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Contributions to
Analysis/Synthesis Schemes in

Computer Animation

Habilitation soutenue le 19 Avril 2013,
devant la commission d’examen composée de :

Multon. Franck, Professeur
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Preamble

Context of this work This report is a summary of my previous ten years of research as an assistant
professor et University of Bretagne Sud, in Vannes, France. Those years were mainly dedicated to
the computer animation of character figures, and more specifically on the approaches that allow
to add knowledges from data into the control schemes. Those techniques will be referred to as
data-driven techniques.

My PhD Thesis [1] was concerned with the application of visual servoing in the context of
computer animation, and more specifically with the control of a virtual camera and a virtual
humanoid. After a postdoctorate in Brazil, where I worked with Professor Soraia Musse on the
subject of crowd simulation, I was recruited at the end of 2004 in the Valoria laboratory from
the University of Bretagne Sud as an assistant professor. I then participated to the creation of a
new team, together with Professor Sylvie Gibet: Samsara (Synthesis and Analysis of Motions
for the Simulation and Animation of Realistic Agents). Our research activities aimed at gesture
modeling and human motion generation in a computer graphics context. Our works were based on
an Analysis/Synthesis workflow. From some observations of human motion, our objectives were
to identify common mechanisms in sensorimotor behavior and to build artificial entities endowed
with similar abilities. Those objectives constituted new research perspectives for me, as far as they
introduced the use of data – and their related measurements errors, in the control laws.

As an interesting applications of those methods, we focused on the problem of signing avatars,
i.e. virtual humanoids capable of speaking Sign Languages (SL). This interest was motivated by
Sylvie previous works on the subject. As it will be developed in this document, SL constitute a
wealth of interesting problems, and not only from a computer animation point of view since it
involves also linguistics components. This research axis was the theme of the PhD thesis of Alexis
Héloir [2], co-supervised with Sylvie and Franck Multon (University of Rennes 2), which ended up
in the beginning of 2008. In his thesis, Alexis tried to analyze motion capture data acquired on a
real signer and use it to produce new animations produced by a virtual signer.

The ANR Signcom project (2008–2011) was a good opportunity to follow up this work. The
focus was given on the interactions between a virtual signer and a real human. Associated to
the project, a corpus of data involving one hour of motion capture data of a real signer and the
associated annotation was acquired. The motion data was containing both rigid data (associated
to a skeleton) and non-rigid deformation data (associated to the face). The exploitation of this
motion information together with the semantic knowledges contained in the annotation was the
subject of the PhD of charly Awad [3], co-supervised with Sylvie.

Finally, the final evaluation phase with real signers highlighted some defects in the animation
pipeline. Notably, precision issues in the contact and the execution of the gestures were proved to be
an important factor of misunderstanding in the sentences. The reasons of those imperfections were
twofold: i) capturing at the same time the hands, the body gestures and some facial markers at a
reasonable frequency bring the motion capture technology to its current limit, and new acquisition
methods and protocols should be designed ii) the adaptation of the motion to a virtual human
geometry which usually has a different morphology is prone to errors, especially in the contacts
information. This problem calls for dedicated methods that are the subject of the PhD thesis of
Thibaut LeNaour, who started in 2010, and which is also co-supervised with Sylvie. Also, acquiring
a new corpus of data with a much better precision is the subject of an ongoing project: Sign3D.

My second axis of research was aimed at crowd simulation. The originality of our approach on
this subject was to add data in the classical control laws. Contrary to the human motion, the
crowd is usually a highly-deformable, non-rigid entity that allows, at least for high densities, an
analogy with fluids. However, and oppositely to the classical mechanical simulation of fluids or
granules, the individual pedestrians are motivated by their own objectives and their perception of
the environment. As such, they constitute ”self-propelled” particles with social behaviors. The
idea of using data acquired from multiple sources of information (such as crowd videos) aims at
leveraging the determinism of incomplete or too restrictive simulation models. We first focused,
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together with Thomas Corpetti (CNRS), on medium to high densities crowds, where a fluid-like
assumption can be reasonably taken. From real crowd videos, we extracted with computer vision
techniques the apparent motion in the image (optical flow), and then use this motion information
in a very simple crowd control scheme. Though satisfying, the results clearly indicated that the
only apparent motion is not sufficient, and other types of information, like pedestrian density,
would greatly help. Estimating those quantities from crowd videos is non-trivial, and it was a part
of Pierre Allain PhD thesis [4], co-supervised with Thomas. Pierre also designed original control
loops that integrated those data, and as such realized a full analysis/synthesis scheme for crowd
animation.

Before going into more details, a brief introduction to analysis and synthesis schemes in computer
animation will be presented. A summary of our contributions to the domain will be given, and the
outline of the document will be described. In appendix A the notation conventions used throughout
this document are given for reference. Also, a citation in italic (e.g. [1] ) indicates a publication
in which I am one of the co-authors.
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Introduction

Analysis/Synthesis schemes in computer Animation In the computer graphics domain the terms
”Computer Animation” refer to the possibilities of animating with a set of programs and algorithms
some virtual and mostly geometrical representations of objects. A wide range of application of those
methods is possible. If computer games and production of visual effects in the cinematography
industry are the most obvious ones, the development of 3D technologies in our day to day life
through more powerful computing architectures and/or mobile devices has drastically augmented
the number of possible applications. Among others, let us cite the increasing interest to virtual
avatars as good human computer interfaces. It is also interesting to consider the use of computer
animation in the domain of simulation, where computer graphics is mostly used to visualize some
possible behaviors of real objects embedded in a virtual representation. Hence, virtual reality,
virtual prototyping and augmented reality constitute also good applications of computer animation
methods.

Animating objects require to define the behavior of a virtual description of an object through
space and time. Computer animation techniques, which technical foundations have emerged from
mechanics, robotics and control theory, have somehow followed a path that might be considered
as less noble in the sense that working in a perfect, exact and virtual space, where all the needed
information is available without having to deal with noisy captors, may appear easier. Also, the
required methods accuracies are less demanding, and possible simplification of difficult equations
might be considered for the method to run at interactive frame rates. However, the last five years
of research in this field have shown very nice examples of cross fertilization of this domain to others
such as fluid mechanics or physical simulations. The reasons stem from the need of more and more
realistic animations, which imposes a deeper understanding of the underlying physical mechanisms.
Also, the computation skills required to adapt sophisticated simulations to interactive applications
have also aroused other discipline’s interests in the sense that more rapid (but accurate) methods
allow to deploy their technique to a broader range of problems and help the inherent scalability.
Hopefully, this discipline is starting to earn and to deserve a reputation for excellence, but the
path is an arduous one.

Figure 1.: Use of data versus controllability of an animation

Historically, the first animation methods can be considered as procedure driven, meaning that
the space-time behavior of an object is fully described in a procedure or algorithm that directly
describes or encodes the effects of the animation. Several drawbacks can be considered, especially
since controlling or interacting with such systems is tedious, and the final realism is usually weak.
An alternative lies in the use of (physical) model simulation, where the causes of the motion are
described, instead of the effects. By model, we will denote the description (at an algorithmic
or equational level) of the state evolution, usually subject to external forces or commands. Yet,
the control of such systems is generally a difficult inverse problem (what are the causes needed
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to obtain a desired effects ?), usually because of the highly non-linear transformations involved in
the simulation process. Data-driven methods usually provide a good way to obtain realism with
only a few downfalls; the idea is to be able to use some a priori knowledge about the motion (like
kinematic trajectories) obtained from the observation of the corresponding phenomenon in the real
world. However, three problems need to be addressed:

• the acquisition problem: what are the good descriptors for a motion ? Is it possible to
capture them directly from the real world ?

• the generalization problem: how can one generalize the information contained in the
observed examples ? How to characterize the extent of this generalization ?

• the control problem: how to use this knowledge into an animation method ? Is it possible
to control in some ways the final animation ?

It turns out that those problems have to be considered dependent of each others. Hence, given
an applicative context, specific constraints on the possibilities of control of the animation systems
have to be considered. The simplest form of control will only consider the data playback, while
more complex controllers will consider more complex combination or inferences over the data to
generate potentially new trajectories, eventually fulfilling some users-defined constraints. We argue
in the rest of the document that the combination of data and sophisticated control methods can
bring the most realistic results, as depicted on Figure 1. At this point it can be interesting to give
an example of a data-driven animation method. Let’s assume that we want to animate the walk
of a virtual character. A classical representation of this motion is described by a kinematic chain
representing a simplification of the character skeleton. As such, this virtual skeleton is accounting
for the rigid transformations involved in the walking motion. The acquisition of this information
can be done by using motion capture technologies, which will infer the motion of the skeleton from
a set of markers positioned over a real actor. Several walking motions can be acquired through
this process. Obviously, a virtual character can be directly animated from on instance of these
motions. The control problem can be translated in the following problem: if a user want to move
this walking character throughout a virtual environment, how the animation process should choose
among all the possible motions to reach the user’s objective ? The simplest method will consider
the direct combination of the original set of walking motions both in space and time to fulfill
at most the user’s objectives. The generalization issue then arises: is the current set of walking
motions sufficient to cover each possible walking scenarios ? One could also seek, provided that
the data is rich enough, to learn what walking means, both in terms of correlations between the
different skeleton articulations, and also of dynamical information (how are those transformations
evolving in time ?). Hopefully, the learnt model of what is a walk can be used to infer a new
walking motion fulfilling the users requirements.

From a methodological point of view, it is possible to oppose the use of data and models (see
Figure 2). The use of ”pure” data may not require any model, and conversely a ”pure” model
will not necessitate any data. The combination of data to produce new data can be very simple.
As an example, a weighted linear combination of data can be considered, but is likely to produce
unwanted results, at least if the input set of data is rather sparse. Eventually, the distribution
of acceptable weights can be inferred from the data. This could be an example of use of a non-
parametric statistical method. Parametric method can also be considered, if one makes some
assumptions about the underlying process that generate the motion. As examples, one can cite
Gaussian processes, which will make the assumption that the underlying generative process of the
data is Gaussian, i.e. there is a statistical Gaussian dependency among the data. More complex
models, eventually described by a set of partial derivative equations, can be completed by data.
This is the case with variational assimilation methods. Those levels of modeling have the good
property of being able to handle various levels of uncertainties, either in the description of the data
or in the description of the models. Finally, if one is very confident in a given model, the available
data can be efficiently used to infer some parameters of the model. This problem is known as
model identification.
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Figure 2.: Opposing data and model

Backing to the acquisition problem, the problem of estimating the needed data from real situ-
ations is not always trivial. As an example, assume we want to obtain the walking motions from
videos of walking humans. Obviously, this problem is harder than capturing the walks within a
motion capture setting, but the involved material is much less costly and will not require controlled
acquisition conditions. In the computer vision community, this problem will be referred to as artic-
ulated figure tracking. As the problem is ill-posed, since in the image plan only a projection of the
original motion is available, assumptions have to be made about the nature of what is observed.
Eventually this a priori knowledge can be obtained from some data, some models or a combination
of the two. Finally, we see that in a data-driven approach, the problem of estimating some data
is in fact closely linked to the problem of the generation of those data. We will refer to this two
different parts as the Analysis and Synthesis processes. In the first one, the objectives are to
estimate from a given source of information relevant quantities, and in the second to produce or
infer them. Those two processes form a loop in the sense that the data provided by the Analysis
can used in the definition of some models, and because those models can be used in the estimation
of the data. In fact, it is a virtuous circle, as described in Figure 3, since better data will lead to
better models, and better models will help in acquiring better data, and so on.

Figure 3.: The analysis/synthesis virtuous circle

Contributions of this work and document articulation The work reported in this document is
a contribution in the definition of operational analysis/synthesis schemes for computer animation.
We have considered two different application contexts: the animation of a virtual avatar, and the
simulation of crowd phenomena, both with data acquired from the real world. This leads naturally
to two distinct parts in this document. The first one will be devoted to character animation. It is
composed of the following chapters:
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• Chapter 1 will describe the context of my work on human character animation. After a
general introduction on the problem of articulated character animation, the specificity of the
animation of a virtual signer will be described,

• Chapter 2 is concerned with the representation of a motion, and its analysis. A particular
focus will be given on the non-linear nature of this type of data,

• the control loops using this motion information will be described in Chapter 3. Three
different types of control will be presented, with a varying degree of dependency to the
motions,

• and finally the last chapter of this part will present on-going works and possible future
directions.

The second part of the document is dedicated to crowds. It is composed of the following chapters:

• Chapter 5 presents our motivation for handling the crowd simulation problem with an
analysis/synthesis approach,

• Chapter 6 shows some contribution in the analysis of crowd videos and the extraction of
relevant parameters for the animation process, while

• Chapter 7 describes a complete methodology to control crowd simulations, eventually
through the use of data extracted from videos.

• this part is then concluded and perspectives will be given.

A final conclusion and a global summary of our contributions will end this document.
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Preamble and application context
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1.2.2. An example of a full data-driven approach: the Signcom project . . . . 12

1.3. Challenges in Sign production . . . . . . . . . . . . . . . . . . . . . . . 13

This part of the document is dedicated to the human character animation. We give in this
Chapter the application context of this study, which is devoted to the animation of a virtual signer.
However, from a methodological point of view, our work has broader applications, and some of
the methodologies developed in the following chapters are not only dedicated to the production of
signs and expressive gestures. Therefore we will start by giving a rapid overview of problems and
challenges related to human character animation.

1.1. Virtual characters: existing work and challenges

We give in this Section a short overview of the common problems encountered in human character
animation. Clearly, this Section is not intended to give an exhaustive state-of-the-art, and we refer
interested readers to the following book [5] for a general overview of the associated problems. Also,
we will mainly focus on data-driven approaches.

Animating articulated human figure is a difficult task [5], for mainly two reasons: i) the human
body is a complex mechanism, made of hundred of bones and muscles, with a centralized control
system (the brain). The links between the perceptions and the motor system turns out to form
a complex loop which is more or less well explained by physiologists and cognitive scientists ii)
our human perception system is highly trained and used to what is a human motion, and detect
easily unusual or abnormal behaviors. Hence creating realistic and plausible motions remains an
open challenge within the animation community. Pure synthesis models like inverse kinematics [6,
7, 8] have been well studied in the robotics and computer animation literature. Usually, the
corresponding inverse problems are underdetermined, and benefit from adding constraints in the
production of motions [9, 10, 11, 12]. This stands for an interesting way to achieve more realism
as far as the added constraints are carefully chosen.

Yet, the use of motion capture provides a clear advantage over the previous methods in the
credibility and realism of the corresponding animation. The underlying principles are very simple:
instead of trying to understand and model the motion production system, the desired motion can be
directly measured on a real actor. Up to now, this motion is represented by a collection of moving
points located over the body of the actor, and generally yields a skeleton-based representation of
the motion. This skeleton then drives a more complex character geometry. Generally, the captured
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Chapter 1. Preamble and application context

motion is very specific to a given situation. However, and mostly because acquiring a motion is
a costly and time consuming operation, one could seek to reuse this motion in different settings.
This opens a wide range of problems:

• how to adapt a motion to a new situation ? For example, if the captured motion corresponds
to one person opening a door, how to change the door-handle position ? This problem can
be referred to as the motion editing problem. It can be include a combination of kinematic
and temporal constraints (space-time constraints),

• how to adapt a motion to a different morphology ? If the actor is tall and fat, how can we
adapt the motion to a small and skinny virtual character ? This problem is known as the
motion retargetting problem.

Obviously, those problems should be solved without eliminating the naturalness of the motion which
makes motion capture such an appealing tool for computer animation. Existing solutions for the
creation of a new motion can be decomposed into two categories: interpolative and generative. The
first category refers to methods combining (generally in a linear way) existing motions, whereas
the second deals with learned models of motions:

• Motion combination. Within this category of methods, a new motion is produced as a
combination of existing motions. The weights associated to this combination can be derived
so as to minimize an energy function related to a new constraint [13, 14]. The blended motions
have usually to share the same temporal variations between the different occurrences. When
it is not the case, a temporal alignment has to be performed, in most cases by relying on a well
known dynamical programing method: dynamic time warping (DTW) [15]. The combination
can also be temporal, i.e. a concatenation in time of small chunks of motions extracted from
several motions. This is the case in the motion graph approach [16, 17, 18], where a graph
over all the possible poses (nodes of the graph) of all the available motions is built. Then,
at runtime, a new motion is produced as a path optimization on this graph,

• Statistical approaches. In the absence of physical or analytical models of motions, statisti-
cal models have the capability of expressing the knowledge available in the data, and have
revealed over the last years to be a tool of choice for enclosing the motion specific informa-
tion [19, 20, 21, 22, 23, 24]. The seminal work of Pullen and Bregler [25] is the first to use a
non parametric multivariate probability density model to express the dependencies between
joint angles in motions. Samples drawn from these distributions are then used to generate
new sequences from an input motion. Non parametric models have also been used more re-
cently to handle the variation synthesis problem [24], where Lau et al. use dynamic Bayesian
networks to both handle spatial and temporal variations. However, most of existing works
concentrate on parametric families of statistical models. In [26], Brand and Hertzmann were
the first to model a motion with hidden Markov models. The motion texture paradigm [20]
uses a two level statistical model, where short sequence of motions (textons) are modeled
as linear dynamic system along with a probability distribution of transitions between them.
Chai and Hodgins [27, 19] also use linear time invariant models such as autoregressive mod-
els to model the dynamic information in the motions. Gaussian processes first served in
the computer animation community to perform dimensionality reduction and construct a
latent variable model [28].Gaussian processes have been also widely used in the context of
computer vision [29]. In [22], Wang and colleagues extended the latent space formulation
with a model of dynamics in the latent space. Most recent applications of Gaussian processes
include motion editing [23] and style-content separation [30].

The motion is a signal information which generally conveys a meaning or an intention. This
can be encoded as a textual information which completes the database. These annotations can
be obtained through a manual or an automatic process. In both cases the problem faced when
annotating is the temporal segmentation problem. Temporal segmentation consists in cutting
motions into groups of consecutive frames, but the problem remains in detecting accurately start
and end frames. In [31], Arikan et al. use a semi-supervised annotation scheme: after annotating
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manually a small portion of the database, unclassified motions are annotated thanks to an SVM
classifier. Chao and al. also used an annotated motion database of Tai Chi Chuan moves in [32].
Most of the time, using large database of motions will impose to have efficient storing and retrieval
methods [33, 34, 35, 36]

We now turn to the more specific problems of animating a communicative virtual character.

1.2. Virtual Signers

Signed languages (SL), defined as visual languages, were initially intended to be a mean of com-
munication between deaf people. They are entirely based on motions and have no written equiva-
lent. They constitute full natural languages, driven by their own linguistic structure. Accounting
for the difficulties of deaf to read text or subtitles on computers or personal devices, computer
animations of sign language improve the accessibility of those media to these users [37, 38, 39, 40].
The use of avatars to this purpose allows to go further the restrictions of videos, mostly because
the possibilities of content creation with avatars are far more advanced, and because avatars can
be personalized along with the user’s will. They also allow the anonymity of the interlocutor.

However, animating virtual signers has revealed to be a tedious task [41], mostly for two reasons:
i) our comprehension of the linguistic mechanisms of signed languages are still not fully achieved,
and computational linguistic software may sometimes fail in modeling particular aspects of SL
ii) animation methodologies are challenged by the complex nature of gestures involved in signed
communication. Our research were mainly concerned by this second class of problems, even though
we admit that in some sense those two aspects are indissociable.

In fact, signs differ sensibly from other non-linguistic gestures, as they are by essence multichan-
nel. Each channel of a single sign (those being the gestures of the two arms and the two hands, the
signer’s facial expressions and gaze direction) conveys meaningful information from the phonolog-
ical level to the discourse level. Moreover, signs exhibit a highly spatial and temporal variability
that can serve as syntactic modifiers of aspect, participants, etc. Then, the combination in space
and time of two or more signs is also possible and sometimes mandatory to express concisely ideas
or concepts. This intricate nature is difficult to handle with classical animation methods, that
most of the time focus on particular types of motions (walk, kicks, etc.) that do not exhibit a
comparable variability and subtleties.

We recognize in this problematic a natural application of the analysis/synthesis
schemes: we first begin to show existing approaches that are based on procedural methods, and
show why it could be interesting to add data to the production of signs. Notably, we will describe
in details the animation challenges associated to the conception of a virtual signer.

1.2.1. Existing Virtual Signers

We first begin by reviewing some of the technologies used to animate virtual signers. Figure 4
presents in chronological order some existing virtual signers.

Several gesture taxonomies have already been proposed in [45] and [46], some of which rely on
the identification of specific phases that appear in co-verbal gestures and sign language signs [47].
Recent studies dedicated to expressive gesture rely on the segmentation and annotation of gestures
to characterize the spatial structure of a sign sequence, and on transcribing and modeling gestures
with the goal of later re-synthesis [48].

Studies on sign languages formed early description/transcription systems, such as [49] or [50].
More recently, at the intersection of linguistics and computation, gestures have been described with
methods ranging from formalized scripts to a dedicated gestural language. The BEAT system [51],
as one of the first systems to describe the desired behaviors of virtual agents, uses textual input
to build linguistic features of gestures to be generated and then synchronized with speech. Gibet
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Figure 4.: Some virtual signers classified in chronological order: (a) the GESSYCA system [42] (b)
Elsi [43] (c) Guido from the eSign european project [39] (d) the virtual signer of the
City University of New-Yord [41] (e) Gerard [44]

et al. [42] propose a gesture synthesis system based on a quantified description of the space
around the signer; using the HamNoSys [50] sign language notation system as a base, the eSign
project has further designed a motion specification language called SigML [52]. Other XML-based
description languages have been developed to describe various multimodal behaviors, some of
these languages are dedicated to conversational agents behaviors, as for example MURML [53], or
describe style variations in gesturing and speech [54], or expressive gestures [55]. More recently, a
unified framework, containing several abstraction levels has been defined and has led to the XML-
based language called BML [56], which interprets a planned multimodal behavior into a realized
behavior, and may integrate different planning and control systems.

Passing from the specification of gestures to their generation has given rise to a few works.
Largely, they desire to translate a gestural description, expressed in any of the above-mentioned
formalisms, into a sequence of gestural commands that can be directly interpreted by a real-time
animation engine. Most of these works concern pure synthesis methods, for instance by computing
postures from specification of goals in the 3D-space, using inverse kinematics techniques, such as in
[42], [57], [58]. Another approach uses annotated videos of human behaviors to synchronize speech
and gestures and a statistical model to extract specific gestural profiles; from a textual input, a
generation process then produces a gestural script which is interpreted by a motion simulation
engine [59].

Alternatively, data-driven animation methods can be substituted for these pure synthesis meth-
ods. In this case the motions of a real signer are captured with different combinations of motion
capture techniques. Since it is not possible to record every possible sentences, new strategies are
to be devised in order to produce new utterances, The next paragraph presents an example of a
fully data-driven approach.

1.2.2. An example of a full data-driven approach: the Signcom project

An example of a full data-driven virtual signer is given by the Signcom project, which aims at
improving the quality of the real-time interaction between real humans and avatars, by exploiting
natural communication modalities such as gestures, facial expressions and gaze direction. Based on
French Sign Language (FSL) gestures, the real human and the virtual character produce statements
towards their interlocutor through a dialog model. The final objective of the project consists in
elaborating new ways of communication by recognizing FSL utterances, and synthesizing adequate
responses with a 3D avatar. The motion capture system uses Vicon MX infrared camera technology
to capture the movements of our LSF informants at frame rates of 100 Hz. The setup was as follows:
12 motion capture cameras, 43 facial markers, 43 body markers, and 12 hand markers. In order to
replay a complete animation, several post operations are necessary. First, the fingers’ motion were
reconstructed by inverse kinematics, since only the fingers’ end positions were recorded. In order
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Figure 5.: Photo of the motion capture settings in the Signcom project

to animate the face, cross-mapping of facial motion capture data and blendshapes parameters was
performed [60]. This technique allows to animate directly the face from the raw motion capture
data once a mapping has been learned. Finally, since no eye gazes were recorded during the
informants performance, an automatic eye gazing systems was designed. Figure 6 gives some
illustrations of the final virtual signer ”sally” replaying captured motions. A corpus annotation
was also conducted. Annotations expand on the mocap data by identifying each sign type with
a unique gloss, so that each token of a single type can be easily compared. Other annotations
include grammatical and phonological descriptions.

From recorded FSL sequences, multichannel data are retrieved from a dual-representation in-
dexed database (annotation and mocap data), and used to generate new FSL utterances [44], in a
way similar to [61]. The final system has been evaluated with native LSF signers [62] .

1.3. Challenges in Sign production

Though data-driven animation methods significantly improve the quality and credibility of an-
imations, there are nonetheless several challenges to the reuse of motion capture data in the
production of sign languages. Some of them are presented in the following.

Spatialization of the content As sign languages are by nature spatial languages, forming sign
strings requires a signer to understand a set of highly spatial and temporal grammatical rules and
inflection processes unique to a sign language. We can separate plain signs that do not use space
semantically (like the American Sign Language sign HAVE which does not make any notable use
of space other than which is necessary for any sign) from signs that incorporate depiction. This
second group of signs includes the strongly iconic signs known as depicting verbs (or classifiers),
which mimic spatial movements, as well as size-and-shape specifiers, which concern static spatial
descriptions.

Moreover, indicating signs like indicating verbs and deictic expressions require the signer to
interface with targets in the signing space by effecting pointing-like movements towards these
targets. Indicating verbs include such signs as the LSF sign INVITER, in which the hand moves
from the area around the invited party toward the entity who did the inviting . Depending on the
intended subject and object, the initial and final placements of the hand vary greatly within the
signing space. Deixis, such as pronouns, locatives, and other indexical signs are often formed with
a pointed index finger moving toward a specific referent, though other hand configurations have
been reported in sign languages, such as American Sign Language.
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Figure 6.: Screenshots of the virtual signer ”Sally” from the Signcom project

Small variations can make big semantic differences Sign languages require precision and
rapidity in their execution, but at the same times imperfection in the realization of the signs or bad
synchronization can change the semantic content of the sentence. We give here some challenging
elements in the execution of signs:

• Motion precision. The understandability of signs require accuracy in the realization
of the gestures. In particular in finger spelling the degree of openness of a fingers leads to
different letters. Some of fhe different hand shapes used in FSL only differ by the positions
of one finger or by the absence or not of a contact. This calls for a great accuracy in the
capture and animation processes.

• spatio-temporal aspects of the gestures. The sign language being a language with highly
spatio-temporal components, the question of timing and dynamics of gesture is crucial. In
fact, three elements are of interest for a sign: first, the spatial trajectory of the hands are
rather important. They do not only constitute transitions in space between two key positions,
but may be constituent of the sign. This raises the problem of the coding of this trajectory.
Second, synchronization of the two hands is a major component, and usually hands do not
have to this regard a symmetric role, In the case of PAS D’ACCORD (not agree), the index
start from from the forehead and meets the other index in front of the signer. The motion of
the second hand is clearly synchronized on the first hand. Third, the dynamics of the gesture
(acceleration profile along time) allows the distinction between two significations. An example
is the difference between the signs CHAISE (chair) and S’ASSEOIR (to sit), which have the
same hands configurations, the same trajectories in space, but different dynamics. Let us
finally note that the dynamics of contacts between the hand and the body (gently touching
or striking)is also relevant.

• facial expressions and non manual elements. While most of the description focus on
the hands configuration and their motions, important non manual elements should also be
taken into account, like shoulder motions, head swinging, changes in gazes or facial mimics.
For example, the gaze can be used either to recall a particular object of the signing space,
or either directed by the dominating hand (like in the sign LIRE, to read, where the eyes

14



1.3. Challenges in Sign production

follow the motion of fingers). In the case of facial mimics, some facial expressions may
serve as adjectives (for instance inflated cheeks will make an object big, while wrinkled eyes
would make it thin) or indicate wether the sentence is a question (raised eyebrows) or an
affirmation (frowning). It is therefore very important to preserve these informations in the
facial animation.
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Using captured motion data has now become very popular in the animation community, thanks
to the quality and the liveliness of the produced motions. Usually, a motion can be described
as a combination of a translation and several rotations of a hierarchical structure that can be
assimilated to a virtual skeleton. Hence, this type of information does not necessary belong to a
linear space, and special cares have to be taken with respect to the nature of the data. This is
the key idea of this Chapter, where we try to show how this specific nature can be handled with
dedicated algorithms. After a description of the nature of the motion information, a contribution
in the domain of the processing of rotation data is described (Section 2.1). We then show how to
extract interesting knowledges from the raw motion information, either by dimensionality reduction
(Section 2.2) or by learning the temporal dynamics of the data (Section 2.3).

2.1. Motion representation and filtering

Acquiring motion data can be done in various settings, ranging from optical devices to inertial or
magnetic systems. Optical devices with passive or active markers usually show the best accuracy
with high frequencies capture but at the expense of wearing special suits. Markerless motion
capture [63, 64], based on vision algorithms, offers an interesting alternative that imposes less
constraints, but yet has only been partially solved. Other equipments, such as inertial, mechanics
or magnetic systems suffer from calibration problems and can encounter drifting issues over time,
but are available at much lower prices. New methods based on communicating wearable sensors
such as Prakash [65] are very promising and brings to life the possibilities of on-set motion capture
systems. All these acquisition methods usually provide in the end the same type of information.
We will make no assumption about the nature of the acquisition device in the remainder.
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Chapter 2. Human motion and its analysis

2.1.1. Motion representation

A motion M can be represented as a time series of rotation vectors, each rotation representing
a rotation of a particular joint in an articulated figure. Those rotations are now frequently defined
as unit quaternions [66], since they have proved to be relatively compact and efficient. Let us recall
for clarity some facts about representing rotations with unit quaternions. The quaternion space
H is spanned by a real axis and three imaginary axis i, j and k under Hamilton’s conventions.
A quaternion q is a 4-uple of real values (w, x, yz). Unit quaternions (‖q‖ = 1) can be used to
parameterize rotations in R3, and can be considered as a point on the unit hyper-sphere S3. As
shown by Euler, any rotation map ∈ SO(3) can be represented by an angle θ around an arbitrary
axis v. This leads to an intuitive representation of the quaternion as an ordered pair of a real and
a vector, i.e. q = (w,a) with w = cos θ2 and a = sin θ

2v. The multiplications of two quaternions is
defined but not commutative, i.e. q1q2 6= q2q1. It is possible to define a distance metric between
two quaternions in S3. This metric is set as the length of the geodesic path between two elements
on the hypersphere. This distance is given by:

Dist(q1,q2) =
∥∥log(q−1

1 q2)
∥∥ (2.1)

An alternative metric can be defined as suggested in [67] by the inner product of two quaternions:

Dist(q1,q2) = q1.q2 = w1w2 + x1x2 + y1y2 + z1z2 (2.2)

and has the advantage of being proportional to the length of the geodesic path and fast to compute.
A weighted formulation of this distance is given by:

weightedDist(q1,q2) = wr(1− ‖q1.q2‖) (2.3)

which gives a weighted rotation distance between two quaternions ∈ [0, wr].

The definition of a motion with quaternions is finally:

M = {qi(t)|i ∈ [0 · · ·n] , t ∈ [0 · · ·m]} (2.4)

where n is the number of quaternions used to represent a posture of the skeleton, and m the
number of postures in the motion. Hence, M is an element of Hn×m

2.1.2. Motion filtering

The problem of motion filtering arises when the acquisition methods provide noisy data. Classical
de-noising methods are based on local operators that smooth the input signal (such as a Gaussian
blur or a Butterworth filter which are commonly used by animators) or on subspace techniques
such as PCA [68] (and its variations) that seeks to preserve the principal features of the motion.

Though, human motion have specific features that need to be taken into account. For instance,
communicative gestures such as non-verbal communication gestures are characterized by rapid
and subtle changes that influence greatly the perceived meaning of the gesture [69] . These high
frequency information produce subtle details that human beings are able to interpret and decrypt.
It is thus of primary interest to be able to preserve those aspects while canceling the inherent noise
of the capture system. We have proposed in [70] an adaptation of the well-known bilateral filter
to rotation data, thus making it suitable to treat human motion. We argue that for the de-noising
purpose, the bilateral filter tends to preserve some characteristic features of human motion such
as rapid changes in the velocity profile.

Bilateral filtering is a well-known technique in signal and image processing. First introduced
with its current name by Tomasi et al. [71], it has been used in several contexts such as image
denoising [72, 73], computational photography [74, 75, 76, 77], stylization [78], optical flow compu-
tation [79] or even biomedical imaging [80]. Several theoritical studies have revealed its intrinsic
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nature and limitations [81, 82]. In the context of image denoising, it has been shown can be related
to the classical PDEs such as heat diffusion or the Perona-Malik equation [82]. The reasons for its
success are its simplicity to design (it usually implies a local averaging scheme) and to parameter-
ize (only the spatial extent and the contrast preserving strength are required). Bilateral filter has
also been extended to other types of data. In [83, 84], it is used as a smoothing operator for 3D
meshes. In [85], Paris and colleagues have used bilateral filtering to smooth a 2D orientation field
by incorporating a mapping into the complex plane C. In this sense, their works can be related
to our technique. To the best of our knowledge, no existing method uses an adaptation of the
bilateral filtering to manifold-valued signal such as 3D rotation time series.

2.1.2.1. Filtering orientation data

Filtering rotation data is a difficult problem that comes from the non-linearity of the unit
quaternion space. Let X = {xi} be a signal with elements in Rn. The classical convolution
operation with a filter mask (m−k, . . . ,mk) of size 2k + 1 gives the following filter response at the
ith element:

H(xi) = m−kxi−k + . . .+m0x0 + . . .+mkxi+k

This operation does not transpose to a signal Y = {qi} of elements in SO(3) because the addition
is not correctly defined for two unit quaternions since the result is no longer a unit quaternion. A
possible solution would be to consider the embedding space R4, perform computation on quater-
nions such as vectors of this linear space and then re-normalize the result. Though, this solution
can lead to strange behaviors when data are not sufficiently dense enough [86]. Another solution
considers a global linearization of the input signal [87], by using for instance the exponential map-
ping between S3 and R3. This method also suffers from problems since there is no such global
mapping (e.g. the exponential mapping is ill-defined at the antipode of the identity quaternion),
and therefore some singularities may corrupt the result. The concept of local linearization was
first used by Fang and colleagues [88]. It consists in decomposing the input signal into a succession
of linear displacements between each consecutive samples, filter those displacements, and finally
construct the filtered signal by integrating those displacements. As pointed out in [86], this inte-
gration yields drifting problems over time. Lee and Shin [86] have proposed a filter design that
avoids this problem. The key idea is to consider angular displacement between each samples as
a linear displacement in R3, filter this vector counterparts and construct the signal back through
exponentiation, thus avoiding the drifting problem induced by integration in the method of Fang
et al. [88]. Moreover, they demonstrated that their construction protocol leads to a linear time-
invariant class of filters (LTI filters). Their framework defines the output response of a filter H
as:

H(qi) = qi exp(

k−1∑
r=−k

brwi+r) (2.5)

where
wi = Log(q−1

i qi+1)

are the local linearizations of the input signal, and br scalars derived from the traditional filter
mask coefficients mj and defined such that:

br =

{ ∑r
j=−kmj if −k ≤ r < 0∑k
j=r+1mj if 0 ≤ r < k

(2.6)

This construction method has been chosen in order to design our bilateral orientation filter.

2.1.2.2. Bilateral motion filtering

We first begin this section by recalling the classical form of the traditional bilateral filter. We
then present its adaptation to orientation data.
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Chapter 2. Human motion and its analysis

2.1.2.3. Bilateral filtering in a linear space

In its original form [71], the bilateral filter is a weighted average of a sample i of the original
signal X = {xi}, given by:

BF(xi) =

∑k
r=−kW (i, r)xi+r∑k
r=−kW (i, r)

(2.7)

where W (i, r) are the weights of the filter and are given by a combination of functions of the
temporal distance Wt(i, r) and the geometric distance between the samples i and i + r: Wg(i, r).
W functions are smoothly decaying functions, usually Gaussian functions. In this case, W (i, r)
writes:

W (i, r) = Wt(i, r) ∗Wg(i, r)

Wt(i, r) = exp(−d
2(i, i+ r)

2σ2
t

) = exp(− |r|
2σ2

t

)

Wg(i, r) = exp(−d
2(xi, xi+r)

2σ2
g

) = exp(−|xi+r − xi|
2)

2σ2
g

)

The idea behind this definition is that both near samples and samples with close-by values will
have more influence on the final result. σt and σg set their relative strength and are generally used
to privilege one of these two aspects.

2.1.2.4. Bilateral filtering on rotation data

In order to adapt the bilateral filter to orientation data, we first need to choose a metric between
rotations. It is common to use the length of the geodesic path between two elements on the hyper-
sphere (geodesic distance). This choice is important as it conditions some of the filter properties
(see below). This distance is given for two unit quaternions by:

d(q1,q2) =
∥∥log(q−1

1 q2)
∥∥ (2.8)

We now adopt the construction method of Lee and Shin [86] described in the previous section to
build our filter. The mj coefficients used in equation 2.6 are given by:

mj = W (i, r) = exp(− |r|
2σ2

t

) exp(−
∥∥log(q−1

i qi+r)
∥∥)

2σ2
g

)

Those coefficients characterize the Bilateral Orientation filter. They have to be computed with
respect to a sliding window over the signal. As the distance between each samples of the signal has
to be evaluated several times, it can be convenient to pre-compute all these distances as a band
matrix D as depicted in Figure 7. The symmetry of the distance function allows to store only the
upper-diagonal part of the matrix1.

The filter construction presented in [86] guaranties that the filter is linear time-invariant. In our
case, this proposition does not hold anymore since the filter coefficients depend on the input signal.
Nevertheless, we demonstrate that our bilateral orientation filter keeps interesting properties:

Proposition 1 The bilateral orientation filter is coordinate-invariant, that is to say that for any
a,b ∈ S3, BOF(aqib) = aBOF(qi)b .

Proposition 2 The bilateral orientation filter is time-invariant,

1In this case, D(i, k) becomes D(k, i) if i > k.
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2.1. Motion representation and filtering

Figure 7.: Precomputation table. This figure shows a band matrix which contains the distance infor-

mation used by the filter. Each element correspond to a geodesic distance between samples.

Normally, the quaternionic signal belongs to the unit hypersphere in 4D, but has been repre-

sented here, without loss of generality, as the unit sphere in 3D.

Proofs can be found in [70] . In the case of human motion processing, we simply filter every joint
orientation with our filter. As the joints are organized into a hierarchy of joints (the wrist depends
on the elbow which depends on the shoulder, etc.), the coordinate invariance property is strongly
desirable since the result of the filtering operation will be the same whereas the joints orientations
are expressed in local or global coordinate frames.

2.1.2.5. Illustrations

We now present some results obtained with our new filter on real motion capture data. These
data represent a complete human body with two hands for a total of 75 joints. The performed
motion correspond to a sign language motion. It is depicted in Figure 9.a. The BO filter was
first tested on the rotation of the left hand. The original signal is presented in 8.a. We added
manually to this signal a quaternionic Gaussian noise with variance σ = 0.18 radians (Figure 8.d).
For comparison purposes, we first filter the noisy signal with a Gaussian filter (Figure 8.b) with
variance σt = 1.0, then with the Bilateral Orientation filter (Figure 8.c) with temporal variance
σt = 1.0 and spatial variance σg = 0.1. Both filters were applied five times to the noisy signal.
Boundary conditions were handled by mirroring the signal at both extremities. It is interesting to
notice how the overall shape of the signal and the principal features have been recovered through
the filtering process. Figure 8.e and .f shows the angular velocity of the original signal compared
to the final signal. It is computed as || log(q−1

i qi+1)|| rad.s−1. While Gaussian blur exhibits less
peaks in the signal and a globally less important magnitude, the BO filter preserves the overall
aspect of the velocity profile, at the expense of amplifying in some cases the speed magnitude.

We then processed the entire motion (75 rotation time series corresponding to every joints). The
length of the motion was about 150 frames. Our implementation yields a computation time on a
standard laptop of 300 ms. Figure 9 illustrates the impact of filtering the rotational components
of the motion on the resulting trajectories of the end effectors (in our case, the hands) expressed in
the cartesian space. Figure 9.a gives a short outline of the test motion. The test hand trajectory
has been represented in red. This trajectory cumulates in some sense all the errors on the previ-
ous articulations along the kinematic chain (i.e. elbow, shoulder, etc.). This propagation effect
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a b c

d e f

Figure 8.: Filtering real data. (a) Original signal (d) plus Gaussian noise (b) filtered with a Gaussian

Kernel σt = 1.0 (c) filtered with BO filter σt = 1.0, σg = 0.1 (e,f) Comparisons between original

and filtered signals angular velocities.

magnifies at the same time the effect of the filtering process. For example, processing the whole
motion with Gaussian filtering leads a global diminution of the motion’s energy, thus leading to
a smoother trajectory but with less amplitude (Figure 9.c). In this last case, some details of the
hand motion are lost (bottom left of the trajectory). Those details are in fact small and quick
repetitions that are used in the case of sign language to outline a particular idea. We can see that
in the case of Bilateral Orientation filter (Figure 9.d), this pattern is conserved. Moreover, the
global amplitude compares better to the original signal.

a

b c d

Figure 9.: Motion strip of the test sequence. (a) Ten poses along the test motion. The red curve

shows the right hand trajectory which is used in the following illustrations. (b,c,d) Com-

parisons between original signal and reconstruction of the right hand trajectory (in cartesian

coordinates): (b) effects of gaussian noise (c) Smoothing using a Gaussian Kernel (d) Smoothing

using bilateral filtering.
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2.2. Subspace decomposition

2.2. Subspace decomposition

Usually, the amount of data produced by the acquisition system at a reasonable frequency
(100Hz is a minimum for communicative gestures) is huge and presents a lot of redundancy.
A possible way to to handle the inherent problems is to perform dimensionality reduction on
them. The objectives are twofold: i) working on smaller sets of data while keeping most of the
informative part ii) decorrelate the different dimensions of the signal so that it is possible to work on
them independently. The dimension reduction problem is often solved using descriptive statistical
tools. Those tools typically yield a subspace that is more suitable for expressing the data: smaller
dimension, orthogonal axis, most notably. The extension of known linear statistical tools to the
non-linear case is not eased by the fact that many elementary results in the former case do not
hold when dealing with more general spaces. For instance, the problem of finding the mean value
of data lying on a sphere can no longer be expressed through probabilistic expected value, but has
to resort to the minimization of geodesic distances. We first present an application of a classical
variance based dimensionality reduction technique (Principal Component Analysis) to the problem
of style translation. We then proceed to the use of its non-linear counterpart (Principal Geodesic
Analysis) which allows to handle more formerly rotation data.

2.2.1. Principal Component Analysis (PCA) and its application to style
variations

In a conversational situation, style conveys useful hints to verbal and nonverbal features of
the discourse such as nuances, intensity, emphasis points, speaker genre, cultural background, and
emotional state. Consequently, automatic generation of expressive human motion requires methods
that are capable of seamlessly handling a wide range of different styles along the animation. We
consider that style is the variability observed among two realizations of the same gestural sequence.
This definition is voluntarily low level, signal oriented as our investigations are motivated by
motion signal analysis. We worked on multiple realizations of a sequence of French Sign Language
(FSL) [89] gestures. To do so, we asked a professional signer to perform several motion capture
records of a predefined FSL sequence by varying several aspects of the discourse: mood, emphasis
and speed. The temporal variability of the data was handled with Dynamic Time Warping (DTW).
DTW allows to find a mapping, usually non-bijective, between two time series. This mapping
realizes the best alignment between the two series, which can be seen as a non-linear temporal
registration. Given this mapping, one can also produce a new motion by deforming consequently a
given motion (time stretching). However, in the presence of motions, one can consider the complete
time series of all the joint rotations along time. Our idea [89] was to only consider the time series
formed by the projection of the motion in the principal subspace associated to the motion to
limitate the influence of the spatial variability induced by the style.

2.2.1.1. Considering the time series of the reduced coordinates in the PCA space

We rely on the assumption that there exists a fundamental motion which is common to multiple
styled realizations of communicative gesture sequence (CGS). An actor may perform a predefined
motion sequence according to different moods, speeds, or expressivity clues, but, even when asked
to be as neutral as possible, the actor will still convey his own kinematic signature. Still, each
realization of a CGS will at least contain a common subpart that conveys the semantic of the
CGS. Identification of this subpart motivates our investigations towards a low dimensional repre-
sentation subspace for CGS. The construction of a style robust distance function is motivated by
the assumption that the meaningful part of the gesture is embedded in the subset which presents
the greatest variance. To determine this subset, PCA was used. We briefly recall the principle of
PCA:

Let xi ∈ Rn be a set of elements, the PCA amounts to:
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• find x the mean of the data and substract it to all the values

• find a subspace Vk = span(v1, · · · ,vk) that maximizes the variance of the data.

A recursive definition of vk can be found as a maximization problem:

v1 = arg max
|v|=1

n∑
i=1

(v.xi)
2 (2.9)

vk = arg max
|v|=1

n∑
i=1

(v.xi)
2 +

k−1∑
j=1

(vj .xi)
2

 (2.10)

When considering the definition of a motion using time series of rotation vectors, this classical
formulation is not well adapted since it does not model explicitly the specific non linearity (pe-
riodicity for instance) of the rotation data. As previously seen, a rotation in 3D space can be
represented as a unitary quaternion. Seen as a fourth dimensional vector, the non linearty stems
from the fact the this vector norm must be unity. Instead, one can work on a linearized version of
this information, obtained through the use of the exponential map [90]. Hence, we form xi ∈ Rn
as the vector {exp qi(t)} ∈ R3m if m is the number of rotations in the skeleton.

2.2.1.2. Application to style changing

In [89] we only consider the temporal aspects of the style: we assume that in order to register
a new motion with a given style, it is sufficient to change the associated timing information. This
mapping is usually obtained by a dynamic time warping procedure, which calls for a correct metric
between two poses. As exposed in the previous paragraph, this metric was obtained thanks to
the projection of the motion in a low-dimensional subspace that is common to every realizations
of the CGS. Figure 10 illustrates the time alignment obtained by aligning the angry styled CGS
performance onto the reference CGS performance. On one hand, the spacial variations introduced
by angry style are not negligible (notice the differences between the overall postures and the
amplitude of the movements). On the other hand, angry style introduces rhythmic repetitions of
some specific movements. The postures depicted in Figure 10 are equally sampled and the curves
represent the evolution of the influence of the first the eigenposture vectors along frames. This
figure highlights the capability of our procedure to provide a smooth and accurate registration
despite the spacial variations and repetitions introduced by the angry style.

2.2.2. Principal Geodesic Analysis (PGA)

We present here a version of the PCA which generalizes the concept of PCA to manifold valued
data: Principal Geodesic Analysis (PGA) . PGA has first been introduced by Fletcher et al. [91].
It can be seen as a generalization of PCA on general Riemannian manifolds. Its goal is to find a
set of directions, called geodesic directions or principal geodesics, that best encode the statistical
variability of the data. In the Euclidean space, those geodesics are straight lines, thus leading to
the classical definition of the PCA. It is possible to define PGA by making an analogy with PCA
(and the definition given in the previous Section).Fletcher gives a generalization of this problem
for complete geodesic spaces by extending three important concepts:

• Variance: expected value of the squared Riemannian distance from mean,

• Geodesic subspaces: geodesic submanifold,

• Projection: projection operator πp onto that geodesic submanifold.

A geodesic of a Riemannian manifold is a one parameter subgroup that can be easily defined with
the exponentiation map with the form: exp(tv) where v is a direction in the tangent space and t
a scalar. The k-dimensional geodesic submanifold Vk = expx span(v1, · · · ,vk) is given by the
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2.2. Subspace decomposition

Figure 10.: Style changing by motion warping. From top to bottom, the two upper sequences are
captured from original performances according to neutral and angry style, respectively.
The third sequence represent the original angry sequence warped along the original
neutral sequence.

new following recursive definition:

v1 = arg min
||v||=1

n∑
i=1

|| log(πH(x−1xi))||2 (2.11)

with H = expx span(v) (2.12)

vk = arg min
||v||=1

n∑
i=1

|| log(πH(x−1xi))||2 (2.13)

with H = expx span(v1, · · · ,vk,v) (2.14)

In order to implement this decomposition method for a given manifold, one has first to find a
closed-form solution for the projection operator. Though, in [91], Fletcher gives an algorithm that
compute an approximate version of the PGA. It relies on a global linearization in the tangent space
at the mean of the input data. More recently, we have proposed in [92] an exact computation of
the PGA for rotation data. However, for a complete motion data ∈ SO(3)n, a closed form solution
of this projection operator still remains to be found. Let us note that there exists some possible
solution to this problem in the form of a non-convex optimization problem [93], but we have not
tested this approach. Instead, we choose to rely on a first order approximation of the exponential
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map, as described by Fletcher in [91]. The quality of this approximation strongly depends on the
curvature of the manifold, as discussed in [94].

We employed the PGA framework in different works [95, 96] to describe the variability of the
inner joints orientations during a motion. The geodesics can be looked upon as the eigenposes
of the skeleton during the sequence. We sometimes included the root joint’s orientation in the
analysis [96] , but we will not consider this case in the following. Hence, the pose of the skeleton
is represented by a vector of the direct product SO(3)n, where n is the number of joints of the
skeleton. Applying the approximate PGA to the poses data from a motion with m ∈ N frames
yields:

1. The intrinsic mean of the data, µ ∈ SO(3)n

2. k ∈ N tangent directions (vj)1≤j≤k, where each vj ∈ so(3)n ≈ R3n uniquely defines a geodesic
of SO(3)n

3. A set of coordinates T = (ti,j) where 1 ≤ i ≤ m and 1 ≤ j ≤ k, where the ith row is the
approximate projection of the ith pose over the k geodesics

The ith pose can then be recovered partly using the k leading geodesics with:

pi = µ

j=k∏
j=1

exp(ti,j .vj) (2.15)

This parametrizes the approximate poses manifold using the canonical coordinates of the second
kind (ccsk). One can think of the reconstruction formula as a weighted composition of the k
first eigenposes. Note that here the exponential over the direct product so(3)n is used. By only
considering the k ≤ n first modes of the PGA, we obtain a new reduced parametrization of a
motion in terms of geodesics coordinates. We show next how such a reduced pose parametrization
can be used to perform inverse kinematics.

2.2.2.1. Inverse Kinematics in the PGA reduced space

The reduced parametrization with geodesics coordinates allows us to define a function f : Rk →
R3d that maps a set of geodesics coordinates x ∈ Rk to the global space of positions of d ∈ N
end-effectors: y ∈ R3d. This function is the composition of the reduced pose parametrization by
the ccsk h : Rk → SO(3)n and the classical direct kinematics function, which maps a skeleton
pose to the global position of the d end-effectors, g : SO(3)n → R3d . The derivative of g at the
pose x ∈ SO(3)n simply maps instant rotation vectors for each joint to the linear velocities of the
end-effectors.

Since h(x) = µ
∏j=k
j=1 exp(xj .vj) is a product of differentiable functions (the exponentials) in a

Lie group, h is therefore differentiable. Each partial derivative of h with respect to xj can be
easily computed due to the ccsk parametrization. We are eventually able to compute the whole
Jacobian matrix Jf of the function f using chain rule. We then use this Jacobian in a least square
optimization method, such as the well-known Levenberg-Marquardt algorithm, in order to find the
geodesic coordinates xj that best match the given end-effectors constraints y0 ∈ R3d:

x? = arg min
x∈Rk

(
||f(x)− y0||2

)
(2.16)

The benefits of using this method are threefold:

• The optimization is done in a much smaller space than traditional IK (usually 30 degrees of
freedom): this not only speeds up the process, but also better constraints the IK problem.

• The geodesics being principal poses modes, the optimization naturally exploits correlations
between joints to reach the objectives, resulting in a more natural pose.

• The geodesics formulation allows a quick computation of the Jacobian Jf used in the opti-
mization, thus eliminating the need for numerical differentiation.
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The main drawback is that the geodesics yield a limited reachable space: our IK works better in
a neighborhood of the input data. This pitfall is common to all Inverse Kinematics approach in
reduced space [28, 21]

2.2.2.2. Application to motion compression

We present shortly how the PGA can be used in a particularly performant motion compression
technique [95] which exploits both temporal and spatial coherence to achieve high compression
ratios with few perceptual distortion. After the principal geodesics have been extracted from the
input motion using approximate PGA, global end-joints trajectories can be compressed using any
linear compression method. The root orientation is eventually compressed using the multiscale
representation. The decompression phase consists in decompressing the global trajectories as well
as the global root orientation, then expressing the end-joints positions in the root joint’s frame,
and eventually performing PGA-based IK to recover poses. Our experiments show that the use of a
compact pose model allows to successfully recover poses given only end-joints positions. As the end-
joints and root joint’s trajectories present high temporal coherence, they can also be compressed
efficently in order to further improve compression rates. A particularly appealing aspect of our
technique is that the pose model may also be used for editing compressed motions by employing
the very same algorithm.

M. Tournier, X. Wu, N. Courty, E. Arnaud & L. Revéret / Motion Compression using Principal Geodesics Analysis (to appear)

Figure 5: 3 animations from the CMU database compressed using our technique
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Figure 11.: Hip-Hop motion from the CMU database compressed with our technique

We finally note that we also used more recently the concept of PGA in a pure machine learning
setup [97] . As the subject of this work is not directly aimed toward computer animation, we left
its description in annex B.

2.3. Analysing the motion dynamics

A dimensional reduction method is applied to the motion capture data (PGA). The motion
signal xt is the corresponding trajectory in the PGA latent space and is defined over the entire
motion duration, i.e. t = 1 · · ·T . This trajectory can now be used to learn the dynamical behavior
of a captured motion. We present to statistical methods that reach this goal: identification of a
linear time-invariant model and Gaussian processes.
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Chapter 2. Human motion and its analysis

2.3.1. Linear time-invariant models

The first method considers to fit a m-order linear time-invariant model [98, 19] to the trajectory:

xt =

m∑
i=1

Ai xt−i + B ut + εt, (2.17)

where the set of ut can be assimilated as input control variables and εt is a Gaussian noise.
Given the low-dimensional representation of the original motion capture data xref0:N , the matrices
A1 . . .Am, B and the set of input control variables ut can be calculated with simple procedures
(least-square solver and SVD decomposition of the residual) [98]. In practice, Ai matrices are
estimated by computed the least-square solution.

Â1 . . . Âm = arg min
A1...Am

T∑
t=m

‖xreft −
m∑
i=1

Ai xreft−i‖
2, (2.18)

The order m of the system can be decided with standard statistics criteria such as BIC. Denoting

zt = xreft −
m∑
i=1

Âi xreft−i, (2.19)

and Z = [ zm+1 | . . . | zT ], performing an SVD decomposition of Z leads to B, matrices of
eigenvectors and the control input um+1:T are subsequently derived. Here again the dimensionality
of the control space can be chosen such that there’s a drop in the eigenvalues of Z.

We show examples of the reconstruction error in Figure 12. As expected, the higher the dimen-
sion of latent space, the more impact has rising the number of dimensions of the control space.

a b

Figure 12.: Reconstruction error for different dimensions of the latent space and the control space
and also the order of the dynamic model for (a) a walking motion (b) a signed language
motion

This type of autoregressive models is useful to build a computational model of the motion
dynamics, and can also be used as a statistical prior in methods such as the Monte Carlo approach
to motion production presented in the next Chapter. We present now another possible but yet
closely linked representation based on Gaussian processes.

2.3.2. Gaussian processes

The PGA trajectory is now assumed to be a realization of a Gaussian process Xi with covariance
function Ci. This process is assumed to be ergodic, meaning that its statistical properties can be
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2.4. Summary

inferred from one finite realization of it. If the observed realization is of sufficient length, we can
indeed consider that it contains the same information as several different realizations of the process.
We also assume that the underlying process is stationary, meaning its joint probability distribution
does not change when shifted in time, reducing for the Gaussian process to the property that the
two first moments do not depend on time.

In practice, a parametric model is first chosen for the covariance function and its hyperparameters
are estimated from each realization Xi. An example of parametric covariance model is the following
one:

Ci(t, t
′) = αi exp

(
−|t− t

′|2

ρi

)
+ σiδtt′ , (2.20)

where ρi will be called the length-scale which determines how quickly the covariance falls, δ is
one if t = t′ and zero elsewhere, and the associated σi traduces the nugget effect (small scale
variations, corresponding to noise). This model is used for all applications in this document, and
the parameters are estimated with a maximum likelihood approach for each PGA component.

Once the parameters of the covariance functions Ci are known for all PGA directions, a model
of motion is available in the PGA space. New motions can then be synthesized from this model.
If one aims at simulating motions with the same statistical properties as the reference motion, a
realization of a Gaussian process with covariance Ci can easily be obtained for each component,
and a new motion can be reconstructed from the PGA approach. However, in order to improve the
resulting motion, constraints have to be introduced into the simulation procedure. The problem can
then be formulated as the conditional simulation of a Gaussian process, with kinematic constraints
as constraint values. Those aspects, related to motion control, will be detailed in the next Chapter.

2.4. Summary

In this Section the classical representation of a motion with rotations and its analysis were
exposed. Motions constitute high-dimensional multivariate time series, which analysis is mandatory
to reveal the hidden structure of the correlations both observable in space and time. Yet, the non-
linear nature of the rotation data imposes several restrictions to the classical signal processing
techniques and call for the use of dedicated methods. We have proposed filtering algorithms or
dimensionality reduction techniques adapted to this type of data. Also, the temporal analysis was
discussed with two statistical methods that can encode some prior information on the motion. The
next Chapter is dedicated to the use of this information in the production of new motions.
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In this chapter we give an overview of our contributions in the domain of motion control. By
motion control, we are referring to the methods capable of producing motions from some motion
references. In this sense, they can be considered as supervised by the data. The extent to which the
data is incorporated in the command loop greatly varies between the methods. We first present an
alternative solution to the classical problem of inverse kinematics 3.1. We then discuss an original
method which produces new motions based on statistical dynamic prior on the motion dynamics
based on stochastic simulation 3.2. We end this chapter by describing a method which combines
in space and time motions to produce new sign languages utterances 3.3.

3.1. Kinematic methods

We begin this Chapter by describing a contribution [96] to the problem of inverse kinematics.
Given a kinematic chain described by a fixed number of segments linked by joint angles, the forward
and inverse kinematics problems can be derived. The first one amounts to computing the pose
of the figure given the values of the joint angles. The second one is the process of determining
the parameters of the kinematic chain in order to achieve a desired configuration. The latter
has been extensively studied in computer animation due to its huge number of applications, such
as connecting characters to the virtual world (feet landing on top of terrain, or hands lining up
with doorknobs), as well as in robotics, where manipulator arms are commanded in terms of joint
velocities. While the forward problem has a unique solution, the inverse problem does not in the
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Chapter 3. Motion control: how to use data

general case. Because of this, in the inverse problem, one needs to make explicit any available a
priori information on the model parameters. Traditional ways of solving inverse kinematics rely on
analytical or numerical methods, where some constraints are added to choose one of the solutions.
Carrying out such methods becomes rapidly difficult for a large number of model parameters.

A very general theory to solve inverse problems is obtained when using a probabilistic point
of view, where the a priori information on the model parameters is represented by a probability
distribution over the model space (i.e. the state space). This a priori probability distribution
is transformed into the posterior probability distribution, by incorporating a theory (relating the
model parameters to some observable parameters) and the actual result of the observations (with
their uncertainties). The probabilistic formulation of the inverse problem requires a resolution in
terms of samples of the posterior probability distribution in the model space. This, in particular,
means that the solution of an inverse problem is not a model but a collection of models (that are
consistent with both the data and the a priori information). The generation of this collection of
possible figures can be accomplished by means of an efficient Monte Carlo method.

Following this direction of work, we propose to solve the inverse kinematics problem using
a Monte Carlo approach. We present how sequential Monte Carlo methods (SMCM) can be
advantageously used for inverse kinematics. The inverse kinematics is thus re-formulated in a
filtering framework. This allows us to derive a simple and efficient algorithm that can be seen as a
filter whose state is the entire complex articulated figure. The sequential aspect of the procedure
is one of its keypoints. The algorithm produces a complete motion, from the initial position to the
target position as a result of the optimization procedure where each intermediate pose corresponds
to an optimization step. The motion velocity is directly dependent on the filter parameters, making
the algorithm flexible. The produced motions may then be used by an animator or an interactive
animation system.

The contributions of our method to the domain of articulated character control are threefold:

• our method does not require any explicit numerical inversion to solve the control problem,

• any type of constraints can be added to the system in a simple and intuitive manner provided
that an evaluation function can be provided (no derivation wrt. articular space is required),

• this method can be implemented in a few lines of codes and tested easily without the needs
of complex optimization algorithms.

Let us remark that another strong motivation for this work comes from motor neuroscience
where Körding and Wolpert [99] have highlighted the bayesian nature of sensori-motor learning
and the role of uncertainty in the realization of a motor task.

3.1.1. Theoretical background on Inverse Kinematics

In this section we consider a kinematic chain C composed of n joints and defined by the length
of its different segments {l1, . . . , ln}. C is parameterized by the following rotation vector Q =
{q1, . . . ,qn} ∈ SO(3)n (which defines the articular space).

It is possible to define the forward kinematic operator H that computes the configuration of the
end effector of the chain. Usually this configuration P is defined by a position and an orientation,
i.e. P ∈ SE(3) (task space):

H : R3 × SO(3)n 7−→ SE(3) (3.1)

{r1,q1, . . . ,qn} 7−→
n∏
1

Mi(li,qi) = P (3.2)

where r1 is the root position of the chain and Mi(li,qi) the homogeneous transformation matrix
representing the rotation of a segment of length li by the quaternion qi. For clarity purposes this
operation will be summarized by:

P = H(Q) (3.3)
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3.1. Kinematic methods

Problem Statement The goal of inverse kinematics technics is to find a vector qi such that P
is equal to a given desired configuration Pd. This problem amounts to the following non-linear
inverse problem which does not always have a unique solution and is not always well-behaved:

Q = H−1(Pd) (3.4)

Numerical resolution Most of the previous works on inverse kinematics solve equation (3.4) by
using a local linearization method which amounts to converging to the solution by computing small
variations Q̇ in the articular space that ensure the regulation from P to Pd:

Q̇ = −λJ+
Q(P−Pd) (3.5)

where J+
Q is the pseudo inverse of the Jacobian of C evaluated around the configuration Q, and λ a

scalar which sets the rate of convergence. Evaluation of the Jacobian (matrix of partial derivatives

{∂Pj

∂qi
}) is usually done with finite difference methods. The computation of the pseudo-inverse is one

of the critical parts of the inverse kinematics. Some works [6, 7, 100] have explored the possibility
to use the transpose of the Jacobian Jt. As this solution relies on the assumption of the convexity
of H (which is far from being the case), it has proved to be less efficient in the general case and
exhibits smaller convergence rates. One of the most common techniques relies on the Singular
Value Decomposition (SVD) which has the advantage of being robust to ill-posed problem since
singularities can be detected and treated during the process. It is also current to consider a slightly
modified version of the pseudo-inverse that guaranties that singularities are avoided; it is referred
to as the damped or singularity robust (SR) pseudo-inverse [101, 102, 10].

Adding constraints Since the number of degrees of freedom in our kinematic chain is (most of
the time) greater than the size of the task space, the number of solutions is usually infinite. With
the pseudo-inverse approach the minimal norm solution is chosen by the algorithm, but it can be
useful to control with additive constraints the choice of this solution. This operation is possible
thanks to the use of projection operator (In − J+J) that allows us to project a constraint (or
secondary task) on the null-space of J. The new solution is given by:

Q̇ = J+
QṖ + (In − J+J)

∂h

∂qi
(3.6)

where In is a n×n identity matrix and h is usually expressed as a generic cost function that needs
to be analytically derived wrt. articular parameters. This formulation ensures that the secondary
task will have no effects on the regulation from P to Pd. This secondary task has been extensively
used, notably for enforcing joint limits [103] or control the position of the center of mass [9] for
instance. Recent works deal with adding several levels of constraints to the system [11, 104, 12].
In this particular theoretical framework (also called Prioritized inverse kinematics), the difficulty
is to balance and order the different constraints (which is usually performed manually) without a
priori knowledge on how the global task will be realized.

3.1.2. Inference problem and SMCM

3.1.2.1. Formulation overview

We propose a statistical inverse kinematics solver. It is based on a Bayesian formulation of
the problem, that enables us to combine motion prior, skeleton constraints (i.e. joint limits) and
kinematic constraints. We denote x = x0:M = {x0,x1, · · · ,xM} the sequence of poses from the
initial pose of the chain x0 to its final pose xM satisfying the kinematic constraints. The goal is
to infer the most likely trajectory x̂ given the set of kinematic constraints z. We have:

x̂ = arg max
x

p(x|z) = arg max
x

p(z|x) p(x)

p(z)
(3.7)

33



Chapter 3. Motion control: how to use data

where p(z) is a normalizing constant. The involved components are the motion prior p(x) and the
constraint likelihood p(z|x). The motion prior carries the a priori knowledges about the intrinsic
nature of the motion, as well as biomechanical constraints ; whereas the likelihood calculation gives
an evaluation on how good is the pose with respect to the kinematic constraints that have to be
satisfied.

Two main families of methods are used to solve this inference problem. The first one relies
on a direct estimation of the maximum a posteriori x̂ through an optimization procedure of
− log(p(z|x) p(x)). An example of this approach has been recently used for constraint-based motion
optimization [19]. Monte Carlo methods are the second family. They approximate the probability
density itself p(x|z) and then estimate x̂ through the use of maximum a posteriori or minimum
mean square error estimates. Traditionally solvers from these two families are non-sequential, that
make them improper for an efficient on-line animator use.

For this purpose, we propose to use a sequential Monte Carlo technique. The resulting algorithm
has the advantage of being at the same time easy to implement, robust and adapted to online
practice. The formulation (3.7) has to be modified to suit a sequential approximation of p(x|z).
Let suppose that constraints z can be decomposed into a set of constraints z0:M ; each zk has to
be satisfied at point of time k. Typically, this can be translated into a progressive hardening of
the kinematic constraints. Then p(xk|z0:k) is expressed using p(xk−1|z0:k−1) (k ≤M):

p(xk|z0:k) =
p(zk|xk) p(xk|z0:k−1)∫
p(zk|xk) p(xk|z0:k−1) dxk

, (3.8)

where

p(xk|z0:k−1) =

∫
p(xk|xk−1) p(xk−1|z0:k−1) dxk−1 (3.9)

To derive this expression, one has to suppose the hidden state process x0:M to be Markovian. The
new involved components are : the motion prior, now described as an evolution prior p(xk|xk−1)
and an instantaneous constraint likelihood p(zk|xk). Those two densities define the model of the
system.

Doing an analogy between constraints and observations, we can recognize here a filtering prob-
lem. The filtering recursion (3.8 - 3.9) yields closed-form expressions only for specific cases. The
most well-known case is the Kalman filter for linear Gaussian models. Non optimal extensions
of the Kalman filter, based on a Gaussian approximation of the filtering distribution (Extended
Kalman filter, Unscented Kalman filter [105], [106]), have been devised for non linear systems. In
the general multi-modal case, such an approximation is not satisfactory. For general non-linear
non-Gaussian models, the recent development of sequential Monte Carlo approaches [107, 108] has
lead to new efficient algorithms. Before commenting upon the specific model we propose for inverse
kinematics, we describe these methods in the next subsection.

3.1.2.2. Sequential Monte Carlo methods

The idea behind sequential Monte Carlo algorithms is very simple. These techniques propose
to implement recursively an approximation of the sought density p(xk|z0:k) (called the filtering
distribution). This approximation consists in a finite weighted sum of N Diracs centered on
hypothesized locations in the state space – called particles – of the initial system x0. At each

particle x
(i)
k (i = 1 : N) is assigned a weight w

(i)
k describing its relevance. This approximation can

be formulated with the following expression:

p(xk|z0:k) ≈
∑
i=1:N

w
(i)
k δ

x
(i)
k

(xk). (3.10)

Assuming that the approximation of p(xk−1|z0:k−1) is known, the recursive implementation of

the filtering distribution is done by propagating the swarm of weighted particles {x(i)
k−1, w

(i)
k−1}i=1:N .

At each time instant (or iteration), the algorithm can be decomposed into three steps :
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1. exploration of the state space: The set of new particles {x(i)
k }i=1:N is drawn from an ap-

proximation of the true distribution p(xk|z0:k), called the importance function and denoted

π(xk|x(i)
0:k−1, z0:k). The closer the approximation to the true distribution, the more efficient

the filter.

2. evaluation of particles relevance using the observations (i.e. calculation of the new importance

weights): The importance weights w
(i)
k account for the deviation w.r.t. the unknown true

distribution. To maintain a consistent sample, the importance weights are updated according
to a recursive evaluation as the new measurement zk becomes available:

w
(i)
k ∝ w

(i)
k−1

p(zk|x(i)
k ) p(x

(i)
k |x

(i)
k−1)

π(x
(i)
k |x

(i)
0:k−1, z0:k)

,
∑
i=1:N

w
(i)
k = 1. (3.11)

3. mutation/selection of the particles: From time to time, it is necessary to perform a resam-
pling step. This procedure aims at removing particles with weak normalized weights, and
multiplying particles associated to strong weights, as soon as the number of significant par-
ticles is too small. Consequently, resampled particles tend to be concentrated in areas where
important features exist.

These three steps (sampling / calculation of the importance weights / resampling) constitute
the general framework of sequential Monte Carlo filter. Then, different instances of this general
algorithm can be defined according to the choice of the importance function and/or the choice of the
resampling strategy (see [108]). In particular, the simple method we use is built with the following

rules: (a) to set the importance function to the evolution law, i.e. π(xk|x(i)
0:k−1, z0:k) = p(xk|x(i)

k−1)

; (b) this implies the calculation of the weights using w
(i)
k ∝ w

(i)
k−1 p(zk|x

(i)
k ). The application of

this algorithm for inverse kinematics problem is described in the next section.

3.1.3. SMCM for Inverse Kinematics

In this section we present the inverse kinematics filter. After defining our notations in a first
part, the second part describes the design of motion prior and likelihood when modeling the inverse
kinematics problem. The last part is dedicated to the corresponding algorithm.

3.1.3.1. Notations

Let consider a kinematic chain parameterized by a vector of rotations. Each rotation, expressed
as a unitaryquaternion, corresponds to one joint and may have one, two or three degrees of freedom.
Quaternions lives on the hypersphere S3. We denote φ(q ; m,Σ) the Gaussian quaternionic density
of variable q. This density is called QuTem distribution in [90]. It corresponds to the Gaussian
distribution of covariance Σ in the tangent space at the quaternion mode m wrapped onto a
hemisphere of S3 [90].

To each joint is associated a quaternion and its QuTem distribution. The covariance matrix
of this QuTem distribution designs the kinematic properties of the joint (number of degrees of
freedom). This is depicted figure 13 where realizations on S3 for three different covariance values
of this distribution are shown. For instance, modeling a one degree of freedom (DOF) joint amounts
to consider only one possible axis of rotation (and its opposite). This property is modeled by a
diagonal covariance matrix with only one non-zero eigenvalue (Figure 13.c). Generalizing this
idea, a 2 DOF joint will exhibit a diagonal covariance matrix two non-zero eigenvalues and full
ball-and-socket joint will have three non-zero eigenvalues. This system allows to model for instance
one DOF joint with a small variations allowed on the remaining DOF (just as in the human body
where the biomechanical nature of the joints allow this), provided that the two other eigenvalues
are much more smaller (the example of Figure 13.c is a good illustration of this). Appendix A
details how to sample from the QuTem distribution.
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Chapter 3. Motion control: how to use data

Figure 13.: Quaternion distribution In this figure the equivalent representation axis–angle of a quater-
nion is adopted. Points on S2 represent a rotation axis while the varying color stands for
the rotation angle along the axis; 1000 samples over a QuTem distribution on S3 with
(a) σ1 = σ2 = σ3 = 1 (3 DOF joint) (b) σ1 = σ2 = 1, σ3 = 0.05 (2 DOF joint) (c)
σ1 = 1, σ2 = 0.1, σ3 = 0.05 (1 DOF joint)

Supposing that each quaternion of the kinematic chain follows a Qutem distribution, the distri-
bution of the quaternion vector Q is denoted Φ(Q ; M,Σ). We assume that this last distribution
defines a Gaussian distribution over the pose space SO(3)n. M and Σ are deduced from the QuTem
parameters.

3.1.3.2. Model design

The goal of inverse kinematics is to estimate the value of the vector Q such that the resulting
kinematic chain satisfies the kinematic constraints and the joint limits. One may also want to fix
other constraints such as balance constraints for instance. As said before, we propose to reformulate
this problem in a filtering framework. The rotation vector is now seen as a random variable evolving
in time until the final task is reached. The notation Qk describes the random vector of quaternions
at iteration k.

We choose to simply set the state vector xk of the filter as the rotation vector Qk. The motion
trajectory x0:M = Q0:M will be the result of our algorithm, under the assumption that the opti-
mization iteration time k also corresponds to the motion decomposition time. The sets of various
constraints are taken into account in the design of the evolution prior and likelihood.

Evolution prior The evolution prior p(xk|xk−1) carries the a priori knowledge about the intrinsic
nature of the motion, as well as biomechanical constraints. As in the kinematic framework no a
priori motion has to be verified, our model is simply a random walk model under the condition
that the new sampled pose xk enforces the joint limits of the skeleton. We propose the following
general design:

p(xk|xk−1) = random walk \ xk enforces joint limits

This is equivalent to assume that the configuration remains constant along time. Angular displace-
ments are only supported by a Gaussian noise model. This leads to:

p(xk|xk−1) = Φ(xk ; xk−1 , Σx) \ xk enforces joint limits

The covariance matrix Σx contains the kinematic properties of each joint as explained in sec-
tion 3.1.3.1. The following method is applied to sample from (3.12). Once a sample is drawn
from Φ, an accept/reject procedure is applied to satisfied the condition on the joint limits: while
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sampling over the current configuration, if a joint does not enforce its corresponding limit, a new
orientation value is sampled. This rejection/acceptance process guarantees that no impossible con-
figurations will be considered. A drawback of this method is that it is not totally efficient (and
may lead to the worst, but highly improbable, case of endless rejection).

Also, it is possible to use here the dynamical model learned from on motion. One can use the
LTI model presented in equation 2.17. In this sense, the optimization is also data-driven, and the
produced trajectory matches at best the learnt motion dynamic.

Likelihood The likelihood calculation p(zk|xk) gives an evaluation on how good is the configura-
tion with respect to the kinematic constraints that have to be satisfied. It is designed as:

p(zk|xk) = exp(−||distance to task||Σz)
∏

other constraints

where |d|Σ is the Mahalanobis distance dtΣ−1d, and Σz is the covariance of the noise.

As an example, If a unique kinematic constraint is imposed, the likelihood of a given state xk
is evaluated by calculating the distance between the end effector configuration – computed using
the forward kinematic operator H described in equation (3.1) – and the desired configuration Pd.
The likelihood model is therefore:

p(zk|xk) ∝ exp (−||d(Pd , H(xk))||Σz) (3.12)

where d(., .) is the distance function in the task space.

Other constraints may be added into the model. The methodology to do so is the following:
each constraint has to be expressed in terms of a cost function whose value is 0 if the constraint is
satisfied and large otherwise. Supposing that j different constraints (assumed to be independent)
are modeled by the cost functions C1 . . . Cj , associated to noise covariances Σ1 . . .Σj then the
likelihood is defined as:

p(zk|xk) ∝ exp(−|distance to task|Σz).
∏
i

exp(−|Ci|Σi
) (3.13)

Examples of constraints and their corresponding cost function are given in the results Section. Let
us finally note here that setting the amplitude of the noises with respect to each constraint can be
seen as a discrimination between important and optional constraints, which is related in a sense
to the prioritization of constraints in traditional inverse kinematics. The corresponding algorithm
can be found in [96] .

3.1.4. Some results

We show some results obtained with our method. Additional results can be found in [109] . We
consider a complete human figure with 40 joints that were designed to respect predefined kinematic
properties (number of degrees of freedom and joint limits). Snapshots of a resulting animation are
shown in Figure 14. For this example, we added to the state space the root position (the pelvis in
our case) so that the whole figure can move in the 3D space. For the cartesian coordinates of this
link, an additive Gaussian noise was applied (conversely to the multiplicative quaternionic noise
presented in the previous section). The feet were constrained to stay on the floor, while the left
and the right arms were given two different targets. It is interesting to notice in the produced
animation how the motions of root of the body contribute to the solution.

In this other example the considered chain is a forearm with a hand. The elbow, as well as the
wrist, have been given 3 DOFs. The fingers are constituted of 3 segments. The basis of each fingers
has 2 DOFs allowing abduction/adduction and flexion/extension. The remaining joints are set to
have only one degree of freedom. In this animation, each fingertip is given a target (empirically
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Figure 14.: human figure animation In this animation, feet are constrained to lie on the floor,
the right hand is linked with the yellow dot while the left arm has the blue dot as
target. Notice how the knees bend for the task to be achieved

determined). Two sets of targets are chained together during the animation. Figure 15 shows
images from this animation. In order to increase the realism of the produced animation, we added
the biomechanical constraint linking the last two joints of each fingers except the thumb:

θlast =
2

3
θprevious

where θ stands for the flexion/extension angle. At this point, let us note the difficulty of handling
such a kinematic configuration and the previous constraint in a classical numerical inverse kine-
matics scheme where this problem would be decomposed into several problems (corresponding to
several distinct linear chains) with likely conflicting solutions. Conversely with our framework this
problem is treated as a global optimization problem.

Figure 15.: Hand animation In this animation the fingers were given a target position repre-
sented as colored dots in the images. The two strips correspond to two different tasks
that were chained along the animation.

3.2. Incorporating a dynamic prior to the motion production

In this Section, a methodology, developed in [96] , that allows to generate new motion from a
dynamic prior expressed in the form of a Gaussian process (described Section 2.3.2) is proposed.

Our method can synthesize new motions that share the same statistics up to order two of a ref-
erence motion. Assuming that the inherent variability of a motion is a realization of a stochastic
process, our method first learns its structure by treating it as a Gaussian process. Then, new real-
izations of motions can be obtained by stochastic simulation, which guarantees that the obtained
motion has the correct statistics. Nevertheless, this is not sufficient to assert the correctness and
realism of the motion. The aim of the proposed method is to allow to add kinematic constraints
to the system. The contributions of the method are in this direction and are twofold: i) using a
double kriging operation, we show how it is possible to constrain the stochastic simulation to reach

38



3.2. Incorporating a dynamic prior to the motion production

given values at given instants, which amounts to keyframe the simulation ii) a novel real-time
algorithm performing sequentially is proposed to conduct this operation.

This method, depicted in Figure 22, starts by applying a dimensionality reduction technique to
the data.

Figure 16.: Overview of the proposed method. During an offline phase, an example motion is first decomposed
with principal geodesic analysis. The resulting trajectories are used to estimate the hyperparameters
of a given covariance function. At runtime, the conditional stochastic simulation uses this covariance
function, a random generator and some constraints to produce a new motion.

3.2.1. Prediction from Gaussian processes

Given p observations X(t1), . . . , X(tp) at times t1, . . . , tp of a given Gaussian process with known
mean and covariance function C, one can look at the prediction of X(t) for a given time t. In this
section, we show that the Kriging approach and the Gaussian Process regression method solve this
problem in the same way.

3.2.1.1. Kriging

Kriging [110] is a linear interpolation method issued from the geostatistical community. Mukai
and Kuriyama [14] used this technique in the context of computer animation to find an optimal
set of weights for blending motions. In the kriging approach, the estimation X̂(t) is expressed as
a linear combination of the p known values X(t1), . . . , X(tp) as follows:

X̂(t) =

p∑
i=1

λi(t)X(ti), (3.14)

where λ(t) = (λ1(t), . . . , λp(t))
T stands for the kriging coefficients.

It is possible to express those coefficients with the following equation:

λ(t) = Σ−1
(p)Σ(t), (3.15)

where:

Σ(p) =

C(t1, t1) · · · C(t1, tp)
...

. . .
...

C(tp, t1) · · · C(tp, tp)

 (3.16)

and:

Σ(t) = (C(t, t1), . . . , C(t, tp))
T . (3.17)
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These coefficients are obtained under the constraints that the estimation is unbiased and that the
variance of the kriging error given by:

V ar(X(t)− X̂(t)) = C(t, t)− ΣT(t)Σ
−1
(p)Σ(t) (3.18)

is minimized.

3.2.1.2. Gaussian Process regression

A similar approach is known as Gaussian Process (GP) regression in the machine learning com-
munity and vision communities [111]. The GP approach aims at solving the same prediction
problem: given p observations X(p) = (X(t1), . . . , X(tp))

T , one looks at the estimation of X(t) at
a given unobserved time t. GP’s approach solve this problem using the assumption that the process
is Gaussian, and building the conditional distribution p(X(t)|X(p)) which is itself Gaussian. The
joint distribution of X(t) and X(p) writes indeed:[

X(p)

X(t)

]
∼ N

(
0,

[
Σ(p) ΣT(t)
Σ(t) C(t, t)

])
(3.19)

where Σ(p) and Σ(t) are defined by (3.16) and (3.17).

The conditional distribution p(X(t)|X(p)) is then obtained from a little matrix algebra [111], and
it comes that this distribution is Gaussian described by:

p(X(t)|X(p)) ∼ N (ΣT(t)Σ
−1
(p)X(p), C(t, t)− ΣT(t)Σ

−1
(p)Σ(t)). (3.20)

The mean ΣT(t)Σ
−1
(p)X(p) of this distribution is clearly the same as the kriging estimate in equation

3.14, and the variance C(t, t) − ΣT(t)Σ
−1
(p)Σ(t) corresponds to the variance of error given by (3.18).

The Gaussian Process regression is then another expression of kriging.

3.2.2. Stochastic simulation

In the following we assume that Z is a Gaussian process with mean µ and covariance function
C. The objective is to simulate trajectories Z(sim) = (Z(sim)(t1), . . . , Z(sim)(tN )) of length N of
this process. The trajectories have to be independant and respect the statistical properties of Z:

E(Z(sim)(t)) = µ ∀t, (3.21)

Cov(Z(sim)(t), Z(sim)(t′)) = C(t, t′) ∀t, t′. (3.22)

Knowing the covariance function C, the covariance of a trajectory Z(sim) is then a matrix denoted
Σ(N) of size N ×N , with:

Σ(N) =

C(t1, t1) · · · C(t1, tN )
...

. . .
...

C(tN , t1) · · · C(tN , tN )

 (3.23)

3.2.2.1. Non-conditional stochastic simulation

In this section we present how to simulate a trajectory Znc respecting the properties (3.21-
3.22). One possible and simple simulation method is based on the Cholesky decomposition of the
covariance matrix Σ(N). We first sample a vector y = (y1, . . . , yN )T composed of N independant
realizations of the standard Gaussian distribution, so that y ∼ N (0, I(N)). Then we set:

Znc = L(N)y + µ, (3.24)
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3.2. Incorporating a dynamic prior to the motion production

where L(N) is obtained from the Cholesky factorization of the covariance matrix: Σ(N) = L(N)L
T
(N)

(provided that Σ(N) is positive semi definite). From this decomposition it is easy to verify that
E(Znc) = µ and Cov(Znc) = Σ(N).

One possible concern with this method is, from a computational point of view, the Cholesky
factorization of Σ(N) which is o(N3). However, this operation can be conducted only once when
Σ(N) is known.

3.2.2.2. Conditional Stochastic Simulation

In some cases, it can be interesting to force the simulations to reach given values Z(t′1), . . . , Z(t′p)
(experimental data, keyframes specified by animators, etc.) at given time instants t′1, . . . , t

′
p. In

this section we explain how to respect these constraints while maintaining properties (3.21-3.22).

One could think of simulating new trajectories using the kriging estimate (equ. (3.14)) or
sampling from the posterior defined by the GP regression (equ. (3.20)), for all times t between
observed values [111]. Resulting trajectories would then reach observed values. However, these
methods do not create trajectories respecting the property (3.22). The covariance structure is
indeed not respected, and simulated trajectories are then smoother than those simulated with the
right covariance structure C.

Note that recently, a method to sample new trajectories solving a global maximum a posteriori
estimation conditioned to observed valued has been proposed by [23]. However, with such an
approach there is no guarantee neither that the statistical properties of the reference motion are
preserved.

A possible way to obtain trajectories that both respect the required covariance property and
reach fixed values is to use a double kriging operation [112]. Let us recall that the simple krig-
ing allows to find an estimate Ẑ(t) at time t that differs from the unknown Z(t) by the kriging
error Z(t) − Ẑ(t). This error is unknown but can be simulated by means of a secondary pro-
cess having the same properties as Z. A trajectory Znc = (Znc(t1), . . . , Znc(tN )) is first simu-
lated using the non-conditional simulation technique described in the previous subsection. A new
trajectory Ẑnc = (Ẑnc(t1), . . . , Ẑnc(tN )) is then obtained by the kriging approach, from all val-
ues Znc(t′1), . . . , Znc(t′p). The resulting kriging error Znc(t) − Ẑnc(t) for each t is finally added

to the trajectory Ẑ = (Ẑ(t1), . . . , Ẑ(tN )) obtained from the kriging based of the given values
Z(t′1), . . . , Z(t′p):

Zc(t) = Ẑ(t)︸︷︷︸
Kriging
estimate

+Znc(t)− Ẑnc(t)︸ ︷︷ ︸
Kriging

error

∀t (3.25)

We can directly observe that the trajectory Zc goes through fixed values Z(t′1), . . . , Z(t′p), since

the kriged trajectory Ẑnc goes through fixed values Znc(t′1), . . . , Znc(t′p):

Zc(t′i) = Ẑ(t′i) + Znc(t′i)− Ẑnc(t′i) (3.26)

= Z(t′i) ∀t′i ∈ t′1, . . . , t′N (3.27)

Moreover, it can be proved that Zc respects both properties (3.21) and (3.22). The resulting
simulation is then a sample from a Gaussian process with the required covariance structure C, and
that is constrained to go through particular values Z(t′1), . . . , Z(t′p).

The algorithm that sums up this conditional simulation technique is the following:

The main computational time is spent in the Cholesky decomposition since this operation is
o(N3). When N is large, this can become a problem. In the context where N is not known, or if a
continuous output stream is desired (in order to produce a virtually infinite random sequence), an
alternative algorithm can be used. Let us first remark that the Cholesky decomposition produces
a matrix L which is lower triangular. This mean that the p-th output of the simulation depends on
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Algorithm 3.1: Compute trajectory Zc = (Zc(t1), . . . , Zc(tN ))

Require: Covariance structure C of the process
Require: Z(t′i) at t′i = t′1, . . . , t

′
p

1: From C compute the N ×N covariance matrix Σ(N)

2: L(N) = Cholesky(Σ(N))
3: Simulate Znc using L(N) with equation (3.24)

4: Estimate trajectory Ẑnc from Σ(N) and fixed values Znc(t′i) following the kriging equation (3.14)

5: Estimate trajectory Ẑ from Σ(N) and fixed values Z(t′i) following the kriging equation (3.14)

6: return Zc(t) = Ẑ(t) + Znc(t)− Ẑnc(t) ∀t = t1, . . . , tN

the last p−1 elements that were drawn from the standard Gaussian distribution. This p-th output
can thus be computed provided that the p-th line of L and the past elements are known. However,
it is noticeable that the Cholesky decomposition has a recursive formulation, that makes possible
to compute the p-th line from the p − 1 previous lines in the matrix. Also, since the covariance
function is assumed to be neglectful after a given distance ρ (corresponding to the length-scale), we
can reasonably assume that the influence of known values Z(t′i) is neglectful whenever |t′i− t| < ρ.
By restraining the computation of each element Zc(t) of the output as a function of sufficiently
near Z(t′i), and by updating iteratively the p-th line of the Cholesky decomposition, it is possible
to design an algorithm that produces sequentially a correct output:

Algorithm 3.2: Compute trajectory Zc sequentially
Require: Covariance structure C of the process
Require: Z(t′i) at t′i = t′1, . . . , t

′
p

1: y← FIFO(2ρ) {y has a FIFO structure of size 2ρ}
2: Znc ← FIFO(2ρ) {and so Znc}
3: t← 1
4: repeat
5: Lt

(ρ)
= updateCholesky(L0:t−1

(ρ)
)

6: y← push(yt ∼ N (0, 1))
7: Znc ← push(Lt

(ρ)
y)

8: Estimate trajectory Ẑnc from C and fixed values Znc(t′i) (eq (3.14)), ∀t′i such that |t′i − t| < ρ

9: Estimate trajectory Ẑ from C and fixed values Z(t′i)(eq (3.14)), ∀t′i such that |t′i − t| < ρ

10: return Zc(t) = Ẑ(t) + Znc(t)− Ẑnc(t)
11: t← t+ 1

12: until needed

In this algorithm, updateCholesky allows to compute the t-th line Lt(ρ) of the Cholesky decompo-
sition from all previous lines.

3.2.3. Application to character animation

We show two possibilities to exploit conditional stochastic simulation in the context of character
animation. Other examples can be found in [96] . The first example shows how conditional
simulation can be used to reconstruct missing or damaged parts of a motion; the second one
presents possible applications in motion control.

3.2.3.1. Motion reconstruction

It is usual with traditional motion capture devices to encounter markers occlusions that alter the
quality of the motion reconstruction. With markerless motion capture this problem is even more
present as far as the complete pose estimation can fail for a more or less short period of time [113].
The objective is here to reconstruct the missing parts of the signal. Most of the classical approaches
perform linear or spline interpolation between the known parts of the motion. In the case of large
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Figure 17.: Hole filling using conditional stochastic simulation: in this example the length-scale of the
covariance function is around 10. When the size of the hole is 40, the simulation is very constrained
and the variability is limited. Oppositely, when the hole is larger, our method provides different results
with a greater variability, whereas the classical linear or kriged interpolate flatten the signal

holes, those types of interpolation behave badly as they tend to produce a continuous and smooth
output which is generally different from the original motion dynamics. Our method first learns
the covariance structure on the known parts of the motion and then simulates the unknown part
of the motion conditioned to all known single frames.

Figure 17 presents an illustration of the reconstruction for two different hole lengths. One can
see that for small holes, the variability between the different simulations proposed by our method
is restrained, and that results are close to a simple kriging interpolation. For longer holes, the
variability is bigger and results differ from the kriged solution. Far from observations, the kriging
converges indeed toward a mean estimate, flattening the reconstructed part. On the other hand,
each of the different trajectories simulated by the conditional approach is statistically coherent
with the known part of the motion (which means here that the covariance structure of the whole
reconstructed signal is the same than the one learned from the known part). Those proposed
solutions might not correspond to the real motion, but can be used as credible, potential solutions.

3.2.3.2. Exemplary based motion control

We show here how conditional simulation can be efficiently used in the context of motion control.
By motion control we mean that, given an exemplar motion, a new motion can be produced along
with a set of kinematic constraints, and eventually timing information. Conditional simulation
allows to derive an efficient, real-time motion synthesis process, which overview is depicted in Fig-
ure 18. Kinematic constraints, such as hands or feet positions are added to the system, along with
timing information. The character pose is solved for by applying PGA-based Inverse Kinematics,
which directly gives the corresponding coordinates in the PGA space. Then, a new motion is
simulated over a time interval which is centered around the constraint time, and which length is
twice the maximum among all estimated length-scales λi (which corresponds to the range of time
dependance in the covariance model estimated for each PGA component). This interval contains
indeed all poses that present significant time dependance with the new constraint and that have
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then to be recomputed. This simulation is conducted conditioned to every other unchanged poses
in the motion. This operation can eventually be processed sequentially.

Figure 18.: Using conditional simulation in the context of motion control. A PGA-based Ik solver
provides conditions directly in the PGA space. Along with the current configuration and timing
information, a new motion can be generated

Figure 19 shows an example of this process. A baseball catch (motion 20 from subject 143 in
CMU database) was used. A new catch pose is computed with PGA-based IK (figure 19.a). A new
motion is then computed in its vicinity (the first PGA component is shown in figure 19.b). Two
image strips showing rendering with a skinned character of both original and simulated sequences
are shown (figure 19.cd).

a c

b d

Figure 19.: Motion control. This example handles a baseball catch motion. Figure (a) presents the original catch
and a new catch generated by PGA-IK (applied on both arms). Figure (b) shows the first component
of the PGA with its new simulated part. Notice the time interval over which the simulation has been
performed. Figures (c) and (d) illustrate respectively the original motion and the synthesized motion
on four frames.

3.3. Composition methods

We will now describe an animation system dedicated to the production of a comprehensible
signed language sequences. This system was created in the context of the Signcom project [62]
. The SignCom interaction system is divided into two parts: an off-line process of data storage
and on-line data retrieval for real-time interaction. The originality of the work presented here
originates in the methodology used for data storage and in the streaming method used to retrieve
motion data. Our system provides fast and efficient motion retrieval during the animation process,
taking into consideration the spatial and temporal aspects of signed language motion described
above. The nature of the different types of information encoded in and by signs makes it necessary
to store data in two different structures, namely a semantic database for textual annotations, and
a raw database for motion capture data.
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The process begins with a list of motion elements paired with timing information, retrieved from
two different databases that contain semantic (annotation) and raw (motion capture) data (Section
3.3.1). Then our multichannel composition system builds a new motion expressed as a sequence of
skeletal postures (Section 3.3). These postures contain information that encodes body and hand
configurations as well as facial markers. Next, the facial markers are turned into a new geometric
facial configuration by means of blendshapes and a learning method (Section 3.3.3); eye animation
is also inferred from this skeletal posture (Section 3.3.4). Finally, the rendering engine computes
the final avatar image.

3.3.1. Data Coding and Retrieval

As presented in the beginning of this document, the SignCom interaction system is divided into
two parts: an off-line process of data storage and on-line data retrieval for real-time interaction.
The originality of the work presented here originates in the methodology used for data storage
and in the streaming method used to retrieve motion data. Our system provides fast and efficient
motion retrieval during the animation process, taking into consideration the spatial and temporal
aspects of signed language motion described above. The nature of the different types of information
encoded in and by signs makes it necessary to store data in two different structures, namely a
semantic database for textual annotations, and a raw database for motion capture data.

Motion
Query

Motion
ID

Motion
Composition

Raw

Database

Semantic

Database

Streaming

Figure 20.: Data retrieval and stream loading system. The semantic database, containing textual
information from the annotation process, is queried first. The motion data correspond-
ing to the obtained results are then streamed to the motion composition process.

As depicted in Figure 20, retrieving data from the databases is divided into two parts. The
first part of the process consists of querying the semantic database, allowing us to extract data
corresponding to a list of MotionIDs. In a nutshell, these MotionIDs represent the canonical index
data structure of a motion element. Each contains the name of the sequence wherein the chunk
occurs, time stamps relative to the beginning of this sequence, (noted as Frame In and Frame Out),
and the involved body parts. This mapping between the annotation and motion data constitutes
the semantic database (Figure 21), which is automatically constructed from an XML hierarchical
description language provided by the annotation tool (ELAN in our case). We emphasize here
the one-to-many nature of this mapping, where any one gloss from the textual annotation can
be associated with several different realizations of the same gesture. As one example, the gloss
COCKTAIL in Figure 21 corresponds to two MotionIDs, 1 and 4.
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Motion 1

Motion 2

Motion 3

Motion 4

Motion 5

Motion 6

Motion 7

Motion n

COCKTAIL

FRUIT

JUS

KIR

PAILLE

VERRE

VERSER

VODKA

List of Motion Annotation Map

Motion ID:

Name,
Body Part,
Frame In,
Frame Out

Figure 21.: The semantic database is a one-to-many mapping between annotated glosses and Mo-
tionIDs, which are canonical index data structures of motion elements.

In our application, retrieving data from the semantic database is achieved by specifying multiple-
condition queries, the conditions of which can be keywords and/or body parts, and which return
one or several MotionIDs. Secondarily, the query results are interpreted so that each MotionID
leads to accessing the raw database and rendering the corresponding motion frames.

Raw motion database. Motions are traditionally stored on a hard drive in various format
(.bvh, .fbx, .asf/amc, etc.). Interpreting these files amounts to building an internal representation
of the motion in CPU memory. In our system, this internal representation contains an association
of the hierarchical structure (commonly called a bindpose), and a list of relative transformations
for each joint. The transformation for the root joint contains joint position and rotation (expressed
in quaternions), while the transformation for the rest of the joints contains only a rotation. The
time needed to read a motion file into this internal representation depends naturally on the com-
plexity of the parser and the amount of geometrical computations, and is usually far from being
negligible, preventing dynamic loads in our interactive application. Motion files are thus loaded
and interpreted one time, and stored as a sequence of bits in our database, having written our own
serialization process for this purpose.

Traditional databases function with a set of pair-valued data: one key (preferably unique) is
associated to the useful data (in our case the motion). The simplest way to proceed is to associate
for instance the whole motion file with a unique key, which can be chosen as the name of the original
data file. The whole sequence is then handled by the database manager, and stored on the hard
drive. This approach assumes that when retrieving the motion, all the data will be reconstructed
in the CPU memory. In the context of a real-time animation controller, where small pieces of the
motion are dynamically combined to achieve a desired goal, this approach is no longer efficient.
We have designed our database therefore to handle a different data representation, allowing us to
retrieve any part of a motion corresponding to a given annotation element (Figure 22).

Decomposing motions in the database is innovative because only a small portion of the motion
(associated to a query result) is reconstructed in the memory. However, in traditional databases,
data decomposition generally yields an increasing number of entries, which most of time increases
the search time and the index size. Yet in our case we consider each motion to be a list of transfor-
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Frame In Frame Out
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LeftElbow

LeftShoulder

Time
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Sequence address + Joint Position + 
Frame In * Size of Transformation

Joint Transformation

LeftArm Selection

Path to Find Memory Position

Figure 22.: Storage and data access in the raw database

mations with given sizes; therefore it is easy to find the memory address of a list of transformations
as a linear combination of the sequence address, joint offset, and time stamps, as illustrated as a
path in Figure 22.

To complete the access to the raw motion capture data, we have developed a streaming system
which loads the motion to animate in a fragment-by-fragment manner during the animation process
(a fragment being a small set of transformations), and with regards to the need of the motion
composition system. This avoids costly access to large elements which could result in a drop in
frame rate during the execution of the application, and gives the process a small memory footprint.
Computationally, this allows the interactive nature of this animation system to move forward, since
database search and data load time become negligible during animation.

3.3.2. Motion Composition

From our corpus of mocap data, our animation system computes a skeleton using a pre-defined
morphology of joints and bindposes, which can be represented hierarchically as a tree of joints
or articulations. Within the skeleton, we have identified sub-skeletons composed of potentially
non-exclusive subsets of joints, including the upper body, lower body, arms, hands, head, etc. A
controller associated to each sub-skeleton can set the system in motion using different techniques,
i.e., motion playback, keyframe interpolation, inverse kinematics, etc.

The motion composition process can be divided into spatial and temporal composition processes.
The spatial composition process uses motions computed for each controller’s sub-skeleton, com-
bining them in a priority scheme that depends on the desired animation; generally, the smaller
sub-skeletons have a higher priority level, as shown in Figure 23. Temporal composition occurs for
the set of controllers attached to the skeletal elements. Each controller has its own timing interval
and a playback style (e.g., play once, repeat, reverse, etc.), and the blender process is responsible
for blending the motions.

Figure 23 is a graphical representation of how we organize blenders and controllers during com-
position. Finally, we have developed a simple script language in order to easily specify different
animation scenarios, containing controller and blender information associated with time stamps.

3.3.3. Facial Animation

Facial animation by blendshapes is a popular technique in the animation community, and we
have chosen likewise. Following this method, the animation system blends several key facial con-
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Figure 23.: Blenders are arranged hierarchically in the system and contain a series of controllers to
animated different sections of the body. Skeletons are computed according to priority
of controllers and, over time, the engine produces a stream of fluid motion.

figurations, manually designed by an animator, to produce appropriate facial animations. In order
to choose the blending weights at each moment, the system uses the facial mocap data contained
in the currently-processed skeleton, as described below.

Cross-mapping of facial mocap data and blendshape parameters. The process of cross-
mapping mocap data and blendshapes parameters can be problematic for the animation process: it
is often challenging to quantify the relation between facial mocap data and the animation param-
eters of a blendshape. Traditional approaches to solving this problem identify pairs of mocap data
and blendshape parameters that are carefully selected and designed by the animator [60]. These
pairs are then used in a learning process that determines the selection of corresponding blendshape
parameters from new mocap data input values. More current methods usually rely on radial basis
functions and kernel regression to achieve these steps [114, 115, 60, 116].

However, such methods have several drawbacks: a number of localized basis functions have to
be chosen prior to the learning process, and the result is conditioned by the quality and density
of input data. Thus, noisy input often yield bad estimates, this being known as the classical
over-fitting problem.

In our work, both the body and facial data were recorded at the same time, and the positions
of the facial markers in particular were observed to be quite noisy, resulting in marker inversions.
For these reasons, we consider the problem as a probabilistic (Bayesian) inference problem and use
a separate learning technique based on Gaussian Process Regression. In our approach, unknown
sites correspond to new facial marker configurations (as produced by the previously described
composition process), and the corresponding estimated value is a vector of blendshape weights.
Since the dimensions of the learning data are rather large (123 for marker data and 50 for the
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total amount of blendshapes in the geometric model we used), we rely on an online approximation
method of the distribution that allows for a sparse representation of the posterior distribution [117].
As a preprocess, facial data is expressed in a common frame that varies minimally with respect
to face deformations. The upper-nose point works well as a fixed point relative to which the
positions of the other markers can be expressed. Secondly, both facial mocap data and blendshape
parameters were reduced and centered before the learning process.

Figure 24 shows an illustration of the resulting blended faces along with the different markers
used for capture.

Figure 24.: Results of the facial animation system. Some examples of faces are shown, along with
the corresponding markers position projected in 2D space.

3.3.4. Eye Animation

Our capture protocol was not able to capture the eye movements of the signer, even though it
is well-known that the gaze is an important factor of non-verbal communication and is of assumed
importance to signed languages. Recent approaches to model this problem rely on statistical
models that try to capture the gaze-head coupling [118]. However, those methods only work for a
limited range of situations and are not adapted to our production pipeline.

Alternatively we use a heuristic synthesis model that takes the neck’s motion as produced by the
composition process as input and generates eye gazes accordingly. First, from the angular velocities
of the neck, visual targets are inferred by selecting time instants when the velocity passes below a
given threshold for a given time period. Gazes are then generated according to those targets such
that eye motions anticipate neck motion by a few milliseconds [119]. This anticipatory mechanism
provides a baseline for eye motions, to which glances towards the interlocutor (camera) are added
whenever the neck remains stable for a given period of time. This ad-hoc model thus integrates
both physiological aspects (modeling of the vestibulo-ocular reflex) and communication elements
(glances) by the signer. Figure 25 shows two examples of eye gazes generated by our approach.

a b

Figure 25.: The two types of glances produced by our system (a) direct look to the interlocutor
(b) anticipation of the neck rotation
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3.4. Summary

In this Chapter the problem of motion control and synthesis was exposed. Three ways of produc-
ing new unobserved motions were presented, with different level of data-models coupling. The first
one was a new inverse kinematic methods, which allows to integrate prior knowledge on the motion
or likelihood of the poses in a Bayesian inference setting, but which can be used without any prior
knowledge. The second one is based on conditional stochastic simulation, which firstly models the
motion as a stochastic process, and then provide a way to sample new motion realizations under
user specified constraints. The last presented method is far more close to the data, in the sense
that it produces a new motion as a combination of existing motions. Here, the use of semantic,
high-level information, to conduct this composition was exposed.
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4
Perspectives and ongoing works

Regarding the different requirements exposed in the previous Section, several unresolved com-
puter animation problems are presented here. Those problems are not particularly exclusive to
the animation of virtual signers, and can address more widely general virtual character animation
problems.

Evaluation and perceptive measures. The evaluation of the proposed animation methods is
a crucial point to assess the quality of the produced animations. We have conducted some user
studies [120, 62] , but we acknowledged that the validation of the animation protocols is far from
sufficient. In the case of the virtual signer [62] , the user study has revealed a lot of defects in our
signer, mostly because of its graphical appearance and because of unachieved finger contacts in
hand poses. This establish the fundamental problem of how to decouple and evaluate separately
the graphical content and the animation methodology [121]. Indeed, what makes a motion being
a realistic motion still needs to be defined, but it is clearly a combination of visual appearance
details and realistic temporal trajectories. New evaluation methodologies should be designed in
this direction to handle properly this two aspects. Also, most of the studies on visual perception
of motions have focused either on the naturalness (is a motion plausible [122] ? Is it physically
realistic [123] ?) or the perception of diversity [124, 125]. SL have this advantage to make a
semantic evaluation possible (how much of the discourse has been understood ?).

High frequency full body and facial motion capture. Signs are by nature very dexterous
and quick gestures, that involve at the same time several modalities (arms, hands, body, gaze and
facial expressions). Capturing accurately all these channels with an appropriate frequency (> 100
Mhz) actually pushes motion capture equipment to their very limits. It could be argued that
splicing methods such as [126] would allow to capture independently the different modalities, and
then combine them during a post process phase. However, the temporal synchronization issues
raised by this method seem hard to alleviate. Moreover, asking the signer to perform alone the facial
expressions corresponding to given sentences is also out of reach, since most of the facial mimics
are generally done unconsciously. A parallel could be drawn with non-verbal communication:
could we ask someone to perform accompanying gestures of an unspoken discourse ? Finally, new
technologies such as surface capture [127], that captures simultaneously geometry and animation,
are very attractive, but yet the resolution is not sufficient to capture the body and the face with
an adequate precision, and only very few methods exist to manipulate this complex data in order
to produce new animations.

We have recently started a new project (Sign3D) in this direction together with an enterprise
specialized in motion capture, which aims at capturing the motions of a signer with a high temporal
and spatial resolution. We hope to measure improvements over the last version of our virtual signer
in the acceptability of the system.
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Expressivity filtering. As seen in the previous Section, the spatio-temporal variability of signs
can be used as adjectives, or in a more general way, to inflect the nature of a sentence and enhance
the global expressivity of the virtual signer. It has been shown [120] that temporal alignment
methods [89] can be efficiently used to change the style and expressivity of a captured sentence.
Nevertheless, big variations in style are can not only obtained by changing the timing of gestures,
but most often by the change of spatial trajectories, and sometimes may inflect the entire sentence.
Most of existing methods that build statistical models [30] of gestures may fail for this purpose,
mostly because the style transfer is encoded by higher level linguistic rules, and because pure signal
approaches are insufficient to model this variability. Hierarchical models encoding both a semantic
and a signal level knowledge, would be desirable at this point.

Advanced motion retargeting. Most of the actual motion retargeting techniques focus on the
adaptation of motion to changing the physical conditions of the motion [106] or more frequently
kinematic constraints [128, 129, 130] through the use of inverse kinematic techniques. In the case
of sign language the spatial relations between the fingers and the arms or the head are key elements
for the comprehension of the discourse and should be preserved in the retargeting process. To this
end, the recent work of Ho and colleagues [131] is really attractive, provided that the important
relation between limbs could be preserved by their methods. Yet Its application to sign language
synthesis remains to be explored. Whereas interaction with the floor or objects in the environment
lead to hard constraints which lead to difficult optimization problems and procedures, constraints
in sign language may be more diffuse or expressed qualitatively (e.g. ”the thumb should touch
the palm of the hand”). Algorithms dealing with such fuzzy or high level constraints could be
extremely interesting, both numerically (more degrees of freedom while optimizing) and from a
usability point of view. Finally, since arms motions are involved, a planing phase may also be
required to avoid self collisions. Combined inverse kinematics and planing algorithms could be
used [132], as well as more recent hybrid approaches [133]. Yet, real time algorithms for this class
of problems remain to be found.

This is the subject of the ongoing phd thesis of thibaut LeNaour. In order to solve this problem,
thibaut has started to explore new geometrical representations of the motion [134].

Multichannel combinations. As exposed in [44], the possibility of building new signed utter-
ances by composing selectively pre-exisiting elements of a corpus data is possible. In this option,
not only the spatial coherency should be preserved, but as well the channel’s temporal synchro-
nization:

• spatial coherency. Sign language allows to combine different gesture with different mean-
ings at the same time, thus providing several information in a minimum of gestures. This
combination differs from the classical blending approaches which mix motions together to
produce new ones [61], as far as topological constraints should be preserved in the composi-
tion process. An example is given in Figure 26, where the same pose indicates at the same
time that a dog is looking at (first sign) something while slobbering (sign 2). If both signs
were to be recorded independently, a naive blending operation would fail because the hand
would not anymore be located in front of the mouth. Moreover, as exposed in the previous
Section, every spatialized gestures should be retargeted with respect to the current signing
space. This brings us back to the problem of advanced motion retargeting, but also clearly
reveals that the combination process should be driven by more abstract definition, possibly
of linguistic nature.

• temporal synchronization. It is likely that the different motion elements have not the same
duration. The consequent problem is twofold: i) a common timeline has to be found, even-
tually as the result of a combinatorial optimization, or driven by linguistic rules. Up to our
knowledge though, no existing model of sign language describe such temporal rules or model
the synchronization of the different channels ii) once a correct time plan has been devised,
the temporal length of the motion chunks has to be adapted, while preserving the dynamic of

52



Figure 26.: Combination of two signs (”looking” and ”slobbering”)

the motions. To this end, time warping techniques can be used [89]. However, inter channels
synchronizations may exist (for example between the hand and the arm motions [135]). Those
synchronization schema can be extracted from analysis, but the proper way to introduce this
empirical knowledge in the synthesis process has not been explored yet.
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In this part of the document we switch to a different subject of interest: crowd phenomena.
The study of crowd motions is an important field which gathers multi-disciplinary skills and which
applications cover the production of visual effects, surveillance, urban environmental monitoring,
structure and building simulation and architectural design, sociology and finally people behavioral
analysis.

We recognize in this topic the same duality between analysis and synthesis schemes: most of
the empirical studies on crowds tend to model the behavior of the crowd in order to explain
or predict critical events, and as those models are being built upon observations on the real
world, acquiring valuable information on those types of phenomena calls for dedicated and possibly
automated procedures. Also, the video analysis of people in crowd is of straightforward importance,
to understand single and social behaviors, to detect anomalies and suspicious events or objects in
crowds scenes, to define first-aid and crisis support in areas where big events (stadium, sport
exhibitions, concerts, large shows, political demonstrations..) are organized. This level of analysis
is also greatly helped by a priori knowledges on what is observed (e.g. an abnormal situation will
be defined as the opposite of a normal situation, but how to define normality ?). Hence, most of
the recent analysis methods incorporate a ”model” of the crowds.

Our work in this direction addresses both the analysis and the simulation issues, and as such
belongs to the category of data-driven methods. We will start this chapter by giving a brief state-
of-the-art of existing methods in crowd simulation and control (Section 5.1). Then we will give
the focus on crowd analysis with vision techniques (Section 5.2). Section 5.3 will present more
specifically data-driven approaches in the context of crowd.

5.1. Crowd simulation and control

Simulating a crowd of thousand of individuals is a challenging task. Most of the time, human
crowds exhibit very subtle and specific patterns. The variability of crowd dynamics and behaviors is
a consequence of the diversity of the persons inside it (age, sex, social and psychological attributes),
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as well as the spatial configuration of obstacles and lanes. We first begin by giving the main
approaches of crowd simulation and control, and their potential links with data-driven approaches.
Again, our objective here is not to give a detailed state-of-the-art on the subject. Readers can
refer to good reviews such as [136] or [137].

5.1.1. Crowd simulation

Simulating crowd of individuals has drawn a lot of attention over the past decades for the po-
tential interests of computer graphics, but also for safety engineering or robotics applications.
The different models are commonly divided into two categories: microscopic and macroscopic.
Microscopic approaches tend to model members of the crowds as agents with specific behav-
iors. Sophisticated behaviour models seek autonomous agents endowed with goals and specific
attributes [138, 139], but for a somehow limited number of individuals. Oppositely, their motions
can be the result of simple laws, such as in the seminal work of Reynolds on flocking [140]. Design-
ing and tuning these laws is now known as the steering problem, for which several solutions exist
thanks to different strategies; for examples interacting particles under psychosocial forces [141],
reproducing experimental observations [142], principle of least effort [143] or vision based strate-
gies [144]. The most recent methods allow to simulate large scale crowds at interactive framerates
with convincing emergent behaviors of the groups [145]. Conversely, macroscopic models gen-
erally consider the crowd as a whole and model its dynamic by means of continuum mechanics
equations, allowing analogies with the domain of computational fluid dynamics [146, 147, 148, 149].
This type of modelling works well with dense crowds where the weight of individual decisions is
somehow weakened, but fails to describe realistic interpersonal collision avoidance behaviors or
heterogeneous crowds with individuals exhibiting distinct goals or motivations.

5.1.2. Simulation Control

Controlling a crowd to achieve a given effect is a rather difficult task, mostly because the only
control parameters are those of the simulation model, which are generally not designed for it. Ulicny
and colleagues [150] are the first to describe an interactive tool to design crowd scenes in an intuitive
manner using a brush metaphor. With regards to the control of the pedestrian trajectories, existing
solutions usually assume that individuals are driven by a given steering strategy combined with an
ambient velocity field which is usually referred to as a flow or navigation field [151, 152, 153, 154].
In [152], Jin and colleagues define those fields as a combination of radial basis functions defined
by the user. Park [153] defines control flows attached to special particles which motions can be
keyframed during the simulation. Patil et al. define their navigation field with a sketch based
interface or by extracting flow fields from videos, in a way similar to [155] . Other approaches
consider the spatial relationships of the crowd members (coded as a graph) as an important feature
to preserve, then use spectral interpolation methods [156] or mesh deformation techniques [157] to
edit existing crowd animations.

5.2. Vision-based techniques for crowd phenomena

This section investigates the principal axes carried out by researchers to deal with crowd video
analysis. A full review is out of the scope of this document and for that purpose, we refer the
readers to a good review [158] and to associated references. As mentioned above, the inherent
diversity and complexity of the behavior of a mass of people makes ambiguous the question of
representing and modeling a crowd. In the two last decades, two main strategies have been carried
out by the different authors:

1. representation at the pedestrian level: each individual is an entity/particle driven in a La-
grangian framework. The crowd representation results from the combination of a large
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number of entities. In the following we denote as “Lagrangian” such approaches;

2. the crowd is modeled in a continuous framework related to some scalar/vectorial charac-
teristic quantities (density or displacement field for instance). The governing equations are
represented in an Eulerian context and the individual notion vanishes. We denote as “Eule-
rian” such techniques.

5.2.1. Crowds as a set of individuals

Within this class of method, the scene is modeled as a collection of pedestrians that interact
with their environment (obstacles). In general, the associated analysis techniques rely on low-level
vision (background subtraction, edge and object detection) that enables a human counting and
eventually an action recognition. The former appearance models have been based on low level
features like an edge map [159, 160, 161]. This latter is used afterward within a more advanced
strategy, like a neural network or a probabilistic tracking approach [162], to segment, regroup and
evaluate the number or individuals. In a step forward, some human detection approaches have been
defined at an object level. The humans are first detected with an ad-hoc technique of head or body
recognition. This relies on a model either based on the appearance of the humans (distribution
of some functions based on the luminance) [163, 164, 165], on a 3D body model [165] or on the
velocity of entities [166]. An additional post-processing step for classification (clustering, SVM,
...) enables to count and sometimes to characterize the nature of the motion.

Even if some of the mentioned technique exhibit very competitive results, when a large number
of pedestrians are present in the crowd (> 50), most of the conventional tracking methods (like
Kalman trackers) fail. In such cases, the degradation of the visual features related to single
individuals disturbs the analysis. Moreover, the large induced state space yields computationally
too expensive problems. In those situations, the Lagrangian approach fails and the analysis of the
crowd sequence may amount to the analysis of a crowd flow that have global properties and may
be treated as a whole. As an example, one can cite the recent work of Rodriguez and al. [167] who
use the global motion of the crowd (the crowd behavior) to help the tracking.

5.2.2. Crowds as a continuous entity

The representation of crowd flows in a pure Eulerian approach has been studied in [146]. In this
study, the author creates some links between dense crowds and fluid mechanics laws. Two flow
regimes (e.g. high-density and low-density) have been proposed in a complete dynamical model that
depends on some objective parameters (optimal orientation to reach the goal, pressure, velocity)
and on some more subjective quantities like the crowd comfort. The experimental simulations have
been successfully compared to some real scenes. In a context of crowd simulation, the authors in
[168] present a real-time crowd model based on continuum dynamics. In [169] , Allain et al. have
proposed a somehow simpler continuous dynamical model where pedestrians are assumed to reach
an objective while interacting together in order to prevent from the formation of too dense areas.
A disturbance potential has also been introduced to deal with more subjective interactions inside
the flow. This dynamical model is then used as a prior information for analyzing crowded videos
in an optimal control theory framework.

On the basis of this constatation that a crowd can be managed with continuous laws, several
analysis techniques based on a continuum approach have been proposed [170, 171, 169, 172, 173,
174]. Related methodologies usually tend to solve the different problems of event detection or
changes in the flow rate on the basis of the apparent motion (optical flow) estimated on the the
whole image from the image luminance. The work of Ali and Shah [172] focuses on segmenting the
crowd flow with regions of substantially different dynamics by examining the coherent structures
in the flow. In [173], unsupervised feature clustering is used to define normal motion patterns,
and Hidden Markov Models are used to detect particular situations. A similar approach has been
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proposed in [170] where normal and abnormal behaviors are extract from the continuous optical-
flow. This displacement indicator is also a prior descriptor to highlight circular and diverging flows
in [174].

5.3. Data-driven crowd animation and simulation

Data-driven approaches aim at avoiding the defects of imperfect simulation models by describing
directly the visible results instead of the underlying causes of the crowd’s motion. The idea is to
use a priori knowledges extracted from real situations, either to reproduce a global situation or
local collision avoidance strategies. Several issues have to be treated:

• what kind of descriptors for crowd motions ? what should be the best mathematical tool to
describe the dynamics of such a complex system with several parameters ?

• How to capture/estimate these descriptors from real situations (this point being closely re-
lated with the mathematical modeling of the crowd) ?

• How to apply/use them as an input for an interactive, controllable animation system ?

• Is crowd motion editing possible ? or finally, under which condition can we modify the
original data to adapt to new situations ?

5.3.1. State-of-the-art of data-driven crowd simulation methods

Figure 27.: Differences between the two approaches of data driven crowd animation.

Recently, several research groups have explored this approach of crowd animation [155, 142, 175,
176]. Paris and colleagues [142] use motion capture sets to capture the evolution of pedestrian
along time. In [176], Lerner et al. use as a preprocess a manual tracking in the image space.
Lee et al. [175] use a semi automatic method to label and track individuals in the video with a
state-of-the-art kernel based approach. As stated by authors, this method is not robust for long
duration, and requires several manual intervention along the sequence. We have proposed a fully
automatic method in [155] , which however assumes that the considered crowd is dense. This
approach will be explained in details in the next section. Concerning the synthesis part, Paris
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et al. use the results of their capture to parameterize an ad-hoc collision avoidance algorithm.
Lerner [176] and Lee [175] have a strongly similar approach to synthesize new situations from their
example database: a local neighborhood representation is used as example query in the example
database using an adapted approximate nearest neighbors search. The resulting examples are them
combined to form the correct output response of the pedestrian. Those approaches successfully
reproduce local avoidance schemes but do not reproduce a global crowd behavior.

We argue that it is possible to classify those approaches with a taxonomy similar to simulation
models, i.e. microscopic and macroscopic. In the first category, which we will refer to as agent-
based data driven approaches, the descriptor used to describe the crowd motion is the sum of all
pedestrians spatio-temporal trajectories, thus encoding several local specific situations [175, 176,
142]. In the second category, which will be designed as continuum-based data driven approaches,
the goal is to estimate an underlying flow which drives the crowd [155] . The figure 27 gives
an illustration of these differences. A comparison between the features of the agent-based and
continuum-based approaches have been reproduced for the sake of clarity in table 28 .

Most of the data-driven approaches use as input a video of a crowd situation since they stand
for one of the most convenient and practical way to record a crowd event. Extracting important
information for an animation controller constitutes in itself a problem. Those aspects will be
discussed in the next chapter, as well as the design of data-driven controllers for crowd animation.

Figure 28.: Differences between the two approaches of data driven crowd animation.
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In this chapter, we consider the problem of estimating relevant parameters for crowd description
from crowd videos. In this works, we first considered the velocity field observed in the image as
a good descriptor. In order to extract it from crowd motions, we relied on dedicated fluid motion
estimators (Section 6.1). Yet, it appeared that this information is insufficient to characterize
properly the crowd. In a second time, we tried to estimate the density from the videos. Contrary
to the velocity information, the density can not directly be observed in the image, so a different
strategy need to be devised. We chose to rely on optimal control techniques that were able to use
some assumptions on the crowd’s dynamics to infer the hidden density parameter (Section 6.2).
Finally, those questions lead us to formulate the problem of the technical validation of crowd
analysis methods, which usually requires ground truth data that are particularly hard to obtain
with crowd videos. To this end, we designed a synthetic dataset (Section 6.3) that allows to conduct
several tests on crowd analysis methods.

6.1. Crowd motion estimation and post-processing

In this part, our goal is to estimate the crowd’s velocity from a pair of images. Among the
panel of existing approaches for estimating the apparent velocity field from a pair of images, the
optical-flow techniques are known to be the most efficient ones [177]. Roughly, such techniques aim
at minimizing an energy function composed of two terms: the observation and the regularization
(or smoothing). The observation part is most of the time issued from the optical flow constraint
equation (ofce) and assumes that a given point keeps its intensity in the course of a displacement.
Recovering the two components (u, v) of the velocity from this single relation leads to an ill-posed
problem, especially in homogeneous areas. In such situations, an infinity of solutions are indeed
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possible. This is the well-known ”aperture problem” and it is common to manage it by using an
additional smoothness constraint that penalizes the spatial variations of the velocity field. The
energy function to minimize reads then:

H(I,v) =

∫∫
Ω

{[
∂I(x, t)

∂t
+∇I(x, t) · v(x, t)

]2

︸ ︷︷ ︸
Observation : dI/dt≈0

+α
[
|∇u(x, t)|2 + |∇v(x, t)|2

]︸ ︷︷ ︸
Smoothing

}
dx (6.1)

where v(x, t) = (u, v)T is the unknown velocity field at time t and location x = (x, y) in the image
plane Ω, I(x, t) is the image brightness and α a smoothing parameter to define. It can be shown,
using the Euler-Lagrange conditions of optimality, that the standard smoothing term of the relation
(6.1) is equivalent to promote solutions with a very low component of divergence and vorticity. This
is not appropriate for crowd estimation since the apparent velocity field normally exhibits compact
areas with high values of vorticity (when pedestrian get round an obstacle) and/or divergence
(concentration at a given point). We then prefer to rely to a second-order div-curl regularization
that preserves these quantities:

Hreg(v) =

∫∫
Ω

(
|∇divv(x)|2 + |∇curlv(x)|2

)
dx. (6.2)

Interested readers may referee to [155] to get precise descriptions on the optimization strategy and
on associated numerical implementation issues.
Under the assumption that a very dense crowd behaves like fluids, a time series of dense displace-
ments can then be obtained by minimizing the usual optical flow constraint equation (first term
of relation (6.1)) associated with the div-curl smoothing in (6.2). In practice, as the area filled
by a pedestrian in an image is more related to a block than a pixel, the information contained by
all the instantaneous motion fields is redundant. Moreover, the pedestrian-free areas disturb the
quality of the motion fields, even with the effect of the smoothing term. In such situations, from
an image to an other, there is no warranty that the flow is consistent from a temporal point of
view. This results in noisy time series. According to these remarks, it is then of primary interest
to i) reduce this huge amount of data and ii) de-noise the time series. This is done in the Fourier
space. The highest frequencies are removed to restore coherent motion fields. In our applications,
only the 10% most energetic harmonics were conserved since we observed that they contain more
than 90% of the information.

6.2. Density estimation with optimal control

6.2.1. Overview of the method

The coupling of crowd dynamics and real data exhibits very promising results and has opened a
rich area of research. One of our paper [178] is a contribution in this direction. We argue that the
apparent motion information is intrinsically insufficient to characterize the dynamics of the flow
since the lack of motion in the image can be interpreted as a null density or a large congestion area
where people are likely to be injured. We define a substantially complete crowd flow analysis as the
extraction from the sequence of i) time-consistent motion fields and ii) an associated disturbance
potential. The motion field is a rich dynamical descriptor of the flow which can be related to the
velocity of flow. The disturbance potential accounts for several physical quantities such as the
density or the pressure in the flow. This information is crucial to extract sensible and potentially
dangerous areas. Although an important number of approaches, as the one presented above, are
available to measure the apparent velocity field from images sequences in various situations, the
estimation of the disturbance potential is a critical problem and is still an open domain of research.
This component is indeed tricky to observe directly from images. It is nevertheless intuitive that
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this potential influences the motion field: in a natural way, human beings tend to avoid over-
concentrated or high-pressure areas, and their velocities are directly influenced by the surrounding
person concentration.

We use recipes from optimal control theory [179] and variational assimilation [180], originally
used in the context of meteorology, to define a new tool for the characterization of the crowd
flow. Such techniques enable to estimate a (potentially high dimensional) system state driven
with a dynamic model known up to some noise. A key advantage relies on the ability to measure
unobserved parameters that control the dynamic model. As such, it is thoroughly adapted to the
problem we are dealing with. The definition of a system based on variational assimilation especially
requires i) a dynamic model related to the motion field and the disturbance and ii) an observation
operator that links our data (images) to some components of system state (motion fields).

An overall schema is given in Figure 29. We take as input the original images and two user-
defined information: the eventual position of obstacles and some predefined destination areas in
the image. These two information are combined to compute a potential function that conveys
information on the optimal directions of displacements for the crowd. From the input images are
also derived some initializations for our algorithm as well as the observations (that mainly consist
in the apparent motion between image pairs). These are used in the assimilation process, that
tries to match, through an iterative process, the observations and the evolution of the dynamical
process. As a result, a complete sequence of velocity and disturbance potential are computed.

We present some background on variational assimilation in the next section (6.2.2), while our
model, along with implementation issues, is thoroughly described in the ending part of this section
(6.2.3).

Figure 29.: Method overview.

6.2.2. Variational assimilation

Assuming that the crowd is coarsely driven by the dynamical model M, an unknown additive
noise variable εM, relative to the deviation over the dynamics, is introduced in the definition of
the model, which now writes:

∂X

∂t
+ M(X) = εM. (6.3)

The initial condition may be given with uncertainties. In a similar way, the initial state value
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may therefore depend on a noise term ε0:

X(t0) = X0 + ε0. (6.4)

In our case, we can not directly observe the system state X in the image. Instead we are able
to measure some observations Y in time. They are related to the system state by a (possibly
non-linear) function H, which is also known up to a given noise εH. This yields the following
system:

H(X(t)) = Y + εH. (6.5)

Hence our estimation problem consists in finding the best system state X that satisfies the rela-
tions (7.15,7.16,7.17). This must be accomplished while minimizing the discrepancy between the
dynamic model, the observation operator and the respect to the initial condition. This formalizes
as the minimization of the following cost function J (εM, ε0):

J =
1

2

∫ tf

t0

‖Y −H(X)‖2
C−1

H
dt+

∑
s={M,0}

1

2

∫ tf

t0

‖εs‖2C−1
s
dt. (6.6)

The norm ‖.‖C−1
s

is the induced norm of the inner product < C−1
s ., . > and Cs is an endomor-

phism defining the covariance matrix of parameters εs. In the rest of the document we denote
Q = CM, R = CH and B = C0. These covariances are crucial for the assimilation of observations.
Once the model and the observations are set, they remain the only parameters to be configured by
the user. For example, setting an unchangeable crowd configuration at t0 amounts to assign B−1

an infinite value +∞.

Resolution of the system In order to estimate the system state X a common methodology
consists canceling the gradient of this cost function. Unfortunately, the estimation of such gradient
is in practice unfeasible for large system’s state since it requires to compute perturbations along all
the components of X. A way to cope this difficulty, firstly proposed by Lions in [179], is to write
an adjoint formulation of the problem. It can be shown that this yields the following algorithm:

1. Starting from X̃(t0) = X0, perform a forward integration: ∂X̃
∂t

+ M(X̃) = 0

2. X̃ being available, find the adjoint variables λ(t) with the backward equation:

∂λ

∂t
+ (∂XM)∗ λ = (∂XH)∗R−1 (Y −H(X)) (6.7)

3. Update the initial condition : dX(t0) = Bλ(t0) + dX(t0);

4. λ being available, find the state space dX(t) from dX(t0) with the forward integration

∂dX

∂t
(t) + (∂XM) dX(t) = Qλ(t) (6.8)

5. Update : X̃ = X̃ + dX

6. Loop to step 2 until convergence

where ∂XM is the linear tangent simulation model of M and (∂XM)
∗

its adjoint 1. In a sim-
ilar way, we define the linear tangent observation model of H and deduce its adjoint (∂XH)

∗
.

Intuitively, the adjoints variables λ contain information about the discrepancy between the obser-
vations and the dynamic model. They are computed from a current solution X̃ with the backward
integration (6.7) that implicates both observations and dynamical operators. This deviation infor-
mation between data/model is then used to refine the initial condition (step 3) and to recover the

1i.e. < (∂XM)x, y >=< x, (∂XM)∗ y >
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system state through an imperfect dynamic model where errors are Qλ (step 4). Note that if the
dynamic is supposed to be perfect (like in many physical applications), the associated covariance Q
is null and the algorithm only refines the initial condition.From the previous algorithm, a complete
assimilation system is then defined with i) a dynamic model M; ii) an observation operator H; iii)
an initial condition and iv) the covariance matrixes B,Q and R. The next section defines all these
components for our problem.

6.2.3. Dynamic model, observations and covariance

Proposed dynamic model for crowd behavior The aim of this part is to design a simple
dynamic model for crowds that will be used for the assimilation. The system’s state X is composed
of the two components of interest that are the velocity field v = (u, v)T and of the disturbance
potential of the crowd D (X = (u, v,D)T = (v, D)T ). Let us define a model for the velocity
evolution.

Velocity modeling In order to get a prior knowledge of the displacement of the crowd, we assume
that all human share the same goal and that the topology (obstacles) of the analyzed scene is
available. In a first place our methodology is thus restricted to image sequences exhibiting one
main flow of pedestrians. Reasonably assuming that each pedestrian aims at minimizing their
travel time to their objectives, the optimal direction at a given location can be modeled as the
gradient of a potential function Φ defined over the whole domain D. This potential is the solution
of the classical Eikonal equation which has among others been widely used in the context of path
planing [181]. For a given scene, we then derive an optimal field V = (U, V )T = ∇Φ of the
pedestrians that corresponds to the theoretical normalized direction of a pedestrian without any
constraint. If now the pedestrians evolve in a crowded environment, we assume that if their velocity
differs from the optimal direction, this is due to a disturbance into the scene (density, pressure,
...). Therefore, we propose the following dynamical model:

v(x, t) = α
(
V (x, t) −β∇D(x, t)︸ ︷︷ ︸

disturbance repulsion

)
(6.9)

where α and β are two constant coefficients that depend on the global speed of the scene.

Disturbance potential modeling As for the disturbance potential modeling, we simply assume
that this scalar quantity is transported by the motion field and is also eventually diffused along
time. This corresponds to a simple physical equation of transport of a scalar. It then obeys to a
classical advection-diffusion relation:

∂D(x, t)

∂t
+ v(x, t) · ∇D(x, t) = δ∆D(x, t). (6.10)

where δ is a small diffusing parameter. Finally, the complete dynamical system of X = (v, D)T

reads (with (•) = (x, t)):

[
v(•)
∂D(•)
∂t

]
+

 0 αβ∇

0 v(•) · ∇ − β∆


︸ ︷︷ ︸

M(X)

[
v(•)
D(•)

]
=

[
αV (•)

0

]
+ εm (6.11)

To suppress the obstacle influence in the computation of the gradient ∇, we used non-symmetric
finite-difference in their neighborhood. Concerning the the Laplacian operator ∆ related to the
diffusion in (6.10), we applied an anisotropic operator that do not diffuse into the obstacles.This
dynamic model M is non-linear due to the advection term v(•) · ∇ that depends on the density.
In practice, at a given iteration n, the velocity v used for the advection is the one obtained at
iteration n − 1 so that the operator is linear. The associated tangent linear

(
∂M
∂X
)

is then itself.
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The analytical expression of the adjoint
(
∂M
∂X
)†

is more tricky to obtain but in our implementation,

we use the fact that its discrete version is the transpose of the discrete version of
(
∂M
∂X
)

[182].

Let us now turn to the observations of the state variables.

Observations: velocity based on optical-flow As mentioned above, only the motion fields
v can be accurately observed from the images, the disturbance potential being a tedious quantity
to estimate. Starting from the well-known optical flow constraint equation (ofce), one can assume,
to cope with the aperture problem, that the unknown optic flow vector at a location x is constant
within some neighborhood of size n [183]. The motion field respects then:

Kn ∗
(
∂I(x, t)

∂t
+∇I(x, t) · v(x, t)

)
︸ ︷︷ ︸

dI/dt

≈ 0, (6.12)

where I stands for the luminance function and Kn is a Gaussian kernel of standard deviation n.
From the previous relation, the observation system Y(x, t) = H(x, t)X(x, t) + εo can be defined
with (noting I• = ∂I/∂•):

Y(x, t) = Kn ∗ It(x, t) and H(x, t) =
[
−Kn ∗ Ix(x, t), −Kn ∗ Iy(x, t), 0

]
. (6.13)

This observation operator involves only the motion field. This means that the correction on
the disturbance potential will uniquely be achieved by relying on motion observations. From a
computational point of view, this operator is linear. The associated tangent linear and adjoints
are then derived in the same way than previously.
Covariances and initialisations For the initialization, we only need to get the disturbance
potential since the corresponding initial velocity field is obtain from (6.9). The choice of this
density depends on the scene to be analyzed. In our experiments, it was roughly set manually and
filtered with a Gaussian kernel. Noting that the assimilation process refines this initialization, this
latter can be only issued from a coarse and manual estimation.

The covariance matrix of the initial condition B and the covariance matrix of the dynamic model
parameter Q have been fixed to constant diagonal matrices (no spatial prior on the validity of the
model and the initial density are available). Concerning the observation covariance R, we used
R = Rmax+(Rmin−Rmax)(1−exp(−‖∇I‖/σ2)). This states that when the image brightness does
not contain gradients, the usual ofce is not valid and the covariance is maximal. At the opposite,
when high gradients appears, the ofce is confident and R is low.

6.2.4. Example on real crowd

We illustrate here the behavior of our algorithm on a real sequence showing a crowd entering
a railway station in the Principality of Monaco (Figure 30). This example is interesting since a
variety of phenomena are present: a continuous flow at the beginning followed by a compression of
some peoples in the left part of the images. In addition, the limit of the door is a barrier that creates
an opposite flux in the crowd flow. In this example, our method has detected two sensible areas
where the disturbance potential is growing larger : the end of the barrier and the wall on the right
of the image. This is very informative for safety engineers, since it allows to highlight potential
risky zones. From an online surveillance system point of view, our method can detect critical
disturbance elevations and thus would allow to trigger alarms. It is also possible to connect this
information in some motion pattern detector such as presented in [184]. Those aspects have been
left as perspectives. Let us remark here that the problem of validation is difficult since no ground
truth is available. Nevertheless, from the state-of-the-art on crowd behavior, our estimations seem
coherent.

Finally, since a quantitative evaluation is mandatory to understand the qualities and defects
of our approach, we proposed the definition of a synthetic dataset that was made avilable to the
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(a) t = 0s (b) t = 3s (c) t = 6s (d) t = 10s

Figure 30.: (a) to (d) Images of the real sequence - (e) to (h) Estimated disturbance potential maps

community for the purpose of evaluating crowd analysis algorithm. We briefly present this dataset
in the next Section.

6.3. Agoraset: a synthetic dataset for crowd analysis

As explained by Zhan and colleagues [185], conventional computer vision methods used in the
context of tracking fail to analyze crowded situations. Principal reasons arise from several factors.
Despite the inherent computational complexity of handling several individuals, the related pixel
information is rather poor, and undergo multiple occlusions over time. Moreover, modeling the
physical nature of a crowd is a strongly non-trivial task, as it implies inter-indivudal and environ-
ments interactions, with pedestrians exhibiting different goals or implied in social interactions.

Both the large applications field and the challenging vision problems have led to the development
of an important number of new vision algorithms over the past decades. The related methods either
seek to count or track individuals or to detect changes in the crowd flow or abnormal patterns.
At the moment, the community is lacking of a common test bed and reference situations (with
eventually associated ground truths). Though, it has been already shown in other context such as,
for example, object recognition [186], optical flow [187] or articulated motion estimation [188] that
datasets greatly stimulates the research field and allows for direct, objective comparisons between
state-of-the-art algorithms. Our contribution is in that direction and aims at providing a variety
of crowd situations along with their associated ground truths. To account for the different possible
representations of crowd phenomena, these ground truths contain: the individual trajectories of
each pedestrians in the crowd and the related continuous quantities such as density and dense
velocity field.

No real crowd videos were included in the data set. The main reason is that obtaining ground
truths for those videos is a very time-consuming task as it requires to label by hand the positions
of each individuals in the scene. Moreover, experiments show that manual labeling is prone to
errors and can differ between two persons. We instead rely on realistic image synthesis to achieve
our goal. This idea is not new and has already been exploited in the context of surveillance of
human activity [189, 190, 191]. Still, our data set constitutes the first of this kind devoted to crowd
phenomena. Obtaining realistic synthetic crowd videos is in itself a challenge. Regarding crowd
video analysis requirements, two major problems are to be taken into account: the visual quality
of the images should reflect the diversity that can be observed in real footages and the dynamics of
the crowd should be preserved. This last point include both details of single pedestrians gaits and
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motions, as well as the overall continuum dynamics. In our work the rendering has been performed
thanks to a commercially available renderer and a classical and well established simulation model
is used.

6.3.1. Presentation of the dataset

In this first version of the proposed dataset, we have identified seven typical scenes where some
crowd behaviors appears. They are schematized in the figure 31. Each scenario topology (also
named ”environment” or ”scene”), was designed in accordance to situations often met in crowding
issues. They correspond to an evolution on a flow of humans in a free environment (scene #1),
in an environment with obstacles (#2 and #3), an evacuation through a door (#4), a dispersion
(#5), a rotation (#6) (with an analogy of the famous crowd scene of the pilgrimage in Mekkah)
or some crossing flows (#7) (this last case being related to the ”unstructured crowd” of [167]).

From the scenes we have depicted in figure 31, several scenarios have been generated. For each
environment, two different sequences that correspond to various values of desired velocity (soft and
panic) have been generated. In each case, the pedestrian positions are randomly set in a starting
area and are not submitted to any motion during 3 s. After this delay, the wished direction is
included in the simulation model. Concerning the rendering, several videos are also available for a
single event. They correspond to various camera parameters and lighting conditions. For now we
propose for analysis two camera views : perfect sky, and sided view. And two lighting conditions
: shading, and no shading. Thus allowing a variety of rendering realism for a same scenario.

Let us now turn to the production pipeline of the different video of the dataset.

scene #3:
obstacles

scene #2:
obstacle

scene #1:
corridor

scene #4:
escape

scene #5:
dispersion

scene #6:
Mekkah

scene #7:
sideway

Figure 31.: Scene typology. The different scenes proposed in our database

6.3.2. Production pipeline

As a first step the crowd simulation model is presented, followed by a short description of the
rendering process.

Crowd simulation model Because of its compacity and efficiency, we chose to use the model
proposed by Helbing et al. [141] for crowd simulation. It considers pedestrians as Lagrangian
particles carrying individual properties affecting their dynamic through different crowd-related
forces. This model has been widely used for different purpose involving crowd dynamics as in [192,
193], or revisited as in [194].

As the latter authors, we also chose to slightly revisit the model in order to reach as much
as possible visual realism. The original purpose of Helbing et al. model is indeed to match
different macro data of the crowd like global evacuation time. The model’s parameters are thus
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not specifically calibrated to handle visual realism. The particles are too solid for having the
visual impression of people being pressed in case of congestion. In this purpose we modify several
parameters which are given in Table 1.

Pedestrians Obstacles
Units

interaction interaction

Contact
k 6× 103 6× 103 kg.s−2

κ 12× 103 12× 103 kg.m−1.s−1

Avoidance
a 600 400 N
b 0.3 0.3 m

Table 1.: Modified parameters of the crowd model proposed by Helbing et al. These values lead to more

flexible behaviors of individuals.

The sequences to be simulated also need to provide enough variability to show realistic crowd
behavior. In this purpose, the dynamic parameters are randomly picked for each pedestrian: in
addition to the radius r being set in the interval [0.2m, 0.3m], the mass m is taken as proportional
to the latter with an average of 80 kg. The response time of pedestrians is in the interval 0.5 s±10%
while the desired nominal velocity is in 1.2m.s−1 ± 10%. With these parameters, we assume the
crowd is populated by different kinds of persons having little different intentions and capabilities, as
in a real crowd flow. As in [195], pedestrians handle differently the social forces wether neighbors are

in sight of pedestrians or not. We therefore add it a perception coefficient α = 1−
(

acos(einWi)
π

)γ
,

with ein being the unit vector from pedestrian i to the neighbor n, and Wi the desired direction
to take. This coefficient also accounts for the anisotropic dynamic behavior of the crowd that we
parameterize with γ = 0.7. In order to provide visual realism in panic situations, we also add a
stumble term to the dynamic velocity equation, reading: −ψviv

2
i g(µ(ri+rn)−din), where vi is the

velocity, din the distance between the jostling pedestrians, and g(x) a function being zero if x > 0
and x otherwise. We set ψ = 300 kg.s.m−3 and µ = 1.2. The pedestrians are also supposed to be
reluctant to go backward from their goal. Their speed limitation when going this (wrong) way is
then augmented by adding to the dynamic velocity equation the following term: νmi

vi

τi
g( vi

‖vi‖Wi),

with τi being the characteristic reaction time and ν a reluctance coefficient set to 2.

Rendering process The output of the simulation model are then used as input for python
scripts that automatically generates a 3D scene with human characters. A set of 26 characters
were used (see Figure 32, left) in order to guarantee a sufficient local variability in shapes and
colors. This number was set experimentally, but it turned out that a lower number of individuals
raised notably the probability of having two or more of the same kind of geometric models near each
other, with a possibility of disturbing the analysis. A short number of walking motions and idling
gaits have been used for each individuals. At runtime, the best motion is chosen with respect to
the pedestrian velocity. Here again, the inter-individual diversity is assured by different playback
speeds, which prevents from several individuals having the same motion (also known as the clone
effects).

For the rendering process we chose the Mental Ray renderer [196]. The mental ray physical sky
model was used; it allows to have a natural and intuitive control over the illumination parameters.
Most of the scenes were rendered with outdoor lighting conditions. A comparison between a real
image extracted from a real video sequence and a rendering of a crowd scene with similar lighting
conditions is shown in Figure 32. It illustrates the ability of our rendering pipeline to produce
images that qualitatively looks like real ones.

We present in figures 33 some screenshots that rely on simulations #4-1. As for this environment,
pedestrians aim at reaching the right part of the scene by crossing a door, under a “normal” pace
(fig. 33). The first line of these figures correspond to a streak representation of the pedestrian
trajectories whereas on the second line is depicted the rendered scene under a given camera position.
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Figure 32.: Crowd Rendering. From left to right: the 26 different avatars used to produce the videos (their
choice has been made to exhibit the maximum variability w.r.t. age, sex and cloths style); a real image
from a video footage of Shibuya in Tokyo; a crowd rendering with similar day light conditions
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Figure 33.: Scenario #4-1 : Evacuation in a normal situation. First strip, Trajectories of one individual
out of 3 for a 3 seconds duration. Second strip, screenshots of the corresponding video. Third
strip, the related continuous parameters (density and velocity field).

From these figures, it is very interesting to observe that the rendering is very realistic. Moreover,
the emerging phenomenon highlighted in [141] that correspond to an “arching” or ”clogging”
effect near the exit appears clearly. This suggests that, in addition to a realistic rendering of the
simulations, the crowd behaviors are consistent.
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6.4. Summary

6.4. Summary

In this Chapter the problem of estimating quantities inherent to crowd flows was exposed. Our
contributions lies in:

• using estimators from fluid flows analysis to estimate time series of dense velocity fields.
Those estimators were chosen so as to preserve interesting characteristics of the crowd flows,

• developing a new density estimator based on some assumptions made over the crowd dynam-
ics. The coupling with this model and the observed data in the image was performed thanks
to the theory of variational assimilation.

Also, in order to test our methods, a database of synthetic situations was developed and proposed
to the community.
In the next Section, the problem of incorporating those data in a crowd simulation will be consid-
ered.
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In this Chapter, we examine how the data that was acquired by the different vision algorithms
presented in the previous Chapter can be used in a synthesis loop. We recall here that most of
the analysis was conducted so as to obtain some continuous information of the crowd motions.
Section 7.1 will show that a simple control policy based on time series of velocity fields can give
interesting results, but may lead to inconsistent trajectories because inter-pedestrians interactions
are not properly taken into account. We thus present in Section 7.2 a new control strategy which
helps in mixing these data (expressed as constraints) with an existing simulation model.

7.1. A simple data-driven animation of crowds

If one consider only the simple time series of motion fields computed thanks to algorithm de-
scribed in the previous chapter, it is possible to consider this information as input data for a simple
data-driven crowd animation system [197] . Given the position of a person in the virtual world,
it is possible to get the corresponding position in the image frame along with a camera projection
model. Parameters for this projection can be obtained exactly through camera calibration. We
have considered as an approximation of this model a simple orthographic projection in the exper-
iments presented in the result sections. This assumption holds whenever the camera is sufficiently
far away from the scene. Once this projection has been defined, animating pedestrians which
constitute the crowd amounts to solve the classical following differential equation (with x(t) the
position of a person in the image frame at time t) :

∂x

∂t
= v(x(t), t) (7.1)

equipped with appropriate initial condition x(0) = x0 which stands for the initial positions of the
individual in the flow field. In our framework we have used the classical 4-th order Runge Kutta
integration scheme, which allows to compute a new position x(t+ 1) given a fixed time step with
an acceptable accuracy. This new position is then projected back in the virtual world frame.
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7.1.1. Some results on real video sequences

We present the results obtained on two real sequences. Both data have been acquired with
a simple video camera with an MPEG encoder. The motion estimation approach was applied
without any particular process.

Strike sequence The first real sequence is a video representing a strike. All pedestrians are
walking in the same direction. Two images of the sequence can be seen on Figure 34 (a-b). In
Figure 34 (c-d), we present the synthetic crowd animation obtained superimposed on the estimated
motion field. One can observe that the resulting crowd animation respect the initial yet simple
pedestrian behaviors. The real scene can then be reproduced with accuracy while maintaining,
despite the regularity of the flow, a particular diversity in the pedestrian trajectories.

Entrance sequence The second real sequence shows a crowd entering a stadium. This example
is very worthwhile since a variety of phenomena are present: a continuous flow at the beginning
followed by a compression of some peoples in the left part of the images. In addition, the limit of
the door is an obstacle that creates two opposite fluxes and that generates a vortex in the motion
fields. Four images of the sequence are displayed in Figures 34 (e–h).

The corresponding animations are represented in Figures 34 (i–l). Figures 34 (m–p) are focused
on the region that exhibits opposite motions. One can see that this complex behavior has been
correctly captured and re-synthesized. This is very stimulative regarding the possibilities of this
approach to manage complex flows. The next step of the process will be to extract the different
behaviors (compression, rotation for instance) and to synthesize them independently.

7.1.2. Discussion

Our technique has been applied with success to reproduce the observed scenes. Nevertheless, we
observed that the quality of the generated animation is directly linked to the initial density of the
crowd members (manually set up). In this sense, it is the role of the animator to design an initial
crowded situation that is similar to the video conditions. In this sense, the velocity in itself fails to
characterize completely the crowd dynamics, and it would be of prime interest to add the density
information as a complement to describe the dynamics. It is then extremely important to be able
to estimate simultaneously the motion field and the associated density to create animations from
minimal inputs and manual adjustments.

The density estimation of the pedestrians from an image sequence is however a very difficult
problem which has not yet found a solution in the computer vision community. Noting that the
density is intrinsically related the the velocity and that this latter quantity can be estimated from
images, our contribution consists in estimating the density using optimal control tools. Following
a dynamic model, this quantity acts as a control parameter to explain the temporal variations of
the velocity field.

Also, this simple analysis/synthesis scheme may not keep people away from colliding between
each other. This point could be solved by mixing the a priori information acquired by motion
estimation as an input parameter of a classical dynamic system. This implies that one has to
mix in some ways quantities that can be both related to a continuum (velocity fields, density)
and individuals (steering behaviors for collision avoidance). In the next Section, we propose a
framework which helps in handling this dual nature of information.
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(a) (b) (c) (d)

(e) (f) (g) (h)

(i) (j) (k) (l)

(m) (n) (o) (p)

Figure 34.: Experimental results on real data: (a,b): Sequence #2: strike video taken from above;

(c,d) images of the resulting animation; (e,f,g,h) Sequence #3: video of a crowded entrance;

(i,j,k,l) images of the resulting animation; (m,n,o,p) close-up on a remarkable zone where two

opposite fluxes of people are juxtaposed

7.2. Crowd Control

In this Section, we present a new crowd control methodology, which can be seen as an edit-
ing process, in the sense that the trajectories produced by the simulation model are deformed to
achieve users constraints while minimizing the discrepancy with the simulation model’s dynamics.
The types of constraints can be twofold: i) per-individual constraints, meaning that the user can
specify its own properties related to pedestrians (like positions, velocities or even shape-related
information) or ii) macroscopic constraints, such as respecting a given velocity field or higher or-
der dynamical information, like the divergence or rotational components of a velocity field. Our
optimization process uses recipes from optimal control of variational models by formulating the
problem with the adjoint theory [179]. It is virtually adaptable to any kind of simulation model
provided that it can be analytically described as a variational system. This is usually the case with
crowd dynamics model, but not anymore if one considers cognitive modeling of pedestrian steering
behaviors. Also, the quality of the produced animation strongly depends on both the realism of
the controlled simulation model and on the nature of the constraint imposed by the animator. In
that sense our method augments the latent qualities of a given simulation model but is not meant
to produce systematically more realistic simulations than advanced techniques.
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Our crowd control system requires three major ingredients: i) a simulation model, which describes
how the crowd is moving in a deterministic fashion, ii) constraints provided by the animator and
iii) the control process which combines the two previous information. We note the strong relations
with the formulation of the estimation problem of the previous Chapter.

Simulation. We refer to the simulation model as a unified model M driving the state of
pedestrians X, which evolution is governed by the following partial differential equation:

∂X

∂t
+ M(X) = 0. (7.2)

However, a crowd can exhibit different scales of dynamic. One can chose to control only large scales,
potentially governed by continuum equations, and leading to express the model in the Eulerian
space. But people also interact to each other, at least to avoid collision, involving a Lagrangian
expression of the model. The more convenient way to gather these dynamics into a unified model
is to express them in the Lagrangian space (i.e. X is related to pedestrians quantities). This
choice also requires to express the large scale model, generally continuous, in the Lagrangian
domain. The projection of the continuum dynamic on the Lagrangian space can be done by
using differentiable kernel functions (as in [149]), such that common operators (gradient, laplacian,
etc. ) applied on continuum quantities can be expressed in the Lagrangian model. As well as
Lagrangian interactions, this amounts to simply consider weighted relations between pedestrians.
These relations can also be used to express Eulerian quantities (i.e. continuous, or related to the
environment) with respect to Lagrangian data over an Eulerian grid. A good example is provided
by the density, which can be computed as the convolution of a Gaussian kernel and Dirac centered
on the pedestrians positions.

We have developed for this purpose a complete graph formalism which description can be found
in the following reference [198] .

Control. The control aims at automatically defining the best control parameters of the model
M in order to reach a specific configuration of the states X(t). A “sensor” is used to compare the
model output to a reference signal which stands for the desired constraints. This error is amplified
by a controller before being operated by the system, giving a corrected output. In our case, the
controller corresponds to an assimilation process where the sensor is an observation operator H.
We note Y the reference signal.

Unlike lot of engineering control applications, the control loop is not expressed in the frequency
domain, and X can not be determined by one-pass analytical means. The reason is the specificity
of the system which contains time integration of the model. To deal with this specificity, we
use optimal control theory recipes as explained in the next Section.We will start by giving the
dynamical crowd simulation model used throughout the experiments.

7.2.1. Simulation Model

The evolution of pedestrians is governed by physiological capabilities, psychological behaviors,
group strategies and goal achievement. Assuming that this evolution is also governed by Newton’s
law of motion, we obtain for each pedestrian pi the system :

∂yi
∂t

= ui, (7.3)

mi
∂ui
∂t

= Fi, (7.4)

with yi being the position of the pedestrian, ui its velocity and mi its mass randomly taken in
the range [60 kg, 80 kg]. For clarity’s sake, we will use a matrix notation stating, as an example,
y = [yi] the vector of the whole positions of the pedestrians, and y being the diagonal matrix
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builded by the same vector. The overall force applied to pedestrians, F, gathers all constraints
applied to them. We propose to use the model proposed by [141] by decomposing this force into
four major components:

F = Fwill︸︷︷︸
source

+Ffatigue︸ ︷︷ ︸
friction

+Fsociological︸ ︷︷ ︸
interactions

+Fobstacle (7.5)

In the first time, people want to reach some position with a given amount of determination, and
will release power according to this amount. The direction to the goal will be expressed as unit
vector W, and the level of determination as α (valued 140N in experiments), leading to the source
force: Fwill,i = αiWi, and in crowd space:

Fwill = αW. (7.6)

But a pedestrian will be slow down by his physiological capabilities since moving is power consum-
ing. This can be expressed as Ffatigue,i = −kiui, and in crowd space:

Ffatigue = −ku, (7.7)

where k are the the friction coefficients of pedestrians (valued 140N in experiments).

Sociological interactions Pedestrians repulse each other according to a sociological force Fsociological.
This force is directed for every pedestrian i to its neighbor j by the unit vector eij . The intensity of
this force decreases with the distance between the pedestrians i and j using an inverse exponential
function. The sociological force therefore reads for every pedestrians i and j:

fy
ij = −ae−

‖yj−yi‖−(ri+rj)

b eij , (7.8)

where a and b are two coefficients related respectively to the force intensity and to the cutback
distance separating high repulsions from the low ones. In the following experiments we set a =
1000N and b = 0.08m. The quantity r stands for the modeled radius of the pedestrians which
values are randomly taken in the range [0.25m, 0.35m]. Introducing the adjacency matrix of
pedestrians A weighted by f , it is possible to express the sociological force in the crowd space, as
proposed by [157], writing:

Fsociological = Afy1. (7.9)

The connectivity of A is set such that pedestrians distant of more than 2m are not connected.

In order to present the control results using a simple crowd model, collision body forces are ne-
glected. Besides, the steady conditions used in this method do not require such forces as compared
to panic or rush situations.

Obstacle force The obstacles repulsion is directed oppositely toward the closest wall point xobs,
and its intensity is given by a function of the distance from the i-th pedestrian position to this
point. Letting eobs,i be the unit vector of the force, we obtain for each pedestrian i the obstacle
force:

wy
obs,i = −ae−

‖xobs−yi‖−ri
b eobs,i, (7.10)

leading to the expression: Fobstacle = wy
obs.

We now dispose of a complete differentiable dynamical model stating the evolution of X =
[y,u]T , by the model:

M(X) =

[
−u

−m−1F(y,u)

]
(7.11)

Starting from a given initial configuration of pedestrians X0, we obtain X(t) with t ∈ [t0, tf ].
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Derivation The control process requires the linear tangent of the presented model and its adjoint,
which reads:

(∂XM)
∗

=

[
0 ∂yFT

1 ∂uFT
] [

1 0
0 −m−1

]
. (7.12)

In this purpose, the derivation by the positions y and the velocities u reads:

∂yFT = (αJW )T +Lf∂y + (w∂y
obs)

T , (7.13)

∂uFT = −k, (7.14)

with JW being the spatial jacobian matrix of the path Wi and L the Laplacian operator associated
to A and symmetric in our case.

7.2.2. Control policy

The crowd phenomenon being by nature complex, the dynamical model M is usually non-linear
and can be seen as an approximation of a real pedestrian behavior. The evolution of X(t) can be
directly inferred by integrating M over time. The assimilation process is in charge of modifying
this solution by adding some constraints (or observations) at given times. As a result, the control
is defined as a tradeoff between what can be expected from the model and what is actually given
by the observations. In fact, the degree of freedom allowing to modify the evolution of the particles
predicted by M is defined as a degree of confidence in the model and in the observations, which
can mathematically be represented with a control variable related to the deviation over the initial
dynamics. In the assimilation process, those quantities are related to the covariance matrices. This
is explained thoroughly in the next section.

7.2.2.1. Problem statement

Assuming that the crowd is coarsely driven by the dynamical model M, an unknown additive
control variable εM, relative to the deviation over the dynamics, is introduced in the definition of
the model, which now writes:

∂X

∂t
+ M(X) = εM. (7.15)

In some applications, the initial condition may also be unsure, meaning it can be modified. In
a similar way, the initial state value may therefore depend on a control variable ε0:

X(t0) = X0 + ε0. (7.16)

The differences between the simulation and the control lies in the constraints imposed by the
user: at some specific key times ti, i = {1, ..., C} (C being the number of user constraints), we
expect the solution to be closed some user constraints Yi. They are linked to the system state X
through an observation operator H yielding the system

H(X(t)) = Y + εH (7.17)

with

Y = Yi and εH = εHi if t = ti ;

Y = 0 and εHi = 0 otherwise.
(7.18)

The values εHi are the errors associated to the constraints Yi and depend on the precision expected
by the user. As will be shown in the following, they are in practice defined through their covari-
ance matrices. Therefore, the control problem consists in extracting X that satisfies the relations
(7.15,7.16,7.17). This is the control issue: how to find a control of lower energy on variable εM
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and ε0 that leads to the lowest discrepancy between the constraints Y and the state variable X.
This discrepancy is measured with the difference Y −H(X) and the problem can be expressed as
a minimization with respect to the control variables (εM, ε0) of the cost function J (εM, ε0) defined
as:

J =
1

2

∫ tf

t0

‖Y −H(X)‖2
C−1

H
dt+

∑
s={M,0}

1

2

∫ tf

t0

‖εs‖2C−1
s
dt. (7.19)

The norm ‖.‖C−1
s

is the induced norm of the inner product < C−1
s ., . > and Cs is an endo-

morphism defining the covariance matrix of parameters εs. Just like in the previous Chapter,
we denote Q = CM, R = CH and B = C0. These covariances are crucial for the assimilation of
observations. Once the model and the observations are set, they remain the only parameters to be
configured by the user. For example, setting an unchangeable crowd configuration at t0 amounts
to assign B−1 an infinite value +∞.

7.2.2.2. Resolution of the system

We present here a way to estimate the control variables (ε0, εM) required in equations (7.15,7.16)
to generate the controlled states X. Minimizing the cost function in (7.19) requires to cancel its
derivatives δJ (δε0, δεM) with respect to the control variables (εM, ε0). In practice, due to the size
of the system’state, this estimation of is done using an adjoint formulation. The user has first to
define the linearisation and the associated adjoint operators of involved models (observation and
simulation), as well as the associated error covariances matrices related to the confidence in the
simulation model, the initial conditions and the observations. Once done, it can be shown that the
minimization in (7.19) can performed through some forward/backward integrations. More details
about adjoint techniques can be found in [179] and applications in computer graphics in [199, 200].
To sum up, the following steps are required for the user:

Prerequisites : from a given simulation model M, an initial condition X0 and user
constraints Y = H(X)

1. Define associated error covariance matrices Q,B,R related to the expected precision on the model,

initial conditions and the constraints.

2. Derive the linear tangent simulation model ∂XM ∈ R4N×4N of M and deduce its adjoint (∂XM)∗

such as < (∂XM)x, y >=< x, (∂XM)∗ y >

3. In a similar way, derive the linear tangent observation model of H and deduce its adjoint (∂XH)∗

Then, using the adjoint technique, it can be shown that the global editing process leads to the
following incremental method:
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Editing Process 1: Basic incremental technique using the adjoint method.

Initialization: set an initial iteration k = 0

1. Set control variables to zeros
εkM(t) = 0 ; εk0 = 0 ; Xk(t0) = X0

2. Obtain a first simulation of Xk(t) by integrating

Xk(t0) = X0 + εk0 ;
∂Xk

∂t
+ M(Xk) = εkM

Incremental loop:

3 From a current state Xk, perform a backward estimation of λ(t) in an adjoint model that takes into
account the observations:

λ(tf ) = 0;
∂λ

∂t
+ (∂XkM)∗ λ = (∂XkH)∗R−1

(
Y −H(Xk)

)
4 From the adjoint variable λ(t0), we compute the incremental control variable and update the initial condition:

dεk0 = Bλ(t0) ; dXk(t0) = dεk0

5 From the adjoint variables λ(t) and the updated initial condition, we compute the control variable and

estimate all

states dXk(t) using :

dεkM(t) = Qλ(t) ;
∂dXk

∂t
+ ∂XkMdXk = dεkM

6 Update the system state and the control variables :

Xk+1 = Xk + dXk

εk+1
0 = εk0 + dεk0 ; εk+1

M (t) = εkM(t) + dεkM(t)

7 Set k = k + 1 and loop to 3) until convergence

Finally we obtain the control variables ε0 = εk0 and εM(t) = εkM(t)

This algorithm enables to estimate, in a set of backward/forward integration steps, the overall
control variables (ε0, εM) required in equations (7.15,7.16) for the estimation of the states X(t).
The adjoint variables λ are indicators about the discrepancy between the corrected simulation and
the constraints. To start the control a first assumption of X(t) is needed. It is usually obtained
by the direct integration of M(X), and according to an initial condition X0 (step 2 of the previous
process).

The above technique is in fact simply a gradient descent where the adjoint variables have been
introduced. Such methodology is in general very efficient, provided that the initialization is not
too far from the final solution. For the manipulation of continuous data associated to Eulerian
models, there exists efficient techniques to ensure a good initialization, as for example multi-
resolution schemes. However here, because of several specific Lagrangian strategies as for exam-
ple collision avoidance (particles/particles and particles/obstacles), the temporal integration of a
Lagrangian system can generate very different solutions for two closed initial conditions. As a
consequence, depending on the user constraints, the initial integration of the system state in step 2
of Editing Process 1 is likely to be far from the expected solution, yielding some numerical diffi-
culties: algorithm locked in a loop, time-consuming and error-prone techniques. This kind of issue
is not new and is in general solved using Monte-Carlo techniques [201, 202] or using a selection on
a set of pre-computed trajectories [203]. However in our application, both strategies are ineffective
since the system state is too big and would require a number of particle/pre-computed trajectories
too large regarding to the actual computational capabilities. To face this issue we suggest, after
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several iteration steps N fixed by the user, to re-initialize the system by a new simulation in the
complete model, this time using the current solution of the system state and control variables as
initial conditions. This enables to redefine a more consistent initial trajectory yielding a robustness
with respect to local minima. This new procedure leads to the modified editing process:

Editing Process 2: Augmented incremental technique using the adjoint method.

Fix an iteration step N
Initialization: set an initial iteration k = 0

1. Set control variables to zeros
εkM(t) = 0 ; εk0 = 0.

Incremental loop: while the convergence is not reached

2 From X0, obtain a simulation in a perfect model M (step 2 of Editing Process 1) using current values of
εkM(t) and εk0

3 Perform N times steps (3–7) of Editing Process 1

4 Perform a re-simulation of the initial condition by looping to step 2

Finally we obtain the control variables ε0 = εk0 and εM(t) = εkM(t)

7.2.3. Results

We present here some results obtained with this control strategy respectively applied with per-
pedestrian constraints and continuum-related constraints. We note that the observation operators
and the associated derivation can be found in [4] .

7.2.3.1. Per-pedestrians constraints

Individual position/velocity constraints

The first experiment aims at testing the procedure by controlling the positions y and the velocities
u of only two pedestrians in the crowd, yielding a simple observation operator H which is the
identity. From a starting group of 38 members, two people are given a rendez-vous constraint
at a given time t = 20 s and in a specific position (illustrated in Figure 35). Hence, the editing
process has to find a path for both individuals through the group to fulfill the constraint. As
the optimization is performed globally for all individuals, it is interesting to observe that other
pedestrians help them in finding a solution, as can be seen in the images of Figure 35 and in the
accompanying video.

Of course, it is important to mention that such a scenario using only a simulation model would
be very awkward to obtain, and would require for both pedestrians to wait for each other at the
meeting point. Let us now turn to the second experiment on individual constraints, which involves
two groups of interacting people with the same kind of constraints.

Letter constraints

The second experiment considers two groups of people, each one evolving in opposite directions,
in which we aim at making each group to form, after crossing each others, the letters ”SG”. Here,
the operator is again the identity since we impose the positions y of the pedestrians.

As can be observed in figure 36(a), the simulation without any control creates two homogeneous
flows without any specific pattern. In this experiment, the major difficulty comes from the melting
of the trajectories that is indeed difficult to correctly control since the simulation presents some
chaotic attributes from two closed initial conditions. This issue, already mentioned in section
7.2.2.2, is in practice faced using the augmented procedure of Editing Process 2.
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a b c c

Figure 35.: Rendez-vous experiment In these illustrations, pedestrians are represented by ar-
rows to clearly distinguish the two involved pedestrians . The meeting point is located
behind the group, and should be reached at t = 20s. (a) t = 0s (b) t = 10s (c) t = 20s
(d) t = 30s
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Figure 36.: Letters experiment Two groups of pedestrians, in blue (initially in the right hand
side of the scene) and red (initially in the left hand side), are evolving in opposite
directions. Figure (a) represents the trajectories at regular time steps obtained after the
simulation of the model. In figure (b), we present the trajectories after 200 interations
of the control process. The two pattern S and G clearly appear. Figure (c) depicts the
associated RMS between real and desired positions.

The complete experimentation as well as comparisons with a direct simulation model aiming
at forming the required configuration are visible in the accompanying video. In figure 36(a),
we illustrate the trajectories of the two groups without any control whereas figure 36(b) presents
trajectories after 200 iterations of the editing process, highlighting the benefit of the control process.
As shown in the videos, the remaining trajectories are consistent and yield a more natural evolution
than using a direct model to reach this goal without control. To assess some quantitative values,
the figure 36(c) shows the evolution of the Root Mean Square (RMS) errors along the iterations
between required and actual positions for the two groups of individuals. It is first interesting to
observe that globally the RMS decrease along iterations, illustrating the benefit of the proposed
editing process. The large variations observed (as around iteration 100) are clearly due to the
chaotic behavior of lagrangian simulation models that are likely to generate different scenario for
two closed configurations. Despite this variations, it is nevertheless satisfactory to observe that
the global RMS decreases along iterations, finally yielding a consistent solution.

Comparing to other solution handling the shape control problem, such as the interpolation
of Laplacian coordinates as proposed by Takahashi and colleagues [157], our method produces
trajectories which match as much as possible the dynamics induced by the simulation model,
which is not the case in most geometric approaches.

7.2.3.2. Continuum constraints

Motion transfer from a video Here, we follow the idea proposed in [155, 154], which consists
in capturing a velocity field from a video, and then use it as a constraint to modify the global
crowd motion. We refer to this idea as video-based motion transfer for crowd. The experiment is
illustrated in Figure 41. From an abstract video of moving shapes (courtesy of BBC motion video),
a dense velocity field is extracted with a Lucas-Kanade filter [204]. This time varying velocity field
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Figure 37.: Comparisons between methods for the video-based motion transfer, Evolu-
tion of the normalized RMS along the animation

then serves as a time varying constraint in the proposed control process. Extracts of the results
are presented in Figure 41 and can be seen in the accompanying video.

For this example, we measure the quality of our approach by estimating how much of the motion
information given by the flow constraint is retained in the final animation. This is accomplished by
computing the spatial normalized RMS between the desired velocity fields and the observed ones
at each time step. Results are presented in Figure 37. The initial normalized RMS of the direct
output of the simulation model and the controlled version are presented. For comparisons sake, the
smae value was computed for the simple advection proposed in [155], and for a direct simulation
of the model where the desired velocity field U was simply added to the velocity term ui. This
way of integrating the motion field in the evolution equation is classical for most flow field based
approaches (see for instance [152] or [154]). From all the four cases, our method achieves the best
RMS performance. Let us note that this RMS is usually above 50% since it is computed above
the entire Eulerian domain (a 32 × 16 grid), and that it is not covered with pedestrians. Here,
and contrary to [155], it is important to note that the produced pedestrian trajectories match to a
certain extent the original simulation model (for instance, no collisions between individuals). This
was not the case in [155], since individual motions were only obtained by advecting the individuals
along the velocity field, which of course does not prevent individuals to collide.

Flow regulation with vorticity control In this experiment four groups of people are trying to
reach the opposite exits in a cross-shaped corridor (see Figure 38 for a schematic of the scene).
This kind of situation is very frequently described in other works as an interesting configuration
for the examination of emerging behaviors, see for instance Ref. [147] or [144]. Our aim is to
show that it is possible to change the magnitude of the bottleneck by imposing a global constraint
(i.e. at the environment level) on the observed vorticity, which is closely related to the whirling
of individuals in the crowd flow. This example is particularly tricky, since it involves a lot of
pedestrian interactions in a confined space. We suggest to face this issue by imposing to the global
flow a rotation in the crossing area through a vorticity operator H.

The vorticity describes rotating structures in a flow and is obtained by the Lagrangian cross-
product differentiation of the Lagrangian velocities .This operator is thus highly non-linear. It’s
expression and linearization is given in [205]. Hence, we impose a vorticity constraint for a duration
of one second bewteen the 16th and the 17th second of the animation (Figure 39.b). The original
observed vorticity (Figure 39.a) in the output of the simulation model shows quasi-random positive
and negative values, which simply translates the fact that pedestrians are bumping into each other,
and that each pedestrians tries to find out its own path toward the exit. One can observe the
vorticty pattern obtained at the end of the control process (Figure 39.c) matches much better the
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Figure 38.: In this example, four groups of 38 people are trying to reach the opposite side, creating
a congestion in the crossing zone.

constraint. The resulting paths can be seen in the accompanying videos and in Figure 40. It is

a b c

Figure 39.: Observed vorticity in the scene at time t = 12.5s. The grid dimension is 32 × 32.
(a) Observed density in the direct output of the simulation model (b) user constraint
(homogeneous positive vorticity in the crossing zone) (c) output of the control procedure

noticeable that at the beginning of the sequence, each group has chosen a side at that at the instant
of the constraint a whirling pattern has emerged as a result of the control process.

7.3. Summary

This Section was concerned with the definition of data-driven crowd simulation methods. We
have proposed:

• a pure data-driven method, which uses time series of dense velocity fields to animate pedes-
trians. We have shown that though convincing, the produced results fail in reproducing
consistent individual trajectories. It seems tedious to do without an underlying model which
would guarantee the consistency of the produced trajectories ;

• a new control paradigm which purpose is to mix a simulation model and some high level
constraints. Typically, those constraints can be obtained by crowd video analysis. In this
work, the coupling between the model and the constraints was performed thanks to optimal
control.
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Figure 40.: Trajectories of pedestrians for a duration of 20 seconds. The position of the individuals
between the t = 10 s and t = 15 s are highlighted: (a) direct output of the simulation
model (b) output of the assimilation procedure.

Output velocity fieldInput   Video

Optical Flow

Direct Ouput of the simulation model

Produced animation

Control

H: computation from Lagrangian velocities
of Eulerian flow field 

Figure 41.: Video-based motion transfer In this experiment the aim is to transfer the motion
estimated from a given video to the crowd. A time varying motion field is first estimated
thanks to an optical flow estimator. Then, this flow is used as constraints in our con-
trol procedure. The observation operator H relates here the pedestrians (Lagrangian)
velocities to the corresponding continuum (Eulerian) flow field.
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a

b

c d e

Figure 42.: Vorticity control experiment. Comparison of seven rendered frames captured at the
same instants of the (a) direct output of the simulation model (b) controlled simulation
after 25 iterations of the control procedure. In focus (c) one can see that the group
anticipates the crossing zone by adopting an asymmetrical shape (d) a whirling pattern
emerges from the control, and finally (e) illustrates the differences of evacuation time
between the two simulations.
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8
Perspectives and ongoing works

In this Part of the document, the problem of data-driven crowd simulation and analysis has been
presented. Our primary goal was to be able to extract valuable information from real footages of
crowds, and use this information in a simulation process. We have mainly focused on medium
to high density crowds, which prevents individual tracking and pedestrian-based approaches to
work. It was then natural to consider hybrid methods involving continuum dynamics and indi-
vidual steering strategies. From a methodological point of view, we found that an efficient way
to mix observations with a priori over the crowd dynamics was to use the variational assimilation
framework. In this setting, it was possible to guide the analysis of crowd videos and extract quan-
tities that can not be observed directly in the image. This framework also allowed to formulate the
crowd control problem which amounts to edit a simulation a posteriori with constraints that can
be related to continuous values (such as density or higher order quantities) or individual quantities.
However, several issues were raised by those studies and could be the subject of future works.

Control of highly dynamic system: toward a multi scale approach The control of highly
dynamic system is a very tedious task. In the case of a crowd, and because of the potential barriers
due to the non-penetration constraints between pedestrians, the control generally boils down to the
minimization of a highly non-convex energy function. In our previous works [198] , we considered
the use of adjoint operators that allow merely a gradient descent approach, combined with an
annealing-like procedure. Though the results are quite interesting, the convergence properties of
the algorithm remains unclear, as well as the guarantees to find an acceptable solutions. It could
be interesting to test Monte-Carlo like strategies or stochastic gradient that could more easily cope
with the pedestrian to pedestrian interactions.

Stochastic simulation and analysis models . For now, the simulation model is known to
be imperfect and as such incorporates an error term, which can be seen as a control term, i.e. a
degree of variability that can be used to add constraints to the system. However, it could be very
interesting to consider this term more generally as an expression of the non deterministic nature
of the crowd. Most of the crowd simulation models are deterministic, and for a given situation a
fixed initialization state would produce the same output. However, it is very unlikely to observe
the same configurations in reality for similar situations (e.g. entrance of a railway station at a rush
hour). How should the level of variability between the simulation model and what can be observed
should be quantified ? How informative is the output of a simulation which will never be observed
in real life ? It can be interesting to see the simulation output as a realization of a stochastic
process. One should seek therefore to express the random nature directly in the expression of the
model. The control problem could also be cast in such a formulation, where only the expected
value of the simulation could be controlled, and not the fine interactions between individuals.

Learning from synthetic data. This part has highlighted the possible virtuous circle in the
analysis/synthesis loop. Another possible instance of this principle lies in the use of synthetic gen-
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erated sequence to produce learning database. Hence, new applications that were not conceivable
in the past are made possible thanks to the quality of the produced images. A good example can
be given through the pedestrian segmentation problem. It is indeed very difficult to get in large
quantities ground truth of occlusions it was almost impossible to use machine learning techniques
for people-in-crowd segmentation systems. By providing realistic body-to-body occlusions of dense
crowds in videos with associated ground truth segmentation mask, it is now possible to learn local
occlusions and motion patterns and transfer the associated learned segmentation to previously
unseen data. Such holistic approaches to video analysis have been successfully applied in the past
for people-in-crowd tracking [167]. It might now be possible to use it for other crowd analysis
problems such as segmentation or fine crowd density estimation. We have recently started two
applications of this principle, in the form of a density estimator and segmentation algorithms for
medium to high density crowd videos. In Figure 43, an excerpt of a synthetic database of occlusion
masks is shown. This database has been created with sequences from the Agoraset dataset, but
with a dome of camera that allowed to render 64 views of the segmentation synthetic ground truth.
All the masks from the entire sequence are then gathered, and used in a learning strategy.

Figure 43.: Learning occlusion masks from a synthetic ground truth. Excerpt from the
886963 occlusion masks extracted from the corridor scene of Figure 42.
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Final conclusion and perspectives

Conclusion In the presented works we have proposed solutions to some inherent problems of
data-driven animation. Two main application frameworks were considered: human character ani-
mation, with a special care to communication gestures and sign language, and crowd analysis/sim-
ulation. We have observed that acquiring quality data may require to have a prior knowledge of
the observed phenomenon, and that this prior knowledge can also necessitate data to build an
associated consistent model. Though the majority of these works are concentrated around the
topic of animating from data, we have also demonstrated in the case of crowds how to guide data
acquisition from existing models.
The main challenges were concerned with the data ”abstraction”, i.e. our possibilities to build
generic knowledge from some examples, and data ”integration”, i.e. our capacity to use this
knowledge in a control loop where a user can specify new behaviors at a task level. From a
methodological point of view, we have examined statistical methods that have been adapted to
the particular types of data that were considered, and also variational techniques that helped in
handling physical models expressed by partial derivative equations.
Also, as most of our matter of interest involves a human component, we have been confronted
with the difficulties of handling data that bury a strong semantic component. This semantic level,
which is not accessible directly from the low level information, has nevertheless to be preserved.
This somehow constitutes some definitive limitations of pure signal processing techniques applied
to human motions, and it seems that this semantic knowledge, when available, should be added at
a certain point in the processing loop.

General perspectives We present here some possible future directions of research for the con-
sidered problematic:

• Increase in the quality and quantity of data. The democratization of the acquisition
systems, which also tend to become less costly, and the qualitative augmentation of the
performances of the estimation algorithm bring inevitably to an explosion of the quantity
of available data. While data-driven techniques were restricted to ”controlled” acquisition
conditions (using a motion capture room with high speed cameras is restricted to researchers,
video game or visual effects companies), it seems possible to benefit from a lot of new captors
(that can capture alternative quantities such acceleration or muscle electric activities for
example) and use the web dissemination power and sharing capabilities to build motion
models. In this sense, we can foresee the potential interests of the computer animation
community to the context of ”Big Data” and the associated problems: capture, curation,
storage, search, sharing, analysis and visualization. While it is tempting to see in this
trend the advent of the data era, which lowers the importance of the models and the theory
because it is already ”contained” into the data, I believe that coupling this data to an
existing knowledge, expressed in the form models, is almost mandatory. It remains that a
special care should be given to algorithms that are able to process a very large amount of
data. On the methodological side, new methods have emerged from the machine learning
theory, such as random projections, matrix factorization or sparsity enforcing algorithms.
Their developments and applications to data driven animation methods seem very appealing
;

• The duality signal/semantic. While considering human activities and motions the prob-
lem of semantic arises. The associated data have a strong meaning, and small changes in
the corresponding signal can lead to big differences in the inherent semantic. While we have
only considered algorithms which measure distances, similarities or correlations in the signal
space, only a few concern have been given to measure performances in terms of semantic
content. In computer animation, the only existing approaches tend to measure a posteriori
if the meaning of an action or motion has been preserved by user studies. It could be inter-
esting to also consider directly in the control loop metrics related to the semantic content, as
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for example it has been done in image processing with perception metrics. One can envisage
several levels between the signal and semantic levels, from motor coordination to syntactic
structures in the discourse. The same principles are not limited to human character anima-
tion. In the case of a crowd, analyzing from the data the general motivations of the group
and its behavior could help in producing better data-driven techniques by incorporating a
level of control based on group motivations and social laws.

Context of my future researches As for me, the barycenter of my research interests has
drifted from computer animation/graphics to machine learning and computer vision problems.
Therefore I’m in the process of addressing new applications, or at least different from pure computer
animation. In this direction, I am participating to the creation of a new Irisa team ”Obelix” (french
acronym for Observation of Environment with CompLeX Imagery), which will be centered on the
understanding of environmental systems through observations. Here again, large amount of data
are available from local probes, sensor networks or hyper-spectral remote sensing images. Those
data incorporate a time dimension, are by essence multidimensional and can also be related to
physical models. I see in these problematics a lot of common features with my past researches, but
applied to new interesting challenges with major societal components.
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[199] A. McNamara, A. Treuille, Z. Popović, and J. Stam. Fluid control using the adjoint method. ACM Transac-
tions on Graphics (Proc. SIGGRAPH 2004), 23:449–456, July 2004.

[200] C. Wojtan, P. Mucha, and G. Turk. Keyframe control of complex particle systems using the adjoint method.
In Symposium on Computer Animation’06, pages 15–23, 2006.

[201] Z. Khan, T. Balch, and F. Dellaert. Mcmc-based particle filtering for tracking a variable number of interacting
targets. Pattern Analysis and Machine Intelligence, IEEE Transactions on, 27(11):1805 –1819, nov. 2005.

[202] K. Smith, D. Gatica-Perez, and J.-M. Odobez. Using particles to track varying numbers of interacting people.
In Int Conf on Comp. Vis. and Pat. Recogn., CVPR, pages 962–969. CVPR, 2005.

[203] C. Twigg and D. James. Many-worlds browsing for control of multibody dynamics. ACM Trans. Graph., 26,
July 2007.

[204] B.D. Lucas. Generalized image matching by the method of differences. PhD thesis, School of Comp. Science,
Carnegie– Mellon University, Pittsburgh, PA., 1984.

[205] AnonymousAuthors. Particle swarm control. submitted to Swarm Intelligence, 2012.

[206] C. Cortes and V. Vapnik. Support vector machine. Machine Learning, 20(3):273–297, 1995.

[207] B. Schölkopf, A. Smola, and K.R. Müller. Kernel principal component analysis. Artificial Neural Networks -
ICANN’97, pages 583–588, 1997.

[208] B. Schölkopf and A.J. Smola. Learning with kernels: Support vector machines, regularization, optimization,
and beyond. the MIT Press, 2002.

[209] J. Lafferty and G. Lebanon. Diffusion kernels on statistical manifolds. Journal of Machine Learning Research,
6:129–163, 2005.

[210] S. Said, N. Courty, N. LeBihan, and S. J. Sangwine. Exact principal geodesic analysis for data on so(3). In
Proceedings of EUSIPCO 2007, Poznan, Poland, 2007.

[211] H. Karcher. Riemannian center of mass and mollifier smoothing. Communications on pure and applied
mathematics, 30(5):509–541, 1977.

[212] W.S. Kendall. Convexity and the hemisphere. Journal of the London Mathematical Society, 2(3):567, 1991.

[213] S. Mika, B. Schölkopf, A.J. Smola, K.R. Müller, M. Scholz, and G. Rätsch. Kernel pca and de-noising in
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A
Elements of Notations

In this document, the following choices have been adopted for mathematical notations:

• scalar and multivariate values:

– α, λ: scalar values in lower case,

– u: vector values in bold lower case,

– x: denotes a generic multivariate data

– x̂ generally denotes an estimated value of variable x,

– q: denotes generally a rotation in R3 expressed as a quaternion

• Matrix values:

– M: matrix values in bold upper case,

– In: Identity matrix of rank n,

– Σ: covariance matrix,

• spaces, group:

– Rn: n-dimensional Euclidian space,

– H: Hamiltonian quaternion space,

– S3: Unit hypersphere of dimension 3,

– SO(3): Special orthogonal group of dimension 3

– so(3)n: associated Lie algebra

• Riemannian geometry:

– M is a Riemannian manifold,

– logx(.) is a mapping from M to the tangential vector space Tx in x,

– exp(.) is a mapping from Tx to M,

• Dynamical models and PDE:

– M is a dynamical model,

– H is an observation/constraint operator,

– ε is a noise/control term,

– ∂XM tangential linear operator of M in X and

– (∂XM)
∗

the associated adjoint operator

• operators and operations:

– ||.||Σ−1 is the induced norm of the inner product < Σ−1., . >.

– M+: pseudo-inverse of M,
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B
Application of Geodesic analysis in the

context of Machine Learning

Most of the well known methods using the kernel trick [206, 207] postulate that since the data are
embedded in a Kernel Reproducing Hilbert Space (RKHS) with high dimensionality, non-linear
data description is likely to become linear. As such, most of the classical linear methods can
be applied with benefits. However, in the RKHS associated to numerous kernels (including the
Gaussian kernel, on which this work is focused), all vectors have a unitary norm: the dataset lies
on a hypersphere [208]. Hence, should this particular geometry be explicitly exploited by using
non linear statistical tools in the RKHS? This work is a step in this direction. We notably show on
two different applications (classification and clustering) that this idea can yield enhanced results
over some real world datasets. The key idea is to consider a geodesic distance on the hypersphere
rather than the Euclidean one to perform the data analysis. The geodesic distance corresponds
to the total length of the shortest path over the hypersphere between two points, and it can be
computed readily using trigonometric operators (Figure 44). Interestingly enough, this leads us
to the definition of a new kernel: It appears that the geodesic distances in the original RKHS
are equivalent to the Euclidean distances in a new RKHS. Thus, when data are embedded in this
latter, it is indeed really justified to use linear methods. Our construction can be related to the
work of Lafferty and Lebanon [209], who define a family of kernels based on diffusion operators
over a Riemannian manifold. In our case, the geometric structure of the manifold is directly used
to give a closed-form kernel expression instead of using a Fischer information metric.

In the next Section B.1, we set notations, and we provide background materials on geodesic
distances and Riemannian manifolds. In Section B.2 we adapt the classical tools of geodesic analysis
to the Gaussian RKHS: To overcome the main drawback of kernelized space (the coordinates of
the vectors are unknown), we find a transformation of the Gram matrix induced by the Gaussian
kernel which takes into account geodesic distances.

B.1. Geodesic analysis on the hypersphere

This section introduces the basis of a geodesic analysis on the hypersphere in the RKHS induced
by the Gaussian Kernel. After stating the problem, basic facts about Riemannian geometry are
presented and the notion of geodesic analysis is introduced.

B.1.1. Problem Statement

Let X = {x1, . . . , xp}(xi∈Rn) be a set of p separated training samples described with n variables,
and living in a space isomorphic to Rn and referred to as the input space. It is endowed with
the Euclidean inner product denoted 〈., .〉Rn in the following. Let k(., .) be a symmetric form
measuring the similarity among pairs of X, also called kernel. Let H be the associated RKHS, or
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φ(xi)

Intrinsic mean

Extrinsic mean

Linear
path Geodesic path

Sp−1

Figure 44.: Whatever the distribution of X, φ(X) lies within sphere quadrant. We propose to
consider geodesic distance between elements of φ(X) rather than the Euclidean one.
The Karcher (intrinsic) mean of φ(X) is represented as a red point, whereas the extrinsic
mean is depicted in green. Note the latter is inside the hypersphere, whereas the
Karcher mean lies on it.

feature space, also equipped with a dedicated inner product noted 〈., .〉H, such that for any pair
(xi, xj) ∈ X2, we have:

〈φ(xi), φ(xj)〉H = k(xi, xj) (B.1)

where φ(.) is an implicit mapping from Rn onto H. We use the shorthand notation φ(X) for the
set {φ(x1), . . . , φ(xp)}(φ(xi)∈H). K is the Gram matrix of φ(X), and as such Kij = k(xi, xj). We
use the generic notation x for any vector of Rn. Similarly, any vector of H is noted φ(x) (if its
pre-image is assumed to be x) or simply y (if there is no assumption on its pre-image).

A kernel of particular interest in this work is the Gaussian kernel, defined as:

k(xi, xj) = exp

(
−||xi − xj ||

2

2σ2

)
(B.2)

with the variance parameter σ2 ∈ R∗+. Remark that: (1) the norm of any φ(xi) ∈ H is the unity, i.e.
〈φ(xi), φ(xi)〉H = 1, (2) the Gaussian RKHS is of infinite dimension. As a consequence, whatever
X, φ(X) spans a subspace of dimension exactly p, and as such φ(X) lies on the unit hypersphere
Sp−1 ⊂ H. Moreover, as the inner product of two unit vectors corresponds to the cosine of their
angle, and as ∀(xi, xj), k(xi, xj) ∈ [0, 1], whatever X, φ(X) lies in a restriction R of Sp−1 which
is embedded in a sphere quadrant (its maximum angle is smaller than or equal to π/2, such as
illustrated on Figure 44). Naturally, as k(xi, xj) varies according to the value of the σ parameter,
the surface of R varies accordingly: When σ increases, k(xi, xj) increases, (i.e. the cosine between
xi and xj increases), and thus the surface of R decreases. Conversely, when σ → 0, R tends to a
sphere quadrant.

B.1.2. Analysis on Riemannian manifolds

A Riemannian manifold M in a vector space V with inner product 〈., .〉V is a real differentiable
manifold such that the tangent space Tx∗ associated to each vector x∗ is endowed with an inner
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product 〈., .〉Tx∗ . In this work, 〈., .〉Tx∗ reduces to 〈., .〉V on Tx∗ , so for simplicity we assimilate
〈., .〉Tx∗ to 〈., .〉V .

Classically data analysis is performed in V = Rn and not inM, as in the former it is rather nat-
ural to formalize the intuitive geometric notions (distance, mean, variance, direction, etc.) which
are necessary to characterize the dataset. On the other hand, the statistical analysis of a dataset
within M requires the non-trivial generalization of these notions to the setting of Riemmanian
geometry. One of the first statistical analysis tool designed for Riemannian manifold is the Prin-
cipal Geodesic Analysis (or PGA), the goal of which is to find a set of directions, called geodesic
directions or principal geodesics, that best encode the statistical variability of the data. PGA was
first introduced by Fletcher et al. [91], and received since then numerous addenda [210, 93], which
are beyond the scope of this work. Here, we only focus on the tools of Riemannian geometry which
are involved in the definition of PGA. The crucial observation of Fletcher is that a first order ap-
proximation of the distances among the samples of the dataset can be obtained if one projects the
dataset in Tµ, the tangent space at µ, the Karcher mean of the dataset. We recall that the Karcher
mean [211] µ ∈ M differs from the traditional mean x ∈ V (also called the extrinsic mean): It is
the point of M which minimizes the sum of squared geodesic distances to every input data. As
such, it constitutes an intrinsic mean (see Figure 44 for an illustration). We have:

µ = arg min
x∈M

p∑
i=1

dgeod(xi, x)2. (B.3)

This approximation of the geodesic distances in M by the Euclidean distances in Tµ seems par-
ticularly appealing, and it has been shown [94] that for a sphere the induced error is rather low.
However, as this manifold lies in V = H (instead of Rn), the tractability of this approximation
addresses several questions: First, how to define geodesic distances on the manifold embedding
φ(X), and compute the associated Karcher mean µ of φ(X)? Second, how to characterize Tµ and
project φ(X) onto Tµ? These two questions are addressed in two dedicated subsections of the next
section.

B.2. Data Analysis over the hypersphere in the Gaussian RKHS

Let us consider the unit hypersphere Sp−1 ∈ H, the surface of which is the Riemannian manifold
which embeds φ(X).

B.2.1. Geodesic distance and Karcher mean

The Riemannian distance (or the geodesic distance) between φ(xi) and φ(xj) on Sp−1 corresponds
to the length of the portion of the great circle embedding φ(xi) and φ(xj). It is simply given by:

dgeod(φ(xi), φ(xj)) = arccos(〈φ(xi), φ(xj)〉H). (B.4)

Then Equation (B.3) reads:

µ = arg min
y∈H

p∑
i=1

arccos(〈φ(xi), y〉H)2. (B.5)

The Karcher mean of X exists and is uniquely defined as long as X belongs to a Riemannian ball
of radius π/4 [211, 212] which is the case since two points can be at maximum distant from π/2.
Usually, non-linear optimization methods can be used to compute this mean. However, finding the
coordinates for µ is impossible, since we do not have access to the coordinates of φ(X). Instead,
we turn on the search of the pre-image x̃ ∈ Rn of µ ∈ H (such that µ = φ(x̃)). It is the solution
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of the following (non-linear) minimization problem:

x̃ = arg min
x∈Rn

p∑
i=1

arccos(〈φ(xi), φ(x)〉H)2, (B.6)

= arg min
x∈Rn

p∑
i=1

arccos(k(xi, x))2. (B.7)

To operate this minimization, let us consider

f : Rn → R

x 7→
p∑
i=1

arccos(k(xi, x))2

and compute its gradient:

∇f(x) =

p∑
i=1

∂

∂x
arccos(k(xi, x))2, (B.8)

=
2

σ2

p∑
i=1

arccos(k(xi, x))k(xi, x)√
1− k(xi, x)2

(xi − x).

Setting this derivative to zero leads to a fixed point algorithm similar to the seminal work on pre-
image computation proposed by Mika et al. [213]. This algorithm amounts to refining in several
iterations a solution x̃t such that:

x̃t+1 =

∑
i αt(i)xi∑
i αt(i)

with αt(i) =
arccos(k(xi, x))k(xi, x̃

t)√
1− k(xi, x̃t)2

(B.9)

However, as stated in [213], this approach is prone to find local minima and its output is strongly
dependent on the choice of the initial guess. Therefore, we propose a simple greedy algorithm
(Alg. B.1), which simply consists in repeating p times the previous optimization by setting the
initial guess as the different inputs xi (this latter is then omitted in the sum of equation B.9).
The estimation of the Karcher’s mean pre-image is achieved using Algorithm B.1 with an O(k.n2)
complexity, where k is the number of iteration and n the number of samples. In practice k is
small, namely less than 10 for the tested datasets when an RBF kernel is used. However, a
possible drawback of this approach is that it only provides an approximation for the Karcher
mean, since the true one may not have an exact pre-image in the input space. Thus, it may
be interesting to consider other approaches to find the pre-image of the Karcher mean, e.g. dis-
tance based [214] or local isomorphism [215]. Nevertheless, their direct application is impossi-
ble since the Karcher mean is only defined through a minimization procedure without a closed-
form solution. Fig. 45 illustrates the result of Alg. B.1 to compute the pre-image of the Karcher
mean on two toy datasets (points randomly sampled over a square and a spiral in 2 dimensions).

B.2.2. Projection on the tangent space

In the particular case of hypersperical manifolds, the mapping of any point onto a tangent
space (this mapping is usually referred to as the logarithmic map), and the reverse mapping (the
exponential map) are easy to define: The logarithmic map at location µ which projects any point
φ(xi) ∈ R ⊂ Sp−1 onto Tµ has the following form:

Logµ : R \ µ → Tµ (B.10)

y 7→ θ

sin(θ)
(y − cos(θ) · µ)
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Algorithm B.1: Pre-image of the Karcher mean on the sphere in the RKHS

ε← small value, x̃← mean(X)
for i = 1 to p do
xt=0
i ← xi

repeat
update x̃t+1

i using equation B.9 with x̃ti
until ||x̃t+1

i − x̃ti||2 < ε
if f(x̃t+1

i ) < f(x̃) then
x̃← x̃t+1

i

end if
end for
Output x̃

Figure 45.: Illustration of Karcher mean on two datasets: The dataset is represented by red points.
The blue point is the data mean in input space, The green point is the pre-image of
the Karcher mean after mapping onto the RKHS (the grayscale represents the function
f values as described in Equation B.8).

where θ is the angle between µ and y i.e. θ = arccos(〈µ, y〉H). When θ = 0, it is natural to
consider that y = µ. Conversely, the exponential map1, which projects a vector y of Tµ onto Sp−1,
is defined as:

Expµ : Tµ → Sp−1 (B.11)

y 7→ sin(θ)

θ
· y + cos(θ) · µ

where θ is given by θ = arccos
(
〈y,µ〉
||y||

)
= ||y||.

When using the kernel notation, and for φ(xi) 6= µ Equation B.10 reads:

Logφ(x̃)(φ(xi)) =
arccos(k(xi, x̃))√

1− k(xi, x̃)2
(φ(xi)− k(xi, x̃)φ(x̃)). (B.12)

1It is important to note that points on R are presented as vectors from the center of the hypersphere, while points
on Tµ are presented as vectors from µ.
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So far, the exact computation of this projection cannot be conducted, as φ remains unknown.
However, it is possible to derive the Gram matrix of Logφ(x̃)(φ(X)):

Kx̃
ij = 〈Logφ(x̃)(φ(xi)),Logφ(x̃)(φ(xj))〉H,

=
arccos(k(xi, x̃)) arccos(k(xj , x̃))√

1− k(xi, x̃)2
√

1− k(xj , x̃)2
.

(φ(xi)− k(xi, x̃)φ(x̃))T (φ(xj)− k(xj , x̃)φ(x̃)). (B.13)

With some simple calculations we finally obtain a simple form for the entries of Kx̃:

Kx̃
ij =

arccos(k(xi, x̃)) arccos(k(xj , x̃))√
1− k(xi, x̃)2

√
1− k(xj , x̃)2

· (k(xi, xj)− k(xi, x̃)k(xj , x̃)). (B.14)

Finally, it is possible to consider the geodesic distances in H, by simply replacing the Gram matrix
K associated to the kernel k(., .) by another Gram matrix Kx̃. it is also possible to interpret Kx̃

directly as the Gram matrix derived from a new kernel kx̃ []. This geometrical interpretation of
the approach has been tested in a context of clustering and classification. We refer the reader to []
for experimental results associated to the technique.

114





Résumé

Dans le domaine infographie, l’animation par ordinateur désigne notre ca-
pacité à faire se mouvoir, via un ensemble de programmes ou d’algorithmes,
des représentations géométriques virtuelles d’objets le plus souvent réels. Si
les jeux vidéos ou le champ des effets spéciaux sont les premiers domaines
d’application, le développement des technologies de l’information dans notre
vie de tous les jours a ouvert la voie à un grand nombre d’autres utilisa-
tions. L’animation à proprement parler nécessite de spécifier le comporte-
ment dans l’espace et le temps de l’objet considéré. Il existe un grand nom-
bre de méthodes permettant de réaliser cette spécification. Parmi celles-ci,
la catégorie des méthodes dites ”basées données” permettent d’obtenir un
réalisme important en s’appuyant sur des exemples capturés du monde réel.
A ces méthodes sont associés trois problèmes fondamentaux :

• un problème d’acquisition : quels sont les bons descripteurs du
mouvement ? Comment, et via quel médium, les capter du monde réel
?

• un problème de généralisation : comment généraliser
l’information obtenue à partir de quelques exemples ? Comment en
caractériser leur portée ?

• un problème de contrôle: par quel biais introduire cette informa-
tion dans une boucle d’animation ? Peut on la modifier pour l’adapter
à des cadres différents de ceux de la captation ?

Pris ensemble, ces problèmes permettent d’établir des schémas
d’Analyse/Synthèse, où l’information peut être capturée grâce à une
formalisation (un modèle) numérique du phénomène considéré, puis utilisée
à son tour dans la définition même du modèle. Ce document présente des
travaux de recherche dans cette direction menés par moi et mon équipe depuis
2004. Deux domaines d’application ”phare” sont considérés : l’animation de
personnages virtuels, et plus particulièrement des personnages doués de la
faculté de communiquer en langue des signes, et la simulation de foules de
gens guidée par les données. Dans les deux cas est montré comment les
données peuvent interagir avec les modèles numériques. Nous tentons même
de mettre en avant l’émergence de cercles vertueux où l’on s’aperçoit que de
meilleures données entrainent de meilleurs modèles, qui à leur tour autorisent
la captation de nouvelles données et ainsi de suite. Ainsi cette thématique
ouvre un large panel de problèmes évoluant de l’apprentissage à la simulation
numérique.

Abstract

In the computer graphics domain the terms ”Computer Animation” refer to the
possibilities of animating with a set of programs and algorithms some virtual
and mostly geometrical representations of objects. If computer games and pro-
duction of visual effects in the cinematography industry are the most obvious
applications, the development of 3D technologies in our day to day life through
more powerful computing architectures and/or mobile devices has drastically
augmented the number of possible use of those technologies. Animating ob-
jects requires to define the behavior of a virtual description of an object through
space and time. Among the different possibilities, Data-driven methods
usually provide a good way to obtain realism with only a few downfalls; the idea
is to be able to use some a priori knowledge about the motion (e.g. kinematic
trajectories) obtained from the observation of the corresponding phenomenon
in the real world. However, three problems need to be addressed:

• the acquisition problem: what are the good descriptors for a
motion ? Is it possible to capture them directly from the real world ?

• the generalization problem: how can one generalize the infor-
mation contained in the observed examples ? How to characterize the
extent of this generalization ?

• the control problem: how to use this knowledge into an animation
method ? Is it possible to control in some ways the final animation ?

Altogether, those problems set up the basis of Analysis/Synthesis schemes that
try to couple data and models. This document presents some contributions in
these directions that were elaborated and developed during my previous years
of research since 2004. Two main domains of applications are considered: vir-
tual character animation, and more specifically the animation of virtual signer,
and the definition of data-driven crowd simulation paradigms. In both cases,
we show how the data can be used in conjunction with a numerical model of
the considered phenomenon. Moreover, we highlight the potential virtuous cir-
cle that enables to acquire better data and define better models by capitalizing
on previous knowledges. This opens a large variety of problems ranging from
machine learning to numerical simulation.
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