
HAL Id: tel-00859921
https://theses.hal.science/tel-00859921

Submitted on 9 Sep 2013

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Contrôleurs reconfigurables ultra-faible consommation
pour les réseaux de capteurs sans fil

Vivek Tovinakere Dwarakanath

To cite this version:
Vivek Tovinakere Dwarakanath. Contrôleurs reconfigurables ultra-faible consommation pour les
réseaux de capteurs sans fil. Autre. Université de Rennes, 2013. Français. �NNT : 2013REN1S018�.
�tel-00859921�

https://theses.hal.science/tel-00859921
https://hal.archives-ouvertes.fr

No d’ordre : - ANNÉE : 2013

THÈSE / UNIVERSITÉ DE RENNES 1

sous le sceau de l’Université Européenne de Bretagne

pour la grade de

DOCTEUR DE L’UNIVERSITÉ DE RENNES 1

Mention : Traitement du Signal et Télécommunications

École Doctorale : MATISSE

présentée par

Vivek TOVINAKERE DWARAKANATH

preparée à l’unite recherche : IRISA - UMR 6074

Institut de Recherche en Informatique et Systèmes Aléatoires - CAIRN

École Nationale Supérieure des Sciences Appliquées et de Technologie

Contrôleurs reconfigurables

ultra-faible consommation pour

les nœuds de réseaux

de capteurs sans fil

Ultra-Low Power Reconfigurable

Architectures for Controllers

in Wireless Sensor Network

Nodes

Composition du jury :

Ian O’CONNOR
Professeur, INL
Ecole Centrale de Lyon /Examinateur

Jean-Philippe DIGUET
Directeur de Recherche, CNRS, LAB-STICC
Université de Bretagne Sud /Examinateur

Patrick GIRARD
Directeur de Recherche, CNRS, LIRMM
Université de Montpellier /Rapporteur

Marc BELLEVILLE
Directeur de Recherche, CEA, LETI
Minatec, Grenoble /Rapporteur

Olivier SENTIEYS
Directeur de Recherche, INRIA
Lannion /Directeur de thèse

Steven DERRIEN
Professeur, Université de Rennes 1
Rennes /Co-directeur de thèse

Résumé

Les réseaux de capteurs sans fil représentent une convergence de trois aspects des sys-
tèmes intégrés pour le traitement de l’information, à savoir la perception de l’environ-
nement, le traitement de données et leur communication par radio. Un nœud du réseau
de capteurs sans fil peut avoir besoin de traiter dans ses unités de calcul les signaux de
plusieurs types de capteurs. Sur l’aspect des communications sans fil, un nœud peut avoir
à effectuer différentes de tâches liées à la transmission de l’information et à adapter les
protocoles de communication. Un nœud lui-même peut donc avoir à changer son rôle de
façon dynamique et doit donc inclure des tâches complexes de contrôle pour la gestion
de ses ressources. Tous ces facteurs font que la flexibilité est un sujet primordial dans
la conception de nœuds de réseaux de capteurs sans fil, en plus bien sur de l’énergie
consommée. Les architectures reconfigurables, comme les FPGA qui utilisent des blocs
logiques configurables et des réseaux d’interconnexion programmables ont été proposés
pour répondre aux besoins de flexibilité. Ils sont milleurs en termes de coûts non récur-
rents par rapport à des circuits intégrés spécialisés (ASIC). Toutefois, le matériel flexible
de ces processeurs reconfigurables n’est pas une solution alternative à la grande efficacité
énergétique des circuits ASIC - la contrainte primordiale pour les nœuds des réseaux de
capteurs sans fil.

Dans cette thèse, des contrôleurs flexibles de consommation ultra-faible pour les nœuds
réseaux de capteurs sans fil basés sur des micro-tâches reconfigurables sont étudiées.
Une micro-tâche est principalement une unité de contrôle numérique incluant une ma-
chine d’états finis (FSM) et un chemin de données assemblant des unités arithmétiques
et logiques, des mémoires et des périphériques d’entrées-sorties. Pour introduire de la
flexibilité dans les micro-tâches, des machines d’états finis flexibles et évolutives, et
des additionneurs reconfigurables à précision variable sont considérés au prix d’une lé-
gère augmentation de la surface du matériel. De plus, un fonctionnement à ultra-faible
consommation est recherché grâce à l’utilisation des techniques de power gating pour ré-
duire la puissance statique. Il est bien connu que, dans les circuits CMOS nanométriques,
l’augmentation de la densité de puissance statique dépasse de loin l’impact de la surface
de Silicium en raison de la très forte intégration.

Le power gating (PG) comme technique de faible consommation est considéré aux ni-
veaux architecture et circuit pour les machines d’état finis et les éléments du chemin de
données. Une étude approfondie des problèmes liés à la conception et à la modélisation
des circuits utilisant la technique de power gating est réalisée en suivant une approche
ascendante. Des modèles au niveau porte pour l’estimation des paramètres de concep-
tion des circuits PG sont tout d’abord dérivés. Ensuite, les additionneurs et machines
d’états finis reconfigurables proposées pour les micro-tâches sont étudiés pour tirer partie
de l’efficacité des possibilités des techniques PG. Dans les additionneurs, la reconfigu-
rabilité est utilisée pour faire varier dynamiquement la précision de l’opération et des
économies significative d’énergie sont obtenues en éteignant les blocs logiques inutilisés.
Pour les machines d’états finis reconfigurables, des architectures avec différents degrés
de flexibilité et de complexité sont proposées. La technique PG au niveau de la lookup
table (LUT) est proposée pour atteindre des réductions de puissance statique significa-
tives. Différentes structures transverses et de rétroaction des machines d’états finis sont
exploitées pour réduire les interconnexions programmables. Enfin, les modèles proposés
sont appliqués à analyser l’économie d’énergie (ou de puissance) réalisée dans les contrô-
leurs et les chemins de données en raison de l’utilisation conjointe de la reconfiguration
et du PG. Les micro-tâches reconfigurables proposées sont positionnées par rapport à

i

ii

des microcontrôleurs de faible puissance et des micro-tâches câblées en tenant compte de
différents paramètres.

Abstract

Wireless sensor networks (WSNs) represent a convergence of three aspects of evolutionary
integrated systems for information processing viz., sensing, computation and communi-
cations. A node in the wireless sensor network may need to process signals from different
types of sensors in their sensing and computational units. On the communications side,
a node may have to perform different transceiver tasks to adapt wireless communication
protocols. A node itself may have to change its roles dynamically. Hence the controller
in a node is required to execute different control tasks to manage its resources. All these
factors imply that flexibility is of key concern in the design of WSN nodes. Reconfigurable
hardware such as FPGAs that use configurable logic blocks and programmable intercon-
nection networks have been proposed to address the need for flexibility. They also offer
efficiency in terms of non-recurring engineering (NRE) costs compared to ASIC-based
designs. However flexible hardware of reconfigurable processors are not energy efficient
unlike dedicated circuits - a key constraint for WSN nodes.

In this thesis, ultra-low power flexible controllers for WSN nodes based on reconfigurable
microtasks are explored. A microtask is essentially a digital control unit in a node with a
finite state machine (FSM) and a datapath consisting of arithmetic-logic unit, memories
and input/output interfaces. To introduce flexibility in microtasks, reconfigurable FSMs
and adders are considered at the expense of hardware area. Scalable architectures for
reconfigurable FSMs along with variable precision adders in the datapath are proposed
in this work for flexible controllers based on a microtask model. Further, it is sought to
achieve ultra-low power operation using power gating. It is well known that in nanoscale
CMOS circuits, the increase in static power density as a cost far exceeds the impact of
area due to increased logic integration.

Power gating as a low power technique is considered at architecture and circuit levels
for FSM and datapath elements of microtasks. It involves an extensive study of design
issues in power gating and modeling of design parameters of a power-gated circuit. A
bottom-up approach is taken: gate level models for estimation of key design param-
eters of power-gated circuits are derived first. Next, reconfigurable adders and FSMs
proposed for microtasks are studied at gate level for power gating opportunities. In
adders, reconfigurability is used for dynamically varying the precision of operation and
hence examined for potential energy savings by power gating unused logic. For reconfig-
urable FSMs, scalable architectures with varying degrees of flexibility and complexity are
presented. Power gating at the level of lookup table (LUT) logic is proposed to achieve
aggressive leakage power and energy reduction. The feedback and feedforward structures
of a FSM are exploited to reduce programmable interconnections. Finally the proposed
models are applied to analyze energy (or power) savings in the logic clusters of FSMs
and adders in datapath due to power gating. The position of reconfigurable microtasks
in the design space of controllers relative to a low power microcontroller and hardwired
microtasks is discussed using different metrics.

Contents

Résumé i

Abstract iii

List of Figures ix

List of Tables xiii

0 Résumé étendu 1

0.1 Nœuds d’un réseau de capteurs . 1
0.1.1 Espace de conception de contrôleurs flexibles pour les nœuds de

capteurs . 2
0.1.2 Contrôleurs reconfigurables à faible consommation 4

0.2 Modèles pour les circuits à coupure d’alimentation 5
0.2.1 Circuit et opération équivalents d’un circuit à coupure d’alimentation 5
0.2.2 Temps et énergie de réveil . 7

0.3 Additionneur faible consommation à précision variable 8
0.4 Machines à états reconfigurable avec power-gating 10

0.4.1 Utilisation de la technique de coupure d’alimentation 10
0.4.2 Estimation de puissance . 12

0.5 Contributions . 12
0.6 Conclusion . 13

0.6.1 Efficacité énergétique . 14
0.6.2 Le coût de la flexibilité . 14

1 Introduction 17

1.1 Overview of Low Power Design . 18
1.1.1 Sources of Power and Energy Constraints 18
1.1.2 Energy Consumption in CMOS Circuits 19
1.1.3 Low Power Techniques . 20
1.1.4 Design Automation for Low Power 21

1.2 WSN Nodes: Architecture and Realizations 21
1.2.1 Structure of WSN Nodes . 21
1.2.2 WSN Node Realizations . 22

1.3 Context of the Work . 23
1.4 Contributions . 24
1.5 Organization of the Thesis . 25

v

vi CONTENTS

2 Controllers for Wireless Sensor Network Nodes 27

2.1 Introduction . 27
2.2 Wireless Sensor Network Nodes . 27
2.3 Controllers for WSN Nodes . 29
2.4 Reconfigurable Microtasks . 32
2.5 Embedded FPGA . 34

2.5.1 Resource Utilization . 35
2.5.2 Power Estimation . 38

2.5.2.1 Model for Optimistic Power Estimation 39
2.5.2.2 Results . 42

2.5.3 Observations on Embedded FPGA 43
2.6 Low Power Reconfigurable Hardware . 44
2.7 Conclusion . 45

3 Design Considerations in Power-Gated Circuits 47

3.1 Introduction . 47
3.2 Leakage Currents in MOS Devices . 47
3.3 Power Gating . 49

3.3.1 Sleep Devices and Power Gating Networks 49
3.3.2 Design Parameters . 50
3.3.3 Power-Gating Example . 53

3.4 Models for Estimation of Wakeup Time and Wakeup Energy 56
3.4.1 Power-Gated Circuit Operation . 56
3.4.2 Power-Gated Logic Cluster Model 58
3.4.3 Virtual-Vdd Model . 60

3.4.3.1 Determination of Steady-State Virtual-Vdd Voltage . . . 60
3.4.3.2 Wakeup Time Estimation 61
3.4.3.3 Sleep Mode Virtual-Vdd Model 62
3.4.3.4 Determination of Rlin . 64
3.4.3.5 Heuristics for I0, I1 and Rsp 65

3.4.4 Experimental Results . 66
3.4.5 Wakeup Energy Estimation . 69
3.4.6 Logic Clustering for Wakeup Scheduling 70
3.4.7 Logic Clustering for Wakeup Energy Control 71

3.5 Conclusion . 71

4 Variable Precision Arithmetic Units for Low Power 73

4.1 Introduction . 73
4.2 Variable Precision Arithmetic Units: A Review 73

4.2.1 Low Power Optimizations . 74
4.3 Logic Clustering Method and Energy Savings 76

4.3.1 Logic Clustering . 76
4.3.2 Energy Savings in Active Mode . 77

4.4 Logic Clustering in Arithmetic Circuits . 78
4.4.1 Parallel-Prefix Trees . 78
4.4.2 Partial Products in Multiplier . 79

4.5 Power-Gated Reconfigurable Circuits . 80

CONTENTS vii

4.5.1 Variable-Precision Adders . 80
4.5.2 Power Gating in Multipliers . 80

4.6 Power Estimation and Analysis . 81
4.6.1 Experimental Setup . 81
4.6.2 Results . 83
4.6.3 Reducing Simulation Time . 84
4.6.4 Energy Savings Example . 86

4.7 Conclusion . 86

5 Low Power Reconfigurable Finite State Machines 89

5.1 Introduction . 89
5.2 Reconfigurable Finite State Machines . 90
5.3 Architectures Optimized for Reconfigurable FSMs 92

5.3.1 Next-State Functions . 92
5.3.2 Output Functions . 93
5.3.3 Configuration Bits for Reconfiguration 96
5.3.4 Power Gating Opportunities . 96
5.3.5 Observations on Power-Gated Architectures 99

5.4 Limited Reconfigurability in FSMs . 100
5.4.1 Motivation . 100
5.4.2 Input Selector-Decoder Design and Overheads 101
5.4.3 Overall Architecture . 102

5.5 Power Estimation in Reconfigurable FSMs 104
5.5.1 Characterization of LUTs, Input Selector and Decoders 105
5.5.2 Static Power in State Register, Configuration Bits and Isolation

Cells . 105
5.5.3 An Analysis of Power Estimation 106
5.5.4 Experimental Setup and Validation 108
5.5.5 Sources of Errors in Power Estimation 110
5.5.6 Effects of Wakeup Overheads and Performance-Power Trade-offs . 110

5.6 Cost of Area . 112
5.7 Linear Sequential Circuits . 113
5.8 Conclusion . 115

6 Conclusions and Perspectives 117

6.1 Overview . 117
6.2 Energy Efficiency . 118
6.3 Cost of Flexibility . 119
6.4 Future Work . 121

6.4.1 Power Efficient Reconfiguration Mechanisms 121
6.4.2 Circuit-Level Optimizations . 121

Publications 123

Bibliography 125

List of Figures

1 Un réseau de capteurs typique. 2
2 Un graphe de micro-tâches et la vue système de l’architecture générée par

le flot de conception proposé dans [1]. 3
3 Structure d’un CLB et d’un CB dans le eFPGA. 4
4 Vue système de la matrice du eFPGA et un élément de celle-ci contenant

les canaux de routage et la matrice d’interconnexions programmables. . . 4
5 Structure d’un contrôleur flexible pour micro-tâche reconfigurable. 5
6 (a) Cluster logique à coupure d’alimentation. (b) Circuit équivalent. . . . 6
7 Un chronogramme temporel typique et les différents modes d’opérations

dans un cycle typique de power gating. 6
8 Virtual-Vdd en modes réveil et veille (W=1.2µm) pour le benchmark c7552. 8
9 Additionneur reconfigurable à coupure d’alimentation. 9
10 Modèle architectural de FSM reconfigurable, tel qu’il a été utilisé pour la

validation expérimentale. 11

1.1 A typical wireless sensor network node. 22
1.2 A generalized task flow graph and system level view of generated archi-

tecture as proposed in [1]. 23

2.1 Functional representation of a wireless sensor network. 28
2.2 Structure of a microtask (as proposed in [1]). 31
2.3 Structure of flexible controller with reconfigurable microtasks. 33
2.4 Configurable Logic Block (CLB) structure in eFPGA. 34
2.5 Configuration Bit (CB) in eFPGA. 34
2.6 Top level view of eFPGA. 35
2.7 An array element of eFPGA with routing channels and interconnection

network. 36
2.8 Switch box in eFPGA. 36
2.9 Interconnection network complexities in mappings of two FSMs. 37
2.10 Compact placement and routing in mappings of two FSMs. 40

3.1 Cluster-based power gating and distributed sleep transistor network. . . . 50
3.2 A power-gated logic cluster with header type of sleep transistor and iso-

lation cell. 51
3.3 Active mode and sleep mode current in power-gated c6288 (W=12µm). . . 54
3.4 Wakeup mode current in power-gated c6288 (W=12µm) 54
3.5 Active mode and sleep mode Virtual-Vdd in power-gated c6288 (W=12µm). 55
3.6 Wakeup mode Virtual-Vdd in power-gated c6288 (W=12µm). 55

ix

x LIST OF FIGURES

3.7 (a) Power-gated logic cluster of header type. (b) Equivalent circuit of logic
cluster. 57

3.8 Typical timing instants and modes of operation in a power gating cycle. . 57
3.9 Static current profile of a 2-input NAND gate of high-Vth and std.-Vth

devices for all input patterns. 58
3.10 Virtual-Vdd in active and sleep modes. 64
3.11 Ierror/W vs. Vsd for 65nm PMOS transistors. 66
3.12 Leakage current and pseudo-resistance profile in c6288. 67
3.13 Virtual-Vdd in wakeup mode (W=1.2µm) in c7552. 68
3.14 Virtual-Vdd in sleep mode (W=1.2µm) in c7552. 68

4.1 Typical flow for design of variable-precision power-gated arithmetic circuits. 75
4.2 Parallel-prefix tree structure for carry generation in BK adder. 79
4.3 Parallel-prefix tree structure for carry generation in KS adder. 79
4.4 Partial product structure in a binary multiplier clustered for variable pre-

cision and power gating. 80
4.5 Power-gated reconfigurable adder. 81
4.6 Power-gated reconfigurable multiplier. 82
4.7 Current drawn by power-gated KS adder (16-bit precision). 84
4.8 Virtual-Vdd of CN4 in power-gated KS adder (16-bit precision). 85
4.9 Virtual-Vdd of CN2 in power-gated KS adder (16-bit precision). 85

5.1 Microtasks with reconfigurable FSMs. 90
5.2 Moore and Mealy models of finite state machines. 91
5.3 Next-state function realization for one state-register bit (N = 6, n =

4, K = 6). 93
5.4 Output function realization in Moore type FSM (Case 2. N = 6, m =

10, K = 6). 94
5.5 Output function realization in Mealy type FSM (N = 6, m = 1, K = 6). . 95
5.6 Scan chain reconfiguration memory of LUTs. 96
5.7 Power gating opportunity for active mode energy savings in a reconfig-

urable FSM. 97
5.8 Power gating opportunity for aggressive active mode energy savings in a

reconfigurable FSM. 98
5.9 Power gating opportunity for aggressive active mode energy savings in

reconfigurable FSM output logic. 99
5.10 Input selector-decoder logic to select minterms of dependent inputs. 102
5.11 Schematic diagram of the overall architecture of scalable power-gated re-

configurable FSM. 103
5.12 An architectural module of overall power-gated reconfigurable FSM used

in experimental validation. 109
5.13 Snapshot of Virtual-Vdd nodes of 16 LUT logic clusters from SPICE sim-

ulations for random input data at 100 MHz. 111
5.14 Basic logic structures to evaluate partial matrix multiplications in Eq. (5.23).114
5.15 Schematic for next-state function in a linear sequential circuit. 115

6.1 Operating and power gating schedules for hardwired microtasks as pro-
posed in [1]. 120

LIST OF FIGURES xi

6.2 Operating and power gating schedules for reconfigurable microtask. 120

List of Tables

1 Consommation de puissance (mW) pour cinq FSM issues de SenseBench
synthétisées sur un eFPGA. 4

2 Consommation de puissance pour des additionneurs BK et KS sans coupure
d’alimentation. 9

3 Consommation de puissance pour des additionneurs reconfigurables BK
et KS avec coupure d’alimentation. 9

4 Puissance et énergie moyennes par opération pour des FSM implantées
sur une architecture à base de power gating. 12

5 Coût en énergie par instruction pour trois réalisation de contrôleurs. . . . 14
6 Comparaison des coûts en surface des FSM spécialisées par rapport aux

FSM reconfigurables (pour une chemin de données sur 16 bits). 15

2.1 Resource utilization NCLB, minimum channel width (MCW) and average
interconnection length (Lav) required for FSMs on eFPGA-like array. . . . 37

2.2 Important eFPGA parameters as obtained from physical design. (Esti-
mates due to ‘Family B’ low power registers are in parenthesis.) 42

2.3 Resource utilization, power and energy estimation for routable FSMs on
eFPGA. 42

2.4 Total power for routable FSMs on eFPGA. (Static power of unused array
elements is not considered.) . 43

2.5 Resource utilization, power and energy estimation for FSMs on 7-channel
scaled eFPGA. 43

2.6 Total power for FSMs on 7-channel scaled eFPGA. 43

3.1 Leakage current density in nanoscale PMOS transistors. 48
3.2 Power consumption in ungated and power-gated array multiplier (c6288). 54
3.3 Linear region resistance of PMOS transistors. 65
3.4 Maximum Virtual-Vdd after wakeup in ISCAS85 benchmark circuits with

HVT cells. 68
3.5 Wakeup time in ISCAS85 benchmark circuits with HVT cells. 69
3.6 Maximum Virtual-Vdd after wakeup in ISCAS85 benchmark circuits with

SVT cells . 69
3.7 Wakeup time in ISCAS85 benchmark circuits with SVT cells 69
3.8 Average relative errors in estimation of maximum VV dd and wakeup time

in ISCAS85 benchmark circuits. 70
3.9 Average relative error in estimation of wakeup energy in ISCAS85 bench-

mark circuits. 70

xiii

xiv LIST OF TABLES

4.1 On-Off schedule for operation of different adders in the power-gated re-
configurable adder. 81

4.2 Area overhead in power-gated reconfigurable adders over non-reconfigurable
adders. 82

4.3 Power consumption in non-reconfigurable/non-power gated BK and KS
adders. 83

4.4 Power consumption in power-gated reconfigurable BK and KS adders. . . 83
4.5 Maximum Virtual-Vdd in active mode operation of BK and KS adders. . . 84
4.6 Comparison of power estimation results between SPICE simulations and

models in 32-bit KS adder. 86

5.1 Number of LUTs required for next-state function for full reconfigurability. 95
5.2 Number of configuration bits. 96
5.3 Limited reconfigurability examples . 101
5.4 K-LUT parameters for power estimation (K=4, K=6). 106
5.5 Area, leakage power consumption (Pleak), switching energy (Esw) and

critical Path (td) comparisons against decoders of different sizes. 106
5.6 Input selector-decoder logic. 106
5.7 Parameter level specifications of FSMs. 106
5.8 Static power in power-gated FSM architecture with limited reconfigura-

bility (N = 7, nI = 3, m = 23). 107
5.9 Static power in power-gated FSM architecture with limited reconfigura-

bility (N = 7, nI = 4, m = 23) . 107
5.10 Dynamic energy estimation in power-gated reconfigurable FSM architecture108
5.11 Total average power and energy per operation for FSMs on power-gated

architecture . 108
5.12 Area of power-gated reconfigurable FSM 112
5.13 Resources required for LSC and its area and static power estimates. 115

6.1 Equivalent energy per instruction in three realizations of node controllers. 119
6.2 Comparison of areas of 16-bit hardwired and reconfigurable microtasks. . . 119

Chapitre 0

Résumé étendu

0.1 Nœuds d’un réseau de capteurs

Les réseaux de capteurs (WSN) sont une infrastructure composée d’un large nombre

de systèmes embarqués, appelés des nœuds, capables de capter des signaux physiques,

de calculer et de communiquer entre eux au sein d’un réseau à la topologie variable.

Ce type de fonctionnalité d’un WSN aboutit à un grand nombre d’applications poten-

tielles [2, 3] telles que le monitoring de paramètres environnementaux, la surveillance

dans un contexte de sécurité, la surveillance de santé personnelle [4], la gestion de trafic

de véhicules, la gestion d’énergie dans les bâtiments, etc. Typiquement, un nœud peut

contrôler d’autres nœuds, capter de l’information, transmettre, relayer ou recevoir des

informations. Par conséquent, un nœud doit pouvoir changer son rôle dynamiquement

au cours du temps, ce qui implique que leur omniprésence requiert de la flexibilité, tout

en satisfaisant des contraintes fortes d’énergie et de performance.

L’architecture typique d’un nœud de capteur, comme le montre la Fig. 1, est composée

des capteurs et de leur interface, d’une unité de calcul et de contrôle et d’un émetteur/ré-

cepteur radio-fréquence. En plus de ces trois unités, une alimentation électrique incluant

une unité de gestion de la puissance est requise. La technologie la plus utilisée pour la

réalisation matérielle de ces nœuds est la technologie de circuit intégré CMOS (comple-

mentary metal-oxide-semiconductor). Cette intégration d’un large nombre de transistors

MOS apporte de nombreux challenges et compromis entre puissance consommée, perfor-

mance, taille du circuit intégré et coût du produit final. Une étude critique des relations

entre la fonctionnalité des nœuds de WSN, leurs contraintes énergétiques et leurs mé-

thodes de conception, est nécessaire pour explorer correctement l’espace de conception

des solutions matérielles efficaces en énergie.

Tandis que les réseaux de capteurs évoluent rapidement, leur spectre d’applications

évolue encore plus vite. Les unités de calcul traitent des signaux issus de plus en plus

de types de capteurs. Les unités de communications doivent s’adapter aux évolutions

1

2 Chapitre 0 Résumé étendu

Figure 1: Un réseau de capteurs typique.

rapides des protocoles sans fil. Ceci implique donc de plus en plus de tâches diverses

de contrôle et aussi que la flexibilité est en enjeu essentiel pour les unités de contrôle

assurant le gestion des nœuds.

Un flot de conception complet assurant la synthèse depuis une spécification sys-

tème de contrôleurs de nœuds d’un réseau de capteurs a été proposé dans [1]. Dans

cette approche les parties calcul et contrôle d’un nœud de capteur sont constituées d’un

ensemble de micro-tâches matérielles qui sont activées selon un principe événementiel,

chacune étant dédiée à une tâche spécifique du système comme par exemple le relevé

de paramètres, la couche MAC, le routage ou le traitement des données. Le flot prend

en entrée une spécification de haut niveau du graphe flot de tâches associant le langage

C et un langage spécifiquement conçu pour ce domaine. Il génère automatiquement la

description architecturale de ces micro-tâches sous la forme de blocs matériels spécialisés,

constitués d’une machine à états finis (FSM) et de chemin de données (datapath), asso-

ciés à une gestion système des tâches et des mémoires pour une exécution de l’ensemble

du contrôle du nœud, comme le montre la Fig. 2. L’architecture est de plus optimisée en

énergie, en particulier lors des périodes d’inactivité, grâce à l’utilisation des techniques

de power gating. Même si le flot de conception permet un prototype rapide, le matériel

généré est cependant spécifique au code synthétisé et la flexibilité est donc extrêmement

limitée.

0.1.1 Espace de conception de contrôleurs flexibles pour les nœuds de

capteurs

La fonction primaire d’un contrôleur de nœuds de capteurs est de gérer des ressources

matérielles incluant des chemins de données de calcul, des horloges, des interruptions, des

générateurs d’événements, des mémoires, des périphériques, des gestionnaires d’alimen-

tation et des gestionnaires globaux. Il a été estimé que jusqu’à 25% de la consommation

Chapitre 0 Résumé étendu 3

Figure 2: Un graphe de micro-tâches et la vue système de l’architecture générée par
le flot de conception proposé dans [1].

globale d’un nœud est due au contrôle. Grâce à leur flexibilité, les micro-contrôleurs sont

une cible privilégiée pour cette tâche, comme le montre à l’évidence leur utilisation dans

de nombreuses plateformes [5, 6, 7]. Un large spectre de techniques de réduction de la

consommation d’énergie allant de la coupure d’horloge (clock gating) à la conception

sous le seuil en passant par la coupure d’alimentation (power gating), [8, 9, 10] a été

utilisé dans ce type de micro-contrôleurs. Cependant, ces cibles sont encore loin d’être

des solutions optimales dans nombre d’applications, du fait que l’exécution séquentielle

des différentes étapes du contrôle implique une forte consommation de la logique du

processeur.

Dans les contrôleurs de WSN qui nécessitent de supporter de multiples graphes de

tâches, les processeurs reconfigurables offrent à la fois use grande flexibilité et une réduc-

tion des coûts de prototype et de production par comparaison aux solutions ASIC. Une ar-

chitecture reconfigurable communément utilisée, et nommée Embedded FPGA (eFPGA)

dans ce travail, est une fabrique homogène contenant de nombreux blocs logiques confi-

gurables (CLB) associés à un réseau d’interconnexions programmable permettant de

connecter les différents CLB entrée eux [11, 12]. Un CLB est constitué d’une table de

correspondance (lookup table) à K entrées (K-LUT), de bits de configuration (CB) et

d’une bascule que l’on peut ajouter pour mémoriser la sortie sur un cycle d’horloge. Une

LUT est un ensemble de 2K éléments mémoire sur un bit qui content la table de vérité

d’une fonction décodée par les K variables d’entrées. Le CLB d’une LUT à 4 entrées et

le bit de configuration utilisé dans un élément mémoire sont représentés à la Fig. 3. Une

vue complète de la matrice du eFPGA et son élément de base sont quant à eux montrés

Fig. 4. Une estimation de la consommation de puissance pour cinq FSM issues du bench-

mark SenseBench [13] implémentées dans une technologie CMOS 65nm est donnée dans

le tableau 1. La puissance consommée est comparable à celle d’un micro-contrôleur faible

4 Chapitre 0 Résumé étendu

consommation [1] et, clairement, le matériel flexible des architectures reconfigurables de

type FPGA n’est pas aussi efficace en énergie que les circuits dédiés, ce qui pose un

problème pour les contraintes énergétiques requises par les applications des WSN.

Figure 3: Structure d’un CLB et d’un CB dans le eFPGA.

Figure 4: Vue système de la matrice du eFPGA et un élément de celle-ci contenant
les canaux de routage et la matrice d’interconnexions programmables.

eFPGA
Total Power of FSM (mW)

fclk = 20 MHz fclk = 100 MHz

abs 0.79 1.93
Crc8 1.39 3.32

receiveData 1.58 3.74
Crc16 2.70 6.77

firBasic 4.71 13.29

Table 1: Consommation de puissance (mW) pour cinq FSM issues de SenseBench
synthétisées sur un eFPGA.

0.1.2 Contrôleurs reconfigurables à faible consommation

Dans cette thèse, des unités arithmétiques à précision variable pour les chemins de don-

nées et des architectures modulables pour des FSM reconfigurables à très fable consom-

mation sont explorées comme cible matériel pour des micro-tâches flexibles. La coupure

d’alimentation est utilisée comme technique de réduction d’énergie aux niveaux circuit et

architecture pour les FSM et les chemins de données des micro-tâches telles que décrits

Chapitre 0 Résumé étendu 5

dans [1]. Ceci implique une étude extensive des problèmes liés à la conception d’un circuit

utilisant la coupure d’alimentation. Des modèles au niveau porte pour l’estimation des

paramètres clés des circuits à coupure d’alimentation sont tout d’abord dérivés. Ensuite,

deux blocs matériels de micro-tâches, c’est-à-dire un additionneur et une machine d’états,

sont optimisés en termes de consommation d’énergie. Dans les deux cas, la reconfigurabi-

lité est considérée comme élément clé pour une conception matérielle flexible. Tandis que

dans les additionneurs la reconfiguration est utilisée pour faire varier dynamiquement

la précision, dans les FSM reconfigurables, des architectures modulaires avec plusieurs

degrés de complexité et de flexibilité sont proposées. Finalement, les modèles sont appli-

qués pour analyser différents paramètres de conception dans la logique des FSM et des

additionneurs utilisant le power-gating.

Figure 5: Structure d’un contrôleur flexible pour micro-tâche reconfigurable.

0.2 Modèles pour les circuits à coupure d’alimentation

0.2.1 Circuit et opération équivalents d’un circuit à coupure d’alimen-

tation

Tandis que les transistors MOSFET voient leur dimension se réduire en dessous de 100nm,

une augmentation exponentielle du courant de fuite est observée à cause de la réduction

de la tension de seuil (Vth) opérée pour maintenir la commande grille à des valeurs cor-

rectes [14]. Une structure de power-gating coupe la tension d’alimentation des transistors

6 Chapitre 0 Résumé étendu

MOS d’une cellule logique de façon à ce que les courants de fuite soient réduits de façon

significative pendant les phases de repos. Un exemple de circuit de coupure d’alimenta-

tion est donné à la Fig. 6. Il est constitué d’un transistor PMOS ayant une tension de seuil

Vth haute, connecté entre le rail d’alimentation Vdd et le nœud de tension d’alimentation

virtuelle VV dd du bloc logique. Un bloc logique est ici un ensemble de portes logiques

dont la tension d’alimentation sera coupée par ce transistor de mise en veille, dont la

grille est connectée à un signal de contrôle SLEEP pour commander le bloc entre les

états on et off. Un circuit à coupure d’alimentation opère donc dans trois modes : actif,

veille et réveil dans un cycle typique de power gating, comme indiqué Fig. 7.

Figure 6: (a) Cluster logique à coupure d’alimentation. (b) Circuit équivalent.

Figure 7: Un chronogramme temporel typique et les différents modes d’opérations
dans un cycle typique de power gating.

Chapitre 0 Résumé étendu 7

0.2.2 Temps et énergie de réveil

Dans ce travail, nous avons proposé de dériver les profils des courants de fuite pour un

circuit complet en utilisant une approche basée sur des approximations polynomiales.

Soit un bloc logique à coupure d’alimentation composé de cellules logiques standards

issues d’une bibliothèque, le courant statique total pour n(Si, j) occurrences de chaque

cellule Si est

Ileak =
P−1
∑

i=0

Ri−1
∑

j=0

n(Si, j)Ileak(Si, j)

où Ileak(Si, j) =
N
∑

k=0

bk(Si, j)V
k
V dd est use approximation polynomiale obtenue à partir de

simulations au niveau transistor plus précises, P et Ri sont le nombre de types de cellules

et le nombre de combinaisons potentielles de la cellule Si respectivement. La capacité

totale du bloc logique est obtenue comme la somme des capacités de toutes les entrées

des cellulose standards qui le constituent CL =
P−1
∑

i=0

Ri−1
∑

j=0
n(Si, j)Cij . La résolution des

équations

dVV dd

dt
= −1

τ

N
∑

i=0

ciV
i
V dd

et
dVV dd

dt
= −1

τ
(VV dd − r1)(VV dd − r2)

avec τ = RlinCL, ci = fi(Vdd, Rlin, bi, Vth), ainsi que d’autres heuristiques pour le courant

dans la région de saturation, aboutissent à une expression pour VV dd(t) (avec un com-

portement comme montré sur la Fig. 8) à partir de laquelle le temps de réveil peut être

déterminé comme Twu = T(VV dd=r1) en prenant l’hypothèse que VV dd = Vsleep à t = 0.

Rlin et r1 représentent ici la résistance du transistor de mise en veille en région linéaire

et l’état de VV dd au début du mode actif, respectivement. De plus, les gains en énergie

dans le bloc logique avec power gating par rapport à celui sans coupure d’alimentation

sont donnés par

Es = VddIleak(Vdd)Tsleep −
∫ Tsleep

0
VV ddIleak(VV dd)dt.

Le surcoût en énergie dû au réveil peut être estimé en sommant les Nwu intervalles sur

la courbe Ist(t) de taille ∆t in [0, Twu] selon

Ewu ≈ Vdd

Nwu−1
∑

i=0

Isti∆t

où Ist(t) est le courant dans le transistor de mise en veille. Ainsi, plusieurs paramètres

de conception sont obtenus depuis des caractérisations polynomiales simples du courant

8 Chapitre 0 Résumé étendu

statique dépendant de la tension d’alimentation dans des portes logiques. Des résultats

expérimentaux montrent que les temps de réveil et l’énergie de réveil sont estimés avec

une erreur moyenne de 16% et 13% respectivement par rapport à des simulations SPICE

sur des circuits issus des benchmark ISCAS85.

0 5 10 15 20
0

0.2

0.4

0.6

0.8

1

Wakeup Mode Time (ns)

V
ir

tu
a
l−

V
d

d
 (

V
)

Spectre Sim.

Model

0 100 200 300 400 500 600 700
0

0.2

0.4

0.6

0.8

1

Sleep Mode Time (ns)

V
ir

tu
a
l−

V
d
d
 (

V
)

Spectre Sim.

Model

Figure 8: Virtual-Vdd en modes réveil et veille (W=1.2µm) pour le benchmark c7552.

0.3 Additionneur faible consommation à précision variable

Les circuits arithmétiques ayant des tailles d’entrée fixes sont des sources de gaspillage

d’énergie lorsque des données de précision plus faibles doivent être calculées pendant

de longues périodes de temps. Sachant que ces opérateurs arithmétiques sont des struc-

tures denses mais régulières pouvant être implémentées avec des tailles de mots et du

parallélisme à des granularités diverses, ils pourraient être configurés pour des préci-

sions plus faibles conjointement avec une suppression des courants de fuite inutiles dans

les portes logiques inutilisées. Les additionneurs sont utilisés dans la logique d’adres-

sage et de séquencement (boucles) des microprocesseurs tandis que les multiplieurs font

partie intégrante des chemins de données de calcul. Dans ce travail nous nous sommes

concentrés sur les additionneurs comme composant des chemins de données intégrés aux

micro-tâches matérielles de [1]. Une approche générale est considérée pour partitionner la

logique d’un additionneur d’une taille donnée en différents blocs logiques supportant des

précisions intermédiaires, et en appliquant des coupures d’alimentation pour éteindre les

blocs inutilisés en fonction de la précision considérée. La méthode est utilisée sur deux

additionneurs à préfix parallèle de Brent-Kung (BK) [15] et de Kogge-Stones (KS) [16].

Deux additionneurs 32 bits pouvant être configurés comme des additionneurs 8 bits, 16

bits ou 32 bits, sont décrits. Une comparaison de leur puissance consommée avec celle

de l’additionneur 32 bits non flexible montre des potentiels de réduction de la puissance

Chapitre 0 Résumé étendu 9

par un facteur allant de 8 à 13 pour des augmentations en surface de 15% et 9.2%

respectivement.

Figure 9: Additionneur reconfigurable à coupure d’alimentation.

Function
Imax,ac (mA) Pactive,av(µW) Pidle,av(µW)
BK KS BK KS BK KS

addition sur 32 bits 4.92 4.61 222.3 240.7 55.5 62.9
addition sur 24 bits 4.22 3.86 185.2 200.6 55.8 62.8
addition sur 16 bis 2.92 2.63 142.6 152.8 55.4 62.3
addition sur 8 bits 1.80 1.59 102.4 104.8 55.1 61.9

Table 2: Consommation de puissance pour des additionneurs BK et KS sans coupure
d’alimentation.

Adder
Imax,ac Pactive,av Pidle,av Psleep,av

(mA) (µW) (µW) (µW)
BK KS BK KS BK KS BK KS

additionneur 32 bits 1.91 2.02 223.8 286.2 60.5 81.7 8.6 8.7
additionneur 24 bits 1.52 1.56 171.8 218.9 47.7 62.5 7.8 8.2
additionneur 16 bits 1.17 1.09 118.3 139.5 34.8 40.1 7.3 7.6
additionneur 8 bits 0.73 0.75 65.1 66.1 20.9 20.7 6.8 7.0

Table 3: Consommation de puissance pour des additionneurs reconfigurables BK et
KS avec coupure d’alimentation.

10 Chapitre 0 Résumé étendu

0.4 Machines à états reconfigurable avec power-gating

La mise en œuvre de machines à états (Finite State Machine) consiste en deux blocs

combinatoires notés F et G ainsi qu’un ensemble d’éléments de mémorisation (registres)

S synchronisés sur un signal d’horloge. La valeur des n entrées de la machine à états à un

instant t est représentée par le vecteur x(t) = [x0(t), x1(t), ..., xn−1(t)], la valeur des m

sorties de cette machine à états par y(t) = [y0(t), y1(t), ..., ym−1(t)]. Enfin, la valeur des

N bits du registre d’états est noté s(t) = [s0(t), s1(t), ..., sN−1(t)]. Soit fi une fonction

booléenne dans F et gj une fonction booléenne dans G.

L’ensemble de fonctions de transition si(t + 1) et de commande yj représentées par

si(t+1) = fi(x(t), s(t)), i = 0, 1, ..., N − 1 et yj(t) = gj(s(t)), j = 0, 1, ..., m− 1 décrivent

une FSM de Moore [17] tandis que celles représentées pas si(t + 1) = fi(x(t), s(t)), i =

0, 1, ..., N − 1 and yj(t) = gj(x(t), s(t)), j = 0, 1, ..., m − 1 représentent des FSM de

Mealy [18]. La réécriture de la fonction de transition en utilisant sa décomposition de

Shannon nous permet d’obtenir si(t + 1) =
2(n+N−K)

−1
∑

k=0

mkfi(n(mk), ..., sN−1)k avec K

correspondant au nombre de variables dont dépend fi(.)k après cette décomposition. Le

minterm généré par les n+N−K premières variables d’entrées de la séquence xi, ..., si(t+

1) s’écrit mk, par exemple m1 = x′

n+N−K−1x
′

n+N−K−2...x0. Le vecteur motif binaire

correspondant au minterm mk est représenté par n(mk), par exemple on aura n(m1) =

000...01. Pour un fi donné, la fonction peut-être réalisée comme un assemblage de porte

logiques, cependant si l’on souhaite permettre la reconfigurabilité, il est nécessaire de

réaliser fi(.)k comme une LUT (Look-Up-Table ou mémoire tabulée) qui pourra être

reconfigurée en fonction de la machine à état à implanter.

0.4.1 Utilisation de la technique de coupure d’alimentation

Les possibilités de power gating sont utilisées comme illustré dans la figure Fig. 10, qui

est dérivée de la décomposition de Shannon d’une fonction de transition à un niveau de

granularité de type LUT combiné à un ensemble de porte AND.

Le réseau de transistors de coupure nécessite autant de signaux de contrôle que

de LUT. L’opération de power gating peut-être expliquée comme suit. Quand la FSM

reconfigurable est configurée en une FSM spécifique, son fonctionnement dépend d’un

sous ensemble de ses entrées qui varie en général assez peu dans le temps, de ce fait,

suivant les valeurs de ces entrées, tous les minterms s’évaluent à 0. Il est également

possible que certaines entrées n’interviennent pas dans l’équation logique définissant

certains bits du registre d’état, là encore les minterm correspondant s’évaluent à 0.

Il donc possible d’exploiter ces propriétés afin de couper l’alimentation de certaines

LUT même lorsque la FSM est active, tant que le minterm qui leur est associé ne change

pas de valeur (sa valeur dépendant elle même des entrées de la FSM). Ces sorties de

Chapitre 0 Résumé étendu 11

Figure 10: Modèle architectural de FSM reconfigurable, tel qu’il a été utilisé pour la
validation expérimentale.

décodage peuvent fonctionner comme des signaux de contrôle qui serviront à couper

l’alimentation de ces LUT évitant ainsi le recours à un contrôleur externe. Cette tech-

nique de power gating induit un coût plus important en termes de surface du fait de

l’utilisation de cellules d’isolation [19] mais aussi en termes de réactivité (délais et dissi-

pation énergétique causés par les phases de réveil [20]. Il est important d’indiquer que des

technique similaires (opérant à des niveaux de granularité divers) peuvent être utilisées

pour les fonctions de sortie.

Pour des architectures basées sur une granularité de power gating au niveau LUT,

telles que proposées plus haut, on peut remarquer qu’à un instant donné, il n’y a qu’une

seule LUT par bit d’état (ou de sortie) en mode actif, les autres pouvant être mises en

veille. En d’autres termes, la consommation électrique à un instant donné ne dépend que

de ces N + m LUT, ceci indépendamment du coût (en nombre de LUT) de la FSM qui

varie (dans le cas conservatif) comme une fonction exponentielle du nombre d’entrées,

d’états et de sorties. Il faut néanmoins également comptabiliser les sources de dissipation

énergétiques liées aux bits de configuration et aux cellules d’isolation.

Il faut également remarquer que pour chaque changement de l’entrée du décodeur, le

minterm actif change également, et par conséquent, tous les minterms actifs peuvent être

désactivés (par power gating). Par conséquent, un changement des valeurs en entrée induit

des surcoûts en termes de temps de réaction et d’énergie causés par la phase de réveil

correspondant à l’activation d’un minterm. Des gains en dissipation énergétique seront

toutefois possibles lorsque la fréquence de fonctionnement de la FSM est peu élevée. De

12 Chapitre 0 Résumé étendu

plus, pour les FSM dont le nombre d’états et de sorties est inférieur au seuil maximum

de l’architecture proposée, les LUT inutilisées peuvent également être désactivées par

power gating.

0.4.2 Estimation de puissance

Une estimation de la consommation électrique pour un ensemble de machines à états

utilisant la technique proposée est fournie dans le tableau 4. Les résultats ont été obtenus

à partir de simulations SPICE. Une comparaison avec les estimations de puissance et

d’énergie pour des FSM implantées sur un eFPGA indiquent une amélioration de la

consommation électrique pour les FSM de taille importante en faveur de notre approche.

Puissance dissipée (mW) Energie par opération (pJ)
fclk = 20 MHz fclk = 100 MHz fclk = 20 MHz fclk = 100 MHz

abs 0.35 0.75 17.76 7.54 (7.92)a

Crc8 0.51 1.13 25.46 11.30 (11.45)
receiveData 0.64 1.46 32.23 14.56 (14.54)

Crc16 0.59 1.32 29.38 13.21 (13.22)
firBasic 0.63 1.41 31.31 14.14 (14.10)

aEstimation extrapolée à partir de simulations SPICE

Table 4: Puissance et énergie moyennes par opération pour des FSM implantées sur
une architecture à base de power gating.

0.5 Contributions

Les contributions de ce travail sont résumées ci-dessous.

1. Nous avons proposé un modèle semi-empirique pour estimer le temps de réveil

pour des clusters logiques exploitant la coupure d’alimentation power gating. Étant

donnée une description de circuit au niveau porte et une caractérisation compacte

de son organisation en termes de portes logiques et de transistors de coupure, notre

approche permet d’estimer très rapidement le temps de réveil de chaque bloc avec

un taux d’erreur avoisinant les 16%. Elle permet donc d’obtenir des estimations

précises tout en évitant de recourir à des simulations au niveau transistor, bien

trop longues pour pouvoir être utilisées.

2. La puissance statique d’un bloc logique quelconque peut-être estimée avec une

précision de 3% en utilisant un modèle analytique par approximation polynomiale

du courant statique au niveau porte. Par ailleurs, d’autres paramètres clés des

circuits exploitant le power gating, à savoir la valeur de la tension d’alimentation

en régime permanent en mode actif et veille, le coût en énergie des phases de réveil

ainsi que les gains globaux s’obtiennent directement à partir de ce modèle ou à

Chapitre 0 Résumé étendu 13

l’aide de simples extensions. Ces modèles, lorsque utilisés ensemble, peuvent servir

en tant qu’outils d’estimation rapide qui pourront servir à guider le reste du flot

de conception.

3. Nous proposons une approche de partitionnement appliquée à l’exploitation du po-

wer gating pour des circuits arithmétiques denses et réguliers (p. ex. : additionneurs

ou multiplieurs). Notre approche permet leur utilisation comme des opérateurs à

précision variable. Nos résultats indiquent que des gains en consommation allant

jusqu’à 30% peuvent être obtenus. Nous avons également utilisé la possibilité de

déterminer un seuil de précision au dessus duquel il est possible de réduire la puis-

sance dynamique. Celui ci peut ensuite aider à la dérivation d’un ordonnancement

du signal de coupure d’alimentation en vue d’obtenir une consommation minimale.

4. Nous avons proposé un modèle extensible d’architecture reconfigurable pour la mise

en œuvre de FSM. Ce modèle se base sur la décomposition de Shannon des fonc-

tions de transition et de décodage. Nous avons identifié des possibilités de réduire

significativement la puissance statique dissipée (en mode actif) grâce a l’utilisation

du power gating directement au niveau de la couche de reconfiguration. Ce mo-

dèle permet d’obtenir un niveau de consommation électrique intermédiaire entre

une approche complètement programmable à base de micro-contrôleur et une ap-

proche complètement dédiée à base de micro-tâches matérielles spécialisées. Notre

modèle d’architecture est donc une alternative intéressante combinant flexibilité et

efficacité énergétique.

0.6 Conclusion

Dans ce travail, nous avons proposé l’utilisation d’architectures reconfigurables exploi-

tant la technique de power gating, afin d’offrir une approche flexible à la mise en œuvre

de nœuds de réseaux de capteurs basés sur le principe de micro-tâche matérielle. Nous

avons exploité les propriétés structurelles des automates à mettre en œuvre afin de ré-

duire le coût en interconnexion et la logique de sélection à un niveau minimal tout en

garantissant un bon passage à l’échelle pour des machines à états plus complexes. Nous

avons également proposé des modèles pour l’estimation rapide des surcoût liés aux temps

de réveil ainsi que pour d’autres paramètres importants pour une conception au niveau

porte logique exploitant les coupures d’alimentation. Nous avons ainsi montré que le délai

de réveil est un élément clé qui contribue grandement dans le bilan énergétique global

(en mode actif) des FSM reconfigurables à base de power gating. Enfin, nous discutons

l’efficacité énergétique de notre approche en la mettant en regard du surcoût en surface

induit par l’utilisation d’une forme de reconfiguration.

14 Chapitre 0 Résumé étendu

0.6.1 Efficacité énergétique

Une bonne métrique permettant d’évaluer l’efficacité énergétique des différentes réalisa-

tions est l’énergie moyenne dissipée par instruction. Le tableau 5 évalue cette métrique

pour différentes tâches et stratégies de réalisation matérielle utilisées dans ce travail.

Ainsi, l’énergie équivalente par instruction pour une micro-tâche Eeff s’obtient par

Eeff =
Etask

Ninst
(1)

où l’énergie par tâche Etask est obtenue selon

Etask = NstatesEop,MT . (2)

et où Nstates est le nombre d’opérations (ou transitions d’états de la FSM) nécessaires

à l’exécution de la tâche et Eop,MT correspond à l’énergie moyenne par opération d’un

micro-tâche.

Les résultats du tableau indiquent que l’efficacité énergétique de l’approche à base de

micro-tâches reconfigurables se situe entre celle d’une approche à base de micro-contrôleur

programmable très faible consommation et celle à base de micro-tâches spécialisées, ce

qui était l’objectif à l’origine de ces travaux.

Micro-tâche

Energie équivalente par instruction (pJ/Inst.)
openMSP430 [1]a Micro-tâche Micro-tâche

Reconfigurableb Câblée 16 bits [1]c

Ninst Eeff Nstates Eeff Nstates Eeff

Crc8 30 163 71 31.60 71 8.1
receiveData 66 230 332 83.53 332 15.7

Crc16 27 170 73 41.27 73 9.3
firBasic 58 179 168 46.90 168 26.1

a130nm, @16MHz
b65nm, multiple Vth cells, @100MHz, 16×16 register file, no SRAM
c65nm, std.-Vth cells

Table 5: Coût en énergie par instruction pour trois réalisation de contrôleurs.

0.6.2 Le coût de la flexibilité

Un revers important de la flexibilité est le surcoût en surface comparé à une approche

à base de micro-tâches spécialisées. En se basant sur les résultats de Pasha et al. [1], il

peut être montré que le surcoût en surface d’une micro-tâche reconfigurable est jusqu’à

19 fois plus élevé que sa version spécialisée, comme indiqué Table 6. Ce surcoût en surface

Chapitre 0 Résumé étendu 15

doit-être envisagé sous deux angles différents. Dans ce travail, les architectures propo-

sées garantissent que toute FSM satisfaisant certaines contraintes (en terme de nombre

d’états, de commandes, etc.) pourra être implantée sur une micro-tache reconfigurable.

Ce n’est pas le cas d’approches basées sur un eFPGA ou sur micro-tâches spécialisées.

Microtask
Spécialisées Reconfigurable eFPGA (µm2) openMSP-

Microtask [1](µm2) Microtask (µm2) (217 CLBs) 430(µm2)

Crc8 3097

140522.2 1076871 22141
receiveData 2858

Crc16 3102
firBasic 7164

Table 6: Comparaison des coûts en surface des FSM spécialisées par rapport aux FSM
reconfigurables (pour une chemin de données sur 16 bits).

De plus, le nombre de micro-tâches dans une plateforme pour nœud de réseau de

capteurs peut varier et aller jusqu’à 40 ou 50. La coût en surface correspondant à une telle

implémentation est donc significatif, et est susceptible de dépasser celui d’une approche à

base de micro-tâches reconfigurables. En principe, une unique micro-tâche reconfigurable

peut-être utilisée en lieu et place d’un ensemble de micro-tâches spécialisées en utilisant

une forme de multiplexage temporel. Le contrôleur du nœud nécessite encore dans ce

cas un moniteur système pour assurer la reconfiguration et le contrôle global de la plate-

forme.

Chapter 1

Introduction

Convergence of computing and communications has led to development of new portable,

handheld, battery-powered products for multimedia and wireless applications. A tes-

timony to this fact is the advent of smartphones which, in association with advanced

wireless communication networks, are able to deliver comprehensive user experience of

nearly anywhere, anytime telephony and multimedia applications. The onboard software

driving these embedded systems process multimedia content requiring intensive compu-

tations. Other consumer electronic products based on such a convergence include tablets,

portable computers and wireless peripheral devices.

Another class of applications that has gained importance are broadly based on what

are referred to as Wireless Sensor Networks (WSNs). The fundamental unit of a WSN is

called a node. Typically, but not necessarily, nodes have an additional function of sensing

along with computing and communications [21]. Such an integration of functions leads

to several applications [2, 3] - weather monitoring, surveillance for security, personal

health care, vehicular traffic management, energy efficient buildings, etc. An anticipated

evolution of mobile devices into WSN nodes would merge the two sets of applications into

one (e.g., ‘Cloud Health Care’ [4]). A characteristic feature of WSNs is the possibility

of using a large number of nodes in a number of untethered ways. For example, a node

can be a controller of other nodes, a communicating agent with sensing, a transmitter,

repeater, or a receiver. They may be configured to operate in different network topologies.

Further, nodes may change their behaviour dynamically over time. The ubiquity of nodes

requires that they offer flexibility while also satisfying power and performance constraints.

Wireless Sensor Network nodes have been realized on various technological platforms.

One of the most common technologies used in WSN nodes has been the complementary

metal-oxide-semiconductor (CMOS) integrated circuit (IC) technology as is also the case

with a large number of electronic systems in the last fifty years. A key driver behind

the success of CMOS circuits has been the continuous scaling of devices to nanoscale

dimensions and consequent high density of device integration. The predictability of

17

18 Chapter 1 Introduction

scaling has been captured by Moore’s ‘law’ [22] which states that the integration density

of MOS transistors doubles approximately every two years. The International Technology

Roadmap for Semiconductors (ITRS) [23] had indicated downscaling of physical gate

length of MOS transistors from 65nm in the year 2002 to 22nm in 2012. The technological

feasibility of integrating a very large number of MOS devices has brought about challenges

in identifying trade-offs in power consumption, performance, sizes of integrated circuits

and cost of final products. A critical study of interrelationships between functional

convergence in WSN nodes, energy requirements and design automation is necessary to

explore the design space for energy efficient solutions.

In Section 1.1, a broad overview of low power design is given. The sources of power

constraints for integrated circuits are stated. The different components of total energy

consumption in an arbitrary digital logic circuit are described. The section ends with

an enumeration of various low power techniques developed and the support provided

by electronic design automation (EDA) tools for synthesis and analysis of low power

integrated circuits. Section 1.2 describes briefly the architecture and constraints of a

WSN node. Some examples of different platforms on which the nodes have been realized

are also given. The context of this work explained in Section 1.3 focuses on automated

generation of energy efficient architectures for controllers in WSN nodes as it forms the

starting point for the current work. Possible solutions in the design space are briefly dis-

cussed while also reviewing previous work. The contributions of the thesis are outlined in

Section 1.4. Finally, the chapter concludes with organization of the thesis in Section 1.5.

1.1 Overview of Low Power Design

1.1.1 Sources of Power and Energy Constraints

Power and energy consumption1 in CMOS integrated circuits have received significant

attention for three important reasons - thermal management, battery lifetimes and auton-

omy of self-powered integrated systems. In microprocessors, as performance increased,

efforts were made to reduce power consumption to lower the cost of heat sinks and pack-

aging for thermal management [24]. Temperature variations due to power dissipation

in microprocessors, Application Specific Integrated Circuits (ASICs), System-on-Chips

(SoCs) and Field Programmable Gate Arrays (FPGAs), cause significant on-chip param-

eter variations that result in unreliable operation [25] and is therefore another reason for

power dissipation control.

The evolution of ASICs into SoCs due to increase in integration density has reduced

cost per unit function but has increased standby power dissipation considerably. FPGAs

1In this thesis, the terms energy and power are used interchangeably as long as it does not create
any confusion. In contexts where the difference is significant, it will be explained to clarify the usage of
a particular term.

Chapter 1 Introduction 19

on the other hand offer flexibility at low non-recurring engineering (NRE) costs. However

the additional hardware in relation to its ASIC counterpart is a source of significant

energy consumption in both active and standby modes of operation. Such SoCs and

FPGAs when used in battery powered devices impose severe strain on battery lifetimes,

as for a given form factor, the battery can supply only a finite amount of energy specified

by its capacity.

The third reason for power constraints is due to autonomous nature of WSN nodes for

certain applications. Some of the nodes may operate in such conditions that replacement

of batteries is impossible. Hence nodes must depend on ambient energy sources to harvest

power. The harvested power is significantly less than that provided by batteries thus

imposing a constraint on the power consumed by the circuit at a given point of time. For

example, weather monitoring nodes distributed in widely separated geographical areas

require power consumption of less than 100µW to retain autonomy.

1.1.2 Energy Consumption in CMOS Circuits

Given an arbitrary digital system, the total energy consumed over a period T can be

determined as follows. The total power consumption Ptotal in a CMOS circuit is given

by

Ptotal = Psc + Psw + Pstatic (1.1)

where (Pdyn =)Psc + Psw is the dynamic component of total power and Pstatic is the

static power due to leakage currents. Psc is the power due to short circuit current

through transistors and Psw is the switching power due to charging and discharging of

the capacitive load of each gate. Further, with supply voltage Vdd, short circuit current

Isc, load capacitance Cload, clock frequency f , transition density α (dependent on input

patterns) and leakage current Ileak, Eq. (1.1) can be written in the most general form

as [26]

Ptotal = VddIsc + αfV 2
ddCload + VddIleak. (1.2)

Let Ta denote the time for which the circuit is in active state and Ts the time for which

it remains in standby state. Then the total energy consumption Etotal of a circuit over

a period of time T = Ta + Ts is given by

Etotal = [VddIsc,av + αfV 2
ddCload + VddIleak]Ta + VddIleakTs (1.3)

where Isc,av =
∑

i

Isci
Tsci

Ta
for each switching event i of duration Tsci

is used for notational

simplicity.

20 Chapter 1 Introduction

1.1.3 Low Power Techniques

A number of techniques have been used for reducing each component of power in Eq. (1.2).

Dynamic power consumption due to charging and discharging of capacitive loads of logic

gates can be reduced by shutting off clock (clock gating [27]). Architectural transforma-

tions like pipelining and parallelism can potentially reduce dynamic power [28]. Parts of

integrated circuits with lower performance requirements can be operated at lesser supply

voltages. Dynamic voltage and frequency scaling have also been used for power reduction

in advanced ICs at circuit level for dynamic trade-offs between power and performance.

Short circuit currents due to switching of gate outputs are reduced by balancing input

and output transition times using logical effort techniques [24, 29].

A technique being actively studied for low power circuits is their operation under

subthreshold or near-threshold supply voltages [30]. While dynamic power, being pro-

portional to square of the supply voltage, is reduced drastically due to voltage scaling,

MOS devices in such circuits have a low Ion/Ioff ratio, degraded performance and lower

noise margins due to high relative variations in device parameters. Current research is

directed towards increasing the reliability of subthreshold devices and modeling for de-

sign automation [31, 32]. A detailed treatment of subthreshold design for ultra low-power

systems is given in [33].

In sub-100nm CMOS technologies, the focus has shifted to problems due to large

leakage power. As an example, the static power in 45nm technology is about 6 times

more than that in 90nm technology. While leakage currents exist in transistor stacks of

CMOS circuits at all times due to bias voltages, they are primarily responsible for energy

consumption in standby states when no switching activity exists. This is particularly

true for circuits that remain in standby states for significantly longer times than in

active states as in nodes for some WSN applications and have a direct impact on battery

lifetimes. Power gating has emerged as a promising technique for suppressing leakage

currents and has found applications in a number of industrial IC designs [34]. In this

technique bias voltages are cut off by a series transistor so that bias-dependent leakage

current becomes negligibly small in standby state. In active state, the series transistor

operates in linear region and the virtual supply (or ground) node provides necessary

bias voltages for the logic gates to operate at their normal drive strengths. Another

technique used to reduce subthreshold leakage current is to use multi-threshold voltage

(Vth) CMOS circuits [35] due to the fact that high-Vth MOS devices have lesser leakage

current than their low-Vth counterparts.

Recently, inexact circuits that use probabilistic techniques for pruning logic in dense

arithmetic circuits to trade accuracy of outputs for energy savings have been proposed

in [36]. Algorithmic modeling of digital systems with fixed-point realizations of compu-

tational units with energy constraints is an area of active research [37].

Chapter 1 Introduction 21

1.1.4 Design Automation for Low Power

Power closure is a relatively new term used in the design of VLSI circuits meeting speci-

fied constraints of power consumption before design sign-off. A design flow that supports

power closure depends extensively on automated deployment of low power techniques for

synthesis as also on power estimation methods for analysis. Commercial EDA tools

have progressively incorporated these techniques into their tool suites. Logic synthe-

sis tools [38] provide support for clock gating and are able to use multiple threshold

voltage cell libraries for optimizing delay-leakage power trade-off. While the Unified

Power Format (UPF) [39] has been framed for specification of multiple supply voltage

and power-gated domains for verification, Common Power Format (CPF) [40] has been

used for physical synthesis of such power domains with specified power intents. Power

analysis tools [41, 42] are able to provide estimates of dynamic and static power along

with thermal variation profiles at different process, voltage and temperature (PVT) cor-

ners in presence of noise and crosstalk. Further, state-of-the-art physical design tools

provide capabilities to verify chip-wide IR drop and analyze power-rail electromigration

for reliability in complex multi-million gate designs [43]. Despite such developments in

the EDA domain, low power design remains a custom or semi-custom approach with an

ensemble of ad hoc techniques.

1.2 WSN Nodes: Architecture and Realizations

1.2.1 Structure of WSN Nodes

The architecture of a typical WSN node is shown in Fig. 1.1. It consists of a sensing

unit, computational and storage unit and a communication unit for transceiver (Tx/Rx)

frontend. Associated with the three units is a power supply unit that houses power

management circuits, batteries or energy scavenging units. The sensing unit interfaces

with sensors and has associated signal conditioning circuits. The communication unit

interfaces to a Tx/Rx antenna. The choice of technologies for implementation of nodes

is usually determined by design constraints imposed by the application. Important con-

straints include energy consumption and form factor. Data processing capabilities and

error-free communications are two other constraints nodes have to deal with and they

further impact the first two factors. Sensing and communication units include mixed

signal circuits whereas computational units are typically digital blocks. The units could

be physically independent as is the case when the node is designed with off-the-shelf

components or they could be integrated on to a SoC.

22 Chapter 1 Introduction

Figure 1.1: A typical wireless sensor network node.

1.2.2 WSN Node Realizations

Wireless sensor network nodes have been realized on different platforms. A number of

industrial solutions exist for several applications. Being an active area of research, several

experimental platforms have also been developed as part of broader study of node and

network design. A few examples that demonstrate the breadth of WSN node implemen-

tations with their design methodologies are given next. In [44], a WSN node consisting

of a MEMS motion sensor and CMOS wireless circuit for human physiological activity

monitoring has been described. It represents an example of an application specific node

designed with heterogenous technological processes. A full-custom or a mixed-signal IP

integration flow is usually used for such a design. At the other end of the spectrum

are nodes with independent sensing, computational and communication units. Such an

architecture allows for flexibility in node functions and can be targeted towards a wider

range of applications. A number of nodes have been based on low power microcontrollers

(e.g., MSP430 of Texas Instruments, ATmega128L of Atmel) as computational units.

Examples include BTNodes [7], Telos [5] and PowWow [6]. Since a microcontroller is a

general system, a simple software compilation approach forms the basis for application

mapping. Application Specific Instruction Processors (ASIPs) with dedicated hardware

for specialized instructions have also been used to supplement the computational power

of a processor. The Xtensa class of processors of Tensilica belong to this category [45].

Development tools provide direct programming support with customized instructions

for application mapping. High throughput computational units are mostly designed as

dedicated ASICs using standard or semi-custom VLSI design flows involving low power

techniques. A logical extension of ASICs in the family of computational units is with

reconfigurable circuits. They are discussed in the next section.

Chapter 1 Introduction 23

1.3 Context of the Work

While WSNs are evolving fast, the scope of their applications is also expanding tremen-

dously. On the sensing side, signals from different types of transducers are required to be

processed by signal conditioning circuits and computational units at varying signal-to-

noise ratios (SNRs). Similarly on the communications side, wireless protocols are under

constant evolution so that they require different levels of SNR, data throughput and

error tolerance to be supported. Further, a part of the node needs to perform house-

keeping functions thus incurring some energy. A node itself may have to change its roles

dynamically over time. All these factors imply that flexibility is of key concern in the

design of WSN nodes.

A complete design flow involving a system-level synthesis of ultra low-power WSN

node controllers was proposed in [1]. The design flow takes as inputs a high level de-

scription of the WSN node controller represented by a task flow graph (e.g., in C or a

domain specific language) in terms of smaller, independent control tasks and generates

their hardware description in form of specialized microtasks [46]. The hardwired mi-

crotasks, which are a combination of finite state machines (FSMs) and datapath units

consisting of arithmetic-logic units (ALU), storage devices and peripheral IO interfaces

are finally integrated along with a system monitor and global memories to form a com-

plete hardware mapping of the controller as shown in Fig. 1.2. A key contribution of

the work in [1] has been rapid generation of hardware description of specialized con-

trollers for WSN applications. It was proposed that the architecture could be exploited

for power gating. While the design flow supports rapid prototyping, the final hardware

thus generated still lacks flexibility.

Figure 1.2: A generalized task flow graph and system level view of generated archi-
tecture as proposed in [1].

24 Chapter 1 Introduction

Reconfigurable hardware that use configurable logic blocks (CLBs) and programmable

interconnection networks as in FPGAs, have been proposed as a solution to address the

need for flexibility in general. In wireless applications that need to support multiple

standards and be able to adapt transceiver algorithms, the programming-in-space ap-

proach of reconfigurable processors offers flexibility as also efficiency in terms of NRE

costs compared to ASIC-based designs [47]. However flexible hardware of reconfigurable

processors are not energy efficient unlike dedicated circuits and hence pose power and

energy constraints for WSN nodes.

In this thesis, variable precision arithmetic units for datapath and scalable archi-

tectures for reconfigurable FSMs with ultra-low power consumption are explored in the

context of flexible microtasks. Power gating as a low power technique is studied at archi-

tecture and circuit levels for FSM and datapath elements of microtasks described in [1].

It involves an extensive study of design issues in power gating and modeling design pa-

rameters of a power-gated circuit. A bottom-up approach is taken: gate level models

for estimation of key design parameters of power-gated circuits are derived first. These

models are useful in fast analysis of power-gated circuits. Next, two hardware blocks

integral to microtasks viz., arithmetic units of a datapath and finite state machine for

control, are studied for low power optimizations. In both cases reconfigurability is con-

sidered a key aspect of flexible hardware design. In the context of arithmetic units

like adders, reconfigurability is used for dynamically varying precision of the operation

and hence examined for potential energy savings from unused logic. For reconfigurable

FSMs, scalable architectures with varying degrees of flexibility and complexity are pro-

posed and power gating opportunities are identified to achieve aggressive leakage power

and standby mode energy reduction. Finally, the models are applied to analyze various

design parameters in power-gated logic clusters of FSMs and adders in datapath due

to power gating. An additional interest in the derivation of models is the possibility of

using them as cost functions when synthesis of power-gated logic clusters is viewed as an

optimization problem with design constraints to be satisfied.

Our approach has been biased towards power reduction at the cost of increased

hardware area for two reasons. It is intended to introduce a high degree of flexibility in

the hardware through programming-in-space approach in the first instance. Secondly, as

technological nodes scale down, the increase in static power density as a cost far exceeds

the impact of area due to flexible hardware.

1.4 Contributions

The specific contributions of this work are enumerated as follows.

1. A semiempirical model for estimation of wakeup time at gate level in power-gated

logic clusters is proposed. Given an arbitrary netlist and compact characterization

Chapter 1 Introduction 25

of constituent logic gates and sleep transistor, wakeup time may be estimated

rapidly within an average error margin of 16%2 while avoiding transistor level

simulations of complete netlist. It can in turn be used as a cost function for

wakeup time in wakeup scheduling of power-gated logic clusters.

2. The static power of an arbitrary logic block can be estimated within an accuracy of

3% using simple polynomial based characterizations of static current at logic gate

level. Further key design parameters of power-gated circuits, namely, steady-state

virtual supply voltage in active and sleep modes, wakeup energy and energy savings

due to power gating are obtained either as part of derivation of the model or its

simple extensions. These models when used together have the potential to serve

as a rapid analysis engine in a design flow.

3. A general approach to partitioning regular and dense arithmetic circuits like adders

and multipliers to exploit variable precision operation is presented. It is shown that

energy savings of upto 30% can be achieved during variable precision operation of

adders and unused logic being power-gated. Precision scaling by power gating,

when applied to data processing in a microtask can enhance the scope of its ap-

plications that is now limited to simple control tasks. Determination of a cut-off

precision beyond which dynamic power saving also results helps define a power

gating schedule to maximize power (and energy) savings.

4. Scalable architectures for reconfigurable FSMs based on Shannon decomposition of

next-state functions and output functions are proposed. Power gating opportunities

at the level of a configuration and for aggressive leakage reduction within active

mode of a configuration are identified. Power estimation based on the models

proposed show that the energy efficiency in terms of an equivalent energy per

instruction metric with respect to a low power microcontroller core lies between

that of the core and hardwired microtasks. The architecture represents a potential

alternative in design space for flexible controllers especially as technological nodes

scale down.

1.5 Organization of the Thesis

The thesis is organized as follows. A background of controllers in wireless sensor network

nodes is given in Chapter 2. Reconfigurable circuits in controllers are discussed from

the perspective of introducing flexibility in microtasks. A general homogeneous FPGA

for FSMs in controllers is discussed along with power estimation at a first order of

approximation for comparison with low power architectures proposed later in the thesis.

2As applied to ISCAS85 benchmark circuits.

26 Chapter 1 Introduction

It also serves as a motivation for problems addressed in this work. The chapter ends

with the state-of-the-art on low power reconfigurable circuits.

In Chapter 3, previous work on design of power-gated circuits is reviewed in detail.

The different types of power gating networks and the challenges involved in designing

them are described. The various factors required to be taken into account for power-gated

circuit design are enumerated and form the basis for contributions described later in the

chapter. A power gating example is given to illustrate the aspects discussed. Hence a

semiempirical model for wakeup time and its extensions to determine wakeup energy and

energy savings in a power-gated logic cluster are presented. A key aspect of derivation

of these models is the polynomial representation of static current in logic gates and its

use in estimation of steady state virtual supply voltage at the end of wakeup mode.

Potential applications are described to highlight the utility of models. The limitations

of the model are also indicated.

In Chapter 4, power analysis of two types of power-gated adders that are configurable

for different precisions is presented. The benefits and costs of power gating unused logic

when reconfigurable adders operate at a lower precision are studied. A general method

for logic partitioning and clustering for power gating based on desired precisions that

can be extended to other arithmetic units like multipliers is described. The models of

Chapter 3 and a classical approach for dynamic power estimation are used for power

estimation in power-gated adders along with SPICE simulations. Such an analysis is

useful in the context of microtasks since an adder forms an integral part of the datapath.

In Chapter 5, lookup table-based reconfigurable architectures that exploit feedback

and feedforward logic structures in finite state machines are proposed. A thorough study

of resources required for various flavours of fully reconfigurable FSMs is carried out.

Hence trade-offs between FSM specifications and resources leading to FSM realizations

with limited reconfigurability are discussed. Power gating opportunities are identified in

these architectures at a granularity of lookup table logic clusters. Power estimation in

architectures proposed for reconfigurable FSMs is described and the results are validated

by transistor level SPICE simulations. A restricted class of sequential circuits referred

to as linear sequential circuits are also studied in the context of reconfigurable FSMs.

The thesis concludes with Chapter 6 by elaborating on inferences derived from the

work described in various chapters. Different solutions for WSN node controllers in

design space are re-examined with the objectives of comparing energy efficiency and

costs incurred for their realization. Finally some perspectives on future work are also

outlined.

Chapter 2

Controllers for Wireless Sensor

Network Nodes

2.1 Introduction

Given the tight energy constraints that a WSN node needs to satisfy, every aspect of

its function is targeted for low power optimizations. Controllers are an important part

of WSN nodes and are responsible for management of resources of nodes at a specified

level of power budget and performance. In this chapter, the issues involved in trad-

ing flexibility and power constraints in controllers of wireless sensor network nodes are

examined.

An overview of a wireless sensor network and its nodes is given in the next section with

an illustrative example. In Section 2.3, the various ways in which controllers are realized

in WSN nodes are surveyed. The trade-offs with respect to flexibility, performance

and power in each are examined. Controllers based on reconfigurable microtasks are

introduced in Section 2.4 with an enumeration of different reconfigurable logic blocks

within the microtask. In Section 2.5, an embedded FPGA that represents a general

reconfigurable system is described with reference to a physical implementation of its

architecture. Bottlenecks encountered in mapping FSMs representing typical control

tasks on to the FPGA architecture is described. The demands on FPGA resources and

power consumption in the reconfigurable array are highlighted. A review of low power

flexible hardware is presented in Section 2.6. The chapter ends with a discussion of

problems addressed in this work.

2.2 Wireless Sensor Network Nodes

A node is a fundamental unit of wireless sensor network. Several nodes (from tens or

hundreds to tens of thousands) form wireless sensor networks [21]. A node is in general

27

28 Chapter 2 Controllers for Wireless Sensor Network Nodes

controlled by a controller of nodes but often, the control may be distributed. A node can

be a transmitter, repeater, receiver or any combination of these apart from being able

to do computation, sensing and data storage. Also, a node may change its behaviour

dynamically over time. A group of nodes may communicate with another group of nodes

in a cooperative way sharing communication and computational resources. A node may

also be a broadcast node by just transmitting signals for all nodes within its communi-

cation reach. Thus nodes can be networked in a number of ways and each networking

topology is governed by various factors like total computational capacity, energy budget,

channel conditions, communication protocols and methods, intended application, etc.

Figure 2.1: Functional representation of a wireless sensor network.

A highly simplified functional representation of a wireless sensor network with its

nodes Ni, i = 0, 1, 2, ..., 8 and Ri, i = 1, 2, 3, is shown in Fig. 2.1. It shows an indicative

set of tasks that nodes may be expected to perform within constraints of power, perfor-

mance and ubiquity. For example, nodes N2 and N3 communicate by an asynchronous

handshake protocol requiring execution of send(receive)Req and receive(send)Ack tasks

by controllers within them. Nodes Ri act as repeaters requiring receive(send)Data tasks

to be executed. Further, the pairs of nodes (N1, N2) and (N4, N5) may cooperate

among themselves by dynamically sharing data and communicating with the other pair.

Therefore functionally, node and network design are application dependent. However

the evolution of WSNs and communication protocols [48] including traffic-aware [49] and

dynamically adaptable ones makes it preferable to have flexible nodes so that they may

Chapter 2 Controllers for Wireless Sensor Network Nodes 29

be used across applications. Further the cost and time for design and production of

nodes may also be reduced for large volumes.

The basic structure of a node was described in Chapter 1, Section 1.2 to broadly

consist of four units. Among them, while sensing and communication units interface

with the external world, the computational unit is responsible for computational and

control tasks. An important sub-unit of a computational unit is the node controller1.

Alternatively, a group of generic controllers may constitute a computational unit. Some

of the controllers may have an overlap with sensing and communication units as well.

The focus of this chapter is two fold: (1) to survey the various ways in which control tasks

are handled in a WSN node and (2) to motivate a search for low power reconfigurable

architectures that are both flexible and are close to ASIC-based controllers in the design

space.

2.3 Controllers for WSN Nodes

The primary function of controllers in nodes is to manage resources for required per-

formance with low-power (and energy) demands. Resources in the node include data-

path elements for arithmetic and logic operations on data, timers, interrupt controllers

and event generators, memory for data storage, peripheral IOs for external interfacing,

power supply and system monitoring circuits. It is estimated that upto 25% of total

power budget in a node may be consumed by controllers. Microcontrollers have been

an important choice for controllers in nodes due to their flexibility. Several WSN plat-

forms have used low-power microcontrollers as their driving engines for control tasks.

A popular microcontroller, MSP430 of Texas Instruments [50], has found application in

nodes like Telos [5], PowWow [6] and HydroWatch. Some of the other low power micro-

controllers for WSN nodes have been CoolRISC [51] (in WiseNet), ATMega series (in

BTNodes [7]) and Intel’s StrongARM. A spectrum of low power techniques - from clock

gating to subthreshold design including power gating [8, 9, 10] have been implemented

in microcontrollers proposed for nodes.

Some of the solutions for controllers have been based on customizable core gener-

ators like Xtensa family of cores of Tensilica [52]. The cores can be generated with

application-specific instructions that use custom-designed accelerators. While the cores

have to be integrated into the system and hence the circuit fabricated, a rapid core gen-

eration engine and tool support ensures fast turnaround at low NRE costs. Application

Specific Instruction Processors (ASIPs) are an useful extension of microcontrollers with

1The term controller appears in different contexts in this thesis. A controller in a node is different
from controller of nodes (e.g., N0 in Fig. 2.1) in a wireless sensor network. A controller of nodes may
have a controller within itself. Some authors use the term controller synonymously with the control part
when discussing control and datapath model of a digital system. In our work, a controller consists of
one or more microtasks that have an FSM-oriented control part and a datapath.

30 Chapter 2 Controllers for Wireless Sensor Network Nodes

customized instructions. Nevertheless microcontrollers are far from optimal solutions in

several applications as sequential execution of steps in control tasks exercise significant

logic of a microcontroller to cause high power consumption. Examples of such operations

include memory access for reading and writing instructions or data, frequent branching

and unsystematic indexing. Further full-sized datapath and instruction decoder logic are

completely used even for control tasks of lower complexity.

A number of systems for digital control can be abstracted by a model based on a

control unit and a datapath. Different behavioural models have been used to describe

the control unit. However from the physical implementation viewpoint two major styles

of control logic realizations are recognized: (1) microcode oriented control and (2) finite

state machine oriented control. Different flavours of implementations exist in both forms

of control unit realizations. A datapath on the other hand, consists of arithmetic, logic

and storage units.

An intermediate representation for compile-time reconfigurable controllers in chip

generators based on partial evaluation was proposed in [53] with an example of a cache

controller. Partial evaluation is a technique used to specialize a generic microcode se-

quence (program) based on compile-time inputs. For partial evaluation of reconfigurable

controllers in chip generators, table-based control is converted into efficient logic imple-

mentation for synthesis using state propagation and state folding.

Previous work in our group proposed a complete design flow for system-level synthesis

of low power WSN node controllers in [1]. The function of a controller in a node is

specified in terms of a task flow graph. The task flow graph is an input to the design flow

at a high level of abstraction (e.g., in C or a domain specific language) and functionally it

represents a set of tasks the controller has to execute. From the perspective of hardware

implementation, the synthesized controller consists of a set of specialized hardware units

referred to as microtasks shown in Fig. 2.2. From the figure it can be inferred that the

microtask is based on a FSM-datapath model. The microtask consists of a dedicated FSM

and datapath for control and computations respectively. Register files, memories for local

storage and peripheral IO interfaces form a part of datapath along with arithmetic-logic

units. In other words, a microtask, once generated by the design flow, is specialized to

execute a specific control task. An implementation of a node controller involves several

such microtasks specialized for tasks in the task flow graph. A system monitor manages

scheduling of microtasks according to the task flow graph. A domain-specific language

(DSL) was also described to specify system-level execution model of a WSN node to

generate a system monitor for a given task flow graph.

In order to exploit low-power techniques in generated controllers, the tasks are

mapped on to microtasks in such a way that during the operation of the controller

based on run-to-completion semantic, all microtasks than the ones required may be

Chapter 2 Controllers for Wireless Sensor Network Nodes 31

power-gated to suppress leakage power. Additionally, the hardware specialization of mi-

crotask is an ASIC-like feature in that the dynamic power consumption characteristics

are similar to ASICs. This approach leads to low power realizations of controllers in

WSN nodes. In the design flow, the outputs are obtained as a hardware description

(in VHDL) of controllers at register transfer level (RTL). The structural description of

controller in VHDL is then used to perform logic synthesis for technology mapping. The

synthesizable code in VHDL is obtained using model driven engineering and retargetable

compilation methods. The approach is in principle similar to core generators described

above, but with differences in flexibility offered by the complete systems generated by

the two design flows and low power features.

Power estimation results show a reduction in power by factors in the range of 64

to 185 for typical controller tasks as compared to their execution on openMSP430 [54]

microcontroller. Similarly, the controllers based on hardware-specialized microtasks are

about 20 times more efficient than openMSP430 microcontroller in terms of energy per

operation (or instruction) metric. While ASIC implementations of generated microtasks

are power-efficient and that their architectures can be generated rapidly using the pro-

posed design flow, the utility is limited by the specificity of application. A controller

based on hardwired microtasks cannot be programmed for a different task flow graph

either in space or in time to execute control tasks other than those designed for.

Figure 2.2: Structure of a microtask (as proposed in [1]).

32 Chapter 2 Controllers for Wireless Sensor Network Nodes

2.4 Reconfigurable Microtasks

The subject of this thesis is to explore possibilities of introducing flexibility in microtasks

and yet at the same time retaining optimizations for low power at a certain trade-off with

respect to area. Reconfigurable architectures provide a way to incorporate flexibility by

being able to map logic circuits on to basic configurable logic blocks. In this work we

consider reconfigurable architectures for Control FSM and Arithmetic Unit of ALU in

the microtask of Fig. 2.2. The term reconfigurability broadly refers to configuration of

certain basic logic blocks and control of interconnections between them to realize several

possible logic functions. It is also referred to as a programming-in-space approach in

contrast to the programming-in-time approach of microprocessors.

The structure of a generated controller with reconfigurable microtasks and a typical

architecture of a microtask is shown in Fig. 2.3. For a microtask to be flexible, it is

envisaged that the control finite state machine, the arithmetic unit and the register file

of the microtask shown in Fig. 2.2 be replaced with their reconfigurable counterparts.

Clearly, a family of task flow graphs can be implemented by merely reconfiguring the

same configurable logic blocks in the microtask. A flexible controller in its simplest

form may have only one reconfigurable microtask and a system monitor with associated

memories. The different tasks of a task flow graph under consideration may then be im-

plemented as consecutive configurations of the flexible microtask. The overhead due to

reconfiguration time and reconfiguration memory needs to be considered. Alternatively,

a controller may also have multiple reconfigurable microtasks of different sizes and types

as shown in Fig. 2.3 and also be managed by a system monitor. This allows a possibility

of interaction among microtasks or executing parallel tasks. From a hardware perspec-

tive two important costs, area and static power, are incurred and have to be quantified.

Further there exists a one-time cost in development of architecture mapping tools for the

reconfigurable architectures. To control power dissipation due to increased logic integra-

tion, it is necessary to explore opportunities for power gating in the spatial dimension

at a finer granularity (unused logic at any given time) apart from power shut-off during

standby modes.

Reconfigurable systems have typically been realized with PLAs, FPLDs and FPGAs.

In this thesis the term reconfigurability (or reconfigurable systems) is used in three

contexts:

1. FPGA mapping of finite state machines,

2. Variation of precision in adders for power gating unused logic at lower precisions

of operands, and

3. Realization of different finite state machines by programming the hardware fabric

for next-state functions and output functions.

Chapter 2 Controllers for Wireless Sensor Network Nodes 33

Figure 2.3: Structure of flexible controller with reconfigurable microtasks.

The last two contexts address certain specific classes of logic systems and each class has

a set of parameters that may be reconfigured to address flexibility in that class of logic

system. For example, reconfigurability with respect to adders may involve precision and

type of carry generation whereas reconfigurability with respect to FSMs may include

number of state register bits, number of primary inputs and outputs as parameters.

Therefore the last two contexts are similar to each other in the sense that the reconfig-

urable hardware fabric is intended for specific classes of logic systems (FSMs, adders)

whereas the first is a general reconfigurable system. In general reconfigurable systems,

flexibility is quantified by configurable logic blocks (CLBs) available, programmability

of interconnections between CLBs, number of routing channels for signals and number

of inputs and outputs for external interfacing. These systems are not directed towards

any particular class of logic systems.

In the rest of the chapter, a general FPGA is reviewed for mapping of FSMs typical

of tasks executed by node controllers. In Chapter 4 and Chapter 5, architectures that are

reconfigurable for certain parameters and optimized for specific functions viz., arithmetic

units and finite state machines that constitute a controller, and that lead to low power

implementations are studied.

34 Chapter 2 Controllers for Wireless Sensor Network Nodes

2.5 Embedded FPGA

One of the most common reconfigurable systems is a hardware fabric with several config-

urable logic blocks and a programmable interconnection network of switches for routing

inputs and outputs across a matrix of CLBs. It is referred to as an island-style or a

homogeneous FPGA [11, 12]. A CLB consists of a K-input lookup table (K-LUT), con-

figuration bits (CB) and possibly a register for programmable delay of one clock cycle.

A LUT is essentially a set of 2K storage elements (memory or registers) that contains

the truth table of a function to be implemented and is decoded by K input variables as

a K-bit address. LUTs have also been widely used in compact realizations of decoders

and compute intensive logic like adaptive digital filters. The CLB based on a 4-LUT

and the configuration bit used in an array element is shown in Fig. 2.4 and Fig. 2.5

respectively. The configuration bit consists of two storage elements. The latch stores

the configuration bit corresponding to the current or active configuration whereas the

flip-flop shown in the figure is used to store the subsequent configuration. Provided that

the current configuration is operational for a time longer than the time for reconfigu-

ration, the overall CB structure ensures a zero-latency reconfiguration from a system

point of view. In other words, dynamic reconfiguration can be achieved at the cost of an

additional storage register.

Figure 2.4: Configurable Logic Block (CLB) structure in eFPGA.

Figure 2.5: Configuration Bit (CB) in eFPGA.

Chapter 2 Controllers for Wireless Sensor Network Nodes 35

In this section, an array of such CLBs and a routing network is described to serve as

a basis for comparison with proposed reconfigurable FSM architectures. For brevity it is

referred to as embedded FPGA (eFPGA) in this thesis. The architecture was developed

as part of previous work in the team to support efficient dynamic reconfiguration [55].

A top level view of the homogeneous array of CLBs and interconnections of eFPGA is

shown in Fig. 2.6. In Fig. 2.7, the basic element of the overall array consisting of CLB

AE: Array Element

Figure 2.6: Top level view of eFPGA.

and two connection boxes (CHANX and CHANY) that provide access to neighbouring

array elements and a switch box (SB) that acts as a crossbar routing switch between

two segments of adjoining routing channels are shown. The switches are designed using

transmission gates whose function is controlled by configuration bits as shown in Fig. 2.8.

A transmission gate consists of a parallel connection of a PMOS and NMOS pass tran-

sistors. An NMOS pass transistor faithfully passes a logic 0 (low) while a PMOS pass

transistor passes a logic 1 (high). Hence both states of a CLB output is transmitted with-

out any attenuation along the routing lines. In this work a 4-channel routing network is

assumed for an array of 22 × 22 blocks as baseline architecture.

2.5.1 Resource Utilization

The resource utilization for a logic circuit, with respect to the reconfigurable array on

to which it is mapped, is defined as the number of CLBs utilized to realize the specified

logic, with the requirement of minimum number of channels for interconnections between

CLBs being satisfied. It is assumed that the array has sufficient number of input and

36 Chapter 2 Controllers for Wireless Sensor Network Nodes

Figure 2.7: An array element of eFPGA with routing channels and
interconnection network.

Figure 2.8: Switch box in eFPGA.

output ports to interface the logic circuit externally. To study the resource utilization

characteristics of some of the representative FSMs used in controllers, the finite state ma-

chines listed in Table 2.1 were mapped, placed and routed using the Verilog-to-Routing

(VTR) tool [56] with eFPGA array as the targeted architecture. The FSMs were chosen

from benchmark descriptions in SenseBench [13] that includes tasks such as arithmetic

absolute value, 8-bit and 16-bit cyclic redundancy check and FIR filtering. The RTL

Chapter 2 Controllers for Wireless Sensor Network Nodes 37

FSM N NCLB MCW Lav

abs 5 50 3 3.55
Crc8 6 84 4 4.80

receiveData 6 94 4 4.58
Crc16 7 143 5 7.25

firBasic 7 217 7 7.89
calcNeighbor 8 266 7 8.05

Table 2.1: Resource utilization NCLB , minimum channel width (MCW) and average
interconnection length (Lav) required for FSMs on eFPGA-like array.

descriptions of the FSMs were obtained from the work of [46]. The table shows the num-

ber of CLBs (NCLB) and minimum channel width (MCW) required for implementation

of each FSM with N state register bits along with average length of an interconnection

segment in terms of number of CLBs spanned (Lav). Clearly for the targeted eFPGA

architecture with channel width of 4, only the first three FSMs listed in the table can

be mapped whereas the last three FSMs face constraints with respect to channel width,

although the number of CLBs are sufficient for logic function mapping. This reinforces

a well known contention that in a FPGA, the complexity of interconnection network for

signal routing creates a bottleneck as the complexity of logic circuit increases [57]. To

proceed with a study of resource utilization and power estimation, the architecture is

scaled to accommodate larger FSMs of Table 2.1. A visual representation of interconnec-

tion networks required for two FSMs in an eFPGA-like architecture with required MCW

as obtained from a mapping and PnR with VTR tool is shown in Fig. 2.9.

(a) abs (b) calcNeighbor

Figure 2.9: Interconnection network complexities in mappings of two FSMs.

38 Chapter 2 Controllers for Wireless Sensor Network Nodes

2.5.2 Power Estimation

Power estimation in a general homogeneous FPGA is a challenging task. Since most of

the components of total power consumption in a CMOS circuit show state dependence

and signal activity in nodes, power consumed may only be estimated statistically for a

range of variations in states of circuit nodes. Added to the difficulty of enumeration of

circuit node states is the configurability of the array for logic systems of varying com-

plexities leading to different resource utilization and activity patterns. A comprehensive

survey of techniques for power estimation in FPGAs is given in [58]. Two key approaches

for power estimation in configurable systems have been based on simulation and proba-

bilistic methods. As the complexities of commercially available FPGAs increased, more

empirical methods have been adopted. A linear regression based power model for Xilinx

FPGAs to predict switching activities was proposed in [59]. Curve fitting theories and

empirical formulae were used for size and activity extrapolation. A power estimation

methodology based on estimation of switching activities using pseudorandom inputs for

different benchmark circuits and metrics to validate their accuracy was proposed in [12]

and has been included in the VPR tool flow.

A polynomial-based approach for leakage power estimation [60] (Chapter 3, Sec-

tion 3.4) and a simulation-based switched capacitance estimation with a large set of

random inputs for average dynamic energy estimation is followed for eFPGA and rest

of the reconfigurable architectures in this thesis. Statistical parameters are assumed to

be identical across mapped CLBs. It is reported in [58] that the assumption of spatial

independence of statistical parameters in FPGAs results in an error margin of about 20%

relative to those with spatial correlation of signals in benchmark circuits. The objective

of power estimation in logic systems mapped on to eFPGA architecture is to obtain

optimistic average power estimates of various components for comparison against that

of reconfigurable FSM architectures with low-power techniques applied.

In order to estimate power consumption in FSM logic when mapped on to eFPGA

architecture, the three routable FSMs in Table 2.1 are considered first. Estimation

of power consumption involves four components viz., (1) static power consumption in

CLBs (2) dynamic power in CLBs (3) static power consumption in the interconnection

network and (4) dynamic power in the interconnection network. Static power in CLBs is

due to leakage currents in constituent logic gates and configuration bit registers whereas

in the switching fabric of the array, static power is mostly due to leakage currents in

configuration bits for switches and buffers along routing lines and clock networks and

is present at all times. From Fig. 2.7 it can be inferred that the configuration bits in

the switching network will contribute to the static power considerably more than a CLB

in an array element. Further since configuration bits must remain in powered-on state

all the time irrespective of the configuration, the only possibility of reducing its static

Chapter 2 Controllers for Wireless Sensor Network Nodes 39

power is to use power optimized standard cells. For this architecture we estimate static

power of configuration bits using standard cells (flip-flops and latches) of high threshold

voltage devices in two families of the same technology library, namely,

1. general purpose (“Family A”) cells with high-Vth devices and

2. low power (“Family B”) cells with high-Vth devices.

Typically, standard cells of Family B have higher Vth than those of Family A and hence

have a higher cell delay. The two types of cells represent two extremes of possible

variation in static power and delay among cells with high-Vth devices when used under

identical conditions. In as far as configuration bit scan chain is concerned, since the

configuration clock does not have to be of high frequency, longer clock-to-output delays

are not significant.

Dynamic power consumption depends on the circuit capacitances being switched

when inputs to CLBs and logic states along routing lines in the channels change. There-

fore only those CLBs that are mapped with the logic function consume power in the

active mode.

2.5.2.1 Model for Optimistic Power Estimation

The total static power consumed by the FSM (mapped CLBs) is given by

Pstatic,FSM = NCLBPstatic,CLB + Pstatic,SW (CLB) (2.1)

where NCLB denotes the number of CLBs mapped to FSM logic in the array, Pstatic,CLB

denotes the static power in one CLB and Pstatic,SW (CLB) represents the leakage power

in interconnection network of mapped CLBs consisting of transmission gate switches

and configuration bit registers for switch control. Unmapped CLBs also contribute to

static power when additional static power reduction techniques have not been applied.

Denoting by NARRAY the number of CLBs in the complete array, the total static power

of the array is given by

Pstatic,ARRAY = NARRAY Pstatic,CLB + Pstatic,SW (ARRAY). (2.2)

The assumptions made in the optimistic power estimation described next are enu-

merated below.

1. The mapped CLBs are assumed to be compactly placed adjacent to each other

and that half of the interconnection resources in an array element are shared by

adjacent CLBs. Figure 2.10 shows two examples of FSMs being placed and routed

with their minimum channel widths satisfied.

40 Chapter 2 Controllers for Wireless Sensor Network Nodes

(a) Crc16 (b) calcNeighbor

Figure 2.10: Compact placement and routing in mappings of two FSMs.

2. The dynamic energy due to routing lines along clock networks and static energy of

buffers for both routing channels and clock networks are not considered.

3. The dynamic energy due to reconfiguration of eFPGA by shifting configuration bits

in a scan chain fashion is also neglected. This is due to the fact that the eFPGA

is usually programmed to be in a particular configuration for a long time so that

average power can be considered small.

4. The bias and transistor size dependent leakage current of NMOS and PMOS tran-

sistors in switches are ignored. Such currents are mostly sneak currents and are

negligible in the context of transmission gates.

5. Spatial independence of dynamic energy consumption in mapped CLBs across the

eFPGA is assumed. As will be shown in the next subsection dynamic energy con-

sumption within a LUT is significantly lower than that of interconnection network

and will have negligible impact on estimation of overall energy consumption [61].

The energy consumed due to transition of signal states in the logic of CLB and metal

lines of the interconnection network due to changing inputs and outputs is given by

EdynFSM ,av = NCLBEdynCLB ,av + EdynSW ,av (2.3)

where EdynFSM ,av, EdynCLB ,av, EdynSW ,av denote average energy consumed in all the blocks

used, one CLB and the switching network respectively. In order to estimate EdynCLB ,av

10000 random inputs are applied to CLB logic and switching capacitance is determined

Chapter 2 Controllers for Wireless Sensor Network Nodes 41

from the classical model by gate level simulation as

EdynCLB ,av =
V 2

dd

Ninput

Ninput
∑

i=1

Cswi,CLB (2.4)

where Cswi,CLB is the total switched capacitance per input pattern in CLB due to logic

transitions in the internal nodes. Average dynamic power of the FSM is then obtained

as

PdynFSM ,av = NCLBEdynCLB ,avfclk (2.5)

where fclk is the frequency of operation of the array.

To determine the capacitance of the switches and routing lines the model described

in [11] is used. The path between the output of a CLB to the routed inputs of other CLBs

is divided into segments, each terminated by the corresponding switch. The capacitance

of each segment is given by

Cseg = mCdiff + nCwireAwire,seg (2.6)

where m represents the number of switches, Cdiff is the diffusion capacitance of the

transmission gate switch, n is the number of routed wires, Cwire is the capacitance of

metal wire per unit area and Awire,seg = WwireLseg is the area of wire in the segment,

Wwire and Lseg are width and length of the routed wire in a segment respectively. Further

Cwire = Cplate + 2Cfringe (2.7)

where the metal plate capacitance and fringe capacitance are denoted by Cplate and

Cfringe respectively. In Eq. (2.6), it is assumed that the FSM is compactly placed

and routed in the array that every segment of a group of adjacent routing channel and

CLBs are used. This represents an ideal scenario that serves as a baseline estimate for

comparisons. The energy consumed for signal transitions along four channels of eFPGA

between two adjecent CLBs is given by

EdynSW
= (129Cdiff + 4CwireAwire,seg)V

2
dd. (2.8)

To a first order of approximation, the energy consumed in the array for an FSM imple-

mentation can be estimated to be

EdynSW ,FSM =
NCLB

2
EdynSW

. (2.9)

Hence the total power of an FSM is given by

PFSM = Pstatic,FSM + PdynFSM ,av. (2.10)

42 Chapter 2 Controllers for Wireless Sensor Network Nodes

2.5.2.2 Results

To estimate the static power and dynamic energy consumption in the eFPGA-routable

FSMs of Table 2.1 the following experiment was performed. A CLB shown in Fig. 2.4 was

synthesized into a gate level netlist using a 65nm industrial technology library. Further

the basic array element shown in Fig. 2.7 was placed-and-routed to obtain typical wire

lengths in each segment. Some of the important parameters of the array element in

eFPGA are given in Table 2.2. The transmission gate switches were designed as standard

cells for use in connection box and switch box. The total static power of the CLB at

supply voltage of 1V was determined from the model as VddIleak from Eq. (3.11). We

use NARRAY = 22 × 22 and NCLB is given in Table 2.3 for each FSM considered in this

experiment. The results of static power and dynamic energy estimation using models

described above is given in Table 2.3. In all the following tables, the static power estimate

due to configuration bits with Family B register cells is indicated in parenthesis.

Parameter Value

Technology Library
65nm CMOS

(SVT, HVT Cells)
Area of an Array Element 4963µm2

Relative Area of Interconnection
88.26%

Network in an Array Element
CLB-CLB Routing Metal

70µm and 0.1µm
Length and Width (per channel)

Pstatic,CLB 9.3750µW
Pstatic,SW,AE

4 Channels 43.68 (0.442) µW
5 Channels 56.01 (0.565) µW
7 Channels 80.44 (0.812) µW

Table 2.2: Important eFPGA parameters as obtained from physical design.
(Estimates due to ‘Family B’ low power registers are in parenthesis.)

eFPGA NCLB
Pstatic,CLB Pstatic,SW EdynCLB ,av EdynSW ,FSM

×NCLB (µW) (µW) ×NCLB (pJ) (pJ)

abs 50 468.7 2188.5 (22.11) 0.85 13.49
Crc8 84 787.5 3676.7 (37.15) 1.43 22.67

receiveData 94 881.2 4114.4 (41.57) 1.60 25.37

Table 2.3: Resource utilization, power and energy estimation for routable FSMs
on eFPGA.

Further the experiment is extended to include non-routable FSMs and a scaled ar-

chitecture similar to eFPGA with channel width equal to the highest minimum channel

width is assumed. The models are evaluated again for the scaled architecture with seven

routing channels. The place and route tool is assumed to perform compact routing so

Chapter 2 Controllers for Wireless Sensor Network Nodes 43

eFPGA
Total Power of Mapped CLBs (mW)
fclk = 20 MHz fclk = 100 MHz

abs 2.94 (0.78) 4.09 (1.92)
Crc8 4.95 (1.31) 6.87 (3.23)

receiveData 5.54 (1.46) 7.69 (3.62)

Table 2.4: Total power for routable FSMs on eFPGA.
(Static power of unused array elements is not considered.)

that Eq. (2.9) is valid. Clearly such an energy estimate for switching and routing net-

work is highly optimistic and should only serve as a lower bound. Table 2.5 shows power

estimation with the scaled 7-channel architecture.

eFPGA NCLB
Pstatic,CLB Pstatic,SW EdynCLB ,av EdynSW ,FSM

×NCLB (µW) ×NCLB(µW) (pJ) (pJ)

abs 50 459.37 4022.6 (40.64) 0.85 13.49
Crc8 84 843.75 6757.8 (68.28) 1.43 22.67

receiveData 94 965.62 7562.2 (76.41) 1.60 25.37
Crc16 143 1565.62 11504 (116.24) 2.43 48.48

firBasic 217 2390.6 17458 (176.4) 3.69 103.58

Table 2.5: Resource utilization, power and energy estimation for FSMs
on 7-channel scaled eFPGA.

eFPGA
Total Power of FSM (mW)

fclk = 20 MHz fclk = 100 MHz

abs 4.77 (0.79) 5.92 (1.93)
Crc8 8.08 (1.39) 10.01 (3.32)

receiveData 9.07 (1.58) 11.22 (3.74)
Crc16 14.09 (2.70) 18.16 (6.77)

firBasic 21.99 (4.71) 30.58 (13.29)

Table 2.6: Total power for FSMs on 7-channel scaled eFPGA.

2.5.3 Observations on Embedded FPGA

The eFPGA described above is a general reconfigurable fabric with an architecture not

optimized to take advantage of feedback and feedforward logic structures in a FSM. As an

example, a reconfigurable FSM would not require more registers than N , the number of

state register bits of the most complex FSM supported for cycle delay. Correspondingly,

the complexity of interconnection network would be significantly lower.

No leakage current reduction techniques like power gating were applied, even at con-

figuration time to suppress leakage current in unmapped CLBs. Assuming that power

gating could be employed, the insertion of sleep transistor structures cannot be opti-

mized for a particular FSM as CLB mapping characteristics vary among different FSMs.

44 Chapter 2 Controllers for Wireless Sensor Network Nodes

Further all mapped CLBs need to be powered-on during active mode in general and

hence active mode leakage current cannot be suppressed. Even if an attempt is made

to have active mode power gating in eFPGA, problems arise in effectively separating

power-gated domain and always-on domain. Due to dense interconnection network in an

array element, it is difficult to design coarse grain power gating structures. Fine-grain

power gating of LUTs would require a large number of sleep transistor control circuits

and they are required to remain in always-on state. The use of as many isolation cells

to separate always-on logic from power-gated logic will also add a cost in terms of static

power and area.

As the number of CLBs are increased to support complex logic in nanoscale technolo-

gies, the static power due to leakage current in CLBs becomes significant. The results on

static power consumption in logic-mapped CLBs in Table 2.5 are presented with a view

that leakage power in unused CLBs may be suppressed using some of the techniques like

power gating. In the case where it is not feasible, the static power consumption is almost

constant, except for input dependent leakage currents in mapped CLBs for the array and

is given by Eq. (2.2). For a 22 × 22 array it is estimated to be 11.8mW.

Another important observation about eFPGA architecture is that it can easily be

scaled due to regularity of CLBs but the interconnection network may not always ensure

that projected scalability is achieved as was determined from VTR place and route. Also,

timing is not always guaranteed to be the same as interconnections for different FSMs

may span across the array.

2.6 Low Power Reconfigurable Hardware

As was shown in the previous section, even an optimistic estimate of total power con-

sumption in eFPGA can be compared with that of a microcontroller like openMSP430 [1].

The interconnection network and the configuration bits contribute upto about 71% of

the total power consumption. Further, even for a modest increase in the complexity of

a FSM, a significant increase in the complexity of switching and routing network is re-

quired leading to increased power consumption. Clearly such a high power consumption

is not suitable for low power applications like WSN controllers.

In [11], FPGA architectures were explored for potential low power optimizations.

It was also investigated if the high energy consumption was essentially an unavoidable

feature of FPGAs. The problem has particularly aggravated in nanometer CMOS tech-

nologies due to an exponential increase in power due to leakage currents. It was suggested

that circuit techniques could be explored to reduce power consumption. Pass transistor

logic design techniques have been studied for look-up table implementations. In the eF-

PGA context low power optimizations were difficult to achieve without modifying the

architecture itself. Being as general as it is, the uncertainty in mapping of CLBs for

Chapter 2 Controllers for Wireless Sensor Network Nodes 45

applications makes such modifications difficult. FPGA routing problem is known to be

NP complete [62]. Therefore an optimal solution may not be found by the routing tool

in reasonable time.

Reducing supply voltage has by far been considered the most effective method for

reducing power consumption in CMOS circuits. FPGAs with multiple supply voltages

and threshold voltages have been proposed in [63, 64]. In [65], Ishihara et al. describe

a low-power FPGA based on fine grain power gating at the level of 2-LUTs with au-

tonomously generated sleep transistor control signals. Recently low-power FPGAs based

on subthreshold design techniques have been proposed in [31]. With supply voltages in

subthreshold or near-threshold region, the proposed flexible architectures are reported

to provide good energy-delay characteristics sufficient for ultra-low energy WSN circuits.

A significant outcome of studies in this topic is to restrict the configurability to classes

of logic systems relevant to intended applications like wireless sensor networks. In other

words, evolution of reconfigurable systems is more domain specific in nature.

Models for reconfigurable FSMs used for digital control have been proposed in [66, 67].

However the proposed models are not specifically targeted for low power architectures.

The architectures also have a non-zero latency with respect to primary clock. In this

thesis reconfigurable architectures for finite state machines that are optimized for low

power are explored. In the first instance the complexity of switching and routing network

is sought to be reduced by taking advantage of locality of routing and simple selector

logic structures. Secondly power gating as a low power technique to reduce leakage power

in active modes of operation is explored. The benefits of energy savings due to power

gating in standby modes of operation are obvious.

2.7 Conclusion

A case for design of reconfigurable microtasks to support flexibility in microtask based

design of controllers for WSN nodes was presented. Based on power estimation of FSMs

mapped on to a general homogeneous FPGA and previous works it was argued that for

reconfigurable systems to be power-efficient it is necessary to exploit the structure or

function of classes of logic systems under consideration. This may involve for example,

exploiting the locality of interconnection networks in FSMs or regular structures of logic

gates for scalable precision in adders. Further, for reconfigurable architectures with a

large number of configuration bits a separate family of standard cells optimized for low

power must be used to achieve ultra-low power operation. These aspects of reconfigura-

bility are discussed in detail in the subsequent chapters.

Chapter 3

Design Considerations in

Power-Gated Circuits

3.1 Introduction

Power gating is an invasive low power technique. Inserting a power gating structure

on-chip has a design cost that must be weighed against the benefits derived with respect

to power consumption. In the first half of this chapter, existing work on design con-

siderations in power-gated circuits is reviewed. Hence gate-level models for some of the

design parameters of cluster-based power-gated circuits that forms one of the contribu-

tions of this work, is presented. The sources of leakage current in static CMOS circuits

is briefly described in Section 3.2. Section 3.3 enumerates different power gating struc-

tures and ways of deploying them. The impact of power gating on some of the design

parameters are explained along with an overview of related previous work. An example

to illustrate the design parameters of interest is also given. In Section 3.4, semiempirical

models for estimation of wakeup overheads are proposed. Further, logic clustering for

wakeup scheduling as an application of wakeup time estimation is discussed. Section 3.5

concludes the chapter.

3.2 Leakage Currents in MOS Devices

Leakage currents exist in MOS devices due to various reasons. A detailed survey of

different leakage current mechanisms in MOSFETs is presented in [14]. An important

source of leakage current in MOSFETs is the subthreshold or weak inversion current

that exists when the applied gate voltage is below threshold voltage (|Vgs| ≤ |Vth|) and a

bias exists across the drain-source channel (|Vds| ≥ 0.1V). Under such bias conditions, a

conducting path between power supply Vdd and ground facilitates flow of leakage current

in CMOS circuits. In short channel devices (channel length L ≤ 90nm and oxide thickness

47

48 Chapter 3 Design Considerations in Power-Gated Circuits

tox ≤ 2nm), the effect of subthreshold leakage current is aggravated by Drain Induced

Barrier Lowering (DIBL) leading to increased leakage current during standby states [26].

The scaling of MOS devices for constant field requires that the supply voltage also be

scaled. The on-state current Ion = Ids|Vgs=Vdd
is given by the alpha power law model [68],

Ion = µeffCox
W

L
(Vdd − Vth)α (3.1)

where µeff is effective carrier mobility, Cox is oxide capacitance and W/L is the device

ratio. From the simplest Pao-Sah model, α = 2. It is therefore obvious that Vth needs

to be reduced for higher Ion and lower delay. From the model for subthreshold current

given by

Ids,sub = µeffCox
W

L
(m− 1)V 2

T e
(Vgs−Vth)

mVT

(

1− e
−Vds
VT

)

(3.2)

where VT is thermal voltage kT/q and m = 1 + 3tox

Wdm
is the body effect coefficient, Wdm

is the maximum depletion layer width, the off-state current Ioff = Ids|Vgs=0,Vds=Vdd
can

be determined as

Ioff = µeffCox
W

L
(m− 1)V 2

T e
−Vth
mVT . (3.3)

Optimizing different device parameters in a linear scaling regime does not offset an

exponential increase in Ioff due to a lower Vth for better performance. The subthreshold

current density defined as the subthreshold leakage current per unit area of a MOS

transistor and given by Jds,sub =
Ids,sub

WL
is proportional to 1/L2. Clearly, for the same total

integration area of MOS transistors, the total subthreshold leakage current is significantly

higher in an advanced technology (smaller L) node. Table 3.1 shows the subthreshold

leakage current density of a PMOS transistor in three sub-65nm technology nodes as

obtained from the predictive technology models of Arizona State University [69]. Further,

from ∂Ids,sub

∂T
=

∂Ids,sub

∂Vth

∂Vth

∂T
, it can be shown that

∂Ids,sub

∂T
= −Ids,sub

mVT

(−KT) (3.4)

for some positive KT [26], thus implying that leakage current increases with temperature

as shown in Table 3.1.

Technology 45nm 32nm 22nm
Node (Vdd = 1V) (Vdd = 1V) (Vdd = 0.9V)

Temperature 25◦C 100◦C 25◦C 100◦C 25◦C 100◦C

Jds,sub(nA/µm2) 0.968 8.114 3.440 25.156 14.056 84.391
Relative Increase 1 1 3.55 3.10 14.52 10.40

Table 3.1: Leakage current density in nanoscale PMOS transistors.

Chapter 3 Design Considerations in Power-Gated Circuits 49

Other sources of leakage current include Gate Induced Drain Leakage (GIDL) propor-

tional to e−tox , oxide tunneling current and leakage current due to hot carrier injection.

In nanoscale devices, the effects of leakage current are particularly important because at

a certain level of circuit complexity, they dominate dynamic power consumption. Meth-

ods to reduce leakage currents have also been described in [14] at both process and

circuit levels. In this work only bias-dependent leakage current is considered as it is the

dominant source of leakage current.

3.3 Power Gating

3.3.1 Sleep Devices and Power Gating Networks

Sleep devices are a fundamental part of power gating network. A high-Vth PMOS tran-

sistor (header switch) between Vdd and Virtual-Vdd(VV dd) supply lines or an NMOS

transistor (footer switch) between the Gnd (or Vss in general) and Virtual-VGnd(VVGnd
)

rails with a control signal constitutes a power gating circuit in its simplest form. It is

possible to use both header and footer switches to power-gate the logic circuit. The

merits and demerits of each basic form is enumerated in [34]. The purpose of sleep tran-

sistors is to provide a very high ohmic connection between the supply/ground rails and

the gated logic during standby modes. In general, the logic between VV dd and VGnd/VV ss

is implemented with standard cells of low-Vth (including std.-Vth) transistors.

A set of sleep devices, isolation cells, associated control signals and virtual supply/-

ground rails with a specific placement and routing structure constitutes a power gating

network. Various structures for power gating networks have been proposed. An impor-

tant criterion for classification of power gating networks is the granularity of design at

which sleep transistors are inserted. A number of such topologies have been proposed

ranging from fine to coarse granularities. In fine grained power gating, each library cell

as small as a basic logic gate has a sleep transistor, typically of high threshold volt-

age. These cells are referred to as multi-threshold CMOS (MTCMOS) circuits. A weak

pull-up/pull-down transistor controlled by a sleep signal is also added to avoid floating

outputs when the cell is in the sleep mode. While the virtual power nets are short and

simple to route, this topology leads to an increase in area by a factor of 2 to 4 [70]. Apart

from inflicting a high area penalty, the power gating network becomes extremely sensi-

tive to Process-Voltage-Temperature (PVT) variations. A problem with this approach

is that sneak currents flow along paths between supply and ground during sleep mode,

and such paths may exist through a set of OFF devices or a combination of devices in

ON and OFF states.

In contrast, coarse grained implementations have sleep transistors connected between

power supply networks and logic clusters. The sleep transistors can share charge and

50 Chapter 3 Design Considerations in Power-Gated Circuits

Figure 3.1: Cluster-based power gating and distributed sleep transistor network.

discharge currents with a low area overhead. Different forms of coarse grained power

gating networks have been proposed. In a cluster-based approach [71] a sleep transistor

is provided for an ensemble of logic gates whereas in a Distributed Sleep Transistor

Network (DSTN), several sleep transistors are provided for power gating of a block

of clusters [72], referred to as a module, with a common virtual supply/ground node.

A schematic representation of the two types of coarse-grained power gating is shown

in Fig. 3.1. The virtual supply or ground nets of each cluster are connected together

in a module to reduce the maximum instantaneous current (MIC) in active mode of

operation. However DSTN is not suitable when independent clusters have to be isolated

from other clusters or always-on blocks as opposed to a cluster based design. Further,

power-gated logic clusters are simple to implement compared to a DSTN. In this thesis

we consider cluster-based design as the primary topology for all our experiments and

design methodology. A schematic representation of a power-gated logic cluster with

header type of sleep transistor is shown in Fig. 3.2.

3.3.2 Design Parameters

While sleep transistors are conceptually simple, optimal design of sleep transistors and

power gating networks is challenging [73]. Some of the design problems addressed so

far have been sleep transistor sizing [71], selection of appropriate power gating topol-

ogy [72, 71], estimation and control of in-rush current and delay degradation in power-

gated circuits [74]. Other design considerations that have been studied are effects of

Chapter 3 Design Considerations in Power-Gated Circuits 51

Figure 3.2: A power-gated logic cluster with header type of sleep transistor and
isolation cell.

supply/ground bounce on reliability of power grid [75], design of isolation cells and state

retention registers, and automated synthesis of power gated circuits [76, 77].

Sleep transistor width W of a power-gated logic cluster is a critical design param-

eter as it impacts both area due to power gating and circuit performance due to delay

degradation. In active mode when inputs to the logic gates change switching currents

are generated depending on the number and types of gates that switch outputs. The

maximum current that is generated in the worst case is referred to as maximum instan-

taneous current (MIC). In order to minimize delay degradation of logic cluster the

sleep transistor must be able to source (or sink) the MIC. Therefore the size of sleep

transistor W should be large enough to balance the MIC and have minimum IR drop

across the sleep transistor in active mode of operation. Let Vst = IstRst be the IR drop

across the sleep transistor in active mode with Ist = MIC, the current through the sleep

transistor and Rst the channel resistance. It is shown in [71] that the propagation delay

of a power gated logic circuit increases to

Td,pg =
KdCLVdd

(Vdd − Vst − Vth)α
(3.5)

from

Td =
KdCLVdd

(Vdd − Vth)α
(3.6)

of an non power-gated circuit resulting in a performance loss (δ) given by

δ = 1− Td

Td,pg

(3.7)

where Kd is some positive constant. The sleep transistor area is then calculated from its

width given by
W

L
=

Ist

δµnCox(Vdd − Vth)2
(3.8)

52 Chapter 3 Design Considerations in Power-Gated Circuits

Typically, Vst is specified as a constraint, determined by the allowable delay degradation

and hence Ist is estimated. This leads to a minimum required size (W/L)min for the

sleep transistor.

Another important consideration in the design of power gated circuits is supply and

ground bounce noise as a result of in-rush current. During wakeup mode transitions

instantaneous current passing through the sleep transistor creates current surges resulting

in inductive L(di/dt) voltage drops along the power rails. This current is due to the

saturation current Ion of sleep transistor that has a quadratic relationship with Vds

and the charging current due to capacitances of the switching gates getting charged as

the voltage across them increases from a steady-state sleep mode value to a steady-state

active mode value. Hence, if the magnitude of such voltage drops on power rails is greater

than the noise margin of a circuit, erroneous values may be latched in adjacent always-on

logic as shown in Fig. 3.2. Further it causes reliability issues due to electromigration on

power rails. Clearly, this leads to a requirement of maximum transistor size (W/L)max to

limit current Imax drawn at wakeup. The logic gates have to be partitioned and clustered

in such a way that (W/L)min ≤ (W/L) ≤ (W/L)max while satisfying MIC, Imax and δ.

In [75], methods to reduce ground bounce noise is presented along with techniques

to stabilize data-retention voltage of power gating structures. In the first approach

proposed, Vgs and Vds of NMOS sleep transistor are controlled until Vds is significantly

reduced, when Vgs is increased in non-uniform steps to turn on the transistor. the

technique is referred to as ’staggered turn-on’ and it requires a complex control circuitry.

In a similar approach, the effective transistor size is changed dynamically with Vgs = 0

until its Vds is significantly reduced. In the third approach proposed, two PMOS sleep

transistors are stacked between Vdd and VV dd with a metal-to-metal capacitor between

them and are turned ON/OFF with pseudorandom pulses to reduce the ground bounce

noise. However, greater the number of transistors stacked between main and virtual

supply rails, higher would be the IR drop across sleep transistors during active mode [34]

and higher the delay degradation of the circuit.

SoC design with coarse-grained power gating has largely remained a semi-custom

design approach because of custom nature of circuit blocks. Attempts have been made

in [76] to adapt physical design based on standard-cell methodology to power gating

structures by creating specific power gating cells. In [77] a high-level synthesis flow for

power gated circuits has been proposed with focus on minimizing the size of retention

storage for a typical SoC-like architecture. A complete framework for power gating that

covers scheduling, allocation, controller synthesis, timing closure, and placement and

routing is described. A practical approach to power gating is provided in [34] with de-

sign recommendations at different levels of SoC design using a technology demonstrator

chip (SALT: Synopsys-ARM Low Power Technology) designed in 90nm process technol-

ogy. A framework for power gating functional units in datapaths of embedded processor

Chapter 3 Design Considerations in Power-Gated Circuits 53

architectures to avoid leakage reduction at compiler level is proposed in [78]. A sleep

transistor insertion methodology for row-based power gating has been proposed in [79].

Most approaches to coarse grained power gating have been directed towards parti-

tioning the logic to be power-gated into several clusters to restrict the in-rush current.

After defining a power gating topology, other design parameters like sleep transistor size

are determined with constraints of peak MIC of the cluster, allowable IR drop across the

sleep transistor and tolerable wakeup time. Wakeup time refers to the time taken by the

virtual supply/ground rail to reach a steady state value at the onset of active mode from

its value in sleep mode. In most designs the design parameters are inter-related as dis-

cussed above and therefore require to be optimized in a combined way. A comprehensive

analysis and control of design parameters for power gated circuits is presented in [80].

The work analyzes relationships between wakeup time, peak current and sleep transistor

area for different sizes of cluster and their wake-up schedule. The above design problem

is solved by formulating it into repeated applications of finding a maximal clique in a

graph. However the approach involves long SPICE simulations in the absence of compact

models for rapid parameter estimation.

3.3.3 Power-Gating Example

In this section a 32-bit array multiplier given by the ISCAS85 benchmark circuit [81]

c6288 is used to demonstrate energy savings due to power gating. In order to evaluate

different design parameters, the multiplier was synthesized with a set {nand2, nor2,

inv, xor2} of low-Vth gates from an industrial 65nm technology library. The low-Vth

gates have very high leakage current compared to higher threshold voltage gates and are

generally used for high speed logic paths. The SPICE netlists of resulting gate netlists

were obtained and a high-Vth sleep transistor of PMOS type was inserted in the power

gating network of multiplier. The sleep transistor size was set to W=12µm without loss

of generality. Sleep transistor sizing is generally seen as an optimization problem based

on in-rush current and IR drop, but it is not addressed in this example. A netlist of

c6288 without the sleep transistor was used as a reference for a circuit without power

gating.

In order to estimate the average power consumption of both circuits, 10000 input

vectors randomly generated with uniform distribution were applied to the multiplier at

an interval of 3ns and was simulated using Eldo SPICE simulator at a nominal supply

voltage of 1V and 100◦C temperature. Transient analysis was carried out for a total time

of 70µs without the loss of generality. The ungated multiplier remained in standby state

for a time of 40µs whereas in the power-gated case, power gating was applied for 10µs and

it continued in idle state (powered-on, but without changes in inputs) for the remaining

time. The current drawn by the power-gated multiplier is shown in Fig. 3.3 and Fig. 3.4.

54 Chapter 3 Design Considerations in Power-Gated Circuits

The virtual supply voltage in active, wakeup and sleep modes are shown in Fig. 3.5 and

Fig. 3.6 respectively. Table 3.2 shows results obtained from circuit simulation of the two

multipliers. Ptotal,av denotes the average power across a time interval of [0, 70µs]. Pidle,av

and Psleep,av denote average power in idle state and sleep mode respectively.

-0.5

 0

 0.5

 1

 1.5

 2

 2.5

 29.85 29.9 29.95 30 30.05 30.1 30.15

C
ur

re
nt

 (
m

A
)

Time (us)

Sleep Mode

Figure 3.3: Active mode and sleep mode current in power-gated c6288 (W=12µm).

 0

 0.5

 1

 1.5

 2

 2.5

 3

 3.5

 3
9
.9

8

 3
9
.9

8
5

 3
9
.9

9

 3
9
.9

9
5

 4
0

 4
0
.0

0
5

 4
0
.0

1

 4
0
.0

1
5

 4
0
.0

2

C
u
rr

en
t

(m
A

)

Time (us)

Figure 3.4: Wakeup mode current in power-gated c6288 (W=12µm)

c6288
Pidle,av Psleep,av

(µW) (µW)

Ungated case 1100 -
Power-gated case 833 0.19

Table 3.2: Power consumption in ungated and power-gated array multiplier (c6288).

Chapter 3 Design Considerations in Power-Gated Circuits 55

 0

 0.2

 0.4

 0.6

 0.8

 29.85 29.9 29.95 30 30.05 30.1 30.15

V
ir

tu
al

-V
dd

 (
V

)

Time (us)

Sleep Mode

Figure 3.5: Active mode and sleep mode Virtual-Vdd in power-gated c6288
(W=12µm).

 0

 0.2

 0.4

 0.6

 0.8

 3
9
.9

8

 3
9
.9

8
5

 3
9
.9

9

 3
9
.9

9
5

 4
0

 4
0
.0

0
5

 4
0
.0

1

 4
0
.0

1
5

 4
0
.0

2

V
ir

tu
al

-V
d
d
 (

V
)

Time (us)

Figure 3.6: Wakeup mode Virtual-Vdd in power-gated c6288 (W=12µm).

The average power of the multiplier in active mode only can be determined as

Pav,active =

[

Pav,totalT − (Pav,idleTidle + Pav,sleepTsleep)

Tactive

]

. (3.9)

It can be inferred that the power consumption of circuit in sleep mode is significantly

less than that in idle state resulting in power savings due to power gating. Further a

significant drop in VV dd in steady state to 0.85V from VV dd at 1V is observed. This

is on account of both IR drop in the sleep transistor and the leakage current in the

logic circuit in active mode and idle state. In the active mode, VV dd drops additionally

by about 250mV due to short-circuit currents in the logic gates. With a logic circuit

consisting of higher threshold voltage cells the drop in VV dd from Vdd is lower due to

56 Chapter 3 Design Considerations in Power-Gated Circuits

lesser leakage current. This is discussed in detail in Section 3.4.

3.4 Models for Estimation of Wakeup Time and Wakeup

Energy

Wakeup time estimation is fundamental to logic clustering algorithms for cluster-based

power gating design that require constraints of peak current and wakeup time to be sat-

isfied [82, 71, 80]. In this context, a simple analytical model for estimation of wakeup

time is useful especially when it needs to be determined iteratively during an optimiza-

tion run for a number of candidate clusters. The problem of wakeup time estimation

arises in other scenarios as well. In [75] and [83], a need for wakeup latency estimation

arises to quantify the effectiveness of proposed ground bounce reducing techniques and

intermediate strength power gating techniques respectively under a wakeup time con-

straint. In [84], Xu et al., have proposed a numerical approach for estimation of VGnd

as a function of time in sleep mode. To extend the same method to wakeup mode, it

is necessary to incorporate size dependent sleep transistor current characteristics. In

this case an analytical model for VGnd would be highly desirable. This analysis identi-

cally applies to Virtual-Vdd (VV dd) in a power-gated cluster with a header type of sleep

transistor. In [85] the role of wakeup latency in state-retentive power gating of register

files in multicore processors is studied. Most works have used time consuming SPICE

simulations [80] or constant current source model [83] for sleep transistors to determine

wakeup time.

In the subsequent sections, a model for VV dd based on polynomial representation of

leakage current in a logic cluster and linear region resistance of sleep transistor is derived.

A method to estimate steady-state Virtual-Vdd after wakeup mode using leakage current

profiles of constituent logic gates is described. Hence, a closed-form expression is derived

for estimation of wakeup time of the power-gated circuit. Further, this can be extended

to estimate wakeup energy. The model for Virtual-Vdd in sleep mode can be used to

determine energy savings due to power gating. In other words, some of the key design

parameters have been captured in a single model [86, 60].

3.4.1 Power-Gated Circuit Operation

A power gating structure cuts-off bias voltages for MOS devices so that bias-dependent

leakage current in the logic circuit reduces significantly in standby state. A simple power-

gated circuit shown in Fig. 3.7 and used in this work consists of a high-Vth PMOS sleep

transistor connected between power supply rail (Vdd) and virtual power supply node,

Virtual-Vdd (VV dd) of the logic cluster. A cluster refers to an ensemble of connected

logic gates power-gated by a sleep transistor. The gate terminal of the sleep transistor

Chapter 3 Design Considerations in Power-Gated Circuits 57

is connected to a control signal SLEEP , to switch the sleep transistor between ON and

OFF states. A power-gated circuit operates in three modes in a typical power gating

cycle as shown in Fig. 3.8. When SLEEP is high, power supply to the logic is cutoff;

|Vgs| < |Vth| and VV dd decreases. The circuit is said to be in sleep mode. The leakage

current decreases exponentially with VV dd resulting in energy savings. When SLEEP is

low, |Vgs| > |Vth| and therefore current flows through the sleep transistor to charge circuit

capacitances. Due to charging effect, VV dd increases until it reaches a steady state value

less than Vdd due to IR drop across the sleep transistor. The sleep transistor is typically

in saturation region at wakeup and moves to linear region as Vds(t) = Vdd − VV dd(t)

decreases. This mode of operation is referred to as wakeup mode and the mode of

operation after wakeup is referred to as active mode in this thesis.

Figure 3.7: (a) Power-gated logic cluster of header type. (b) Equivalent circuit of
logic cluster.

Figure 3.8: Typical timing instants and modes of operation in a power gating cycle.

58 Chapter 3 Design Considerations in Power-Gated Circuits

3.4.2 Power-Gated Logic Cluster Model

Models for subthreshold leakage current that capture its exponential behaviour with

bias voltages at device level have been described in [26]. In [84], compact models for

leakage current have been derived at gate and circuit levels in a hierarchical way. It

was shown that the leakage current can be represented by a voltage controlled current

source (VCCS) as in Fig. 3.7(b). In this work, we take a polynomial based approach to

derive leakage current profile for the complete circuit. For each type of cell Si and input

pattern j, leakage current is determined at several voltages and the resulting profile is

fitted with a polynomial of degree N in VV dd as given by

Ileak(Si, j) =
N
∑

k=0

bk(Si, j)V
k
V dd (3.10)

where {bk(Si, j)} represents coefficients of the polynomial. We assume a standard-cell

based design approach for implementation of the cluster. The static current profiles for

a single 2-input NAND gate of high-Vth and std.-Vth
1devices is shown in Fig. 3.9 for all

input patterns of the gate. Therefore, the total static current for n(Si, j) occurrences of

each cell and each input pattern is obtained as

Ileak =
P−1
∑

i=0

Ri−1
∑

j=0

n(Si, j)Ileak(Si, j) (3.11)

where P and Ri are number of types of cells and number of possible input combinations

for cell Si respectively. As an example, if a logic cluster is composed of a set S = {nand2,

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
−2

0

2

4

6

8

10

12

14

16

18

Supply Voltage (V)

S
ta

ti
c

C
u
rr

en
t

(n
A

)

00

01

10

11

High-Vth Cell

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
−20

0

20

40

60

80

100

120

140

160

180

Supply Voltage (V)

S
ta

ti
c
 C

u
rr

e
n

t
(n

A
)

00

01

10

11

Std.-Vth Cell

Figure 3.9: Static current profile of a 2-input NAND gate of high-Vth and std.-Vth

devices for all input patterns.

1An industrial 65nm library of with three families of logic gates, with high-Vth(HVT), std.-Vth(SVT)
and low-Vth(LVT) devices is used. LVT devices have highest leakage current and HVT devices have the
lowest leakage current.

Chapter 3 Design Considerations in Power-Gated Circuits 59

nor2, inv, xor2} of gates, then P = 4. For a 2-input NAND gate Ri = 4, whereas for an

inverter, Ri = 2. For notational simplicity, the total leakage current profile of the logic

cluster is represented by

Ileak =
N
∑

i=0

biV
i
V dd (3.12)

in the rest of the chapter. Equation (3.12) has the form of nonlinear resistance. The

physical units of bi can be derived to be A/V i. A limitation of this behavioral model

is that process and device parameters are not explicitly captured but it is sufficiently

simple to model design parameters at the level of a logic cluster.

The total capacitance of the logic cluster is derived as the sum of capacitances of all

the inputs of all constituent standard cells.

CL =

P−1
∑

i=0

n(Si)

Ri−1
∑

l=0

Cil (3.13)

In physical implementations with CMOS technologies, a decoupling capacitance (de-

cap) CD is generally included between the supply voltage rail or Virtual-Vdd node of the

power-gated domain and ground to suppress bounces on supply rails during switching of

gate outputs. In the model described in this work, a decap is not explicitly included. For

the latter case the total circuit capacitance including a decoupling capacitance would be

CL + CD since capacitances appear in parallel between Virtual-Vdd and ground.

The gate capacitances of MOS transistors are input dependent. At wakeup, as VV dd

increases some of the logic gates switch to logic 1 while the rest remain at logic 0. Gate

inputs in the fan-out of gate outputs that switch to logic 1 will present a higher output

capacitance to the switching gate than to the driving gate remaining at logic 0. In

the logic clusters used here, the outputs of each gate is determined from the primary

inputs based on the gate function (NAND, XOR etc.) and hence appropriate value of

capacitance obtained from SPICE characterization of standard cell for each of its input

is used to determine total capacitance in Eq. (3.13). Further gate terminal capacitances

of all MOSFETs in standard cells include parasitic capacitances (fringe and overlap)

referred to the gate terminal.

Parasitic capacitances along interconnect lines have been neglected in determining

total circuit capacitance considering that in cluster based power-gated circuit design,

independent clusters have a local distribution of interconnects unlike a distributed sleep

transistor network (DSTN) based power gating.

60 Chapter 3 Design Considerations in Power-Gated Circuits

3.4.3 Virtual-Vdd Model

3.4.3.1 Determination of Steady-State Virtual-Vdd Voltage

Consider the equivalent circuit model in Fig. 3.7(b). In the wakeup mode, the operating

point on the Isd vs. Vsd characteristics of sleep transistor moves from saturation region

to linear region until VV dd reaches a steady-state value. The virtual supply node is said

to be in steady state when dVV dd/dt = 0, i.e., when there are no changes in VV dd either

on account of short circuit currents due to changing logic states of internal nodes or due

to charging effect. Let the current through the sleep transistor during wakeup and in

non-saturation region be denoted by Ist,ns, the total leakage current at the output of

VCCS by Ileak and the capacitive load charging current by Iload. Then,

Ist,ns = Ileak + Iload. (3.14)

The current through the sleep transistor in non-saturation region is given by the quadratic

model

Ist,ns(t) =
1

Rlin

[

(Vdd − VV dd(t))−
(Vdd − VV dd(t))

2

2(Vdd − Vth)

]

(3.15)

where Rlin is the resistance in linear region. The determination of Rlin is described in

subsection 3.4.3.4. From Eq. (3.12), Eq. (3.15) and Iload = CL(dVV dd/dt), Eq. (3.14)

becomes

dVV dd

dt
= −1

τ

N
∑

i=0

ciV
i
V dd (3.16)

where τ = RlinCL and ci = fi(Vdd, Rlin, bi, Vth) are expressions derived from Eq. (3.12) -

Eq. (3.15). Although threshold voltage depends on applied bias voltages, a nominal Vth

is assumed as it does not lead to significant loss of accuracy. To solve for VV dd in Eq.

(3.14), a numerical procedure to find the roots is required. However to obtain solutions

in closed form, the Nth degree polynomial in Eq. (3.16) is reduced to a quadratic

polynomial by least-squares approximation and is expressed in terms of its roots r1 and

r2 as

dVV dd

dt
= −1

τ
(VV dd − r1)(VV dd − r2). (3.17)

Both r1 and r2 are steady state points of Eq. (3.17). One of the roots r1 satisfying the

interval of validity Vsleep < r1 < Vdd, is determined to be the steady state Virtual-Vdd

voltage. Here Vsleep denotes the value of VV dd at the wakeup transition.

In a RC circuit the steady state as defined above is reached at t = ∞. However

the error in assuming value of VV dd at onset of active mode to be r1 is negligible as

demonstrated in Section 3.4.4. The conditions of validity for one of the roots r1 can

Chapter 3 Design Considerations in Power-Gated Circuits 61

be intuitively explained to be Vsleep < r1 < Vdd as follows. For each value of VV dd, the

VCCS outputs a current given by Eq. (3.12). Therefore for each value of VV dd it can be

inferred that the resistance of circuit is given by

Rs(VV dd) =
VV dd

N
∑

i=0
biV i

V dd

. (3.18)

We refer to Rs as pseudo-resistance in the rest of the chapter [20]. Let at steady state, the

pseudo-resistance of VCCS be given by some Rss = VV dd,ss/Ileak(VV dd,ss) where VV dd,ss

denotes Virtual-Vdd in steady state. Then the circuit at that instant can be represented

by Thévenin’s equivalent resistance RTH = RssRlin

(Rss+Rlin) and Thévenin’s equivalent voltage

VTH = RssVdd

(Rss+Rlin) with total circuit capacitance CL in series with RTH and VTH . Clearly,

VTH < Vdd. CL is charged to VTH in steady state which we determine to be r1 as a

solution of Eq. (3.17). For non-zero CL the inference that Vsleep < r1 is trivial.

3.4.3.2 Wakeup Time Estimation

In order to obtain a model for VV dd(t) in wakeup mode, the ordinary differential equation

in Eq. (3.17) is solved in the non-saturation region and hence, is extended to saturation

region by means of piecewise approximations. Let at time t = 0 the operating point

move to non-saturation region so that VV dd(0) = Vinitial. The solution of Eq. (3.17)

satisfying the interval of validity and moving towards r1 can be written as

[VV dd(t)]ns =
r1 − r2Ke−at

1−Ke−at
(3.19)

where K = (Vinitial − r1)/(Vinitial − r2), a = 1/Aτ and A = 1/(r1 − r2). From Fig. 3.8,

Vinitial = Vdd − VDSAT where VDSAT is the saturation voltage.

To extend the model to saturation region, the time instant t = 0 is moved to sleep-

to-wakeup mode transition so that VV dd(0) = Vsleep. Let Twu denote the wakeup time

defined as the time taken for VV dd to evolve from Vsleep to 0.99r1. Further, let V1 and V2

be two voltage levels attained by VV dd at T1 and T2 respectively as shown in Fig. 3.8.

The solution Eq. (3.19) does not represent VV dd in the saturation region, VV dd < V2

accurately. Therefore corrections are applied to Eq. (3.14) in the first two segments as

Ist(t) = Ileak + Iload −∆I0(t) + ∆I1(t). (3.20)

In Eq. (3.20) the time instant t = 0 corresponds to sleep-to-wakeup mode transition and

Vinitial = Vsleep. Let UT denote the time shifted unit step function u(t− T). We define

∆I0(t) = I0

[

U0e
−at − UT1e

−a(t−T1)
]

(3.21)

62 Chapter 3 Design Considerations in Power-Gated Circuits

∆I1(t) = I1

[

UT1e
−a(t−T1) − UT2e

−a(t−T2)
]

(3.22)

based on heuristics for I0 and I1 described in Section 3.4.3.5. In the third interval

Eq. (3.19) alone is satisfied and hence no correction is required. Using Eq. (3.19) to

Eq. (3.22), the model for Virtual-Vdd in wakeup mode can be derived as

VV dd(t) =
r1 − r2Ke−at

1−Ke−at
+ AI0Rlin

[

U0

(

1− e−at
)]

(3.23)

−ARlin(I0 + I1)
[

UT1

(

1− e−a(t−T1)
)]

+ ARlinI1

[

UT2

(

1− e−a(t−T2)
)]

.

In compact form, Eq. (3.23) can be written as Xe−2at + Y e−at + Z = 0. The solution

for t is given by

t =
1

a
ln

(

2X

−Y −
√

Y 2 − 4XZ

)

. (3.24)

At t = T1, VV dd = Vdd−Vsg+Vth corresponding to the criterion Vsd = Vsg−Vth. Applying

this condition and Vsg = Vdd, X, Y and Z are determined to be



















X = ARlinKI0,

Y = K(Vth − r2)− (1 + K)X/K,

Z = AI0Rlin + r1 − Vth.

(3.25)

Similarly for t = T2, VV dd = Vdd − VDSAT corresponding to the condition Vsd = VDSAT ,

which gives


















X = −ARlinK[I0(e
aT1 − 1) + I1e

aT1],

Y = K(Vdd − VDSAT − r2) + (X/K) + ARlinI1K,

Z = −ARlinI1 + r1 − Vdd + VDSAT .

(3.26)

For wakeup time Twu, VV dd = 0.99r1, which gives



















X = ARlinK[−I0(e
aT1 − 1) + I1(e

aT2 − eaT1)],

Y = K(0.99r1 − r2)− (X/K),

Z = 0.01r1.

(3.27)

The values of r1 and r2 are unaffected due to ∆I0 and ∆I1 as Eq. (3.23) satisfies

Vsd = VDSAT at t = T2 as shown in Fig. 3.8. For clusters with 0.99r1 ≤ (Vdd − VDSAT),

wakeup time Twu = T2 determined from Eq. (3.26) and with the condition VV dd = 0.99r1.

3.4.3.3 Sleep Mode Virtual-Vdd Model

To calculate T1, T2, and Twu using Eq. (3.25) to Eq. (3.27), it is necessary to determine

Vsleep. If the cluster is in sleep state for a time interval Tsleep, then Vsleep = VV dd(Tsleep).

Chapter 3 Design Considerations in Power-Gated Circuits 63

It should be noted that for simplicity both mode transitions are assumed to occur at t = 0,

so that the initial condition for sleep mode can be denoted by VV dd(0) as for wakeup

mode. In sleep mode, the sleep transistor is cut-off so that only a leakage current Ist,leak

flows through it. Iload in Eq. (3.14) is now a discharging current. Hence Eq. (3.14) for

sleep mode can be written as

− CL
dVV dd

dt
= −(b0 − Ist,leak)−

N
∑

i=1

biV
i
V dd. (3.28)

Neglecting Ist,leak and rewriting Eq. (3.28) similar to Eq. (3.16),

dVV dd

dt
= − 1

Rs(VV dd)CL

[

−Rs(VV dd)

N
∑

i=0

biV
i
V dd

]

. (3.29)

A numerical solution to Eq. (3.29) is of the form [84]

VV dd,j+1 = VV dd,je
−

∆t
Rs(VV dd,j)CL (3.30)

where j denotes a time interval in [0, Tsleep] of size ∆t. To develop an approximation,

we consider a heuristic for choice of Rs as explained in Section 3.4.3.5. Denoting Rsp

as the pseudo-resistance chosen by applying the heuristic, the model for Virtual-Vdd in

sleep mode can be derived as

dVV dd

dt
= − 1

RspCL

N
∏

i=1

(VV dd − rs
i) = 0 (3.31)

where rs
i represents roots of the polynomial in sleep context. Let rs

1 satisfy r1 < rs
1 < 0.

Then the approximate solution that moves towards rs
1 from its initial value is given by

VV dd(t) = rs
1 + e

−
t

RspCL
+Ks

. (3.32)

At the end of active mode, the value of Virtual-Vdd satisfies r1−∆VV dd,max ≤ VV dd ≤ r1

where ∆VV dd,max is the maximum degradation of VV dd due to dynamically changing

inputs of logic cluster. In this work, it is assumed that the power-gated logic cluster

remains in active mode for a duration long enough with appropriate input conditions

that VV dd = r1 at the end of active mode. This assumption is mostly true in circuits with

adequate positive timing slack and is justified with an experiment next. Let ∆VV dd,max

denote maximum degradation of VV dd due to dynamically changing inputs of logic cluster.

Further, let ti denote the time instant of end of cycle i in active mode. Clearly, VV dd(ti)

satisfies VV dd(ti−1) − ∆VV dd,max ≤ VV dd(ti) ≤ r1. We consider the conditions under

which VV dd(ti−1) = r1. A logic cluster was synthesized for a maximum path delay of

1.0ns and was power-gated by a header type of sleep transistor. In practice, the size of

64 Chapter 3 Design Considerations in Power-Gated Circuits

14.99 14.995 15 15.005 15.01 15.015 15.02
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

t=14.9985µs t=15µs

t (µs)

V
V

d
d
 (

V
)

r
1

Sleep ModeActive Mode

Figure 3.10: Virtual-Vdd in active and sleep modes.

the sleep transistor is chosen for a fixed performance loss or ∆VV dd,max in active mode.

The circuit was simulated with Spectre circuit simulator with random inputs applied to

the circuit at a clock period of 1.5ns, i.e., with a positive slack of 0.5ns in active mode.

The variation of Virtual-Vdd voltage in active and sleep modes is shown in Fig. 3.10.

It can be seen that for a maximum duration of path delay, VV dd degrades by about

∆VV dd,max = 0.3V and at the end of active mode time slot of 1.5ns, VV dd attains a value

of r1. With a sufficient and constant clock cycle period T = ti− ti−1, VV dd(ti−1) = r1 for

all i. The assumption of sufficient positive slack holds for low power, low performance

circuits. Therefore VV dd = r1 can be specified as the initial value of VV dd in sleep mode

in Eq. (3.32). Hence, applying the initial condition that VV dd(0) = r1, we have

VV dd(t) = rs
1 + (r1 − rs

1)e
−

t
RspCL . (3.33)

The value of VV dd at the end of sleep mode, Vsleep, is obtained by substituting t = Tsleep

in Eq. (3.33).

The energy savings Es of the power-gated logic cluster in sleep mode with respect to

an ungated cluster can be determined by

Es = VddIleak(Vdd)Tsleep −
∫ Tsleep

0
VV ddIleak(VV dd)dt. (3.34)

3.4.3.4 Determination of Rlin

To determine the resistance of sleep transistor in linear region, the method proposed in

[87] for extraction of series resistance (Rsd) of MOS device is followed. It is described

for completeness here. Two operating points (I(1)
sd , V

(1)
sg , V

(1)
th) and (I(2)

sd , V
(2)
sg , V

(2)
th) with

Vsd = 0.05V are determined from Isd vs. Vsg characteristics for a specific width Wsp of the

transistor. All Vsg are chosen such that they satisfy constant mobility condition [87][26]

Chapter 3 Design Considerations in Power-Gated Circuits 65

while Vth is determined by gm/ID method. The drain current I
(i)
sd , for i = 1, 2, including

the effects of Rsd is given by

I
(i)
sd = µCox

Weff

Leff

(

V (i)
sg − V

(i)
th − 0.5Vsd

)(

Vsd −RsdI
(i)
sd

)

. (3.35)

Here µ is the constant carrier mobility, Cox = ǫox/tox is the oxide capacitance, Weff

and Leff are effective width and channel length of sleep transistor. From the pair of

equations (3.35), Rsd is determined. Further µ is determined from one of the equations

of drain current in Eq. (3.35). Let Rch denote the intrinsic channel resistance. Then

Rlin = Rch + Rsd. From [26],

Rlin = Rsd +

(

Leff

µCoxWeff (Vsg − Vth − 0.5Vsd)

)

. (3.36)

Table 3.3 shows linear region resistances for PMOS sleep transistors of different sizes in

an industrial 65nm bulk CMOS technology library with nominal Vdd = 1V at 100◦C,

L = 0.06µm, Vsg = 1V , Vsd = 0.05V .

W (µm) 0.54 1.2 2.4 4.8 9.6 12

Rlin (kΩ) 2.57 1.203 0.612 0.322 0.167 0.134

Table 3.3: Linear region resistance of PMOS transistors.

3.4.3.5 Heuristics for I0, I1 and Rsp

Correction terms in Eq. (3.21) and Eq. (3.22) were applied in Eq. (3.20), to account for

saturation region of sleep transistor operation. From Eq. (3.15) the current in saturation

region is underestimated by I0 = Ion,sat−Ist(VV dd = Vsleep) where Ion,sat is the saturation

drain current. Fig. 3.11 shows the variation of error in width-normalized estimated

drain current Ierror

W
= 1

W
(Isd − Ist) with Vsd where Ist is as determined from Eq. (3.15)

for all VV dd. Similarly for I1, we choose error in current corresponding to one of the

values of VV dd in the interval [(Vdd − Vsg + Vth), (Vdd − VDSAT)]. From our experiments,

we empirically choose Vsd = 0.6V , at which the error determined from Fig. 3.11 is

−I1 = 0.174I0.

The voltage dependent pseudo-resistance changes as VV dd evolves with time according

to Eq. (3.18). Hence it can be inferred that the time constant RsCL also varies with

time. In our experiments, we have observed that in large logic clusters, the values of

pseudo-resistance and its dynamic range are less than that for small logic clusters as

leakage currents are higher in the former case. A typical variation of pseudo-resistance

with VV dd is shown in Fig. 3.12 in the next section. The effect of a larger value of

pseudo-resistance on VV dd is that it takes a longer time to change VV dd levels than with

smaller values. Typically, higher values of pseudo-resistance determine VV dd after about

66 Chapter 3 Design Considerations in Power-Gated Circuits

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
−0.05

0

0.05

0.1

0.15

0.2

V
SD

 (V)

I e
rr

o
r/W

 (
m

A
/µ

m
)

V
DSAT

=0.27V

W=0.54µm

W=2.4µm

W=12µm

Figure 3.11: Ierror/W vs. Vsd for 65nm PMOS transistors.

four time constants of sleep time. Considering these observations, we choose Rsp as the

pseudo-resistance at VV dd = r1.

3.4.4 Experimental Results

The model was applied to ISCAS85 benchmark circuits [81] listed in Table 3.8 to validate

the approximations proposed. The results were compared with simulations using Spectre

circuit simulator of Cadence Virtuoso ICFB. Detailed results are reported for c7552,

c6288, c2670 and c432 and a summary of results is provided for all circuits in Table 3.8.

The circuits were synthesized with two sets of logic gates, {nand2, nor2, xor2, and2,

fa, ha, inv} in high-Vth(HVT) and {nand2, nor2, xor2, inv} in standard-Vth(SVT) process

options of an industrial 65nm CMOS technology library. The two sets of circuits present

a wide range of variation in leakage current and total circuit capacitance profiles for

evaluation. For each logic gate, leakage currents were determined for supply voltage

varying between 0 and 1V for all input patterns at an operating temperature of 100◦C

using Spectre circuit simulator. Each of these profiles were then fitted with polynomials

of degree 7 using MATLAB. The maximum error between evaluated leakage current and

simulated leakage current was less than 3% except near VV dd = 0, where absolute values

of leakage current are negligible. Further, the leakage current profile of the complete

circuit was determined by weighting the polynomials with number of occurrences in the

gate netlist and adding them together to form Ileak in Eq. (3.12). A leakage current

profile for c6288 is shown in Fig. 3.12. From this curve, pseudo-resistance is determined

at each point in the Virtual-Vdd segment.

One set of Spectre simulations of high-Vth PMOS transistor is required for each

technology library to determine threshold voltages, constant mobility, saturation voltage

and saturation currents. To establish these parameters, Isd vs. Vsd characteristics at

Chapter 3 Design Considerations in Power-Gated Circuits 67

0 0.2 0.4 0.6 0.8 1
−0.05

0

0.05

0.1

0.15

0.2

0.25

0.3

C
ir

cu
it

 L
ea

ka
ge

 C
ur

re
nt

 (
m

A
)

Spectre Sim

Polynomial Fit

0 0.2 0.4 0.6 0.8 1
0

2

4

6

8

10

12

Virtual−Vdd (V)

P
se

ud
o−

R
es

is
ta

nc
e(

kΩ
)

Pseudo−Resistance

Figure 3.12: Leakage current and pseudo-resistance profile in c6288.

Vsg = 1V and Isd vs. Vsg characteristics at Vsd = 0.05V and Vsd = 1V with Wsp =

0.54µm were obtained using Spectre.

To compare wakeup time estimation using models with circuit simulations in Spectre,

Vdd was set to 1V. Without loss of generality, all primary inputs of the circuit were set

to logic 0. The evolution of Virtual-Vdd during wakeup and sleep modes in c7552 is

shown in Fig. 3.13 and Fig. 3.14 respectively. In Table 3.4 and Table 3.6, the maximum

voltage levels attained by Virtual-Vdd and the wakeup times with sleep transistors of

different sizes are given. Table 3.8 shows average errors (µerror) in estimation of the

two quantities for all circuits considered in this work. The wakeup time is estimated by

equations (3.25)-(3.27) within an average error margin of 16.3% for a variation of 22×
in sleep transistor sizes. The steady-state Virtual-Vdd is determined within 1.8% on

an average from the corresponding results of Spectre simulations. Further a significant

reduction in computation time is achieved for wakeup time estimation using the model

compared to a SPICE level circuit simulator. For example, model calculations in c6288

using MATLAB took 21ms compared to 4 minutes in SPICE level circuit simulations.

In logic clusters that do not satisfy wakeup dependency [71, 80], short-circuit currents

are generated due to changing logic states of internal nodes as VV dd increases towards r1

in wakeup mode. They create the effect of altering effective resistance of the circuit and

hence wakeup time. In other words, the accuracy of wakeup time estimation is reduced

when the effects of short-circuit currents are not taken into account as is shown for c499 in

Table 3.4 and Table 3.6. To address this problem it is necessary to model individual cells

for short-circuit currents when both supply voltage and its rise time are varying. The

cluster definitions and sleep transistor widths considered in this work are not designed

to satisfy wakeup dependency or meet a particular peak current constraint [80] as the

problem of logic clustering was not addressed in this work.

68 Chapter 3 Design Considerations in Power-Gated Circuits

0 5 10 15 20
0

0.2

0.4

0.6

0.8

1

Wakeup Mode Time (ns)

V
ir

tu
al

−
V

dd
 (

V
)

Spectre Sim.

Model

Figure 3.13: Virtual-Vdd in wakeup mode (W=1.2µm) in c7552.

0 100 200 300 400 500 600 700
0

0.2

0.4

0.6

0.8

1

Sleep Mode Time (ns)

V
ir

tu
al

−
V

dd
 (

V
)

Spectre Sim.

Model

Figure 3.14: Virtual-Vdd in sleep mode (W=1.2µm) in c7552.

W (µm)
r1 (V) Model [Eq. (3.17)] (Spectre)

c7552 c6288 c2670 c432

0.54 0.94 (0.93) 0.96 (0.94) 0.97 (0.96) 0.99 (0.99)
1.2 0.97 (0.96) 0.98 (0.97) 0.98 (0.98) 0.99 (0.99)
2.4 0.98 (0.98) 0.99 (0.98) 0.99 (0.99) 0.99 (0.99)
4.8 0.99 (0.99) 0.99 (0.99) 0.99 (0.99) 0.99 (0.99)
9.6 0.99 (0.99) 0.99 (0.99) 0.99 (0.99) 0.99 (0.99)
12 0.99 (0.99) 0.99 (0.99) 0.99 (0.99) 0.99 (0.99)

Table 3.4: Maximum Virtual-Vdd after wakeup in ISCAS85 benchmark circuits with
HVT cells.

Chapter 3 Design Considerations in Power-Gated Circuits 69

W (µm)
Wakeup Time (ns)

Model [Eq. (3.24),(3.27)] (Spectre)
c7552 c6288 c2670 c432

0.54 40.69 (38.22) 43.24 (46.74) 15.55 (15.04) 4.57 (3.89)
1.2 18.94 (18.72) 20.27 (22.24) 7.38 (7.25) 2.20 (1.89)
2.4 9.64 (9.82) 10.35 (11.97) 3.79 (3.75) 1.14(0.92)
4.8 5.08 (5.27) 5.46 (6.44) 2.00 (2.02) 0.60 (0.59)
9.6 2.64 (2.83) 2.84 (3.52) 1.05 (1.11) 0.32 (0.38)
12 2.13 (2.32) 2.29 (2.95) 0.85 (0.92) 0.26 (0.33)

Table 3.5: Wakeup time in ISCAS85 benchmark circuits with HVT cells.

W (µm)
r1 (V)

Model [Eq. (3.17)] (Spectre)
c7552 c6288 c2670 c432

0.54 0.72 (0.67) 0.68 (0.60) 0.77 (0.84) 0.97 (0.96)
1.2 0.84 (0.81) 0.81 (0.77) 0.87 (0.91) 0.98 (0.98)
2.4 0.91 (0.89) 0.89 (0.86) 0.93 (0.95) 0.99 (0.99)
4.8 0.95 (0.93) 0.94 (0.92) 0.96 (0.97) 0.99 (0.99)
9.6 0.97 (0.96) 0.96 (0.95) 0.98 (0.98) 0.99 (0.99)
12 0.98 (0.97) 0.97 (0.96) 0.98 (0.98) 0.99 (0.99)

Table 3.6: Maximum Virtual-Vdd after wakeup in ISCAS85 benchmark circuits with
SVT cells

W (µm)
Wakeup Time (ns)

Model [Eq. (3.24),(3.27)] (Spectre)
c7552 c6288 c2670 c432

0.54 36.66 (37.10) 62.79 (63.24) 18.06 (13.89) 4.65 (3.49)
1.2 20.90 (17.16) 34.59 (29.97) 8.17 (6.89) 2.21 (1.74)
2.4 10.01 (9.07) 16.65 (15.88) 4.01 (3.70) 1.14 (0.96)
4.8 5.19 (5.02) 8.45 (9.10) 2.07 (2.04) 0.60 (0.57)
9.6 2.65 (2.77) 4.3 (5.27) 1.06 (1.13) 0.32 (0.37)
12 2.13 (2.28) 3.45 (4.43) 0.86 (0.94) 0.26 (0.33)

Table 3.7: Wakeup time in ISCAS85 benchmark circuits with SVT cells

3.4.5 Wakeup Energy Estimation

The models developed for wakeup time estimation can be used to determine the energy

consumed due to wakeup mode transition. The wakeup energy is given by

Ewu =

∫ Twu

0
VddIstdt. (3.37)

The current through the transistor is determined using Eq. (3.15) by substituting Eq.

(3.23) for VV dd(t). The nature of Ist(t) is such that the integral cannot be evaluated

to obtain a closed form expression. Hence a numerical approach is taken to determine

the wakeup energy by summing Nwu incremental areas under the Ist(t) curve for several

70 Chapter 3 Design Considerations in Power-Gated Circuits

Circuit
CL Max. VV dd Twu

(pF) µerror (%) µerror (%)
HVT SVT HVT SVT HVT SVT

c7552 2.892 2.993 0.7 2.8 4.7 7.6
c6288 3.171 4.833 0.6 4.3 14.8 11.1
c5315 1.966 2.826 0.6 2.2 12.5 22.3
c3540 1.466 2.037 0.5 1.5 11.2 17.5
c2670 1.148 1.202 0.3 3.0 3.0 7.8
c1908 0.606 0.633 0.2 0.3 21.8 15.4
c499 0.601 0.478 0.2 0.1 24.6 33.7
c432 0.351 0.360 0.1 0.3 16.4 15.1

Mean 0.4 1.8 13.6 16.3

Table 3.8: Average relative errors in estimation of maximum VV dd and wakeup time
in ISCAS85 benchmark circuits.

intervals of size ∆t in [0, Twu] as

Ewu ≈ Vdd

Nwu−1
∑

i=0

Isti∆t. (3.38)

Table 3.9 shows a summary of relative errors in estimation of wakeup energy for ISCAS85

benchmark circuits using the models proposed above.

Circuit
Wakeup Energy (pJ) Error
Spectre Model (%)

c7552 3.078 3.062 9.0
c6288 3.695 3.741 5.0
c5315 2.271 2.811 24.8
c3540 1.728 2.264 31.1
c2670 1.086 1.306 20.4
c1908 0.725 0.676 7.0
c499 0.737 0.719 4.4
c432 0.392 0.438 11.7

Mean 12.6

Table 3.9: Average relative error in estimation of wakeup energy in ISCAS85
benchmark circuits.

3.4.6 Logic Clustering for Wakeup Scheduling

As stated in Section 3.3.2, the design of power-gated circuits has been viewed as an opti-

mization problem of partitioning logic into clusters satisfying constraints of peak current,

delay degradation, sleep transistor area, wakeup time and energy savings. Wakeup time

is an important overhead that must be determined for effective power gating, particularly

Chapter 3 Design Considerations in Power-Gated Circuits 71

in logic clusters that undergo frequent mode transitions for run-time leakage power re-

duction. Run-time leakage reduction has been explored in [78], [88] and [89], where only

parts of the overall circuit are put to sleep during short periods of inactivity. Along with

a high wakeup energy overhead a large wakeup delay in a cluster can result in reduced

energy savings. Hence these two parameters have to be carefully considered in the design

of power-gated circuits.

The model for wakeup time estimation presented in this chapter may be applied in

scheduling of power-gated logic clusters as part of a larger optimization problem. Con-

sider a combinational circuit C. Let Ci, i = 1, 2, ..., N denote N logic clusters obtained

by partitioning C such that they satisfy constraints of minimum sleep transistor area,

peak current, maximum delay degradation and minimum wakeup time. The optimiza-

tion problem referred to wakeup time constraint is stated as follows. Let Twu,i denote

the wakeup time of logic cluster Ci and Twu,max the maximum acceptable wakeup time

of the overall circuit C. Then,

max





P
∑

j=1

Twu,j ,

Q
∑

k=P+1

Twu,k, ...,
N
∑

l=R+1

Twu,l



 ≤ Twu,max (3.39)

for some P ,Q,R,... such that P ≥ 1, Q ≥ P + 1,.... Hence a wakeup schedule for the N

logic clusters may be derived. The model presented here may be used to determine each

Twu,i during the optimization run.

3.4.7 Logic Clustering for Wakeup Energy Control

Partitioning larger power-gated circuits can also be viewed as a way to reduce wakeup

energy at a given time and hence reducing average power in a temporal window. Logic

circuits that are partitioned into clusters such that only one of them need to wake up

depending on its input states contribute to lower instantaneous power consumption. This

leads to choice of power gating granularity in logic circuits at the cost of control circuits

that need to remain in always-on state. This aspect is elaborated in Chapter 5.

3.5 Conclusion

In this chapter, various considerations in design of power-gated circuits were discussed

apart from reviewing previous work. Further, a semiempirical approach for estimation of

wakeup time of a power-gated logic cluster was presented. The technique relies on only a

few basic circuit parameters and one time SPICE level simulations per technology library

due to approximations used. A simple method to determine steady state Virtual-Vdd

after wakeup as a function of sleep transistor size and leakage current was fundamental

to development of rest of the model. In sleep mode, the model can be used to determine

72 Chapter 3 Design Considerations in Power-Gated Circuits

leakage energy savings in inactive states of the circuit. In other words, some of the key

parameters used as optimization criteria for logic clustering have been captured in closed-

form expressions. Specifically, the model may be applied in logic clustering for wakeup

scheduling optimizations. It should be noted that, short circuit currents (Isc) that are

generated in the internal nodes during wakeup mode are neglected in Eq. (3.14). In

this work I0 and I1, which are assumed to be constants based on heuristics developed in

Section 3.4.3.5, must be replaced with time and VV dd dependent models. Modeling short

circuit currents in logic gates when both supply voltage and its rise time are varying leads

to a unified model. A further limitation of these models is that process and temperature

variations cannot be accounted for as the models are not parameterized with respect to

bias and temperature dependent threshold voltage and temperature as an independent

variable.

Chapter 4

Variable Precision Arithmetic Units

for Low Power

4.1 Introduction

Arithmetic units such as adders and multipliers find application in almost all digital

computational hardware. In the design flow for generation of hardware microtasks, data

precision has been used as a parameter for adapting precision of adder in the datapath.

For hardware microtasks to have flexibility by dynamically changing the precision just

enough to that of incoming data, it is essential to have arithmetic units like adders

to be reconfigurable for variable precision. In this chapter arithmetic units that are

reconfigurable for different precisions of data are explored. An analysis of power gating

as a low power technique to suppress leakage current in unused logic is performed.

A review of related work on energy efficient arithmetic circuits is presented in Sec-

tion 4.2. In Section 4.3, the proposed design approach and an analysis of energy savings in

active mode of power-gated arithmetic units is presented. In Section 4.4, a brief descrip-

tion of Brent-Kung and Kogge-Stones adders is given while focusing on the parallel-prefix

tree structure of carry generation and propagation. The design of power-gated recon-

figurable adders is explained in Section 4.5. In Section 4.6, the experimental setup for

the proposed design and power estimation flow is described and results are discussed.

Section 4.7 concludes the chapter.

4.2 Variable Precision Arithmetic Units: A Review

Arithmetic units are dense but regular structures that can be implemented with varying

granularity of word slices and parallelism. While this leads to hardware realizations with

speed-area tradeoffs [90], another parameter of significant interest in the design space

is power consumption. For arithmetic units in processor or ASIC-like implementations

73

74 Chapter 4 Variable Precision Arithmetic Units for Low Power

that support dynamically variable precision arithmetic, it is even more important to

control power consumption in unused logic of an arithmetic unit to achieve dynamic

and standby energy efficiency [91, 37]. Adders are used in addressing logic for instruc-

tion and data sequencing in microprocessors whereas multipliers are an integral part of

Multiply-Accumulate (MAC) operations in datapath. In this work we focus on adders

and extend the analysis to multipliers as FSM controlled datapaths in microtasks of [1]

can be potentially upgraded to include a multiplier. Arithmetic units are also ubiqui-

tously used in fixed-point and variable-precision implementations of signal processing

algorithms, hardware for numerical computations in optimization procedures and linear

algebra routines. Further, they are also available as part of reconfigurable circuits like

FPGAs [92] and Floating-Point Units [93, 94] used for variable precision, high accuracy

arithmetic.

4.2.1 Low Power Optimizations

Several fixed-precision parallel-prefix trees in adders have been studied for energy and

delay properties using different circuit techniques in [95]. A methodology based on

logical effort and energy models has been proposed to determine gate types and sizing in

parallel-prefix trees. In [96], a decimal floating-point adder for variable precision addition

that uses Kogge-Stones parallel-prefix tree structure is described. Floating-point adders

represent one end of the accuracy vs. hardware complexity design space while a fixed-

precision adder lies at opposite end of the same space. Reconfigurable precision adders

also offer a trade-off with respect to accuracy and hardware complexity and occupy a

position in between the two ends of the space.

Being a regular logic circuit, the generation of such adders (and other arithmetic

circuits in general) has been a topic of design space exploration in datapaths. One such

example is a high-level synthesis procedure involving bit-level reuse for variable precision

adders is described in [97]. Recent works on low power adders have focussed on power

optimized implementations of a full adder unit at gate level and its repeated use to

form a N -bit carry ripple adder. In [98], the leakage power in a full adder is sought to

be controlled by selectively stacked inverters. The problem of optimal sizing of sleep

transistors for power gating adders at fine granularity is presented in [99]. N such full

adders are required to form a N -bit cascaded adder. While sleep transistor widths are

optimized based on statistical properties of inputs and in-rush current analysis, area

overhead due to sleep transistors and other associated control circuits in fine grained

power gated circuits is, in general larger than those for cluster based coarse grain power

gating [19]. An analysis of various overheads and design parameters of power-gated

execution units is described in [88]. A specific study of twin-precision arithmetic circuits

with coarse grain power gating has been presented in [100] but it does not provide

Chapter 4 Variable Precision Arithmetic Units for Low Power 75

a method to generalize it to other precisions and analyze the overheads. In [101], a

data-width-driven power gating method for integer arithmetic circuits close to the work

described in this chapter is presented.

In this work, a general approach for power gating unused parts of an arithmetic unit to

achieve configurable variable-precision operation and reduced leakage power is presented.

The method is then applied to two reconfigurable power-gated adders, based on Brent-

Kung (BK) [15] and Kogge-Stones (KS) [16] parallel-prefix trees for carry generation.

Two 32-bit adders with the flexibility of being configured as a 8-bit, 16-bit and 24-

bit adder are described. The power consumption in the above adders in power-gated

context is compared with 32-bit adders performing respective precision addition. This

method can be extended to power-gated multipliers as, in general, multipliers can be

designed to be made of a partial products stage and a stage of adders to sum the partial

products [102]. A typical flow for design of power-gated variable-precision circuits is

shown in Fig. 4.1. An essential part of the design flow is power estimation of both ungated

and power-gated circuits as it is necessary to determine if energy savings effectively result

due to insertion of power gating structures.

Figure 4.1: Typical flow for design of variable-precision power-gated
arithmetic circuits.

76 Chapter 4 Variable Precision Arithmetic Units for Low Power

4.3 Logic Clustering Method and Energy Savings

4.3.1 Logic Clustering

Aggressive leakage power reduction in an arbitrary logic circuit by power gating involves

exercising sleep structures for part of the circuit that is not used in a schedule. Given

a N -bit arithmetic unit in general, the design of a power-gated reconfigurable variable-

precision unit can be viewed as a task of partitioning N -bit logic cluster CN of size

S(CN) into subclusters CN1 whose size S(CN1) is a function of lower precision N1 < N

and a power-gateable cluster CN ′

1
of size S(CN ′

1
) where N ′

1 = N − N1. To reduce the

precision further consider a partition of CN1 into CN2 and CN ′

2
such that N2 < N1,

N ′

2 = N1 − N2 and S(CN ′

2
) < S(CN ′

1
). For a cluster-based, coarse-grain power gating

design, CN ′

2
can be power-gated to achieve leakage power savings when the N -bit logic

circuit is configured for N1-bit precision. In general, CN ′

k
may be repeatedly partitioned

until the desired precision is achieved at the cost of increased power gating blocks. Let

A = (aN−1, aN−2, ..., a1, a0) and B = (bN−1, bN−2, ..., b1, b0) denote two operands of an

arithmetic unit. The logic clustering method described above as applied to the logic

gates in the transitive fanout of A and B is given in Algorithm 1.

Algorithm 1 Partition N -bit Arithmetic Logic Circuit

Require: precisions Nk, N such that N > N1 > ... > Nk−1 > Nk, cluster CN , input
bits am, bm, m = 0, 1, ..., N − 1 of CN

Ensure: Clusters CNj

Ninit = N
for (j = 1, j ≤ k, j = j + 1) do

for all (am, bm, m = [Ninit, Ninit − 1, ..., Nj + 1]) do

N ′

j = Ninit −Nj

if (Ninit = N) then

/* FO(x,y) denotes transitive fanout of inputs x, y */
CN ′

j
← getGates in FO(am, bm) in CNinit

else

CN ′

j
← getGates in FO(am, bm) in (CNinit

− CN ′

j−1
)

end if

CNj
← getGates in (CNinit

− CN ′

j
)

end for

Ninit = Nj

end for

It should be noted that for systems that remain in standby mode for long periods of

time compared to their active mode duration, power gating results in significant energy

savings. However in applications that use dynamically variable precision operation with

frequent active mode to sleep mode transitions and vice versa, the energy savings due to

power gating is reduced by mode transition energy overheads.

Chapter 4 Variable Precision Arithmetic Units for Low Power 77

4.3.2 Energy Savings in Active Mode

Let the time taken by a cluster CNi
to wakeup from sleep mode to active mode be

given by its wakeup time Twui
(CNi

) = f(Isti , Cloadi
, Ileaki

), where f is a function of sleep

transistor current Isti , load capacitance of the cluster Cloadi
and bias-dependent leakage

current Ileaki
. The wakeup energy is given by

Ewui
=

∫ Twui

0
VddIsti(t)dt (4.1)

where Vdd is the power supply voltage. Let four logic clusters CNi
, i = 1, 2, 3, 4 remain

in sleep mode for times Tsleepi
, i = 1, 2, 3, 4, respectively in any duration of time T >

max(Tsleepi
, i = 1, 2, 3, 4). Note that Tsleepi

is the total time for which CNi
is in sleep

mode and is not necessarily continuous due to mode transitions. Assume that the non-

reconfigurable arithmetic circuit is in active mode for all the time T and that due to the

variable precision nature of operation, at least one cluster of power-gated reconfigurable

arithmetic circuit is in active mode at any given time during T . The energy consumed

by the fixed-precision circuit in time T with average active mode power Pactive,av is given

by

Efp = Pactive,avT. (4.2)

Let Pactivei,av, Psleepi,av and Tsleepi
be the average active mode power, average sleep mode

power and total sleep time of cluster CNi
respectively. Given a reconfigurable schedule

the energy consumed by the power-gated circuit is given by

Epg =
∑

i

[Pactivei,av(T − Tsleepi
) + Esleepi

+ niEwui
+ Eiso] (4.3)

where

Esleepi
= Psleepi,avTsleepi

(4.4)

ni is the number of wakeup transitions of cluster CNi
in time T , and Eiso is the energy

consumed by isolation cells that are an overhead. The energy savings of power-gated

arithmetic unit in comparison with fixed-precison circuit is given by Es = Efp − Epg.

Assuming that drop in the virtual supply voltage across a cluster from Vdd is negligible,

Pactive,av ≈
∑

i

Pav,activei
for the same set of input data. Hence

Es =
∑

i

[(Pactivei,av − Psleepi,av)Tsleepi
− niEwui

− Eiso] . (4.5)

From Eq. (4.5), it can be inferred that higher the Pav,activei
due to nature of input pat-

terns, higher is the energy savings in power-gated circuit even at lower Tsleepi
. The circuit

will have reduced energy consumption as long as the number of mode transitions are such

78 Chapter 4 Variable Precision Arithmetic Units for Low Power

that wakeup energy and isolation cells do not offset the gains. Given a reconfiguration

schedule, Eq. (4.5) can be used to estimate average energy savings in active mode of the

power-gated circuit.

4.4 Logic Clustering in Arithmetic Circuits

4.4.1 Parallel-Prefix Trees

An N -bit adder S = A + B with input carry c−1 can be represented as follows. Let m

denote the index of a bit in the N -bit word such that i = 0, 1, ..., N − 1. Then the sum

bit sm and carry bit to the next stage cm is given by [103],







sm = am ⊕ bm ⊕ cm−1,

cm = ambm + cm(am ⊕ bm).
(4.6)

Numerous adder architectures have been proposed based on the way carry of each stage

in Eq. (4.6) is generated. Since the worst case critical path between inputs and outputs

of an adder starts from c−1 and ends in cN , a carry ripple adder would have the slowest

path. A parallel adder referred to as carry look ahead (CLA) adder exploits parallel

computations of partial terms leading to the carry of each stage in to reduce the critical

path. Parallel-prefix trees have tree-based structure for the generation of the carry in

Eq. (4.6) as shown in Fig. 4.2 and Fig. 4.3. A detailed description of their derivation is

given in [15] and [16]. Assuming pi = am ⊕ bm and gm = ambm, with

(Gm, Pm) =







(gm, pm), m = 0,

(gm + pmGm−1, pmPm−1), m = 1, .., N − 1
(4.7)

the carry of each stage cm = Gm and the sum bit sm = pm ⊕ cm. Therefore the

adders have three stages: 1) the input AND, XOR stage to generate gm and pm, 2) the

intermediate terms Gm and Pm for generation and propagation of carry of each stage

referred to as parallel prefix and 3) the final XOR stage for sum bits of the adder. The size

of the adder for a particular precision is directly proportional to its precision. Since the

data flow takes place along only one direction (right to left), application of the algorithm

in Section 4.3.1 is simply equivalent to cutting the directed graph by a straight line as

shown in the figures. The BK adder has fewer logical elements and adjacent cluster

connectivity compared to a KS adder whereas the carry signal in the latter is realized in

fewer logical stages and with reduced fanout compared to the former.

Chapter 4 Variable Precision Arithmetic Units for Low Power 79

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 016171819202122232425262728293031

NC
4

 C N 3
C N 2

C N 1 P G jj,
 P G ii,

iiG P +G j P P i j

Figure 4.2: Parallel-prefix tree structure for carry generation in BK adder.

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0161718192031 30 29 28 27 26 25 24 23 22 21

C N 3
C N 4

C N 2
C N 1

Figure 4.3: Parallel-prefix tree structure for carry generation in KS adder.

4.4.2 Partial Products in Multiplier

A multiplier has a more complex structure than an adder. However the partial products

in a multiplier presents similar opportunities for clustering for variable-precision opera-

tion. An M × N multiplier generator based on Booth algorithm is described in [102].

In this work, for simplicity, we consider a 4×4 multiplier whose partial products can be

clustered for 2×2, 3×3 multiplication as an example. In Fig. 4.4, AND terms are clus-

tered based on the dependency of input bits that are part of the lower precision word.

It should be noted that, just as AND/XOR stage outputs are dependent on exactly one

pair of bits irrespective of carry signal, partial products are easily clustered. The sum

stage however presents a complex picture for power gating and is discussed in the next

section.

80 Chapter 4 Variable Precision Arithmetic Units for Low Power

Figure 4.4: Partial product structure in a binary multiplier clustered for variable
precision and power gating.

4.5 Power-Gated Reconfigurable Circuits

4.5.1 Variable-Precision Adders

In order to design a power-gated 32-bit adder that can be configured as a 32-bit, 24-bit,

16-bit or an 8-bit adder, the parallel-prefix tree of the adder is partitioned into four

blocks as shown in Fig. 4.2 and Fig. 4.3 and are a part of clusters represented by CNi
,

i = 1, 2, 3, 4 in Fig. 4.5. It should be noted that XOR/AND and Sum XOR stages

are also part of CNi
. Further a multiplexer is introduced after the sum XOR stage to

select the (zero-padded) outputs of sum and carry bits as a function of adder select bits

for configuration. Four sleep transistors of PMOS type (header sleep transistors) are

inserted between the supply voltage (Vdd) and the virtual supply voltage VV dd,j where

j = 32, 24, 16, 8 for each of the four blocks. It represents a cluster based coarse-grain

power gating scheme. The mode transitions of the four sleep transistors are controlled

by SLEEPi where i = 32, 24, 16, 8. The schedule for operating the adder in different

configurations to realize variable-precision addition with the same hardware is given in

Table 4.1. A block is in ON state or active mode when the corresponding SLEEP signal

is ‘low’ and it is in sleep mode or OFF state when the SLEEP signal has a ‘high’ value.

4.5.2 Power Gating in Multipliers

Figure 4.6 shows the way partial products are used in the sum stage. It can be seen

that partial product terms in different clusters need to be input to adder clusters and

that the data flow between depends on the clustering criterion used. Figure 4.6 shows

a logic clustering method as described in Section 4.3.1 which involves data flow in only

Chapter 4 Variable Precision Arithmetic Units for Low Power 81

Figure 4.5: Power-gated reconfigurable adder.

Adder 32-bit 24-bit 16-bit 8-bit
Select bits 11 10 01 00

CN1 ON ON ON ON
CN2 ON ON ON OFF
CN3 ON ON OFF OFF
CN4 ON OFF OFF OFF

Table 4.1: On-Off schedule for operation of different adders in the power-gated re-
configurable adder.

one direction across the clusters avoiding isolation cells. However unlike the adder, the

number of product bits that get generated out of each cluster increases with precision

and therefore the clusters have different sizes.

4.6 Power Estimation and Analysis

4.6.1 Experimental Setup

Two 32-bit reconfigurable adders of BK and KS types were designed to implement 32-bit,

24-bit,16-bit or 8-bit addition. Architecturally, the logic was partitioned as described in

Section 4.3.1, such that, unused gates in any particular configuration (for 24, 16 or 8-

bit addition or complete shut-off) could be power-gated using sleep transistors. Further,

fixed-precision 32-bit BK and KS adders were designed with respective parallel-prefix tree

type architectures except that the logic for reconfigurability and sleep transistors were

eliminated for comparison with power-gated ones. The four adders were synthesized into

gate-level netlists using std.-Vth (SVT) cells of an industrial 65nm bulk CMOS technology

82 Chapter 4 Variable Precision Arithmetic Units for Low Power

Figure 4.6: Power-gated reconfigurable multiplier.

library using Synopsys Design Compiler applying a maximum path delay constraint of

1ns from all inputs to all outputs. The standard cells used in both cases were restricted

to a set {nand2, nor2, xor2, inv} of logic gates without loss of generality. Identical wire

load models and operating conditions were used for synthesis. Care was taken not to

alter the parallel-prefix tree structure during logic synthesis. Table 4.2 shows the areas

of the four adders and the overhead in reconfigurable adder over fixed-precision adder

due to the multiplexer.

Adder
Fixed 32-bit Variable Precision Area Overhead
BK KS BK KS BK KS

Area (µm2) 915.2 1493.5 1053.5 1631.8 15% 9.2%

Table 4.2: Area overhead in power-gated reconfigurable adders over non-
reconfigurable adders.

The SPICE netlists of resulting gate netlists were obtained using Cadence Virtuoso

ICFB environment. High-Vth sleep transistors of PMOS type were inserted as headers

of power gating circuit of the reconfigurable adders. The sleep transistors were sized to

W=1.2µm without the loss of generality. Sleep transistor sizing is generally seen as an

optimization problem [80] based on in-rush current and IR drop, but it is not addressed in

this work. In order to estimate average power consumption of both circuits for addition

of different word sizes, 10000 input words randomly generated with uniform distribution

were applied to the circuit at an interval of 1.5ns and simulated using Eldo SPICE

simulator at a nominal supply voltage (Vdd) of 1V at 100◦C temperature. Transient

analysis was carried out for a total time of 55µs. The non-reconfigurable adder was

in standby state for a time of 40µs whereas the reconfigurable adder was power-gated

Chapter 4 Variable Precision Arithmetic Units for Low Power 83

for 10µs and it remained in idle state (ON, but without changes in inputs) for rest of

the time. Further, in configurations for 24, 16 and 8-bit addition, unused parts of the

circuit were power-gated even during the active period of the [0, 55µs] interval. When

the adder was configured in reduced precision, the input vectors were zero padded to

form a 32-bit word. The current drawn by a power-gated reconfigurable KS adder in

16-bit configuration is shown in Fig. 4.7 and the virtual supply voltages for clusters CN4

and CN2 are shown in Fig. 4.8 and Fig. 4.9 respectively. Table 4.3 to Table 4.5 show

results obtained from the circuit simulation of two adders. Imax,ac represents the peak

current drawn from the supply in active mode. In the active mode the unused clusters are

shut-off. Ptotal,av denotes the average power across a time interval of [0, 55µs]. Pidle,av

and Psleep,av denote average power in idle state, when the respective clusters are ON but

inputs do not change and in sleep mode when all clusters are switched-off, respectively.

The average power of any configuration in active mode only can be calculated as

Pactive,av =

[

Ptotal,avT − (Pidle,avTidle + Psleep,avTsleep)

Tactive

]

. (4.8)

Further Pactive,av = Pdyn,av + Pidle,av where Pdyn,av denotes the average dynamic power

due to switching activity in active mode.

Function
Imax,ac (mA) Pactive,av(µW) Pidle,av(µW)
BK KS BK KS BK KS

32-bit addition 4.92 4.61 222.3 240.7 55.5 62.9
24-bit addition 4.22 3.86 185.2 200.6 55.8 62.8
16-bit addition 2.92 2.63 142.6 152.8 55.4 62.3
8-bit addition 1.80 1.59 102.4 104.8 55.1 61.9

Table 4.3: Power consumption in non-reconfigurable/non-power gated BK and KS
adders.

Adder
Imax,ac Pactive,av Pidle,av Psleep,av

(mA) (µW) (µW) (µW)
BK KS BK KS BK KS BK KS

32-bit adder 1.91 2.02 223.8 286.2 60.5 81.7 8.6 8.7
24-bit adder 1.52 1.56 171.8 218.9 47.7 62.5 7.8 8.2
16-bit adder 1.17 1.09 118.3 139.5 34.8 40.1 7.3 7.6
8-bit adder 0.73 0.75 65.1 66.1 20.9 20.7 6.8 7.0

Table 4.4: Power consumption in power-gated reconfigurable BK and KS adders.

4.6.2 Results

The total average power in active mode and average power in standby (or sleep) mode

consumed by the two adders of non-reconfigurable and reconfigurable types are shown in

Table 4.3 and Table 4.4 respectively. For each type, the power consumed across BK and

84 Chapter 4 Variable Precision Arithmetic Units for Low Power

Adder
VV dd32,max VV dd24,max VV dd16,max VV dd8,max

(mV) (mV) (mV) (mV)
BK KS BK KS BK KS BK KS

32-bit 987 982 986 977 984 981 994 993
24-bit xx xx 986 976 985 984 994 993
16-bit xx xx xx xx 984 981 995 993
8-bit xx xx xx xx xx xx 993 992

Table 4.5: Maximum Virtual-Vdd in active mode operation of BK and KS adders.

KS adders is consistent with their respective parallel-prefix tree structures. The power-

gated reconfigurable BK and KS adders show leakage power reduced by a factor of about

7 and 8 respectively in comparison with non-reconfigurable BK and KS adders without

any power gating. Further the average active power in 8-bit and 16-bit power-gated BK

and KS adders actually shows a reduction by about 37% (8-bit) and 8% (16-bit) when

compared to ungated adders despite 9% and 15% increase in area of logic gates in the

latter. It can be inferred that to that extent, considerable power is consumed in active

mode at lower precisions due to unnecessary switching activity in unused logic of 32-bit

adder. Table 4.5 shows maximum virtual supply voltage levels in steady state of active

mode. In other words, the results show a higher IR drop across the sleep transistor in

KS adder than BK adder despite identical sleep transistors. This can be attributed to

higher leakage current [20] in KS adder due to higher hardware complexity than in BK

adder.

 0.2

 0.4

 0.6

 0.8

 1
4

.9
2

 1
4

.9
4

 1
4

.9
6

 1
4

.9
8

 1
5

 1
5

.0
2

 1
5

.0
4

 1
5

.0
6

 1
5

.0
8

 1
5

.1

 1
5

.1
2

C
u

rr
e
n

t
(m

A
)

Time (us)

Active and Sleep Mode Current

Sleep Mode

 0.2

 0.4

 0.6

 0.8

 2
4

.9
9

2

 2
4

.9
9

4

 2
4

.9
9

6

 2
4

.9
9

8

 2
5

 2
5

.0
0

2

 2
5

.0
0

4

 2
5

.0
0

6

 2
5

.0
0

8

C
u

rr
e
n

t
(m

A
)

Time (us)

Wakeup Mode Current

Figure 4.7: Current drawn by power-gated KS adder (16-bit precision).

4.6.3 Reducing Simulation Time

To determine average static power in idle mode and other design parameters of power-

gated circuit in sleep mode and wakeup mode transitions rapidly, the models proposed in

Chapter 4 Variable Precision Arithmetic Units for Low Power 85

 0

 0.2

 0.4

 0.6

 0.8

 1
4

.9
7

 1
4

.9
8

 1
4

.9
9

 1
5

 1
5

.0
1

 1
5

.0
2

 1
5

.0
3

 1
5

.0
4

 1
5

.0
5

V
ir

tu
a
l-

V
d

d
8

 (
V

)

Time (us)

Active and Sleep Mode Virtual-Vdd

Sleep Mode

 0

 0.2

 0.4

 0.6

 0.8

 2
4

.9
9

6

 2
4

.9
9

8

 2
5

 2
5

.0
0

2

 2
5

.0
0

4

 2
5

.0
0

6

 2
5

.0
0

8

 2
5

.0
1

 2
5

.0
1

2

V
ir

tu
a
l-

V
d

d
8

 (
V

)

Time (us)

Wakeup Mode Virtual-Vdd

Figure 4.8: Virtual-Vdd of CN4
in power-gated KS adder (16-bit precision).

-10

 0

 10

 20

 1
4

.9
7

 1
4

.9
8

 1
4

.9
9

 1
5

 1
5

.0
1

 1
5

.0
2

 1
5

.0
3

 1
5

.0
4

 1
5

.0
5

V
ir

tu
a
l-

V
d

d
2

4
 (

m
V

)

Time (us)

Sleep Mode Virtual-Vdd

 10

 20

 30
 2

4
.9

9
6

 2
4

.9
9

8

 2
5

 2
5

.0
0

2

 2
5

.0
0

4

 2
5

.0
0

6

 2
5

.0
0

8

 2
5

.0
1

 2
5

.0
1

2

V
ir

tu
a
l-

V
d

d
2

4
 (

m
V

)

Time (us)

Sleep Mode Virtual-Vdd

Figure 4.9: Virtual-Vdd of CN2
in power-gated KS adder (16-bit precision).

Chapter 3 and Section 3.4 can be used. However the steps for dynamic power estimation

shown in Fig. 4.1 involve transistor level simulations with SPICE. For the experimental

setup described before, the simulation time using Eldo circuit simulator running a multi-

processor simulation was about six hours for each context and 10000 input vectors. In

order to reduce time for dynamic power estimation we attempt the classical approach for

a comparison. For each input vector, the gate-level netlist is parsed for logic-level transi-

tions at the output of each gate from its value for the previous vector. The total switched

capacitance for an input set is calculated as the sum of capacitances of gate nodes that

switch logic levels. For Ninput inputs, let Csw be the total switched capacitance. Then

86 Chapter 4 Variable Precision Arithmetic Units for Low Power

the average dynamic power in active mode is given by

Pdyn,av =
CswV 2

dd

NinputTd

(4.9)

where Td represents the critical path delay from inputs to outputs. The estimated dy-

namic power using this approach is within 10% of the estimated value using SPICE

simulations. An example is given in Table 4.6. This routine was realized in Tcl using

PrimeTime Static Timing Analysis tool. Even with a single processor based analysis, the

time for power estimation reduced by half. Pidle,av was estimated using models proposed

in Section 3.4

SPICE Model

Pdyn,av 197µW 177µW
Pidle,av 62.9µW 63µW

Table 4.6: Comparison of power estimation results between
SPICE simulations and models in 32-bit KS adder.

4.6.4 Energy Savings Example

Consider the active time period T as defined in Section 4.3.2 and a reconfiguration

sequence {32(T1) → 24(T2) → 16(T3) → 8(T4)} where
∑

i

Ti = T and X(Ti) indicates

X-bit precision configuration for time Ti. From Table 4.1, CN1 is in active mode for T1

and sleep mode for T − T1. Similarly for CN2(T2 and T − (T1 + T2)),.. etc. CN4 is ON

for all of T . From Eq. (4.5),

Es =
4

∑

i=1

Pactivei,avTi −
4

∑

i=1

Psleepi,av

(

T −
i

∑

k=1

Tk

)

− 3Ewu − Eiso. (4.10)

Substituting the values of each term from Table 4.4 for BK adder, using Eq. (4.8) and

assuming T = 60µs, Ti = 15µs and Ewu = 1pJ, Eiso = 3.2pJ, we have Es = 28nJ

(36%). For a schedule of {16(30µs) → 8(30µs)}, average energy savings is 13.5nJ (30%).

Typical times for a configuration can range from hundreds of microseconds to several

milliseconds.

4.7 Conclusion

A generic method for the design of power-gated arithmetic circuits based on reconfig-

urable input data widths for dynamically variable-precision arithmetic was proposed in

this chapter. The regularity and unidirectional data flow properties of these circuits

were exploited to derive a simple logic clustering technique. Results of application of

this method to two types of adders indicate that leakage power in unused logic gates

Chapter 4 Variable Precision Arithmetic Units for Low Power 87

may be reduced by a factor of about 8 despite 9% to 15% increase in area and negligible

delay degradation. Substantial savings in dynamic power at lower precisions in power-

gated circuits justifies the use of power gating. The power gating overheads on energy

savings in active mode were indicated to be used as cost function in the design flow of

Fig. 4.1.

Chapter 5

Low Power Reconfigurable Finite

State Machines

5.1 Introduction

A finite state machine (FSM) is an abstract representation of a sequential system that

works in synchronization with a timing reference signal called clock. An FSM specifies

behaviour of the synchronous system in response to its inputs and clock. The system

represented by an FSM can be in one of the finite number of states at any given time.

A realization of FSM involves mapping behavioural representation of its synchronous

system to a network of basic logic gates and storage elements. Modern digital VLSI

systems typically involve complex synchronous systems with large networks of logic gates

and storage devices. Reconfigurable FSMs are sequential systems whose behaviour may

be configured in time.

In this chapter, realizations of reconfigurable FSMs are explored with focus on power

gating as a low power technique. The next section describes models of FSM in their

reconfigurable form. The next-state and output functions that constitute a finite state

machine are defined. Architectures optimized for reconfigurable FSMs are presented in

Section 5.3. The hardware resources required to implement a fully reconfigurable FSM

are derived in terms of its basic parameters. The complexity of the logic involved is

presented from the perspective of reconfigurability of behaviour and scalability of pa-

rameters. Power gating opportunities in the proposed architectures are identified for

operation of FSM in active mode. Section 5.4 shows various optimizations to reduce

logic complexity by supporting only a limited set of reconfigurable FSMs and achieve

aggressive leakage power reduction in active mode. An analysis of power consumption

of power-gated reconfigurable FSMs is presented in Section 5.5. A restricted yet useful

set of well known sequential systems referred to as Linear Sequential Circuits (LSCs)

89

90 Chapter 5 Low Power Reconfigurable Finite State Machines

Figure 5.1: Microtasks with reconfigurable FSMs.

are presented from a reconfigurability viewpoint in Section 5.7 for completeness. Fig-

ure 5.1 shows two sequential circuits, the reconfigurable FSM and LSCs, explored in

this chapter in the context of reconfigurable microtasks. Together, the various reconfig-

urable architectures for FSMs along with those for datapaths, hardwired microtasks and

microcontrollers represent a design space for choice of controllers.

5.2 Reconfigurable Finite State Machines

A realization of finite state machine consists of two networks of combinational logic gates

denoted by two sets of boolean functions F and G and a set of storage elements (registers)

S synchronized by a clock as shown in Fig. 5.2. Let at time unit t, the n primary inputs

to the FSM be denoted by the vector x(t) = [x0(t), x1(t), ..., xn−1(t)], the m outputs of

FSM by y(t) = [y0(t), y1(t), ..., ym−1(t)] and the state vector of N -bit state register by

s(t) = [s0(t), s1(t), ..., sN−1(t)]. A time unit is typically the index of a reference edge of

the clock. The state vector at time unit t+1 is then denoted by s(t+1) and the notation

applies identically to inputs and outputs. In digital logic, since xi(t), yi(t) and si(t) take

values from the set {0,1}, the sets of all inputs, outputs and states consist of 2n, 2m and

2N possible distinct patterns respectively.

Chapter 5 Low Power Reconfigurable Finite State Machines 91

Figure 5.2: Moore and Mealy models of finite state machines.

Let fi denote a boolean function in F and gj denote a boolean function in G. The

set of next-state functions si(t + 1) and output functions yj represented by

si(t + 1) = fi(x(t), s(t)) i = 0, 1, ..., N − 1 (5.1)

yj(t) = gj(s(t)) j = 0, 1, ..., m− 1 (5.2)

denotes a finite state machine of Moore type [17] (Fig. 5.2(a)) and those represented by

si(t + 1) = fi(x(t), s(t)) i = 0, 1, ..., N − 1 (5.3)

yj(t) = gj(x(t), s(t)) j = 0, 1, ..., m− 1 (5.4)

represents a finite state machine of Mealy type [18] (Fig. 5.2(b)). With n + N input

variables for fi, there are a total of N × 22n+N
possible functions in F for N state

registers1. Similarly, the number of possible output functions for each gj is 22N
or 22n+N

depending on whether the FSM is of Moore type or Mealy type respectively. Hence G

can contain a total of m× 22N
or m× 22n+N

functions. The FSM is reconfigurable if the

realization of FSM can be configured to support more than one set of boolean functions

fi and gj across time. The FSM is fully reconfigurable2 if any of the functions in F and

G can be realized across time. Therefore the logic complexity of a fully reconfigurable

FSM is of the order O(2n+N).

1Although 2
2n+N

functions are the same for each state register bit we index each set with the state

register bit so that total number of functions to which next-state logic can be reconfigured is N ×2
2n+N

.
2We use the term full reconfigurability to distinguish from limited reconfigurability as discussed in

Section 5.4.

92 Chapter 5 Low Power Reconfigurable Finite State Machines

5.3 Architectures Optimized for Reconfigurable FSMs

5.3.1 Next-State Functions

Rewriting the next-state function in Eq. (5.1) and Eq. (5.3) as

si(t + 1) = fi(x0, x1, ..., xn−1, s0, s1, ..., sN−1) (5.5)

and expressing Eq. (5.5) in terms of well known Shannon expansion [104] of its variables

gives

si(t + 1) = x′

0fi(0, x1, ..., xn−1, s0, ..., sN−1) + x0fi(1, x1, ..., xn−1, s0, ..., sN−1). (5.6)

The binary operation ‘+’ denotes a logical-OR or disjunction. The logical-AND operation

or conjunction of two variables (or functions) a and b is denoted by ab. Inversion of a

boolean variable a is denoted by a′. By extension to second variable, Eq. (5.6) can be

written as

si(t + 1) = x′

0x
′

1fi(0, 0, ..., xn−1, s0, ..., sN−1) + x′

0x1fi(0, 1, ..., xn−1, s0, ..., sN−1) (5.7)

+x0x
′

1fi(1, 0, ..., xn−1, s0, ..., sN−1) + x0x1fi(1, 1, ..., xn−1, s0, ..., sN−1)

and more generally as

si(t + 1) =
2(n+N−K)

−1
∑

k=0

mkfi(n(mk), ..., sN−1)k. (5.8)

K corresponds to number of variables on which fi(.)k depends after Shannon decom-

position. The minterm generated by first n + N − K input variables of the sequence

xi, ..., si(t + 1) is denoted by mk. For instance m1 = x′

n+N−K−1x
′

n+N−K−2...x0. The

binary pattern vector corresponding to minterm mk is represented by n(mk). Hence

n(m1) = 000...01. For a fixed fi, the function can be realized physically by a mapping

of logic gates but for the FSM to be fully reconfigurable it is necessary to realize fi(.)k

as a lookup table (LUT) which can be reloaded with function values for reconfigura-

tion. Assuming that each fi(.)k can be realized with K-LUTs it can be inferred that the

next-state vector s(t + 1) requires the following resources:

1. N × 2(n+N−K) K-LUTs for N -bit state register,

2. One (n + N −K)-to-2(n+N−K) decoder to generate minterms mk, and

3. N × 2(n+N−K) 2-input AND gates and N , 2(n+N−K)-input OR gates or an equiv-

alent combination.

Chapter 5 Low Power Reconfigurable Finite State Machines 93

Figure 5.3: Next-state function realization for one state-register bit
(N = 6, n = 4,K = 6).

The above expressions are valid for n + N ≥ K. For the case, n + N < K, 2(n+N−K)

must be replaced by 1. A schematic diagram of the architecture is shown in Fig. 5.3 for

one state register bit. It is assumed that the FSM has n = 4 primary inputs and N =

6 state register bits in the figure. The decoder shown in the figure is common for all

state register bits whereas the rest of the logic and memory shown must be replicated

for other state register bits.

5.3.2 Output Functions

Let the set of boolean functions for FSM outputs be denoted by

yl = gl(s0, s1, ..., sN−1) (5.9)

and

yl = gl(x0, x1, ..., xn−1, s0, s1, ..., sN−1) (5.10)

for Moore type and Mealy type of FSMs respectively, where yl, l = 0, 1, ..., m−1, denote

the output variables. Let Kop denote the number of inputs of a Kop-LUT. Writing Eq.

(5.9) similar to Eq. (5.8), we have for the Moore type

yl =











2Ns−1
∑

k=0

mkgl(n(mk), ..., sN−1)k Kop < N (Case 1),

gl(s0, ..., sN−1)k Kop ≥ N (Case 2)

(5.11)

94 Chapter 5 Low Power Reconfigurable Finite State Machines

with Ns = N −Kop and writing Eq. (5.10) similar to Eq. (5.8), we have for the Mealy

type

yl =
2(n+N−K)

−1
∑

k=0

mkgl(n(mk), ..., xn−1, s0, ..., sN−1)k. (5.12)

The resources for FSM outputs in Moore machine can be derived by considering the

number of outputs m as

1. m × 2Ns Kop-LUTs for N -bit state register where Kop = N −Ns (Case 1) and m

Kop-LUTs (Case 2)

2. One (n + N −K)-to-2(n+N−K) decoder shared with next-state functions (Case 1)

and

3. m× 2(n+N−K) 2-input AND gates and N , 2(n+N−K)-input OR gates or an equiv-

alent combination (Case 1).

Figure 5.4: Output function realization in Moore type FSM
(Case 2. N = 6,m = 10,K = 6).

Similarly the outputs in a Mealy FSM require

1. m× 2(n+N−K) K-input LUTs for N -bit state register

2. One (n + N −K)-to-2(n+N−K) decoder and

3. m× 2(n+N−K) 2-input AND gates and N , 2(n+N−K)-input OR gates or an equiv-

alent combination.

The above expressions are valid for n+N ≥ K. For the case, n+N < K, 2(n+N−K) must

be replaced by 1. Schematic diagrams of the architecture for FSM outputs in Moore-type

Chapter 5 Low Power Reconfigurable Finite State Machines 95

Figure 5.5: Output function realization in Mealy type FSM (N = 6,m = 1,K = 6).

and Mealy-type FSMs are shown in Fig. 5.4 and Fig. 5.5. It is assumed that the FSM

has n = 4 primary inputs and N = 6 state register bits in the figures. It should be noted

that there is a requirement of only one decoder in FSMs of Mealy type and Moore type

(Case 2) for all of outputs whereas the rest of the logic and memory structures have to

be replicated for other outputs.

Table 5.1 shows the number of LUTs required for full reconfigurability of next-state

functions for indicated number of inputs and state register bits. The resources required

for reconfigurable logic can be tabulated similarly for output functions of the FSMs.

The parameterization of resources in terms of number of inputs, outputs, state register

bits and LUT sizes forms the basis for finding power-gating opportunities discussed in

Section 5.3.4 and estimating power (and energy) consumption in Section 5.5.

LUTs K = 4 K = 6

N n = 2 n = 3 n = 4 n = 2 n = 3 n = 4

1 1 1 2 1 1 1
2 2 4 8 2 2 2
3 6 12 24 3 3 6
4 16 32 64 4 8 16
5 40 80 160 10 20 40
6 96 192 384 24 48 96
7 224 448 896 56 112 224

Table 5.1: Number of LUTs required for next-state function for
full reconfigurability.

96 Chapter 5 Low Power Reconfigurable Finite State Machines

5.3.3 Configuration Bits for Reconfiguration

A number of implementations exist to realize the scan chain reconfiguration memory

ranging from simple chain of flip-flops or latches to complex SRAM and scan chain

based architectures. Two simple examples based on flip-flops and latches are shown in

Fig. 5.6. In eFPGA, the scan chain shown in Fig. 5.6(b) was used so that the subsequent

configuration could be stored in the flip-flops for negligible overhead in reconfiguration

time. In the proposed architectures the scan chain in Fig. 5.6(a) is used to save leakage

power from an additional register at the expense of reconfiguration latency. The total

Figure 5.6: Scan chain reconfiguration memory of LUTs.

number of configuration bits required for reconfiguration memory for the FSM types

discussed before is given in Table 5.2.

Logic Function and FSM Type Size (bits)

Next-State Functions
N × 2n+N

(Moore and Mealy Types)
Output Function

Moore Type: m× 2N

Mealy Type: m× 2n+N

Table 5.2: Number of configuration bits.

5.3.4 Power Gating Opportunities

Low power optimizations of FSMs have generally included clock gating and FSM parti-

tioning based on state transition probabilities to reduce dynamic power. Various state

encoding schemes have been investigated to reduce logic switching transitions when the

FSM changes its states depending on its current state and primary inputs. In [105, 106]

both techniques have been used along with power gating to reduce dynamic and static

power in fixed FSMs. Shannon decomposition has been widely used in logic synthesis

Chapter 5 Low Power Reconfigurable Finite State Machines 97

algorithms, variable assignment and function mapping for LUTs in FPGAs. Further the

separation of input variables into logical complements gives rise to potential of power

gating one or the other combinational path in a synthesized circuit. This leads to fine-

grained power gating opportunities [107] which is reported to save about 40% of total

power in ISCAS85 benchmark circuits. In reconfigurable circuits, power gating needs

to be explored at a logic cluster level or in other words, at coarse-grain granularity if

benefits are to outweigh costs. This in turn requires careful evaluation of design para-

maters at cluster level. In this work we seek to identify power gating opportunities in

reconfigurable FSMs at a granularity of LUTs or a group of LUTs to reduce leakage

power.

Figure 5.7: Power gating opportunity for active mode energy savings in a
reconfigurable FSM.

In Section 5.2 it was shown that for a fully reconfigurable FSM architecture the

complexity of logic increases exponentially as a function of number of state register bits

and primary inputs. This increases total area of the circuit. When such an expansion

in area is accepted for flexibility and by logic integration metrics, power consumption

due to leakage current becomes a prohibitive factor (Table 3.1). It was shown in the

power gating example of Section 3.3.3 that significant power (and energy) savings result

from power gating when the complete system is in sleep mode. In this section, power

gating opportunities are explored to shut-off power supply to parts of the reconfigurable

FSM with the proposed architecture in active modes of operation. In other words we

take advantage of the fact that parts of the logic circuit may remain in sleep mode in

a particular configuration at a given time. For example, when a reconfigurable FSM

with resources for six state register bits and fifteen outputs is configured with an FSM

of five state register bits and ten outputs, then the logic clusters related to one of the

98 Chapter 5 Low Power Reconfigurable Finite State Machines

state register bits and five outputs may be power-gated to suppress leakage power during

that configuration. It is clear from Fig. 5.3 to Fig. 5.5 that the architecture is highly

regular and the combinational logic of LUTs provide a power gating opportunity. A

typical schematic of the architecture with a power gating opportunity identified is shown

in Fig. 5.7. A single control signal (SLEEP) manages the power-up and power-down

modes of a set of LUTs and associated gates. An isolation cell is inserted between power-

gated domain and always-on logic. In case of the reconfigurable FSM the decoder, control

signals and state register bits lie in the always-on power domain.

Figure 5.8: Power gating opportunity for aggressive active mode energy savings in a
reconfigurable FSM.

Further power gating opportunities have been identified in Fig. 5.8 at the granularity

of a LUT and associated AND gates. This network of sleep transistors requires as many

control signals as the number of LUTs. The power gating operation can be explained as

follows. When the reconfigurable FSM is configured as a particular FSM, its operation

depends on some of the primary inputs that possibly vary slowly and therefore, depending

on the values of those inputs all but one of the minterms evaluate to logic 0. It is also

possible that some of the primary inputs are unused for certain state register bits in

which case the corresponding minterms always evaluate to 0. In other words some of

the LUTs may remain in power-gated states even in the active modes as long as the

minterm does not change its value which in turn depends on values of primary inputs.

Such decoder outputs can function as control signals (SLEEPk = power_gatei + m′

k in

Fig. 5.8 and Fig. 5.9) to power-gate the respective LUT while also eliminating the need

for a separate controller. This power gating method entails a higher cost in terms of area

due to isolation cells [19] and wakeup overheads like wakeup time and energy [20]. A

Chapter 5 Low Power Reconfigurable Finite State Machines 99

quantitative treatment of energy consumption and energy savings due to power gating

in active and sleep modes of operation of the complete circuit is given in Section 5.5.

Similar power gating schemes with varying granularities can be designed for output

functions. We consider an example of a Moore type of FSM with m = 10 outputs,

number of state register bits N = 8 and LUT input size Kop = 6. This corresponds to

Case 1 in Eq. 5.11. A schematic of the intended architecture for one output is shown in

Fig. 5.9. It should be noted that Kop < N and therefore N −Kop state register bits have

been borrowed as inputs to the decoder in the same architecture for power gating as for

next-state functions.

Figure 5.9: Power gating opportunity for aggressive active mode energy savings in
reconfigurable FSM output logic.

5.3.5 Observations on Power-Gated Architectures

A key observation on the architectures with power gating at LUT level of granularity

proposed above is that at any time instant only one LUT per state register bit and output

is active while the rest are in sleep mode. In other words the total power consumption

at any given time depends on only N + m LUTs and associated logic irrespective of

exponential dependency of number of LUTs on number of inputs or decoder outputs.

The additional sources of power dissipation are static power of configuration bits and

isolation cells.

It should be noted that for every change in inputs to the decoder the active minterm

changes and hence all LUTs but the one associated with this minterm is turned off.

Hence a change in inputs poses an overhead in terms of wakeup time and wakeup energy.

100 Chapter 5 Low Power Reconfigurable Finite State Machines

Energy savings will result if the inputs change at a lower frequency so as to offset the

wakeup energy overhead. Further, for FSMs whose number of state registers and outputs

are less than the maximum possible with the architecture, the unmapped LUTs can

be completely powered-off to reduce static power dissipation. These observations are

quantified in Section 5.5.

5.4 Limited Reconfigurability in FSMs

5.4.1 Motivation

It was seen in Section 5.2 that the logic complexity increases exponentially with the

number of primary inputs and state register bits. As the number of inputs (primary

inputs and current state register bits) of a next-state function increased the number

of minterms required to be ANDed with LUT outputs increased and consequently the

number of LUTs also increases. In reality however multiple boolean functions in an FSM

realization may be dependent on same number of inputs but the inputs themselves may

be different. Hence it is very likely that the number of required minterms may be much

less than the total number of minterms required for full reconfigurability. In other words,

if for a class of FSMs, the minterms mk in the Shannon decomposition evaluate to logic 0

due to primary inputs or state register bits, then the conjunction mkfi(.)k is not required

to be evaluated, thus eliminating need for LUT or the minterm itself. The realization

then reduces to having LUTs whose fi may evaluate to logic 1 and those minterms that

are required for conjunction with fi. This reduces to the problem of selecting only those

inputs whose minterms are required for each boolean function (next-state or output

function).

Example 1: Consider a boolean function of four variables x0, x1, x2, x3 given by

f = x′

0x
′

1x
′

2x
′

3 + x0x
′

1x2x
′

3 + x0x1x2x
′

3 + x′

0x
′

1x2x3. (5.13)

Using Shannon’s expansion Eq. (5.13) can be written as

f = x′

0x
′

1(x3) + x0x
′

1(x2x
′

3) + x′

0x1(0) + x0x1(x2x
′

3). (5.14)

It is clear that the LUT associated with minterm x′

0x1 does not influence the value of

the function f . Therefore the LUT may be used in conjunction with another minterm.

Next consider a scenario (e.g., a different configuration) with x0 = 0 always. In other

words, in a different configuration f does not depend on variable x0. Clearly although

the minterms x′

0x
′

1 and x′

0x1 may evaluate to 1 depending on x1, the output of LUTs

associated with minterms x0x1 and x0x
′

1 does not affect the value of f . Therefore, in both

Chapter 5 Low Power Reconfigurable Finite State Machines 101

scenarios, either the associated LUTs may be power-gated or the concerned minterms

can be avoided for conjunction.

Example 2: Three FSMs with different parameter level specifications are given in

Table 5.3. We assume 6-LUTs being used for realization of the FSM. The entries in third

column of the table indicates the following: in the example FSM of firBasic the state

register function s0(t+1) has a fanin of three primary inputs x0, x1, x2 and a fanin of seven

state register bits s0, ..., s6. Assuming that the inputs of associated LUTs are s0, ..., s5,

the 16 minterms for full reconfigurability are given by s6, x0, x1, x2. Similarly, s3(t + 1)

has no fanin of primary inputs but a fanin of seven state register bits s0, ..., s6. The

realization of s3(t+1) would then require only two minterms generated by s6. Inferences

may be made on the same lines for other example FSMs and fanin properties of state

registers and outputs. In order that the three FSMs be supported by the reconfigurable

architecture the specification corresponding to maximum number of resources needs to

be identified for each state register bit and output. Once the resources are identified, a

power gating schedule may be derived.

The maximum number of minterms required for each state register bit is given by

FSM N n for each si(t + 1) N for each si(t + 1) [m, Fanin of yl]

firBasic 7 (3,3,3,0,0,0,0) (7,7,7,7,7,7,7) (21,7)
Crc16 7 (4,4,4,0,0,3,0) (7,7,7,7,7,7,7) (17,7)

receiveData 6 (3,3,0,0,0,0) (6,6,6,6,6,6) (23,6)

Table 5.3: Limited reconfigurability examples

{s0(32), s1(32), s2(32), s3(2), s4(2), s5(16), s6(2)} where si(P) denotes that for the

function si(t + 1), P minterms are required. Similarly, for each of the outputs yj(Q)

j = 0, 1, ..., 22, Q = 2 for a Moore type of FSM. This in turn decides LUTs, decoder,

memory and power gating resources for the reconfigurable FSM that supports limited

number of FSMs. In other words a tradeoff is derived between implementations of most

likely FSMs and flexibility of fully reconfigurable FSMs. While this tradeoff reduces the

number of LUTs and hence power-gated logic clusters, it introduces input selector logic

for each next-state function in a Moore type FSM.

5.4.2 Input Selector-Decoder Design and Overheads

The example described above represents a top-level resources identification method when

specifications of a set of FSMs are given at a parameter level. This procedure may be

utilized for microtask generation given a task flow graph where control flow in tasks

are treated as FSMs. In this section a reconfigurable FSM architecture for control of

datapath in a microtask is derived for a limited reconfigurability specification. In the

context of limited reconfigurability the primary inputs are denoted by nI and the number

of outputs of the input selector by n. We fix the number of state registers N = 7 and

102 Chapter 5 Low Power Reconfigurable Finite State Machines

number of primary inputs nI = 5 as an example for discussion and consider a scenario

where the next-state functions depend on only three inputs but not identically. Therefore

the number of minterms required for conjunction would be 8 reducing the number of LUTs

per state register bit. Similarly the outputs are fixed at m = 23. We consider a Moore

type of FSM. The objective of this section, along with Section 5.5, is to show scalability

of architecture from limited reconfigurability with an upper bound of specifications to

full reconfigurability, both in terms of implementation and power estimation.

Figure 5.10: Input selector-decoder logic to select minterms of dependent inputs.

A cascade of 5-to-3 input selector and 3-to-8 decoder with eight minterms as outputs

is shown in Fig. 5.10. The purpose of this circuit is to select only eight minterms for

eight LUTs per next-state function or output function. The input selector is able to route

three out of five inputs to any of the three outputs to have eight minterm outputs from

the decoder. Clearly only next-state functions that have minterms that may evaluate

to 1 and can be chosen by the limited selection available can be implemented by the

reconfigurable FSM. Additionally for this specification a next-state function may have

no more than eight minterms that can evaluate to logic 1 to be implementable by the

proposed reconfigurable FSM. One such cascade of input selector and decoder cascade

is required per state register bit while the number of LUTs can be reduced by 75%

compared to full reconfigurability FSM and also have the same level of granularity in

power gating.

The output functions also require (N − Kop)-to-2N−Kop decoders when N > Kop

(Moore type of FSM, Case 2) and (n+N −Kop)-to-2n+N−Kop decoders when (N +n) >

Kop (Mealy type of FSM).

5.4.3 Overall Architecture

The overall architecture for a power-gated reconfigurable FSM is shown in a schematic

form in Fig. 5.11. It can be inferred that the architecture is regular and scalable based

Chapter 5 Low Power Reconfigurable Finite State Machines 103

on the parameters discussed in the previous sections. Three distinct advantages result

Figure 5.11: Schematic diagram of the overall architecture of scalable power-gated
reconfigurable FSM.

with the proposed architecture when compared to the homogeneous reconfigurable array

based FSM described in Chapter 2.

1. The complexity of routing required for each boolean function implemented is con-

siderably reduced as the switches are localized to input selector-decoder cascade.

This results in better utilization of hardware area.

2. The unused LUT logic at any time is always power-gated thus resulting in power

savings. The power gating network is similar for all LUTs resulting in scalability of

sleep transistor networks. In the homogeneous array of CLBs, optimal location of

sleep transistor networks cannot be decided for a configuration as it is solely based

on mapping of resources.

3. There is better control over functional mapping of FSM to resources available.

This also leads to development of simpler mapping tools and FSM partitioning

techniques.

104 Chapter 5 Low Power Reconfigurable Finite State Machines

5.5 Power Estimation in Reconfigurable FSMs

In order to estimate power consumption in power-gated FSMs with limited reconfigura-

bility we use the method followed in Section 2.5. The basic units of the architecture

are identified and are characterized for various parameters like static power, average dy-

namic energy, design parameters of power-gated circuits, etc. The configuration bits,

LUT logic with AND gates, input selector-decoder cascade, isolation cells and OR logic,

and state register bit form the basic units of architecture apart from the sleep transistor.

They are then used to estimate power consumption of the FSM. The total average power

consumption of the power-gated architecture for a particular mapping of FSM is given

by

Ptotal,FSM = (NFSM + mFSM)Pstatic,LUT + NCBPstatic,CB +

2N (NFSM2n−K + mFSM2−Kop)Pstatic,iso +

NFSM (Pstatic,IPD + Pstatic,SR) +

NFSMEdyn,IPDfinp,av + (NFSM + mFSM)(Ewu + Edyn,LUT)finp,av (5.15)

where NFSM and mFSM are number of mapped state register bits and outputs, NCB

denotes the total number of configuration bits, Pstatic,LUT , Pstatic,CB, Pstatic,SR, Pstatic,iso

and Pstatic,IPD denote the static power of K-LUT loigc, a configuration bit register, state

register bit, isolation cell and input selector-decoder respectively. Further, Edyn,LUT and

Edyn,IPD represent the average dynamic energy components of LUT logic and input

selector-decoder due to changes in inputs. Here both state register bits and primary

inputs are combined and an average activity factor for transitions is assumed by means

of finp,av, the average rate of change of inputs. Since there may be a wakeup transition

of at most one per state register bit and output, we consider the worst case with wakeup

transition for all state register bits and outputs to account for wakeup energy Ewu.

Equation (5.15) can be rewritten to show scalability in power estimation relative to high

level parameters of the FSM defined in Section 5.2 as below:

Ptotal,FSM = NFSM [Pstatic,LUT + Pstatic,IPD + Pstatic,SR + 2n+N−KPstatic,iso +

(Ewu + Edyn,LUT)finp,av] + NCBPstatic,CB

+mFSM [Pstatic,LUT + 2N−KopPstatic,iso + (Ewu + Edyn,LUT)finp,av]. (5.16)

In this estimation, the dynamic power due to reconfiguration is not considered as it is

assumed that the time span of each configuration is long enough to ignore the contribution

of energy consumption due to reconfiguration compared to other components. Further

energy due to capacitances of routed interconnect lines normally estimated at the physical

design level have been ignored. Unlike in the architecture of eFPGA, the changes in logic

Chapter 5 Low Power Reconfigurable Finite State Machines 105

levels due to function evaluation are not propagated along such long interconnects within

a single configuration time unit. In the architectures proposed the interconnect routing is

localized to a regular and small area and 87% of the logic and consequently the connected

wires is power-gated at any given time. Hence the contribution of wire capacitances to

dynamic power is negligible, which is a clear advantage with respect to FPGA-based

solutions.

5.5.1 Characterization of LUTs, Input Selector and Decoders

We consider a 6-LUT for lookup table implementations in reconfigurable FSM [108].

The combinational logic of 6-LUT is synthesized with a set {nand2, nor2, xor2, ivx4}

of gates without loss of generality and their areas and path delay are determined. Since

the configuration bits are in the always-on power domain, they are considered separately

from the LUT logic even though they form inputs to the LUT logic. The leakage power

is determined at Vdd = 1.0V by applying the polynomial model in Section 3.4 and

taking into account the value at each input of constituent logic gates. The various

design parameters of power-gated circuits are also determined from the gate level models

presented in Chapter 3. Switching energy for a single LUT is determined by applying

10000 sets of random inputs and computing the average total switched load for one input

set at a supply voltage of 1.0V as

EdynLUT
=

Vddr1

Ninput

Ninput
∑

i=1

Cswi,LUT (5.17)

where Cswi,LUT is the total switched capacitance of the LUT per input set and r1 is

the steady state Virtual-Vdd as obtained from Eq. (3.17). The parameters are listed in

Table 5.4.

Similar estimation of parameters for decoders of several sizes and input selector-

decoder logic is shown in Table 5.5. Since decoders and input selector logic lie in the

always-on power domain the design parameters related to power-gated circuits are not

determined.

5.5.2 Static Power in State Register, Configuration Bits and Isolation

Cells

For N state registers the total leakage power is simply NFSMPstatic,SR. Similarly for

the number of configuration bits NCB as determined from Table 5.2, the static power

consumption is given by NCBPstatic,CB. The nominal leakage power of one such flip-flop

from power-optimized Family B (cf. Chapter 2, Section 2.5.2) cells has been determined

to be 2.185nW at Vdd = 1.0V and 100◦C. The area of a register is 7.8µm2. The static

106 Chapter 5 Low Power Reconfigurable Finite State Machines

Power-Gated K-LUT Value Value
Parameter K=4 K=6

Area 94.6µm2 354.6µm2

Pstatic(Vdd = 1V) 3.48µW 12.56µW
Average Switching Energy per 0.017pJ 0.059pJ

State or Input Transition
Sleep Transistor Width (W) 0.54µm 12µm 0.54µm 12µm
Steady State Virtual-Vdd(r1) 994mV 999mV 980mV 998mV

Vsleep(150ns) 15mV 14.1mV 21mV 15mV
Vsleep(500ns) 10mV 10.6mV 10.6mV 10.6mV
Ileak(150ns) 20.45nA 15nA 169nA 72nA
Ileak(500ns) 0.08pA 0.03pA 5.3pA 0.25pA

Wakeup Time Twu 1.26ns 0.06ns 4.8ns 0.23ns
Wakeup Energy Ewu 0.09pJ 0.09pJ 0.28pJ 0.28pJ

Table 5.4: K-LUT parameters for power estimation (K=4, K=6).

Decoder Area (µm2) Pleak(µW) Edyn,IPD (fJ) td (ns)

2 to 4 11.4 0.489 1.555 0.04
3 to 8 35.87 1.278 7.068 0.16
4 to 16 56.16 1.644 7.893 0.15
5 to 32 112.32 2.852 12.063 0.22
6 to 64 202.28 4.361 14.664 0.36

Table 5.5: Area, leakage power consumption (Pleak), switching energy (Esw) and
critical Path (td) comparisons against decoders of different sizes.

Area (µm2) Pleak(µW) Edyn,IPD (pJ) td (ns)

5 × 4 to 16 226 7.97 0.051 0.45

Table 5.6: Input selector-decoder logic.

FSM NFSM n m

abs 5 3 9
Crc8 6 3 16

receiveData 6 3 23
Crc16 7 4 19

firBasic 7 3 21

Table 5.7: Parameter level specifications of FSMs.

power of an isolation cell in the standard cell library is similarly determined to be 1.482nW

at Vdd=1.0V. The area of an isolation cell as obtained from the library is 2.6µm2

5.5.3 An Analysis of Power Estimation

The different components of power and energy consumption in the power-gated archi-

tectures proposed for reconfigurable FSMs are obtained as described above for FSM

Chapter 5 Low Power Reconfigurable Finite State Machines 107

examples in Table 5.7 as in the case of eFPGA (Table 2.5) and are presented in Ta-

ble 5.8 to Table 5.10. Two examples of circuits with limited reconfigurability are taken

by varying number of inputs and hence number of LUTs per next-state function. It

should be noted that in the former case the FSM example Crc16 is not implementable.

However in both cases that static power and average dynamic energy in active mode

depends on only one LUT per next-state function and ouput function irrespective of

increase in area. The contribution of isolation cells and input selector-decoder logic to

static power and dynamic energy is negligible compared to other sources of power and

energy consumption.

FSM Pstatic,FSM

Specification (µW)

N = 7, n = 3, m = 23 CB and SRa LUT Logic
Input Selector-

Isolation Cells
Decoder

abs 13.88 175.84 42.14 0.15
Crc8 13.88 276.32 42.14 0.15

receiveData 13.88 364.24 42.14 0.15
firBasic 13.88 351.68 42.14 0.15

ausing power optimized registers

Table 5.8: Static power in power-gated FSM architecture with limited
reconfigurability (N = 7, nI = 3,m = 23).

FSM Pstatic,FSM

Specification (µW)

N = 7, n = 4, m = 23 CB and SRa LUT Logic
Input Selector-

Isolation Cells
Decoder Logic

abs 21.68 175.84 55.72 0.23
Crc8 21.68 276.32 55.72 0.23

receiveData 21.68 364.24 55.72 0.23
Crc16 21.68 326.56 55.72 0.23

firBasic 21.68 351.68 55.72 0.23

ausing power optimized registers

Table 5.9: Static power in power-gated FSM architecture with limited
reconfigurability (N = 7, nI = 4,m = 23)

An estimate of total power dissipation and energy consumption per operation for

each FSM is computed at two frequencies (fclk) of 20 MHz and 100 MHz and given in

Table 5.11. In this analysis a pessimistic assumption of finp,av = fclk is made. The total

average power is determined as

Ptotal,FSM = Pstatic,FSM + Edyn,FSMfclk (5.18)

108 Chapter 5 Low Power Reconfigurable Finite State Machines

FSM Edyn,FSM

Specification (pJ)

N = 7, n = 4, m = 23 LUT Logic
Input Selector- Wakeup
Decoder Logic Energy

abs 0.826 0.255 3.92
Crc8 1.298 0.306 6.16

receiveData 1.711 0.306 8.12
Crc16 1.534 0.357 7.28

firBasic 1.652 0.357 7.84

Table 5.10: Dynamic energy estimation in power-gated reconfigurable
FSM architecture

and the total average energy consumption per operation (clock cycle) is obtained from

Eop,FSM =
Pstatic,FSM

fclk

+ Edyn,FSM . (5.19)

A comparison with an optimistic power estimation in eFPGA given in Table 2.6 shows

that the total power for mapped FSMs is significantly lesser with optimized and power-

gated architectures. As an example, for ‘firBasic’ the estimated power is about 13.29mW

on an eFPGA architecture with optimistic assumptions whereas it is about 1.4mW with

the proposed power-gated reconfigurable architecture at an operating clock frequency of

100 MHz.

Total Power of FSM (mW) Energy per Operation (pJ)
fclk = 20 MHz fclk = 100 MHz fclk = 20 MHz fclk = 100 MHz

abs 0.35 0.75 17.76 7.54 (7.92)a

Crc8 0.51 1.13 25.46 11.30 (11.45)
receiveData 0.64 1.46 32.23 14.56 (14.54)

Crc16 0.59 1.32 29.38 13.21 (13.22)
firBasic 0.63 1.41 31.31 14.14 (14.10)

aScaled estimates from SPICE simulations

Table 5.11: Total average power and energy per operation for FSMs on
power-gated architecture

5.5.4 Experimental Setup and Validation

In Section 5.5.3, power and energy in FSMs mapped onto reconfigurable architectures

were estimated using gate-level and cell-level characterizations of basic architectural units

described before. By integrating models for design parameters in power-gated circuits,

the method provides a way to estimate power (and energy) in both always-on and power-

gated parts of the overall architecture in a unified way rapidly. Except for a simple char-

acterization of average energy per operation in a 6-LUT, the power estimation method

was essentially spatial in nature so that Eq. (5.16) could be used. Power estimation in

Chapter 5 Low Power Reconfigurable Finite State Machines 109

the reconfigurable FSM using a fully temporal approach would require significantly long

circuit simulation times as the number of nodes in the complete logic circuit increase

exponentially with basic parameters. Hence, a spatio-temporal approach involving tran-

sistor level simulations of architectural components using a commercial circuit simulator

is followed here.

Figure 5.12: An architectural module of overall power-gated reconfigurable FSM used
in experimental validation.

The gate-level netlists along with sleep transistor network are converted into a

transistor-level schematic and a transient analysis is performed using Eldo circuit simula-

tor and BSIM4 SPICE models provided by the 65nm technology library. A power profile

is obtained by simulation of an architectural unit for one next-state function shown in

Fig. 5.12. The configuration bit registers are loaded with arbitrary data in scan chain

fashion in the first part of simulation. In the second part, present-state inputs to LUTs

and primary inputs to the decoder are applied at a clock period of 10ns. This represents

FSM operation at a clock frequency fclk = 100MHz.

To determine average power and total energy consumption over the period of tran-

sient analysis, the current drawn from supply nodes for always-on power domain and

power-gated domains are determined. Hence average energy per input pattern (or oper-

ation) is obtained. The total current drawn in the two domains at any instant of time

includes all sources of energy consumption viz., charging current, short circuit current

and leakage currents. The estimates obtained from a temporal analysis for one architec-

tural unit is scaled by the number of such units determined by the top-level parameters

of FSM to be implemented with the reconfigurable fabric leading to the spatio-temporal

110 Chapter 5 Low Power Reconfigurable Finite State Machines

approach discussed above. Further the evolution of virtual supply voltage for each of

the power-gated clusters (VV dd0 to VV dd15 in Fig. 5.12) as they transition through sleep

- wakeup - active modes of operation is shown in Fig. 5.13. From the figure it can be

verified that at any given time only one of the LUT logic clusters is in active mode of

operation.

5.5.5 Sources of Errors in Power Estimation

The results of SPICE level simulations as scaled for each FSM is given in Table 5.11. It

should be noted that power estimation in both approaches is pessimistic unlike a fully

temporal approach because the correlation in power dissipation due to state transitions

described by the FSM is not considered. Also, short circuit currents due to switching

of outputs of CMOS logic gates described in Eq. (1.3) are not considered in the first

approach based on models. Provided that the transition times of inputs and outputs

of a logic gate are balanced, the dynamic power due to short circuit currents is found

to be within 10%-15% of dynamic power due to charging and discharging of capacitive

nodes [24]. Further variations in estimation of wakeup energy for an arbitrary power-

gated cluster as shown in Table 3.9 can have an impact on determination of energy per

operation metric for the overall architecture and needs to be addressed further.

5.5.6 Effects of Wakeup Overheads and Performance-Power Trade-offs

An important objective of using a lower technology node is to gain hardware integra-

tion area for more flexibility (or functions) and higher performance. Since this entails

increased leakage power, a trade-off needs to be derived. In nodes that rely on energy

harvesting partially or completely, performance must be traded for lower power by re-

ducing fclk and addressing Pstatic,FSM while in nodes where energy efficiency or battery

lifetimes are important, higher clock speeds and eventual shutdown of logic into sleep

mode is an appropriate choice. This leads to determination of maximum clock frequency

supported by the logic circuit. In the architectures proposed above, the critical path for

FSM clock is given by

Tclk = TLUT + TIPD + Twu + Tiso + Tsu (5.20)

where Tclk denotes the minimum clock period, TLUT , TIPD, Tiso, Twu and Tsu represent

logic delay in LUT, input selector-decoder logic, isolation cell and setup time of the

state register respectively. For logic clusters of small sizes and adequately sized sleep

transistors Twu can be made small. Also, each next-state function output is delayed by

an amount equal to wakeup time of LUT logic cluster and represents a latency in terms

of clock cycles.

Chapter 5 Low Power Reconfigurable Finite State Machines 111

32.2 32.4 32.6 32.8 33 33.2 33.4 33.6
−0.5

0

0.5

1

Time (µs)

V
V

d
d

0
 (

V
)

32.2 32.4 32.6 32.8 33 33.2 33.4 33.6
−0.5

0

0.5

1

1.5

Time (µs)

V
V

d
d

1
 (

V
)

32.2 32.4 32.6 32.8 33 33.2 33.4 33.6
−0.5

0

0.5

1

Time (µs)

V
V

d
d

2
 (

V
)

32.2 32.4 32.6 32.8 33 33.2 33.4 33.6
−0.5

0

0.5

1

Time (µs)

V
V

d
d

3
 (

V
)

32.2 32.4 32.6 32.8 33 33.2 33.4 33.6
−0.5

0

0.5

1

1.5

Time (µs)

V
V

d
d

4
 (

V
)

32.2 32.4 32.6 32.8 33 33.2 33.4 33.6
−0.5

0

0.5

1

1.5

Time (µs)

V
V

d
d

5
 (

V
)

32.2 32.4 32.6 32.8 33 33.2 33.4 33.6
−0.5

0

0.5

1

Time (µs)

V
V

d
d

6
 (

V
)

32.2 32.4 32.6 32.8 33 33.2 33.4 33.6
−0.5

0

0.5

1

Time (µs)

V
V

d
d

7
 (

V
)

32.2 32.4 32.6 32.8 33 33.2 33.4 33.6
−0.5

0

0.5

1

1.5

Time (µs)

V
V

d
d

8
 (

V
)

32.2 32.4 32.6 32.8 33 33.2 33.4 33.6
−0.5

0

0.5

1

Time (µs)

V
V

d
d

9
 (

V
)

32.2 32.4 32.6 32.8 33 33.2 33.4 33.6
−0.5

0

0.5

1

Time (µs)

V
V

d
d

1
0
 (

V
)

32.2 32.4 32.6 32.8 33 33.2 33.4 33.6
−0.5

0

0.5

1

Time (µs)

V
V

d
d

1
1
 (

V
)

32.2 32.4 32.6 32.8 33 33.2 33.4 33.6
−0.5

0

0.5

1

Time (µs)

V
V

d
d

1
2
 (

V
)

32.2 32.4 32.6 32.8 33 33.2 33.4 33.6
−0.5

0

0.5

1

1.5

Time (µs)

V
V

d
d

1
3
 (

V
)

32.2 32.4 32.6 32.8 33 33.2 33.4 33.6
0

0.2

0.4

0.6

0.8

1

Time (µs)

V
V

d
d

1
4
 (

V
)

32.2 32.4 32.6 32.8 33 33.2 33.4 33.6
−0.5

0

0.5

1

Time (µs)

V
V

d
d

1
5
 (

V
)

Figure 5.13: Snapshot of Virtual-Vdd nodes of 16 LUT logic clusters from SPICE
simulations for random input data at 100 MHz.

112 Chapter 5 Low Power Reconfigurable Finite State Machines

An important aspect of the proposed architectures that take advantage of aggressive

power gating in active mode is the wakeup energy due to sleep-to-active mode transition

as inputs change. Any change in the inputs will cause a change in one of the minterms

leading to wakeup of only one LUT logic cluster. Even so, frequent changes in inputs

causes an increased wakeup energy overhead. It can be inferred from Table 5.10 and

Table 5.11 that at a high frequency of operation, upto 39% of energy consumed per

operation is for wakeup transition. Power gating is useful when the overhead incurred

due to wakeup energy is less than the achievable energy savings due to power gating.

Clearly this puts a limit on the frequency of changes in the inputs. Wakeup energy

can be reduced by reducing the size of clusters. In the proposed architectures, the size

of the LUT may be reduced leading to power gating at a finer granularity. Smaller

clusters also require sleep transistors of smaller sizes. However this increases the number

of power-gated clusters as also increasing the size of input selector-decoder block and

hence TIPD and Pstatic,IPD, but decreasing Twu. In the proposed power-gating scheme

the input selector-decoder block can be seen as an active mode power gating controller.

Thus the granularity of power gating determines energy and delay trade-off. Clustering

the LUT logic can then be seen as an optimization problem as described in Sections 3.4.6

and 3.4.7. We point out here that the models proposed in Section 3.4 are useful for fast

estimation and have been used here.

5.6 Cost of Area

The power-gated architectures for reconfigurable FSMs had a bias for power reduction

and therefore an expansion in area was allowed for maximum parallelism in evaluation

of Shannon expansion functions. This also ensured that wakeup energy is restricted to

one LUT per state register bit and output function. Area estimation is important to

compare with alternate realizations of FSMs and its realization in advanced technology

nodes. To estimate the total area the method used for power estimation is followed. The

area of the basic components of the architecture are determined by actual design with

standard cells from the library. Table 5.12 gives the area of individual blocks for Moore

type of FSM with N=7, nI=5, n=4 and m=23.

Reconfig. FSM Architecture Component Area (µm2)

Configuration bits and State Registers 79578.3
LUT Logic and Associated Gates 56026.8

Input Selector-Decoder 1582
Isolation Cells 410.8

Sleep Transistor Area 113.76

Total Area 137710.8

Table 5.12: Area of power-gated reconfigurable FSM

Chapter 5 Low Power Reconfigurable Finite State Machines 113

5.7 Linear Sequential Circuits

In Section 5.2, finite state machines were specified by two sets of functions viz., next-

state functions and output functions of variables on which boolean algebra applied. Each

boolean variable was assumed to take values from the set {0,1} and the functions were

obtained by means of finite number of binary operations, conjunction (logical-AND) and

disjunction (logical-OR), and an unary operation complement (inversion) of the boolean

variables. The functions were realized physically by digital logic gates whose behaviours

could be specified by boolean algebraic functions. In this section we consider a class

of sequential circuits where input, output and state variables take values from the field

GF (2) and the vectors s(t) ∈ GF (2N), x(t) ∈ GF (2n) and y(t) ∈ GF (2m). Any

extension field GF (2p) is a vector space of dimension p over field GF (2). If the next-

state functions and output functions can be denoted as linear transformations given by

the mappings s(t + 1) : GF (2N)×GF (2n) → GF (2N) and y(t) : GF (2N)×GF (2n) →
GF (2m) or y(t) : GF (2N) → GF (2m) the two sets of functions can be written as [109,

110]

si(t + 1) =
N−1
∑

j=0

aijsj(t) +
n−1
∑

j=0

bijxj(t) (5.21)



















yi(t) =
N−1
∑

j=0
cijsj(t) +

n−1
∑

j=0
dijxj(t) (Mealy Type)

yi(t) =
N−1
∑

j=0
cijsj(t) (Moore Type)

(5.22)

where aij , bij , cij , dij ∈ GF (2) and the binary operation + denotes addition modulo 2 and

products of the form aijsj(t) denotes multiplication modulo 2 of sj(t) by constant aij ∈
GF (2). In this section, the operation + is equivalent to logical exclusive-OR (XOR)3

whereas the product ab is equivalent to logical-AND boolean operation. We choose

to use this convention consistent with the existing literature. The sequential circuits

represented by Eq. (5.21) and Eq. (5.22) are referred to as Linear Sequential Circuits

(LSCs). The theory of linear sequential circuits has foundations in Linear Algebra and

Matrix Theory. Since our primary interest is in physical realizations of LSCs, we do

not describe connections between vector spaces and boolean algebra as used here and in

Section 5.2. Some of the original work can be found in [111, 112]. The two equations

Eq. (5.21) and Eq. (5.22) can be written in matrix form as

s(t + 1) = As(t) + Bx(t) (5.23)







y(t) = Cs(t) + Dx(t) (Mealy Type)

y(t) = Cs(t) (Moore Type)
(5.24)

3It should be noted that + in Section 5.2 denoted logical-OR.

114 Chapter 5 Low Power Reconfigurable Finite State Machines

where the size of state transition matrix A is N×N and the size of B is N×n. Similarly

the sizes of matrices C and D are given by m×N and m× n respectively.

Figure 5.14: Basic logic structures to evaluate partial matrix multiplications in
Eq. (5.23).

The next-state and output functions in Eq. (5.21) and Eq. (5.22) can be realized

with simple XOR and AND gates if it is assumed that the entries of the matrices are

a part of configuration scan chain of size N2 + N(n + m) for Moore type of LSCs and

N2+N(n+m)+mn for Mealy type of LSCs. No power gating is proposed to be employed

at a fine granularity of gate level. The basic logic structures for realizations of next-state

functions in a LSC are shown in Fig. 5.14 for N = 5 and n = 3. An architectural

schematic for next-state vector is given in Fig. 5.15. Similar architectures can be derived

for output functions of both Moore and Mealy models. The number of 2-input AND

gates and XOR gates required to realize the direct form of equations (5.21) and (5.22)

can be trivially determined to be N2 +N(n+m) and N2 +(m+n−2)N−1 respectively.

Table 5.13 gives the resources required to implement an LSC and an estimate of area

and power.

LSCs have applications in error control coding, pseudorandom number generation,

polynomial arithmetic and design of counters. Two of these examples namely, CRC

encoder/decoder and counters to realize ‘wait’ states, were identified in microtasks con-

sidered in previous sections. However, further work is required to identify potential

applications of LSCs and use them in the context of microtask-based controllers in WSN

nodes.

Chapter 5 Low Power Reconfigurable Finite State Machines 115

Figure 5.15: Schematic for next-state function in a linear sequential circuit.

N=7, n=4, m=23
#

Area Static Power
Resources (µm2)

Matrix Entries
238 1856.4 520nW

(Configuration Bits)a

AND, XOR Gates 468 1695.2 153.41µW
State Register Bitsa 7 72.8 0.595nW

Total 3624.4 154µW

ausing power optimized registers

Table 5.13: Resources required for LSC and its area and static power estimates.

5.8 Conclusion

Architectures for reconfigurable finite state machines that were optimized based on Shan-

non decomposition of next-state and output functions of FSMs were presented in this

116 Chapter 5 Low Power Reconfigurable Finite State Machines

chapter. Power gating opportunities were explored and limited reconfigurability archi-

tectures with power consumption significantly less than that of eFPGA were presented.

It was noted that the architectures are easily scalable and have a static and dynamic

power consumption of only one LUT logic per next-state function and output irrespec-

tive of the total number of LUTs required for the reconfigurable FSM. Also, aggressive

leakage reduction in active mode could be achieved by power gating without the need of

a separate power gating controller. From characterizations of basic blocks of the archi-

tecture, it was inferred that the static power of configuration bit and wakeup energy of

power-gated clusters are critical in achieving overall power and energy savings. Finally a

brief discussion of linear sequential circuits for a class of FSMs that can be linearized was

presented. A key aspect to be addressed is the extent to which FSMs for reconfigurable

microtasks can be linearized.

Chapter 6

Conclusions and Perspectives

6.1 Overview

In this thesis, reconfigurable hardware was explored to introduce flexibility in microtask

based controllers for WSN nodes. General reconfigurable systems like FPGAs are beset

with high power (and energy) consumption problems due to interconnection networks.

Switching and long routing networks are primarily responsible for poor area utilization

in FPGAs. They are also not amenable to low power techniques like coarse grain power

gating to reduce leakage power. A common thread in our exploration of reconfigurable

architectures for low power was to identify and power-gate unused logic for aggressive

leakage power savings in active mode of operation. In reconfigurable FSMs, the logic

structure was exploited to keep the complexity of interconnections and selector logic to

the minimum required. The architectures are scalable and the modular architectural

units can be easily scaled for larger designs. Power estimation is equally scalable. In

adders for datapath, the essential structure of parallel carry and sum generation was re-

tained across several precisions, but the circuit was partitioned for variability in precision

and power gating unused logic.

Power gating is an invasive technique. The design parameters must be carefully con-

sidered in the design of power-gated circuits. Models were proposed for rapid estimation

of wakeup overheads and certain other parameters of interest at gate level. The models

are helpful especially in an iterative context where the design parameters have to be eval-

uated repeatedly for candidate logic clusters as in an optimization procedure. Models for

design parameters can serve as cost functions in a synthesis engine. While most of the

commercial EDA tools incorporate support for insertion of power gating structures, to

the best of our knowledge there is minimal support for automated exploration of power

gating opportunities.

To conclude, we examine energy efficiency of the proposed power-gated architectures

and control techniques vis-à-vis the cost of flexibility at a microtask level. We highlight

117

118 Chapter 6 Conclusions and Perspectives

some of the limitations and propose ways to address them in future work.

6.2 Energy Efficiency

A metric to measure energy efficiency of different realizations is the energy per instruc-

tion. A comparison between low power microcontroller-based realizations of controllers

and hardwired implementation of microtasks was presented in [1] as part of a previous

work in the CAIRN lab. In order to determine the position of reconfigurable microtasks

in the design space the metric is computed for the microtasks used in this work. We

consider a 16-bit datapath and hence a 16-bit power-gated adder of Chapter 4. The

energy per operation of a microtask Eop,MT is given by

Eop,MT =
1

fclk

(Pstatic,FSM + Pstatic,adder + Pstatic,RF)

+Edyn,FSM + Edyn,adder + Edyn,RF (6.1)

where Pstatic,adder, Pstatic,RF , Edyn,adder, and Edyn,RF represent static power of adder, reg-

ister file and energy per operation of adder and register file respectively. Other quantities

have their usual meanings. The total energy for execution of a task is then

Etask = NstatesEop,MT (6.2)

where Nstates is the number of operations or state transitions required to execute the

task. Then, the equivalent energy per instruction is determined as

Eeff =
Etask

Ninst
. (6.3)

Table 6.1 shows the metric for microtasks under consideration. In this exercise, a register

file of size 16 × 16 has been considered while RAM and ROM blocks are not used. It

can be inferred from the table that the energy efficiency of reconfigurable microtasks in

terms of energy per instruction lies in between that of a low power microcontroller and

hardwired microtask under the stated conditions.

The reconfigurable microtasks considered in this context can function at more than

200 MHz in the 65nm technology node. The operation of microtasks at such a frequency

would reduce the energy per operation but at the same time increase the average power.

For an architecture to evolve towards autonomous function the power demand should be

typically less than 0.1-1mW for a sensor node. In general, average power and energy per

operation can be traded depending on the application.

Chapter 6 Conclusions and Perspectives 119

Microtask

Equivalent Energy per Instruction (pJ/Inst.)
openMSP430 [1]a Reconfigurable 16-bit Hardwired

Microtasksb Microtasks [1]c

Ninst Eeff Nstates Eeff Nstates Eeff

Crc8 30 163 71 31.60 71 8.1
receiveData 66 230 332 83.53 332 15.7

Crc16 27 170 73 41.27 73 9.3
firBasic 58 179 168 46.90 168 26.1

a130nm, @16MHz
b65nm, multiple Vth cells, @100MHz, 16×16 register file, no SRAM
c65nm, std.-Vth cells

Table 6.1: Equivalent energy per instruction in three realizations of
node controllers.

6.3 Cost of Flexibility

A significant cost of flexibility is the increase in area compared to hardwired microtasks.

From a comparison with results in [1] it can be inferred that the increase in area of

a reconfigurable microtask is about 19 times compared to its hardwired counterpart.

Table 6.2 gives a comparison of area estimates of hardwired microtasks, the proposed

reconfigurable microtask, eFPGA-like array with 217 CLBs and openMSP430 microcon-

troller. Increase in area needs to be seen with two viewpoints. In this work, the proposed

architectures are such that any FSM that meets the upper bound of specifications of the

reconfigurable FSM can always be mapped unlike in eFPGA or hardwired microtasks.

Secondly, from a controller’s perspective, several hardwired microtasks may need to be

Microtask
Hardwired Reconfigurable eFPGA (µm2) openMSP-

Microtask [1](µm2) Microtask (µm2) (217 CLBs) 430(µm2)

Crc8 3097

140522.2 1076871 22141
receiveData 2858

Crc16 3102
firBasic 7164

Table 6.2: Comparison of areas of 16-bit hardwired and reconfigurable microtasks.

integrated and controlled by a system monitor to be able to realize a task flow graph.

A WSN application would typically require about 40 to 50 tasks. The total area of a

controller designed using the approach of [46] would be the sum of areas of all microtasks

and associated system monitor and memories. In principle, a reconfigurable microtask

can be used in place of hardwired microtasks by time-multiplexing tasks at the controller

level. The node controller would still require a system monitor for reconfiguration and

overall control. The advantages of power gating are present in both active and standby

modes of operation.

120 Chapter 6 Conclusions and Perspectives

Figure 6.1: Operating and power gating schedules for hardwired microtasks
as proposed in [1].

Figure 6.2: Operating and power gating schedules for reconfigurable microtask.

The operating schedule and power gating schedule for mapped tasks in both scenarios

are shown in Fig. 6.1 and Fig. 6.2 respectively. A constraint to satisfy would be that the

FSM corresponding to a task must meet the specifications of the reconfigurable FSM.

Alternately, the tasks in the task flow graph must be partitioned in such a way that

the related FSMs can always be mapped on to the reconfigurable FSM. A system-level

analysis would be required to examine if it would be feasible. The work described in this

thesis has been restricted to analysis at a microtask level. Further a thorough analysis of

linear sequential circuit implementations from a reconfigurability viewpoint could throw

light on classes of useful FSMs that may be implemented with much lesser complexity.

The objective of technology migration in CMOS SoCs has been to enhance inte-

gration density for more features and higher performance. Therefore an area cost in

one technology node may not be an important cost in more advanced technology nodes.

On the contrary, static power that may not be a serious problem in older technologies

Chapter 6 Conclusions and Perspectives 121

may become important in nanoscale circuits. This guides the priorities for design of

architectures.

6.4 Future Work

6.4.1 Power Efficient Reconfiguration Mechanisms

The primary drawback of LUT-based flexible circuits is the large reconfiguration memory

required to store function values exhaustively. As seen from Table 5.12 it contributes to

highest area. Inspite of power optimized registers used for power estimation, substantial

power (and energy) was attributed to configuration register bits as they must always

remain in ON state. A parallel implementation of the FSM was considered that warranted

a full-length configuration chain. However a useful approach at architecture level is to

investigate alternate reconfiguration mechanisms based on on-chip memories. This would

have a cost with respect to latency and finally on performance as next-state and output

function evaluations have to be pipelined.

6.4.2 Circuit-Level Optimizations

LUT decoding logic contributed to the second highest area in the proposed architectures.

The logic was implemented with CMOS gates. Pass transistors as an alternate logic style

can be studied to implement the logic. It would require less than half the number of MOS

devices as that of CMOS logic gates. Also pass transistors are in principle power-efficient

with negligible leakage current. However as the number of LUTs increase exponentially

with state register bits and outputs for flexibility, it is important to quantify leakage

currents due to sneak paths that may be caused by configuration bit patterns. In the case

of power-gated architectures discussed in this work, any power (and energy) consumption

in LUT decoding logic was only linearly dependent on number of state registers and

output functions. A disadvantage with pass transistors is that regenerative buffers are

required in large LUT logic circuits to overcome logic degradation effects due to transistor

resistance drops. A specific logic style to consider could be sense amplifier-based pass

transistor logic [113].

Publications

Journal Publications

1. V. D. Tovinakere, O. Sentieys, and S. Derrien, “A polynomial based approach for

wakeup time and energy estimation in power-gated logic clusters,” Journal of Low

Power Electronics, vol. 7, no. 4, pp. 482–489, December 2011.

Conference Publications

1. T. D. Vivek, O. Sentieys, and S. Derrien, “Wakeup time and wakeup energy es-

timation in power-gated logic clusters,” in Proceedings of the 24th International

Conference on VLSI Design, Chennai, India, January 2011, pp. 340–345.

2. V. D. Tovinakere, O. Sentieys, and S. Derrien, “A semiempirical model for wakeup

time estimation in power-gated logic clusters,” in 49th ACM/IEEE Design Au-

tomation Conference, 2-7 June 2012, pp. 48–55.

123

Bibliography

[1] M. A. A. Pasha, System-Level Synthesis of Ultra Low Power Wireless Sensor Net-

work Node Controllers: A Complete Design Flow. PhD Thesis, 2010.

[2] W. Weber, J. Rabaey, and E. Aarts, Ambient Intelligence. Springer, 2005.

[3] B. H. Calhoun, J. Lach, J. Stankovic, D. D. Wentzloff, K. Whitehouse, A. T. Barth,

J. K. Brown, Q. Li, S. Oh, N. E. Roberts, and Y. Zhang, “Body sensor networks:

A holistic approach from Silicon to users,” Proceedings of the IEEE, vol. 100, no. 1,

pp. 91–106, January 2012.

[4] C.-L. Yang, C.-L. Tsai, K.-T. Cheng, and S.-H. Chen, “Low-invasive implantable

devices of low-power consumption using high-efficiency antennas for cloud health

care,” IEEE Journal on Emerging and Selected Topics in Circuits and Systems,

vol. 2, no. 1, pp. 14–23, March 2012.

[5] J. Polastre, R. Szewczyk, and D. Culler, “Telos: Enabling ultra-low power wire-

less research,” in Proceedings of the 4th International Symposium on Information

Processing in Sensor networks, Picastaway, NJ, 2005, pp. 364–369.

[6] INRIA, Protocol for Low Power Wireless Sensor Network. INRIA Tech. Report,

2010.

[7] J. Beutel, O. Kasten, and M. Ringwald, “BTnodes - a distributed platform for sen-

sor nodes,” in Proceedings of the 1st ACM International Conference on Embedded

Networked Sensor Systems, New York, 2003, pp. 292–293.

[8] M. Hempstead, D. Brooks, and G.-Y. Wei, “Reliability analysis and optimization of

power-gated ICs,” IEEE Transactions on Emerging and Selected Topics in Circuits

and Systems, vol. 1, no. 2, pp. 193–202, June 2011.

[9] M. Seok, S. Hanson, Y.-S. Lin, Z. Foo, D. Kim, Y. Lee, N. Liu, D. Sylvester, and

D. Blaauw, “The Phoenix processor: A 30pW platform for sensor applications,” in

Proceedings of the IEEE Symposium on VLSI Circuits, 2008, pp. 188–189.

125

126 BIBLIOGRAPHY

[10] M. Sheets, F. Burghardt, T. Karalar, J. Ammer, Y. Chee, and J. Rabaey, “A

power-managed protocol processor for wireless sensor networks,” in Proceedings of

the IEEE Symposium on VLSI Circuits, 2006, pp. 212–213.

[11] V. George and J. M. Rabaey, Low-Energy FPGAs - Architecture and Design.

Kluwer Academic Publishers, 2001.

[12] V. Betz, J. Rose, and A. Maequardt, Architecture and CAD for Deep-Submicron

FPGAs. Springer, 1999.

[13] L. Nazhandali, M. Minuth, and T. Austin, “SenseBench: Toward an accurate

evaluation of sensor network processors,” in Proceedings of the IEEE International

Workload Characterization Symposium, 2005, pp. 197–203.

[14] K. Roy, S. Mukhopadhyay, and H. Mahmoodi-Meimand, “Leakage current mech-

anisms and leakage reduction techniques in deep-submicrometer CMOS circuits,”

Proceedings of the IEEE, vol. 91, no. 2, pp. 305–327, June 2003.

[15] R. P. Brent and H. T. Kung, “A regular layout for parallel adders,” IEEE Trans-

actions on Computers, vol. 31, no. 3, pp. 144–147, March 1982.

[16] P. M. Kogge and H. S. Stone, “A parallel algorithm for the efficient solution of

a general class of recurrence equations,” IEEE Transactions on Computers, vol.

C-22, no. 8, pp. 786–793, August 1973.

[17] E. F. Moore, “Gedanken-experiments on sequential machines,” Automata Studies,

pp. 129–153, 1956.

[18] G. H. Hardy, “Method for synthesizing sequential circuits,” Bell System Technical

Journal, vol. 34, pp. 1045–1079, September 1955.

[19] A. Niedermeier, K. Svarstad, F. Bouwens, J. Hulzink, and J. Huisken, “The chal-

lenges of implementing fine-grained power gating,” in Proceedings of the 20th Great

Lakes Symposium on VLSI. New York, USA: ACM Press, May 2010, p. 361.

[20] V. D. Tovinakere, O. Sentieys, and S. Derrien, “A semiempirical model for wakeup

time estimation in power-gated logic clusters,” in 49th ACM/IEEE Design Au-

tomation Conference, 2-7 June 2012, pp. 48–55.

[21] I. F. Akyildiz, W. Su, Y. Sankarasubramaniam, and E. Cayirci, “Wireless sensor

networks: A survey,” Computer Networks, vol. 38, pp. 393–422, 2002.

[22] G. E. Moore, “Cramming more components onto integrated circuits,” Electronics

Magazine, vol. 38, no. 8, 19th April 1965.

BIBLIOGRAPHY 127

[23] ITRS, “International Technology Roadmap for Semiconductors: 2011 Overall

Roadmap Technology Characteristics Tables,” http://www.itrs.net, 2011.

[24] J. Rabaey, Low Power Design Essentials. Springer, 2009.

[25] V. Janakiraman, A. Bharadwaj, and V. Vishvanathan, “Voltage and temperatu-

ure aware statistical leakage analysis framework using artificial neural networks,”

IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems,

vol. 29, no. 7, pp. 1056–1068, July 2010.

[26] Y. Taur and T. Ning, Fundamentals of Modern VLSI Devices. Cambridge Uni-

versity Press, 2009.

[27] Q. Wu, M. Pedram, and X. Wu, “Clock-gating and its application to low power

design of sequential circuits,” IEEE Transactions on Circuits and Systems - I:

Fundamental Theory and Applications, vol. 47, no. 3, pp. 415–420, March 2000.

[28] K. K. Parhi, VLSI Digital Signal Processing Systems: Design and Implementation.

Wiley-Interscience, 1999.

[29] L. Bisdounis and O. Koufopavlou, “Short circuit energy dissipation modeling for

submicrometer CMOS gates,” IEEE Transactions on Circuits and Systems - I:

Fundamental Theory and Applications, vol. 47, no. 9, pp. 1350–1361, September

2000.

[30] D. Markovic, C. C. Wang, L. P. Allarcon, T.-T. Liu, and J. M. Rabaey, “Ultralow

power design in near-threshold region,” Proceedings of the IEEE, vol. 98, no. 2, pp.

237–252, February 2010.

[31] B. H. Calhoun, J. F. Ryan, S. Khanna, M. Putic, and J. Lach, “Flexible circuits

and architectures for ultralow power,” Proceedings of the IEEE, vol. 98, no. 2, pp.

267–282, February 2010.

[32] J. Kwong, Y. K. Ramadass, N. Verma, and A. P. Chandrakasan, “A 65nm sub-Vt

microcontroller with integrated SRAM and switched capacitor DC-DC converter,”

IEEE Journal of Solid State Circuits, vol. 44, no. 1, pp. 115–126, January 2009.

[33] A. Wang, B. H. Calhoun, and A. P. Chandrakasan, Sub-threshold Design for Ultra

Low-Power Systems. Springer, 2006.

[34] M. Keating, D. Flynn, R. Aitken, A. Gibbons, and K. Shi, Low Power Methodology

Manual for System-on-Chip Design. Springer, 2008.

[35] S. Shigematsu, S. Mutoh, Y. Matsuya, Y. Tanabe, and J. Yamada, “A 1-V high-

speed MTCOMS circuit scheme for power-down application circuits,” IEEE Jour-

nal of Solid-State Circuits, vol. 32, no. 6, pp. 861–869, June 1997.

128 BIBLIOGRAPHY

[36] A. Lingamneni, C. Enz, J.-L. Nagel, K. Palem, and C. Piguet, “Energy parsi-

monious circuit design through probabilistic pruning,” in Proceedings of the 14th

Design, Automation and Test in Europe, March 2011, pp. 764–769.

[37] H. Nguyen, D. Menard, and O.Sentieys, “Design of optimized fixed-point WCDMA

receiver,” in Proceedings of the XVII European Signal and Image Processing Con-

ference, August 2009, pp. 993–997.

[38] Synopsys Inc., Design Compiler User Guide, 2010.

[39] IEEE, 1801-2009 IEEE Standard for Design and Verification of Low Power Inte-

grated Circuits. IEEE, 2009.

[40] Cadence Design Systems Inc., Encounter Foundation Flows: CPF-Based Low

Power Implementation Flow Guide, 2009.

[41] Synopsys Inc., PrimeTime SI User Guide, 2006.

[42] ——, PrimeTime PX: Methodology for Power Analysis, 2006.

[43] Cadence Design Systems Inc., Encounter User Guide, 2009.

[44] A. Sadat, H. Qu, C. Yu, J. S. Yuan, and H. Xie, “Low-power CMOS wireless

MEMS motion sensor for physiological activity monitoring,” IEEE Transactions on

Circuits and Systems - I: Regular Papers, vol. 52, no. 12, pp. 2539–2551, December

2005.

[45] N. Potlapally, S. Ravi, A. Raghunathan, R. Lee, and N. Jha, “Configuration and

extension of embedded processors to optimize IPSec protocol execution,” IEEE

Transactions on Very Large Scale Integration (VLSI) Systems, vol. 15, no. 5, pp.

605 –609, May 2007.

[46] M. A. Pasha, S. Derrien, and O. Sentieys, “A complete design flow for generation of

ultra-low power WSN node architectures based on micro-tasking,” in Proceedings of

the 47th ACM/IEEE Design Automation Conference, Anaheim, USA, June 2010.

[47] J. Rabaey, “Silicon platforms for the next generation wireless systems. What role

does reconfigurable hardware play?” in Field-Programmable Logic and Applica-

tions: The Roadmap to Reconfigurable Computing, ser. Lecture Notes in Computer

Science, R. Hartenstein and H. Grünbacher, Eds. Springer Berlin / Heidelberg,

2000, vol. 1896, pp. 277–285.

[48] Zigbee Alliance, “Zigbee standards overview,” http://www.zigbee.org, 2012.

BIBLIOGRAPHY 129

[49] M. M. Alam, O. Berder, D. Menard, and O. Sentieys, “TAD-MAC: Traffic-aware

dynamic MAC protocol for wireless body sensor networks,” IEEE Journal on

Emerging and Selected Topics in Circuits and Systems, vol. 2, no. 1, pp. 109–119,

March 2012.

[50] Texas Instruments Inc., MSP430 User Guide Technical Report, 2010a.

[51] C. Piguet, J.-M. Masgonty, C. Arm, S. Durand, T. Schneider, F. Rampogna,

C. Scarnera, C. Iseli, J.-P. Bardyn, R. Pache, and E. Dijkstra, “Low-power design

of 8-b embedded CoolRISC microcontroller cores,” IEEE Journal of Solid-State

Circuits, vol. 32, no. 7, pp. 1067–1078, July 1997.

[52] Tensilica Inc., “Xtensa customizable processors,” http://www.tensilica.com, 2012.

[53] K. Kelley, M. Wachs, A. Danowitz, P. Stevenson, S. Richardon, and M. Horowitz,

“Intermediate representations for controllers in chip generators,” in Proceedings of

the Conference on Design, Automation and Test in Europe, 2011, pp. 1–6.

[54] Opencores, “The openMSP430 User Guide,” http://www.opencores.org, 2009.

[55] J. Lallet, MOZAIC: Plate-forme générique de modélisation et de conception

d’architectures reconfigurables dynamiquement. PhD Thesis, 2008.

[56] J. Rose, J. Luu, C. W. Yu, O. Densmore, J. Goeders, A. Somerville, K. B. Kent,

P. Jamieson, and J. Anderson, “The VTR project: Architecture and CAD for

FPGAs from Verilog to Routing,” in Proceedings of the 20th ACM/SIGDA Inter-

national Symposium on Field-Programmable Gate Arrays. ACM, 2012, pp. 77–86.

[57] F. de Dinechin, “The price of routing in FPGAs,” INRIA, Tech. Rep. RR-3772,

September 1999.

[58] H. Hassan and M. Anis, Low-Power Design of Nanometer FPGAs. Elsevier Inc.,

2010.

[59] J. Anderson and F. Najm, “Power estimation techniques in FPGAs,” IEEE Trans-

actions on Very Large Scale Integration (VLSI) Systems, vol. 12, no. 10, pp. 1015–

1027, October 2004.

[60] V. D. Tovinakere, O. Sentieys, and S. Derrien, “A polynomial based approach for

wakeup time and energy estimation in power-gated logic clusters,” Journal of Low

Power Electronics, vol. 7, no. 4, pp. 482–489, December 2011.

[61] K. Poon, A. Yan, and S. Wilton, “A flexible power model for FPGAs,” in Proceed-

ings of the ACM International Symposium on Field Programmable Gate Arrays,

2002, pp. 312–321.

130 BIBLIOGRAPHY

[62] Y.-L. Wu and D. Chang, “On the NP-completeness of regular 2-D FPGA routing

architectures and a novel solution,” in IEEE/ACM International Conference on

Computer-Aided Design, November 1994, pp. 362–366.

[63] F. Li, Y. Lin, and J. Cong, “FPGA power reduction using configurable dual-Vdd,”

in Proceedings of the IEEE/ACM Design Automation Conference, 2004, pp. 735–

740.

[64] ——, “Low-power FPGA using predefined dual-Vdd/dual-Vt fabrics,” in Proceed-

ings of the ACM International Symposium on Field Programmable Gate Arrays,

2004, pp. 42–50.

[65] S. Ishihara, M. Hariyama, and M. Kameyama, “A low-power FPGA based on

autonomous fine-grain power gating,” IEEE Transactions on Very Large Scale In-

tegration (VLSI) Systems, vol. 19, no. 8, pp. 1394–1406, August 2011.

[66] V. Sklyarov, “Reconfigurable models of finite state machines and their implemen-

tation in FPGAs,” Journal of Systems Architecture, vol. 47, 2002.

[67] ——, “Hierarchical finite state machines and their use for digital control,” IEEE

Transactions on Very Large Scale Integration (VLSI) Systems, vol. 7, no. 2, pp.

222–228, February 1999.

[68] T. Sakurai and R. Newton, “Alpha-power law MOSFET model and its applications

to CMOS inverter delay and other formulas,” IEEE Journal of Solid-State Circuits,

vol. 25, no. 2, pp. 584–594, April 1990.

[69] Arizona State University, “Predictive Technology Models,” http://ptm.asu.edu,

2012.

[70] B. H. Calhoun, F. A. Honore, and A. P. Chandrakasan, “A leakage reduction

methodology for distributed MTCMOS,” IEEE Journal of Solid State Circuits,

vol. 39, no. 5, pp. 818–826, May 2004.

[71] M. Anis, S. Areibi, and M. Elmasry, “Dynamic and leakage power reduction in

MTCMOS circuits using an automated gate clustering technique,” in Proceedings

of the 39th ACM/IEEE Design Automation Conference, New Orleans, June 2002,

pp. 480–485.

[72] C. Long and L. He, “Distributed sleep transistor network for power reduction,”

IEEE Transactions on Very Large Scale Integration (VLSI) Systems, vol. 12, no. 9,

pp. 937–946, September 2004.

BIBLIOGRAPHY 131

[73] K. Shi and D. Howard, “Challenges in sleep transistor design and implementation

in low-power designs,” in Proceedings of the 43rd ACM/IEEE Design Automation

Conference, San Francisco, July 2006, pp. 113–116.

[74] H. Kriplani, F. N. Najm, and I. N. Hajj, “Pattern independent maximum current

estimation in power and ground buses of CMOS VLSI circuits: Algorithms, signal

correlations and their resolution,” IEEE Transactions on Computer-Aided Design

of Integrated Circuits and Systems, vol. 14, no. 8, pp. 998–1012, August 1995.

[75] S. Kim, C. J. Choi, D. K. Jeong, S. V. Kosonocky, and S. B. Park, “Reducing

ground-bounce noise and stabilizing data-retention voltage of power gating struc-

tures,” IEEE Transactions on Electron Devices, vol. 55, no. 1, pp. 197–205, January

2008.

[76] H.-O. Kim, Y. Shin, H. Kim, and I. Eo, “Physical design methodology of power gat-

ing circuits for standard cell based design,” in Proceedings of the 43rd ACM/IEEE

Design Automation Conference, San Francisco, July 2006, pp. 109–112.

[77] E. Choi, C. Chin, and Y. Chin, “HLS-pg: High level synthesis of power gated

circuits,” IEEE Transactions on Computer-Aided Design of Integrated Circuits and

Systems, vol. 28, no. 3, pp. 451–456, March 2009.

[78] S. Roy, N. Ranganathan, and S. Katkoori, “A framework for power-gating func-

tional units in embedded microprocessors,” IEEE Transactions on Very Large Scale

Integration (VLSI) Systems, vol. 17, no. 11, pp. 1640–1649, November 2009.

[79] A. Sathanur, L. Benini, A. Macii, E. Macii, and M. Poncino, “Row-based power-

gating: A novel sleep transistor insertion methodology for leakage power opti-

mization in nanometer CMOS circuits,” IEEE Transactions on Very Large Scale

Integration (VLSI) Systems, vol. 19, no. 3, pp. 469–482, March 2011.

[80] Y. Lee, D.-K. Jeong, and Taewhan, “Comprehensive analysis and control of de-

sign parameters for power gated circuits,” IEEE Transactions on Very Large Scale

Integration (VLSI) Systems, vol. 19, no. 3, pp. 494–498, March 2011.

[81] X. Lu, “Layout and parasitic information for ISCAS circuits,”

http://dropzone.tamu.edu/~xiang/iscas.html, 2004.

[82] A. Abdollahi, F. Fallah, and M. Pedram, “An effective power mode transition

technique in MTCMOS circuits,” in Proceedings of the 42nd ACM/IEEE Design

Automation Conference, Anaheim, June 2005, pp. 27–32.

[83] H. Singh, K. Agarwal, D. Sylvester, and K. J. Nowka, “Enhanced leakage reduction

techniques using intermediate strength power gating,” IEEE Transactions on Very

132 BIBLIOGRAPHY

Large Scale Integration (VLSI) Systems, vol. 15, no. 11, pp. 1215–1224, November

2007.

[84] H. Xu, R. Vemuri, and W.-B. Jone, “Dynamic characteristics of power gating dur-

ing mode transition,” IEEE Transactions on Very Large Scale Integration (VLSI)

Systems, vol. 19, no. 2, pp. 237–249, February 2011.

[85] S. Roy, N. Ranganathan, and S. Katkoori, “State-retentive power gating of reg-

ister files in multicore processors featuring multithreaded in-order cores,” IEEE

Transactions on Computers, vol. 60, no. 11, pp. 1547–1560, November 2011.

[86] T. D. Vivek, O. Sentieys, and S. Derrien, “Wakeup time and wakeup energy es-

timation in power-gated logic clusters,” in Proceedings of the 24th International

Conference on VLSI Design, Chennai, India, January 2011, pp. 340–345.

[87] D.-W. Lin, M.-L. Cheng, S.-W. Wang, C.-C. Wu, and M.-J. Chen, “A constant-

mobility method to enable mosfet series-resistance extraction,” IEEE Electron De-

vice Letters, vol. 28, no. 12, pp. 1132–1134, December 2007.

[88] Z. Hu, A. Buyuktosunoglu, V. Srinivasan, V. Zyuban, H. Jacobson, and P. Bose,

“Microarchitectural techniques for power gating of execution units,” in Proceedings

of International Symposium on Low Power Electronics Design, Newport Beach,

USA, August 2004, pp. 32–37.

[89] J. Seomun, I. Shin, and Y. Shin, “Synthesis of active-mode power-gating circuits,”

IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems,

vol. 31, no. 3, pp. 391–403, March 2012.

[90] B. Ramkumar and H. Kittur, “Low-power and area-efficient carry select adder,”

IEEE Transactions on Very Large Scale Integration (VLSI) Systems, vol. 20, no. 2,

pp. 371–375, February 2012.

[91] A. Lingamneni, K. K. Muntimadugu, C. Enz, R. M. Karp, K. Palem, and C. Piguet,

“Algorithmic methodologies for ultra-efficient inexact architectures for sustaining

technology scaling,” in Proceedings of the 9th ACM International Conference on

Computing Frontiers, 15-17 May 2012, pp. 3–12.

[92] Y. J. Chong and S. Parameswaran, “Configurable multimode embedded floating-

point units for FPGAs,” IEEE Transactions on Very Large Scale Integration

(VLSI) Systems, vol. 19, no. 11, pp. 2033–2044, November 2011.

[93] C. Tsen, S. Gonzalez-Navarro, and M. Schulte, “Hardware design of a binary integer

decimal-based floating-point adder,” in 25th International Conference on Computer

Design, October 2007, pp. 288–295.

BIBLIOGRAPHY 133

[94] S. Jain, V. Erraguntla, S. Vangal, Y. Hoskote, N. Borkar, T. Mandepudi, and

V. Karthik, “A 90mW/GFlop 3.4GHz reconfigurable fused/continuous multiply-

accumulator for floating-point and integer operands in 65nm,” in 23rd International

Conference on VLSI Design, January 2010, pp. 252–257.

[95] B. R. Zeydel, D. Baran, and B. G. Oklobdzija, “Energy-efficient design method-

ologies: High-performance VLSI adders,” IEEE Journal of Solid-State Circuits,

vol. 45, no. 6, pp. 1220–1233, June 2010.

[96] L.-K. Wang and M. Schulte, “Decimal floating-point adder and multifunction unit

with injection-based rounding,” in 18th IEEE Symposium on Computer Arithmetic,

June 2007, pp. 56–68.

[97] M. C. Molina, J. M. Mendías, and R. Hermida, “High-level synthesis of multiple-

precision circuits independent of data-objects length,” in Proceedings of the 39th

Design Automation Conference, 2002, pp. 612–615.

[98] S. Eratne, P. Nair, and E. John, “Leakage control in full adders with selectively

stacked inverters,” in 53rd IEEE International Midwest Symposium on Circuits and

Systems (MWSCAS), August 2010, pp. 833–836.

[99] P. Nair, S. Eratne, and E. B. John, “Probability-based optimal sizing of power-

gating transistors in full adders for reduced leakage and high performance,” Journal

of Low Power Electronics, vol. 8, no. 4, pp. 464–471, August 2012.

[100] M. Sjalander, M. Drazdziulis, P. Larsson-Edefors, and H. Eriksson, “A low-leakage

twin-precision multiplier using reconfigurable power gating,” in IEEE International

Symposium on Circuits and Systems, May 2005, pp. 1654 – 1657.

[101] T. Hoang and P. Larsson-Edefors, “Data-width-driven power gating of integer arith-

metic circuits,” in IEEE Computer Society Annual Symposium on VLSI, 19-21

August 2012, pp. 237–242.

[102] J. Fadavi-Ardekani, “M × N booth encoded multiplier generator using optimized

Wallace trees,” IEEE Transactions on Very Large Scale Integration (VLSI) Sys-

tems, vol. 1, no. 2, pp. 120–125, June 1993.

[103] J. Cavanaugh, Digital Computer Arithmetic: Design and Implementation.

McGraw-Hill, 1984.

[104] C. E. Shannon, “A symbolic analysis of relay and switching circuits,” Transactions

of AIEE, vol. 57, pp. 713–723, 1938.

134 BIBLIOGRAPHY

[105] P. Choudhury and S. N. Pradhan, “An approach for low power design of power

gated finite state machines considering partitioning and state encoding together,”

Journal of Low Power Electronics, vol. 8, no. 4, pp. 452–463, August 2012.

[106] S. N. Pradhan, M. T. Kumar, and S. Chattopadhyay, “Integrated power-gating

and state assignment for low power FSM synthesis,” in Proceedings of the IEEE

Computer Society Annual Symposium on VLSI, 2008, pp. 269–274.

[107] L. Leinweber and S. Bhunia, “Fine-grained supply gating through hypergraph par-

titioning and Shannon decomposition for active power reduction,” in Proceedings

of the Conference on Design, Automation and Test in Europe, 2008, pp. 373–378.

[108] E. Ahmed and J. Rose, “The effect of LUT and cluster size on deep-submicron

FPGA performance and density,” IEEE Transactions on Very Large Scale Integra-

tion (VLSI) Systems, vol. 12, no. 3, pp. 288–298, March 2004.

[109] A. Gill, Linear Sequential Circuits - Analysis, Synthesis, and Applications.

McGraw-Hill, Inc., 1966.

[110] S. S. Yau and K. C. Wang, “Linearity of sequential machines,” IEEE Transactions

on Electronic Computers, vol. 15, no. 3, pp. 337–354, June 1966.

[111] M. Cohn, “Properties of linear machines,” Journal of the ACM, vol. 11, no. 3, pp.

296–301, July 1964.

[112] B. Elspas, “The theory of autonomous linear sequential networks,” IRE Transac-

tions on Circuit Theory, vol. 6, pp. 45–60, 1959.

[113] L. Alarcon, T. T. Liu, M. D. Pierson, and J. Rabaey, “Exploring very low-energy

logic: A case study,” Journal of Low Power Electronics, vol. 3, no. 3, pp. 223–233,

December 2007.

Résumé en français : Un nœud d’un réseau de capteurs sans fil traite dans ses unités
de calcul les signaux issus de plusieurs types de capteurs et effectue différentes tâches liées
aux protocoles de communication. Devant exécuter plusieurs types de contrôle, sa flexi-
bilité est un paramètre très important. Les solutions à base de microcontrôleurs ou de
FPGA ont été proposées pour aborder le besoin de flexibilité, mais au prix d’une efficacité
énergétique réduite. Dans cette thèse, des contrôleurs flexibles à ultra-faible énergie basés
sur un contexte de micro-tâches reconfigurables sont explorés comme alternative. Des ar-
chitectures modulaires pour des machines d’états finis (FSM) et des chemins de données
(DP) reconfigurables sont proposées. Les techniques de coupure de l’alimentation (PG pour
power gating) sont utilisées pour adapter la consommation aux besoins et réduire la puis-
sance statique. Dans un premier temps, des modèles pour l’estimation des paramètres clés
d’un circuit avec PG sont proposés au niveau porte. Ensuite, les opportunités des tech-
niques PG sont déterminées sur les FSM et DP reconfigurables pour en réduire l’énergie.
Dans les chemins de données, la reconfiguration fait varier la précision des opérateurs et le
PG permet d’éteindre les blocs logiques inutilisés. Une gestion de l’alimentation au niveau
lookup table (LUT) est proposée pour réduire les courants de fuite en mode actif et en
veille dans les FSM reconfigurables. Des résultats montrent les très bonnes performances
des architectures proposées par rapport aux processeurs et FPGA.

Mots clés : Circuits intégrés à faible consommation, commande numérique, microcon-
trôleurs, réseaux de capteurs, réseaux sans fil

Résumé en anglais : A wireless sensor network (WSN) node may need to process sig-
nals from various sensors and perform different transceiver tasks apart from being able to
change its functions dynamically. A controller in the node is therefore required to execute
different control tasks to manage its resources implying that flexibility is a key concern.
Microcontrollers and FPGAs have been proposed to address the need for flexibility at the
cost of reduced energy efficiency. In this thesis, ultra-low power flexible controllers for
WSN nodes based on reconfigurable microtasks are explored. A reconfigurable microtask
is a digital control unit with a reconfigurable finite state machine (FSM) and datapath.
Scalable architectures for reconfigurable FSMs along with variable precision adders in data-
path are proposed for flexible controllers in this work. Power gating is considered for FSMs
and adders for low power operation. First, the design issues in power gating are studied
extensively. Models for estimation of key design parameters of power-gated circuits are
derived at gate level. Next, power gating opportunities are determined in reconfigurable
adders and FSMs proposed for microtasks. In adders, reconfigurability is used for varying
the precision of operation and saving energy by power-gating unused logic. Power gating
at the level of lookup table logic is proposed to achieve active leakage power reduction
in reconfigurable FSMs. The proposed models are then applied to analyze energy savings
in logic clusters due to power gating. Power estimation results show good performance
of proposed architectures on different metrics when compared with other solutions in the
design space of controllers.

Keywords: Digital control, low power integrated circuits, microcontrollers, wireless sensor
networks

