
HAL Id: tel-00860720
https://theses.hal.science/tel-00860720

Submitted on 10 Sep 2013

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Efficient large-context dependency parsing and
correction with distributional lexical resources

Enrique Henestroza Anguiano

To cite this version:
Enrique Henestroza Anguiano. Efficient large-context dependency parsing and correction with distri-
butional lexical resources. Document and Text Processing. Université Paris-Diderot - Paris VII, 2013.
English. �NNT : �. �tel-00860720�

https://theses.hal.science/tel-00860720
https://hal.archives-ouvertes.fr

Université Paris Diderot (Paris 7)

École Doctorale de Sciences Mathématiques de Paris-Centre no386

Doctorat d’Informatique

ENRIQUE HENESTROZA ANGUIANO

Efficient Large-Context Dependency
Parsing and Correction with

Distributional Lexical Resources

Analyse syntaxique probabiliste en dépendances : approches efficaces
à large contexte avec ressources lexicales distributionnelles

Thèse sous la direction de :

Laurence DANLOS, Alexis NASR, et Marie CANDITO

Soutenue le 27 juin 2013

Composition du jury :

M. Bernd BOHNET, examinateur
Mme Marie CANDITO, co-directrice de thèse
M. Matthieu CONSTANT, rapporteur
Mme Laurence DANLOS, directrice de thèse
M. Alexis NASR, co-directeur de thèse
M. Joakim NIVRE, rapporteur

http://www.univ-paris-diderot.fr
http://www.ifd.upmc.fr/fr/organisation/ed/ed386.html
mailto:ehenestroza@gmail.com

Abstract

This thesis explores ways to improve the accuracy and coverage of efficient

statistical dependency parsing. We employ transition-based parsing with models

learned using Support Vector Machines (Cortes and Vapnik, 1995), and our experi-

ments are carried out on French.

Transition-based parsing is very fast due to the computational efficiency of its

underlying algorithms, which are based on a local optimization of attachment deci-

sions. Our first research thread is thus to increase the syntactic context used. From

the arc-eager transition system (Nivre, 2008) we propose a variant that simultane-

ously considers multiple candidate governors for right-directed attachments. We also

test parse correction, inspired by Hall and Novák (2005), which revises each attach-

ment in a parse by considering multiple alternative governors in the local syntactic

neighborhood. We find that multiple-candidate approaches slightly improve parsing

accuracy overall as well as for prepositional phrase attachment and coordination,

two linguistic phenomena that exhibit high syntactic ambiguity.

Our second research thread explores semi-supervised approaches for improving

parsing accuracy and coverage. We test self-training within the journalistic domain

as well as for adaptation to the medical domain, using a two-stage parsing approach

based on that of McClosky et al. (2006). We then turn to lexical modeling over

a large corpus: we model generalized lexical classes to reduce data sparseness, and

prepositional phrase attachment preference to improve disambiguation. We find that

semi-supervised approaches can sometimes improve parsing accuracy and coverage,

without increasing time complexity.

Résumé

Cette thèse présente des méthodes pour améliorer l’analyse syntaxique prob-

abiliste en dépendances. Nous employons l’analyse à base de transitions avec une

modélisation effectuée par des machines à vecteurs supports (Cortes and Vapnik,

1995), et nos expériences sont réalisées sur le français.

L’analyse a base de transitions est rapide, de par la faible complexité des al-

gorithmes sous-jacents, eux mêmes fondés sur une optimisation locale des décisions

d’attachement. Ainsi notre premier fil directeur est d’élargir le contexte syntax-

ique utilisé. Partant du système de transitions arc-eager (Nivre, 2008), nous pro-

posons une variante qui considère simultanément plusieurs gouverneurs candidats

pour les attachements à droite. Nous testons aussi la correction des analyses, in-

spirée par Hall and Novák (2005), qui révise chaque attachement en choisissant

parmi plusieurs gouverneurs alternatifs dans le voisinage syntaxique. Nos approches

améliorent légèrement la précision globale ainsi que celles de l’attachement des

groupes prépositionnels et de la coordination.

Notre deuxième fil explore des approches semi-supervisées. Nous testons l’auto-

entrainement avec un analyseur en deux étapes, basé sur McClosky et al. (2006),

pour le domaine journalistique ainsi que pour l’adaptation au domaine médical.

Nous passons ensuite à la modélisation lexicale à base de corpus, avec des classes

lexicales généralisées pour réduire la dispersion des données, et des préférences lex-

icales de l’attachement des groupes prépositionnels pour aider à la désambigüısa-

tion. Nos approches améliorent, dans certains cas, la précision et la couverture de

l’analyseur, sans augmenter sa complexité théorique.

Acknowledgements

I would like to warmly thank my three advisors, who helped me at every stage

to make the completion of my thesis possible. Laurence Danlos graciously welcomed

me into the fold of the Alpage research group at the Université Paris Diderot and

the INRIA, and provided much needed motivation to complete my thesis in a timely

manner. Alexis Nasr took a chance in bringing me on as a member of the SEQUOIA

project, and was an invaluable source of guidance in plotting the course of my

research. Marie Candito, in particular, has been a great mentor and teacher, whose

insights and assistance on matters academic and beyond allowed me to thrive in

a new country and setting; I thank her for her insistence on intellectual rigor, her

endless patience in explaining aspects of French linguistics, and her willingness to

meet over coffee even during her busiest moments. This thesis would also not have

been possible without the funding of my doctorate by the Agence Nationale de la

Recherche, as part of the SEQUOIA project ANR-08-EMER-013.

Joakim Nivre, Matthieu Constant, and Bernd Bohnet graciously agreed to

carefully read my thesis and serve as members of the jury. I thank them for their

insights and constructive feedback.

I was lucky to be a part of the Alpage research group, which provided an intel-

lectually stimulating and collaborative environment. I got to know and appreciate

every member; in particular, Djamé Seddah was a helpful colleague who provided

useful insights on how to tackle treebank and tagging issues, while Pascal Denis was

a source of great discussions on machine learning as well as slightly less enjoyable

thrashings on the tennis court. And I couldn’t have survived without my fellow

doctorate students, who I thank for welcoming me with open arms and an eternal

willingness to explain French jokes to a clueless American.

Everyone who I had the chance to meet and befriend during my three years in

Paris, I thank you for showing how this city can be made even more beautiful by the

people with whom you surround yourself. Expats, thank you for opening my eyes

to the many different cultures and walks of life from which we all come, as well as

for the much needed reminders of home. La troupe, je ne crois pas à la chance que

j’ai eu de vous rencontrer; il est difficile d’exprimer à quel point je vous apprécie.

Finalmente, a mi mamá, mi papá, y mi hermanita Moni, les quiero decir que

todo lo que he logrado ha sido gracias a su apoyo.

iv

Contents

List of Figures vii

List of Tables x

Introduction 1

1 Preliminaries in Syntax and Machine Learning 7

1.1 Basic Linguistic Concepts . 8

1.1.1 Morphological and Lexical Notions 9

1.1.2 Syntactic Notions . 12

1.2 Formal Representations of Syntax . 15

1.2.1 Phrase-Structure Grammar 16

1.2.2 Dependency Grammar . 21

1.2.3 Syntactic Ambiguity . 25

1.2.4 Formalism Equivalence . 26

1.3 French Syntax and Resources . 29

1.3.1 The (Phrase-Structure) French Treebank 30

1.3.2 Conversion to the French Dependency Treebank 34

1.4 Machine Learning Methods . 40

1.4.1 Kernels in Linear Models . 42

1.4.2 Batch Learning with Kernel SVM 43

1.4.3 Categorical Features . 46

2 Efficient Large-Context Dependency Parsing 48

2.1 Overview of Dependency Parsing . 49

2.1.1 Formalizing Data-Driven Dependency Parsing 50

2.1.2 Lessons from a French Parsing Benchmark 52

v

CONTENTS

2.2 Transition-Based Parsing . 56
2.2.1 The Generalized Framework 57
2.2.2 Existing Approaches: arc-standard, arc-eager 60
2.2.3 A Multiple-Candidate Variant: arc-eager-mc 67

2.3 Parsing Experiments . 73
2.3.1 Methods and Setup . 75
2.3.2 Results . 81

3 Efficient Large-Context Parse Correction 87
3.1 Learning to Correct Parse Errors . 89

3.1.1 Related Work . 89
3.1.2 The Neighborhood Correction Framework 91
3.1.3 Improving Context: Ranking and Features 96

3.2 Self-Trained Parsing with Correction 97
3.2.1 Basic Self-Training Framework 98
3.2.2 Two-Stage Self-Training . 99

3.3 Correction Experiments . 100
3.3.1 Methods and Setup . 100
3.3.2 Results . 106

4 Parsing with Generalized Lexical Classes 114
4.1 Distributional Lexical Semantics and Classes 116

4.1.1 Related Work . 117
4.1.2 Framework for Distributional Methods 121
4.1.3 Lexical Class Spaces . 123

4.2 Lexical Class Experiments . 129
4.2.1 Methods and Setup . 129
4.2.2 Results . 135

5 Parsing with PP-Attachment Preferences 141
5.1 Methods for Lexical Preference . 142

5.1.1 Related Work . 144
5.1.2 PP-Attachment Preference Types 146
5.1.3 Statistical Preference Metrics 149

5.2 PP-Attachment Preference Experiments 151
5.2.1 Methods and Setup . 152
5.2.2 Results . 155

Conclusion 160

Bibliography 164

vi

List of Figures

1.1 A phrase-structure tree for the sentence: “Elle ouvrit la porte avec la
clé.” (“She opened the door with the key.”) 20

1.2 A labeled dependency tree for the sentence: “Elle ouvrit la porte avec
la clé.” (“She opened the door with the key.”) 22

1.3 A labeled non-tree dependency graph for the sentence: “Jean veut
manger.” (“Jean wants to eat.”) . 23

1.4 A labeled non-projective dependency tree for the sentence: “Il est
difficile d’en prévoir l’issue.” (“It is difficult to foresee the result [of
it].”) . 24

1.5 Illustration of artificial syntactic ambiguity, with the arc from ‘ouvrit’
to ‘avec’ for true structure and the arc from ‘porte’ to ‘avec’ for an-
other grammatically licit structure, in a labeled dependency analysis
for the sentence: “Elle ouvrit la porte avec la clé.” (“She opened the
door with the key.”) . 25

1.6 Illustration of true syntactic ambiguity, with arcs from ‘vis’ to ‘avec’
and from ‘homme’ to ‘avec’ indicating competing licit grammatical
structures, in a labeled dependency analysis for the sentence: “Je vis
un homme avec un telescope.” (“I saw a man with a telescope.”) . . . 26

1.7 A phrase-structure tree for the sentence: “Jean voit Pierre, Paul et
Marie” (“Jean sees Pierre, Paul and Marie”). 34

1.8 Undoing of a compound from the original FTB (left) to the FTB-UC
(right) for the syntactically regular compound: “l’Union économique
et monétaire” (“the economic and monetary union”). 35

1.9 Merging of a compound from the FTB (left) to the FTB-UC (right)
for the sequence: “y compris” (“including”). 35

vii

LIST OF FIGURES

1.10 Raising of a preposition from the original FTB scheme (above left)
to the FTB-UC scheme (above right) for a PP with infinitival object
for the sentence: “Ils ont mangé après être arrivés” (“They ate after
arriving”). Additionally, an unchanged example of a PP with nominal
object (below) for the sentence: “Ils ont mangé après leur arrivée”
(“They ate after their arrival”). 37

1.11 Rasing of a complementizer from the original FTB scheme (left) to the
FTB-UC scheme (right) for a sentential complement in the sentence:
“Je sais que Paul aime Julie” (“I know that Paul loves Julie”). 38

2.1 Gold arc-standard transition sequence, with corresponding inter-
mediate configurations, for the sentence: “Jean voit souvent la fille.”
(“Jean sees often the girl.”) . 62

2.2 Gold arc-eager transition sequence, with corresponding interme-
diate configurations, for the sentence: “Jean voit souvent la fille.”
(“Jean sees often the girl.”) . 65

2.3 Intermediate configuration followed by separate transition sequences
of arc-standard and arc-eager parsing for the sentence: “Jean
voit Cécile de France.” (“Jean sees [the actress] Cécile de France.”) . 66

2.4 Gold arc-eager-mc transition sequence, with corresponding inter-
mediate configurations, for the sentence: “Jean voit souvent la fille.”
(“Jean sees often the girl.”) . 68

2.5 Comparison of prepositional phrase treatment by arc-eager and
arc-eager-mc for the sentence: “Jean voit la fille blonde de son
balcon.” (“Jean sees the blonde girl from his balcony.”). Arc from
‘voit’ to ‘de’ is the correct dependency, while arcs from ‘fille’ to ‘de’
and from ‘blonde’ to ‘de’ show alternative governors implicitly or
explicitly considered for ‘de’. 70

2.6 Comparison of the incorrect arc-standard (with arc from ‘subven-
tion’ to ‘par’) and correct arc-eager (with arc from ‘F’ to ‘par’)
parse trees for the partial French sentence: “. . . l’Etat accordant une
subvention de 50 F par heure de formation . . . ” (“. . . the state ac-
cording an allowance of 50 F per hour of training . . . ”) 83

3.1 The generalized parse correction framework. 92

3.2 Neighborhood of candidate governors for an incorrect PP-attachment
in the sentence: “Jean voit la fille blonde de son balcon.” (“Jean sees
the blonde girl from his balcony.”). The arc from ‘fille’ to ‘de’ is
predicted by first-stage parsing, while the arcs from ‘voit’ to ‘de’ and
from ‘blonde’ to ‘de’ represent alternative candidate governors for ‘de’. 94

viii

LIST OF FIGURES

4.1 Example dependency contexts for the verb lemma ‘manger’. The
first couple of one-edge contexts correspond to the sentence “Jean
mange un avocat” (“Jean eats an avocado”), the inverted one-edge
context corresponds to the sentence “Jean aime manger” (“Jean loves
to eat”), and the two-edge context corresponds to the sentence “Jean
mange avec un avocat” (“Jean eats with a lawyer”). 130

5.1 Identification of governor and dependent PP tuples at two levels of
lexical specificity for PP-attachment lexical preference in the sen-
tence: “Elle lutte contre la corruption locale.” (“She fights against
local corruption.”) . 148

5.2 Identification of a PP subcategorization preference from an entry in
Dicovalence for the verb ‘abandonner’ (“to abandon”). The subcate-
gorized PP consists of the preposition ‘à’ (‘to’) with a noun PP object,
with this information being gleaned from the presence of objà in the
FRAME field. 154

ix

List of Tables

1.1 Sentential, lexical, and morphological break down for the sentence:
“Nous observions attentivement un arc-en-ciel.” (“We were atten-
tively observing a rainbow.”) . 14

1.2 Tagsets and markers at the morphosyntactic level of annotation in
the FTB. 31

1.3 Tagsets and markers at the phrase-structure level of annotation in
the FTB. The additional surface function MOD is applicable to any
phrase category . 33

1.4 List of coarse-grained and fine-grained POS categories used in the
French Dependency Treebank (FTBDep). 36

1.5 List of surface functional role labels used in the French Dependency
Treebank (FTBDep). 39

1.6 Examples of categorical information, feature template, and the indi-
cator features that actually make up the feature space. 47

2.1 Labeled (LAS) and unlabeled (UAS) attachment scores of parsers on
the FTBDep development and test sets. 54

2.2 Running times (min:sec) of parsers on the FTBDep development set
on an iMac 2.66 GHz computer. 54

2.3 Transition conversion table from arc-eager-mc to arc-eager. . . 71

2.4 Basic feature templates for arc-standard, arc-eager and arc-
eager-mc. 77

2.5 Grouping of classification and ranking models by fine POS category
of word form at the front of the buffer in transition-based parsing
experiments. 81

x

LIST OF TABLES

2.6 LAS and UAS results, in percent, over the FTBDep test set for
the five evaluated transition systems: arc-standard, arc-eager,
arc-eager-mc, hybrid-eager-1 for prepositions and conjunctions,
and hybrid-eager-2 for only prepositions. Also includes UAS re-
sults when restricting scoring dependents to prepositions (P,P+D) or
coordinating conjunctions (CC). 82

2.7 Running times (min:sec) over the FTBDep test set for the follow-
ing evaluated transition systems: arc-standard, arc-eager, arc-
eager-mc, hybrid-eager-1 for prepositions and conjunctions, and
hybrid-eager-2 for only prepositions. 85

2.8 Breakdown of UAS results by fine POS category of the dependent for
the arc-eager transition system on the FTBDep development set.
POS categories are listed in descending order of frequency, with only
those POS with at least 100 occurrences in the FTBDep development
set being included in the table. 85

3.1 Basic feature templates for neighborhood parse correction, both sim-
ple ones over individual word forms and derived ones that use multiple
words or surrounding syntactic structure. 102

3.2 Grouping of classification and ranking models by fine POS category
of dependent word forms for neighborhood parse correction. 105

3.3 LAS and UAS results, in percent, over the FTBDep test set when us-
ing either a gold correction oracle or an automatically trained model
correction oracle over first-stage trees output by arc-standard and
arc-eager baseline transition-based parsers. Also includes UAS re-
sults when restricting scoring dependents to prepositions (P,P+D) or
coordinating conjunctions (CC). ∗ indicates a significant improvement
over the baseline. 106

3.4 Confusion matrices for first-stage (FS) arc-eager parsing and for
second-stage (SS) neighborhood correction, with each scored word
form attached correctly (+) or incorrectly (–) after each stage. Three
scoring settings are considered: all word forms (All), prepositions
(P,P+D), and coordinating conjunctions (CC). 108

3.5 First-stage arc-eager parsing LAS and UAS results, in percent, over
the FTBDep development set, listed according to the choice of exter-
nal corpus (AFP or ER), the method for parsing the external corpus
(one-stage or two-stage), and the number of sentences (in thousands)
from each corpus in the final training set for arc-eager. † indicates
the best result, though not statistically significant over the baseline. . 109

xi

LIST OF TABLES

3.6 LAS and UAS results, in percent, over the FTBDep test set when us-
ing a two-stage parsing system of arc-eager transition-based pars-
ing followed by correction. The baseline setting uses this system
alone, while the self-trained setting uses a two-stage self-trained parser.
Also includes UAS results when restricting scoring dependents to
prepositions (P,P+D) or coordinating conjunctions (CC). 110

3.7 First-stage arc-eager parsing LAS and UAS results, in percent,
over the EMEA development set, listed according to the number of
sentences (thousands) for each corpus in the final training set for
arc-eager. 112

3.8 LAS and UAS results, in percent, over the journalistic FTBDep and
medical EMEA test sets when using a two-stage parsing system of
arc-eager transition-based parsing followed by correction. The
baseline setting uses this system alone, while the self-trained setting
uses a two-stage self-trained parser adapted to the medical domain. . 112

4.1 Lemmatized distributional thesaurus entries in French for the noun
‘véhicule’ (‘vehicle’) and verb ‘calciner’ (“to calcify”). Neighboring
lemmas are listed by descending similarity. 117

4.2 Weight functions for finding context informativeness. 123

4.3 Measure functions for calculating distributional similarity. 123

4.4 Average INVR evaluation scores for the top distributional thesauri
by POS category. Each setting consists of a particular weight func-
tion (out of relfreq, ttest, or pmi) and measure function (out of
cosine, jaccard, or lin). 132

4.5 LAS and UAS results, in percent, over the FTBDep development
set when using in-domain lexical generalization parsing approaches.
Results are grouped into the baseline system, lemma space systems
with varying POS and k-nearest lemmas used, cluster space systems
with varying POS and z cluster vocabulary proportions used, and
sense space systems with varying POS and k-highest ranked senses
used. 136

xii

LIST OF TABLES

4.6 LAS and UAS results, in percent, over the FTBDep test set when us-
ing in-domain lexical generalization parsing and correction approaches.
Results are grouped into the baseline systems, lemma space systems
cluster space systems, and sense space systems. Each lexical gener-
alization system contains either a parser alone, a parser with a new
corrector that uses no lexical generalization (+correction), or a
parser with a new corrector that uses the same lexical generaliza-
tion approach as its corresponding parser (+correction lexgen).
∗ indicates a statistically significant improvement over the baseline,
with approaches without correction compared to the baseline without
correction, and those with correction compared to the baseline with
correction. 137

4.7 LAS and UAS results, in percent, over the FTBDep and EMEA de-
velopment sets when using bridge lexical generalization parsing ap-
proaches. Results are grouped into the baseline system, lemma space
systems with varying POS and k-nearest lemmas used, and cluster
space systems with varying POS and z cluster vocabulary propor-
tions used. 138

4.8 LAS and UAS results, in percent, over the FTBDep and EMEA test
sets when using bridge lexical generalization parsing and correction
approaches. Results are grouped into the baseline systems, lemma
space systems cluster space systems, and sense space systems. Each
lexical generalization system contains either a parser alone, a parser
with a new corrector that uses no lexical generalization (+correc-

tion), or a parser with a new corrector that uses the same lexi-
cal generalization approach as its corresponding parser (+correc-
tion lexgen). ∗ indicates a statistically significant improvement
over the baseline, with approaches without correction compared to
the baseline without correction, and those with correction compared
to the baseline with correction. 139

5.1 Feature templates for neighborhood parser correction, both simple
ones over individual word forms and derived ones that use multiple
words or surrounding syntactic structure. Novel lexical preference
features apply to preposition dependents only. 155

xiii

LIST OF TABLES

5.2 Preposition UAS results, in percent, over the FTBDep development
set with different lexical preference settings for correction. The base-
line uses no lexical preference features, the Dicovalence approach uses
subcat only, and the PMI and NRF approaches also use lexassoc
as well as varying frequency cutoffs for dependents (kd) and gov-
ernors (kg). † indicates a best setting later combined into a sub-
cat+lexassoc setting (last rows). ∗ indicates a statistically signif-
icant improvement for subcat+lexassoc over the baseline. 156

5.3 Size of lexical preference resources for Dicovalence, and for each com-
bination of statistical metric (PMI or NRF) and lexical preference
type (subcat or lexassoc) using optimal minimum frequency cutoff
values over the AFP corpus. Lists unique number of PPs, governors,
and attested dependency pairs. 157

5.4 Overall and preposition LAS and UAS results, in percent, over the
FTBDep test set when using different lexical preference settings for
neighborhood correction. The baseline uses no lexical preference fea-
tures, the Dicovalence approach uses subcategorization (subcat) fea-
tures only, and the PMI and NRF approaches use a combination of
subcategorization and lexical preference (lexassoc) features. ∗ in-
dicates a statistically significant improvement over the baseline for
preposition LAS or UAS. 158

xiv

Introduction

Positioning our Research

The primary objective of this thesis is to study ways to improve wide-coverage

syntactic parsing, with French as our language of application. Given the openness

of this objective, as well as the extensive amount of research on parsing that has been

conducted over the decades within the field of Natural Language Processing (NLP)

for many languages, our process involved narrowing the scope of our investigation

to a specific framework and then seeking to make focused contributions aimed at

improving methods within that framework.

A major decision we make in our choice of framework is to favor statistical

parsing approaches over symbolic ones. One major advantage of statistical pars-

ing is its robustness, with an ability to predict the syntactic structure of sentences

that may not adhere strictly to the grammar of a language. Another advantage is

its inherent ability to disambiguate between alternative syntactic parses for a given

sentence. The downsides stem primarily from the fact that the most accurate statis-

tical parsers are trained in a supervised manner over manually-annotated treebanks.

One consequence is the data sparseness problem, where a statistical parser captures

lexical information only for frequent phenomena in the limited-size treebank. An-

other consequence is that the parser is tied to the specific genre or domain of the

treebank, which is usual composed of journalistic text; the parser may have diffi-

culty generalizing to other domains, such as biomedical text or user-generated web

content. A major concern of our thesis is to address these problems, using semi-

supervised methods to mitigate data sparseness and improve coverage beyond the

journalistic domain.

The other major decision we make in our choice of framework is to favor syn-

tactic dependency grammar and representation over the more typically used phrase-

1

Introduction

structure grammar and representation. We are primarily guided by the existence of

linear-time dependency parsing algorithms with competitive accuracy compared to

the best state-of-the-art phrase-structure parsing algorithms, which have a complex-

ity of cubic time or more. Another advantage is that direct syntactic dependencies

between words are arguably closer to the predicate-argument structure required for

semantic processing downstream.

These decisions ultimately lead us to a computationally efficient framework

that includes data-driven transition-based dependency parsing, which has developed

rapidly over the past decade (Nivre, 2003; Yamada and Matsumoto, 2003; Nivre

et al., 2006; Nivre, 2008; Kübler et al., 2009), and the less studied dependency parse

correction (Hall and Novák, 2005; Attardi and Ciaramita, 2007). While we will

describe this framework extensively later on, we note for now that it allows for the

development of parsers and correctors that have the qualities of compactness and

computational efficiency we believe are necessary for real world applications.

Working within this framework, our research is divided into two main threads,

whose shared goal is to improve parsing accuracy and extend coverage while retain-

ing computational efficiency. The first research thread investigates methods that

introduce additional syntactic context into attachment decisions for both parsing

and correction, culminating with their combination into a two-stage parser that is

trained in a semi-supervised manner for both in-domain and out-of-domain parsing.

The second research thread continues on the semi-supervised path, investigating the

integration into parsing model features of distributional lexical resources built from

corpora that have been automatically-parsed with the two-stage parser, and again

considering the use of these methods for both in-domain and out-of-domain parsing.

Outline of the Thesis

The body of this thesis is divided into five chapters. A preliminary chapter first

presents the essential linguistic and mathematical notions required for later inves-

tigations into dependency parsing and working with lexical resources. Subsequent

chapters elaborate the two main threads of our research, with each thread associated

with two chapters and an overall progression in which the algorithms and results

from previous chapters inform the course of later ones.

Chapter 1

The chapter “Preliminaries in Syntax and Machine Learning” is dedicated to laying

the theoretical groundwork for our thesis as well as presenting the primary materials

— the core data set and computational modeling techniques — that we use in

2

Outline of the Thesis

our experiments. Our first objective in this chapter is to provide a theoretical

linguistic background to our work, in particular deciding what constitutes a valid and

useful syntactic representation of a sentence. Given the variable nature of linguistics

terminology across different theories, we seek to provide operational definitions for

the linguistic concepts we need in this thesis. We also pay special attention to

French syntax, describing the syntactically annotated resource that we use to train

and evaluate our parsing models. Our second objective in this chapter is to detail

the fundamental machine learning algorithms that are at the core of our automatic

syntactic parsing approaches.

In Section 1.1 we begin by introducing the basic linguistic notions of distribu-

tion, morphology, word forms, and lexemes, which are important for understanding

syntactic theory, and then introduce the notion of syntax. In Section 1.2 we move

into the heart of our discussion of syntax by presenting the two major formalisms,

phrase-structure grammar and dependency grammar. We explain the equivalence,

under certain conditions, of these two formalisms, and justify our decision to work

exclusively with dependency grammar. In Section 1.3 we move from a general discus-

sion of syntax to the specific case of French. We present the syntactically annotated

resource at our disposal, the French Treebank, with a discussion of important linguis-

tic decisions present in its annotation as well as its conversion from phrase-structure

to dependencies. Finally, in Section 1.4 we delve into the fundamental computa-

tional modeling aspects of the thesis. We briefly introduce machine learning, and

then describe the supervised learning algorithms we use to train linear models of

classification and ranking, which drive the syntactic parsers and correctors used in

later chapters.

Chapter 2

Having covered fundamental aspects of syntactic dependency tree representation

and machine learning algorithms, the chapter “Efficient Large-Context Dependency

Parsing” formally describes the problem of dependency parsing and begins inves-

tigating the first main thread of our thesis, which involves the search for methods

that introduce additional syntactic context into attachment decisions. We present

empirical results for various classes of parsers, settle on the efficient transition-based

family of parsers, and introduce a variant transition system that introduces more

context into dependency attachment decisions.

In Section 2.1 we formalize the problem of dependency parsing and investi-

gate practical tradeoffs between algorithmic efficiency and the amount of contextual

information available for dependency attachment decisions. To help guide this in-

vestigation, we describe a preliminary study in which different dependency parsing

3

Introduction

approaches were tested for French, providing empirical evidence supporting our de-

cision to focus exclusively on computationally efficient transition-based parsing. In

Section 2.2 we present the family of transition-based parsing algorithms that have

been popularized in the past decade and discuss the existing arc-standard and

arc-eager algorithms within this family. We then introduce arc-eager-mc, a

large-context variant that simultaneously considers multiple candidate governors for

certain attachments during parsing. Finally, Section 2.3 describes parsing experi-

ments for French in which we compare the performance of arc-standard, arc-

eager, and arc-eager-mc, with a particular focus on the parsing accuracy for

PP-attachment and coordination, two ambiguous syntactic constructions that are

typically difficult to parse.

Chapter 3

The chapter “Efficient Large-Context Parse Correction” continues the first main

thread of our thesis, building on the methods and results from the previous chap-

ter by investigating the use of second-stage parse correction on top of first-stage

transition-based parsing. In the previous chapter, we incorporate directly into the

parser’s transition system a way to consider multiple candidate governors simulta-

neously for a given dependent. In this chapter, we stay with a traditional transition

system and instead seek to incorporate additional syntactic context in a second-stage

correction model that revises attachments; parse correction has the dual benefits of

more surrounding syntactic context and the ability to simultaneously compare mul-

tiple candidate governors for a dependent in a computationally efficient manner. We

also test a semi-supervised approach to two-stage parsing aimed at reducing data

sparseness and improving coverage for the medical domain.

In Section 3.1 we present the problem of learning to correct dependency parse

errors, describing an existing neighborhood correction framework as well as our

innovations in using a ranking learner and accessing more syntactic context. In

Section 3.2 we discuss an interesting self-training approach to learning with partially

unannotated data in a two-stage parsing system, which has previously been used

successfully with a phrase-structure parser coupled with a reranker. We investigate

a corresponding approach for dependency parsing that couples a transition-based

parser with a corrector, and also note how this can be applied to the problem of

domain adaptation. Finally, Section 3.3 includes correction experiments for French

in which we compare the performance of baseline arc-standard and arc-eager

parsers from Chapter 2 to two-stage systems that additionally correct dependency

errors from the parsing stage, with special attention again given to the difficult

attachment types of PP-attachment and coordination. We also evaluate to what

4

Outline of the Thesis

extent the self-training approach is effective for two-stage dependency parsing, for

both in-domain journalistic text and out-of-domain medical text.

Chapter 4

Having finished our investigation into the first main thread of our thesis and es-

tablished an efficient base two-stage parsing system, in the chapter “Parsing with

Generalized Lexical Classes” we turn to the second main thread of our thesis, which

involves the integration of automatically built distributional lexical resources to im-

prove dependency parsing. Using our two-stage parser as a backbone, in this chapter

we specifically investigate the semi-supervised creation of generalized lexical classes

that can replace word forms in features during parsing. In doing so, our goal is

to tackle the problem of accurately modeling lexical relationships from potentially

sparse counts in a training corpus.

In Section 4.1, we describe the methods in distributional lexical semantics

that create from a large text corpus a distributional thesaurus, which is needed for

the creation of our generalized lexical classes. We provide an overview of standard

methods used in the NLP literature, leading to a description of different metrics

for weighting contexts and calculating similarity that we use to build distributional

thesauri. We then describe three spaces of generalized lexical classes we have chosen

to investigate, each relying on a distributional thesaurus: (i) lemmas, with word

forms mapped to one or more lemmas ranked according to distributional similarity;

(ii) clusters, generated using hierarchical agglomeration of word forms based on their

pairwise distributional similarities; and (iii) synsets, obtained using automatic sense

ranking to score the semantic senses of word forms according to a semantic resource

and a distributional thesaurus. Finally, in Section 4.2 we present experiments for

French where we test the inclusion in parsing and correction models of lexical features

derived from the three spaces of generalized lexical classes.

Chapter 5

In the final chapter, “Parsing with PP-Attachment Preferences,” we finish the sec-

ond main thread of our thesis, borrowing from the distributional methods from the

previous chapter and this time investigating semi-supervised models of lexical pref-

erence for PP-attachment decisions in parse correction. We focus on PP-attachment

because it is known to be difficult to disambiguate syntactically, and we find earlier

that it contributes to a large proportion of parsing errors.

In Section 5.1, we start by motivating our investigation of lexical preference for

the problem of PP-attachment and discussing the ways in which lexical preference

5

Introduction

has been used in the literature for parsing and other NLP applications. We then

present an overview of the types of lexical preference we consider for PP-attachment,

distinguishing between different levels of lexical specificity in the dependent PP: we

consider a less lexically-specified level in line with the notion of subcategorization,

and a more lexically-specified level that additionally includes the lemma of the PP’s

object. We then turn to a discussion of the two statistical metrics we use to ob-

tain preference scores from a large automatically-parsed corpus: (i) a traditional

pointwise mutual information metric; and (ii) a novel neighborhood-based relative

frequency metric that uses information concerning the syntactic neighborhood of

candidate governors surrounding a PP dependent within a parse tree. In Section 5.2

we then present parse correction experiments for French in which we test the ad-

dition of preference features for PP-attachment. The evaluation compares the two

types of lexical preference and the two statistical metrics used to obtain preference

scores, with an additional setting that derives 0-1 scores from a hand-built verb

subcategorization resource.

6

Chapter 1

Preliminaries in Syntax and Machine

Learning

“No, no!” said the Queen. “Sentence first — verdict afterwards.”

— Lewis Carroll

7

1. Preliminaries in Syntax and Machine Learning

In this thesis, we investigate approaches to improving upon existing machine

learning methods for syntactic natural language parsing. In order to motivate our

approaches, it is necessary to present relevant background to our work, as well as

the primary materials — data sets and computational modeling techniques — that

we use in our research. Our first objective in this chapter is to provide a theoretical

linguistic background to our work, and in particular decide on what constitutes a

valid and useful syntactic analysis of a sentence. In addition, we need to take into

account the particularities of French, the language we have chosen to work with,

and the specific treebank resource available to us for our experiments. A second

objective in this chapter is to subsequently detail the fundamental machine learning

algorithms and methods that are at the core of our statistical approaches to syntactic

parsing.

In Section 1.1 we begin our discussion by introducing the basic linguistic no-

tions of distribution, morphology, word forms, and lexemes, which are important for

understanding syntactic theory, and then introduce the notion of syntax.

In Section 1.2 we move into the heart of our discussion of syntax, presenting the

two major formalisms for representing natural language syntax, which are phrase-

structure grammar and dependency grammar. We explain the equivalence, under

certain conditions, of the two formalisms, and justify our decision to work exclusively

with dependency grammar.

In Section 1.3 we move from a general discussion of syntax to the specific

case of French. We present the syntactically annotated resource at our disposal,

the French Treebank, with a discussion of important linguistic decisions present

in its annotation as well as its conversion from phrase-structure to a version with

dependencies that we use for the parsing experiments in this thesis.

In Section 1.4 we finally delve into the fundamental computational modeling

aspects of the thesis. We introduce machine learning, and then describe the su-

pervised learning algorithms we use to obtain linear models of classification and

ranking, which drive the syntactic parsing and correction models that are used in

later chapters.

1.1 Basic Linguistic Concepts

We begin by presenting the elementary linguistic notions underlying natural lan-

guage syntax, as well as some of the essential characteristics of syntactic relation-

ships between words in a sentence. Starting with these building blocks, we set the

stage for a more detailed discussion of grammatical formalisms in the subsequent

section. We take care here to use definitions and terminology that are widely agreed

8

1.1 Basic Linguistic Concepts

upon in the field of linguistics, and we avoid delving into unnecessarily fine detail

while nonetheless ensuring that our definitions are specific and operational.

1.1.1 Morphological and Lexical Notions

We begin by working our way from the smallest linguistic unit of interest to us, the

morpheme, up to the word form, which is the key unit in syntax. At these lower

levels, meaning necessarily plays an important role in our definitions of units. How-

ever, we reiterate that syntax is concerned with communicative form, and therefore

our recourse to meaning is limited to this section.

Morphemes and Word Forms

The first approximation of structure in written or spoken communication is con-

sidered to be the utterance, which consists of a fixed sequence of units of minimal

sense. This first minimal meaningful unit of natural language is termed the mor-

pheme; more precisely, it is a meaningful unit that cannot be further broken down

into smaller meaningful units. For an example in French, ‘pomme’ (‘apple’) is a

morpheme while ‘pommes’ (‘apples’) is not, because the latter can be decomposed

into the morpheme ‘pomme’ and the pluralizing morpheme ‘–s’. Though ‘pomme’

can be broken down into letters, syllables, phonemes, or possibly other smaller units,

crucially these smaller units are not viewed as carrying meaning.

It is important at this point to begin examining the constraints that exist

concerning morpheme combination; specifically, we note that all morphemes cannot

be combined with the same amount of freedom. For example, the French prefix

morpheme ‘in-’ (the same as in English) and the morpheme ‘petit’ (‘small’) have

fairly well-defined meanings when used in combination with other morphemes, with

‘in-’ indicating opposition and ‘petit’ indicating small size. However, of these two

only ‘petit’ is considered to be free, as it can precede almost any morpheme with

a compatible meaning, such as ‘chien’ (‘dog’) or ‘échec’ (‘failure’). The morpheme

‘in-’, on the other hand, is considered to be bound, as it can combine with a small

number of morphemes with compatible meaning, such as ‘in-fini’ (‘infinite’) or ‘in-

juste’ (‘unjust’), while not with many others, such as the plausible but not part of

the language ‘in-grand’ (“not large”).

The observation that morphemes can have constraints regarding which other

morphemes they combine with is encompassed by the larger notion of distribution,

which operates at various linguistic levels and groups units into classes based on

shared sets of observed constraints. Distribution as a linguistic concept is widely

used and can be traced back to the seminal work of Bloomfield (1933), who studied

9

1. Preliminaries in Syntax and Machine Learning

the distribution of morphemes and larger linguistic units. While the morphological

level cannot be described with distribution alone, as meaning plays a fundamental

role, our later description of syntax will rely primarily on distribution.

The fact that there are differences in the distributional constraints for different

morphemes leads us to the next higher level linguistic unit. This unit is the word

form, which we define as a unit composed of one or more morphemes that is both

free and minimal, the latter indicating that it cannot be decomposed into free parts

while retaining its meaning. As a consequence of requiring that word forms be

free, bound morphemes are no longer stand-alone units at this level, as is evident

in the two distinct word forms ‘juste’ (‘just’, ‘fair’) and ‘injuste’ (‘unjust’). The

requirement that words be minimal is necessary in order to set a boundary on this

level, since otherwise any arbitrarily long sequence of morphemes could be considered

a word form. While it is true that in orthographic representations of languages like

English and French blank spaces and punctuation marks are good indicators of word

form boundaries, this is not the case for the compound word, or word form consisting

of multiple free morphemes whose meaning is nonetheless non-compositional. While

compound words consist of multiple parts that could count as word forms in other

contexts, those parts lose their meaning within the compound or get a more specific

meaning. For example, the compound word “carte bleue” (‘card’ and ‘blue’), when

referring to a credit card, has a unique meaning that is lost if you compose the

meanings of ‘carte’ and ‘bleue’ separately. The dual criteria for word forms of being

free and minimal are thus more precise than orthographic criteria, and in any case

more useful when taking into account both spoken and written communication.

Classes of Morphemes

Having made the distinction between morphemes and stand-alone word forms, we

can now look back at morphemes and note that they can be placed into two major

classes: grammatical and lexical.

Grammatical morphemes constitute a closed class containing a small and stable

set of morphemes, whose meanings are either very general or internal to the language

itself. A first major type of grammatical morpheme that has a very general meaning

is the inflectional morpheme, which is always bound and which carries categorical

information organized into paradigms, or sets of mutually exclusive values. For ex-

ample, in the linguistic paradigm of gender, a word form can carry either a masculine

or a feminine inflection, but not both. Inflectional morphemes are additionally char-

acterized by the fact that they modify neither the underlying semantic nature of the

word form to which they are affixed nor the basic distributional properties of that

word form.

10

1.1 Basic Linguistic Concepts

The next major type of grammatical morpheme is the derivational morpheme,

which includes all remaining bound morphemes that are not inflectional. Deriva-

tional morphemes are not organized into paradigms and they do modify the under-

lying meaning of the word to which they are affixed, changing the class of referents

denoted. They often also change its basic distributional properties, both in terms

of how that word form can be modified by additional morphemes and how that

word form can be combined at higher syntactic levels with other word forms. Since

derivational morphemes operate at the intersection of morphology and syntax, we

will return to them a bit further on in our discussion.

A last key type of grammatical morpheme encompasses those morphemes that

operate as connectors. These morphemes are free, appearing as standalone word

forms, and have meanings that are primarily internal to the language. An example

of this type of grammatical morpheme is the complementizer ‘que’ (‘that’), with

additional ones including pronouns, articles, and prepositions, among others.

The second major class of morphemes are called lexical morphemes, and they

are characterized in opposition to grammatical morphemes through their richer

meanings as well as the fact that they constitute an open class. Lexical morphemes

are the part of a language that exists in state of flux, with morphemes entering and

leaving the language as new concepts in the world are encountered or obsolete ones

are discarded. They often have meanings that encompass concepts such as entities,

objects, activities, processes and descriptions. An example is the aforementioned

morpheme ‘pomme’. Though lexical morphemes are largely free, there are some

examples of bound lexical morphemes, such as the French prefix ‘hipp-’, which indi-

cates the quality of a horse, that is found for instance in the word forms ‘hippique’

(‘horse-like’) and ‘hippocampe’ (‘hippocampus’).

The Lexicon

The word forms of a language are the main units we are interested in, and we

introduce a few more terms regarding their use. We define a lexeme to be a set of

word forms that differ only through inflection. One example would be the set of all

inflections of the verb ‘manger’ (“to eat”), with different values for the grammatical

categories that are applicable to verbs: {‘mange’, ‘mangeons’, ‘mangerait’, etc.}. In

order to simplify the representation of such sets, a lemma for each lexeme is selected

as its citation form, and this is usually the form that is minimally inflected. For

example, supposing we choose to use infinitive verb forms as lemmas, then ‘manger’

would be the lemma for its corresponding lexeme. Finally, the lexicon for a language

is a resource describing each lexeme in the language, including its lemma and the

inflectional possibilities leading to its different observed word forms.

11

1. Preliminaries in Syntax and Machine Learning

1.1.2 Syntactic Notions

The next natural step in our discussion is to look at the interactions and relationships

that arise between separate word forms that appear sequentially. Syntax is the term

used to designate the study of the organizational system governing the relationships

between word forms in a language. The syntactic analogue to the utterance, which

we described before as a fixed sequence of units of minimal sense, is the sentence,

a more widely-used term that generally refers to a fixed sequence of word forms.

It is complicated, however, to precisely delimit the boundaries of an utterance or a

sentence. While this subject is debated in linguistic theory, we find it to be beyond

the scope of our work to discuss it here. Instead, we sidestep the issue by noting

that since we work on written text, we are able to rely on orthographic markers of

sentence boundaries (e.g. periods, exclamation marks, question marks). Supposing

that we have such a means of delimiting sentence boundaries, the study of syntax

is then traditionally limited to relationships between word forms within a sentence,

with relationships that cross sentence boundaries studied at a higher discourse level

of linguistic analysis.

We have already hinted at the compositional semantics of word forms when

noting that compound words such as “carte bleue” are indivisible for reasons per-

taining purely to meaning. However, it is important to note that syntax has the

quality of being powerful and descriptive enough that its rules governing the re-

lationships between word forms can be explored and understood without recourse

to semantics. Our discussion from this point forward will thus use distributional,

rather than semantic, properties of language to describe the various components of

syntax.

Part-of-Speech Categories

As we transition from a discussion of morphology to one of syntax, a crucial next step

is the classification of word forms, or more specifically lexemes, into part-of-speech

(POS) categories, which identify shared morpho-syntactic behavior. Linguistic the-

ory across languages identifies POS categories as an important bridge between mor-

phology and syntax: lexemes can be grouped by shared behavior in terms of both

inflection (morphology) as well as word-to-word relationships (syntax). The major

classic POS categories can be divided into open categories, which are comprised of

lexemes that have at least one lexical morpheme, and closed categories, whose lex-

emes are made up of grammatical morphemes only. For both English and French the

open categories are verbs, nouns, adjectives, and adverbs, while the closed categories

include determiners, prepositions, and conjunctions, among others.

12

1.1 Basic Linguistic Concepts

We noted earlier that derivational morphemes may alter a word form’s distri-

butional properties, and now we can make this description more precise: a deriva-

tional morpheme may change the POS category of the word form it is affixed to.

For example, the French derivational morpheme ‘-able’ can transform a verb into

an adjective, as can be seen with the verb ‘jouer’ (“to play”) and the noun ‘jouable’

(‘playable’). This change in POS category results in new inflectional constraints,

as well as new distributional syntactic properties. It should be noted that deriva-

tional morphemes do not always alter a word form’s distributional properties, as is

the case for the French diminutive morpheme ‘-ette’: both ‘maison’ (‘house’) and

‘maisonnette’ (“small house”) are common nouns.

Since we view POS categories as being distributional in nature, we can de-

fine them at different levels of granularity: A coarse-grained categorization is one

with fewer categories and looser distributional alignment between lexemes in a given

category, while a fine-grained categorization has more categories and tighter distri-

butional alignment between lexemes in a given category. For example, in French the

grouping of all nouns into a single category may be viewed as coarse-grained, and a

finer-grained categorization would distinguish between common nouns like ‘pomme’

and proper nouns like ‘Jean’. This is because the distributions of common and

proper nouns differ slightly, for example with respect to determiners: “la pomme”

(“the apple”) occurs in French, but excepting some dialect variants no determiner

can be associated with ‘Jean’.

At this point, we have now described all of the essential linguistic units perti-

nent to syntax that we will use and refer to throughout this thesis. To summarize

and reinforce our understanding of the organization and composition of these lin-

guistic units, we show in Table 1.1 a linguistic analysis at the sentential, lexical,

and morphological levels for the French sentence “Nous observions attentivement

un arc-en-ciel.” (“We were attentively observing a rainbow.”).

Grammars and Acceptability

We now look at the broader syntactic notions of grammar and grammaticality. A

natural language allows for the expression of an infinite variety of sentences from

a finite lexicon, although at the same time there exist many possible sequences of

word forms that are not considered part of the language. A grammar, in the broad

linguistic sense, can then be seen as the set of rules and constraints that dictates

which sentences are syntactically valid for a particular language; those sentences

that adhere to these rules are considered grammatical, while those that do not are

considered ungrammatical.

We stated earlier that our view of syntax is essentially decoupled from mean-

13

1. Preliminaries in Syntax and Machine Learning

Sentence: Nous observions attentivement un arc-en-ciel .

Lexical:
Word Form [nous] [observions] [attentivement] [un] [arc-en-ciel]
Part-of-Speech [pronoun] [verb] [adverb] [determiner] [noun]

Morphological:
Free [il] [observer] [attentif] [un] [arc][en][ciel]
Derivation [–ment]
Inflection [plural] [plural] [singular]

[1st person] [1st person] [male]
[indicative]
[imperfect]

Table 1.1: Sentential, lexical, and morphological break down for the sentence: “Nous ob-
servions attentivement un arc-en-ciel.” (“We were attentively observing a rainbow.”)

ing, due to the fact that the syntax for a language can be studied and validated

independently. The reason for this lies in the distinction between grammaticality,

which is the adherence of a sentence to the syntax of a language, and acceptabil-

ity, which additionally requires that the sentence be interpretable to a speaker of

the language. Using the famous example of Chomsky (1957), a semantically un-

interpretable sentence in English such as “Colorless green ideas sleep furiously” is

nonetheless considered intuitively grammatical by native speakers of English. Se-

mantic requirements can thus be characterized as rules that distribution-based gen-

eralizations cannot capture; from a distributional perspective, the adjective and

noun POS categories are observed as appearing together in general, but from a se-

mantic perspective the specific adjective ‘green’ and noun ‘ideas’ are not compatible.

One can also see the distinction between syntactic and semantic requirements in the

case of verb arguments. Transitive verbs such as the French ‘attraper’ (“to catch”)

are said to subcategorize for, or syntactically require, a nominal object, because such

a generalization can be made about this particular class of verbs based on their

distributions. Semantically, on the other hand, ‘attraper’ additionally requires that

the object be such that the two combine to create an interpretable meaning, as in

“attraper le ballon” (“to catch the ball”).

For the purposes of our thesis, it is convenient to maintain a clear divide

between grammaticality and ungrammaticality. However, it should be noted that

recent trends in linguistics tend toward a more nuanced approach to grammar,

arising from easier access to sophisticated search techniques over attested examples

in large corpora. The notion of preference has been studied as an alternative to

binary grammaticality, for instance in the work of Bresnan et al. (2007) for predicting

dative alternation. Looking ahead to the problem of syntactic parsing, we note that

our goal is to produce explicit syntactic structures for observed sentences, whether

14

1.2 Formal Representations of Syntax

they be perfectly grammatical or not, and the statistical approaches to parsing we

investigate are particularly suited to a non-binary conception of grammaticality.

Grammatical Function and Valency

Before we turn to a discussion of specific grammar formalisms, we introduce two

major aspects of syntactic relations that are linguistically important, independently

of the formalism used. The first is the notion of grammatical function, in which a

relationship between words is characterized using a set of grammatical properties

such as position, acceptable POS categories, and inflection. An example of an

important grammatical function is that of subject in French: its properties include

the possibility of appearing before the verb, the requirement of inflectional agreement

with the verb, the possibility of undergoing relative pronominalization with the

pronoun ‘qui’ (‘who’), etc. Specific instances of grammatical relations can then

be classified into grammatical functions based on their distributions, with common

functions across languages including subject, object, indirect object, and others.

The next major linguistic insight into syntactic relationships, building upon the

notion of grammatical function, is that of syntactic valency: predicates, or lexemes

whose semantics consist of a functor that requires specific arguments, impose those

grammatical functions that are expected by their semantic arguments. For example,

the French verb predicate ‘obéir’ (“to obey”) requires semantically a protagonist and

a norm (in this case a thing that is obeyed, either an abstract or animate entity),

and these are realized through the grammatical functions of subject and indirect

object, respectively, as in “Pierre obéit à la loi” (“Pierre obeys the law”). There

is a large area of study in linguistics called linking theory that is concerned with

the regularities between the properties of semantic arguments and the grammatical

functions in which they are realized. For instance, the seminal work of Dowty

(1991) proposes the argument selection principle, which defines a set of proto-agent

properties and a set of proto-patient properties; a given semantic argument can bear

properties from both sets, and an argument that bears a majority of proto-agent

(resp. proto-patient) properties will be lexicalized as the subject (resp. object).

1.2 Formal Representations of Syntax

Having presented the key concepts and terms concerning morphology, word forms,

and basic syntactic notions in the previous section, the big issue that we will discuss

here is how to formally represent syntactic grammatical structure, which must de-

scribe relationships between words in a sentence while accounting for the recursive

15

1. Preliminaries in Syntax and Machine Learning

nature of these relationships. Turning to the formal definition of the structure of syn-

tactic requirements between word forms, historically there are two major schools in

linguistics when approaching the characterization of grammars for natural language

syntax. One is phrase-structure grammar, a theory appearing in the 20th century

and having a major influence on modern western linguistics; this characterization

is based on the notion of phrases, or subsequences of word forms within a sentence

that provide internal structure, and typically uses phrase generation rules as a way

to model grammatical constraints. The other is dependency grammar, which has

a historically rich tradition dating back to antiquity, and which uses a more direct

approach by characterizing word form relationships in a sentence as dependencies

between pairs of word forms.

We will now provide formal descriptions of the two major approaches to gram-

matical structure, defining the notions of phrase and dependency in the process, and

then discuss under what conditions the corresponding structural representations are

formally equivalent as well as why we ultimately choose to use dependency grammar

in our work.

1.2.1 Phrase-Structure Grammar

The first major approach to modeling grammatical structure is termed phrase-

structure grammar, and it has two key components. The most important is the def-

inition of phrase units, which encompass sub-sequences of word forms in a sentence

and can be recursive in structure. The second component found in most linguistic

frameworks that include phrase-structure is the use of a formal grammar (not to be

confused with the broader notion of grammar that we have discussed previously),

which is a formal device used to generate sequences of terminal symbols (word forms)

from re-write rules that can contain a mix of terminals and non-terminals (phrases).

Phrase-structure grammar has held a relatively prominent position in western

modern linguistics as well as in the field of NLP, with the seminal work of Chom-

sky (1957) having a large influence in establishing formal grammars as a primary

backbone of phrase-structure grammar theories. Other more recent theoretical ap-

proaches include Head-Driven Phrase Structure Grammar (Pollard and Sag, 1994)

and Lexical Function Grammar (Kaplan and Bresnan, 1982), which combine formal

grammars with additional, more complex linguistic apparatuses. A widespread ap-

proach in NLP is to include little linguistic overhead and rely simply on a formal

grammar, with Context-Free Grammar (CFG) (Chomsky, 1957) as the formalism

of choice; this type of grammar is noteworthy because the restrictions placed on

re-write rules in CFG allow for efficient derivation algorithms while retaining suf-

ficient expressivity to capture most syntactic constraints in languages like English

16

1.2 Formal Representations of Syntax

or French. Due to the widespread use and simplicity of the basic CFG approach, it

will be the focus of our discussion in this section.

Phrases

Before turning to the formal generative grammar approaches to modeling phrase-

structure syntax, we need to pin down the tricky linguistic notion of what constitutes

a phrase. We define a phrase as a sequence that contains word forms and/or other

phrases and that exhibits a certain cohesion supportable by linguistic tests of con-

stituency: a phrase should be able to operate as a single unit by being primarily

replaceable with a single word, and in addition translatable to different parts of a

sentence and removable from a sentence, among other tests. Note, however, that no

individual test for constituency is necessarily infallible, so the identification of differ-

ent phrase types is generally agreed upon by looking at the entire body of linguistic

evidence. It is also important to note the recursiveness built into the definition of a

phrase, which as mentioned earlier is a crucial component of syntax.

Since phrases are essentially new linguistic units that are simply one level

higher than word forms, it is useful to organize them, as we did with word forms,

into phrase categories based on their syntactic distributions. Recalling that a re-

quirement of phrases is that they be replaceable with a single word, it naturally

follows that phrase category is generally defined based on the POS of the head of

the phrase, or the one constituent word form that most influences the distribution

of the phrase. Given that it is sometimes difficult to settle on a single such word,

this gives room for descriptive variation: for instance, the notion of noun phrase is

widely used in linguistics, but some favor the notion of determiner phrase by arguing

that determiners should be considered heads.

Though specific phrase categories depend on the particular language and lin-

guistic theoretical approach used, there is traditionally a top-level phrase for a com-

plete sentence, as well as phrases corresponding to the open POS categories — noun,

verb, adjective, and adverb phrases – as well as some of the closed grammatical POS

categories – prepositional phrases, etc. We again note the usefulness of the recur-

sive definition for phrases: we can label “le chat de la sœur de Jean” (“the cat of

the sister of Jean”) as a noun phrase and account for the fact that it contains the

smaller noun phrase “la sœur de Jean”, which in turn contains the smaller noun

phrase “Jean”.

17

1. Preliminaries in Syntax and Machine Learning

Formal Generative Grammar

Now that we have defined the notion of a phrase, we can present the formal rules for

phrase-structure grammar. Formal phrase-structure grammars for languages tradi-

tionally follow the seminal work of Chomsky (1957), who defined several grammar

families that have different restrictions on their generative rules and consequently

different levels of expressive power.

In a formal grammar, a language is defined using a set of rules for rewrit-

ing strings of symbols, which can be either terminal or nonterminal, with terminal

symbols corresponding to the language’s alphabet. A string of terminal symbols is

considered part of the language if and only if it can be generated using the rewrite

rules of the language’s grammar. The following is a detailed list of the components

of a formal grammar G:

• A finite set N of nonterminal symbols not appearing in strings formed by G;

• A finite set Σ of terminal symbols that is disjoint from N ;

• A finite set P of production rules, each rule mapping from a string of symbols

containing at least one nonterminal to a new string with any content (even

empty);

• A symbol S ∈ N that is the start symbol from which all derivations begin.

An example of a subset of production rules capable of generating the French

noun phrase “le petit chat” (“the litte cat”) would be the following, with NP rep-

resenting a noun phrase, N representing a noun, DET representing a determiner,

and ADJ representing an adjective:

NP → DET ADJ N

DET → le

ADJ → petit

N → chat

(1.1)

Moving on to the operation of a formal grammar, it can be defined in terms of

relations on strings. Given a grammar G = (N,Σ, P, S), the binary relation x⇒G y

exists between a pair of strings x and y if one rule in G can be used to derive a

substring in y from a corresponding substring in x in one step, or through a single

rule derivation. An example from our subset of production rules above would be

[DET ADJ N ⇒G DET petit N]. The transitive closure of this relation is x⇒∗G

18

1.2 Formal Representations of Syntax

y, which exists between x and y if the rules in G can be used to derive a substring in

y from a corresponding substring in x in zero or more steps, or through a sequence

of rule derivations. An example would be [DET NP ⇒∗G DET petit chat]. From

these operations, we can provide a definition for a valid sentence in the language as

being a string of nonterminal symbols w such that S ⇒∗G w, meaning that it can be

derived in any number of steps from the start symbol. The language of G, or L(G),

can then be defined as all such derivable strings from the start symbol.

Note that while our definition of formal grammars allows for arbitrary strings

(as long as they contain at least one nonterminal symbol) on the left-hand side of

production rules, each of our example production rules has a left-hand side consisting

of exactly one nonterminal symbol. If this restriction is present in all the production

rules of a grammar, then it is termed a context-free grammar (CFG). Though a

detailed discussion of the expressivity of different families of formal grammars with

respect to natural language syntax is outside of the scope of our work, we noted

earlier in our discussion that CFG is generally agreed upon as being powerful enough

to cover most natural language syntax while being simple enough to be treated

efficiently using NLP algorithms. CFG is therefore the type of phrase-structure

grammar that we will work with in the subsequent parts of this chapter.

Phrase-Structure with CFG

As can already be seen in our choice of symbols for the example production rules

above, linguistic phrase-structure can be represented in a straight-forward manner

using formal CFG grammars. Phrases correspond to non-terminal symbols, word

forms correspond to terminal symbols, and POS categories, which are generalizations

of word forms but not quite phrases, are represented using a restricted type of

nonterminal symbol called a preterminal, which is defined as a nonterminal that can

only participate on the left-hand side of a production rule if it rewrites to a single

terminal symbol.

As for the representation of a CFG derivation, it is useful to represent the

resulting syntactic structure for a sentence using a directed graph. In a formal

mathematical sense, a directed graph consists of a set of vertices and a set of directed

edges that link pairs of vertices together. For phrase-structure grammar, vertices

correspond to word forms or phrases and directed edges represent the generative

process, with a phrase vertex linked to its generated sub phrase and word form

vertices. One of the important properties of CFG derivations is that they can be

represented using trees, or graphs that are both connected, meaning that an edge

path exists between every pair of vertices, and acyclic, meaning that no edge paths

exist that leave from and return to the same vertex without traversing the same edge

19

1. Preliminaries in Syntax and Machine Learning

S

PONCT

.

PP

NP

NC

clé

DET

la

P

avec

NP

NC

porte

DET

la

VN

V

ouvrit

CL

Elle

Figure 1.1: A phrase-structure tree for the sentence: “Elle ouvrit la porte avec la clé.” (“She
opened the door with the key.”)

twice. In addition, trees derived using context-free grammars are projective, meaning

that a derived sentence is such that every vertex dominates a contiguous substring;

in other words, projective syntactic trees cannot have crossing branches. Figure 1.1

shows an example phrase-structure analysis for a sentence with CFG derivation,

following the annotation scheme of the French Treebank (see Section 1.3.1).

It is important to note that some aspects of phrase-structure grammar, consid-

ering grammar in the larger sense, are not really captured by formal CFG grammars.

Formal grammars make no mention of phrase heads, so syntactic rules concerning

the identification of phrase heads need to be defined independently. Similarly, the

syntactic notions of grammatical function and valency need to be represented. One

solution has been to infer functions from the phrase-structure topology (e.g. in

English, the first NP within a VP is the direct object), but this does not hold for

every grammatical function and a fortiori neither for every language. So another

more explicit and more general solution is to incorporate functional annotation into

the phrase categories themselves: phrase categories can be subdivided into more

specific ones that describe their function with respect to the head of their parent

phrase, with for instance an NP-OBJ phrase indicating that the NP is an object of

the parent VP’s head. It should be noted, however, that annotating phrases in this

manner creates only a partial functional annotation. An XP-FUNCT indicates that

the XP is the FUNCT of some other item, which has to be inferred — while the

inference is generally that the other item is the local head, this can be false when

encountering long-distance linguistic phenomena like extraction.

As we mentioned before, more complex theories of phrase-structure grammar

include additional specialized linguistic apparatuses in order to handle heads, func-

tions, valency, etc. In Lexical Functional Grammar (Kaplan and Bresnan, 1982), two

main structures work in parallel to represent the syntax of a sentence: a c-structure

20

1.2 Formal Representations of Syntax

representing syntactic constituents or phrases, and an f-structure representing gram-

matical functions. And in Head-Driven Phrase Structure Grammar (Pollard and

Sag, 1994), a lexical, non-derivational approach is used to account for the syntactic

requirements of grammatical function and valency.

1.2.2 Dependency Grammar

Dependency grammar, while less prominent in western modern linguists than phrase-

structure grammar, became increasingly studied and popularized in the latter half

of the twentieth century. It is important to note that there is, in particular, a strong

linguistic tradition of using dependency syntax for slavic languages, as is the case of

Czech in the Prague school of linguistics (Sgall et al., 1986) or Russian in the work of

Melčuk (1988). Phrase-structure representation is problematic for these languages as

they have freer word order, making it difficult to delimit phrase boundaries and infer

grammatical functions from the phrase-structure topology. Dependency syntax has

nonetheless also been studied for languages with stricter word order, with seminal

works by Tesniere (1959) for French and Melčuk (1988) for English.

Formally, dependency grammars call for direct legitimating relationships be-

tween pairs of words, bypassing the need for definitions of phrase categories and

criteria for constituency. We define these relations as follows: A word form wg is

the governor of wd — and, conversely, wd is a dependent of wg — if the presence of

wg legitimates the presence and relative position of wd (Kahane, 2001). We note as

well that through transitivity of governance wg can be said to also legitimate the

presence of the dependents of wd, and their dependents, etc.

Recalling that the identification of phrase heads in phrase-structure grammar

was a bit complicated and difficult to agree upon in a number of cases, we note that

similar complications arise in dependency grammar when trying to determining the

direction and existence of certain legitimizing relationships. Revisiting the example

of an indirect object introduced by a preposition, we note that “au cinéma” in

the French sentence “il va au cinéma” (“he goes to the cinema”) could potentially

be represented with ‘au’ governing ‘cinéma’, or vice versa. A similar notion to

that of co-heads for phrase-structure grammars can be used here, with one solution

suggested by Kahane (1997) that groups co-heads into bubbles that act as single

units for the purposes of dependency and governance. While this approach is perhaps

better suited to representing certain linguistic phenomena, with coordination being

a typical example often cited in the literature, there is the downside of a loss of

generality and simplicity of the representational structure. For our purposes, bubbles

are not used and order of governor is determined on a case by case basis for different

constructions.

21

1. Preliminaries in Syntax and Machine Learning

CL V DET NC P DET NC PONCT
Elle ouvrit la porte avec la clé .

cls

root

det

obj

mod

det

obj

ponct

Figure 1.2: A labeled dependency tree for the sentence: “Elle ouvrit la porte avec la clé.”
(“She opened the door with the key.”)

This leads us to fact that dependency structure can be represented, just as

was the case for CFG phrase-structure, using trees. Recall that for phrase-structure

grammar, vertices correspond to word forms or phrases and directed edges represent

the generative process, with a phrase vertex linked to its generated sub phrase

and word form vertices. For dependency grammar, on the other hand, vertices

correspond to word forms and directed edges represent direct binary dependencies. A

key aspect of dependency structure is the easy integration of grammatical function,

through the use of what are termed functional role labels (FRL) that mark each

directed edge in a dependency graph. A dependency tree with functional role labels

is termed a labeled dependency tree, and we will work exclusively with such trees

in this thesis. Having introduced the basic notions regarding syntactic dependency

structure, Figure 1.2 shows an example dependency analysis for the French sentence

“Elle ouvrit la porte avec la clé” (“She opened the door with the key”) with POS

categories and FRLs included.

For phrase-structure grammar we focused on the use of a mathematically for-

mal, derivational approach to modeling syntax, but such an approach is not pre-

dominantly used for dependency grammar. Historically, many of the seminal works

on dependency syntax (Tesniere, 1959; Melčuk, 1988) do not deal with formal gram-

mars, favoring instead prescriptive rules that dictate which types of dependencies

are acceptable under different circumstances and what properties the final syntactic

graph structure of a sentence should have. While our focus in this thesis will likewise

be limited to non-derivational approaches to dependency grammar, it is important

to note that much interesting work has been done with formal grammars for depen-

dency syntax. The use of generative dependency grammars was investigated from

the very beginning of modern linguistic theories of dependency syntax (Hays, 1964;

Gaifman, 1965). And more recently, in the last decade of NLP research, there have

been efforts (Nasr, 2004) to apply generative dependency grammars to the problem

of syntactic parsing (see Kübler et al., 2009, for an overview).

22

1.2 Formal Representations of Syntax

NPP V VINF PONCT
Jean veut manger .

root

suj

suj

obj

ponct

Figure 1.3: A labeled non-tree dependency graph for the sentence: “Jean veut manger.”
(“Jean wants to eat.”)

Characteristics of Dependency Syntax

We present here dependency grammar from the traditional perspective, which is to

say using prescriptive rules determining the structural nature of a dependency graph

for a sentence. The following conditions, generally agreed-upon in the literature,

apply to dependencies:

• binary, between two word forms;

• directed, so that one wg is governor while the other wd is dependent;

• anti-reflexive, with no word form serving as its own governor;

• labeled in a way that distinguishes its grammatical function.

One upside of eschewing formal grammars, with an approach to dependency

syntax that is less formally structured, is that dependency grammar is very flexible

and can represent a variety of linguistic phenomena that are not easily representable

using trees. One example can be seen in the difference between what are called

surface and deep syntactic dependencies. For certain verb predicate constructions,

one verb governs a subject on the surface, while from a deeper point of view one

might identify additional verbs as governor. This can typically be observed with

control verbs, such as the verb ‘pouvoir’ in the French sentence “Jean peut manger”

(“Jean can eat”). We would like the verb ‘manger’ to have ‘Jean’ as a subject, with a

resulting non-tree structure as shown in Figure 1.3. This is because ‘manger’ imposes

semantic selectional restrictions on that position, as can be seen with the sentence

“# La lune peut manger” (“The moon can eat”), which is not acceptable because

of the incompatibility of ‘lune’ as a subject of ‘manger’. A downside to allowing

multiple governors for a single word form, however, is that the syntactic analysis

becomes much more complicated by no longer conforming to a tree structure.

23

1. Preliminaries in Syntax and Machine Learning

CL V ADJ P CLO VINF DET NC PONCT
Il est difficile d’ en prévoir l’ issue .

root

suj ats

obj obj

dep

obj

det

ponct

Figure 1.4: A labeled non-projective dependency tree for the sentence: “Il est difficile d’en
prévoir l’issue.” (“It is difficult to foresee the result [of it].”)

Another phenomenon that dependency structure is capable of representing is

that of sentences for which tree representations of their dependencies must be non-

projective. This is true for French in cases of unbounded extraction, as well as,

for instance, the pronominalization of a ‘de’ PP that depends on a direct object, as

noted in a recap of non-projectivity in French text corpora by (Candito and Seddah,

2012b). An example of the latter case can be seen in the sentence “Il est difficile

d’en prévoir l’issue” (“It is difficult to foresee the result [of it]”). Figure 1.4 shows

a non-projective dependency tree analysis for this sentence, with intersecting arcs

representing the violation of tree projectivity.

Granted that dependency structure can be used to capture interesting non-

projective or non-tree phenomena, it is nonetheless useful to consider the restriction

of dependency syntax to projective trees. If we are interested in representing more

straightforward surface structure, the projective tree requirement is linguistically

viable for French in most cases; as Candito et al. (2010a) note, non-projectivity

occurs empirically quite rarely in French text. One interesting representational

problem that remains is the treatment of coordination in dependency syntax, with a

good discussion of this issue presented by Kahane (2001); we will hold off discussing

this for now and return to it in our discussion of French syntax and resources. Ulti-

mately, in this thesis we use the simplifying projective tree structure assumption for

representing dependency syntax, meaning that the dependency graph for a sentence

ends up being a tree and having the following additional properties, adapted from

Melčuk (1988):

• connectedness, which prohibits any detached subparts;

• acyclicity, which prohibits any directed dependency cycles in the graph;

• unique governance, which prohibits nodes from having more than one incoming

arc (i.e. no word form may have more than one governor);

24

1.2 Formal Representations of Syntax

CL V DET NC P DET NC PONCT
Elle ouvrit la porte avec la clé .

cls

root

det

obj

mod

mod det

obj

ponct

Figure 1.5: Illustration of artificial syntactic ambiguity, with the arc from ‘ouvrit’ to ‘avec’
for true structure and the arc from ‘porte’ to ‘avec’ for another grammatically licit structure,
in a labeled dependency analysis for the sentence: “Elle ouvrit la porte avec la clé.” (“She
opened the door with the key.”)

• root governance, which requires that a single root node have no governor.

1.2.3 Syntactic Ambiguity

Earlier, we distinguished between grammaticality and acceptability as a decoupling

of a sentence’s validity according to, respectively, the language’s grammar and the

sentence’s interpretability by a speaker of the language. Having described syntactic

structure for both major grammatical formalisms, we can now illustrate the prob-

lem of syntactic ambiguity, which occurs when an acceptable sentence has multiple

interpretations, each with a different corresponding syntactic analysis. This issue

arises regardless of the choice of grammatical formalism, though for simplicity we

will use dependency syntax in the following examples.

One type of ambiguity at the syntactic level can be termed artificial syntactic

ambiguity, with multiple syntactic structures for a sentence being licit according

to the grammar but only one true structure corresponding to its correct semantic

interpretation. As an example, consider the French sentence “Elle ouvrit la porte

avec la clé” (“She opened the door with the key”). In the correct interpretation the

key is used to carry out the act of opening, while in the highly suspect interpretation

the key is a descriptor for the door. Both interpretations, however, have grammat-

ically valid syntactic analyses, as shown in Figure 1.5 with the arc from ‘ouvrit’ to

‘avec’ corresponding to the structure with correct interpretation and the arc from

‘porte’ to ‘avec’ corresponding to the grammatically licit structure with incorrect

interpretation. This type of ambiguity is particularly relevant to syntactic parsing,

which is given a sentence and tasked with finding its correct syntactic structure; it

is not sufficient to find a structure that is licit according to the grammar, and for

this reason syntactic parsing is a semantic task in addition to a syntactic one.

Alternatively, we term true syntactic ambiguity the case where it is unclear

25

1. Preliminaries in Syntax and Machine Learning

CL V DET NC P DET NC PONCT
Je vis un homme avec un téléscope .

cls

root

det
obj

mod

mod det

obj

ponct

Figure 1.6: Illustration of true syntactic ambiguity, with arcs from ‘vis’ to ‘avec’ and from
‘homme’ to ‘avec’ indicating competing licit grammatical structures, in a labeled dependency
analysis for the sentence: “Je vis un homme avec un telescope.” (“I saw a man with a tele-
scope.”)

which interpretation is correct from the available context, resulting in multiple syn-

tactic analyses that have acceptable interpretations. An example is the French

sentence “Je vis un homme avec un telescope” (“I saw a man with a telescope”). In

one interpretation the telescope is used to carry out the act of viewing, while in the

other interpretation the telescope is a descriptor for the man (i.e. he is carrying it)

— more context is needed to identify the correct interpretation. Both interpreta-

tions are represented in dependency structure in Figure 1.6, with arcs from ‘vis’ to

‘avec’ and from ‘homme’ to ‘avec’ indicating competing analyses.

1.2.4 Formalism Equivalence

An interesting fact concerning the relationship between the two types of grammars

introduced here is that headed phrase-structure CFG trees and projective depen-

dency trees are actually formally equivalent (Robinson, 1970). A recursive head

propagation procedure, popularized by Magerman (1995) and later Yamada and

Matsumoto (2003) for the purpose of creating data for dependency parsing, can be

used to convert any headed phrase-structure CFG tree into a corresponding pro-

jective dependency tree. Below, we provide a formal description of the process of

converting from phrase-structure representation to dependency representation.

Conversion Process

The conversion process takes as input a headed phrase-structure tree with nontermi-

nal symbol vertices Vn, terminal symbol vertices Vt, and directed edges Eps, giving a

graph (Vn∪Vt, Eps). The output is a dependency tree that retains only the terminal

symbol vertices Vt, along with a new top level vroot vertex, and creates a new set of

directed edges Ed, giving a graph (Vt∪{vroot}, Ed). One can produce either labeled

26

1.2 Formal Representations of Syntax

or unlabeled output dependency trees, with labeling achieved using heuristics and

functional annotation of phrases (cf. Section 1.2.1). We assume a labeled conversion

here, though we will not go into details concerning the heuristics; we leave that to

a later discussion of the conversion process for the French resource we use.

During conversion, a recursive function R is called on subtrees at non-terminal

vertices v, beginning with the start symbol vertex vs that represents the full tree.

The function R(v) returns the terminal head vertex of v, adding relevant edges to

the new dependency tree in the process. R(v) is presented formally below, with the

(v1, v2) representing a directed edge from a vertex v1 to a vertex v2, and (v1, l, v2)

for labeled dependencies with label l:

1. Identify the children vertices C of v. Formally, C ← {x : (v, x) ∈ Eps}.

2. For any x ∈ C such that x is a nonterminal vertex:

• Recursively find the terminal head hx of x. Formally, hx ← R(x).

• Remove x from C and add hx to C. Formally, C ← (C − {x}) + {hx}.

• If x was a phrase with a functional annotation a, set f(hx)← a.

3. Identify the head child hv of v.

4. For each hx ∈ C − {hv}:

• Let label lx be f(hx) if it exists, otherwise use a heuristic to determine

lx.

• Add a new edge from hv to hx. Formally, Ed ← Ed + {(hv, lx, hx)}.

5. Return hv.

The conversion process can then be carried out by simply calling the function

R(vs). A last step after the recursive process is to add a final edge (vroot,root, hs)

in the converted dependency tree from a dummy vroot vertex to the head vertex

of the sentence hs with dummy label root. It should be noted that the resulting

dependency tree is necessarily projective, due to the projective nature of the origi-

nal phrase-structure, meaning that the representation of non-projective phenomena

would necessitate a post-processing step to find and modify the dependency graph.

27

1. Preliminaries in Syntax and Machine Learning

Advantages of Dependency Syntax

For this thesis, we have chosen to focus our efforts on the investigation of syntactic

parsing under a single formalism. The important question arises, then, of which of

these two major formalisms to use?

On one hand, we have some practical considerations to take into account.

Looking ahead for a moment, one such consideration is the availability of syntactic

treebank resources, which contain syntactic analyses of large numbers of sentences in

a language and are necessary for training accurate computational models for parsing.

We note that many languages, including English and French, have resources built

from large-scale syntactic annotation efforts using phrase-structure syntax. How-

ever, as dependency syntax has become more popular in the area of NLP, many

of these resources have been converted into dependency structure, using recursive

procedures like the one described above. As a result we are not obligated to choose

one formalism or the other based on resource availability. Another practical consid-

eration is the computational efficiency of parsing algorithms, which automatically

predict the syntactic structure of a sentence. Algorithms for generative CFG phrase-

structure parsing take at least cubic time in the length of the sentence, as is the

case for the widely-used CKY (Kasami, 1965; Younger, 1967; Cocke and Schwartz,

1969) and Early (Earley, 1970) algorithms, while dependency parsing can achieve

linear time efficiency using transition-based algorithms (Nivre, 2003; Yamada and

Matsumoto, 2003) that we will discuss in more detail in Chapter 2.

There are also linguistic considerations to take into account. From a linguis-

tic perspective our preference is also for dependency syntax, because it is simpler

and makes less assumptions about intermediate levels of syntactic structure. As

Melčuk (1988) notes, phrase-structure syntax arose primarily as a way to model En-

glish, a language with very restricted word order that fits well into the constituency

paradigm, yet other languages, such as the Slavic languages studied by both Tesnière

and Melcuk, do not lend themselves well to this representation. Given the relative

simplicity and fewer assumptions made by dependency syntax, one can argue that

it is more appropriate for research on syntactic parsing, especially considering that

global interest in parsing is increasing and computational models should ideally be

applicable to many languages. Another linguistic argument in favor of dependency

syntax is that dependencies encode grammatical relations in a more complete man-

ner, which facilitates the passage to argument structures between predicates and

their semantic arguments. If the purpose of syntax is to study the way in which the

form of a sentence organizes itself to carry meaning from one speaker to another,

then it is advantageous to use a syntactic formalism that does not use more structure

than is necessary to communicate meaning.

28

1.3 French Syntax and Resources

Given the above considerations, we have decided in this thesis to use exclusively

the dependency syntax formalism in our syntactic parsing research. For French, the

relatively recent creation of a resource containing dependency analyses of sentences

followed the trend of conversion from phrase-structure resources described above. In

the next section, we will thus discuss both the original phrase-structure resource and

its subsequent conversion into dependency syntax, the latter of which constitutes

the core data set for our parsing experiments.

1.3 French Syntax and Resources

For the purposes of this thesis, a discussion of French syntax and a discussion of

the syntactic analysis resource we use for French go together hand in hand, since

decisions made concerning the various elements of the resource — the set of POS

categories, the set of functional role labels, and the manner in which complex syn-

tactic phenomena are represented — reflect larger grammatical properties of the

language. We thus center our discussion in this section around the resources that

we use for French, with digressions when necessary into broader aspects of French

syntax.

In recent decades, there have been a number of concerted efforts to build

human-annotated syntactic treebanks for various natural languages, with the goal

of aiding empirical linguistic study and spurring the development of computational

models of syntax. Treebanks are defined as resources in which sentences taken from

a corpus of natural language text are annotated with corresponding syntactic rep-

resentations adhering to a particular grammatical formalism. Major efforts started

as far back as the early 1990’s with the Penn Treebank (PTB) (Marcus et al., 1993)

for English, and the French Treebank (FTB) (Abeillé et al., 2003) was released in

the early 2000’s.

Individual treebanks across different languages vary according to a number of

criteria, with the most important being the fundamental choice of syntactic represen-

tation, either phrase-structure syntax or dependency syntax. There have been efforts

across languages at manually annotating treebanks with both phrase-structure, as

is the case for the PTB and FTB, and with dependencies, as is the case with for

instance the Prague Dependency Treebank (Böhmová et al., 2003). Another option

that has been explored is the creation of dependency treebanks by conversion from

a phrase-structure treebank in the same language, as has been done a number of

times for English (Magerman, 1994; Yamada and Matsumoto, 2003; Johansson and

Nugues, 2007). This option was used to create the French Dependency Treebank

(FTBDep) (Candito et al., 2010a), which is the primary treebank resource used

29

1. Preliminaries in Syntax and Machine Learning

in our thesis, with a conversion process starting from the original phrase-structure

FTB.

We will now describe the original phrase-structure FTB and the decisions made

concerning its annotation. This will be followed by a presentation of the converted

dependency FTBDep, whose representational characteristics are determined primar-

ily by those of the original FTB but additionally by head identification choices, as

well as modifications to the phrase-structure representation of certain linguistic con-

structions prior to conversion.

1.3.1 The (Phrase-Structure) French Treebank

The FTB (Abeillé et al., 2003) is a resource built and enriched at the Université

Paris VII, in the TALANA lab. This resource is considered the definitive large-scale

syntactically annotated resource available for French, and was created from extracts

of the Le Monde French newspaper, ranging from the years 1989 to 1993, with

representative text from different domains such as economy, literature, and politics.

It contains 20,000 sentences manually annotated with phrase-structure syntax, and

as of 2007 it had functional annotations for 12,351 of those sentences. Within the

portion of the treebank with functional annotations, this amounts to 370,000 words

(before considering the identification and merging of compound words).

Manual annotation of the treebank is divided into two levels: the morphosyn-

tactic level identifies important information at the level of word forms, while the

phrase-structure level is built on top of the morphosyntactic annotations and pro-

vides a phrase-structure tree with functional annotations for each sentence. We

discuss the tag sets and other representational choices below.

Morphosyntactic Annotation

The morphosyntactic annotation in the FTB identifies a variety of information at

the word form level: POS categories, some sub-POS categories (as in possessive,

cardinal, etc.), inflection, lemmatization, and compound identification. Table 1.2

includes the annotation tagsets used, with sub-POS and inflection possibilities listed

for each POS category.

The set of POS categories in the FTB is mostly traditional, with widely ac-

cepted choices for the major categories. One interesting choice is the use of a separate

POS category for clitics, or weak pronouns, which follows the generative tradition

Kayne (1975). Additionally, foreign words receive a special POS, punctuation marks

are treated as lexemes and assigned a special POS, and most typographical signs like

numbers and abbreviations are assigned to an appropriate POS (e.g. in “7 janvier”,

30

1.3 French Syntax and Resources

POS Sub-POS Inflection Description

A card, ord, poss, qualif, indef, gender+number+person Adjectives
inter

ADV -, inter, exclam, neg - Adverbs
CL -, subj, refl, obj gender+number+person Clitics
C subord, coord - Conjunctions
D card, dem, def, indef, exclam, gender+number+person Determiners

neg, poss, inter, part
ET - - Foreign words
I - - Interjections
N common, proper gender+number Nouns
P - - Prepositions
PRO inter, pers, card, neg, poss, gender+number+person Pronouns

rel, indef
PONCT strong, weak - Punctuation
PREF - - Prefixes
V - gender+number+person Verbs

+mood+tense

Table 1.2: Tagsets and markers at the morphosyntactic level of annotation in the FTB.

the ‘7’ is an adjective). As explained in Section 1.1.2, the distributional nature of

the organization of lexemes into POS categories means that such categories can be

defined at different granularities, with different amounts of distributional overlap

among lexemes in a category. In the FTB, finer distinctions within the traditional,

coarse POS categories are annotated, distinguishing between proper and common

nouns, subordinating and coordinating conjunctions, among others.

The next set of annotations at the morphosyntactic level concerns inflection.

The marking of inflection is important, especially for French, because an important

syntactic requirement for phrases is inflectional agreement (e.g. between subject

and verb), and additionally because many word forms in French are ambiguous with

respect to mood, person, number, and gender. As Abeillé et al. (2003) indicate, the

French verb form ‘mange’ (‘eat’) can be either indicative or subjunctive, either first

or third person, and can even be the second person imperative.

A subsequent annotation step is the identification of lemmas, which is useful

due to ambiguity between homographic word forms even after POS categories have

been identified. For example, when considering the French word form ‘être’, it is

ambiguous between the verb ‘to be’ and the common noun for a ‘being’ or ‘entity’.

In addition, when considering the French word form ‘suis’, even after identifying it

as a verb it is still ambiguous between the first person present indicative singular

forms of ‘être’ and ‘suivre’ (‘to follow’). In addition, lemmas are useful markers

when using the corpus for various purposes, from corpus queries to refined valency

31

1. Preliminaries in Syntax and Machine Learning

annotation.

A final consideration when annotating at the morphosyntactic level is the

identification of compounds. In Section 1.1.1, we defined a compound word as having

a minimal meaning that cannot be properly decomposed if it were to be divided into

separate word forms. In the FTB annotation, however, the criteria for compound

words covers a larger number of cases. As Crabbé and Candito (2008) note, in the

FTB 14.5% of tokens are part of a compound word and include sequences in which:

the compound cannot exist separately, as in “aujourd’hui” (‘today’); the semantics

are non-compositional, as in “carte bleue” (“credit card”); the syntax is irregular,

as in “à la va vite” (“in a hurry”); the compound is a fixed verbal expression,

as in “mettre en garde” (‘warn’); the compound is a named entity, as in “Union

hospitalière privée”; the semantics are compositional but insertion cannot occur or

does so rarely, as in “garde d’enfants” (“child care”). Finally, numerical amounts

expressed with multiple tokens of digits or letters are also marked as compound

words, accounting for around 10% of compound occurrences.

Phrase-Structure and Functional Annotation

Having finished our description of the morphosyntactic level, we now move on to

the phrase-structure level. The phrase-structure annotation in the FTB identifies

groupings of phrases in sentences, with a focus on surface annotations with little

internal structure that are compatible with various syntactic frameworks. The fol-

lowing information is included at the syntactic level of annotation: main category,

possible sub-category, surface function, opening or closing boundaries, and diathesis

for verbal nuclei. Table 1.3 includes the phrase category and surface function anno-

tation tagsets, with sub-phrase category and surface function possibilities listed for

each phrase category.

The major phrase categories used by the FTB are, as we saw earlier for the

POS categories, traditional and widely accepted linguistic choices. Abeillé et al.

(2003) note that for the sake of simplicity unary phrases, or phrases with a single

constituent, are used only when needed: unary noun phrases are used for proper

names and pronouns but not for bare common nouns; unary adjective phrases are

used for predicative adjectives but not for prenominal ones; and unary verb nucleus

phrases are used for single verbs, while no unary adverb phrase is used. As a

way marking certain key distinctions within the major phrase categories, the FTB

annotation uses sub-phrase categories, which encode information such as relative

(rel) vs. subordinate (sub) clause type for embedded S clauses.

Surface function annotation, which was carried out during a subsequent effort

to enrich the FTB (Abeillé and Barrier, 2004), is a way of including grammatical

32

1.3 French Syntax and Resources

Phrase Sub-Phrase Surface Function Description

(NP . . .) - SUJ, OBJ, ATS Noun phrases
(VN . . .) - SUJ, A-OBJ, D-OBJ Verbal nuclei
(VP . . .) -, inf, part OBJ, A-OBJ, D-OBJ, Infinitives and

P-OBJ, ATS nonfinite clauses
(PP . . .) - A-OBJ, D-OBJ, P-OBJ, Prepositional

ATS, ATO phrases
(ADVP . . .) - - Adverbial phrases
(AP . . .) - ATS, ATO Adjectival phrases
(SENT . . .) - - Sentences
(S . . .) -, int, sub, rel OBJ, D-OBJ, ATS Finite clauses
(COORD . . .) - - Coordinated phrases

Table 1.3: Tagsets and markers at the phrase-structure level of annotation in the FTB. The
additional surface function MOD is applicable to any phrase category

function information in a phrase-structure tree. In the case of the FTB, this was

applied exclusively to arguments of verbs. Following the established convention,

surface functions do not mark edges in the phrase-structure tree but rather vertices

represented the functional phrases themselves; for example, to represent that a noun

phrase is the subject of a sentence, the noun phrase is labeled NP-SUJ.

We would like to additionally call attention to two interesting linguistic phe-

nomena, verb phrases and coordination, for which the FTB makes specific choices

regarding their representation. For verb phrases, Abeillé et al. (2003) choose to an-

notate the minimal verbal nucleus (VN), which includes clitics, auxiliaries, negation

and verb. They argue against using the traditional notion of a verb phrase that

includes objects and modifiers because the traditional verb phrase is often discon-

tinuous in French: for instance, the subject can appear after the verb, especially

in the context of extraction, and it can then intervene between the verb and other

arguments. This can be seen with the intervening subject ‘IBM’ in the phrase “Les

actions qu’a mises IBM sur le marché” (“the shares that IBM put on the mar-

ket”). In the FTB annotation scheme, the VP phrase category is thus used only for

infinitival and participial clauses.

For coordination, they choose to delimit coordinating phrases to include only

a coordinating conjunction and its right conjunct, and they also leave coordinating

phrases underspecified with respect to phrase category. Each pair of coordinating

conjunction and conjunct after the first is thus annotated with the category COORD,

resulting in a flat structure when coordinating between more than two conjuncts, as

shown in Figure 1.7 for the sentence “Jean voit Pierre, Paul et Marie” (“Jean sees

Pierre, Paul and Marie”). Note that the comma acts as a strong punctuation mark

and essentially takes on the category of coordinating conjunction, while technically

33

1. Preliminaries in Syntax and Machine Learning

S

PONCT

.

NP-OBJ

COORD

NPP

Marie

CC

et

COORD

NPP

Paul

PONCT

,

NPP

Pierre

VN

V

voit

NP-SUJ

NPP

Jean

Figure 1.7: A phrase-structure tree for the sentence: “Jean voit Pierre, Paul et Marie”
(“Jean sees Pierre, Paul and Marie”).

retaining the punctuation POS category.

1.3.2 Conversion to the French Dependency Treebank

Now that we have presented the annotation details at the morphosyntactic and

phrase-structure level for the FTB, we can continue on to a discussion of the con-

version into dependencies that led to the creation of the FTBDep. This research

effort took place very recently, this time carried out by the interdisciplinary research

group Alpage and in particular through the work of Candito et al. (2010a). As we

did for the FTB presentation, we will divide our discussion of the treebank con-

version process into two parts: minor modifications of the FTB’s morphosyntactic

annotation, and then the major conversion effort of phrase-structure annotation into

dependency annotation.

Morphosyntactic Modifications

A first modification made by Candito et al. (2010a) was the undoing of some com-

pound words that had been annotated in the original FTB. We previously noted

that Abeillé et al. (2003) mark compound words under a number of different cir-

cumstances. One key result is that in a number of cases the compounds are syntacti-

cally regular, meaning that when split up they still adhere to the language’s syntax.

Candito et al. (2010a) choose to adopt a minimal representation of compounds that

undoes all the ones that are syntactical regular. They justify this choice by noting

that syntactically regular compounds are often those that are most debatable to be

marked as compounds; they note that as a result there are a number of annota-

tion inconsistencies in the FTB where the same sequences are sometimes marked as

compounds and sometimes not.

34

1.3 French Syntax and Resources

NP

N

A

monétaire

C

et

A

économique

N

Union

D

l’

NP

AP

COORD

AP

A

monétaire

C

et

A

économique

N

Union

D

l’

Figure 1.8: Undoing of a compound from the original FTB (left) to the FTB-UC (right) for
the syntactically regular compound: “l’Union économique et monétaire” (“the economic and
monetary union”).

ADV

V

compris

CL

y

ADV

y compris

Figure 1.9: Merging of a compound from the FTB (left) to the FTB-UC (right) for the
sequence: “y compris” (“including”).

These modifications led to added structure in the resulting phrase structure

trees, as can be seen Figure 1.8. The variant of the phrase-structure FTB after this

modification is given the name FTB-UC, with the number of distinct compounds

in the FTB-UC reduced to almost half of the original number. For the remaining

compounds, in FTB-UC these are merged into single compound word forms retain-

ing the POS category of the original flat phrase, as can be seen in Figure 1.9 for

the compound “y compris” (“including”). Representing those syntactically regular

compounds using regular phrase structure should be transparent for syntactic anal-

ysis, but it should be noted that downstream NLP applications require additional

treatment to recover the potentially non compositional meanings of such sequences.

Another morphosyntactic modification prior to conversion was the use of a

modified POS tagset, as presented by Crabbé and Candito (2008). Two granulari-

ties are used, with the coarse-grained categories matching up to the standard POS

categories from the original FTB, while the fine-grained categories additionally make

distinctions using some of the sub-POS information discussed earlier for the FTB

35

1. Preliminaries in Syntax and Machine Learning

Coarse POS Fine POS Description

V

V Indicative verb
VS Subjunctive verb
VINF Infinitive verb
VPP Past participle
VPR Present participle
VIMP Imperative verb

N
NC Common noun
NPP Proper noun

C
CS Subordinating conjunction
CC Coordinating conjunction

CL
CLS Subject clitic
CLO Object clitic
CLR Reflexive clitic

P P Preposition alone
P+D P+D Preposition with determiner
P+PRO P+PRO Preposition with pronoun
I I Interjection
PREF PREF Prefix
PONCT PONCT Punctuation
ET ET Foreign word

A
ADJ Adjective other than interrogative
ADJWH Interrogative adjective

ADV
ADV Adverb other than interrogative
ADVWH Interrogative adverb

PRO
PRO Pronoun other than relative or interrogative
PROREL Relative pronoun
PROWH Interrogative pronoun

DET
DET Determiner other than interrogative
DETWH Interrogative determiner

Table 1.4: List of coarse-grained and fine-grained POS categories used in the French Depen-
dency Treebank (FTBDep).

(such as common vs. proper nouns) as well as verbal mood information, wh-features,

and other factors. The full list of POS categories used in the FTBDep is shown in

Table 1.4.

Syntactic Conversion

Beyond the modifications to the morphosyntactic annotation of the FTB, an addi-

tional syntactic preprocessing step is taken before the recursive head-propagation

procedure converts phrase-structure trees into dependency trees. In this step, a

treatment of prepositions and complementizers is applied to the phrase-structure

trees of the FTB that ensures their projection of PP and S phrases, respectively.

These modifications are applied in order to fulfill a linguistic choice for the result-

36

1.3 French Syntax and Resources

SENT

VP

VN

VPP

arrivés

VINF

être

P

après

VN

VPP

mangé

V

ont

CL

Ils

SENT

PP

VP

VN

VPP

arrivés

VINF

être

P

après

VN

VPP

mangé

V

ont

CL

Ils

SENT

PP

NP

NC

arrivée

DET

leur

P

après

VN

VPP

mangé

V

ont

CL

Ils

Figure 1.10: Raising of a preposition from the original FTB scheme (above left) to the FTB-
UC scheme (above right) for a PP with infinitival object for the sentence: “Ils ont mangé après
être arrivés” (“They ate after arriving”). Additionally, an unchanged example of a PP with
nominal object (below) for the sentence: “Ils ont mangé après leur arrivée” (“They ate after
their arrival”).

ing dependency trees, which is that complementizers and prepositions be chosen as

heads of the constituents they introduce. For PPs, this achieves a normalization of

the cases with nominal PP-object and infinitival PP-object, as illustrated in Fig-

ure 1.10 for two similar sentences “Ils ont mangé après être arrivés” (“They ate after

arriving”) and “Ils ont mangé après leur arrivée” (“They ate after their arrival”).

For S phrases, an intermediate Sint phrase is created and the complementizer is

raised, as illustrated in Figure 1.11 for the sentence “Je sais que Paul aime Julie”

(“I know that Paul loves Julie”). Note that this applies both when the complemen-

tizer is semantically empty, as for ‘que’, and when it is a meaningful conjunction, as

for ‘quand’ (‘when’) in the sentence “Je partirai en vacances quand j’aurai fini ma

thèse” (“I will go on vacation when I have finished my thesis”).

The next step is to use the recursive head-propagation procedure described

in Section 1.2.4. As a source of head-finding rules, Candito et al. (2010a) use a

37

1. Preliminaries in Syntax and Machine Learning

SENT

Ssub-OBJ

NP-OBJ

NPP

Julie

VN

V

aime

NP-SUJ

NPP

Paul

CS

que

VN

V

sais

CL

Je

SENT

Ssub-OBJ

Sint

NP-OBJ

NPP

Julie

VN

V

aime

NP-SUJ

NPP

Paul

CS

que

VN

V

sais

CL

Je

Figure 1.11: Rasing of a complementizer from the original FTB scheme (left) to the FTB-
UC scheme (right) for a sentential complement in the sentence: “Je sais que Paul aime Julie”
(“I know that Paul loves Julie”).

modified version of the rules of Arun and Keller (2005) adapted to French and to

the FTB annotation scheme. During the conversion process, Candito et al. (2010a)

also make use of the surface function annotations in the FTB to add functional role

labels to some of the edges in the newly created dependency trees, although note

that the FTB only provides surface function annotation for subcategorized depen-

dents of verbs. For other types of dependencies, it is often clear which grammatical

function should be used, and thus heuristics are used to label edges for dependents

of non-verbs, dependents of verbs that do not project a phrase, coordinated phrases,

and dependents of adnominal participles. An example from Candito et al. (2010a)

concerns the noun phrase “vêtements achetés par les Français” (“clothes bought

by the French”), where the PP “par les Français” has no surface function in the

FTB and is thus labeled using a heuristic as serving a P-OBJ of the past participle

‘achetés’. The full list of functional role labels used in the final FTBDep is shown

in Table 1.5.

It is clear that the annotation scheme of the original phrase-structure FTB

largely dictates the linguistic choices evident in the resulting dependencies in the

FTBDep. However, a number of nontrivial linguistic choices are made by the head-

finding rules; as we have noted many times in this chapter, the identification of

phrase heads for a number of linguistic phenomena is up for debate, and the con-

version from phrase-structure into direct dependencies forces these previously un-

derspecified decisions to be made explicit. Candito et al. (2010a) identify three

important linguistic phenomena for which specific head-finding decisions were made:

1. Verb auxiliaries: Tense, passive, and causative auxiliaries are treated as de-

38

1.3 French Syntax and Resources

Surface Label Description

suj Subject
obj Object
de obj Indirect object with preposition “de” (“of”)
a obj Indirect object with preposition “à” (“at”)
p obj Indirect object with preposition other than “de” or “à”
ats Subject complement
ato Object complement
aux tps Temporal auxiliary
aux pass Passive auxiliary
aux caus Causative auxiliary
aff Affix (for fixed clitics)
mod Modifier other than relative clause
mod rel Relative clause
coord Coordination (for conjunctions, with first conjunct as governor)
arg Argument (for linked prepositions)
dep coord Coordination (for conjuncts, with previous conjunction as governor)
det Determiner
ponct Punctuation (except commas that are coordinating conjunctions)
dep Prepositional dependent (with non-verbal governor)

Table 1.5: List of surface functional role labels used in the French Dependency Treebank
(FTBDep).

pendents of the past participle or infinitive they introduce. For example, the

VN “a quitté” (“has left”) is represented in the FTB using a flat structure

with ‘a’ and ‘quitté’ at the same level, while the FTBDep explicitly creates a

dependency with functional role label aux tps between the governor ‘quitté’

and the dependent ‘a’.

2. Prepositions and complementizers: Recalling the preprocessing step in which

these were raised in the phrase-structure trees to always project PP and S

phrases, respectively, during conversion these are systematically treated as

the head of the complement they introduce.

3. Coordination: As we have described earlier, the original FTB uses a flat struc-

ture for coordination in which each conjunct after the first is placed in a CO-

ORD phrase along with its introducing conjunction. During conversion, the

same philosophy is maintained by identifying the first conjunct as the head of

the phrase.

As a final note concerning the FTBDep resource, we highlight the fact that

the syntactic tree analyses in the FTBDep are subject to the projectivity constraint;

due to its automatic conversion from a projective phrase-structure resource, the

39

1. Preliminaries in Syntax and Machine Learning

FTBDep consists entirely of projective trees. However, as we indicated earlier in

Section 1.2.2, there exist linguistic phenomena in natural language that necessitate

non-local dependencies violating the projectivity constraint. In order to gauge the

amount of representational error caused by the projectivity restriction for French,

Candito et al. (2010a) performed a manual annotation of non-local dependencies for

the first 120 sentences of the converted FTBDep. They found that non-projectivity

occurred primarily during linguistic extraction: whether out of a sentence, out of an

NP using the relative pronoun ‘dont’ (‘of which’), or out of an NP using the clitic

pronoun ‘en’ (‘of it’). Importantly, the non-projective edges comprised only 1.22%

of the total number of edges in their sample. Due to the complications involved

with correcting the non-projective edges throughout the entire FTBDep, as well

as the fact that non-projective edges occur rarely in French, we willingly accept

the projective constraint imposed by our data and this constraint will be implicitly

present throughout the rest of this thesis.

1.4 Machine Learning Methods

At its heart, the focus of our work is to build statistical models that are able to

accurately parse and correct the syntactic structure of sentences. In this section, we

will provide an introduction to the most widely-used approaches for obtaining these

models, which fall under the umbrella term known as machine learning, and then

focus on those techniques that we use in this thesis. It is important to note that

we do not intend for this to be a comprehensive introduction to machine learning

methods for a reader with little or no prior knowledge. Rather, it is meant to

explicitly define the algorithms and techniques we choose to use, with theory and

mathematical formulas included as a matter of course.

The field of machine learning has long been a rich source of algorithms and

techniques that are applicable to tasks in NLP such as POS tagging, parsing, and

others. In this thesis, we employ machine learning algorithms that are compatible

with the classic supervised learning paradigm, which essentially learns from example.

A set of training examples is taken as input, with each example containing features,

or informational clues, that are hopefully sufficient for determining the value of a

corresponding label. From this training set, the goal is to induce a model capable

of looking at novel examples of the same kind and correctly predicting their labels

from the features.

We are particularly interested in algorithms for supervised learning that use

linear models. This subclass of models has the downside of assuming statistical inde-

pendence between different features; for example, if we are trying to predict whether

40

1.4 Machine Learning Methods

it will rain today and our two feature variables are whether it rained yesterday and

whether it rained the day before yesterday, it is clear that the two variables are not

independent. On the other hand, the upside of linear models is that they allow for

very efficient representations and fast training and prediction time, which is impor-

tant when a learning problem calls for a large number of training examples and/or

features.

Formally, a supervised learning problem with linear modeling can be described

as follows:

1. A training set T consisting of a sequence of example tuples of the form (xi, yi),

where xi ∈ Rn is a real-valued instance vector in a feature space of dimension

n, and yi ∈ {−1,+1} is a binary label;

2. A linear model L that predicts a label ŷ for an input instance x ∈ Rk using

a decision value calculated from a dot product wTx, where w ∈ Rk contains

the weight associated with each feature;

3. A learning algorithm A that takes as input T and outputs L, using a learn-

ing process whose goal is to produce a model capable of accurately labeling

instances from the same distribution as that of the training instances.

Through decades of research in the field of machine learning, a many different

algorithms have been studied and tested for a wide variety of different NLP applica-

tions. Supervised learning algorithms for linear modeling can generally be divided

into two groups: online learning algorithms and batch learning algorithms. Major

online learning algorithms include the original perceptron (Rosenblatt, 1958) and

large-margin extensions (Crammer and Singer, 2003; Crammer et al., 2006). Major

batch learning algorithms include the maximum entropy approach (also referred to

as logistic regression or log-linear modeling) (Berger et al., 1996) and support vector

machines (SVM) (Cortes and Vapnik, 1995). In this thesis, our parsing algorithms

use the batch SVM algorithm, which solves an optimization problem that regularizes

w subject to the constraint that the hyperplane to which w is the normal separates

positive and negative examples with sufficient margin.

An integral aspect of our learning algorithms is the use of a kernel approach,

which allows for a non-linear feature space to be accessed while using only linear

operations over the original feature space. We believe that this provides an elegant

and computationally efficient way of avoiding an exhaustive hand-engineering of the

feature space, which is often used to introduce non-linearity by including certain

combinations of basic features. The polynomial kernel used in our experiments is

especially useful due to its interpretability: given a degree d, it provides access to

41

1. Preliminaries in Syntax and Machine Learning

non-linear space with dimensions corresponding to each of up to d-length combina-

tions of features from the original space.

In Section 1.4.1 we formally explain the use of kernel functions in the su-

pervised learning paradigm for linear models, and present the polynomial kernel

function in particular. We then move on to an explanation of the learning algo-

rithms used in this thesis, with Section 1.4.2 presenting the batch SVM algorithm

for binary classification as well as extensions to multiclass and ranking settings. Fi-

nally, Section 1.4.3 discusses how categorical information typically found in NLP

problems can be represented as real-valued features for linear models.

1.4.1 Kernels in Linear Models

A kernel function, as classically used in the context of machine learning for linear

models, is a symmetric function K(u,v), where u,v ∈ Rn, that satisfies Mercer’s

Theorem and defines a valid dot product in a feature space different from that

of its input vectors (Cortes and Vapnik, 1995). By definition it therefore has a

corresponding function φ such that

K(u,v) ≡ φ(u)Tφ(v). (1.2)

In many learning algorithms, and specifically in the perceptron and SVM al-

gorithms, the norm w of the final separating hyperplane ends up being a linear

combination of some number l of training vectors (so-called support vectors), which

can be written as

w =
l∑
i

yiαixi. (1.3)

In order to perform learning and prediction in a non-linear space, we can apply

the function φ throughout, which changes the final w to

w =
l∑
i

yiαiφ(xi), (1.4)

with a binary decision function that can be expressed using K as

sgn
(
wTφ(x)

)
= sgn

(
l∑

i=1

yiαiK(xi,x)

)
. (1.5)

Note that this non-linear decision function does not require any actual calcu-

lations in the non-linear space, allowing for O(ln) time predictions (linear in n, the

42

1.4 Machine Learning Methods

size of the original space) for novel vectors as long as K can be computed efficiently.

And as long as a learning algorithm can be implemented in such a way that the

non-linear space does not need to be accessed either, this computational efficiency

extends to the training process as well.

The Polynomial Kernel

Although there are many valid kernel functions that correspond to mappings onto

potentially useful non-linear spaces, we focus exclusively on the polynomial kernel

(Cortes and Vapnik, 1995) of the form

K(u,v) = (suTv)d, (1.6)

where d is notably a parameter designating the degree of the polynomial. This

kernel has the attractive property of operating over an easily understandable space

of combinations of features from the original space. For example, if d=2 then we

can view the non-linear feature space as having a dimension corresponding to each

subset of size at most 2 of features ui from the original space, as can be seen in the

expansion1 of φ:

φ(u) =
〈
su2

1,
√

2su1u2, . . . , su
2
2,
√

2su2u3, . . . , su
2
n

〉
. (1.7)

Earlier, we mentioned that kernel functions are useful only if they can be

computed efficiently in the original space. The polynomial kernel satisfies this re-

quirement by carrying out a dot product operation in the original space followed by

a simple exponentiation.

1.4.2 Batch Learning with Kernel SVM

C-support vector classification (Boser et al., 1992; Cortes and Vapnik, 1995) is an

approach to linear classification that combines three primary ideas:

1. A solution technique for obtaining an optimal large-margin separating hyper-

plane that expands the solution vector w onto support vectors;

2. The convolution of the dot-product using a kernel function, which extends the

solution feature space from linear to non-linear;

3. The notion of soft margins, which allow for errors in the training set.

1This expansion is the only place in this thesis where a numeral vector subscript indicates a dimension rather
than a position within a larger sequence of vectors.

43

1. Preliminaries in Syntax and Machine Learning

The kernelized SVM for the binary case is posed as an optimization problem

for the weight vector w. The optimization problem simultaneously minimizes two

terms: a term representing the extent to which w fails to correctly classify training

instances beyond a certain margin, and a regularization term for the norm of w.

The problem description below closely follows Chang and Lin (2011):

minimize
w,ξ,b

1

2
wTw + C

l∑
i

ξi

subject to yi(w
Tφ(xi) + b) ≥ 1− ξi,

ξi ≥ 0, i = 1, . . . , l,

(1.8)

where φ(xi) maps xi into a higher-dimensional space, C > 0 is the regularization

parameter, and b is the bias. Since the higher-dimensional space is typically much

larger than the number of training examples l, the dual version of the optimization

problem is solved,

minimize
α

1

2
αTQα− eTα

subject to yTα = 0,

0 ≤ αi ≤ C, i = 1, . . . , l,

(1.9)

where e = [1, . . . , 1]T is a vector of all ones, Q is an l by l positive semidefinite

matrix, Qij ≡ yiyjK(xi,xj), and K(xi,xj) ≡ φ(xi)
Tφ(xj) is the kernel function.

A solution can be obtained using a variety of techniques for solving dual quadratic

problems, though a discussion of them is outside of the scope of this thesis.

Using the primal-dual relationship, the optimal weight vector w can be viewed

as a linear combination of support vectors, or training vectors xi with nonzero αi,

w =
l∑
i

yiαiφ(xi), (1.10)

and the decision function can therefore be represented as

sgn(wTφ(x) + b) = sgn

(
l∑

i=1

yiαiK(xi,x) + b

)
. (1.11)

As we noted before during our discussion of kernel functions, a crucial point is

that the non-linear space never needs to be explicitly used, resulting in an effectively

linear classifier that is nonetheless optimized over a non-linear space.

44

1.4 Machine Learning Methods

Multiclass SVM

In the multiclass setting for linear classification, the set of predicted labels is ex-

panded to allow for more than two labels. Instead of yi ∈ {−1,+1}, we now allow

yi ∈ Y , where Y is fixed-size set of labels.

A simple way to extend binary SVM classification to a multiclass setting is to

use the one-vs-one approach:

1. For each pair of labels yi, yj ∈ Y s.t. i 6= j, a binary SVM model Mi,j is

trained using the subset of training examples labeled with either yi or yj —

examples with other labels are ignored.

2. To assign a label ŷ ∈ Y to a novel vector x, the algorithm uses a voting

strategy that passes x through each binary model and selects the label with

the most binary decisions in its favor.

Other methods of simulating the multiclass setting exist, such as the one-vs-

rest approach where each yi ∈ Y is assigned a binary model trained with positive

examples being those labeled as yi and negative examples being those labeled as any

yj ∈ Y − {yi}. We do not evaluate the one-vs-rest approach, though Hsu and Lin

(2002) find that the two approaches are competitive.

Ranking SVM

In the ranking setting for linear classification, the ith ranking example consists of

a sequence of mi vectors Xi = (xi,1, . . . ,xi,mi
) and a (non-circular) set of ranking

constraints Ri, with a constraint ri,a,b indicating that xi,a should be ranked ahead

of xi,b.

The goal is to ensure that ranking constraints for all examples are satisfied —

that is, given the constraint (xi,a,xi,b), we want the weight vector w to satisfy

wTφ(xi,a)−wTφ(xi,b) > 1− ξi,a,b
wT (φ(xi,a)− φ(xi,b)) > 1− ξi,a,b

(1.12)

Noting the similarity to Equation 1.8, we can see that the ranking problem can

essentially be posed as a binary problem, where each constraint ri,a,b corresponds

to a binary example where the label is +1 and the vector in the non-linear feature

space is φ(xi,a)−φ(xi,b). Joachims (2002) shows that the optimal weight vector can

therefore be found in same way as described earlier for the binary case. We end up

45

1. Preliminaries in Syntax and Machine Learning

with a final weight vector

w =
l∑
i

αi

(
φ(xi,a)− φ(xi,b)

)
, (1.13)

and the decision function that ranks an input vector x with respect to another x′

can be represented as

sgn

(
l∑

i=1

αi

(
K(xi,a,x)−K(xi,a,x

′)−K(xi,b,x) +K(xi,b,x
′)
))

(1.14)

The subcase of ranking in which we are interested has a single correct vector in

each example, with other vectors being deemed incorrect. If the ranking SVM model

is being used to predict the highest ranking vector within a given set of candidates,

one does not need to exhaustively calculate decisions between each pair of vectors,

which would take quadratic time in the number of candidates. Instead, one can

simply treat the ranking SVM model as a scoring function and select the vector x

with the highest value

argmax
x

wTx =
l∑

i=1

αi

(
K(xi,a,x)−K(xi,b,x)

)
, (1.15)

which takes only linear time. This property is useful for the multiple-candidate

parsing and neighborhood correction algorithms we will present later on in Chap-

ters 2 and 3, respectively, since these algorithms only need to find the highest scoring

syntactic dependency from among a set of candidates.

1.4.3 Categorical Features

In NLP applications such as POS tagging and syntactic parsing, salient information

for classification models often lies in the linguistic characteristics of a sentence, such

as information describing its individual tokens. The features to which we have

referred earlier in this section are real-valued, with each corresponding to a separate

dimension in the feature space Rn. In contrast, linguistic information tends to

be categorical: a feature encoding the POS tag of a token would ideally take on

categorical values among {verb, noun, preposition, etc.}. However, these values have

no sensible analogues in the real space.

We follow a widely-used technique for representing categorical information in

a real-valued feature space: each piece of categorical information has a correspond-

46

1.4 Machine Learning Methods

Categorical Information Feature Template Indicator Features

POS tag of current token in a sentence tpos

tpos=verb,
tpos=noun,
tpos=preposition,
. . .

Lemma of current token in a sentence tlem

tlem=être,
tlem=avoir,
tlem=aller,
. . .

Table 1.6: Examples of categorical information, feature template, and the indicator features
that actually make up the feature space.

ing feature template that defines a set of indicator features in the real-valued space

with each corresponding to a particular categorical value. Table 1.6 illustrates the

relationship between a hypothetical piece of categorical information, its feature tem-

plate, and the corresponding set of indicator features that would actually be used

for model training and classification.

47

Chapter 2

Efficient Large-Context Dependency

Parsing

Taken out of context I must seem so strange.

— Ani DiFranco

48

2.1 Overview of Dependency Parsing

Having covered fundamental aspects of dependency syntax and machine learn-

ing in the previous chapter, this chapter formally presents the notion of dependency

parsing and describes empirical results for two major families of parsers. Settling on

the efficient transition-based parsing approach, we then begin the first main research

thread of our thesis, which seeks to improve the amount of syntactic context in at-

tachment decisions, by introducing a variant that simultaneously considers multiple

governors when making attachments.

In Section 2.1 we formalize the problem of dependency parsing and investi-

gate practical tradeoffs between algorithmic efficiency and the amount of contextual

information available for dependency attachment decisions. To help along this in-

vestigation, we describe a preliminary study in which different dependency parsing

approaches were tested for French, providing empirical evidence supporting our de-

cision to focus exclusively on computationally efficient transition-based parsing.

In Section 2.2 we present the family of transition-based parsing algorithms that

have been popularized in the past decade and which we use throughout the thesis.

We discuss the existing arc-standard and arc-eager algorithms within this

family, and introduce arc-eager-mc, a large-context variant that simultaneously

considers multiple candidate governors for certain attachments during parsing.

Finally, Section 2.3 describes parsing experiments for French in which we com-

pare the performance of arc-standard, arc-eager, and arc-eager-mc on the

FTBDep, with a particular focus on the parsing accuracy of ambiguous syntac-

tic constructions that are typically difficult to parse, namely prepositional phrase

attachment and coordination.

2.1 Overview of Dependency Parsing

We are interested in computationally efficient approaches for dependency parsing, or

the automatic prediction of syntactic dependency trees for sentences. This section

is devoted to a formal presentation of the dependency parsing problem, as well as a

brief introduction to different families of dependency parsing algorithms.

It should be noted that the most prominent work in statistical syntactic pars-

ing, going as far back as the 1990’s, has focused on phrase-structure parsing (John-

son, 1998; Collins, 2003; Klein and Manning, 2003). Widespread interest in depen-

dency parsing began growing in the past decade, with algorithmic breakthroughs and

seminal works for non-generative approaches (Nivre, 2003; Yamada and Matsumoto,

2003; McDonald et al., 2005) and prominent evaluation efforts such as the interna-

tional CoNLL shared tasks (Buchholz and Marsi, 2006; Nivre et al., 2007a) that

provided a platform for evaluating different approaches across multiple languages.

49

2. Efficient Large-Context Dependency Parsing

We organize our discussion as follows: Section 2.1.1 provides a formal descrip-

tion of the dependency parsing problem, in a way that mirrors the smaller scale

machine learning problem for linear models, and reiterates the graph requirements

for tree structures according to dependency grammar using formal mathematical

notation. Section 2.1.2 then briefly summarizes an initial benchmarking experiment

for French dependency parsing in which we participated, connecting our findings

with those at large for dependency parsing approaches across different languages.

This allows us to introduce the major families of dependency parsing algorithms

and discuss their relative advantages and disadvantages, leading us to a decision on

which to use as the base approach for our thesis.

2.1.1 Formalizing Data-Driven Dependency Parsing

A parser is a system that is capable of analyzing the syntax of a sentence, outputting

a tree corresponding to the sentence that best adheres to the grammar of its lan-

guage. Though hand-built symbolic parsers have a longer history of use, notably for

French (Balfourier et al., 2005), current research in NLP focuses almost exclusively

on data-driven statistical parsing.

In comparing a data-driven statistical approach to symbolic one, we can iden-

tify a number of advantages and disadvantages. A key advantage of the data-driven

statistical approach is its robustness for sentences that do not strictly conform to

the grammar of a language. This might occur in spoken dialogue or in non-canonical

text produced in contemporary web culture, the latter of which is a growing area

of study in NLP (Petrov and McDonald, 2012). Another key advantage is that a

statistical approach is particular well-suited to handling the problem of syntactic

ambiguity, which we have previously discussed (cf. Section 1.2.3). Through the

introduction of probabilities for derivation rules or of machine learning for classifi-

cation, statistical parsers inherently disambiguate between possible parse trees for a

sentence. One major downside of data-driven statistical approaches is their reliance

on a substantial amount of training data needed to learn accurate parsing models,

with this data typically requiring manual syntactic annotation; symbolic approaches

notably do not have this requirement. On the other hand, symbolic approaches are

labor intensive in their own way by requiring the difficult work of defining the syn-

tactic rules and constraints covering the entire grammar for a language.

In this thesis, we have ultimately chosen to focus on a data-driven, statistical

machine learning approach to dependency parsing. The dependency parsing problem

can thus be viewed as including four elements, adapted from the definitions of Kübler

et al. (2009), with the use of arc instead of edge to match their terminology:

50

2.1 Overview of Dependency Parsing

1. A functional role label set R = {r1, . . . , rm}, which is defined as a finite set of

possible labels for dependency arcs between pairs of words.

2. A training set D consisting of a sequence of tuples of the form (xi, Gi). Within

D, a sentence x is defined as a sequence of word tokens w0w1 . . .wn with w0

serving as a dummy root token. A dependency graph G = (Vx, A) for x

is a labeled directed graph with nodes Vx = {w0, w1, . . . , wn} and arcs A ⊆
Vx×R×Vx. For each training tuple (x,G), G must be a dependency tree with

respect to x and to R.

3. A parsing model M that predicts a well-formed dependency tree G for an input

sentence x.

4. A learning algorithm that takes as input D and outputs M , using a learning

process whose goal is to produce a model capable of accurately producing

syntactic dependency analyses of sentences from the same distribution as those

of the training set.

A key requirement of dependency training sets and parsing models is that their

dependency graphs must be well-formed dependency trees adhering to the require-

ments which we have previously outlined in more general terms in Section 1.2.2. We

will now reiterate these dependency structure requirements using notation consis-

tent with the description of dependency parsing above. For simplicity, we introduce

the following additional shorthand notation, as in Kübler et al. (2009):

• Dependency relation: wi → wj ≡ (wi, r, wj) ∈ A for some r ∈ R, with wi
being the governor of wj.

• Reflexive transitive closure of a dependency relation: wi →∗ wj ≡ (i = j) ∨
(wi →∗ wi′ ∧ wi′ → wj) for some wi′ ∈ V .

• Undirected dependency relation: wi ↔ wj ≡ wi → wj ∨ wj → wi.

• Reflexive transitive closure of an undirected dependency relation: wi ↔∗ wj ≡
(i = j) ∨ (wi ↔∗ wi′ ∧ wi′ ↔ wj) for some wi′ ∈ V .

Apart from the binary, directed, and labeled requirements for dependencies

that are already explicit in our definition of dependency graphs above, the following

tree requirements are also imposed (cf. Section 1.2.2) because the dependency graphs

we consider are projective trees with root w0:

• anti-reflexivity: There does not exist wi ∈ V such that wi → wi.

51

2. Efficient Large-Context Dependency Parsing

• connectedness: For all wi, wj ∈ V it is the case that wi ↔∗ wj.

• acyclicity: For all wi, wj ∈ V , if wi → wj then it is not the case that wj →∗ wi.

• unique governance: For all wi, wj ∈ V , if wi → wj then there does not exist

wi′ ∈ V such that i′ 6= i ∧ wi′ → wj.

• root governance: There does not exist wi ∈ V such that wi → w0.

• projectivity: Every arc (wi, r, wj) ∈ A is projective. Formally, wi →∗ wk for all

i < k < j if i < j, or for all j < k < i if j < i.

2.1.2 Lessons from a French Parsing Benchmark

We now turn to the discussion of a benchmarking experiment for French parsing in

which we participated (Candito et al., 2010b), and whose results had a major influ-

ence on the strategy adopted in this thesis with respect to the choice of parser and

features. The benchmarking experiment was intended as an initial, broad evalua-

tion of different statistical dependency parsing approaches for French, following the

automatic conversion of the FTBDep from the FTB carried out by Candito et al.

(2010a). The goal of the benchmarking experiment was to compare the parsing

accuracy and computational efficiency of different parsing approaches for French, in

the same vein as previous focused works for English (Cer et al., 2010) and for Ger-

man (Kübler, 2008). While an important first step in our research, the trends and

lessons found in this benchmarking experiment for French mainly confirm what had

already been found in the seminal CoNLL shared task across 13 different languages

(Buchholz and Marsi, 2006), though that evaluation notably did not include French.

Although the benchmarking experiment included a popular phrase-structure

parsing approach, with post-processing to convert output trees into dependency

structure for comparative evaluation, we choose not to include that approach in our

following discussion. Instead, we focus exclusively on the two major families of data-

driven dependency parsers using very distinct approaches that have been favored in

the NLP literature for different languages over the last decade, and which were

tested in the benchmark. Below we describe these two parser families, followed by a

presentation of the evaluation and results that motivated the choice of dependency

parsing algorithm for this thesis.

Dependency Parser Families

The first major family of data-driven dependency parsing, transition-based parsing,

reduces the problem of parsing a sentence to the problem of finding an optimal

52

2.1 Overview of Dependency Parsing

sequence of transitions through an abstract transition system, traditionally main-

taining a partially-built parse tree as well as a stack, buffer, or other structures

used by the algorithm. With seminal works by Yamada and Matsumoto (2003) and

by Nivre (2003), transition-based parsers are typically trained in a locally-optimized

manner: the output transition sequence, which defines the parse tree for a sen-

tence, is obtained using an oracle function implemented as a classifier that predicts

each subsequent transition using history-based features that reflect past transitions.

While no guarantees are made as to the overall optimality of the final transition

sequence, the fact that decisions are made locally allows for O(n) parsing time com-

plexity with respect to the length of the sentence. Note that we will provide a more

detailed description of the transitioned-based parsing approach later in this chapter.

The second approach is termed graph-based parsing, and it works by operating

directly on graph structures. It initializes a dependency graph with nodes corre-

sponding to word tokens from a sentence, and then predicts a globally-optimized set

of arcs that constitute the output dependency parse tree. Each possible dependency

graph for a sentence can be assigned a score that corresponds to the sum of the

scores of its factors, which consist of one or more linked arcs. While large factors

are desirable in order to capture sophisticated linguistic constraints, they come at

the expense of increased time complexity; however, it should be noted that even

when using the smallest size factors these algorithms have a large O(n3) parsing

time complexity with respect to the length of the sentence. More precisely, adapta-

tions of Eisner’s algorithm (Eisner, 1996) for finding the optimal parse have O(n3)

complexity when using 1-arc factors (McDonald et al., 2005) or sibling 2-arc fac-

tors (McDonald and Pereira, 2006), and complexity increases to O(n4) when using

generic 2-arc factors (Carreras, 2007) or 3-arc factors (Koo and Collins, 2010).

Evaluation Setup

Evaluation of the different parsing approaches was performed using a training, de-

velopment, and test set split of the FTBDep, as well as preprocessing of the FTBDep

with automatic POS tagging using the MElt package (Denis and Sagot, 2009) and

lemmatization using the Lefff lexicon (Sagot, 2010). Because we describe the same

preprocessing setup for experiments later in this chapter, we refrain from going

further into detail in this section.

In order to compare the two dependency parsing approaches fairly, Candito

et al. (2010b) used state-of-the-art parsing systems and parameters that had already

achieved results for other languages competitive with the best known reported re-

sults. For transition-based parsing, the freely-available MaltParser system (Nivre

et al., 2007b) was used. The transition system used was arc-eager, which we will

53

2. Efficient Large-Context Dependency Parsing

FTBDep dev FTBDep test
Setting LAS UAS LAS UAS

MaltParser 86.2 89.0 86.7 89.3
MSTParser 87.2 90.0 87.6 90.3

Table 2.1: Labeled (LAS) and unlabeled (UAS) attachment scores of parsers on the FTBDep
development and test sets.

Setting Running time

MaltParser 00:58
MSTParser 14:12

Table 2.2: Running times (min:sec) of parsers on the FTBDep development set on an iMac
2.66 GHz computer.

describe in more detail later in this chapter, and the multiclass classifier for learning

locally-optimal transitions was trained using the LIBLINEAR package (Fan et al.,

2008). The set of feature templates was tuned using the FTBDep development set.

For graph-based parsing, the freely-available MSTParser system (McDonald et al.,

2005) was used. The settings included sibling 2-arc factors, with projective decod-

ing to ensure projective output trees. Additionally, functional role labeling was

carried out as a post-processing sequence classification step, following McDonald

et al. (2006). Feature templates were those from the software’s default settings.

Results

Results were obtained after the two parsers were trained on the FTBDep training

set, then used to automatically parse the FTBDep development and test sets. Ta-

ble 2.1 reproduces the main results of the evaluation, as reported by Candito et al.

(2010b). The evaluation metric is the proportion of word tokens that are assigned a

dependency arc with the correct governor; labeled attachment score (LAS) requires

that the arc have the correct functional role label for it to be considered correct,

while unlabeled attachment score (UAS) ignores whether the label is accurate or

not. We can see that MSTParser obtains the higher parsing results, both LAS and

UAS, compared to MaltParser. While the differences in performance are statistically

significant, the scores differ by a modest 1 point each of LAS and UAS.

In order to roughly gauge the effects of different time complexities for different

parsers, each parser’s running time was also recorded. Table 2.2 reproduces the

running time results. In this part of the evaluation, we find that MaltParser, which

has an O(n) theoretical parsing time, predictably runs at over an order of magnitude

faster than MSTParser, which has a theoretical O(n3) parsing time.

54

2.1 Overview of Dependency Parsing

Another aspect of the evaluation was to test the use of lemmas and morpho-

logical features, with two relevant modifications: the replacement of each inflected

word form with its automatically predicted lemma, and the introduction of mor-

phological features for MaltParser and MSTParser. Both of these modifications led

to increased LAS and UAS scores, though the improvements were small for both

MaltParser and MSTParser (ranging from 0.1 to 0.4 points of LAS and UAS).

Choice of Dependency Parsing Family

The benchmarking results were fairly decisive in terms of showing the tradeoffs be-

tween using the two major approaches to dependency parsing. Taking a wider view,

these results are also mostly the same across different languages, as demonstrated in

the CoNLL-X shared task on multilingual dependency parsing (Buchholz and Marsi,

2006) across 13 different languages (with French not included among them). In the

results for that shared task, the two implementations that performed best across

the board were those by the leading researchers for graph-based parsing (McDonald

et al., 2006) and for transition-based parsing (Nivre et al., 2006); graph-based pars-

ing was more accurate overall, but the difference was small. Given the agreement of

wider results in the literature across different languages with those we obtained for

French, we had solid evidence with which to decide which parsing approach to use

as the basis for the work of our thesis.

Our decision was informed mainly by the tradeoff between parsing accuracy

and computational efficiency for different parsing families. As indicated above, the

efficient linear-time transition-based parser had a running time an order of magni-

tude faster than that of the rival cubic-time graph-based parser. While the more

complex approach achieved slightly higher parsing accuracies, we felt that the dif-

ference was not large enough to outweigh the substantial discrepancy in compu-

tational efficiency. We believe that, given the rate of technological progress and

the ever increasing amount of natural language data that is available for analysis

and processing, high speed will become a necessity for wide-use syntactic parsers in

NLP applications. We thus decided to focus this thesis on methods for improving

transition-based parsing.

Ideas for Improving Transition-Based Parsing

A natural place to begin the search for ways in which transition-based parsing could

be improved was to examine the reasons behind the differences in accuracy of the

transition-based parsing approach compared to the more complex graph-based pars-

ing approach. This issue has been previously investigated in the NLP literature,

55

2. Efficient Large-Context Dependency Parsing

most relevantly in the work of McDonald and Nivre (2007) that compares errors

made by the two major dependency parsing approaches in the CoNLL-X shared

task (Buchholz and Marsi, 2006). We thus lean on their findings as well as our

intuition on how they might extend to French parsing, though we did not conduct

a corresponding extensive error analysis for our benchmarking results.

Due to its derivation of parse trees in a deterministic manner using limited local

context, transition-based parsing can be found lacking in its treatment of ambiguity

at a sentential or even simply a non-local level. While graph-based parsing does use

information at the local level, as its scores are necessarily restricted to limited-size

edge factors, it is crucially able to synthesize local information into a global metric

that can account for low-scoring local areas that nonetheless reside in the optimal

tree. This is likely a reason for the finding of McDonald and Nivre (2007) that

long-distance dependencies were more accurately parsed by the graph-based parser

than by the transition-based parser.

The first major goal of our work is thus to increase the context available dur-

ing local decisions for transition-based parsing, while trying at the same time to

retain computational efficiency. We noted earlier that prepositional phrase attach-

ment and coordination were difficult phenomena to parse accurately; these can be

seen as potentially non-local linguistic phenomena with high levels of syntactic am-

biguity, which means that their attachment decisions could presumably benefit from

more context during parsing. Efficient methods for introducing large-context into

attachment decisions are explored later in this chapter as well as in Chapter 3.

Another take-away point from the benchmarking evaluation was the idea that

work at the lexical level still had potential for improving parsing results. The replace-

ment of word forms with lemmas and the use of morphological features improved

parsing accuracy at little computational expense. We decided that the replacement

of word forms with other generalized lexical classes, as well as the inclusion of fea-

tures encoding lexical subcategorization and preference, would potentially provide

an additional way to improve the handling of ambiguity in transition-based pars-

ing while retaining computational efficiency. Chapters 4 and 5 are devoted to the

exploration of these lexical approaches.

2.2 Transition-Based Parsing

Having decided to work within the family of transition-based parsers following our

preliminary benchmarking experiment for French, in this section we now describe

the formal characteristics of the transition-based approach to parsing, including

descriptions of the specific algorithms used and their theoretical guarantees.

56

2.2 Transition-Based Parsing

As previously mentioned, transition-based parsing reduces the problem of pars-

ing a sentence to the problem of finding an optimal sequence through an abstract

transition system, traditionally maintaining a partially-built parse tree as well as

secondary stack and buffer structures used by the algorithm. It should also be

noted that transition-based dependency parsers can be thought of as successors to

previous related work on shift-reduce phrase-structure parsing (Aho et al., 1986),

though we will not discuss those approaches here. In our following discussion, we

primarily follow the research of Nivre and colleagues (Nivre, 2003; Nivre et al., 2006;

Nivre, 2008; Kübler et al., 2009), with terminology and notation closely following

those works.

2.2.1 The Generalized Framework

We present the transition-based approach to dependency parsing as an elaboration

of the elements described in Section 2.1.1 for generalized dependency parsing. The

basic functional role label set and training set elements remain the same, while

the parsing model and learning algorithm are implemented in a manner specific

to a transition-based approach. As we briefly mentioned in our discussion of the

benchmarking experiment in Section 2.1.2, the parsing model is a transition system

that maintains a partially-built graph structure as well as a stack and buffer while

navigating from initial to terminal configurations.

Formally, following the definition of Nivre (2008), a transition system is a

quadruple S = (C, T, fI , Ct), where:

1. C is a set of configurations, each of which contains a set A of dependency arcs

and a fixed set intermediary structures depending on the algorithm variant.

All variants that we are aware of have at least a buffer β of remaining word

forms;

2. T is a small set of transitions, each of which is a (partial) function t : C → C;

3. fI is an initialization function, which maps a sentence x = w0w1 . . .wn to a

starting configuration c0 where βc0 = [1, . . . , n];

4. Ct ⊆ C is a set of terminal configurations. For the transition systems that

we consider, Ct is the set of all configurations ci where the buffer is empty, or

βci = [].

Additionally, a transition sequence in S for a sentence x = w0w1 . . .wn is a

sequence C0,m = c0c1 . . .cm of configurations, such that:

57

2. Efficient Large-Context Dependency Parsing

1. c0 = fI(x);

2. cm ∈ Ct;

3. for every i from 1 ≤ i ≤ m, ci = t(ci−1) for some t ∈ T .

The parsing algorithm for a transition-based parser takes an input sentence

x and applies a sequence of transitions from the initial configuration fI(x) in such

a way that the terminal configuration cm corresponds to a predicted dependency

tree Gcm = (Vx, Acm). In order to determine which sequence of transitions to follow,

the parsing algorithm uses an oracle function o : C → T that determines which

transition to take given a particular configuration.

The learning algorithm in transition-based parsing is tasked with optimizing

the oracle: we want an o such that, for each pair (x,G) in the training set D, it

will best guide x through S from the initial configuration fI(x) to a gold terminal

configuration cg ∈ Ct, where cg is defined as gold if and only if Gcg = G. In order to

learn an appropriate oracle, a transition classification training set D′ must be derived

from the original sentential training set D. Each tuple (x,G) ∈ D is converted

into a sequence of training tuples (ci, ti) that corresponds to a correct transition

sequence, which we define as a transition sequence C0,g leading from fI(x) to the

correct cg; there are potentially multiple correct transition sequences for any given

training tuple, so as we will discuss later a consistent method should be defined to

derive a unique gold transition sequence for any given training tuple. A multiclass

classification learner can then be viewed as training o to accurately predict, given

history-based features encoding information about the current configuration, the

correct transition to take. Note that this learning setup leads to an oracle that

is locally optimized, as the oracle predicts individual transitions rather than joint

sequences of them.

Incrementality and Correctness

There are two additional properties identified by Nivre (2008) as key for transition-

based parsers. The first is incrementality, which guarantees that a transition-based

parser will terminate. Formally, a transition system S = (C, T, fI , Ct) is incremental

if and only if, for every configuration c ∈ C and transition t ∈ T , it holds that:

1. The buffer must never grow in size: |βc| ≥ |βt(c)|.

2. Parsing must terminate when the buffer is empty: if βc = [], then c ∈ Ct.

3. Arcs can never be removed: if a ∈ Ac, then a ∈ At(c).

58

2.2 Transition-Based Parsing

The second property is that of correctness with respect to a particular class G
of dependency graphs. This property requires that a transition system for parsing

be both sound, meaning it only derives parses in G, and complete, meaning that

it is capable of deriving all parses in G. Formally, given a transition system S =

(C, T, fI , Ct) and a class G of dependency graphs:

1. S is sound for G if and only if, for every sentence x and every transition

sequence C0,m for x in S, the parse Gcm ∈ G.

2. S is complete for G if and only if, for every sentence x and every dependency

graph Gx for x in G, there is a transition sequence C0,m for x in S such that

Gcm = Gx.

3. S is correct for G if and only if it is sound and complete for G.

Major Transition-Based Parsers

A variety of parsers that can be characterized using the above generalized transition-

based parsing framework have been explored in the past. The traditional approaches

of Nivre (2003) and of Yamada and Matsumoto (2003) use, in addition to a buffer

of untreated word forms, a stack to store partially processed word forms. The

transition sets for these approaches correspond roughly to classic notions of ‘shift’

and ‘reduce’, and have the restriction of deriving projective dependency trees. There

have also been list-based approaches to transition-based parsing, notably those of

Covington (2001) and of Nivre (2007), which use open lists for partially processed

word forms and are capable of deriving non-projective dependency trees.

We focus our attention on the traditional approaches, due to the fact that

the FTBDep contains only projective trees, so there is less need to allow for non-

projectivity. The two specific approaches we consider are the arc-eager and arc-

standard parsers of Nivre (2008). In Section 2.2.2, we describe these two algo-

rithms along with their corresponding theoretical guarantees regarding soundness

and completeness. In Section 2.2.3, we then present a variant of arc-eager that

we term arc-eager-mc, whose purpose is to introduce additional context and treat

the problem of parse ambiguity by simultaneously considering multiple candidate

governors for the right-arc transition. We also present theoretical results for the

soundness and completeness of the arc-eager-mc algorithm, analogous to those

of Nivre (2008) for arc-eager and arc-standard.

59

2. Efficient Large-Context Dependency Parsing

2.2.2 Existing Approaches: arc-standard, arc-eager

We now present the arc-standard and arc-eager approaches, the two major

implementations of the transition-based dependency parsing framework that we have

chosen to use as the basis for our experiments for French, and for which we will also

explore a larger-context variant.

In both of these approaches, the ancillary data structures for parsing are lim-

ited to the previously mentioned buffer β of remaining word forms and additionally

a stack σ of processed word forms. We can thus make more precise the defini-

tion of a configuration for these two approaches: each configuration is of the form

c = (A, β, σ), where A is a set of arcs, β is a buffer, and σ is a stack. In our for-

mulations, we choose not to use the dummy w0 directly during parsing; instead, we

apply a final action after reaching a terminal state in which all word forms that have

not been assigned governors are set as dependents of w0 with the root label. The

initialization function fI for a sentence x = w0w1 . . .wn then produces the configura-

tion where A = {}, β = [1, . . . , n], and σ = []. Note that for ease of representation,

both the stack and buffer are shown as lists with the top of the stack and the first

item in the buffer appearing in leftmost position. Finally, we employ simple short-

hand operations over structures add(·, wi), which represents shifting onto the front

of a buffer or pushing onto a stack, and rem(·), which represents deleting from the

front of a buffer or popping from a stack.

We will discuss below the choice of transition set, which is the sole detail

on which the arc-standard and arc-eager approaches differ, and also briefly

describe their theoretical guarantees, as analyzed by Nivre (2008). Subsequently, we

will discuss the possible relative advantages of each approach for effectively modeling

linguistic phenomena in French dependency syntax.

The arc-standard Transition Set

In the arc-standard implementation of transition-based dependency parsing frame-

work, the set of transitions used by the transition model contains three types of

transitions that move from a previous configuration ci = (Ai, βi, σi) to a new con-

figuration cj = (Aj, βj, σj):

1. left-arc(l) (for a functional role label l) adds a new arc from the word form

at the front of the buffer to the word form at the top of the stack, then pops

the stack. Formally, Aj = Ai ∪ {(βi[0], l, σi[0])}, βj = βi, and σj = rem(σi).

As a precondition for taking this type of transition, the word form on top of

the stack must not be the artificial root note and must not already have a

governor. Formally, σi[0] 6= w0 and (·, ·, σi[0]) /∈ Ai.

60

2.2 Transition-Based Parsing

2. right-arc(l) (for a functional role label l) adds a new arc from the word form

at the top of the stack to the word form at the front of the buffer, then replaces

the word from at the front of the buffer with the word form at the top of the

stack.1 Formally, Aj = Ai ∪ {(σi[0], l, βi[0])}, βj = add(rem(βi), σi[0]), and

σj = rem(σi). As a precondition for taking this type of transition, the word

form at the front of the buffer must not already have a governor. Formally,

(·, ·, βi[0]) /∈ Ai.

3. shift moves the word form at the front of the buffer onto the top of the

stack. Formally, Aj = Ai, βj = rem(βi), and σj = add(σi, βi[0]). There are no

preconditions for taking this type of transition.

For the derivation of a gold transition sequence for a sentence, which is re-

quired for training the transition system oracle, transitions are selected at each

configuration based on an order of descending priority, with arc-building transitions

applied whenever possible (note that both cannot be simultaneously possible) and

shift consequently having the lowest priority. Aside from the above basic precondi-

tions for each transition, the left-arc(l) transition requires that the created arc is

part of the gold dependency tree for the sentence, and the right-arc(l) transition

further requires that the dependent have all of its own outgoing gold arcs already

present in the configuration. Figure 2.1 illustrates the arc-standard gold tran-

sition sequence for the sentence “Jean voit souvent la fille” (“Jean sees often the

girl”), with the gold dependency tree for the sentence shown on top.

For the theoretical guarantees of arc-standard, Nivre (2008) shows that

arc-standard fulfills the requirements of being correct with respect to the class

of projective dependency trees, and that it’s worst-case computational complexity

is O(n) in the length of the input sentence for both time and space.

As Nivre (2008) notes in his discussion, arc-standard uses a very simple and

traditional approach that is closely related to shift-reduce parsers for context-free

grammars (Aho et al., 1986). The shift action serves the same purpose in both

approaches, while the arc building actions are equivalent to the reductions made in

CFG parsing, replacing a head-dependent structure with its head. As such, arc-

standard is perhaps the most natural approach for transition-based dependency

parsing.

1Kübler et al. (2009) note that the right-arc(l) transition may seem counterintuitive, given that the buffer is
meant to contain word forms that have not yet been processed. However it is necessary to put this word form back
on the buffer from the stack in order to allow it to attach to a governor on its left.

61

2. Efficient Large-Context Dependency Parsing

NPP V ADV DET NC PONCT
Jean voit souvent la fille .

suj

root

mod det

obj

ponct

Transitions Configurations
initialize β = [‘Jean’, ‘voit’, ‘souvent’, ‘la’, ‘fille’, ‘.’], σ = [], A = {}
shift β = [‘voit’, ‘souvent’, ‘la’, ‘fille’, ‘.’], σ = [‘Jean’], A = {}
left-arc(suj) β = [‘voit’, ‘souvent’, ‘la’, ‘fille’, ‘.’], σ = [], A = {(‘voit’, suj, ‘Jean’)}
shift β = [‘souvent’, ‘la’, ‘fille’, ‘.’], σ = [‘voit’], A = {(‘voit’, suj, ‘Jean’)}
right-arc(mod) β = [‘voit’, ‘la’, ‘fille’, ‘.’], σ = [], A = {(‘voit’, suj, ‘Jean’), (‘voit’,

mod, ‘souvent’)}
shift β = [‘la’, ‘fille’, ‘.’], σ = [‘voit’], A = {(‘voit’, suj, ‘Jean’), (‘voit’,

mod, ‘souvent’)}
shift β = [‘fille’, ‘.’], σ = [‘la’, ‘voit’], A = {(‘voit’, suj, ‘Jean’), (‘voit’,

mod, ‘souvent’)}
left-arc(det) β = [‘fille’, ‘.’], σ = [‘voit’], A = {(‘voit’, suj, ‘Jean’), (‘voit’, mod,

‘souvent’), (‘fille’, det, ‘la’)}
right-arc(obj) β = [‘voit’, ‘.’], σ = [], A = {(‘voit’, suj, ‘Jean’), (‘voit’, mod, ‘sou-

vent’), (‘fille’, det, ‘la’), (‘voit’, obj, ‘fille’)}
shift β = [‘.’], σ = [‘voit’], A = {(‘voit’, suj, ‘Jean’), (‘voit’, mod, ‘sou-

vent’), (‘fille’, det, ‘la’), (‘voit’, obj, ‘fille’)}
right-arc(ponct) β = [‘voit’], σ = [], A = {(‘voit’, suj, ‘Jean’), (‘voit’, mod, ‘souvent’),

(‘fille’, det, ‘la’), (‘voit’, obj, ‘fille’), (‘voit’, ponct, ‘.’)}
shift β = [], σ = [‘voit’], A = {(‘voit’, suj, ‘Jean’), (‘voit’, mod, ‘souvent’),

(‘fille’, det, ‘la’), (‘voit’, obj, ‘fille’), (‘voit’, ponct, ‘.’)}
terminate Afinal = {(‘voit’, suj, ‘Jean’), (‘voit’, mod, ‘souvent’), (‘fille’, det,

‘la’), (‘voit’, obj, ‘fille’), (‘voit’, ponct, ‘.’), (root, root, ‘voit’)}

Figure 2.1: Gold arc-standard transition sequence, with corresponding intermediate con-
figurations, for the sentence: “Jean voit souvent la fille.” (“Jean sees often the girl.”)

The arc-eager Transition Set

In the arc-eager implementation of the transition-based dependency parsing frame-

work, the set of transitions used by the transition model contains four types of

transitions that move from a previous configuration ci = (Ai, βi, σi) to a new config-

uration cj = (Aj, βj, σj). We note that the left-arc(l) and shift transitions are

the same as before for arc-eager, while the right-arc(l) transition has a slightly

different behavior and a new reduce transition is introduced. The following are

the set of transitions for arc-eager:

1. left-arc(l) (for a functional role label l) adds a new arc from the word form

62

2.2 Transition-Based Parsing

at the front of the buffer to the word form at the top of the stack, then pops

the stack. Formally, Aj = Ai ∪ {(βi[0], l, σi[0])}, βj = βi, and σj = rem(σi).

As a precondition for taking this type of transition, the word form on top of

the stack must not be the artificial root note and must not already have a

governor. Formally, σi[0] 6= w0 and (·, ·, σi[0]) /∈ Ai.

2. right-arc(l) (for a functional role label l) adds a new arc from the word form

at the top of the stack to the word form at the front of the buffer, then moves

the word form at the front of the buffer onto the top of the stack. Formally,

Aj = Ai ∪ {(σi[0], l, βi[0])}, βj = rem(βi), and σj = add(rem(σi), βi[0]). As a

precondition for taking this type of transition, the word form at the front of

the buffer must not already have a governor. Formally, (·, ·, βi[0]) /∈ Ai.

3. reduce simply pops the stack. Formally, Aj = Ai, βj = βi, and σj = rem(σi).

As a precondition for taking this type of transition, the word form on top of

the stack must have a governor. Formally, (·, ·, σi[0]) ∈ Ai.

4. shift moves the word form at the front of the buffer onto the top of the

stack. Formally, Aj = Ai, βj = rem(βi), and σj = add(σi, βi[0]). There are no

preconditions for taking this type of transition.

For the derivation of a gold transition sequence for a sentence, transitions are

selected at each configuration based on an order of descending priority, similar to

that of arc-standard, with arc-building transitions having higher priority. This

time, both left-arc(l) and right-arc(l) simply require that the created arc is

part of the gold dependency tree for the sentence. Also, reduce requires that

the configuration contains all arcs in the gold dependency tree for which the word

form at the top of the stack is governor. It is important to note here that during

gold oracle parsing, there exist two different ways of prioritizing shift compared

to reduce that correspond to adequate oracles for deriving gold trees, with the

result being slightly different transition sequences. We have not found this detail in

previous discussions in the literature concerning arc-eager. The two prioritization

orders are as follows:

1. Do reduce if possible. Else do shift.

2. Do shift if the word form at the front of the buffer does not have its gold

governor to its left (in which case it would be left stranded on the stack). Else

do reduce if possible. Else do shift.

63

2. Efficient Large-Context Dependency Parsing

While the first ordering appears to be simpler, we have found that the second

ordering is the one used in MaltParser, the official software implementation of arc-

eager transition-based parsing (Nivre et al., 2007b). Theoretically, it is not clear

to us whether one of the orderings produces transition sequences that are more

suitable than the other for learning or parsing. It can be noted that the second

ordering uses reduce only when no other option is available, which means that

possible governors on the stack (for dependents on the buffer) will remain accessible

longer during parsing. Ultimately, we choose to use the second ordering for two

reasons: the fact that it appears to be more accepted, and more importantly the

fact that its lazy use of reduce makes it easier to compare theoretically to the

variant we will be presenting shortly. Figure 2.2 illustrates the arc-eager gold

transition sequence using the second ordering for the sentence “Jean voit souvent

la fille” (“Jean sees often the girl”), with the gold dependency tree for the sentence

shown on top.

For the theoretical guarantees of arc-eager, Nivre (2008) shows that arc-

eager, like arc-standard, fulfills the requirements of being correct with respect

to the class of projective dependency trees, and it’s worst-case computational com-

plexity is also O(n) in the length of the input sentence for both time and space.

As Nivre (2008) notes in his discussion, arc-eager adds arcs for right de-

pendents as soon as possible; that is, before the right dependent has found all of

its own dependents, as was the case for arc-standard. As a consequence, the

right-arc(l) transition cannot replace a head-dependent structure with its head,

but must store both the head and the dependent on the stack for further processing.

This necessitates the addition of an explicit reduce transition, which allows the

transition system to complete the reduction of the head-dependent structure.

Comparing the two approaches

We now present a brief comparison of the arc-standard and arc-eager ap-

proaches. The key difference is the special constraint imposed on arc-standard

for right-arc(l): the dependent needs to have all of its own dependents attached

before this transition can be taken. As noted above, the fact that arc-eager es-

chews this constraint leads to the addition of a reduce transition. Given these

differences, what advantages and drawbacks might result from using arc-eager

instead of arc-standard?

On one hand, arc-eager has the drawback compared to arc-standard of

complicating oracle decisions by adding a fourth transition. If an oracle classifier

is required to choose between four transitions instead of three, it could potentially

make learning an accurate oracle more difficult. Another possible drawback of arc-

64

2.2 Transition-Based Parsing

NPP V ADV DET NC PONCT
Jean voit souvent la fille .

suj

root

mod det

obj

ponct

Transitions Configurations
initialize β = [‘Jean’, ‘voit’, ‘souvent’, ‘la’, ‘fille’, ‘.’], σ = [], A = {}
shift β = [‘voit’, ‘souvent’, ‘la’, ‘fille’, ‘.’], σ = [‘Jean’], A = {}
left-arc(suj) β = [‘voit’, ‘souvent’, ‘la’, ‘fille’, ‘.’], σ = [], A = {(‘voit’, suj, ‘Jean’)}
shift β = [‘souvent’, ‘la’, ‘fille’, ‘.’], σ = [‘voit’], A = {(‘voit’, suj, ‘Jean’)}
right-arc(mod) β = [‘la’, ‘fille’, ‘.’], σ = [‘souvent’, ‘voit’], A = {(‘voit’, suj, ‘Jean’),

(‘voit’, mod, ‘souvent’)}
shift β = [‘fille’, ‘.’], σ = [‘la’, ‘souvent’, ‘voit’], A = {(‘voit’, suj, ‘Jean’),

(‘voit’, mod, ‘souvent’)}
left-arc(det) β = [‘fille’, ‘.’], σ = [‘souvent’, ‘voit’], A = {(‘voit’, suj, ‘Jean’),

(‘voit’, mod, ‘souvent’), (‘fille’, det, ‘la’)}
reduce β = [‘fille’, ‘.’], σ = [‘voit’], A = {(‘voit’, suj, ‘Jean’), (‘voit’, mod,

‘souvent’), (‘fille’, det, ‘la’)}
right-arc(obj) β = [‘.’], σ = [‘fille’, ‘voit’], A = {(‘voit’, suj, ‘Jean’), (‘voit’, mod,

‘souvent’), (‘fille’, det, ‘la’), (‘voit’, obj, ‘fille’)}
reduce β = [‘.’], σ = [‘voit’], A = {(‘voit’, suj, ‘Jean’), (‘voit’, mod, ‘sou-

vent’), (‘fille’, det, ‘la’), (‘voit’, obj, ‘fille’)}
right-arc(ponct) β = [], σ = [‘.’, ‘voit’], A = {(‘voit’, suj, ‘Jean’), (‘voit’, mod, ‘sou-

vent’), (‘fille’, det, ‘la’), (‘voit’, obj, ‘fille’), (‘voit’, ponct, ‘.’)}
terminate Afinal = {(‘voit’, suj, ‘Jean’), (‘voit’, mod, ‘souvent’), (‘fille’, det,

‘la’), (‘voit’, obj, ‘fille’), (‘voit’, ponct, ‘.’), (root, root, ‘voit’)}

Figure 2.2: Gold arc-eager transition sequence, with corresponding intermediate configu-
rations, for the sentence: “Jean voit souvent la fille.” (“Jean sees often the girl.”)

eager is that it has certain information unavailable when making a right-arc(l)

transition compared to arc-standard; the latter requires that the potential de-

pendent have all of its own dependents already attached, and these dependents may

be informative for certain linguistic phenomena such as PP-attachment (where the

potential dependent to be attached is the preposition and its own dependent is the

object of the PP).

On the other hand, arc-eager avoids some parsing situations in which the

arc-standard oracle makes implicit attachment decisions without necessarily hav-

ing access to adequate information. An example of this can be seen for the French

sentence “Jean voit Cécile de France” (“Jean sees [the actress] Cécile de France”),

with the diverging gold transition sequences for arc-standard and arc-eager

shown in Figure 2.3. The first couple of transitions shown above are shared by

65

2. Efficient Large-Context Dependency Parsing

NPP V NPP P NPP PONCT
Jean voit Cécile de France .

suj

root

obj dep obj

ponct

First transitions Configuration
shift, ‘Jean’ on stack β = [‘Cécile’, ‘de’, ‘France’, ‘.’]
left-arc(suj), ‘voit’ → ‘Jean’ σ = [‘voit’]

A = {(‘voit’, suj, ‘Jean’)}

arc-standard transitions arc-eager transitions
shift, ‘Cécile’ on stack right-arc(obj), ‘voit’ → ‘Cécile’
shift, ‘de’ on stack right-arc(dep), ‘Cécile’ → ‘de’
right-arc(obj), ‘de’ → ‘France’ right-arc(obj), ‘de’ → ‘France’
right-arc(dep), ‘Cécile’ → ‘de’ reduce, ‘France’ popped
right-arc(obj), ‘voit’ → ‘Cécile’ reduce, ‘de’ popped
shift, ‘voit’ on stack reduce, ‘Cécile’ popped
right-arc(ponct), ‘voit’ → ‘.’ right-arc(ponct), ‘voit’ → ‘.’
shift, ‘voit’ on stack terminated.
terminated.

Figure 2.3: Intermediate configuration followed by separate transition sequences of arc-
standard and arc-eager parsing for the sentence: “Jean voit Cécile de France.” (“Jean
sees [the actress] Cécile de France.”)

both approaches. Then below on the left is the gold transition sequence for arc-

standard, while below on the right is the gold transition sequence for arc-eager.

As we can see, the arc-standard oracle performs a shift that pushes ‘Cécile’

onto the stack, which is necessary because ‘Cécile’ has the dependent ‘de’ to the

right. This shift can be glossed as “the word form has further dependents on

its right”. Indeed, if the sentence were instead “Jean voit Cécile de son balcon”

(“Jean sees Cécile from his balcony”), the arc-standard oracle would directly

perform an arc-right(obj) transition because ‘Cécile’ has no further dependents.

During prediction, an oracle uses features that primarily look at two focal positions,

the front of the buffer and the top of the stack, so it may be tough to determine

whether a word form at the front of the buffer has further dependents to its right.

Failing to correctly make this determination is costly for arc-standard: in the

first example ‘Cécile’ would no longer be able to take ‘de’ as a dependent, and in

the alternate example ‘Cécile’ would either be forced to incorrectly take ‘de’ as a

dependent or remain stranded on the stack and fail to be accessible as a dependent

of ‘voit’.

66

2.2 Transition-Based Parsing

2.2.3 A Multiple-Candidate Variant: arc-eager-mc

We now move on to a presentation of a transition-based parsing implementation

that we term arc-eager-mc, and which we have developed to introduce additional

context for attachment decisions compared to the existing approaches. This variant

arises as a way to address the fact that in the existing approaches transitions either

choose a governor or rule out a governor for a word form, but never consider multiple

possible governors simultaneously. This approach is a close variant of arc-eager

that utilizes a new complex transition that allows only certain sequences of reduce

transitions followed by an arc-building transition, with reduce no longer included

as a distinct transition. While one might imagine that this change will result in a

transition system that is correct for a reduced class of projective dependency trees

compared to the full class associated with arc-standard and arc-eager, we will

show later in this section that arc-eager-mc is actually correct for the same class

of graphs.

Let us introduce an extension of the remove operation, remrep(·, c), which

applies the rem(·) operation c times on a data structure. In the arc-eager-mc

implementation of transition-based dependency parsing framework, the set of tran-

sitions used by the transition model contains three types of transitions, with the

shift transition operating the same as before for arc-standard and arc-eager.

The following are the set of transitions that move from a previous configuration

ci = (Ai, βi, σi) to a new configuration cj = (Aj, βj, σj):

1. left-arc(k, l) (for a stack position k and a functional role label l) adds a

new arc from the word form at the front of the buffer to the word form at

position k in the stack, then pops word forms from the stack k + 1 times.

Formally, Aj = Ai ∪ {(βi[0], l, σi[k])}, βj = βi, and σj = remrep(σi, k + 1). As

a precondition for taking this type of transition, the word form at position k

on the stack must not be the artificial root note and must be the deepest word

form on the stack that still transitively governs the word form on top of the

stack. Formally, σi[k] 6= w0 and k = max(u) s.t. σ[u]→∗ σ[0] holds for Ai.

2. right-arc-mc(k, l) (for a stack position k and a functional role label l) adds

a new arc from the word form at position k in the stack to the word form at

the front of the buffer, then pops word forms from the stack k times, leaving

the governor on top of the stack, then moves the word form at the front of

the buffer onto the top of the stack. Formally, Aj = Ai ∪ {(σi[k], l, βi[0])},
βj = rem(βi), and σj = add(remrep(σi, k), βi[0]). As a precondition for taking

this type of transition, the word form at the front of the buffer must not already

have a governor, and the word form at position k in the stack must transitively

67

2. Efficient Large-Context Dependency Parsing

NPP V ADV DET NC PONCT
Jean voit souvent la fille .

suj

root

mod det

obj

ponct

Transitions Configurations
initialize β = [‘Jean’, ‘voit’, ‘souvent’, ‘la’, ‘fille’, ‘.’], σ = [], A = {}
shift β = [‘voit’, ‘souvent’, ‘la’, ‘fille’, ‘.’], σ = [‘Jean’], A = {}
left-arc(0, suj) β = [‘voit’, ‘souvent’, ‘la’, ‘fille’, ‘.’], σ = [], A = {(‘voit’, suj, ‘Jean’)}
shift β = [‘souvent’, ‘la’, ‘fille’, ‘.’], σ = [‘voit’], A = {(‘voit’, suj, ‘Jean’)}
right-arc(0,mod) β = [‘la’, ‘fille’, ‘.’], σ = [‘souvent’, ‘voit’], A = {(‘voit’, suj, ‘Jean’),

(‘voit’, mod, ‘souvent’)}
shift β = [‘fille’, ‘.’], σ = [‘la’, ‘souvent’, ‘voit’], A = {(‘voit’, suj, ‘Jean’),

(‘voit’, mod, ‘souvent’)}
left-arc(0,det) β = [‘fille’, ‘.’], σ = [‘souvent’, ‘voit’], A = {(‘voit’, suj, ‘Jean’),

(‘voit’, mod, ‘souvent’), (‘fille’, det, ‘la’)}
right-arc(1,obj) β = [‘.’], σ = [‘fille’, ‘voit’], A = {(‘voit’, suj, ‘Jean’), (‘voit’, mod,

‘souvent’), (‘fille’, det, ‘la’), (‘voit’, obj, ‘fille’)}
right-arc(1,ponct) β = [], σ = [‘.’, ‘voit’], A = {(‘voit’, suj, ‘Jean’), (‘voit’, mod, ‘sou-

vent’), (‘fille’, det, ‘la’), (‘voit’, obj, ‘fille’), (‘voit’, ponct, ‘.’)}
terminate Afinal = {(‘voit’, suj, ‘Jean’), (‘voit’, mod, ‘souvent’), (‘fille’, det,

‘la’), (‘voit’, obj, ‘fille’), (‘voit’, ponct, ‘.’), (root, root, ‘voit’)}

Figure 2.4: Gold arc-eager-mc transition sequence, with corresponding intermediate con-
figurations, for the sentence: “Jean voit souvent la fille.” (“Jean sees often the girl.”)

govern the word form at the top of the stack. Formally, (·, ·, βi[0]) /∈ Ai, and

σ[k]→∗ σ[0] holds for Ai.

3. shift moves the word form at the front of the buffer onto the top of the

stack. Formally, Aj = Ai, βj = rem(βi), and σj = add(σi, βi[0]). There are no

preconditions for taking this type of transition.

For the derivation of a gold transition sequence for a sentence, transitions are

selected at each configuration based on an order of descending priority, with arc-

building transitions having highest priority as was the case for the other approaches.

This time, both left-arc(k, l) and right-arc-mc(k, l) again simply require that

the created arc is part of the gold dependency tree for the sentence. Figure 2.4

illustrates the arc-eager-mc gold transition sequence for the same sentence used

previously, “Jean voit souvent la fille” (“Jean sees often the girl”), with the gold

dependency tree for the sentence shown on top.

68

2.2 Transition-Based Parsing

The transition responsible for allowing the consideration of multiple governors

is right-arc-mc(k, l), which represents a multiple candidate transition set up to di-

rectly compare different viable positions k on the stack; specifically, given a possible

dependent at the front of the buffer, the oracle decides between multiple potential

governor word forms at different positions on the stack. Note that left-arc(k, l),

on the other hand, does not really compare between different positions, as for this

transition there is a single viable k in any configuration: the deepest position on the

stack whose word form transitively governs the word form on top of the stack given

the current set of arcs. Our reason for introducing left-arc(k, l) is that it allows

us to simplify the transition system by eliminating the need for an explicit reduce

transition.

Why consider multiple candidates?

Our motivation for exploring this multiple-candidate variant of transition-based

parsing stems from our desire to use more context in attachment decisions dur-

ing parsing, as previously mentioned in the lessons we took away from the French

benchmarking experiment in Section 2.1.2. arc-eager-mc constitutes our first

method of incorporating a framework into parsing in which one can consider multi-

ple candidate governors simultaneously for a given dependent; a subsequent method

for achieving this will be presented in Chapter 3, through the use of post-processing

parse correction.

To further explain why we believe it may be useful to consider multiple can-

didate governors simultaneously, consider the configuration represented at the top

of Figure 2.5 for a simple French sentence containing a prepositional phrase, “Jean

voit la fille blonde de son balcon” (“Jean sees the blonde girl from his balcony”).

Below on the left of the figure, we see the sequence of three transitions, two re-

duce followed by a right-arc(mod), that an arc-eager system would have to

take in order to correctly process this part of the sentence. Alternatively, below

on the right, we see that a single transition right-arc-mc(2,mod) is taken by an

arc-eager-mc system to correctly process this part of the sentence.

Depending on the set of features used by the oracle, an arc-eager transition

system might not take into account the fact that ‘voit’ is a possible — and in this

case, preferable — governor compared to ‘fille’ or ‘blonde’ for the preposition ‘de’.

The oracle must then essentially make independent and non-retractable decisions as

to whether ‘blonde’, and then ‘fille’, is the correct governor before properly consid-

ering ‘voit’. The arc-eager-mc oracle, on the other hand, can simultaneously take

into account all of the reasonable candidate governors to the left of the preposition

‘de’ when making its decision (these candidates appear listed in the stack).

69

2. Efficient Large-Context Dependency Parsing

NPP V DET NC ADV P DET NC PONCT
Jean voit la fille blonde de son balcon .

suj
obj

det mod

mod

mod

mod

Configuration
β = [‘de’, ‘son’, ‘balcon’, ‘.’]
σ = [‘blonde’, ‘fille’, ‘voit’]
A = {(‘voit’, suj, ‘Jean’),

(‘fille’, det, ‘la’),
(‘voit’, obj, ‘fille’),
(‘fille’, mod, ‘blonde’)}

arc-eager transitions arc-eager-mc transitions
reduce, ‘blonde’ popped right-arc-mc(2,mod), ‘voit’ → ‘de’
reduce, ‘fille’ popped . . .
right-arc(mod), ‘voit’ → ‘de’
. . .

Figure 2.5: Comparison of prepositional phrase treatment by arc-eager and arc-eager-
mc for the sentence: “Jean voit la fille blonde de son balcon.” (“Jean sees the blonde girl from
his balcony.”). Arc from ‘voit’ to ‘de’ is the correct dependency, while arcs from ‘fille’ to ‘de’
and from ‘blonde’ to ‘de’ show alternative governors implicitly or explicitly considered for ‘de’.

The difference between arc-eager and arc-eager-mc is therefore deeper

than it may appear at first, as we have unified two basic transition types into a

single larger one for the express purpose of introducing more context into each right-

directed attachment decision. From a linguistic perspective, this is very appealing

for the treatment of dependents like prepositions of coordination conjunctions, whose

governors are often to the left and for which multiple reasonable governors exist and

are difficult to disambiguate. The key downside, as we we will soon show, is the

O(n2) time complexity caused by considering multiple candidates. And it should be

noted that for many linguistic phenomena a multiple candidate approach does not

seem to add much utility; consider dependents whose governors are mainly to the

right, such as determiners, and those who tend to have rigid positional requirements

with respect to their governors, such as nouns and verbs. There is, however, an

appealing solution to this dilemma that we explore in our experiments: a hybrid

approach that combines arc-eager with arc-eager-mc and chooses which tran-

sition set to consider for a configuration depending on the POS category of the first

word form in the buffer, with arc-eager-mc used only in the limited cases where

it would be most useful.

70

2.2 Transition-Based Parsing

Single transition arc-eager-mc Transition sequence arc-eager

left-arc(k, l) reduce k times, then left-arc(l)
right-arc-mc(k, l) reduce k times, then right-arc(l)
shift shift

Table 2.3: Transition conversion table from arc-eager-mc to arc-eager.

Correctness of arc-eager-mc

We first present a proof of correctness for arc-eager-mc with respect to the class

of projective dependency trees. Though the arc-eager-mc variant imposes ad-

ditional restrictions to its transition sequence as compared to arc-eager, we can

actually show that for any sentence and corresponding tree in the class G of projec-

tive dependency trees, arc-eager can produce a transition sequence for that tree if

and only if arc-eager-mc can produce one as well. Having done so, we state that

arc-eager-mc is correct for G because we know this to be true of arc-eager.

The first direction of the proof requires that arc-eager can produce a tran-

sition sequence for a tree in G if arc-eager-mc can do so. This direction is rather

straightforward, as given any transition sequence produced by arc-eager-mc, we

can clearly construct a corresponding transition sequence for arc-eager. Table 2.3

lists which subsequence of transitions in arc-eager corresponds to each transition

in arc-eager-mc. When arc-eager-mc takes a left-arc(k, l) transition, then

arc-eager should take k reduce transitions followed by a left-arc(l) transition.

When arc-eager-mc takes a right-arc-mc(k, l) transition, then arc-eager

should take k reduce transitions followed by a right-arc(l) transition. Finally,

when arc-eager-mc takes a shift transition, arc-eager should do the same.

The second direction of the proof states that arc-eager-mc can produce a

transition sequence for a tree in G if arc-eager can do so. This direction is trickier,

as there are certain subsequences of transitions that are allowed by arc-eager,

specifically those in which a reduce is followed by a shift, which have no correlate

in the arc-eager-mc system. Luckily, we do not need for there to be a one-to-one

correspondence between transition sequences for the two systems; rather, we only

need to show that, for any tree G in G, there is at least one arc-eager transition

sequence that both derives G and has a corresponding transition sequence in arc-

eager-mc. To this end, we can use the unique gold transition sequence resulting

from gold oracle parsing, as previously presented in the arc-eager description

in Section 2.2.2. First, we note that in arc-eager the reduce transition can

never complete a transition sequence, recalling that termination requires the buffer

to become empty yet the reduce transition does not remove anything from the

buffer. Next, we note that any sequence of k reduce transitions followed by an

71

2. Efficient Large-Context Dependency Parsing

arc-building transition can be converted into a corresponding arc-building transition

in arc-eager-mc. Now all that remains is to show that a reduce is never followed

by a shift during gold oracle parsing. We reproduce the priority conditions for

shift and reduce transitions for arc-eager presented earlier, noting that the

arc-building transitions have higher priority:

• Do shift if the word form at the front of the buffer does not have its gold

governor to its left. Else do reduce if possible. Else do shift.

We can see that in order for a reduce transition to be selected for a config-

uration ci = (Ai, βi, σi), it must be the case that βi[0] has its gold governor to its

left, and we can then infer that its gold governor is somewhere on the stack σi. In

the subsequent configuration ci+1 = (Ai+1, βi+1, σi+1), we note that βi+1[0] = βi[0],

which means that it still has its gold governor to its left. Therefore, the only way a

shift transition can occur from ci+1 is if no arc-building transitions are applicable

and the reduce transition is not allowed. But this is impossible: if the gold gov-

ernor of βj[0] is on top of the stack a right-arc(l) will be taken, and otherwise a

reduce will be taken. A reduce transition is therefore never followed by a shift

transition in the gold oracle sequence for G.

Computational Complexity of arc-eager-mc

We now prove the computational space and time complexities of arc-eager-mc,

with similar approaches to those of Nivre (2008) for arc-eager and arc-standard.

For space complexity, following the proof of Nivre (2008) for arc-eager and

arc-standard, we first note that only one configuration c = (A, β, σ) needs to

be stored at any given time. Assuming that each single word form vertex can be

stored in constant time, and given the fact that the number of arcs in a dependency

tree is bounded by the number of corresponding vertices, the space complexity for

arc-eager-mc is then O(n).

For time complexity, we first need to bound the length of the transition se-

quence C0,m for a sentence x = w0w1 . . .wn. Again following the proofs for arc-

standard and arc-eager presented by Nivre (2008), we note that the shift and

right-arc-mc(k, l) transitions both decrease the length of β by 1 and increase the

length of σ by at most 1. We also note that the remaining transition, left-arc(k, l),

decreases the depth of σ by at least 1. Finally, we can point to the fact that the

initial length of β is n, the initial depth of σ is 1, and additionally we know that

σ can never have depth less than 0 and a terminal configuration is reached when β

has length 0. From this information, we can conclude that the combined number of

transitions is bounded by n.

72

2.3 Parsing Experiments

While Nivre (2008) is able to prove O(n) worst-case time complexity for arc-

standard and arc-eager by additionally assuming that oracle and transition

functions can be computed in constant time, we cannot do so due to the more

complex nature of our transitions. Specifically, the right-arc-mc(k, l) transition

requires the oracle to make a decision whose complexity is bounded by the number

of viable candidate governors; in the worst case this number can approach n, as one

could imagine for a heavily right-branching dependency tree. This means that the

time complexity for arc-eager-mc is O(n2).

2.3 Parsing Experiments

In this section we describe our first set of transition-based parsing experiments

for French over the FTBDep, upon which subsequent chapters build. We include

here updated parsing evaluations for the popular arc-standard and arc-eager

approaches, as well as a novel evaluation of the arc-eager-mc approach, both

alone and in a hybrid setting with arc-eager that we term hybrid-eager. In

Section 2.3.1 we will present our methods and experimental setup, while Section 2.3.2

describes the results of our parsing experiments.

Kernel SVM and Hand-Selected Feature Combinations

Before moving on to the experimental setup, we note that the major difference

between these experiments and those of the previous French benchmark described in

Section 2.1.2 is our use of SVM with polynomial kernels, as opposed to strictly linear

models with hand-selected combinations of features. Remember from Section 1.4.1

that a linear model performs binary or multiclass classification by separating positive

and negative instances with a hyperplane in a multidimensional space, where each

dimension corresponds to a feature. However, it is clear from the previous works

on machine learning approaches to parsing in the NLP literature that at least some

non-linear relationships between basic features need to be captured, by which we

mean that there exist pairs (or larger combinations) of basic features that need to

be considered jointly in order to be truly informative.

In the traditional approach used in the benchmark, which is very popular in

the parsing literature, non-linear relationships are captured by adding dimensions

corresponding to some hand-selected combinations of basic features. This approach

has the advantage of being almost as efficient as basic linear modeling for learning

and prediction, as long as the number of additional dimensions is relatively low.

The downside is that it is difficult to determine which combinations of features

are salient and should be added to the feature space, much more so than it is to

73

2. Efficient Large-Context Dependency Parsing

define the basic individual features. Most research that uses this approach seems to

select feature combinations in a rather arbitrary fashion, relying in part on linguistic

intuitions. Some research goes a bit further and evaluates a number of reasonable

sets of additional feature combinations on a development set before settling on a final

list, but note that even in this case one cannot hope to approximate an exhaustive

search for the most salient set of additional feature combinations.

The polynomial kernel approach, on the other hand, implicitly captures non-

linear relations between basic features by learning over an abstract non-linear space

consisting of all combinations of features up to a certain length. Prediction remains

in the linear space, though it requires the use of a number of support vectors that

is bounded by the number of training examples. In our opinion, this is theoretically

a preferable approach, as it retains linear time prediction while taking into account

all possible combinations of features up to a certain length. We use a cubic kernel,

meaning that all feature combinations of length up to three are considered; for

comparison, the hand-selected feature combination approach usually includes no

more than three basic features per combination. The major downside to the non-

linear kernel approach, however, is that in practice the number of support vectors can

be rather large, resulting in a slower classification model than that of the alternative

hand-selected feature combination approach.

When looking at existing work on transition-based parsing, we note that both

SVM and feature combination methods have been used in the literature. The Malt-

Parser software (Nivre et al., 2007b) notably supports both options. Indeed, in the

shared task across 13 languages Nivre et al. (2006) used SVM with a quadratic

kernel, while in the French benchmarking experiment Candito et al. (2010b) used

feature combinations.

Ultimately, we choose to use the kernel SVM approach for classification, under

the hypothesis that it will give us the clearest basis for comparing different parsing

approaches throughout this thesis; in addition to the parsing experiments in this

chapter, subsequent chapters deal with parse correction and new features derived

from lexical resources. If we were to use the hand-selected feature combination

approach, our fear is that we might unwittingly define feature spaces more favorable

to one parser than to another, giving us results that reflect feature engineering

quirks rather than fundamental characteristics of the approaches themselves. We

note, however, that if we were planning to use one of our parsers in a real world

setting, where speed and efficiency are at a premium, it would be worthwhile to use

a strictly linear model and make the extra effort to find a good set of hand-selected

feature combinations.

74

2.3 Parsing Experiments

2.3.1 Methods and Setup

We now present the setup of our parsing experiments. We describe the following

important elements of our methodology: split of the FTBDep into training, develop-

ment, and test sections; automatic POS tagging and lemmatization of the FTBDep;

definition of basic feature templates for each of the three oracle classifiers; SVM

learning process; evaluation metrics; tuning of learning parameters; and parser im-

plementation.

FTBDep Split

We divide the FTBDep into the three classic sections for machine learning, using

the standard split of Crabbé and Candito (2008) which has been used in multi-

ple works on parsing with both the FTB and FTBDep. The training set, which

contains 9,881 of the sentences in the FTBDep (80%), is used to learn optimal or-

acle transition classifiers for the various transition-based parsing approaches.1 As

mentioned earlier in Section 2.2, each sentence and corresponding gold projective

dependency tree must be converted into a gold transition sequence, with features for

each transition example defined over its preceding configuration. The development

set, which contains 1,235 of the sentences in the FTBDep (10%), is generally used

as a preliminary evaluation set to tune learning parameters: based on the perfor-

mance of a parsing approach using different learning parameter values, an optimal

set of values is selected. We will give more details concerning our parameter tuning

shortly. Finally, the test set, which contains the remaining 1,235 sentences in the

FTBDep (10%), is used for the final evaluation over each parser with optimized

learning parameters. The importance of having these three sets, and most crucially

the distinction between a training set and a final evaluation test set, is due to the

key goal in machine learning of obtaining models that are capable of generalizing

well to previously unseen data.

POS Tagging and Lemmatization

In all known approaches for transition-based dependency parsing, the POS categories

of word forms in a sentence are crucial features when representing configurations,

allowing basic generalization over lexemes. And POS categories are further impor-

tant for us to identify prior to parsing, as we have noted earlier that in a hybrid

approach combining arc-eager with arc-eager-mc the parser will choose which

transition set to use depending on the POS category of the word form at the front

1Due to some missing annotations, eight sentences are excluded in our experiments leaving a total of 9,873
training sentences.

75

2. Efficient Large-Context Dependency Parsing

of the buffer. Of course, when faced with a novel sentence, the POS categories of its

word forms are unknown and must be predicted through a separate process, termed

POS tagging, or as a byproduct of parsing, as is the case for many grammar-based

phrase-structure parsing approaches. Similarly, knowing the lemma for a word form

is valuable in creating smaller and more generalizable feature spaces, but this in-

formation must also be predicted at some point using the corresponding process of

lemmatization.

From a linguistic perspective, it is important to note that the identification of

POS categories for words in a sentence is linked to knowledge about the syntactic

structure of a sentence, as some word forms exhibit ambiguity between different

POS categories. For instance, the word form ‘stop’ in English may be a noun or a

verb, and its identification as one or the other both informs and is determined by the

surrounding syntactic context. For computational dependency parsing approaches,

however, it is practical to assume that POS categories of words in a sentence are

already known prior to parsing. This assumption holds up reasonably well for lan-

guages with lower levels of ambiguity at the morphological level, such as English

or French, though it may be less applicable to languages with rich morphology and

higher levels of POS ambiguity. For our purposes, we can assume without too much

concern that POS tags have already been assigned to word forms in a sentence before

parsing.

Regarding the use of automatic prediction of POS categories and lemmas in

our experiments, we note that we use automatic methods in spite of the fact that

gold POS tags and lemmas are readily available in the FTB. This decision, which is

also standard in the dependency parsing literature, is due to the fact that it better

approximates real world parsing situations in which absolutely no gold information

is available. If one parsing approach were superior to a second one when gold POS

tags or lemmas are available but inferior otherwise, we would prefer the second

approach.

The process of automatically tagging the FTBDep with POS categories was

carried out using the freely-available MElt package (Denis and Sagot, 2009), while

automatic lemmatization was carried out using the Lefff lexicon (Sagot, 2010) in

concert with heuristics for out-of-vocabulary word forms. Since lemmas are simpler

to predict once the POS category of a word form is known, we perform POS tagging

prior to lemmatization. Tagging for the FTBDep training set was done differently

than for the development and test sets. For the two evaluation sets, a POS tagging

model was learned using the full training set and then used to tag all of the sentences

in the evaluation sets. In order to have an automatically POS tagged training set for

parsing without touching the evaluation sets, we used the jackknifing technique: the

76

2.3 Parsing Experiments

Feature Templates arc-standard arc-eager arc-eager-mc

Buffer: lemβ[0] × × ×
posβ[0] × × ×
lposβ[0] × × ×
llabβ[0] × × ×
rposβ[0] ×
rlabβ[0] ×
lemβ[1] × × ×
posβ[1] × × ×
posβ[2] × × ×
posβ[3] × × ×

Stack: lemσ[0] × ×
posσ[0] × ×
labσ[0] × ×
hlemσ[0] × ×
hposσ[0] × ×
lposσ[0] × ×
llabσ[0] × ×
rposσ[0] × ×
rlabσ[0] × ×
posσ[1] × ×
posσ[2] × ×

k-Stack: lemσ[k] ×
posσ[k] ×
labσ[k] ×
hlemσ[k] ×
hposσ[k] ×
lposσ[k] ×
llabσ[k] ×
rposσ[k] ×
rlabσ[k] ×

MC-rank: ndepsσ[k] ×
depthσ[k] ×
distσ[k],β[0] ×
puncσ[k],β[0] ×

Table 2.4: Basic feature templates for arc-standard, arc-eager and arc-eager-mc.

training set was split into ten parts, and then ten separate iterations were performed

with a different held out set to be tagged with a model trained on the other nine.

Finally, automatic lemmatization was performed uniformly over the entire FTBDep.

Feature Templates

Table 2.4 lists the basic feature templates for each of the three transition oracles

corresponding to arc-standard, arc-eager and arc-eager-mc. The notation

77

2. Efficient Large-Context Dependency Parsing

convention we use includes shorthand terms for the type of information over one or

more word forms, with subscripts indicating their locations in the current config-

uration. For instance, lemβ[0] indicates the lemma of the word form at the front

of the buffer. The primary shorthand terms are lem for lemma, pos for part-of-

speech, and lab for the functional role label in which the subscripted word form

is the dependent. The prefix h indicates information concerning the governor (if

one currently exists) of a subscripted word form, and the prefixes l and r indicate

information concerning the farthest left and right dependent (if one currently exists)

of a subscripted word form, respectively. Finally, ndeps indicates the number of

dependents, depth indicates a binned value of k, dist indicates a binned linear dis-

tance between two word forms, and punc indicates whether there is a punctuation

mark linearly between two word forms.

The features over the buffer are mostly the same for the three transition sys-

tems, with the notable exception of two features — rposβ[0] and rlabβ[0] — involv-

ing the farthest right dependent of the word form at the front of the buffer. These

two features are only relevant for arc-standard, since the eager approaches never

return a word form from the stack to the buffer, meaning that the word form at

the front of the buffer never has any dependents to its right during parsing. Fea-

tures involving the stack are divided into a basic set, used by arc-standard and

arc-eager, defined over the first few word forms at the top of the stack, and a

k-sensitive set, used by arc-eager-mc for its arc-building transitions and defined

over the word form at position k on the stack. Finally, we note that the four feature

templates listed under MC-rank are used for ranking between candidates at different

values of k exclusively for the right-arc-mc(k, l) transition.

SVM Learning

As previously explained in Section 1.4, there are two main machine learning ap-

proaches that we use to optimize the oracle transition function for our transition

systems: multiclass SVM and ranking SVM, each using a polynomial kernel of de-

gree d=3. Also, we note that SVM model training and prediction was performed

using the LIBSVM package (Chang and Lin, 2011) for multiclass models, and the

SVMlight package (Joachims, 1999) for ranking models.

For the arc-standard and arc-eager transition oracles, multiclass SVM is

adequate by itself because any given configuration can be represented using a single

feature vector. We thus use multiclass SVM to learn three classifiers that jointly

represent the oracle. The first classifier decides which of the basic transition types

to use, setting aside the label l. If left-arc(l) is chosen, then l is chosen by a

separate left-labeling classifier; similarly, if right-arc(l) is chosen, then l is chosen

78

2.3 Parsing Experiments

by a separate right-labeling classifier.

For the arc-eager-mc transition oracle, we make use of both multiclass and

ranking SVM approaches to learn four models that jointly represent the oracle. As

before, the first classifier decides which of the basic transition types to use, this

time setting aside both the label l and the position k. Note that in the previous

section we defined feature templates for arc-eager-mc over a particular position

k. Since this position is unknown for the first classifier, we simply consider these

categorical features to be simultaneously ‘true’ for values found at different valid k

positions; for instance, if 0 and 1 are both valid k positions, and the POS categories

of σ[0] and σ[1] are N and V, both indicator features lemσ[k] = N and lemσ[k] = V

will fire. If left-arc(·, l) is chosen, then k is automatically determined to be the

deepest position that transitively governs σ[0], and l is chosen by a separate left-

labeling classifier. If right-arc-mc(·, l) is chosen, then a separate feature vector is

constructed for each valid k position, and a ranking model is used to select the best

k; subsequently, l is chosen by a separate right-labeling classifier using the feature

vector corresponding to the best k.

Finally, the hybrid-eager transition oracle is not actually trained separately.

Rather, during parsing it simply calls on the arc-eager and arc-eager-mc ora-

cles to predict transitions between configurations. The policy we use is as follows:

the arc-eager-mc oracle is called for configurations in which the word form at the

front of the buffer is a preposition or a conjunction, while the arc-eager oracle is

called for all other configurations.

Evaluation Metrics

In order to evaluate our parsing approaches, we use simple, straightforward metrics

that are widely accepted in the dependency parsing community. The first is unlabeled

attachment score (UAS), which ignores the arc labels and simply determines the

percentage of word forms that have been either assigned the correct governor or

correctly identified as the root. The second is labeled attachment score (LAS), which

is a stricter metric that additionally requires that the governing arc for a word form

have the correct functional role label. Given the fact that transition-based parsers,

as we have defined them, will always output complete dependency trees, we note

that each word form will always be assigned exactly one governing arc (with the

dummy root as a possible governor). This is a nice property for evaluation, saving

us the need to deal with the notions of precision, recall, and f-measure.

An additional point concerning our evaluation is that we do not score punctua-

tion mark dependents, following the standard methodology in the statistical parsing

literature. While punctuation marks are treated as word forms for the purpose of

79

2. Efficient Large-Context Dependency Parsing

parsing a sentence, we note that punctuation attachments mostly carry little mean-

ing and are often annotated inconsistently, as we have found to be the case for

the FTBDep. When calculating LAS or UAS, we choose to only score the correct

assignation of a governor to a dependent if the dependent is not a punctuation mark.

Finally, in order to determine the statistical significance of differences in LAS or

UAS between two parsing approaches, we choose to use McNemar’s statistical test,

which assesses the significance of the difference between two correlated proportions,

such as might be found in the case where the two proportions are based on the

same sample of subjects. In our case, the two proportions correspond to attachment

score results for two parsing approaches, with the “subjects” being word forms in

the FTBDep test set that are assigned either the correct or an incorrect governor.

Differences in performance are tested for significance at the level p=0.05.

Tuning Learning Parameters

Before performing the final evaluation on the FTBDep test set, we tuned some of

the LIBSVM and SVMlight learning parameters using the FTBDep development set.

The parameter values leading to the highest LAS and UAS over sentences in the

development set were identified and locked in for the final evaluation over the test

set.

The learning parameters we fixed from the start were the use of the C-SVC

learning type for SVM, as described in Section 1.4.2, as well as the use of a polyno-

mial kernel with d=3. The inner coefficient of s=0.1 for the polynomial kernel (cf.

Equation 1.6), was found through development set tuning. In addition, after tuning

we settled on a C-SVC regularization parameter with value C=1 for multiclass mod-

els and C=0.05 for ranking models, and a C-SVC termination criterion parameter

with value ε=1.0 for both multiclass and ranking models. Finally, we decided to use

no class bias for any of our models.

Another choice we made during development was to split each model even

further depending on the POS category of the word form at the front of the buffer

in a configuration. The POS groupings are listed in Table 2.5. This was done for

reasons of computational efficiency, as it significantly reduces the overall time and

space required for training and parsing. This type of model splitting is a standard

method used in transition-based dependency parsing experiments (Nivre et al., 2006;

Candito et al., 2010b).

Finally, we tested two hybrid-eager approaches, based on the low UAS re-

sults for coordinating conjunctions on the development set when using the standard

hybrid approach. The standard approach that we have discussed previously in this

chapter, hybrid-eager-1, uses arc-eager-mc transitions when the word form at

80

2.3 Parsing Experiments

Model Group Fine POS Categories

Adjectives ADJ, ADJWH
Adverbs ADV, ADVWH
Conjunctions CC, CS
Clitics CLO, CLR, CLS
Determiners DET, DETWH
Foreign Words ET
Interjections I
Nouns NC, NPP
Prepositions P,P+D, P+PRO
Punctuation PONCT
Prefixes PREF
Pronouns PRO, PROREL, PROWH
Verbs V, VIMP, VINF, VPP, VPR, VS

Table 2.5: Grouping of classification and ranking models by fine POS category of word form
at the front of the buffer in transition-based parsing experiments.

the front of the buffer is either a preposition or a conjunction and arc-eager tran-

sitions otherwise. We considered an alternate hybrid approach, hybrid-eager-2,

which further restricts the use of arc-eager-mc transitions to only prepositions.

Parser Implementation

We use our own parser implementation, coded with Python (Bird et al., 2009), for

the experiments in this chapter as well as for all subsequent chapters. We plan to

release software implementing all of the methods from this thesis in the near future.

As we have noted before, a freely available, high quality and flexible implemen-

tation of transition-based parsing already exists in MaltParser (Nivre et al., 2007b).

The reasoning behind using our own code is that it allowed us to implement our

arc-eager-mc variant in a straight-forward manner, and also provided us with a

code base that was easily extended to implement later methods in our thesis like

the parse correction algorithm described in Chapter 3.

2.3.2 Results

This section describes the results of our transition-based parsing experiments, with

special attention paid to the multiple-candidate variant for difficult attachment

types. We also briefly consider the running times for training and parsing under

different transition systems, which gives us a sense of the tradeoffs between speed

and accuracy in transition-based parsing. Table 2.6 shows the evaluation results for

the four transition systems over the FTBDep test set, with LAS and UAS results

81

2. Efficient Large-Context Dependency Parsing

Overall Preps Coords
Transition System LAS UAS UAS UAS

arc-standard 87.3 89.9 83.8 59.2
arc-eager 87.1 89.7 84.0 64.4

arc-eager-mc 86.5 89.5 84.6 65.3
hybrid-eager-1 87.1 89.7 84.5 62.8
hybrid-eager-2 87.2 89.8 84.5 64.3

Table 2.6: LAS and UAS results, in percent, over the FTBDep test set for the five eval-
uated transition systems: arc-standard, arc-eager, arc-eager-mc, hybrid-eager-1
for prepositions and conjunctions, and hybrid-eager-2 for only prepositions. Also includes
UAS results when restricting scoring dependents to prepositions (P,P+D) or coordinating
conjunctions (CC).

over all word forms as well as UAS results when considering difficult attachment

types (those with either preposition or coordinating conjunction dependents). Scor-

ing word forms in the test set, which do not include punctuation marks, amount to

31,404 total word forms, with 5,706 prepositions and 801 coordinating conjunctions.

Original Transition Sets

When considering the original transition sets, we note first of all that we obtain

results comparable to and even slightly better than those of the previous bench-

marking evaluation for French discussed in Section 2.1.2. Specifically, the LAS and

UAS for arc-eager on the FTBDep test set when using MaltParser with hand-

built feature combinations (86.7 LAS, 89.3 UAS) is slightly lower than it is for our

SVM implementation with a cubic kernel (87.1 LAS, 89.7 UAS).

A second observation concerns the relative performance of arc-standard and

arc-eager. The performance of arc-standard is better in terms of overall LAS

and UAS, though the difference is not statistically significant. On the other hand,

arc-eager has a better UAS for both prepositions and coordinating conjunctions.

Of these differences, the one concerning coordinating conjunctions is statistically

significant. The better performance of arc-eager for difficult attachment types

is an interesting result, and consistent with our observations in Section 2.2.2 when

comparing the two approaches: arc-standard requires the parser to make early

implicit decisions concerning right arcs, and this could be a problem for ambiguous,

predominantly right-directed attachments. Remember that for any configuration

during arc-standard parsing, if a right-arc(l) transition is taken, then the word

form at the top of the stack can no longer take additional dependents; conversely, if

a shift transition is taken in order to allow for additional dependents on the right,

but there turn out to be none, then the shifted word form is stuck and can no longer

82

2.3 Parsing Experiments

DET NPP VPR DET NC P DET NC P NC P NC
l’ Etat accordant une subvention de 50 F par heure de formation

det suj

root

obj

det dep
obj

det

dep

dep obj dep obj

Figure 2.6: Comparison of the incorrect arc-standard (with arc from ‘subvention’ to
‘par’) and correct arc-eager (with arc from ‘F’ to ‘par’) parse trees for the partial French
sentence: “. . . l’Etat accordant une subvention de 50 F par heure de formation . . . ” (“. . . the
state according an allowance of 50 F per hour of training . . . ”)

take a governor on its left.

An example from the FTBDep development set that may support this obser-

vation is shown in Figure 2.6, with predicted parses for the partial French sentence

“. . . l’Etat accordant une subvention de 50 F par heure de formation . . . ” (“. . . the

state according an allowance of 50 F per hour of training . . . ”) under arc-standard

and arc-eager. Consider the configuration during parsing where the noun ‘F’ is

at the front of the buffer, after having taken ‘50’ as a dependent on its left. Under

arc-standard, the oracle must essentially decide whether to attach ‘F’ as an ob-

ject dependent of ‘de’ immediately, or wait for additional dependents on its right;

if it waits but no additional dependents are forthcoming, then it will no longer be

able to make the clearly correct attachment of ‘F’ as an object of ‘de’. Therefore,

arc-standard must implicitly decide whether or not ‘par’ is a dependent of ‘F’

before it has these two word forms in the focus positions (top of the stack and front

of the buffer). This may be the reason that arc-standard makes an incorrect

determination and chooses to immediately attach ‘F’ to ‘de’, removing ‘F’ from fur-

ther consideration as a governor. On the other hand, arc-eager is able to take the

immediate transition that attaches ‘F’ as an object of ‘de’, moving ‘par’ to a focus

position at the front of the buffer that allows the oracle classifier to better predict

its governor.

Novel Transition Sets

Now we turn to results concerning the novel transition sets introduced in this chap-

ter, arc-eager-mc and the two hybrid-eager approaches. For arc-eager-mc,

we see that the overall LAS and UAS are substantially lower than those for arc-

standard and for arc-eager, with the difference being statistically significant;

this is a disappointing result. On the other hand, the UAS for prepositions and for

coordinating conjunctions is higher for arc-eager-mc, with this difference being

83

2. Efficient Large-Context Dependency Parsing

statistically significant for both prepositions and coordinating conjunctions when

compared to arc-standard, and nearly significant (at p=0.08) for prepositions

when compared to arc-eager. This observation is consistent with our hypothesis,

presented in Section 2.2.3, that the use of multiple-candidate arc-building transi-

tions is theoretically useful for treating ambiguous right-directed dependencies, as

is the case for PP-attachment and coordination, while not necessarily being suited

to other types of dependencies.

Following along our discussion in Section 2.2.3, the hybrid-eager setting

was the proposed solution to address the problem of multiple-candidate transitions

being suitable for only certain types of attachment. By applying arc-eager-mc

transitions only when a potential right-dependent (the word form at the front of

the buffer) is a preposition or a conjunction and using arc-eager transitions oth-

erwise, we would hopefully produce an oracle that combines the benefits of both

approaches. The setting hybrid-eager-1 uses multiple candidate transitions for

both prepositions and conjunctions, with the expected result that overall LAS and

UAS are similar to arc-eager with an improved UAS for prepositions comparable

to that achieved by arc-eager-mc. Unexpectedly, however, UAS for coordinating

conjunctions is lower than that of arc-eager-mc and even of arc-eager. This

negative result for coordinating conjunctions had already been observed in the devel-

opment set, leading to the setting hybrid-eager-2 that only uses sc arc-eager-mc

transitions for prepositions. This setting succeeds in achieving the desired result of

combining the advantages of arc-eager and arc-eager-mc: it produces overall

LAS and UAS results that are slightly higher than either of those approaches, a

preposition UAS comparable to the high one for arc-eager-mc, and additionally

a coordinating conjunction UAS comparable to the high one for arc-eager.

Running Time

Earlier in this section we explained our reasoning for using the slower polynomial

kernel SVM approach, compared to the strictly linear modeling approach with hand-

built feature combinations, in order to better compare parsing approaches and avoid

spurious results dependent more on feature combination engineering than inherent

characteristics of the different approaches. Although the parsers we test in this and

later chapters take substantially longer to run than those that can be found in more

optimized implementations, such as MaltParser (Nivre et al., 2007b), it is still useful

to compare the relative running times within our set of parsing approaches.

Table 2.7 shows the running times of parsers using the five transition system

settings over the FTBDep test set, in minutes and seconds. The arc-standard

and arc-eager parsers are both relatively fast, taking around three minutes each

84

2.3 Parsing Experiments

Transition System Running Time

arc-standard 3:11
arc-eager 3:10

arc-eager-mc 9:54
hybrid-eager-1 6:26
hybrid-eager-2 6:08

Table 2.7: Running times (min:sec) over the FTBDep test set for the following evaluated tran-
sition systems: arc-standard, arc-eager, arc-eager-mc, hybrid-eager-1 for preposi-
tions and conjunctions, and hybrid-eager-2 for only prepositions.

POS Category Frequency UAS

Overall 31,488 89.1

NC 7,853 91.5
DET 5,137 98.0
P 4,748 82.3
ADJ 2,700 93.1
V 2,018 87.8
ADV 1,545 83.2
NPP 1,493 89.4
P+D 1,145 88.4
VPP 1,108 80.9
VINF 812 93.6
CC 783 63.6
CLS 448 98.9
CS 366 72.4
PROREL 341 94.1
CLR 236 98.3
PRO 209 79.9
CLO 178 92.7
VPR 168 72.6

Table 2.8: Breakdown of UAS results by fine POS category of the dependent for the arc-
eager transition system on the FTBDep development set. POS categories are listed in
descending order of frequency, with only those POS with at least 100 occurrences in the
FTBDep development set being included in the table.

to parse the FTBDep test set. As expected, arc-eager-mc, which uses a multiple-

candidate transition set for all configurations, is the slowest at around ten minutes.

Finally hybrid-eager-1 and hybrid-eager-2, the two compromise settings that

use the arc-eager-mc transition set when the word from at the front of the stack

is a preposition (both settings) or a conjunction (hybrid-eager-1 only), take six

and a half minutes and six minutes, respectively.

In light of the halving of parsing speed when using arc-eager-mc transitions,

even for the hybrid-eager approaches, the minor increases in parsing accuracy

85

2. Efficient Large-Context Dependency Parsing

are disappointing. We do note that the increase in time complexity for multiple-

candidate approaches is from linear to quadratic, which is not as severe as the jump

from linear to at least cubic that is suffered when using global graph-based de-

pendency parsing approaches. Nevertheless, the minor increase in parsing accuracy

gained when using a multiple-candidate approach does not seem to sufficiently offset

the rise in time complexity when compared to the simpler arc-eager transition

set.

Difficulty of Attachment for Different POS Categories

From Table 2.6, it is clear that preposition and coordinating conjunction dependents

are more difficult to attach than average, as the preposition UAS and coordinating

conjunction UAS are lower than the overall UAS; this is true across all of the tested

parsing approaches. In order to evaluate the relative difficulty in attaching all of the

different POS categories, we provide in Table 2.8 full UAS results broken down by

POS category for the representative arc-eager transition system on the FTBDep

development set, with only the 18 POS categories that occur at least 100 times being

included for clarity (out of the 28 total POS categories).

We observe that two of the most prominent sources of error can be attributed

to coordination and PP-attachment. Coordination (with CC dependent) accounts

for around 10% of incorrect attachments and has an error rate of nearly 40%, while

PP-attachment (with P or P+D dependent) accounts for around 30% of incorrect

attachments and has an error rate over 15%. Other POS categories of note that

have well below average UAS include adverbs (ADV), verb past participles (VPP),

and subordinating conjunctions (CS); it would be interesting to investigate further

why those POS are difficult to attach. In the remainder of our thesis, however,

we choose to focus our attention on improving the treatment of coordination and

PP-attachment.

86

Chapter 3

Efficient Large-Context Parse Correction

As for the right way, the correct way, and the only way, it does not exist.

— Nietzsche

87

3. Efficient Large-Context Parse Correction

Having presented the base approaches to transition-based parsing used in this

thesis, we now continue the exploration that we began in the previous chapter into

the first main thread of our thesis: the search for a framework in which additional

syntactic context can be considered for attachment decisions. In the previous chap-

ter, our approach was to incorporate directly into the parser’s transition system a

way to consider multiple candidate governors simultaneously for a given dependent.

While that approach showed some promise, particularly for the ambiguous linguis-

tic phenomena of PP-attachment and coordination, the fact that it increased the

computational complexity of transition-based parsing from linear to quadratic was a

considerable downside. In this chapter, we stick with a traditional transition system

and instead seek to incorporate additional syntactic context through the use of two-

stage parsing approach: a first-stage transition-based parsing pass is followed by a

second-stage parse correction pass that reconsiders attachments with the dual ben-

efits of more surrounding syntactic context as well as the ability to simultaneously

compare multiple candidate governors for a dependent efficiently.

The presentation of this chapter closely follows one of our previously published

works (Henestroza Anguiano and Candito, 2011), with a notable difference being

that we update its machine learning algorithms in order to bring it in line with the

polynomial kernel SVM approach used throughout this thesis. We also include here

a novel investigation into self-training for two-stage transition-based dependency

parsing, as well as an application to domain adaptation for parsing.

In Section 3.1 we present the problem of learning to correct dependency parse

errors, describing both the neighborhood correction framework first used by Hall and

Novák (2005) as well as our innovations in using a ranking learner and accessing

larger syntactic context.

In Section 3.2 we discuss an interesting self-training approach to learning with

partially unannotated data in a two-stage parsing system, which has previously been

used successfully by McClosky et al. (2006) with a phrase-structure parser coupled

with a reranker. We investigate a corresponding approach for dependency parsing

that involves a transition-based parser coupled with a corrector, and also note how

this can be applied to the problem of domain adaptation.

Finally, Section 3.3 includes correction experiments for French in which we

compare the performance of baseline arc-standard and arc-eager parsers from

Chapter 2 to two-stage systems that additionally correct dependency errors from

the parsing stage, with special attention given to the difficult attachment types of

PP-attachment and coordination. We also evaluate to what extent the self-training

approach is effective for two-stage dependency parsing, both in-domain and out-of-

domain.

88

3.1 Learning to Correct Parse Errors

3.1 Learning to Correct Parse Errors

In the approaches we consider for syntactic dependency parse correction, attach-

ments in an input parse tree are revised by selecting, for a given dependent, the

best governor from within a small set of candidates. The motivation behind parse

correction is that attachment decisions, especially difficult ones like PP-attachment

and coordination, may require substantial contextual information in order to be

made accurately. Because syntactic dependency parsers predict the parse tree for

an entire sentence, they may not be able to take into account sufficient context

when making attachment decisions, due to computational complexity. Assuming

nonetheless that a predicted parse tree is mostly accurate, parse correction can re-

vise difficult attachments by using the predicted tree’s syntactic structure to restrict

the set of candidate governors and extract a rich set of features to help select among

them. Parse correction is also appealing because it is parser-agnostic: it can be

trained to correct the output of any dependency parser. However, in this chapter

we will test parse correction exclusively over trees predicted by the transition-based

parsers investigated earlier in Chapter 2.

We organize our discussion as follows: We start off in Section 3.1.1 with a

presentation of related work concerning both parse correction and past approaches

for resolving ambiguity in PP-attachment and coordination. Section 3.1.2 then

introduces the neighborhood correction framework we adopt in our investigation,

which is based on the work of Hall and Novák (2005). Finally, in Section 3.1.3 we

present our large-context innovations in implementing the framework, which include

the use of a ranking learner, the introduction of specialized features for treating

difficult attachments, and access to more feature combinations through SVM with

a polynomial kernel.

3.1.1 Related Work

Previous research directly concerning parse correction includes that of Attardi and

Ciaramita (2007), working on English and Swedish, who use an approach that con-

siders a fixed set of revision rules: each rule describes movements in the parse tree

leading from a dependent’s original governor to a new governor, and a classifier is

trained to select the correct revision rule for a given dependent. One drawback of

this approach is that the classes lack semantic coherence: a sequence of movements

does not necessarily have the same meaning across different syntactic trees. Hall and

Novák (2005), working on Czech, define a neighborhood of candidate governors cen-

tered around the original governor of a dependent, and a Maximum Entropy model

determines the probability of each candidate-dependent attachment. We follow pri-

89

3. Efficient Large-Context Parse Correction

marily from their work in our use of neighborhoods to delimit the set of candidate

governors. As we will elaborate upon later, our main innovations over this approach

are: (i) the use of specialized corrective features designed for difficult attachment

types (coordination and PP-attachment); (ii) a ranking model trained directly to

select the true governor from among a set of candidates; and (iii) non-linear feature

combinations, crucial for making difficult attachment decisions and achieved using

SVM learning with polynomial kernels.

There has also been other work on techniques similar to parse correction. At-

tardi and Dell’Orletta (2009) investigate reverse revision: a left-to-right transition-

based model is first used to parse a sentence, then a right-to-left transition-based

model is run with additional features taken from the left-to-right model’s predicted

parse. This approach leads to improved parsing results on a number of languages.

While their approach is similar to parse correction in that it uses a predicted parse

to inform a subsequent processing step, this information is used to improve a sec-

ond parser rather than a model for correcting errors. McDonald and Pereira (2006)

consider a method for recovering non-projective attachments from a graph represen-

tation of a sentence, in which an optimal projective parse tree has been identified.

The parse tree’s edges are allowed to be rearranged in ways that introduce non-

projectivity in order to increase its overall score. This rearrangement approach

resembles parse correction because it is a second step that can revise attachments

made in the first step, but it differs in a number of ways: it is dependent on a

graph-based parsing approach, it does not model errors made by the parser, and it

only outputs non-projective parses.

As a process that revises the output of a syntactic parser, parse reranking is

also similar to parse correction. A well-studied area of research, with seminal works

using phrase-structure parsing for English (Charniak and Johnson, 2005; Collins and

Koo, 2005) and a recent work for French (Le Roux et al., 2011), parse reranking is

concerned with reordering n-best ranked trees output by a parser. Parse correction

has some advantages compared to reranking: it can be used with parsers that do

not produce n-best ranked trees, it can be restricted to specific attachment types,

and its output space is not limited to parses appearing in an n-best list. However,

reranking has the advantage of selecting a globally optimal parse for a sentence

from an n-best list, while parse correction makes locally optimal revisions within

the input predicted parse.

Difficult Attachment Types

Alhough we have already previously discussed the importance of correctly treating

difficult attachment types (cf. Chapter 2, Section 2.1.2), notably PP-attachment

90

3.1 Learning to Correct Parse Errors

and coordination, these attachments take center stage in our experiments with parse

correction. We therefore believe it necessary to discuss here related work that focuses

specifically on the resolution of these attachment types.

Research on PP-attachment traditionally formulates the problem in isolation

(Hindle and Rooth, 1993; Pantel and Lin, 2000; Olteanu and Moldovan, 2005).

Examples consist of tuples of the form (v, n1, p, n2), where either v or n1 is the

true governor of the prepositional phrase containing p and n2, and the task is to

choose between v and n1. Subsequently, Atterer and Schütze (2007) criticized this

formulation as unrealistic because it uses a gold oracle to select candidate governors,

and they found that successful approaches for the isolated problem perform no better

than state-of-the-art parsers on PP-attachment when evaluated on full sentences.

With parse correction, though, candidate governors are identified automatically with

no artificial restriction of the form (v, n1, p, n2). Though the problem of choosing

between a verb and its nominal object as the governor of a PP arises often during

correction, so do other scenarios (e.g. choosing between more than two candidate

governors).

Research on coordination resolution has also often formulated the problem in

isolation. Resnik (1999) uses semantic similarity to resolve noun-phrase coordination

of the form (n1, cc, n2, n3), where the coordinating conjunction cc coordinates either

the heads n1 and n2 or the heads n1 and n3. The same criticism as the one made by

Atterer and Schütze (2007) for PP-attachment might be applied to this approach to

coordination resolution. In another formulation, the input consists of a raw sentence,

and coordination structure is then detected and disambiguated using discriminative

learning models (Shimbo and Hara, 2007) or coordination-specific parsers (Hara

et al., 2009). Finally, other work has focused on introducing specialized features for

coordination into existing syntactic parsing models (Hogan, 2007). We note that

our approach is again novel with respect to previous work because it directly models

the correction of coordination errors made by dependency parsers.

3.1.2 The Neighborhood Correction Framework

The neighborhood correction framework for two-stage dependency parsing, first in-

troduced by Hall and Novák (2005), consists of a process in which attachments from

the parse tree of a sentence predicted by a first-stage parser are corrected by consid-

ering a neighborhood of alternative candidate governors for each dependent. While

their work focused on the recovery of non-projective dependencies after parsing a

sentence with a strictly projective parser, in our case we specifically want to pre-

serve projectivity in the final output parse. The main divergence in our formulations

is thus that we use an iterative correction process, which facilitates our ability to

91

3. Efficient Large-Context Parse Correction

Input: Predicted parse tree G

Loop: For each chosen dependent d ∈ D
- Identify candidates Cd from G

- Predict (ĉ, l) = o(G, d,Cd)

- Update arcs in G: remove (·, ·, d), then add (ĉ, l, d)

Output: Corrected version of parse tree G

Figure 3.1: The generalized parse correction framework.

ensure projectivity after every correction; Hall and Novák (2005) were comfortable

with predicting corrections simultaneously, since they could use a conflict resolution

step at the end to ensure basic tree properties.

Formally, our version of the algorithm for parse correction takes as input the

predicted parse G of a sentence, and from G a set D of dependent word forms are

chosen for attachment revision. For each d ∈ D in left-to-right sentence order, a set

Cd of candidate governors from G is identified, and then the best ĉ ∈ Cd, using an

oracle o : (G, d, Cd) → (ĉ, l), is assigned as the new governor of d in G, with the

dependency arc labeled as l. Pseudo-code for parse correction is shown in Figure 3.1.

Given that our correction process is iterative, we are guaranteed that the final

output parse is a projective tree so long as we can ensure that each correction results

in a projective tree. To ensure this we place two key restrictions on revisions: (i) we

never revise a direct dependent of the root vertex, so as to ensure connectedness;

and (ii) we restrict the set of candidate governors for a dependent to those for which

the change in attachment would preserve projectivity.1

Choosing Dependents to Revise

Setting aside the direct dependents of the root vertex, which we never revise,

different criteria may be used to choose the set D of dependents to revise. In the

work of Hall and Novák (2005) and of Attardi and Ciaramita (2007), D contains

all vertices in the input parse tree. However, an advantage of parse correction is

its ability to focus on specific attachment types, so it may be advantageous to look

separately at those dependents that correspond to difficult attachment types like

coordination and PP-attachment. As we noted in our evaluation of transition-based

parsers for French (cf. Chapter 2, Section 2.3.2), these were two of the largest sources

of parsing errors: coordination (with CC dependent) accounted for around 10% of

1In our experiments we actually loosen the projectivity restriction for punctuation mark dependents. Since
they are unreliably annotated and not scored in our evaluation, we simply ensure that the parse tree would remain
projective if dependencies with punctuation mark dependents were ignored.

92

3.1 Learning to Correct Parse Errors

incorrect attachments and had an error rate of nearly 40%, while PP-attachment

(with P or P+D dependent) accounted for around 30% of incorrect attachments and

had an error rate over 15%.

Recall that in the representation of coordination for the FTBDep annotation

scheme, the first conjunct governs subsequent CCs, with other conjuncts depending

on the CC directly on their left. Errors for coordination occur mainly on dependen-

cies in which the CC is a dependent rather than those in which the CC is a governor;

indeed, the former type of dependency is the one we track in our evaluations of coor-

dination parsing accuracy. This means that coordination can be corrected primarily

by revising those dependencies in which a CC is the dependent. As for the represen-

tation of PP-attachment in the FTBDep annotation scheme, we reiterate that PPs

are headed by the preposition that introduces them, so this type of attachment can

be corrected by revising those dependencies in which a preposition (P or P+D) is

the dependent.

Identifying Candidate Governors

The set of candidate governors Cd for a dependent d can be chosen in different ways,

of course taking into account the requirement that its selection as the new governor

for d conserve projectivity in the parse tree. One method is, for a given d, to let

every other word form in G be a candidate governor for d. However, parser error

analysis has shown that errors often occur in local contexts.

Parse correction therefore uses a local neighborhood of candidate governors,

which Hall and Novák (2005) define as a set of vertices Nm(d) around the original

predicted governor co of d, where Nm(d) includes all word forms in the parse tree

G within graph distance m of d with a path that passes through co. Note that this

excludes any word forms transitively governed by d, which prevents the introduction

of cycles in a correct graph. Hall and Novák (2005) find that around 2/3 of the

incorrect attachments in the output of Czech parses can be corrected by selecting

the best governor from within N3(d). Similarly, in gold oracle experiments reported

in Section 3.3, we find that around 1/2 of coordination and PP-attachments in the

output of French parses can be corrected by selecting the best governor from within

N3(d). Figure 3.2 shows a neighborhood of candidate governors for an incorrect

PP-attachment from first-stage parsing in the French sentence “Jean voit la fille

blonde de son balcon” (“Jean sees the blonde girl from his balcony”).

93

3. Efficient Large-Context Parse Correction

NPP V DET NC ADV P DET NC PONCT
Jean voit la fille blonde de son balcon .

suj

root

obj
det mod

mod

mod

mod

obj
det

ponct

Figure 3.2: Neighborhood of candidate governors for an incorrect PP-attachment in the
sentence: “Jean voit la fille blonde de son balcon.” (“Jean sees the blonde girl from his
balcony.”). The arc from ‘fille’ to ‘de’ is predicted by first-stage parsing, while the arcs from
‘voit’ to ‘de’ and from ‘blonde’ to ‘de’ represent alternative candidate governors for ‘de’.

Learning a Correction Oracle

For the learning algorithm, the goal is to learn the oracle function o : (G, d, Cd) →
(ĉ, l) that best predicts the governor ĉ within the neighborhood of d with label l.

As was the case for the transition oracle in transition-based parsing, the correction

oracle serves as the engine for the corrector, navigating through possible dependency

trees for a sentence by changing up to one arc at a time, starting from the originally

predicted tree. The oracle should be optimized to be as accurate as possible: we

want an o such that, for each pair (x,Gp) in an automatically parsed training set

Dp, it will operate on the word forms of x to produce a tree that is as accurate as

possible with respect to the gold tree Gg.

In order to learn an appropriate oracle, a ranking training set Dp
′ must be

derived from the automatically parsed training set Dp. To do this, we define the

notion of a gold oracle for neighborhood correction, whose policy is to select the

correct candidate if it is in Cd and otherwise select the original governor from first-

stage parsing. This leads to a training set in which each tuple (x,Gp) ∈ Dp is

converted into a sequence of correction training tuples (G, d, Cd) with label (c, l)

indicating the correct candidate in Cd and the correct functional role label l for the

corresponding dependency arc. It should be noted that only correction steps where

the correct governor is in Cd are included in the derived training set, as there needs

to be a correct vector in order to create ranking constraints during model learning.

A ranking learner can then be viewed as training o to accurately predict,

given features encoding information about the current graph, dependent, and set

of candidate governors, the correct candidate to which the dependent should be

attached.

94

3.1 Learning to Correct Parse Errors

Computational Complexity of Parse Correction

We now provide the space and time complexities for the parse correction algorithm.

First of all, with respect to space complexity there isn’t much to say: parse correction

uses no additional data structures outside of the input parse tree, so the space

complexity is clearly O(n).

For time complexity, we now show that a corrector adhering to the neighbor-

hood correction framework is linear in the length n of the input sentence, similar to

the version of parse correction described by Hall and Novák (2005). First, we note

that up to n dependents in a sentence are deterministically corrected in a single

pass. We can see that for each such dependent d, the algorithm uses a linear model

to select a new governor after extracting features for a local neighborhood set of

candidate governors Cd ⊆ Nm(d). If we can show that the size of Nm(d) does not

depend on n, then given that m is a low constant parameter value we have shown

that the time complexity of neighborhood parse correction is O(n).

To see why the size of Nm(d) does not depend on n, we rely on the projectivity

restriction that requires every c ∈ Cd to be such that the dependency parse would

remain projective if c were selected as the new governor of d. Since all candidates in

Nm(d) must pass through the original predicted governor co, we can divide Nm(d)−
{co} into subsets and bound their sizes separately:

• Candidates transitively governed by co. We begin with any candidates that

are directly governed by co, essentially letting m = 2, and immediately we

can note that at most two can lead to projective updates: the closest one

linearly to the left cl and to the right cr of d, if they exist. If any other direct

dependent w of co were chosen as the corrected governor of d, projectivity

would be violated because w would not transitively govern every word form

linearly between itself and d. If we continue incrementing m, we can see that

at each step there are at most 2 new acceptable candidates. We have thus

bounded the size of this set as being linearly dependent on m.

• Candidates transitively governed by the governor of co, not including the sub-

tree headed by co. For this set, we can use the same argument as we did for

those candidates transitively governed by co. There are still clearly at most

two new valid candidates each time m is incremented, and these correspond

to those that are closest to the left and to the right of d.

We can continue defining subsets of Nm(d) − {co} as we have done above by

moving up further to a new overarching governor, noting that at no point does n

95

3. Efficient Large-Context Parse Correction

need to be used to bound their size. With respect to m, we can see that, for m ≥ 1,

the size of the candidate set is bounded as follows:

|Nm(d)| ≤
m∑
k=1

1 + 2(m− k). (3.1)

While a tighter bound could potentially be achieved, this nonetheless means that the

size of Nm(d) is at most quadratic in m, giving us a final neighborhood correction

time complexity of O(m2n).

3.1.3 Improving Context: Ranking and Features

Two crucial implementation aspects for the neighborhood correction framework that

we did not discuss above are the learning algorithm used to train the linear model

oracle, and the set of features to define over pairs of dependents and candidate

governors with surrounding tree context. We will now describe the choices we made

for these two implementation decisions, as well as how they differ from the work of

Hall and Novák (2005) through the introduction of larger context.

Using a Ranking Learner

Our first large-context innovation is the use of a ranking learner for obtaining the

optimal oracle. As described in Section 1.4, and similar to our implementation of

the multiple candidate arc-eager-mc transition based parsing approach described

in Chapter 2, a linear model can be optimized directly to score the feature vector

of the best candidate higher than the feature vectors of all other candidates.

The ranking approach differs from the binary classification learner used by Hall

and Novák (2005). During learning, they essentially break down the prediction of a

correct governor from among a set of k possible candidates into k different binary

decisions, with a class of 1 assigned to the vector corresponding to the true governor

and a class of 0 assigned to the vector of each other candidate. We believe that this

learning approach matches less precisely the problem at hand, and ends up losing

important context for each multiple-candidate decision during model optimization.

For instance, imagine three arbitrary candidates a, b, and c. Suppose there exists an

example in which a and b are candidates for dependent d, with a being correct, and

there is another example in a different but similarly structured sentence (so G is the

same with respect to the local surrounding context) in which b and c are candidates

for d, with b being correct. A binary approach would have difficulty learning a model

that requires the feature vector vb,d,G over b, d, and G to simultaneously have class

0 and 1. On the other hand, a ranking approach easily deals with this situation

96

3.2 Self-Trained Parsing with Correction

because it focuses on the differences between candidates: it requires only that the

model w be such that wTva,d,G−wTvb,d,G > 0 and wTvb,d,G−wTvc,d,G > 0, which is

more feasible to model. We thus find that ranking is the most natural way to learn a

linear model for a problem involving multiple choices represented using comparable

feature vectors.

Features for Correction

Our second large-context innovation is our sensitivity to the need for sufficiently

long-range features that will be useful for correcting parse errors. As we noted

above, features for parse correction are defined over the candidate c, the dependent

d, and the surrounding graph G.

In the work of Hall and Novák (2005), base features include a variety of infor-

mation over three specific vertices: c, d, and the original predicted governor co from

the parsing stage. The information over individual vertices includes word form,

lemma, morphological tag, POS tag, and number of children, with an additional

feature checking for case and number agreement between c and d. For higher-order

features, they employ the commonly-used method in NLP of building combinations

of features by hand, which we previously discussed in Section 2.3.1. Their feature

combinations are fairly thorough, including combinations over two or three of the

vertices using a range of information from each. However, we note that aside from

the feature encoding number of children, the surrounding predicted tree context

from the parsing stage is left entirely unused.

Keeping in mind that we have a special interest in difficult attachment types

such as PP-attachment and coordination, it quickly becomes clear that a larger

syntactic context for features is necessary if we hope to achieve meaningful results

when correcting these attachments. The specific set of features we use for correction

will be described later in Section 3.3.1 when presenting our experimental setup, but

essentially we consider features that go a step further out along the predicted input

parse tree. We also reiterate that our experiments make use of a polynomial kernel

with degree d = 3 when learning SVM models, allowing for the implicit use of key

feature combinations for PP-attachment and coordination. We will describe these

combinations in more detail in our experimental setup.

3.2 Self-Trained Parsing with Correction

We have established an efficient two-stage dependency parsing system, which em-

ploys transition-based parsing in the first stage and neighborhood parse correction in

the second stage. We now formalize a semi-supervised approach that could improve

97

3. Efficient Large-Context Parse Correction

two-stage dependency parsing, based on an existing approach that has proven useful

for two-stage phrase-structure parsing. In Section 3.2.1, we present an overview of

the generalized self-training framework for basic single-stage parsing, which is known

to be largely ineffective outside of its application to domain adaptation. Then in

Section 3.2.2 we describe the two-stage self-training framework, based on the sem-

inal work of McClosky et al. (2006) that coupled a phrase-structure parser with a

reranker, as well as a description of our particular implementation.

3.2.1 Basic Self-Training Framework

The idea of self-training is brought up often by researchers working on parsing, but

it is traditionally viewed as being largely ineffective. Essentially, self-training is

a method in machine learning that augments the training set of a model with new

examples whose labels have been automatically predicted by the original model, and

subsequently trains a new model from the augmented training set. The following

describes the steps of basic self-training:

1. A model M is trained from the labeled training set D.

2. The model M is run on a new unlabeled set U .

3. A new model M ′ is retrained from a training set consisting of D and automat-

ically labeled data from U .

4. The final output model is M ′.

Intuitively, this approach does not seem capable of producing a model superior

to the original, since the advantage of having more training data is counterbalanced

by the fact that the quality of the new training data is only as good as that of the

original model; it unlikely that the self-trained model will uncover any new insights.

As discussed in the overview of self-training provided by McClosky et al. (2006),

past attempts at using self-training for phrase-structure parsing have been largely

futile, with for example the works of Charniak (1997) and of Steedman et al. (2003)

including unsuccessful attempts at improving parsing through self-training.

A notable exception to this negative trend, however, involves research on do-

main adaptation for parsing. In this scenario, annotated data exists in a source

domain but the goal is to learn a parser that works well over a target domain that

has different lexical or syntactic characteristics. Many approaches for domain adap-

tation are rooted more in the machine learning aspects, with techniques including

structural correspondence learning (Blitzer et al., 2006) to automatically induce cor-

respondences among features from different domains, and a semi-supervised method

98

3.2 Self-Trained Parsing with Correction

termed EasyAdapt++ (Daumé III et al., 2010) that augments the source domain

feature space using features from unlabeled data in the target domain. But simple

self-training has also been shown to be effective for domain adaptation, with im-

provements in phrase-structure parsing when performed over automatically parsed

data from the target domain, for English (Sagae, 2010; Bacchiani et al., 2006) as

well as for various other languages including French (Candito et al., 2011). We will

include experiments regarding self-training for domain adaptation to medical text

in this chapter.

3.2.2 Two-Stage Self-Training

Even when remaining within the same domain, however, two-stage self-training has

recently proven to be effective in the work of McClosky et al. (2006), where a two-

stage parser is used to annotate new data and only the first stage model is retrained.

While their work is focused on phrase-structure parsing, with a PCFG parser in

the first stage and a discriminative reranker in the second stage, the fundamental

characteristics of the two-stage self-training framework for parsing can be described

in a manner that is agnostic to the choice of syntactic representation and parsing

approach. The following describes the steps of two-stage self-training:

1. A first-stage model M1 is trained from the labeled training set D.

2. A second-stage model M2 is trained based on the errors of M1 on D.

3. The two-stage model (M1,M2) is run on a new unlabeled set U .

4. A new first-stage model M1
′ is retrained from a training set consisting of D

and automatically labeled data from U .

5. The final output two-stage model is (M1
′,M2).

Though not mentioned by (McClosky et al., 2006) this process can be con-

sidered to be a form of up-training, which is a scenario in which a training set is

augmented with automatically labeled data that is of a higher quality than that

which the original model could produce. Up-training has recently been used suc-

cessfully for parsing English, with the setup involving a slow but highly accurate

parser annotating new data, which is added to the original training set and used

to improve the quality of a fast but less accurate parser (Petrov et al., 2010). In-

tuitively, then, we can see why self-training should be more effective for two-stage

parsing than for single-stage parsing: the second reranking or correction stage im-

proves the quality of the automatically labeled data, which may subsequently result

99

3. Efficient Large-Context Parse Correction

in a better self-trained first-stage parser. While intuition might also lead us to sub-

sequently retrain the second-stage model, (McClosky et al., 2006) find for English

that this leads to no additional improvement; we therefore follow their decision not

to do this.

As mentioned earlier, our particular implementation of two-stage self-training

involves dependency syntax, with the first stage corresponding to transition-based

dependency parsing and the second stage corresponding to neighborhood parse cor-

rection. In our experiments, we test whether this implementation is as effective

as that of the phrase-structure approach of (McClosky et al., 2006) with PCFG

parsing and discriminative reranking. We do so both for in-domain French parsing

and for domain adaptation to medical text, noting that McClosky and Charniak

(2008) improved the performance of a reranking parser for English when adapted to

biomedical text.

3.3 Correction Experiments

In this section we describe correction experiments for French, building on those for

transition-based parsing presented in Chapter 2. Our experiments involve two-stage

parsing, with a transition-based parser in the first stage and neighborhood parse

correction in the second stage. We also test the effectiveness of the two-stage self-

training approach of (McClosky et al., 2006) applied to dependency parsing instead

of phrase-structure parsing, both in-domain and for domain adaptation.

3.3.1 Methods and Setup

We now present the setup of our correction experiments. For all methodological

details concerning first-stage parsing, see our previous descriptions in Section 2.3.

As was the case for those experiments, we used our own Python implementation of

the algorithms and methods from this chapter; we reiterate that we plan to release

a package of the code used in this thesis following its publication. The following

are the novel elements of our methodology: creating the training, development, and

test sections from the FTBDep for neighborhood correction; defining basic feature

templates for correction; learning SVM correction models; processing external un-

labeled corpora for self-training both in-domain and out-of-domain; and tuning of

learning parameters.

100

3.3 Correction Experiments

FTBDep Correction Sets

When splitting the FTBDep into training, development, and test sets, we note that

the development and test sets do not need to be explicitly created; rather, in order

to evaluate neighborhood correction we simply run the trained two-stage parser on

the FTBDep development and test sets, and then evaluate the final parse trees with

respect to the parse trees obtained after only the first parsing stage.

For training, a jackknifing procedure must be used for parsing, similar to the

one described in Section 2.3.1 for automatic POS tagging of the training set. In

order to have an automatically parsed training set without using the evaluation

sets, we did the following: the training set was split into ten parts, and then ten

separate iterations were performed with a different held out set to be parsed with

a transition-based parsing model trained on the other nine. We thus obtained an

automatically parsed training set, from which we could then learn a neighborhood

correction model. As mentioned earlier in Section 3.1.2, each sentence and corre-

sponding pair of automatically parsed and gold projective dependency trees were

then converted into a gold sequence of correction examples, with features for each

example defined over the dependent, the set of candidate governors, and the current

state of the corrected tree.

Feature Templates

Table 3.1 lists the basic feature templates for the oracle of neighborhood parse cor-

rection. The notation convention follows the one introduced in the experiments of

Chapter 2, which includes shorthand terms for the type of information over one or

more word forms, with subscripts indicating their locations in the current configu-

ration. For instance, lemd indicates the lemma of the word form that is the current

dependent whose governing arc is being corrected. The primary shorthand terms

are lem for lemma, pos for part-of-speech, and lab for the functional role label in

which the subscripted word form is the dependent. A new term is ispr for whether

a candidate is the originally predicted governor for a dependent in the graph output

by a first-stage parser. The prefix h indicates information concerning the governor

(if one currently exists) of a subscripted word form, and the prefix o indicates infor-

mation concerning the dependent with arc label obj or dep coord (if one currently

exists) of a subscripted word form. The prefixes l and r have a different meaning

than for transition-based parsing features, as they indicate information concerning

the dependents of a subscripted c that are closest to a subscripted d on the left

and on the right, respectively. Finally, ndeps indicates the number of dependents,

dist indicates a binned linear distance between two word forms, dir indicates the

101

3. Efficient Large-Context Parse Correction

Correction Templates

Simple: posd
lemd
oposd
posc
lemc
hposc
isprc

Derived: ndepsc
distc,d
dirc,d
pathc,d
puncc,d
lposc,d
llabc,d
rposc,d
rlabc,d

Table 3.1: Basic feature templates for neighborhood parse correction, both simple ones over
individual word forms and derived ones that use multiple words or surrounding syntactic
structure.

direction of the linear distance between two word forms, path indicates the path

along the graph between two word forms (represented as the number of upward

steps followed by the number of downward steps from c to d), and punc indicates

whether there is a punctuation mark linearly between two word forms.

The features for neighborhood correction that we use here are similar to those

used for arc-eager-mc transition-based parsing when comparing among multiple

candidates with the right-arc-mc(k, l) transition. A number of key new features

are used here, however, that were not applicable for arc-eager-mc: oposd is

possible because we have a full parse tree, while in arc-eager-mc configurations

never include right dependents of β[0]; isprc and pathc,d only make sense given a

pre-existing predicted governor for d from the first-stage parser; dirc,d is needed

because candidates may be linearly on either side of d, while in arc-eager-mc

multiple candidates were considered only in the case of right-directed dependencies;

and finally, the features with prefix l and r are potentially more useful than before by

considering the most relevant contextual dependents of c with respect to d, instead

of simply the left-most and right-most dependents of c independent of d.

As we noted earlier, the features presented here are more extensive than those

used in transition-based parsing (cf. Chapter 2) or in related work on parse correc-

tion (Hall and Novák, 2005), and they are designed to take into account important

information for difficult attachments, with the oposd feature being key. For PP-

102

3.3 Correction Experiments

attachment, the distribution of a prepositional phrase differs greatly depending on

whether its object is a verb or a noun. Similarly, for a coordinating conjunction d,

syntactic requirements include the matching of POS categories for its two conjuncts,

which are the governor of d and the dep coord dependent of d.

SVM Learning

As previously explained in Section 1.4, there are two main machine learning ap-

proaches we use to optimize the oracle correction function: multiclass SVM and

ranking SVM, each using a polynomial kernel of degree d=3. As in our previous

experiments in Chapter 2, we note that SVM model training and prediction was

performed using the LIBSVM package (Chang and Lin, 2011) for multiclass models,

and the SVMlight package (Joachims, 1999) for ranking models.

For the neighborhood oracle we use both multiclass and ranking SVM ap-

proaches to learn two models that jointly represent the oracle. Given a set of k

candidate governors for a dependent, a separate feature vector is constructed for

each candidate and a ranking model is used to select the best one. If the new gov-

ernor is different from the one predicted by the first-stage parser, then a label l for

the new arc is chosen by a separate labeling classifier using the feature vector of the

new governor.

As we noted earlier, the use of a cubic kernel allows the ranking model to im-

plicitly use feature combinations useful for PP-attachment and coordination. Specif-

ically, these are the feature combinations over the lemmas or POS categories of the

three vertices c, d, and do. For PP-attachment, subcategorization or selectional

preference is implicitly encoded with feature triples over the POS category of c, the

lemma of d, and the POS category of do. And for coordination, the test of conjunct

POS matching are implicitly encoded with feature triples over the POS categories

of c and do, with the POS category of d needed as well in order to separate out cases

of coordination (where the POS category is CC) from other possibilities.

External Corpora for Self-Training

For experiments concerning two-stage self-training for parsing, which we presented

in Section 3.2, we now describe our choices of external unannotated corpora to test,

as well as the preprocessing carried out.

For our standard in-domain experiments, we tested two unannotated corpora

of French news that remain within the journalistic domain of the FTBDep, which

we recall is composed of French news articles from the Le Monde newspaper. The

first corpus, which is freely available for research purposes, consists of articles from

103

3. Efficient Large-Context Parse Correction

the L’Est Républicain (ER) regional newspaper1 and contains around 9 million sen-

tences. The second corpus we use, which is unfortunately not freely available, con-

sists of dispatches from the Agence France Presse (AFP) and contains around 4

million sentences.

For our domain adaptation experiments, we used a French text corpus from

the medical domain to contrast with the journalistic domain of the FTBDep. This

corpus was first used in a previous work on domain adaptation for phrase-structure

French parsing (Candito et al., 2011), and consists of texts from the European

Medicines Agency, specifically the French part of the EMEA section of the OPUS

corpus (Tiedemann, 2009). It consists of documents summarizing European public

assessment reports on specific medicines. After converting the original PDF files

to text and doing some preprocessing, Candito et al. (2011) built small evaluation

sets (574 development and 544 test sentences) from the resulting 267,000 sentences.

They manually annotated these sets for phrase structure, and later automatically

converted them to dependencies (Candito and Seddah, 2012a) using the same proce-

dure as was used for converting the FTB to the FTBDep. For our domain adaptation

self-training experiments, we used the unannotated portion of the EMEA for auto-

matic parsing, with the EMEA development and test sets used as reference sets for

evaluation.

Each unannotated corpus was preprocessed using the Bonsai tool2, which per-

formed sentence segmentation, word tokenization, and additionally, consistent with

our automatic annotation of the FTBDep in Section 2.3, performed automatic POS

tagging with the MElt package and lemmatization with the Lefff lexicon.

Tuning Learning Parameters

Before performing the final evaluation of two-stage parsing on the FTBDep test set,

we tuned some of the LIBSVM and SVMlight learning parameters using the FTBDep

development set. As was the case in our tuning for transition-based parsing in

Chapter 2, the parameter values leading to the highest LAS and UAS over sentences

in the development set were identified here, and subsequently locked in for the final

evaluation over the test set.

The learning parameters we fixed from the start were the same as those for

transition-based parsing: the use of the C-SVC learning type for SVM, as described

in Section 1.4.2, as well as the use of a polynomial kernel with d=3. As for the

other parameters, tuning actually led us to the same parameters as those for the

transition-based parsing experiments. We settled on an inner coefficient of s=0.1 for

1http://www.cnrtl.fr/corpus/estrepublicain/
2http://alpage.inria.fr/statgram/frdep/fr_stat_dep_parsing.html

104

http://www.cnrtl.fr/corpus/estrepublicain/
http://alpage.inria.fr/statgram/frdep/fr_stat_dep_parsing.html

3.3 Correction Experiments

Model Group Fine POS Categories

Adjectives ADJ
Adverbs ADV
Conjunctions CC, CS
Nouns NC, NPP
Prepositions P,P+D
Pronouns PRO, PROREL
Verbs V, VINF, VPP, VPR, VS

Table 3.2: Grouping of classification and ranking models by fine POS category of dependent
word forms for neighborhood parse correction.

the polynomial kernel (cf. Equation 1.6), a C-SVC regularization parameter with

value C=1 for multiclass models and C=0.05 for ranking models, and a C-SVC

termination criterion parameter with value ε=1.0 for both multiclass and ranking

models. Finally, we decided to use no class bias for any of our models.

A new parameter introduced for neighborhood correction is the size m of the

neighborhood from which to select candidate governors. We used a gold oracle cor-

rector over the FTBDep development set to find a good value for m and found that

as m increases, the average number of candidate governors per dependent increases

approximately linearly, while the improvement in topline accuracy tapers off rather

quickly. We ended up settling on m=3, as it afforded a large increase in topline ac-

curacy over m=2, while m=4 did not seem to improve the topline accuracy enough

over m=3 to justify the increase in average number of candidate governors per de-

pendent. Topline accuracy for gold oracle correction will be discussed shortly when

we present the results for our experiments.

As we did for transition-based parsing, a last modification we made during

development was to split each model further depending on the POS category of

the word form at the front of the buffer in a configuration. The POS groupings

we used are listed in Table 3.2. As we noted before, this was mainly done for

reasons of computational efficiency, as it significantly reduces the overall time and

space required for training and parsing. Additionally reflected in the table is the

fact that we ignored certain dependents for correction. During development, we

found that dependents with certain POS categories are unnecessary to treat, for

a number of reasons: rarity (wh-words, interjections, prefixes, imperative verbs,

and prepositions coupled with pronouns), accurate handling in first-stage parsing

(clitics and determiners), difficulty in modeling (foreign words), and non-scoring

tokens (punctuation).

105

3. Efficient Large-Context Parse Correction

Overall Preps Coords
Parsing System LAS UAS UAS UAS

arc-standard 87.3 89.9 83.8 59.2
+gold correction 94.3 94.8 93.2 80.5
+model correction 87.7* 90.3* 84.3* 63.7*

arc-eager 87.1 89.7 84.0 64.4
+gold correction 93.9 94.4 93.1 82.8
+model correction 87.5* 90.2* 84.6* 67.4*

Table 3.3: LAS and UAS results, in percent, over the FTBDep test set when using either a
gold correction oracle or an automatically trained model correction oracle over first-stage trees
output by arc-standard and arc-eager baseline transition-based parsers. Also includes
UAS results when restricting scoring dependents to prepositions (P,P+D) or coordinating
conjunctions (CC). ∗ indicates a significant improvement over the baseline.

3.3.2 Results

This section describes the results of our two-stage parsing experiments, with first-

stage transition-based parsing and second-stage neighborhood correction, as well as

our experiments that use self-training with a large external text corpus to try to

improve both in-domain and out-of-domain parsing.

Neighborhood Correction

We present our results for neighborhood correction using two types of oracles: (i)

gold correction oracles that always choose the correct governor (if it appears in the

candidate set) for a dependent and give us a topline accuracy for neighborhood

correction; (ii) the actual trained oracle models. Table 3.3 shows the evaluation

results on the FTBDep test set when using either a gold oracle or an automatically

trained model oracle in the second-stage corrector, with either arc-standard and

arc-eager first-stage transition-based parsing. The table includes LAS and UAS

results over all word forms, as well as UAS results when considering difficult at-

tachments (those with either preposition or coordinating conjunction dependents).

As previously noted in our experiments in Chapter 2, the scoring word forms in

the test set amount to 31,404 total, with 5,706 prepositions and 801 coordinating

conjunctions. Punctuation marks are again not scored.

As we can see from the gold oracle results, the top line accuracy corresponds

to an error correction rate of around 50% across the two transition-based parsers

and the POS categories of dependent tokens to evaluate. While the top line may

seem low, parse errors from the first stage mostly correspond to difficult, rare, or

ambiguous parts of a sentence’s syntactic structure; a 50% correction rate thus

seems like an adequate top line. It is important to acknowledge, though, that parse

106

3.3 Correction Experiments

correction with a restricted neighborhood size (m=3 in our experiments) cannot be

expected to correct most errors.

Moving on to actual accuracy improvements achieved by our trained oracle

models, increments in accuracy for neighborhood correction are modest but statisti-

cally significant in all cases. When scoring all tokens, we see +0.4-0.5 improvements

in LAS and UAS for both transition-based parsers. When scoring preposition to-

kens, we see a +0.5 UAS improvement for the arc-standard parser and a +0.6

UAS improvement for the arc-eager parser. Finally, when scoring coordinating

conjunction tokens, we see a +4.5 UAS improvement for the arc-standard parser

and a +3.0 UAS improvement for the arc-eager parser. We find these results

to be encouraging, and a validation of the neighborhood correction approach for

two-stage parsing. Having access to rich surrounding syntactic context from the

first-stage parser’s output appears to be very useful when reconsidering certain dif-

ficult attachments, especially coordination.

Comparing our results to those found in related works for Czech and English,

our improvements do not immediately appear to be as high. Hall and Novák (2005)

apply parse correction to obtain a +1.2 improvement in UAS (over an 81.6 base-

line) when using the Collins phrase-structure parser (Collins et al., 1999) applied

to Czech dependency parsing, and a +0.7 improvement in UAS (over an 84.4 base-

line) when using the Charniak phrase-structure parser (Charniak, 2001) adapted

to Czech dependency parsing (Nivre and Nilsson, 2005). Note that the Charniak

parser, which has the higher baseline of the two, achieves improvements comparable

to ours. For English, Attardi and Ciaramita (2007) apply tree revision learning to

obtain large improvements when using two versions of the shift-reduce DeSR parser

(Attardi, 2006): for the first version they obtain a +5.3 improvement in UAS (over

an 85.0 baseline), while for the second version they obtain a +0.7 improvement in

UAS (over an 88.4 baseline). In both cases, though, they do not actually improve

over the UAS (90.3) of a prominent shift-reduce parser for English (Yamada and

Matsumoto, 2003).

In the related work, we thus see a trend of lower baselines leading to higher

correction rates. This is understandable, as one might expect the additional errors

produced by a low-baseline parser to be easier to correct. We would argue that the

correction rate over a low-baseline parser is not particularly informative, however;

we are interested in seeing whether a corrective approach can improve on a parser

that has accuracy competitive with the state-of-the-art for a language. The +0.7

improvements in UAS in the related works when using the higher baseline parsers

are thus what we compare against our results, which end up having a similar +0.6

improvement in UAS over arc-standard transition-based parsing.

107

3. Efficient Large-Context Parse Correction

All FS+ FS–

SS+ 28,117 204
SS– 64 3,019

P,P+D FS+ FS–

SS+ 4,778 47
SS– 17 864

CC FS+ FS–

SS+ 505 35
SS– 11 250

Table 3.4: Confusion matrices for first-stage (FS) arc-eager parsing and for second-stage
(SS) neighborhood correction, with each scored word form attached correctly (+) or incorrectly
(–) after each stage. Three scoring settings are considered: all word forms (All), prepositions
(P,P+D), and coordinating conjunctions (CC).

A final result concerning neighborhood correction is the extent to which this

second stage modifies the original parse tree. Table 3.4 shows confusion matrices

for attachment results when using arc-eager transition based parsing, for the

three UAS scoring settings (all word forms, only prepositions, and only coordinating

conjunctions). We can see that the number of errors introduced tends to be low

compared to the number of errors corrected. For prepositions, for instance, there

were only 17 errors introduced compared to 47 errors corrected.

In-Domain Self-Trained Two-Stage Parsing

We now turn to results for self-training to improve two-stage parsing within the

journalistic domain. To reduce the number of parameters, we restricted this experi-

ment to a two-stage parsing system with an arc-eager parser in the first stage. To

re-iterate, this experiment involved the following steps: (i) the automatic parsing of

an external corpus using a two-stage parsing system; (ii) the retraining of the first-

stage transition-based arc-eager parser using a combination of gold FTBDep and

automatically parsed external sentences; (iii) the evaluation of the new two-stage

parsing system on the FTBDep development and test sets.

Because crucial factors for this evaluation are the choice of external corpus to

parse, the amount of external data to use, and the ratio of FTBDep to external

data in the combined training set, we have decided to include here our results for

the tuning portion of these parameters on the FTBDep development set.

Table 3.5 shows overall LAS and UAS for two-stage self-training on the FTB-

Dep development set. The parameters evaluated were: (i) whether to use the EP or

the AFP external corpus; (ii) whether to do only first-stage parsing of the external

108

3.3 Correction Experiments

External Original LAS UAS

Baseline (None) FTBDep (10k) 86.4 89.1

AFP one-stage (10k) FTBDep (10k) 86.3 89.0
AFP one-stage (10k) FTBDep (50k) 86.2 88.9
AFP one-stage (50k) FTBDep (10k) 86.4 89.1
AFP one-stage (100k) FTBDep (10k) 86.3 89.0

AFP two-stage (10k) FTBDep (10k) 86.5 89.2
AFP two-stage (10k) FTBDep (50k) 86.4 89.0
AFP two-stage (50k) FTBDep (10k) 86.6† 89.3†
AFP two-stage (100k) FTBDep (10k) 86.4 89.1

ER one-stage (10k) FTBDep (10k) 86.1 88.9
ER one-stage (10k) FTBDep (50k) 86.0 88.8
ER one-stage (50k) FTBDep (10k) 86.2 88.9
ER one-stage (100k) FTBDep (10k) 86.3 89.0

ER two-stage (10k) FTBDep (10k) 86.2 89.0
ER two-stage (10k) FTBDep (50k) 86.1 88.8
ER two-stage (50k) FTBDep (10k) 86.3 89.0
ER two-stage (100k) FTBDep (10k) 86.3 89.1

Table 3.5: First-stage arc-eager parsing LAS and UAS results, in percent, over the FTB-
Dep development set, listed according to the choice of external corpus (AFP or ER), the
method for parsing the external corpus (one-stage or two-stage), and the number of sentences
(in thousands) from each corpus in the final training set for arc-eager. † indicates the best
result, though not statistically significant over the baseline.

corpus or two-stage parsing and correction; (iii) how many external sentences to

add to the new training set; and (iv) how much to weight the original FTBDep

sentences in the new training set. Note that we use a simple method for weighting

up original FTBDep sentences: to weight up by a factor of five, we simply add four

additional copies of each original FTBDep sentence to the new training set. We use

the notation 10k to approximate the 9,881 original FTBDep training sentences, and

50k to denote the number of sentences corresponding to a weighting up by a factor

of five.

These initial development set results were not great, as the majority of the

self-training settings lead to LAS and UAS that are not any higher — and in many

cases lower — than that of the baseline two-stage parsing system. As expected, using

automatically parsed sentences from a two-stage system (parsing and correction)

leads to better results across the board compared to using automatically parsed

sentences from a one-stage system (parsing only). Interestingly, using the AFP

external corpus leads to better results than using the ER corpus, which may be an

indication of its higher similarity and relevance to the FTBDep corpus. This may be

due to the fact that the AFP corpus consists of newswires from an agency that covers

109

3. Efficient Large-Context Parse Correction

Overall Preps Coords
Parsing System LAS UAS UAS UAS

Baseline two-stage 87.5 90.2 84.6 67.4
Self-trained two-stage 87.3 90.1 84.5 64.5

Table 3.6: LAS and UAS results, in percent, over the FTBDep test set when using a two-
stage parsing system of arc-eager transition-based parsing followed by correction. The
baseline setting uses this system alone, while the self-trained setting uses a two-stage self-
trained parser. Also includes UAS results when restricting scoring dependents to prepositions
(P,P+D) or coordinating conjunctions (CC).

major French national and international news, which is closer to the internationally

recognized Le Monde newspaper whose articles make up the FTBDep corpus; in

contrast, the ER corpus consists of articles from a regional French newspaper that

covers different types of news and is perhaps written in a different style.

With respect to the amount of external data used and the ratio of original to

external data, the best setting combines 50k external sentences with the original

10k FTBDep sentences (no weighting up of the original sentences). Although the

study of McClosky et al. (2006) tries using many more external sentences, up to two

million, this is not practical in terms of both space and time given our use of SVM

learning and our available amounts of computer processing power and memory; it

is possible that the PCFG learning and parsing algorithms used in their study scale

better to larger training sets. We also note, however, that our self-training results

seem to degrade when going up from 50k to 100k external sentences, so we are in

any case not optimistic about a further improvement when using additional external

data.

Given the above development results, for the final test set evaluation we used

parameter settings corresponding to the highest increase in LAS and UAS over the

two-stage parsing baseline: 50k external sentences taken from the AFP corpus, au-

tomatically parsed using a two-stage parser, with no additional weighting of the

original 10k FTBDep training sentences. Table 3.6 shows overall LAS and UAS for

this final evaluation of two-stage self-training on the FTBDep test set. We can im-

mediately see that the results are disappointing: by all four LAS and UAS measures,

two-stage self-training does not improve upon the simpler two-stage parsing system

that we presented earlier. In fact, results appear to degrade slightly for some of the

measures, most notably for coordinating conjunction UAS.

Trying to understand the lack of satisfying self-training results for our two-

stage dependency parsing system, we consider a number of explanations. With

respect to the SVM learning process for transition-based parsing, it is possible that

it doesn’t handle noisy input data well. A transition-based parser needs to make

110

3.3 Correction Experiments

accurate sequential decisions on transitions between configurations, with each mis-

take further derailing the course of parsing. Perhaps PCFG phrase-structure parsing

systems are more robust to noisy training data, due to their use of probability es-

timations for derivation rules. A second consideration, which we believe to be very

important, is that in the work of McClosky et al. (2006) for phrase-structure parsing

there is a much larger difference in initial performance between the first-stage parser

and the two-stage system (89.7 and 91.3 f-score, respectively) than we obtained for

dependency parsing with our two-stage system (89.7 and 90.2 UAS, respectively).

As we have previously mentioned, empirical results from experiments in self-training

and up-training indicate that self-training does not work unless the external data is

parsed more accurately than it would be by the first-stage parser alone. It stands

to reason that the higher the difference in accuracy, the more likely we are to see

an improvement in the self-trained first-stage parser; perhaps a 0.5 UAS difference

in accuracy between one- and two-stage parsing is not large enough to outweigh the

drawback of introducing noisy examples into the parser’s training set.

Self-Training for Domain Adaptation

We now turn to results for self-training to improve domain adaptation in transition-

based parsing, with a source journalistic domain and a target medical domain. To

reduce the number of parameters, we again restricted the experiment to a two-

stage parsing system with an arc-eager parser in the first stage. This experi-

ment involved slightly modified steps compared to those for in-domain self-training:

(i) the automatic parsing of an unlabeled external medical corpus (EMEA) us-

ing a two-stage parsing system; (ii) the retraining of the first-stage transition-

based arc-eager parser using a combination of FTBDep journalistic domain and

automatically-parsed EMEA medical domain sentences; (iii) the evaluation of the

new two-stage parsing system on both the FTBDep and EMEA evaluation sets.

As we did before for the in-domain self training experiment, we include here our

parameter tuning results on the EMEA development set with respect to the amount

of external data to use and the ratio of FTBDep to external data in the combined

training set. Table 3.7 shows overall LAS and UAS for two-stage self-training on the

EMEA development set. We again use a simple method for weighting up original

FTBDep sentences: to weight up by a factor of five, we add four additional copies

of each original FTBDep sentence to the new training set. We use the notation 10k

to approximate the 9,881 original FTBDep training sentences, and 50k to denote

the number of sentences corresponding to a weighting up by a factor of five.

These initial development set results were fairly encouraging. As expected,

using automatically parsed medical text to help retrain a first-stage arc-eager

111

3. Efficient Large-Context Parse Correction

External Original LAS UAS

Baseline (None) FTBDep (10k) 84.2 87.0

EMEA two-stage (10k) FTBDep (10k) 84.6 87.4
EMEA two-stage (10k) FTBDep (50k) 84.7 87.6
EMEA two-stage (50k) FTBDep (10k) 84.4 87.2
EMEA two-stage (100k) FTBDep (10k) 84.3 87.1

Table 3.7: First-stage arc-eager parsing LAS and UAS results, in percent, over the EMEA
development set, listed according to the number of sentences (thousands) for each corpus in
the final training set for arc-eager.

FTBDep Test EMEA Test
Parsing System LAS UAS LAS UAS

Baseline two-stage 87.5 90.2 86.0 88.3
Self-trained two-stage 87.4 90.0 86.2 88.3

Table 3.8: LAS and UAS results, in percent, over the journalistic FTBDep and medical
EMEA test sets when using a two-stage parsing system of arc-eager transition-based parsing
followed by correction. The baseline setting uses this system alone, while the self-trained
setting uses a two-stage self-trained parser adapted to the medical domain.

parser resulted in better first-stage parsing performance over medical sentences.

This was true across different settings for the amount of external data to use and

the ratio of original to external data, though the best setting combined 10k external

sentences with the original FTBDep sentences weighted up to 50k. This is notably

different from our in-domain self-training experiments, in which the best setting

combined 50k external sentences with the 10k original FTBDep sentences.

Given the above development results, for the final test set evaluation we used

parameter settings corresponding to the highest increase in LAS and UAS over the

two-stage parsing baseline: 10k external sentences taken from the EMEA corpus,

automatically parsed using a two-stage parser, with a weighting up of the original

FTBDep training sentences to 50k. Table 3.8 shows overall LAS and UAS for this

final evaluation of two-stage self-training over the FTBDep and EMEA test sets,

this time adding neighborhood correction on top of the self-trained first-stage arc-

eager parser.

The results are again, as for our in-domain self-training experiments, disap-

pointing. The self-training two-stage parser adapted to the medical domain per-

formed only slightly better than the baseline two-stage parser on the EMEA test

set (+0.2 LAS), while the performance on the FTBDep test set decreased slightly.

It is interesting that the somewhat more substantial increase over the baseline we

observed over the EMEA development set did not translate to the EMEA test set.

This is perhaps a consequence of using small evaluation sets for EMEA (574 de-

112

3.3 Correction Experiments

velopment and 544 test sentences) compared to the more robust evaluation sets for

the FTBDep (1,235 development and test sentences each). Recalling our discussion

of in-domain self-training experiments, other explanations for why the self-training

approach to domain adaption did not work well in our experiments include the pos-

sibility that the automatically parsed sentences from the unannotated portion of the

EMEA were too inaccurate, or that the SVM learning process for transition-based

parsing might just not handle noisy input well.

113

Chapter 4

Parsing with Generalized Lexical Classes

Toutes les généralisations sont fausses, y compris celle-ci.

— Alexandre Dumas

114

In the preceding chapters we explored the first main thread of our thesis: the

search for a framework where more syntactic context is available for attachment

decisions in dependency parsing while retaining computational efficiency. In Chap-

ter 2 our approach was to incorporate directly into a transition-based parser a way

to consider multiple candidate governors simultaneously for a dependent. Then in

Chapter 3 we considered a two-stage parsing approach where a parse correction

model reconsiders attachments made by the parser, with the dual benefits of richer

syntactic context as well as the ability to efficiently compare multiple candidate

governors simultaneous for a dependent. We now turn to the second main thread

of our thesis: the creation and use of automatically-built lexical resources for semi-

supervised dependency parsing, with the parsing and correction algorithms from the

previous chapters serving as a backbone. In this chapter, we specifically investigate

different types of lexical classes that can be used in place of word forms for fea-

tures during parsing and correction. Our discussion primarily follows a previously

published work of ours (Henestroza Anguiano and Candito, 2012); key differences

include our use here of SVM learning, as well as our decision to not do probabilistic

weighting of lexical classes in parsing features.

A central problem in data-driven approaches for dependency parsing is the ac-

curate modeling of lexical relationships from potentially sparse counts in a training

corpus. Because treebanks used for training are often small, lexical features may

appear infrequently during training, especially for languages with richer morphology

than English. This may impede a parser’s ability to generalize outside of its training

set with respect to lexical features. Our work thus focuses on reducing lexical data

sparseness through the use of generalized lexical classes. In Section 2.1.2 we already

saw the benefits of generalizing word forms with lemmas, and in this chapter we

additionally investigate distributional word clusters and semantic synonym sets as

useful classes. In applying lexical classes to parsing, a novel aspect of our approach

compared to related work is that we allow for the assignation of multiple classes

of the same type to a word form: for instance, we allow for a word form to be-

long to multiple synonym sets, which is subsequently reflected in feature vectors by

having multiple indicator features fire for a single categorical feature template (cf.

Section 1.4.3).

In Section 4.1, we describe the methods in distributional lexical semantics

needed to create from a large text corpus a distributional thesaurus, which is used

as the basis for the construction of our generalized lexical classes. We provide an

overview of the methods used by NLP researchers in the past, settling on the intu-

itive and concise formal representations used by Lin (1998) and Curran (2004); this

leads to a description of different metrics for weighting and similarity we consider

115

4. Parsing with Generalized Lexical Classes

for building a distributional thesaurus, with an explanation for why we chose these

metrics over others. We then present generalized lexical classes in three spaces we

have chosen to investigate, each relying on a distributional thesaurus: (i) lemmas,

with multiple assignation for word forms obtained using other lemmas with high

similarity in the thesaurus; (ii) clusters, generated using the thesaurus and with

single assignation for word forms; and (iii) synsets, obtained using WordNet cou-

pled with the thesaurus through automatic sense ranking, which enables multiple

assignation for word forms.

In Section 4.2 we then present experiments for French where we test the use

in parsing models of lexical features derived from our three spaces of lexical classes,

with either single or multiple assignation. The parsing approaches used as the basis

for our experiments are those we previously investigated in Chapters 2 and 3.

4.1 Distributional Lexical Semantics and Classes

The distributional hypothesis states that words occurring in the same contexts tend

to have similar meanings, as posited by Harris (1954) in an often cited work. We

focus on methods that define a measure of distributional similarity between lexical

terms based on the similarities between their contexts, and can thus generate a dis-

tributional thesaurus from a large collection of lexical terms and contexts. An entry

in a distributional thesaurus contains, for each lexical term, a list of distributionally

similar terms ordered by similarity. Example entries are shown in Table 4.1.

It is important to note that high distributional similarity does not necessarily

indicate synonymy, which is a relation in which two words have the same meaning,

but rather a high level of semantic similarity, which can take other forms. For exam-

ple, the relation of antonymy, which indicates an opposite meaning, can be found

between two distributionally similar adjectives ‘tragique’ (‘tragic’) and ‘comique’

(‘comic’). And in Table 4.1 the relation of hyponymy, which indicates that one is

an instance of another, is observed with ‘véhicule’ (‘vehicle’) being found similar to

‘voiture’ (‘car’). However, this does not pose a problem for us because we are in-

terested in the replaceability of word forms in syntactic structure, abstracting away

from the precise nature of the semantic relationships between distributionally sim-

ilar word forms. Even though ‘véhicule’ and ‘voiture’ are not synonyms, the fact

that they have similar syntactic distributions means that it might be advantageous

to group them into a single generalized lexical class for the purpose of alleviating

data sparseness in syntactic parsing.

We first present in Section 4.1.1 an overview of related work on distributional

lexical semantics, whose methods can be used to automatically generate thesauri,

116

4.1 Distributional Lexical Semantics and Classes

véhicule voiture−0.490, camion−0.387, engin−0.307, avion−0.295,
bus−0.256, navire−0.253, camionnette−0.253, train−0.250,
automobile−0.248, appareil−0.244, tracteur−0.241,
fourgon−0.241, bateau−0.238, moto−0.237, matériel−0.230,
hélicoptère−0.218, machine−0.214, autobus−0.214, . . .

calciner carboniser−0.200, brûler−0.122, consumer−0.119,
déchiqueter−0.110, éventrer−0.109, endommager−0.108,
gésir−0.100, incendier−0.099, broyer−0.097, momifier−0.095,
cribler−0.094, recouvrir−0.092, joncher−0.092, noircir−0.092,
ab̂ımer−0.091, empiler−0.091, ensevelir−0.089, . . .

Table 4.1: Lemmatized distributional thesaurus entries in French for the noun ‘véhicule’
(‘vehicle’) and verb ‘calciner’ (“to calcify”). Neighboring lemmas are listed by descending
similarity.

and also describe related work on using generalized lexical classes to improve pars-

ing. We subsequently present in Section 4.1.2 the specific framework we use to

automatically generate a thesaurus through distributional lexical semantics, includ-

ing a discussion of the weighting and similarity metrics that we have chosen to test.

Finally, in Section 4.1.3 we define the generalized lexical class spaces of lemmas,

clusters, and semantic senses that we work with in our experiments.

4.1.1 Related Work

Distributional lexical semantics is an area that has been studied extensively in NLP,

with the main thread of research focusing on metrics of similarity derived from

statistical frequency analyses of terms (words) and contexts (n-grams, text win-

dows or grammatical dependencies, etc.) in large text corpora. Applications for

distributional lexical semantics are numerous, and, as noted by Turney and Pan-

tel (2010) in a survey of vector space approaches to distributional similarity, these

include word clustering, word classification, automatic thesaurus generation, word

sense disambiguation, context-sensitive spelling correction, semantic role labeling,

query expansion, textual advertising, and information extraction, to name a few.

The application that we are interested in is the creation of distributional lexical

classes for parsing, for which there has also been a substantial amount of research

conducted in NLP.

We first present related work on methods for distributional lexical semantics in

general, including ways to evaluate distributional metrics and thesauri. We subse-

quently look at related work in which generalized lexical classes are used to improve

parsing performance.

117

4. Parsing with Generalized Lexical Classes

Methods in Distributional Lexical Semantics

Research on distributional lexical semantics goes as far back as the work of Miller

and Charles (1991). Coming from a psycholinguistic background, the authors in-

vestigated the relationship between semantic and contextual similarity for pairs of

nouns varying from high to low semantic similarity, with semantic similarity esti-

mated by subjective ratings and contextual similarity estimated by the method of

sorting sentential contexts. Their results indicated that the more often two words

can be substituted into the same contexts, the more similar in meaning they are

judged to be.

In the field of NLP, an early study on distributional lexical semantics was that

of Pereira et al. (1993). In that work, nouns and verbs were clustered according to

their distribution in particular syntactic contexts; specifically, using pattern match-

ing to find pairs containing a verb and a noun dependent in a large text corpus.

Empirical distributions of a noun with respect to verbs (or vice versa) were used to

calculate distributional similarity between like objects, with the metric of choice be-

ing relative entropy, or Kullback-Leibler (KL) distance, between two distributions.

After clustering words using a number of different approaches, the authors found

that resulting clusters were intuitively informative and led to class-based word co-

occurrence models with substantial predictive power. Another important early work

is that of Dagan et al. (1994, 1997), who automatically extracted similar words in

order to help alleviate the problem of data sparseness in statistical natural language

processing. They found better results for word sense disambiguation when using

similarity-based smoothing compared to standard back-off smoothing methods. Ad-

ditional early studies on distributional lexical semantics have also paved the way for

research in this area (Hindle, 1990; Grefenstette, 1994), with methods for analyzing

word collocations comprising a chapter of a widely-used NLP textbook (Manning

and Schütze, 1999).

The works we regard to be the most important with respect to our own are

those of Lin (1998) and of Curran (2004). These works specifically concern the

automatic construction and evaluation of distributional thesauri, and helpfully de-

compose the problem of distributional similarity calculation from corpus statistics

down into separate steps that can each be handled in different ways. The work of

Lin (1998) has the contribution of introducing an objective evaluation method for

automatically constructed thesauri, which compares them to manually constructed

thesauri or related resources such as WordNet (Fellbaum, 1998). The subsequent

work of Curran (2004) contains a large survey of different methods for calculat-

ing distributional similarity, and we borrow its elegant terminology that distills the

process of constructing a distributional thesaurus down to its basic components.

118

4.1 Distributional Lexical Semantics and Classes

The work of Lin (1998) is particularly important because it was the first, to our

knowledge, that set up a well-defined evaluation of distributional thesauri against a

similar gold reference resource. Prior to that work, as Lin (1998) notes, methods for

evaluating automatically constructed thesauri relied on indirect tasks or subjective

judgments. Such approaches include that of Smadja (1993), in which automatically

extracted collocations were judged manually by a lexicographer, and those of Dagan

et al. (1993) and of Pereira et al. (1993), in which clusters of similar words were

evaluated by how well they were able to recover data items removed from the input

corpus one by one. After Lin (1998), other works have used his general approach in

evaluating distributional methods with manually built thesauri (Curran, 2004; Van

Der Plas and Bouma, 2004), with some works introducing new metrics for evalua-

tion, such as a TOEFL test (Ferret, 2010) or entity sets gathered from Wikipedia

(Pantel et al., 2009).

As pertains to French, previous work on the creation and evaluation of dis-

tributional thesauri exists but is not as extensive. Distributional methods have

certainly been used in French, notably in the work of Bourigault (2002) on Upery,

a distributional analysis module that calculates proximities between words and their

contexts, and the work of Ferret (2004), which used distributional similarity to build

word senses from a network of lexical co-occurrences. The differences between their

work and ours lies primarily in the area of application: for Bourigault (2002) it was

the construction of ontologies, and for Ferret (2004) the automatic discovery of word

senses. To our knowledge, we are the first to perform an evaluation of distributional

thesauri in the style of Lin (1998) for French, with the evaluation presented in this

chapter taken from a previously published work (Henestroza Anguiano and Denis,

2011).

It should also be noted that recent research in distributional lexical semantics

has begun to include more sophisticated approaches, including Bayesian estimation

of distributional similarities (Kazama et al., 2010) and latent variable models (Chru-

pala, 2011). Though we have not used these approaches, they are promising avenues

for future research on using distributional lexical semantics to improve parsing.

Generalized Lexical Classes for Parsing

The use of word classes for parsing dates back to early research on generative phrase-

structure parsing, whether using semantic classes obtained from hand-built resources

or less-informed classes created automatically. Bikel (2000) tried incorporating

WordNet-based word sense disambiguation into a parser, but failed to obtain an

improvement. Xiong et al. (2005) generalized bilexical dependencies in a generative

parsing model using the Chinese semantic resources CiLin and HowNet, obtaining

119

4. Parsing with Generalized Lexical Classes

improvements for Chinese parsing. More recently, Agirre et al. (2008) showed that

replacing words with WordNet semantic classes could slightly improve English gen-

erative parsing. Lin et al. (2009) used the HowNet resource within the split-merge

PCFG framework (Petrov et al., 2006) for Chinese parsing: they used the first-sense

heuristic to append the most general hypernym to the POS of a token, obtain-

ing a semantically-informed symbol refinement, and then guided further symbol

splits using the HowNet hierarchy. For French, recent approaches using a PCFG-

LA framework have improved parsing accuracy with lexical classes. Sigogne et al.

(2011) used the Lexicon-Grammar resource (Gross, 1994) to cluster verbs based on

shared syntactic characteristics (e.g. transitivity), and a follow-up work used the

Lefff lexicon to cluster verbs based on shared subcategorization frames (Sigogne and

Constant, 2012). Candito and Crabbé (2009), on the other hand, obtained improve-

ments in French parsing using less-informed unsupervised word clusters from a large

unannotated text corpus calculated with the Brown algorithm (Brown et al., 1992).

In dependency parsing, word classes are integrated as features in underlying

classification models. In a seminal work, Koo et al. (2008) used Brown clusters as

features in a graph-based parser, improving parsing for both English and Czech.

However, attempts to use this technique for French have lead to no improvement

when compared to the use of lemmatization and morphological analysis (Candito

et al., 2010b). Sagae and Gordon (2009) augmented a transition-based English

parser with clusters using unlexicalized syntactic distributional similarity: each word

was represented as a vector of counts of emanating unlexicalized syntactic paths,

with counts taken from a corpus of auto-parsed phrase-structure trees, and HAC

clustering was performed using cosine similarity. For semantic word classes, Agirre

et al. (2011) integrated WordNet senses into a transition-based parser for English,

reporting small but significant improvements in LAS (+0.26 with synsets and +0.36

with semantic files) on the full Penn Treebank with first-sense information from

Semcor.

Concerning techniques for out-of-domain parsing, we recently participated in

work that used word clustering for domain adaptation of a phrase-structure PCFG-

LA parser for French, deriving clusters from a “bridge” corpus containing text from

both source and target domains, with parsing improvements observed in both do-

mains (Candito et al., 2011). Other than the recently published work on which this

chapter is based (Henestroza Anguiano and Candito, 2012), we are not aware of

previous work on lexical generalization for out-of-domain dependency parsing.

A first small contribution of our work is the reproduction for French of previous

approaches used successfully for English dependency parsing, with to our knowledge

the first experiments using HAC clustering and WordNet-based approaches for lexi-

120

4.1 Distributional Lexical Semantics and Classes

cal generalization applied to French parsing. Otherwise, our primary contributions in

this chapter are two-fold: (i) we introduce a multiple assignation strategy for lexical

feature replacement in our distributional lexical class spaces, with single assignation

having been the standard replacement strategy in previous works on parsing; and

(ii) we test the novel use of lexical generalization derived from a bridge corpus to

improve out-of-domain dependency parsing.

4.1.2 Framework for Distributional Methods

We base our terminology and methods on the work of Lin (1998), which used word

context relations to calculate distributional lexical similarity, and the subsequent

work of Curran (2004), which distinguished between weight and measure functions

and evaluated different functions on a semantic similarity task for English. The

basic framework we use for distributional methods is as follows:

1. Extraction: obtain from a preprocessed text corpus counts of lexical terms and

contexts in which they appear, with various possible types and complexity of

context.

2. Weight: modify the raw counts in order to better reflect the relevance of a

context to a particular lexical term.

3. Measure: calculate the similarity between pairs of lexical terms by representing

each as a vector of its weighted context counts.

4. Thesaurus: output a thesaurus with each lexical term having an entry listing

the other most similar lexical terms.

More precisely, we first define a context relation to be the tuple (w, r, w′),

where w is a primary lexical term (we use lemmas) that occurs in a particular con-

text; in our work, contexts consist of a relation r and a secondary lexical term w′.

Commonly-used contexts for w include syntactic dependencies, fixed-size windows

(such as bigrams), and bag-of-words representations of documents. The choice of

context dictates the semantic relationship obtained between primary lexical terms;

Agirre et al. (2009) find that syntactic dependencies and fixed-size windows best cap-

ture semantic similarity (synonymy, antonymy, hyponymy, etc.(while bag-of-words

approaches capture broader semantic relatedness such as shared topic. We choose

to use syntactic dependencies, with r representing a dependency relation and taking

values corresponding to the direction of the dependency and its label. In the cases

of PP-attachment and coordination, prepositions and coordinating conjunctions are

121

4. Parsing with Generalized Lexical Classes

folded into r; for PP-attachment this means that the pair of lexical terms are the

governor of the PP and the PP object, while for coordination this means that the

pair of lexical terms are the two conjuncts. As an example, (‘aboyer’, suj, ‘chien’)

is a possible context relation, with ‘aboyer’ (“to bark”) as the primary lexical term

that governs the secondary lexical term ‘chien’ (“dog”). To represent a context re-

lation for the inverted direction of that dependency, we would use (‘aboyer’, suj′,

‘chien’).

After context relations are extracted from an automatically parsed text corpus,

each primary lexical term w can be represented as a frequency vector vw ∈ Rd, where

d is the number of unique contexts appearing in the corpus, and vwi = freq(w, r, w′),

where i corresponds to the context ci = (r, w′). From this point forward, we exclu-

sively use the notation c for a context as we no longer need to refer separately to

the relation r and secondary lexical term w′.

Weight and Measure Functions

Term similarity metrics are used to calculate similarities between pairs of primary

lexical terms w1 and w2 using frequency vectors vw1 and vw2 . Curran (2004) breaks

term similarity metrics down into two components: a weight function transforms

the raw frequency of each context relation by determining the informativeness of

the context, while a measure function subsequently calculates the similarity between

two weighted frequency vectors.

The formulas for the weight and measure functions used in our experiments are

listed in Tables 4.2 and 4.3. The symbol ∗ as an argument to a function is shorthand

for taking the sum of the function over all possible values for that argument; a pair

of subscripted asterisks in the scope of a sum indicates that the variables are bound

together, so
∑
wgt(w1, ∗c)× wgt(w2, ∗c) is a sum over all c that are in the set of

contexts for both w1 and w2. Also, p denotes the probability of a context relation,

where p(w, c) is estimated as f(w, c)/f(∗, ∗, ∗). Finally, wgt denotes the application

of some fixed weight function to a context relation count.

The weight functions we consider for a context relation (w, c) are as follows.

First is relative frequency (relfreq), which simply normalizes the frequency of

(w, c) with respect to the frequency of its primary lexical term w. Next is the t-

test (ttest), which computes the difference between observed and expected means

of w and c, scaled by the variance of the data; the expected means are computed

under the null hypothesis of independence, with a higher t-value leading us toward

a rejection of the null hypothesis. Finally is pointwise mutual information (pmi),

which is a widely used information theoretic metric comparing two variables, in this

case w and c.

122

4.1 Distributional Lexical Semantics and Classes

relfreq f(w,c)
f(w,∗)

ttest p(w,cc)−p(∗,c)p(w,∗)√
p(w,c)/f(∗,∗)

pmi log
(

p(w,c)
p(∗,c)p(w,∗)

)
Table 4.2: Weight functions for finding
context informativeness.

cosine
∑
wgt(w1,∗c)×wgt(w2,∗c)√∑
wgt(w1,∗)2×

∑
wgt(w2,∗)2

jaccard
∑
min(wgt(w1,∗c),wgt(w2,∗c))∑
max(wgt(w1,∗c),wgt(w2,∗c))

lin
∑
wgt(w1,∗c)+wgt(w2,∗c)∑
wgt(w1,∗)+

∑
wgt(w2,∗)

Table 4.3: Measure functions for calculating
distributional similarity.

The measure functions we consider for a pair of primary lexical terms w1 and

w2 and their respective weighted vectors vw1 and vw2 , are as follows. First is cosine

similarity (cosine), which calculates the cosine of the angle between vw1 and vw2 .

Next is the Jaccard measure (jaccard), which compares the number of common

contexts to the number of unique contexts between w1 and w2. Finally is the measure

that Lin (1998) uses (lin), which is an information theoretic measure to determine

the similarity between w1 and w2.

We note that in the work of Curran (2004) many other weight and measure

functions were considered. Although we could have tested a wide range of weight

and measure functions in our experiments, the intrinsic evaluation of distributional

thesauri is not the primary subject of our research. We thus decided instead to use

the conclusions of Curran (2004) and restrict our evaluation to a combination of

basic measures and measures that they found to be high-performing.

4.1.3 Lexical Class Spaces

We now turn to a discussion of the three lexical class spaces that we have chosen

to explore, with the goal of finding appropriate high level classes in which to group

word forms so as to reduce lexical data sparseness in features for parsing. These

class spaces are those of lemmas, clusters, and semantic senses.

A primary concern regarding the definition of generalized lexical classes for the

spaces of lemmas and semantic senses is that a word form can be associated with

a list of lexical classes in that space, each with an associated relevance or similar-

ity score. There are thus two ways to map word forms to a particular generalized

space: the single assignation strategy, which is the standard approach used in the

123

4. Parsing with Generalized Lexical Classes

literature, maps the word form to the single highest scoring lexical class; and the

multiple assignation strategy, which we will test in our experiments, maps the word

form to the top-k scoring lexical classes. Note that it would be possible to use con-

textual WSD to dynamically alter the lexical scores for a word form in a particular

sentence depending on the surrounding sentential context. Although a contextual

WSD approach to scoring lexical classes may be preferable, we leave this for future

work; in the experiments presented in this chapter, lexical class scores are calculated

once over a large corpus and then stored in a fixed resource.

The use of a multiple assignation strategy for integrating generalized lexical

classes into parsing models can be achieved by having multiple indicator features

fire for a single categorical feature template during parsing. Consider the feature

template lemβ[0] for transition-based parsing in Chapter 2. If we choose to use the

space of semantic senses, then this template would become senseβ[0]. Our definition

of categorical features normally dictates that a single indicator feature pertaining

to this template would fire in any given configuration, but we can allow for multiple

such features to fire, for instance having both indicator features senseβ[0]=‘avocado’

and senseβ[0]=‘lawyer’ fire for the French word form ‘avocat’.

Though it is not immediately clear whether multiple assignation is preferable

to single assignation for parsing, we note that data sparseness is reduced at least as

much with multiple assignation as it is with single assignation, and most likely even

more. On the other hand, having more features fire may lead to slower learning and

prediction times. We will return to these and other questions concerning the pros

and cons of single assignation and multiple assignation strategies in the experiments

section of this chapter.

Given the fact that we allow for the multiple assignation strategy to be em-

ployed in our spaces, it turns out that the construction of a lexical resource for each

will rely on the use of a distributional thesaurus in some capacity. We thus term

them distributional lexical class spaces for word forms.

Lemmas with Distributionally Similar Neighbors

In the space of lemmas, the single assignation strategy can be thought of as the

simple, widely used baseline of replacing a word form with its lemma. In fact,

we have already used this approach throughout our experiments in the preceding

chapters as a first step toward reducing lexical data sparseness, as we first discussed

in our benchmarking experiment for French in Section 2.1.2. It is thus the multiple

assignation strategy that we are interested in for the lemma space in this chapter.

The approach we use to map a word form to multiple lemmas in the lemma

space is as follows. We first identify the actual predicted lemma associated with

124

4.1 Distributional Lexical Semantics and Classes

a word form using a simple deterministic non-contextual lemmatization algorithm,

which uses the Lefff resource as its morphological lexicon. Given this predicted

lemma, we query a distributional thesaurus for the k-most similar neighboring lem-

mas, including the original lemma, with the cutoff k left as a tunable parameter. The

goal is to balance between including more neighbors so as to reduce data sparseness,

and limiting the amount of noisy or irrelevant lemmas included in the mapping.

This process gives us a set of lemmas with which to replace the original word form.

In more formal notation, suppose we have a word form w with corresponding

predicted lemma l, and a distributional thesaurus over lemmas that can be repre-

sented as a similarity function D(l1, l2), where l1, l2 ∈ V and V is the vocabulary of

lemmas. We define the set of k-most similar lemmas to be Nk(l), with the restrictions

that Nk(l) ⊆ V and l ∈ Nk(l).

Clusters with Hierarchical Agglomerative Clustering

We now describe the space of clusters, whose generalized lexical classes are defined

by clustered groupings of distributionally similar lemmas. The literature for clus-

tering approaches in computer science is extensive, and these approaches can be

roughly divided into those that produce hard clustering, where each original item

is a member of a single cluster, or soft clustering, where an original item can be

a member of multiple clusters. In our experiments we ended up exclusively test-

ing hard clustering, which has been well-studied for different NLP applications and

particularly for parsing (Koo et al., 2008; Candito and Crabbé, 2009; Sagae and

Gordon, 2009), meaning that for the cluster space we use only the single assignation

strategy. It would have been interesting to study soft clustering as well, especially

since it would have fit naturally with the multiple assignation strategy; we leave this

for future work.

The particular clustering algorithm we choose to use is that of Hierarchical Ag-

glomerative Clustering (HAC). Our following description of this algorithm is based

on that appearing in a textbook by Hastie et al. (2008). A first way to view this

algorithm is as one in a family of hierarchical clustering methods, which produce

complete hierarchical representations: at the lowest level each cluster contains a

single item, while at the highest level there is only one cluster containing all the

data. A hierarchical clustering of a data set can be obtained using methods that are

agglomerative, meaning bottom-up, or divisive, meaning top-down. In the agglom-

erative strategy we employ, the algorithm starts at the bottom and at each level

recursively merges a selected pair of clusters into a single cluster, which produces

the grouping at the next higher level with one less cluster. Note that there are then

as many levels as there are items from the data set.

125

4. Parsing with Generalized Lexical Classes

The most important decision to make for HAC clustering involves the criteria

for merging clusters at each level. A major requirement for this approach is that

an item similarity measure s(i, j) exists between pairs of items i, j in the original

data set. The natural agglomerative strategy is then to merge the two clusters at

the current level with the largest similarity. The cluster similarity measure S(A,B)

between pairs of clusters A,B is defined in one of three standard ways:

1. Single linkage, which takes the cluster similarity to be that of the most similar

pair of constituent items:

SSL(A,B) = max
i∈A,j∈B

s(i, j) (4.1)

2. Complete linkage, which takes the cluster similarity to be that of the least

similar pair of constituent items:

SCL(A,B) = min
i∈A,j∈B

s(i, j) (4.2)

3. Average linkage, which takes the cluster similarity to be the average over that

of every pair of constituent items:

SAL(A,B) =
1

|A| · |B|
∑
i∈A

∑
j∈B

s(i, j) (4.3)

When comparing these three cluster similarity measures, one can view single

linkage and complete linkage as lying at opposite extremes; single linkage tends to

result in clusters with items that are linked by a series of close intermediate items but

with potentially low intra-cluster similarity, while complete linkage tends to result

in compact clusters with higher intra-cluster similarity but items that may be closer

to members of other clusters than they are to some members of their own cluster.

Average linkage represents a compromise between the two extremes, attempting to

produce relatively compact clusters that are relatively far apart from each other.

We choose to use average linkage clustering in our work.

A final aspect of HAC clustering is that, while a full hierarchy is generated

during the clustering process, the ideal level of clustering needs to be identified.

if there are n original items, then the number of output clusters can be anywhere

between 1 and n. We introduce a parameter z to the HAC clustering process, where

z is in [0, 1] and is defined as the proportion of output clusters with respect to

the number of original items, meaning that there will be zn unique clusters in the

output.

126

4.1 Distributional Lexical Semantics and Classes

From this general description of HAC clustering, it is clear that for our particu-

lar application we use lemmas as the items to cluster and the distributional thesaurus

provides the necessary item similarity metric. As for the parameter z, this is tested

at different values during our experimental parameter tuning in Section 4.2.

WordNet Senses with Automatic Sense Ranking

We now describe the space of semantic senses, with multiple possible senses for a

given word form ranked using the technique of automatic sense ranking. We will first

provide a description of WordNet and the sense hierarchy used by that resource, and

then describe the sense ranking procedure, which uses a distributional thesaurus, and

allows us to define a space of semantic senses with a multiple assignation strategy

for word form replacement.

The Princeton WordNet (PWN) is a manually built resource containing a

sense hierarchy for English built through an extensive effort in the 1990’s (Fellbaum,

1998). It constitutes a major resource in the field of NLP, having been used in a wide

range of applications including word-sense disambiguation, information extraction,

machine translation, document classification and text summarization, among others.

In summary, the PWN is a broad coverage lexical network of English words. Nouns,

verbs, adjectives, and adverbs are each organized into networks of synonym sets

(synsets), which represent underlying lexical concepts and are interlinked through a

variety of relations. An useful characteristic is that a word with multiple meanings

can appear in a different synset for each of its senses. Although our interest in the

resource is mostly limited to synsets, a major aspect of the PWN is its hyponymy

hierarchy for senses, with relations indicating that a subsumed sense is an instance

of a higher sense (e.g. a ‘car’ is a type of ‘vehicle’). Although we do not use this

hierarchy directly, it will come into play shortly when we require a measure for

determining the similarity between two senses.

Given the relevance and usefulness of the PWN for a variety of applications

in NLP, there has been great interest in building comparable resources for other

languages. The EuroWordNet project (Vossen, 1998) in the late 1990s ported the

existing sense hierarchy from English to other languages, under the assumption that

the fundamental sense hierarchy would not be too different for those languages. This

made the task of constructing the WordNet resource easier, as the remaining work

would just be to assign words in a different language to the appropriate sense. In

our work, we use the French EuroWordNet (FREWN) portion of the EuroWordNet.

In an analysis of the coverage of the FREWN with respect to the PWN (Sagot and

Fǐser, 2008), after normalizing the synsets to PWN version 2.0, the FREWN was

noted as containing 22,121 non-empty synsets and for nouns and verbs, compared to

127

4. Parsing with Generalized Lexical Classes

93,197 synsets for nouns and verbs in the original PWN. It is important to keep in

mind, therefore, that the FREWN has a rather sparsely populated sense hierarchy,

which might make it a less effective resource for French than the PWN has proven

to be for English. Another WordNet-style resource that exists for French is the

WOLF (Sagot and Fǐser, 2008), which was built semi-automatically; in preliminary

experiments we found it to be less useful for parsing than the manually validated

FREWN, so we do not include it in our experimental section.

For a particular language with a corresponding WordNet resource, we can take

a word form x, or more precisely its lemma form, and query the WordNet resource

to obtain a set Sx of senses for the word form. The purpose of Automatic Sense

Ranking (ASR) is to rank the prevalence of each such sense with respect to the word

form, using a distributional thesaurus to carry out this task. We are interested in

ASR because it provides a natural way of identifying a highest-ranked sense for

the purposes of single assignation replacement, which is an approach that has been

previously used by Agirre et al. (2011) for English parsing. In addition, for the

multiple assignation strategy it may be useful to restrict the number of replacement

senses to the k-most prevalent ones, in order to discard infrequent senses that would

introduce noise into the feature vectors for parser model learning.

The approach we use for ASR follows that of McCarthy et al. (2004). Rep-

resenting the distributional thesaurus as a similarity function D(x, y) over lemmas,

letting Nx(k) be the set of k-nearest neighbors for x in the thesaurus, and letting

W (s1, s2) be a similarity function over a pair of synsets in WordNet, we define a

prevalence metric Rx(s) as follows:

Rx(s) =
∑

y∈Nx(k)

D(x, y)

max
s′ ∈ Sy

W (s, s′)∑
t∈Sx

max
s′ ∈ Sy

W (t, s′)
(4.4)

This metric essentially weights the semantic contribution of each distribution-

ally similar neighbor y ∈ Nx(k) toward a given sense s of x. For each neighbor

y ∈ Nx(k), its contribution is calculated as follows: (i) the similarity between s

and the sense s′ of y that is most similar to s is computed; (ii) that similarity is

normalized by corresponding similarities between all senses t of x and the senses of

y that are most similar to each such t; and (iii) the resulting normalized score is

further weighted according to the distributional similarity D(x, y) between x and

the current neighbor y.

The definition of a similarity function over a pair of synsets has been studied in

the WordNet literature, with a number of approaches being identified; the function

can use the path along the sense hierarchy linking the two synsets, or even measure

128

4.2 Lexical Class Experiments

the lexical overlap in the glosses of the synsets. The particular synset similarity

function we use is that of Jiang and Conrath (1997), which is the one used in the

original work of McCarthy et al. (2004). It defines a distance measure between

two synsets as a function of their information content, as well as the information

content of their most informative (or most specific) superordinate synset in the sense

hierarchy. In order to calculate the information content of a synset, outside textual

corpus data is required to populate synsets in the WordNet hierarchy with frequency

counts; these counts allow for the probability of a synset p(s) to be estimated, from

which the information content is calculated as IC(s) = −log(p(s)).

4.2 Lexical Class Experiments

In this section we describe two sets of experiments related to generalized lexical

classes. The first set of experiments evaluates our distributional methods intrin-

sically, independently of their application to parsing, in order to ascertain which

combination of weight and measure functions for similarity are preferable. This is

achieved by comparing different generated distributional thesauri against FREWN

synsets, which we use as a gold standard. The second set of experiments then uses

the preferred distributional thesaurus to generate resources for our three distribu-

tional lexical class spaces, and evaluates the efficacy of modifying lexical features

with these resources in dependency parsing and correction systems (as presented in

Chapters 2 and 3) for both in-domain and out-of-domain parsing.

4.2.1 Methods and Setup

We now present the setup of our distributional thesaurus and generalized lexical

class experiments. For all methodological details concerning parsing with arc-

eager and neighborhood correction, see our previous descriptions in Section 2.3

and Section 3.3, respectively. As was the case for our previous experiments, we

used our own Python implementation of the algorithms and methods from this

chapter; we reiterate that we plan to release a package of the code used in this

thesis following its publication. Our methodology for experiments in lexical gener-

alization involves the following elements: constructing distributional thesauri from

an automatically-parsed external corpus; preprocessing the FREWN for use in our

experiments; intrinsically evaluating of our thesauri against the FREWN gold stan-

dard; constructing resources for our three distributional lexical class spaces from a

distributional thesaurus; modifying feature vectors using the single assignation and

multiple assignation strategies during parsing and correction; and finally modifying

129

4. Parsing with Generalized Lexical Classes

· One-Edge Context: –obj→N|‘avocat’

· One-Edge Context: –obj→N
(unlexicalized)

· One-Edge Context: –obj′→V|‘aimer’
(inverted)

· Two-Edge Context: –mod→P|‘avec’ –obj→N|‘avocat’

Figure 4.1: Example dependency contexts for the verb lemma ‘manger’. The first couple
of one-edge contexts correspond to the sentence “Jean mange un avocat” (“Jean eats an
avocado”), the inverted one-edge context corresponds to the sentence “Jean aime manger”
(“Jean loves to eat”), and the two-edge context corresponds to the sentence “Jean mange avec
un avocat” (“Jean eats with a lawyer”).

the in-domain lexical generalization experiments for domain adaption in the medical

domain.

Construction of Distributional Thesauri

Our distributional thesauri were, by design, restricted to the two main largest open-

class POS categories: nouns and verbs. Within a thesaurus, an additional restriction

we imposed was that each lexical term would only have neighbors of the same POS

category. It should be noted that the remaining open class POS categories, adjectives

and adverbs, are potentially interesting POS categories to include; however, from

early testing we observed that generalized lexical classes over adjectives and adverbs

were not very useful for parsing.

The external French text corpora we considered as the basis for generating

our distributional thesauri were the same as those used in Chapter 3 for self-trained

two-stage parsing experiments. Of the two sets in the journalistic domain used in

those experiments, we used here only the AFP corpus. We found in the earlier self-

training experiments that the AFP corpus appeared to be closer and more relevant

to the FTBDep than the ER corpus, with better self-training results when using

AFP compared to ER. As before, the corpus was preprocessed using the Bonsai

tool, which performed sentence segmentation, word tokenization, and additionally,

consistent with our automatic annotation of the FTBDep in Section 2.3, performed

automatic POS tagging with the MElt package and lemmatization with the Lefff

lexicon.

We now turn to details concerning the generation of distributional thesauri

130

4.2 Lexical Class Experiments

from the preprocessed external corpora. First, syntactic contexts for each lemma

were extracted from the corpus. As a general policy, we used all syntactic dependen-

cies in which the secondary lemma had an open-class POS tag, with labels included

in the contexts and two-edge dependencies used in the case of prepositional-phrase

attachment and coordination. For verb lemmas, we decided to further limited con-

texts to those dependencies in which the verb was governor, and we also added

unlexicalized versions of contexts to account for subcategorization. Example con-

texts are shown in Figure 4.1. After gathering the context relations (primary term

and context), we filtered out those for which either the primary term or the context

did not appear in at least 500 context relations. This resulted in a vocabulary size

for our thesauri of 6,682 noun lemmas and 2,355 verb lemmas.

Each pair of primary term lemma w and context c was subsequently weighted

for relevance or informativeness using one of three weight functions, and the dis-

tributional similarity between pairs of primary term lemmas w1, w2 was calculated

using one of three similarity measure functions. This resulted in nine different the-

saurus settings to be tested in our preliminary intrinsic evaluation, with the best

one to be used later in the creation of lexical class resources.

Preprocessing the FREWN

An important step in our experimental setup was to convert the FREWN from its

original version 1.5 to the PWN version 3.0, as most available tools for working with

WordNet resources require the version 3.0 sense hierarchy.

In order to achieve this, we found a WordNet synset mapping tool1 capable

of performing this conversion. After discarding a small number of synsets from the

FREWN that were not covered by the mapping, we were able to retain entries for

9,833 noun lemmas and 2,220 verb lemmas. Subsequent references to the FREWN

will refer to this converted version with the PWN version 3.0 sense hierarchy.

Intrinsic Evaluation of Thesauri

In our intrinsic evaluation of distributional thesauri, we followed the idea of Lin

(1998) in comparing each of our automatically constructed thesauri against a gold-

standard WordNet resource. Since we are working with French, we used the FREWN

as our gold standard reference. This initial evaluation was actually performed in an

earlier experiment that we conducted for French (Henestroza Anguiano and Denis,

2011), though in that experiment the ER corpus was used instead of the AFP corpus

to create the distributional thesauri.

1http://nlp.lsi.upc.edu/tools/download-map.php

131

http://nlp.lsi.upc.edu/tools/download-map.php

4. Parsing with Generalized Lexical Classes

Top Noun Measures Top Verb Measures

Setting INVR Setting INVR

pmi, cosine 0.281 pmi, cosine 0.334
ttest, cosine 0.266 ttest, cosine 0.332
ttest, jaccard 0.260 ttest, jaccard 0.330
pmi, jaccard 0.259 pmi, jaccard 0.312
.

Table 4.4: Average INVR evaluation scores for the top distributional thesauri by POS
category. Each setting consists of a particular weight function (out of relfreq, ttest, or
pmi) and measure function (out of cosine, jaccard, or lin).

For our evaluation metric, that experiment used average inverse rank (INVR),

a standard information retrieval metric. For each term w, we considered all terms

appearing in a synset with w in the WordNet reference to be relevant, while other

terms were considered irrelevant. In the distributional thesaurus to be evaluated,

the entry for w was thus taken as a ranked list of query results (neighbor terms

ranked by descending similarity). The INVR metric returned the sum, over relevant

neighboring terms, of the inverse of that term’s rank in the list. The average INVR

was taken over all terms to be evaluated, providing an evaluation metric for the

quality of a distributional thesaurus.

All nine possible combinations of weight and measure functions were evaluated

for distributional thesauri over both nouns and verbs, and the results are reported

in Table 4.4. A first clear observation is that the relfreq weight function and the

lin measure function do not perform very well, with results lower than those for

the top performing settings appearing in the table. Of the top performing settings,

we found that a combination of the pmi weight function and the cosine measure

function produced the highest quality thesaurus with respect to the FREWN refer-

ence. Consequently, we exclusively used this thesaurus setting for the remainder of

the experiments presented in this chapter.

It is important to note that high performance for a particular setting in this

intrinsic evaluation does not necessarily translate to high performance when using

a thesaurus for lexical generalization during parsing. On the other hand, consid-

ering all nine possible thesauri for our parsing experiments was not possible given

reasonable computational time constraints, as well as all the other parameters and

settings that needed to be tuned and evaluated. Therefore, we used this intrinsic

evaluation as a method for obtaining the thesaurus setting that would give us the

best chance of applying lexical generalization effectively in our parsing models.

132

4.2 Lexical Class Experiments

Construction of Lexical Class Resources

We now discuss the creation of lexical class resources from a distributional thesaurus

for our three spaces: lemmas, clusters, and semantic senses.

For the space of lemmas, the resource was simply the distributional thesaurus

itself. For the single assignation strategy, we needed only to use the predicted lemma

for a given word form, and for the multiple assignation strategy we needed only to

identify its k-most similar neighboring lemmas according to the thesaurus.

For the space of clusters, as noted earlier we chose to use the HAC clustering

algorithm, which is suitable for creating hard clusters given pair-wise distance or

similarity measures between basic items. We used the average-linkage metric for

cluster agglomeration, and tested varying levels of clustering, with the parameter

z determining the proportion to set for cluster vocabulary size compared to the

original lemma vocabulary size. These clusters then constituted the resource for the

cluster space, which supports only the single assignation strategy and replaces each

word form with its assigned cluster identifier.

Finally, for the space of semantic senses, as noted earlier we chose to use

WordNet ASR to rank senses from the FREWN for each word form. We used

NLTK, the Natural Language Toolkit (Bird et al., 2009), to calculate similarity

between synsets. As explained earlier, our method for performing ASR follows that

of McCarthy et al. (2004). We used k=16 for the distributional k-most similar

neighboring lemmas to consider when ranking the senses for a lemma,1 and we used

the synset similarity function of Jiang and Conrath (1997), with default information

content counts from NLTK calculated over the British National Corpus2. It is

important to note that there was understandably not a complete overlap between the

vocabularies for the FREWN and our distributional thesaurus. As noted earlier, our

thesaurus contains 6,682 noun lemmas and 2,355 verb lemmas, while the FREWN

has entries for 9,833 noun lemmas and 2,220 verb lemmas. Of the FREWN lemmas,

only 4,212 nouns and 1,478 verbs also appeared in the thesaurus; for each FREWN

lemma not covered by the thesaurus, we simply allocated equal rank to all of its

senses.

Lexical Modification of Feature Vectors

The process for modifying feature vectors during dependency parsing and correction

is relatively straightforward, as noted in Section 4.1.3. When any of the three

1McCarthy et al. (2004) used k=50, though they noted that with a value as low as k=10 the results did not
change significantly. We used k=16 for convenience, since otherwise in our experiments we never looked at more
than 16 neighbors for a lemma.

2http://www.natcorp.ox.ac.uk/

133

http://www.natcorp.ox.ac.uk/

4. Parsing with Generalized Lexical Classes

distributional lexical class spaces is invoked, lexical feature templates are replaced

with new templates corresponding to the new space, if needed. For instance, the

template lemβ[0] would become senseβ[0] if we are invoking the semantic sense space.

Additionally, when using the multiple assignation strategy during learning

and prediction, each feature template is allowed to have more than one of its con-

stituent indicator features fire simultaneously. For instance, if the word form (and

lemma) ‘avocat’ has two ranked senses corresponding to ‘avocado’ and ‘lawyer’,

then the following two indicator features would fire when ‘avocat’ is encountered:

senseβ[0]=‘avocado’ and senseβ[0]=‘lawyer’.

Note that we do not incorporate the lexical class scores themselves into the

feature vectors. We actually did explore this option in a previously published work

(Henestroza Anguiano and Candito, 2012), in which we converted the lexical class

scores into a probabilistic value and assigned these as the values for lexical features,

following the generalized approach for learning with probabilistic features proposed

by Bunescu (2008). We ultimately chose not to replicate that decision in our present

experiments for two reasons: (i) it breaks the 0-1 indicator feature paradigm, which

we have used until now throughout our experiment, potentiallt affecting the model

optimization process in unknown ways; and (ii) it is unclear whether distributional

similarity scores in the lemma space or prevalence scores in the semantic sense space

should be viewed probabilistically, as they arise from metrics that have been chosen

for their ability to rank items. It would nonetheless be interesting to compare the

probabilistic approach to the one we took here; we leave this for future work.

Domain Adaptation Setup

In addition to our primary experiments on using lexical generalization to improve

parsing within a single domain, given that the FTBDep and AFP both contain text

in the journalistic domain, we required additional setup to test domain adaptation

for parsing in the biomedical domain.

As in Chapter 3, we used the EMEA development and test sets from the

Sequoia annotated corpus (Candito and Seddah, 2012a) as our reference sets. For

the experiments in this chapter, we additionally used the approach of employing a

bridge corpus, which contains text from both a source and a target domain, as in a

previous study for domain adaptation in phrase-structure French parsing (Candito

et al., 2011). The hypothesis behind this approach is that if we build lexical resources

from a large corpus containing both journalistic and biomedical text, the resulting

lexical classes will be able to bridge the lexical gap between the two domains; given

that our training data for parsing lies exclusively within the source journalistic

domain, using generalized lexical classes as features may result in better parsing

134

4.2 Lexical Class Experiments

of sentences in the target domain, which may contain word forms that appear less

frequently in the source domain but share a lexical class with one or more word

forms that do appear regularly in the source domain.

In order to build our bridge corpus, we again, as in Chapter 3, used the EMEA

unlabeled set obtained from previous work on preprocessing the EMEA corpus for

French (Candito et al., 2011). Our bridge then consisted of the approximately

4750k sentences from the AFP corpus, representing the journalistic domain, and

the approximately 265k sentences from the EMEA unlabeled set, representing the

biomedical domain. Due to the fact that the EMEA unlabeled set is much smaller

than the AFP corpus, coupled with the fact that our distributional methods require

a minimum frequency cutoff for lemmas appearing in the input corpus in order

to make the thesaurus construction process tractable, we up-weighted the EMEA

unlabeled set to be eighteen times its original size in order to match the size of the

AFP corpus. Given this bridge corpus, the methodology for constructing lexical

resources and parsing with them was the same as previously described for the in-

domain experiments.

4.2.2 Results

This section describes the results of our lexical generalization experiments, where

we used transition-based parsing and neighborhood correction as the base machine

learning approaches over which feature replacement with generalized lexical classes

is evaluated. We first present results on standard in-domain parsing when using

each of the three lexical class spaces discussed in this chapter: distributionally sim-

ilar lemmas, HAC clusters, and WordNet senses ranked with ASR. We then present

corresponding results on domain adaptation for parsing, with a bridge corpus con-

taining both journalistic and biomedical text replacing the basic journalistic corpus

as the basis for our distributional methods when constructing lexical resources. For

domain adaptation, we also used development and test sets from the biomedical

domain to evaluate whether the bridge corpus approach can improve parsing per-

formance on out-of-domain text.

In-Domain Parsing with Lexical Classes

Table 4.5 shows our results on the FTBDep development set when using the lexical

generalization feature replacement approach for parsing in-domain. Although the

differences in performance compared to the baseline were slight, we can observe

certain trends. For the lemma space, adding more k-nearest lemmas to the multiple

mapping resulted in worse performance; the best setting, which is slightly better

135

4. Parsing with Generalized Lexical Classes

Settings LAS UAS

Baseline arc-eager 86.4 89.1

Lemma Space POS=N, k=2 86.6 89.2
POS=N, k=4 86.5 89.2
POS=N, k=8 86.0 88.7
POS=V, k=2 86.5 89.1
POS=V, k=4 86.4 89.1
POS=V, k=8 85.5 88.4

Cluster Space POS=N, z=0.2 86.5 89.1
POS=N, z=0.4 86.5 89.2
POS=N, z=0.6 86.6 89.2
POS=N, z=0.8 86.7 89.3
POS=V, z=0.2 86.4 89.2
POS=V, z=0.4 86.5 89.2
POS=V, z=0.6 86.6 89.2
POS=V, z=0.8 86.5 89.2

Sense Space POS=N, k=1 86.4 89.1
POS=N, k=2 86.4 89.2
POS=N, k=4 86.4 89.1
POS=N, k=8 86.4 89.1
POS=V, k=1 86.4 89.1
POS=V, k=2 86.6 89.2
POS=V, k=4 86.3 89.0
POS=V, k=8 86.3 89.0

Table 4.5: LAS and UAS results, in percent, over the FTBDep development set when using
in-domain lexical generalization parsing approaches. Results are grouped into the baseline
system, lemma space systems with varying POS and k-nearest lemmas used, cluster space
systems with varying POS and z cluster vocabulary proportions used, and sense space systems
with varying POS and k-highest ranked senses used.

than the baseline, occured when we used k=2, meaning that we replace each lexical

feature with two corresponding to the original lemma and its nearest neighbor from

the distributional thesaurus. For the cluster space, the best value for z varied

depending on the POS category used for lexical generalization; z=0.8 worked best

for nouns, while z=0.6 worked best for verbs. Finally, for the sense space, replacing

each lemma with up to k=2 highest ASR senses worked best for both nouns and

for verbs; as was the case in the lemma space, using higher k resulted in worse

performance. Overall, we can observe that the cluster space lead to the highest

parsing improvement, though the differences in LAS and UAS were not statistically

significant.

Given these results on the development set, we took the best settings and

evaluated them on the FTBDep test set. For this final parsing evaluation, we com-

bined noun and verb lexical generalization, giving us one combined setting for each

136

4.2 Lexical Class Experiments

Settings LAS UAS

Baseline arc-eager 87.1 89.7
+correction 87.5 90.2

Lemma Space POS=N&V, kN=2, kV =2 87.4* 89.9
+correction 87.8* 90.3
+correction lexgen 87.8* 90.3

Cluster Space POS=N&V, zN=0.8, zV =0.6 87.2 89.8

Sense Space POS=N&V, kN=2, kV =2 87.2 89.9

Table 4.6: LAS and UAS results, in percent, over the FTBDep test set when using in-domain
lexical generalization parsing and correction approaches. Results are grouped into the baseline
systems, lemma space systems cluster space systems, and sense space systems. Each lexical
generalization system contains either a parser alone, a parser with a new corrector that uses
no lexical generalization (+correction), or a parser with a new corrector that uses the
same lexical generalization approach as its corresponding parser (+correction lexgen). ∗
indicates a statistically significant improvement over the baseline, with approaches without
correction compared to the baseline without correction, and those with correction compared
to the baseline with correction.

of the three lexical generalization spaces. In addition to testing these settings for

parsing, for the resulting best setting (lemma space) we re-trained new neighbor-

hood correctors optimized to correct errors made by that particular parser (cf. the

jack-knifing training procedure described in Chapter 3). The neighborhood correc-

tors were trained in two different ways: using no lexical generalization, or using the

same lexical generalization setting as the parser on whose errors it was trained. The

results for the final evaluations for lexical generalization in arc-eager parsers and

neighborhood correctors on the FTBDep test set are shown in Table 4.6.

These final results on the FTBDep test set again show only modest improve-

ments over the baseline when using lexical generalization, but some of them are

nonetheless statistically significant. The best parser using lexical generalization in

the lemma space achieved a higher LAS (87.4) with a statistically significant differ-

ence compared to the baseline arc-eager parser (87.1). For that same setting, a

newly trained neighborhood correction model with or without lexical generalization

lead to a two-stage parsing system that had a higher LAS (87.8) with a statistically

significant difference compared to the baseline two-stage parsing system (87.5). Un-

fortunately, the use of lexical generalization in the correction model did not provide

further improvement in parsing accuracy.

Domain Adaptation for Parsing with Lexical Classes

We now turn to our evaluation of domain adaptation for parsing with lexical classes,

with lexical resources constructed using a bridge corpus consisting of journalistic text

137

4. Parsing with Generalized Lexical Classes

FTBDep dev EMEA dev
Settings LAS UAS LAS UAS

Baseline arc-eager 86.4 89.1 84.2 87.0

Lemma Space POS=N, k=2 86.6 89.2 84.2 87.0
POS=N, k=4 86.5 89.2 83.9 86.7
POS=N, k=8 86.0 88.8 83.1 86.0
POS=V, k=2 86.5 89.2 83.9 86.8
POS=V, k=4 86.5 89.1 84.0 86.7
POS=V, k=8 86.0 88.8 83.3 86.1

Cluster Space POS=N, z=0.2 86.4 89.0 84.2 87.0
POS=N, z=0.4 86.5 89.2 84.2 87.0
POS=N, z=0.6 86.6 89.2 84.3 87.1
POS=N, z=0.8 86.6 89.2 84.2 86.9
POS=V, z=0.2 86.4 89.1 84.1 86.9
POS=V, z=0.4 86.3 89.1 84.1 86.8
POS=V, z=0.6 86.4 89.1 84.1 86.9
POS=V, z=0.8 86.5 89.1 83.9 86.7

Table 4.7: LAS and UAS results, in percent, over the FTBDep and EMEA development
sets when using bridge lexical generalization parsing approaches. Results are grouped into
the baseline system, lemma space systems with varying POS and k-nearest lemmas used, and
cluster space systems with varying POS and z cluster vocabulary proportions used.

from the AFP corpus and biomedical text from the EMEA unlabeled set. These

results are presented in a similar way to those for in-domain parsing, with the

exception that the WordNet sense space was not used. Because for that space the

lemma vocabulary is restricted to those lemmas appearing in the FREWN and the

synsets are fixed, we hypothesized that the two domain vocabularies would not

necessarily be bridged when using the WordNet sense space. For this experiment,

the EMEA development and test sets were used in addition to those of the FTBDep

in order to determine how well the bridge approach could improve out-of-domain

parsing.

Table 4.7 shows our results on the FTBDep and EMEA development sets

when using the lexical generalization feature replacement approach for parsing out-

of-domain. As for the in-domain evaluation, we note only modest improvements

over the baseline for some settings. For the lemma space, as before, adding more

k-nearest lemmas to the multiple mapping resulted in worse performance; the best

setting occured when we used k=2 for nouns, while no value of k for verbs lead to an

improvement on the EMEA development set. For the cluster space, as before, the

best value for z varied depending on the POS category used for lexical generalization;

z=0.6 worked best for nouns, while no value of z for verbs lead to an improvement

on the EMEA development set.

Given these results on the development set, we again took the best settings

138

4.2 Lexical Class Experiments

FTBDep test EMEA test
Settings LAS UAS LAS UAS

Baseline arc-eager 87.1 89.7 85.9 88.1
+correction 87.5 90.2 86.0 88.3

Lemma Space POS=N, k=2 87.2 89.8 86.1 88.2
+correction 87.7 90.3 86.4* 88.5
+correction lexgen 87.5 90.2 85.8 87.9

Cluster Space POS=N, z=0.6 87.2 89.9 85.8 87.9

Table 4.8: LAS and UAS results, in percent, over the FTBDep and EMEA test sets when
using bridge lexical generalization parsing and correction approaches. Results are grouped into
the baseline systems, lemma space systems cluster space systems, and sense space systems.
Each lexical generalization system contains either a parser alone, a parser with a new corrector
that uses no lexical generalization (+correction), or a parser with a new corrector that uses
the same lexical generalization approach as its corresponding parser (+correction lexgen).
∗ indicates a statistically significant improvement over the baseline, with approaches without
correction compared to the baseline without correction, and those with correction compared
to the baseline with correction.

and evaluated them on the FTBDep and EMEA test sets. For this final evaluation

we only used noun lexical generalization, since the results on the development set

indicated that verb lexical generalization was not helpful for bridging domains. We

thus used one optimal setting for each of the two lexical generalization spaces tested.

In addition to testing these settings for parsing, for the resulting best setting (lemma

space) we again re-trained new neighborhood correctors optimized to correct errors

made by that particular parser. The neighborhood correctors were trained in two

different ways: using no lexical generalization, or using the same lexical generaliza-

tion setting as the parser on whose errors it was trained. The results of these final

evaluations for bridge lexical generalization in arc-eager parsers and neighbor-

hood correctors on the FTBDep and EMEA test sets are shown in Table 4.8.

The final results on the FTBDep and EMEA test sets again show only modest

improvement over the baseline when using lexical generalization, but the improve-

ment is actually statistically significant when comparing two-stage parsing systems

on the EMEA test set. Specifically, the lemma space two-stage parser, with the new

corrector not trained with lexical generalization, obtained a higher LAS (86.4) with

a statistically significant difference compared to the baseline two-stage parser (86.0).

Additionally, this setting had a slightly though not significantly higher LAS (87.7)

compared to the baseline two-stage parser (87.5) when evaluating on the FTBDep

test set. These results modestly support the hypothesis that a bridge approach for

lexical generalization can improve both in-domain and out-of-domain dependency

parsing, which would be a nice finding: domain adaptation techniques typically

degrade results for in-domain parsing, as was the case in our earlier self-training

139

4. Parsing with Generalized Lexical Classes

experiment (cf. Section 3.3.2). Once again, as with the in-domain lexical gener-

alization experiment, training the neighborhood corrector with generalized lexical

classes did not help. The bridge lexical generalization ended up introducing more

errors than were corrected, which is a surprising result; we aren’t sure why lexical

generalization was counter-productive in this case.

Evaluation Summary

Taking our evaluation results as a whole, we can report that both our in-domain

experiments using a journalistic corpus and our domain adaptation experiments

using a bridge corpus produced lexical generalization models capable of parsing and

correction both in-domain and out-of-domain data slightly better than the baseline

one-stage and two-stage parsing systems. In each of these cases, the best lexical

generalization approach was the one that perhaps least altered the lexical space: it

remained in the lemma space, and used multiple assignation to expand each lexical

feature into two new ones corresponding to the original lemma and an additional

highly similar one.

Although these results are heartening, the parsing improvements we obtain are

nonetheless very modest, which calls into question the usefulness of introducing an

additional layer of processing to the parsing and correcting models for relatively little

gain. Additionally, one of the goals of this work was to finally replicate for French the

substantial parsing improvements from clustering obtained by Koo et al. (2008) for

English, but we were unfortunately not able to show a significant improvement from

clustering. Likewise, we were not able to replicate for French the significant parsing

improvements obtained for English by Agirre et al. (2008), in their setting that

replaced word forms with the most prevalent WordNet sense obtained using ASR.

For the WordNet approach, we note that the quality and coverage of the EWNFR

are understandably much lower than those of the PWN, which may have reduced

the effectiveness of using senses as lexical classes for French. It is interesting to note

that, to our knowledge, no work has successfully used generalized lexical classes to

significantly improve dependency parsing for a language other than English.

140

Chapter 5

Parsing with PP-Attachment Preferences

A likely impossibility is always preferable to an unconvincing possibility.

— Aristotle

141

5. Parsing with PP-Attachment Preferences

In this final chapter, we close the second main thread of our thesis previously

introduced in Chapter 4, which involves the use of automatically-built lexical re-

sources to improve dependency parsing, with the parsing and correction algorithms

from previous chapters serving as a backbone. While Chapter 4 investigated differ-

ent types of distributional lexical classes that can be used in place of word forms to

provide a level of generalization for features during parsing and correction, here we

borrow from methods in distributional lexical semantics to model lexical preference

for prepositional phrase (PP-) attachment to learn semi-supervised correction mod-

els. We focus on PP-attachment because it is an attachment type that is known to

be difficult to disambiguate syntactically, and that we have previously identified as

contributing to a large portion of parsing errors.

In Section 5.1, we start by motivating our investigation of lexical preference for

the problem of PP-attachment and discussing the ways in which lexical preference

has been used in the literature for parsing and other NLP applications. We then

present an overview of the types of lexical preference we consider for PP-attachment,

distinguishing between different levels of lexical specificity in the dependent PP; we

consider a less-specified level in line with the notion of subcategorization, with the

object of the PP generalized to a POS class, and a more specified level with the

lemma included for the object of the PP. We then turn to a discussion of the two

statistical metrics we use for obtaining preference scores from a large automatically-

parsed corpus: (i) a traditionally-used pointwise mutual information metric; and

(ii) a novel neighborhood-based relative frequency metric that uses information con-

cerning the neighborhoods of candidate governors for dependents within a predicted

parse tree.

In Section 5.2 we then present neighborhood correction experiments for French

in which we test the addition of preference features for PP-attachment. This includes

an evaluation of the two preference types, subcategorization and lexical assocation

preference, as well as the two distributional metrics for obtaining preference scores,

pointwise mutual information and neighborhood relative frequency. As was the case

for our experiments in Chapter 4, the parsing approaches used as the basis for our

experiments are those we previously investigated in Chapters 2 and 3.

5.1 Methods for Lexical Preference

Recalling some essential syntactic notions and ideas we first introduced in Chap-

ter 1, there is an important relationship to consider between, on one hand, syntactic

and semantic requirements in a language, and on the other hand, ambiguity in ac-

ceptable interpretations for sentences in that language. Suppose we were presented

142

5.1 Methods for Lexical Preference

with a sequence of French POS categories as follows: DET N1 V DET N2 P DET

N3. In determining which governor should be assigned to P, we can clearly rule

out N1 due to syntactic constraints; however, both V and N2 remain syntactically

correct governors given this information. While more syntactic information could

help (e.g. subcategorization information for V), there are many examples in which

artificial syntactic ambiguities would persist and the correct governor could only be

determined using semantics. One need only look at the syntax of modifiers, or non-

subcategorized dependents that are constrained very little by their governor and

whose attachment is determined by semantic criteria. Consider the French modi-

fiers “à l’orange” and “à midi” in the sentence “Paul a mangé un canard à l’orange

à midi” (“Paul ate a duck à l’orange at noon”): semantics is what allows us to

determine that the duck is à l’orange and the eating took place at noon.

The resolution of this artificial syntactic ambiguity (cf. Section 1.2.3), is a

primary difficulty to overcome in the task of syntactic parsing, where one typically

needs to identify a single ‘best’ syntactic interpretation for a sentence. Approaches

for syntactic parsing need to be able to model, directly or indirectly, the semantic

requirements and preferences of a language to correctly parse linguistic construc-

tions that would be ambiguous if semantics were not considered. While statistical

approaches for parsing are used precisely because of their potential ability to au-

tomatically model requirements observed in a training corpus, data sparseness due

to the small size of manually-annotated treebanks is a large impediment. And it

is worse for semantic requirements than for syntactic ones, as the former are more

dependent on lexical information.

While the lexical generalization approaches we presented in Chapter 4 were

aimed at reducing data sparseness in parsing, a downside is that generalizing lex-

emes might actually worsen the modeling of lexically-based semantic requirements.

Our goal here is quite different, as we are not seeking to reduce data sparseness in

a training corpus but rather to improve the modeling of lexicalized syntactic and

semantic requirements and preferences in a parsing model, using lexical preference

information calculated statistically over a large automatically-parsed corpus. We

focus our investigation on the problem of PP-attachment, and our reasons for con-

sidering only PP-attachment are as follows: (i) it is a prototypical attachment type

that causes high levels of artificial syntactic ambiguity; (ii) it accounts for a large

number of parsing errors; and (iii) a PP can be either argument or modifier, allowing

us to investigate lexical preference models that cover at the same time both syn-

tactic and semantic requirements, which for instance would not be true of nominal

objects. It is interesting to note that when discussing the validation of syntactic

parses in the FTB, Abeillé et al. (2003) identify PP-attachment as the source of

143

5. Parsing with PP-Attachment Preferences

many difficult annotation cases in which a thorough semantic understanding of the

sentence was needed to resolve ambiguity.

In Section 5.1.1 we provide an overview of related work on the use of lexical

preference to improve parsing. We subsequently present in Section 5.1.2 the two

types of lexical preference we consider for improving parsing, each with a different

amount of lexical specificity in the dependent PP position, and we explain why

they are relevant to disambiguating PP-attachment. Finally, in Section 5.1.3 we

discuss the statistical metrics we use to calculate preference scores: pointwise mutual

information (PMI) and neighborhood relative frequency (NRF).

5.1.1 Related Work

Lexical preference is an area that has been studied extensively in NLP, and it is

often tied closely to lexical generalization. The techniques for obtaining measures of

lexical preference are often related to distributional techniques for building lexical

classes through lexical generalization; research tends to focus on statistical metrics

of association derived from frequencies of lexical terms in relation to one another in

large text corpora. A common area of application for studies on lexical preference

is PP-attachment, which as we noted in Section 3.1.1 is typically evaluated as an

isolated classification problem outside of an actual parser; we will note which related

works evaluated their approaches within a parser.

Semantic Classes and Selectional Preference

It should be noted that a similar area of research is that of identifying what is

traditionally termed selectional preference, or relations between words according to

semantic class, with an application focus on improving word sense disambiguation.

This area has been studied extensively, with an important early work being that of

Resnik (1992). who first proposed a generalization of lexical association techniques

for the statistical discovery of facts involving word classes rather than individual

words. Most subsequent work in this line of research has focused on determining

selectional preference using some combination of semantic resources for English like

SemCor (Miller et al., 1993) and WordNet. To mention just a few works: A study by

Agirre and Martinez (2001) places verbs and their arguments into semantic classes

based on shared positions; McCarthy and Carroll (2003) investigate the unsuper-

vised acquisition of selectional preference; Gamallo et al. (2005) use an unsupervised

strategy to cluster syntactic positions based on shared semantic requirements and

evaluates it on a stand-alone PP-attachment problem; Erk (2007) proposes a simple

model for the automatic induction of selectional preferences using corpus-based se-

144

5.1 Methods for Lexical Preference

mantic similarity metrics and focusing on the task of semantic role labeling; Bergsma

et al. (2008) use a discriminative method for learning selectional preferences from un-

labeled text, with positive examples taken from observed predicate-argument pairs

and negatives constructed from unobserved combinations; and even more recently,

both Ó Séaghdha (2010) and Ritter et al. (2010) explore the use of Latent Dirichlet

Allocation to induce topic models for selectional preference.

Our own research goals are slightly different, however, as we try to model

direct relations between governors and dependents using only POS categories and

lemmas; we try to use a large amount of textual data so as to implicitly capture

semantic relations, bypassing the need for the identification of semantic classes in

different syntactic positions.

Semi-Supervised Lexical Approaches

The line of research most relevant to ours uses semi-supervised approaches over

large syntactically-parsed corpora to model direct lexical relationships. In one of the

earliest works of this kind, Briscoe and Carroll (1997) developed a system capable of

distinguishing a large number of verbal subcategorization classes, returning relative

frequencies for each frame found for each verb. Their approach used a shallow

statistical parser over a large corpus, followed by a subcategorization class classifier

and the estimation of the probability of membership of these classes.

In a follow up work, Carroll et al. (1998) incorporated subcategorization in-

formation obtained using that method into a statistical LR parser for English. In

their approach, first the parser proposed a number of syntactic derivations of a sen-

tence, each with a corresponding probability. Then within each derivation, each

verb instance and observed subcategorization was identified, and a new ‘score’ for

the derivation was obtained by taking the product of the probability of the deriva-

tion and the verb subcategorization probabilities according to the built subcate-

gorization resource. This effectively made subcategorization information part of a

post-processing step for disambiguating complete parses, and the authors obtained

a significant improvement in precision for verb-argument relations.

Subsequent works have followed in a similar path, with approaches focused

more on using lexical preference scores as features within a classification setting.

Van Noord (2007) reported parsing improvements for Dutch when using features

based on PMI, extracted from a large automatically-parsed external text corpus, and

incorporated into a maximum entropy classifier that disambiguated Dutch parses in

the HPSG phrase-structure format. They used one feature z(tag, label) for each

(tag, label) pair, with tag being the POS category of a governor, and label be-

ing a dependency label. For a given candidate dependency parse, the value of a

145

5. Parsing with PP-Attachment Preferences

z(tag, label) feature was the sum of the PMI values for pairs of words that appeared

in a dependency matching the (tag, label) constraint.

In another recent study, Zhou et al. (2011) explored the benefits of using

web-derived bi-lexical statistics for English dependency parsing. Using frequencies

provided by Google hits and Google n-grams, they derived PMI scores for pairs of

lexical items and triples of lexical items; for a preposition, the additional lexical

items were its object and its governor. They then used these scores as features in

a dependency parser implementing a second-order graph based parser (McDonald

et al., 2005), and obtained improvements in LAS and UAS performance on the Penn

Treebank test sections as well as on out-of-domain text.

Finally, the work that is most similar to ours is that of Mirroshandel et al.

(2012), who worked on French dependency parsing with an efficient implementation

(Bohnet, 2010) of a second order graph based parser (McDonald et al., 2005). In

their approach, bi-lexical affinities were calculated using a metric similar to PMI

over an automatically-parsed corpus according to various lexico-syntactic config-

urations representing verb-argument pairs, coordination, and PP-attachment; for

PP-attachment, only the ‘de’ and ‘à’ prepositions were covered. A significant im-

provement in LAS and UAS on the FTBDep was achieved through a post-processing

method over an n-best list of parses, where each dependent matching a configuration

was reassigned a governor with the highest affinity from among those proposed in

the n-best list, followed by a second parsing pass to ensure consistency in the final

tree. Our work was conducted in parallel and there is some overlap, but a number of

differences exist between the two approaches: we use a linear-time transition-based

parser with neighborhood correction as opposed to a graph based parser; we consider

lexical preference exclusively for PP-attachment and test multiple levels of lexical

specification; and our preference scores are calculated using both PMI and a novel

neighborhood-based metric.

5.1.2 PP-Attachment Preference Types

In the lexical preference experiments for this chapter, we focus on the problem

of modeling PP-attachment preference. The difficulty for dependency parsers to

correctly attach prepositions to their correct governors, due to large amounts of

artificial syntactic ambiguity, can potentially be mitigated by a direct modeling of

lexical syntactic and semantic preference.

It is important to note that there needs to be a strong lexical component in

order for this type of syntactic and semantic preference modeling to succeed. For

PP-attachment, a strong lexical component is certainly present. Verb lexemes in

both English and French are known to subcategorize for indirect object dependent

146

5.1 Methods for Lexical Preference

PPs, as in the case of the French verb ‘rêver’ (“to dream”) and the subcategorized

indirect object PP headed by the preposition ‘de’ (‘of’). Additionally, it is also

clear that the lexical semantics between governors (primarily nouns and verbs) and

dependent PPs plays a role in the acceptability or preference for certain attachments

over others. For example, consider the attachment of a PP headed by ‘avec’ (‘with’)

as a modifier of either the verb ‘manger’ (“to eat”) or the noun ‘salade’ (‘salad’):

In the sentence “J’ai mangé une salade avec des champignons” (“I ate a salad with

mushrooms”), lexical semantics favors the attachment of the PP to the noun. On

the other hand, in the sentence “J’ai mangé une salade avec une fourchette” (“I ate

a salad with a fork”) the attachment of the PP to the verb is semantically favored.

In contrast, for coordination, another difficult attachment type that we ini-

tially thought of modeling with similar techniques, it is unclear to what extent a

localized lexical preference model could help with disambiguating syntactic struc-

ture. Coordination is a higher-level process that is not subcategorized for, and while

semantic knowledge is certainly needed to disambiguate its scope, our intuition is

that our local lexical preference modeling will not help much. Related works seem

to support this hunch, with the results reported by Mirroshandel et al. (2012) indi-

cating that lexical affinity scores computed for coordination do not improve parsing

accuracy.

Our goal is then to model the level of attachment preference between poten-

tial governor-dependent pairs in cases where the dependent is a PP. The notion of

preference is intentionally left vague, as different types of syntactic and semantic re-

quirement can be captured implicitly through frequencies of observed dependencies

in a large automatically-parsed corpus. We can nonetheless try to focus on different

types of requirement by varying the levels of lexical specificity of the dependent PP

position. The below sections identify two standard levels that we will consider in

our experiments.

Subcategorization Preference

The first level of lexical specificity that we consider for the dependent PP is one

that approximately matches the notion of subcategorization. We base our modeling

on the traditional notion of subcategorization that is applicable to both English

and French, with our guide on French verb subcategorization being the manually-

developed resource Dicovalence (Eynde and Mertens, 2003; Mertens, 2010); in our

experiments, we ended up using it as an alternate lexical preference resource to

compare against our semi-supervised approach.

Although subcategorization is intrinsically associated with verb governors, de-

verbal nouns can also serve as predicates with similar properties. Consider the pair

147

5. Parsing with PP-Attachment Preferences

CL V P DET NC ADJ PONCT
Elle lutte contre la corruption locale .

suj

root

p obj det

obj

mod

ponct

Subcategorization Lexical Association
(V, ‘lutter’), (P, ‘contre’, N) (V, ‘lutter’), (P, ‘contre’, N, ‘corruption’)

Figure 5.1: Identification of governor and dependent PP tuples at two levels of lexical
specificity for PP-attachment lexical preference in the sentence: “Elle lutte contre la corruption
locale.” (“She fights against local corruption.”)

of verb ‘lutter’ (“to fight”) and noun ‘lutte’ (‘fight’): both subcategorize for a PP

headed by one of the prepositions ‘pour’ (‘for’) or ‘contre’ (‘against’). Given this

fact, as well as our desire to cast a wider net rather than be too restrictive in our

statistical modeling of preference, we consider subcategorization preference involv-

ing both verb and noun governors. We always include the lemma of the governor in

our modeling, as subcategorization requirements and preferences are lexicalized.

As for the dependent PP, we follow the general formulation of PP roles in

subcategorization frames by including the lemma of the head preposition as well

as the POS category corresponding to its object. The POS of the PP’s object is

necessary to include because it distinguishes between the two major distributions of

PPs with nominal objects and with verbal objects. While a sentential object is also

possible, as in “avant que tu sois arrivé” (“before [that] you had arrived”), most

prepositions followed by ‘que’ in this way are annotated in the FTB as compound

word complementizers like ‘avant que’, and are thus not pertinent to our modeling.1

As an example of an instance of subcategorization in a sentence, consider

“Elle lutte contre la corruption locale” (“She fights against local corruption”). We

can observe here the subcategorization pair with governor tuple of coarse-grained

POS and lemma (V, ‘lutter’) and dependent tuple of preposition coarse-grained

POS and lemma and object coarse-grained POS (P, ‘contre’, N). This example of

subcategorization preference is represented on the left side of Figure 5.1.

1The constructions “à ce que” and “de ce que” (“of that which”) are not annotated as compounds, but due to
their rarity we ignore them in our modeling.

148

5.1 Methods for Lexical Preference

Lexical Association Preference

For a richer level of lexical specificity, we use what we have provisionally termed

as lexical association preference. This is similar to subcategorization preference,

except that we additionally use the lemma of the PP’s object. As noted earlier,

subcategorization requirements are strictly syntactic in nature, yet the resolution

of ambiguity for certain linguistic constructions like PP-attachment often requires

recourse to semantics. While lexical association is therefore an attractive option to

consider, we nonetheless note that using a higher level of lexical specificity has the

downside of increasing the amount of data sparseness encountered when comput-

ing lexical preference scores, with less reliable estimates of lexical preference pair

frequencies.

Continuing with our previous example for subcategorization, we can see that

for the sentence “Elle lutte contre la corruption locale” (“She fights against local

corruption”), the lexical association pair will have a governor tuple of coarse-grained

POS and lemma (V, ‘lutter’) and a dependent tuple of preposition coarse-grained

POS and lemma and object coarse-grained POS and lemma (P, ‘contre’, N, ‘corrup-

tion’). This is represented on the right side of Figure 5.1.

5.1.3 Statistical Preference Metrics

Our statistical metrics for the extraction of lexical preference scores from a large

parsed corpus are based on the same basic concepts that we previously introduced

in Chapter 4. Our terminology and methods remain based on the work of Lin (1998),

which used word context relations to calculate distributional lexical similarity, and

the subsequent work of Curran (2004), which distinguished between weight and

measure functions and evaluated different functions on a semantic similarity task

for English. In essence, we follow those methods but stop after the weighting of

context relations, as we do not require the calculation of similarity between like

lexical terms.

The basic framework we use for statistical methods for lexical preference is

thus as follows:

1. Extraction: obtain counts of governors and PP contexts in which they appears

from a parsed text corpus.

2. Weight: modify the raw counts in order to compute a score that better reflects

the preference between the governor and the PP.

The governors and PP contexts are as we have just finished describing above,

with lexicalized governors being restricted to nouns and verbs, and dependent PPs

149

5. Parsing with PP-Attachment Preferences

restricted to those with nouns and verbs in the PP’s object position, at two different

levels of lexical specificity. The two methods for weighting raw counts into preference

scores between a governor and a dependent PP are described below.

A Traditional Metric: PMI

Our first weight metric is the widely-used PMI metric, which we found to be the

most effective among a number of different metrics when building distributional

thesauri in Chapter 4, and which has been the metric of choice in most related work

on using calculated lexical preference scores to improve parsing. The formula for

PMI appeared in Table 4.2.

A Novel Neighborhood-Based Metric: NRF

Our second weight metric uses a novel neighborhood-based approach, combining the

basic notion of relative frequency with the useful information that can be gained by

looking at plausible alternative governors in a syntactic neighborhood around a de-

pendent PP. The typical metric for relative frequency, the formula of which appears

in Table 4.2 from the previous chapter, is not a very robust context relation weight

metric in distributional lexical semantics, as evidenced in previous experiments such

as that of Curran (2004) or in our earlier intrinsic distributional thesaurus evalua-

tion. However, the idea of using a metric conditioned on the presence of a dependent

PP, rather than a symmetric metric like PMI or others, is attractive: since we will be

using preference scores as features for neighborhood correction classifiers, our prob-

lem setting has a dependent PP as a given and the choice of governor as essentially

the variable to be predicted.

However, we can go further than simply trying to model a conditional probabil-

ity of the form p(gov|PP), which would correspond to an artificial problem in which

the choice of a governor for a dependent PP would take place given no additional

information, as if any governor could potentially be generated. We know, rather,

that by construction the candidate governors we consider are those in the syntac-

tic neighborhood surrounding the PP and its predicted governor from the first-stage

transition-based parser output. Therefore, in defining our metric we should addition-

ally condition on the presence of a potential governor appearing in the neighborhood

of the dependent PP, since if it does not appear in the neighborhood then it cannot

possibly be chosen as the new governor for the PP.

We start with the simply probability of generating a governor g given a depen-

dent d, the latter of which is a PP including both the preposition and its object. To

estimate this probability we use a basic relative frequency estimation, where f(g, d)

150

5.2 PP-Attachment Preference Experiments

is the frequency of a pair of governor g and dependent, d and ∗ indicates a sum over

all possible values in a given position. The probability and its estimation are:

p̂(g|d),
f(g, d)

f(∗, d)
(5.1)

Our proposal is then to consider the neighborhood-based probability of select-

ing a governor g given both a dependent d and the information that g is in the

neighborhood Nd of candidate governors surrounding d. To estimate this probabil-

ity we use a neighborhood-based relative frequency (NRF) estimation, where the new

term f(g ∈ Nd) is the frequency of g appearing in a candidate neighborhood of d.

The probability and its estimation are:

p̂(g|d, g ∈ Nd),
f(g, d)

f(g ∈ Nd)
(5.2)

In comparing these two probability estimation metrics, we note that basic

relative frequency has an unwanted tendency to place an overly high weight on

governors that simply appear frequently in the corpus, while NRF corrects for this

tendency by restricting the counts for a possible governor to cases in which it appears

in the neighborhood for a dependent. Consider the very frequent verb ‘être’ (“to

be”), which subcategorizes for a number of PPs, including the one containing the

preposition ‘contre’ (“against”) and a noun PP object. It will receive a much higher

basic relative frequency with respect to that PP compared to other verbs that are

just as good if not better fits, such as the verb ‘lutter’ (“to fight”), simply because

‘être’ is so frequent. By taking into account the frequency of appearance in the PP’s

syntactic neighborhood in the denominator as opposed to just the PP’s frequency,

the NRF metric can give a better accounting of which governor our correction model

should actually be selecting. It could discover, for instance, that in a low proportion

of cases where ‘être’ appears in the neighborhood of that PP ‘être’ is actually the

predicted governor, while in a higher proportion of cases where ‘lutter’ appears in

the neighborhood of that PP ‘lutter’ is the predicted governor.

In order to carry out this new type of estimation over an automatically-parsed

corpus, the only work beyond our usual methods is to identify the syntactic neigh-

borhoods of dependent PPs and keep track of some additional frequencies.

5.2 PP-Attachment Preference Experiments

In this section we describe our final set of experiments related to lexical preference as

a way to improve the accuracy of PP-attachments in dependency parsing. We use as

151

5. Parsing with PP-Attachment Preferences

our base method a two-stage transition-based parsing and neighborhood correction

system as presented in Chapters 2 and 3, respectively. We only consider the use of

lexical preference resources for correction, due to the fact that the composition of a

PP is not fully determined prior to its attachment during first-stage transition-based

parsing. Within the correction models, we compare the integration of two different

lexical preference resources: the first consists of lexical preference scores adapted

from the hand-built Dicovalence verb subcategorization resource, while the second

is built using statistical metrics over a large automatically-parsed journalistic corpus

and results in our two-stage parser becoming a semi-supervised system.

5.2.1 Methods and Setup

We now present the setup of our semi-supervised lexical preference experiments. For

all methodological details concerning parsing with arc-eager and neighborhood

correction, see our previous descriptions in Section 2.3 and Section 3.3, respectively.

As was the case for our previous experiments, we used our own Python implemen-

tation of the algorithms and methods from this chapter; we reiterate that we plan

to release a package of the code used in this thesis following its publication. Our

methodology for experiments in lexical preference involves the following elements:

building a lexical preference resource from an automatically-parsed and corrected

external corpus; preprocessing the Dicovalence for use as a lexical preference re-

source along the same lines as our semi-supervised one; and finally defining novel

features for lexical preference in our neighborhood correction models.

Calculation of Lexical Preferences

For the calculation of lexical preferences for PP-attachment, we considered a num-

ber of different settings. One variable was the type of preference to obtain, with the

two options being subcategorization (less lexically specified) and lexical association

(more lexically specified). A second variable was the statistical metric to use in our

calculations, with the two options being PMI and our novel neighborhood relative

frequency metric NRF. Finally, in order to make the resource construction process

tractable, as well as to account for noise due to automatic parsing errors, we im-

plemented a minimum frequency cutoff for both governors and dependent PPs; a

variety of cutoffs were tested, and a preliminary evaluation of different cutoff values

on the FTBDep development set will be presented in the results section.

As noted earlier in Section 5.1.2, governors were restricted to those with POS

category of verb or noun, and the dependent PPs were restricted to those with PP

object POS category of verb or noun. An additional step we took to account for noise

152

5.2 PP-Attachment Preference Experiments

in the automatically tokenized and POS-tagged corpus was to define a set of ‘valid’

preposition lemmas based on those appearing in the FTBDep development set, so

as to ignore word tokens wrongly tagged as prepositions in the external corpus.

The unlabelled French corpus we considered as the basis for computing our

lexical preference scores was the AFP, which we used in Chapters 3 and 4 for self-

training and lexical generalization experiments, respectively. As before, the corpus

was preprocessed using the Bonsai tool, which performed sentence segmentation,

word tokenization, and additionally, consistent with our automatic annotation of

the FTBDep in Section 2.3, performed automatic POS tagging with the MElt pack-

age and lemmatization with the Lefff lexicon. Additionally, the corpus was parsed

and corrected using a two-stage parsing system with arc-eager transition-based

parsing and neighborhood correction, as first presented in Chapter 3.

Preprocessing Dicovalence

The next step in our experimental setup was to convert the Dicovalence resource

into a format that directly listed subcategorization preference scores between gover-

nors and dependent PPs. For these experiments, we used version 2.0 of Dicovalence

(Mertens, 2010). The Dicovalence resource is structured so that each verb subcat-

egorization frame is granted a separate multi-line entry, with a list of argument

paradigms followed by a list of POS categories that are accepted in those positions,

with notably preposition lexemes explicitly listed for those paradigms corresponding

to PP-attachment. From these entries we extracted the desired PP lexical preference

information; an example Dicovalence entry and subsequent extraction are shown in

Figure 5.2. Once all relevant subcategorization instances were identified, we simply

assigned a score of 1 to the attested pairings of governor and dependent PP, with

an implicit score of 0 given to any pairing not found in the resource.

Definition of Lexical Preference Features

The final part of our experimental setup was the definition of novel features for

lexical preference in our neighborhood correction models. Table 5.1 lists the features

templates for the oracle of neighborhood parse correction, with a description of most

of these features already discussed for our correction experiments in Section 3.3.

The new feature templates are subcatc,d,do and lexassocc,d,d0 , encoding sub-

categorization and lexical association preference, respectively. These feature tem-

plates are different from the others in that they are real-valued rather than cate-

gorical; while categorical feature templates are represented using separate indicator

features each encoding one categorical value, each lexical preference feature template

153

5. Parsing with PP-Attachment Preferences

Dicovalence Entry

VAL abandonner: P0 P1 P2
VTYPE predicator simple
VERB ABANDONNER/abandonner
NUM 60
EG mon oncle a abandonné tous ses biens à sa mâıtresse
TR DU overleveren (aan), prijsgeven (aan)
TR EN abandon, bequeath, demise (to)
FRAME subj:pron|n:[hum], obj:pron|n:[nhum,?abs], objà:pron|n:[hum]
P0 qui, je, nous, elle, il, ils, on, celui-ci, ceux-ci
P1 que, la, le, les, en Q, ça, ceci, celui-ci, ceux-ci
P2 qui, me, lui, leur, celui-ci, ceux-ci
RP passif être, se passif
AUX avoir

Subcategorization
(V, ‘abandonner’), (P, ‘à’, N)

Figure 5.2: Identification of a PP subcategorization preference from an entry in Dicovalence
for the verb ‘abandonner’ (“to abandon”). The subcategorized PP consists of the preposition
‘à’ (‘to’) with a noun PP object, with this information being gleaned from the presence of
objà in the FRAME field.

is represented directly with a single real-valued feature. In order to avoid negatively

impacting the SVM learning process, we required that values remain in the range

[−1, 1]. Since NRF is a probabilistic metric, it naturally resides in this range. For

PMI, we used a simple normalization technique where the highest positive score

observed during calculation was stored, and then each positive score was divided by

the highest score.1

By using separate features for these two types of preference, we were able to

experiment with learning models that used only one type of information or both

types simultaneously. We also note that this feature template representation re-

mains agnostic to the type of dependency between a candidate c and a dependent d.

However, since our preference scores have been calculated exclusively for dependent

PPs these features were effectively restricted to PP-attachment preference in our

experiments.

1A quirk of methods for estimating joint lexical probabilities from corpora is that pairs appearing together
at least once rarely have a negative PMI, while pairs that never appear together have a PMI of −∞. We simply
mapped all negative PMI to a feature value of -1.

154

5.2 PP-Attachment Preference Experiments

Correction Templates

Simple: posd
lemd
oposd
posc
lemc
hposc
isprc

Derived: ndepsc
distc,d
dirc,d
pathc,d
puncc,d
lposc,d
llabc,d
rposc,d
rlabc,d

Preference: subcatc,d,do
lexassocc,d,do

Table 5.1: Feature templates for neighborhood parser correction, both simple ones over
individual word forms and derived ones that use multiple words or surrounding syntactic
structure. Novel lexical preference features apply to preposition dependents only.

5.2.2 Results

This section describes the results of our lexical preference experiments, where we

used neighborhood correction as the base approach over which novel lexical prefer-

ence features for PP-attachment were evaluated.

Preliminary Development Evaluation

We first evaluated a number of of different settings on the development set, with

preposition UAS reported in Table 5.2. The first setting corresponds to the Dico-

valence approach, which uses that hand-built resource for French as a source of 0-1

verb subcategorization features in our neighborhood correction models. For this set-

ting, we did not have to tune any parameters or consider different approaches, as the

0-1 PP-attachment preference scores were converted directly from the Dicovalence

subcategorization frames, and only the subcatc,d feature template was introduced

to the neighborhood correction model. This approach resulted in a minor improve-

ment over the baseline two-stage parsing and correction system, so we decided to

carry it forward to our final evaluation on the FTBDep test set.

The next two groups of settings correspond to our main approach, which uses

features derived from semi-supervised lexical preference scores calculated from an

155

5. Parsing with PP-Attachment Preferences

Settings UAS

arc-eager 83.5
Baseline +correction 83.8

Dicovalence subcat 84.1

PMI subcat
kd=50, kg=50 84.4
kd=100, kg=100 84.3
kd=200, kg=200 84.5†
kd=500, kg=500 84.4
lexassoc
kd=50, kg=50 84.5
kd=100, kg=100 84.5†
kd=200, kg=200 84.5
kd=500, kg=500 84.3
subcat+lexassoc 84.5*

NRF subcat
kd=100, kg=5 84.5
kd=100, kg=10 84.3
kd=200, kg=5 84.6
kd=200, kg=10 84.5
kd=500, kg=5 84.6†
kd=500, kg=10 84.5
lexassoc
kd=100, kg=5 84.4
kd=100, kg=10 84.6†
kd=100, kg=20 84.4
kd=200, kg=5 84.4
kd=200, kg=10 84.5
kd=200, kg=20 84.6
subcat+lexassoc 84.9*

Table 5.2: Preposition UAS results, in percent, over the FTBDep development set with
different lexical preference settings for correction. The baseline uses no lexical preference
features, the Dicovalence approach uses subcat only, and the PMI and NRF approaches also
use lexassoc as well as varying frequency cutoffs for dependents (kd) and governors (kg).
† indicates a best setting later combined into a subcat+lexassoc setting (last rows). ∗
indicates a statistically significant improvement for subcat+lexassoc over the baseline.

external automatically-parsed and corrected French corpus. The first group repre-

sents the traditional PMI metric for score calculation, and within that group we

tested four minimum frequency cutoffs (50, 100, 200, 500) for the governors (kg)

and dependent PPs (kd), with the same cutoff applied to both. The second group

represents our novel NRF metric for score calculation, and within that group we

tested three cutoff values for dependent PP frequency kd (100, 200, 500) and three

cutoff values for governor frequency kg relative to a particular dependent PP (5, 10,

20); for NRF, governor frequency was calculated separately for each dependent PP,

156

5.2 PP-Attachment Preference Experiments

Settings PPs Govs Pairs

Dicovalence: subcat 46 2k 3k

PMI: subcat, kd=200, kg=200 159 5k 89k
PMI: lexassoc, kd=100,kg=100 18k 7k 2m

NRF: subcat, kd=500, kg=5 147 32k 161k
NRF: lexassoc, kd=100, kg=10 18k 14k 479k

Table 5.3: Size of lexical preference resources for Dicovalence, and for each combination
of statistical metric (PMI or NRF) and lexical preference type (subcat or lexassoc) using
optimal minimum frequency cutoff values over the AFP corpus. Lists unique number of PPs,
governors, and attested dependency pairs.

and counted every time the governor appeared in the candidate neighborhood of

that PP. An additional grouping parameter for the semi-supervised approaches was

the use of subcategorization or lexical association preference.

For the semi-supervised lexical preference approaches, we identified the best

development minimum frequency cutoff values for each pair of statistical metric

(PMI or NRF) and preference type (subcategorization and lexical association), and

then evaluated a best setting for each statistical metric that simultaneously used

both preference feature types. These best settings are also shown in Table 5.2. We

can already see that they appear to be better than the Dicovalence approach, with

the preposition UAS being higher for PMI (84.5) and for NRF (84.9) compared to

Dicovalence (84.1).

To give a sense of the size of our final lexical preference resources, Table 5.3

lists the size of resources for Dicovalence and each set of optimal minimum frequency

cutoff values for the best semi-supervised approaches. We can see that Dicovalence

covers a lower number of unique PPs, governors, and dependency pairs compared to

the semi-supervised approaches. We also note that lexical association has a much

higher number of unique PPs and dependency pairs compared to subcategorization,

which is a result of taking into account the lemma of the PP’s object.

Final Test Evaluation

For our final evaluation over the FTBDep test set, we considered only a single best

setting for each of the three approaches (Dicovalence, PMI, NRF) as determined by

our development set evaluation. While for simplicity preposition UAS was used to

find the best settings in the development set evaluation, we now report full overall

LAS and UAS in addition to preposition LAS and UAS in Table 5.4.1

1We do not report statistical significance for overall LAS and UAS, as it would be misleading. Only the corrective
model for prepositions changes between the baseline and the new approaches, meaning that other dependents are
almost all attached to same governors regardless of the approach and should not factor into the statistical test.

157

5. Parsing with PP-Attachment Preferences

Overall Preps
Settings LAS UAS LAS UAS

arc-eager 87.1 89.7 78.3 84.0
Baseline +correction 87.5 90.2 78.8 84.6

Dicovalence subcat 87.5 90.2 78.7 84.4

PMI subcat+lexassoc 87.5 90.2 79.0 84.9

NRF subcat+lexassoc 87.6 90.3 79.4* 85.2*

Table 5.4: Overall and preposition LAS and UAS results, in percent, over the FTBDep test
set when using different lexical preference settings for neighborhood correction. The baseline
uses no lexical preference features, the Dicovalence approach uses subcategorization (subcat)
features only, and the PMI and NRF approaches use a combination of subcategorization and
lexical preference (lexassoc) features. ∗ indicates a statistically significant improvement over
the baseline for preposition LAS or UAS.

We first note that using 0-1 verb subcategorization scores from Dicovalence

actually led to a slight decrease in preposition LAS and UAS, which indicates that

this approach is not well-suited to the problem of improving PP-attachment per-

formance. This can be explained in part by certain characteristics of Dicovalence:

it has rather low coverage, and it includes rare senses for frequent verbs that may

actually mislead the correction model. This result seems to support our motivating

hypothesis presented at the beginning of this chapter: in order to deal with difficult

cases of ambiguity in linguistic constructions like PP-attachment, one needs to go

beyond strict syntactic requirements. As a hand-built subcategorization resource,

Dicovalence doesn’t capture nuanced subcategorization preferences or more lexically

specified preferences that would include the object of the PP. As we noted then, sta-

tistical approaches for parsing are already set up to capture syntactic requirements

indirectly through the syntactically annotated training corpus used, so it is possible

that strict subcategorization features may have been redundant to a large extent.

We now move on to look at the parsing improvements achieved when using

the semi-supervised approaches to integrating lexical preference scores. Both sub-

categorization (subcat) and lexical association (lexassoc) were used jointly, in

order to capture both syntactic and more lexically specified semantic preference and

requirements. Of the two statistical metrics, NRF was the one that obtained the

best overall parsing improvement, with a statistically significant improvement in

preposition LAS and UAS compared to the baseline two-stage parsing and correc-

tion system. PMI obtained a smaller, not statistically significant improvement in

preposition LAS and UAS over the baseline. Comparing NRF and PMI, however,

the difference was unfortunately not statistically significant.

Despite the fact that NRF was not statistically better than PMI, it is nonethe-

less the case that NRF was the best performing approach and was also the only

158

5.2 PP-Attachment Preference Experiments

lexical preference setting that was statistically better than the baseline. This is an

interesting result, as PMI is the standard statistical metric used in the literature to

compute scores for lexical preference from a corpus, and as described in Chapter 4

it is also to our knowledge the most commonly used metric for weighting context

relations in distributional lexical semantics methods at large. However, we are not

surprised that NRF performs better here, as it is adapted to our particular task

through its use of candidate governor neighborhoods.

The use of syntactic neighborhood information in a statistical metric is thus

a promising idea, achieving modest parsing improvements for PP-attachment but

having potential applications to other tasks as well. As we noted when initially

describing the NRF metric, it is likely too much of an abstraction to think about

governor-dependent pairs as being generated in a vacuum. By restricting the fre-

quencies we consider to cases in which a potential governor and dependent appear

in the same local syntactic context, and only then counting the instances in which

they are attached or not, we end up with a more informed metric for how likely

they are to be attached when observed again in that context. It would be interest-

ing to see how this type of metric could be applied to tasks that use distributional

lexical semantics, such as the creation of distributional thesauri (c.f. Chapter 4) or

the problems of automatic word sense disambiguation and acquisition of semantic

classes (c.f. Section 5.1.1).

159

Conclusion

In this thesis we explored ways to improve efficient statistical dependency parsing,

with French as our language of application and the French Treebank converted to de-

pendencies (FTBDep) as our primary source of data. We tested a number of different

methods, with our first research thread focused on algorithmic and syntactic feature

representation issues, and our second research thread focused on semi-supervised

methods over unlabeled corpora.

Syntactic Context in Parsing and Correction

For the first main thread, we worked within the transition-based parsing and neigh-

borhood correction algorithms to introduce additional syntactic context into attach-

ment decisions. This aspect of our research was motivated by the fact that transition-

based dependency parsing algorithms attain high computational efficiency, relative

to more complex approaches used for phrase-structure parsing or graph-based de-

pendency parsing, by making greedy locally-optimal attachment decisions. In Chap-

ter 2 we introduced a variant arc-eager-mc transition system, based on the well-

studied arc-eager transition system. Our goal was to introduce additional syntac-

tic context into attachment decisions by considering multiple candidate governors

simultaneously for right-directed dependencies. While this variant had the down-

side of a worst-case quadratic time parsing complexity, compared to the linear time

parsing complexity of arc-eager, it lead to a small improvement in preposition

UAS that suggested a multiple-candidate approach is useful for improving highly

ambiguous right-directed dependencies that include the linguistic phenomenon of

PP-attachment.

This result led us to our investigation in Chapter 3 into parse correction mod-

eling, specifically an existing linear-time neighborhood correction algorithm that by

160

Semi-Supervised Lexical Methods

design revises each dependent by considering multiple candidate governors from the

syntactic neighborhood surrounding its predicted governor from the initial parse

tree. A small innovation on our part was to make explicit the ranking aspect of

these revisions; we moved away from the original formulation of the learning prob-

lem, where the model is given independent binary examples for each candidate, and

instead used an explicit ranking formulation of the learning problem with examples

created from pairwise ranking constraints between the correct candidate governor

and each incorrect candidate governor. We also expanded the set of features to

include the dependent’s object (in the case of PP-attachment) or right conjunct

(in the case of coordination), which from a linguistic standpoint are important for

determining the correct governor; note that these features are not available during

transition-based arc-eager parsing. We found that a two-stage system using a

second-stage neighborhood corrector obtained statistically significant improvements

in LAS and UAS, overall and specifically for PP-attachment and coordination, when

compared to first-stage arc-standard or arc-eager parsing alone.

Semi-Supervised Lexical Methods

In the second main thread of our thesis, we used the resulting efficient two-stage

parser as a basis from which we could look outward, investigating semi-supervised

methods over unlabeled corpora to tackle the problems of data sparseness and lexical

class and preference modeling. In the latter part of Chapter 3 we tested a standard

self-training approach that parses an unlabeled external corpus and incorporates

some of those parses back into the training set. We tried this both within the

journalistic domain of the FTBDep and for adaptation to a medical domain, in

both cases unfortunately obtaining no improvement in parsing over the baseline

two-stage parser.

We then turned to more focused semi-supervised approaches concerning lexical

modeling. In Chapter 4 we used an automatically parsed corpus to build distribu-

tional thesauri, which were then integral to the construction of three spaces of gener-

alized lexical classes: lemmas ranked by distributional similarity, distributional word

clusters, and word senses automatically ranked based on distributional similarity.

Our contribution was to use a multiple assignation strategy for replacing word forms

with lexical classes in features: a feature template normally represents a categorical

variable with each value assigned an indicator feature, and in the case of multiple

assignation we allowed lexical categorical variables to take on multiple values si-

multaneously. For instance, when replacing the word form ‘avocat’ with multiple

semantic senses, both indicator features senseβ[0]=‘avocado’ and senseβ[0]=‘lawyer’

would fire when ‘avocat’ is encountered. We obtained statistically significant im-

161

Conclusion

provements in LAS and UAS for two-stage parsing when replacing a word form with

two lemmas — the lemmatized form and its most distributionally similar lemma —

for parsing both in-domain and when adapted to the medical domain, with the latter

result obtained when using an external ‘bridge’ corpus containing both journalistic

and medical text.

Finally, in Chapter 5 we used an automatically parsed corpus to extract lexical

preference scores for PP-attachment. Given that our two-stage parser has access to

the key information required for disambiguating PP-attachment — the candidate

governor, the preposition, and the PP’s object — we were able to directly introduce

lexical preference scores as features into the neighborhood correction model. The

methods we used to obtain the scores were mostly standard, with one type of prefer-

ence corresponding to a less lexically-specified correlate of subcategorization and the

other type of preference modeling a more lexically-specified association. Our contri-

bution was to test an alternate preference metric to the standard point-wise mutual

information (PMI) widely used in the literature; we introduced neighborhood-based

relative frequency (NRF), which estimates the probability of a candidate governing

a dependent PP given that it appears in the syntactic neighborhood of that PP.

NRF addressed the problem with basic relative frequency of favoring governors that

simply appear very often in the corpus, and because it uses neighborhoods as the

basis of its calculation it also has the advantage of producing scores that are espe-

cially adapted to the problem of neighborhood correction. In our experiments, we

first tested the use of 0-1 lexical preference scores extracted from a verb subcate-

gorization resource for French, finding no improvement in PP-attachment for the

two-stage parser. For the semi-supervised settings, we found that using preference

scores for both levels of lexical specificity worked better than using either alone, and

only the NRF metric led to a statistically significant improvement in preposition

LAS and UAS for the two-stage parser, though the difference between and NRF

and PMI was not statistically significant.

Looking Forward

Our results are on the one hand encouraging, as a number of the approaches we

tested led to statistically significant improvements in dependency parsing, but on

the other hand discouraging as the improvements were modest in most cases. There

remain a number of possible paths for future research, particularly as pertains to

semi-supervised parsing with lexical resources: soft clustering methods would seem

to be useful in conjunction with the multiple assignation strategy for feature re-

placement of lexical classes; more sophisticated lexical classes could be obtained

using LDA (Ó Séaghdha, 2010; Ritter et al., 2010); and in-context disambiguation

162

Looking Forward

of word sense (Brody and Lapata, 2008; Erk and Padó, 2008; Erk and Pado, 2010),

and consequently of selectional preference, could make the use of lexical resources

more effective.

Looking at the current state of dependency parsing at large, we note that in just

the past few years a wealth of new research has cropped up. The work of Goldberg

and Elhadad (2010) provides an interesting compromise approach between the two

major families of dependency parsers, which are the globally-optimized cubic-time

graph-based parsers and the locally-optimized linear-time transition-based parsers.

It uses what the authors term an easy-first approach to making attachments, build-

ing dependencies in a bottom up fashion, and interestingly, its O(nlogn) computa-

tional complexity lies between those of the two major families of dependency parsers.

Other very recent works have exploited the use of a generalized perceptron (Collins,

2002) in combination with beam search, as first proposed for transition-based pars-

ing in the work of Zhang and Clark (2008). Beam search allows for up to k transition

sequences to be stored at any given point during parsing, with the generalized per-

ceptron fulfilling the need for a global score comparable across transition sequences.

(Zhang and Nivre, 2011) add to this framework syntactically rich feature templates

for arc-eager parsing that increase accuracy substantially, while (Bohnet, 2011)

uses a fast hash kernel with passive-aggressive updates that takes into account ‘neg-

ative’ features, or those that would not be encountered in gold transition sequences

during training. Both works obtain results for English that are surprisingly on par

with the best graph-based parsers, possibly settling the dispute between the two

parsing families for good.

Given the existence of these new dependency parsers, it would be interest-

ing to see whether neighborhood parse correction and automatically-built lexical

resources could still be beneficial. We note that transition-based parsing remains

an approach that uses incomplete syntactic context during attachment decisions, as

the parse tree is built incrementally; neighborhood parse correction, with access to

complete surrounding syntactic context for attachment decisions, might then pro-

vide an effective second pass even for highly-accurate transition-based parsers that

use beam search. We also note that the issues of data sparseness and generalization

to different domains are tied to the source treebank and not to the choice of pars-

ing algorithm; semi-supervised lexical methods using distributional lexical classes

or lexical preference scores might then improve both in-domain and out-of-domain

parsing accuracy even for the new crop of parsers.

163

Bibliography

A. Abeillé and N. Barrier. Enriching a French treebank. In Proceedings of the 4th

International Conference on Language Resources and Evaluation, 2004. 32

A. Abeillé, L. Clément, and F. Toussenel. Building a treebank for French. Treebanks,

pages 165–187, 2003. 29, 30, 31, 32, 33, 34, 143

E. Agirre and D. Martinez. Learning class-to-class selectional preferences. In Pro-

ceedings of the 2001 Workshop on Computational Natural Language Learning,

pages 15–22, 2001. 144

E. Agirre, T. Baldwin, and D. Martinez. Improving parsing and PP attachment

performance with sense information. In Proceedings of the 46th Annual Meeting

of the Association for Computational Linguistics, pages 317–325, 2008. 120, 140

E. Agirre, E. Alfonseca, K. Hall, J. Kravalova, M. Paşca, and A. Soroa. A study on

similarity and relatedness using distributional and WordNet-based approaches.

In Proceedings of the 2009 Conference of the North American Chapter of the

Association for Computational Linguistics, pages 19–27, 2009. 121

E. Agirre, K. Bengoetxea, K. Gojenola, and J. Nivre. Improving dependency parsing

with semantic classes. In Proceedings of the 49th Annual Meeting of the Associa-

tion for Computational Linguistics, pages 699–703, 2011. 120, 128

A. Aho, J. Ullman, and R. Sethi. Compilers: Principles, Techniques, and Tools.

Addison-Wesley, 1986. 57, 61

A. Arun and F. Keller. Lexicalization in crosslinguistic probabilistic parsing: The

case of French. In Proceedings of the 43rd Annual Meeting on Association for

Computational Linguistics, pages 306–313, 2005. 38

164

BIBLIOGRAPHY

G. Attardi. Experiments with a multilanguage non-projective dependency parser. In

Proceedings of the Tenth Conference on Computational Natural Language Learn-

ing, pages 166–170, 2006. 107

G. Attardi and M. Ciaramita. Tree revision learning for dependency parsing. In

Proceedings of the Conference of the North American Chapter of the Association

for Computational Linguistics, pages 388–395, 2007. 2, 89, 92, 107

G. Attardi and F. Dell’Orletta. Reverse revision and linear tree combination for

dependency parsing. In Proceedings of the 2009 Conference of the North American

Chapter of the Association for Computational Linguistics, pages 261–264, 2009.

90

M. Atterer and H. Schütze. Prepositional phrase attachment without oracles. Com-

putational Linguistics, 33(4):469–476, 2007. 91

M. Bacchiani, M. Riley, B. Roark, and R. Sproat. Map adaptation of stochastic

grammars. Computer speech & language, 20(1):41–68, 2006. 99

J.M. Balfourier, P. Blache, M.L. Guénot, and T. VanRullen. Comparaison de trois

analyseurs symboliques pour une tâche d’annotation syntaxique. In Actes de la

12ème conférence sur le traitement automatique des langues naturelles, pages 41–

48, 2005. 50

A.L. Berger, V.J.D. Pietra, and S.A.D. Pietra. A maximum entropy approach to

natural language processing. Computational Linguistics, 22(1):39–71, 1996. 41

S. Bergsma, D. Lin, and R. Goebel. Discriminative learning of selectional preference

from unlabeled text. In Proceedings of the Conference on Empirical Methods in

Natural Language Processing, pages 59–68, 2008. 145

D.M. Bikel. A statistical model for parsing and word-sense disambiguation. In

Proceedings of the EMNLP/VLC-2000, pages 155–163, 2000. 119

S. Bird, E. Loper, and E. Klein. Natural Language Processing with Python. O’Reilly

Media Inc., 2009. 81, 133

J. Blitzer, R. McDonald, and F. Pereira. Domain adaptation with structural corre-

spondence learning. In Proceedings of the 2006 Conference on Empirical Methods

in Natural Language Processing, pages 120–128, 2006. 98

L. Bloomfield. Language. Holt, New York, 1933. 9

165

BIBLIOGRAPHY

A. Böhmová, J. Hajič, E. Hajičová, and B. Hladká. The Prague dependency tree-

bank. In Treebanks, pages 103–127. Springer, 2003. 29

B. Bohnet. Very high accuracy and fast dependency parsing is not a contradiction.

In Proceedings of the 23rd International Conference on Computational Linguistics,

pages 89–97, 2010. 146

B. Bohnet. Comparing advanced graph-based and transition-based dependency

parsers. In Proceedings of the International Conference on Dependency Linguis-

tics, pages 282–289, 2011. 163

B.E. Boser, I.M. Guyon, and V.N. Vapnik. A training algorithm for optimal margin

classifiers. In Proceedings of the fifth annual workshop on Computational learning

theory, pages 144–152. ACM, 1992. 43

D. Bourigault. Upery: un outil d’analyse distributionnelle étendue pour la con-

struction d’ontologies à partir de corpus. In Actes de la 9ème conférence sur le

traitement automatique des langues naturelles, pages 75–84, 2002. 119

J. Bresnan, A. Cueni, T. Nikitina, and H. Baayen. Cognitive foundations of inter-

pretation. In G. Boume, I. Kraemer, and J. Zwarts, editors, Predicting the dative

alternation, pages 69–94. Amsterdam : Royal Netherlands Academy of Science,

2007. 14

T. Briscoe and J. Carroll. Automatic extraction of subcategorization from corpora.

In Proceedings of the fifth conference on Applied natural language processing, pages

356–363, 1997. 145

S. Brody and M. Lapata. Good neighbors make good senses: Exploiting distribu-

tional similarity for unsupervised WSD. In Proceedings of the 22nd International

Conference on Computational Linguistics, pages 65–72, 2008. 163

P.F. Brown, P.V. Desouza, R.L. Mercer, V.J.D. Pietra, and J.C. Lai. Class-based

n-gram models of natural language. Computational Linguistics, 18(4):467–479,

1992. 120

S. Buchholz and E. Marsi. CoNLL-X shared task on multilingual dependency pars-

ing. In Proceedings of the Tenth Conference on Computational Natural Language

Learning, pages 149–164, 2006. 49, 52, 55, 56

R.C. Bunescu. Learning with probabilistic features for improved pipeline models.

In Proceedings of the Conference on Empirical Methods in Natural Language Pro-

cessing, pages 670–679, 2008. 134

166

BIBLIOGRAPHY

M. Candito and B. Crabbé. Improving generative statistical parsing with semi-

supervised word clustering. In Proceedings of the 11th International Conference

on Parsing Technologies, pages 138–141, 2009. 120, 125

M. Candito and D. Seddah. Le corpus Sequoia : Annotation syntaxique et ex-

ploitation pour l’adaptation d’analyseur par pont lexical. In Actes de la 19ème

conférence sur le traitement automatique des langues naturelles, 2012a. 104, 134

M. Candito and D. Seddah. Effectively long-distance dependencies in French: anno-

tation and parsing evaluation. In The 11th International Workshop on Treebanks

and Linguistic Theories, 2012b. 24

M. Candito, B. Crabbé, and P. Denis. Statistical French dependency parsing: Tree-

bank conversion and first results. In Proceedings of the 7th International Con-

ference on Language Resources and Evaluation, 2010a. 24, 29, 34, 37, 38, 40,

52

M. Candito, J. Nivre, P. Denis, and E. Henestroza Anguiano. Benchmarking of

statistical dependency parsers for French. In Proceedings of the 23rd International

Conference on Computational Linguistics, pages 108–116, 2010b. 52, 53, 54, 74,

80, 120

M. Candito, E. Henestroza Anguiano, and D. Seddah. A word clustering approach

to domain adaptation: Effective parsing of biomedical texts. In Proceedings of the

12th International Conference on Parsing Technologies, 2011. 99, 104, 120, 134,

135

X. Carreras. Experiments with a higher-order projective dependency parser. In

Proceedings of the CoNLL Shared Task Session of EMNLP-CoNLL, pages 957–

961, 2007. 53

J. Carroll, G. Minnen, and T. Briscoe. Can subcategorisation probabilities help a

statistical parser? In Proceedings of the 6th ACL/SIGDAT Workshop On Very

Large Corpora, pages 118–126, 1998. 145

D. Cer, M.C. de Marneffe, D. Jurafsky, and C.D. Manning. Parsing to Stanford

dependencies: Trade-offs between speed and accuracy. In Proceedings of LREC,

pages 1628–1632, 2010. 52

C.C. Chang and C.J. Lin. LIBSVM: a library for support vector machines. ACM

Transactions on Intelligent Systems and Technology (TIST), 2(3):27, 2011. 44,

78, 103

167

BIBLIOGRAPHY

E. Charniak. Statistical parsing with a context-free grammar and word statistics.

In Proceedings of the Fourteenth National Conference on Artificial Intelligence,

pages 598–603, 1997. 98

E. Charniak. Immediate-head parsing for language models. In Proceedings of the

39th Annual Meeting on Association for Computational Linguistics, pages 124–

131, 2001. 107

E. Charniak and M. Johnson. Coarse-to-fine n-best parsing and MaxEnt discrimi-

native reranking. In Proceedings of the 43rd Annual Meeting of the Association

for Computational Linguistics, pages 173–180, 2005. 90

N. Chomsky. Syntactic Structures. Mouton, Hague, 1957. 14, 16, 18

G. Chrupala. Efficient induction of probabilistic word classes with LDA. Proceedings

of 5th International Joint Conference on Natural Language Processing, pages 363–

372, 2011. 119

J. Cocke and J.T. Schwartz. Programming languages and their compilers: Prelimi-

nary notes. Courant Institute of Mathematical Sciences, 1969. 28

M. Collins. Discriminative training methods for hidden markov models: Theory

and experiments with perceptron algorithms. In Proceedings of the Conference on

Empirical Methods in Natural Language Processing, pages 1–8, 2002. 163

M. Collins. Head-driven statistical models for natural language parsing. Computa-

tional linguistics, 29(4):589–637, 2003. 49

M. Collins and T. Koo. Discriminative reranking for natural language parsing.

Computational Linguistics, 31(1):25–70, 2005. 90

M. Collins, L. Ramshaw, J. Hajič, and C. Tillmann. A statistical parser for Czech.

In Proceedings of the 37th annual meeting of the Association for Computational

Linguistics on Computational Linguistics, pages 505–512, 1999. 107

C. Cortes and V. Vapnik. Support-vector networks. Machine Learning, 20(3):273–

297, 1995. ii, iii, 41, 42, 43

M.A. Covington. A fundamental algorithm for dependency parsing. In Proceedings

of the 39th annual ACM southeast conference, pages 95–102, 2001. 59

B. Crabbé and M. Candito. Expériences d’analyse syntaxique statistique du français.

In Actes de la 15ème conférence annuelle sur le Traitement Automatique des

Langues, 2008. 32, 35, 75

168

BIBLIOGRAPHY

K. Crammer and Y. Singer. Ultraconservative online algorithms for multiclass prob-

lems. The Journal of Machine Learning Research, 3:951–991, 2003. 41

K. Crammer, O. Dekel, J. Keshet, S. Shalev-Shwartz, and Y. Singer. Online passive-

aggressive algorithms. The Journal of Machine Learning Research, 7:551–585,

2006. ISSN 1532-4435. 41

J.R. Curran. From distributional to semantic similarity. PhD thesis, University of

Edinburgh, 2004. 115, 118, 119, 121, 122, 123, 149, 150

I. Dagan, S. Marcus, and S. Markovitch. Contextual word similarity and estimation

from sparse data. In Proceedings of the 31st annual meeting on Association for

Computational Linguistics, pages 164–171, 1993. 119

I. Dagan, F. Pereira, and L. Lee. Similarity-based estimation of word cooccurrence

probabilities. In Proceedings of the 32nd annual meeting of the Association for

Computational Linguistics, pages 272–278, 1994. 118

I. Dagan, L. Lee, F. Pereira, et al. Similarity-based methods for word sense dis-

ambiguation. In Proceedings of the 35th annual meeting of the Association for

Computational Linguistics, volume 35, pages 56–63, 1997. 118

H. Daumé III, A. Kumar, and A. Saha. Frustratingly easy semi-supervised domain

adaptation. In Proceedings of the 2010 Workshop on Domain Adaptation for

Natural Language Processing, pages 53–59, 2010. 99

P. Denis and B. Sagot. Coupling an annotated corpus and a morphosyntactic lexicon

for state-of-the-art POS tagging with less human effort. In Proceedings of the 23rd

Pacific Asia Conference on Language, Information and Computation, 2009. 53,

76

D. Dowty. Thematic proto-roles and argument selection. Language, pages 547–619,

1991. 15

J. Earley. An efficient context-free parsing algorithm. Communications of the ACM,

13(2):94–102, 1970. 28

J.M. Eisner. Three new probabilistic models for dependency parsing: An explo-

ration. In Proceedings of the 16th conference on Computational linguistics-Volume

1, pages 340–345, 1996. 53

169

BIBLIOGRAPHY

K. Erk. A simple, similarity-based model for selectional preferences. In Proceedings

of the 45th Annual Meeting of the Association for Computational Linguistics,

pages 216–223, 2007. 144

K. Erk and S. Padó. A structured vector space model for word meaning in con-

text. In Proceedings of the Conference on Empirical Methods in Natural Language

Processing, pages 897–906, 2008. 163

K. Erk and S. Pado. Exemplar-based models for word meaning in context. In

Proceedings of the 48th Annual Meeting of the Association for Computational

Linguistics, pages 92–97, 2010. 163

K. Van den Eynde and P. Mertens. La valence: l’approche pronominale et son

application au lexique verbal. Journal of French Language Studies, 13(1):63–104,

2003. 147

R.E. Fan, K.W. Chang, C.J. Hsieh, X.R. Wang, and C.J. Lin. LIBLINEAR: A

library for large linear classification. The Journal of Machine Learning Research,

pages 1871–1874, 2008. 54

C. Fellbaum, editor. WordNet: An electronic lexical database. MIT Press, 1998.

118, 127

O. Ferret. Discovering word senses from a network of lexical cooccurrences. In

Proceedings of the 20th International Conference on Computational Linguistics,

pages 1326–1332, 2004. 119

O. Ferret. Testing semantic similarity measures for extracting synonyms from a

corpus. In Proceedings of the 7th International Conference on Language Resources

and Evaluation, 2010. 119

H. Gaifman. Dependency systems and phrase-structure systems. Information and

control, 8(3):304–337, 1965. 22

P. Gamallo, A. Agustini, and G.P. Lopes. Clustering syntactic positions with similar

semantic requirements. Computational Linguistics, 31(1):107–146, 2005. 144

Y. Goldberg and M. Elhadad. An efficient algorithm for easy-first non-directional

dependency parsing. In Proceedings of the Annual Conference of the North Amer-

ican Chapter of the Association for Computational Linguistics, pages 742–750,

2010. 163

170

BIBLIOGRAPHY

G. Grefenstette. Explorations in automatic thesaurus discovery. Kluwer Academic

Press, 1994. 118

M. Gross. Constructing lexicon-grammars. In B.T.S. Atkins and A. Zampolli, edi-

tors, Computational approaches to the lexicon, pages 213–263. Oxford University

Press, 1994. 120

K. Hall and V. Novák. Corrective modeling for non-projective dependency pars-

ing. In Proceedings of the Ninth International Workshop on Parsing Technologies,

pages 42–52, 2005. ii, iii, 2, 88, 89, 91, 92, 93, 95, 96, 97, 102, 107

K. Hara, M. Shimbo, H. Okuma, and Y. Matsumoto. Coordinate structure analysis

with global structural constraints and alignment-based local features. In Proceed-

ings of the Joint Conference of the 47th Annual Meeting of the ACL and the 4th

International Joint Conference on Natural Language Processing of the AFNLP,

pages 967–975, 2009. 91

Z. Harris. Distributional structure. Word, 10(23):146–162, 1954. 116

T. Hastie, R. Tibshirani, and J. Friedman. The elements of statistical learning.

Springer-Verlag, 2nd edition, 2008. 125

D.G. Hays. Dependency theory: A formalism and some observations. Language, 40

(4):511–525, 1964. 22

E. Henestroza Anguiano and M. Candito. Parse correction with specialized models

for difficult attachment types. In Proceedings of the 2011 Conference on Empirical

Methods in Natural Language Processing, 2011. 88

E. Henestroza Anguiano and M. Candito. Probabilistic lexical generalization for

French dependency parsing. In Proceedings of the ACL Workshop SPSemMRL,

2012. 115, 120, 134

E. Henestroza Anguiano and P. Denis. FreDist: Automatic construction of distri-

butional thesauri for French. In Actes de la 18ème conférence sur le traitement

automatique des langues naturelles, pages 119–124, 2011. 119, 131

D. Hindle. Noun classification from predicate-argument structures. In Proceedings

of the 28th annual meeting on Association for Computational Linguistics, pages

268–275, 1990. 118

D. Hindle and M. Rooth. Structural ambiguity and lexical relations. Computational

linguistics, 19(1):103–120, 1993. 91

171

BIBLIOGRAPHY

D. Hogan. Coordinate noun phrase disambiguation in a generative parsing model. In

In Proceedings of the 45th Annual Meeting of the Association for Computational

Linguistics, page 680, 2007. 91

C.W. Hsu and C.J. Lin. A comparison of methods for multiclass support vector

machines. IEEE Transactions on Neural Networks, 13(2):415–425, 2002. 45

J.J. Jiang and D.W. Conrath. Semantic similarity based on corpus statistics and

lexical taxonomy. In International Conference on Research in Computational

Linguistics, 1997. 129, 133

T. Joachims. Making large scale SVM learning practical. Advances in Kernel Meth-

ods - Support Vector Learning, 1999. 78, 103

T. Joachims. Optimizing search engines using clickthrough data. In Proceedings of

the eighth ACM SIGKDD international conference on Knowledge discovery and

data mining, pages 133–142, 2002. 45

R. Johansson and P. Nugues. Extended constituent-to-dependency conversion for

english. In Proceedings of the 16th Nordic Conference on Computational Linguis-

tics, pages 105–112, 2007. 29

M. Johnson. PCFG models of linguistic tree representations. Computational Lin-

guistics, 24(4):613–632, 1998. 49

S. Kahane. Bubble trees and syntactic representations. In T. Becker and H.-U.

Krieger, editors, Proceedings of Mathematics of Language (MOL5) Meeting, pages

70–76, 1997. 21

S. Kahane. Grammaires de dépendance formelles et théorie Sens-Texte. In Actes de

la 8ème conférence sur le traitement automatique des langues naturelles, volume 2,

pages 17–76, 2001. 21, 24

R.M. Kaplan and J. Bresnan. Lexical-functional grammar: A formal system for

grammatical representation. Formal Issues in Lexical-Functional Grammar, pages

29–130, 1982. 16, 20

T. Kasami. An efficient recognition and syntax-analysis algorithm for context-free

languages. Technical report, Air Force Cambridge Research Lab, 1965. 28

R.S. Kayne. French syntax: The transformational cycle. MIT Press, 1975. 30

172

BIBLIOGRAPHY

J. Kazama, S. De Saeger, K. Kuroda, M. Murata, and K. Torisawa. A Bayesian

method for robust estimation of distributional similarities. In Proceedings of the

48th Annual Meeting of the Association for Computational Linguistics, pages 247–

256, 2010. 119

D. Klein and C.D. Manning. Accurate unlexicalized parsing. In Proceedings of

the 41st Annual Meeting on Association for Computational Linguistics-Volume 1,

pages 423–430, 2003. 49

T. Koo and M. Collins. Efficient third-order dependency parsers. In Proceedings of

the 48th Annual Meeting of the Association for Computational Linguistics, pages

1–11, 2010. 53

T. Koo, X. Carreras, and M. Collins. Simple semi-supervised dependency parsing.

In Proceedings of the 46th Annual Meeting of the Association for Computational

Linguistics, pages 595–603, 2008. 120, 125, 140

S. Kübler. The PaGe 2008 shared task on parsing German. In Proceedings of the

Workshop on Parsing German, pages 55–63, 2008. 52

S. Kübler, R. McDonald, and J. Nivre. Dependency Parsing. Synthesis Lectures on

Human Language Technologies, 1(1):1–127, 2009. 2, 22, 50, 51, 57, 61

J. Le Roux, B. Favre, G. Mirroshandel, and A. Nasr. Modèles génératif et discrimi-

nant en analyse syntaxique : Expériences sur le corpus arboré de Paris 7. In Actes

de la 18ème conférence sur le traitement automatique des langues naturelles, pages

371–382, 2011. 90

D. Lin. Automatic retrieval and clustering of similar words. In Proceedings of the

36th Annual Meeting of the Association for Computational Linguistics and 17th

International Conference on Computational Linguistics, Volume 2, pages 768–774,

1998. 115, 118, 119, 121, 123, 131, 149

X. Lin, Y. Fan, M. Zhang, X. Wu, and H. Chi. Refining grammars for parsing

with hierarchical semantic knowledge. In Proceedings of the 2009 Conference on

Empirical Methods in Natural Language Processing, pages 1298–1307, 2009. 120

D.M. Magerman. Natural language parsing as statistical pattern recognition. PhD

thesis, Stanford University, 1994. 29

D.M. Magerman. Statistical decision-tree models for parsing. In Proceedings of

the 33rd annual meeting of the Association for Computational Linguistics, pages

276–283. Association for Computational Linguistics, 1995. 26

173

BIBLIOGRAPHY

C. Manning and H. Schütze. Foundations of Statistical Natural Language Processing.

MIT Press, 1999. 118

M.P. Marcus, M.A. Marcinkiewicz, and B. Santorini. Building a large annotated

corpus of English: The Penn Treebank. Computational Linguistics, 19(2):313–

330, 1993. 29

D. McCarthy and J. Carroll. Disambiguating nouns, verbs, and adjectives using

automatically acquired selectional preferences. Computational Linguistics, 29(4):

639–654, 2003. 144

D. McCarthy, R. Koeling, J. Weeds, and J. Carroll. Finding predominant word

senses in untagged text. In Proceedings of the 42nd Meeting of the Association

for Computational Linguistics, pages 279–286, 2004. 128, 129, 133

D. McClosky and E. Charniak. Self-training for biomedical parsing. In Proceedings of

the 46th Annual Meeting of the Association for Computational Linguistics, pages

101–104, 2008. 100

D. McClosky, E. Charniak, and M. Johnson. Effective self-training for parsing. In

Proceedings of the Human Language Technology Conference of the North American

Chapter of the Association for Computational Linguistics, pages 152–159, 2006.

ii, iii, 88, 98, 99, 100, 110, 111

R. McDonald and J. Nivre. Characterizing the errors of data-driven dependency

parsing models. In Proceedings of the 2007 Joint Conference on Empirical Methods

in Natural Language Processing and Computational Natural Language Learning,

pages 122–131, 2007. 56

R. McDonald and F. Pereira. Online learning of approximate dependency parsing

algorithms. In Proceedings of the 11th Conference of the European Chapter of the

Association for Computational Linguistics, pages 81–88, 2006. 53, 90

R. McDonald, K. Crammer, and F. Pereira. Online large-margin training of de-

pendency parsers. In Proceedings of the 43rd Annual Meeting on Association for

Computational Linguistics, pages 91–98, 2005. 49, 53, 54, 146

R. McDonald, K. Lerman, and F. Pereira. Multilingual dependency analysis with

a two-stage discriminative parser. In Proceedings of the Tenth Conference on

Natural Language Learning, pages 216–220, 2006. 54, 55

I. Melčuk. Dependency Syntax: Theory and Practice. The SUNY Press, Albany,

NY, 1988. 21, 22, 24, 28

174

BIBLIOGRAPHY

P. Mertens. Restrictions de sélection et réalisations syntagmatiques dans Dico-

valence. Conversion vers un format utilisable en TAL. In Actes de la 17ème

conférence sur le traitement automatique des langues naturelles, 2010. 147, 153

G.A. Miller and W.G. Charles. Contextual correlates of semantic similarity. Lan-

guage and cognitive processes, 6(1):1–28, 1991. 118

G.A. Miller, C. Leacock, R. Tengi, and R.T. Bunker. A semantic concordance.

In Proceedings of the workshop on Human Language Technology, pages 303–308,

1993. 144

S.A. Mirroshandel, A. Nasr, and J. Le Roux. Semi-supervised dependency parsing

using lexical affinities. Proceedings of ACL 2012, 2012. 146, 147

A. Nasr. Analyse syntaxique probabiliste pour grammaires de dépendances extraites

automatiquement. Habilitation à diriger des recherches, Université Paris 7, 2004.

22

J. Nivre. An efficient algorithm for projective dependency parsing. In Proceedings

of the 8th International Workshop on Parsing Technologies, pages 149–160, 2003.

2, 28, 49, 53, 57, 59

J. Nivre. Incremental non-projective dependency parsing. In Proceedings of Human

Language Technologies: The Annual Conference of the North American Chapter

of the Association for Computational Linguistics (NAACL HLT), pages 396–403,

2007. 59

J. Nivre. Algorithms for deterministic incremental dependency parsing. Compu-

tational Linguistics, 34(4):513–553, 2008. ii, iii, 2, 57, 58, 59, 60, 61, 64, 72,

73

J. Nivre and J. Nilsson. Pseudo-projective dependency parsing. In Proceedings of the

43rd Annual Meeting on Association for Computational Linguistics, pages 99–106,

2005. 107

J. Nivre, J. Hall, J. Nilsson, G. Eryigit, and S. Marinov. Labeled pseudo-projective

dependency parsing with support vector machines. In Proceedings of the Tenth

Conference on Computational Natural Language Learning, pages 221–225, 2006.

2, 55, 57, 74, 80

J. Nivre, J. Hall, S. Kübler, R. McDonald, J. Nilsson, S. Riedel, and D. Yuret. The

CoNLL 2007 shared task on dependency parsing. In Proceedings of the CoNLL

Shared Task Session of EMNLP-CoNLL 2007, pages 915–932, 2007a. 49

175

BIBLIOGRAPHY

J. Nivre, J. Hall, J. Nilsson, A. Chanev, G. Eryigit, S. Kübler, S. Marinov, and

E. Marsi. MaltParser: A language-independent system for data-driven depen-

dency parsing. Natural Language Engineering, 13(02):95–135, 2007b. ISSN 1351-

3249. 53, 64, 74, 81, 84

D. Ó Séaghdha. Latent variable models of selectional preference. In Proceedings of

the 48th Annual Meeting of the Association for Computational Linguistics, pages

435–444. Association for Computational Linguistics, 2010. 145, 162

M. Olteanu and D. Moldovan. PP-attachment disambiguation using large context.

In Proceedings of the Conference on Human Language Technology and Empirical

Methods in Natural Language Processing, pages 273–280, 2005. 91

P. Pantel and D. Lin. An unsupervised approach to prepositional phrase attachment

using contextually similar words. In Proceedings of the 38th Annual Meeting of

the Association for Computational Linguistics, pages 101–108, 2000. 91

P. Pantel, E. Crestan, A. Borkovsky, A. Popescu, and V. Vyas. Web-scale distribu-

tional similarity and entity set expansion. In Proceedings of the 2009 Conference

on Empirical Methods in Natural Language Processing, pages 938–947, 2009. 119

F. Pereira, N. Tishby, and L. Lee. Distributional clustering of English words. In

Proceedings of the 31st annual meeting of the Association for Computational Lin-

guistics, pages 183–190, 1993. 118, 119

S. Petrov and R. McDonald. Overview of the 2012 shared task on parsing the web. In

Notes of the First Workshop on Syntactic Analysis of Non-Canonical Language,

2012. 50

S. Petrov, L. Barrett, R. Thibaux, and D. Klein. Learning accurate, compact, and

interpretable tree annotation. In Proceedings of the 21st International Conference

on Computational Linguistics and the 44th annual meeting of the Association for

Computational Linguistics, pages 433–440, 2006. 120

S. Petrov, P.C. Chang, M. Ringgaard, and H. Alshawi. Uptraining for accurate de-

terministic question parsing. In Proceedings of the 2010 Conference on Empirical

Methods in Natural Language Processing, pages 705–713, 2010. 99

C.J. Pollard and I.A. Sag. Head-Driven Phrase Structure Grammar. University of

Chicago Press, 1994. 16, 21

176

BIBLIOGRAPHY

P. Resnik. A class-based approach to lexical discovery. In Proceedings of the 30th an-

nual meeting on Association for Computational Linguistics, pages 327–329, 1992.

144

P. Resnik. Semantic similarity in a taxonomy: An information-based measure and

its application to problems of ambiguity in natural language. Journal of Artificial

Intelligence Research, 11(95):130, 1999. 91

A. Ritter, Mausam, and O. Etzioni. A latent dirichlet allocation method for selec-

tional preferences. In Proceedings of the 48th Annual Meeting of the Association

for Computational Linguistics, pages 424–434. Association for Computational Lin-

guistics, 2010. 145, 162

J.J. Robinson. Dependency structures and transformational rules. Language, pages

259–285, 1970. 26

F. Rosenblatt. The Perceptron: A probabilistic model for information storage and

organization in the brain. Psychological review, 65(6):386, 1958. 41

K. Sagae. Self-training without reranking for parser domain adaptation and its

impact on semantic role labeling. In Proceedings of the 2010 Workshop on Domain

Adaptation for Natural Language Processing, pages 37–44, 2010. 99

K. Sagae and A. Gordon. Clustering words by syntactic similarity improves de-

pendency parsing of predicate-argument structures. In Proceedings of the 11th

International Conference on Parsing Technologies, pages 192–201, 2009. 120, 125

B. Sagot. The Lefff, a freely available, accurate and large-coverage lexicon for French.

In Proceedings of the 7th International Conference on Language Resources and

Evaluation, 2010. 53, 76

B. Sagot and D. Fǐser. Building a free French wordnet from multilingual resources.

In Proceedings of Workshop on OntoLex, pages 14–19, 2008. 127, 128

P. Sgall, E. Hajicová, and J. Panevová. The meaning of the sentence in its semantic

and pragmatic aspects. Reidel, Dordrecht, 1986. 21

M. Shimbo and K. Hara. A discriminative learning model for coordinate conjunc-

tions. In Proceedings of the 2007 Joint Conference on Empirical Methods in Nat-

ural Language Processing and Computational Natural Language Learning, pages

610–619, 2007. 91

177

BIBLIOGRAPHY

A. Sigogne and M. Constant. Using subcategorization frames to improve French

probabilistic parsing. In Proceedings of the 11th Conference on Natural Language

Processing (KONVENS’12), 2012. 120

A. Sigogne, M. Constant, and E. Laporte. French parsing enhanced with a word

clustering method based on a syntactic lexicon. In Proceedings of the Second

Workshop on Statistical Parsing of Morphologically Rich Languages, pages 22–27,

2011. 120

F. Smadja. Retrieving collocations from text: Xtract. Computational linguistics, 19

(1):143–177, 1993. 119

M. Steedman, M. Osborne, A. Sarkar, S. Clark, R. Hwa, J. Hockenmaier, P. Ruhlen,

S. Baker, and J. Crim. Bootstrapping statistical parsers from small datasets. In

Proceedings of the 10th Conference of the European Chapter of the Association

for Computational Linguistics, pages 331–338, 2003. 98

L. Tesniere. Eléments de syntaxe structurale. Klincksieck, Paris, 1959. 21, 22

J. Tiedemann. News from OPUS - A collection of multilingual parallel corpora

with tools and interfaces. In Recent Advances in Natural Language Processing,

volume 5, pages 237–248. John Benjamins, Amsterdam, 2009. 104

P.D. Turney and P. Pantel. From frequency to meaning: Vector space models of

semantics. Journal of Artificial Intelligence Research, 37(1):141–188, 2010. ISSN

1076-9757. 117

L. Van Der Plas and G. Bouma. Syntactic contexts for finding semantically related

words. In Computational linguistics in the Netherlands, 2004. 119

G. Van Noord. Using self-trained bilexical preferences to improve disambiguation

accuracy. In Proceedings of the 10th International Conference on Parsing Tech-

nologies, pages 1–10, 2007. 145

P. Vossen, editor. EuroWordNet: a multilingual database with lexical semantic net-

works. Kluwer Academic Publishers, Dordrecht, 1998. 127

D. Xiong, S. Li, Q. Liu, S. Lin, and Y. Qian. Parsing the Penn Chinese Treebank

with semantic knowledge. In Proceedings of the International Joint Conference

on Natural Language Processing, pages 70–81, 2005. 119

178

BIBLIOGRAPHY

H. Yamada and Y. Matsumoto. Statistical dependency analysis with support vector

machines. In Proceedings of the 8th International Workshop on Parsing Technolo-

gies, pages 195–206, 2003. 2, 26, 28, 29, 49, 53, 59, 107

D.H. Younger. Recognition and parsing of context-free languages in time n3. Infor-

mation and control, 10(2):189–208, 1967. 28

Y. Zhang and S. Clark. A tale of two parsers: investigating and combining graph-

based and transition-based dependency parsing using beam-search. In Proceedings

of the Conference on Empirical Methods in Natural Language Processing, pages

562–571, 2008. 163

Y. Zhang and J. Nivre. Transition-based parsing with rich non-local features. In

Proceedings of the 49th Annual Meeting of the Association for Computational

Linguistics, pages 188–193, 2011. 163

G. Zhou, J. Zhao, K. Liu, and L. Cai. Exploiting web-derived selectional preference

to improve statistical dependency parsing. In Proceedings of the 49th Annual

Meeting of the Association for Computational Linguistics, pages 1556–1565, 2011.

146

179

	List of Figures
	List of Tables
	Introduction
	1 Preliminaries in Syntax and Machine Learning
	1.1 Basic Linguistic Concepts
	1.1.1 Morphological and Lexical Notions
	1.1.2 Syntactic Notions

	1.2 Formal Representations of Syntax
	1.2.1 Phrase-Structure Grammar
	1.2.2 Dependency Grammar
	1.2.3 Syntactic Ambiguity
	1.2.4 Formalism Equivalence

	1.3 French Syntax and Resources
	1.3.1 The (Phrase-Structure) French Treebank
	1.3.2 Conversion to the French Dependency Treebank

	1.4 Machine Learning Methods
	1.4.1 Kernels in Linear Models
	1.4.2 Batch Learning with Kernel SVM
	1.4.3 Categorical Features

	2 Efficient Large-Context Dependency Parsing
	2.1 Overview of Dependency Parsing
	2.1.1 Formalizing Data-Driven Dependency Parsing
	2.1.2 Lessons from a French Parsing Benchmark

	2.2 Transition-Based Parsing
	2.2.1 The Generalized Framework
	2.2.2 Existing Approaches: arc-standard, arc-eager
	2.2.3 A Multiple-Candidate Variant: arc-eager-mc

	2.3 Parsing Experiments
	2.3.1 Methods and Setup
	2.3.2 Results

	3 Efficient Large-Context Parse Correction
	3.1 Learning to Correct Parse Errors
	3.1.1 Related Work
	3.1.2 The Neighborhood Correction Framework
	3.1.3 Improving Context: Ranking and Features

	3.2 Self-Trained Parsing with Correction
	3.2.1 Basic Self-Training Framework
	3.2.2 Two-Stage Self-Training

	3.3 Correction Experiments
	3.3.1 Methods and Setup
	3.3.2 Results

	4 Parsing with Generalized Lexical Classes
	4.1 Distributional Lexical Semantics and Classes
	4.1.1 Related Work
	4.1.2 Framework for Distributional Methods
	4.1.3 Lexical Class Spaces

	4.2 Lexical Class Experiments
	4.2.1 Methods and Setup
	4.2.2 Results

	5 Parsing with PP-Attachment Preferences
	5.1 Methods for Lexical Preference
	5.1.1 Related Work
	5.1.2 PP-Attachment Preference Types
	5.1.3 Statistical Preference Metrics

	5.2 PP-Attachment Preference Experiments
	5.2.1 Methods and Setup
	5.2.2 Results

	Conclusion
	Bibliography

