B. Folch, Etude bioinformatique de la stabilité thermique des protéines : conception de potentiels statistiques dépendant de la température et développement d'approches prédictives/Bioinformatic study of protein thermal stability : development of temperature dependent statistical potentials and design of predictive approaches, 2010.

G. Pollastri, P. Baldi, P. Fariselli, C. , and R. , Prediction of coordination number and relative solvent accessibility in proteins, Proteins: Structure, Function, and Genetics, vol.16, issue.2, pp.142-153, 2002.
DOI : 10.1002/prot.10069

S. Schwarzinger, G. J. Kroon, T. R. Foss, P. E. Wright, D. et al., Random coil chemical shifts in acidic 8 M urea: implementation of random coil shift data in NMRView, Journal of Biomolecular NMR, vol.18, issue.1, pp.43-48, 2000.
DOI : 10.1023/A:1008386816521

O. Davulcu, The intrinsic dynamics of arginine kinase, Department of Chemistry ans biochemistry Florida state university, 2008.

M. Forstner, M. Kriechbaum, P. Laggner, and T. Wallimann, Structural Changes of Creatine Kinase upon Substrate Binding, Biophysical Journal, vol.75, issue.2, pp.1016-1023, 1998.
DOI : 10.1016/S0006-3495(98)77590-3

M. S. Yousef, F. Fabiola, J. L. Gattis, T. Somasundaram, and M. S. Chapman, Refinement of the arginine kinase transition-state analogue complex at 1.2 angstrom resolution: mechanistic insights, Acta Crystallographica Section D- Biological Crystallography, vol.58, 2002.

X. Niu, L. Bruschweiler-li, O. Davulcu, J. J. Skalicky, R. Bruschweiler et al., Arginine Kinase: Joint Crystallographic and NMR RDC Analyses Link Substrate-Associated Motions to Intrinsic Flexibility, Journal of Molecular Biology, vol.405, issue.2, pp.479-496, 2011.
DOI : 10.1016/j.jmb.2010.11.007

M. S. Yousef, S. A. Clark, P. K. Pruett, T. Somasundaram, W. R. Ellington et al., Induced fit in guanidino kinases--comparison of substrate-free and transition state analog structures of arginine kinase, Protein Science, vol.12, issue.1, pp.103-111, 2003.
DOI : 10.1110/ps.0226303

D. J. Bush, O. Kirillova, S. A. Clark, O. Davulcu, F. Fabiola et al., The Structure of Lombricine Kinase: IMPLICATIONS FOR PHOSPHAGEN KINASE CONFORMATIONAL CHANGES, Journal of Biological Chemistry, vol.286, issue.11, pp.9338-9350, 2011.
DOI : 10.1074/jbc.M110.202796

O. Davulcu, J. J. Skalicky, and M. S. Chapman, Rate-Limiting Domain and Loop Motions in Arginine Kinase, Biochemistry, vol.50, issue.19, 2011.
DOI : 10.1021/bi101664u

T. Hornemann, D. Rutishauser, and T. Wallimann, Why is creatine kinase a dimer? Evidence for cooperativity between the two subunits, Biochimica et Biophysica Acta (BBA) - Protein Structure and Molecular Enzymology, vol.1480, issue.1-2, pp.365-373, 2000.
DOI : 10.1016/S0167-4838(00)00098-4

H. Mazon, Caractérisation des variations structurales de la créatine kinase à l'aide de sondes spectroscopiques et de l'échange H/D couplé à la spectrométrie de masse, 2003.

A. M. Awama, H. Mazon, C. Vial, and O. Marcillat, Despite its high similarity with monomeric arginine kinase, muscle creatine kinase is only enzymatically active as a dimer, Archives of Biochemistry and Biophysics, vol.458, issue.2, pp.158-166, 2007.
DOI : 10.1016/j.abb.2006.09.001

M. Tyers and P. Jorgensen, Proteolysis and the cell cycle: with this RING I do thee destroy, Current Opinion in Genetics & Development, vol.10, issue.1, pp.54-64, 2000.
DOI : 10.1016/S0959-437X(99)00049-0

M. Scheffner, U. Nuber, and J. M. Huibregtse, Protein ubiquitination involving an E1???E2???E3 enzyme ubiquitin thioester cascade, Nature, vol.373, issue.6509, pp.81-83, 1995.
DOI : 10.1038/373081a0

J. M. Huibregtse, M. Scheffner, S. Beaudenon, and P. M. Howley, A family of proteins structurally and functionally related to the E6-AP ubiquitin-protein ligase, Proc Natl Acad Sci, p.5249, 1995.

D. Hoeller, C. M. Hecker, S. Wagner, V. Rogov, V. Dotsch et al., E3-Independent Monoubiquitination of Ubiquitin-Binding Proteins, Molecular Cell, vol.26, issue.6, pp.891-898, 2007.
DOI : 10.1016/j.molcel.2007.05.014

J. Peng, D. Schwartz, J. E. Elias, C. C. Thoreen, D. Cheng et al., A proteomics approach to understanding protein ubiquitination, Nature Biotechnology, vol.21, issue.8, pp.921-926, 2003.
DOI : 10.1038/nbt849

C. M. Pickart and D. Fushman, Polyubiquitin chains: polymeric protein signals, Current Opinion in Chemical Biology, vol.8, issue.6, pp.610-616, 2004.
DOI : 10.1016/j.cbpa.2004.09.009

J. H. Hurley, ESCRT complexes and the biogenesis of multivesicular bodies, Current Opinion in Cell Biology, vol.20, issue.1, pp.4-11, 2008.
DOI : 10.1016/j.ceb.2007.12.002

J. H. Hurley, The ESCRT complexes, Critical Reviews in Biochemistry and Molecular Biology, vol.414, issue.6, pp.463-487, 2010.
DOI : 10.1073/pnas.0603788103

J. H. Hurley, H. , and P. I. , Membrane budding and scission by the ESCRT machinery: it's all in the neck, Nature Reviews Molecular Cell Biology, vol.122, issue.8, pp.556-566, 2010.
DOI : 10.1038/nrm2937

K. D. Wilkinson, Regulation of ubiquitin-dependent processes by deubiquitinating enzymes, FASEB J, vol.11, pp.1245-1256, 1997.

S. M. Millard and S. A. Wood, Riding the DUBway: regulation of protein trafficking by deubiquitylating enzymes: Figure 1., The Journal of Cell Biology, vol.127, issue.4, pp.463-468, 2006.
DOI : 10.1038/sj.onc.1208944

M. J. Clague and S. Urbe, Endocytosis: the DUB version, Trends in Cell Biology, vol.16, issue.11, pp.551-559, 2006.
DOI : 10.1016/j.tcb.2006.09.002

J. H. Hurley, S. Lee, and G. Prag, Ubiquitin-binding domains, Biochemical Journal, vol.399, issue.3, pp.361-372, 2006.
DOI : 10.1042/BJ20061138

URL : http://www.ncbi.nlm.nih.gov/pmc/articles/PMC1615911

L. Hicke, H. L. Schubert, and C. P. Hill, Ubiquitin-binding domains, Nature Reviews Molecular Cell Biology, vol.269, issue.8, pp.610-621, 2005.
DOI : 10.1126/science.1110340

H. Barriere, C. Nemes, D. Lechardeur, M. Khan-mohammad, K. Fruh et al., Molecular Basis of Oligoubiquitin-Dependent Internalization of Membrane Proteins in Mammalian Cells, Traffic, vol.279, issue.Pt 2, pp.282-297, 2006.
DOI : 10.1111/j.1600-0854.2006.00384.x

D. Mukhopadhyay and H. Riezman, Proteasome-Independent Functions of Ubiquitin in Endocytosis and Signaling, Science, vol.315, issue.5809, pp.201-205, 2007.
DOI : 10.1126/science.1127085

L. Hicke and H. Riezman, Ubiquitination of a Yeast Plasma Membrane Receptor Signals Its Ligand-Stimulated Endocytosis, Cell, vol.84, issue.2, pp.277-287, 1996.
DOI : 10.1016/S0092-8674(00)80982-4

S. Dupre, D. Urban-grimal, and R. Haguenauer-tsapis, Ubiquitin and endocytic internalization in yeast and animal cells, Biochimica et Biophysica Acta (BBA) - Molecular Cell Research, vol.1695, issue.1-3, pp.89-111, 2004.
DOI : 10.1016/j.bbamcr.2004.09.024

URL : https://hal.archives-ouvertes.fr/hal-00007632

O. Staub and D. And-rotin, Role of Ubiquitylation in Cellular Membrane Transport, Physiological Reviews, vol.86, issue.2, pp.669-707, 2006.
DOI : 10.1152/physrev.00020.2005

E. S. Seto, H. J. Bellen, L. , T. E. Pelkmans, L. Helenius et al., When cell biology meets development: endocytic regulation of signaling pathways, Genes & Development, vol.16, issue.11, pp.1314-1336, 2002.
DOI : 10.1101/gad.989602

R. G. Anderson, THE CAVEOLAE MEMBRANE SYSTEM, Annual Review of Biochemistry, vol.67, issue.1, pp.199-225, 1998.
DOI : 10.1146/annurev.biochem.67.1.199

F. Lafont and K. Simons, Raft-partitioning of the ubiquitin ligases Cbl and Nedd4 upon IgE-triggered cell signaling, Proceedings of the National Academy of Sciences, vol.98, issue.6, pp.3180-3184, 2001.
DOI : 10.1073/pnas.051003498

C. Lamaze, A. Dujeancourt, T. Baba, C. G. Lo, A. Benmerah et al., Interleukin 2 Receptors and Detergent-Resistant Membrane Domains Define a Clathrin-Independent Endocytic Pathway, Molecular Cell, vol.7, issue.3, pp.661-671, 2001.
DOI : 10.1016/S1097-2765(01)00212-X

K. Haglund, S. Sigismund, S. Polo, I. Szymkiewicz, D. Fiore et al., Multiple monoubiquitination of RTKs is sufficient for their endocytosis and degradation, Nature Cell Biology, vol.18, issue.5, pp.461-466, 2003.
DOI : 10.1038/ncb983

F. Huang, L. K. Goh, and A. Sorkin, EGF receptor ubiquitination is not necessary for its internalization, Proceedings of the National Academy of Sciences, vol.104, issue.43, pp.16904-16909, 2007.
DOI : 10.1073/pnas.0707416104

S. Sigismund, E. Argenzio, D. Tosoni, E. Cavallaro, S. Polo et al., Clathrin-Mediated Internalization Is Essential for Sustained EGFR Signaling but Dispensable for Degradation, Developmental Cell, vol.15, issue.2, pp.209-219, 2008.
DOI : 10.1016/j.devcel.2008.06.012

L. Duan, Y. Miura, M. Dimri, B. Majumder, I. L. Dodge et al., Cbl-mediated Ubiquitinylation Is Required for Lysosomal Sorting of Epidermal Growth Factor Receptor but Is Dispensable for Endocytosis, Journal of Biological Chemistry, vol.278, issue.31, pp.28950-28960, 2003.
DOI : 10.1074/jbc.M304474200

F. Huang, D. Kirkpatrick, X. Jiang, S. Gygi, and A. Sorkin, Differential Regulation of EGF Receptor Internalization and Degradation by Multiubiquitination within the Kinase Domain, Molecular Cell, vol.21, issue.6, pp.737-748, 2006.
DOI : 10.1016/j.molcel.2006.02.018

F. Acconcia, S. Sigismund, and S. Polo, Ubiquitin in trafficking: The network at work, Experimental Cell Research, vol.315, issue.9, pp.1610-1618, 2009.
DOI : 10.1016/j.yexcr.2008.10.014

L. Hicke and R. Dunn, Regulation of Membrane Protein Transport by Ubiquitin and Ubiquitin-Binding Proteins, Annual Review of Cell and Developmental Biology, vol.19, issue.1, pp.141-172, 2003.
DOI : 10.1146/annurev.cellbio.19.110701.154617

R. C. Piper, J. P. Luzio, R. C. Piper, D. J. Katzmann, D. J. Katzmann et al., Ubiquitin-dependent sorting of integral membrane proteins for degradation in lysosomes Biogenesis and function of multivesicular bodies Ubiquitin-dependent sorting into the multivesicular body pathway requires the function of a conserved endosomal protein sorting complex, ESCRT-I, Curr Opin Cell Biol Annu Rev Cell Dev Biol Cell, vol.19, issue.106, pp.459-465, 2001.

M. Babst, D. J. Katzmann, W. B. Snyder, B. Wendland, and S. D. Emr, Endosome-Associated Complex, ESCRT-II, Recruits Transport Machinery for Protein Sorting at the Multivesicular Body, Developmental Cell, vol.3, issue.2, pp.283-289, 2002.
DOI : 10.1016/S1534-5807(02)00219-8

M. Babst, D. J. Katzmann, E. J. Estepa-sabal, T. Meerloo, and S. D. Emr, Escrt-III, Developmental Cell, vol.3, issue.2, pp.271-282, 2002.
DOI : 10.1016/S1534-5807(02)00220-4

URL : http://doi.org/10.1016/s1534-5807(02)00220-4

C. Raiborg, K. G. Bache, D. J. Gillooly, I. H. Madshus, E. Stang et al., Hrs sorts ubiquitinated proteins into clathrin-coated microdomains of early endosomes, Nature Cell Biology, vol.4, issue.5, pp.394-398, 2002.
DOI : 10.1038/ncb791

S. Hirano, M. Kawasaki, H. Ura, R. Kato, C. Raiborg et al., Double-sided ubiquitin binding of Hrs-UIM in endosomal protein sorting, Nature Structural & Molecular Biology, vol.20, issue.3, pp.272-277, 2006.
DOI : 10.1038/nsmb1051

G. Prag, H. Watson, Y. C. Kim, B. M. Beach, R. Ghirlando et al., The Vps27/Hse1 Complex Is a GAT Domain-Based Scaffold for Ubiquitin-Dependent Sorting, Developmental Cell, vol.12, issue.6, pp.973-986, 2007.
DOI : 10.1016/j.devcel.2007.04.013

E. Mizuno, K. Kawahata, M. Kato, N. Kitamura, and M. Komada, STAM Proteins Bind Ubiquitinated Proteins on the Early Endosome via the VHS Domain and Ubiquitin-interacting Motif, Molecular Biology of the Cell, vol.14, issue.9, pp.3675-3689, 2003.
DOI : 10.1091/mbc.E02-12-0823

J. Mccullough, P. E. Row, O. Lorenzo, M. Doherty, R. Beynon et al., Activation of the Endosome-Associated Ubiquitin Isopeptidase AMSH by STAM, a Component of the Multivesicular Body-Sorting Machinery, Current Biology, vol.16, issue.2, pp.160-165, 2006.
DOI : 10.1016/j.cub.2005.11.073

T. Kaneko, T. Kumasaka, T. Ganbe, T. Sato, K. Miyazawa et al., P Ligand to the Signal Transducing Adaptor Molecule-2 Src Homology 3 Domain, Journal of Biological Chemistry, vol.278, issue.48, pp.48162-48168, 2003.
DOI : 10.1074/jbc.M306677200

D. P. Nickerson, M. R. Russell, and G. Odorizzi, A concentric circle model of multivesicular body cargo sorting, EMBO reports, vol.18, issue.7, pp.644-650, 2007.
DOI : 10.1091/mbc.E06-10-0887

H. Teo, D. J. Gill, J. Sun, O. Perisic, D. B. Veprintsev et al., ESCRT-I Core and ESCRT-II GLUE Domain Structures Reveal Role for GLUE in Linking to ESCRT-I and Membranes, Cell, vol.125, issue.1, pp.99-111, 2006.
DOI : 10.1016/j.cell.2006.01.047

J. R. Mayers, I. Fyfe, A. L. Schuh, E. R. Chapman, J. M. Edwardson et al., ESCRT-0 Assembles as a Heterotetrameric Complex on Membranes and Binds Multiple Ubiquitinylated Cargoes Simultaneously, Journal of Biological Chemistry, vol.286, issue.11, pp.9636-9645, 2011.
DOI : 10.1074/jbc.M110.185363

T. Wollert, H. , J. H. Nijman, S. M. Luna-vargas, M. P. Velds et al., Molecular mechanism of multivesicular body biogenesis by ESCRT complexes, Nature, vol.81, issue.7290, pp.864-869, 2005.
DOI : 10.1038/nature08849

O. Wiborg, M. S. Pedersen, A. Wind, L. E. Berglund, K. A. Marcker et al., The human ubiquitin multigene family: some genes contain multiple directly repeated ubiquitin coding sequences, EMBO J, vol.4, pp.755-759, 1985.

C. M. Pickart, R. , and I. A. , Ubiquitin carboxyl-terminal hydrolase acts on ubiquitin carboxyl-terminal amides, J Biol Chem, vol.260, pp.7903-7910, 1985.

J. Mccullough, M. J. Clague, and S. Urbe, AMSH is an endosome-associated ubiquitin isopeptidase, The Journal of Cell Biology, vol.166, issue.4, pp.487-492, 2004.
DOI : 10.1038/nature01071

M. I. Sierra, M. H. Wright, and P. D. Nash, AMSH Interacts with ESCRT-0 to Regulate the Stability and Trafficking of CXCR4, Journal of Biological Chemistry, vol.285, issue.18, pp.13990-14004, 2010.
DOI : 10.1074/jbc.M109.061309

H. T. Tsang, J. W. Connell, S. E. Brown, A. Thompson, E. Reid et al., A systematic analysis of human CHMP protein interactions: Additional MIT domain-containing proteins bind to multiple components of the human ESCRT III complex, Genomics, vol.88, issue.3, pp.333-346, 2006.
DOI : 10.1016/j.ygeno.2006.04.003

D. Komander, M. J. Clague, and S. Urbe, Breaking the chains: structure and function of the deubiquitinases, Nature Reviews Molecular Cell Biology, vol.280, issue.8, pp.550-563, 2009.
DOI : 10.1038/nrm2731

Y. Sato, A. Yoshikawa, A. Yamagata, H. Mimura, M. Yamashita et al., Structural basis for specific cleavage of Lys???63-linked polyubiquitin chains, Nature, vol.96, issue.7211, pp.358-362, 2008.
DOI : 10.1038/nature07254

E. Mizuno, N. Kitamura, and M. Komada, 14-3-3-dependent inhibition of the deubiquitinating activity of UBPY and its cancellation in the M phase, Experimental Cell Research, vol.313, issue.16, pp.3624-3634, 2007.
DOI : 10.1016/j.yexcr.2007.07.028

N. Gnesutta, M. Ceriani, M. Innocenti, I. Mauri, R. Zippel et al., Cloning and Characterization of Mouse UBPy, a Deubiquitinating Enzyme That Interacts with the Ras Guanine Nucleotide Exchange Factor CDC25Mm/Ras-GRF1, Journal of Biological Chemistry, vol.276, issue.42, pp.39448-39454, 2001.
DOI : 10.1074/jbc.M103454200

N. Anandasabapathy, G. S. Ford, D. Bloom, C. Holness, V. Paragas et al., GRAIL, Immunity, vol.18, issue.4, pp.535-547, 2003.
DOI : 10.1016/S1074-7613(03)00084-0

X. Wu, L. Yen, L. Irwin, C. Sweeney, C. et al., Stabilization of the E3 Ubiquitin Ligase Nrdp1 by the Deubiquitinating Enzyme USP8, Molecular and Cellular Biology, vol.24, issue.17, pp.7748-7757, 2004.
DOI : 10.1128/MCB.24.17.7748-7757.2004

M. Kato, K. Miyazawa, and N. Kitamura, A Deubiquitinating Enzyme UBPY Interacts with the Src Homology 3 Domain of Hrs-binding Protein via a Novel Binding Motif PX(V/I)(D/N)RXXKP, Journal of Biological Chemistry, vol.275, issue.48, pp.37481-37487, 2000.
DOI : 10.1074/jbc.M007251200

M. H. Wright, I. Berlin, P. D. Nash, P. E. Row, H. Liu et al., Regulation of Endocytic Sorting by ESCRT???DUB-Mediated Deubiquitination, Cell Biochemistry and Biophysics, vol.17, issue.18, pp.39-46, 2006.
DOI : 10.1007/s12013-011-9181-9

D. Fiore, P. P. Polo, S. Hofmann, and K. , Opinion: When ubiquitin meets ubiquitin receptors: a signalling connection, Nature Reviews Molecular Cell Biology, vol.4, issue.6, pp.491-497, 2003.
DOI : 10.1038/nrm1124

K. Haglund and H. Stenmark, Working out coupled monoubiquitination, Nature Cell Biology, vol.213, issue.11, pp.1218-1219, 2006.
DOI : 10.1038/ncb1106-1218

T. Woelk, B. Oldrini, E. Maspero, S. Confalonieri, E. Cavallaro et al., Molecular mechanisms of coupled monoubiquitination, Nature Cell Biology, vol.4, issue.11, pp.1246-1254, 2006.
DOI : 10.1038/ncb1484

L. Fallon, C. M. Belanger, A. T. Corera, M. Kontogiannea, E. Regan-klapisz et al., A regulated interaction with the UIM protein Eps15 implicates parkin in EGF receptor trafficking and PI(3)K???Akt signalling, Nature Cell Biology, vol.52, issue.8, pp.834-842, 2006.
DOI : 10.1038/ncb1441

E. Mizuno, T. Iura, A. Mukai, T. Yoshimori, N. Kitamura et al., Regulation of Epidermal Growth Factor Receptor Down-Regulation by UBPY-mediated Deubiquitination at Endosomes, Molecular Biology of the Cell, vol.16, issue.11, pp.5163-5174, 2005.
DOI : 10.1091/mbc.E05-06-0560

H. A. Alwan, J. E. Van-leeuwen, T. Arita, H. Asao, N. Tanaka et al., UBPY-mediated epidermal growth factor receptor (EGFR) de-ubiquitination promotes EGFR degradation Cloning of a novel signal-transducing adaptor molecule containing an SH3 domain and ITAM, J Biol Chem Biochem Biophys Res Commun, vol.282, issue.225, pp.1658-1669, 1996.

K. Endo, T. Takeshita, H. Kasai, Y. Sasaki, N. Tanaka et al., STAM2, a new member of the STAM family, binding to the Janus kinases, FEBS Letters, vol.274, issue.1-2, pp.55-61, 2000.
DOI : 10.1016/S0014-5793(00)01760-9

Q. Deveraux, V. Ustrell, C. Pickart, M. Rechsteiner, P. Young et al., A 26 S protease subunit that binds ubiquitin conjugates Characterization of two polyubiquitin binding sites in the 26 S protease subunit 5a, J Biol Chem J Biol Chem, vol.269, issue.273, pp.7059-7061, 1994.

R. D. Fisher, B. Wang, S. L. Alam, D. S. Higginson, H. Robinson et al., Structure and Ubiquitin Binding of the Ubiquitin-interacting Motif, Journal of Biological Chemistry, vol.278, issue.31, pp.28976-28984, 2003.
DOI : 10.1074/jbc.M302596200

S. L. Miller, E. Malotky, O. Bryan, and J. P. , Analysis of the Role of Ubiquitin-interacting Motifs in Ubiquitin Binding and Ubiquitylation, Journal of Biological Chemistry, vol.279, issue.32, pp.33528-33537, 2004.
DOI : 10.1074/jbc.M313097200

J. Lim, W. S. Son, J. K. Park, E. E. Kim, B. J. Lee et al., Solution structure of UIM and interaction of tandem ubiquitin binding domains in STAM1 with ubiquitin, Biochemical and Biophysical Research Communications, vol.405, issue.1, pp.273-284, 2007.
DOI : 10.1016/j.bbrc.2010.12.103

R. Ren, B. J. Mayer, P. Cicchetti, and D. Baltimore, Identification of a ten-amino acid proline-rich SH3 binding site, Science, vol.259, issue.5098, pp.1157-1161, 1993.
DOI : 10.1126/science.8438166

A. M. Mongiovi, P. R. Romano, S. Panni, M. Mendoza, W. T. Wong et al., A novel peptide-SH3 interaction, The EMBO Journal, vol.18, issue.19, pp.5300-5309, 1999.
DOI : 10.1093/emboj/18.19.5300

URL : http://www.ncbi.nlm.nih.gov/pmc/articles/PMC1171600

I. Dikic, I. Szymkiewicz, and P. Soubeyran, Cbl signaling networks in the regulation of cell function, Cellular and Molecular Life Sciences (CMLS), vol.60, issue.9, pp.1805-1827, 2003.
DOI : 10.1007/s00018-003-3029-4

D. Jozic, N. Cardenes, Y. L. Deribe, G. Moncalian, D. Hoeller et al., Cbl promotes clustering of endocytic adaptor proteins, Nature Structural & Molecular Biology, vol.11, issue.11, pp.972-979, 2005.
DOI : 10.1006/jsbi.1999.4094

D. T. Warren, P. D. Andrews, C. W. Gourlay, and K. R. Ayscough, Sla1p couples the yeast endocytic machinery to proteins regulating actin dynamics, J Cell Sci, vol.115, pp.1703-1715, 2002.

C. W. Gourlay, H. Dewar, D. T. Warren, R. Costa, N. Satish et al., An interaction between Sla1p and Sla2p plays a role in regulating actin dynamics and endocytosis in budding yeast The Rsp5 ubiquitin ligase binds to and ubiquitinates members of the yeast CIN85-endophilin complex, J Cell Sci J Biol Chem, vol.116, issue.279, pp.2551-2564, 2003.

A. Petrelli, G. F. Gilestro, S. Lanzardo, P. M. Comoglio, N. Migone et al., The endophilin???CIN85???Cbl complex mediates ligand-dependent downregulation of c-Met, Nature, vol.111, issue.6877, pp.187-190, 2002.
DOI : 10.1038/416187a

P. Soubeyran, K. Kowanetz, I. Szymkiewicz, W. Y. Langdon, I. Dikic et al., Cbl???CIN85???endophilin complex mediates ligand-induced downregulation of EGF receptors, Nature, vol.271, issue.6877, pp.183-187, 2002.
DOI : 10.1038/416183a

Y. He, L. Hicke, and I. And-radhakrishnan, Structural Basis for Ubiquitin Recognition by SH3 Domains, Journal of Molecular Biology, vol.373, issue.1, pp.190-196, 2007.
DOI : 10.1016/j.jmb.2007.07.074

C. Raiborg and H. Stenmark, Hrs and Endocytic Sorting of Ubiquitinated Membrane Proteins, Cell Structure and Function, vol.27, issue.6, pp.403-408, 2002.
DOI : 10.1247/csf.27.403

C. Kong, X. Su, P. I. Chen, and P. D. Stahl, Rin1 Interacts with Signal-transducing Adaptor Molecule (STAM) and Mediates Epidermal Growth Factor Receptor Trafficking and Degradation, Journal of Biological Chemistry, vol.282, issue.20, pp.15294-15301, 2007.
DOI : 10.1074/jbc.M611538200

L. Han, D. Wong, A. Dhaka, D. Afar, M. White et al., Protein binding and signaling properties of RIN1 suggest a unique effector function, Proceedings of the National Academy of Sciences, vol.94, issue.10, pp.4954-4959, 1997.
DOI : 10.1073/pnas.94.10.4954

A. F. Lange, P. J. Van-tilborg, R. Kaptein, and R. Boelens, Structural characterization of the interaction of STAM2's ubiquitin binding domains with ubiquitin chains by NMR Cooperativity or not, that is the question! Microsecond time scale dynamics in the RXR DNA-binding domain from a combination of spin-echo and off-resonance rotating frame relaxation measurements Multidimensional NMR in liquids : basic principles and experimental methods, Journal of Biomolecular Nmr, vol.13, issue.97, pp.275-288, 1995.

N. U. Jain, A. Venot, K. Umemoto, H. Leffler, and J. H. Prestegard, Distance mapping of protein-binding sites using spin-labeled oligosaccharide ligands, Protein Science, vol.104, issue.11, pp.2393-2400, 2001.
DOI : 10.1110/ps.17401

P. A. Kosen, [5] Spin labeling of proteins, Methods Enzymol, vol.177, pp.86-121, 1989.
DOI : 10.1016/0076-6879(89)77007-5

L. J. Berliner, J. Grunwald, H. O. Hankovszky, and K. Hideg, A novel reversible thiol-specific spin label: Papain active site labeling and inhibition, Analytical Biochemistry, vol.119, issue.2, pp.450-455, 1982.
DOI : 10.1016/0003-2697(82)90612-1

M. A. Marti-renom, A. C. Stuart, A. Fiser, R. Sanchez, F. Melo et al., Comparative Protein Structure Modeling of Genes and Genomes, Annual Review of Biophysics and Biomolecular Structure, vol.29, issue.1, pp.291-325, 2000.
DOI : 10.1146/annurev.biophys.29.1.291

A. Sali and T. L. Blundell, Comparative Protein Modelling by Satisfaction of Spatial Restraints, Journal of Molecular Biology, vol.234, issue.3, pp.779-815, 1993.
DOI : 10.1006/jmbi.1993.1626

A. Fiser, R. K. Do, and A. ?ali, Modeling of loops in protein structures, Protein Science, vol.14, issue.9, pp.1753-1773, 2000.
DOI : 10.1110/ps.9.9.1753

D. S. Wishart and B. D. Sykes, The 13C Chemical-Shift Index: A simple method for the identification of protein secondary structure using 13C chemical-shift data, Journal of Biomolecular NMR, vol.4, issue.2, pp.171-180, 1994.
DOI : 10.1007/BF00175245

A. G. Palmer, C. D. Kroenke, L. , and J. P. , Nuclear Magnetic Resonance Methods for Quantifying Microsecond-to-Millisecond Motions in Biological Macromolecules, Methods Enzymol, vol.339, pp.204-238, 2001.
DOI : 10.1016/S0076-6879(01)39315-1

K. A. Swanson, R. S. Kang, S. D. Stamenova, L. Hicke, and I. And-radhakrishnan, Solution structure of Vps27 UIM-ubiquitin complex important for endosomal sorting and receptor downregulation, The EMBO Journal, vol.22, issue.18, pp.4597-4606, 2003.
DOI : 10.1093/emboj/cdg471

X. C. Su, S. Jergic, K. Ozawa, N. D. Burns, N. E. Dixon et al., Measurement of dissociation constants of high-molecular weight protein???protein complexes by transferred 15N-relaxation, Journal of Biomolecular NMR, vol.41, issue.1, pp.65-72, 2007.
DOI : 10.1007/s10858-007-9147-9

L. Daviet, C. , and F. , Targeting ubiquitin specific proteases for drug discovery, Biochimie, vol.90, issue.2, pp.270-283, 2008.
DOI : 10.1016/j.biochi.2007.09.013

I. Berlin, H. Schwartz, and P. D. Nash, Regulation of Epidermal Growth Factor Receptor Ubiquitination and Trafficking by the USP8{middle dot}STAM Complex, Journal of Biological Chemistry, vol.285, issue.45, pp.34909-34921, 2010.
DOI : 10.1074/jbc.M109.016287

M. S. Kim, J. A. Kim, H. K. Song, J. , and H. , STAM???AMSH interaction facilitates the deubiquitination activity in the C-terminal AMSH, Biochemical and Biophysical Research Communications, vol.351, issue.3, pp.612-618, 2006.
DOI : 10.1016/j.bbrc.2006.10.068

A. Lange, D. Hoeller, H. Wienk, O. Marcillat, J. Lancelin et al., NMR Reveals a Different Mode of Binding of the Stam2 VHS Domain to Ubiquitin and Diubiquitin,, Biochemistry, vol.50, issue.1, pp.48-62, 2011.
DOI : 10.1021/bi101594a

URL : https://hal.archives-ouvertes.fr/hal-00599333

H. Mazon, O. Marcillat, E. Forest, and C. Vial, ???Creatine Transition State Analogue Complex As Detected by Hydrogen/Deuterium Exchange, Biochemistry, vol.42, issue.46, pp.13596-13604, 2003.
DOI : 10.1021/bi035208m

T. Kaneko, T. Kumasaka, T. Ganbe, T. Sato, K. Miyazawa et al., P Ligand to the Signal Transducing Adaptor Molecule-2 Src Homology 3 Domain, Journal of Biological Chemistry, vol.278, issue.48, pp.48162-48168, 2003.
DOI : 10.1074/jbc.M306677200

M. Kato, K. Miyazawa, and N. Kitamura, A Deubiquitinating Enzyme UBPY Interacts with the Src Homology 3 Domain of Hrs-binding Protein via a Novel Binding Motif PX(V/I)(D/N)RXXKP, Journal of Biological Chemistry, vol.275, issue.48, pp.37481-37487, 2000.
DOI : 10.1074/jbc.M007251200

T. Hornemann, D. Rutishauser, and T. Wallimann, Why is creatine kinase a dimer? Evidence for cooperativity between the two subunits, Biochimica et Biophysica Acta (BBA) - Protein Structure and Molecular Enzymology, vol.1480, issue.1-2, pp.365-373, 2000.
DOI : 10.1016/S0167-4838(00)00098-4

. Ub, Ubiquitine UBDs: Ubiquitin Binding Domain UBPY: Ubiquitin specific protease Y UIM: motif d'interaction à l'ubiquitine VHS: Vps27