m. Then, for any j > 2(m —1), w; - w; = 0.

Proof. Let j > 2(m—i). By Corollary 4.1, it is enough to show that the restriction
of w; - w; to any subgroup Hy of W (0 < ¢ <'m) is zero. Let 0 < ¢ < m, let k/ko
be a field extension and let

Ty = (k(VE1) % oo X k(3/Tg) X K7D (U1, ooy Ugy Ugg 15 Vg1 -y Uy Um))

be a W-torsor over k lying in the image of H'(k, H,) — H'(k,W). We then have
to show that w;(7}) - w;(T,;) = 0. By Lemma 4.2, w;(T,) = 0 if ¢ < i. Let us
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assume that ¢ > 7. We have :

wi(Ty) - wi(Ty) = wi((t1, ..., tg)) - wj((ur, uity, ... uq,uqtq,uqﬂ,vqﬂ, cees Uy U ))

= Z (tj) - - Z wjr ((ur, uity, ..., ug, uglty))

1<51<..<Ji<q
: wj_j/(<uq+1, Vg+15 --+) Um, ’l)m>)] .

Since the quadratic form (ug{1,vg41, ..., Um,Vm) has rank 2(m — gq), we have
Wj— 1 ((Ug41, Vg415 ey U, Um)) = 0 if § — 5 > 2(m — q). So we get :

wi(Tg) - w;(Tq) = Z (tj) - (L)
1<51<..<Ji<q
J
. Z wir ((u1, wity, ..., ug, Ugtq))
j'=j—2(m—q)

. wj_j/(<uq+1, Vg+15 -+ Um, ’Um>)] .

Since j > 2(m — i), then j — 2(m — q) > 2(q — ), which gives us :

wi(Ty) - @5(Ty) = > (ti) - (1)
1<j1<..<Ji<q
J
4.1
: [ Z wj/(<u17u1t17 --'>UQ7uqtf1>) ( )
§'=2(g—i)+1
Wi (g1, Vgt1s s U, Um )] -

Let us show that, for any 0 < j < ¢ and any 2(q — i) < j' < 7,

(t;) - wj’((“h U1t ..., Ug, Ugly))

(4.2)
= (t;) - wy ((ur, wity, oy Uj—1, Uj— 15— 1, Uj 1, U 1 L1, ey Ugs Ugly) )

Let 2(q — i) < j' < j. For sake of simplicity, let us assume that j = 1. We have

wjr((ut, urty, ..., ug, uqty)) =(ur) - (urt1) - wy_o((ug, usta, ..., ug, Ugty))
+ (u1) - wjr—1((ug, uata, ..., ug, ugty))
+ (ultl) wj/,1(<u1,u1t1,...,uq,uqtq>)

+ wjr ((uz, uata, ..., ug, ugly)),
SO

wir ((u1, wrty, ..., ug, Ugty)) =(u1) - (u1ty) - wjr—o((u, usta, ..., ug, ugty))
+ (tl) : wj’—1(<u2)u2t2) "'7UQ7uth>)

+ wjr ((ug, usta, ..., ug, ugty))-
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Hence,
(t1)-wjr ((ut, urty, ..., ug, ugly))
= (t1) - (u1) - (uaty) - wjr—o({ug, uata, ..., tq, ugty))
+ (1) - (t1) - wjr—1 ((ug, usta, ..., ug, ugty))
+ (t1) - wjr ((ug, ugts, ..., ug, ugty) ).

Since (¢1) - (u1) - (u1t1) =0 and (¢1) - (t1) = (t1) - (—=1) = 0, we get that

(t1) - wjr ((ur, urts, ..., ug, ugtq)) = (t1) - wir ((u2, uata, ..., ug, Ugly))-

This proves (4.2). An obvious induction shows that, for any 0 < j; < ... < j; < g,

(tjy) - (L) - wyr ((ur, urty, .., ug, ugty))

= (tjl) et (tjz) : w]’((“]ivujitjia “"uj:;—i’uj;—'tj/ >)

i Jqg—1
where {j1,...,j;_;} is the complementary of {ji,...;} in {1,..,q}. Since the
quadratic form @ = <uji’ujitji’ "'vuj;,iv“j;,itj;,) has rank 2(q — i), we get, for
any j' > 2(q — i), that wj(Q) = 0. Using this in Equation (4.1), we can conclude
that wZ(Tq) . @J(Tq) =0. 1

Remark. This lemma does not hold anymore if we do not assume that —1 or 2 are
squares in k.

Let us state the last lemma of this section.

Lemma 4.5. Let 0 < ¢ < m. The family {Res{,{vq (wq - W) Yo<j<a(m—q) 1S free over
H*(ko,Z/27.).

Proof. To show that this family of invariants is free, it is enough to prove that
the value of the invariants on a versal H,-torsor over ky form a free family (see
Theorem 1.7). Let ti,...,tq, U1, ..., Um, Vg+1, -, Upm be independent indeterminates
over ko and set K = ko(t1,..., g, U1, .., Um, Vg41, -, Um). Let us denote by T, the
image of the versal H,-torsor

(w1, urty, ..., Ug, Ugly, Ugt1s Vg41, -y Um, Un)
by HY(K,H,) — HY(K,W). We have to show that the cohomology classes
wq(Ty) - wj(Ty) where 0 < j < 2(m — q) form a free family over H*(kg,Z/27).
Let 0 < j < 2(m — q). We have wy(T,) = wq({t1,...,tq)) = (t1) - ... - (t4) and
w;i(Ty) = w;((2u1, 2uity, ..., 2ug, 2ugly, Ug+1, Vg41, s Um, Um))
= wj((u1, uity, ..., ug, Ugtq, Ug1, Vg1, o Um, Um))
= Z wjr ((ur, urtn, ..., ug, Ugtq)) - Wj— o ({Ug1, Vg1, -vs U, Um))-

0<y'<y
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As shown in the proof of Lemma 4.4, for any 1 < j' < j,
(t1) - wjr ({ur, urty, ..., ug, ugtq)) = (t1) - wy ((ug, ugta, ..., ug, ugty) ).

Thus an easy induction shows that (t1) - ... (tq) - wy ((u1, urty, ..., ug, ugtq)) = 0.
Hence,

wq(Tq) ’ {Dj(Tq) = (tl) Tl (tq) : wj(<uq+l7vq+17 ~~-,Um,vm>)-

Furthermore, since the monomials in (1), ..., (t), (u1), ..., (m), (Vg4+1), -, (V) form
a free family over H*(ko,Z/27), it is easily seen that the invariants wq(T3)-w;(1y),
for 0 < j < 2(m — q), also form a free family over H*(ko,Z/27). B

Remark. This lemma, contrary to Lemma 4.4, is still true if we do not assume
anymore that —1 or 2 are squares in k.

4.2.2 Cohomological invariants of W)

The subgroup Wy of W is isomorphic to the direct product W (Bz) x W(Bp_2).
Therefore, since we know a basis of the module of the cohomological invariants of
Dy (see Theorem 2.4), then by Proposition 2.2 and by the induction hypothesis,
we get the description of the cohomological invariants of Wj.

Corollary 4.2. The module Invy,(Wy,Z/2Z) is free with basis

Dy W’ ~W’ -
{w* - w; Wy }16{0,1,1,2},0§z’§m—1,0§j§2(m—1—i)'

Note that we do not need to make the assumption here that the family

W/ ""W/
{w; C Wy }Ogigm—1,0§j§2(m—1—i)

is free over H*(ko,Z/27). Note also that we used (and we still do it later on) the
~Dy Dy ~Dy

notation wf? *=w;,"* and w3 = W, in order to simplify the expressions.

Let us summarize what we got. Let a € Invg, (W,Z/2Z). By Corollary 4.1, the
invariant a is completely determined by its values on the W-torsors that lie in
the image of a map H'(k,H,) — H'(k,W) (for 0 < ¢ < m). In fact, Lemma
4.1 yields that a is completely determined by its restriction to the subgroup Wy
and so by its values on the W-torsors that are the image of a Wy-torsor. For any
extension k/kg, such a torsor is a W-torsor over k of the form 77 x T, where T}
is a Dy-torsor over k and T, a W'-torsor over k. In the sequel, we will then work
with these W-torsors of the form T} x T, over any extension k/kg.
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By Corollary 4.2, there exist some b;; ; € H*(ko,Z/27), for any | € {0,1,15},
any 0 <i<m—1and any 0 < j <2(m —1— i) such that

Res?(a) = > brij-wpt - wl @V (4.3)
1€{0,1,1,2},0<i<m—1,0<j<2(m—1—1)
4.2.3 Restrictions of Resvwzo(a) to Hy,, for 0 <¢<m

We now show the following proposition by induction on ¢ € {0, ...,m — 1}.

Proposition 4.4. There are some coefficients C; ; € H*(ko,Z/2Z) such that, for
any 0 < g<m—1,

1477 W ~
ResW° (CL) = E Ci’j . ResWO (wi . wj) + Qg+1
0<i<q,0<j<2(m—i)
where , ,
D W' ~W
Ag+1 = E brij-w; - wi - wj
1€{0,1,2},¢+1<i<m—1,0<5 <2(m—1—1)
. Dy w!'  ~Ww'
+ E brij-wi'-wi -wy .

q<i<m—1,0<5<2(m—1—1)

In other words, at each step ¢ of our induction, we identify parts of the sums with a
linear combination of the invariants wg-w; for 0 < j < 2(m—q) by considering the
restriction to the subgroup H,, where we have a lot of information about torsors,
Stiefel-Whitney invariants, etc. It then reduces the extra term aq41. We finally
show that at rank m of the induction, the extra term has completely disappeared.

Proof. Before starting with the proof, let us sketch the main idea of the proof.
Let k/ko be a field extension. Then H'(k, Wy) ~ H'(k,D4) x H'(k,W'), so any
Wo-torsor over k writes (T1,T%) with Ty € H'(k,Dy) and To € H'(k,W’). If
moreover Th = T] x T3 with T € H'(k,D,), the images of the two W-torsors
(Th, T} x T3) and (T},Ty x T3) by the map H'(k,Wy) — H'(k, W) are obviously
the same. Therefore, Res}j‘vf0 (@) lies in the submodule of the invariants ¢ of Wy sat-
isfiyng the equalities ¢ (Th,T] x T3) = ¢, (T7,Th x T3) for any such torsors T4, 7]
and T5. We then show that the restrictions of the Stiefel-Whitney invariants to
Wo generate this submodule.

Let us prove Proposition 4.4 by induction on ¢g. Let us check the case ¢ = 0
first : let us consider the restriction Res{f‘}’(a). Let k/ko be an extension, let
Ty = (K%, (u1,v1)) be a Dy-torsor over k and let 77 = (k*™2, (ug, v, ..., Um, Um))
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be a W'-torsor over k so that the cohomology class associated with T7 x T lies in
the image of H'(k, Hy) — H'(k,W). Hence,

a(Ty x T') = Z bu.i.j wz YTy - wV(T) '{E}/V/(T/)-
l€{071”-j‘/7§}7
0<i<m—1,0<5<2(m—1—1)

For any 1 <i<m —1, w}" (T") = 0 and w}*(T1) = 0, so we have :

ar(T1 x T') = Z bio,j - wz W(Th) - w (T/)
1€{0,1,2},0<j<2(m—1)

Let us embed Hy in Wy = D4 x W’. Then Hy decomposes in this product in two
factors, the left one being isomorphic to (Z/2Z)? and denoted by Hg) * and the
right factor being an abelian subgroup of W’ generated by reflections. We denote
it by H|. Note that Hj is for W' exactly what Hy is for W. Lemma 4.3 applies
here for W’ and Hj :

ResW,(NW )= a;()) = Z aj.
T3, 2m} | T =j

For any 0 < j < 2(m — 1), we have

]D)

ReSD (w]ih) Resw,(NW ) = (a{l} + Q{Z}) ( Z a)
JC{3,...2m},|J|=j

= > (ag1y.7 + agay.s)

JC{B,2m},| T |=j

and
Dy

H.* ’
Resp, (@5*) - ResW,( THSE agqa - ( Z ay)
JC{3,....2m},|J|=j

= Z a{LQ}'J'

JC{3....2m} | |=j

Let us come back to Resg}) (a). We get that
Respf(a) = > [boog (> aj)
0<j<2(m—1) JC{3,....2m},|J|=j

+by; - ( > (as.1y +asq2y))
JC{3,...2m},|J|=j

b3, ( Z ayq12))]-

JC{B e 2m} | T|=j
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Moreover, Resg,0 (a) belongs to the submodule of the cohomological invariants of
Hy fixed by the group Ny/Hy. By Proposition 2.6, for any i = 0,...,2m, there
exists b; € H*(ko,Z/27Z) such that

2m
Res{j{,o (a) = Zbi : az(-o),
i=0

where, for i = 0, ..., 2m, al(o) = > aj.

IC{1,...2m},|I|=i

Furthermore, the family (ar);cq1,...2m} is free in Invg, (Ho, Z/2Z) (see Proposition
2.1), so we get the following relations : for any 0 < j < 2(m — 1),

bo0j = bj, by ; = bj+1 and by ; = bjta.
We can now say that

bo,0,1 = b7 g o5

gl

for any j > 2,09 01 = bi,o,j—z and (4.4)

by

=by
1,02m—2 — bﬁ,O,2m—3'

If we set af = Res%o(a) + ap (it is a cohomological invariant of Wy), then

/ D ~!
ag = E bioj - w; " - wj

_ ~TV/ ~Dy
= b0,0,0 + bop,1 - w1 + by Wy

2m—2
W ~Dy W Dy W
+ Y (b0 @)+ by g WY@+ by Wyt D)
i=2

~]]])4 “’W’ ~]D)4 "’W/
+ bT,0,2mf2 TWpT - Wop—p F bi,o,meg "Wy - Wom—3
b= cipPa | W
1050 0m—2 Wa™ * Wap_2-

Therefore, using Relations (4.4), we get :

/ ~W' ~D)
ag =boo,0 +boo1 - (0 +wyp*)
2m—2
~W/ ""D ~W/ ~]D) ~W/
+ E bo,0,5 - (wj +wyt - wily +wyt wj—2)
j=2
Dy ~W! Dy ~W!
+ 03 09m—2 " (W)* - Wy, g + Wy - Wy, 3)
Dy ~W
+ b§,0,2m—2 TWy T Wom—2-
By Lemma 4.3, for 0 < 5 < 2m,
~W!

Wor—=\ _ ~Ds  ~W' ~Dy  ~W'
Resy”(w;) = wy* - wily +wyt - wily +wj
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thus :

2m—2
a =bo,0,0 - Resyy? (o) + boo,1 - Resyy®(@1) + Y boo,; - Resy” ()

j=2

+b0,2m—2 " Resyy (@am—1) + 03.0,2m—2 " Resyy” ()

2m—2

= >~ booy - ResyO (@) + by g 50,5 - Res}? (@m-1)
j=0
+ 050 9m—2 - Resyy® (@am)-

This concludes the case ¢ = 0.

Assume now that 1 < ¢ < m — 1 and that the induction hypothesis is true for the
rank ¢ — 1. By induction hypothesis (see Proposition 4.4), we want to study the
extra term a,. Note that a4 is a cohomological invariant of Wy. Recall that

_ . Dy w’'  ~W'
aq = E bri,j - wp - w; CW;
1€{0,1,2},¢<i<m—1,0<5<2(m—1—1)
o Dy w’'  ~W'
+ g biij-wit-w; - wj .

q—1<i<m—1,0<5<2(m—1—1)
We then have to show that

_ . Wo ~
aq = E , Cq,j - Resy (wq - Wj) + ag1,
0<j<2(m—q)

where Cy ; € H*(ko,Z/27Z) for 0 < j < 2(m — q). Let k/ko be an extension, let
Ty = (K%, (u1,v1)) be a Dy-torsor over k, let To = (k(v/t3),u2)) and let

T3 = (E(vVE3) X oo X E(VEgr1) X k279D (g, o g1, Ugr2, Ugss - Um, Um))

so that Ty x T3 is a W’ -torsor over k. Then T} x (T x T3) is a Wy-torsor which lies
in the image of H'(k, H,) — H'(k,W). Since w¥' (Ty x T3) = w;({ta, ..., tq+1)),
we get that w!'(Ty x T3) = 0 if i > ¢+ 1. On the other hand, w}*(T}) = 0.
Therefore, we obtain that

(ag)k(Ty x (Ty x T3)) = S by w (T w) (T x Ty) - @) (Ty x T).

1e{0,1,2},
0<j<2(m—1—q)
(4.5)

Let us now consider the Dy-torsor Ty = (k(v/t2), u2) and the W'-torsor

Ty x Ty = (k2 x k(Vt3) X ..xk(Vtg1) x K2m=a=D),

(U1, 01, U3, ooy Ugy 15 Ugt2, Vg4 25 -+ U, Um) ) -
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Then wlV' (Ty x T3) = w;({t3, ..., tg41)), so if i > q, w}¥' (T) x T3) = 0. Hence,

(ag)k(To x (T x T3)) = Z big—1,j Wit (T2) - wy  (Ty x Ty) - (Tl x T3).
0<j<2(m—q)
(4.6)
Since the two Wy-torsors T} x (T2 x T3) and Ty x (11 x T3) are isomorphic, it
follows from (4.5) and (4.6) that

Z big,; - wz “(Th) - w (TZ x T3) - w (T2 x T3)
1€{0,1,2}0<j<2(m—1—q) (4.7)
= Z brg-1, - wl H(Ty) - w (Tl x T3) - w (Tl x T3).
0<5j<2(m—q)

Now set k1 = ko(u2, ..., Um, t2, ..., tg+1, Vg2, ---, Uy ) and assume that u; and vy are
independent indeterminates over k1. Then the family {1 DY (Ty), Wyt (Th)} is free
over H*(k1,Z/2Z). We then have to collect classes wl (Tl) (4. 7) Denoting
in an analogous way to W’ C W, by W” the “same” subgroup of W' then by
Proposition 4.3 and since wl 4(T1) = 0, we get, for any 0 < j < 2(m —q) :

W % T3) - @) (Th % Ty) —1171[2)4(T1) : WI{ (T3) LW (Ty)
+ @) (Th) - w (T3) By (Ts)
+ UJW” (T3) - @l (T3).

Since the family {1, @ * (Ty), w U5 (1)} is free, we obtain from (4.7) the following
equalities : for any [ 6 {0,1 2}

Z bl,q,j : w (T2 X T3) (T2 X Tg)
0<j<2(m—1—q)

(4.8)
= > bugmng ) (T) - wy () @) (T).
0<j<2(m—q)
Now set ky = ko(us, ..., Um,t3, ..., tg41, Ug+2, ..., Um) and let to,us be indepen-

dent indeterminates over k. Then the family {1, @7*(Ty), @Wy*(T2)} is free in
H*(ky, Z/27) (and wP*(Ty) = @>4(Ty)). We then have to collect these terms :
since wW' (T3) = 0, by Proposition 4.3, for any 0 < j < 2(m — 1 — ¢q), we have

ATy x Ts) - @) (Ty x Ts) = wi(Ty) - wy y (Ts) - @) (T5).

Hence, for any [ € {0,1,2}, we get from (4.8) that

0<j<2(m—1-q)
= Z big—1,j - Wy 1(T3) (TB)

0<j<2(m—q)
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We have the three following equalities:

fori =0:
0= > (bogj+brg1y) w1 (Ts)- @) (Ts)
0<5<2(m—1—q)
+00,g-1,2(m—q)-1- wz?il(Ti’)) ) wg(/qu)fl(T?))
+ D0.g-1.20m—q) - War 1 (T3) - Wy (T3);
fori=1:
0= > (bryy +brg-1gr) w1 (Ts) - @) (Ts)
0<j<2(m—1—q)
+b1g-1.2(m—g) - Wa1 (T3) - Wy 1 (T3);
for =2 :

0= > (bg,,+big 1) wyy(Ts) - @) (Th).
0<j<2(m—1-q)

We now apply Lemma 4.4 replacing W by W and q by ¢ — 1:
wV' @V =0ifj>2(m—2—(¢—1)) =2(m —q) — 2.
Therefore,

wy (T5) - Wy, 1 (Ts) = 0 = wl | (T) - Wy, (T5).

Thus Relations (4.9), (4.10) and (4.11) become :

for ] =0:
> (bog +brg-1y) - wy  (T5) - @y (T5) = 0
0<j<2(m—1-q)
for =1 :
Do (bigy + b)) s wl(Ty) @) (Ts) = 0;
0<j<2(m—1-q)
for | =2 :

> (b +bigree) s wgly(Ts) @) (Ty) = 0.
0<j<2(m—1—q)

(4.10)

(4.11)

(4.12)

(4.13)

(4.14)

Assume now that t3, ..., tg41, U3, ..., Um, Vg+2, ..., U are independent indeterminates
over ko. Let us denote by H, the subgroup of W”, defined likely to H, C W.
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Then, rep}lacing W by W” and q by ¢ — 1, Lemma 4.5 implies that the invari-
ants Resg},,(wqui ") (with 0 < j < 2(m — 1 — ¢)) form a free family over
H*(ko,Z/2Z). Since Tj is clearly the image of a versal torsor of H/, we get as a
direct consequence of Theorem 1.7 that, for 0 < j < 2(m — 1 — ¢), the invariants

w};ﬂ (T3) - 1’17}4/" (T3) form a free family over H*(ko,Z/2Z). It then follows from

(4.12), (4.13) and (4.14) that, for any [ € {0,1,2} and any j € {0,...,2(m—1—q)},
Reordering equalities (4.15), we get that, for any 2 < j <2(m—1—¢q) :

bo,q,0 =b1,4—1,0,
b07q71 :bi7q,0 = blaq_lvl’

b3 4.j—2 = Vi g1 =00.q.i = brg-14; (4.16)
bﬁ,qﬂ(m—l—q)—l :biq,Q(m—l—q) = bl,q—1,2(m—q)—1)
bi,q,Z(m—l—q) :bL(I*lyQ(m*fl)*l'
Let us now come back to ay :
_ D W ~W
aq = E , biij-wy " wi - w;
1€{0,1,2},¢<i<m—1,0<5<2(m—1—1)
D W ~W
+ > brij-wy'-wp wy
g—1<i<m—1,0<j<2(m—1—1)
SO :
_ ) Dy w’' ~W’
Qg = E : bigj-w; " -wy - w;
. Dy w’ ~W'!
+ E big—1j wy" Wy - W5 + agq1-
0<5j<2(m—q)
Set ay, = aq + agy1. Using relations (4.16), we have :
r_ w’ Dy w’
(lq = b17q7170 . (wq + wy - - wq_l)
~IDy w’ Dy W' ~W! W' ~W’
+ b17q_171 ’ (wl : wq + w]. : w(I*l ) wl + wq : wl )
Dy W W <Dy W W
+ E brg-1 - (U’Q TWy Wig T W Wy Wiy
2<j<2(m—1—q)
Dy W ~W W ~W! (4.17)
ot wgy - @y wg @)

~Dy w’' ~W'
+b1,g-1,2(m—q)—1 - (w2 "Wo Wy 1-g)-1t
~W' )

~Dy w’' o ~W’ Dy w’

Wy " Wy - Wy(—_1—¢q) +wy” - Wq—1 " Wo(m—q)—1

~Dy W’ ~W Dy w' o ~W'
+h1g120m—g) - (@ w0y W1y F W Woly - D)



Recall now the formulae of Proposition 4.3. For any 2 < j <2(m —1 — q),

. W’ Dy W’
wg =w,  +wit-wlg, (4.18)
~ ~ID w’ D. W’ =W w’ . ~W’
We Wy =Wyt w, twptwely cwy tw, Wy, (4.19)
W =P WV G L @GP WY W Da W GW
Wq - Wj =Wy~ Wy - Wji_g+ W™ Wy Wi + W~ - Wy - Wy 4.90
W W (4.20)
+ wq . ’LUJ )
~ _ ~Dy W' ~W ~Dy w’ =W
Wq = Wo(m—q)—1 W3~ Wy~ Wa(py_1_g)—1 T Wi~ Wy~ Wo(m_1_g) (4.21)
P WG '
Wi We—1"Wa(m—q)
and
~ _ Dy, W W Dy, W ~W
Wq - Wo(m—q) = Wy ' Wy * Wa, q_gy T Wy " - We_y - Wy (4.22)
W gV _ W g’ =
Note that we used Lemma 4.4 : w, Wyl gq)—1 = 0 and w, Wo(m—q) = 0.

Therefore, using relations (4.18) to (4.22) in relation (4.17), we get that

g =b1g-10" Resyvfo(wq) +b1g-11" ResVWV0 (wq - w1)
+ Z big—1, - Res%0 (wgq - wy)
2<j<2(m—1-q) (4.23)
+b1,g-1,2m—q)-1 - RGS%O (wq - Wa(m—q)-1)
+b1,4-12(m—q) * RGS%O (Wq = Wa(m—q));

which yields :

a; = Z b17q_17j . RGS%O (wq . ’[17]) (4.24)
0<j<2(m—q)

This ends the induction and the proof of Proposition 4.4. B

We eventually get that there exist some coefficients C; ; € H*(ko, Z/27Z) such that

Wo(a) — . Wo (i - s
Resy;”(a) = g Cij - Resy” (w; - wj) + am
0<i<m—1,0<j<2(m—i)
where
Dy W =W Dy, W
Qm, = > biij-wyt - wi Wi = bim—1,0 - Wi Wy

m—1<i<m—1,0<j<2(m—1—i)

m—

By Proposition 4.3, Res}fv/o (wm) = wl 4w w" | and !’ = 0. Hence, Resg[v/0 (a)
is a linear combination of the invariants Res%O (w; - wj) of Wy, for 0 <4 < m and
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0 <j <2(m—1). Since the restriction to Wy completely determines the invariant
a, we get that a is a linear combination of the invariants w; - w; of W, 0 <14 <'m,
0 <j < 2(m—1). Therefore, for 0 <i <m,0 < j < 2(m —1), the invariants w; - w;
of W generate the module Invy, (W, Z/27Z). This ends the proof of Proposition 4.2.

4.2.4 A basis of Invy, (W, Z/27)

Note that any result of this section is still true if we do not assume that —1,2 € kOX2.

Theorem 4.2. The family {w; - W; }o<i<m,0<j<2(m—i) 5 free over H*(ko, Z/27Z).

Proof. Let {\;j }o<i<m,0<j<2(m—i) be a family of coefficients of H*(ko, Z/2Z) such

that
a = Z )\,‘J"wi-{ﬁj:o.
0<i<m,0<5<2(m—i)

Let us show by induction on ¢ € {0,...,m}, that, for any ¢ € {0,...,m}, A\g; =0
for any j € {0,...,2(m —4)}.

Assume first that ¢ = 0. Let us consider the restriction of a to Hy. We have to
show that, for any 0 < j < 2m, Ao ; = 0. By Lemma 4.2, for any extension k/kg,
for any W-torsor Tj over k lying in the image of the map H'(k, Hy) — H'(k, W)
and for any ¢ > 0, we have w;(Tp) = 0. Thus,

af T() Z )\OJ 'U}] T()
0<j<2m
By Lemma 4.3, the family {Resg})(@j)}oﬁggm is free in the H*(ko, Z/27)-module
of the invariants of Hy modulo 2. Therefore, we get that X\g; = 0 for any
0<j<2m.

Let now 0 < ¢ < m. Let us assume that, for any 0 < ¢ < ¢, A;; = 0 for any
0 <j<2(m—i). Hence,

a = E )\i,j-wi-@j.

q<i<m,0<j<2(m—i)

Let us now consider the restriction Res:? ) of a to Hy. Let k/ky be an extension
and let Ty, = (k(y/11) X ... X k(y/Tq) X k%:” ‘1 (UL, eeey Ugy Ugt 1, Vg1 s ooy Uy Upn)) DE
a W-torsor over k lying in the image of Hl(k7 H,) — H'(k,W). By Lemma 4.2,
ifi > q+1, wi(T,) = 0. Thus,

ap(Ty) = Z Agj - wq(Tq) - w;(Ty).

0<j<2(m—q)
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Therefore, Resg,q(a) = oo A ReséVL’ (wq - wj). By Lemma 4.5, the fam-
0<j<2(m—q)

ily {Resgf (wq - Wj) o< j<a(m—q) 18 free over H*(ko,Z/2Z). We can conclude that
Ag,j = 0 for every 0 < j < 2(m — ¢). This ends the induction. W

4.3 Proof of Theorem 4.1 : the case n odd

In this section we just sketch the proof of Theorem 4.1 with n odd. Let us recall
the statement.

Theorem. Let kg be a field of characteristic zero, such that —1 and 2 are squares
in kg. Let m > 1 and let W be a Weyl group of type Bopmi1. Then the module
Invi,(W,Z/2Z) is free over H*(ko,Z/27Z), with basis

{wi - 7j’j}ogigm,ogjgz(rrm)-
Let W be a Weyl group of type Bonyt1. Let
S={fe,xe;te;,1<i<2m+1,1<j#i<2m+1}
be the root system corresponding to W. Let
So = {te;, te; £ej,1 <i<2m,1<j#i<2m}U{temmi1}

Then the reflections associated with Sy generate a subgroup Wy of W, isomorphic
to W' x (rey,,.,), where W' is a Weyl group of type Bay,. Let a € Invy, (W, Z/2Z).
Mimicking the proof of the case Bs,,, we may show that Res%0 (a) completely
determines a. Then we write Res%’(a) as cup-products of invariants of W’ and
of Z/2Z. Looking at the restrictions to the subgroups H, as in the case By, we
finally get the result. Note that computations are much easier here because of the
factor Z /27 instead of Dy.
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Chapter 5

Cohomological invariants of the
Weyl group of type D,, n > 4

RESUME

Dans ce chapitre, on s’intéresse aux groupes de Weyl de type D. Un tel groupe
se réalisant comme sous-groupe d’un groupe de Weyl de type B, on peut définir
par restriction les deux familles d’invariants de Stiefel-Whitney. L’objectif de ce
chapitre est d’établir et de prouver a ’aide du principe d’annulation du chapitre 3
un résultat analogue a celui du chapitre précédent afin de déterminer complétement
les invariants cohomologiques des groupes de Weyl de type D.

Let n > 4, W be a Weyl group of type D,,. We associate to W its root system

S={xe;+e;j|1<i<j<n} (see Appendix A for more details).

Let us denote W’ the Weyl group of type B,, corresponding to the root system
S'={te;, £(estej) |, 1 <i<n,1<j#i<n}

We clearly have an inclusion W C W'.

Let k be a field of characteristic zero. As we saw in Proposition 1.8, the pointed
set H'(k,W') is in bijection with the set of isomorphism classes of pairs (L, )
where L is étale of rank n and « a class of squares in L*. Furthermore, Proposition
1.9 states that the image of the map H'(k, W) — H'(k,W') corresponds to pairs
(L, @) such that o has norm 1 in L.
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Moreover, we can easily construct some Stiefel-Whitney invariants, from Stiefel-
Whitney invariants of W’ simply by taking the restriction. We then set for any
0<i<[5], w= Res|V, (w;) and for any 0 < i < n, w; = Res{} (@;).

Let us now state the structure theorem for cohomological invariants of W.

Theorem 5.1. The H*(ko, Z/27Z)-module Invy,(W,Z/2Z) is free with basis given
by w; - wj, where 0 < i < [5], 0 < j < 2([§] — i) and j even.

5.1 The vanishing principle

Consider now Sp = {#£eg;—1 *eg; | 1 <i < [§]}. It is a root subsystem of S. The
associated reflections generate a subgroup H of W.

Note that any maximal abelian subgroup of W generated by reflections is con-
jugated with H. The vanishing theorem for cohomological invariants of Coxeter
groups may be written in the following form.

Theorem 5.2. Let kg be any field of characteristic zero. The restriction map
Restl. Invi, (W, C) — Invy, (H,Z/27Z) is injective.

Moreover, the image of this map is contained in Invy,(H,C)N# /H where Ng
denotes the normalizer of H in W (see Proposition 2.3). Let us define some
cohomological invariants of H belonging to this submodule. For any field k£ of
characteristic zero and any square-classes z1, ..., 7, € k*/k*2, we set

Ars(T1, -0y Tn) = Z (@my) * (@my+1) - (Tm,.) - (Tmp41)

1<mi<...<m,<n—1 odd numbers

( > (z))

lels
INn{my,mi1+1,..., my,my+1}=0

where
Is={{l,..,ls} eN°[1 <[] <..<ls<nand
VO < m < 2 {2m = 1,2m} ¢ {l, e}
Recall that we used the notation (x); = (x7,) -+ - (x1,), with 1= {l1, ..., 15}

This definition yields some cohomological invariants a, s € Invy, (H,Z/2Z) for any
O0<rsandr+s<3.
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Lemma 5.1. The H*(ko,Z/2Z)-module Invy,(H,Z/2Z)Nu/H s free with basis
given by the invariants ays, for 0,<r,s andr+s < 5.

Proof. If niseven, then H C W(D,,) C W(Dy+1) and the normalizers Ny (W (D))
and Ny (W (Dp41)) are equal. We then may assume n even. Let us first prove that
the family {ar’s}ogm;wsg% is free over H*(ko,Z/2Z). Note that, for any 0 < r,s
such that r +s < 5,

Qps = E arg.

Ic{1,...n}
[I|=2r+s
I contains exactly r pairs {2m—1,2m}

For any 0 < r,s such that r +s < %, let ¢, s € H*(ko, Z/2Z) such that
Zcr,s cArs = 0.
T8

Then,

Zcr,s . (Zaj) =0.

Since each subset I appearing in the decomposition of some a, s does not appear
in the decomposition of another a, ¢ and since the family {a} Ic{l,..n} 18 free
(see Proposition 2.1), we get that ¢, s = 0 for any 0 < r,s such that » + s < 3.
Therefore, the family {ar,sto<r,s;r+s<2 is free over H*(ko, Z/2Z).

Let us now prove that, for any r,s > 0 such that r + s < 3, a, s belongs to

M = Invg, (H, 7./22)Nu/H and that the family {a,,’s}ogr,s;rﬁgg generates the
H*(ko,Z/27)-module M. For sake of simplicity, let us show it for n = 4. In this
case, the subgroup H is associated with the root subsystem {+e; & e9, feg +e4}.

Set

W(y2) (€1 €2 > €1 — €2; €1 —e2 > el +e2; €3+ €4 e3+ e4;
€3 — €4 > €3 — €4;

W(34) el e~ e1+e2; €1 —egr> e —e; €3+ eqr> ez — ey;
€3 —e4 €3+ ey

W(12)(34) ‘€1 T €2 €1 —e2; €1 —ext> el +er; e3+eqire3— ey
€3 —eq—e3+eq

w ' ep+ e e3+e4; €1 —eg > e3—ey; €3+ eqr— e+ e
€3 — €4+ €1 — €9

W(ig) ‘€1 T €2+ €3 —€4; €1 —€xt> €3t ey €3+ €4t €1+ e

€3 — €4 +— €1 — €9

91



w&l) ie1 +egrresteq; e1—eg > es —eq; e3+eqr el — e

€3 — €4~ e1 + e

A4
W(12)(34) ‘€1 +ear>e3—e4; €1 —egtre3t+eq; ezt eqgr> el —es;

€3 — €4 — €1 + €.

Then

JH}.

(12)(34

<~

{H, waoyH, w@ay H, wagy@ay H, w™ H, iy H, wiz, H,w

Ny/H =

s such that r +s5 < 2

First note that, for any 0 < r,

for instance,

, ar,s belongs to M. Indeed,

o~ o~ o~ o~ o~ o~ o~ o~

—_ D

I R N R I e

I s s e
g 8 8 8 &8 8 & S
I I I )
g 8 8 8 &8 8 & S
A& & a4 & A4 & A &
g 8 8 8 &8 8 & S
)
F&E R B3 ER B8 E
S I 95 ° o S I o
§§ § 3 33 § 3
S 3 « 3 3 .«
N Iz

3 3

or

P T e N I N T T S R

« = a
~— TN~ TN e T
3 . 5. OCHEN
S22 532
. CHEN OCHEN 5.
i [\ Al [\l
ELtE+E +E

—~ —~ —~

— N —
~— T ) — T ~— T~
D T T e
N — [\ —
~— TN ~— T ~—r T~
. OCHE OCHEN .
— N — N
= = = =
8 8 8 8
» » o »
8 8 8 8
Q & S Q
8 8 8 8
— — — —
8 8 8 8
~ ~ ~— ~
— — — —
S S S S
~ = <
= N o
3 3 )
Z
3

~—

~—

~—

—~

—~

~—

~—

~—

~—

—~

—~

—~

~—

~—

~—

(1, 22, 23, 24) = (23) - (24) - (22) + (23) - (24) - (21)

w(34).a1’1

+ (22) - (21) - (23) + (22) - (21) - (23)

sz, o, w3, x4) > (24) - (23) - (22) + (24) - (223) - (21)

W(2)(34)-01,1

+ (z2) - (21) - (w4) + (22) - (1) - (23).
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Let us now prove that {a,s}to<rsrts<2 generates M. Let a € M. There exist
some coefficients ¢; € H*(ko,Z/27) for any I C {1,2,3,4} such that

a= E cr-ar

1c{1,2,3,4}
4

—cp+ Y ey agy + (cnay - aay + csay - agsay)
7=0

+ (e aquay +epay aqay + cea)  agea) +C2ay  ag2ay)
+ (0{1,2,3} “a{123} T C{124} " {124} T C{1,34} - A{134} T C{234} " a{2,3,4})

+C{1234} {1234}

Recall that the family {ar};c(1,2.3,4) is free over H*(ko,Z/27Z). Note that

W(12)(34)- 31} = A2}
W(12)(34)-0{3} = A{4}>
W(12)(34)-4{1,2,3} = A{1,2,4} and
W(12)(34)-A{1,3,4} = A{2,3,4}-
Since w(q2)(34)-a = a,
{1y =2
C{3y =C4p
€{1,2,3) =C{1,24} and
C{1,3,4} —C{2,34}-
Likewise, note that
w*.apy = agy,
W a9y = aq3.4},
w.agy 4y = aga3) and
wH-a{1,2,3} = a{1,3,4}-
Since w*.a = a,
{1y = {3}
C{1,2} = €¢{3,4}>
C{1,4}) = ¢{2,3) and
€{1,2,3} = ¢{1,2,4}-

We also have wﬁz)a{m} = aqy,4y- Since w”.a = a,
{13} = ¢{143-
Eventually, w&’4)a{273} = ay24)- Since w.a = a,

€23} = {24}
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Combining all these equalities, we get

a = Cp - ap,0 + C{1} - G0,1 + C{1,2} - A1,0 + C{1,3} - @0,2 + C{1,2,3} - 1,1 + C{123 4} * 42,0

Therefore, {a,s}o<r s:rt+s<2 generates M. W

5.2 Cohomological invariants of W(D,) : the case n
even

Let us first deal with the case n even.

5.2.1 Restriction of Stiefel-Whitney invariants
Let us start with computing the restrictions of the Siefel-Whitney invariants to
the subgroup H.

Lemma 5.2. (i) For any 0 <i< 3,

R SH( ) aop; + (2) - agi—1 if i is even
(S w; ) =
W ao.i if 1 is odd

(ii) For any 0 <i <mn even,

J
i1

Resli, (w;) = Zar,j_zr +(2) - (Z Grj—1-2r)
r=0 r=0

N

Proof. Let k/kq be a field extension and let (L, a) € H'(k, W') lying in the image
of the map H'(k,H) — H'(k,W’). Then, by Proposition 4.1, there exist some
T1,...,Tn € k¥ such that

L = k(\/x122) X k(\/x324) X . X k(\/Tp—12y,) and o = (21, 3, ..., Tp—1)-
(i) Let 0 <i < 5. Then
wi(L, ) = w;((2).(1, x1292, 1, 2324, ..., 1, Zp_12))

Wi ({122, ooy Tp—1Tp)) + (2) - wi1 ((T122, ooy T 120))

if 7 is even

wi((z122, ooy Tp_12y))  if i is odd

Noting that w;((z122, ..., Zn—12n)) = > ()1 = ap(x1, ..., Tn), We get
lel;

(L,a) aoi(x1, ..., xn) + (2) - agi—1(z1, ..., xy) if @ is even
w;(L, o) = o
' aoi(x1, ..., Tn) if 7 is odd
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(ii) Let 0 < i < n and assume that ¢ is even. Hence,

wi(L, ) = w;i((2).(x1, ..., Tn))
=w;((x1, ..., Zn)) + (2) - wi—1 ({1, ..., Tn))

An easy computation yields

i

2
wi(<x17”-7xn>) = Z a?",i—?’l‘(x17"'7xn) - ar,i—2r($1ama$n)7

r=maz(0,i—3) r=0

s

with the convention a, s = 0 if r + s > 5. Therefore,

i i_q
2 2
i(L,0) =Y arioor(@1, ) + (2) - (Y aric1-ar(@1, oy 2n)). W
r=0 r=0

Let 0 <i < % and let 0 < j < n — 2¢ with j even. We now write the restrictions
Resfi (w; - w;) in the basis {a,s} of Invy, (H,Z/2Z)Nu/H.

Proposition 5.1. Let 0 <i < 5 and let 0 < j <n — 2i with j even. If i is even,

% min(i,j—2r)

Resgv(wi Cwy) = Z Z (j ;2?") (Z +§' : ;Z: - t) (_1)% “Qridj—2r—t

r=maz(0,j—3) t=0
t+7—1-2r
( ] J_ 1 — 92 ) ar,i+j—1—2’r‘)

T2

i—1+4j—2r
j _ 9 ar,i—1+j—27‘)

If i is odd,
z min(i,j—2r)

Rty = > () (TR e e

r=max(0,j— %) t=0

t+j—1-2r
£ @) (77 ) anissa)
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Proof. From Lemma 5.2, we get the following formulae. For any 0 < i < 5 and
any 0 < j < n — 2¢ with j even,
if ¢ is even,

J
2

Resiy (wi - @;) = ao - arj—2r +(2)- (D a0 arj-1-2r)
r=0

r=

NS,
—

o

i
2
+(2)- (D a0i-1-arj2)
r=0

if 4 is odd,

J
i1

Res%(’u}i . @]) = Z aO,i . aT,j—QT + (2) . ( Z aoﬂ- . a’r,j—l—Q’r‘)
r=0 r=0

.

In both cases, for 0 < i < 5 and 0 < r,s such that r +s < 5, we have to write
the invariant ag; - a, s in the basis {am,l}()gm,um—i-lg%‘ The following lemma gives
the answer and allows us to end the proof of Proposition 5.1. B

Lemma 5.3. Let 0 <i < 5, 0 <r,s such that r +s < 5. Then

min(i,s) 1 '
S (] S — .
ag,; * Aps = Z (t) < s ) (_1) L. Qri+s—t

Proof. Let us first prove that ag; - aro = a,;. Let k/ko be a field extension and
let z1,...,x, € k*/k*2. Then

aoi(x1, ..., Tn) - aro(z1, ..., Tp)

= Z @ (@my) - (@my+1) - (@m,) - (Tm,41)
lel;;1<m1<...<m,<n—1 odd numbers
min(r,i)

= > > 2 <u> (1)@ - (@) (Zmy) - (Er1) -

u=0 lel; .,
1<mi<...<m,<n—1 odd numbers
IN{mi1,mi1+1,....mp,mp+1}=0

= > @1 @) - @my1) - (@) - (@)

lel;;1<m1<...<m,<n—1 odd numbers
IN{m1,mi1+1,ma,mo+1,....my,mr+1}=0

= Q-
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Likewise, we prove that

a0,i (21, -, Tn) * Ars(T1, -0, Tp)

= > (@)1 (@my) - @mg1) - (@my) * (@my41) -

lel;;Velg
1<mi<...<m,<n—1 odd numbers
IN{m1,mi1+1,ma,mo+1,....my,mr+1}=0
U'n{mi,mi+1,me,ma+1,...mymr+1}=0

Hence,

a07i(.%'1, ,.%'n) . ar,s(xl, ceey xn)

t=0 lel; Ve,
1<mi<...<my<n—1 odd numbers
IN{m1,mi1+1,m2,ma+1,...mp,mr+1}=0
V'n{mi,mi+1,ma,ma+1,...mymy+1}=0
1Nr=0

(@m,) - (Emep1) - (@ (@)r

min(i,s)min(i—t,s)

=2 2 2.

t=0 u=0 leliftfu;llels—u
1<mi<...<my<n—1 odd numbers
1<m/ <...<mf,<n—1 odd numbers

IN{m1,mi+1,ma2,m2+1,....mrme+1,m)+1,....mJ ,m} +1}=0
Vn{mi,mi1+1,ma,ma+1,....,m m+1,m} ,m|+1,....ml ,mj+1}=0
1Nr=0
{m1,...m:I0{m},...m} }=0
lUl,EIs-H—t—Qu

24 (i> (_1).15 ) (55m1) ’ (xmﬁ-l) T (xmr) ’ (Imr+1) ) ($m/1)

(@pgg1) oo (@my,) * (@mg41) - (@) (@)y
min(é,s) ,
_ > leg_t (D <z+z—t) (—1)*

1<mi<...<m,<n—1 odd numbers
IN{m1,m1+1,ma,ma+1,...;mpmp+1}=0

(@) - (@ 1) - (@m,) - (Tm41) - (2

This allows us to conclude the proof of Lemma 5.3. B

5.2.2 Proof of Theorem 5.1

Let us now prove Theorem 5.1. Note that the (cohomological) degree of a, s is
2r 4+ s. By Proposition 5.1, every element a, s appearing in the decomposition of
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Restl. (w; - w;) has degree <i+ j. Indeed,

deg(ariyj—2r—¢) =i +j—1,
deg(ariyj—1—2r) =i+ j — 1,
deg(ari—14j—2r) =i+ j — 1.

Moreover, if deg(anHj_g,«_t) =14+ 7, then t = 0. We then may write

J

2 . .
~ t+7—2r
Resij; (w; - ;) = Z ( J J— 2r ) Qrivj—2r + A

r=max(0,j— 5%

where A is a linear combination of cohomological invariants with degree < i + j.

Let us write this restriction as follows

i1
2 . .
- 145 —2r
Resﬁ,(wi wj) = aj , + g ( i ‘7_ o ) Qrjtj—2r + A. (5.1)

J
27
r=max(0,j—5)

We now prove by induction on the cohomological degree d > 0, that for any couple
(r,s) of non negative integers, such that r + s < § and 2r + s = d, a, s may be
written as a linear combination of invariants of the family

{Resfy (w; - @j) Yo<i< 2 0<j<n—2i and j even-

Obviously, ago = Res{fv(wo - Wp).

Let 0 < d < §. Assume that for any 0 < d' < d, the induction hypothesis is
true. Let us now make a second induction. We prove by induction on r that, for
any 0 <r < [g], ard—2r may be written as a linear combination of restrictions of

invariants of the family
{Resfy (w; - @j) Yo<i< 2 0<j<n—2i and j even-
Let us first note that
o = Rest! (wq - Wo) + (2) - Rest: (wq_1 - W) if d is even
7 Restl, (wy - wo) if d is odd
which allows us to conclude the case r = 0.

Let now 0 < r < [g] Let us assume that, for any 0 < 7' < 7, a,v g9, can be

written as a linear combination of restrictions of invariants Resfl(w; - w;) with

98



0<i<3,0<j<n-—2iandj even.

By Equation (5.1),

r—1
~ s+2(r—m
Res%(ws . U}QT) = ar7s "‘ Z < 2(T(_ m) )> am,s+2(7‘—m) + A

m=maz(0,2r—7)
where A is a linear combination of a,/ ¢ with 21" + §" < 2r 4 s.

By the first induction hypothesis on A and the second induction hypothesis on
U, s42(r—m) for max(0,7 — §) <m <r — 1, we have

ars = Res{/{‘/(ws Wy, ) + B

where B is a linear combination of invariants Res{iv(wi -wj) with 0 <4 < 3,
0<j<n-—2iand j even.

This concludes both inductions and ends the proof of Theorem 5.1 in the case
where n is even. W

5.3 Cohomological invariants of W (D,) : the case n

odd

Let us now consider the case n odd and let prove Theorem 5.1. Let W be the
Weyl group of type D, _1 associated with the root subsystem

{teite; |1 <i#j<n-—1}

Then H is a subgroup of W”. Therefore, by the vanishing principle (Theorem
5.2), the restriction map Res% is injective.

For 0 <i <n—1, let us denote by wZW " and @ZW " the Stiefel-Whitney invariants
of the Weyl group W”.

By the vanishing principle (Theorem 5.2), the map Resg,,, is injective. Yet, for
any 0 < ¢ < ”T_l and any 0 < 7 < n — 1 — 2¢ with j even, the cohomological
invariants Resl}, (w; -w;) and w¥" ~ﬁ}’v”

they are equal :

of W” have same restriction to H, then

" — " IRy vald
Res| (w; - w;) = w"" - w}’v

By Theorem 5.1 applied to W” (proved at the previous section in the case even),
the family {w)"” -15}” }0§i§7€170§j§n_1_2i7j even 18 @ basis of Invy (W, Z/27).
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Therefore, the restriction map Resly : Invy, (W, Z/2Z) — Invy, (W",Z/27Z) is an
isomorphism and the family {w; - @j}ogigg,ogjgn—m‘, with j even 15 sent to a basis of
Invy, (W",Z/2Z). This allows us to conclude. B
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Appendix A

Reflection groups and finite
Coxeter groups

This appendix is based on the well-known references [3] and [11].

Let k be a field, let V' be a vector space over k.

Definition A.1. A pseudo-reflection in V is an endomorphism r of V such that
r—idy has rank 1. A reflection in'V is a pseudo-reflection of V such that r> = idy .

Note that the only pseudo-reflections in a real vector space are reflections.

Definition A.2. A pseudo-reflection group (resp. a reflection group) over k is a
group of linear automorphisms of a k-vector space V' which is generated by pseudo-
reflections (resp. reflections) in V.

Let us state Chevalley’s theorem (see [3], 5.5, Theorem 4).

Theorem A.1. Let k be a field, let V' be a finite dimensional k-vector space, let
S be the symmetric algebra of V', let W be finite group of linear automorphisms
of V and let R be the subalgebra of S of the invariant elements under W. Let us
assume that the order of W is prime to the characteristic of k. Then the following
conditions are equivalent :

(i) W is generated by pseudo-reflections in V;
(ii) S is a free graded R-module;

(iii) R is a polynomial graded k-algebra.
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Let us state some useful properties on reflections. Let us now assume that k has
characteristic different from 2. For any reflection r in V', we set V,* = Ker(r —idy’)
and V.7 = Im(r — idy). Proofs of the following proposition and its corollary can
be found in [3], V.2, Prop.3.

Proposition A.1. Let r be a reflection in V.
1. A subspace V' of V is stable by r if and only if V,” C V' or V' C VF.

2. An endomorphism u of V' commutes with v if and only if V¥ and V,~ are
stable by u.

Corollary A.1. Two distinct reflections r and r' in in V. commute if and only if
V,CVand Vo C VI

Definition A.3. Let W be a reflection group over k. A subgroup H C W is called
an isotropy subgroup if H = {w € W | w(v) = v} for some v € V.

Then an isotropy subgroup is a reflection group (see [11], 1.12).

Proposition A.2. Let W be a refiection group over R. Any isotropy subgroup of
W is generated by the reflections it contains. In particular, an isotropy subgroup
s a reflection group over R.

Note that this is not the case anymore for pseudo-reflection groups and even for
reflection groups over C (see for instance [4]).

Let us now give the classification of finite reflection groups over R.
Definition A.4. A Coxeter group W is a group with a given presentation of type
(r1,..,1s | Vi, € {1, .., s}, (ryry)™7 = 1),

where Vi, j € {1,...,s}, mj; € NU{4o00} and m;; =1 for every i € {1,...,s}.

It is well-known that a finite group G is a Coxeter group if and only if it is a
reflection group over R (see [11]). Note that there are some reflection groups over
C which are not Coxeter groups (see for instance [3],V.5, exercise 4 or [5]).

Definition A.5. Let V be a finite dimensional R-vector space. A root system S
is a finite set of non-zero vectors in V' satisfying the conditions :

1. for any a € S, SNRa = {+a}
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2. for any a € S, ro(S) = S, where r,, denotes the orthogonal reflection on V
such that Im(rq — idy) = Ra.

Note that a root system S yields a finite Coxeter group (the group generated by
the reflections 74, for any a € S). Conversely, any finite Coxeter group can be
realized in this way, possibly for many different choices for S.

If a root system S cannot be written S7 LISy, with S7 and S5 two root systems, we
say that S is irreducible. Irreducible root systems are completely classified (and
so are finite Coxeter groups) (see [11] or [3] for details).

Let (eq,...,e,) be a canonical basis of R”. Up to linear automorphism, irreducible
root systems are classified in several types :

A, (n > 1) : let V be the hyperplane of R™"! such that the sum of coor-
dinates equal to zero. Then S = {e; —e; | 1 <i,j < n+1,i # j}. The
Coxeter group is isomorphic to G, 41.

B, (forn>2): V=R"S={xe,+ejte |1<i<nl1<j<i<n}
The Coxeter group is isomorphic to the semi-direct product (Z/ QZ)n X G,
where &,, acts on (Z/2Z)" by permuting coordinates.

Cp (forn>2): V=R"S={+2,,+te;+e|1<i<nl1<j<l<n}
The Coxeter group is the same than in the type B,,.

D, (n>4): V=R" S={te;te;)|1<i<j<n}. The Coxeter group
W is defined by the exact sequence

p

1 1% w' 7)27 —>1,

n
where W' is the reflection group of type B, and p : (€1, ...,€n,0) Hei.
i=1

Moreover, W is isomorphic to the semi-direct product (Z / 2Z) R G,.

Es: V= {(zi)1<ics € R® | 26 = 27 = —u3},
. 5
v(l
S = {*e; - ey, :t§(es —er—es+ IE_l (-1) ( )el)

5
|1<i<j<5and Zv(l) even }
=1
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E7 : let V be the hyperplane of R® orthogonal to e; + eg. Then
1 6
l
S = {iei + €5, i(e7 - 68), ii(e7 —eg + ZE_I(_l)V( )el)

. :
|1<i<j<6and Y v(l) odd}
=1
Eg: V =R8,

8 8

Z(—l)”(l)el |1<i<j<8and Zl/(l) even}.

=1 =1

1
S = {:I:ei:I:ej,§

F,: V=R%,
1
S:{:tei,:l:ej:tel,i(:tel:I:eQ:I:egzl:e4)|1§i§4,1§j<l§4}.

The Coxeter group is isomorphic to the semi-direct product
((2/22)° » &,) x &3,

where (Z/2Z)3 X Gy is the Coxeter group of type Dy and ©3 acts on it by
permuting vertices of the Dynkin diagram of Dy.

G5 : let V be the hyperplane of R? with the sum of the coordinates equal
to zero. Then

S = {i(el - 62), :|:(€1 - 63), :|:(€2 - 63), :f:(261 — €9 — 63), + (262 —e1 — 63),
+ (263 — €1 — 62)}‘

The Coxeter group is isomorphic to the dihedral group Dg of order 12.

Hj : the Coxeter group is isomorphic to s x Z /27, where 205 denotes the
alternating subgroup of Gs.

H, : the Coxeter group is the group of isometries of the hecatonicosahedroid.

Is(m), m > 3 : the Coxeter group is isomorphic to the dihedral group D,,
of order 2m.

With this classification, we get that every finite Coxeter group is isomorphic to a
direct product of Coxeter groups of type A to [I.
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Definition A.6. A Weyl group W is a finite Coxeter group with a root system S
satisfying the additional integrality condition : for any o, B € S, glaB) o Z,

(a,@)

where (.,.) denotes the usual scalar product.

Any Weyl group is isomorphic to a direct product of groups of type A to G. For
these groups, we have the important following result (see [25], Corollary 1.15).

Theorem A.2. Let W be a Weyl group. Ewvery irreducible representation of W
is realizable over Q. In particular, Weyl groups are reflection groups over Q.

Therefore, the real representation of a Weyl group as a real reflection group is
realizable over Q. By extension of scalars, Weyl groups are reflection groups over
any field of characteristic zero. In particular, Theorem 3.1 is true for any Weyl
group and any field of characteristic zero.

Theorem A.2 is not true for a Coxeter group which is not a Weyl group. However,

Proposition A.3. Let W be a finite Cozeter group. There is a finite real extension
L of Q such that W is a reflection group over L.

Note that L = Q(v/5) for the Coxeter groups of type H and L = Q(cos(2)) for
the Coxeter groups of type Ia(m), for any m > 3 are the minimal fields such that
Proposition A.3 is satisfied.

More generally, let us state when a finite Coxeter group is a reflection over a fixed
field of characteristic zero. Let kg be a field of characteristic zero. Thanks to the
previous classification, W is isomorphic to a direct product of groups of type A to
I. Then if kg contains the minimal field extensions over QQ corresponding to the
types in the decomposition of W, the representation of W as a finite reflection
group extends to ko (and the assumption of Theorem 3.1 is satisfied).

105



106



Bibliography

[1]

G. Berhuy. An introduction to Galois cohomology and its applications, volume
377 of Lecture Notes Series. London Mathematical Society, Cambridge, 2010.

N. Bourbaki. Eléments de mathématique : Algébre: chapitres 4 a 7, volume 2.
Springer, 2006.

N. Bourbaki. Eléments de mathématique: Groupes et algébres de Lie.
Eléments de mathématique. Springer, 2007.

M. Broué. Introduction to complex reflection groups and their braid groups.
Number vol. 1988 in Lecture notes in mathematics. Springer, 2010.

M. Broué, G. Malle, and R. Rouquier. Complex reflection groups, braid
groups, Hecke algebras. J. Reine Angew. Math., 500:127-190, 1998.

A. Delzant. Définition des classes de Stiefel-Whitney d’un module quadra-
tique sur un corps de caractéristique différente de 2. C.R. Acad. Sci. Paris,
255:1366-1368, 1962.

M. Demazure and A. Grothendieck. Schémas en groupes. III : Structure des
schémas en groupes réductifs, volume 153. Springer-Verlag, 1970.

B. Eckmann. Cohomology of groups and transfers. Annals of Mathematics,
58(3).

R. Elman and T.Y. Lam. Classification theorems for quadratic forms over
fields. Commentarii Mathematici Helvetici, 49(1):373-381, 1974.

P. Gille and T. Szamuely. Central Simple Algebras And Galois Cohomology.
Number vol. 13 in Cambridge Studies in Advanced Mathematics. Cambridge
University Press, 2006.

J.E. Humphreys. Reflection groups and Coxeter groups. Cambridge Studies
in Advanced Mathematics. Cambridge University Press, 1992.

M.-A. Knus, A. S. Merkurjev, M. Rost, and J.-P. Tignol. The Book of Invo-
lutions, volume 44. American Society, Providence, RI, 1998.

107



[13]

[14]

[15]

23]

[24]

[25]

[26]

[27]

M.-A. Knus and J.-P. Tignol. Triality and étale algebras. (arXiv:0912.3405),
20009.

M. L. MacDonald. Cohomological invariants of odd degree Jordan algebras.
Mathematical Proceedings of the Cambridge Philosophical Society, 145:295—
303, 2008.

M. L. MacDonald. Cohomological invariants of Jordan algebras with frames.
Journal of Algebra, 323:1665-1677, 2010.

J. Milnor. Algebraic K-theory and quadratic forms. Inventiones Mathemati-
cae, 9(4):318-344, 1970.

J. Neukirch. Algebraic number theory. Grundlehren der mathematischen
Wissenschaften. Springer, 1999.

D. Orlov, A. Vishik, and V. Voevodsky. An exact sequence for k2 /2 with
applications to quadratic forms. Annals of Mathematics, 165:1-13, 2007.

W. Scharlau. Quadratischen Formen und Galois cohomologie. Inventiones
Mathematicae, 4:238-264, 1967.

J-P. Serre. Cohomologie Galoisienne. Lecture Notes in Mathematics, 5, 1965.

J-P. Serre. Cours d’arithmétique. SUP.: Le Mathématicien. Presses universi-
taires de France, 1977.

J-P. Serre. L’invariant de Witt de la forme Tr(x?). Comment. Math. Helv.,
59:651-676, 1984.

J-P. Serre. Local fields. Graduate texts in mathematics. Springer-Verlag,
1995.

J-P. Serre. Cohomological invariants, Witt invariants and trace forms. In
University Lecture Series, 28. Amer. Math. Soc., Providence, RI, 2003.

T. A. Springer. A construction of representations of Weyl groups. Inventiones
Mathematicae, 44:279-293, 1978.

V. Voevodsky. Motivic cohomology with Z/2-coefficients. Publ. Math. Inst.
Hautes Ftudes Sci, 98:59-104, 2003.

A.R. Wadsworth. Merkurjev’s elementary proof of Merkurjev’s theorem, Ap-
plications of algebraic K-theory to algebraic geometry and number theory,
Part I, IT (Boulder, Colo., 1983). Contemporary Mathematics, 55.

108






RESUME

Cette these traite des invariants cohomologiques en cohomologie galoisienne des
groupes de Coxeter finis en caractéristique nulle. On établit d’abord un principe
général d’annulation vérifié par tout invariant cohomologique d’un groupe de Cox-
eter fini sur un corps de caractéristique nulle suffisamment grand. On utilise en-
suite ce principe pour déterminer tous les invariants cohomologiques des groupes
de Weyl de type classique a coefficients dans Z /27 sur un corps de caractéristique
nulle.

ABSTRACT
This PhD thesis deals with cohomological invariants in Galois cohomology of finite
Coxeter groups in characteristic zero. We first state a general vanishing principle
for the cohomological invariants of a finite Coxeter group over a sufficiently large
field of characteristic zero. We then use this principle to determine all the coho-

mological invariants of the Weyl groups of classical type with coefficients in Z /27
over a field of characteristic zero.
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