Study of The Biosynthetic Pathway of Coenzyne Q in Saccharomyces cerevisiae.
Etude de la voie du coenzyme Q¦ chez la levure Saccharomyces cerevisiae
Abstract
Coenzyme Q (ubiquinone or Q) is a lipophilic organic molecule composed of a substituted benzoquinone and a polyisoprenyl chain containing 6 units in Saccharomyces cerevisiae (Q6), 8 in Escherichia coli (Q8) and 10 in humans (Q10). Q has a well known role as an electron carrier in the mitochondrial respiratory chain and also functions as a membrane soluble antioxidant. Primary Q10 deficiency has now been linked to mutations in six genes of Q biosynthesis and results in severe pathologies. The biosynthesis of Q is mitochondrial and requires at least nine proteins in yeast (Coq1-Coq9). 4-hydroxybenzoate (4-HB) and para-aminobenzoic acid (pABA) are the long-known aromatic precursors of the benzoquinone ring of Q. Despite intensive research efforts and the biological importance of Q, some biosynthetic steps are still uncharacterized. Herein we report that Coq6, a predicted flavin-dependent monooxygenase, is involved exclusively in the C5-hydroxylation reaction. We also demonstrate that the overexpression of the protein Coq8, which is proposed to be a kinase, in Δcoq strains restores steady state levels of the unstable Coq proteins. Moreover, we provide evidence that the kinase activity is essential for the stabilizing effect of Coq8 in the Δcoq strains. The overexpression of Coq8 helped us clarify the role of some proteins (Coq4, Coq9). We also show that using synthetic analogues of 4-HB and pABA allows bypassing deficient biosynthetic steps in some mutants. This result opens new perspectives to address the deficiencies in coenzyme Q which until now are processed by Q supplementation. Finally, the deamination reaction, which is essential for Q6 biosynthesis from pABA remains misunderstood but our results strongly suggest the involvement of Coq6 in this step.
Le coenzyme Q (ubiquinone ou Q) est une molécule organique lipophile composée d'une benzoquinone substituée et d'une chaîne polyisoprényle contenant 6 unités chez Saccharomyces cerevisiae (Q6), 8 chez Escherichia coli (Q8) et 10 chez l'homme (Q10). Q a un rôle bien connu de transporteur d'électrons dans les chaînes respiratoires et fonctionne également comme un antioxydant membranaire. La déficience primaire en Q10 a maintenant été attribuée à des mutations dans 6 gènes de la biosynthèse de Q10 et cause des pathologies sévères. La biosynthèse de Q6 est mitochondriale et nécessite au moins 9 protéines organisées au sein d'un complexe multiprotéique chez la levure (Coq1-Coq9). L'acide 4-hydroxybenzoique (4-HB) et l'acide para-aminobenzoique (pABA) sont les deux précurseurs connus du noyau aromatique de Q6. Malgré de nombreuses recherches et l'importance cruciale de Q dans le métabolisme eucaryote, certaines étapes de la voie de biosynthèse de Q ne sont pas connues. L'étude présentée dans ce manuscrit a permis de montrer l'implication de la protéine Coq6, proposée comme étant une mono-oxygénase à flavine, dans une seule des trois réactions d'hydroxylation que compte la voie de biosynthèse de Q6: l'hydroxylation en C5. De plus, notre étude sur Coq8, une protéine kinase dont sa surexpression stabilise le complexe multiprotéique, nous a permis de confirmer les fonctions de certaines protéines Coq (Coq5, Coq7), de découvrir la fonction de Coq6 et d'éclaircir le rôle des autres (Coq4, Coq9). Nous rapportons également que des analogues hydroxylés ou méthoxylés de 4-HB et du pABA peuvent court-circuiter des étapes déficientes des mutants particuliers conduisant ainsi à la synthèse du coenzyme Q6 dans ces derniers. Ce résultat ouvre de nouvelles perspectives pour traiter les déficiences en coenzyme Q10 qui jusqu'à présent sont traitées par supplémentation en Q. Finalement, la réaction de déamination, essentielle à la biosynthèse de Q6 à partir du pABA, reste incomprise mais nos résultats suggèrent fortement l'implication de Coq6 dans cette étape.
Origin | Version validated by the jury (STAR) |
---|
Loading...