Vincent Gramoli

Damien Imbs

for letting me travel around the world to conferences, discovering new places and new experiences. Through these experiences I have learned

The software transactional memory abstraction Multicore architectures are changing the way we write programs. Not only are all computational devices turning multicore thus becoming inherently concurrent, but tomorrow's multicore will embed a larger amount of simplified cores to better handle energy while proposing higher performance, a technology also known as manycore [START_REF] Borkar | Thousand core chips: a technology perspective[END_REF] and giving rise to what is called the multicore revolution [START_REF] Herlihy | Distributed Computing and the Multicore Revolution[END_REF]. Thus, in order to take advantage of these resources a revival of concurrent programming has begun.

Lock-based concurrent programming

It is a widely shared view that the design of a concurrent program is not an easy task. Given this, base synchronization objects have been defined to help the programmer solve concurrency and process cooperation issues. A major milestone in this area, which was introduced more than forty years ago was the concept of mutual exclusion [START_REF] Dijkstra | Solution of a Problem in Concurrent Programming Control[END_REF] that has given rise to the notion of a lock object. A lock object provides the programmer with two operations (lock and unlock) that allow a single process at a time to access a concurrent object. Hence, from a concurrent object point of view, the lock associated with an object allows transforming concurrent accesses on that object into sequential accesses. In addition, according to the abstraction level supplied to the programmer, a lock may be encapsulated into a linguistic construct such as a monitor [START_REF] Hoare | Monitors: an Operating System Structuring Concept[END_REF] or a serializer [START_REF] Hewitt | Specification and Proof Techniques for Serializers[END_REF] giving the programmer additional operations. The type of synchronization admitted by locks is often referred to as pessimistic, as each access to some location x blocks further accesses to x until the location is released. Unsurprisingly given that a person's thought process happens sequentially and that this concept of mutual exclusion is a straightforward way to conceive of synchronization/concurrency, locking is by far the most widely used abstraction to implement concurrent algorithms.

Unfortunately locks have several drawbacks. One is related to the granularity of the object protected by a lock. If several data items are encapsulated in a single concurrent object, the inherent parallelism the object can provide can be drastically reduced. For example, consider a case where all threads except the one owning the lock could be blocked waiting for the lock to be released, resulting in no better than sequential performance. Or the case of a queue object for which a single lock is used to perform any operation on that queue allowing only one operation at a time, when more optimally concurrent executions of enqueue and dequeue operations should

The software transactional memory abstraction be possible as long as they are not on the same item. Using locks in such a way is often referred to as "coarse-grained".

Of course in order to improve the performance of coarse-grained locking the first solution that comes to mind would be to simply use a finer grain. For example one could consider each item of the queue as a concurrent object with its own lock, allowing the operations enqueue and dequeue operations to execute concurrently. Unfortunately it is not that simple as implementing operations using fine grained locking can become very difficult to design and implement correctly.

The most common difficulty associated with using fine grained locking is avoiding deadlock. Deadlock occurs for example when a process T A wants to obtain a lock that is already owned by process T B while concurrently process T B wants to obtain a lock that is already owned by process T A resulting in neither process progressing. In order to avoid deadlock locks are often acquired in a global order, but this may result in locks being taken more often and held longer then necessary.

Other problems with locks can occur when a process holding a lock is descheduled by the operating system while a live process is trying to access the same lock (sometimes called priority inversion). Further problems can occur if a thread crashes or is stalled while holding a lock.

Another important drawback associated with locks lie in the fact that lock-based operation cannot be easily reused [START_REF] Harris | Composable memory transactions[END_REF][START_REF] Gramoli | Democratizing transactional programming[END_REF]. Consider the queue example, a programmer using a lock based queue might want to create a new operation that inserts two items in the queue atomically. If the queue is implemented using fine grained locking then creating this operation would likely require the programmer to not only have extensive knowledge of the current queue implementation, but to also have to make modifications to the entire implementation. If a single lock is used for the entire queue object then this operation can be implemented easily, but any performance gain due to concurrency is lost. This process of reusing operations is often referred to as composition.

Alternatives to locks

Given that programming using locks is no simple task we must ask the question: how to ease the job of the programmer to write concurrent applications? This is neither a simple question to answer nor a question that has one correct answer. Due to this much research has been done on a wide range of topics from providing the programmer with access to additional efficient low level hardware operations, to providing high level abstractions, to completely changing the model of programming. We will very briefly mention some popular examples before introducing the solution that is examined in this thesis (namely software transactional memory (STM)).

Non-blocking concurrent programming Non-blocking algorithms [START_REF] Greenwald | The synergy between non-blocking synchronization and operating system structure[END_REF] have been introduced as an alternative to using locks in order to avoid some of the scalability and progress problems of locks. These algorithms are implemented using system level synchronization operations such as compare&swap. There have been many efficient and scalable non-blocking data structures proposed [START_REF] Michael | High performance dynamic lock-free hash tables and list-based sets[END_REF][START_REF] Sundell | Scalable and lock-free concurrent dictionaries[END_REF][START_REF] Valois | Lock-free data structures[END_REF][START_REF] Fomitchev | Lock-free linked lists and skip lists[END_REF][START_REF] Fraser | Practical lock freedom[END_REF]. Unfortunately such algorithms are known to be extremely difficult to implement and understand. Simply implementing a concurrent non-blocking version of a sequential data-structure has been enough to publish papers in top research publications, showing that non-blocking algorithms can be very difficult to get correct. As a result, non-blocking operations can help overcome some of the specific problems of locks, but make no considerations about the difficulties of writing correct concurrent programs.

Libraries A different partial solution to making concurrent programming easier consists of providing the programmer with an appropriate library where he can find correct and efficient concurrent implementations of the most popular data structures (e.g., [START_REF] Herlihy | The Art of Multiprocessor Programming[END_REF][START_REF] Michael | Simple, Fast and Practical Blocking and Non-Blocking Concurrent Queue Algorithms[END_REF]). For example Oracle's Java SDK [119] provides several concurrent implementations of different abstractions in its java.util.concurrent package, including several queue implementations, skip lists [START_REF] Pugh | Skip lists: a probabilistic alternative to balanced trees[END_REF] implementing the set and map abstractions, a hash map, among others. Albeit very attractive, this approach does not solve entirely the problem as it does not allow the programmer to define specific concurrent executions that take into account his particular synchronization issues, even simply composing several operations of the provided implementation to create a new operation is usually not possible using these libraries. A libraries' use is then restricted to the specific functionality of each abstraction's implementation, leaving the responsibility of dealing with any separate synchronization to the programmer.

The Software Transactional Memory approach

The concept of Software Transactional Memory (STM) is a possible answer to the challenge of concurrent programming. Before describing the details, let us first consider a "spirit/design philosophy" that has helped give rise to STM systems: the notion of abstraction level. More precisely, the aim of an increased abstraction level is to allow the programmer to focus and concentrate only on the problem he has to solve and not on the base machinery needed to solve it. As we can see, this is the approach that has replaced assembly languages by high level languages and programmer-defined garbage collection by automatic garbage collection. In this manner STM can be seen as a new abstraction level concept that takes up this challenge when considering synchronization issues.

The way transactional memory abstracts away the complexity associated with concurrent programming is by replacing locking with atomic execution units. Unlike using locks where a programmer might use several locks throughout his operations, when using transactional memory a programmer only needs to define what sections of his code should appear as if they execute atomically (i.e. all at once, leaving no possibility for interleaved concurrent operations). The transactional memory protocol then deals with the necessary synchronization to ensure that this happens. A programmer could think of it as using a single global lock where whenever he wants to perform synchronization between processes. In that way, the programmer has to focus on where atomicity is required and not on the way it must be realized. The aim of an STM system is consequently to discharge the programmer from the direct management of the synchronization that is entailed by accesses to concurrent objects.

More explicitly, STM provides the programmer with the transaction concept (this concept is close but different from the notion of transactions encountered in database systems [START_REF] Felber | Transactions are coming Back, but Are They The Same?[END_REF][START_REF] Harris | Transactional Memory: an Overview[END_REF][START_REF] Herlihy | Distributed Computing and the Multicore Revolution[END_REF]). A process is designed as (or decomposed into) a sequence of transactions, with each transaction being a piece of code that, while accessing concurrent objects, always appears as if it was executed atomically. The programmer must then define these transactions, stating which units of computation have to be atomic. He does not have to worry about the fact that the objects accessed by a transaction can be concurrently accessed. Therefore the programmer is not concerned by synchronization except when he defines the beginning and the end of a transaction. It is the job of the STM system to ensure that transactions are executed as if they were atomic using low level synchronization operations such as compare&swap or even other abstractions such as locks (note that all these details are hidden from the programmer as he only has access to the interface to the STM which allows him to define atomic computation units).

Another important advantage of using transactional memory over locks is that a transactional program can be directly reused by another programmer within his own code. Hence a programmer composing operations from a transactional library into another transaction is guaranteed to obtain new deadlock-free operations that execute atomically. Further promoting the ease of use of transactions, several studies [START_REF] Pankratius | A study of transactional memory vs. locks in practice[END_REF][START_REF] Rossbach | Is transactional programming actually easier?[END_REF] have been performed that find that (under the parameters of their studies) users can create concurrent programs easier when using transactional memory instead of locks.

Details

The notion of transactional memory was first proposed nearly twenty years ago by Herlihy and Moss as an abstraction to be implemented in hardware and be used in order to easily implement lock-free concurrent data structures [START_REF] Herlihy | Transactional Memory: Architectural Support for Lock-free Data Structures[END_REF]. It has since been first implemented in software by Shavit and Touitou [START_REF] Shavit | Software Transactional Memory[END_REF] and, partially thanks to the multi-core revolution, has recently gained great momentum as a promising alternative to locks in concurrent programming [START_REF] Felber | Transactions are coming Back, but Are They The Same?[END_REF][START_REF] Harris | Transactional Memory: an Overview[END_REF][START_REF] Larus | Transactional Memory: Is TM the Answer for Improving Parallel Programming[END_REF][START_REF] Raynal | Synchronization is Coming Back, But Is It the Same? Keynote Speech[END_REF]. Especially in the research community transactional memory has been a very hot topic with hundreds of papers being published, this section will give a very brief overview of some of that research in order to help explain STM.

Programming

As an abstraction designed to make concurrent programming easier, transactional memory needs a simple and precise interface for programmers to use. In order to actually define transactions in code, the most common approach is to surround the code by some keywords that indicate the beginning and end of a transaction. For example the programmer might just enclose his transaction using the atomic keyword: atomic{. . .}

The code within this block will then be treated as a transaction and appear to be executed atomically. In an ideal world this would be all that a programmer would have to know before starting to use transactional memory, but unfortunately as will be shown in this thesis, it is much more complex than this and there are many other things that the programmer must consider.

Memory access

Within a transaction a programmer will perform reads and writes to memory. Certain of these reads and writes will be to shared memory that is also visible to other transactions being executed by other processes in the system. In this case these memory accesses must be synchronized by the STM protocol. Each of these reads perform a transactional_read operation with each writes performing a transactional_write operation. These operations are defined by the STM protocol and usually require executing several lines of code. In addition to shared accesses, some memory accesses within a transaction might be to local memory (memory that is only accessible by the current process), as such this memory does not need to be synchronized (although it needs to be reinitialized when a transaction is restarted after an abort [aborts are described in the following section]) and can therefore be performed more efficiently than shared accesses.

Deciding which accesses should be treated as shared and which others should be treated as local can either be done by the programmer or done automatically by the system. Of course a solution that requires the programmer to define this makes using an STM more complicated, but on the other hand determining them automatically can lead to more accesses being declared as shared then necessary, causing increased overhead during execution. Doing this efficiently is no easy task, [START_REF] Dragojević | Why STM can be more than a research toy[END_REF] discusses some of the difficulties with STM code compilation, and in [START_REF] Adl-Tabatabai | Compiler and runtime support for efficient software transactional memory[END_REF] an efficient STM is designed with optimizations for their JIT complier to lower the overhead of shared memory accesses.

A further complication with shared memory accesses is defining what happens when shared memory is accessed concurrently both inside and outside of transactions, i.e. transactionally and non-transactionally. There have been several proposals detailing different ways to deal with this such as strong and weak isolation [START_REF] Shpeisman | Enforcing isolation and ordering in STM[END_REF] and privatization [START_REF] Spear | Privatization techniques for software transactional memory[END_REF]. Chapter 4 looks at the problem of memory access in more detail.

Abort/Commit

For an STM protocol, a solution in which a single transaction executes at a time trivially implements transaction atomicity but is irrelevant from an efficiency point of view. So, an STM system has to do "its best" to execute and commit as many concurrent transactions per time unit as possible (a concept sometimes referred to as optimistic synchronization), but unfortunately, similarly to a scheduler, an STM system is an on-line algorithm that does not know the future. Therefore, if the STM is not trivial (i.e., it allows several transactions that access the same objects to run concurrently), then conflicts between concurrent transactions may require the system to abort some transactions in order to ensure both transaction atomicity and object consistency. Hence, in a classical STM system in order to ensure safety there is an abort/commit notion associated with transactions. More explicitly, a committed transaction is one that has been fully executed, while an aborted transaction is one that appears to not having executed at all, making no effect on the state of memory, a transaction that has started, but not yet aborted or committed is called live. Abortion is the price that has to be paid by transactional systems to cope with concurrency in order to ensure safety in the absence of explicit pessimistic synchronization mechanisms (such as locks or event queues). From a programming point of view, an aborted transaction has no effect. Usually it is then up to the process that issued an aborted transaction to re-issue it or not; a transaction that is restarted is considered a new transaction. Unfortunately this does not mean that the programmer can be ignorant to the concept of transaction aborts. Most STM systems require the programmer to at least be aware of aborts, if not responsible to take some action to certain cases of aborts. The problem of aborted transactions and how a programmer must deal with them is discussed in detail in chapter 3.

Correctness

Without a proper consistency or correctness criterion the programmer is lost, these criterion must ensure that transactions execute atomically and prevents the programmer from having to worry about inconsistencies that might occur otherwise. STM consistency criterion define when a transaction can be committed or when it must abort. Interestingly, choosing a consistency criterion for memory transactions is different than from database transactions and even different than other concurrent objects, for example a common consistency criterion for database transactions is serializability [START_REF] Papadimitriou Ch | The Serializability of Concurrent Updates[END_REF]. Serializability guarantees that every committed transaction happened atomically at some point in time, as if they were executed sequentially one after another. The real time order of execution does not need to be ensured, a transaction that took place long after a previous transaction committed can be ordered before the other, as long as the ordering creates a valid sequential execution. Lineraizability [START_REF] Herlihy | Linearizability: a Correctness Condition for Concurrent Objects[END_REF], the most common criterion used for concurrent objects, is stronger than serializabilty by adding the condition that transactions must be ordered according on their occurrence in real time. Importantly these conditions say nothing about aborted transactions. A transaction must abort if it has an inconsistent view of the memory or set of data, meaning that if there is no time where this transaction could have been viewed as if it was executed atomically when considering the state of memory created by previously committed transactions then the transaction must abort. Commonly in database systems a transaction can run without causing harm in the system even if it has an inconsistent view of the data as long as it eventually aborts. Unfortunately, in transactional memory this is not always the case. Consider the following example: There are two transactions T 1 , and T 2 , and three shared variables X, Y, and Z all initialized to 0. Transaction T 1 performs the following operations, first it reads X, then it reads Y, then it sets Z to the value of Y X , before trying to commit. Transaction T 2 writes the value 1 to X, writes the value 1 to Y, then tries to commit. It is obvious that any transaction reading consistent values of X and Y will read them as either both 0 or both 1. Now consider the following execution pattern, where transaction T 2 commits successfully: begin_transaction T 2 (), begin_transaction T 1 (), X.read T 1 () → 0, X.write T 2 [START_REF] Adl-Tabatabai | Compiler and runtime support for efficient software transactional memory[END_REF], Y.write T 2 (1),try_to_commit T 2 (),Y.read T 1 () → 1,try_to_commit T 1 () Here transaction T 1 will access an inconsistent state of the data, reading X as 0 (because x was read before T 2 committed) and Y as 1 (because Y was read after T 2 committed). Now when T 1 performs the division Y X , a divide by 0 exception is created possibly resulting in undesirable behavior such as crashing the program. Divide by zero exceptions are not the only possible undesirable behaviors that can be caused by reading an inconsistent state of memory, some other possible problems include infinite loops, and accessing invalid pointers. In order to deal with this many STM implementations abort a transaction before it can access an inconsistent view of the memory, but it depends on the consistency criterion. The differences between database and memory transaction correctness conditions is examined in more detail in [START_REF] Attiya | Transactions are Back-but How Different They Are?[END_REF]. Chapter 2 looks at the problem of correctness in transactional memory in more detail.

Nesting

One of the suggested benefits of writing code using transactions is that they be composable, which could be a huge benefit over locks in terms of code simplicity and re-usability. Still it is not obvious how implement composability correctly and efficiently in transactional memory.

The term nesting is used to describe the execution of transactions within other transactions. Different way of implementing nesting have been studied with varying properties. The simplest way to implement nesting is called flattening [START_REF] Agrawal | Memory models for open-nested transactions[END_REF], in this model a nested transaction is combined together with its parent, so it and its parent execute as if it were a single transaction. This is nice because it is simple and it is composable, but it creates larger and larger transactions, limiting performance.

A slightly more complex model closed nesting [START_REF] Adl-Tabatabai | Compiler and runtime support for efficient software transactional memory[END_REF][START_REF] Moss | NESTED Transactions: an APPROACH to RELIABLE DISTRIBUTED COM-PUTING[END_REF] allows a transaction T C to run as a separate transaction within its parent T P , but when T C commits, its changes are only visible to T P and not visible to the rest of the system until T P itself commits. Running T C as a separate transaction allows it to abort itself without aborting T P , hopefully increasing performance over the flattening model. By not committing T C 's changes to shared memory until T P commits, it prevents there from being consistency issues or roll backs of shared memory in the case that T P aborts after T C commits.

A more complex notation of nesting is open nesting [START_REF] Moss | Open nested transactions: Semantics and support[END_REF] which allows for nested transactions to write to shared memory immediately upon their commit (not waiting until their parent commits). The main advantage of open nesting is performance. Like closed nesting it has the advantage that if a nested transaction aborts, it does not require the abort of its parent transaction. In addition open nesting has the advantage that the memory locations accessed by a nested transaction need not be included with the parent transaction when detecting conflicts. For example consider a parent transaction T P that accesses memory location X with a nested transaction T N that accesses memory location Y , and in addition there exists a separate transaction T S that also accesses Y and is executed by a different processes. Now take the execution where T P starts, then within T P , T N starts and commits, following this T S starts and commits, finishing with the try to commit of transaction T P . In an STM implementing open nesting T P is able commit because even though its nested transaction T N conflicts with transaction T S , in this example T N has already committed before the start of T S , creating no conflict. Alternatively, using closed nesting and flattening, P might have to abort because N has only committed within T P and not to shared memory, resulting in a conflict between T P and T S . For more details, [START_REF] Moss | Open nested transactions: Semantics and support[END_REF] gives a comprehensive overview of open nesting. Allowing a transaction to commit to shared memory from within a transaction obviously violates the idea that everything within a transaction is executed atomically, possibly increasing performance, but unfortunately also increasing the difficulty of writing correct concurrent programs using transactions. Additionally, in order to deal with open nested transactions, a new consistency model has to be considered, one such model, abstract serializability, is described in [START_REF] Ni | Open nesting in software transactional memory[END_REF].

Implementation

This next section will look at how to to actually implement STM protocols, and some of the difficulties that go along with this. Before doing this, it is important to consider that even though there are many ways to implement software transactional memory, there is no clear "best" method. In [START_REF] Saha | Mcrt-stm: a high performance software transactional memory system for a multi-core runtime[END_REF] tests are performed using many different combinations of STM protocols and benchmarks, finding certain combinations that are preferred in certain situations, but no clear and conclusive decisions are found for all cases.

Read and write sets In a system where multiple transactions are executed optimistically, in order to ensure that a transaction execute on a valid state of memory and satisfies a consistency criterion it must perform some sort of validation on the locations in shared memory that it has read, aborting the transaction if inconsistencies are found. Traditionally this process of validation requires keeping what is called a read set. A read set contains the set of all memory locations read so far by a transaction as well as some additional information (depending on the implementation) on these locations such as the values read. This read set is then validated based on some event such as when a new read is performed or when a transaction tries to commit, ensuring that the locations read so far are still valid.

In addition to a read set, a write set is also maintained by a transactions, keeping track of all the locations written so far by the transaction. Write sets are necessary due to the fact that a transaction might abort.

Write Buffering vs Undo logging When performing a write to shared memory within a transaction, to the rest of the system the value written must not known until the transaction is guaranteed to commit, i.e. an aborted transaction must not effect the state of memory. Traditionally there have been two ways of keeping track of writes before they have committed in memory.

In an implementation that uses undo logging, the transaction performs its write directly to the shared memory, and then in case of an abort, the transaction must rollback the state of the memory to where it was before the transaction performed its first write. In order to prevent other transactions from writing to the shared memory concurrently or reading a value that could be rolled back, a transaction will use some sort of locking mechanism of each piece of memory before it writes to it. This is usually implemented as visible writers, which are described later in this section.

In an implementation that uses write buffering when a transaction wants to perform a write to a shared memory location first it will make a local copy of that variable only visible to the transaction. Then any subsequent writes this transaction does will be preformed on this local copy. If the transaction commits successfully then the value of the local copy will be written into the shared memory at commit time.

There are some advantages and disadvantages to both solutions [START_REF] Saha | Mcrt-stm: a high performance software transactional memory system for a multi-core runtime[END_REF], and depend on how the rest of the protocol is implemented. Often one type performs better than the other depending on the workload.

Conflict Detection

The definition of a conflict in transactional memory is straightforward, two transactions conflict if they execute concurrently and both access the same shared memory location with at least one access being a write. Given this definition we can separate conflicts into three specific types based on the order and types of operations that caused the conflict, more precisely we have read/write, write/read, and write/write conflicts. Once a conflict happens, the system must deal with it in some way in order to ensure safety and progress, possibly aborted one or both of the conflicting transactions, this can done directly by the STM or a contention manager [START_REF] Herlihy | Software Transactional Memory for Dynamic-Sized Data Structures[END_REF] can be called. Many different solutions for detecting and dealing with conflicts have been proposed and depend on the STM protocol.

Visibility How conflict detection is performed depends on how reads and writes are implemented. Transactional reads and writes can either be visible or invisible [START_REF] Imbs | A versatile STM protocol with Invisible Read Operations that Satisfies the Virtual World Consistency Condition[END_REF]. When a transaction performs an invisible read or write it does not perform any modification to shared meta data, so no other transactions are aware that it has performed the read or write. In a visible implementation, the transaction writes some information to the shared meta data (for example adding its identity to the list of live transactions that have read that memory location), allowing other transactions to be aware that this read or write has occurred.

Invisible reads have the advantage of not having to write to shared data, which can become a point of contention at shared memory locations that are accessed frequently. This problem of contention can be especially worry-some for read dominated workloads because contention is being introduced when there are no conflicts and can limit scalability. The principle disadvantage of invisible reads is that validation is required each time a new location is read or before committal in order to ensure an inconsistent view of the shared memory is not observed. With visible reads, when a location that has been read gets overwritten by a writing transaction a contention manager is called or a transaction is aborted, so validation is not needed.

Eager vs Lazy There are two basic concepts for detecting conflicts between transactions, eager and lazy [START_REF] Herlihy | Software Transactional Memory for Dynamic-Sized Data Structures[END_REF]. While precisely how eagerly a conflict is detected depends on the specific STM implementation, here we will we use the term eager to describe conflicts that are detected before either of the conflicting transactions has reached the committal phase and the term lazy to describe conflicts that are not detected until after one of the conflicting transactions starts committing. The choice of visibility of the read and write operations of an STM implementation directly effect the possibilities of the eagerness of detection.

Eager Eager conflict detection obviously requires that an implementation use visible operations. Specifically, eager read/write conflict detection requires that the implementation use visible reads while eager write/read and write/write conflict detection requires that the implementation use visible writes.

Visible writes allow write/read and write/write conflicts to be detected eagerly. Read/write conflicts are detected eagerly when the write operation takes place, observing that the location had been previously read by another live transaction. Similarly, write/write conflicts are detected eagerly when the latter write takes place, observing that the location had been previously written by a separate live transaction.

Visible reads allow read/write conflicts to be detected eagerly. When the write occurs it detects that the location has been read allowing the conflict to be dealt with eagerly.

Lazy Read/write, write/read, and write/write conflicts can be detected lazily, using invisible reads and writes.

The lazy detection of a write/read or read/write conflict is done by the transaction performing the read. In the case of a write/read conflict, if the transaction performing the write has already committed then the conflict is detected at the time of the read, otherwise the conflict is detected later, either during the reading transaction's next read operation or during its committal. Read/write conflicts are also detected during the first transactional read or commit to follow the committal of the writing transaction. In order to detect either of such conflicts, the reading transaction must validate its read set any time a transactional read is performed as well as during committal, ensuring that the set of reads done by this transaction have a point in time where they are all valid according to the consistency criterion.

Lazy write/write conflict detection occurs at the commit time of the later writing transaction. When the later transaction commits it must make sure that the consistency criterion is not violated by the conflict. Interestingly, many TM implementations choose their serialization point to be at the time of their commit operation, meaning that if the transaction did not perform a transactional read to the location of the write/write conflict (in addition to the read) then the conflict will clearly not violate consistency.

Trade offs Detecting conflicts eagerly or lazily can have several trade offs. As previously described eager detection requires some sort of visibility to the reads or writes which can be costly, while lazy detection often requires additional validations. In addition, detecting conflicts eagerly means that they can be dealt with earlier, possibly resulting in less wasted work by transactions that are doomed to abort. Alternatively, in [START_REF] Spear | A comprehensive strategy for contention management in software transactional memory[END_REF] the authors suggest using lazy detection for increased performance. They claim that using lazy detection promotes transaction committal because locks are only acquired during commit time and it is unlikely that two transactions will repeatably try to commit at exactly the same time, additionally a conflict does not always mean a transaction must immediately abort, in fact conflicting transactions are often still able to commit when allowed to run with validation.

Dealing with conflicts

Once a conflict is detected the STM system must then choose a way to deal with it. Contention management was originally implemented in DSTM [START_REF] Herlihy | Software Transactional Memory for Dynamic-Sized Data Structures[END_REF] as an out-of-bound mechanism that a transaction would call when it detected a conflict with another transaction, asking whether it should back off, abort, or tell the conflicting transaction to abort. Since DSTM was introduced various contention managers have been proposed, each with varying levels of complexity, admitting increased overhead in the hopes of increasing liveness and producing better overall performance. Some of these include [START_REF] Scherer | Contention Management in Dynamic Software Transactional Memory[END_REF] passive (or suicide), in which a transaction aborts itself whenever it detects a conflict, timestamp in which an older transaction aborts younger transactions and a younger transaction waits for older transactions to finish, karma which uses a heuristic to determine the amount of work a transaction has done, then aborts the one that has done the least amount of work, and polka [START_REF] Scherer | Advanced contention management for dynamic software transactional memory[END_REF] which extends karma by adding a randomized exponential back-off mechanism.

Difficulties Mostly these contention managers have been proposed and designed by making certain assumptions about what applications transactional memory will be used for, then validating (or disproving) their assumptions is done by examining the contention manager's performance on a limited set of workloads. Part of the difficulty is that a contention management strategy that may work well for one STM implementation may not work at all for another, this is based on how the STM implements things such as visibility of reads, and eagerness of acquire for writes [START_REF] Dragojević | Stretching Transactional Memory[END_REF]. Given this, certain TM implementations such as LSA-STM [START_REF] Riegel | Time-based Transactional Memory with Scalable Time Bases[END_REF] have been tested using a wide array of different contention managers but there is no definite answer as to what type of contention manager works best for which TM properties.

A workload can largely effect how well a contention manager performs, for example passive contention management is known to perform well on workloads with a regular access pattern [START_REF] Spear | A comprehensive strategy for contention management in software transactional memory[END_REF], while polka works well on small scale benchmarks [START_REF] Dragojević | Stretching Transactional Memory[END_REF]. The obvious problem with this is that there is no "best" contention manager that performs well in all reasonable situations, in [START_REF] Guerraoui | Polymorphic Contention Management[END_REF] they come to this conclusion by running a set of the top performing contention managers on a range of benchmarks designed to simulate real world applications.

Liveness Unfortunately many contention managers do not actually prove any guarantee of progress, in the sense that in what situations and how often a thread will be able to commit transactions. Instead, contention managers often only suggest why they should work well, having possible workloads that can be generated which cause extremely poor performance and admit live-lock (meaning some transactions are never committed due to them repeatably aborting each other) or starvation (meaning a transaction is never committed due to other conflicting transactions committing, causing this transaction to abort). The contention manager greedy [START_REF] Guerraoui | Towards a Theory of Transactional Contention Managers[END_REF] is an exception to this, it is proven to prevent live-lock and starvation, yet in oder to ensure these properties it introduces a high amount of contention on some shared meta data, resulting in poor performance in workloads with a large amount of short transactions [START_REF] Dragojević | Stretching Transactional Memory[END_REF]. The liveness and progress of transactional memory is discussed in more detail in chapter 3.

Simplicity

Given that there are so many different interesting properties to consider when thinking about transactions, it is easy to loose sight of the what we are really looking for. It is important to remember that he primary goal of transactional memory is to make concurrent programming easier and more accessible, with performance following closely as a secondary goal. In reality unfortunately, neither of these goals have yet been realized. As we will see in each chapter of this thesis in a modern concurrent system there are complex aspects of the STM abstraction that involve how a programmer interacts with the STM system and the system as a whole. While the basic semantics of a transaction are widely agreed on (i.e. transaction atomicity with respect to other transactions), there are many other details to consider some of which are actively debated and remain as open research questions. Standardizing these semantics and answering open questions on them is an important step in ensuring that the primary goal of making concurrent programming easier is realized. If the semantics are either too hard to understand, or a programmer has to be aware of too many details specific to an STM system before being able to use transactions in his program then the sight of the original goal has been lost.

Interestingly, while no agreement exists on the full semantics of transactional memory, there has still been much research that focuses on performance first. Likely the reason for this is because even though STM in its current form has been shown to be efficient for certain workloads [START_REF] Dragojević | Why STM can be more than a research toy[END_REF], many people argue that its performance is not good enough to be an attractive alternative to locks, even considering all the difficulties that surround using locks. Instead of taking this approach of directly tackling the problem of performance, the goal of this thesis is to take a step towards finding and defining fixed and easy to understand semantics for transactions while finding efficient protocols satisfying these semantics. This leads us to the following concept that is the focus of the thesis: Definition 1 STM is an abstraction designed to simplify concurrent programming that exists as a component of a larger system, but the semantics of the STM abstraction and how it interacts with the rest of the system must be clear and easy to understand and use, otherwise simplicity is lost.

As this definition will be used in this thesis as a goal for how STM should be viewed, instead of staring with a complex definition that directly takes into account the complex details of the concurrent system (which would complicate things from the beginning), we start with this vague definition that will be used as a guide to follow throughout the thesis where, throughout the chapters, these complex details are examined. Following this, we will define (in the same light) how a transaction will be viewed.

Defining a transaction

Before deciding the semantics of an easy to use STM a high level definition for transactions themselves must be decided. Due to the fact that transactional memory is a high level abstraction designed for ease of use that exists in a concurrent system a transaction should be defined in a way that minimally impacts the complexity of this system. Following this approach, the following high level definition for a transaction used in this thesis is the following: Definition 2 A transaction is any block of code defined by the programmer to be executed by a given process. This transaction is executed atomically exactly once taking in consideration all parts of the system. This definition is broken down into two key parts. The first, more obvious key part is (1) a transaction is defined by the programmer and is executed atomically. The second, but maybe not so obvious key part is (2) a transaction exists as part of a complete system containing many components other then this transaction and a relation between them must be defined. This second part is important because when a programmer is writing a concurrent program there are many things other then the current transaction he is writing to consider. This could include things such as the actions of other processes, the interactions of objects and memory in the system with this transaction, among other things, many of which are explored in this thesis. Each chapter in this thesis will then take this definition of a transaction, and help to formalizing its parts, moving towards the realization of the goal in Definition 1.

The grand goal is that someday a programmer can write an efficient concurrent program with nearly as much ease as he would write a sequential one. While this goal is far from fully achieved here, this thesis makes important steps in this direction, while suggesting ways to move forward further.

Thesis outline

Each chapter in this thesis considers a different general area of research around the concept of the ease (or difficulty) of concurrent programming while using transactional memory, first introducing the area to the reader, following this with a discussion of a specific problem and possible solution from the area, each helping to move towards a solution of our goal defined in Definition 1.

Traditionally research has taken the view that for a protocol to be considered a valid STM implementation then it should ensure transactions are atomic with respect to each other and all transactions (aborted transaction included) execute in a consistent state of memory. Once this is satisfied the research then often focuses on improving the implementing protocol by increasing its performance or having it satisfy desirable properties (interestingly, this properties are usually related to improving performance). Following this model, chapter 2 looks at the specific properties of invisible reads (a property important for the speed and scalability of an STM) and permissiveness (a property preventing a protocol from aborting transactions unnecessarily) showing that they are not compatible with the correctness condition of opacity before introducing a protocol that does satisfy these properties using the correctness condition of virtual world consistency.

When using this traditional view of transactional memory, issues that are not solved by ensuring a consistency criterion such as opacity are left up to the programmer. Some of these issues include things like how to deal with aborted transactions, how to deal with memory accessed inside and outside of transactions, how transactions are nested, how to deal with I/O, among others. The programmer then has to understand these issues and must then choose an appropriate STM protocol based on his needs. Chapters 3 and 4 look at research that takes the approach that requiring the programmer to make these decisions is not appropriate for an easy to use concurrent programming abstraction. Chapter 3 suggests looking at ways to simplify the traditional STM semantics while the third chapter suggests expanding the traditional semantics to consider issues that are likely to come up when using STM in a realistic system (things that are ignored by consistency criterion such as opacity) and provide straightforward solutions to them.

Specifically, chapters 3 looks at research that takes the view that for transactional memory to be easy to use the basic semantics should be simplified, meaning that, in a sense, the abstraction level should be raised. In detail it looks at the problem of aborted transactions and suggests that the programmer should not have to be aware of aborts at all, following this suggestion it introduces a protocol that ensures every transaction issued by a process commits no matter the concurrency pattern of other threads in the system.

The area of research looked at in chapter 4 suggests expanding the basic semantics of transactions. Taking just the traditional definition of transactions from the chapter 2 only leaves a very limited view of how transactions fit into the big picture of concurrent computing. It only considers the interaction between transactions themselves, leaving the interaction between transactions and other entities in the system undefined. This is not optimal considering ease of use as if a programmer uses some of these mechanisms he would encounter undefined results or will have to be familiar with how different STM protocols specifically interact with each of these mechanisms. This chapter specifically looks at shared memory accesses, attempting to answer the question, "how should the system act when shared memory is accessed inside and outside of a transaction?" To answer this we suggest and define a term called terminating strong isolation which ensures that a transaction's atomicity will not be violated by reads and writes performed outside of the transaction by other processes without holding back the progress of these reads and writes. A protocol ensuring this property is presented.

Chapter 5 looks into the idea of providing efficient abstractions as libraries for programmers to reuse from within their transactions. Not only does this mean the programmer does not need to design such libraries himself, but it allows an expert programmer who knows well the synchronization pattern of STM to write high performance implementations designed specifically for transactions. It looks into designing efficient data structures implementing the map abstraction.

The final section concludes the thesis by providing a closing discussion on the contributions presented in the chapters as well as possible future extensions of the concepts and protocol described in.

STM computation model and base definitions

Before getting into the content we will introduce the model of STM that will be used by the protocols described throughout this thesis.

Processors, Processes

The underlying multiprocessor system executing the transactional program or application written by a programmer is made up of one or more physical processors. The multiprocess program, defined by the programmer is made up of one or sequential processes where each process is a separate thread of execution. The application programmer defines the number of processes. Each process consists of a sequence of transactions (that are not known in advance) and nontransactional code in between subsequent transactions.

Transactions and object operations

Transaction A transaction is a piece of code that is produced on-line by a sequential process (automaton) made up of reads and writes to local memory and shared transactional objects, that is assumed to be executed atomically (commit) or not at all (abort). This means that (1) the transactions issued by a process are totally ordered, and (2) the designer of a transaction does not have to worry about the management of the base objects accessed by the transaction. Differently from a committed transaction, an aborted transaction has no effect on the shared objects.

Shared objects in the system are denoted X,Y, A transaction is able to read or write to any shared object designated for use from within transactions. We call these objects t-objects All other (non-transactional) shared objects, denoted nt-objects, are only accessible outside of transactions. Note that this model of having separate shared objects for use only within transactions is the one traditionally used in transactional memory protocols, chapters 2 and 3 use this model. Separately, in chapter 4 a different model is considered because this chapter deals specifically with memory management inside and outside of transactions (the model used is described in detail in that chapter). The algorithms presented in chapter 5 for use as a library are correct in either memory model.

The set of the shared objects read by a transaction defines its read set. Similarly the set of shared objects it writes defines its write set. A transaction that does not write shared objects is a read-only transaction, otherwise it is an update transaction. A transaction that issues only write operations is a write-only transaction.

Transaction and the memory locations that they access are assumed to be dynamically defined. The important point is here that the underlying STM system does not know in advance the transactions. It is an on-line system (as a scheduler).

Operations issued by a transaction A transaction is started by calling the begin_transaction() operation. We denote operations on shared objects in the following way: A read operation by transaction T on object X is denoted X.read T (). Such an operation returns either the value v read from X or the value abort. When a value v is returned, the notation X.read T (v) is sometimes used. Similarly, a write operation by transaction T of value v into object X is denoted X.write T (v) (when not relevant, v is omitted). Such an operation returns either the value ok or the value abort.

If it has not been aborted during a read or write operation, a transaction T invokes the operation try_to_commit T () when it terminates. That operation returns commit or abort.

In this document just to make a point for the simplicity of how a transaction should be viewed, sometimes the syntax of simply an atomic block (atomic{. . . })) will be used to indicate a transaction. The most important goal of the STM abstraction is to make concurrent programming easier and more accessible to any programmer. By following our goal for STM defined in 1 and using our definition for a transaction 2, arguably then all a programmer should need to know in order to use the STM abstraction is to know the syntax for writing an atomic block, likely something as simple as atomic{. . . }

Part II

Software Transactional Memory Algorithms

The reason for this is, following Definition 2, a transaction always executes as an atomic block no matter what else is going on in the system. The complexities and difficult synchronization procedures are taken care of by the underlying STM system. This means that, when faced with synchronization, a programmer has to concentrate on where atomicity is required and not on the way it is realized (unfortunately, in reality, it is actually not so simple for the programmer, as will be seen in the later chapters in this thesis). Like many abstractions, even if what is exposed to the programmer is a fixed, well defined interface there are many different possible implementations and different properties that exist to provide the abstraction. Let us consider the common example of a classical map abstraction provided by a data structure. A programmer might want to access and store some data in memory and he knows that in order to do this he needs the insert, delete, and contains operations provided by the map abstraction. He also knows he wants to perform these operations concurrently. With this information he should be able to find a library providing this functionality and use it directly in his program without knowing any additional information. Now even though this is all that the programmer needs to know, there are many more details to consider at a lower level. The most obvious is that there are different data structures that can be used to provide a map abstraction, examples such as a skip-list, binary tree, or hash table. Choosing one of these may impact the applications performance or provide additional functionality, yet to the programmer just interested in the map abstraction he can use each of them the same.

At a lower level things start to get much more complex, even when considering a single data structure there are different properties a specific implementation might ensure. For example one might have a blocking skip-list or a non-blocking skip-list which provide different guarantees of the progress of the operations. Taking this a step further, different implementations might perform better or worse depending on the workload. For example there might exist a skip-list implementation that is memory efficient, but is slower than another implementation that is less memory efficient. Again though a programmer is not required to know these details (but they can still help him).

Each of these points are true in transactional memory as well. At the most basic level all a programmer should need to know is where to begin and end his atomic blocks. Beneath these atomic blocks lies the STM implementation which has many different aspects. Since the introduction of transactional memory in 1993 [START_REF] Herlihy | Transactional Memory: Architectural Support for Lock-free Data Structures[END_REF] dozens (if not hundreds) of different properties have emerged as well as many different STM algorithms, with each of them ensuring a greater or fewer number of these properties and being more or less concerned with performance. (Some of these properties are discussed in the introduction of this thesis in section 1. [START_REF] Afek | Efficient lock free privatization[END_REF] In an ideal world there would exist a "perfect" STM algorithm that ensures all desirable properties without making any sacrifices. Unfortunately this algorithm has not yet been discovered (if it is even possible). In fact many of these desirable properties have been little more then introduced and many of their implications on how they affect STM algorithms or how they interact with each other has yet to be explored. Motivated by this, this chapter examines two desirable properties that are concerned with performance, namely permissiveness and invisiblereads, and how they interact with two consistency criterion for STM systems, namely opacity and virtual world consistency. As previously noted, these are just a few of the many properties that have been defined for STM systems so this work is only touching on a much larger set of problems, but hopefully this work encourages the study of additional properties.

Some interesting and desirable properties for STM systems

Invisible read operation A read operation issued by a transaction is invisible if it does not entail the modification of base shared objects used to implement the STM system [START_REF] Marathe | Lowering the Overhead of Software Transactional Memory[END_REF]. This is a desirable property mainly for efficiency.

Permissiveness The notion of permissiveness has been introduced in [START_REF] Guerraoui | Permissiveness in Transactional Memories[END_REF] (in some sense, it is a very nice generalization of the notion of obligation property [START_REF] Imbs | Provable STM Properties: Leveraging Clock and Locks to Favor Commit and Early Abort[END_REF]). It is on transaction abort. Intuitively, an STM system is permissive "if it never aborts a transaction unless necessary for correctness" (otherwise it is non-permissive). More precisely, an STM system is permissive with respect to a consistency condition (e.g., opacity) if it accepts every history that satisfies the condition.

As indicated in [START_REF] Guerraoui | Permissiveness in Transactional Memories[END_REF], an STM system that checks at commit time that the values of the objects read by a transaction have not been modified (and aborts the transaction if true) cannot be permissive with respect to opacity. In fact other than the protocol introduced along with permissiveness in [START_REF] Guerraoui | Permissiveness in Transactional Memories[END_REF] virtually all published STM protocols abort transactions that could otherwise be safely committed, i.e. the protocols are not permissive.

Probabilistic Permissiveness Some STM systems are randomized in the sense that the commit/abort point of a transaction depends on a random coin toss. Probabilistic permissiveness is suited to such systems. A randomized STM system is probabilistically permissive with respect to a consistency condition if every history that satisfies the condition is accepted with positive probability [START_REF] Guerraoui | Permissiveness in Transactional Memories[END_REF].

Opacity and virtual world consistency

Two consistency conditions for STM systems

The recurring theme throughout this document is that the most important goal of transactional memory is ease of use, and is the subject of this section. We already have our syntax defined for the programmer (atomic{. . . })) and a basic idea of what this means, "the code in the atomic block will appear as if it has been executed instantaneously with respect to other transactions", yet we need to precisely define what this means for an STM algorithm. At the heart of this we have consistency criterion. These criterion precisely define the semantics of a transaction and guide the creation of algorithms in order that the chosen criterion is satisfied. Without a clear and precisely defined consistency criterion we loose the ease of use that is the original intention of STM. In this section we give a overview of two well known consistency criterion defined for transactional memory.

The opacity consistency condition The classical consistency criterion for database transactions is serializability [START_REF] Papadimitriou Ch | The Serializability of Concurrent Updates[END_REF], roughly defined as follows: "A history is serializable if it is equivalent to one in which transactions appear to execute sequentially, i.e., without interleaving." What is important to consider when thinking about transactional memory is that the serializability consistency criterion involves only the transactions that commit. Said differently, a transaction that aborts is not prevented from accessing an inconsistent state before aborting. It should be noted that serializability is sometimes strengthened in "strict serializability". Strict serializability has the additional constraint that the equivalent sequential history must follow a real time order so that each transaction is placed somewhere between its invocation and response time, as implemented when using the 2-phase locking mechanism. Strict serializability is often referred to as linearizability [START_REF] Herlihy | Linearizability: a Correctness Condition for Concurrent Objects[END_REF] when considering the operations of an object instead of the system as a whole.

In contrast to database transactions that are usually produced by SQL queries, in a STM system the code encapsulated in a transaction is not restricted to particular patterns. Consequently a transaction always has to operate on a consistent state (no matter if it is eventually committed or not). If this is not ensured by the STM system, then undesirable behaviors such as divide by zero exceptions can occur (an example of an execution in which such an exception occurs is described in section 1.4.4 of the introduction). Even worse undesirable behaviors can be obtained when reading values from inconsistent states. This occurs for example when an inconsistent state provides a transaction with values that generate infinite loops. Such bad behaviors have to be prevented in STM systems: whatever its fate (commit or abort) a transaction has to see always a consistent state of the data it accesses. The aborted transactions have to be harmless.

Informally suggested in [START_REF] Dice | Transactional Locking II[END_REF], and formally introduced and investigated in [START_REF] Guerraoui | On the Correctness of Transactional Memory[END_REF], the opacity consistency condition requires that no transaction, at any time, reads values from an inconsistent global state where, considering only the committed transactions, a consistent global state is defined as the state of the shared memory at some real time instant. Let us associate with each aborted transaction T its execution prefix (called read prefix) that contains all its read operations until T aborts (if the abort is entailed by a read, this read is not included in the prefix). An execution of a set of transactions satisfies the opacity condition if (i) all committed transactions plus each aborted transaction reduced to its read prefix appear as if they have been executed sequentially and (ii) this sequence respects the transaction real-time occurrence order.

Here let us return to our high level Definition 2 of a transaction that this document is focusing on. The definition says that a transaction is "executed atomically exactly once taking in consideration all parts of the system". Even though the whole system is not considered, the opacity condition fits in this definition because in an STM such a system, transactions are executed atomically with respect to each other and aborted transactions making no visible impact on the system. Therefore, when considering the interaction between transactions, as STM system should use a consistency condition that ensures the same level of safety as opacity. Other parts of the system and the definition are considered in later chapters.

Virtual world consistency This consistency condition, introduced in [START_REF] Imbs | A versatile STM protocol with Invisible Read Operations that Satisfies the Virtual World Consistency Condition[END_REF], is weaker than opacity while keeping its spirit. It states that (1) no transaction (committed or aborted) reads values from an inconsistent global state, (2) the consistent global states read by the committed transactions are mutually consistent (in the sense that they can be totally ordered) but (3) while the global state read by each aborted transaction is consistent from its individual point of view, the global states read by any two aborted transactions are not required to be mutually consistent. Said differently, virtual world consistency requires that (1) all the committed transactions be serializable [START_REF] Papadimitriou Ch | The Serializability of Concurrent Updates[END_REF] (so they all have the same "witness sequential execution") or linearizable [START_REF] Herlihy | Linearizability: a Correctness Condition for Concurrent Objects[END_REF] (if we want this witness execution to also respect real time) and (2) each aborted transaction (reduced to a read prefix as explained previously) reads values that are consistent with respect to its causal past only. Informally the causal past of a transaction is some valid history as viewed by the transaction, but not necessarily the same history as the one seen by other transactions i.e. some transactions might be missing or ordered differently. Causal past is defined more formally in the next section.

As two aborted transactions can have different causal pasts, each can read from a global state that is consistent from its causal past point of view, but these two global states may be mutually inconsistent as aborted transactions have not necessarily the same causal past (hence the name virtual world consistency).

In addition to the fact that it can allow more transactions to commit than opacity, one of the most important points of virtual world consistency lies in the fact that, as opacity, it prevents bad phenomena (as described previously) from occurring without requiring all the transactions (committed or aborted) to agree on the very same witness execution. Let us assume that each transaction behaves correctly (e.g. it does not entail a division by 0, does not enter an infinite loop, etc.) when, executed alone, it reads values from a consistent global state. As, due to the virtual world consistency condition, no transaction (committed or aborted) reads from an inconsistent state, it cannot behave incorrectly despite concurrency, it can only be aborted. This consistency condition can benefit many STM applications as, from its local point of view, a transaction cannot differentiate it from opacity.

So what does this mean for the programmer who plans to use transactional memory to write his concurrent program? Possible performance implications aside, absolutely nothing, The programmer will see no difference between an STM protocol that is opaque versus one that is virtual world consistent and, as a result, still keeping within our Definition 2. Given the first requirement of transactional memory is ease of use, this is extremely important, virtual world consistency would be much less interesting as an STM consistency condition if this were not true.

Formal Definitions

This section defines formally opacity [START_REF] Guerraoui | On the Correctness of Transactional Memory[END_REF] and virtual world consistency [START_REF] Imbs | A versatile STM protocol with Invisible Read Operations that Satisfies the Virtual World Consistency Condition[END_REF]. Section 1.6 of the first chapter described the basic model of transactions that will be used in these definitions and throughout this chapter. Before getting into the formal definitions of the consistency conditions, the following paragraphs describe some additional properties of STM executions necessary for completeness.

Processes and shared objects An application is made up of an arbitrary number of processes and m shared objects. The processes are denoted p i , p j , etc., while the objects are denoted X,Y, . . ., where each id X is such that X ∈ {1, • • • , m}. Each process consists of a sequence of transactions (that are not known in advance). Each of shared objects is an atomic read/write object. This means that the read and write operations issued on such an object X appear as if they have been executed sequentially, and this "witness sequence" is legal (a read returns the value written by the closest write that precedes it in this sequence) and respects the real time occurrence order on the operations on X (if op1(X) terminates before op2(X) starts, op1 appears before op2 in the witness sequence associated with X).

The notations ∃ X.read T (v) and ∃ X.write T (v) are used as predicates to state whether a transaction T has issued a corresponding read or write operation.

Incremental snapshot

As in [START_REF] Bernstein Ph | Formal Aspects of Serializability in Database Concurrency Control[END_REF], we assume that the behavior of a transaction T can be decomposed in three sequential steps: it first reads data objects, then does local computations and finally writes new values in some objects, which means that a transaction can be seen as a software read_modify_write() operation that is dynamically defined by a process. (This model is for reasoning, understand and state properties on STM systems. It only requires that everything appears as described in the model.)

The read set is defined incrementally, which means that a transaction reads the objects of its read set asynchronously one after the other (between two consecutive reads, the transaction can issue local computations that take arbitrary, but finite, durations). We say that the transaction T computes an incremental snapshot. This snapshot has to be consistent which means that there is a time frame in which these values have co-existed (as we will see later, different consistency conditions consider different time frame notions).

If it reads a new object whose current value makes inconsistent its incremental snapshot, the transaction is directed to abort. If the transaction is not aborted during its read phase, T issues local computations. Finally, if the transaction is an update transaction, and its write operations can be issued in such a way that the transaction appears as being executed atomically, the objects of its write set are updated and the transaction commits. Otherwise, it is aborted.

Read prefix of an aborted transaction A read prefix is associated with every transaction that aborts. This read prefix contains all its read operations if the transaction has not been aborted during its read phase. If it has been aborted during its read phase, its read prefix contains all read operations it has issued before the read that entailed the abort. Let us observe that the values obtained by the read operations of the read prefix of an aborted transaction are mutually consistent (they are from a consistent global state).

Base consistency definitions

Preliminary remark Some of the notions that follow can be seen as read/write counterparts of notions encountered in message-passing systems (e.g., partial order and happened before relation [START_REF] Lamport | Time, Clocks and the Ordering of Events in a Distributed System[END_REF], consistent cut, causal past and observation [START_REF] Babaoglu | Consistent Global States of Distributed Systems: Fundamental Concepts and Mechanisms[END_REF][START_REF] Schwarz | Detecting Causal Relationship in Distributed Computations: in Search of the Holy Grail[END_REF]).

Strong transaction history The execution of a set of transactions is represented by a partial order PO = (PO, → PO), called transaction history, that states a structural property of the execution of these transactions capturing the order of these transactions as issued by the processes and in agreement with the values they have read. More formally, we have:

• PO is the set of transactions including all committed transactions plus all aborted transactions (each reduced to its read prefix).

• T 1 → PO T 2 (we say "T 1 precedes T 2") if one of the following is satisfied: 1. Strong process order. T 1 and T 2 have been issued by the same process, with

T 1 first. 2. Read_from order. ∃ X.write T 1 (v) ∧ ∃ X.read T 2 (v). This is denoted T 1 X → rf T 2.
(There is an object X whose value v written by T 1 has been read by T 2.) 3. Transitivity. ∃T :

(T 1 → PO T) ∧ (T → PO T 2).
Weak transaction history The definition of a weak transaction history is the same as the one of a strong transaction history except for the "process order" relation that is weakened as follows:

• Weak process order. T 1 and T 2 have been issued by the same process with T 1 first, and T 1 is a committed transaction. This defines a less constrained transaction history. In a weak transaction history, no transaction "causally depends" on an aborted transaction (it has no successor in the partial order).

Independent transactions and sequential execution Given a partial order PO = (PO, → PO) that models a transaction execution, two transactions T 1 and T 2 are independent (or concurrent) if neither is ordered before the other:

¬(T 1 → PO T 2) ∧ ¬(T 2 → PO T 1). An execution such that → PO is a total order, is a sequential execution.
Causal past of a transaction Given a partial order PO defined on a set of transactions, the causal past of a transaction T , denoted past(T), is the set including T and all the transactions T ′ such that T ′ → PO T .

Let us observe that, when PO is a weak transaction history, an aborted transaction T is the only aborted transaction contained in its causal past past(T). Differently, in a strong transaction history, an aborted transaction always causally precedes the next transaction issued by the same process. As we will see, this apparently small difference in the definition of strong and weak transaction partial orders has a strong influence on the properties of the corresponding STM systems.

Linear extension A linear extension S = (S, → S) of a partial order PO = (PO, → PO) is a topological sort of this partial order, i.e.,

• S = PO (same elements),

• → S is a total order, and

• (T 1 → PO T 2) ⇒ (T 1 → S T 2) (we say "→ S respects → PO ").

Legal transaction

The notion of legality is crucial for defining a consistency condition. It expresses the fact that a transaction does not read an overwritten value. More formally, given a linear extension S, a transaction T is legal in S if, for each X.read T (v) operation, there is a committed transaction T ′ such that:

• T ′ → S T and ∃ X.write T ′ (v), and

• ∄ T ′′ such that T ′ → S T ′′ → S T and ∃ X.write T ′′ ().
If all transactions are legal, the linear extension S is legal.

In the following, a legal linear extension of a partial order, that models an execution of a set of transactions, is sometimes called a sequential witness (or witness) of that execution.

Real time order Let → RT be the real time relation defined as follows: T 1 → RT T 2 if T 1 has terminated before T 2 starts. This relation (defined either on the whole set of transactions, or only on the committed transactions) is a partial order. In the particular case where it is a total order, we say that we have a real time-complying sequential execution.

A linear extension S = (S, → S) of a partial order PO = (PO,

→ PO) is real time-compliant if ∀T, T ′ ∈ S: (T → RT T ′) ⇒ (T → S T ′).

Opacity and virtual world consistency

Both opacity and virtual world consistency ensures that no transaction reads from an inconsistent global state. If each transaction taken alone is correct, this prevents bad phenomena such as the ones described in the Introduction (e.g., entering an infinite loop). Their main difference lies in the fact that opacity considers strong transaction histories while virtual world consistency considers weak transaction histories. Definition 3 A strong transaction history satisfies the opacity consistency condition if it has a real time-compliant legal linear extension.

Examples of protocols implementing the opacity property, each with different additional features, can be found in [START_REF] Dice | Transactional Locking II[END_REF][START_REF] Imbs | A Lock-based STM Protocol that Satisfies Opacity and Progressiveness[END_REF][START_REF] Imbs | A versatile STM protocol with Invisible Read Operations that Satisfies the Virtual World Consistency Condition[END_REF][START_REF] Riegel | Time-based Transactional Memory with Scalable Time Bases[END_REF].

Definition 4 A weak transaction history satisfies the virtual world consistency condition if (a) all its committed transactions have a legal linear extension and (b) the causal past of each aborted transaction has a legal linear extension.

A protocol implementing virtual world consistency can be found in [START_REF] Imbs | A versatile STM protocol with Invisible Read Operations that Satisfies the Virtual World Consistency Condition[END_REF] where it is also shown that any opaque history is virtual world consistent. In contrast, a virtual world consistent history is not necessarily opaque.

To give a better intuition of the virtual world consistency condition, let us consider the execution depicted on Figure 2.1. There are two processes:

p 1 has sequentially issued T 1 1 , T 2 1 , T ′ 1 T 1 1 T 3 1 T ′ 1 T 1 2 past(T ′ 1) T 3 2 T ′ 2 T 2 2 past(T ′ 2)
T The transactions associated with a black dot have committed, while the ones with a gray square have aborted. From a dependency point of view, each transaction issued by a process depends on its previous committed transactions and on committed transactions issued by the other process as defined by the read-from relation due to the accesses to the shared objects, (e.g., the label y on the dependency edge from T 1 2 to T ′ 1 means that T ′ 1 has read from y a value written by T 1 2). In contrast, since here we consider that an aborted transaction does not write shared objects, there is no dependency edges originating from it. The causal past of the aborted transactions T ′ 1 and T ′ 2 are indicated on the figure (left of the corresponding dotted lines). The values read by T ′ 1 (resp., T ′ 2) are consistent with respect to its causal past dependencies.

Invisible reads, permissiveness, and consistency

In the previous section several interesting properties and consistency conditions for STM have been defined. In this section we examine the some of the implications of these properties on STM algorithms.

We start by proving that an STM protocol cannot implement invisible reads, opacity, and permissiveness at the same time. Recalling that a permissive protocol is one that never aborts a transaction unless necessary for correctness (as defined earlier in Section 2.1.2). This is important because it shows that no matter how well we keep track of the interactions between transactions, an opaque STM protocol will have to abort transactions unnecessarily if invisible reads are used. We then show that by simply replacing virtual world consistency for opacity as the consistency condition no transactions need to be aborted unnecessarily. Importantly, as discussed previously, changing virtual world consistency for opacity makes no difference to the meaning of a transaction for the programmer, still following our high level Definition 2 of transactions. Proof Let us first consider permissiveness. The proof follows from a simple counter-example where three transactions T 1 , T 2 and T 3 issue sequentially the following operations (depicted in Figure 2.2).

Invisible reads, opacity and permissiveness are incompatible

1. T 3 reads object X.

2. Then T 2 writes X and terminates. If the STM system is permissive it has to commit T 2 . This is because if (a) the system would abort T 2 and (b) T 3 would be made up of only the read of X, aborting T 2 would make the system non-permissive. Let us notice that, at the time at which T 2 has to be committed or aborted, the future behavior of T 3 is not known and T 1 does not yet exist. 3. Then T 1 reads X and Y . Let us observe that the STM system has not to abort T 1 . This is because when T 1 reads X there is no conflict with another transaction, and similarly when T 1 reads Y . 4. Finally, T 3 writes Y and terminates. let us observe that T 3 must commit in a permissive system where read operations (issued by other processes) are invisible. This is because, due to read invisibility, T 3 does not know that T 1 has previously issued a read of Y . Moreover, T 1 has not yet terminated and terminates much later than T 3 . Hence, whatever the commit/abort fate of T 1 , due to read invisibility, no information on the fact that T 1 has accessed Y has been passed from T 1 to T 3 : when the fate of T 3 has to be decided, T 3 is not aware of the existence of T 1 . The strong transaction history PO = ({T 1 , T 2 , T 3 }, → PO) associated with the previous execution is such that:

T 2 T 3 p 1 p 2 p 3 R X T 1 R X W X commit R Y commit W Y commit/abort
• T 3 → PO T 2 (follows from the fact that T 2 overwrites the value of X read by T 3).

• T 2 → PO T 1 (follows from the fact that T 1 reads the value of X written by T 2). Let us observe that this is independent from the fact that T 1 will be later aborted or committed. (If T 1 is aborted it is reduced to its read prefix "X.read(); Y.read()" that obtained values from a consistent global state.) • Due to the sequential accesses on Y that is read by T 1 and then written by T 3 , we have T 1 → PO T 3 . It follows from the previous item that T 1 → PO T 1 . A contradiction from which we conclude that there is no protocol with invisible read operations that both is permissive and satisfies opacity.

Let us now consider probabilistic permissiveness. Actually, the same counter-example and the same reasoning as before applies. As none of T 2 and T 3 violates opacity, a probabilistic STM system that implements opacity with invisible read operations has a positive probability of committing both of them. As read operations are invisible, there is positive probability that both read operations on X and Y issued by T 1 be accepted by the STM system. It then follows that the strong transaction history PO = ({T 1 , T 2 , T 3 }, → PO) associated with the execution in which T 2 and T 3 are committed while T 1 is aborted has a positive probability to be accepted. It is trivial to see that this execution is the same as in the non-probabilistic case for which it has been shown that this history is not opaque.

From this we have that read invisibility, permissiveness, and opacity are incompatible.

✷ T heorem 1

Remark Let us observe that any opaque system with invisible reads would be required to abort T 3 . When T 3 performs the try_to_commit() operation detecting that its read of X has been overwritten, it must abort (this is because T 3 has no way of knowing whether or not T 1 's read exists at this point, so T 3 must abort in order to ensure safety). From this we have that read invisibility, permissiveness, and opacity are incompatible in the sense that any pair of properties can be satisfied only if the third is omitted.

Importantly this history can be made permissive and virtual world consistent even with read invisibility. In order for this to be true, a virtual world consistency protocol must then abort transaction T 1 . Then it is easy to see that the corresponding weak transaction history is virtual world consistent: The read prefix "X.read T 1 (); Y.read T 1 ()" of the aborted transaction T 1 can be ordered after T 2 (and T 3 does not appear in its causal past). In the following sections a protocol is designed that satisfies virtual world consistency, invisible reads, and permissiveness.

A protocol satisfying permissiveness and virtual world consistency with read invisibility

This section introduces a protocol that satisfies permissiveness and virtual world consistency with read invisibility efficiently using realistic operations available in most hardware.

Step 1: Ensuring virtual world consistency with read invisibility

The protocol (named as IR_VWC_P) is built is two steps. This section presents the first step, namely, a protocol that ensures virtual consistency with invisible read operations. The second step (Section 2.4.4) will enrich this base protocol to obtain probabilistic permissiveness.

Base objects, STM interface, incremental reads and deferred updates

The underlying system on top of which is built the STM system is made up of base shared read/write variables (also called registers) and locks. Some of the base variables are used to contain pointer values. As we will see, not all the base registers are required to be atomic. There is an exclusive lock per shared object.

The STM system provides the process that issues a transaction T with four operations. The operations X.read T (), X.write T (), and try_to_commit T () have been already presented. The operation begin T () is invoked by a transaction T when it starts. It initializes local control variables.

The proposed STM system is based on the incremental reads and deferred update strategy. Each transaction T uses a local working space. When T invokes X.read T () for the first time, it reads the value of X from the shared memory and copies it into its local working space. Later X.read T () invocations (if any) use this copy. So, if T reads X and then Y , these reads are done incrementally, and the state of the shared memory may have changed in between. As already explained, this is the incremental snapshot strategy.

When T invokes X.write T (v), it writes v into its working space (and does not access the shared memory) and always returns ok. Finally, if T is not aborted while it is executing try_to_commit T (), it copies the values written (if any) from its local working space to the shared memory. (A similar deferred update model is used in some database transaction systems.)

The underlying data structures

Implementing a transaction-level shared object Each transaction-level shared object X is implemented by a list. Hence, at the implementation level, there is a shared array PT [1..m] such that PT [X] is a pointer to the list associated with X. This list is made up of cells. Let CELL(X) be such a cell. It is made up of the following fields (see Figure 2.3).

• CELL(X).value contains the value v written into X by some transaction T .

• CELL(X).begin and CELL(X).end are two dates (real numbers) such that the right-open time interval [CELL(X).begin..CELL(X).end[defines the lifetime of the value kept in CELL(X).value. Operationally, CELL(X).begin is the commit time of the transaction that wrote CELL(X).value and CELL(X).end is the date from which CELL(X).value is no longer valid.

• CELL(X).last_read contains the commit date of the latest transaction that read object X and returned the value v = CELL(X).value.

• CELL(X).next is a pointer that points to the cell containing the first value written into X after v = CELL(X).value. CELL(X).prev is a pointer in the other direction.

It is important to notice that none of these pointers are used in the protocol (Figure 2.4) that ensures virtual world consistency and read invisibility. CELL(X).next is required only when one wants to recycle e inaccessible cells (see Section 2.4.6). Differently, CELL(X).next will be used to obtain permissiveness (see Section 2.4.4). No field of a cell is required to be an atomic read/write register of the underlying shared memory. Moreover, all fields (but CELL(X).last_read) are simple write-once registers. Initially PT [X] points to a list made up of a single cell containing the tuple v init , 0, +∞, 0, ⊥, ⊥ , where v init is the initial value of X.

Locks An exclusive access lock is associated with each read/write shared object X. These locks are used only in the try_to_commit() operation, which means that neither X.read T () nor X.write T () is lock-based.

Variables local to each process Each process p i manages a local variable denoted last_commit i whose scope is the entire computation. This variable (initialized to 0) contains the commit date associated with the last transaction committed by p i . Its aim is to ensure that the transactions committed by p i are serialized according to their commit order.

In addition to last_commit i , a process p i manages the following local variables whose scope is the duration of the transaction T currently executed by process p i .

• window_bottom T and window_top T are two local variables that define the time interval during which transaction T could be committed. This interval is]window_bottom T ..window_top T [(which means that its bounds do not belong to the interval). It is initially equal to]last_commit i .. + ∞[. Then, it can only shrink. If it becomes empty (i.e., window_bottom T ≥ window_top T), transaction T has to be aborted.

• lrs T (resp., lws T) is the read (resp., write) set of transaction T . Incrementally updated, it contains the identities of the transaction-level shared objects X that T has read (resp., written) up to now.

• lcell(X) is a local cell whose aim is to contain the values that have been read from the cell pointed to by PT [X] or will be added to that list if X is written by T . In addition to the six previous fields, it contains an additional field denoted lcell(X).origin whose meaning is as follows. If X is read by T , lcell(X).origin contains the value of the pointer PT [X] at the time X has been read. If X is only written by T , lcell(X).origin is useless. has not yet been allocated, p i does it (line 03) and updates its fields value, begin and origin with the corresponding values obtained from the shared memory (lines 04-07). Process p i then updates window_bottom T and window_top T . These updates are as follows.

• The algorithm defines the commit time of transaction T as a point of the time line such that T could have executed all its read and write operations instantaneously as that time. Hence, T cannot be committed before a committed transaction T ′ that wrote the value of a shared object X read by T . According to the algorithm implementing the try_to_commit T () operation (see line 27), the commit point of such a transaction T ′ is the time value kept in lcell(X).begin. Hence, p i updates window_bottom T to max(window_bottom T , lcell(X).begin) (line 08). X is then added to lrst T (line 09).

• Then, p i updates window_top T (the top side of T 's commit window, line 10 transaction T ′′ (where T ′′ is a transaction that wrote Y after T read Y), then window_top T has to be set to commit_time T ′′ if commit_time T ′′ < window_top T . According to the algorithm implementing the try_to_commit T () operation, the commit point of such a transaction T ′′ is the date kept in (lcell(Y).origin ↓).end. Hence, for each Y ∈ lrs T , p i updates window_bottom T to min window_top T , (lcell(Y).origin ↓).end (line 10).

Then, if the window becomes empty, the X.read T () operation entails the abort of transaction T (line 11). If T is not aborted, the value written by T ′ (that is kept in lcell(X).value) is returned (line 13).

The X.write T (v) operation The algorithm implementing this operation is described at lines 14-17 of Figure 2.4. If there is no local cell associated with X, p i allocates one (line 14) and adds X to lws T (line 15). Then it locally writes v into lcell(X).value (line 16) and return ok (line 17). Let us observe that no X.write T () operation can entail the abort of a transaction.

The try_to_commit T () operation

The algorithm implementing this operation is described in Figure 2.4 (lines [START_REF] Babaoglu | Consistent Global States of Distributed Systems: Fundamental Concepts and Mechanisms[END_REF][START_REF] Ballard | Conflict avoidance: Data structures in transactional memory[END_REF][START_REF] Baugh | An analysis of I/O and syscalls in critical sections and their implications for transactional memory[END_REF][START_REF] Bayer | Symmetric binary b-trees: Data structure and maintenance algorithms[END_REF][START_REF] Bernstein Ph | Formal Aspects of Serializability in Database Concurrency Control[END_REF][START_REF] Borkar | Thousand core chips: a technology perspective[END_REF][START_REF] Borowsky | Generalized FLP Impossibility Results for t-Resilient Asynchronous Computations[END_REF][START_REF] Bougé | Height-relaxed AVL rebalancing: A unified, fine-grained approach to concurrent dictionaries[END_REF][START_REF] Bronson | A practical concurrent binary search tree[END_REF][START_REF] Bushkov | On the liveness of transactional memory[END_REF][START_REF] Cachopo | Versioned Boxes as the Basis for Transactional Memory[END_REF][START_REF] Minh | STAMP: Stanford transactional applications for multi-processing[END_REF][START_REF] Ph | A Universal Construction for Wait-free Transaction Friendly Data Structures[END_REF][START_REF] Cole | Snapshots and software transactional memory[END_REF][START_REF] Crain | A speculation-friendly binary search tree[END_REF][START_REF] Crain | Read invisibility, virtual world consistency and permissiveness are compatible[END_REF][START_REF] Crain | Towards a universal construction for transaction-based multiprocess programs[END_REF]. A process p i that invokes try_to_commit T () first locks all transaction-level shared objects X that have been accessed by transaction T (line 18). The locking of shared objects is done in a canonical order in order to prevent deadlocks.

Then, process p i computes the values that define the last commit window of T (lines [START_REF] Ballard | Conflict avoidance: Data structures in transactional memory[END_REF][START_REF] Baugh | An analysis of I/O and syscalls in critical sections and their implications for transactional memory[END_REF]. The update of window_top T is the same as described in the read T () operation. The update of window_top T is as follows. For each register Y that T is about to write in the shared memory (if T is not aborted before), p i computes the date of the last read of Y , namely the date (PT [Y] ↓).last_read. In order not to invalidate this read (whose issuing transaction has been committed), p i updates window_bottom T to max((PT [Y] ↓).last_read, window_bottom T). If the commit window of T is empty, T is aborted (line 21). All locks are then released and all local cells are freed.

If T 's commit window is not empty, it can be safely committed. To that end p i defines T 's commit time as a finite value randomly chosen in the current window]window_bottom T ..window_top T [(let us remind that the bounds are outside the window, line 22). This time function is such that no two processes obtain the same time value.

Then, before committing, p i has to (a) apply the writes issued by T to the shared objects and (b) update the "last read" dates associated with the shared objects it has read. a. First, for every shared object X ∈ lws T , process p i updates (PT [X] ↓).overwrite with T 's commit date (line 23). When all these updates have been done, for every shared object X ∈ lws T , p i allocates a new shared memory cell CELL(X) and fills in the four fields of CELL(X) (lines [START_REF] Bougé | Height-relaxed AVL rebalancing: A unified, fine-grained approach to concurrent dictionaries[END_REF][START_REF] Bronson | A practical concurrent binary search tree[END_REF][START_REF] Bushkov | On the liveness of transactional memory[END_REF][START_REF] Cachopo | Versioned Boxes as the Basis for Transactional Memory[END_REF]. Process p i also has to update the pointer PT [X] to its new value (namely ↑ CELL(X)) (line 28).

b. For each register X that has been read by T , p i updates the field last_read to the maximum of its previous value and commit_time T (lines [START_REF] Ph | A Universal Construction for Wait-free Transaction Friendly Data Structures[END_REF][START_REF] Cole | Snapshots and software transactional memory[END_REF][START_REF] Crain | A speculation-friendly binary search tree[END_REF]. (Actually, this base version of the protocol remains correct when X ∈ lrs T is replaced by X ∈ (lrs T \ lws T). (As this improvement is no longer valid in the final version of the try_to_commit T () algorithm described in Figure 2.6, we do not consider it in this base protocol.)

Finally, after these updates of the shared memory, p i releases all its locks, frees the local cells it had previously allocated (line 33) and returns the value commit (line 34).

On the random selection of commit points It is important to notice that, choosing randomly commit points (line 22, Figure 2.4), there might be "best/worst" commit points for committed transactions, where "best point" means that it allows more concurrent conflicting transactions to commit. Random selection of a commit point can be seen as an inexpensive way to amortize the impact of "worst" commit points (inexpensive because it eliminates the extra overhead of computing which point is the best).

Proof of the algorithm for VWC and read invisibility

Let C and A be the set of committed transactions and the set of aborted transactions, respectively. The proof consists of two parts. First, we prove that the set C is serializable. We then prove that that the causal past past(T) of every transaction T ∈ A is serializable. In the following, in order to shorten the proofs, we abuse notations in the following way: we write "transaction T executes action A" instead of "the process that executes transaction T executes action A" and we use "X.write T ()" as the predicate "T is a committed transaction and the operation X.write T () belongs to the execution".

Proof that C is serializable

In order to show that C is serializable, we have to show that the partial order → PO restricted to C accepts a legal linear extension. More precisely, we have to show that there exists an order → S on the transactions of C such that the following properties hold:

1. → S is a total order, 2. → S respects the process order between transactions, 3.

∀T 1, T 2 ∈ C : T 1 → rf T 2 ⇒ T 1 → S T 2 and, 4. ∀T 1, T 2 ∈ C , ∀X : (T 1 X → rf T 2) ⇒ (∄T 3 : X.write T 3 () ∧ T 1 → S T 3 → S T 2).
In the following proof, → S is defined according to the value of the commit_time variables of the committed transactions. If two transactions have the same commit_time, they are ordered according to the identities of the processes that issued them.

Lemma 1

The order → S is a total order. Proof The proof follows directly from the fact that → S is defined as a total order on the commit times of the transactions of C .

✷ Lemma 1

Lemma 2 The total order → S respects the process order between transactions.

Proof Consider two committed transactions T and T ′ issued by the same process, T ′ being executed just after T . The variable window_bottom T ′ of T ′ is initialized at commit_time T and can only increase (during a read() operation at line 08, or during its try_to_commit() operation at line 20). Because window_bottom T ′ > commit_time T (line 31), we have T → S T ′ . By transitivity, this holds for all the transactions issued by a process.

✷ Lemma 2 Lemma 3 ∀T 1, T 2 ∈ C : T 1 → rf T 2 ⇒ T 1 → S T 2.
Proof Suppose that we have T 1 X → rf T 2 (T 2 reads the value of X written by T 1. After the read of X by T 2, window_bottom T 2 ≥ commit_time T 1 (line 08). We then have T 1 → S T 2. ✷ Lemma 3 Because a transaction locks all the objects it accesses before committing (line 27), we can order totally the committed transactions that access a given object X. Let X → lock denote such a total order.

Lemma 4 X.write T () ∧ X.write T ′ () ∧ T X → lock T ′ ⇒ T → S T ′ .
Proof W.l.o.g., consider that there is no transaction T ′′ such that w T ′′ (X) and T → S T ′′ → S T ′ . Because T X → lock T ′ , when T ′ executes line 20, T has already updated PT [x] and the corresponding CELL(X) (because there is no T ′′ , at this time PT [X] ↓= CELL(X)). Because X ∈ lws T ′ , window_bottom T ′ ≥ (PT [X] ↓).last_read ≥ commit_time T (line 20). We then have commit_time T ′ > commit_time T and thus T → S T ′ .

✷ Lemma 4

Corollary 1 X.write T ()

∧ X.write T ′ (X) ∧ T → S T ′ ⇒ T X → lock T ′ .
Proof The corollary follows from the fact that → S is a total order.

✷ Corollary 1 Lemma 5 ∀T 1, T 2 ∈ C , ∀X : (T 1 X → rf T 2) ⇒ (∄T 3 : X.write T 3 () ∧ T 1 → S T 3 → S T 2.
Proof By way of contradiction, suppose that such a T 3 exists. Again by way of contradiction, suppose that T 2 X → lock T 1. This is not possible because T 2 reads X before committing, and T 1 writes X at the time of its commit (line 28). Thus T 1

X → rf T 2 ⇒ T 1 X → lock T 2. By Corollary 1, X.write T 1 () ∧ X.write T 3 () ∧ T 1 → S T 3 ⇒ T 1 X → lock T 3. We then have two possibilities: (1) T 3 X → lock T 2 and (2) T 2 X → lock T 3. • Case T 3 X → lock T 2.
Let lcell(X) be the local cell of T 2 representing X. When T 2 executes line 19), T 3 has already updated the field end of the cell pointed by lcell(X).origin with commit_time T 3 . T 2 will then update window_top T 2 at a smaller value than commit_time T 3 ,contradicting the original assumption T 3 → S T 2.

• Case T 2 X → lock T 3. When T 3 executes line 20, T 2 has already updated the field last_read of the cell pointed by PT [X]. T 3 will then update window_bottom T 3 at a value greater than commit_time T 2 , contradicting the original assumption T 3 → S T 2, which completes the proof of the lemma. ✷ Lemma 5

Proof that the causal past of each aborted transaction is serializable

In order to show that, for each aborted transaction T , the partial order → PO restricted to past(T) admits a legal linear extension, we have to show that there exists a total order → T such that the following properties hold:

1. the order → T is a total order, 2. → T respects the process order between transactions, 3.

∀T 1, T 2 ∈ past(T) : T 1 → rf T 2 ⇒ T 1 → T T 2 and, 4. ∀T 1, T 2 ∈ past(T), ∀X : (T 1 X → rf T 2) ⇒ (∄T 3 ∈ past(T) : X.write T 3 () ∧ T 1 → T T 3 → T T 2.
The order → T is defined as follows:

(1) ∀T 1, T 2 ∈ past(T) \ {T } : T 1 → T T 2 if T 1 → S T 2 and, (2) ∀T ′ ∈ past(T) \ {T } : T ′ → T T .

Lemma 6

The order → T is a total order. Proof The proof follows directly from the fact that → T is defined from the total order → S for the committed transactions in past(T) (part 1 of its definition) and the fact that all these transactions are defined as preceding T (part 2 of its definition).

✷ Lemma 6

Lemma 7 The total order → T respects the process order between transactions.

Proof The proof follows from Lemma 2 and the definition of → T .

✷ Lemma 7 Lemma 8 ∀T 1, T 2 ∈ past(T) : T 1 → rf T 2 ⇒ T 1 → T T 2.
Proof Because no transaction can read a value from T , we necessarily have T 1 = T . When T 2 = T , the proof follows from the definition of → T and Lemma 3. When T 2 = T , the proof follows from directly from the definition of → T . ✷ Lemma 8

In the following lemma, we use the dual notion of the causal past of a transaction: the causal future of a transaction. Given a partial order PO defined on a set of transactions, the causal future of a transaction T , denoted f uture(T), is the set including T and all the transactions T ′ such that T → PO T ′ . The partial order PO used here is the one defined in Section 2.2.3.

Lemma 9 ∀T 1, T 2 ∈ past(T) : (T 1 X → rf T 2) ⇒ (∄T 3 ∈ past(T) : X.write T 3 () ∧ T 1 → T T 3 → T T 2.
Proof For the same reasons as in Lemma 8, we only need to consider the case when T 2 = T .

By way of contradiction, suppose that such a transaction T 3 exists. Let it be the first such transaction to write X. Let T 4 be the transaction in future(T3) ∩ {T ′ |T ′ → rf T } that has the biggest commit_time value. T 4 is well defined because otherwise, T 3 wouldn't be in past(T). Let Y be the object written by T 4 and read by T .

When T reads Y from T 4, it updates window_bottom T such that window_bottom T ≥ commit_time T 4 (line 08).

From the fact that T 4 ∈ future(T3), we then have that window_bottom T ≥ commit_time T 3 .

Either T reads Y from T 4 and then reads X from T 1, or the opposite. Let last_op be the latest of the two operations. During last_op, T updates window_bottom T . Due to the fact that T 3 ∈ past(T), T 3 has already updated the pointer PT [Z] for some object Z (line 28), and thus has already updated the field end (line 23) of the cell pointed by lcell(X).origin (lcell(X) being the local cell of T representing X). T will then observe window_bottom T ≥ window_top T (line 11) and will not complete last_op, again a contradiction, which completes the proof of the lemma. Proof The proof that the algorithm presented in Figure 2.4 satisfies virtual world consistency follows from Lemmas 1, 2, 3, 5, 6, 7, 8 and 9.

The fact that, for any shared object X and any transaction T , the operation X.read T () is invisible follows from a simple examination of the text of the algorithm implementing that operation (lines 01-13 of Figure 2.4): there is no write into the shared memory.

✷ T heorem 2 2.4. [START_REF] Afek | Efficient lock free privatization[END_REF] Step 2: adding probabilistic permissiveness to the protocol This section presents the final IR_VWC_P protocol that ensures virtual world consistency, read invisibility and probabilistic permissiveness. The first part describes the protocol while the second part proves its correctness.

The IR_VWC_P protocol

To obtain a protocol that additionally satisfies probabilistic permissiveness, only the operation try_to_commit T () has to be modified. The algorithms implementing the operations begin T (), X.read T () and X.write T () are exactly the same as the ones described in Figure 2

() protocol. R X W X commit_time T 1 commit_time T 2 T 3 T 2 T 1 W X
commit line window forbidden for T 3

Figure 2.5: Commit intervals

A set of intervals for each transaction Let us consider the execution depicted in Figure 2.5 made up of three transactions: T 1 that writes X, T 2 that reads X and obtains the value written by T 1, and T 3 that writes X. When we consider the base protocol described in Figure 2.4, the commit window of T 3 is]commit_time T 2 .. + ∞[. As the aim is not to abort a transaction if it can be appropriately serialized, it is easy to see that associating this window to T 3 is not the best choice that can be done. Actually T 3 can be serialized at any point of the commit line as long as the read of X by Y 2 remains valid. This means that the commit point of T 3 can be any point in

]0..commit_time T 1 [∪]commit_time T 2 .. + ∞[.
This simple example shows that, if one wants to ensure probabilistic permissiveness, the notion of continuous commit window of a transaction is a too restrictive notion. It has to be replaced by a set of time intervals in order valid commit times not to be a priori eliminated from random choices.

Additional local variables

According to the previous discussion, two new variables are introduced at each process p i . The set commit_set T is used to contain the intervals in which T will be allowed to commit. To compute its final value, the set forbid T is used to store the windows in which T cannot be committed.

The enriched try_to_commit T () operation The new try_to_commit T () algorithm is described in Figure 2.6. In a very interesting way, this try_to_commit T () algorithm has the same structure as the one described in Figure 2.4. The lines with the same number are identical in both algorithms, while the number of the lines of Figure 2 These new lines compute instead the set of intervals that constitute commit_set T .

To that end they suppress from the initial interval]window_bottom T , window_top T [, all the time intervals that would invalidate values read by committed transactions. This is done for each object X ∈ lws T (line 20.H; see section 2.4.4.2 for an example). If commit_set T is empty, the transaction T is aborted (line 21.A).

• The commit time of a transaction T is now selected from the intervals in commit_set T (line 22.A).

• Line 23 of Figure 2.4 was assigning, for each X ∈ lws T , its value to (PT [X] ↓).end, namely the value commit_time T . This is now done by the new lines 23.A-23.E. Starting from PT [X], these statements use the pointer prev to find the cell (let us denote it say CX) of the list implementing X whose field CX.end has to be assigned the value commit_time T . Let us remember that CX.end defines the end of the lifetime of the value kept in CX.value. This cell CX is the first cell (starting from PT [X]) such that CX.begin < commit_time T .

• Line 24 of Figure 2.4 assigned its new value to every object X ∈ lws T . Now such an object X has to be assigned its new value only if commit_time T > (PT [X] ↓).begin. This is because when commit_time T < (PT [X] ↓).begin, the value v to be written is not the last one according to the serialization order. Let us remember that the serialization order, that is defined by commit times, is not required to be real time-compliant (which would be required if we wanted to have linearizability instead of serializability, see Section 2.4.7 The subtraction operation on sets of intervals of real numbers commit_set T \x_forbid T [X] has the usual meaning, which is explained with an example in

[X] = { [0..a ′], [b ′ ..c ′], [d ′ .. + ∞[}. The last line of the figure, show that we have commit_time T \x_ f orbid T [X] = {]a ′ ..b[,]c..b ′ [,]g..d ′ [}.

About the predicate of line 24.A of Figure 2.6

This section explains the meaning of the predicate used at line 24.A: commit_time T > (PT [X] ↓).begin. This predicate controls the physical write in a shared memory cell of the value v that T wants to write into X (meaning that not every item in a transactions write set will be phyiscally written to memory). It states that the value is written only if commit_time T > (PT [X] ↓).begin. This is due to the following reason. Let us remember that a transaction is serialized at a random point that belongs to its current set of intervals current_set T . Moreover as we are looking for serializable transactions, the serialization points of two transactions T 1 and T 2 are not necessarily real time-compliant, they depend only of their sets current_set T 1 and current_set T 1 , respectively.

An example is described in Figure 2.8. Transaction T 1, that invokes X.write T 1 (), executes first (in real time), commits and is serialized at (logical) time commit_time T 1 as indicated on the Figure . Then (according to real time) transaction T 2, that invokes also X.write T 2 (), is invoked and then commits. Moreover, its commit set and the random selection of its commit time are such that commit_time T 2 < commit_time T 1 . It follows that T 2 is serialized before T 1. Consequently, the last value of X (according to commit times) is the one written by T 1, that has overwritten the one written by T 2. The predicate commit_time T > (PT [X] ↓).begin prevents the committed transaction T 2 to write its value into X in order write and read operations on X issued by other transactions be in agreement with the serialization order defined by commit times.

Proof of the probabilistic permissiveness property

In order to show that the protocol is probabilistically permissive with respect to virtual world consistency, we have to show the following. Given a transaction history that contains only committed transactions, if the partial order PO = (PO, → PO) accepts a legal linear extension (as defined in Section 2.2), then the history is accepted (no operation returns abort) with positive probability. As in [START_REF] Guerraoui | Permissiveness in Transactional Memories[END_REF], we consider that operations are executed in isolation. It is important to notice here that only operations, not transactions, are isolated. Different transactions can still be interlaced.

Let → S be the order on transactions defined by the protocol according to the commit_time T variable of each transaction T (this order has already been defined in Section 2.4.2).

Lemma 10 Let T and T ′ be two committed transactions such that T → PO T ′ and T ′ → PO T . If there is a legal linear extension of PO in which T precedes T ′ , then there is a positive probability that T → S T ′ .

Proof Because T → PO T ′ , the set past(T)\past(T ′) is not empty (past(T) does not contain T ′). Let biggest_ct T,T ′ be the biggest value of the commit_time variables (chosen at line 22.A) of the transactions in the set past(T) ∩ past(T ′) if it is not empty, or 0 otherwise. Suppose that every transaction in past(T)\past(T ′) chooses the smallest value possible for its commit_time variable. These values cannot be constrained (for their lower bound) by a value bigger than biggest_ct T,T ′ , thus they can all be smaller than biggest_ct T,T ′ + ε for any given ε.

Suppose now that T ′ chooses a value bigger than biggest_ct T,T ′ + ε for its commit_time variable. This is possible because, for a given transaction T 1, the upper bound on the value of commit_time T 1 can only be fixed by a transaction T 2 that overwrites a value read by T 1 (lines 10 and 19). Suppose now that T 1 is T ′ . If there was such a transaction T 2 in past(T), then there would be no legal linear extension of → PO in which T precedes T ′ . Thus if there is a legal linear extension of → PO in which T precedes T ′ , then there is a positive probability that T → S T ′ .

✷ Lemma 10

Lemma 11 Let PO = (PO, → PO) be a partial order that accepts a legal linear extension. Every operation of each transaction in PO does not return abort with positive probability.

Proof X.write T () operations cannot return abort. Therefore, we will only consider the operations X.read T () and try_to_commit T ().

Let → legal be a legal linear extension of → PO . Let op be an operation executed by a transaction. Let C op be the set of transactions that have ended their try_to_commit() operation before operation op is executed (because we consider that the operations are executed in isolation, this set is well defined). Let → op be the total order on these transactions defined by the protocol.

From Lemma 10, two transactions that are not causally related can be totally ordered in any way that allows a legal linear extension of → PO . There is then a positive probability that → op ⊂ → legal . Suppose that it is true. Let T be the transaction executing op. Let T 1 and T 2 be the transactions directly preceding and following T in → legal restricted to C op ∪ {T } if they exist. If T 1 does not exist, then window_bottom T = 0 at the time of all the operation of T , and thus T can execute successfully all its operations. Similarly, if T 2 does not exist, then window_top T = +∞ at the time of all the operation of T , and thus T can execute successfully all its operations. We will then consider that both T 1 and T 2 exist.

Because → legal is a legal linear extension of → PO , any transaction from which T reads a value is either T 1 or a transaction preceding T 1 in → op (line 08) resulting in a value for window_bottom T that is at most commit_time T 1 . Similarly, any transaction that overwrote a value read by T at the time of op is either T 2 or a transaction following T 2 in → op (line 10) resulting in a value for window_top T that is at least commit_time T 2 . All the read operations of T will then succeed (line 11).

Let us now consider the case of the try_to_commit() operation. Because all read operations have succeeded, the set commit_set T =]window_bottom T ..window_top T [(line 20.A) is not empty and must contain the set]commit_time T 1 ..commit_time T 2 [. Because → legal is a legal linear extension of → PO , if T writes to an object X then T cannot be placed between two transactions T 3 and T 4 such that T 3 reads a value of object X written by T 4.

Because these intervals (represented by x_forbid T [X], lines 20.B to 20.H) are the only ones removed from commit_set T (line 20.I) and because there is a legal linear extension of → PO which includes T , commit_set T is not empty and the transaction can commit successfully, which ends the proof of the lemma.

✷ Lemma 11

Theorem 3 The algorithm presented in Figure 2.4, where the try_to_commit() operation has been replaced by the one presented in Figure 2.6, is probabilistically permissive with respect to virtual world consistency.

Proof From Lemma 11, all transactions of a history can commit with positive probability if the history is virtual world consistent, which proves the theorem. ✷ T heorem 3

Garbage collecting useless cells

This section presents a relatively simple mechanism that allows shared memory cells that have become inaccessible to be collected for recycling. This mechanism is based on the pointers next, two additional shared arrays, the addition of new statements to both X.read T () and the try_to_commit T (), and a background task BT .

Additional arrays

The first is an array of atomic variables denoted LAST_COMMIT[1.

.m] (remember that m is the number of sacred objects). This array is such that LAST_COMMIT[X] (which is initialed to 0) contains the date of the last committed transaction that has written into X. Hence, the statement "LAST_COMMIT[X] ← commit_time T " is added in the do ... end part of line 23.

The second array, denoted MIN_READ[1.

.n], is made up of one-writer/one-reader atomic registers (let us recall that n is the total number of processes). MIN_READ[i] is written by p i only and read by the background task BT only. It is initialized to +∞ and reset to its initial value value when p i terminates try_to_commit T () (i.e., just before returning at line 21 or line 34 of Figure 2.4). When MIN_READ[i] = +∞, its value is the smallest commit date of a value read by the transaction T currently executed by p i . Moreover, the following statement has to be added after line 03 of the X.read T () operation:

MIN_READ[i] ← min(MIN_READ[i], LAST_COMMIT[X]).
Managing the next pointers When a process executes the operation try_to_commit T () and commits the corresponding transaction T , it has to update a pointer next in order to establish a correct linking of the cells implementing X. To that end, p i has to execute (PT [X] ↓).next ←↑ CELL[X] just before updating PT [X] at line 28.

The background task BT This sequential task, denoted BT , is described in Figure 2.9. It uses a local array denoted last v alid_pt [1..m] such that last_valid_pt[X] is a pointer initialized to PT [X] (line 01). Then its value is a pointer to the cell containing the oldest value of X that is currently accessed by a transaction (this is actually a conservative value).

(01) init: for every

X do last_valid_pt[X] ← PT [X] end for. background task BT : (02) repeat forever (03) min_useful ← min({MIN_READ[i]} 1≤i≤n); (04) for every X do (05) last ← last_valid_pt[X]; (06) while (last = PT [X]) ∧ (last ↓).next ↓).next = ⊥) (07) ∧[(((last ↓).next ↓).next ↓).commit_time < min_useful] (08)
do temp ← last; last ← (last ↓).next; release the cell pointed to by temp (09) end while; [START_REF] Anderson | Universal Constructions for Large Objects[END_REF] last_valid_pt[X] ← last [START_REF] Ansar | Steal-on-abort: Dynamic Transaction Reordering to Reduce Conflicts in Transactional Memory[END_REF] end for [START_REF] Attiya | Transactional contention management as a nonclairvoyant scheduling problem[END_REF] end repeat. The body of task BT is an infinite loop (lines 02-12). BT first computes the smallest commit date still useful (line 03). Then, for every shared object X, BT scans the list from last_valid_pt[X] and releases the space occupied by all the cells containing values of X that are no longer accessible (lines 06-09), after which it updates last_valid_pt[X] to its new pointer value (line 10). Lines 06 and 07 uses two consecutive next pointers. Those are due to the maximal concurrency allowed by the algorithm, more specifically, they prevent an X.read T () operation from accessing a released cell.

It is worth noticing that the STM system and task BT can run concurrently without mutual exclusion. Hence, BT allows for maximal concurrency. The reader can also observe that such a maximal concurrency has a price, namely (as seen in line 06 where the last two cells with commit time smaller than min_useful are kept) for any shared object X, task BT allows all -but at most one-useless cells to be released.

From serializability to linearizability

The IR_VWC_P protocol guarantees that the committed transactions are serializable. A simple modification of the protocol allows it to ensures the stronger "linearizability" condition [START_REF] Herlihy | Linearizability: a Correctness Condition for Concurrent Objects[END_REF] instead of the weaker "serializability"condition. The modification assumes a common global clock that processes can read by invoking the operation System.get_time(). It is as follows.

• The statement window_bottom T ← last_commit i at line 01 of begin T () is replaced by the statement window_bottom T ← System.get_time().

• The following statement is added just between line 19 and line 20 of try_to_commit T ()

(Figure 2.4): if (window_top T = +∞) then window_top T ← System.get_time() end if.
It is easy to see that these modifications force the commit time of a transaction to lie between its starting time and its end time. Let us observe that now the disjoint access parallelism property remains to be satisfied except for the accesses to the common clock.

Some additional interesting properties

This chapter has focused on the STM properties of permissiveness, virtual world consistency, and invisible reads, but, interestingly enough, this STM protocol satisfies several additional noteworthy features/properties described in the following paragraphs. By satisfying these additional properties we then know that they are compatible with permissiveness, virtual world consistency, and invisible reads. Additionally, it is important to realize that some of these additional properties are not necessarily exclusive to STM systems and may be applicable to other concurrent algorithms, or even algorithms in general. Following this, we must acknowledge that there are nearly countless properties to consider (STM specific properties, concurrent algorithm specific properties, or even properties applicable generally to algorithms) whose compatibility with other properties might be examined when taking TM into account. Given such a huge space of options to examine, the community is given the task of deciding which properties and their combinations might be important and others that might not. Unfortunately this is not always a straightforward task, especially given that we do not know to what extent and for what tasks transactional memory might be used for in the future.

In any case this thesis suggests studying these properties should be done while still considering a consistency condition such as opacity or virtual world consistency, keeping in the spirit of our high level Definition 2 or a transaction. While there might be other interesting properties to study when considering weaker definitions of transactions and consistency, when doing this the goal of ease of use is partially lost and is therefore not examined in this thesis. The following are some properties satisfied by the protocol discussed in this chapter which appear to be important when considering efficient STM protocols.

Base operations and underlying locks The use of expensive base synchronization operations such as Compare&Swap() or the use of underlying locks are very powerful and allow us to implement interesting concurrent algorithms. Unfortunately these operations can be quite expensive and their use in an STM system can cause inefficiencies and prevent scalability especially when compared to just using simple reads and writes. Hence, an STM systems should use synchronization operations sparingly (or even not at all) and the use of locks should be as restricted as possible. Following this, the protocol described in this chapter uses only base read-/write operations and a lock per object that is used at commit time only (no synchronization operations are used in the transactional read and write operations).

Disjoint access parallelism Ideally, an STM system should allow transactions that are on distinct objects to execute without interference, i.e., without accessing the same base shared variables. Any concurrent protocol that satisfies disjoint access parallelism ensures that nonconflicting operations do not access the same shared data. At first glance this seems like an essential and straightforward property to ensure, but due to the fact that the locations a transaction might access are not known until they actually happen, it can be difficult to design safe and efficient disjoint access parallel STM protocols. Still, this is a nice property for an STM system to implement for several reasons. First is scalability, a program using STM for synchronization that is written so that each process shares very little data with other processes could have its scalability limited by the sharing of data within the STM implementation. Second is simply efficiency, simply because shared data can be expensive to access (especially that which is highly contended). Additionally, when specifically considering TM, this property helps avoid unnecessary aborts that my be caused by accessing shared memory that would not otherwise cause conflicts, such as relying on a global counter for validation.

Multi-versioning

The proposed IR_VWC_P protocol uses multiple versions of each shared object X (kept in a list). Keeping multiple versions of an object does not change they way the programmer uses transactions, but instead they can be used by the STM protocol to do some interesting things. For example, specific to the protocol in this chapter, keeping multiple versions allows the protocol to have a larger time line to find valid locations to serialize transactions. In fact, the amount of versions kept is at least enough to ensure that any live transaction can be serialized at any valid time starting from the time the previous transaction was committed by this thread (necessary for permissiveness).

This work is not the first to consider multi-versioning for STM systems, in fact such systems have been proposed several years ago [START_REF] Cachopo | Versioned Boxes as the Basis for Transactional Memory[END_REF] and have recently received a new interest, e.g., [START_REF] Attiya | Single-version STM Can be Multi-version Permissive[END_REF][START_REF] Perelman | On Maintaining Multiple versions in STM[END_REF] for studying permissiveness. Differently than the work presented in this chapter, these papers do not consider virtual wold consistency as a consistency condition and, in addition, the papers [START_REF] Attiya | Single-version STM Can be Multi-version Permissive[END_REF][START_REF] Perelman | On Maintaining Multiple versions in STM[END_REF] consider a different notion of permissiveness called multi-version permissiveness that states that read-only transactions are never aborted and an update transaction can be aborted only when in conflict with other transactions writing the same objects. More specifically, paper [START_REF] Perelman | On Maintaining Multiple versions in STM[END_REF] studies inherent properties of STMs that use multiple versions to guarantee successful commits of all read-only transactions. This paper presents also a protocol with visible read operations that recovers useless versions. Paper [START_REF] Attiya | Single-version STM Can be Multi-version Permissive[END_REF] shows that multi-version permissiveness can be obtained from single-version. The STM protocol it presents satisfies the disjoint access parallelism property, requires visible read operations and uses k-Compare&single-swap operations.

Trade-offs Unfortunately a change in one part of the system, by for example ensuring some new property or making a change for efficiency, almost always implies an impact on another part of the system. Due to this, a discussion of properties would not be complete without also examining their trade offs. For example a global counter may violate disjoint access parallelism, but it can also be used to avoid the location-by-location revalidation of a transaction's read set every time a new read is performed (efficient state of the art STM algorithms such as TL2 [START_REF] Dice | Transactional Locking II[END_REF] use such a technique). Or, for example, multi-versioning requires additional memory space and brings up additional challenges such as how many versions to keep and how to clean up old versions. Given this, it is extremely difficult to choose the "best" properties for an STM system that works across all workloads and consequently encourages the study of various properties in different combinations across various workloads. As interesting example of this can be found in [START_REF] Dragojević | STM in the small: trading generality for performance in software transactional memory[END_REF] where shorter transactions are treated differently than longer ones.

Conclusion

To conclude this chapter we will return to the idea that the main purpose of transactional memory is to make concurrent programming easier. Overall the contribution of this chapter is a study of the interaction between several properties and consistency conditions of transactional memory. So then, what does this have to do with the ease of use of transactional memory?

When designing an STM protocol it is necessary that we design it to satisfy some consistency criterion. This is important because these consistency criterion define the semantics of a transaction to the programmer. As long as the chosen consistency criterion is satisfied then we can start considering other secondary, but still important things such as performance. This is where different properties such as read invisibility and permissiveness come in, a protocol that chooses or not to implement such properties might impact the performance of that protocol, but does not change the semantics of a transaction. By doing this we are putting the ease of use for the programmer as a first class requirement. Furthermore this chapter suggests (following the trend of most STM research) not using any consistency criterion for STM, but instead using consistency criterion that ensures the atomicity of transactions without allowing any transaction to execute in an invalid state of memory thus keeping in our high level Definition 2. While this chapter only considers the part of this definition having to do with the atomicity of transactions, later chapters consider other parts of the definition in more detail.

The first contribution of this chapter shows that permissiveness and read invisibility are incompatible with opacity, we then show that we can choose a weaker consistency criterion (virtual world consistency) to design a protocol that satisfies permissiveness and read invisibility. Most importantly, even though we have weakened the consistency criterion, the programmer will see no difference in the semantics of a transaction. If virtual world consistency changed the way a programmer had to think about transactions versus opacity, then it would not be considered an appropriate consistency criterion for transactional memory.

The second contribution of this chapter introduces a realistic algorithm that satisfies virtual world consistency, permissiveness, and read invisibility.

An important position of this work is that instead of looking at properties independently, it considers multiple properties at once. More specifically it looks at the compatibility of properties, how realistic protocols can be designed to satisfy them, and how trade-offs in these properties can be made for efficiency. Hopefully these contributions promote the idea that studying such combinations is important for understanding transactional memory and will also promote similar research on the many combinations left unexamined. Importantly this suggests that weakening the transactional model in the interest of improving performance might not be necessary, as much of what is possible under the current model has yet to be examined (actually further chapters will suggest even simplifying the model). Recent research [START_REF] Kuznetsov | On the Cost of Concurrency in Transactional Memory[END_REF] has suggested an interesting way to approach this problem by looking at the amount of concurrency certain properties (or even combinations of these properties) might allow. They do this by proving the minimum amount of expensive synchronization operations that are needed by an STM in order to ensure these properties safely.

As a final note on ease of use, it should be said that the research direction suggested in this chapter is also similar in a way to that of the majority of published work on transactional memory in that it concerns itself with designing an efficient protocol without modifying the idea of a transaction. Each of the protocols presented in these various works (DSTM [START_REF] Herlihy | Software Transactional Memory for Dynamic-Sized Data Structures[END_REF], TL2 [START_REF] Dice | Transactional Locking II[END_REF], TinySTM [START_REF] Felber | Dynamic Performance Tuning of Word-Based Software Transactional Memory[END_REF], SwissSTM [START_REF] Dragojević | Stretching Transactional Memory[END_REF], NOrec [START_REF] Dalessandro | NOrec: streamlining STM by abolishing ownership records[END_REF], etc...) have no impact on how the programmer understands the transaction which, in a way, puts ease of use first. The following chapters will take a different direction, examining some of what we consider shortcomings of the commonly used transactional model and how to improve it.

Chapter 3

Universal Constructions and Transactional Memory

Introduction

The previous chapter focused on the area of transactional memory research that takes a fixed view of the semantics of a transaction for the programmer and studies what can be done in an STM protocol without changing the semantics. This type of STM research puts first the ease of use for the programmer using the STM protocol before considering secondary interests (usually performance). In most cases this ease of use is ensured by having the protocol satisfy opacity. Opacity is used because generally it is considered to provide the amount of safety a programmer would expect from an atomic block of code without having to worry about inconsistencies (Note that in some cases virtual world consistency is used as it does not change how the programmer views a transaction). This chapter takes a slightly different approach to STM research as it suggest that transactional memory might be more usable to a programmer if it satisfied more than just opacity.

Opacity and other consistency criterion are sometimes also called safety properties. Informally this is because they ensure a protocol that implements them will act in a way that a user would expect and not produce any weird behavior. For example, as previously mentioned, opacity prevents any transaction from executing on invalid states of memory, preventing things such as divide by zero exceptions in correct code. Even though consistency criterion remove the complexity of having to deal with undefined states of memory, they leave open other problems for the programmer to deal with that could make using STM more difficult. In this sense we suggest hiding some of these problems from the programmer by dealing with them in the STM implementation.

Again, lets us go back to our Definition 2 of a transaction from the inroduction: "A transaction is any block of code defined by the programmer to be executed by a given process. This transaction is executed atomically exactly once taking in consideration all parts of the system." Notice how in the previous chapter no mention was made about how often the transactions commit, therefore, not taking into account the words "exactly once", more specifically, consistency criterion do not consider how often transactions commit. For example a protocol could satisfy opacity by just aborting every transaction before it performs any action, but of course this protocol would be useless. In order to avoid this, certain STM protocols satisfy liveness (or progress) properties. These properties, not limited to transactional memory, ensure the operations of a process will make some sort of progress sometimes depending on the amount of contention in the system. Let us now look at some of these properties.

Progress properties

This section will give an overview of the most common progress properties defined for concurrent algorithms [START_REF] Raynal | Concurrent Programming: Algorithms, Principles, and Foundations[END_REF]. They are arranged into two categories, blocking and non-blocking.

Blocking properties

The most common way to write concurrent programs is by using locks, generally lock based programs satisfy blocking progress properties. A property is blocking when a thread's progress can be blocked because it is waiting for another thread to perform some action. For example thread T A might want to acquire lock L 1 , but thread T B currently owns lock L 1 so then thread T A waits for thread T B to release lock L 1 . In this case thread T A is blocked by thread T B . The three most common blocking properties are (from weakest to strongest) deadlock freedom, livelock freedom, and starvation freedom. They are described briefly in the following paragraphs.

Deadlock freedom Deadlock freedom is the weakest blocking property, it prevents the implementing protocol form entering a state of deadlock. Deadlock occurs when at least two threads are preventing each other from progressing due to each other holding a lock (or resource) that the other wants to acquire. A simple example of deadlock (repeated from section 1.1 of the introduction for completeness) would be the following: thread T A owns lock L 1 and wants to acquire lock L 2 , concurrently thread T B owns lock L 2 and wants to acquire lock L 1 . In this case thread T A and T B will be stuck infinitely, waiting to acquire the lock that the other already owns creating a state of deadlock. It is generally considered that every correct concurrent protocol should at least satisfy deadlock freedom, otherwise the protocol is considered as incorrect. A common way to avoid deadlock freedom is by ensuring threads acquire locks in a fixed global order, but this can have negative implications on performance.

Livelock freedom Stronger than deadlock freedom, livelock freedom prevents a state of livelock where threads never progress due to their progress depending on a shared state that is created by another thread. Consider the following simple example where a thread must own locks L 1 and L 2 concurrently in order to perform its desired operation. Thread T A runs a locking protocol that first acquires L 1 and then L 2 , while thread T B runs a protocol that first acquires L 2 then L 1 . In order to avoid deadlock a straightforward mechanism is used where when some thread notices that another thread owns a lock it wants, it simply releases all the locks it owns and starts the locking protocol over. Now consider the following order of events by thread T A and T B , each trying to acquire locks L 1 and L 2 , where the L.acquire T () operation performed on a lock L by thread T returns true if T successfully acquired the lock, or false if the acquire failed due to the lock being owned by another thread:

L 1 .acquire T A () → true, L 2 .acquire T B () → true, L 2 .acquire T A () → false, L 1 .acquire T B () → false, L 1 .release T A (), L 2 .

release T B ()

As we can see, if such an order of events is continually repeated then livelock is observed, as neither thread T 1 nor thread T 2 will ever acquire both locks. Even though the processes are not stalled they are not making progress. It should be noted that by definition livelock freedom also ensure deadlock freedom.

Starvation freedom

The strongest blocking property, starvation freedom ensure that no threads starve. A thread is starved when it requires access to some shared resources in a certain state to progress, but it is never able to such gain access to them due to one or more concurrent "greedy" threads that consistently own the needed resources. Starvation freedom prevents both deadlock and livelock from happening.

Non-blocking properties

There are also several non-blocking progress properties of concurrent programming. Unlike the blocking properties these ensure that a thread's progress is never blocked due to it waiting for another thread. Inherently this means that it is not possible protocols that use standard locks to be non-blocking. Instead of using locks, non-blocking protocols generally use atomic operations such as test&set or compare&swap (in a non-blocking fashion) when synchronization between threads is necessary. Generally programming using these operations in this way is considered to be much more difficult than programming using locks.

The problem with blocking If non-blocking algorithms are more difficult to program then why not just use locks? When concerning scalability, non-blocking algorithms have two main advantages over their blocking counterparts.

The first most obvious advantage is by definition; in a non-blocking algorithm a thread will never be blocked waiting for another thread. Normally waiting might seem to be necessary part of synchronization, for example in our everyday lives when working together with someone on a project we will wait for a teammate to finish their task before starting ours. But, then consider a massive project that involves hundreds of people across the world in multiple organizations, if one person on this project might have an approaching deadline and he might not want to wait on someone across the world that he has never met before in order to start his task. Similar situations can exist in largely parallel computer systems, threads might be spread across multiple processors or machines, some might be sleeping, some might execute slower than others, the connection between some processors might be slower than others. In such cases the amount of time a thread might have to wait could be unknown and harmful to scalability.

The second advantage is when faults are considered. If a thread is waiting for a lock that is owned by another thread that has crashed, then without fault detection and recovery (known to be a very difficult problem to solve [START_REF] Aguilera | Failure detection and consensus in the crash-recovery model[END_REF]) this thread will be waiting forever. Non-blocking algorithms on the other hand, by definition, do not have to worry about this. Given that fault detection and recovery is a difficult problem especially in massively parallel systems this is an obvious advantage of non-blocking algorithms.

obstruction-freedom The first non-blocking property is obstruction-freedom. A protocol that is obstruction-free ensures that any thread will eventually make progress as long as it is able to run by itself for long enough. This property ensures that no thread is ever blocked waiting for another thread, but only guarantees progress in the absence of contention.

Lock-freedom For certain tasks progress might be required even in the face of contention, in such cases ensuring obstruction freedom is not enough. Lock-freedom ensures that at any time there is at least one thread who will eventually make progress. Even though some threads may starve, in a lock-free algorithm we at least know that the system as a whole is making progress.

Wait-freedom An even stronger progress property wait-freedom ensures that all threads eventually make progress. This is a nice property to ensure as each thread in the system is only dependent on itself and not other threads for making progress.

Universal Constructions for concurrent objects

Given the increased progress guaranteed by wait-free protocols they are desirable over lock based protocols. Unfortunately wait-free protocols are known to be extremely difficult to write and understand.

Two years before the concept of transactional memory was introduced, the notion of a universal construction for concurrent objects (or concurrent data structures) was introduced by Herlihy [START_REF] Herlihy | Wait-Free Synchronization[END_REF].

Like transactional memory, a universal construction's main concern is with making concurrent programming easier. A universal construction takes any sequential implementation of an object or data structure and makes its operations concurrent, wait-free, and linearizable. The concurrent objects suited to such constructions are the objects that are defined by a sequential specification on total operations (i.e., operations that, when executed alone, always return a result). For example data structures are the typical example of the algorithms that can make use of a universal construction.

A brief introduction to a universal construction protocol Upon first inspection it might appear to be a nearly impossible task to design a construction that can automatically turn the operations of a sequential object into a concurrent one with such a strong progress guarantee as wait-freedom. Fortunately even though the fine details of the universal construction proposed in [START_REF] Herlihy | Wait-Free Synchronization[END_REF] might be intricate, the key design concepts are quite clear.

The first concept has to deal with correctness. How to ensure that the sequential code is executed safely when there can be multiple threads concurrently performing operations on the object (i.e. satisfies linearizability)? This is ensured simply by each thread operating on a local copy of the object. Before a thread starts executing the original sequential code, it makes a copy of the object in its local memory and the requested operation is performed on that object. Once the sequential operation is complete it must be then made visible so other threads can be aware of the modification. In order to achieve this there is a single global operation pointer. An operation completes by performing a compare&swap on this pointer changing it to point to the descriptor of the calling operation, containing the copy of the object with the modification done by the operation performed on it. The value swapped out must be the same as it was when the operation started, if not the operation discards its modifications and starts over with a new up to date local copy. Unfortunately this means that best case concurrent performance will be no better than a single thread, but in certain cases this might be an acceptable trade-off for having wait-free progress.

The second key concept has to deal with liveness. As described in the previous paragraph an operation completes by modifying a global pointer with a compare&swap operation, but this operation can fail due to a concurrent modification to the global pointer by some other thread. Now according to the progress guarantee of wait-freedom, every operation by every thread must eventually complete successfully without blocking, meaning the compare&swap must not fail infinitely many times. The key concept used to ensure this is helping. Since a failed compare&swap can only be caused by a different thread succeeding with its compare&swap, why not have this successful thread help the thread that failed? Simply put helping here means that several threads will all execute the operation of a thread who's operation has failed in order to ensure that that operation eventually succeeds. When helping it is important to ensure that each operation is not performed several times.

Alternative universal constructions Since the original, several universal constructions have been proposed (e.g., [START_REF] Afek | Wai-free made Fast[END_REF][START_REF] Anderson | Universal Constructions for Large Objects[END_REF][START_REF] Fatourou | The Red-blue Adaptive Universal Construction[END_REF]) focusing on ensuring different properties or increased efficiency. Interestingly many of the key design concepts from the original universal construction such as helping are also included in these designs.

One interesting example related to the work in this thesis is a universal construction for waitfree transaction friendly concurrent objects presented in [START_REF] Ph | A Universal Construction for Wait-free Transaction Friendly Data Structures[END_REF]. The words "transaction friendly" means here that a process that has invoked an operation on an object can abort it during its execution. Hence, a "transaction friendly" concurrent object is a kind of abortable object. It is important to notice that this abortion notion is different from the notion of transaction abortion. In the first case, the abort of an operation is a programming level notion that the construction has to implement. Differently, in the second case, a transaction abort is due to the implementation itself. More precisely, transaction abortion is then a system level mechanism used to prevent global inconsistency when the system allows concurrent transactions to be executed optimistically (differently, albeit very inefficient, using a single global lock for all transactions would allow any transaction to be executed without being aborted).

Transactional memory, progress, and universal constructions

Now that we have discussed progress properties for concurrent code in general as well as universal constructions which can be used to create a concurrent wait-free construction of any sequential object we will now look into how this relates to transactional memory.

Progress properties and transactional memory

The previously mentioned blocking and non-blocking progress properties were defined for concurrent code in general and do not concern the specifics of transactional memory. The key difference to consider between transactional memory traditional concurrent code is that transactions can abort and restart. Does an aborted transaction entitle progress? If we are just considering that code being executed entitles progress then possibly yes, but when considering the ease of use of transactional memory it is more interesting to consider that only committed transactions create progress. Then the question of what to do with aborted transactions is an important one, the following section first looks at how the previously mentioned progress properties can be applied to transactional memory followed by a brief overview of how progress is approached in transactional memory.

How blocking and non-blocking progress properties relate to transactional memory Aborted transactions are not mentioned specifically in any of the blocking or non-blocking progress properties. Without considering aborted transactions it might not be very interesting to have a transactional memory protocol that satisfies one of them as the protocol could still just abort every transaction, being completely useless to a programmer using the protocol.

We can then simply extend these properties by adding additional requirements for the committing of transactions. For example we might want a lock-free transactional memory protocol to ensure that at least one of the live transactions in the system will eventually commit. A more detailed analysis of non-blocking progress properties and transactional memory has been done in [START_REF] Bushkov | On the liveness of transactional memory[END_REF]. In this work they define the non-blocking properties solo-progress as a equivalent to the obstruction-freedom property for transactional memory and local-progress as a equivalent of wait-freedom for transactional memory. Informally a protocol that satisfies solo-progress must ensure that every process that executes in isolation for long enough must make progress (where progress requires eventually committing some live transaction) while a protocol satisfying localprogress must ensure that "every process that keeps executing a transaction (say keeps retrying it in case it aborts) eventually commits it." Additionally they examine how these properties can be applied in faulty and fault-free systems with or without parasitic transactions (a parasitic transaction is one which is continually executed, but never tries to commit). They show that local-progress is impossible in a faulty system where each transaction is fixed to a certain process. An extended discussion on the possible/impossible liveness properties of a STM system is presented by the same authors in [START_REF] Guerraoui | Principles of Transactional Memory[END_REF] where a general lock-free STM system is described.

Previous approaches

In order to ensure levels of progress and cope with aborted transactions, several solutions have been proposed with each taking different approaches to progress. A whole range of solutions have been proposed. Some do not directly confront the problem of progress and transaction abortion, focusing mainly on the performance of the protocols, while others offer "best effort semantics" (which means that there is no provable strong guarantee) and others offer provable guarantees of progress.

Programmer's task The least complex solution simply leaves the management of aborted transactions to the application programmer (similarly to exception handling encountered in some systems). In such systems the programmer has the choice to have the protocol execute a specifically defined set of code when a transaction is aborted one or several times. This can be a powerful option for an experienced programmer who knows the details of a transactional memory implementation, but this also provides the programmer with additional problems to deal with which would not fit into our original Definition 2 of a transaction, instead complicating it.

Contention Management Contention management in STM is also discussed in the introduction in section 1.4.7.1, but is again mentioned here focusing specifically on progress guarantees. The idea of contention management is to have the STM system keep track of conflicts between transactions and have a separate entity, usually called contention manager, decide what action to take (if any). Some of these actions include aborting one or both of the conflicting transactions, stalling one of the transactions, or doing nothing. The idea was first proposed in the dynamic STM system (called DSTM) [START_REF] Herlihy | Software Transactional Memory for Dynamic-Sized Data Structures[END_REF] and much research has been done on the topic since then.

In some cases the contention manager's goal is to improve performance while others ensure (best effort or provable) progress guarantees or a combination. An associated theory is described in [START_REF] Guerraoui | Towards a Theory of Transactional Contention Managers[END_REF]. Failure detector-based contention managers (and corresponding lower bounds) are described in [START_REF] Guerraoui | The Weakest Failure Detectors to Boost Obstructionfreedom[END_REF]. A construction to execute parallel programs made up of atomic blocks that have to be dispatched to queues accessed by threads (logical processors) is presented in [START_REF] Wamhoff | The Universal Transactional Memory Construction[END_REF].

An overview of different contention managers and their performance is presented in [START_REF] Guerraoui | Towards a Theory of Transactional Contention Managers[END_REF]. Interestingly the authors find that there is no "best" contention manager and that the performance depends on the application. The notion of a greedy contention manager ensures that every issued transaction eventually commits. This is done by giving each transaction a time-stamp when it is first issued and, once the time-stamp reaches a certain age, the system ensures that no other transaction can commit that will cause this transaction to abort. Similarly to the "Wait/Die" or "Wound/Wait" strategies used to solve deadlocks in some database systems [START_REF] Rosenkrantz | System Level Concurrency Control for Distributed Database Systems[END_REF], preventing transactions from committing is achieved by either aborting them or directing them to wait. By doing this it is obvious that processes with conflicting transactions make progress. In these blocking solutions, a transaction's eventual commit depends on both on the process that issued this transaction as well as the process that issued the transaction with the oldest time-stamp. This does not quite follow our Definition 2 of transactions as the committal of transactions depends on state of other processes, where the definition want transaction to be "executed atomically exactly once taking in consideration all parts of the system".

Unfortunately even though such contention managers exist that ensure all transactions commit in a blocking fashion, most STM implementations do not use them in the interest of performance and as a result provide less strong progress guarantees. As a solution to avoid these performance problems while still eventually providing strong progress, some modern STM's (e.g., for example TinySTM [START_REF] Felber | Dynamic Performance Tuning of Word-Based Software Transactional Memory[END_REF] or SwissSTM [START_REF] Dragojević | Stretching Transactional Memory[END_REF]) use less expensive contention management until a transaction has been aborted a certain number of times at which point greedy contention management is used.

Transactional Scheduling Another approach to dealing with aborts consists in designing schedulers that decide when and how transactions are executed in the system based on certain properties. One approach is to design schedules that perform particularly well in appropriate workloads, for example the case of read-dominated workloads is deeply investigated in [START_REF] Attiya | Transactional Scheduling for Read-Dominated Workloads[END_REF].

Another interesting approach is called steal-on-abort [START_REF] Ansar | Steal-on-abort: Dynamic Transaction Reordering to Reduce Conflicts in Transactional Memory[END_REF]. Its base principle is the following one. If a transaction T 1 is aborted due to a conflict with a transaction T 2, T 1 is assigned to the processor that executed T 2 in order to prevent a new conflict between T 1 and T 2. Interestingly in order to help a transaction commit, this scheduler allows a transaction to be executed and committed by a processor different the one it originated from. Like contention managers, these schedulers can provide progress, but none of them ensure the progress of a process with a transaction that conflicts with some other transaction which has reached a point at which it must not be aborted. This means that the progress of a process still depends on the progress of another process thus not following Definition 2.

Irrevocable Transactions

The aim of the concept of irrevocable (or inevitable) transaction is to provide the programmer with a special transaction type (or tag) related to its liveness or progress. Ensuring that a transaction does not abort is usually required for transactions that perform some operations that cannot be rolled back or aborted such as I/O. In order to solve this issue, certain STM systems provide irrevocable transactions which will never be aborted once they are typed irrevocable. This is done by preventing concurrent conflicting transactions from committing when an irrevocable transaction is being executed.

It is interesting to note that (a) an irrevocable transaction must be run exactly once and (b) only one irrevocable transaction can be executed at a time in the system (unless the shared memory accesses of the transaction are known ahead of time). This priority given to the running irrevocable transaction allows it to guarantee to succeed, but does so at the cost of preventing other transactions from progressing until it finishes. Due to the blocking of other transactions and adding a different type of transaction to the interface, irrevocable transactions do not quite fit in Definition 2. STM protocols supporting irrevocable transactions are proposed and discussed in [START_REF] Spear | Implementing and Exploiting Inevitability in Software Transactional Memory[END_REF] and [START_REF] Welc | Irrevocable Transactions and their Applications[END_REF]. Irrevocable transactions suited to deadline-aware scheduling are presented in [START_REF] Maldonado | Deadline-Aware Scheduling for Software Transactional Memory[END_REF].

Robust STMs Ensuring progress even when bad behavior (such as process crash) can occur has been investigated in several papers. As an example, [START_REF] Wamhoff | RobuSTM: A Robust Software Transactional Memory[END_REF] presents a robust STM system where a transaction that is not committed for a too long period eventually gets priority using locks. It is assumed that the system provides a crash detection mechanism that allows locks to be stolen once a crash is detected. This paper also presents a technique to deal with nonterminating transactions.

Obstruction-Freedom, Lock-Freedom There have been several proposals for non-blocking STM protocols, some of them are obstruction-free (e.g., [START_REF] Herlihy | Software Transactional Memory for Dynamic-Sized Data Structures[END_REF][START_REF] Shavit | Software Transactional Memory[END_REF]), while others are lock-free (in the sense there is no deadlock) [START_REF] Guerraoui | Permissiveness in Transactional Memories[END_REF].

In an obstruction-free STM system a transaction that is executed alone must eventually commit. Still, not every transaction is guaranteed to commit, consider some transaction that is always stalled (before its commit operation) and, while it is stalled, some conflicting transaction commits. It is easy to build an execution in which this stalled transaction never commits.

In a lock-free STM system, infinitely many transaction invocations must commit in an infinite execution. Again it is possible to build an execution in which a transaction is always stalled (before its commit operation) and is aborted by a concurrent transaction (transactions cannot wait for this stalled transaction because they do not know if it is making progress) meaning not every transaction is guaranteed to commit.

Unfortunately, none of them provide the property that every issued transaction is committed. As described in the previous section, in order for the described universal constructions to ensure that each operation is performed successfully threads must help other threads by executing each other's operations. In previously proposed non-blocking STM, helping only occurs with transactions that are in the process of committing. With only this type of help, some transaction can be aborted indefinitely, at most satisfying non-blocking global progress. Consider for example a thread T A executing transaction T 1 and a separate thread T B that executes repeatedly a transaction T 2 (i.e. within an non-terminating while loop) that conflicts with transaction T 1 . Now simply consider a history as follows that is repeated infinitely, T 2 starts executing, T 1 starts executing, T 2 commits, T 1 notices that it conflicts with T 2 so it must abort. In such a history T 1 will always abort before it reaches the committal phase so if blocking is not allowed, helping only in the committal phase will not ensure the committal of every transaction.

The cost of non-blocking STM While the incentive of the strong progress guaranteed by nonblocking algorithms is alluring, overwhelmingly the efficient of state of the art STM protocols are designed using locks. In [START_REF] Ennals | Efficient software transactional memory[END_REF], Ennals gives a strong argument for not using non-blocking STM protocols when concerned with efficiency, citing things such as increased cache misses and wasted work from helping. Nonetheless, researchers have explored various ways to create efficient non-blocking STM protocols [START_REF] Fernandes | Lock-free and scalable multi-version software transactional memory[END_REF][START_REF] Marathe | Toward High Performance Nonblocking Software Transactional Memory[END_REF][START_REF] Marathe | Lowering the Overhead of Software Transactional Memory[END_REF] with varying levels of success.

Ensuring transaction completion

As seen, there are many ways to cope with aborted transactions and to ensure progress in transactional memory. Unfortunately in each of these solutions the programmer must still understand concept of abort/commit as a complexity that is assumed when he decides to use transactional memory. In some cases the programmer has to deal directly with aborted transactions in his code, in others a programmer can prioritize certain transactions so they will not abort, others allow transactions to be blocked, while others allow transactions to be aborted infinitely. Absent from these solutions is the case where all transactions are guaranteed to commit where the progress of a transaction does not rely on other processes except for the one that issued the transaction; thus fitting within our Definition 2 of a transaction where every transaction is "executed atomically exactly once taking in consideration all parts of the system". Such a solution would prioritize ease of use as this type of protocol would hide the concept of aborted transactions from the programmer when considering the progress of the system.

More precisely, such a solution would be a non-blocking STM protocol that ensures every transaction issued by any process is eventually committed with its progress only depending on the issuing process and not the concurrency pattern of other processes in the system. Then as desired, the job of a programmer is then to write his concurrent program in terms of cooperating sequential processes, each process being made up of a sequence of transactions (plus possibly some non-transactional code) where, at the programming level, any transaction invoked by a process is executed exactly once (similarly to a procedure invocation in sequential computing). Moreover, from a global point of view, any execution of the concurrent program is linearizable [START_REF] Herlihy | Linearizability: a Correctness Condition for Concurrent Objects[END_REF], meaning that all the transactions appear as if they have been executed one after the other in an order compatible with their real-time occurrence order. Hence, from the programmer point of view, the progress condition associated with an execution is a very classical one, namely, starvation-freedom. While the underlying STM protocol might satisfy a stronger consistency criterion designed to deal with aborted transactions, such as opacity, the programmer need not worry about this as each transaction he writes executes exactly once. The remainder of this chapter focuses on the design of such a protocol. A note about system calls and I/O Unfortunately completely hiding aborts from the programmer is not quite so simple. Throughout this thesis we have considered transactions to be blocks of code performing reads and writes to local and shared memory whose side effects only concern the modification of the accessed memory. Importantly in a realistic system the programmer can perform additional operations that have side effects outside of the shared and local memory such as input and output to a file or access to a communication channel. Obviously certain of these operations will not be reversible or abortable, the classic example being the sending of a message to launch a missile.

Several solutions have been proposed concerning how to allow these operations to be performed from within transactions. For example, a straightforward solution might be to place all I/O operations in irrevocable transactions [START_REF] Spear | Implementing and Exploiting Inevitability in Software Transactional Memory[END_REF], but this restricts scalability and overall progress as only one irrevocable transaction can execute at a time. Another solution is to postpone I/O calls until during the commit phase [START_REF] Baugh | An analysis of I/O and syscalls in critical sections and their implications for transactional memory[END_REF], but this also prevents the user from performing actions based on what the call returns within his transaction. Another interesting solution [START_REF] Volos | xCalls: safe I/O in memory transactions[END_REF] proposes to look at each specific system and I/O call separately and create a separate version of it to run efficiently in transactions, but again this can limit progress and scalability. Traditionally, STM designers assume that the programmer is not allowed to perform system or I/O calls from within his transactions and is also, for simplicity, what we assume throughout this thesis. Still, in order to follow our high level Definition 2 of transactions all parts of the system must be taken into account, therefore it is necessary to consider how these non-reversible operations fit into transactions in our definition. Since this thesis does not focus on this specific problem, future research should consider these operations and the surrounding questions left unanswered. For example, when considering progress, an important question to answer is "what kind of nonblocking progress can be ensured for transactions when different types of I/O or system calls are allowed to be performed within them?"

A short comparison with object-oriented universal construction

It is important to notice that an STM that hides the concept of commit/abort from the programmer has objectives similar to that of a universal construction described earlier in this chapter. A universal construction allows a programmer to turn a sequential object into a concurrent one where each operation is linearizable and completes successfully, while the STM protocol we want here is one that allows a programmer to place transactions in his code where each of which is executed successfully and is linearizable.

Although similar, there is an important and fundamental difference between an operation on a concurrent object (e.g., a shared queue) and a transaction performed by an STM protocol. Consider for example a queue data structure and its operations enqueue and dequeue. Albeit these queuing operations can have many different implementations, their semantics is defined once for all. As a result, for any queue implementation, the effect of performing an enqueue operation abstractly results in adding an element to the back of the queue while a dequeue operation results in removing and returning an element from the front of the queue. Differently considering transactions, each transaction is a specific atomic procedure whose code can be seen as being created by the programmer to be any dynamically defined code. What is significant at a lower level is that any transaction is able to read and write to any location in shared memory while an operation in a universal construction is fixed to a predefined set, which is often a single instance of a data structure. Simply put, a programmer might want to use a universal construction when he has an object with predefined self-contained operations that he wants to use concurrently (such as a data structure) while transactions might be more suitable when the programmer wants to perform general and reusable atomic operations within his code.

To briefly examine how these differences can effect the implementation of a protocol we will look at the universal construction proposed by Herlihy in [START_REF] Herlihy | Wait-Free Synchronization[END_REF] (denoted H_UC in the following). Interestingly H_UC could be used for STM programs simply by piecing together all the shared objects objects into a single concurrent object TO, and considering all the transactions as operations on this object TO. Unfortunately, this brute force approach is not conceptually satisfying. When considering lock-based mechanisms, it is like using a single lock on the single "big" object TO, instead of a lock per object. Moreover, as it requires each operation on an object to make a copy of this object (before accessing it), H_UC would force each operation to copy the whole shared memory, even if it works on a very small subset of its content. This is not the case in the construction proposed for STM, where only the specific locations accessed by a transaction needs to be copied. The space granularities required by H_UC (when applied to STM) and the proposed construction do not belong to the same magnitude order. Traditionally STM protocols commonly use a read and write set with the purpose of tracking the locations the transaction has read so far as well as those that will be modified upon commit, validating these sets in order to ensure correctness.

Still given the differences, STM protocols can borrow key ideas from previous universal constructions such as helping and using a shared global pointer that is modified using a com-pare&swap in order to ensure progress and correctness, which is what is done later in this chapter to design such a protocol.

Another important feature of STM constructions is the systematic use of speculative execution. As discussed in section 3.1.2, a traditional universal construction can expect best case performance to be equal to that of a sequential implementation. While in the case of the STM's speculative execution any number of transactions are able to execute concurrently (and successfully if no conflict is found) by performing validations on their read sets. In some ways, the computation cost of performing validation can be seen as a trade off in order to allow for higher concurrency. Still, efficiency is not a first class requirement addressed in our work but, the notion of a speculative execution can be a basis for future work on an STM protocol that will focus on efficiency and providing the same progress as a universal construction.

A universal construction for transaction based programs

The following sections present a new STM construction that, in order to hide the notion of abort/commit from the programmer, ensures every transaction issued by a process is necessarily committed and each process makes progress without depending on the state of other processes. More specifically it ensures linearizable X-ability. X-ability, or exactly-once ability, was originally defined by Frølund and Guerraoui in [START_REF] Frølund | X-Ability: a Theory of Replication[END_REF] as a correctness condition for replicated services such as primary-backup. In this model there are actions, such as transactions, that cause some side effect. For a service to satisfy X-ability, every invoked action and its side effect must be observed as if it had happened exactly once. In order to ensure this, actions might be executed multiple times by the underlying system. Given this requirement, X-ability concerns both correctness and liveness and can complement concurrency correctness conditions.

To our knowledge, this is the first STM system we know of to combine these concepts in a realistic protocol. Given the similarities between this STM based construction and universal constructions as well as the differences between transactions and operations on objects we define this protocol as a "universal construction for transaction based programs".

Computation models

This section presents the programming model offered to the programmers and the underlying multiprocessor model on top of which the universal STM system is built.

In order to build such a construction, the paper assumes an underlying multiprocessor where the processors communicate through a shared memory that provides them with atomic read/write registers, compare&swap registers and fetch&increment registers.

As suggested in the introduction and described specifically later in this chapter, the underlying multiprocessor system consists of m processors where each processor is in charge of a subset of processes. The multiprocess program, defined by the programmer, is made up of n processes where each process is a separate thread of execution. We say that a processor owns the corresponding processes in the sense that it has the responsibility of their individual progress. Given that at the implementation level a transaction may abort, the processor P x owning the corresponding process p i can require the help of the other processors in order for the transaction to be eventually committed. The implementation of this helping mechanism is at the core of the construction (similarly to the helping mechanism used to implement wait-free operations despite any number of process crashes [START_REF] Herlihy | Wait-Free Synchronization[END_REF]). As we will see, the main technical difficulties lie in ensuring that (1) the helping mechanism allows a transaction to be committed exactly once and (2) each processor P x ensures the individual progress of each process p i that it owns. As we can see, from a global point of view, the m processors have to cooperate in order to ensure a correct execution/simulation of the n processes.

The user programming model

The program written by the user is made up of n sequential processes denoted p 1 , ..., p n . Each process is a sequence of transactions in which two consecutive transactions can be separated by non-transactional code. Both transactions and non-transactional code can access concurrent objects.

Transactions A transaction is the description of an atomic unit of computation (atomic procedure) that can access concurrent objects called t-objects. "Atomic" means that (from the programmer's point of view) each invocation of a transaction appears as being executed instantaneously at a single point of the time line (between its start event and its end event) and no two transactions are executed at the same point of the time line. It is assumed that, when executed alone, any transaction invocation always terminates.

Non-transactional code Non-transactional code is made up of statements for which the user does not require them to appear as being executed as a single atomic computation unit. This code usually contains input/output statements (if any). Non-transactional code can also access concurrent objects. These objects are called nt-objects.

Concurrent objects Concurrent objects shared by processes (user level) are denoted with small capital letters. It is assumed that a concurrent object is either an nt-object or a t-object (not both). Moreover, each concurrent object is assumed to be linearizable.

The atomicity property associated with a transaction guarantees that all its accesses to tobjects appear as being executed atomically. As each concurrent object is linearizable (i.e., atomic), the atomicity power of a transaction is useless if the transaction only accesses a single t-object once. Hence encapsulating accesses to concurrent objects in a single transaction is "meaningful" only if that transaction accesses several objects or accesses the same object several times (as in a Read/Modify/Write operation).

As an example let us consider a concurrent queue (there are very efficient implementation of such an object, e.g., [START_REF] Michael | Simple, Fast and Practical Blocking and Non-Blocking Concurrent Queue Algorithms[END_REF]). If the queue is always accessed independently of the other concurrent objects, its accesses can be part of non-transactional code and this queue instance is then an nt-object. Differently, if the queue is used with other objects (for example, when moving an item from a queue to another queue) the corresponding accesses have to be encapsulated in a transaction and the corresponding queue instances are then t-objects.

Semantics As already indicated the properties offered to the user are (1) linearizability (safety) and (2) the fact that each transaction invocation entails exactly one execution of that transaction (liveness).

The underlying system model

The underlying system is made up of m processors (simulators) denoted P 1 , ..., P m . We assume n ≥ m. The processors communicate through shared memory that consists of single-writer/multireader (1WMR) atomic registers, compare&swap registers and fetch&increment registers.

Notation The objects shared by the processors are denoted with capital italic letters. The local variables of a processor are denoted with small italic letters.

Compare&swap register A compare&swap register X is an atomic object that provides processors with a single operation denoted X.Compare&Swap(). This operation is a conditional write that returns a boolean value. Its behavior can be described by the following statement: operation X.Compare&Swap(old, new):

atomic{ if X = old then X ← new; return(true) else return(false) end if. } Fetch&increment register A fetch&increment register X is an atomic object that provides processors with a single operation, denoted X.Fetch&Increment(), that adds 1 to X and returns its new value.

A universal construction for STM systems

This section describes the proposed universal construction. It first introduces the control variables shared by the m processors and then describes the construction. As already indicated, its design is based on simple principles: (1) each processor is assigned a subset of processes for which it is in charge of their individual progress; (2) when a processor does not succeed in executing and committing a transaction issued by a process it owns, it requires help from the other processors;

(3) the state of the t-objects accessed by transactions is represented by a list that is shared by the processors (similarly to [START_REF] Herlihy | Wait-Free Synchronization[END_REF]). Without loss of generality, the proposed construction considers that the concurrent objects shared by transactions (t-objects) are atomic read/write objects. Extending to more sophisticated linearizable concurrent objects is possible. We limit our presentation to atomic read/write objects to keep it simpler.

In our universal construction, the STM controls entirely the transactions; this is different from what is usually assumed in STMs [START_REF] Guerraoui | Principles of Transactional Memory[END_REF].

Control variables shared by the processors

This section presents the shared variables used by the processors to execute the multiprocess program. Each processor also has local variables which will be described when presenting the construction.

Pointer notation Some variables manipulated by processors are pointers. The following notation is associated with pointers. Let PT be a pointer variable. ↓ PT denotes the object pointed to by PT . let OB be an object. ↑ OB denotes a pointer to OB. Hence, ↑ (↓ PT) = PT and ↓ (↑ OB) = OB.

Process ownership Each processor P x is assigned a set of processes for which it has the responsibility of ensuring individual progress. A process p i is assigned to a single processor. We assume here a static assignment. (It is possible to consider a dynamic process assignment. This would require an appropriate underlying scheduler. We do not consider such a possibility here in order to keep the presentation simple.)

The process assignment is defined by an array OWNED_BY[1.

.m] such that the entry OWNED_BY[x] contains the set of identities of the processes "owned" by processor P x . As we will see below the owner P x of process p i can ask other processors to help it execute the last transaction issued by p i .

Representing the state of the t-objects As previously indicated, at the processor (simulation) level, the state of the t-objects of the program is represented by a list of descriptors such that each descriptor is associated with a transaction that has been committed.

FIRST is a compare&swap register containing a pointer to the first descriptor of the list. Initially FIRST points to a list containing a single descriptor associated with a fictitious transaction that gives an initial value to each t-object. Let DESCR be the descriptor of a (committed) transaction T . It has the following four fields.

• DESCR.next and DESCR.prev are pointers to the next and previous items of the list.

• DESCR.tid is the identity of T . It is a pair i,t_sn where i is the identity of the process that issued the transaction and t_sn is its sequence number (among all transactions issued by p i).

• DESCR.ws is a set of pairs X,v stating that T has written v into the concurrent object X.

• DESCR.local_state is the local state of the process p i just before the execution of the transaction or the non-transactional code that follows T in the code of p i .

Helping mechanism: the array LAST_CMT[1..m, 1.

.n] This array is such that LAST_CMT[x, i] contains the sequence number of process p i 's last committed transaction as known by processor P x . LAST_CMT[x, i] is written only by P x . Its initial value is 0.

Helping mechanism: logical time CLOCK is an atomic fetch&increment register initialized to 0. It is used by the helping mechanism to associate a logical date with a transaction that has to be helped. Dates define a total order on these transactions. They are used to ensure that any helped transaction is eventually committed.

Helping mechanism: the array STATE [1..n] This array is such that STATE[i] describes the current state of the execution (simulation) of process p i . It has four fields.

• STATE[i].tr_sn is the sequence number of the next transaction to be issued by p i .

• STATE [i].local_state contains the local state of p i immediately before the execution of its next transaction (whose sequence number is currently kept in STATE[i].tr_sn).

• STATE[i].hel p_date is an integer (date) initialized to +∞. The processor P x (owner of process p i) sets STATE [i].hel p_date to the next value of CLOCK when it requires help from the other processors in order for the last transaction issued by p i to be eventually committed.

• STATE [i].last_ptr contains a pointer to a descriptor of the transaction list (its initial value is FIRST). STATE [i].last_ptr = pt means that, if the transaction identified by i, STATE [i].tr_sn belongs to the list of committed transactions, it appears in the transaction list after the transaction pointed to by pt.

How the t-objects and nt-objects are represented

Let us remember that the t-objects and nt-objects are the objects accessed by the processes of the application program. The nt-objects are directly implemented in the memory shared by the processors and consequently their operations access directly that memory.

Differently, the values of the t-objects are kept in the ws field of the descriptors associated with committed transactions (these descriptors define the list pointed to by FIRST). More precisely, we have the following.

• A write of a value v into a t-object X (denoted X.write T (v)) by a transaction appears as the pair X, v contained in the field ws of the descriptor that is added to the list when the corresponding transaction is committed.

• A read of a t-object X (denoted X.read T ()) by a transaction is implemented by scanning downwards (from a fixed local pointer variable current towards FIRST) the descriptor list until encountering the first pair X, v , the value v being then returned by the read operation. It is easy to see that the values read by a transaction are always mutually consistent (if the values v and v ′ are returned by the reads of X and Y issued by the same transaction, then the first value read was not overwritten when the second one was read).

Behavior of a processor: initialization

Initially a processor P x executes the non-transactional code (if any) of each process p i it owns until p i 's first transaction (as defined by the programmer with the begin_transaction() operation) and then initializes accordingly the atomic register STATE[i]. Next P x invokes select(OWNED_BY[x]) that returns the identity of a process it owns, this value is then assigned to P x 's local variable my_next_proc. P x also initializes local variables whose role will be explained later. This is described in Figure 3.1. The function select(set) is fair in the following sense: if it is invoked infinitely often with i ∈ set, then i is returned infinitely often (this can be easily implemented). Moreover, select(/ 0) = ⊥.

for each i ∈ OWNED_BY[x] do execute p i until the beginning of its first transaction; STATE[i] ← 1, p i 's current local state, +∞, FIRST end for; my_next_proc ← select(OWNED_BY[x]); k1_counter ← 0; my_last_cmt is a pointer initialized to FIRST.

Behavior of a processor: main body

The behavior of a processor P x is described in Figure 3.2. This consists of a while loop that terminates when all transactions issued by the processes owned by P x have been successfully executed. This behavior can be decomposed into 4 parts.

Select the next transaction to execute (Lines 01-12) Processor P x first reads (asynchronously) the current progress of each process and selects accordingly a process (lines 01-02). The procedure select_next_process() (whose details will be explained later) returns the identity i of the process for which P x has to execute the next transaction. This process p i can be a process owned by P x or a process whose owner P y requires the other processors to help it execute its next transaction.

Next, P x initializes local variables in order to execute p i 's next transaction in the appropriate correct context (lines 03-05). Before entering a speculative execution of the transaction, P x first looks to see if it has not yet been committed (lines 07-12). To that end, P x scans the list of committed transactions. Thanks to the pointer value kept in STATE[i].last_ptr, it is useless to scan the list from the beginning: instead the scan may start from the transaction descriptor pointed to by current = state[i].last_ptr. If P x discovers that the transaction has been previously committed it sets the boolean committed to true.

It is possible that, while the transaction is not committed, P x loops forever in the list because the predicate (↓ current).next = ⊥ is never true. This happens when new committed transactions (different from P x 's transactions) are repeatedly and infinitely added to the list. The procedure prevent_endless_looping() (line 07) is used to prevent such an infinite looping. Its details will be explained later.

Speculative execution of the selected transaction (Lines 13-18) The identity of the transaction selected by P x is i, i_tr_sn . If, from P x 's point of view, this transaction is not committed, P x simulates locally its execution (lines [START_REF] Attiya | Transactions are Back-but How Different They Are?[END_REF][START_REF] Attiya | Single-version STM Can be Multi-version Permissive[END_REF][START_REF] Attiya | Inherent limitations on disjoint-access parallel implementations of transactional memory[END_REF][START_REF] Attiya | Transactional Scheduling for Read-Dominated Workloads[END_REF][START_REF] Babaoglu | Consistent Global States of Distributed Systems: Fundamental Concepts and Mechanisms[END_REF]. The set of concurrent t-objects read by p i is saved in P x 's local set lrs, and the pairs Y,v such that the transaction issued Y.write(v) are saved in the local set ws. This is a transaction's speculative execution by P x .

Try to commit the transaction (Lines 19-33) Once P x has performed a speculative execution of p i 's last transaction by reaching the try_to_commit T () operation as defined by the programmer it tries to commit the transaction by adding it to the descriptor list, but only if certain conditions are satisfied. To that end, P x enters a loop (lines 20-25). There are two reasons for not trying to commit the transaction.

• The first is when the transaction has already been committed. If this is the case, the transaction appears in the list of committed transactions (scanned by the pointer current, lines 22-23).

• The second is when the transaction is an update transaction and it has read a t-object that has then been overwritten (by a committed transaction). This is captured by the predicate at line 24.

Then, if (a) the transaction has not yet been committed (as far as P x knows) and (b1) no t-object read has been overwritten or (b2) the transaction is read-only, then P x tries to commit its speculative execution of this transaction (line 26). To do this it first creates a new descriptor DESCR, updates its fields with the data obtained from its speculative execution (line 28) and then tries to add it to the list. To perform the commit, P x issues Compare&Swap((↓ current).next, ⊥, ↑ DESCR). It is easy to see that this invocation succeeds if and only if current points to the last descriptor of the list of committed transactions (line 29).

Finally, if the transaction has been committed P x updates LAST_CMT[x, i] (line 33).

Use the ownership notion to ensure the progress of each process (Lines 34-47) The last part of the description of P x 's behavior concerns the case where P x is the owner of the process p i that issued the current transaction selected by P x (determined at line 03). This means that P x is responsible for guaranteeing the individual progress of p i . There are two cases.

• If committed is equal to false, P x requires help from the other processors in order for p i 's transaction to be eventually committed. Finally, before re-entering the main loop, P x updates the pointer my_last_cmt (see below) and my_next_proc in order to ensure the progress of the next process it owns (line 45).

Behavior of a processor: starvation prevention

Any transaction issued by a process has to be eventually executed by a processor and committed. To that end, the helping mechanism introduced previously has to be enriched so that no processor either (a) permanently helps only processes owned by other processors or (b) loops forever in an internal while loop (lines 06-12 or 20-25). The first issue is solved by procedure select_next_process() while the second issue is solved by the procedure prevent_endless_looping().

Each of these procedures uses an integer value (resp., K1 and K2) as a threshold on the length of execution periods. These periods are measured with counters (resp., k1_counter and k2_counter). When one of these periods attains its threshold, the corresponding processor requires help for its pending transaction. The values K1 and K2 can be arbitrary.

The procedure select_next_process() This operation is described in Figure 3.3. It is invoked at line 02 of the main loop and returns a process identity. Its aim is to allow the invoking processor P x to eventually make progress for each of the processes it owns.

The problem that can occur is that a processor P x can permanently help other processors execute and commit transactions of the processes they own, while none of the processes owned by P x is making progress. To prevent this bad scenario from occurring, a processor P x that does not succeed in having its current transaction executed and committed for a "too long" period, requires help from the other processors. This is realized as follows. P x first computes the set set of processes p i for which help has been required (those are the processes whose help date is = +∞) and, (as witnessed by the array LAST_CMT) either no processor has yet publicized the fact that their last transactions have been committed or p i is owned by P x (line 101). If set is empty (no help is required), select_next_process() returns the identity of the next process owned by P x (line 103). If set = / 0, there are processes to help and P x selects the identity i of the process with the oldest help date (line 104). But before returning the identity i (line 119), P x checks if it has been waiting for a too long period before having its next transaction executed. There are then two cases.

• If i ∈ OWNED_BY[x], P x has already required help for the process p i for which it strives to make progress. It then resets the counter k1_counter to 0 and returns the identity i (line 106).

• If i / ∈ OWNED_BY[x], P x first increases k1_counter (line 107) and checks if it attains its threshold K1. If this is the case, the logical period of time is too long (line 109) and consequently (if not yet done) P x requires help for the last transaction of the process p j (such that my_next_proc = j). As we have seen, "require help" is done by assigning the next clock value to STATE[j].hel p_date (lines 109-114). In that case, P x also resets k1_counter to 0 (line 115).

Let us remark that the procedure select_next_process() implements a kind of aging mechanism, which is similar the one used by some schedulers to prevent process starvation.

The procedure prevent_endless_looping() As indicated, the aim of this procedure, described in Figure 3.4, is to prevent a processor P x from endless looping in an internal while loop (lines 05-09 or [START_REF] Babaoglu | Consistent Global States of Distributed Systems: Fundamental Concepts and Mechanisms[END_REF][START_REF] Ballard | Conflict avoidance: Data structures in transactional memory[END_REF][START_REF] Baugh | An analysis of I/O and syscalls in critical sections and their implications for transactional memory[END_REF][START_REF] Bayer | Symmetric binary b-trees: Data structure and maintenance algorithms[END_REF][START_REF] Bernstein Ph | Formal Aspects of Serializability in Database Concurrency Control[END_REF]. The time period considered starts at the last committed transaction issued by a process owned by P x . It is measured by the number of transactions committed since then. The beginning of this time period is determined by P x 's local pointer my_last_cmt (which is initialized to FIRST and updated at line 45 of the main loop after the last transaction of a process owned by P x has been committed.)

The relevant time period is measured by processor P x with its local variable k2_counter. If the process p i currently selected by select_next_process() is owned by P x (line 45), then P x will require help for p i once this period attains K2 (lines 47-50). In that way, the transaction issued by that process will be executed and committed by other processors and (if not yet done) this will allow P x to exit the while loop because its local boolean variable committed will then become true (line 09 of the main loop).

Proof of the STM construction

Let PROG be a transaction-based n-process concurrent program. The proof of the universal construction consists in showing that a simulation of PROG by m processors that execute the algorithms described in Figures 3.1-3.4 generates an execution of PROG.

Lemma 12 Let T be the transaction invocation with the smallest help date (among all the transaction invocations not yet committed for which help has been required). Let p i be the process that issued T and P y a processor. If T is never committed, there is a time after which P y issues an infinite number invocations of select_next_process() and they all return i. Proof Let us assume by contradiction that there is a time after which either P y is blocked within an internal while loop (Figure 3.2) or its invocations of select_next_process() never return i. It follows from line 104 of select_next_process() that the process identity of the transaction from set with the smallest help date is returned. This means that for i to never be returned, there must always be some transaction(s) in set with a smaller help date than T . By definition we know that T is the uncommitted transaction with the smallest help date, so any transaction(s) in set with a smaller help date must be already committed. Let us call this subset of committed transactions T set . Since set is finite, T set also is finite. Moreover, T set cannot grow because any transaction T ′ added to the array STATE [1..n] has a larger help date than T (such a transaction T ′ has asked for help after T and due to the Fetch&Increment() operation the help dates are monotonically increasing). So to complete the contradiction we need to show that (a) P y is never blocked forever in an internal while loop (Figure 3.2) and (b) eventually T set = / 0.

If T set is not empty, select_next_process() returns the process identity j for some committed transaction T ′ ∈ T set . On line 09, the processor P y will see T ′ in the list and perform committed ← true. Hence, P y cannot block forever in an internal while loop. Then, on line 33, P y updates LAST_CMT[y, j]. Let us observe that, during the next iteration of select_next_process() by P x , T ′ is not be added to set (line 101) and, consequently, there is then one less transaction in T set . And this continues until T set is empty. After this occurs, each time processor P y invokes select_next_process(), it obtains the process identity i, which invalidates the contradiction assumption and proves the lemma.

✷ Lemma 12

Lemma 13 Any invocation of a transaction T that requests help (hence it has hel pdate = ∞) is eventually committed.

Proof Let us first observe that all transactions that require help have bounded and different help dates (lines 37-38, 111-112 or 49-50). Moreover, once defined, the helping date for a transaction is not modified. Among all the transactions that have not been committed and require help, let T be the transaction with the smallest help date. Assume that T has been issued by process p i owned by processor P x (hence, P x has required help for T). Let us assume that T is never committed. The proof is by contradiction.

As T has the smallest help date, it follows from Lemma 12 that there is a time after which all the processors that call select_next_process() obtains the process identity i. Let P be this non-empty set of processors. (The other processors are looping in a while loop or are slow.) Consequently, given that all transactions that are not slow are trying to commit T (by performing a compare&swap() to add it to the list), that the list is not modified anywhere else, and that we assume that T never commits, there is a finite time after which the descriptor list does no longer increase. Hence, as the predicate (↓ current).next = ⊥ becomes eventually true, we conclude that at least one processor P y ∈ P cannot be blocked forever in a while loop. Because the list is no longer changing, the predicate of line 26 then becomes satisfied at P y . It follows that, when the processors of P execute line 29, eventually one of them successfully executes the compare&swap that commits the transaction T which contradicts the initial assumption.

As the helping dates are monotonically increasing, it follows that any transaction T that requires help is eventually committed.

✷ Lemma 13

Lemma 14 No processor P x loops forever in an internal while loop (lines 06-12 or 20-25).

Proof The proof is by contradiction. Let P y be a processor that loops forever in an internal while loop. Let i be the process identity it has obtained from its last call to select_next_process() (line 02) and P x be the processor owner of p i . Let us first show that processor P x cannot loop forever in an internal while loop. Let us assume the contrary. Because processor P x loops forever we never have ((↓ current).next = ⊥) ∨ committed, but each time it executes the loop body, P x invokes prevent_endless_looping(i) (at line 07 or 21). The code of this procedure is described in Figure 3.4. As i ∈ OWNED_BY[i] and P x invokes infinitely often prevent_endless_looping(i), it follows from lines 45-47 and the current value of my_last_cmt (that points to the last committed transaction issued by a process owned by P x , see line 45) that P x 's local variable k2_counter is increased infinitely often. Hence, eventually this number of invocations attains K2. When this occurs, if not yet done, P x requires help for the transaction issued by p i (lines 47-50). It then follows from Lemma 13, that p i 's transaction T is eventually committed. As the pointer current of P x never skips a descriptor of the list and the list contains all and only committed transactions, we eventually have (↓ current).tid = i, i_tr_sn (where i_tr_sn is T 's sequence number among the transactions issued by p i). When this occurs, P x 's local variable committed is set to true and P x stops looping in an internal while loop.

Let us now consider the case of a processor P y = P x . Let us first notice that the only way for P y to execute T is when T has requested help (line 101 of operation select_next_process()). The proof follows from the fact that, due to Lemma 13, T is eventually committed. As previously (but now current is P y 's local variable), the predicate (↓ current).tid = i, i_tr_sn eventually becomes true and processor P y sets committed to true. P y then stops looping inside an internal while loop (line 08 or 23) which concludes the proof of the lemma.

✷ Lemma 14

Lemma 15 Any invocation of a transaction T by a process is eventually committed.

Proof Considering a processor P x , let i ∈ OWNED_BY[x] be the current value of its local control variable my_next_proc. Let T be the current transaction issued by p i . We first show that T is eventually committed.

Let us first observe that, as p i has issued T , P x has executed line 43 where it has updated STATE[i] that now refers to that transaction. If P x requires help for T , the result follows from Lemma 13. Hence, to show that T is eventually committed, we show that, if P x does not succeed in committing T without help, it necessarily requires help for it. This follows from the code of the procedure select_next_proc(). There are two cases.

• select_next_process() returns i. In that case, as P x does not loop forever in a while loop (Lemma 14), it eventually executes lines 34-39 and consequently either commits T or requires help for T at line 38.

• select_next_process() never returns i. In that case, as P x never loops forever in a while loop (Lemma 14), it follows that it repeatedly invokes select_next_process() and, as these invocations do not return i, the counter k1_counter repeatedly increases and eventually attains the value K1. When this occurs P x requires help for T (lines 107-116) and, due to Lemma 13, T is eventually committed.

Let us now observe that that, after T has been committed (by some processor), P x executes lines 40-45 where it proceeds to the simulation of its next process (as defined by select(OWNED_BY[x])). It then follows from the previous reasoning that the next transaction of the process that is selected (whose identity is kept in my_next_proc) is eventually committed.

Finally, as the function select() is fair, it follows that no process is missed forever and, consequently, any transaction invocation issued by a process is eventually committed. ✷ Lemma 15

Lemma 16 Any invocation of a transaction T by a process is committed at most once.

Proof Let T be a transaction committed by a processor P y (i.e., the corresponding Compare&Swap() at line 29 is successful). T is identified i, STATE [i].ts_sn . As P y commits T , we conclude that P y has previously executed lines 06-29.

• We conclude from the last update of STATE[i].last_ptr = pt by P y (line 43) and the fact that P y 's current local variable is initialized to STATE[i].last_ptr, that T is not in the descriptor list before the transaction pointed to by pt.

• Let us consider the other part of the list. As T is committed by P y , its pointer current progresses from STATE[i].last_ptr = pt until its last value that is such that (↓ current).next = ⊥. It then follows from lines 08 and 23 that P y has never encountered a transaction identified i, STATE [i].ts_sn (i.e., T) while traversing the descriptor list.

It follows from the two previous observations that, when it is committed (added to the list), transaction T was not already in the list, which concludes the proof of the lemma.

✷ Lemma 16
Lemma 17 Each invocation of a transaction T by a process is committed exactly once.

Proof The proof follows directly from Lemma 15 and Lemma 16.

✷ Lemma 17
Lemma 18 Each invocation of non-transactional code issued by a process is executed exactly once.

Proof This lemma follows directly from lines 40-45: once the non-transactional code separating two transaction invocations has been executed, the processor P x that owns the corresponding process p i makes it progress to the beginning of its next transaction (if any).

✷ Lemma 18
Lemma 19 The simulation is starvation-free (no process is blocked forever by the processors).

Proof This follows directly from Lemma 14, Lemma 17, Lemma 18 and the definition of the function select().

✷ Lemma 19

Lemma 20 The transaction invocations issued by the processes are linearizable.

Proof To prove the lemma we have (a) to associate a linearization point with each transaction invocation, and (b) show that the corresponding sequence of linearization points is consistent, i.e., the values read from t-objects by a transaction invocation T are up-to-date (there have not been overwritten). As far as item (a) is concerned, the linearization point of a transaction invocation is defined as follows 1 .

• Update transactions (these are the transactions that write at least one t-object). The linearization point of the invocation of an update transaction is the time instant of the (successful) compare&swap statement that entails its commit.

• Read-only transactions. Let W be the set of update transactions that have written a value that has been read by the considered read-only transaction. Let τ 1 be the time just after the maximum linearization point of the invocations of the transactions in W and τ 2 be the time at which the first execution of the considered transaction has started. The linearization point of the transaction is then max(τ 1 , τ 2).

To prove item (b) let us consider the order in which the transaction invocations are added to the descriptor list (pointed to by FIRST). As we are about to see, this list and the linearization order are not necessarily the same for read-only transaction invocations. Let us observe that, due to the atomicity of the compare&swap statement, a single transaction invocation at a time is added to the list.

Initially, the list contains a single fictitious transaction that gives an initial value to every t-object. Let us assume that the linearization order of all the transaction invocations that have been committed so far (hence they define the descriptor list) is consistent (let us observe that this is initially true). Let us consider the next transaction T that is committed (i.e., added to the list). As previously, we consider two cases. Let p i be the process that issued T , P x the processor that owns p i and P y the processor that commits T .

• The transaction is an update transaction (hence, ws = / 0). In that case, P y has found (↓ current).next = ⊥ (because the compare&sap succeeds) and at line 26, just before committing, the predicate ¬committed ∧ ¬overwritten is satisfied.

As overwritten is false, it follows that none of the values read by T has been overwritten. Hence, the reads and writes on t-objects issued by T can appear as having been executed atomically at the time of the compare&swap. Moreover, the values of the t-objects modified by T are saved in the descriptor attached to the list by the compare&swap and the global state of the t-objects is consistent (i.e., if not overwritten before, any future read of any of these t-objects obtains the value written by T).

Let us now consider the local state of p i (the process that issued T). There are two cases.

-P x = P y (the transaction is committed by the owner of p i). In that case, the local state of p i after the execution of T is kept in P x 's local variable i_local_state (line 16). After processor P x has executed the non-transactional code that follows the invocation of T (if any, line 40), it updates STATE[i].local_state with the current value of i_local_state (if p i had not yet terminated, line 43).

-P x = P y (the processor that commits T and the owner of p i are different processors).

In • The transaction is a read-only transaction (hence, ws = / 0). In that case, T has not modified the state of the t-objects. Hence, we only have to prove that the new local state of p i is appropriately updated and saved in STATE[i].local_state.

The proof is the same as for the case of an update transaction. The only difference lies in the fact that now it is possible to have overwritten ∧ ws = 0. If overwritten is true, T can no longer be linearized at the commit point. That is why it is linearization point has been defined just after the maximum linearization point of the transactions it reads from (or the start of T if it happens later), which makes it linearizable. Proof A formal statement of this proof requires an heavy formalism. Hence we only give a sketch of it. Basically, the proof follows from Lemma 19 and Lemma 21. The execution of PROG is obtained by projecting the execution of each processor on the simulation of the transactions it commits and the execution of the non-transactional code of each process it owns.

✷ T heorem 4

The number of tries is bounded

This section presents a bound for the maximum number of times a transaction can be unsuccessfully executed by a processor before being committed, namely, O(m2). A workload that has this bound is then given. Proof Let us first notice that the help date of a transaction invoked by a process p i can be set to a finite value only by the processor P x that owns p i . There are two places where P x can request help.

• This first location is in the prevent_endless_looping() procedure. In that case, the transaction for which help is required is the last transaction invoked by process p my_next_proc .

• The second location is on line 38 after the transaction invocation T aborts. It follows from line 103 of the operation select_next_process() that this invocation is also from the last transaction invoked by process p my_next_proc .

So we only need to show that my_next_proc only changes when a transaction is committed, which follows directly from the predicates at lines 35 and 36 and the statements of line 45.

✷ Lemma 22

Theorem 5 A transaction T invoked by a process p i owned by processor P x is tried unsuccessfully at most O(m 2) times before being committed.

Proof Let us first observe that a transaction T (invoked by a process p i) is executed once before its help date is set to a finite value (if it is not committed after that execution). This is because only the owner P x of p i can select T (line 103) when its help date is +∞. Then, after it has executed T unsuccessfully once, P x requests help for T by setting its help date to a finite value (line 38).

Let us now compute how many times T can be executed unsuccessfully (i.e., without being committed) after its help date has been set to a finite value. As there are m processors and all are equal (as far as helping is concerned), some processor must execute T more than O(m) times in order for T to be executed more than O(m 2) times. We show that this is impossible. More precisely, assuming a processor P executes T , there are 3 cases that can cause this execution to be unsuccessful and as shown below each case can cause at most O(m) aborts of T at P.

• Case 1. The first case is that some other transaction T 1 that does not request help (its help date is +∞) is committed by some other processor P2 causing P's execution of T to abort. Now by lines 102 and 103 after P2 commits T 1, P2 will only be executing uncommitted transactions from the STATE array with finite help dates at least until T is committed, so any subsequent abort of T caused by P2 cannot be caused by P2 committing a transaction with +∞ help date. So the maximum number of times this type of abort can happen from P is O(1).

• Case 2. The second case is when some other uncommitted transaction T 1 in the STATE array with a finite help date is committed by some other processor P2 causing T to abort.

First by lemma 22 we know that there is a maximum of m -1 transactions that are not T that can be requesting help at this time and in order for them to commit before T they must have a help date smaller than T 's. Also by lemma 16 we know that a transaction is committed exactly once so this conflict between T 1 and T cannot occur again at P2. Now after committing T 1, the next transaction (that asks for help) of a process that is owned by the same processor that owned T 1 will have a larger help date than T so now there are only m -1 transactions that need help that could conflict with T . Repeating this we have at most O(m) conflicts of this type for P.

• Case 3. The third case is that P's execution of T is aborted because some other process has already committed T . Then on line 08 P will see that T has been committed and not execute it again, so we have at most O(1) conflicts of this type.

✷ T heorem 5

The bound is tight The execution that is described below shows that a transaction T can be tried O(m 2) times before being committed.

Let T be a transaction owned by processor P(1) such that P(1) executes T unsuccessfully once and requires help by setting its help date to a finite value. Now, let us assume that each of the m -1 other processors is executing a transaction it owns, all these transactions conflict with T and there are no other uncommitted transactions with their help date set to a finite value. Now P(1) starts executing T again, but meanwhile processor P(2) commits its own transaction which causes T to abort. Next P(1) and P(2) each try to execute T , but meanwhile processor P(3) commits its own transaction causing P(1) and P(2) to abort T . Next P(1), P(2), and P(3) each try execute T , but meanwhile processor P(4) commits its owns transaction causing P(1), P(2), and P(3) to abort T . Etc. until processor P(m -1) aborts all the execution of T by other processors, resulting in all m processor executing T . The transaction T is then necessarily committed by one of these final executions. So we have 1

+ 1 + 2 + 3 + . . . + (m -1) + m trials of T which is O(m 2).

Conclusion

A few additional notes

The aim of the universal construction for STM that has been presented was to demonstrate and investigate this type of construction for transaction-based multiprocess programs. (Efficiency issues would deserve a separate investigation.) To conclude, we list here a few additional noteworthy properties of the proposed construction.

• The construction is for the family of transaction-based concurrent programs that are timefree (i.e., the semantics of which does not depend on real-time constraints).

• The construction uses no locks and works whatever the concurrency pattern (i.e., it does not require concurrency-related assumption such as obstruction-freedom). It works for both finite and infinite computations and does not require specific scheduling assumptions. Moreover, it is independent of the fact that processes are transaction-free (they then share only nt-objects), do not have non-transactional code (they then share only t-objects accessed by transactions) or have both transactions and non-transactional code.

• The helping mechanism can be improved by allowing a processor to require help for a transaction only when some condition is satisfied. These conditions could be general or application-dependent. They could be static or dynamic and be defined in relation with an underlying scheduler or a contention manager. The construction can also be adapted to benefit from an underlying scheduling allowing the owner of a process to be dynamically defined.

It could also be adapted to take into account irrevocable transactions [START_REF] Spear | Implementing and Exploiting Inevitability in Software Transactional Memory[END_REF][START_REF] Welc | Irrevocable Transactions and their Applications[END_REF]. Irrevocability is an implementation property which can be demanded by the user for some of its transactions. It states that the corresponding transaction cannot be aborted (this can be useful when one wants to include inputs/outputs inside a transaction; notice that, in our model, inputs/outputs appear in non-transactional code). Unfortunately by providing irrevocability, the system would violate our desired progress guarantees.

• We have considered a failure-free system. It is easy to see that, in a crash-prone system, the crash of a processor entails only the crash of the processes it owns. The processes owned by the processors that do not crash are not prevented from executing. Furthermore due to the helping mechanism, once a process has asked for help with a transaction that transaction is guaranteed to commit as long as there exits at least one live failure free process.

In addition to the previous properties, the proposed construction helps better understand the atomicity feature offered by STM systems to users in order to cope with concurrency issues. Interestingly this construction has some "similarities" with general constructions proposed to cope with the net effect of asynchrony, concurrency and failures, such as the BG simulation [START_REF] Borowsky | Generalized FLP Impossibility Results for t-Resilient Asynchronous Computations[END_REF] (where there are simulators that execute processes) and Herlihy's universal construction to build wait-free objects [START_REF] Herlihy | Wait-Free Synchronization[END_REF] (where an underlying list of consensus objects used to represent the state of the constructed object lies at the core of the construction). The study of these similarities would deserve a deeper investigation.

A short discussion

The previous chapter explored an area of transactional memory research that focuses on improving STM protocols without effecting how the user interacts with the STM, that is by ensuring some implementation level properties or by increasing performance. This chapter, while similar to the previous chapter in suggesting properties and showing how a protocol can implement them, takes a more visible approach that directly effect the interaction between the programmer and the STM. Abstractly, it examines how the semantics are defined between the programmer and the STM protocol and suggests they be simplified. By removing the concept of aborts from the semantics and ensuring that each transaction will commit, no matter the execution pattern of other processes in the system, we move from the traditional definition towards the desired one in this thesis (Definition 2). Previous research has expected some level of interaction between the programmer and aborted transactions, while this chapter suggests the notion of commit/abort be completely abstracted away from the programmer level left to be solely an implementation concern. This frees the programmer from having to consider if his transaction might not commit and to either try to prevent such a situation, or to come up with ways to deal with it when it does.

As a final motivation for these simplified semantics, let us consider how it compares to the consistency condition of opacity. Opacity differs from linearizability or serializibility in that it frees the programmer from having to worry about consistency issues that could arise in aborted transactions. This liveness suggested in this chapter for STM protocols differs from previous liveness suggestions in that it frees the programmer from having to worry that his transaction might not commit. In a way it can be considered the equivalent counterpart to opacity except opacity considers correctness (bad things happening in aborted transactions), while this chapter considers liveness (a transaction that is only aborted).

Without opacity the programmer has to come up with solutions in order to prevent things like such as invalid pointers, infinite loops, or divide by 0 errors from happening in aborted transactions. Without the liveness suggested in this chapter a programmer has to come up with solutions in the case that a transaction is not able to progress due to the actions of some other process in the system.

Further research is still needed on how the semantics of a transaction can be simplified. An important problems in this area yet has a clear solution is the problem of what happens when a transaction is nested within another. How should these transactions be treated, and how can they fit in our high level Definition 2 of a transaction? Should a separate consistency or liveness condition be considered for these transactions? Given that composition is a strong argument for the use of transactions, coming up with a simple solution to nesting is vital for the future of STM.

Chapter 4

Ensuring Strong Isolation in STM Systems

Introduction

Simplified transaction semantics may not be enough. In the interest of ease of use, each chapter in this takes a different look on transaction semantics. The first chapter suggested improving STM protocols while focusing on the semantics of a transactions interaction with other transactions, the second chapter suggested simplifying the semantics of a transaction, and this chapter will suggest expanding the semantics. It will look at how a programmer might use transactions within his code in order to suggest the expansion of transactional semantics in the interest of ease of use.

Following the discussion of the previous chapter we will promote our change of semantics by contrasting transactions to concurrent objects.

A discussion on the semantics of concurrent protocols is meaningless without first considering consistency conditions. By satisfying a consistency condition a concurrent protocol allows the user of that protocol to reason about how he can use it in his program in a concurrent setting. For example having a concurrent data structure that satisfies linearizability means that the operations of a data structure will have a global order based on the invocation and completion time of operations. This allows, for example, a programmer who is coding some user based Internet service to use reasoning such as: if user A who is being serviced by thread T A changes his status to online (adding him to the set of online users backed by a linearizable concurrent data structure), then a following query for the names of online users by user B serviced by a different thread T B is guaranteed to contain user A. Without linearizability the programmer cannot necessarily use this reasoning, he might then have to consider that the query by thread T B might or might not include A leaving the programmer to have to come up with a solution for this.

Likewise in transactional memory, a correctness condition helps the programmer reason about how he can use transactions in his programs. For example opacity ensures that all transactions have a global order and each transaction appears to have happened instantly at some point in time between its invocation and committal. This allows the programmer to create multi-process programs where the processes are synchronized using programmer defined atomic operations. The most common example of a transaction based program is a banking application defined by transactions. A programmer writing such a bank application may want to define an operation that transfers a given amount of money m from account A to another account B. In order to do this he creates a transaction that first reads the balance on the source account (A.balance), and if the account has enough money the transfer proceeds by first setting A.balance to the value previously read minus m. Next the balance of account B is read, before setting its new balance to the value read plus m and the transaction is completed. Given that the programmer uses an STM protocol that ensures transactions are executed atomically, a user of this program will see only valid transfers completed, otherwise conditions might arise where a balance is concurrently modified by another process during a transaction, resulting in invalid balances where someone could loose or gain too much money, giving the programmer several undesired situations that he might have to deal with.

As the above examples illustrate, it is necessary for a concurrent protocol to satisfy a clear and straightforward consistency condition in order for a programmer to reason about how to use it. Now we will suggest that due to the way transactions are used in a program an STM protocol should satisfy more than just a correctness condition such as opacity. The reason for this is that opacity only considers the atomicity between transactions themselves, and to motivate this suggestion we will go back to the comparison of a transaction and an operation on a concurrent object.

For a concurrent object consider the common example of a tree data structure implementing the set abstraction. This abstraction might provide the following linearizable operations: insert(K) which adds K to the set if it does not already exist, returning true on success, delete(K) which removes K, if it exists, from the set returning true on success, and contains(K) returning true if K exists in the set, false otherwise. Here there are two important things to point out, first is that these operations are contained to their data structure implementation, meaning that the status of shared memory outside of the data structure has no affect on these operations. Second is that these operations fully implement the desired abstraction (in this case a set), a user chooses to use this specific implementation because he needs the insert, delete, and contains operations. If he wanted additional functionality such as in-order iteration, then he would have to choose a different implementation providing the appropriate abstraction. This might lead the programmer to consider data structures as a separate entity from that of the program, where this entity is accessible through some fixed interface, thus he needs not to be aware of the implementation below the interface.

Transactions on the other hand are integrated into the users program rather than compromising some separate entity. When a user places a transaction in his code it is because he requires synchronization between the processes of his program, this synchronization does not have to be based on some predefined abstraction or only access some contained structure. The concept of the transaction allows the programmer to be free to create any sort of operation by performing reads and write to any location in the shared memory. In this sense the transaction is a different type of mechanism than a concurrent object as transactions are integrated and contained within a user's program instead of being separate entities behind a fixed interface.

In summary there are concurrent objects whose operations follow some correctness condition allowing them to be accessed as a separate entity. Then there are transactions which appear as atomic blocks (thanks to the STM protocol satisfying a correctness condition) written directly by a programmer into his program. At a low level the difference between a transaction and an operation on a shared object might imply separate protocol design choices. For example the previous chapter highlighted some of the implementation differences between a traditional universal construction and a universal construction for transaction based programs. Differently, this thesis focuses on a high level Definition 2 of a transaction aimed towards ease of use. Therefore, before considering implementation details we must consider how the programmer interacts with a transaction is considered at an abstraction level.

Given the view that transactions exist as an integrated part of a users program, we have the programmer placing a group of reads and writes inside a block of code bounded by the keywords transaction_begin() and transaction_end() (or alternatively the atomic block atomic(. . .)). This atomic operation exists directly as a piece of his code, preceded and followed by code also written by the programmer. At this point we have an important choice to make dealing with the semantics and correctness of a transaction when considering shared memory. Should the transactions appear to be atomic only with other transactions, or should concurrent non-transactional shared memory accesses also be considered? More precisely, should the shared memory that is accessed from within a transaction be only safely accessible from within transactions, or should it be safe to access memory inside and outside of transactions at any time, or should it be something in-between?

Interestingly, this possibility of the existence of two different paradigms reveals two different interpretations of transactional memory: On one hand considering TM as an implementation of shared memory, and, on the other hand, considering TM as an additional way of achieving synchronization, to be used alongside with locks, fences, and other traditional methods. When putting ease of use as the primary requirement of transactional memory as well considering the discussion on transactions vs operations on concurrent objects and going back to our high level Definition 2 of transactions, transactions should then appear as being atomic to all parts of the system, including shared memory that is accessed outside of transactions. Conversely, if within a program there are two sets of shared memory, one set for accessing inside transactions, and another set for accessing outside of transactions, then we loose the integration concept for more of the separated object concept. In the second case the transactions could represent a programmer defined interface to one large discrete shared object separate from the rest of the system. Transactions are still defined and placed by the programmers, but they are limited in what memory they can access. On the other hand if the programmer can access shared memory both inside and outside of transactions, while the system is still ensuring the atomicity of the transactions, then we have a more straightforward integrated system that follows our high level transaction Definition 2.

Transaction vs Non-transactional Code.

Let us now define precisely what we mean by transactional vs, non-transactional accesses.

In a concurrent environment, shared memory may be accessed by both transactions as well as non-transactional operations. In this work we consider that shared memory can be accessed through reads and writes either inside or outside of transactions. A read (respectively write) performed inside a transaction is consider a transactional read (resp. transactional write) while a read (resp. write) performed outside a transaction is considered a non-transactional read (resp. non-transactional write).

The next section will discuss previous solutions on how to deal with concurrent accesses to shared memory inside and outside of transactions.

Dealing with transactional and non-transactional memory accesses

Weak isolation STM protocols implementing weak isolation make no guarantee about concurrent transactional and non-transactional memory accesses. Transactions are considered to happen atomically only with respect to other transactions. Given this, it is possible for nontransactional operations to see intermediate results of transactions that are still live. Conversely, a transaction may see the results of non-transactional operations that happened during the transaction's execution. Nevertheless, these concurrency issues can be anticipated and used appropriately by the programmer, still resulting in correctly functioning applications. Ways of how a programmer might consider to use weak isolation in his code is presented in [START_REF] Martin | Subtleties of Transactional Memory Atomicity Semantics[END_REF]. This requires the programmer to be conscious of eventual race conditions between transactional and non-transactional code that can change depending on the STM system used. Not only can this make transactional code extremely difficult to write and understand, but a simple change in the STM protocol could render the program useless. Obviously this is not a good solution to concurrent transactional and non-transactional access when considering ease of use.

More commonly, an STM protocol that implements weak isolation expects users to avoid any concurrent interaction between the shared memory outside and inside of transactions. This is because the type of consistency guaranteed is usually undefined and depends on the implementation of the STM protocol used. A programmer already has to consider different types of memory such as thread local process local and shared memory so having him decide what memory should be transactional and what should not be just adds an additional burden to the programmer. Along with this, having a separate section of memory for transactions is also not consistent with the concept of transactions being integrated within a program.

Therefore, in order to keep consistent with the spirit of TM principles a system should prevent unexpected results from occurring in presence of race conditions. Furthermore, concurrency control should ideally be implicit and never be delegated to the programmer [START_REF] Crain | Towards a universal construction for transaction-based multiprocess programs[END_REF][START_REF] Matveev | Towards a Fully Pessimistic STM Model[END_REF]. It is for these reasons that when considering transactional and non-transactional accesses we want something stronger than weak isolation in order to keep things as simple as possible for the programmer.

It is important to note that most current high performance STM protocols implement weak isolation as providing stronger guarantees tend to have an impact on performance.

Specialized transactions

In some cases a programmer using an STM that satisfies weak isolation can deal with concurrency issues between transactional and non-transactional accesses himself. Usually a programmer will purposely subject himself to these difficulties in the interest of performance. Examining more formally these performance over ease of use concepts, several STM protocols have been proposed allowing the existence of transactions that might not appear as being atomic. These protocols often focus on ways to give the programmer the power to weaken the semantics of certain transactions or even specific reads within transactions. DSTM [START_REF] Herlihy | Software Transactional Memory for Dynamic-Sized Data Structures[END_REF] introduced the concept of early-release, giving a programmer the ability to remove locations from the read set of a transaction, in the hope of improving performance by lessening the likelyhood of a transactional abort. Elastic transactions [START_REF] Felber | Elastic transactions[END_REF] allow a programmer to mark transactions that satisfy a weaker consistency condition than opacity allowing for efficient implementations of search data structures. While this chapter focuses on the interaction between shared memory accesses inside and outside of transactions, it is interesting to mention these solutions here, as one way to view them is that they allow a sort of non-transactional read to be preformed from within a transaction.

Privatization Privatization is an interesting solution problem to the splitting of memory between transactions and non-transactional accesses. As the name implies, privatization gives the programmer the ability to privatize sections memory to a specific process giving it exclusive access to memory that was previously shared. The programmer does this through the use of what is called a privatizing transaction within which he makes some memory unaccessible from other processes' transactions. Once a process has privatized some memory it is then is safe to access this memory non-transactionally from within the code of the privatizing thread. After privatization, memory can then be publicized to be accessed from within transactions again by using a publication transaction.

One way to view the privatization problem is through the concept of single lock atomicity (or single global lock semantics) [START_REF] Menon | Practical weak-atomicity semantics for java stm[END_REF] which is a widely accepted memory model for STM, where transactions execute as if there is a single global lock that each transaction must acquire on start and release on commit. Obviously if there is only one transaction executing at a time then privatization and publication safety is ensured. The simple benefit of ensuring this model is that the programmer can view the memory accesses done by transactions as if they had been done using a single global lock, thus allowing the programmer to view the system as something likely more familiar to him. Unfortunately though this model still makes few guarantees relating to the order of shared memory accesses performed both transactionally and non-transactionally, allowing non-transactional access to violate the atomicity of transactions.

A typical example of privatization would be the manipulation of a shared linked list. The removal of a node n by a transaction T i , for private use, through non-transactional code, by the process p that invoked T i , constitutes privatization. Then, T i is called privatizing transaction. Obviously after the transaction commits future transactions will no longer observe n in the list, but unless the STM protocol is privatization safe p cannot safely access n non-transactionally. Normally this is due to the fact that there could be live transactions that started before T i committed who have concurrently accessed n. These problems are closely examined in [START_REF] Spear | Ordering-Based Semantics for Software Transactional Memory[END_REF]. Here they show that providing privatization safety is not as simple as just implementing an STM protocol that provides opacity as incorrect results due to privatization can occur regardless of the update policy (redo log or undo log) that a transactional memory algorithm implements. As an example, consider the cases that result when given two processes p 1 and p 2 that privatize shared variable x:

• The TM implementation uses a redo log. Process p 1 privatizes x with privatizing transaction t 1 but stalls before committing t 1 . p 2 executes during this stall and will not see the effects of t 1 . p 2 proceeds to privatize x itself and to access it through non-transactional operations. The variable x will still be accessed through transaction t 1 when process p 1 resumes and the results of p 2 's privatization will not be visible to it.

• The TM implementation uses an undo log. As above, p 2 privatizes x but p 1 stalls before performing validation before attempting to commit. In the meanwhile, p 2 executes, privatizes x and commits. Given that updates are done in-place, p 2 will observe the updates performed by t 1 . However, when t 1 resumes and attempts to commit, its validation will fail and it will abort. p 2 will be left privately accessing data that are no longer valid.

Several solutions have been proposed for the privatization problem. Probably the most straightforward way to implement privatization is to use commit fences. In such a case after a thread commits a transaction, it will wait until all other concurrent transactions complete before continuing. At this point the thread knows that its privatized data is definitely not being accesses by any other transactions. More complex techniques can be used for deciding when to include a fence by using partially visible reads [START_REF] Marathe | Scalable Techniques for Transparent Privatization in Software Transactional Memory[END_REF] or by using quiescence mechanisms where each thread has a shared thread-local counters [START_REF] Menon | Practical weak-atomicity semantics for java stm[END_REF].

A similar approach to ensuring privatization safety is to leave transactional code unmodified and instead modify the non-transactional operation by for example adding fences to them [START_REF] Shpeisman | Enforcing isolation and ordering in STM[END_REF]. In a different light, similar to the way using a global lock inherently insures privatization safety, an STM protocol that uses underlying global shared data structures in its implementation can often ensure privatization safety with little or no additional overhead, such is the case with RingSTM [START_REF] Spear | RingSTM: scalable transactions with a single atomic instruction[END_REF] and NOrec [START_REF] Dalessandro | NOrec: streamlining STM by abolishing ownership records[END_REF]. Other possible solutions include partitioning by consensus [START_REF] Scott | Delaunay Triangulation with Transactions and Barriers[END_REF] and the use of lock free reference counters [START_REF] Afek | Efficient lock free privatization[END_REF].

The performance of STMs ensuring privatization through the use of fences can be improved by either removing unnecessary fences by analyzing the code at compile or run time [START_REF] Schneider | Dynamic optimization for efficient strong atomicity[END_REF], or by requiring the programmer to explicitly mention when he is privatizing data through the use of private transactions [START_REF] Dice | Implicit privatization using private transactions[END_REF].

A main advantage of privatization is in the case of performance, as when a thread privatizes some memory, it can then access it without additional overhead. While privatization is an interesting solution, we feel that is does not fit in our high level transaction Definition 2 and model of ease of use for two main reasons: Firstly the separation between the memory safe to access by transactions and that safe to access outside of transactions is still separated, privatization/publication just gives the user the ability to dynamically move sections of memory from one part to another. As a result the concurrent access of memory inside and outside of transactions can violate the atomicity of transactions, thus not keeping within Definition 2. Secondly it adds an extra layer of complication to the transactional memory abstraction, if the programmer wants to takes advantage of privatization he has to decide when and what to privatize and publicize.

Strong isolation Strong isolation, in order to spare the programmer from the responsibilities raised by weak isolation or privatization, ensures that both the transactions and the nontransactional read and write operations are be implemented in a way that takes their co-existence into account. Specifically, strong isolation ensures that the non-transactional accesses to shared memory do not violate the atomicity of the transactions, thus keeping within our high level transaction Definition 2. As a result, the aforementioned scenarios described in the paragraphs about weak isolation and privatization where non-transactional operations violate transaction isolation, are not be allowed to happen. In fact strong isolation inherently also solves the privatization problem as it imposes synchronization between transactional and non-transactional code.

In order to better understand strong isolation guarantees, consider the following simple intuitive extension that can be applied to an STM protocol in order to ensure strong isolation. In order to provide this extension, any non-transactional operation that accesses shared data is simply treated as a "mini-transaction", i.e., a transaction that contains a single read/write operation. In that case, transactions will have to be consistent (see Sect. 4.2) not only with respect to each other, but also with respect to the non-transactional operations. Obviously in this solution there is no separate section of memory for transactions and their atomicity is preserved, resulting in a simpler framework for the programmer than privatization or weak isolation. While this solution is simple, it is not necessarily optimal performance wise. Given this, several more efficient approaches to implementing strong isolation have been proposed; in [START_REF] Shpeisman | Enforcing isolation and ordering in STM[END_REF] a blocking implementation to strong isolation is described by placing barriers in transactions to ensure safety. In the interest of improving performance, this paper also proposes ways of performing dynamic and static analysis in order to remove certain barriers while still ensuring safety. Further dynamic optimizations proposed in [START_REF] Schneider | Dynamic optimization for efficient strong atomicity[END_REF], but even considering the most efficient implementations, strong isolation has been suggested to be too costly [START_REF] Dalessandro | Strong Isolation is a Weak Idea[END_REF]. Other work has considered strong isolation in hardware transactional memory [START_REF] Minh | An effective hybrid transactional memory system with strong isolation guarantees[END_REF].

When implementing strong isolation, in order to ensure the safety of non transactional reads and writes (whether they are implemented as mini-transactions or by using memory barriers) they become more than just a single load or store operation when actually being executed on the processor. In order not to increase the complexity of using transactional memory we want the programmer to be able to perform non-transactional operations in his code just as he would a normal read and write (i.e. we do not want him to have to distinguish which reads and writes should to shared memory and which should be local only). This means at some point after the programmer has written the code and before it is executed these additional operations must be added. For example in [START_REF] Shpeisman | Enforcing isolation and ordering in STM[END_REF][START_REF] Schneider | Dynamic optimization for efficient strong atomicity[END_REF] memory barriers are added before non-transactional reads and writes by the compiler. This can also be done dynamically at runtime.

Other models Transactional memory models ensuring some type of weak or strong isolation or global lock semantics using privatization and publication are by far the most widely considered models for TM. Still, several other models have been proposed, usually presenting a model stronger than weak isolation, but still focusing on some trade-off of how efficiently the model can be implemented versus how easy it is to understand.

On the efficiency side of things there are examples such as asymmetric lock atomicity [START_REF] Menon | Practical weak-atomicity semantics for java stm[END_REF] which is equivalent to a model in which each location in memory has its own reader-writer lock, where read locks are acquired at the beginning of the transaction and write lock are acquired just before writing. This model aims at lowering the overhead of global lock semantics, but creates a much more complicated model for programmers to use. An alternative solution called selective strict serializability [START_REF] Spear | Ordering-Based Semantics for Software Transactional Memory[END_REF] also weakens the global lock semantics model by saying that nontransactional access only follow the global lock semantics with certain transactions as defined by the programmer. Towards the models focused more on being easy to understand, there is the transactional data-race-free model [START_REF] Dalessandro | Strong Isolation is a Weak Idea[END_REF] whose aim is to extend the well known Adve and Hill's data-race-free models [START_REF] Adve | A Unified Formulation of Four Shared-Memory Models[END_REF] used for concurrency in languages such as Java and C++ in order to include transactions in a clear direct way.

Precisely Defining Strong Isolation. The distinction of isolation guarantees was originally made in [START_REF] Martin | Subtleties of Transactional Memory Atomicity Semantics[END_REF], where reference was made to "weak atomicity" versus "strong atomicity". Interestingly this paper also presents examples of code that a programmer might write to run along with an STM protocol that provides some type of weak isolation which would not run using an STM protocol that provides strong isolation, further suggesting that a standard should be proposed so that the programmer is not stuck having to understand the intricacies provided by different STM protocols.

To be precise, there are different definitions in literature for strong isolation [START_REF] Martin | Subtleties of Transactional Memory Atomicity Semantics[END_REF][START_REF] Maessen | Store Atomicity for Transactional Memory[END_REF][START_REF] Harris | Transactional Memory, 2nd edition[END_REF], but in this paper we consider strong isolation to be the following: (a) non-transactional operations are considered as "mini" transactions which contain only a single read or write operation, and (b) the consistency condition for transactions is opacity (or virtual world consistency). We choose this definition as it is simple and keeps with the spirit of atomic transactions without having to separate the memory, thus following Definition 2.

When using this definition for strong isolation the properties referred to as containment and non-interference are satisfied. These properties were defined in [START_REF] Martin | Subtleties of Transactional Memory Atomicity Semantics[END_REF] in order to describe the synchronization issues between concurrent transactional and non-transactional operations.

Containment is illustrated in the left part of Fig. 4.1. There, under strong isolation, we have to assume that transaction T 1 happens atomically, i.e.,"all or nothing", also with respect to nontransactional operations. Then, while T 1 is alive, no non-transactional read, such as R x , should be able to obtain the value written to x by T 1 . Non-interference is illustrated in the right part of Fig. 4.1. Under strong isolation, non-transactional code should not interfere with operations that happen inside a transaction. Therefore, transaction T 1 should not be able to observe the effects of operations W x and W y , given that they happen concurrently with it, while no opacitypreserving serialization of T 1 , W x and W y can be found. Non-interference violations can be caused, for example, by non-transactional operations that are such as to cause the ABA problem for a transaction that has read a shared variable x.

!"##$%&'& ()"*% !"##$%&'& ()"*%

Terminating Strong Isolation

Strong isolation allows transactions to not be restricted to use a fixed subset of memory while still ensuring their atomicity with respect to other transactions as well as non-transactional operations. This allows the programmer to preform reads ands write to the same memory he accesses in his transactions without having to worry about observing or creating inconsistencies. As indicated in the paragraph on strong isolation, one possible implementation is to simply convert all non-transactional reads and writes into mini-transactions. Let us also consider the solution to the problem of ensuring strong isolation by using locks or barriers: Each shared variable would then be associated with a lock and both transactions as well as non-transactional operations would have to access the lock before accessing the variable. Locks are already used in STM algorithms -such as TL2 itself -where it is however assumed that shared memory is only accessed through transactions. The use of locks in an STM algorithm entails blocking and may even lead a process to starvation. Previous research on STM protocols has taken the approach that these characteristics might be acceptable. Now if we have non-transactional operations that rely on the same mechanisms (either implemented using locks or by mini-transactions), then they are susceptible to the same possibility of non-completion. However, the concept of a simple read/write operation does not. When it comes to single read or write accesses to a shared variable, a non-transactional operation is normally understood as an event that happens atomically and always completes. While executing, a read or write operation is not expected to be de-scheduled, blocked or aborted. Unfortunately strong isolation implemented with locks entails the blocking of non-transactional read and write operations and would not provide termination. In the previous chapter we argued that, when considering ease of use, every transaction should be committed and the possible non-termination of transactions is unacceptable. Even worse would be if a programmer had to consider that simple read and write operations to shared memory are not guaranteed to terminate. Such an approach to strong isolation would then be rather counter-intuitive for the programmer (as well as possibly detrimental for program efficiency).

For this reason we believe that an STM protocol implementing strong isolation should also consider the progress of non-transactional operations. In order to deal with this we suggest that a STM protocol should implement terminating strong isolation, which we simply define as strong isolation with the additional guarantee that the non-transactional read and write operations of a process are guaranteed to terminate no matter the actions of concurrent processes in the system. The rest of this chapter will focus on the design of an STM protocol that ensures terminating strong isolation.

Implementing terminating strong isolation

As previously described, the goal is to design a protocol in which non-transactional read and write operations never block or abort i.e. terminating strong isolation. Before diving into the design of a new protocol, let us consider how this relates to the protocol described in the previous chapter. The previous chapter introduced an STM protocol in which every transaction is guaranteed to commit where the progress of a transaction only depends on its issuing process. This helps hide the notion of abort for the programmer, but does not prevent aborts from happening at all. In fact any transaction is allowed to abort, but only a finite number of times. When implementing terminating strong isolation on the other hand we want to completely avoid nontransactional operations from aborting. The most obvious reason for this is because we want non-transactional reads and write to behave the same as simple atomic reads and writes.

The second, less theoretically interesting, but just as important reason is performance. To the programmer the non-transactional operations as simple reads and writes, he should be able to assume that they are efficient.

In the previous chapter we were more interested in showing that a concept was possible, while in this chapter performance is a just as important concern. Given this we cannot simply implement non-transactional operations as we did transactions in the previous chapter's protocol.

Still it is not necessary to design a completely new protocol, instead we choose to take the base design of an efficient state-of-the-art STM protocol that provides weak isolation and extend it to provide terminating strong isolation. The TL2 protocol was chosen for this as it is fairly straightforward and can be considered as one of the fastest STM implementations. In the redesigned TL2 protocol presented in this chapter read and write operations that appear inside a transaction follow the original TL2 algorithm rather closely (cheap read only transactions, commit-time locking, write-back), with the addition of non-transactional read and write operations that are to be used by the programmer, substituting conventional shared memory read and write operations in order to provide terminating strong isolation. Unfortunately, as with TL2, the protocol described in this chapter does not ensure the progress of the transactions themselves which was described as necessary in the previous chapter. Nevertheless, the design of a protocol that both ensures terminating strong isolation as well as guaranteeing that every transaction is committed exactly once no mater the actions of other processes in the system is left as a future task.

A Brief Presentation of TL2

TL2, aspects of which are used in this paper, has been introduced by Dice, Shalev and Shavit in 2006 [START_REF] Dice | Transactional Locking II[END_REF]. The word-based version of the algorithm is used, where transactional reads and writes are to single memory words. Instead of presenting the detailed algorithm we will only present the main concepts of the algorithm that are used in the protocol presented in this chapter. The safety condition ensure by TL2 for transactions is opacity. It should be noted that the original version of TL2 takes no consideration into non-transactional memory accesses taking the view that transactions should be relegated to their own separate section of memory. Extended versions of TL2 that are privatization safe have also been examined [START_REF] Dalessandro | NOrec: streamlining STM by abolishing ownership records[END_REF].

Main Features of TL2. The shared variables that a transaction reads form its read set, while the variables it updates form the write set. Read operations in TL2 are invisible, meaning that when a transaction reads a shared variable, there is no indication of the read to other transactions. Write operations are deferred, meaning that TL2 does not perform the updates as soon as it "encounters" the shared variables that it has to write to. Instead, the updates it has to perform are logged into a local list (also called redo log) and are applied to the shared memory only once the transaction is certain to commit.

One of the key features of TL2 is that read-only transactions are considered efficient. This is because they do not need to maintain local copies of a read or write set and because if they reach the try_to_commit operation before aborting, then they can commit immediately as they are guaranteed to be consistent. To control transaction synchronization, TL2 employs locks and logical dates.

Locks and Logical Date. A lock and a logical date is associated with each shared variable. TL2 implements logical time as an integer counter denoted GVC. When a transaction starts it reads the current value of GVC into local variable, rv. This value is used in order to ensure the transaction views a consistent state of memory.

When a transaction attempts to commit it first has to obtain the locks of all the variables in its write set, before it can update them. Furthermore, a transaction has to check the logical dates of the variables in its read set in order to ensure that the values it has read correspond to a consistent snapshot of shared memory. Its read set is valid if the logical date of every item in the set is less than the transaction's rv value. If, on the contrary, the logical date of a read set item is larger than the rv of the transaction, then a concurrent transaction has updated this item, invalidating the read. A transaction must abort if its read set is not valid. Once the read set it verified to be consistent the commit operation performs an increment&fetch on GVC, and stores the return value in local variable wv (which can be seen as a write version number or a version timestamp). Should the transaction commit, it will assign its wv as the new logical date of the shared variables in its write set. Finally the locks are released completing the commit operation.

A read operation must check both the lock and the logical time of the variable it is reading. If it is either locked, or the value of the logical time is greater than rv then the transaction must abort, otherwise the read is consistent and the value can be returned. Additionally, if the transaction is an update transaction, then the variable is also added to the read set. Importantly, thanks to the use of the logical clocks the read operations take constant time and do not require validating the locations previously read in order to ensure opacity.

In order to implement the locks and logical time, they are stored in a shared array of words.

Each shared memory word accessed by the STM protocol is mapped to a location in the lock array through a one-to-many hash function, resulting in one lock covering several shared memory locations. This partitions the memory into so-called stripes. For each memory word in the array the first bit acts as lock bit, indicating whether the lock is free or not. The rest of the bits form the logical time of the variables associated to that location by the hash function.

The Protocol

The following sections will describe the protocol.

Memory Set-up and Data Structures.

Section 1.6 of the introduction defines a structure of memory and transactions used traditionally in TM where transaction are restricted to access a specific set of memory. Like in previous chapters, this chapter defines a transaction by a begin_transaction() operation followed by a series of reads and writes and finished by a try_to_commit() operation, but differently this chapter uses a model of memory that allows any location shared memory to be read and written concurrently both inside and outside of transactions. The specifics of this memory model are described as follows:

Memory Set-up. The underlying memory system is made up of atomic read/write registers. Moreover some of them can also be accessed by the the following two operations. The operation denoted Increment&Fetch() atomically adds one to the register and returns its new value. The operation denoted Compare&Swap() (for compare&swap) is a conditional write.

Compare&Swap(x, a, b) writes b into x iff x = a. In that case it returns true. Otherwise it returns false.

The proposed algorithm assumes that the variables are of types and values that can be stored in a memory word. This assumption aids in the clarity of the algorithm description but it is also justified by the fact that the algorithm extends TL2, an algorithm that is designed to be word-based.

As in TL2, the variable GVC acts as global clock which is incremented by update transactions. Apart from a global notion of "time", there exists also a local one; each process maintains a local variable denoted time, which is used in order to keep track of when, with respect to the GVC, a non-transactional operation or a transaction was last performed by the process. This variable is then used during non-transactional operations to ensure the (strict) serialization of operations is not violated.

As described in section 4.3, in TL2 a shared array of locks is maintained and each shared memory word is associated with a lock in this array by some function. Given this, a memory word directly contains the value of the variable that is stored in it. Instead, the algorithm presented here, uses a different memory set-up that does not require a lock array, but does require an extra level of indirection when loading and storing values in memory. Instead of storing the value of a variable directly to a memory word, each write operation on variable var, transactional or non-transactional, first creates an algorithm-specific structure that contains the new value of var, as well as necessary meta-data and second stores a pointer to this structure in the memory word. The memory set-up is illustrated in Fig. 4.2. Given the particular memory arrangement that the algorithm uses, pointers are used in order to load and store items from memory. 1T-record and NT-record. These algorithm-specific data structures are shared and can be of either two kinds, which will be referred to as T-records and NT-records. A T-record is created by a transactional write operation while an NT-record is created by a non-transactional write operation. When a read operation -be it transactional or non-transactional -accesses a shared variable it cannot know beforehand what type of record it will find. Therefore, it can be seen in the algorithm listings, that whenever a record is accessed, the operation checks its type, i.e., it checks whether it is a T-record or an NT-record (for example, line 02 in Fig. 4.3 contains such a check. A T-record is "of type T", while an NT-record is "of type NT").

T-record.

A T-record is a structure containing the following fields.

status This field indicates the state of the transaction that created the T-record. The state can either be LIVE, COMMITTED or ABORTED. The state is initially set to LIVE and is not set to COMMITTED until during the commit operation when all locations of the transaction's write set have been set to point to the transaction's T-records and the transaction has validated its read set. Since a transaction can write to multiple locations, the status field does not directly store the state, instead it contains a pointer to a memory location containing the state for the transaction. Therefore the status field of each T-record created by the same transaction will point to the same location. This ensures that any change to the transaction's state is immediately recognized at each record.

time The time field of a T-record contains the value of the GVC at the moment the record was inserted to memory. This is similar to the logical dates of TL2.

value This field contains the value that is meant to be written to the chosen memory location.

last During the commit operation, locations are updated to point to the committing transaction's T-records, overwriting the previous value that was stored in this location. Failed validation or concurrent non-transactional operations may cause this transaction to abort after it updates some memory locations, but before it fully commits. Due to this, the previous value of the location needs to be available for future reads. Instead of rolling back old memory values, the last field of a T-record is used, storing the previous value of this location.

NT-record. An NT-record is a structure containing the following fields.

value This field contains the value that is meant to be written to the chosen memory location.

time As in the case of T-records, the time field of NT-records also stores the value of the GVC when the write took place.

Due to this different memory structure a shared lock array is no longer needed, instead of locking each location in the write set during the commit operation, this algorithm performs a compare&swap directly on each memory location changing the address to point to one of its T-records. After a successful compare&swap and before the transactions status has been set to COMMITTED or ABORTED, the transaction effectively owns the lock on this location. Like in TL2, any concurrent transaction that reads the location and sees that it is locked (status = LIVE) will abort itself.

Transactional Read and Write Sets. Like TL2, read only transactions do not use read sets while update transactions do. The read set is made up of a set of tuples for each location read, addr, value where addr is the address of the location read and value is the value. The write set is also made up of tuples for each location written by the transaction, addr, item where addr is the location to be written and item is a T-record for this location.

Discussion.

One advantage of the TL2 algorithm is in its memory layout. This is because reads and writes happen directly to memory (without indirection) and the main amount of additional memory that is used is in the lock array. Unfortunately this algorithm breaks that and requires an additional level of indirection as well as additional memory per location. While garbage collection will be required for old T-and NT-records, here we assume automatic garbage collection such as that provided in Java, but additional solutions will be explored in future work. These additional requirements can be an acceptable trade-off given that they are only needed for memory that will be shared between transactions. In the appendix of this paper we present two variations of the algorithm that trade off different memory schemes for different costs to the transactional and non-transactional operations.

Description of the Algorithm.

The main goal of the algorithm is to provide strong isolation in such a way that the nontransactional operations are never blocked or aborted. In order to achieve this, the algorithm delegates most of its concurrency control and consistency checks to the transactional code. Nontransactional operations access and modify memory locations without waiting for concurrent transactions and it is mainly up to transactions accessing the same location to deal with ensuring safe concurrency. As a result, this algorithm gives high priority to non-transactional code.

Non-transactional Operations.

Algorithm-specific read and write operations shown in Fig. 4.3 must be used when a shared variable is accessed accessed outside of a transaction. As described in section 4.1.2 this can be done by hand by the programmer, but more appropriately a programmer will write normal shared reads and writes which will then be automatically converted to non-transactional read (resp. write) operations by the compiler or dynamically at runtime. Non-transactional Read. The operation non_transactional_read() is used to read, when not in a transaction, the value stored at addr. The operation first dereferences the pointer stored at addr (line 01). If the item is a T-record that was created by a transaction which has not yet committed then the value field cannot be immediately be read as the transaction might still abort. Then instead of waiting for the live transaction to finish committing it is directed to abort (line 04), ensuring that the operation's wait-free progress as well as opacity and strong isolation (containment specifically) is not violated. From a T-record with a transaction that is not committed, the value from the last field is stored to a local variable (line 06) and will be returned on operation completion. Otherwise the value field of the T-or NT-record is used (line 07).

Next the process local variable time is advanced to the maximal value among its current value and the logical date of the T-or NT-record whose value was read. Finally if time was set to ∞ on line 11 (meaning the T-or NT-record had yet to set its time), then it is updated to the GCV on line 12. The updated time value is used to prevent consistency violations. Once these book-keeping operations are finished, the local variable value is returned (line 13).

Non-transactional Write. The operation non_transactional_write() is used to write to a shared variable var by non-transactional code. The operation takes as input the address of the shared variable as well as the value to be written to it. This operation creates a new NT-record (line 14), fills in its fields (line 15) and changes the pointer stored in addr so that it references the new record it has created (line 16). Unlike update transactions, non-transactional writes do not increment the global clock variable GCV. Instead they just read GCV and set the NT-record's time value as well as the process local time to the value read (line 17 and 18). Since the GCV is not incremented, several NT-records might have the same time value as some transaction. When such a situation is recognized where a live transaction has the same time value as an NT-record the transaction must be aborted (if recognized during an NT-read operation, line 04) or perform read set validation (if during a transactional read operation, line 33 of Fig. 4.4). This is done in order to prevent consistency violations caused by the NT-writes not updating the GCV.

Transactional Read and Write Operations.

The transactional operations for performing reads and writes are presented in Fig. 4.4.

Transactional Read. The operation transactional_read() takes addr as input. It starts by checking whether the desired variable already exists in the transaction's write set, in which case the value stored there will be returned (line [START_REF] Ballard | Conflict avoidance: Data structures in transactional memory[END_REF]. If the variable is not contained in the write set, the pointer in addr is dereferenced (line 20) and set to tmp. Once this is detected to be a T-or NT-record some checks are then performed in order to ensure correctness.

In the case that tmp is a T-record the operation must check to see if the status of the transaction for this record is still LIVE and if it is the current transaction is aborted (line 26). This is similar to a transaction in TL2 aborting itself when a locked location is found. Next the Trecord's time field is checked, and (similar to TL2) if it greater than the process's local rv value the transaction must either successfully validate its read set (line 29) or abort (line 33) in order to prevent consistency violations. If this succeeds without aborting, then the local variable value is set depending on the stats of the transaction that created the T-record (line [START_REF] Bronson | A practical concurrent binary search tree[END_REF][START_REF] Bushkov | On the liveness of transactional memory[END_REF].

In case tmp is an NT-record (line 21), the operation checks whether the value of the time field is greater or equal to the process local rv value. If it is, then this write has possibly occurred after the start of this transaction and there are several possibilities. In the case of an update transaction validation must be preformed, ensuring that none of the values it has read have been updated (line 33). In the case of a read only transaction, the transaction is aborted and restarted as an update transaction (line 34). It is restarted as an update transaction so that it has a read set that it can validate in case this situation occurs again. Finally local variable value is set to be the value of the value field of the tmp (line 23).

It should be noted that the reason why the checks are performed differently for NT-records and T-records is because the NT-write operations do not update the global clock value while update transaction do. This means that the checks must be more conservative in order to ensure correctness. If performing per value validation or restarting the transaction as an update transaction is found to be too expensive, a third possibility would be to just increment the global clock, then restart the transaction as normal.

Finally to finish the read operation, the addr, value is added to the read set if the transaction is an update transaction (line 31), and the value of the local variable value is returned.

Transactional Write. The transactional_write() operation takes addr as input value, as well as the value to be written to var. As TL2, the algorithm performs commit-time updates of the variables it writes to. For this reason, the transactional write operation simply creates a T-record and fills in some of its fields (lines 38 -39) and adds it to the write set. However, in the case that a T-record corresponding to addr was already present in the write set, the value field of the corresponding T-record is simply updated (line 40).

Begin and End of a Transaction

The operations that begin and end a transaction are begin_transaction() and try_to_commit(), presented in Fig. 4.5. Local variables necessary for transaction execution are initialized by begin_transaction(). This includes rv which is set to GCV and, like in TL2, is used during transactional reads to ensure correctness, as well as status which is set to LIVE and the read and write sets which are initialized as empty sets. (lines [START_REF] Dragojević | Why STM can be more than a research toy[END_REF][START_REF] Dragojević | Stretching Transactional Memory[END_REF][START_REF] Dragojević | STM in the small: trading generality for performance in software transactional memory[END_REF].

After performing all required read and write operations, a transaction tries to commit, using the operation try_to_commit(). Similar to TL2, a try_to_commit() operation starts by trivially committing if the transaction was a read-only one (line 45) while an update transaction must announce to concurrent operations what locations it will be updating (the items in the write set). However, the algorithm differs here from TL2, given that it is faced with concurrent non-transactional operations that do not rely on locks and never block. This implies that even after acquiring the locks for all items in its write set, a transaction could be "outrun" by a nontransactional operation that writes to one of those items causing the transaction to be required to abort in order to ensure correctness. As described previously, while TL2 locks items in its write set using a lock array, this algorithm compare&swaps pointers directly to the T-records in its write set (lines 46-55) while keeping a reference to the previous value. The previous value is stored in the T-record before the compare&swap is performed (lines 49-50) with a failed com-pare&swap resulting in the abort of the transaction. If while performing these compare&swaps 73) by returning true, returning false otherwise. Note that in the case that a location is being updated (tmp.status = LIVE) and the location is in the write set of the current transaction then it does not abort, as this record belongs to the transaction currently being executed by the process performing the validation. Instead the last value of the record is validated. Before the validation is performed the local variable rv is updated to be the current value of GVC (line 65). This is done because if validation succeeds, then transaction is valid at this time with a larger clock value possibly preventing future validations and aborts.

When a transaction is aborted in the present algorithm, the status of the current transaction is set to ABORTED (line 76) and it is immediately restarted as a new transaction.

Proof of correctness

This section will prove the correctness of the algorithm by showing the linearizability of the transactions and non-transactional operations. Specifically we will show that every transaction (aborted or committed) as well as non-transactional operations have a unique linearization point, meaning that there is some instant in time during the execution of each operation where it appears to have taken place. Note that we do not use an STM specific consistency criterion such as opacity or virtual world consistency to prove correctness as traditionally they do not consider non-transactional operations. For clarity, the term referenced by which is used in phrases such as record A is referenced by a shared pointer at address addr means that the value stored in memory at address addr is the address of record A, thus dereferencing this pointer will return the object A.

Before detailing the linearization points of the operations we will introduce a few lemmas that will help with the proofs.

Lemma 23 Neither the value field of a T or NT record nor the last field of a T record is changed once a pointer in shared memory is set to reference the record.

Proof. In the case of an NT record, the value field is set just once on line 15 of non_transactional_write(), which is immediately after the record is allocated, and before any shared pointers are set. For a T record, allocation happens on line 38 of transactional_write(), then the value field is set on lines 39 and 40 of the same operation. The last field is set later on line 49 or 50 of the try_to_commit() operation, but the record is not referenced by a shared pointer until later in this operation by performing a compare&swap on line 54. ✷

Lemma 24

The status field of a transaction record will change from LIVE to either COMMIT-TED or ABORTED exactly once.

Proof. The operation begin_transaction() is called each time a new transaction start and each time a transaction is aborted. During this operation a new status variable is allocated and is set to LIVE. The status variable is then accessible by the process that is executing the transaction or by other processes through T records created during the transaction (line 39 of transaction_write()) after they are added to shared memory during try_to_commit(). status can be modified in three places: On line 04 of non_transactional_read and on line 61 of try_to_commit, but in both these cases the value of status is changed from LIVE to either COMMITTED or ABORTED by a compare&swap. The third place is on line 76 of the abort where status is set to ABORTED by a normal write, but here status must either still be LIVE, or already ABORTED. The reason for this is that the only place status can be changed to COMMITTED is after a successful com-pare&swap during the try_to_commit() operation, but in this case the transaction is completed (lines [START_REF] Gramoli | On the Input Acceptance of Transactional Memory[END_REF][START_REF] Greenwald | The synergy between non-blocking synchronization and operating system structure[END_REF][START_REF] Guerraoui | Polymorphic Contention Management[END_REF]. ✷

Lemma 25 An aborted transaction makes no changes to the state of memory.

Proof. For this proof we only need to consider transactions that abort after they have performed at least one successful compare&swap on line 54 of try_to_commit as transactions that have aborted before this have not made any modifications to shared memory. On line 54 the transaction compares and swaps each of its T records from its write set into shared memory. What is important here is that before the compare&swap the transaction updates the last field of its T record for addr using either the value or the last field of the current record at addr. The value field is used if the record is of type NT or comes from a committed transaction, otherwise the last field is used, this follows the same pattern as the read and validate operations which were shown to all use the same value from a record in lemma 26. Now the compare&swap on line 54 used to add the T record to memory ensures that the record referenced by addr has not changed since the last field of the new record was set. Now given that the transaction will abort (setting its status to aborted), any read or validation that dereferences this record will use the last field which is the same value that was in memory previously. ✷ The following lemma is used to show that only a single value is every used from a record, which is necessary to prove later lemmas.

Lemma 26 For any T or NT record that is referenced by some shared address addr, any read operation (transactional or non-transactional) or validation (in validate_by_value()) to addr that dereferences this record will return (or validate) the same value.

Proof. By lemma 23 we know that the value filed of T and NT records as well as the last field of T records will never change once referenced by shared memory, so to complete this proof we need to show that reads and validations are always performed using the same field (either value or last) of a record. There are two cases to consider, when the record dereferenced is of type NT and when the record is of type T.

NT Record In this case by looking at the code it is easy to see that both the transactional and non-transactional read as well as validation operations return/validate the value contained in the value field of the NT record dereferenced. In the case where a transactional_read() to this address causes a transactional abort, even though value is not returned, linearizability is not violated as aborted transactions appear to have not executed at all.

T Record This case is a bit more difficult as the value returned depends on the status of the transaction that created this record. First consider any non_transactional_read() that has dereferenced this object, on line 04 the compare&swap ensures that the status of the transaction is no longer LIVE. Now by lemma 24 we know that status will only change from LIVE once. So if status is ABORTED, then the last field is returned, otherwise if COMMITTED, then the value field is returned. Next consider any transactional_read() that dereferences this object, in the same way as the non_transactional_read(), if status is ABORTED, then the last field is returned and if COMMITTED, then the value field is returned. Otherwise in the case that status is still LIVE, the transaction simply aborts (line 26). The validate_by_value() operation follows the same pattern, with the exception if the status is LIVE and the record being validate in the write set of the current transaction. In this case the process executing the validation is also the process who owns the record, so here the last field is used for validation as by lemma 25 we know this is the value previously in shared memory. ✷

Lemma 27

The non_transactional_write operation is linearizable.

Proof. The linearization point of the non_transactional_write(addr, value) operation is line 16 where addr is set to point to next_write. There is no pre-condition needed for this operation as it acts as a simple write operation. The post-condition is that the value in memory at addr is value, in other words next_write.value is returned by read operations to addr (transactional and non-transactional) that are linearized after the write. For either type of read operation their linearization point is when addr is accessed dereferencing the record there (the linearization of these operations is proved in later lemmas), therefore any read operation linearized after this NT-write (and before another operation modifies addr) will dereference the pointer written by the NT-write. Using this fact along with lemma 26 completes the proof. ✷

Lemma 28

The non_transaction_read operation is linearizable.

Proof. The linearization point of the non_transaction_read(addr, value) is line 01 where the record pointed to by addr is dereferenced from memory. The pre and post conditions are that the value in memory at addr is value, or more specifically, any other read operation to addr (transactional and non-transactional) whose access to addr (line 01 of non_transaction_read and 19 of transaction_read) dereferences the same record as tmp returns the same value. Since the object dereferenced at the linearization point is pointed to by addr, then the proof follows from lemma 26. ✷

Lemma 29

The value validated by a successful validate_by_value() or returned by a successful transactional_read() operation to address addr is the same value that would be validated or returned by any read (non-transactional or transactional) performed by another process that took place at the time of the most recent read of GCV by this process (whose value is then used to set rv for the transaction).

Proof. By lemma 26 we know that for any record dereferenced the value read or validated will always be the same for that record, so the rest of this proof will consider that specific value when discussing a dereferenced record. There are two places where rv can be set for a transaction, either at the start of a transaction on line 43 of the begin_transaction() operation, or before validation on line 65 the validate_by_value() operation.

For the validate_by_value() case we have each location and its corresponding value read so far by the transaction contained in the read set (including the current read operation (line 31)) before rv is set. In the validate_by_value() operation after rv is set, every location in the read set is validated. This means that when GCV is read and rv is set all of the values are the same as they were when first read.

Let us now consider the case where the most recent value for rv was set in begin_transaction(). We will now show that the record at the location currently being accessed by the transactional_read() has the same value as when GCV was read in begin_transaction().

NT record If the object dereferenced on line 19 of transactional_read() is an NT record, then we must have tmp.time < rv as otherwise a validation would have been called, updating rv (lines 32-31). Now on line 16 of the non_transactional_write() operation addr is set to reference the NT record, following this GCV is read whose value is then used to update the record's time field. As previously stated this value must be smaller than rv, and given that the value of rv was set using GCV, which is a synchronized growing only counter, addr must reference this NT record before rv was set, and has not changed up to the point where the record was dereferenced by the read.

T record If the object dereferenced on line 19 of transactional_read() is a T record, then we must have tmp.time ≤ rv and tmp.status = COMMITTED or tmp.status = ABORTED, otherwise the current read operation would have directed the transaction to perform a validation (lines . Given this, we just need to show that the T record dereferenced was in memory before GCV was incremented to the value read in begin_transaction (i.e. before GCV = rv). First consider the case where tmp.status = COMMITTED, given that tmp is a T record, it was created during a try_to_commit operation. During this operation the compare&swap on line 54 ensures that tmp is referenced by addr before the process increases GCV by performing an increment&fetch (line 56). Then on line 58, the value returned from the increment&fetch is used to set the time field of each T record created by the transaction. Given this and that we know tmp.time ≤ rv, tmp must be referenced by addr before GCV = rv. Now consider the case where tmp.status = ABORTED, the compare&swap on line 54 of try_to_commit and lemma 25 ensures that the value in tmp.last was the previous value at addr as well as that tmp is referenced by addr before the increment&fetch. Following this (just like in the of tmp.status = COMMITTED) we have the value returned from the increment&fetch used to set the time field of each T record created by the transaction. Therefore tmp must have been referenced by addr before GCV = rv.

Finally, given that begin_transaction() is called only once per transaction we have all previous read operations still being consistent. ✷ Lemma 30 A successful transactional_read() operation (i.e. one that does not cause the transaction to abort) in linearizable, with a linearization point that includes the current read as well all previous reads of the transaction.

Proof. For the transaction_read operation the linearization point is the most recent time that rv was set for the transaction. This could have been The pre and post conditions are that the values returned by this and all the previous reads of the transaction are the values in memory, or more specifically, (using lemma 26) at the linearization point for each addr read (including the current one) the location points to the record that contains the same value that was read. The proof of this lemma follows directly from lemma 29. ✷ Lemma 31 A committed transaction is linearizable.

Proof. For the precondition of the committed transaction we have the requirement that for each of the items in the transaction's read set that the value contained in the record currently referenced by the item's address is equal to the value previously read by the transaction. The post condition is for each of the items in the transaction's write set that the value input to the transactional write is set to the value field of the record referenced by the corresponding address in shared memory. Here the linearization point is line 56, just after the all of the transactions T records have had their corresponding address in shared memory set to point to them, and before the call to validate_by_value(). The precondition is ensured by the subsequent call to validate_by_value, as if any location in the read set has been changed since it was first read, then the transaction would abort. The post condition is ensured by the for loop on lines 58-60 as well as the compare&swap on line 61 changing the transaction's status from LIVE to COMMITTED. The for loop goes through each T record in the transaction's write set, checking if a write by some other process has changed the record referenced by addr so that it no longer points to this transaction's record and aborting the transaction if there is. Finally the compare&swap setting status to COMMITTED ensures that any future read (transactional or non-transactional) that dereferences one of the transaction's records returns the value written by the transaction. Lemma 26 ensures that any read or validation to any one of these records returns the same value.

It is interesting to note that at the linearization point the transaction is not guaranteed to commit, but lemmas 25 and 26 ensure that in the case the transaction does abort, it still appears to have not happened at all. This is done in order to ensure the progress and correctness of non-transactional operations that might need to abort a transaction who is in the process of committing. ✷

Theorem 6

The algorithm provides linearizability for both committed and aborted transactions and non-transactional reads and writes.

Proof. This follows directly from lemmas 27, 28, 30, and 31. ✷

From linearizability to serializability

In algorithm 4.3 whenever a NT-read operation encounters a transaction in the process of committing it immediately attempts to abort the transaction. Interestingly this can be prevented in the case that the thread performing the NT-read has not observed a write that is serialized after the transaction by serializing the current NT-read before the transaction. Algorithm 4.7 describes the changes to the NT-read operation, line 03 of the original algorithm is modified to become the line displayed in algorithm 4.7. It is important to note that this change means that the NTreads will no longer be linearizable, instead they become serializable. The reason for this is that the NT-read operation could have started after the linearization point of a transaction, but before the transaction the transaction's status has been changed from LIVE to COMMITTED. Then if the NT-read returns the value contained in tmp.last its real time occurrence was after the linearization point of the transaction, but it is still serialized before the transaction.

Conclusion

How should STM deal with mechanisms in the system that are not transactions? This chapter has suggested that the semantics of a transaction should be expanded in order that the programmer know there is fixed way that these different systems will interact. In this sense it has looked at the problem of accesses to the same shared memory being performed inside and outside of a transaction and suggested termination strong isolation to be used to deal with this. More specifically terminating strong isolation is used due to the fact that it follows our high level Definition 2 of transactions by ensuring the atomicity of transactions with respect to other non-transactional reads and writes in the system without changing the progress guarantees of traditional reads and writes. Thus for ease of use in the resulting model, a programmer can perform shared reads and writes as he normally would in a concurrent environment and not have to worry about violating the atomicity of transactions. Following this suggestion this chapter has presented an algorithm that achieves terminating strong isolation "on top of" a TM algorithm based on logical dates and locks, namely TL2. In the case of a conflict between a transactional and a non-transactional operation, this algorithm gives priority to the non-transactional operation, with the reasoning that while an eventual abort or restart is part of the specification of a transaction, this is not the case for a single shared read or write operation. This allows the programmer to know his transaction will execute atomically even in the presence of non-transactional memory access, while ensuring the non-transactional access are never blocked from progressing.

The interaction between transactional and non-transactional accesses to shared memory is just one among many possible interactions that a programmer may face when using transactions. For example he might want to use locks or atomic hardware operations along side his transactions, or he might want to use I/O within his transactions. Each of these and many more things deserve an investigation on possible models where they are considered alongside the semantics of transactions. Future research is needed to decide how these additional operations can be added to the STM ecosystem in a way that does not hamper ease of use.

Part III

Libraries for STM Chapter 5 Efficient Data Structures for STM

Introduction

As briefly mentioned in the introduction a partial solution to the difficulty of concurrent programming is to provide concurrent libraries of popular abstractions. Generally these are finely tuned high performance libraries providing the programmer with useful operations. The implementations of such libraries are often very complex and difficult to understand, but are provided with a simple to use interface for anyone to use. By doing this experts can create algorithms providing strong guarantees and good performance that can then be widely reused.

In an optimal situation transactional memory would not need such libraries, as one could just directly place a sequential implementation of an abstraction directly in transactions and it would perform as well and provide the same guarantees as a library provided by an expert. Unfortunately this is not completely true. Due to the general nature of the synchronization required by STM, a sequential data structure implementation directly placed in transactions will never perform as well as a highly tuned concurrent (lock based or non-blocking) implementation of a data structure done by an expert. The reason for this is that an expert can consider the specific synchronization needed to implement that specific data structure safely.

Fortunately this does not mean that data structures in STM will always have suboptimal performance, instead this gives us the opportunity to design libraries designed specifically for use inside of transactions that take into account the synchronization considerations of STM. By doing this we can provide a programmer using transactions with abstractions that perform closer to highly optimized non-transactional ones.

A further advantage of providing efficient libraries in STM is given by the reusable nature of code implemented using transactions, a programmer can use the operations of the abstractions along with his own code to create new efficient atomic operations. For example a programmer might use a map abstraction that provides an insert and a delete operation to create an atomic move operation by simply combing the insert and delete in a transaction.

By providing a programmer with a large selection of transaction based implementations of commonly used abstractions his life becomes much easier. Accordingly, this chapter will focus on designing efficient data structures in transactional memory (specifically those providing the map abstraction). Even though the previous chapters focused on considering how to define transaction semantics so that the programmer can use them easily and the data structures presented in this chapter are not directly related to programmers interaction with transaction semantics, this chapter still focuses on dealing with the ease of use of the STM ecosystem. Namely, it promotes the fact that the proposed data structures can help increase the ease of use of STM for concurrent programming. As sated in the discussion of the STM abstraction in the introduction (specifically Definition 1), the desired STM abstraction should exist as a one component of the concurrent system as a whole, therefore providing libraries implementing additional abstractions that are able to execute within the STM helps constitute this easy to use ecosystem; similar to the way the java.util.concurrent package as part of the Oracle Java SDK [119] provides several different lock type abstractions in addition to many concurrent data structure implementations. Furthermore, if these STM compatible libraries provide good performance they give an additional reason to use STM as an attractive alternative to concurrent code using locks or even highly tuned non-blocking abstractions. The reason for this is that the programmer can reuse the STM compatible libraries directly within his transactions in order to compose new atomic operations specific to his needs, something that is usually not possible using lock based or non-blocking abstractions.

Concurrent data structures In this multicore era, concurrent data structures are becoming important building blocks for programmers writing concurrent programs. They present the programmer with a clear interface to a given abstraction, allowing him to safely perform operations to the abstraction in a concurrent context. Due to their importance in organizing data between processes they are increasingly becoming a bottleneck in a wide variety of concurrent applications. Considering data structures in general, both concurrent and sequential, they often rely on keeping invariants in order to ensure their efficiency and big-O complexity. In the case of a tree, it must typically remain sufficiently balanced at any point of the concurrent execution. Unfortunately while these invariants are important to keep, they can also prevent the performance from scaling with multiple cores [START_REF] Shavit | Data structures in the multicore age[END_REF].

Further aggrandizing this problem, it is unclear how one can adapt a data structure to access it efficiently through transactions in an STM system. Potentially as a drawback of the simplicity of using transactions, data structures used in transactional memory are most commonly just their sequential versions pasted directly into transactions. As a consequence of this, existing transactional programs spanning from low level libraries of data structures to topmost applications directly derive from sequential or pessimistically synchronized programs. In this case, not only are the impacts of optimistic synchronization on sequentially defined data structures ignored, but their effect on performance is compounded from the bottom level of execution all the way to the top.

To illustrate the difference between optimistic and pessimistic synchronizations consider the example of Figure 5.1 depicting their step complexity when traversing a tree of height h from its root to a leaf node. On the left, steps are executed pessimistically, potentially spinning before being able to acquire a lock, on the path converging towards the leaf node. On the right, steps are executed optimistically and some of them may abort and restart, depending on concurrent thread steps. The pessimistic execution of each thread is guaranteed to execute O(h) steps, yet the optimistic one may need to execute Ω(hr) steps, where r is the number of restarts. Note that r depends on the probability of conflicts with concurrent transactions that depends, in turn, on the transaction length and h.

When implementing a tree using TM it is clear that, although a transaction must be aborted before violating the abstraction implemented by this tree (e.g., inserting k successfully in a set where k has already been inserted by a concurrent transaction), it is unclear whether a transaction must be aborted due to slightly unbalancing the tree implementation in order to strictly preserve Following this assumption we introduce a speculation-friendly tree as a tree that transiently breaks its balance structural invariant without hampering the abstraction consistency in order to speed up transaction-based accesses.

The Problem with Balanced Trees

In this section, we focus our attention on the structural invariant of existing tree libraries, namely the balance, examining the impact of restructuring, namely the rebalancing, on contention.

Trees provide logarithmic access time complexity given that they are balanced, meaning that among all downward paths from the root to a leaf, the length of the shortest path is not far apart the length of the longest path. Upon tree update, if their difference exceeds a given threshold, the structural invariant is broken and a rebalancing is triggered to restructure accordingly. This threshold depends on the considered algorithm: AVL trees [START_REF] Adelson-Velskii | An algorithm for the organization of information[END_REF] do not tolerate the longest length to exceed the shortest by 2 whereas red-black trees [START_REF] Bayer | Symmetric binary b-trees: Data structure and maintenance algorithms[END_REF] tolerate the longest to be twice the shortest, thus restructuring less frequently. Yet in both cases the restructuring is triggered immediately when the threshold is reached to hide the imbalance from further operations.

Generally, one takes an existing tree algorithm and encapsulates all its accesses within transactions to obtain a concurrent tree whose accesses are guaranteed atomic (i.e., linearizable), however, the obtained concurrent transactions likely conflict (i.e., one accesses the same location another is modifying), resulting in the need to abort one of these transactions which leads to a significant waste of efforts. This is in part due to the fact that encapsulating an update operation (i.e., an insert or a remove operation) into a transaction boils down to encapsulating four phases in the same transaction:

1. the modification of the abstraction, 2. the corresponding structural adaptation, 3. a check to detect whether the threshold is reached and 4. the potential rebalancing. The classical rotation modifies node j in the tree and forces a concurrent traversal at this node to backtrack; the new rotation left j unmodified, adds j ′ and postpones the physical deletion of j

A transaction-based red-black tree An example is the transaction-based binary search tree developed by Oracle Labs (formerly Sun Microsystems) and other researchers to extensively evaluate transactional memories [START_REF] Dice | Transactional Locking II[END_REF][START_REF] Herlihy | Software Transactional Memory for Dynamic-Sized Data Structures[END_REF][START_REF] Minh | STAMP: Stanford transactional applications for multi-processing[END_REF][START_REF] Herlihy | Transactional boosting: A methodology for highly-concurrent transactional objects[END_REF][START_REF] Felber | Dynamic Performance Tuning of Word-Based Software Transactional Memory[END_REF][START_REF] Yoo | Kicking the tires of software transactional memory: why the going gets tough[END_REF][START_REF] Dragojević | Why STM can be more than a research toy[END_REF] . This library relies on the classical red-black tree algorithm that bounds the step complexity of pessimistic insert/delete/contains. It has been slightly optimized for transactions by removing sentinel nodes to reduce false-conflicts, and we are aware of two benchmark-suite distributions that integrate it, STAMP [START_REF] Minh | STAMP: Stanford transactional applications for multi-processing[END_REF] and synchrobench 1 . Each of its update transactions encapsulate all the four phases given above even though phase (1) could be decoupled from phases (3) and (4) if transient violations of the balance invariant were tolerated. Such a decoupling is appealing given that phase (4) is subject to conflicts. In fact, the algorithm balances the tree by executing rotations starting from the position where a node is inserted or deleted and possibly going all the way up to the root. As depicted in Figure 5.2(a) and (b), a rotation consists of replacing the node where the rotation occurs by the child and adding this replaced node to one of its subtrees. A node cannot be accessed concurrently by an abstract transaction and a rotation, otherwise the abstract transaction might miss the node it targets while being rotated downward. Similarly, rotations cannot access common nodes as one rotation may unbalance the others.

Moreover, the red-black tree does not allow any abstract transaction to access a node that is concurrently being deleted from the abstraction because phases (1) and (2) are tightly coupled within the same transaction. If this was allowed the abstract transaction's traversal might end up on the node that is no longer part of the tree. Fortunately, if the modification operation is a deletion, then phase (1) can be decoupled from the structural modification of phase (2) by marking the targeted node as logically deleted in phase (1) effectively removing it from the set abstraction prior to unlinking it physically in phase (2). This improvement is important as it lets a concurrent abstract transaction can travel through the node concurrently being logically deleted in phase (1) without conflicting. Making things worse, without decoupling these four phases, having to abort within phase (4) would typically require the three previous phases to restart as well. Finally without decoupling only contains operations are guaranteed not to conflict with each other. With decoupling, insert/delete/contains do not conflict with each other unless they terminate on the same node as described in Section 5.3.

To conclude, for the transactions to preserve the atomicity and invariants of such a tree algorithm, they typically have to keep track of a large read set and write set, i.e., the sets of accessed memory locations that are protected by a transaction. Possessing large read/write sets increases the probability of conflicts and thus reduces concurrency. This is especially problematic in trees because the distribution of nodes in the read/write set is skewed so that the probability of the node being in the set is much higher for nodes near the root and the root is guaranteed to be in the read set, resulting in any transaction that modifies the structure at the root creating conflicts with all live transactions. Illustration To briefly illustrate the effect of tightly coupling update operations on the step complexity of classical transactional balanced trees we have counted the maximal number of reads necessary to complete typical insert/remove/contains operations. Note that this number includes the reads executed by the transaction each time it aborts in addition to the read set size of the transaction obtained at commit time. Table 5.1: Maximum number of transactional reads per operation on three 2 12 -sized balanced search trees as the update ratio increases

Update

We evaluated the aforementioned red-black tree, an AVL tree, and our speculation-friendly tree on a 48-core machine using the same transactional memory (TM) algorithm 2 . The expectation of the tree sizes is fixed to 2 12 during the experiments by performing an insert and a remove with the same probability. Table 5.1 depicts the maximum number of transactional reads per operation observed among 48 concurrent threads as we increase the update ratio, i.e., the proportion of insert/remove operations over contains operations. For all three trees, the transactional read complexity of an operation increases with the update ratio due to the additional aborted efforts induced by the contention. Although the red-black and the AVL trees objective is to keep the complexity of pessimistic accesses O(log 2 n) (proportional to 12 in this case), where n is the tree size, the read complexity of optimistic accesses grows significantly (14× more at 10% update than at 0%, where there are no aborts) as the contention increases. As described in the sequel, the speculation-friendly tree succeeds in limiting the step complexity raise (2.6× more at 10% update) of data structure accesses when compared against the transactional versions of state-of-the-art tree algorithms.

The Speculation-Friendly Binary Search Tree

We introduce the speculation-friendly binary search tree by describing its implementation of an associative array abstraction, mapping a key to a value. In short, the tree speeds up the access transactions by decoupling two conflict-prone operations: the node deletion and the tree rotation. Although these two techniques have been used for decades in the context of data management [START_REF] Dijkstra | On-the-fly garbage collection: an exercise in cooperation[END_REF][START_REF] Mohan | Commit-LSN: a novel and simple method for reducing locking and latching in transaction processing systems[END_REF], our algorithm novelty lies in applying their combination to reduce transaction aborts. We first depict, in Algorithm 5.3,5.4, the pseudocode that looks like sequential code encapsulated within transactions before presenting, in Algorithm 5.6, 5.7, more complex optimizations.

Decoupling the tree rotation

The motivation for rotation decoupling stems from two separate observations on traditional tree implementations: (i) a rotation is tied to the abstract modification (either successfully adding or removing a node) that triggers it, hence, after the abstract modification the same process is also responsible for ensuring that its modification does not break the balance invariant and (ii) a rotation affects different parts of the tree apart from where the abstract modification (the location of the node added or removed) took place, hence an isolated conflict can abort the rotation performed at multiple nodes. In response to these two issues we introduce a dedicated rotator thread responsible for eventually ensuring the balance invariant, allowing transactions performing abstract modifications to complete faster faster and we also distribute the multiple rotations needed to ensure balance into single rotation (node-)local transactions. Note that our rotating thread is similar to the collector thread proposed by Dijkstra et al. [START_REF] Dijkstra | On-the-fly garbage collection: an exercise in cooperation[END_REF] to garbage collect stale nodes.

This decoupling allows the read set of the insert/delete operations to only contain the path from the root to the node(s) being modified and the write set to only contain the nodes that need to be modified in order to ensure the abstraction modification (i.e., the nodes at the bottom of the search path), thus reducing conflicts significantly. Let us consider a specific example. If rotations are performed within the insert/delete operations, then each rotation increases the read and write set sizes. Take an insert operation that triggers a right rotation such as the one depicted in Figures 5.2(a)-5.2(b). Before the rotation the read set for the nodes p, j, i is {p.ℓ, j.r}, where ℓ and r represent the left and right pointers, and the write set is / 0. Now with the rotation the read set becomes {p.ℓ, i.r, j.ℓ, j.r} and the write set becomes {p.ℓ, i.r, j.ℓ} as denoted in the figure by dashed arrows. Due to p.ℓ being modified, any concurrent transaction that traverses any part of this section of the tree (including all nodes i, j, and subtrees A, B, C, D) will have a read/write conflict with this transaction. In the worst case an insert/delete operation triggers rotations all when node.ℓ is ⊥, node.left-h must be 0). This requirement is guaranteed since a new node is always added to the tree with left-h and right-h set to 0 and these values are updated when a node is removed or a rotation takes place. A propagation is performed during each call to the recursive_balance operation on lines 74-76 of Algorithm 5.5. Each call to this operation first recursively travels to the left (line 74) and right (line 75) child nodes, taking the values returned to update left-h, right-h, and local-h of the parent node, finally the operation returns the updated local-h for the node. As no abstract transactions access these three values, they never conflict with propagate operations (unless the transactional memory used is inherently prone to false-sharing).

(10) result ← true; curr ← find(k) (11) if (curr.k = k) then result ← false (12) else if (read(curr.del)) then result ← false end if (13) end if (14) try_to_commit() (15) return(result). end operation. operation insert(k, v) p : (16) begin_transaction() (17) result ← true; curr ← find(k) (18) if (curr.k = k) then (19) if (read(curr
Limitations Unfortunately, spreading rotations and modifications into distinct transactions still does not allow insert/delete/contains operations that are being performed on separate keys to execute concurrently. Consider a delete operation that deletes a node at the root. In order to remove this node a successor is taken from the bottom of the tree so that it becomes the new root. This now creates a point of contention at the root and where the successor was removed. Every concurrent transaction that accesses the tree will have a read/write conflict with this transaction. Below we discuss how to address this issue.

Decoupling the node deletion

The speculation-friendly binary search tree exploits logical deletion to further reduce the amount of transaction conflicts. This two-phase deletion technique has been previously used for memory management like in [START_REF] Mohan | Commit-LSN: a novel and simple method for reducing locking and latching in transaction processing systems[END_REF], for example, to reduce locking in database indexes. Each node has a deleted flag, initialized to false when the node is inserted into the tree. The two-phase process consists of first the logical delete phase which removes the given key k from the abstraction-it logically deletes a node by setting a deleted flag to true (line 34). Second, the physical remove phase physically removes the node from the tree to prevent it from growing too large. Each of these are performed as a separate transaction and the rotating thread is also responsible for garbage collecting nodes (cf. Section 5.4.2).

The deletion decoupling reduces conflicts by two means. First, it spreads out the two deletion phases in two separate transactions, hence reducing the size of the delete transaction. Second, deleting logically node i simply consists in setting the deleted flag to true (line 34), thus avoiding conflicts with concurrent abstract transactions that have traversed i.

Operation description

Find The find procedure is a helper function called implicitly by other functions within a transaction, thus it is never called explicitly by the application programmer. This procedure looks for a given key k by traversing the tree similarly to a sequential code with the difference that transactional reads are performed in the place of normal reads. At each node it goes right if the key of the node is larger than k (line 42), otherwise it goes left (line 43). Starting from the root it continues until it either finds a node with k (line 41) or until it reaches a leaf (line 44) returning that node (line 46). Notice that if it reaches a leaf, it has performed a transactional read on the child pointer of this leaf (lines [START_REF] Dragojević | Why STM can be more than a research toy[END_REF][START_REF] Dragojević | Stretching Transactional Memory[END_REF], ensuring that some other concurrent transaction will not insert a node with key k.

Contains

The contains operation first executes the find procedure which returns a node (line 10). If the key of the node returned is equal to the key being searched for, then it performs a transactional read of the deleted flag (line 12). If the flag is false the operation returns true, otherwise it returns false. If the key of the returned node is not equal to the key being searched for, then a node with the key being searched for is not in the tree and false is returned (lines 11 and 15).

Insertion The insert(k, v) operation starts by calling the find procedure which returns a node (line 17). If a node is found with the same key as the one being searched for, then the deleted flag is checked using a transactional read (line 19). If the flag is false, then the tree already contains k and false is returned (lines 20 and 27). Otherwise if the flag is true, then the flag is updated to false (line 19) and true is returned. If the key of the node returned is not equal to k, then a new node is allocated and added as the appropriate child of the node returned by the find procedure (lines [START_REF] Bayer | Symmetric binary b-trees: Data structure and maintenance algorithms[END_REF][START_REF] Bernstein Ph | Formal Aspects of Serializability in Database Concurrency Control[END_REF][START_REF] Borkar | Thousand core chips: a technology perspective[END_REF][START_REF] Borowsky | Generalized FLP Impossibility Results for t-Resilient Asynchronous Computations[END_REF]. Notice that only in this final case does the operation modify the structure of the tree.

Logical deletion

The delete uses also the find procedure in order to locate the node to be deleted (line 30). A transactional read is then performed on the deleted flag (line 33). If deleted is true, then the operation returns false (lines 33 and 37), if deleted is false it is set to true (line 34) and the operation returns true. If the find procedure does not return a node with the same key as the one being searched for, then false is returned (line 31 and 37). Notice that this operation never modifies the tree structure.

Consequently, the insert/delete/contains operations can only conflict with each other in two cases.

1. Two insert/delete/contains operations are being performed concurrently on some key k and a node with key k exists in the tree. Here (if at least one of the operations is an insert or delete) there will be a read/write conflict on the node's deleted flag. Note that there will be no conflict with any other concurrent operation that is being done on a different key.

2. An insert that is being performed for some key k where no node with key k exists in the tree. Here the insert operation will add a new node to the tree, and will have a read/write conflict with any operation that had read the pointer when it was ⊥ (before it was changed to point to the new node).

Physical removal Removing a node that has no children is as simple as unlinking the node from its parent (lines 67-68). Removing a node that has 1 child is done by just unlinking it from its parent, then linking its parent to its child (also lines [START_REF] Guerraoui | Permissiveness in Transactional Memories[END_REF][START_REF] Guerraoui | On the Correctness of Transactional Memory[END_REF]. Each of these removal procedures is a very small transaction, only performing a single transactional write. This transaction conflicts only with concurrent transactions that read the link from the parent before it is changed.

In order to remove a node i with two children, the node in the tree with key immediately larger than i's must be found at the bottom of the tree. This removal must perform reads all the way to a leaf node, removing the leaf by performing a write, it then performs a write at the parent of i creating a conflict with any operation that has traversed these nodes. Fortunately, in practice such removals are not necessary. In fact, in the speculation-friendly tree, only nodes with no more than one child are removed from the tree (if the node has two children, the remove operation simply returns without doing anything, cf. line 64). It turns out that removing nodes with no more than one children is enough to keep the tree from growing so large that it affects performance.

The removal operation is performed by the maintenance thread. While it is traversing the tree performing rotation and propogate operations it also checks for logically deleted nodes to be removed.

Limitations The traversal phase of the abstract operations is prone to false-conflicts as it comprises read operations that do not actually need to return values from the same snapshot. Specifically, by the time a traversal transaction reaches a leaf, the value it read at the root likely no longer matters, thus a conflict with a concurrent root update could simply be ignored. Nevertheless, the standard TM interface forces all transactions to adopt the same strongest semantics prone to false-conflicts [START_REF] Gramoli | Democratizing transactional programming[END_REF]. Extending the TM interface admits the creation of more complicated algorithms that can be difficult to understand, but since we are creating a library implementation of a given abstraction we can use these extensions to create more efficient algorithms without modifying the interface to the abstraction. Thus the programmer can still use the ab- straction with the same ease of use while enjoying better performance. In the next sections we discuss how to extend the basic TM interface to cope with such false-conflicts.

Optional improvements

In previous sections, we have described a speculation-friendly tree that fulfills the standard TM interface [START_REF]Intel transactional memory compiler and runtime application binary interface[END_REF] for the sake of portability across a large body of research work on TM. Now, we propose to further reduce aborts related to conflicts between rotations and the tree traversal performing during find operation at the cost of an additional lightweight read operation, uread, that breaks the standard interface. This optimization is thus usable only in TM systems providing this additional explicit call and does not aim at replacing but complementing the previous algorithm to preserve its portability. This optimization complementing Algorithm 5.4 is depicted in Algorithm 5.7, note that it does not affect the existing contains/insert/delete operations besides speeding up their internal find operation. It should also be noted that the left rotation is not the exact symmetry of the right rotation code, this small difference will be described in further sections.

Lightweight reads

The key idea is to avoid validating superfluous read accesses when an operation traverses the tree structure. This idea has been exploited by elastic transactions that use a bounded buffer instead of a read set to validate only immediately preceding reads, thus implementing a form of hand-over-hand locking transaction for search structure [START_REF] Felber | Elastic transactions[END_REF].

The current distribution of TinySTM [START_REF] Felber | Dynamic Performance Tuning of Word-Based Software Transactional Memory[END_REF] comprises unit loads that do not record anything in the read set which we have chosen to use to implement these optimizations. These reads, designated by the characters uread, are used throughout the algorithm in place of certain transactional reads. This uread operation returns the most recent value written to memory by a committed transaction by potentially spin-waiting on the location until it stops being concurrently modified, adding nothing to the transaction's read set. It should be noted that we could also have used different extensions to implement these optimizations such as the early release operation of DSTM [START_REF] Herlihy | Software Transactional Memory for Dynamic-Sized Data Structures[END_REF] which forces a transaction stop keeping track of a read set entry.

A first interesting result, is that the read/write set sizes can be kept at a size of O(k) instead of the O(k log n) obtained with the previous tree algorithm, where k is the number of nested contains/insert/delete operations nested in a transaction. Looking at Table 5.1 taking this optimization account we have a read set size of 2 (for 10% updates) and 18 (for 50% updates). The reasoning behind this is as follows: Upon success, a contains only needs to ensure that the node it found is still in the tree when the transaction commits, and can ignore the state of other nodes it had traversed. Upon failure, it only needs to ensure that the node i it is looking for is not in the tree when the transaction commits which requires to check whether the pointer from the parent that would point to i is ⊥ (i.e., this pointer should be in the read set of the transaction with value ⊥) and that the parent is still in the tree (i.e. the parent's removed flag should have value false and be in this transaction's read set. In a similar vein, insert and delete only need to validate the position in the tree where they aimed at inserting or deleting. Therefore, contains/insert/delete only increases the size of the read/write set by a constant instead of a logarithmic amount.

It is worth mentioning that ureads have a further advantage over normal reads other than making conflicts less likely: Classical reads are more expensive to perform than unit loads. This is because in addition to needing to store a list keeping track of the reads done so far, an opaque TM that uses invisible reads needs to perform validation of the read set with a worst case cost of O(s 2), where s is the size of the read set, or a TM that uses visible reads needs to perform a modification to shared memory for each read.

Removed flag

The optimization to the algorithm requires that each node has an additional flag indicating whether or not the node has been physically removed from the tree (a node is physically removed during a successful rotate or remove operation). This removed flag can be set to false, true or true_by_left_rot and is initialized to false. In order not to complicate the pseudo code true_by_left_rot is considered to be equivalent to true, only on line 96 of the find operation is this parameter value specifically checked for.

Operation description

This section gives an overview of the modified operations used in the optimized speculationfriendly tree. The modified find operation uses uread in order to avoid false conflicts, in addition modifications to the rotation and removal operations are needed to ensure the correctness of the abstraction.

Rotation Rotations in the non-optimized algorithm remain conflict-prone (Algorithm 5.4) as they incur a conflict when crossing the region of the tree traversed by a contains/insert/delete operation. If ureads are used during the traversal done by the find procedure during the contains/insert/delete operations, then rotations will only conflict with these rotations if they finish at one of the two nodes that are moved by the rotation operation (for example in Figure 5.2(a) this would be the node i or j). A rotation at the root will only conflict with a contains/insert/delete that finished at (or at the rotated child of) the root, any operations that travel further down the tree will not conflict.

When using ureads to traverse the tree the rotations of the non-optimized algorithm cannot be used because a traversal might be rotated downward by a concurrent rotation and end up passing the node it is searching for. Due to this, changes to the rotation operations must be made to ensure safety. Figure 5.2(c) displays the result of the new rotation that is slightly different than the previous one. Instead of modifying j directly, j is unlinked from its parent (effectively removing it from the tree, lines [START_REF] Schwarz | Detecting Causal Relationship in Distributed Computations: in Search of the Holy Grail[END_REF][START_REF] Spear | RingSTM: scalable transactions with a single atomic instruction[END_REF] and a new node j ′ is created (line 138), taking j's place in the tree (lines [START_REF] Schwarz | Detecting Causal Relationship in Distributed Computations: in Search of the Holy Grail[END_REF][START_REF] Spear | RingSTM: scalable transactions with a single atomic instruction[END_REF]. During the rotation j has a removed flag that is set to true (line 140), letting concurrent operations know that j is no longer in the tree but its deallocation is postponed. Given this, consider a concurrent operation that is traversing the tree and is preempted on j during the rotation. If a normal rotation is performed the concurrent operation will either have to backtrack or the transaction would have to abort (as the node it is searching for might be in the subtree A). Using the new rotation, the preempted operation will still have a path to A.

As previous noted the removed flag can be set to one of three values (false, true or true_by_left_rot). Only when a node is removed during a left rotation is the flag set to true_by_left_rot. This is necessary to ensure that the find operation follows the correct path in the specific case that the operation is preempted on a node that is concurrently removed by a left rotation and this node has the same key k as the one being searched for. In this case the find operation must travel to the right child of the removed node otherwise it might miss the node with key k that has replaced the removed node from the rotation. This is due to the fact that the left child of the removed node is rotated upwards during a right rotation (i.e. node i in Figure 5.2(a)), while the right child is rotated upwards during the left rotation. For more details see the proof of correctness in section 5.5. In all other cases the find operation can follow the child pointer as normal.

Find, contains and delete Like before, the find operation is responsible for traversing the tree, here using unit loads. The interesting point for the find operation is that the search continues until it finds a node with the removed flag set to false (line 94 and 100). Once the leaf or a node with the same key as the one being searched for is reached, a transactional read is performed on the removed flag to ensure that the node is not removed from the tree (by some other operation) at least until the transaction commits. If removed is true, then the operation continues traversing the tree, otherwise the correct node has been found. Next, if the node is a leaf, a transactional read must be performed on the appropriate child pointer to ensure this node remains a leaf throughout the transaction (lines [START_REF] Manbar | Concurrency control in a dynamic search structure[END_REF][START_REF] Marathe | Adaptive software transactional memory[END_REF]. If this read does not return ⊥, then the operation continues traversing the tree. Otherwise the operation then leaves the nested while loop (lines 94 and 103), but the find operation does not return yet.

One additional transactional read must be performed to ensure safety. This is the read of the parent's pointer to the node about to be returned (lines [START_REF] Michael | High performance dynamic lock-free hash tables and list-based sets[END_REF][START_REF] Michael | Simple, Fast and Practical Blocking and Non-Blocking Concurrent Queue Algorithms[END_REF]. If this read does not return the same node as found previously, the find operation continues parsing the tree starting from the parent (line 113). Otherwise the process leaves the while loop (line 112) and the node is returned (line 115). By performing a transactional read on the parent's pointer we ensure the STM system performs a validation before continuing.

The advantage of this updated find operation is that ureads are used to traverse the tree, it only uses transactional reads to ensure atomicity when it reaches what is suspected to be the last node it has to traverse. The original algorithm exclusively uses transactional reads to traverse the tree and because of this, modifications to the structure of the tree that occur along the traversed path cause conflicts, which do not occur in the updated algorithm. The contains/insert/delete operations themselves are identical in both algorithms.

Removal Like before, physical removals are performed by the rotator thread. The remove operation requires some modification to ensure safety when using ureads during the traversal phase. Normally if a contains/insert/delete operation is preempted on a node that is removed, then that operation will have to backtrack or abort the transaction. This can be avoided as follows. When a node is removed, its left and right child pointers are set to point to its previous parent (line [START_REF] Riegel | A lazy snapshot algorithm with eager validation[END_REF].This provides a preempted operation with a path back to the tree. The removed node also has its removed flag set to true (line 126) letting preempted operations know it is no longer in the tree (the node is left to be freed later by garbage collection).

Garbage collection

As explained previously, there is always a single rotator thread that continuously executes a recursive depth first traversal. It updates the local, left and right heights of each node and performs a rotation or removal if necessary. Nodes that are successfully removed are then added to a garbage collection list. Each application thread maintains a boolean indicating a pending operation and a counter indicating the number of completed operations. Before starting a traversal, the rotator thread sets a pointer to what is currently the end of the garbage collection list and copies all booleans and counters. After a traversal, if for every thread its counter has increased or if its boolean is false, then the nodes up to the previously stored end pointer can be safely freed. Experimentally, we found that the size of the list was never larger than a small fraction of the size of the tree but theoretically assuming that threads do not crash and are progressing we expect the total space required to remain linear in the tree size.

Correctness

There are two parts in the proof. First we have to ensure the structure of the tree is always a valid internal binary search tree. Second we have to show the insert, delete, and contains operations are linearizable.

It is important to remember for this proof that when a transaction commits the transactional reads and writes appear as if they have happened atomically and that unit-read operations only return values from previously committed transactions (or the value written by the current transaction, if the transaction has written to the location being read).

Another important part of this proof is the way the tree is first created. It is created with a root node with key ∞ so that all nodes will always be on its left subtree. This node will always be the root (i.e. it will not be modified by rotate or removal operations), this makes simpler operations and proofs.

We will now present some definitions that will be used throught the proof.

Binary trees

In an internal binary search tree in some state there is exactly one valid location for a key k, the term used for such a tree is valid binary tree. In a valid binary a nodes left subtree is either empty or contains nodes with keys strictly smaller the the key of the node and its right subtree is either empty or contains nodes with keys strictly larger. A key k either exists in the tree at a single node or does not exist in the tree at all, in which case there is exactly one location at a leaf in the tree where a node with key with key k could be inserted without violating the validity of the tree. Throughout this proof we will refer to this location in the tree (either the node with key k or the leaf) as the correct location for a node with key k. A binary tree that does not have the previous property is simply called a binary tree.

Each node has two boolean state variables. When the variable deleted is false it entails that the key of node.key is in the set represented by the tree. When it is true it entails that the key of node.key is not in the set represented by the tree. When the variable removed is false it entails that the node exists in the tree (meaning a path exists from the root of the tree to the node). When it is true (or true_by_left_rot) it entails that the node does not exist in the tree (meaning no path exists from the root of the tree to the node). For simplicity throughout the pseudo code true_by_left_rot is considered to be equivalent to true, only on line 96 of the find operation is this parameter value specifically checked for.

In the proof we will use the phrase a node can reach a range of keys which is explained here. Take the root, from this node there is a path to any node in the tree meaning any key that is in the set is reachable from the root. Furthermore for any key that is not in the tree the root has a path to where it would be if it did exist in the tree (i.e. to the leaf that would be its parent). This means that the root with key k node has a range [-∞, ∞], now its left child has range [-∞, k] and its right child has range [k, -∞]. Or for example consider some node with range [START_REF] Anderson | Universal Constructions for Large Objects[END_REF][START_REF] Baugh | An analysis of I/O and syscalls in critical sections and their implications for transactional memory[END_REF] and key 14. Its left child will have a range [START_REF] Anderson | Universal Constructions for Large Objects[END_REF][START_REF] Attiya | Transactions are Back-but How Different They Are?[END_REF] and its right child will have a range [START_REF] Attiya | Transactions are Back-but How Different They Are?[END_REF][START_REF] Baugh | An analysis of I/O and syscalls in critical sections and their implications for transactional memory[END_REF].

The phrase a node n has a path to a range of keys at least as large as some other node n ′ is also used in the proof. It means that every key that is in the range of n ′ is also in the range of n (and possibly some more). For example any node will have a path to a range of keys at least at large as its left child (in fact it has the exact range of its own key plus its left and right child combined).

Set operations

Here traditional operations on the set are defined in the context of transactions. It is important to remember that the TM guarantees a linearization of transactions.

delete For a transaction T that commits a successful delete operation of key k, then before the linearization of T k was in the set and afterwards k is not in the set. For a transaction that commits a failed delete operation of key k, then before and after the linearization of T k is not in the set.

insert For a transaction that commits a successful insert operation of key k, then before the linearization of T k was not in the set and afterwards k is in the set. For a transaction that commits a failed insert operation of key k, then before and after the linearization of T k is in the set.

contains For a transaction that commits a successful contains operation of key k, then before and after the linearization of T k is in the set. For a transaction that commits a failed contains operation of key k, then before and after the llinearization of T k is not in the set. Proof. This proof is by induction on the number j of operations done on the subtree of a node with key k. The base case is when a new node is created and added to the tree. This can happen in the insert operation. During the operation a new node is created with no children and for itself it has removed = false (line 21) and the proof holds. Now for the induction step from j = m -1 to j = m, this could be a contains, delete, insert, remove, or rotate operation. First note that the inductions holds for the contains and delete operations as they neither change any children pointers nor any removed flags. If this is an insert operation, then at j = m -1 left or right must be ⊥ (line 103 of the find operation) and the induction obviously still holds as newly allocated nodes have removed = false. If this is a remove operation, then the child of the node is being removed. This means that the new child will either be ⊥ or the child of the child (lines 121-125), but by induction these nodes have removed = false. By symmetry this holds for the right and left children. Otherwise this is a rotate operation. First consider right rotations. By induction we know that node n only has paths to nodes with removed = false. After the rotation node l points to nodes that had paths from n before the rotation as well as n2 (line 140) which has removed = false. n2 points to nodes that had paths from n before the rotation (line 139).By symmetry this holds for left rotations. ✷ Lemma 34 A node with removed = false has exactly one parent with removed = false (except the root, as it has no parent).

Valid internal binary search tree

Lemma 40 A remove operation on a valid binary search tree results in a valid binary tree that does not include the node removed.

Proof. A removal can only be preformed on a node n with at least one ⊥ child which is ensured by transactional reads to the nodes child pointers (lines [START_REF] Papadimitriou Ch | The Serializability of Concurrent Updates[END_REF][START_REF] Perelman | On Maintaining Multiple versions in STM[END_REF][START_REF] Pugh | Skip lists: a probabilistic alternative to balanced trees[END_REF]. A node n being removed is unlinked from its parent (lines 124-125) (the parent is ensured to be in the tree by a transaction read on removed = false) effectively removing it from the tree (see lemma 34). If both children of n are set to ⊥, then the parent's new child becomes ⊥ (lines 121-125) leaving the tree still valid. If node n has a child c such that c = ⊥, then c becomes the parent's new child (lines [START_REF] Papadimitriou Ch | The Serializability of Concurrent Updates[END_REF][START_REF] Perelman | On Maintaining Multiple versions in STM[END_REF][START_REF] Pugh | Skip lists: a probabilistic alternative to balanced trees[END_REF][START_REF] Raynal | Concurrent Programming: Algorithms, Principles, and Foundations[END_REF][START_REF] Raynal | Synchronization is Coming Back, But Is It the Same? Keynote Speech[END_REF]. By lemma 33 this c must have removed = false and by lemma 35 it is part of the valid binary tree during the transaction (until the transaction commits). Thus the resulting tree is still valid.

✷ Assuming a correct find operation (proved in lemma 48), then from lemmas 38, 39, 40, we know that the structural modifications to the tree (done by the rotate, insert and remove operations) result in a valid binary tree. Now given that initially the tree is created in a valid state and that only the rotate, insert and remove operations modify the tree structure (a delete operation will only modify the deleted flag), we have know the tree will remain valid. Using this information, the next part of the proof will prove the linearizability of the set operations.

Linearizability of set operations

Each of the insert, delete and contains operations internally call the find operation that is used to traverse the tree. Therefore before proving the linearizability of these set operations we will prove that the find operation traverses the tree in a correct manner. While traversing the tree, the find operation uses unit reads, meaning that concurrent modifications will not abort the transaction. Therefore we need to show that these concurrent modifications will not affect the correctness of the traversal. In doing this, we will first show that modifications to the structure of the tree are done in such a way that any find operation preempted on a modified node will still be able to reach the same set of nodes as it was able to reach before the modification. Second, we will show that the transactional reads and writes done by the insert, delete and contains operations ensure that the operations are linearized in valid way according to their sequential specification.

Lemma 41 Modifications to the tree structure are only performed on nodes with removed = false.

Proof. A rotate, insert or remove operation can modify the structure of tree.

During a right rotate operation the nodes that are modified are n, l and the parent of n (lines [START_REF] Shavit | Data structures in the multicore age[END_REF][START_REF] Shavit | Software Transactional Memory[END_REF][START_REF] Schwarz | Detecting Causal Relationship in Distributed Computations: in Search of the Holy Grail[END_REF][START_REF] Spear | RingSTM: scalable transactions with a single atomic instruction[END_REF]. A transactional read is performed on the remove variable of the parent node (line 131), this along with lemma 33 ensures that removed = false for the parent of n as well as n, and l. By symmetry the left rotate operation also only modifies nodes with removed = false.

During a successful insert operation a new node might be added to the tree, in this case its parent node is modified (lines [START_REF] Borkar | Thousand core chips: a technology perspective[END_REF][START_REF] Borowsky | Generalized FLP Impossibility Results for t-Resilient Asynchronous Computations[END_REF], and a transactional read is performed on the parent to ensure that removed = false (line 100 of the find operation).

During a remove operation a node is removed from the tree. A transactional read is performed on the node and its parent (line 117), this along with lemma 33 ensures that removed = false for both nodes. ✷ Lemma 45 A node n with key k that has removed = true_by_left_rot from a le f t_rotation operation has, for its right child, a path to a range of keys at least as large as n did before the rotation (including the new node new with key k), and has, for its left child either a path to a range of keys at least as large as the left child of n had before the rotation, or ⊥.

Proof. This proof follows from symmetry (the left rotation is the mirror of the right rotation) and lemma 44. ✷ Lemma 46 A node that has removed = true from a remove operation has a path to a range of keys as least as large as just before the remove operation took place.

Proof. Assume that the node n (where n is the node to be removed) has key k. Assume that n has a parent node p with range [a, b] with key j. This leaves n with range [a, k] if n is the left child (or [k, b] if n is the right child, the proof of this case will follow by symmetry).

After the removal removed will be set to true (line 126 of remove) for n and both its child pointers will point to p (line 126of remove). Now given the removal is performed inside of an atomic transaction, node p will still have a range of [a, b] and will be reachable from n, which completes the proof. ✷ Lemma 47 A node that has removed = true has either:

• for each child a path to a range of keys at least as large as they did when it had removed = false or

• a single ⊥ child with the other child having a path to a range of keys at least as large as both children before when it had removed = false.

Proof. The proof follows using lemmas 44, 45, and 46 as well as induction on the length of the path from the node to a node with removed = false. ✷ Lemma 48 A find operation for key k on a valid binary search tree always returns the correct location from the valid binary tree.

Proof. Assume by contradiction that a find operation does not return the correct location from the valid binary tree. By lemma 37 we know that every node with removed = false is a node in the valid binary tree so there are two possibilities. The operation never returns or the operation returns the wrong location. First for the operation never returning. From lemma 43 we know that there are no cycles in the path from any node so the operation will not get stuck in an endless loop in the tree. In order for the operation to complete it must reach a node with removed = false that either matches the key k (lines [START_REF] Kuznetsov | On the Cost of Concurrency in Transactional Memory[END_REF][START_REF] Lamport | Time, Clocks and the Ordering of Events in a Distributed System[END_REF] or has ⊥ as the appropriate child where a node with key k would exist (lines 100-102). Lemma 42 is enough to show that this will always happen and the operation will terminate without there being infinite successful concurrent insert operations.

The second possibility where the operation returns the wrong location is more difficult to prove. To this end, we prove by induction on the number of nodes traversed by the operation that the find operation will always have a path to the correct location. In order for the operation to reach the correct location the following must be true: After each traversal from one node to the next the operation must have either reached the final correct location for k or have a path from the current location to a range of keys that includes the key being searched for. Once the correct location is reached transactional reads are used to ensure that the location remains correct throughout the transaction (lines 94, and 100-102).

• The base case is easy given that the operation starts from the root which is always part of the valid tree and can reach all nodes with removed = false (lemma 35).

• Now the induction step. Assume that after n -1 nodes have been traversed the operation has a path to a range of keys that includes the key k that is being searched for. If the n -1 th node is the correct location meaning that a non-removed node with key k (line 94) or a leaf has been reached (line 103) the the proof is done, otherwise the operation must travel to the n th node. Now it must be shown that the after the operation travels to the n th node it is still on the correct path. There are 2 possibilities.

1. The operation can move from a node with removed = false (at the time of the load of the child pointer, lines [START_REF] Lev | Anatomy of a scalable software transactional memory[END_REF][START_REF] Maessen | Store Atomicity for Transactional Memory[END_REF]. By lemma 33 the child must also have removed = false (also at the time of the load of the child pointer), in this case the traversal is performed on a valid binary tree (lemma 37). Since the choice of the the child is based on a standard tree traversal (lines 96-98) the operation must still be on the correct path.

2. The operation can move from a node with removed = true. By the assumption given by induction the n -1 th node has a path to the range of keys that includes k. From the n -1 th node either the right or left child must be chosen. The node is chosen based on a standard tree traversal with one exception: If the node has the same key k that is being searched for and the node was removed by a left rotation (removed = true_by_left_rot), then the right child is chosen (lines [START_REF] Lea | Jsr-166 specification request group[END_REF][START_REF] Lev | Anatomy of a scalable software transactional memory[END_REF]. With this exception then in all cases if the node is not ⊥, then by lemma 47 it must have a path to the same range as when it has removed = false, which includes k (the n -1 th node's range includes k so the n th node's range must also). Otherwise if one child is ⊥, then the other child is chosen (lines 105-106), which must have a path to a range at least as large as the n -1 th node by lemma 47 (which includes k).

✷

Theorem 7 An insert operation is linearizable.

Proof. The insert operation starts by performing a find operation (line 17). From lemma 48 we know that the find operation will return the correct location in the tree for key k. There are two possibilities, either the find operation returns a node in the tree with key k (line 93), or it returns a node in the tree that has ⊥ for the child where k must be inserted (line 103). First consider the case where a node with key k is returned. The transactional read on removed (line 94 of the find operation) ensures that the node will be in the tree throughout the duration of the transaction. Next a transactional read is done on the node's deleted variable (line 19) ensuring that this value will remain the same throughout the transaction. If the read on deleted returns false, then the insert operation can return false because the node exists in the set. Otherwise if the read on deleted returns true, then a transaction performs a transactional write setting deleted to false (line [START_REF] Ballard | Conflict avoidance: Data structures in transactional memory[END_REF]). The transactional read on deleted ensures that k is not in the set before the transaction commits. The transactional write on deleted ensures that k is in the set after the transaction commits.

Second consider the case where a node with key = k is returned. On lines 101-102 of the find operation a transactional read has been done on the child pointer of this node, returning ⊥, which must be valid throughout the transaction. The transactional read on removed (line 100 of the find operation) ensures that the node will be in the tree throughout the duration of the transaction. By lemma 37 this node belongs to a correct binary tree, this along with lemma 48 ensures that the child of this node is the only valid location in the tree where a node with key k could exist (and since the value of the child pointer of ⊥ a node with key k is not in the tree). A new node with key k is created and then added to the tree using a transactional write to the child pointer (lines [START_REF] Borkar | Thousand core chips: a technology perspective[END_REF][START_REF] Borowsky | Generalized FLP Impossibility Results for t-Resilient Asynchronous Computations[END_REF]. The removed and deleted fields of a newly created node can only be false so when the transaction commits the new node will be in the tree and k will be in the set. ✷ Theorem 8 A contains operation is linearizable.

Proof. The contains operation starts by performing a find operation (line 10). From lemma 48 we know that the find operation will return the correct location in the tree for key k. There are two possibilities, either the find operation returns a node in the tree with key k (line 93), or it returns a node in the tree that has ⊥ for the child where k would exist (line 100). First consider the case where a node with key k is returned. The transactional read on removed (line 94 of the find operation) ensures that the node will be in the tree throughout the duration of the transaction. Next a transactional read is done on the node's deleted variable (line 12) ensuring that this value will remain the same throughout the transaction. If the read on deleted returns false, then the contains operation can return true because the node exists in the set otherwise false can be returned because the node does not exist in the set.

Second consider the case where a node with key = k is returned. On lines 101-102 of the find operation a transactional read has been done on the child pointer of this node, returning ⊥, and due to the transactional read the pointer must remain as ⊥ throughout the transaction. The transactional read on removed (line 100 of the find operation) ensures that the node will be in the tree throughout the duration of the transaction. By lemma 37 this node belongs to a correct binary tree, this along with lemma 48 ensures that the child of this node is the only place where a node with key k could exist (and since the value of the child pointer is ⊥ a node with key k is not in the tree). The contains operation can then return false. ✷ Theorem 9 A delete operation is linearizable.

Proof. The delete operation is almost the same as the contains operation. The only difference is in the case where a node with key k is returned from the find operation. The transactional read on removed (line 94 of the find operation) ensures that the node will be in the tree throughout the duration of the transaction. Next a transactional read is done on the node's deleted variable (line 33) ensuring that this value will remain the same throughout the transaction. If the read on deleted returns true, then the delete operation can return false because the node does not exist in the set. Otherwise k is in the set and a transactional write is performed setting the nodes deleted variable to true. Since removed is false this node is part of the valid tree (lemma 37) so it is the only place where key k can be, then by setting deleted to true, k is no longer in the set after the transaction commits. ✷

Rotation Cost

As previously mentioned this implementation uses a method for local rotations introduced in [START_REF] Bougé | Height-relaxed AVL rebalancing: A unified, fine-grained approach to concurrent dictionaries[END_REF]. This method works by propagating local estimated balance information from a child to a parent, performing rotations based on what is observed. The method only requires that a node knows when it has a child subtree of height zero (i.e. a child pointer with value ⊥) in order to ensure the distributed local rotations and propagations provide eventual balance. In fact in [START_REF] Bougé | Height-relaxed AVL rebalancing: A unified, fine-grained approach to concurrent dictionaries[END_REF] they prove that in the absence of concurrent insertions and deletions, a tree in any configuration is guaranteed to be balanced after O(n 2) successful local rotations and propagations. Interestingly this holds no matter the sequence or concurrency pattern of the rotations and propagations, meaning they can take place in a completely distributed fashion. Even though in [START_REF] Bougé | Height-relaxed AVL rebalancing: A unified, fine-grained approach to concurrent dictionaries[END_REF] different synchronization methods are used than those that are used here (i.e. locks versus transactions), the results still apply as the rotations and propagations done in the speculation friendly tree have the same effect and keep track of balance information in the same way.

The algorithm showing how balance information is propagated and when rotations are performed is shown in figure 5.5. The bulk of the work takes place in the recursive_balance procedure. This procedure is repeatably called by the maintenance thread with each iteration traversing the tree in a depth first manner propagating balance information and performing rotations as it travels up the tree. This operation starts at the left child of the root, recursively calling itself on the left and right children of the node (lines 74-75) before updating the current node. The recursive calls return an integer value of the estimated height of the subtree rooted at the node it was called on. These values are then used to update the current nodes left_h, right_h, and local_h values, which are also then used to check if any rotations should be performed at the current node. There are two additional places where balance information is updated (note that both these operations are performed by the rotator thread so synchronization of these values is not necessary). Firstly, these balance values are also updated for the nodes modified during the rotation (eg. line 144 of the right_rotate procedure). Secondly, balance information is also updated during the remove operation (line 127), setting the height of the child tree to zero when removing a node results in an empty subtree at that child. Note that given this fact, along with the fact that new nodes are inserted with left and right child heights of zero (line 05) ensures the requirement from [START_REF] Bougé | Height-relaxed AVL rebalancing: A unified, fine-grained approach to concurrent dictionaries[END_REF] that a node has its child height set to zero when it has a ⊥ subtree.

Experimental Evaluation

We experimented our library by integrating it in (i) a micro-benchmark of the synchrobench suite to get a precise understanding of the performance causes and in (ii) the tree-based vacation reservation system of the STAMP suite and whose runs sometimes exceed half an hour. The machine used for our experiments is a four AMD Opteron 12-core Processor 6172 at 2.1 Ghz with 32 GB of RAM running Linux 2.6.32, thus comprising 48 cores in total.

Testbed choices

We evaluate our tree against well-engineered tree algorithms especially dedicated to transactional workloads. The red-black tree is a mature implementation developed and improved by expert programmers from Oracle Labs and others to show good performance of TM in numerous papers [START_REF] Dice | Transactional Locking II[END_REF][START_REF] Herlihy | Software Transactional Memory for Dynamic-Sized Data Structures[END_REF][START_REF] Minh | STAMP: Stanford transactional applications for multi-processing[END_REF][START_REF] Herlihy | Transactional boosting: A methodology for highly-concurrent transactional objects[END_REF][START_REF] Felber | Dynamic Performance Tuning of Word-Based Software Transactional Memory[END_REF][START_REF] Yoo | Kicking the tires of software transactional memory: why the going gets tough[END_REF][START_REF] Dragojević | Why STM can be more than a research toy[END_REF]. The observed performance in these papers is that this tree is generally scalable when contention is low; most of integer set benchmarks on which they are tested consider the ratio of attempted updates instead of effective updates. To avoid the misleading (attempted) update ratios that capture the number of calls to potentially updating operations, we consider the effective update ratios of synchrobench counting only modifications Comparing the AVL tree (AVLtree), the red-black tree (RBtree), the no-restructuring tree (NRtree) against the speculation-friendly tree (SFtree) on an integer set micro-benchmark with from 5% (top) to 20% updates (bottom) under normal (left) and biased (right) workloads and ignoring the operations that fail (e.g., remove may fail in finding its parameter value thus failing in modifying the data structure).

As mentioned before one of the main refactoring of this red-black tree implementation is to avoid the use of sentinel nodes that would produce false-conflicts within transactions. This improvement could be considered a first-step towards obtaining a speculation-friendly binary search tree, however, the modification-restructuring, which remains tightly coupled, prevents scalability to high levels of parallelism. The AVL tree we evaluate (as well as the aforementioned red-black tree) is part of STAMP [START_REF] Minh | STAMP: Stanford transactional applications for multi-processing[END_REF].

To evaluate performance we ran the micro-benchmark and the vacation application with 1, 2, 4, 8, 16, 24, 32, 40, 48 application threads. For the micro-benchmark, we averaged the data over three runs of 10 seconds each. For the vacation application, we averaged the data over three runs as well but we used the recommended default settings and some runs exceeded half an hour because of the amount of transactions used. We carefully verified that the variance was sufficiently low for the result to be meaningful.

Biased workloads and the effect of restructuring

In this section, we evaluate the performance of our speculation-friendly tree on an integer set micro-benchmark providing remove, insert, and contains operations, similarly to the benchmarks used to evaluate state-of-the-art TM algorithms [START_REF] Felber | Dynamic Performance Tuning of Word-Based Software Transactional Memory[END_REF][START_REF] Felber | Elastic transactions[END_REF][START_REF] Dalessandro | NOrec: streamlining STM by abolishing ownership records[END_REF]. We implemented two set libraries that we added to the synchrobench distribution: (1) our non-optimized speculationfriendly tree and (2) a baseline tree that is similar but never rebalances the structure whatever modifications occur. Figure 5.8 depicts the performance obtained from four different binary search trees: the red-black tree (RBtree), our speculation-friendly tree without optimizations (SFtree), the no-restructuring tree (NRtree) and the AVL tree (AVLtree). The performance is expressed as the number of operations executed per microsecond. The update ratio varies between 5% and 20%. As we obtained similar results with 2 10 , 2 12 and 2 14 elements, we only report the results obtained from an initialized set of 2 12 elements. We tested the algorithms using two workloads: (1) The normal workload in which elements are inserted (resp. deleted) by selecting values randomly with equal probability from the value range. [START_REF] Adelson-Velskii | An algorithm for the organization of information[END_REF] The biased workload consists of inserting (resp. deleting) random values skewed towards high (resp. low) numbers in the value range: the values always taken from a range of 2 14 are skewed with a fixed probability by incrementing (resp. decrementing) with an integer uniformly taken within [0..9].

On both the normal (uniformly distributed) and biased workloads, the speculation-friendly tree scales well up to 32/40 threads. The no-restructuring tree performance drops to a linear shape under the biased workload as expected: as it does not rebalance, the complexity increases with the length of the longest path from the root to a leaf that, in turn, increases with the number of performed updates. In contrast, the speculation-friendly tree can only be unbalanced during a transient period of time which is too short to affect the performance even under biased workloads.

The speculation-friendly tree improves both the red-black tree and the AVL tree performance by up to 1.5× and 1.6×, respectively. The speculation-friendly tree is less prone to contention than AVL and red-black trees, which both share similar performance penalties due to contention.

Portability to other TM algorithms

The speculation-friendly tree is an inherently efficient data structure that is portable to any TM systems. It fulfills the TM interface standardized in [START_REF]Intel transactional memory compiler and runtime application binary interface[END_REF] and thus does not require the presence of explicit escape mechanisms like early release [START_REF] Herlihy | Software Transactional Memory for Dynamic-Sized Data Structures[END_REF] or snap [START_REF] Cole | Snapshots and software transactional memory[END_REF] to avoid extra TM bookkeeping (our uread optimization being optional). Nor does it require high-level conflict detection, like open nesting [START_REF] Moss | Open nested transactions: Semantics and support[END_REF][START_REF] Ni | Open nesting in software transactional memory[END_REF][START_REF] Agrawal | Safe open-nested transactions through ownership[END_REF] or transactional boosting [START_REF] Herlihy | Transactional boosting: A methodology for highly-concurrent transactional objects[END_REF]. Such improvements rely on explicit calls or user-defined abstract locks, and are not supported by existing TM compilers [START_REF]Intel transactional memory compiler and runtime application binary interface[END_REF] which limits their portability. To make sure that the obtained results are not biased by the underlying TM algorithm, we evaluated the trees on top of E -STM [START_REF] Felber | Elastic transactions[END_REF], another TM library (on a 2 16 sized tree where E -STM proved efficient), and on top of a different TM design from the one used so far: with eager acquirement. The obtained results, depicted in Figure 5.9 look similar to the ones obtained with TinySTM-CTL (Figure 5.8) in that the speculation-friendly tree executes faster than other trees for all TM settings. This suggests that the improvement of speculation-friendly tree is potentially independent from the TM system used. A more detailed comparison of the improvement obtained using elastic transactions on red-black trees against the improvement of replacing the red-black tree by the speculation-friendly tree is depicted in Figure 5.10(a). It shows that the elastic improvements (15% on average) is lower than the speculation-friendly tree one (22% on average, be it optimized or not).

Reusability for specific application needs

We illustrate the reusability of the speculation-friendly tree by composing remove and insert from the existing interface to obtain a new atomic and deadlock-free move operation. Reusability is appealing to simplify concurrent programming by making it modular: a programmer can reuse a library without having to understand its synchronization internals. While reusability of sequential programs is straightforward, concurrent programs can generally be reused only if the programmer understands how each element is protected. For example, reusing a library can lead to deadlocks if shared data are locked in a different order than what is recommended by the library. Additionally, a lock-striping library may not conflict with a concurrent program that locks locations independently even though they protect common locations, thus leading to inconsistencies.

Figure 5.10(b) indicates the performance on workloads comprising 90% of read-only operations (including contains and failed updates) and 10% move/insert/delete effective update operations (among which from 1% to 10% are move operations). The performance decreases as more move operations execute, because a move protects more elements in the data structure than a simple insert or delete operation and during a longer period of time.

The vacation travel reservation application

We experiment our optimized library tree with a travel reservation application from the STAMP suite [START_REF] Minh | STAMP: Stanford transactional applications for multi-processing[END_REF], called vacation. This application is suitable for evaluating concurrent binary search tree as it represents a database with four tables implemented as tree-based directories (cars, rooms, flights, and customers) accessed concurrently by client transactions. Figure 5.11 depicts the execution time of the STAMP vacation application building on the Oracle red-black tree library (by default), our optimized speculation-friendly tree, and the baseline no-restructuring tree. We added the speedup obtained with each of these tree libraries over the performance of bare sequential code of vacation without synchronization. (A concurrent tree library outperforms the sequential tree when its speedup exceeds 1.) The chosen workloads are the two default configurations ("low contention" and "high contention") taken from the STAMP release, with the default number of transactions, 8× more transactions than by default and 16× more, to increase the duration and the contention of the benchmark without using more threads than cores.

Vacation executes always faster on top of our speculation-friendly tree than on top of its built-in Oracle red-black tree. For example, the speculation-friendly tree improves performance by up to 1.3× with the default number of transactions and to 3.5× with 16× more transactions. The reason of this is twofold: (i) In contrast with the speculation-friendly tree, if an operation on the red-black tree traverses a location that is being deleted, then this operation and the deletion conflict. (ii) Even though the Oracle red-black tree tolerates that the longest path from the root to a leaf can be twice as long as the shortest one, it triggers the rotation immediately after this threshold is reached. By contrast, our speculation-friendly tree keeps checking the unbalance to potentially rotate in the background. In particular, we observed on 8 threads in the high contention settings that the red-black tree vacation triggered around 130, 000 rotations whereas the speculation-friendly vacation triggered only 50, 000 rotations.

Finally, we observe that vacation presents similarly good performance on top of the norestructuring tree library. In rare cases, the speculation-friendly tree outperforms the norestructuring tree probably because the no-restructuring tree does not physically remove nodes from the tree, thus leading to a larger tree than the abstraction. Overall, their performance is comparable. With 16× the default number of transactions, the contention gets higher and rotations are more costly.

Related Work

Aside from the optimistic synchronization context, various relaxed balanced trees have been proposed. The idea of decoupling the update and the rebalancing was originally proposed by Guibas and Sedgewick [START_REF] Guibas | A dichromatic framework for balanced trees[END_REF] and was applied to AVL trees by Kessels [START_REF] Kessels | On-the-fly optimization of data structures[END_REF], and Nurmi, Soisalon-Soininen and Wood [START_REF] Nurmi | Concurrency control in database structures with relaxed balance[END_REF], and to red-black trees by Nurmi and Soisalon-Soininen [START_REF] Nurmi | Uncoupling updating and rebalancing in chromatic binary search trees[END_REF]. Manber and Ladner propose a lock-based tree whose rebalancing is the task of separate maintenance threads running with a low priority [START_REF] Manbar | Concurrency control in a dynamic search structure[END_REF]. Bougé et al. [START_REF] Bougé | Height-relaxed AVL rebalancing: A unified, fine-grained approach to concurrent dictionaries[END_REF] propose to lock a constant number of nodes within local rotations. The combination of local rotations executed by different threads self-stabilizes to a tree where no nodes are marked for removal. The main objective of these techniques is still to keep the tree depth low enough for the lock-based operations to be efficient. Such solutions do not apply to speculative operations due to aborts.

Ballard [START_REF] Ballard | Conflict avoidance: Data structures in transactional memory[END_REF] proposes a relaxed red-black tree insertion well-suited for transactions. When an insertion unbalances the red-black tree it marks the inserted node rather than rebalancing the tree immediately. Another transaction encountering the marked node must rebalance the tree before restarting. The relaxed insertion was shown generally more efficient than the original insertion when run with DSTM [78] on 4 cores. Even though the solution limits the waste of effort per aborting rotation, it increases the number of restarts per rotation. By contrast, our local rotation does not require the rotating transaction to restart, hence benefiting both insertions and removals.

Bronson et al. [START_REF] Bronson | A practical concurrent binary search tree[END_REF] introduce an efficient object-oriented binary search tree. The algorithm uses underlying time-based TM principles to achieve good performance, however, its operations cannot be encapsulated within transactions. For example, a key optimization of this tree distinguishes whether a modification at some node i grows or shrinks the subtree rooted in i. A conflict involving a growth could be ignored as no descendant are removed and a search preempted at node i will safely resume in the resulting subtree. Such an optimization is not possible using TMs that track conflicts between read/write accesses to the shared memory. This implementation choice results in higher performance by avoiding the TM overhead, but limits reusability due to the lack of bookkeeping. For example, a programmer willing to implement a size operation would need to explicitly clone the data structure to disable the growth optimization. Therefore, the programmer of a concurrent application that builds upon this binary search tree library must be aware of the synchronization internals of this library (including the growth optimization) to reuse it.

Felber, Gramoli and Guerraoui [START_REF] Felber | Elastic transactions[END_REF] specify the elastic transactional model that ignores false conflicts but guarantees reusability. In the companion technical report, the red-black tree library from Oracle Labs was shown executing efficiently on top of an implementation of the elastic transaction model, E -STM. The implementation idea consists of encapsulating the (i) operations that locate a position in the red-black tree (like insert, contains, delete) into an elastic transaction to increase concurrency and (ii) other operations, like size, into a regular transaction. This approach is orthogonal to ours as it aims at improving the performance of the underlying TM, independently from the data structure, by introducing relaxed transactions. Hence, although elastic transactions can cut themselves upon conflict detection, the resulting E -STM, still suffers from congestion and wasted work when applied to non-speculation-friendly data structures. The results presented in Section 5.7.3 confirm that the elastic speedup is even higher when the tree is speculation-friendly.

Conclusion

Libraries are an important piece of concurrent programming as they give programmers access to safe and efficient implementations of popular abstractions such maps/dictionaries. Given that through the transaction abstraction STM provides a general purpose model for synchronization, other abstractions such as the map/dictionary can be implemented from within transactions, playing the role of synchronization toolboxes that a programmer can rely on to write a concurrent application easily. Unfortunately due to the general speculative nature of synchronization provided by STM, transaction-based data structures are becoming a bottleneck in multicore programming. The work in that chapter shows that speculative executions require the design of new data structures. The underlying challenge is to decrease the inherent contention by relaxing the invariants of the structure while preserving the invariants of the abstraction.

In contrast with the traditional pessimistic synchronization, the optimistic synchronization allows us to directly observe the impact of contention as part of the step complexity because conflicts potentially lead to subsequent speculative re-executions. This chapter has illustrated, using a binary search tree, how one can exploit this information to design a speculation-friendly data structure. The next challenge is to adapt this technique to a large body of data structures to derive a speculation-friendly library. Providing such a library would encourage the use of STM for several reasons. The most obvious being simply that a programmer would not have to create the data-structures himself, preventing him from worrying about the correctness and efficiency of his code thus helping ensure our goal of having STM as part of a complete concurrent ecosystem from Definition 1. Secondly, the programmer can compose several operations from the library within a transaction, creating new operations specific to his needs, something that is normally not possible when using non-transactional data structures. Thirdly, the library can be designed specifically for optimistic synchronization or take advantage of non-standard TM operations such as the unit load. Interesting this goes against our intended goal for the simplicity of the transaction interface as desired by the Definition 2 of a transaction from the introduction. Importantly though, the programmer using these libraries need not be aware of this non standard interface, thus allowing him to gain performance advantages without knowing the underlying intricacies of the STM system, knowing only the simple definition of a transaction.

Part IV

Conclusion

Chapter 6

Conclusions and future work

Software transactional memory is a attractive alternative to locks for writing concurrent programs due to the fact that it abstracts away many of the difficulties. A programmer using STM can simply create blocks of code surrounded by the atomic keyword which are then guaranteed by the underlying STM implementation to appear as being executed atomically, thus preventing the programmer from worrying about complex synchronization details and avoiding problems such as deadlock. Unfortunately in its current form, using STM is not quite so simple. The reason for this is that are many more details a programmer must consider when using transactions further than just defining atomic blocks. Part of the reason for this is that STM exists as a single component of a more complicated system of concurrency for which many details must be considered or assumptions made. In fact, many of the not so subtle-subtleties of the STM abstraction are actively debated by the research community. Given this complex system where even experts have difficulty in coming us with precise and clear ways of defining and dealing with subtleties this thesis takes a different approach. The key of this approach is that this thesis takes as monumental importance the view that STM is a high level abstraction whose primary goal is to make concurrent programming easier. All other goals such as performance are secondary. In order to do this, the thesis starts with a high level goal for defining the STM system focused on ease of use (from Definition 1): "STM is an abstraction designed to simplify concurrent programming that exists as a component of a larger system, but the semantics of the STM abstraction and how it interacts with the rest of the system must be clear and easy to understand and use, otherwise simplicity is lost." Which is then followed by definition for a transaction aiming to satisfy this goal avoiding specific system details (from Definition 2): "A transaction is any block of code defined by the programmer to be executed by a given process. This transaction is executed atomically exactly once taking in consideration all parts of the system."

Given that this definition gives no details on the complex interactions of transactions in the system, instead of trying to expand this definition with further details, this thesis looks at ways to come up with solutions that fit within the confines of this definitions that promote ease of use. Of course precise definitions of semantics and properties must then be used as solutions for the specific problems, but the goal is that the high and low levels can coexist. A programmer who understands the high level definition should find the specific details of the low level definitions as a natural extension.

In doing this, the thesis was broken up into four main chapters of content, with each chapter introducing a general area of STM research focused on ease of use before tacking a specific problem in this area.

Overview The first chapter took a common view at what is widely viewed as the most important concept for STM to ensure. That is the idea that transactions should be executed atomically with respect to each other with aborted transactions seeing no invalid states of memory, following the basic idea of consistency criterion such as opacity or virtual world consistency. In this area of STM research protocols and properties are explored while ensure that the consistency criterion satisfied, placing consistency as a first priority. Specifically this chapter encourages exploring multiple properties at once, with the combination of read invisibility and permissiveness looked at in conjunction with the correctness criterion of opacity and virtual world consistency. Looking at further combinations is also suggested.

The second chapter took the view that simply ensuring a consistency criterion is not enough to fit in the high level transaction definition and instead suggests to simplify the traditional view of transaction semantics. That is, to ensure that every transaction is committed exactly once no matter the concurrency patter of other processors in the system, effectively allowing the programmer not have to worry that his transactions might not be executed; in a way abstracting away the concept of aborts when considering progress. As suggested in the chapter, further research could be conducted on the simplification of and increased abstraction level of transactions, with an important problem being nested transactions.

The third chapter took the view that STM exists as an integrated part of the users program and the concurrent system as a whole, thus suggesting the viewing of STM as its own separate entity in a concurrent system does not fit in our high level definition. In order to integrate STM in the system the details and semantics of how a transaction fits within a system must be defined. Specifically this chapter looked at the problem of concurrently accessing shared memory inside and outside of a transaction, and suggested that in order to follow our high level definition terminating strong isolation should be insured. As future research, there are many other components in the system that should be considered, such as how STM should interact with other synchronization methods and with non-reversible actions such as system calls.

The fourth chapter looked at the concept of libraries in concurrent programing. Libraries implementing common abstractions in a correct and efficient manner are becoming an important and widely used part of a concurrent system. Thus it is important to develop libraries for STM systems as well so that STM can become a complete and easy to use integrated part of the concurrent system. Given their importance in concurrent programs libraries can also become a bottleneck in programs and due to the specific type of synchronization done in STM libraries need to be developed specifically for use in transactions to avoid these bottlenecks. Interestingly one of the ways this chapter suggests doing this is by using additional operations in order to write these libraries that break the traditional TM interface, thus complicating things, seemingly violating the spirit of this thesis. From this, two important things should be taken away, first is that this thesis encourages research on ways to improve the performance of the STM abstraction by extending it, but more importantly the programmer should not be required to know the details of these operations as they should be left to be used by programmers who know the intricacies of the STM system in order to implement things such as libraries. In this chapter a binary tree library implementing the map abstraction is developed with future work being suggested to design a more complete library of abstractions for use in STM.

Final discussion

In a way this thesis contradicts itself, a chapter will suggest that an STM should be designed in a certain way, while the following chapter will then introduce a protocol that does not satisfy this design. No chapter introduces a permissive, terminating strong isolating, STM protocol that ensures every transaction is committed. Instead each chapter focuses on a certain problem concerning the ease of use of STM in specific. Thus, important future work (notably motivated by the first chapter) is too look at all the desirable properties together and see if the design of such a system is possible.

It should be noted that, in no way does this thesis suggest its definitions or results be the final word on those topics in STM. Instead, the opposite should be promoted: After defining these first semantics focused on ease of use, the next step is to examine them, find out what parts programmers use and understand and which parts are not used often, or are too complex, or too difficult to implement, then refine them in an iterative process. With the goal that someday programmers will be able to write efficient concurrent programs (nearly!) as simply as they write sequential programs today.

Chapter 7

Résumé en français

Les architectures multicoeurs changent notre façon d'écrire des programmes. En outre le caractère parallèle intrinsèque des programmes informatiques actuels, les multicoeurs de demain intégreront un une plus grande quantité de coeurs dans les processeurs, permettant de de mieux gérer l'énergie tout en proposant des performances supérieures. Cette technologie est également connue sous le nom de manycore [START_REF] Borkar | Thousand core chips: a technology perspective[END_REF] et donne lieu à ce que l'on appelle la révolution multicoeurs [START_REF] Herlihy | Distributed Computing and the Multicore Revolution[END_REF]. Afin de profiter de ces nouvelles ressources, un renouveau de la programmation concurrente a débuté. La conception d'un programme concurrent est une tâche délicate. Des objets de synchronisation de base ont été définis pour aider le programmeur à résoudre les problèmes de concurrence et de coopération de processus. Une étape majeure dans ce domaine, proposé il y a plus de quarante ans, est le concept d'exclusion mutuelle [START_REF] Dijkstra | Solution of a Problem in Concurrent Programming Control[END_REF] qui a donné naissance à la notion de verrouillage d'objet (lock). Cet objet fournit au programmeur de processus concurrents, deux opérations (le verrouillage et le déverrouillage d'un objet) permettant uniquement à un seul processus d'accéder à l'objet. Par conséquent, le verrou associé à l'objet permet de transformer un accès concurrents à un accès séquentiel. La synchronisation par des verrous est souvent désigné comme pessimiste car chaque accès à un objet bloque les accès supplémentaires à cet objet jusqu'à ce qu'il soit libéré. Il n'est donc pas surprenant que le processus de conception d'un programmeur se fasse de manière séquentielle et que l'exclusion mutuelle soit un moyen simple de concevoir de la synchronisation d'objets concurrents. Ce système de verrou est l'abstraction la plus largement utilisée dans ce domaine.

Malheureusement, l'utilisation de verrous reste compliqué. La difficulté la plus fréquente associée au concept de verrou est d'éviter l'impasse (deadlock). L'impasse se produit par exemple lorsqu'un processus T A veut obtenir un verrou qui est déjà détenu par un processus T B tandis que ce dernier veut obtenir un verrou qui est déjà détenu par processus T A . Dans ce cas, aucun processus ne progresse. Pour résoudre ce problème, les verrous sont souvent activée suivant un ordre pré-défini, mais cela peut entraîner des verrouillages souvent plus long que nécessaire.

Un autre problème avec les verrous peut se produire quand un processus détenant un verrou sur un objet prisé est supprimé par le système d'exploitation. Dans ce cas, tous les autres processus vivants en attente tente d'accéder au même objet au même moment (parfois appelé problème d'inversion de priorité). Similairement, d'autres problèmes peuvent se produire si un processus détenant un verrou prisé se bloque.

Mémoire software transactionnelle Le concept de mémoire software transactionnelle (STM) est une réponse possible au défi de la programmation concurrente. Avant de décrire en détail ce concept, introduisons l'idée sous-jacente qui a contribué à donner naissance aux STMs: la notion de niveau d'abstraction. Plus précisément, l'objectif d'un niveau d'abstraction est de permettre au programmeur de se concentrer uniquement sur le problème qu'il doit résoudre et non sur des contraintes annexes pour le résoudre. Ce concept est similaire aux abstractions intégrées aux langages de haut niveau tel que l'introduction de récupérateurs de mémoire (garbage collector) qui automatique détruit les structures de données du programmeur qui ne sont plus utilisées. De la même manière, les STM sont considérées comme un nouveau niveau d'abstraction pour résoudre les problèmes de synchronisation lié à la programmation concurrente.

La mémoire transactionnelle élimine la complexité associée à la programmation concurrente en remplaçant le verrouillage avec une unité d'exécution atomiques. Contrairement à l'utilisation des verrous où un programmeur peut utiliser plusieurs verrous dans ses opérations, lorsque il utilise la mémoire transactionnelle un programmeur n'a besoin que de définir toutes les sections de son code qui doivent être exécutées de façon atomique (ne laissant aucune possibilité d'entrelacement d'opérations simultanées). Le protocole de mémoire transactionnelle effectue ensuite la synchronisation nécessaire pour garantir leurs bonnes exécutions. De cette façon, le programmeur se concentre seulement sur l'endroit où l'atomicité est nécessaire et non pas sur la façon dont il doit être effectué. Le but d'un système STM est donc de décharger le programmeur de la gestion directe de la synchronisation lié à l'accès simultanés aux objets.

Plus précisément, les STMs offrent au programmeur le concept de transaction (proche mais différent de la notion de transactions rencontrées dans les systèmes de bases de données [START_REF] Felber | Transactions are coming Back, but Are They The Same?[END_REF][START_REF] Harris | Transactional Memory: an Overview[END_REF][START_REF] Herlihy | Distributed Computing and the Multicore Revolution[END_REF]). Ce processus est décomposé sous la forme de séquences d'opérations. Chaque opération étant un morceau de code qui, lors de l'accès des objets concurrents, apparaît toujours comme s'il était exécuté de façon atomique. Le rôle du système STM est de garantir que les opérations sont exécutées comme si elles étaient atomique en utilisant de faibles opérations de synchronisation tel que compar&swap ou d'autres abstractions comme les verrous. Cependant, tous ces détails sont cachés du programmateur qui n'a accès que à l'interface de la STM pour définir des unités de calcul atomiques.

Un autre avantage important de l'utilisation des mémoires transactionnelles sur les verrous vient du fait qu'un programme transactionnel peut être directement réutilisé par un autre programmeur dans son propre code. Ainsi, un programmeur qui compose des opérations à partir d'une bibliothèque d'opérations à une autre transaction, est garantie d'obtenir de nouvelles opérations sans impasse qui sont exécutées de manière atomique. Plusieurs études [START_REF] Pankratius | A study of transactional memory vs. locks in practice[END_REF][START_REF] Rossbach | Is transactional programming actually easier?[END_REF] ont été réalisées montrant que les utilisateurs créent des programmes concurrents plus facilement lorsque ils utilisent la mémoire transactionnelle au lieu de verrous.

Les premiers travaux autour de la mémoire transactionnelle ont été proposé il y a vingt ans par Herlihy et Moss. Ces travaux portaient sur une abstraction matérielle afin de mettre en oeuvre facilement des structures de données concurrentes sans-verrou [START_REF] Herlihy | Transactional Memory: Architectural Support for Lock-free Data Structures[END_REF]. Par la suite, la mémoire transactionnelle a été intégré au logiciel par Shavit et Touitou [START_REF] Shavit | Software Transactional Memory[END_REF]. Enfin, grâce à la révolution multi-core, ce domaine a récemment pris de l'ampleur et se place comme une alternative prometteuse aux verrous dans la programmation concurrente [START_REF] Felber | Transactions are coming Back, but Are They The Same?[END_REF][START_REF] Harris | Transactional Memory: an Overview[END_REF][START_REF] Larus | Transactional Memory: Is TM the Answer for Improving Parallel Programming[END_REF][START_REF] Raynal | Synchronization is Coming Back, But Is It the Same? Keynote Speech[END_REF].

Conçue pour rendre plus facile la programmation concurrente, la mémoire transactionnelle a besoin d'une interface simple et précise à destination des programmeurs.

Afin d'efficacement définir des transactions dans un programme, l'approche la plus courante consiste à baliser le code par des mots-clés qui indiquent le début et la fin d'une transaction. Par exemple, le programmeur peut simplement entourer sa transaction en utilisant le mot-clé atomique. Le code contenu dans ce bloc sera alors traitée comme une transaction et sera exécuté de façon atomique. Idéalement, le programmeur ne devrait connaître que ça avant de commencer à utiliser la mémoire transactionnelle, mais malheureusement, comme on le verra dans cette thèse, l'utilisation de STM est un peu plus complexe le programmeur doit prendre en considération d'autres points.

En effet, dans un système moderne concurrent, les aspects complexes de l'abstraction STM concernent comment un programmeur interagit avec le système STM et le système dans son ensemble. Alors que la sémantique de base d'une transaction est largement convenu (atomicité de la transaction par rapport à d'autres transactions), beaucoup d'autres détails et questions sont encore activement débattus et restent à l'état de recherche. La normalisation de cette sémantique a pour but de répondre à ces questions ouvertes et est une étape importante pour atteindre l'objectif principal qui est de rendre plus facile la programmation concurrente. Si la sémantique est trop difficile à comprendre, ou si un programmeur doit être conscient de trop de détails spécifiques au système STM avant de pouvoir utiliser les transactions dans son programme, l'objectif n'est pas atteint.

L'objectif de cette thèse est de proposer une définition et une sémantique facile d'utilisation pour l'abstraction des STMs et le design de protocole efficace pour les multicoeurs.

Chaque chapitre de cette thèse considère un domaine de la programmation concurrente en utilisant la mémoire transactionnelle. Le chapitre 1 commence par introduire le domaine, le chapitre 2 propose un protocole d'abstraction des STMs pour les programmeur, et le chapitre 3 présente un modèle simplifié d'accès mémoire à l'intérieur et à l'extérieur des STMs. Le dernier chapitre conclue ce manuscrit en ouvrant sur de nouvelles perspectives.

Chapitre 1

L'objectif le plus important de l'abstraction des STMs est de rendre la programmation concurrente la plus simple et la plus accessible à tout programmeur. On peut dire alors tout ce qu'un programmeur doit besoin de savoir afin d'utiliser l'abstraction STM est de connaître la syntaxe pour écrire un bloc atomique, probablement quelque chose d'aussi simple que atomique{. . . }. Au niveau le plus élémentaire tout un programmeur devrait besoin de savoir est par où commencer et finir ses blocs atomiques.

Comme de nombreuses abstractions, même avec une interface fixe est bien défini, il y a beaucoup de différentes implémentations possibles et des propriétés différentes qui existent pour fournir l'abstraction. Sous ces blocs atomiques est la mise en oeuvre de la STM, qui comporte de nombreux aspects. Depuis l'introduction de mémoire transactionnelle en 1993 [START_REF] Herlihy | Transactional Memory: Architectural Support for Lock-free Data Structures[END_REF] des dizaines (voire des centaines) de propriétés différentes sont apparues ainsi que de nombreux algorithmes STM différentes, chacune d'entre elles en guarantissant plus ou moins de ces propriétés et être plus ou moins concernés par la performance. (Certaines de ces propriétés sont discutées dans l'introduction de cette thèse dans la section 1.4) La plus importante de ces propriétés concernent certainement l'exactitude de l'algorithme. Souvent désigné comme les critères de cohérence de STM, ils guarantissant que le protocole mise en oeuvre l'abstraction correctement. En faisant cela, la facilité d'utilisation est prise d'une importance capitale, permettant aux utilisateurs de ne pas avoir à s'inquiéter de comportement étrange qui ferait l'abstraction plus difficile à comprendre. Dans le critère de cohérence STM sont utilisés afin d'guarantir que les transactions seulement observer états valides de mémoire (i.e. états créés par seulement les transactions atomiques). En raison de la nature optimiste et en ligne des transactions, les lectures et les écriture d'une transaction pourrait entrer en conflit avec une transaction concurrente , c'est à dire si elles étaient tous les deux continuer à s'exécuter, l'un d'entre eux serait observer un état non valide de la mémoire. Les critères de cohérence de STM STM éviter cela, et afin de le faire le protocole STM annulerait l'une des transactions, ce qui signifie qu'il semble avoir pas exécuté du tout. La transaction peut alors être redémarré. Ce chapitre se penche sur la façon dont ces critères de cohérence, qui guarantissant un niveau fondamental de facilité d'utilisation pour STM, se rapportent à d'autres propriétés qui concernent les choses moins importantes comme la performance.

Dans un monde idéal, il existerait un "algorithme parfait" STM qui garantit toutes les propriétés désirables sans faire de sacrifices. Malheureusement, cet algorithme n'a pas encore été découverts (si c'est encore possible). En fait, beaucoup de ces propriétés désirables ont été un peu plus alors introduit et plusieurs de leurs implications sur la façon dont ils affectent algorithmes STM ou comment ils interagissent les uns avec les autres n'a pas encore été exploré. Motivé par cela, ce chapitre examine deux propriétés désirables qui se préoccupent de la performance, à savoir permissivité et lectures-invisible, et comment ils interagissent avec deux critères de cohérence des systèmes STM, à savoir l'opacité et le consistance monde virtuel.

Opération de lecture invisible Une opération de lecture émise par une transaction est invisible si elle n'implique pas la modification des objets partagés utilisés pour mettre en oeuvre le système STM [START_REF] Marathe | Lowering the Overhead of Software Transactional Memory[END_REF]. Il s'agit d'une propriété désirable principalement pour l'efficacité.

Permissivité La notion de permissivité a été introduite dans [START_REF] Guerraoui | Permissiveness in Transactional Memories[END_REF] (dans un certain sens, il s'agit d'une généralisation très agréable de la notion de obligation propriété [?]). C'est sur la annulation de transaction. Intuitivement, un système STM est permissive "si elle n'a jamais annule une transaction sauf si c'est nécessaire pour l'exactitude." (sinon, il est non-permissive). Plus précisément, un système STM est permissive par rapport à une condition de cohérence (par exemple, l'opacité) si elle accepte toute histoire qui satisfait la condition.

Comme indiqué dans [START_REF] Guerraoui | Permissiveness in Transactional Memories[END_REF], un système STM qui vérifie lors du "commit" que les valeurs des objets lus par une transaction n'ont pas été modifiées (et annule la transaction si vrai) ne peut pas être permissive par rapport à l'opacité. En fait autre que le protocole introduit avec la notation de permissivité dans [START_REF] Guerraoui | Permissiveness in Transactional Memories[END_REF] pratiquement tous les protocoles STM publiés annuler les transactions qui auraient pu être commises sans risque, à savoir les protocoles ne sont pas permissives.

Deux conditions de cohérence pour les systèmes STMs Nous avons proposé une syntaxe définie pour le programmeur (atomique{. . . })) ainsi que l'idée fondamentale de ce que cela signifie, "le code dans le bloc atomique apparaît comme si elle a été exécutée instantanément par rapport à autres opérations", mais nous avons besoin de définir précisément ce que cela signifie pour un algorithme STM. Au coeur de ce que nous avons critères de cohérence. Ce critère de définir précisément la sémantique d'une transaction et guider la création d'algorithmes afin que le critère choisi est satisfaite. Sans un critère de cohérence claire et précise nous perdons la facilité d'utilisation qui est l'intention originale de la STM. Dans cette section, nous donnons un aperçu de deux critères de cohérence bien connu définis pour la mémoire transactionnelle.

La condition de cohérence opacité Le critère de cohérence classique pour les transactions de base de données est la sérialisation [START_REF] Papadimitriou Ch | The Serializability of Concurrent Updates[END_REF], approximativement définie comme suit: "Une histoire est sérialisable si elle est équivalente à celle dans laquelle les transactions apparaissent à exécuter de manière séquentielle, c'est à dire, sans entrelaçage." Ce qui est important à considérer lorsqu'on pense à la mémoire transactionnelle est que le critère de cohérence sérialisation ne concerne que les transactions qui commettent. Dit autrement, une transaction qui est annulée n'est pas empêchés d'accéder à un état incohérent avant d'annuler. Il convient de noter que la sérialisabilité est parfois renforcée dans "serializability stricte". La sérialisabilité stricte a la contrainte supplémentaire que l'histoire séquentielle équivalente doit suivre l'ordre de temps réel de sorte que chaque transaction est placée quelque part entre son invocation et son temps de réponse, comme mis en oeuvre par de l'utilisation du mécanisme de verrouillage en 2 phases. La sérialisabilité stricte est souvent désigné comme linéarisabilité [START_REF] Herlihy | Linearizability: a Correctness Condition for Concurrent Objects[END_REF] lorsque l'on considère les opérations d'un objet au lieu du système entirer.

Si les transactions ne sont pas annulée avant d'observer un état incohérent de la mémoire, puis des comportements indésirables telles qu'exceptions de division par zéro peuvent se produire (un exemple d'exécution dans lequel telle exception se produit est décrit dans la section 1.4.4 de l'introduction). Encore pire des comportements indésirables peuvent être obtenus lors de la lecture des valeurs des états incohérents. Cela se produit par exemple quand un état incohérent fournit une transaction avec les valeurs qui génèrent des boucles infinies. Ces mauvais comportements doivent être évités dans les systèmes STM: quel que soit son sort (validation ou annulée) une transaction doit toujours voir un état cohérent de la mémoire consultée. Les transactions annulées doivent être inoffensifs.

Informellement suggéré dans [START_REF] Dice | Transactional Locking II[END_REF], et officiellement présenté et étudié dans [START_REF] Guerraoui | On the Correctness of Transactional Memory[END_REF], la opacité condition de cohérence exige qu'aucune transaction, à tout moment, lit les valeurs d'un état global incohérent où, en ne considérant que l'transactions validées, un cohérente global état est définie comme l'état de la mémoire partagée à un instant de temps réel.

Cohérence des mondes virtuels Cette condition de cohérence, introduit dans [START_REF] Imbs | A versatile STM protocol with Invisible Read Operations that Satisfies the Virtual World Consistency Condition[END_REF], est plus faible que l'opacité tout en gardant son esprit. Il déclare que (1) aucune transaction (validée ou annulée) lit les valeurs d'un état global incohérent, (2) les états globaux cohérents lus par les transactions validées sont cohérents entre eux (dans le sens où ils peuvent être totalement ordonné), mais (3), tandis que l'état global lu par chaque transaction annulée est compatible à partir de son point de vue individuel, les états globaux lus par deux transactions annulée sont pas tenus d'être cohérents entre eux.

En plus du fait qu'il peut permettre à davantage de transactions de commettre d'opacité, l'un des points les plus importants de la cohérence monde virtuel réside dans le fait que, comme l'opacité, il empêche les phénomènes mauvaises (comme décrit précédemment) de se produire sans nécessiter de tous les transactions (validée ou annulée) se mettre d'accord sur là même exécution témoin. Supposons que chaque transaction se comporte correctement (par exemple, il n'implique pas une division par 0, il ne pas entrer dans une boucle infinie, etc) lorsque, exécuté seul, il lit les valeurs d'un état global cohérent. Comme, grâce à la condition de consistance monde virtuel, aucune transaction (validée ou annulée) lit un état incohérent, il ne peut pas comporter de manière incorrecte malgré la concurrence, il ne peut que être interrompue. Cette condition de cohérence peuvent bénéficier des applications STM nombreux que, de son point de vue local, une transaction ne peut le différencier de l'opacité.

Par conséquent, que signifie pour le programmeur de prévoir d'utiliser la mémoire transac-tionnelle pour écrire son programme concurrent? Implications sur les performances possibles de côté, absolument rien, le programmateur ne vois aucune différence entre un protocole STM qui est opaque par rapport à celui qui est le monde virtuel cohérent. Compte tenu de l'exigence première de la mémoire transactionnelle est la facilité d'utilisation, cela est extrêmement important, la cohérence monde virtuel serait beaucoup moins intéressant comme condition de cohérence si cela n'était pas vrai. La première contribution de ce chapitre montre que l'invisibilité des lectures et la permissivité sont incompatibles avec l'opacité, puis nous montrons que nous pouvons choisir un critère plus faible cohérence (consistance monde virtuel) de concevoir un protocole qui satisfait la permissivité et l'invisibilité des lectures. Plus important encore, même si nous avons affaibli le critère de cohérence, le programmeur ne verra aucune différence dans la sémantique d'une transaction. Si la cohérence monde virtuel a changé la façon dont un programmeur devait penser aux transactions par rapport à l'opacité, puis il ne serait pas considéré comme un critère de cohérence approprié pour la mémoire transactionnelle.

La deuxième contribution de ce chapitre présente un algorithme réaliste qui satisfait la cohérence du monde virtuel, la permissivité, et l'invisibilité des lectures.

Globalement, la contribution de ce chapitre est une étude de l'interaction entre plusieurs propriétés et les conditions de cohérence de mémoire transactionnelle. Cependant, comment facilité l'utilisation de la mémoire transactionnelle? Lors de la conception d'un protocole STM, il est nécessaire de satisfaire le critère de cohérence. Ceci est important parce que ce critère de cohérence définit la sémantique de un transaction pour le programmeur. Tant que le critère de cohérence choisi est satisfaite, alors nous pouvons commencer à envisager d'autres secondaires, mais important, choses telles que la performance. C'est là que des propriétés différentes comme l'invisibilité et la permissivité lire entrer, un protocole qui choisit ou pas de mettre en oeuvre telles propriétés pourraient affecter le performance de ce protocole, mais ne modifie pas la sémantique d'une transaction. En faisant cela, nous mettons la facilité d'utilisation pour le programmeur comme une exigence de première classe. En outre, ce chapitre suggère (suivant la tendance de la plupart de recherche STM) en n'utilisant pas n'importe quel critère de cohérence pour STM, mais plutôt de choisir critère de cohérence qui garantit l'atomicité des transactions sans permettre à toute opération à exécuter dans un état non valide de la mémoire.

Chapitre 2

L'opacité et les autres critère de cohérence sont parfois également appelés propriétés de sécurité. Informellement c'est parce qu'ils guarantissant un protocole qui eux implémente va agir de manière à ce qu'un utilisateur pourrait s'attendre et ne pas produire aucun comportement bizarre. Par exemple, comme mentionné précédemment, l'opacité empêche les transactions de s'exécuter sur les états invalides de la mémoire, empêchant des choses telles que des exceptions de diviser par zéro dans le code correct. Même si les autres critère de cohérence supprimer la complexité d'avoir à traiter avec des états non définis de la mémoire, ils laissent ouvertes d'autres problèmes pour le programmeur faire face aux ce que pourrait rendre l'utilisation de STM plus difficile. En ce sens, nous proposons de cacher certains de ces problèmes au programmeur en traitant avec eux dans la mise en oeuvre de la STM.

Le chapitre précédent ne mention la fréquence de validation des transactions, en particulier, le critère de cohérence ne font aucune considérations à ce sujet. Par exemple, un protocole pourrait satisfaire l'opacité par tout simplement faire annuler toute transaction avant qu'elle n'ait effectué aucune action, mais bien sûr, ce protocole serait inutile. Afin d'éviter cela, certains protocoles STM satisfaire liveness (ou progrès) propriétés. Ces propriétés (dont certains ne se limite pas à la mémoire transactionnelle) guarantissant que les opérations d'un processus fera une sorte de progrès, parfois en fonction du nombre de conflits dans le système.

Malheureusement, le programmeur doit toujours comprendre le concept de "abort/commit" comme une complexité qui est présumée quand il décide d'utiliser la mémoire transactionnelle dû au fait que les protocoles STM actuelles ne garantissent pas qu'une transaction commettre. Dans certains cas, le programmeur doit traiter directement avec les transactions annulées dans son code, dans d'autres, un programmeur peut prioriser certaines transactions afin qu'elles ne pas avorter, dans d'autres cas le protocole permet aux transactions d'être bloqués, tandis que d'autres, les transactions peuvent être annulée à l'infini. Absent à partir de ces solutions est le cas où toutes les transactions sont garanties à commettre où les progrès d'une transaction ne repose pas sur les autres processus à l'exception de celui qui a émis la transaction. Telle solution donnerait la priorité à la facilité d'utilisation tant que ce type de protocole se cacherait le concept d'opérations annulée du programmeur lorsque l'on considère l'progrès du système.

Semblable à une construction universelle sans-attente, le protocole garantit une progression en utilisant le concept de processus d'aide. Un processus qui émet une transaction qui est annulée demanderont que d'autres processus aider en essayant simultanément d'exécuter l'opération, veiller à ce que finalement la transaction sera commise. Une difficulté qui se pose de ce type d'aider qui est résolu par cet algorithme est garantir que la transaction n'est pas commis plus d'une fois.

Le chapitre 1 a exploré un domaine de recherche de la mémoire transactionnelle qui se concentre sur l'amélioration des protocoles STMs sans affecter la façon dont l'utilisateur interagit avec la STM, que est garantir la mise en oeuvre des propriétés ou par l'augmentation de le performance. Ce chapitre, bien que similaire au chapitre précédent en suggérant des propriétés et en montrant comment un protocole peut les mettre en oeuvre, adopte une approche plus visible qui a des répercussions directes sur l'interaction entre le programmateur et la STM. Abstraitement, il examine comment la sémantique est définie entre le programmateur et le protocole STM et suggère qu'ils soient simplifiées. En supprimant la notion d'transactions annulée de la sémantique et de garantir que chaque transaction commettre, quel que soit le motif de l'exécution des autres processus dans le système, nous nous dirigeons vers un système plus facile à utiliser.

Des recherches antérieures ont proposé un certain niveau d'interaction entre le programmateur et les transactions annulées, tandis que ce chapitre suggère la notion de commit/annuler être complètement abstraite en dehors de niveau programmeur laissé à être uniquement une préoccupation mise en oeuvre. Cela libère le programmeur d'avoir à se demander si sa transaction pourrait ne pas commettre et soit tenter d'éviter une telle situation, ou pour trouver des moyens d'y faire face quand il le fait.

Chapitre 3

Une sémantique transactionnelle simplifiée peut ne pas être suffisant, ce chapitre suggère l'étendre la sémantique. Il examine comment un programmeur peut utiliser des transactions au sein de son code dans un système plus large afin de proposer l'extension de la sémantique transactionnelle dans l'intérêt de la facilité d'utilisation.

Ce chapitre propose des opérations en tant que partie intégrante d'un programme de le util-isateur. Le programmeur met ensuite un groupe de lecture et d'écriture dans un bloc de code délimitée par les mots-clés transaction_begin() et transaction_end() (ou bien le bloc atomique atomique{. . . }). Cette opération atomique existe directement comme un morceau de son code, précédé et suivi par le code, également écrit par le programmeur. Dans ce bloc de code les lectures et écritures de la mémoire partagée sont ensuite traités par le protocole comme lectures et écritures transactionnel, tout en les lectures et écritures simples effectuées dans le code en dehors des transactions sont non-transactionnels. A ce stade, nous avons un choix important à faire face à la sémantique et l'exactitude d'une transaction lorsque l'on considère la mémoire partagée. Est-ce que les transactions devrait semblent être atomiques que lorsque l'on considère d'autres transactions, ou devrait les accès concurrente non-transactionnel de la mémoire partagée également être pris en compte? Plus précisément, si la mémoire partagée qui est accessible à partir de l'intérieur d'une transaction en toute sécurité être seulement accessible à partir de transactions, ou doit-il être sûr d'accéder à la mémoire à l'intérieur et à l'extérieur de transactions à tout moment?

Si, dans un programme, il existe deux sets de mémoire partagée, un set pour accéder à l'intérieur des transactions, et un autre pour accéder à l'extérieur de transactions, alors nous perdons la notion d'transactions faisant partie intégrante du programme de le utilisateur pour plus d'un concept où transactions Il existe comme un objet distinct isolé. Dans le second cas, les transactions pourraient représenter une interface de programmation définie pour un grand objet partagé et distincte du reste du système. Les transactions sont toujours définis et placés par le programmeur, mais ils sont limités à la mémoire qu'ils peuvent accéder. D'autre part, si le programmeur peut accéder à la mémoire partagée à la fois à l'intérieur et à l'extérieur des transactions tout en garantissant l'atomicité de ces transactions, alors le système devient plus simple. Malheureusement, pour garantir cela n'est pas clair et c'est le problème abordé par le présent chapitre.

Isolement forte L'isolement forte garantit que les opérations de lecture et d'écriture transactionnel et non-transactionnel sont mises en oeuvre d'une manière qui prend leur co-existence en compte. Plus précisément, l'isolement forte garantit que les accès non-transactionnelles à mémoire partagée ne violent pas l'atomicité des transactions.

Afin de mieux comprendre les garanties de l'isolement forte, nous considérons une extension simple et intuitive qui peut être appliquée à un protocole STM afin de garantir l'isolation forte. Afin de fournir cette extension, toute opération non transactionnel qui accède à des données partagées est simplement considéré comme un "mini-transaction", c'est à dire, une transaction qui contient une seule opération lecture/écriture. Dans ce cas des transactions devront être conformes non seulement par rapport à d'autres transactions, mais aussi par rapport à les opérations non transactionnelles. Évidemment, dans cette solution il n'y a pas de section distincte de la mémoire pour les transactions et leur atomicité est préservée, ce qui entraîne un cadre plus simple pour le programmeur.

Isolement forte terminant Nous considérons maintenant une solution au problème de garantir la isolation forte en utilisant les mécanismes typiques de verrous ou barrières: Chaque variable partagée serait alors associée avec un verrou et les deux types de opérations (transactionnelles et non-transactionnelles) devront accéder à le verrou avant d'accéder à la variable. Les verrous sont déjà utilisées dans les algorithmes STM -comme TL2 [START_REF] Dice | Transactional Locking II[END_REF] -où il est toutefois supposé que la mémoire partagée est uniquement accessible par les transactions. L'utilisation de ver-rous dans un algorithme STM implique le blocage et peut même conduire à la famine de les processus. Des recherches antérieures sur les protocoles STM a adopté l'approche que ces caractéristiques peuvent être acceptables. Maintenant, si nous avons des opérations non transactionnelles qui s'appuient sur les mêmes mécanismes (soit mis en oeuvre utilisant de verrous ou par mini-transactions), ils sont également susceptibles à la possibilité même de la non-exécution.

Toutefois, le concept d'un lecture/écriture de mémoire partagé n'inclut pas normalement cette possibilité. Lorsqu'il s'agit d'un single lecture ou en écriture sur une variable partagée, une opération non transactionnelle est normalement comprise comme un événement qui se produit de façon atomique et termine toujours. Lors de l'exécution, une lecture ou d'écriture ne devrait pas être dé-prévu, bloqué ou interrompu. Malheureusement forte isolation mis en oeuvre avec des verrous implique le blocage des opérations de lecture et d'écriture non transactionnelles et ne fournit pas le terminaison.

Pour cette raison, nous croyons que la mise en oeuvre d'un protocole de fort isolement devrait également examiner le progrès des opérations non transactionnelles. Afin de faire face à cela, nous suggérons qu'un protocole STM devrait mettre en place l'isolement forte terminant, que nous définissons simplement que l'isolement fort avec la garantie supplémentaire que les opérations de lecture et d'écriture non-transactionnelles d'un processus sont garantis à terminer, peu importe les actions de processus concurrents dans le système.

Ce chapitre présente un algorithme qui permet d'atteindre le "fort isolement terminant" sur le dessus d'un algorithme STM basé sur les dates logiques et verrous, nommément TL2. Dans le cas d'un conflit entre une transaction et une opération non-transactionnelle, cet algorithme donne la priorité à l'opération non-transactionnel, avec le raisonnement que même si un annulation ou redémarrage éventuel est s'inscrite dans la spécification d'une transaction, ce n'est pas le cas d'une single lecture ou d'écriture de mémoire partagée. Ceci permet au programmeur de connaître son transaction exécutera de façon atomique, même en présence de l'accès mémoire non-transactionnelle, tout en garantissant l'accès non-transactionnel ne sont jamais bloqués de progresser.

L'interaction entre les accès transactionnelles et non transactionnelles à mémoire partagée n'est qu'une étape parmi de nombreuses interactions possibles qu'un programmeur peut faire face quand il utilise des transactions. Par exemple, il pourrait vouloir utiliser des verrous ou des opérations atomiques de hardware en même temps que les transactions, ou il pourrait vouloir utiliser des I/O au sein de ses transactions. Chacun de ces derniers et beaucoup d'autres choses méritent une enquête sur les modèles possibles où elles sont considérées aux côtés de la sémantique des transactions. De futures recherches sont nécessaires pour déterminer comment ces opérations supplémentaires peuvent être ajoutés à l'écosystème STM d'une manière qui n'entrave pas la facilité d'utilisation.

En fournissant à un programmeur avec un grand choix d'implémentations de transaction basées sur des abstractions couramment utilisés sa vie devient beaucoup plus facile. Par conséquent, ce chapitre se concentre sur la conception de structures de données efficaces au sein des transactions (en particulier ceux qui fournissent l'abstraction carte). Même si les chapitres précédents concentré sur la manière de définir la sémantique de transaction afin que le programmeur peut les utiliser facilement et les structures de données présentées dans ce chapitre ne sont pas directement liés à l'interaction entre les programmeurs et le sémantique de les transactions, ce chapitre se concentre toujours sur la facilité de l'utilisation de l'écosystème de la STM. Plus précisément, il favorise le fait que les structures de données proposées peuvent aider à augmenter la facilité d'utilisation de la STM pour la programmation concurrente.

Structures de données concurrentes Dans cette aire multicoeurs, les structures concurrentes de données deviennent des éléments plus importants pour les programmeurs qui écrivent des programmes concurrents. Ils présentent le programmeur avec une interface claire à une abstraction, lui permettant d'effectuer des operations de l'abstraction dans un contexte concurrente. En raison de leur importance dans l'organisation des données entre processus, ils sont de plus en plus un goulot d'étranglement dans une grande variété d'applications concurrentes. Compte tenu structures de données en général, à la fois concurrente et séquentielle, elles reposent souvent sur le maintien des invariants afin d'assurer leur efficacité et leur grand-O complexité. Dans le cas d'un arbre, il doit généralement rester suffisamment équilibré à tout moment de l'exécution concurrent. Malheureusement, alors que ces invariants sont importants pour garder, ils peuvent aussi empêcher l'performance de mise à l'échelle avec plusieurs coeurs [START_REF] Shavit | Data structures in the multicore age[END_REF].

De plus dans ce problème, il est difficile de savoir comment on peut adapter une structure de données pour y accéder efficacement au moyen de transactions dans un système STM. Potentiellement aussi un drawback de la simplicité de l'utilisation de transactions, les structures de données utilisées dans la mémoire transactionnelle sont le plus souvent seulement leurs versions séquentielles collées directement dans les transactions.

Lorsque l'on considère la mise en oeuvre d'un arbre en utilisant les STMs, il est clair que, même si une transaction doit être annulée avant de violer l'abstraction mis en oeuvre par cet arbre (par exemple, l'insertion de k avec succès dans un set où k a déjà été insérée par une transaction concurrente), il est difficile de savoir si une transaction doit être annulée en raison d'un peu déséquilibrer l'arbre afin de strictement préserver l'invariant de l'équilibre. Selon cette hypothèse, nous introduisons un spéculation conviviale arbre comme un arbre qui rompt transitoirement son invariant de l'équilibre structurel sans nuire à l'exactitude de l'abstraction dans le but d'accélérer les accès basés sur les transactions. Voici nos contributions.

• Nous proposons une spéculation originale d'arbre binaire de recherche de données mise en oeuvre dans l'abstraction de la carte. Dans cette implémentation nous découpler les opérations qui modifient l'abstraction (on appelle ces transactions abstraites) des opérations qui modifient la structure de l'arbre lui-même, mais pas l'abstraction (on appelle ces transactions structurelles). Une transaction abstraite, soit insère soit supprime un élément de l'abstraction et dans certains cas, l'insertion peut également modifier la structure arborescente. Opérations structurelles ont deux tâches principales: (1) Certaines opérations structurelles sont vu confier la tâche d'équilibrer l'arbre par l'exécution d'un mécanisme de rotation distribué: chacune de ces transactions exécute une rotation locale impliquant seulement un nombre constant de noeuds voisins. (2) Certaines autres transactions struc-turelles séparent et libres les noeuds qui ont été logiquement supprimée par des précédentes transactions abstraites.

• Nous prouvons la correction (linéarisabilité) de notre arbre et nous comparons sa performance par rapport à la version existantes d'un arbre AVL et un arbre rouge-noir basés sur les transactions, largement utilisé pour évaluer les transactions [START_REF] Dice | Transactional Locking II[END_REF][START_REF] Herlihy | Software Transactional Memory for Dynamic-Sized Data Structures[END_REF][START_REF] Minh | STAMP: Stanford transactional applications for multi-processing[END_REF][START_REF] Herlihy | Transactional boosting: A methodology for highly-concurrent transactional objects[END_REF][START_REF] Felber | Dynamic Performance Tuning of Word-Based Software Transactional Memory[END_REF][START_REF] Dragojević | Why STM can be more than a research toy[END_REF]. L'arbre spéculation conviviale améliore par jusqu'à 1,6× la performance de l'arbre AVL sur le micro-benchmark et par jusqu'à 3,5× la performance du arbre rouge-noir sur une application de réservation de voyages, déjà bien ingénierie pour les transactions. Enfin, notre spéculation conviviale arbre a des résultats comparables à un arbre non rotatif mais il reste robuste face à des charges de travail non uniformes.

• Nous illustrons (1) la portabilité de notre spéculation d'arbre en l'évaluant sur deux différents STMs, TinySTM [START_REF] Felber | Dynamic Performance Tuning of Word-Based Software Transactional Memory[END_REF] et E -STM [START_REF] Felber | Elastic transactions[END_REF] et avec différents paramètres de configuration, donc soulignant que notre gain de performance est indépendante de l'algorithme STM qu'il utilise, et (2) comment facilement réutilisés en composant le remove et insert dans un nouveau move operation. En outre, nous comparons l'avantage de se détendre structures de données dans ceux qui sont spéculations conviviale contre ceux qui profit uniquement des transactions relaxantes, par l'évaluation des transactions élastiques. Il montre que, pour cette structure de données particulière, la refactorisation de son algorithme est préférable de la refactorisation du algorithme transactionelle sous-jacente.

Conclusion

Cette thèse se penche sur les solutions possibles pour faire face aux difficultés qui surgissent quand un programmeur utilise la mémoire transactionnelle, en prenant la facilité d'utilisation comme la principale préoccupation. Même si une définition précise de la sémantique et des propriétés sont utilisées comme solutions aux problèmes les plus spécifiques, le but est de rester le plus facile à comprendre. Par conséquent, un programmeur qui comprend la définition de haut niveau devrait trouver les détails des définitions de bas niveau comme un prolongement naturel. L'objectif est qu'un programmeur peut écrire un programme concurrente aussi efficacement et avec autant de facilité que si il l'écrivait en séquentiel. Bien que cet objectif est loin d'être pleinement réalisé ici, cette thèse propose des solutions dans cette direction, tout en suggérant de possible perspectives.

Theorem 1

 1 Read invisibility, opacity and permissiveness (or probabilistic permissiveness) are incompatible.

Figure 2 . 2 :

 22 Figure 2.2: Invisible reads, opacity and permissiveness are incompatible

Figure 2 . 3 :

 23 Figure 2.3: List implementing a transaction-level shared object X

Figure 2 . 4 :

 24 Figure 2.4: Algorithm for the operations of the protocol

✷ Lemma 9 2

 9 .4.3.1 VWC and read invisibility Theorem 2 The algorithm presented in Figure 2.4 satisfies virtual world consistency and implements invisible read operations

Figure 2 . 6 :

 26 Figure 2.6: Algorithm for the try_to_commit() operation of the permissive protocol

Figure 2 Figure 2 . 7 :

 227 Figure 2.7: Subtraction on sets of intervals The top line represents the value of commit_time T that is made up of 4 intervals, commit_time T = {]a..b[,]c..d[,]e.. f [,]g..h[}. The black intervals denote the time intervals in which T cannot be committed. The set x_ f orbid T [X] is the set of intervals in which T cannot commit due to the access to X issued by T and other transactions. This set is depicted in the second line of the where we have x_ f orbid T [X] = { [0..a ′], [b ′ ..c ′], [d ′ .. + ∞[}. The last line of the figure, show that we have commit_time T \x_ f orbid T [X] = {]a ′ ..b[,]c..b ′ [,]g..d ′ [}.

1 Figure 2 . 8 :

 128 Figure 2.8: Predicate of line 24.A of Figure 2.6

Figure 2 . 9 :

 29 Figure 2.9: The cleaning background task BT

Figure 3 . 1 :

 31 Figure 3.1: Initialization for processor P x (1 ≤ x ≤ m)

Figure 3 . 3 :

 33 Figure 3.3: The procedure select_next_process()

Figure 3 . 4 :

 34 Figure 3.4: Procedure prevent_endless_looping()

✷ Lemma 20 Lemma 21 21 Theorem 4

 2021214 The simulation of a transaction-based n-process program by m processors (executing the algorithms described in Figures 3.1-3.4) is linearizable.Proof Let us first observe that, due to Lemma 20, The transaction invocations issued by the processes are linearizable, from which we conclude that the set of t-objects (considered as a single concurrent object T O) is linearizable. Moreover, by definition, every nt-object is linearizable.As (a)linearizability is a local consistency property[START_REF] Herlihy | Linearizability: a Correctness Condition for Concurrent Objects[END_REF] 2 and (b) T O is linearizable and every nt-object is linearizable, it follows that the execution of the multiprocess program is linearizable.✷ Lemma Let PROG be a transaction-based n-process program. Any simulation of PROG by m processors executing the algorithms described in Figures 3.1-3.4 is an execution of PROG.

Figure 4 . 1 :

 41 Figure 4.1: Left: Containment (operation R x should not return the value written to x inside the transaction). Right: Non-Interference (while it is still executing, transaction T 1 should not have access to the values that were written to x and y by process p 2).

Figure 4 . 2 :

 42 Figure 4.2: The memory set-up and the data structures that are used by the algorithm. New T-records are created during the transactional write operations. Then during the commit operation the pointer stored at addr is updated to point to this new T-record. During NT-write operations new NT-records are created and the pointer at addr is updated to point to the records.When a read operation -be it transactional or non-transactional -accesses a shared variable it cannot know beforehand what type of record it will find. Therefore, it can be seen in the algorithm listings, that whenever a record is accessed, the operation checks its type, i.e., it checks whether it is a T-record or an NT-record (for example, line 02 in Fig.4.3 contains such a check. A T-record is "of type T", while an NT-record is "of type NT").

Figure 4 . 3 :

 43 Figure 4.3: Non-transactional operations for reading and writing a variable.

Figure 4 . 4 :

 44 Figure 4.4: Transactional operations for reading and writing a variable.

Figure 4 . 6 :

 46 Figure 4.6: Transactional helper operations.

(03)Figure 4 . 7 :

 0347 Figure 4.7: Modified line of the NT-read operation.

Figure 5 . 1 :

 51 Figure 5.1: A balanced search tree whose complexity, in terms of the amount of accessed elements, is (left) proportional to h in a pessimistic execution and (right) proportional to the number of restarts in an optimistic execution

 Figure 5.2: The classical rotation modifies node j in the tree and forces a concurrent traversal at this node to backtrack; the new rotation left j unmodified, adds j ′ and postpones the physical deletion of j

 State of node n: (01) node a record with fields: (02) k ∈ N, the node key (03) v ∈ N, the node value (04) ℓ, r ∈ N, left/right child pointers, initially ⊥ (05) left-h, right-h ∈ N, local height of left/right child, initially 0 (06) local-h ∈ N, expected local height, initially 1 (07) del ∈ {true, false}, indicate whether logically deleted, initially false State of process p: (08) root, shared pointer to root operation contains(k) p : (09) begin_transaction()

Figure 5 . 3 :

 53 Figure 5.3: Abstract operations of the tree

Figure 5 . 6 :

 56 Figure 5.6: Find procedure for the optimized tree

Figure 5 . 7 :

 57 Figure 5.7: Maintenance operations for the optimized tree

Lemma 32 A

 32 node has at most one parent with removed = false. Proof. There are three operation where a node can be given a new parent. First during the insert operations on lines 23-24, but this is a new node so before this line it has no parent. Second during the remove operation on lines 124-125, but by line 117 the node's previous parent has removed set to true. Third during the right-rotate operation the node l gets a new parent on lines 142-143, but by line 140 the node's old parent has removed set to true. Also during the right_rotate operation the newly allocated node n2 gets node l as a parent (line 140), but since it is a new node it has no other parent. (This holds for the left_rotate operation by symmetry) Given this, a node will have at most one parent with removed = false. ✷ Lemma 33 A node with removed = false only has paths from it to other nodes with removed = false.

Figure 5 . 8 :

 58 Figure 5.8: Comparing the AVL tree (AVLtree), the red-black tree (RBtree), the no-restructuring tree (NRtree) against the speculation-friendly tree (SFtree) on an integer set micro-benchmark with from 5% (top) to 20% updates (bottom) under normal (left) and biased (right) workloads

Figure 5 . 9 :

 59 Figure 5.9: The speculation-friendly library running with (left) another TM library (E -STM) and with (right) the previous TM library in a different configuration (TinySTM-ETL, i.e., with eager acquirement)

Figure 5 . 10 :

 510 Figure 5.10: Elastic transaction comparison and reusability

Figure 5 . 11 :

 511 Figure 5.11: The speedup (over single-threaded sequential) and the corresponding duration of the vacation application built upon the red-black tree (RBtree), the optimized speculationfriendly tree (Opt SFtree) and the no-restructuring tree (NRtree) on (left) high contention and (right) low contention workloads, and with (top) the default number of transaction, (middle) 8× more transactions and (bottom) 16× more transactions

 Notation for pointers PT [X], cell(X).next and lcell(X).origin are pointer variables. The following pointer notations are used. Let PT R be a pointer variable. PT R ↓ denotes the variable pointed to by PT R. Let VAR be a non-pointer variable. ↑ VAR denotes a pointer to VAR. Hence, PT R ≡ ↑ (PT R ↓) and VAR ≡ (↑ VAR) ↓).

	2.4.1.3 The read T () and write T () operations
	When a process p i invokes a new transaction T , it first executes the operation begin T () which initializes the appropriate local variables.
	The X.read T () operation The algorithm implementing X.read T () is described in Figure 2.4.
	When p i invokes this operation, it returns the value locally saved in lcell(X).value if lcell(X)
	exists (lines 02 and 13). If lcell(X)

). If there is a shared object Y already read by T (i.e., Y ∈ lrs T) that has been written by some other

	operation begin T (): (01) window_bottom T ← last_commit i ; window_top T ← +∞; lrs T ← / 0; lws T ← / 0. end operation.
	operation X.read T (): (02) if (∄ local cell associated with the R/W shared object X) then
	(03) allocate local space denoted lcell(X);
	(04) x_ptr ← PT [X];
	(05) lcell(X).value ← (x_ptr ↓).value;
	(06) lcell(X).begin ← (x_ptr ↓).begin;
	(07) lcell(X).origin ← x_ptr;
	(08) window_bottom T ← max(window_bottom T , lcell(X).begin);
	(09) lrs T ← lrs T ∪ X; (10) for each (Y ∈ lrs T) do window_top T ← min window_top T , (lcell(Y).origin ↓).end end for; (11) if (window_bottom T ≥ window_top T) then return(abort) end if (12) end if;
	(13) return (lcell(X).value).
	end operation.
	operation X.write T (v): (14) if (∄ local cell associated with the R/W shared object X) then allocate local space lcell(X) end if;
	(15) lws T ← lws T ∪ X;
	(16) lcell(X).value ← v;
	(17) return(ok).
	end operation.
	operation try_to_commit T (): (18) lock all the objects in lrs T ∪ lws T ; (19) for each (Y ∈ lrs T) do window_top T ← min window_top T , (lcell(Y).origin ↓).end end for; (20) for each (Y ∈ lws T) do window_bottom T ← max((PT [Y] ↓).last_read, window_bottom T) end for; (21) if (window_bottom T ≥ window_top T) then release all locks and disallocate all local cells; return(abort) end if;
	(22) commit_time T ← select a (random/heuristic) time value ∈]window_bottom T ..window_top T [; (23) for each (X ∈ lws T) do (PT [X] ↓).end ← commit_time T end each; (24) for each (X ∈ lws T) do
	(25) allocate in shared memory a new cell for X denoted CELL(X);
	(26) CELL(X).value ← lcell(X).value; CELL(X).last_read ← commit_time T ;
	(27) CELL(X).begin ← commit_time T ; CELL(X).end ← +∞;
	(28) PT [X] ← ↑ CELL(X)
	(29) end for;
	(30) for each (X ∈ lrs T) do
	(31) (lcell(X).origin ↓).last_read ← max((lcell(X).origin ↓).last_read, commit_time T) (32) end for;
	(33) release all locks and disallocate all local cells; last_commit i ← commit_time T ;
	(34) return(commit).
	end operation.

 .4. The algorithm implementing the new version of the operation try_to_commit T () is described in Figure 2.6. As we are about to see, it is not a new protocol but an appropriate enrichment of the previous try_to_commit T

 .4 that are modified are postfixed by a letter. The new/modified parts are the followings.

	operation try_to_commit T (): (18) lock all the objects in lrs T ∪ lws T ; (19) for each (Y ∈ lrs T) do window_top T ← min window_top T , (lcell(Y).origin ↓).end end for;
	(20.A) commit_set T ← {]window_bottom T , window_top T [}; (20.B) for each (X ∈ lws T) do
	0; (20.C) x_ptr ← PT [X]; x_forbid T [X] ← / (20.D) while ((x_ptr ↓).last_read > window_bottom T) do
	(20.E)	x_forbid T [X] ← x_forbid T [X] ∪ { [(x_ptr ↓).begin, (x_ptr ↓).last_read] };
	(20.F)	x_ptr ← (x_ptr ↓).prev
	(20.G) end while
	(20.H) end for;
	(20.I) commit_set T ← commit_set T \ X∈lws T x_forbid T [X] ; (21.A) if (commit_set T = / 0) then release all locks and disallocate all local cells; return(abort) end if;
	(22.A) commit_time T ← select a (random/heuristic) time value ∈ commit_set T ; (23.A) for each (X ∈ lws T) do
	(23.B) x_ptr ← PT [X];
	(23.C) while ((x_ptr ↓).begin > commit_time T) do x_ptr ← (x_ptr ↓).prev end while;
	(23.D) (x_ptr ↓).end ← min((x_ptr ↓).end, commit_time T) (23.E) end for;
	(24.A) for each (X ∈ lws T) such that (commit_time T > (PT [X] ↓).begin) do
	(25)	allocate in shared memory a new cell for X denoted CELL(X);
	(26)	CELL(X).value ← lcell(X).value; CELL(X).last_read ← commit_time T ;
	(27)	CELL(X).begin ← commit_time T ; CELL(X).end ← +∞;
	(28.A)	CELL(X).prev ← PT [X]; PT [X] ← ↑ CELL(X)
	(29.A) end for;
	(30) for each (X ∈ lrs T) do
	(31) (32) end for; (lcell(X).origin ↓).last_read ← max((lcell(X).origin ↓).last_read, commit_time T)
	(33) release all locks and disallocate all local cells; last_commit i ← commit_time T ;
	(34) return(commit).
	end operation.

 To that end, it assigns (if not yet done) the next date value to STATE[i].hel p_date (lines 36-39). Then, P x proceeds to the next loop iteration. (Let us observe that, in that case, my_next_proc is not modified.)

• Given that P x is responsible for p i 's progress, if committed is equal to true then P x executes the non-transactional code (if any) that appears after the transaction (line 40) until it either reaches a new transaction (as denoted by the user with the begin_transaction() operation) or it reaches the termination of p i 's code. If p i has terminated (finished its execution), i is suppressed from OWNED_BY[x] (line 42). Otherwise, P x updates STATE[i] in order for it to contain the information required to execute the next transaction of p i (line 43).

 procedure select_next_process():[START_REF] Manbar | Concurrency control in a dynamic search structure[END_REF] let set = { i | (state[i].hel p_date = +∞) ∧ (∀y : LAST_CMT[y, i] < state[i].tr_sn) ∨ (i ∈ OWNED_BY[x]) };

	(102) if (set = / 0)
	(103)	then i ← my_next_proc; k1_counter ← 0
	(104)	else i ← min(set) computed with respect to transaction help dates;
	(105)	if (i ∈ OWNED_BY[x])
	(106)	then k1_counter ← 0
	(107)	else k1_counter ← k1_counter + 1;
	(108)	if (k1_counter ≥ K1)
	(109)	then let j = my_next_proc;
	(110)	if (state[j].hel p_date = +∞)
	(111)	then hel pdate ← Fetch&Incr(CLOCK);
	(112)	STATE[j] ←
	(113)	state[j].tr_sn, state[j].local_state, hel pdate, state[j].last_ptr
	(114)	end if;
	(115)	k1_counter ← 0
	(116)	end if
	(117)	end if
	(118) end if;
	(119) return(i).
	end procedure.

 that case, P y has saved the new local state of p i in DESCR.local_state (line 28) just before appending DESCR at the end of the descriptor list. Next, thanks to the the predicate i ∈ OWNED_BY[x] in the definition of set at line 101, there is an invocation of select_next_process() by P x that returns i. When this occurs, P x discovers at line 09 or 23 that the transaction T has been committed by another processor. It then retrieves the local state of p i (after execution of T) in (↓ current).local_state, saves it in i_local_state and (as in the previous item) eventually writes it in STATE[i].local_state (line 43).It follows that, in both cases, the value saved in STATE[i].local_state is the local state of p i after the execution of T and the non-transactional code that follows T (if any).

 operation transactional_read(addr): (19) if addr ∈ ws then return (item.value from addr in ws) end if; (20) tmp ← (↓ addr); validate ← false; (21) if (tmp is of type NT)

	(22)	then if (tmp.time ≥ rv) then validate ← true end if
	(23)	value ← tmp.value;
	(24)	else
	(25)	if ((status ← (↓ tmp.status)) = COMMITTED)
	(26)	then if (status = LIVE) then abort() else value ← tmp.last end if;
	(27)	else value ← tmp.value
	(28)	end if;
	(29)	if (tmp.time > rv) then validate ← true end if;
	(30) end if;
	(31) if this is an update transaction then add addr, value to rs end if;
	(32) if (validate)
	(33)	then if this is an update transaction then if (validate_by_value()) then abort() end if;
	(34)	else abort() and restart as an update transaction end if;
	(35) end if;
	(36) return (value)
	end operation.
	operation transactional_write(addr, value):
	(37) if addr ∈ ws
	(38)	then allocate a new variable item of type T ;
	(39)	

item ← (value, (↑ status), ∞); ws ← ws ∪ addr, item ;

[START_REF] Dijkstra | Solution of a Problem in Concurrent Programming Control[END_REF]

else set item.value with addr in ws to value (41) end if; end operation.

 State of node n: (87) node the same record with an extra field: (88) rem ∈ {false, true, true_by_left_rot} indicate whether physically deleted, initially false

	operation find(k) p :
	(89) curr ← root; next ← root
	(90) while(true) do
	(91) while(true) do
	(92)	rem ← false; parent ← curr; curr ← next ;val ← curr.k
	(93)	if(val = k)
	(94)	then if(¬(rem ← read(curr.rem))) then break end if
	(95)	end if
	(96)	if(val > k ∪ rem = true_by_left_rot)
	(97)	then next ← uread(curr.r)
	(98)	else next ← uread(curr.ℓ) end if
	(99)	if(next = ⊥) then
	(100)	if(¬(rem ← read(curr.rem))) then
	(101)	if(val > k) then next ← read(curr.r)
	(102)	else next ← read(curr.ℓ) end if
	(103)	if(next = ⊥) then break end if
	(104)	else
	(105)	if(val ≤ k) then next ← uread(curr.r)
	(106)	else next ← uread(curr.ℓ) end if
	(107)	end if
	(108)	end if
	(109) end while
	(110) if(curr.k > parent.k) then tmp ← read(parent.r)
	(111)	else tmp ← read(parent.ℓ) end if
	(112) if(curr = tmp) then break
	(113)	else next ← curr; curr ← parent end if
	(114)end while
	(115)return(curr).
	end operation.

The fact that a transaction invocation is read-only or update cannot always be statically determined. It can depend on the code of transaction (this occurs for example when a transaction behavior depends on a predicate on values read from t-objects). In our case, a read-only transaction is a transaction with an empty write set (which cannot be always statically determined by a compiler).

A property P is local if the set of concurrent objects (considered as a single object) satisfies P whenever each object taken alone satisfies P. It is proved in[START_REF] Herlihy | Linearizability: a Correctness Condition for Concurrent Objects[END_REF] that linearizability is a local property.

The following notation is used. If pt is a pointer, pt ↓ is the object pointed to by pt. if aa is an object, ↑ aa is a pointer to aa. Hence ((↑ aa) ↓= aa and ↑ (pt ↓) = pt.

http://lpd.epfl.ch/gramoli/php/synchrobench.php

TinySTM-CTL, i.e., with lazy acquirement[START_REF] Felber | Dynamic Performance Tuning of Word-Based Software Transactional Memory[END_REF].

Chapitre 4La première difficulté pour la démocratisation de la programmation concurrente vient de la nécessité de fournir des bibliothèques concurrentes d'abstractions populaires. En général, ceux-ci sont finement accordés bibliothèques de haute performance fournissant au programmeur opérations utiles. Les implémentations de ces bibliothèques sont souvent très complexes et difficiles à comprendre, mais ils sont fournis avec une interface simple à utiliser pour quiconque d'utiliser. En faisant cela, les experts peuvent créer des algorithmes offrant des garanties fortes et de bonnes performances qui peuvent ensuite être largement réutilisés.

d'écrire des programmes concurrents efficaces et corrects reposant sur des verrous. En outre, les verrous présentent d'autres problèmes, notamment celui du passage à l'échelle. Le concept de mémoire transactionnelle a été proposé comme une solution à ces difficultés. Les transactions peuvent être considérées comme une abstraction de haut niveau, ou une méthodologie pour l'écriture de programmes concurrents, ce qui permet au programmeur de pouvoir déclarer des sections de code devant être exécutés de façon atomique, sans avoir à se soucier des détails de synchronisation. Malheureusement, bien qu'assurément plus facile à utiliser que les verrous, la mémoire transactionnelle souffre encore de problèmes de performance et de facilité d'utilisation. En fait, de nombreux concepts relatifs à l'utilisation et à la sémantique des transactions n'ont pas encore des normes convenues. Cette thèse propose de nouvelles solutions permettant de faciliter l'utilisation des mémoires transactionellles.La thèse débute par un chapitre qui donne un bref aperçu de la mémoire transactionnelle logicielle (STM) ainsi qu'une discussion sur le problème de la facilité d'utilisation. Les contributions à la recherche sont ensuite divisées en quatre chapitres principaux, chacun proposant une approche différente afin de rendre les STMs plus facile à utiliser.

Acknowledgments Résumé

Les architectures multicoeurs changent notre façon d'écrire des programmes. L'écriture de programmes concurrents est bien connue pour être difficile. Traditionnellement, l'utilisation de verrous (locks) permettant au code de s'exécuter en exclusion mutuelle, a été l'abstraction la plus largement utilisée pour l'écriture des programmes concurrents. Malheureusement, il est difficile

Firstly thanks to Michel for advising, funding (European Union Seventh Framework Programme [FP7/2007-2013] under grant agreement Number 238639, ITN project TRANSFORM), and pushing me to learn and work throughout these three years. Thanks

Source Code

The code of the speculation-friendly binary search tree is available at http://lpd.epfl.ch/gramoli/php/synchrobench.phphttp://lpd.epfl.ch/gramoli/php/synchrobench.php.

while (my_next_proc = ⊥) do % -Selection phase ---------------------------(01) state [1..n] ← [STATE [START_REF] Adl-Tabatabai | Compiler and runtime support for efficient software transactional memory[END_REF] then committed ← true; i_local_state ← (↓ current).local_state [START_REF] Anderson | Universal Constructions for Large Objects[END_REF] end if; [START_REF] Ansar | Steal-on-abort: Dynamic Transaction Reordering to Reduce Conflicts in Transactional Memory[END_REF] current ← (↓ current).next [START_REF] Attiya | Transactional contention management as a nonclairvoyant scheduling problem[END_REF] end while; [START_REF] Attiya | The complexity of obstruction-free implementations[END_REF] if (¬committed) then % -Simulation phase --------------------------(14) execute the i_tr_sn-th transaction of p i : the value of X.read() is obtained [START_REF] Attiya | Single-version STM Can be Multi-version Permissive[END_REF] by scanning downwards the transaction list (starting from current); (16) p i 's local variables are read from (written into) P x 's local memory (namely, i_local_state); [START_REF] Attiya | Transactional Scheduling for Read-Dominated Workloads[END_REF] The set of shared objects read by the current transaction are saved in the set lrs; [START_REF] Babaoglu | Consistent Global States of Distributed Systems: Fundamental Concepts and Mechanisms[END_REF] The pairs Y,v such that the transaction issued Y.write(v) are saved in the set ws; % -Try to commit phase ------------------------ [START_REF] Ballard | Conflict avoidance: Data structures in transactional memory[END_REF] overwritten ← false; [START_REF] Baugh | An analysis of I/O and syscalls in critical sections and their implications for transactional memory[END_REF] while (↓ current).next = ⊥) ∧ (¬committed) do [START_REF] Bayer | Symmetric binary b-trees: Data structure and maintenance algorithms[END_REF] prevent_endless_looping(i); [START_REF] Bernstein Ph | Formal Aspects of Serializability in Database Concurrency Control[END_REF] current ← (↓ current).next; [START_REF] Borkar | Thousand core chips: a technology perspective[END_REF] same as lines 08 and 09; [START_REF] Borowsky | Generalized FLP Impossibility Results for t-Resilient Asynchronous Computations[END_REF] if (∃ X ∈ lrs : X, -∈ (↓ current).ws) then overwritten ← true end if (25) end while; [START_REF] Bronson | A practical concurrent binary search tree[END_REF] if (¬committed ∧ (¬overwritten ∨ ws = / 0)) [START_REF] Bushkov | On the liveness of transactional memory[END_REF] then allocate a new transaction descriptor DESCR; [START_REF] Cachopo | Versioned Boxes as the Basis for Transactional Memory[END_REF] DESCR ← ⊥, current, i, i_tr_sn , ws, i_local_state ; [START_REF] Minh | STAMP: Stanford transactional applications for multi-processing[END_REF] committed ← Compare&Swap((↓ current).next, ⊥, ↑ DESCR); [START_REF] Ph | A Universal Construction for Wait-free Transaction Friendly Data Structures[END_REF] if (¬committed) then disallocate DESCR end if (31) end if [START_REF] Crain | A speculation-friendly binary search tree[END_REF] the transaction notices that another LIVE transaction is updating this memory, it aborts itself (line 49). By using these T-records instead of locks concurrent operations have access to necessary metadata used to ensure correctness.

The operation then advances the GVC, taking the new value of the clock as the logical time for this transaction (line 56). Following this, the read set of the transaction is validated for correctness (line 56). Once validation has been performed the operation must ensure that non of its writes have been concurrently overwritten by non-transactional operations (lines 57-60) if so then the transaction must abort in order to (line 59) to ensure consistency. During this check the transaction updates the time value of its T-records to the transactions logical time (line 58) similar to the way TL2 stores time values in the lock array so that future operations will know the serialization of this transaction's updates.

Finally the transaction can mark its updates as valid by changing its status variable from LIVE to COMMITTED (line 61). This is done using a compare&swap as there could be a concurrent non-transactional operations trying to abort the transaction. If this succeeds then the transaction has successfully committed, otherwise it must abort and restart.

Transactional Helping Operations. Apart from the basic operations for starting, committing, reading and writing, a transaction makes use of helper operations to perform aborts and validate the read set. Pseudo-code for this kind of helper operations is given in Fig. 4.6.

Operation validate_by_value() is an operation that performs validation of the read set of a transaction. Validation fails if any location in rs is currently being updated by another transaction (i.e. tmp.status = LIVE) (line 69) or has had its changed since it was first read by the transaction (line 73) otherwise it succeeds. The transaction is directed to abort if validation fails (lines 69, Rotation As previously described, rotations are not required to ensure the atomicity of the insert/delete/contains operations so it is not necessary to perform rotations in the same transaction as the insert or delete. Instead we dedicate a separate thread that continuously checks for unbalances and rotates accordingly within its own node-local transactions, performing a single rotations per transaction.

More specifically, neither do the insert/delete operations comprise any rotation, nor do the rotations execute on a large block of nodes. Hence, local rotations that occur near the root can still cause a large amount of conflicts, but rotations performed further down the tree are less subject to conflict. If several local rotations are performed in a single transaction block, then even the rotations that occur further down the tree will be part of a likely conflicting transaction, so instead each local rotation is performed as a single transaction. Keeping the insert/delete/contains and rotate/remove operations as small as possible allows more operations to execute at the same time without conflicts, increasing concurrency.

Performing local rotations rather than global ones has other benefits. If rotations are performed as blocks, then due to concurrent insert/delete operations, not all of the rotations may still be valid once the transaction commits. Each concurrent insert/delete operation might require a certain set of rotations to balance the tree, but because the operations are happening concurrently the appropriate rotations to balance the tree are constantly changing and since each operation only has a partial view of the tree it might not know what the appropriate rotations are. With local rotations, each time a rotation is performed it uses the most up-to-date local information avoiding repeating rotations at the same location.

The actual code for the rotation is straightforward. Each rotation is performed just as it would be performed in a sequential binary tree (see Figure 5.2(a)-5.2(b)), but within a transaction.

Deciding when to perform a rotation is done based on local balance information shown on lines 78-85 of Algorithm 5.5. This technique was introduced in [START_REF] Bougé | Height-relaxed AVL rebalancing: A unified, fine-grained approach to concurrent dictionaries[END_REF] and works as follows. left-h (resp. right-h) is a node-local variable to keep track of the estimated height of the left (resp. right) subtree. local-h (also a node-local variable) is always 1 larger than the maximum value of left-h and right-h. If the difference between left-h and right-h is greater than 1 then a rotation is triggered. After the rotation these values are updated as indicated by a dedicated function (line 56). Since these values are local to the node the estimated heights of the subtrees might not always be accurate. The propagate operation (described in the next paragraph) is used to update the estimated heights. Using the propagate operation and local rotations, the tree is guaranteed to be eventually perfectly balanced as in [START_REF] Bougé | Height-relaxed AVL rebalancing: A unified, fine-grained approach to concurrent dictionaries[END_REF][START_REF] Bronson | A practical concurrent binary search tree[END_REF].

Propagation The rotating thread executes continuously a recursive depth-first traversal to propagate the balance information performing local rotations along the way. Although it might propagate outdated height information due to concurrency, the tree gets eventually balanced. The requirement for eventual balance is that a node knows when it has an empty subtree (i.e., Proof. When a node is first added to the tree it has a parent with removed = false (ensured by the transactional read of the parent's child pointer on line 100 of the find operation). The only operations that modify links pointing to nodes are the remove (line 126) and rotate (line 140) operations, but in each case when a link is removed, a new link from a different node with removed = false is added (lines 124-125 of remove and 142-143 of rotate). The proof then follows from lemma 32. ✷ Lemma 35 A node with removed = false has a path from the root node to it.

Proof. Given that the root is always the same node and it always has removed = false the proof of this lemma follows directly from lemmas 33 and 34. ✷ Lemma 36 A node with removed = true has no path from the root node to it.

Proof. By the way the tree is structured the root node always has removed = false. Now it follows directly from lemma 33 that there is no path from the root to a node with removed = true.

✷ Lemma 37

The nodes with removed = false make up a single binary tree.

Proof. From the structure of a node, it can have at most 2 children. Now by lemmas 32, 35, and 36 the proof follows. ✷

Lemma 38 A rotation operation on a valid binary search tree results in a valid binary tree representing the same set of keys as before the rotation.

Proof. From Figure 5.2 which describes the rotation operation and due to the use of transactional reads/writes as well as the fact that the new node (node n2) added by the rotation has the same state as the node (node n) removed by the rotation (lines 138-139) we can then see that the resulting tree of non-removed nodes is equivalent to a tree with a classical binary tree rotation performed on it. ✷ For the following lemma, we assume that the find operation is performed correctly (this will be proved later lemma in lemma 48).

Lemma 39 Assuming a correct find operation, an insert operation on a valid binary search tree results in a valid binary tree.

Proof. There are two cases to consider.

First the key k that we are inserting is already contained in the tree with removed = false (lines 93-94 of find). In this case the structure of the tree will not be modified, thus the resulting tree will still be valid.

Second consider that there is no node in the tree with key k. In this case the correct find operation will return the correct node that will become the parent of the new node with key k (line [START_REF] Borkar | Thousand core chips: a technology perspective[END_REF][START_REF] Borowsky | Generalized FLP Impossibility Results for t-Resilient Asynchronous Computations[END_REF]. Using transactional reads, the find operation ensures that the parent node has removed = false (line 100) and ⊥ (line 103) as the child pointer where the new node will be inserted. The new node is then allocated and added to the tree as the child of the node returned from find. This is done using a transactional write (lines [START_REF] Borkar | Thousand core chips: a technology perspective[END_REF][START_REF] Borowsky | Generalized FLP Impossibility Results for t-Resilient Asynchronous Computations[END_REF] which ensures that the value of the pointer was ⊥ before the write, and finally resulting in a valid tree containing the new node after the transaction commits. ✷ Lemma 42 From a node with removed = true there is always a path to some node with removed = false.

Proof. There are two places where a node can be set to removed = true. First during the remove operation, in this case the node that is removed has both of the nodes child pointers are set to a node with removed = false (line 126).Second during the rotate operation, in this case the node that is removed does not have its child pointers changed. By line 136 n must have at least 1 child and using lemma 33 this child must have removed = false. Now notice that once the removed field of a node is set to true it will never be reverted to false (lemma 41). This along with the use of induction on the length of the path to a node with removed = false completes the proof. ✷ Lemma 43 From any node every path leads to a leaf node (or ⊥).

Proof. This proof is the same as lemma 42 with a small modification. First consider a node with removed = false. By lemma 37 it is clear that there is a path from this node to a leaf node. Now consider a node with removed = true. There are two places where a node's removed flag can be set to true. It can either be set in the remove operation, but in this case the node's left and right pointers are set to a node with removed = false (line 126).

Or it can be set in the rotation operation, first notice that in this case the node's left and right pointers are not changed. Then before the rotation the node has removed = false and therefore by lemma 33 the (node's left and right) pointers will point to either nodes with removed = false or ⊥.

Now that after a node has had removed set to true the node will not be modified again (lemma 41), this along with lemma 37 and the use of induction on the length of the path to a node with removed = false or ⊥ completes the proof.

✷ The phrase a node that has removed = true from a rotation operation refers to the node that is no longer in the tree after the rotation. For example in figure 5.2(c) this would be the node j. This phrase is used in the following lemmas.

Lemma 44 A node n with key k that has removed = true from a right_rotation operation has, for its left child, a path to a range of keys at least as large as n had before the rotation (including the new node new with key k), and has, for its right child, either a path to a range of keys at least as large as the right child of n had before the rotation, or ⊥.

Proof. First notice that the node n that gets removed during the rotation is the node that would be rotated downwards during a traditional rotation (i.e. node j from figure 5 On Improving the Ease of Use of the Software Transactional Memory Abstraction Abstract Multicore architectures are changing the way we write programs. Writing concurrent programs is well known to be difficult task. Traditionally, the use of locks allowing code to execute in mutual exclusion has been the most widely used abstraction to write concurrent programs.

Unfortunately, using locks it is difficult to write correct concurrent programs that perform efficiently. Additionally, locks present other problems such as scalability issues. Transactional memory has been proposed as a possible promising solution to these difficulties of writing concurrent programs. Transactions can be viewed as a high level abstraction or methodology for writing concurrent programs, allowing the programmer to be able to declare what sections of his code should be executed atomically, without having to worry about synchronization details. Unfortunately, although arguably easier to use then locks, transactional memory still suffers from performance and ease of use problems. In fact many concepts surrounding the usage and semantics of transactions have no widely agreed upon standards. This thesis specifically focuses on these ease of use problems by discussing how previous research has dealt with them and proposing new solutions putting ease of use first.

The thesis starts with a chapter giving a brief overview of software transactional memory (STM) as well as a discussion of the problem of ease of use that is focused on in the later chapters. The research contributions are then divided into four main chapters, each looking at different approaches working towards making transactional memory easier to use.