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N O TAT I O N

– Matrices are represented by capital letters, while vectors and scalars are represented by
the minuscules and lower greek letters. The difference between vector and scalars should
be noticeable from the context.

– M(n, m) denotes the set of matrices with real elements and dimension n × m, and for the
sake of simplicity, M(n) = M(n, n).

– The identity of M(n) is denoted by In.
– The matrix 0m×n ∈ M(m, n) is the matrix with all elements equal to zero.
– The time derivative of a function f (t), i.e.

d f
dt , is represented by the dot ḟ .

– The partial derivative of a function f (x) with respect to a vector x, i.e.
∂ f
∂x , is represented

by the shorter ∂x f .
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P R O L O G U E

Combining information gathered from a multiple sources is ubiquitous. This process is
known as data fusion, and it is performed very intuitively, for example, by Humans, who use
information from balance, motion and joint position to walk. Furthermore, the sense of vision
warns us about surrounding dangers, while hearing aids to identify threats outside the field of
view. In some cases, we must resort to data fusion in order to extract information that cannot
be obtained by a single sensor. 1 In other situations, even though information can be already
obtained by a single sensor, complementary characteristics of multiple sensors improve the
quality of system’s description and robustness to other impairments. On that account, multi-
sensory data fusion supports diverse advantages with respect to using information collected
from a single sensor.

Data fusion has an important role in mobile, i.e. air, ground, and underwater, robotics.
This “mobile” concept requires motion information, as mobile robots often employ linear and
angular velocities to perform very low level control. Additionally, robots can execute large
displacement in a short time, thus the employed data fusion technique should be robust to
fast movements, i.e. high angular and linear velocities and their accelerations. Knowing the
current pose, i.e. position and orientation of an object with respect to some reference, is a
prerequisite for many applications. It is, indeed, a critical requirement in problem of aerial
robot stabilization. Concerning most indoor and outdoor applications, pose measurement can
usually be performed with either high frequency or high precision. Both of these character-
istics are required, for instance, to achieve safe and high quality control of aerial robots in
unfavorable environments.

A multi-sensory system to identify body pose must handle data obtained in various coor-
dinates systems. The resulting dynamics is more complex than pure body motion, because a
multi-coordinate system dynamics will take into account other parameters to relate each sys-
tem. However, those parameters are but seldom known accurately in advance, and we often
need to identify them prior to field applications. This data fusion problem requires persis-
tent motion conditions to distinguish between the target pose and the additional parameters,
which is an underlying difficulty to developing high quality techniques. Remarkably, the non-
linear nature of the motion equations present an difficult task. Moreover, identification and
use of the inherent observability conditions make that data fusion problem challenging.

This thesis addresses the problem of visuo-inertial data fusion for pose estimation. A visio-
inertial system consists of a video camera together with an inertial measurement unit (IMU)
attached to the same rigid body. The objective is to combine highly accurate pose measure-
ments extracted by camera information with angular velocity and proper acceleration ob-
tained by the IMU. On the one hand, the inertial sensors provide incremental displacement
measurements that can initialize computer vision algorithms or compensate for momentary
loss of sight. Measurements provided by the IMU, however are corrupted by an additive offset,
also known as measurement bias, and noise caused by manufacturing characteristics. These
characteristics can be significant for many low-cost sensors employed in robotics applications,
and estimates based on purely on IMU measurements drift quickly. Therefore, pose informa-
tion obtained using information provided by the camera limit the drift associated with direct

1. I do throughout this manuscript the common habit of referring to we as a generic third person. Sometimes,
we can refer to myself only, or the reader and myself, or the research community, etc. The meaning should be clear
from the context of each sentence.

1
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2 prologue

integration of inertial data. It is convenient to estimate IMU bias, since these variables may
vary due to several exogenous factors, e.g. temperature or battery level. Another source of
difficulty concerns various parameters associated to the use of different coordinate frames,
e.g. reference image, camera and IMU frames.

The results here discussed follow from two fundamental domains: computer vision and
nonlinear control. In the prior discipline, we are mostly interested in direct visual tracking
methods that can be applied for pose estimation, and these results are independent of the
data fusion methods further presented. The latter domain is employed in the development
of new methods in order to fuse pose and incremental information obtained by the cameras
and IMU, respectively. Despite the fact that classical data fusion methods have been already
employed to solve this specific problem, those techniques do not guarantee the convergence
of the estimates under fast motion of the sensor. We analyze the data fusion problem using
control theory, because, first, we can guarantee convergence of the estimates under fast motion,
besides, we are also granted with simple expressions for movements that distinguish between
pose and system parameters.

objectives and results

The objective of this thesis is to propose new techniques for pose estimation using visual
and inertial information. Initially, inertial and visual data can be inspected separately, i.e. the
computer vision methods for pose estimation do not depend on information given by inertial
sensors, nor the data fusion techniques rely on any specific computer vision method. These
two different domains, computer vision and data fusion, share the main contributions of this
thesis:

1. Concerning computer vision, we propose a new direct visual tracking method based
on the normalized cross-correlation, that implements region and pixel-wise weighting
together with a Newton-like optimization. This method can accurately estimate pose
even under severe illumination changes.

2. The main contributions of this thesis concern the data fusion process. We propose new
nonlinear observers for pose estimation, IMU bias and sensor-to-sensor parameter cali-
bration. The data fusion design includes a thorough observability analysis for the system.
This analysis provides expression of the movements under which we can distinguish
pose from the other system parameters. We obtain the stability of the observer under
explicit conditions of body motion.

The prosed techniques are compared with the literature using synthetic (simulated) and real
data. For instance, the visual tracking method is compared against the state-of-the-art using a
benchmark dataset that evaluates the accuracy, and real world sequences with challenging il-
lumination changes. Moreover, the proposed nonlinear observers are compared with classical
methods using simulated data that exploit the obtained observability conditions. We conclude
by presenting experiments with the integration of the proposed visual tracking method with
the proposed nonlinear observers. Part of the work described in this thesis is already pub-
lished in three major international conferences.

– (Scandaroli and Morin, 2011) presents the design of a nonlinear observer for pose estima-
tion and calibration of IMU bias, together with a gain tuning procedure. We show that
we can obtain globally stable nonlinear observers with a gain choice that is independent
of the angular velocity.

– (Scandaroli et al., 2011) presents the design of a nonlinear observer for pose estimation,
and calibration of IMU bias and sensor-to-sensor rotation. This paper also presents exper-
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prologue 3

imental results using the fusion of the proposed nonlinear observer with a direct visual
tracking method.

– (Scandaroli et al., 2012) proposes a novel direct visual tracking method that uses normal-
ized cross-correlation as similarity measure. This method implements two weighting tech-
niques: grid-wise and pixel-wise in order to avoid problems due to severe illumination
changes. The method is complemented by a Newton-style optimization that improves the
computation of the solution.

The results concerning the observability analysis and the observers for gravity and sensor-to-
sensor translation are unpublished by the date of submission of this thesis.

thesis organization

This thesis is organized as follows.
– Chapter 1 presents the necessary background information for the comprehension of this

thesis. We first discuss the basic definition of pose, i.e. orientation and position, employed
in this thesis, as well as technical details on camera modeling and inertial sensors con-
cluding with four different visual-inertial systems.

– Chapter 2 discusses different state-of-the art solutions for the direct visual tracking prob-
lem. This chapter also presents a novel visual tracking method based on the normalized
cross correlation to cope with complex illumination variations. The proposed technique
is compared to the state of the art using a benchmark dataset and challenging sequences.

– Chapter 3 states the main results from this thesis: the analysis of the observability and
design of new nonlinear observers for the simultaneous estimation of pose, numerous
parameters, e.g. rate gyroscope and accelerometer bias, camera-to-IMU orientation, di-
rection of the gravitational acceleration. We also compare the the proposed techniques
to state-of-the-art methods using simulation data. In order to simplify the presentation
of the results, the algebraic development of the observability analysis and the stability
proofs for the nonlinear observers are presented separately in Appendix A.

– Chapter 4 presents experimental results using the techniques proposed in the thesis.
The epilogue of the thesis reviews the achieved results and remarks some possible future
work. Two appendixes present additional material:

– Appendix A presents the proofs of observability properties of systems and stability of
the nonlinear observers proposed in Chapter 3. This appendix complements the main
contributions of this thesis stated in Chapter 3.

– Appendix B discusses known results in parameter estimation robust to outliers. These
results are employed in Chapter 2.
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1
B A C K G R O U N D A N D P R O B L E M S TAT E M E N T

This chapter reviews basic notation and sensory structure necessary for the full comprehen-
sion of this work. The first section describes the notation and some properties of rigid-body
motion. The following section discusses the perception of linear and angular motion using
accelerometers and gyroscopes, also the pitfalls faced with these sensors. The third section
discusses some preliminaries of pose estimation using computer vision, i.e. image formation
and geometry of two views using perspective cameras. The fourth and fifth sections refer to
the problem of state estimation. We first review general solutions to state estimation, then
follow with a more specific discussion on attitude estimation. We conclude the chapter pre-
senting the visuo-inertial sensor, and examine the operation and two different modes: pose
estimation, and sensor-to-sensor self-calibration.

1.1 motion representation

It is quite common in robotics to use multiple frames in order to present vectors and points
in space. In this thesis, we model the world using classic Euclidean geometry, c.f. , for exam-
ple, (Ma et al., 2003). We define a point m in space, and a vector is given by two points m, n
and a directive arrow that connects m to n, denoting ~v = −→mn.

A frame R is given by the quadruplet R{p,~ı,~,~k
}

, also written without distinction as {Rp,
R~ı, R~, R~k}. The point Rp defines the origin of R, and the vector triplet R~ı, R~, R~k provides
an orthonormal basis of the Euclidean space. Additionally, a right-handed frame also satisfies
~ı×~ =~k,~×~k =~ı, and~k×~ı =~, c.f. Figure 1.1. Three coordinates Rm1 , Rm2 , Rm3 are sufficient
to describe a point m using the frame R via

Rm = Rp + Rm1
R~i + Rm2

R~j + Rm3
R~k ,

B~ı

B~

B~k

R~ı

R~

R~k

R

B

Rp

B p

Figure 1.1: Examples of right-handed frames.

5
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6 background and problem statement

and we say equivalently that m has coordinates Rm =
[
Rm1

Rm2
Rm3

]
T ∈ R3 with respect

to frame R. Let us now consider two frames: R and B. Frame B can be described with respect
to R by the pair R(p, R)B , that is also written without distinction (RpB , RRB). The element
RpB ∈ R3 denotes the coordinates of the origin Bp with respect to R, and RRB ∈ M(3) is a
matrix whose columns are given by the coordinates of the triplet B{~i, ~j,~k} with respect to R.
Furthermore, since the columns of R = RRB are orthonormal, we can directly verify that

RTR = I3, R−1 = RT and det(R) = 1.

We can relate the coordinates of a point m in frames R and B, via R(p, R)B , i.e. :

Rm = RRB
Bm + RpB . (1.1)

and from the definition of vectors, we obtain the coordinate transformation of a vector as

Rv = RRB
Bv . (1.2)

Remark that the pair R(p, R)B completely defines the frame B with respect to R. Now, let us
consider a third frame C such that B(p, R)C denotes C with respect to B. Using, (1.1) and (1.2),
we obtain that the frame C writes with respect to R writes

RpC = RRB
BpC +

RpB , RRB = RRB
BRC . (1.3)

The pose of a rigid-body is defined after two frames: B attached to some point of the rigid-
body, and a reference frame R conveniently defined. The pose of a rigid-body is represented
then by the frame B in R coordinates, i.e. R(p, R)B depicted in Figure 1.2, where the elements
of the pair R(p, R)B denote the body position and orientation respectively. In this thesis, we
consider an inertial reference frame in order to define the pose. The main characteristic of in
inertial frame is that the frame moves with constant velocity, i.e. R p̈ = 0, moreover R ṗ =Rv

imply R~̇i = 0, R~̇j = 0, and R~̇k = 0 from the definition of vectors.
The position of the body is defined by the origin of the associated frame, we can describe

the dynamics of the position p(t) by

ṗ(t) = v(t), v̇(t) = a(t), (1.4)

where v(t) ∈ R3 and a(t) ∈ R3 denote the linear velocity and acceleration.
The matrix R defines the orientation (or attitude) of the body. We can verify for the dynamics

of the orientation R(t) under the orthogonality constraint, i.e. RRT = I3, that

Ṙ(t)RT(t) + R(t)ṘT(t) = 0, Ṙ(t)RT(t) = −(Ṙ(t)RT(t))T.

R

B

R(p, R)B

Figure 1.2: The pose of a rigid body
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1.1 motion representation 7

Notice that the term Ṙ(t)RT(t) yields an anti-symmetric matrix Ω that stands for

Ṙ(t)RT(t) = Ω. (1.5)

More specifically, the orientation R ∈ SO(3), i.e. the special orthogonal group (Warner, 1987),
and its associated Lie algebra so(3) is the set of anti-symmetric matrices. The skew operator
S(·) : R3 7→ so(3) writes:

S(ω) =




0 −ω3 ω2

ω3 0 −ω1

−ω2 ω1 0


 ,

where ωi is the i-th element of any vector ω ∈ R3. Letting ω ∈ R3 be the rotational velocity in
inertial coordinates and Ω = S(ω(t)) in (1.5), we have that the orientation dynamics writes:

Ṙ(t) = S(ω(t))R(t) (1.6)

The operator S(·) also represents the cross product S(u)v = u × v, ∀ u, v ∈ R3, and denote its
inverse map by vex(·), i.e. vex(S(u)) = u, ∀ u ∈ R3. Remark that we can write R = exp{Ω}
owing to the exponential map properties: exp{·} : so(3) 7→ SO(3). We have that the following
properties hold for any u ∈ R3, A = AT ∈ M(3), and R ∈ SO(3):

S(Ru) = RS(u)RT , (1.7)

Rvex(Pa(R)) = vex(Pa(R)), (1.8)

S(u)S(v) = − uTvI3 + vuT , (1.9)

S(u × v) = Pa(vuT), (1.10)

tr(AS(v)) = 0. (1.11)

where Pa(M) : M(3) 7→ so(3), ∀M ∈ M(3) is the anti-symmetric matrix operator, i.e.

Pa(R) =
R − RT

2
. (1.12)

There exist indeed other representations for rigid-body orientation, for instance, the unitary
quaternions and Euler angles are often employed in the literature. We prefer the classic matrix
representation because each element is unique and there are no singularities. The methods
developed in this thesis can be extended to quaternion representations, we omit these dis-
cussions however. The reader interested in other attitude parametrizations can refer to, e.g. ,
(Shuster, 1993).

The pair position–orientation (p(t), R(t)) defines the pose P(t) of a rigid body at a given
instant with respect to an inertial reference coordinate system. Notice that we can either rep-
resent the pose by the pair itself P = (p, R) or via the homogeneous matrix

P =

[
R p

01×3 1

]
∈ M(4), with P−1 =

[
RT −RT p

01×3 1

]
,

and, more specifically, P ∈ SE(3), i.e. the special Euclidean group (Warner, 1987), with its
associated Lie algebra se(3) given by the set of twist matrices. Remark that we can write
P = exp{T}, with T ∈ se(3), owing to the exponential map properties: exp{·} : se(3) 7→ SE(3).
Likewise the skew-matrix for the special orthogonal group, we can define the twist operator
T(·, ·) : R3 × R3 7→ se(3):

T(v, ω) =

[
S(ω) v

01×3 0

]
.

where v, ω ∈ R3.
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8 background and problem statement

1.2 inertial navigation systems

Inertial navigation systems (INS) are examples where data fusion is a necessary procedure.
A concise and comprehensive overview about INS is given in (Kuritsky and Goldstein, 1983).
In order to understand inertial navigation, let us first wonder about navigation. The word
navigation, itself, derives from the Latin words navis “ship” and agere “to drive”, and the
problem of navigation can be defined as directing the necessary movements from one point
to another. This problem is somehow instinctive and it can be delineated by the following two
questions:

– Where am I leaving from?
– Where do I want to go?
Answers to the these questions define a target origin and destination, which show different

scales of navigation. One can see the problem as cell trajectories in the order of micrometers,
up to space travels of hundreds of thousands kilometers. Those answers, however, embedded
a third question:

– How did we define the target origin and destination?
The answer to this third question will define an appropriate reference coordinate system in
which it makes sense to assign positions, velocities, and trajectories. Notice that the naviga-
tion problem will become more or less complex depending on the choice of the reference
coordinates.

Inertial coordinate systems, i.e. coordinate systems with constant velocity, are the natural
choice for navigation. As an illustration, consider the Earth-Centered, Earth-Fixed (ECEF) co-
ordinate system. This coordinate system has the origin defined by the Earth’s center of mass,
its first axis points towards the international reference median and the third axis points to-
wards the north pole, furthermore, the second axis is defined to make the system right handed;
the position in these coordinates is thus provided in terms of latitude, longitude and altitude.
This is considered an inertial coordinate system for many terrestrial applications. However,
those coordinates are not strictly inertial, since the Earth rotates around the Sun, and, under
“military” precision, ECEF inertial coordinates requires to compensate Earth’s rotation. For
most civilian research and commercial systems, however, that is a good approximation for an
inertial coordinate system, as many sensors available to the the end consumer present larger
measurement errors than the ones provided by the inertial Earth assumption. Depending on
the target application, of course, stellar observations can be employed to define an astronomi-
cal reference. In such a case, all the involved frames must be integrated to obtain the current
coordinates.

The inertial navigation problem could be solved by integrating the angular rate to establish
the current angular position, with respect to the predefined reference coordinates, while inte-
grating twice the linear acceleration. Notice that the current angular position is a requirement
to integrate accelerations consistently, and obtain body position and velocity in reference co-
ordinates. Gyroscopes and accelerometers are the sensors capable of measuring angular rate
and linear acceleration. These instruments are known as inertial sensors, because they exploit
the physical property of inertia, i.e. resistance to changes in angular momentum and linear
motion. In general, we refer to the gyroscopes and accelerometers by the set composed by
three components of each sensor, measuring angular rate and linear acceleration in each of
the three axis from a coordinate system. A cluster of triaxial gyroscopes and accelerometers
is called inertial measurement unit (IMU). Gyroscopes and accelerometers present an interest-
ing similarity with organs from the vestibular system (Viéville and Faugueras, 1989), which is
constituted by the otoliths and the semi-circular canals. The vestibular system provides move-
ment information as well as sense of balance in most mammals. The otoliths are responsible
for providing information about the tilt and linear motion of the head, and the semi-circular
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1.2 inertial navigation systems 9

canals are able to detect angular velocity of the head. (Viéville and Faugueras, 1989) and
(Corke et al., 2007) present an intriguing comparison between the Human sensory system and
the sensors from an IMU.

Early steps towards inertial instruments date back to the early 1900s, but the course of the
second world war yielded the dawn of inertial sensing and navigation. The works (Pitman,
1962, pp. 8-12), and (Draper, 1981) present an interesting historical view of early inertial sen-
sors and navigation systems. The first successful IMUs were presented from 1948 and, since
the beginning of IMU development, these units have been built under two different specifi-
cations: gimbaled and strap-down. These configurations operate similarly, although the latter
computes orientation and pose numerically, while the prior performs the computation electro-
mechanically. More specifically, the gimbaled version consists in a system where gyroscopes
and accelerometers are attached to a servo controlled gimbal. Every angular motion about
the axes is sensed by the gyroscopes, that provide the information to the servo controllers.
The servo controllers, in turn, maintain the gimbals stabilized to coincide with the reference
coordinates. The position can be directly obtained by integrating twice the accelerometers,
since the gimbaled system is designed to maintain the reference coordinate system. The phys-
ical mount in the strap-down form is much simpler, because the two sensors are literally
strapped down to the body. The reference orientation matrix, however, must be computed
mathematically, instead of the mechanical compensation in gimbaled systems. Furthermore,
this computed orientation matrix is used online to set the measured linear acceleration in
reference coordinates. Attitude computation was a heavy burden for early digital computers,
and that is, in part, the reason why mechanically complex gimbaled systems were utilized
instead of strap-down mounts in initial INS.

Electro-mechanical transducers were employed initially in gimballed IMUs. These sensors
emphasized on accuracy over cost, dimension and weight. Long military missions often em-
ployed even more accurate IMUs, that down-graded the integration errors via a closed loop
system with orientation and position information obtained by star-tracking devices (Lerman,
1983). The fade of gimballed electro-mechanical IMUs owes mostly to the advent of ring-laser
gyroscopes (RLG) (Silver, 1983), micro-machined electro-mechanical sensors (MEMS) (Yazdi
et al., 1998) and the evolution of digital computers. The development of RLG in the 1970s pro-
vided a cheaper, lighter and accurate option to electro-mechanical gyroscopes. Furthermore,
the development of computers that could easily process high rate attitude and position infor-
mation made gimbaled systems give way to strap-down digital IMUs. The global positioning
system (GPS) replaced star-tracking devices (Moustafa, 2001) in inertial navigation. GPS com-
plemented the IMUs with a three-dimensional position measurement given in an earth based
coordinated system, as well as the current time of the sensor. Position and time information
are computed from radio signals transmitted from satellites that orbit the Earth (Dudek and
Jenkin, 2008), where civilian devices often obtain 20 [m] accuracy. Still, the use of inertial sen-
sors remained restricted to military and civilian aeronautics until the development of MEMS
packages. This former class reduced not only size and weight of sensors, but also their cost
which allowed their widespread presence nowadays.

Commercial low-cost MEMS provide significantly less accurate measurements compared to
pioneer and military-graded systems. These sensors provide raw measurements impaired by
different factors, e.g. misalignment, temperature or battery level, that can be compensated
via a pre-treatment of the data. However, even after a pre-treatment of the data we do not
obtain “perfect” measurements. In the literature, a commonly employed model consists of
the target physical characteristic corrupted by additive noise and constant offset, also known
as measurement bias (Lefferts et al., 1982). Thus, the pose obtained by merely integrating
MEMS data drifts after a few seconds. The reduction of this drift can be achieved after a
good calibration of sensor’s bias. Even though this offset can be also obtained in a previous
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10 background and problem statement

0

ai(t)
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Figure 1.3: Description of a simplified mechanical accelerometer, adapted (Corke et al., 2007)

calibration procedure, the constant model is only valid for some periods of time, and an
online method for estimating the measurement bias is indeed positive. Remark, however, that
other sensors, that provide explicit or implicit attitude and position measurements, must be
employed in order to cope with the bias online calibration and bound the resulting drift from
IMU data integration.

1.2.1 Inertial sensors

Inertial sensors are instruments that exploit the principle of inertia, i.e. resistance to a
change in momentum, in order to measure motion changes with respect to an inertial refer-
ence frame. Angular rate gyroscopes and accelerometers are the inertial sensors responsible
for measuring respectively angular velocity and (specific) linear acceleration. In this section
we describe the basic structure of those sensors, and discuss physical characteristics that can
impair pose estimation. The reader can find more information on the structure of the sensors,
historical view and comparison to biological systems in (Corke et al., 2007; Dudek and Jenkin,
2008, and references therein).

1.2.2 Accelerometers

Accelerometers are the sensors responsible for measuring the linear acceleration of a body
with respect to an inertial frame. The damped spring-mass system displayed in Figure 1.3
represents the basic structure for a simplified single-axis accelerometer. A proof mass m is
supported by a sprint with elastic constant k and a dumper with stiffness b, and the following
second order dynamics

mai = mÿ + bẏ + ky (1.13)

converts the acceleration ai(t) of the system into a displacement y(t). Normally, a sensor like
the one depicted in Figure 1.3 is attached to moving rigid body with an associated frame B.
Thus, a simplified sensor can measure the rigid-body acceleration Bai(t) along the axis i of B
via the output position y(t), and the response of the system is classified as overdamped, un-
derdamped or critically damped depending on the choice of m, k and b. These characteristics
are usually provided by the manufacturer, and although practical accelerometers can vary in
design and technology, that previous structure is always present in essence.

In practice, we must employ a triplet of accelerometers in order to completely measure
the acceleration Ba = [Ba1 , Ba2 , Ba3 ]T . We should, however, be aware that accelerometers
measure the specific linear acceleration via y(t), i.e. the expression of the all physical forces
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1.2 inertial navigation systems 11

applied to the body. Therefore, the effects arisen from the real body acceleration aB and earth’s
gravitational field are measured as if they were the same force, i.e.

Bas =
Ba + Bg

with Bas denoting the specific body acceleration, Ba is the component due to linear accelera-
tion and Bg the gravitational acceleration field in expressed in body coordinates.

1.2.3 Gyroscopes

Angular rate gyroscopes, or simply gyros, are the sensors responsible for measuring the
angular velocity of a body with respect to an inertial frame. These instruments rely on the
conservation of the angular momentum, i.e. a body tends to keep rotating at the same angular
velocity about the same axis with the absence of external torque, e.g. we have the angular
momentum of a spinning disk

L = Iω × ν,

where I denotes the disk’s moment of inertia, ν the disk velocity and ω the angular velocity
of the body. As the system is rotated, it applies an opposing moment that is measured by the
gyros.

Vibrating structure gyroscopes are widely applied in practice. These sensors do not employ
spinning disks, but a probe mass that moves in a straight line with linear velocity v, and
experiences a Coriolis acceleration

aC = 2ω × v,

caused by an angular velocity ω. Accelerometer-like sensors then measure the Coriolis accel-
eration.

1.2.4 Compensating for sensory characteristics

Several applications these days employ micro-electro-mechanical sensors (MEMS). In this
thesis, we consider that class of sensors since they have a good dynamical response, are
lightweight, low-power consuming and most specially: they are mass produced and acces-
sible to the end user. 1

Several physical characteristics in MEMS differ from the aforesaid models. For instance, we
must employ triads of gyros and another of accelerometers to measure the angular velocity
and specific linear acceleration in 3-axis, thus, we often verify cross-coupling residual measure-
ments due to misalignment of the sensors. MEMS are also subjected to nonlinear variations
caused by temperature. Moreover, the analog data must be digitalized for numerical treat-
ment, and, to avoid aliasing, the analog signal is filtered cutting frequencies, at least, higher
than half of the sampling one. These are a few examples of deterministic effects. Furthermore,
stochastic models on gyro and accelerometer measurements include a Gaussian additive mea-
surement noise. However, we follow a deterministic approach in this thesis and neglect this
former characteristic.

The calibration of accelerometers, e.g. (Batista et al., 2011, and references therein), (Beravs
et al., 2012), and gyroscopes, e.g. , (Ojeda et al., 2000), (Olivares et al., 2009), (Cui et al., 2012,

1. It is possible to find devices with 3-axis gyroscopes and accelerometers from 40 USD by October 2012, e.g. ,
https://www.sparkfun.com/products/10251
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12 background and problem statement

and references therein), has been of intensive research. It is hard to model all nonlinear char-
acteristics from these instruments and how they interact. Therefore, authors often employ first
or second order approximations, i.e.

µ(t) = bµ + M1µ(t) + µT M2µ(t) + . . . ,

in order to model the dynamics of a µ, e.g. the accelerometers or gyroscopes. A plausible
model defines bµ ∈ R3 as the measurement bias, M1 ∈ M(3) is non-singular matrix that
represents scale factors and alignment errors due to the mechanical mount, and, sometimes,
the higher order parameters M2 ∈ M3 can model effects due to changes in temperature. Cal-
ibration procedures usually involve specific movements executed by robotic arms or rotating
turn-tables that must “excite” all of the system modes in order to yield an observable model
to obtain all of the pre-defined parameters.

The measurement bias is an important effect that is characterized by an additive offset
measurement. In this thesis, we consider the following measurement model:

Bωy(t) =
Bω(t) + bω , (1.14)

Bay(t) =
BaS(t) + ba =

Ba(t) + ba − Bg(t) , (1.15)

where bω, ba denote gyro and accelerometers bias. The constant dynamics model is employed
for additive bias:

ḃω = 03×1, ḃa = 03×1 . (1.16)

for the angular rate gyroscopes and accelerometers, respectively. That constant model may
seem incomplete at a first glance, since these parameters can vary due to different factors such
as temperature and battery level. The dynamics of the biases, however, varies slowly through
relatively long periods of time. Hence, a constant model for these biases can indeed represent
their governing dynamics. Furthermore, this constant model seldom changes the observability
conditions of the system, and it is commonly employed in practice, e.g. , (Lefferts et al., 1982)
and references therein.

Naturally, for the model (1.14)–(1.16) be valid, we assume higher order sensor characteris-
tics, i.e. gain scales, alignment matrix and higher order nonlinear characteristics are either
previously calibrated and compensated in a pre-treatment phase of the sensors or negligible.
We make this simplification since the mechanical mount of the sensors generally present a
“more constant” behavior than the additive term. Moreover, computing such multiplicative
terms together with the bias and the pose variables increase the complexity of the system’s
observability conditions. Hence, we are unlikely to improve the results for these complex
configurations without a controlled environment often accessible to manufacturers only.

1.3 pose estimation with computer vision

The sense of vision is very important for animal interaction with the environment. The eyes
can perceive a spectrum of the waves reflected by objects inside the field of view, and, after-
wards, the brain processes the information present in the observed scene. This whole process
is a result of thousands of years of evolution, and animals seem to use vision very intuitively.
Humans have employed cameras to play the role of the eyes, while images captured by these
cameras carry the information about the environment. It is left to the computer vision algo-
rithms to interpret what information can be extracted from each image, and how to exploit
the information provided at its most.

Computer vision can be very effective for pose estimation. First, the cameras are non-
intrusive and passive sensors. Secondly, multiple images can provide information of different
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1.3 pose estimation with computer vision 13

points of view of the scene, such that one can compute the trajectory of the camera from the
changes shown in these images. The pose estimation problem can be treated similarly to the
visual tracking. Visual tracking is a classic application of computer vision whose objective is
to estimate the displacement of an object in a sequence of images. Therefore, one crucial task
in visual tracking is to constantly identify the object.

We can define two techniques to model an object: feature-based and direct techniques. Al-
though pose estimation can be treated as a visual tracking problem, this task is also general-
ized by a localization task, crucial in the simultaneous localization and mapping (SLAM), c.f. , for
instance, (Klein and Murray, 2007), (Silveira et al., 2008), (Newcombe et al., 2011). Neverthe-
less, SLAM using visual techniques usually present one layer that involves either a feature-
based or direct visual tracking method. This thesis therefore focuses on the visual tracking
problem and the data fusion problem that is independent of the employed pose estimation
technique. Next, we present the basics of image formation and the geometry of multiple views
needed by Chapter 2.

feature-based techniques are build upon the extraction and matching of a sparse set
of geometric characteristics (Shi and Tomasi, 1994). These characteristics can be described,
for instance, by points of interest (Harris and Stephens, 1988), line segments (Hager and
Toyama, 1998), (Marchand, 1999), etc. The representation of features is improved with the use
of descriptors, such as, e.g. , SIFT (Lowe, 2004), SURF (Bay et al., 2006), and FERNS (Ozuysal
et al., 2007). An interesting summary of several feature based techniques is shown in (Roth
and Winter, 2008). Furthermore, feature-based techniques rely on a data association procedure,
also known as feature matching. This procedure implies further computational burden and a
new source of errors, as the cost of exhaustively comparing every feature is prohibitive and
some approximations are employed in order to guarantee (close to) real-time execution.

One advantage of feature-based methods is that the ensemble of information provided by
the images is completely represented by the features, which may, in turn, yield a representa-
tion that requires less memory space. Moreover, these methods are robust to large displace-
ments, as the displacement of the object can be computed explicitly from feature matches.

The quality of the solution, however, depends on the number of observed features, which
makes these methods prone to data association errors, partial occlusions and highly depen-
dent on the density of features.

direct techniques , also known as intensity-based methods, exploit the brightness inten-
sity of each individual pixel in order to solve the visual tracking. In contrast to feature-based
methods, intensity-based methods can exploit the ensemble of information given by the image,
thus these techniques can explore even areas where no features exist. Direct visual tracking
methods have shown to be more accurate than feature-based techniques. However, the solu-
tion for pose estimation is not explicit and it is often obtained via iterative optimization of a
similarity function.

The first solution to direct visual tracking was built upon the sum of squared differences
(SSD) (Lucas and Kanade, 1981). The solution of the SSD is closely related to the least squares
problem and the solution via SSD has proven to be very efficient, mainly because the optimiza-
tion can be much simplified due to numerous solutions to nonlinear least squares, e.g. (Baker
and Matthews, 2001) and (Benhimane and Malis, 2007). SSD tracking, however, is severely
impaired when brightness constancy is violated, since motion and photometric variations are
dealt in the same way by the similarity function. Different works improve the visual tracking
using SSD by estimating online (Bartoli, 2008), (Silveira and Malis, 2010) or offline (Hager
and Belhumeur, 1998) photometric parameters. Moreover, the problem of partial occlusion is
usually treated by a robustly weighted SSD (Hager and Belhumeur, 1998). Nevertheless, as
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14 background and problem statement

we show, the SSD does not perform well under concurrent illumination changes and partial
occlusions.

The normalized cross correlation (NCC) is a similarity function invariant to affine illumi-
nation changes, with radius of convergence comparable to the SSD. Typically, gradient-based
solutions for the NCC resort to computationally expensive Newton’s method (Irani and Anan-
dan, 1998) or other first other simplifications such as (Evangelidis and Psarakis, 2008) or
(Brooks and Arbel, 2010). More general examples of similarity measures include the mutual
information (MI), c.f. (Viola and Wells, 1997), (Dame and Marchand, 2010), the sum of condi-
tional variance (Pickering et al., 2009), (Richa et al., 2011), the correlation ratio (Roche et al.,
1998b) and the cross cumulative residual entropy (Wang and Vemuri, 2007).

We dedicate the whole of Chapter 2 for a deeper discussion about direct visual tracking
methods and pose estimation techniques, where we also present a new direct visual tracking
method based on the NCC.

1.3.1 Image formation and photometric model

Image formation depend on multiple factors: type of visual sensor being employed, e.g. pin-
hole camera with thin lenses, and illumination properties from the sources and the scene.
These factors result in geometric and photometric models for camera and the scene represen-
tation. We further describe the models of interest for this thesis, and these topics are covered
with more details in computer vision books, e.g. (Ma et al., 2003), (Hartley and Zisserman,
2004) and (Szeliski, 2012).

We define an image by a two-dimensional brightness array that takes positive values for the
brightness of each point. More specifically, the image I is a map defined on a compact set Ξ

of a two dimensional surface of pixels that takes value in the positive real numbers, i.e.

I : Ξ ⊂ P2 → R, p 7→ I(p)

where p = [u, v, 1]T ∈ Ξ defines the coordinates of a pixel, the origin p0 = [0, 0, 1] is
conveniently associated to the top-left pixel of the image. This thesis considers digital images,
and, for that case, the domain Ξ and the range R are discretized, e.g. the image surface
denotes Ξ = [0, 799]× [0, 599]× 1 ⊂ N3, and the brightness [0, 255] ⊂ N.

The values of I depend on physical properties of the scene, i.e. reflectance of the mate-
rial and shape of the object and light sources. According to experimental (Blinn, 1977) and
physically-based (Cook and Torrance, 1982) models, the intensity measured at a particular
pixel p depends on specular, diffuse and ambient reflections. The complexity of the scene’s
photometric model increases as we model these effects taking parameters such as ambient
light or viewpoint into account. However, we can simplify the model by considering the scene
composed by Lambertian surfaces, i.e. objects that maintain their appearance independent of
the viewing direction, and we can use a photometric model reduced to an affine transforma-
tion for an image I considering a reference I∗, i.e.

I(p) = α(t)I∗(p) + β(t) , (1.17)

with α(t), β(t) ∈ R. This approximation holds, at least locally, for most applications.

1.3.2 Sub-pixel approach

Despite the fact that brightness values are only available on discrete surface, high preci-
sion algorithms often need to compute the intensity values at a non-integer pixel position.
Therefore, we must often resort to image interpolation techniques, for instance:
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1.3 pose estimation with computer vision 15

p00
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Figure 1.4: Bilinear interpolation

– Nearest-neighbor interpolation computes the nearest integers for the u and v elements of
the pixel p, i.e.

p =
[
int(u), int(v), 1

]T
,

where int : R → Z, u 7→ int(u) defines the function returning the closest integer to a real
number. The resulting intensity is given by In(p) = I(p).
This technique is simple and fast, however, the resulting interpolation has low quality
and presents discontinuities, e.g. , rounded shapes or textured surfaces.

– Bilinear interpolation computes the resulting intensity using 4 neighboring pixels as de-
picted in Figure 1.4. Denote the nearest-neighbor p00 = p, and let pij = p00 + [i j 0]T, and
α = p − p00. We write the bilinear interpolation as:

Il(p) =

[
1 − αu

αu

]T [
I(p00) I(p01)

I(p10) I(p11)

] [
1 − αv

αv

]
. (1.18)

This technique is slower than the nearest-neighbor, however, the contours of the resulting
image are smoother.

– Bicubic interpolation uses the same approach as the bilinear interpolation, however the
resulting intensity is computed over 16 neighboring pixels. We can compute this interpo-
lation as:

Ic(p) =




f (1 + αu)

f (αu)

f (1 − αu)

f (2 − αu)




T 


I(p−1−1) I(p0−1) I(p1−1) I(p2−1)

I(p−10) I(p20) I(p10) I(p20)

I(p−11) I(p21) I(p11) I(p21)

I(p−12) I(p22) I(p12) I(p22)







f (1 + αv)

f (αv)

f (1 − αv)

f (2 − αv)




,

where f stands for the cardinal sinus function, i.e. sinc(x) = 0 for x = 0, and sinc(x) =
sin(x)/x otherwise.
This technique is slower than both nearest-neighbor and bilinear interpolation, however
the resulting is smooth and still maintains the contours, while the bilinear technique
tends to smooth the gradients of the intensities.

Hence, the choice of the interpolation technique has to consider not only the quality of the
result, but also the computational effort. In this thesis, we employ the bilinear interpolation
due to the trade-off between computational effort and smoothness of the resulting image.
Thus, for the sake of notation, every time we express I(p), we actually mean Il(p) using
(1.18).
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16 background and problem statement

mR

Ξ

~v

~u

Rp = K f
Rm

Figure 1.5: Perspective projection model
.

1.3.3 Pinhole cameras

Let us consider a frame R associated to the camera’s optic center such that a point m
in space has coordinates Rm in R. Pinhole cameras are based on the perspective projection
model, i.e. a point m with coordinates Rm is projected at

Rm = Rz−1Rm,

where Rz = e3
T Rm defines the depth of the point in R coordinates. In the above equation,

the point Rm = [Rm1 , Rm2 , 1]T ∈ P2 lies on a virtual plane perpendicular to the optical axis
of the camera and distant one meter from the projection center. Pinhole cameras, however,
change that virtual projection plane into the image plane Ξ such that the point m is associated
to the pixel Rp, c.f. Figure 1.5, via

Rp = K f
Rm = Rz−1K f

Rm ∈ P2, (1.19)

where the matrix K f ∈ M(3) contains the intrinsic parameters of the camera

K f =




f f s du

0 f r dv

0 0 1


 , (1.20)

with f as the focal length expressed in pixels, s the cosine between the image frame axes, r the
aspect ratio and du, dv the coordinates of the camera’s principal point, w.r.t. the center of the
image in pixels. The intrinsic parameters can be obtained by calibration procedures, c.f. (Tsai,
1987), (Zhang, 2000), using multiple images from different views of an object with known
dimensions. We consider cameras with fixed lenses in this thesis, therefore K f is constant and
can be obtained using the aforementioned techniques.

The pinhole camera model (1.19) holds for many applications, however some lenses produce
radian distortions on the projected image, e.g. the light is not propagated linearly causing
straight lines to appear as curves, c.f. Figure 1.6. This phenomenon is important in wide-
angle and fish-eye lenses. We can compensate the radial distortion towards the perspective-
like model using a polynomial expression:

pr = pd + (1 + k1r2 + k2r4 + . . . + knr2n)(p − pd),

where pr denotes the rectified coordinates of p, the parameters ki denote the distortion coef-
ficients, and r = |K f

−1(p − pd)| is the distance from the current pixel to the optical center

pd =
[
du dv 1

]
T. The radial distortion is constant, likewise the intrinsic parameters, since this
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1.3 pose estimation with computer vision 17

effect only depends on the pixel distance with respect to the center of projection. We can com-
pute the distortion during the calibration procedure, then rectify the images in a pre-treatment
step. We consider undistorted images in this thesis for the sake of simplicity.

1.3.4 Geometry of two views

We have discussed so far the basics on the formation of images in a single view. Concerning
pose estimation, we are particularly interested in understanding how the projections of points
in an image change between two views, and how we can identify the relative pose between
these two views.

Let us consider the case described in Figure 1.7. The camera observes the point m initially
in the pose associated to a frame R, such that m is projected at the pixel

Rp=
Rz−1K f

Rm .

Afterwards, the camera moves towards the pose described by the coordinate frame C, and the
same point m is projected at the pixel

C p = Cz−1K f
Cm .

We can obtain the generic relation between the position of the pixels using (1.1)

C p ∝ K f
CRRK f

−1 Rp + Rz−1K f
C pR, (1.21)

where the pair C(p, R)R denotes the coordinates of frame R with respect to frame C.

Essential matrix approach

One relation between the projection of a generic point and the relative pose using two
images is given by the Essential matrix E = S(C pR)CRR. We obtain the Longuet-Higgins
constraint multiplying both sides of (1.21) on the left by C pTK f

−TS(C pR)K f
−1, and using

Eq. (1.19):

C pTK f
−TEK f

−1Rp = CmT E Rm = 0,

since C pTK f
−TS(C pR)K f

−1C p=
C pTK f

−TS(C pR)C pR = 0.

(a) (b)

Figure 1.6: Effects due to imperfect lenses: (a) captured; (b) rectified image
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18 background and problem statement

R

C

m

C (p, R)R

Rp = K f
Rm

C p = K f
Cm

Figure 1.7: Projection of a point in two different views

The Essential matrix can be computed, for instance, from the Longuet-Higgins constraint
using the 8 point method and E is further decomposed into C(p, R)R, c.f. (Ma et al., 2003,
p. 121) for example. We need N ≥ 8 pixel correspondences of different points mi between
two views, with C pi and Rpi denoting the i-th correspondence. A first approximation E∗ is
computed via the SVD decomposition of

P =




Ru0
C p0

T Rv0
C p0

T C p0
T

Ru1
C p1

T Rv1
C p1

T C p1
T

...
RuN

C pN
T RvN

C pN
T C pN

T



= USVT ,

with Rpu
i and Rpv

i denoting the first and second components of the pixel Rp, and the elements
of E∗ are given by the last column of V. The Essential matrix is obtained via

E = K f
TU∗(I3 − e3e3

T)V∗TK f

such that U∗ and V∗ are computed from the SVD decomposition E∗ = U∗S∗V∗T.
Some complications, however, appear due to this approach. First, we need sufficiently large

parallax, translational displacement roughly speaking, to obtain a well conditioned Essential
matrix, i.e. different from the nullity. Secondly, this approach needs general 3D points as
correspondences, and the method fails namely when all of the correspondences lie in a planar
surface.

The planar case

The planar case is depicted by Figure 1.8. We have that every point m over the planar
surface Π verifies RnT Rm = Rd in R coordinates, where Rn denotes the unit normal vector
and Rd ∈ R the distance of the plane to the camera’s optic center. Thus, we can write the
depth of point m in R as

Rz−1 = Rd−1RnT K f
−1 Rp ,

such that, using (1.21), the projection C p of m at the pose corresponding to C writes

C p ∝ CHR
Rp ,

C p ∝ K f
CGRK f

−1Rp ,
C p ∝ K f

(CRR + Rd−1C pR
RnT

)
K f

−1Rp . (1.22)

We define the Euclidean homography by CGR = CRR + (Rd−1)C pRRnT , and the projective
homography CHR = K f

CGRK f
−1 of point in the plane Π for the R frame expressed in C

coordinates.
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1.3 pose estimation with computer vision 19

R C

Π

n

(CRR , C pR)

C HR

Figure 1.8: Projection of a planar surface in two different views

We can compute the Euclidean or projective homographies via different methods, e.g. , di-
rect methods described in the next Chapter, or via the correspondence of N ≥ 4 pixels. The
technique based on correspondence of pixels is simple and similar to the technique employed
by the Essential matrix. Let us consider the pixels Rpi and C pi denoting the i-th pixel corre-
spondence of a points mi, then, the projective homography CHR is computed via the SVD
decomposition of

P =




Ru0 S(C p0) Rv0 S(C p0) S(C p0)
Ru1 S(C p1)

Rv1 S(C p1) S(C p1)
...

RuN S(C pN ) RvN S(C pN ) S(C pN )



= USVT ,

where the elements of CHC are given by the last column of V. The Euclidean homography is
computed directly via CGR = K f

−1 CHRK f
−1.

After computing the Euclidean homography, we can recover a scaled pose, C(λp, R)R, and
the unit normal vector Rn using, e.g. , SVD decomposition (Faugueras and Lustman, 1988),
(Zhang and Hanson, 1995) or closed formulæ (Malis and Vargas, 2007). The number of possi-
ble solutions varies from eight, without any assumption on the scene, down to two, consider-
ing that the target is in front of the camera, i.e. dR ∈ R+. In order to obtain the full relative
pose C(p, R)R, we must know the scale factor λ = Rd−1 , and also be sure which extracted Rn
is the “correct” one.

When the plane is seen in front of the camera, i.e. nominal operation of pinhole camera,
we can constrain the homographies up to det(CGR) = det(CHR) = 1, because (1.22) is a
proportional relation. That constraint forces the matrices to belong to the special linear group
SL(3) (Warner, 1987), i.e. the group of M(3) matrices with unitary determinant. We can
replace (1.22) by the group action w : SL(3)× P2 → P2:

w(H, p) =

[
e1

T Hp

e3
T Hp

,
e2

T Hp

e3
T Hp

, 1
]T

(1.23)

such that for p ∈ P2, and H, H1, H2 ∈ SL(3):




w(I3, p) = p,

w(H1, w(H2, p)) = w(H1H2, p),

w−1(H, p)
)
= w(H−1, p).

(1.24)

where w−1 denotes the inverse group action of w.
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20 background and problem statement

1.4 state estimation

Control and estimation research communities use extensively the term state. In simple
words, a state symbolizes the minimal amount of information to represent the internal con-
dition of a target system at a given time instant. Notice that a different state representation
can be defined as conveniently for a system, of course, whilst it satisfies the task’s purpose.
The term estimation derives from the Latin æstimare “determine”, and the problem of state
estimation can be defined as determining the internal conditions of a system at a certain time.
The estimation problem is closely related to observability characteristics of a system (Kalman,
1960b), i.e. whether it is possible to reconstruct the state of a system from the information
provided by trajectory of the measurements and known inputs of the system.

Generalizing the estimation problem, we can enumerate three situations:

1. determination of the current state using information up to the current time;

2. determination of a future state using information up to the current time;

3. determination of a past state using information up to the current time.

The first situation defines a filtering problem, while the second defines a prediction problem,
and the third determines a smoothing problem (Jazwinski, 1970). This thesis addresses the
filtering problem, and the words estimation and filtering are used interchangeably throughout
the text.

The problem of state estimation has been studied for a long time, a history that dates up
to, at least, 1800 when Gauss developed the technique known today as least squares to es-
timate planetary orbits. The theory used in state estimation can be divided in two ways of
reasoning: deterministic and stochastic filtering. The leitmotif of stochastic filtering is that any
system performs randomly. A stochastic system is described by probability density functions
in the process dynamics and sensor models. Deterministic filtering, on the other hand, con-
siders that the same system always behaves identically, i.e. a system will always exhibit the
same outputs from the same starting condition and the same inputs. A deterministic system
is described by differential equations.Whilst stochastic approaches aim at obtaining the full
probability distribution of the system, deterministic solutions work toward the convergence
of the estimates, i.e. the values of the estimates should coincide with their real values in the
absence of noise.

The Kalman filter is unarguably the most successful result in stochastic linear filtering. This
estimator is named after its author Rudolph Kalman, who first claimed the development of
the optimal filter for linear discrete time systems with noisy inputs in (Kalman, 1960a), the
extension for continuous systems was shown later in (Kalman and Bucy, 1961). In his first
paper, Kalman proved the optimality using the principle of orthogonality, and since then
his result has been “rediscovered” several times using different approaches. For example,
the recursive least-squares formulation shows that the Kalman filter computes the estimates
with the minimum squared-error in both deterministic and stochastic concepts. Furthermore,
considering systems with Gaussian process and measurement noise, the Kalman filter yields
the maximum likelihood, and also the minimum covariance filter, c.f. (Jazwinski, 1970, pp.
200-210, and references therein).

The Kalman filter is also shown as the Bayesian filter for Gaussian processes subjected to
linear dynamics (Ho and Lee, 1964). Those results arrive although Kalman, in his seminal
works, did not specify the quality of the probability distribution, as long as they are convex
and symmetric with respect to the mean. Linear Kalman filtering has been an active research
subject for the last 50 years and the literature is incredibly broad, some classical references in-
clude the seminal works of Kalman and Bucy, as well as the classic textbooks (Jazwinski, 1970),
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1.4 state estimation 21

(Sorenson, 1985), or (Simon, 2006) that discusses some newer results concerning robust filter-
ing and estimation with state constraints. There are two other properties of Kalman filtering
worth mentioning. Kalman’s gain is computed from the uncertainties of the predicted state
and the current measurements. Hence, in order to calculate the innovation gain, Kalman’s
filter must also compute the full covariance matrix of the system, which can be seen as a
“state augmentation” of the system. For example, the estimation of a system with three states
is accomplished computing the estimates together with other nine elements of the covariance
matrix. That augmentation may not be a problem in system with few states. However, memory
and computation power can be an issue for systems with larger dimensions. The optimality
claim of the Kalman filter is strongly related to the knowledge of the model, i.e. parameters of
the dynamics, covariance and correlation of process and measurement noises. Estimate diver-
gence can be a problem if the filter operates using an erroneous model over a large amount
of data. In such cases, the filter will “learn the wrong model too well”, and eventually fu-
ture observations will have small influence in future estimate calculations. There exist several
techniques that retune the filter parameters in order to mitigate the divergence or recover
the estimates from divergence (Jazwinski, 1970, pp. 305-323) and, at this level, Kalman filter
tuning can become a mixture of rules of the thumb and art.

In many practical applications, a deterministic approach can be preferable due to the lack of
suitable statistical models for the system dynamics and sensor measurements. State observers
are an option to the filtering problem using a deterministic rationale. State observers for lin-
ear time-invariant systems are also called Luenberger observers, for the early work of David
Luenberger on the design and characterization of properties for this approach, i.e. (Luen-
berger, 1964), (Luenberger, 1966). Classic control techniques require full state feedback, which
is specially difficult for cases where each state could not be directly measured. Luenberger
observers can provide a solution to that problem, and they are computationally simpler than
the Kalman filter because the estimates are obtained using a constant matrix in the feedback
dynamics of the estimates. Therefore, liner observer filtering is performed using only the es-
timates and measurements, i.e. without “state augmentation”, and state observers need less
memory and computational power. Luenberger proved that if the system is completely observ-
able, then a state observer can be designed to provide an asymptotically convergent estimate
with an arbitrary settling time for the transient response. He also remarked that both state ob-
server and Kalman filter share the same dynamical structure. From this equivalence property,
it is possible to compute a steady state Kalman gain and use it in a state observer form, thus
resulting in what is often called steady state Kalman filter. The literature also covers really
well the design and analysis of Luenberger observers, main references are Luenberger semi-
nal papers as well as other classical linear system text books, e.g. (Kailath, 1979), and (Chen,
1984).

The solutions discussed so far deal with the state estimation problem in linear systems,
where important results, such as optimality and asymptotic stability of the estimate, were
obtained. However, most of real-world problems are nonlinear in nature, notably the classic
rigid body motion employed for pose estimation. Unfortunately, solutions obtained for lin-
ear applications may not perform satisfactorily in nonlinear applications, and, for this reason,
state estimation for nonlinear systems has been a trend research area in the past 50 years. For
the state estimation of nonlinear systems, the differences between stochastic and deterministic
filtering become more noticeable. Nonlinear versions derived after Kalman’s linear solution
are largely available and still under active research. The extended Kalman filter (EKF) is unar-
guably the simplest Kalman-based approach for nonlinear estimation, and has been present
in countless applications since early applications. The EKF is computed after the first order
Taylor expansion of the system equations using the current state estimate. Differently from the
linear version, however, that approach provides only weak convergence properties, e.g. the es-
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22 background and problem statement

timation error is likely to converge to zero only for small initial errors, which can be seen from
EKF’s equivalence to a first-step computation of the Gauss-Newton method for the likelihood
maximization (Bell and Cathey, 1993). The convergence properties of the filter in continuous
time will depend on other properties as boundedness of the linearized model. Another recur-
ring problem is the filter divergence when the linearized model is not computed close enough
to the current state. In this case, as discussed for the linear case, the filter can “learn too well”
the erroneous model, thus leading to the divergence of the estimates.

The literature shows numerous improvements to overcome difficulties faced by the EKF.
For instance, the iterated EKF can reduce the effects due to nonlinearities of the measurement
function (Jazwinski, 1970, pp. 279-280). The iterated EKF is equivalent to computing the non-
linear maximum likelihood solution using an iterative Gauss-Newton formulation (Bell and
Cathey, 1993). Furthermore, the multiplicative EKF (Lefferts et al., 1982) addresses attitude
estimation using unitary quaternions. Quaternions form a Lie Group (Warner, 1987), whose
group operator is nonlinear, differently from the element-wise sum for Rn vectors. Leffets et al.
noticed this problem and proposed an ad-hoc solution using reduced space and changing the
update rule so as to respect the quaternion group operation. More recently, (Bonnabel et al.,
2009b) proposed an invariant EKF that exploits system symmetries with a Kalman-based
formulation. This invariant formulation aims at respecting the geometry of the state space
when it corresponds to a manifold. As a result, the invariant EKF provides an autonomous
linearized dynamics for a larger set of trajectories, where the invariant EKF is expected to
perform better than the standard EKF. These three solutions are not but few examples that
have been presented in this 50-year literature. There are still numerous other technical solu-
tions, and most of these can be combined with other engineering tricks such as using other
coordinates to describe the states, different procedures to tune the process noise. Therefore, it
is difficult to claim such thing as “the EKF”, but instead an EKF implementation, that relies
on the employed techniques.

The unscented Kalman filter (UKF) is another Kalman-based solution that has earned some
attention in the past 15 years. This technique is named after the unscented transform (Julier
and Uhlmann, 2004; Julier et al., 2000), which is supposed to approximate the covariance of
distributions in nonlinear transformations better than the approximation provided by first
order Taylor series. The computation of the UKF assumes a Gaussian distribution, and the
authors provide a set of rules to carefully choose the points to approximate better the non-
linear transformation of the probability distribution. The authors show large improvements
using the unscented transform for polar to Cartesian coordinate transformation, and other
works have presented the UKF as very effective alternative for attitude and position estima-
tion, e.g. (Crassidis, 2006). Up to this author’s knowledge, the problem of filter divergence is,
more than often, unaddressed in the literature, most likely because the UKF does not depend
on system linearization. However, the UKF seems to be as prone to modeling errors as the
Kalman filter, of course, referring the UKF to the nonlinear and the Kalman filter to linear
problem.

Concluding the review on stochastic nonlinear estimation, notice that Kalman-based filter-
ing is not the only methodology available. In the past 20 years, Particle filters (Doucet et al.,
2000b, and references therein) have been another recurring solution for the data fusion prob-
lem. Each particle represents a realization of the state, which is obtained, for instance, using
sequential Monte Carlo sampling and techniques to avoid the degeneracy of the algorithm.
These methods can cope with nonlinear dynamics and general probability distributions, in-
stead of the common Gaussian assumption. Particle filters, however, suffer from the “curse of
dimensionality” (Daum, 2005), since the number of samples must increase with the dimension
of the system’s states. Furthermore, the Rao-Blackwelisation technique (Doucet et al., 2000a)
aims at decoupling states of the system in a hierarchical form to reduce the problem due to the
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1.4 state estimation 23

growth of state dimension. That technique is somewhat similar to the nonlinear design based
on interconnected subsystems (Nijmeijer and van der Schaft, 1990, pp. 337-344). Due to its
computational cost, particle filters remain restricted to problems where Kalman-based filter-
ing is not efficient. An interesting and rather complete reference for discussion, pros-and-cons
of stochastic filtering methods can be found in (Daum, 2005), including a set of methods that
can solve the probability density function for some particular families of nonlinear dynamics.

As we have discussed, deterministic approaches do not focus on approximating the prob-
ability functions, but on providing filters that guarantee convergence of the estimates to the
real state values in the absence of noise. Nonlinear observers are a class of deterministic filters
employed when linear filtering, i.e. Luenberger observers, is unsuited to guarantee estimate
convergence for nonlinear systems. The development of nonlinear observers is closely related
to nonlinear control theory, and relies very often on rigorous proofs of stability. The litera-
ture presents several solutions for different nonlinear structures. For instance, systems with
a state-affine form can be solved efficiently using Kalman-like observers (Hammouri and de
Leon Morales, 1990). Furthermore, systems linearizable by the output allow a linear repre-
sentation using a well defined variable change (Hammouri and Gauthier, 1992), afterwards
methods from linear theory can be applied. High-gain observers are capable of providing
exponentially stable estimates for nonlinear systems, as the technique’s names suggests, un-
der high gain assumptions (Esfandiari and Khalil, 1992), (Gauthier and Kupka, 1994). Also,
we should not be surprised to see that the EKF yields a locally stable observer, whose basin
of convergence can be large for systems with weak non-linearities (Song and Grizzle, 1995),
equivalently to that Kalman filter that can be expressed as a Luenberger observer. (Busvelle
and Gauthier, 2002) shows how to include a high-gain structure to increase the basin of conver-
gence from the EKF. These filters have, of course, much more technical details than discussed
here. Surveys such as (Besançon, 2007; Nijmeijer and Mareels, 1997, and references therein)
discuss deeper properties needed and results provided by these nonlinear observers.

The deterministic solutions previously discussed often consider state spaces given by man-
ifolds, however, they do not explore Lie group properties often present in system dynamics.
There have been works in the literature discussing the estimation on Lie groups. The seminal
(Salcudean, 1991) proposes a nonlinear observer for the attitude estimation of a rigid body
using the unit-quaternion parametrization for the special orthogonal group. That work is fol-
lowed by several others on attitude estimation that, either employ quaternion representation,
e.g. (Vik and Fossen, 2001), (Thienel and Sanner, 2003), and (Martin and Salaun, 2008), or
directly exploit the structure from special orthogonal group, e.g. (Mahony et al., 2005), (Cam-
polo et al., 2006), and (Vasconcelos et al., 2008b). However, attitude estimation is not the sole
domain where Lie group structure has been applied, other works exploit the special Euclidean
group (Rehbinder and Ghosh, 2003), (Baldwin et al., 2007), (Vasconcelos et al., 2007) for pose
estimation, and the special linear group (Mahony et al., 2012) for planar homography esti-
mation. These works share the goal of exploring lie Group properties, however, each one is
developed for their own specific application. On the other hand, other authors have exploited
group properties for general system dynamics with a Lie group structure (Maithripala et al.,
2005), (Bonnabel et al., 2008), (Bonnabel et al., 2009a), (Lageman et al., 2010). For instance,
Maithipala et al. present a method to estimate the velocity of the system based on configura-
tion measurements. Furthermore, Bonnabel et al. propose a similar structure to the invariant
tracking (Martin and Rudolph, 1999) for the design of nonlinear observers for systems with
state symmetries. The provided design is constructive, and, although their estimator can only
guarantee local stability, the convergence properties are stronger than the ones provided by
EKF as they are reinforced by symmetry properties present in the error dynamics. More re-
cently, Lageman et al. proposed a method to write gradient-like observers for systems with
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24 background and problem statement

full measurements and proves almost global stability if the structure allows a Morse-Bott
energy function.

This thesis treats the problem of pose estimation using information from inertial and visual
sensors. Rigid body motion is the main dynamics considered, where the main part of the state
is defined by body pose, body orientation and position, together with its time-derivatives, lin-
ear and angular velocities and accelerations. We also take other static parameters, e.g. sensory
effects and frame-to-frame coordinates, into account to improve system’s representation and
the data fusion process. However, these static parameters may also increase the complexity
of the dynamics. Hence, we exchange a simple but inaccurate model for more complete one
with the compromise of having a system that is often observable under specific conditions.

1.5 attitude and pose estimation

We have seen that state estimation is a broad research domain by itself. Furthermore, the
topic of attitude estimation has been of great interest to part of the research community since
early works on state estimation. In essence, the attitude estimation problem consists of com-
puting the rotation matrix of a frame B in R coordinates, i.e. RRB , from N correspondences of
multiple vectors Rvi with i = 1, · · · , N, measured in B coordinates, i.e. Bvi . Furthermore, this
estimation problem can be improved considering the information provided by angular rate
gyroscopes. The works by (Shuster, 1993) and (Crassidis et al., 2007) present a deep review of
early developments on attitude estimation, while the former has a deeper historical focus and
the latter is more technical. (Hua, 2009b, Chapter 3) presents another very complete review of
the developments shown in the literature until the referred year.

One reason why attitude estimation is such an active research area is that there exist several
solutions that, in turn, can provide different properties and guarantees. The TRIAD algorithm
(Kim et al., 1964), for instance, provides a closed form solution for the attitude estimation
problem, i.e.

RRB =
[
s1 s2 s3

] [
r1 r2 r3

]
T

with the orthonormal vector triads given by si and ri

s1 ,
Bv1

|Bv1 |
, s2 ,

Bv1 × Bv2

|Bv1 × Bv2 |
, s3 , s1 × s2,

r1 ,
Rv1

|Rv1 |
, r2 ,

Rv1 × Rv2

|Rv1 × Rv2 |
, r3 , r1 × r2.

This method, however, presents some disadvantages. First, it is computed exclusively from two
vector measurements. Secondly, although this method provides the exact orientation matrix
for perfect measurements, it is severely impaired by noisy measurements. (Wahba, 1965) stated
the least-squares criterion for the attitude using multiple measurements, i.e.

RRB , arg
R∈M(3)

min J(R) =
N

∑
i=1

ai|Rv − MBv|2 ,

with weights ai > 0, and the solution is subjected to MMT = I3 and det(M) = 1. Several au-
thors presented solutions in (Farrel et al., 1966), however, the solutions involved some type of
decomposition and were not practical in time due to computational complexity. Even recently,
other solutions based on decompositions have been proposed to solve that least-squares prob-
lem, c.f. (Sanyal, 2006), for example. This problem was considered a difficult task until the
quaternion parametrization was effectively exploited by the q-method (Davenport, 1968), and
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1.5 attitude and pose estimation 25

the further development of quaternion estimation (QUEST) algorithm (Shuster, 1978). Dav-
enport’s method computes the optimal solution using the unitary quaternion instead of the
attitude matrix, and the solution is given by the unitary eigenvector associated to the largest
eigenvalue of the matrix

D =

[
γ zT

z C − γI3

]
,

with z=∑
N
i=1 ai

Rvi×Bvi , and B=∑
N
i=1 ai

Rvi
Bvi

T, such that γ=tr(B) and C=B + BT. Initially,
the eigenvalue computation was the bottleneck of Davenport’s method, but Shuster showed
with the QUEST algorithm that the largest eigenvalue is obtained solving the 4-th polynomial
in λ

λ4 − (a + b)λ2 − cλ = (ab + cγ − d) = 0,

with a = γ2 − tr(adj(C)), b = γ2 + |z|2, c = det(C) + zTCz. One important simplification
provided by QUEST is that λ is obtained after a few steps of a Newton-Raphson iterative
solver initialized at λ0 = ∑

N
i=1 ai, c.f. (Shuster, 1978).

Those techniques refer to the computation of an attitude matrix from vector measurements.
Moreover, similarly to the general case of state estimation for nonlinear systems, the extended
Kalman filter has been the incipient method for data problem with other sensors (Crassidis
et al., 2007), e.g. angular rate gyroscopes. However, the attitude estimation problem is often
over-parametrized, i.e. a rotation matrix can be represented by three parameters instead of the
9 elements of a rotation matrix, or the 4 elements of a quaternion, which can lead to instability
of the filter. The multiplicative Kalman-filter addresses this issue by reducing the dimension
of the covariance matrix, and such a solution has been studied, for instance, by (Lefferts et al.,
1982) using an EKF approach, (Vandyke et al., 2004) via unscented, or (Crassidis, 2006) via
sigma-point Kalman filtering. Although the latter results can improve significantly the propa-
gation of the probability distribution, up to the authors knowledge, the achievement of almost
global convergence using these methods remains to be achieved. More recently, the invariant
Kalman filter (Bonnabel et al., 2009b) was also employed for attitude estimation. This result is
more interesting with respect to the previous approaches, since the resulting error dynamics
is autonomous for a larger set of trajectories. Additionally, the attitude estimation problem
can be rewritten as estimation of two non-collinear and unconstrained vectors, instead of the
attitude matrix or some parametrization (Batista et al., 2009). The resulting system becomes
linear time-varying where the estimation problem is solved optimally via a standard Kalman-
filter. The problem with this approach is that, since the estimated vectors are not necessarily
orthonormal, one must still rely on techniques such as TRIAD or QUEST in order to recover
the rotation matrix.

In the past years, some effort has been put in the development of nonlinear observers for at-
titude, attitude-heading reference (AHR) and pose estimation. These nonlinear observers are
usually application-specific estimators that take advantage of structural properties of the mod-
els. Although some technical differences can be noticed between different nonlinear observers,
this class of estimators commonly share the benefits of global, or at least semi-global, stability
proofs. (Salcudean, 1991) is likely the seminal nonlinear observer for attitude estimation. This
observer provides a unitary quaternion estimate of the orientation, and it is followed by nu-
merous works exploiting either the unit quaternion, e.g. (Thienel and Sanner, 2003), (Tayebi
et al., 2007), (Martin and Salaün, 2010), or the SO(3) Lie Group structure, e.g. (Campolo
et al., 2006), (Vasconcelos et al., 2008b), (Mahony et al., 2008), (Hua, 2009a), (Zamani et al.,
2011), (Hua et al., 2013). Most of these nonlinear observers consider the estimation of gyro-
scope bias, moreover, the AHR nonlinear observer shown in (Martin and Salaun, 2008) also
accomplishes (partial) accelerometer bias estimation.
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26 background and problem statement

The full pose estimation problem has also drawn the attention of the research community.
In order to solve the full pose estimation using nonlinear observers, the decoupling of the at-
titude and translational displacement is often considered. (Vik and Fossen, 2001) is one of the
first works to consider nonlinear observers for pose estimation using a decoupled approach
for attitude–position estimation. An observer for attitude and position using inertial data and
visual line features, is presented in (Rehbinder and Ghosh, 2003), despite the fact that biases
are considered for the presented simulation results, there is no procedure for gyroscope nor
accelerometer bias estimation in the observer. The estimation using the SE(3) representation
by means of IMU and bearing measurements is addressed in (Baldwin et al., 2009), but online
IMU bias estimation is not performed. A cascaded nonlinear observer for attitude and position
is presented in (Vasconcelos et al., 2008a) exploiting IMU measurements together with GPS
measurements. Exponential convergence for attitude and position is achieved, together with
gyroscope bias estimation. (Cheviron et al., 2007) presents a solution for full pose estimation,
however due to misconceived hypothesis on the accelerometer measurement definition the
convergence proof for position estimation is only valid for small angular velocities. (Barczyk
and Lynch, 2012) present an implementation of invariant observers for pose estimation with
gyroscope and accelerometer bias estimation, however, the resulting observer has but local
stability properties.

1.6 visuo-inertial systems

Visuo-inertial systems consist of a set of a camera together with inertial sensors, i.e. ac-
celerometers and angular rate gyroscopes, of an IMU. (Viéville and Faugueras, 1989) are likely
the first researches to propose the use of inertial information for improving pose estimation
via computer vision. This data fusion application has shown to be very adequate since high
frequency measurements, usually from 100 up to 1000 Hz, obtained by the IMU provide the
incremental displacement of the body, while the camera can provide accurate relative pose
measurements, however, at low frequencies, from 5 up to 40 Hz. The sensors present comple-
mentary characteristics as the IMU provides information about fast movements of the systems,
however, the pose estimation via pure inertial data drifts after a few seconds. Moreover, we can
obtain accurate relative pose estimates using information provided by the camera to bound
that drift. The data fusion process is impaired by measurement errors and uncertainties on
the system dynamics. A first source of difficulties comes from IMU measurement bias, which
can be significant for most low-cost IMUs used in robotic applications. Another source of dif-
ficulties concerns various parameters related to the use of different coordinate frames, e.g. the
camera and the IMU frames.

Researchers made extensive research in visuo-inertial fusion during the past decade. A large
part of the effort was put towards either immediate applications of Kalman filters, c.f. , for
example, (Azuma et al., 1999), (Lobo and Dias, 2003), (Armesto et al., 2004), and (Servant et al.,
2010) or nonlinear observers, e.g. , (Rehbinder and Ghosh, 2003), (Brás et al., 2011), for the
fusion of inertial data with pose estimates from visual tracking algorithms. The calibration of
bias and scale factors of the inertial sensors was already discussed in (Viéville and Faugueras,
1989), and thenceforth most of visuo-inertial data fusion algorithms take these parameters
into account. However, biases and scales factor are not the only parasite modeling errors,
since other parameters related to the use of multiple coordinate frames can also impair the
estimation process.

The calibration of parameters relating to multiple frames was a known problem in computer
vision before the early years of visuo-inertial data fusion (Tsai and Lenz, 1989). Several works
neglect the calibration topic, mostly because these parameters can be negligible, approximated
via CAD model or calibrated in a previous phase. The calibration task is not simple tough. Up
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1.6 visuo-inertial systems 27

to the author’s knowledge, (Foxlin and Naimark, 2003) is the pioneer to discuss this problem
with more details, where the authors presented a solution based on an EKF with multiple
frame parameters, also bias and scales of inertial sensors. Other works followed by trying
to understand the problem with more depth. (Lang and Pinz, 2005) presented a technique
to estimate the rotation from the camera-frame to IMU-frame (c-to-IMU frame) using the
difference of rotation from the sensors. (Lobo and Dias, 2007) later proposed a technique that
requires multiple synchronized measurements of accelerometers and rotation of the camera
in static positions in order to estimate the c-to-IMU rotation, while the motion of a turning
table is employed to recover c-to-IMU translation. (Hol et al., 2010) present the problem as
a hybrid solution of an EKF and a black-box optimization of the residual errors due to the
parameters, and (Fleps et al., 2011) present a batch optimization technique based on the robust
pseudo-Huber residual, c.f. Appendix B.

In common, those techniques conclude that one must obtain measurements in different po-
sitions to obtain satisfactory results for the calibration procedure. In fact, that conclusion is
strictly related to the the observability properties of the system, which were not discussed un-
til (Jones et al., 2007) and (Mirzaei and Roumeliotis, 2008). Later, (Kelly and Sukhatme, 2011),
(Jones and Soatto, 2011) extended the observability analysis to other system configurations,
e.g. in order to include measurements from monocular vision. For instance, every analysis
performed so far characterized that the frame calibration and bias estimation of the system
is observable under certain angular motion. However, there is not much that can be claimed
on the properties of the movements along which observability is granted due to the analy-
sis there performed. More recently, the works from (Martinelli, 2011) and (Martinelli, 2012)
showed an observability analysis for different configurations of visuo-inertial systems. This
study evaluates the conditions under which one obtains indistinguishable output trajectories
from different movements of the sensor. That analysis include cases with specific motions and
configurations under which resulting system dynamics is observable. The latter work pro-
vides also a closed-form solution for the estimation of pose and multiple parameters of the
system.

The main objective of this thesis is to develop new techniques for concurrent pose estima-
tion, IMU bias and c-to-IMU frame calibration. We first study the observability properties of
the system in order not to simply state whether the system is observable, but also to define
angular movements that can guarantee the complete observability of the system. We dedicate
Chapter 3 to that observability analysis and to the development of the new estimation tech-
niques. Next, we describe the variables considered in different system configurations with the
respective dynamics.

System description

We reviewed the tools and theory to state the problem of visual inertial estimation in the
previous sections. We have recalled the basic structure of image formation, i.e. how to compute
the relative pose between two images and sensors that can be employed to obtain angular
velocity and linear acceleration. A visuo-inertial sensor consists of a rigid mount of camera
and inertial sensors. The objective is to combine pose measurements provided by a camera
at a relatively low frequency with high frequency measurements of the angular velocity and
proper acceleration provided by the gyros and accelerometers. Figure 1.9 depicts the basic
structure, i.e. coordinate frames, employed in this thesis to model pose estimation using visuo-
inertial sensors. We assume two frames B and C attached to the same rigid body. The objective
of the problem is to estimate the pose (orientation and position) of B with respect to some
(partially) known inertial reference frame R. The rigid body is moving, therefore frames B
and C depend on time. The representation of frame B in C frame is constant however. Hence,
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28 background and problem statement

R
(BRC , B pC

) C(t)
C(t)HC(t0)

(C(t0)RR, C(t0)pR
)

C(t0)

nB(t)

Figure 1.9: Important coordinate frames in visuo-inertial systems

we can define B(R, p)C as the constant rotation and translational displacement of B in C.
Moreover, we have seen in Section 1.3.4 how we can exploit images from a planar surface with
an associated normal vector n in order to measure relative pose. It is therefore reasonable to
assign one frame, e.g. C, to the optical center of the camera. In this way, we are able to obtain
relative pose measurements from with respect to this frame.

In order to define the pose of a body, we must first assign a frame B to the rigid-body and
an inertial reference frame R as appropriate. E.g. , we can employ the canonical frame for R
such that the origin is placed in the initial position of the body, e3 coincides with the direction
of the gravitational acceleration, e1 points to the magnetic north and e2 is defined to obtain
a right hand frame. In this situation, we are strictly related to the knowledge of Rn. In other
situations, we can assume R as the initial configuration of the rigid body, however, we may
deal with unknown variables, such as the value of gravitational acceleration in R frame.

We write the body pose by its orientation RRB(t) and position RpB(t), and, using Eqs. (1.4)
and (1.6), we can write the dynamics of the body frame as:

RṘB = RRBS
(Bω

)
, R ṗB = Rv , Rv̇ = RRB

Ba , (1.25)

where ω, v and a define, respectively, the angular velocity, linear velocity and linear accelera-
tion of B with respect to R, such that Bω, Ba denote the coordinates of ω and a expressed in
B and Rv, denotes coordinates of v expressed in R.

Strapped-down gyros and accelerometers measure respectively Bωy and Bay according to
the models (1.14) and (1.15). Recall that bω and ba denote gyroscope and accelerometer biases,
and the acceleration due to gravitational field in body coordinates writes Bg = BRRRg, then,
we write measurements and the respective bias dynamics as

Bωy = Bω + bω , Bay = Ba + ba − BRR
Rg , ḃω = 03×1, ḃa = 03×1 . (1.26)

We are not capable, in general, of making direct pose measurements R(p, R)B from images.
Instead, we employ the camera and obtain relative pose measurements. More specifically, let
us denote by C a coordinate system attached to the optical center of the camera, with sensor-
to-sensor pose B(p, R)C and, for the sake of notation, we define the trajectory of the camera
pose by C(t). Using the proposed notation, we thus have the relative pose between the current
C(t) and initial C(t0) given by the pair C(t)(p, R)C(t0)

.
We obtain different dynamics for the estimation procedure depending on the configuration

of the sensors and the previous knowledge about the scene. Next, we present 3 different sit-
uations with increased degree of complexity. The first two situations concern systems with
calibrated relative pose between camera and inertial sensors, while the last discusses concur-
rent pose estimation and sensor-to-sensor calibration.
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1.6 visuo-inertial systems 29

1.6.1 Dynamics with known frames

The first case considers previously known, or calibrated sensor-to-sensor pose and full
knowledge of the scene. More specifically, we assume:

– knowledge of gravitational field expressed in C(t0) coordinates;
– full pose measurement, i.e. C(t)(p, R)C(t0)

;
– knowledge of sensor-to-sensor relative pose, i.e.

B(p, R)C ,
B(t)(p, R)C(t) =

B(t0)(p, R)C(t0)
.

The first two items refer to the knowledge of the scene. The first item allows us to define the
inertial reference frame R = C(t0) and specify Rg. Furthermore, the second item allows us
to compute C(t)(p, R)R. The third item, associated to the second one, enables us to compute
full pose R(p, R)B(t). The full system model, i.e. body pose and sensor bias, is written after
Eqs. (1.25) and (1.26):





RṘB = RRBS(Bω) ,
R ṗB = Rv ,
Rv̇ = RRB

Ba ,

ḃω = 03×1 ,

ḃa = 03×1 ,

(1.27)

with measurements

(py, Ry, Bay , Bωy) =
(RpB , RRB , Ba + ba − BRR

Rg , Bω + bω

)
. (1.28)

1.6.2 Unknown gravitational field

The second case concerns an extension of the previous one, i.e. the gravitational field Rg is
unknown. In this situation, we write the inertial reference frame R = C(t0), however, we must
include the gravitational field gR in the dynamics. Since R is inertial, remark that ġR = 0. The
configuration for this section considers

– relative full pose measurement, i.e. C(t)(p, R)C(t0)
;

– knowledge of sensor-to-sensor pose, i.e. (BRC , BpC).
Similarly to the previous system, we can determine the current camera pose C(t)(p, R)R, thus,
via the parameters of sensor-to-sensor pose, we compute R(p, R)B . The full system model,
i.e. pose, sensor bias and gravitational field, is written using Eqs. (1.25) and (1.26):





RṘB = RRBS(Bω) ,
R ṗB = Rv ,
Rv̇ = RRB

Ba ,

ḃω = 03×1 ,

ḃa = 03×1 ,
R ġ = 03×1,

(1.29)

with measurements

(py, Ry, Bay , Bωy) =
(RpB , RRB , Ba + ba − BRR

Rg , Bω + bω

)
. (1.30)
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30 background and problem statement

1.6.3 Sensor-to-sensor self calibration

The previous two systems considered a pre-calibration or knowledge of sensor-to-sensor
relative pose. That assumption much simplifies the problem because we can assume to recover
full body pose. The next cases deal with the problem of pose estimation and concurrent
camera-to-inertial sensors pose estimation.

The third situation concerns the extension of Section 1.6.2 with sensor-to-sensor calibration.
We assume for this section full relative pose measurement, i.e. C(t)(p, R)C(t0)

, and define the
inertial reference frame R = C(t0). Full body pose, however, is obtained using the parameters
B(p, R)C included in the model. Since we have a rigid body mount for the camera and inertial
sensors, sensor-to-sensor relative pose is constant. The full system model, i.e. pose, sensor bias,
gravitational field and sensor-to-sensor relative pose, is given by:





RṘB = RRBS(Bω) ,
R ṗB = Rv ,
Rv̇ = RRB

Ba ,

ḃω = 03×1 ,

ḃa = 03×1 ,
R ġ = 03×1 ,

B ṘC = 03×3 ,
B ṗC = 03×1 ,

(1.31)

with measurements

(py, Ry, Bay , Bωy) =
(RpB + RRB

BpC , RRB
BRC , Ba + ba − BRR

Rg , Bω + bω

)
. (1.32)
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2
D I R E C T V I S U A L T R A C K I N G

Visual tracking can be an effective method to compute relative pose. First, the cameras are
non-intrusive and passive sensors, and multiple images can provide information of different
points of view of the scene. Therefore, we can can compute the trajectory of the camera
from the changes shown in these images. The visual tracking problem can be defined as the
problem of finding the transformation parameters that best align a reference image to the
following frames in a video stream. In contrast to feature-based methods, which are built on
the extraction and matching of a sparse set of characteristics from the image, direct visual
tracking methods exploit each individual pixel’s intensity to solve the visual tracking. This
chapter concerns direct visual tracking methods.

The quality of the match between two images is measured by a similarity function. Typi-
cally, direct visual tracking methods are built upon the sum of squared differences (SSD). The
SSD has proven to be very efficient, mainly because the optimization can be much simplified
due to numerous solutions to nonlinear least squares (Baker and Matthews, 2001; Benhimane
and Malis, 2007). SSD tracking, however, is severely impaired when brightness constancy is
violated, since displacement of the camera and photometric variations are dealt in the same
way by the similarity function. In order to overcome this problem, the photometric model
of the scene can be estimated using off-line (Hager and Belhumeur, 1998) or on-line proce-
dures (Bartoli, 2008), (Silveira and Malis, 2010). The normalized cross correlation (NCC) is
another suitable choice for a similarity measure. The NCC has radius of convergence compa-
rable to the SSD, additionally, this similarity is invariant to affine illumination changes, and
its computation is simpler than probabilistic solutions. Other examples of similarity measures
include sum of the conditional variance (Pickering et al., 2009), mutual information (Viola
and Wells, 1997), the cross cumulative residual entropy (Wang and Vemuri, 2007) and the cor-
relation ratio (Roche et al., 1998b). These similarities have also been applied to direct visual
tracking, and they relax the brightness constancy to more complex photometric variations and
multimodal images.

Given a function that provides the quality of the match between two images, we must fur-
ther solve a nonlinear optimization problem that is not globally convex, or concave in the
case of a maximization problem, in order to obtain the parameters of the best transforma-
tion. It is not an easy task to find the globally optimal solution to this problem. Global opti-
mization techniques such as the simulated annealing, c.f. (Horst and Pardalos, 1995), are too
cumbersome for real-time implementation. Therefore, direct visual tracking relies strongly on
gradient-based optimization methods, since these strategies present a good trade off between
region of convergence and computational cost.

We propose a novel solution using the NCC as similarity measure. This similarity is chosen
because of its simplicity. We rely on the property that the similarity is intrinsically invariant to
affine illumination changes, which is a powerful characteristic that allied with two techniques
here presented can improve the robustness to nonlinear illumination and partial occlusion.
These techniques are based on subregion partitioning, and weighting using a residue invariant

31
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32 direct visual tracking

to affine illumination variations. We also propose a method to improve the gradient solution
while having a well defined optimization problem. This method was introduced in (Scandaroli
et al., 2012).

We test several direct tracking methods using different optimization techniques with SSD,
SCV and MI similarities. These techniques are evaluated using synthetic images, the planar
based visual tracking benchmark dataset from (Lieberknecht et al., 2009) and challenging
real-world video sequences. The results obtained show that the choice of the similarity is
important, however, the optimization approach also plays an determinant role in a visual
tracking method. The method prosed in this thesis is suited for visual tracking under complex
illumination variation, and tracking can still be performed for partially occluded targets under
extreme illumination settings.

2.1 problem description

Direct visual tracking exploits the intensity of the pixels in order to define the best align-
ment between two images IR and IC. Hence, the problem corresponds to finding the param-
eters x associated with a warp function w(x, ·) that maps the intensities of the pixels from
an image IC to intensities of IR. Similarity functions S(IR, IC) ∈ R represent scores of how
good is the matching between two images, thus the direct visual tracking problem can be
represented by the following optimization:

x̂ = arg opt
x

S
(

IR, w(x, IC)
)

. (2.1)

If S is maximized when the images are best matched, then (2.1) is defined as a maximization
problem. Conversely, (2.1) is defined as a minimization problem if S is minimized when the
images are best matched.

We can point out three main components that make a direct visual tracking method:
– the similarity function,
– the optimization approach,
– the warp function.

The following sections discuss these aspects.

Recalls on notation

Let us recall from Section 1.3 that an image with m rows and n columns is defined by I.
An image I with bit depth BI stores the intensities I ∈ [0, BI − 1] of pixels with coordinates
p ∈ Ξ ⊂ P2, and

H = {I : Ξ ⊂ P2 → R}, p 7→ I(p)

where H defines the set of functions that map the coordinates p of a pixel to its respective
intensity in some I.

The coordinates of a pixel can be changed via parameters X ∈ X and

W = {w : X × P2 → P2}, (X, p) 7→ w(X, p)

where W defines the set of warp functions w. Let us consider specifically the set of warp
functions that generate group actions, i.e. , functions that satisfy for X1, X2 ∈ X

{
w
(
X1, w(X2, p)

)
= w(X1 ◦ X2, p),

w
(
X1, w(X1

−1, p)
)
= w

(
X1 ◦ X1

−1, p)
)
= p.

(2.2)
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2.2 similarity functions for direct visual tracking 33

In general, X is a Lie Group of finite dimension and w is differentiable with respect to X ∈ X.
For the sake of simplicity, we can also write

w : Rdim(X) × P2 → P2, (x, p) 7→ w(x, p), (2.3)

since the group element X ∈ X can be identified with x ∈ Rn such that X = exp{φ(x)}. In
that case, we have that φ is a minimal parametrization sending the identity element in X to
the null vector, e.g. , with φ = log. Furthermore, we can define the resulting intensity map
obtained from warp of every pixel from an image

w : X ×H 7→ H, (x, I) 7→ w(x, I).

For simplicity of notation, we define the Jacobian of the warp of an image

J : W × X ×H → M(mn, dim(X)), (w, x, I) 7→ J(w, x, I)

with each row given by

J : W × X ×H× P2 → M(1, dim(X)), (w, x, I, p) 7→ J(w, x, I, p).

More specifically J(w, x, I, pi) , ∂x I(w(x, pi)).We address the computation of the Jacobian
with more details in Section 2.6.

2.2 similarity functions for direct visual tracking

2.2.1 Sum of squared differences

The sum of squared differences (SSD) writes

SΣ

(
IR, IC

)
=

1
2

mn

∑
i=1

µi

(
IC(pi)− IR(pi)

)2, (2.4)

with µi > 0. This problem is also known as the weighted nonlinear-least squares The solution
to the linear version, together with possible choices for the weights µi, is recalled in Ap-
pendix B. This similarity measure has been applied in direct visual tracking for many years
and it has proven itself to be a good solution. Nevertheless, the SSD is prone to problems due
to illumination changes or partial occlusion.

2.2.2 Sum of the conditional variance

The sum of the conditional variance (SCV) is a similarity that was conceived for multi-
model medical image alignment (Pickering et al., 2009). This similarity builds upon the SSD,
however, instead of employing IR and IC explicitly, the SCV considers the SSD between the ex-
pectation of the IC given IR and IC. More specifically, the joint intensity distribution provides
the probability of co-occurrence of two intensities r and s in the images IR and IC, i.e.

P(r, IR, s, IC) =
1

mn

mn

∑
i=0

φ(IR(pi)− r)φ(IC(pi)− s)

with φ a Parzen density function. Notice that the computation joint intensity distribution
can be associated to a matrix P ∈ M(BI , BI) with each element (r, s) given by P(r, IR, s, IC).
Therefore, the expected intensity E

(
IC(pi)

∣∣IR(pi)
)

can be computed as

E
(

IC(pi)
∣∣IR(pi)

)
=

(
Nb−1

∑
si=0

P
(

IR(pi), si

)
)−1(

Nb−1

∑
si=0

si P
(

IR(pi), si

)
)

.
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34 direct visual tracking

The SCV for two images IR and IC writes

SE
(

IR, IC
)
=

1
2

mn

∑
i=1

(
IC(pi)− E

(
IC(pi)

∣∣IR(pi)
))2

,

and the above equation is equivalent to the SSD if E
(

IC(pi)
∣∣IR
)
= IR(pi). The SCV is invariant

to illumination changes given by injective functions (Richa et al., 2011). From this point of view,
this similarity encapsulates affine illumination model from (1.17), and is able to further cope
with a larger set of illumination variations.

2.2.3 Normalized cross-correlation

The normalized cross-correlation (NCC) provides a correlation coefficient S× ∈ [−1, 1] for
two images. The NCC of IR and IC is given by

S×
(

IR, IC
)
=

mn

∑
i=1

(
IR(pi)−

1
mn

mn

∑
j=1

IR(pj)
)(

IC(pi)−
1

mn

mn

∑
j=1

IC(pj)
)

√
mn

∑
i=1

(
IR
(

pi)−
1

mn

mn

∑
i=1

IR(pi)
)2
√

mn

∑
i=1

(
IC(pi)−

1
mn

mn

∑
i=1

IC(pi)
)2

, (2.5)

Notice that we can also write the NCC using vector notation, defining two vectors iR, and iC
obtained stacking the intensities of IR and IC, respectively, such that the i-th element of each
vector writes ii,R = IR(pi)− 1

mn ∑j IR(pj), and ii,C = IC(pi)− 1
mn ∑j IC(pj). Hence, the NCC

similarity can be written in the more compact form

S×
(

IR, IC
)
=

iR
TiC

|iR||iC|
. (2.6)

Let us discuss a few remarks for the NCC using this vector interpretation. A NCC coefficient
S×
(

IR, IC
)
= 0 implies that the vectors iR and iC are orthogonal, thus the images share no

information. Furthermore, a coefficient S×
(

IR, IC
)
= 1 implies that the vectors are parallel,

therefore the images are perfectly aligned. Recalling inner product properties, we have that the
correlation remains unaffected after any shift and/or (positive) scale. Note that the absolute
value of NCC remains the same after a negative scaling, however, the sign of the resulting
correlation coefficient is inverted. Scales and shifts on iC are directly related to illumination
variations, i.e. α and β of photometric model (1.17), and invariance to such effects is indeed a
good property for a similarity function.

2.2.4 Mutual information

The mutual information (MI) is deduced from the entropy of a discrete random variable z
with probability P(z):

h(z) , −∑
zi

P(zi) ln
(
P(zi)

)
. (2.7)

We can further expand the concept of entropy of a variable towards the joint entropy of two
discrete random variables z and y with joint probability P(z, y):

h(z, y) , −∑
yi

∑
zi

P(zi, yi) ln
(
P(zi, yi)

)
. (2.8)
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2.3 gradient based optimization 35

The mutual information is given by three components: the entropy of z, the entropy of y and
the negative joint entropy of z and y (Viola and Wells, 1997), i.e.

H(z, y) = h(z) + h(y)− h(z, y). (2.9)

The joint intensity distribution provides the probability of co-occurrence of two intensities
r and s in IR and IC, i.e.

P(r, IR, s, IC) =
1

mn

mn

∑
i=0

φ(IR(pi)− r)φ(IC(pi)− s)

where φ is a Parzen density function. The joint intensity distribution can be associated to a
matrix P ∈ M(BI , BI) with each element (r, s) given by P(r, IR, s, IC), and the probability of
the occurrence of an certain intensity r in IR or s in IC can be computed from the marginals
of P(r, s) with respect to s and r respectively, i.e.

P(r, s) , P(r, IR, s, IC), PIR(r) =
BI

∑
sj=0

P(r, sj), PIC(s) =
BI

∑
rj=0

P(rj, s) .

Using (2.7), (2.8), (2.9) and (2.10), the MI for two images IR and IC writes:

SMI(IR, IC) =
BI−1

∑
ri=0

BI−1

∑
si=0

P(ri, si) log
(

P(ri, si)

PIR(ri)PIC(si)

)
. (2.10)

Despite the fact that the MI is not invariant with respect to illumination changes, this simi-
larity shows superior robustness to multi-modal transformations. The robustness is improved
as the MI is high only for sparse joint distributions P(ri, si), which occurs only when the im-
ages are well aligned. However, the MI can be affected by local artifacts that induce multiple
local maxima close to the optimal solution (Dame and Marchand, 2010). These other maxima
can be suppressed smoothing the joint intensity distribution by reducing the number of bits
BI for which the joint distribution is computed, c.f. (Dame and Marchand, 2010).

2.2.5 Other examples from medical imaging

The aforementioned similarity functions have been applied in direct visual tracking with
success. These are not the only similarity functions however, and other examples have been
applied to multi-modal medical imaging. E.g. , the correlation ratio (CR) (Roche et al., 1998b),
and the cross cumulative residual entropy (CCRE) (Wang and Vemuri, 2007). These simi-
larities appear to be as robust as the MI for multi-modal image registration, however, the
solution of S(IR, IC) is not necessarily equivalent to S(IC, IR). In fact, for the CR similarity,
S(IR, IC) = S(IC, IR) only for affine transformations of the intensities (Roche et al., 1998a).
That equivalence is an interesting property for the optimization techniques treated in the next
section, as we obtain the same solution for the same inputs independently of the order an-
alyzed in the similarity. Otherwise, the solution may be always prone to the order of IR or
IC, and we choose to avoid these kind of technical detail in the implementation of tracking
methods.

2.3 gradient based optimization

In general, the optimization problem proposed in the Eq. (2.1) using functions from Sec-
tion 2.2 is not globally convex (or concave in the case of a maximization problem). Hence,
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36 direct visual tracking

it is not an easy task to find the optimal solution to this problem. Global optimization tech-
niques (Horst and Pardalos, 1995) such as the simulated annealing are too cumbersome for
real-time implementation. Therefore, gradient-based optimization methods have been widely
employed to solve the problem, as these techniques present a good trade off between region
of convergence and computational cost.

2.3.1 Steepest-descent

The steepest-descent is one of the simplest solutions to gradient-based optimization (No-
cedal and Wright, 2000). We can express the similarity function from the problem (2.1) as a
first order Taylor expansion around x̂0

S
(

IR, w(x, IC)
)
= S

(
IR, w(x̂0, IC)

)
+ ∂xS

(
IR, w(x̂0, IC)

)
x̃ + o(x̃, 2),

with x̃ an increment of parameters given by x̃ = x̂0
−1 ◦ x, and o(x̃, n) a polynomial of x̃

composed by elements of n-th and higher order.
The solution for (2.1) can be computed iteratively by an increment using the gradient de-

scent direction g(x) = ∂xS
(

IR, w(x, IC)
)
, i.e.

x̃∗ = −Mg(x̂k), (2.11)

with M ∈ M(dim(X)) a positive definite matrix for a minimization problem or negative
definite for a maximization. The solution x̂k+1 = x̂k ◦ x̃∗ is computed until the obtained in-
crement x̃∗ is conveniently small, |x̃∗| < ε. Defining M = |g(x̂k)|−1 Idim(X) is the trivial choice
for the steepest-descent, however, this option is not always satisfactory, as can even lead to
instability of the method, or need too many iterations to converge to the optimal solution. It
depends strongly on the function being optimized. Other line-search methods can improve
the convergence rate of the solution.

2.3.2 Newton-based solution and the forward compositional

We can also solve (2.1) using Newton’s method (Nocedal and Wright, 2000), i.e. , the simi-
larity function S

(
IR, w(x, IC)

)
is expressed by the second order Taylor expansion around x̂0:

S
(

IR, w(x, IC)
)
= S

(
IR, w(x̂0, IC)

)
+ ∂xS

(
IR, w(x̂0, IC)

)
x̃

+
1
2

x̃T
(

∂x
2S
(

IR, w(x̂0, IC)
))

x̃ + o(x̃, 3),

and defining

gFC(x) , ∂xS
(

IR, w(x, IC)
)
, MFC(x) , ∂x

2S
(

IR, w(x, IC)
)

(2.12)

respectively the gradient and the Hessian of the similarity, we obtain the optimal solution the
maximum for this approximation of S

(
IR, w(x, IC)

)
at ∂x̃S

(
IR, w(x, IC)

)
= 0:

x̃∗ = −MFC(x̂k)
−1gFC(x̂k)

T. (2.13)

Remark that the problem is solved for an increment x̃, and the solution for the parameters
is then given by x̂ = x̂0 ◦ x̃∗. Newton’s methods converge in one iteration for quadratic func-
tions, but, for non-quadratic functions, the solution is obtained computing (2.13) iteratively
for x̂n, with x̂k+1 = x̂k ◦ x̃∗, until the obtained increment x̃ is conveniently small, i.e. , |x̃| < ε.
According to the classification of (Baker and Matthews, 2001), Eq. (2.13) provides a forward
compositional method.
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2.4 gradient optimization for specific similarities 37

Newton’s method has a second order convergence rate, therefore it converges to the prac-
tical solution in fewer steps than the steepest-descent. The radius of convergence, however,
is smaller and directly related to the Hessian. For instance, for a minimization problem, we
verify that an increment obtained in (2.13) is a stable solution for (2.1) if MFC is positive defi-
nite. Conversely, the Hessian obtained for a maximization problem must be negative definite.
Computational effort of Newton’s method is another relevant matter. The computation of
the Hessian is seldom an easy task and its computational effort may favor other first order
methods.

2.3.3 Inverse compositional

In some cases, the optimization of the similarity function can be solved more efficiently
by inverting the roles of reference and current images. The inverse compositional technique
rewrites the problem (2.1) to “virtually” warp IR towards IC using an incremental x̃ = x̂0

−1 ◦ x:

x̂ = arg max
x

S
(

IR, w(x, IC)
)
= arg max

x
S
(
w(0, IR), w(x, IC)

)

= arg max
x̃ : x=x̂0◦x̃

S
(

w
(
0, w(x̃−1, IR)

)
, w
(

x, w(x̃−1, IC)
))

= arg max
x̃ : x=x̂0◦x̃

S
(
w(x̃−1, IR), w(x ◦ x̃−1, IC)

)

= arg max
x̃ : x=x̂0◦x̃

S
(
w(x̃−1, IR), w(x̂0, IC)

)
. (2.14)

Analogously to the forward compositional technique, we write the second order Taylor expan-
sion for S

(
w(x̃−1, IR), w(x̂0, IC)

)
and, recalling that x̃−1 ≈ −x̃ close to x̃ = 0,

S
(
w(x̃−1, IR), w(x̂0, IC)

)
≈ S

(
IR, w(x̂0, IC)

)
− ∂x̃S

(
w(IR, 0), w(x̂0, IC)

)
x̃

+
1
2

x̃T
(

∂x̃
2S
(
w(IR, 0), w(x̂0, IC)

))
x̃ + o(x̃, 3).

We can define

gIC(x̂) , ∂xS
(
w(IR, 0), w(x̂, IC)

)
, MIC(x̂) , ∂x

2S
(
w(IR, 0), w(x̂, IC)

)
(2.15)

respectively as the gradient and the Hessian of the similarity, and the local maximum is
obtained at ∂x̃S

(
IR, w(x, IC)

)
= 0, i.e.

x̃∗ = MIC(x̂k)
−1gIC(x̂k)

T. (2.16)

Notice that gIC, MIC are equivalent to gFC, MFC in 2.12, literally inverting the roles of the
IR and IC, i.e. w(x, IC) becomes the reference image, and IR is the current. Of course, that
property is valid only if S

(
IR, IC

)
= S

(
IC, IR

)
. The seminal inverse solution of the visual

tracking was proposed by (Hager and Belhumeur, 1998), that considered transformations
with additive parameters. This technique was latter extended by (Baker and Matthews, 2001)
to consider compositional transformations.

2.4 gradient optimization for specific similarities

2.4.1 Inverse compositional and the SSD

The inverse compositional technique is particularly efficient for the SSD similarity because
the value of the Hessian is constant for a first order, and therefore needs to be computed only
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38 direct visual tracking

once. This property much simplifies the computation of the iterations. For instance, let us
consider the similarity (2.4) applied to the inverse compositional problem (2.14)

SΣ

(
w(x̃−1, IR), w(x̂0, IC)

)
=

1
2

mn

∑
i=1

µi

(
IC
(
w(x̂0, pi)

)
− IR

(
w(x̃−1, pi)

))2
, (2.17)

and let the image Jacobian J(w, x, I, pi) , ∂x I(w(x, pi)) and recall that x ≈ −x−1 close to the
identity, we can thus approximate the warp of the image

IR
(
w(x̃−1, pi)

)
= IR(pi)− J(w, 0, IR, pi)x̃ + o(x̃, 2) (2.18)

hence (2.17) is approximated up to the first order by

SΣ

(
w(x̃−1, IR), w(x̂0, IC)

)
≈ 1

2

mn

∑
i=1

µi

(
IC
(
w(x̂0, pi)

)
− IR(pi)− J(w, 0, IR, pi))x̃

)2
, (2.19)

The above problem is similar to the robust least squares, c.f. Appendix B. The optimal incre-
ment x̃∗ is obtained by (B.4), and the solution is obtained computing (2.16) iteratively with
x̂k+1 = x̂k ◦ x̃∗, until the obtained increment x̃∗ is conveniently small.

This solution is equivalent to the well-known Gauss-Newton technique. Since the Hessian
approximation is always definite positive, the convergence radius is larger than the original
formulation described in Section 2.3.3. However, this method has a first order convergence
rate, and it is often necessary to compute more iterations than Newton’s method given by
the Hessian of (2.15) in order to reach the solution. Nevertheless, since J(w, 0, IR) can be
evaluated only once, the computational burden of this method is mostly given by the warped
image IC

(
w(x̂0, pi)

)
and µi, which much reduces the total effort of the solution.

2.4.2 Efficient second order optimization for the SSD

The approximation in (2.19) provides a simplified solution for the inverse compositional
problem in terms of computational effort at expense, however, of reduced convergence rate.
The ESM is an efficient second order optimization method proposed in (Malis, 2004) and
(Benhimane and Malis, 2007). This method considers a second order approximation of the
warped image, instead of analyzing the derivatives of the similarity function. More specifically,
we can evaluate the forward compositional (2.13) for the SSD (2.4)

SΣ

(
IR, w(x, IC)

)
=

1
2

mn

∑
i=1

µi

(
IC
(
w(x, pi)

)
− IR

)2, (2.20)

and consider following approximation for the warp of the warped image

IC(w(x, pi)) = IC(w(x̂, pi)) + J(w, x̂, IC, pi)x̃ +
1
2

x̃T
(
∂x J(w, x̂, IC, pi)

)
x̃ + o(x̃, 3), (2.21)

since w is a group action, we can further approximate the Jacobian by

J(w, 0, IR, pi) = J(w, 0, w(x, IC), pi)

= J(w, x, IC, pi)

= J(w, x̂, IC, pi) + x̃T
(
∂x J(w, x̂, IC, pi)

)
+ o(x̃, 2),

so that

x̃T
(
∂x J(w, x̂, IC, pi)

)
= J(w, 0, IR, pi)− J(w, x̂, IC, pi)− o(x̃, 2), (2.22)
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2.4 gradient optimization for specific similarities 39

We obtain replacing (2.22) in (2.21)

IC(w(x, pi)) = IC(w(x̂, pi))+J(w, x̂, IC, pi)x̃+
1
2

(
J(w, 0, IR, pi)−J(w, x̂, IC, pi)

)
x̃+o(x̃, 3)

= IC(w(x̂, pi)) +
1
2

(
J(w, 0, IR, pi) + J(w, x̂, IC, pi)

)
x̃ + o(x̃, 3)

= IC(w(x̂, pi)) +
1
2

JESM(w, x̂, IR, IC, pi)x̃ + o(x̃, 3)

so that (2.20) can be approximated up to the second order by

SΣ

(
IR, w(x, IC)

)
≈ 1

2

mn

∑
i=1

µi

(
IC(w(x̂, pi))−IR +

1
2

JESM(w, 0, IR, IC, pi)x̃

)2

. (2.23)

The above problem is similar to the robust least squares, c.f. Appendix B. The optimal incre-
ment x̃∗ is obtained by (B.4), and the solution is obtained computing (2.16) iteratively with
x̂k+1 = x̂k ◦ x̃∗, until the obtained increment x̃∗ is conveniently small.

This technique is very efficient since the solution has a second order convergence rate with-
out the explicit evaluation of the onerous Hessian. This efficient framework was extended to
the SCV in (Richa et al., 2011).

2.4.3 NCC-based direct visual tracking

We describe with more details the forward and inverse compositional solutions for the
NCC-based direct visual tracking in this section. This approach is discussed originally in
(Scandaroli et al., 2012). Let us consider the NCC of two images IR, IC with warp function w
and parameters x given by S×

(
IR, w(x, IC)

)
in Eq. 2.5.

Forward compositional

Let us start with the forward compositional approach given by Eq. (2.13) and recall for
u ∈ Rn and f : Rn → Rn that |u| =

√
uTu, and ∂u

1
| f (u)| = − f (u)T

| f (u)|3 ∂v f (u). We can write the
gradient of S×

(
IR, w(x, IC)

)
using the compact form (2.6) as

gFC(x) , ∂xS×
(

IR, w(x, IC)
)
=

iR
T J×(w, x, IC)

|iR||w(x, iC)|
− iR

Tw(x, iC)

|iR||w(x, iC)|3
w(x, iC)

T J×(w, x, IC),

=

(
iR

|iR|
− S×

(
IR, w(x, IC)

) w(x, iC)

|w(x, iC)|

)T
J×(w, x, IC)

|w(x, iC)|
, (2.24)

with the Jacobian J×(w, x, I) obtained by the stacking the mn rows computed with the i-th
element J×(w, x, I, pi) = J

(
w, x, I, pi

)
− 1

mn ∑j J
(
w, x, I, pj

)
.

Evaluating the partial derivative w.r.t. xT of Eq. (2.24), we obtain the full expression for the
Hessian as:

∂x
2S×

(
IR, w(x, IC)

)
= −S×

(
IR, w(x, IC)

) J×T J×(w, x, IC)

|w(x, iC)|2

− J×(w, x, IC)
T

|w(x, iC)|

(
iRw(x, iC)

T

|iR||w(x, iC)|
+

w(x, iC)iR
T

|w(x, iC)||iR|

)
J×(w, x, IC)

|w(x, iC)|

+3
J×T
(
w(x, IC)

)

|w(x, iC)|
w(x, iC)w(x, iC)

T

|w(x, iC)|2
J×(w, x, IC)

|w(x, iC)|

+
mn

∑
i=0

H×(w, x, IC, pi)

|w(x, iC)|

(
ii,R

|iR|
− S×

(
IR, w(x, IC)

) w(x, iC)i

|w(x, iC)|

)
, (2.25)
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40 direct visual tracking

where H×(w, x, IC, pi) = ∂x J×(w, x, IC, pi) denotes the Hessian of the image (not to be mis-
taken for the Hessian of the similarity function, which is given by (2.25)). Although (Irani
and Anandan, 1998) compute the solution given by the forward compositional problem using
(2.13) with (2.24), (2.25), the calculation of Hessian at each iteration is not an easy task, spe-
cially as the computation of H×

(
w, x, IC

)
involves more complex computations and is not as

stable as the computation of the Jacobian.
An approximation that simplifies the evaluation of (2.25) is certainly welcome, there are

some complications however. Concerning the optimization of the mutual information, (Dame
and Marchand, 2010) state that the Hessian should not be approximated by neglecting only
the term that involves the image Laplacian. We can relate this statement to the Hessian of
the NCC, more specifically, the last term in (2.25). It can be shown that an approximation
obtained simply neglecting the last term of Eq. 2.25 is not necessarily negative definite, which
disagrees indeed with the maximization problem posed by (2.1). (Brooks and Arbel, 2010)
suggest a conflicting approximation, that might lead to an unexpected behavior caused by
an unstable Hessian. Nevertheless, there are practical Newton methods (Nocedal and Wright,
2000) that can improve the conditioning of the Hessian, but these modifications increase the
computational effort without a guarantee of increased speed nor basin of convergence.

(Dame and Marchand, 2010) suggest an interesting approximation for the mutual informa-
tion, where the Hessian is evaluated with reference image computed at the solution of the
problem, i.e. with IR = w(x, IC). Translating this approximation to the NCC corresponds to
evaluating the Hessian around some x, i.e. at S×

(
w(x, IC), w(x, IC)

)
. Hence, let σ× denote the

sign of the NCC coefficient S×
(

IR, w(x, IC)
)
, we obtain the approximation

MFC(x) , ∂x
2S×

(
w(x, IC), w(x, IC)

)

≈−σ×
J×T J×(w, x, IC)

|w(x, iC)|2
+

J×(w, x, IC)
T

|w(x, iC)|
w(x, iC)w(x, iC)

T

|w(x, iC)|2
J×(w, x, IC)

|w(x, iC)|
, (2.26)

yielding a definite negative matrix. Technically, however, MFC(x) can be semi-definite nega-
tive. It can be verified from the eigenvectors of Imn − w(x, iC)w(x, iC)

T that semi-definiteness
happens iff the gradients of IC(w(x, pi)) = 0 for every pixel pi, i.e. the warped image is not
textured. Notice that the situation provoking this degenerate case is not relevant for visual
tracking. The solution for the DVT is obtained after computing the increment (2.13) iteratively
using Eqs. (2.24) and (2.26):

x̃∗FC = −MFC(x̂k)
−1gFC(x̂k)

T , (2.27)

where x̃∗FC is the increment for x̂k+1 = x̂k ◦ x̃∗FC computed until |x̃∗FC| < ε.

Inverse compositional

The same procedure can be used to compute an inverse compositional solution for the NCC.
Recall that locally and close to the identify of the group x−1 ≈ −x, with the gradient

gIC(x) , ∂xS×
(

IR, w(x, IC)
)

= −
(

S×
(

IR, w(x, IC)
) iR

|iR|
− w(x, iC)

|w(x, iC)|

)T J×
(
w(0, IR)

)

|iR|
, (2.28)

and the Hessian approximation

MIC , ∂x
2S×

(
w(0, IR), w(0, IR)

)

≈ − σ×
J×T J×

(
w(0, IR)

)

|iR|2
+

J×
(
w(0, IR)

)
T

|iR|
iRiR

T

|iR|2
J×
(
w(0, IR)

)

|iR|
, (2.29)
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2.5 improving the ncc-based direct visual tracking 41

the solution for the DVT is obtained after computing the increment (2.16) iteratively using the
gradient (2.28) and approximated Hessian (2.29):

x̃∗IC = MIC
−1gIC(x̂k)

T , (2.30)

where x̃∗IC is the increment for x̂k+1 = x̂k ◦ x̃∗IC computed until we obtain a convenient x̃∗IC
such that |x̃∗IC| < ε. This approach can be considered as an improved version for the steepest
descent, and this solution is very interesting as MIC and its inverse can be computed only once,
thus reducing the computational cost of each iteration. Nevertheless, the basin of convergence
can be small compared to the forward compositional. Despite these techniques for the NCC-
DVT can be quite adequate for some applications, it is still possible to improve the solution
of the problem.

A similar solution is provided in (Evangelidis and Psarakis, 2008). The authors, however,
derive their solution from the first order approximation of image, c.f. Eq. (2.18), showing
that maximization of the approximated NCC is still well posed. The approximated Hessian
is simpler than the one provided by Newton’s method, however, it still depends on IR and
w(x, IC) at must be computed at each iteration.

2.5 improving the ncc-based direct visual tracking

The NCC is intrinsically robust against affine illumination changes, but there is not a sim-
ple and transparent approach to reject occlusion and unmodeled illumination, e.g. specular
reflections. We propose to redefine the NCC as

SW
× (IR, IC) =

iR
TWiC

|iR|W |iC|W
, (2.31)

where W is symmetric positive definite weighting matrix and |v|P =
√

vTPv. A simpler option
suggests W be written as a diagonal matrix with elements µi>0. The remainder of section ad-
dresses two techniques to define the µi and an approach to improve the gradient optimization.
These results were presented originally in (Scandaroli et al., 2012).

2.5.1 Local illumination changes

Maximizing the NCC of the whole reference image makes the implicit assumption that the
same affine illumination parameters in (1.17) are shared by every pixel. This hypothesis is but
seldom satisfied due to reflective properties of the target and local illumination sources. In-
stead of assuming that the reference image represents a target with constant reflective proper-
ties, we split IR in a grid G composed by several tiles (subregions) Gi. A similar grid approach
is proposed in (Irani and Anandan, 1998) to improve the robustness adding two simple steps:

– only the “concave tiles” are taken into account, i.e. tiles whose Hessian has only negative
eigenvalues;

– each pixel from a subregion is weighted by the determinant computed from the Hessian
of the respective subregion.

This technique can be helpful whilst using Newton’s method and the forward compositional
approach, but weighting by the determinant may not be very robust with the approximations
presented in Section 2.4.3.

We propose a technique to improve the optimization based on Hessian approximations.
The k-means algorithm (Lloyd, 1982) is employed to partition the tiles into two clusters. We
classify the cluster with absolute NCC closer to the unit as good cluster G+, and the other
as bad cluster G−. Afterwards, we assign a weight to every subregion. For values lower than
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42 direct visual tracking

G+’s centroid, we assign weights µ
g
i from the current distance to the centroid using Huber’s

influence function (Huber, 1981), c.f. Appendix B. The other tiles have a weight assigned to
µ

g
i = 1. Figure 2.1 presents a detailed scheme for representing the grid-weighting approach.
We show an example of the state of the art and the proposed grid-weighting approaches in

Figure 2.2, where Figure 2.2 (a) shows a reference image and (b) the same image corrupted
by non-uniform illumination. We illustrate the effects of the determinant weighting in Fig-
ure 2.2 (c) and (d). Remark that the corrupted region in Figure 2.2 (b) is not well identified
using any of the constant Hessians. Figure 2.2 (e) displays the grid weighting using the pro-
posed technique. We can verify that the proposed method is able to identify the degraded
portion of the image, and reduce their corresponding influence in the optimization.

2.5.2 Specular reflections and occlusion

Other types of unmodeled changes in the current image can impair direct visual track-
ing applications, e.g. specular reflections and partial occlusions. These effects can indeed be
treated by the technique proposed in Section 2.5.1. Moreover, if the reference image is already
small, the local approach it not very recommended.

(Arya et al., 2007) treats such local variations by weighting each pixel from IR and IC using
their histograms and Huber’s influence function. This technique tries to approximate the im-
ages by mono-modal distributions. Nevertheless, this weighting might not present the desired
effect depending on the degradation level. As an illustration, Figure 2.3 (a) represents a refer-
ence image and (b) the same image corrupted by specular reflection. Figure 2.3 (c) represents
the weights using the method (Arya et al., 2007). Remark that the specular reflection was not
detected, and only the pixels with larger gradients are affected.

Our approach is directly connected to the gradients of the NCC similarity, c.f. (2.24) and
(2.28). It is natural to define the residues

r(IR, IC) ,
iR

|iR|
− S×(IR, IC)

iC

|iC|
.

This residue r defines a new distribution. We compute the weights µ
p
i using Huber’s influence

function together with the median and the median absolute deviation of r. This weighting
approach is similar to the one employed by robust least-squares, however, the NCC defines
a distribution invariant to affine illumination changes. Figure 2.3 (d) displays the weights
computed using the proposed approach. Despite weighting the strong gradients from the
right side, the specular reflection is well identified.

This method can be combined with Section 2.5.1. We can compute the median and the
median absolute deviation of the residue r defined by the good subregions G+. Afterwards,
we can compute the weights µ

p
i for every pixel.

2.5.3 Improving the gradient solution

It is well known in the literature that robust estimators reduce convergence speed of the
optimization in favor of the robustness against outliers. Furthermore, using solely the inverse
or forward solution neglects all the gradient information that could be provided either by
the current or reference images. We propose a method to improve the solution. First, we
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2.5 improving the ncc-based direct visual tracking 43
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Figure 2.1: Coping with local illumination changes

(a) IR. (b) IC.

(c) Inverse compositional (d) Forward compositional (e) Proposed weighting.

Figure 2.2: Grid weighting procedure; (a) reference image; (b) current image; (c) weights from (Irani
and Anandan, 1998) using HIC; (d) weights from (Irani and Anandan, 1998) using HFC; (e)
proposed weights. All weights vary from black: µi = 0 to white: µi = 1.
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44 direct visual tracking

(a) IR (b) IC (c) (Arya et al., 2007) (d) Proposed weighting

Figure 2.3: Pixel weighting procedure; (a) reference image; (b) current image; (c) weights from (Arya
et al., 2007) vary from black: µ

p
i = 0.8; to white: µ

p
i = 1 (d) proposed weights vary from

black: µ
p
i = 0.25 to white: µ

p
i = 1.

heuristically approximate the parabolas for the forward and inverse compositional methods
using constant Hessians





SFC
× (x̃) , S×

(
IR, w(x̂k ◦ x̃, IC)

)
≈ SFC

× (x̂k) + gFC(x̂k)x̃ +
1
2

x̃T HFC x̃ ,

SIC
× (x̃) , S×

(
w(x̃−1, IR), w(x̂k, IC)

)
≈ SIC

× (x̂k)− gIC(x̂k)x̃ +
1
2

x̃T HIC(x̂k)x̃ .
(2.32)

Thus, to obtain the maximum we compute the partial derivative with respect to x̃ for (2.32)
that equals to zero and obtain:

{
0 = gFC(x̂k)

T + HFC x̃∗ ,

0 = − gIC(x̂k)
T + HIC(x̂k)x̃∗ .

(2.33)

Ideally, under the assumption that the similarity function is quadratic, the inverse and the
forward solutions are the same. Nevertheless, in practice, these solutions give complementary
information that we propose to exploit. Adding both right hand sides of (2.33), we obtain the
optimal increment:

x̃∗ =
(

HFC + HIC(x̂k)
)−1(

gFC(x̂k)− gIC(x̂k)
)T . (2.34)

The computational effort of the proposed solution is increased comparing to the inverse com-
positional, however, we double the information employed to solve the optimization. This is at
the expense of recomputing HFC(x̂k) and gFC(x̂k) at each iteration.

Solution (2.34) is inspired by the ESM (Benhimane and Malis, 2007), c.f. Section 2.4.2, which
achieves a second order convergence rate for the SSD without computing the Hessian explic-
itly. The ESM uses the information of both reference and current image Jacobians, nevertheless,
the estimation of the photometric parameters is a necessary task to accomplish a similar result
with the NCC. (Brooks and Arbel, 2010) propose an ESM extension for other similarities than
the SSD. They proceed by directly adding reference and current image Jacobians, as proposed
by the ESM. The primal ESM solution by (Benhimane and Malis, 2007) assumes brightness
constancy, therefore it is sound to directly sum the Jacobians, but one must be careful under
illumination changes.

The trivial sum of the image Jacobian is contradicted by considering the, theoretically pos-
sible, case where the photometric gradients have inverse signals whilst the proposed solu-
tion (2.34) is still valid in this ill-conditioned case. Moreover, (Keller and Averbuch, 2004) and
(Mégret et al., 2008) follow the same heuristics, however, the rationale is entirely based on the
Jacobians of the image, where our approach considers directly the gradient and the Hessian
of the similarity. Remark that result from (2.34) could be employed independently of the sim-
ilarity. We have verified in experiments outside the scope of this thesis, however, that such an
approach does not necessarily improve histogram based approaches such as the MI.

te
l-0

08
61

85
8,

 v
er

si
on

 1
 - 

13
 S

ep
 2

01
3



2.6 visual tracking of planar surfaces 45

Algorithm 1 Visual tracking using proposed method

Require: warp w, initial parameter guess x̂0, threshold ε, maximum number of iterations k,
grid G with tiles Gi ∈ G.

1: for all Gi ∈ G, and pixel p : pn ∈ Gi do

2: iGi
R : iGi

n,R = IR(pn)− 1
mn ∑

pj∈Gi
pj

IR(pj),

3: JGi
×
(
w(0, IR)

)
: JGi

×
(
w(0, IR)

)
n
=J
(
w(0, IR)

)
n
− 1

mn ∑
pj∈Gi
pj

J
(
w(0, IR)

)
j
.

4: end for
5: for all new image IC do
6: repeat
7: for all Gi ∈ G, and pixel p : pn ∈ Gi do

8: w(x̂k, iC)
Gi : w(x̂k, iC)

Gi
n = IC

(
w(x̂k, pn)

)
− 1

mn ∑
pj∈Gi
pj

IC
(
w(x̂k, pj)

)
,

9: JGi
×
(
w(x̂k, IC)

)
: JGi

×
(
w(0, IC)

)
n
= J
(
w(x̂k, IC)

)
n
− 1

mn ∑
pj∈Gi
pj

J
(
w(x̂k, IC)

)
j
.

10: end for
11: Cluster good G+ and bad G− subregions by S×

(
IR, w(x̂k, IC)

)
= iR

Tw(x̂k ,iC)
|iR||w(x̂k ,iC)| , and com-

pute weights µG
i of every tile Gi, c.f. Section 2.5.1.

12: Compute median r and median of average distances σr of residues

r =
i
Gi
R

|iGi
R |

− S×(IGi
R , w(x̂k, IC)

Gi) w(x̂k ,iC)
Gi

|w(x̂k ,iC)
Gi | ,

for all Gj ∈ G+.
13: Compute weights µ

p
i of every pixel pn using Huber’s influence function and the

distribution defined by, c.f. Section 2.5.2.
14: Compute W with i-th diagonal element given by Wi = µ

g
i µ

p
i .

15: Compute x̃∗ via (2.35), and x̂k+1 = x̂k ◦ x̃∗.
16: until |x̃∗| < ε, or k > k
17: end for

Summary of the proposed algorithm

We define the weighting matrix W in Eq. 2.31 as a diagonal matrix with the i-th diagonal
element Wi obtained by the multiplication of the weights µ

g
i from Section 2.5.1 and µ

p
i from

Section 2.5.2. Remark that the use of the weighting is optional, and grid or pixel weighting are
neglected by setting µ

g
i = 1 or µ

p
i = 1, respectively. Using the same procedure as Section 2.4.3,

it is direct to obtain the explicit forms of MW
FC(x), MW

IC, gW
IC(x), and gW

IC(x) needed by the
optimization of the revisited NCC (2.31). The solution is given by:

x̃∗ = −
(

MW
FC + MW

IC(x̂k)
)−1(

gW
FC(x̂k)− gW

IC(x̂k)
)

, (2.35)

where x̃∗ is the increment that composes x̂k+1 = x̂k ◦ x̃∗.
Algorithm 1 describes the full proposed technique.

2.6 visual tracking of planar surfaces

We have presented the problem of direct visual tracking in Section 2.1 divided in three
main components: the similarity function, the optimization approach and the warp function.
We have covered the two first topics in Sections 2.2 and 2.3. Briefly, recall from (2.3) that
S(IR, w(x, IC)) actually simplifies

S(IR, w(X, IC)) = S(IR, w
(
φ(x), IC)

)
.
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46 direct visual tracking

We have verified in Section 2.3 that gradient-based methods must compute, at least, the gra-
dient of the similarities

∂xS(IR, w(X, IC)) = ∂IC S(IR, w(φ(x), IC)) · J(w, x, IC)

= ∂IC S(IR, w(φ(x), IC)) · ∂p IC
(
w(φ(x), pi)

)
· ∂Xw(φ(x), pi) · ∂xφ(x).

Considering the SSD and the SCV similarities, for instance, the computation of the rightmost
term ∂IC S(IR, w(x, IC)) is trivial, but this derivative demands a little more caution for the
NCC and the MI. The image Jacobian is given by the other terms,

J(w, x, IC) , ∂p IC
(
w(x, pi)

)
· ∂Xw(φ(x), pi) · ∂xφ(x).

We can divide J considering the photometric and geometric components, i.e. the components
due to the illumination ∂p IC and warp ∂Xw(I3, pi) · ∂xexp(φ(x)). The prior term is easily
computed using (Ma et al., 2003, pp. ?) and depends only on the texture of the image. The
latter term, however, depends on the transformation that we consider for the pixels. Although
we deal mostly with planar surfaces and monocular pinhole cameras in this thesis, there are
other interesting applications using deformable surfaces (Gay-bellile et al., 2010), or multi-
camera systems that employ, for instance, a spherical representation for the warp (Meilland
et al., 2010).

We have seen in Section 1.3.4 that the geometry of two views from a planar target presents
some interesting properties that can be exploited in visual tracking. The planar properties have
been well explored in direct visual tracking using the SSD similarity with ESM optimization
in (Benhimane and Malis, 2007). Afterwards, (Silveira and Malis, 2010) extend the approach to
consider to illumination changes and non-planar surfaces. These techniques consider the use
of Homography as pixel transformation. We refer the reader to these works for more details.

One choice for the warp function is given by (1.23)

wP(H, p) =

[
e1

T Hp

e3
T Hp

,
e2

T Hp

e3
T Hp

, 1
]T

.

We can verify that w = wP is indeed a group action directly via the definition (2.2) and
properties (1.24). The choice of a transformation using parameters from Lie group is very
interesting as, c.f. , for instance, (Warner, 1987),

∂xw(φ(x), pi) · ∂xφ(x) = ∂xw(I3, pi) · ∂xφ(0).

The Special Linear group is 8 dimensional, and its lie algebra sl(3) is given by the set of
matrices with trace zero that can be associated, for instance, by x ∈ R8 as

X = φ(x) = exp







x1 x2 x3

x4 x5 x6

x7 x8 −x1 − x5





 .

Therefore, considering the case given by (1.23), we obtain that

∂HwP(I3, pi) =

[
pi

T 01×3 (e1
T p)pT

01×3 pi
T (e2

T p)pT

]
, (2.36)

and

∂xφ(0) =

[
I8

w

]
, w = −

[
e1

T e2
T 01×2

]
.
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2.7 comparative results for planar tracking 47

u

v

Figure 2.4: Experimental settings for evaluation of similarities.

2.7 comparative results for planar tracking

We evaluate the tracking accuracy and the robustness with respect to illumination varia-
tions and partial occlusions using a benchmark dataset and challenging video sequences. Our
objective is to show that the proposed techniques can improve the NCC tracking, in terms
of computational effort and speed, to the same level as other state of the art methods whilst
improving the robustness to concurrent illumination changes and partial occlusions. We first
compare the convergence radius of different optimization strategies for the similarity func-
tions described in Section 2.2. Next, we present the results of the visual tracking techniques
using a benchmark dataset, and compare to results obtained by other authors using the same
dataset. At last, we evaluate the techniques using several sequences with challenging illu-
mination changes. All of the experiments consider warps using the homography structure,
c.f. Section 2.6.

2.7.1 Convergence radii

We compare the convergence radii of different similarity functions and optimization tech-
niques in this Section. We present two experiments. The first result concerns an evaluation of
the similarities for 2D displacements, the setup of this experiment is depicted in Figure 2.4.
We first define IR as a subregion with 150 by 150 pixels at center of a larger image, i.e. the IR is
given by the red square in Figure 2.4, and multiple IR obtained for xi = (ui, vi) displacements.
We cover the range from -30 to +30 pixels in each direction, and for each xi we associate
S(IR, w(xi, IC)) for the SSD, SCV, NCC and MI similarities. Using these values, we are able to
evaluate level curves for each similarity with the respective gradients at each xi, as depicted
in Figure 2.5. Figure 2.5 (a) presents the results for the SSD, (b) for the SCV considering a bit-
depth of 256, (c) for the NCC and (d) for the MI considering a bit-depth of 8. The regions in
blue refer to the worst scores of the similarities (low results for similarities that are maximized,
i.e. NCC and MI, and highest results for similarities that are minimized, i.e. SSD and SCV),
and each arrow represent the gradient evaluated numerically. These results allow the analysis
of the each similarity regardless of the optimization technique, under the brightness constancy
assumption. We can verify that the SSD and the NCC have indeed the largest basin of conver-
gence for this situation. We can clearly spot that the gradients are stronger within a radius of
around 20 pixels from the center of the image, this situation happens only for 10 and 15 pixels
for the MI and SCV, respectively. We can conclude that the performance of histogram-based
techniques is very inferior to the others considering, of course, this hypothesis of constant il-
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Figure 2.5: Level curves and experimental region of convergence for different similarities.

lumination settings. This is indeed expected as the SCV and MI are designed for multi-modal
image alignment, as the best performance of SSD is obtained for the hypothesis used in this
experiment.

The second experiment evaluates the convergence rate of the tracking methods for the
similarities using different optimization techniques. We use a similar configuration as the
experiment from (Baker and Matthews, 2001), and compare six implementations:

– SSD with inverse compositional (SSD+IC) from (Baker and Matthews, 2001);
– SSD with ESM (SSD+ESM) from (Benhimane and Malis, 2007);
– SCV with ESM (SCV+ESM) from (Richa et al., 2011),;
– NCC with inverse compositional NCC+IC from Section 2.4.3;
– NCC with inverse and forward compositional as discussed in Algorithm 1;
– MI with inverse compositional from (Dame and Marchand, 2010);

We consider a reference image with 150 by 150 pixels, and generate 20000 random homogra-
phies. These random samples are obtained by adding a random offset to each of the four
corners of the original image. The bounds of the noise added to the corners increase from 1

up to 20 pixels. We consider that the frame was solved with success if the root mean squared
error the coordinates of the corners is below 0.25 pixels. Initially, we set 300 iterations for
the methods, and the optimization stops when an increment |x̃| ≤ ε = 10−3 is obtained. The
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Figure 2.6: Convergence rate for the tracking of synthetic images. (a) percentage of correct attempts;
(b) Average number of iterations.

methods are allowed to run at most 500 iterations. We evaluated the techniques on two dif-
ferent images, and the results are displayed in Figure 2.6. The results on the left correspond
to the experiments performed using the Lena image, while the rightmost results correspond
to the experiments using the Graffiti image. We can verify that the SSD+ESM has the best
results among the methods, this method presents a high convergence rate over a larger range
initial errors with the lowest number of iterations. Considering the Lena image, the method
from Algorithm 1 shows the second best convergence rate, however, the solution needs twice
as much iterations as the SSD+ESM. The inverse compositional based methods of NCC and
SSD show a similar result, and at last we have the histogram based techniques MI+IC and
SCV+ESM. The results follow the analysis from the first experiment, i.e. , histogram based
methods show a smaller region of convergence under brightness constancy assumption. How-
ever, even though the SCV shows lower convergence rate than the MI, notice that the number
of iterations differ considerably as the SCV needs to compute, in average, the same number
of iterations as the NCC and SSD, the number of iterations needed by the MI increases almost
exponentially.

2.7.2 Metaio Benchmark dataset

We evaluate different similarities and optimization techniques using the planar-based vi-
sual tracking benchmark presented in (Lieberknecht et al., 2009). This benchmark consists of
8 different reference images classified among low, repetitive, normal and high texture, c.f. Fig-
ure 2.7. There are 5 sequences of 1200 frames contemplating different motion types and illumi-
nation settings for each target: high angles, distance range, fast far motion, fast close motion
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50 direct visual tracking

(a) Low 1 (L1) (b) Low 2 (L2) (c) Repetitive 1 (R1) (d) Repetitive 2 (R2)

(e) Medium 1 (M1) (f) Medium 2 (M2) (g) High 1 (H1) (h) High 2 (H2)

Figure 2.7: Reference images of planar tracking benchmark (Lieberknecht et al., 2009).

and, at last, illumination changes. The estimated position of the corners obtained from the
visual tracking are compared to a ground truth database, and the tracking is considered suc-
cessful if the sum of the squared errors of the 4 corners is lower than 10 pixels. The results are
given as rate of successfully tracked frames.

We compare the results obtained for this dataset using our implementation of several meth-
ods, and comparing to other results found in the Literature. We contemplate three imple-
mentations of the SSD, the first version is based on a robust weighted-least squares with
Huber’s influence function, the second is an implementation of the SSD with local illumina-
tion changes (SSD+i) from (Silveira and Malis, 2010) and the third is an inverse compositional
implementation from (Baker and Matthews, 2001), these results are compared to the ESM re-
sults presented in (Lieberknecht et al., 2009). We follow with an implementation of the SCV
using the ESM optimization as presented in (Richa et al., 2011). Concerning the NCC sim-
ilarity, we evaluate an implementation of the NCC with inverse compositional-like steepest
descent optimization (NCC+ICS), c.f. Section 2.4.3 and Eq. (2.30), and also two implementa-
tions of the proposed method. First, without the pixel-wise robust weighting (Proposed-I),
i.e. Algorithm 1 without computing line 13; and secondly, with pixel-wise robust weighting
(Proposed-II), i.e. Algorithm 1 fully implemented. The last results concern an implementation
of the MI using the inverse compositional approach presented in (Dame and Marchand, 2010),
we compare the obtained scores with the original result.

In order to provide the same basis for comparison, we use the same parameters to every
method when possible. More specifically, we compute all of the methods using three layers
of Gaussian-pyramid. Moreover, we stop the optimization when the increment norm is below
ε = 10−3, and each method is allowed to run at most 500 iterations. We employ such a large
number of iterations to provide similar opportunity to each method independently of the
convergence rate at the expense of not reproducing a real-time application. All of the warps
are computed using bilinear interpolation, and we use a downsized template to 320 × 240
pixels instead of the original 640 × 480 pixels in order to avoid oversampling in most of the
sequences. The only difference between the settings of the methods refers to the number of
tiles of the grids and number of bins of the histogram, when applicable. The SSD+i uses
a grid of 5×5 tiles, where the proposed NCC methods use a grid of 3×3 tiles. The SCV
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2.7 comparative results for planar tracking 51

implementation considers a bit depth BI = 256 for the histogram computation, whilst the MI
employs BI = 8.

SSD

Table 2.1 presents the scores obtained by four techniques using the SSD similarity, (a) refers
to an implementation of the SSD with weights given by Huber’s influence function and ESM
optimization, (b) refers to an implementation of the SSD with compensation of the affine
illumination SSD+I changes using ESM optimization proposed in (Silveira and Malis, 2010),
(c) refers to the result of the SSD with ESM optimization presented in (Lieberknecht et al.,
2009) and (d) refers to the result of an implementation of the inverse compositional method
from (Baker and Matthews, 2001). Each row of the table presents the result for the targets
from Figure 2.7. Moreover, each column displays the results for sequences angle, range, fast
and far, fast and close and illumination changes. The scores in bold refer to the best result
obtained for the dataset. For the sake of comparison, we consider any score difference below
5% is irrelevant. The last row of each table displays the mean of scores obtained by all targets
for each type of sequence.

The difference between scores of the implemented algorithms (a) and (b) and the results
from the benchmark paper (c) is notorious. The result of the benchmark paper outperformed
the others in a single sequence with an improvement around 15% of tracked frames. However,
we do not have access to the experimental settings employed by the authors. Therefore, we
cannot conjecture whether the weight of the pixels or the illumination parameters improved
the other technique. Furthermore, we can verify that results with ESM optimization scored
better than the inverse compositional (d). We thus conclude that the second order optimization
considering both reference and current images can improve the results over considering the
reference image only. We can also remark that the SSD with Huber weights outperformed the
SSD+i in 40% of the sequences with an average improvement of 29.8% successfully tracked
framed, i.e. around 357 frames per sequence, while the converse is shown only once with and
improvement of 22.7% of tracked frames, around 272 frames. Therefore, for these benchmark
sequences, it is evident that ignoring the pixels that do not belong to the model is more
important than considering affine illumination changes.

SCV

Table 2.2 displays the scores obtained by an implementation of the SCV similarity with
ESM optimization. Each row of the table presents the result for the targets from Figure 2.7,
and the columns display the results for sequences angle, range, fast and far, fast and close
and illumination changes. The last row of each table displays the mean obtained by all targets
for each type of sequence. The scores obtained for this similarity are comparable to the SSD+i
technique previously discussed. The SCV outperforms the SSD+i technique in 12.5% of the
sequences, while the converse happens also 12.5% of the sequences. The differences between
the scores, however, are not very large.

NCC

Table 2.3 shows the scores obtained by three techniques using the NCC similarity, (a) refers
to an implementation of Algorithm 1 without the pixel-wise robust weighting, which we
denote as Proposed-I, i.e. Algorithm 1 without computing line 13, (b) refers to the implemen-
tation of Algorithm 1 fully implemented, which we denote as Proposed-II, and (c) refers to
an implementation of the NCC with inverse compositional-like steepest descent optimization
(NCC+IC), c.f. Section 2.4.3 and Eq. (2.30). Each row of the table presents the result for the
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52 direct visual tracking

Table 2.1: Benchmark scores for SSD. (a) ESM optimization using Huber weights, (b) ESM optimization
considering illumination changes, based on (Silveira and Malis, 2010), (c) ESM optimiza-
tion, result from (Lieberknecht et al., 2009), (d) Inverse compositional based on (Baker and
Matthews, 2001).

(a) Angle Range F. F. F. C. Illum.

L1 100% 76.2% 73.4% 39.7% 97.7%

L2 100% 99.3% 55.3% 49.5% 68.3%

R1 100% 100% 52.9% 87.3% 100%

R2 91.2% 99.4% 15.7% 70% 96.1%

M1 100% 99.6% 79.3% 85.6% 99.6%

M2 99.8% 99.9% 14.8% 84.4% 100%

H1 99.3% 80.9% 29.3% 15% 90%

H2 100% 79.8% 27.1% 72.1% 100%

98.8% 91.9% 43.5% 63% 94%

(b) Angle Range F. F. F. C. Illum.

L1 99.8% 77.3% 62.1% 39.6% 97.8%

L2 100% 98.9% 54.9% 51% 91.1%

R1 100% 87.6% 26.4% 72.6% 100%

R2 91.2% 64.9% 12.7% 72.6% 61.4%

M1 99.8% 98.9% 38.8% 50.1% 99.6%

M2 100% 99.9% 14.7% 84.5% 100%

H1 66.3% 28.6% 7% 11.2% 34.8%

H2 100% 51.8% 13.2% 36.2% 90.2%

94.6% 76% 28.7% 52.2% 84.4%

(c) Angle Range F. F. F. C. Illum.

L1 100% 92.3% 35.0% 21.5% 71.1%

L2 100% 64.2% 10.5% 26.8% 56.2%

R1 61.9% 50.4% 22.5% 50.2% 34.5%

R2 2.92% 11.3% 6.8% 35.8% 11.3%

M1 95.4% 77.7% 7.5% 67.1% 90.7%

M2 100% 99.9% 14.7% 84.5% 100%

H1 0% 0% 0% 0% 0%

H2 100% 61.4% 22.8% 45.5% 79.6%

70% 57.2% 15% 41.4% 55.4%

(d) Angle Range F. F. F. C. Illum.

L1 100% 74.1% 27.7% 35% 96.6%

L2 100% 92.9% 21.9% 31.8% 66.3%

R1 17.6% 22.3% 3.9% 18.5% 31.5%

R2 23.3% 13.5% 7.4% 35.8% 24.4%

M1 100% 81.1% 78.8% 21.2% 96.1%

M2 55.7% 44.8% 6.2% 37.1% 49.8%

H1 8.8% 4.8% 2.9% 3.6% 5%

H2 59.9% 25.6% 7.1% 12.9% 39.3%

58.2% 44.9% 19.5% 24.5% 51.1%

Table 2.2: Benchmark scores for SCV based on (Richa et al., 2011).

Angle Range F. F. F. C. Illum.

L1 99.8% 78.1% 60.1% 33.1% 98.5%

L2 100% 98.8% 62.5% 70.6% 94%

R1 99.8% 69.4% 24% 69.3% 100%

R2 81.1% 64.8% 12.8% 50% 61.8%

M1 100% 99.1% 52.4% 88.8% 100%

M2 99.8% 99.9% 14.9% 85.2% 100%

H1 64% 24.2% 6.9% 9.2% 34.5%

H2 92.8% 68.2% 17.9% 52.2% 100%

92.2% 75.3% 31.4% 57.3% 86.1%
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2.7 comparative results for planar tracking 53

targets from Figure 2.7, and each column display the results for sequences angle, range, fast
and far, fast and close and illumination changes. The scores in bold refer to the best result
obtained for the dataset. For the sake of comparison, we consider any score difference below
5% to be irrelevant. The last row of each table displays the mean of scores obtained by all
targets for each type of sequence.

We can notice from the scores that the NCC+IC presents the worst results, as it outperforms
the other methods in only one sequence. This scored shows a 7.2% improvement of success-
fully tracked frames. Additionally, the NCC+IC could only achieve scores similar to proposed
methods in 25% of the sequences, i.e. the scores are at least 10% worse than the other tech-
niques for half of the sequences. The two proposed methods obtained similar results for 80%
of sequences. We remark the outstanding performance of Proposed-I for sequences with illu-
mination changes, where the method was able to track more than 99.8% of all images. This
method performed better in 2 out of 8 of illumination sequences probably because the ro-
bust weighting reduces the influence of pixels with strong gradients, and these are specially
responsible for the method’s accuracy.

MI

Table 2.4 presents the scores obtained by two implementations of the MI similarity, (a) refers
to our implementation of the inverse compositional algorithm of (Dame and Marchand, 2010),
(b) refers to results of the same method presented in the original paper. Each row of the table
presents the result for the targets from Figure 2.7. Furthermore, each column displays the
results for sequences angle, range, fast and far, fast and close and illumination changes. The
bold scores refer to the best result between the methods, i.e. if a method has a performance at
least 5% better than the other. The last row of each table displays the mean of scores obtained
by all targets for each type of sequence.

Noticeably, our implementation of the MI scores less than the original algorithm in 62.5% of
the sequences, with an average difference of 36% of successfully tracked frames, i.e. 423 frames
per sequence. However, an explicit comparison of the accuracy of the methods is unreasonable,
as we do not have access to the experimental settings from (Dame and Marchand, 2010). There
are several technical factors that may inflate the results. For instance, (Dame and Marchand,
2010) addresses that smoothing the image after the bi-linear interpolation can improve the
tracking results. We do not consider that fine tuning technique, since they would alter the
analysis of the similarities themselves. In fact, while some similarities can be improved via
the smoothing of the reference image, others can be damaged. Moreover, the parametrization
employed in each layer of the image pyramid can also improve the results. For instance,
instead of computing three layers with the SL(3), one could compute the last layer using
a simpler parametrization, e.g. an affine transformation on the pixel position, and finish the
computation of the other layers using the original parametrization.

At last, we verify that our implementation of the inverse compositional approach for the MI
shows better scores comparing to both SSD and NCC similarities using the same optimization
technique for the sequences with angle and illumination changes. We can conclude from these
results that the MI is indeed a good similarity function, at the expense of computational effort,
of course. However, we can also conclude that other factors, e.g. optimization technique, also
play an important in direct visual tracking, and should be taken more into account in direct
visual tracking.
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54 direct visual tracking

Table 2.3: Benchmark scores for NCC similarity. (a) Proposed-I, (b) Proposed-II, (c) NCC+IC.

(a) Angle Range F. F. F. C. Illum.

L1 99.7% 76.8% 52.7% 27.6% 100%

L2 100% 99.9% 21.6% 66% 100%

R1 100% 57.7% 22.2% 68.2% 100%

R2 100% 81.3% 12.2% 53.6% 100%

M1 100% 96.8% 58.2% 90.5% 100%

M2 99.9% 99.9% 20.1% 80.5% 100%

H1 93.6% 52.3% 9.2% 14% 98.9%

H2 100% 51.5% 22% 75% 100%

99.1% 77.0% 27.3% 59.4% 99.9%

(b) Angle Range F. F. F. C. Illum.

L1 99.8% 92.2% 51.8% 31.6% 100%

L2 100% 95.8% 13.5% 42.1% 85.2%

R1 100% 59.1% 22.3% 68.1% 100%

R2 100% 81.1% 10.5% 69.1% 100%

M1 100% 96.1% 58.5% 86.1% 100%

M2 99.8% 99.9% 20.5% 85.3% 100%

H1 76.4% 16.9% 7.2% 9.7% 59.8%

H2 100% 69.7% 19.7% 42.8% 100%

97% 76.4% 25.5% 54.4% 93.1%

(c) Angle Range F. F. F. C. Illum.

L1 100% 96.4% 16.4% 38.8% 97.3%

L2 100% 96.3% 21.8% 42.2% 80.9%

R1 17.6% 21.8% 3.9% 25.4% 31.6%

R2 12.2% 7.3% 6.8% 29.2% 20.3%

M1 100% 99.2% 38.4% 71.5% 99.4%

M2 55.3% 26.7% 6.2% 34.8% 40.8%

H1 10.3% 8.3% 5.2% 3.7% 6.5%

H2 42.8% 21.8% 6.8% 13.4% 18.3%

54.8% 47.2% 13.2% 32.4% 49.4%

Table 2.4: Benchmark scores for MI similarity. (a) our implementation using an approximation of in-
verse compositional optimization, (b) result from (Dame and Marchand, 2010).

(a) Angle Range F. F. F. C. Illum.

L1 100% 97% 49.2% 41.9% 99.8%

L2 100% 99.9% 21.1% 42.8% 93.8%

R1 39.5% 23% 14.2% 44.5% 81.4%

R2 22% 9.1% 7% 29% 25%

M1 85.4% 83.2% 20.4% 91.8% 99.7%

M2 59.4% 13.5% 6.5% 25.6% 94.0%

H1 25.7% 22.4% 7.1% 9.6% 24.6%

H2 71.8% 31.2% 8.2% 34.1% 76.2%

63% 47.4% 16.7% 39.9% 74.3%

(b) Angle Range F. F. F. C. Illum.

L1 100% 94.1% 75.2% 56.5% 99.5%

L2 100% 98.1% 69.9% 43.7% 93%

R1 76.9% 67.9% 22.8% 63.6% 100%

R2 91.3% 67.1% 10.4% 70.5% 96.2%

M1 99.2% 99.3% 43.9% 86.7% 99.6%

M2 100% 100% 14.8% 84.5% 100%

H1 47.1% 23.2% 7.2% 10% 50.6%

H2 100% 69.8% 20.8% 83.8% 100%

89.3% 77.4% 33.1% 62.4% 92.4%
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2.7 comparative results for planar tracking 55

Table 2.5: Comparative results under challenging illumination.

Bear

Method #Img. #Its. #Parms. RMS S×
SSD+i 1573 10 8G+36P 20 0.807

SCV 1573 9 8G 0.02 0.874

NCC, Alg. 1 1573 12 8G – 0.807

Book

Method #Img. #Its. #Parms. RMS S×
SSD+i 163 11 8G+49P 10.1 0.962

SCV 203 10 8G 0.04 0.970

SCV, ε = 10−4 283 13 8G 0.03 0.970

NCC, Alg. 1 203 14 8G – 0.957

NCC, ε=10−4 283 19 8G – 0.959

Robot

Method #Img. #Its. #Parms. RMS S×
SSD+i 723 10 8G+36P 21 0.864

SCV 723 10 8G 0.02 0.882

NCC, Alg. 1 723 12 8G – 0.864

2.7.3 Evaluation under challenging illumination

Next, we evaluate the techniques in sequences with challenging illumination settings. We
selected the following implementations based on the results obtained in the Metaio bench-
mark:

– SSD+i from (Silveira and Malis, 2010);
– SCV from (Richa et al., 2011);
– NCC similarly from Algorithm 1.

We neglect the SSD using Huber weights and ESM optimization because this results obtained
for this technique are inferior to the others in the sequences analyzed. We evaluate the three
techniques on sequences Bear, and Book from (Silveira and Malis, 2010) and Robot from
(Dame and Marchand, 2010). These sequences represent extreme real-world situations with
challenging illumination and targets from different materials and sizes. Remark that, besides
8 geometric parameters from the SL(3), the SSD+i must estimate other photometric param-
eters that increase with the number of grids. We evaluate the three methods using the same
reference image, minimum step size ε = 10−3, maximum of 50 iterations. These are reason-
able parameters for most real-time applications. Furthermore, we found the Book to be more
complex because none of the methods was able to complete the tracking using the default
parameters. We thus reevaluate this sequence using the SCV and the proposed method with
ε = 10−4 and 500 iterations. Table 2.5 presents the comparative result in terms of total tracked
images, median of iterations per image, number of estimated parameters, and root mean
squared (RMS) error of intensities, and the median NCC of the resulting IC and IR. The root
mean squared error of intensities and the NCC for the SCV technique are computed using the
expected image. Figs. 2.8, 2.9, 2.10 present key samples obtained for the proposed method in
sequences Bear, Book and, Robot respectively.
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56 direct visual tracking

(a) Image #1 (b) Image #370 (c) Image #1062 (d) Image #1407

(e) IR (f) IC #370 (g) IC #1062 (h) IC #1407

(i) Weights #370 (j) Weights #1062 (k) Weights #1407

Figure 2.8: Samples from Bear sequence – Total of 1573 images.

(a) Image #1 (b) Image #114 (c) Image #204 (d) Image #225

(e) IR (f) IC #114 (g) IC #204 (h) IC #225

(i) Weights #114 (j) Weights #204 (k) Weights #225

Figure 2.9: Samples from Book sequence – Total of 283 images.

te
l-0

08
61

85
8,

 v
er

si
on

 1
 - 

13
 S

ep
 2

01
3



2.7 comparative results for planar tracking 57

Table 2.6: Comparative results under challenging illumination and partial occlusion.

Starry-Night

Method #Img. #Its. #Parms. RMS S×
SSD+i 400 12 8G+43P 13.3 0.939

SSD+i/Huber 680 21 8G+43P 21.4 0.876

SCV 536 11 8G 0.05 0.943

NCC, Alg. 1 1600 22 8G – 0.849

We can verify that the proposed method performed at least similarly to the SSD+i. Note
that the proposed method presents a slight increase in the number of iterations, however,
we obtained a median of 23 iterations for the NCC+ICS (using the robust techniques). This
result highlights the importance of the improvement proposed in Section 2.35, since, using
the information from inverse and forward solutions, the NCC compares to a second order
method in terms of iterations. The SCV displays a better score for both RMS and the NCC S×,
however, the result takes into account the information computed in joint intensity distribution.
Remark that the proposed method and the SCV performed better than the SSD+i for the Book

sequence. The SSD+i gets stuck in a local minimum at frame 163, however, the other methods
are able to continue until 203 using the same parameters. The decrease of the median NCC
and increase on the iteration numbers is directly related to the sequences that the SSD+i was
unable to track. We can consider frame 204 to be the most difficult from this sequence. Our
method and the SCV were only capable of completing the sequence without the real-time
constraint imposed by the iterations. The SSD+i still failed in the same local minimum (frame
163). Concluding, the Robot sequence shows similar results for the three techniques. We
can verify, however, that the proposed technique is also suited for tracking smaller reference
images as the one provided by this sequence.

2.7.4 Evaluation under partial occlusion and illumination changes

This section evaluates the same techniques discussed previously in a real-world situation
where a region of the reference image is partially occluded and the illumination of the envi-
ronment changes throughout the experiment. Again, we use the same parameters: reference
image, minimum step and maximum iterations for every method. Table 2.6 presents the com-
parative results for all of the methods, but we also include and an implementation of the SSD+i
solving a robust least-squares with Huber weights. Fig. 2.11 presents some key frames results
obtained for the proposed method in the sequence Starry Night. The proposed method was
the only capable of completing the full sequence. The SSD+i was unable to cope with the
partial occlusion, and this is the main reason why it presents less median iterations per frame
and a larger NCC than the other two methods. The SSD+i with M-estimator was capable
of tracking the occluded patch as long as there were no illumination changes. We can in-
fer that the SSD+i is unable to handle partial occlusion and illumination changes at the same
time. The capability of facing illumination changes and occlusion supports the weighting tech-
niques presented in Section 2.5. To the authors knowledge, this is the only approach capable
of dealing with such extreme situations.
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58 direct visual tracking

(a) Image #1 (b) Image #239 (c) Image #409 (d) Image #545

(e) IR (f) IC #239 (g) IC #409 (h) IC #545

(i) Weights #114 (j) Weights #204 (k) Weights #225

Figure 2.10: Samples from Robot sequence – Total of 723 images.

(a) Image #1 (b) Image #102 (c) Image #578 (d) Image #1122

(e) IR (f) IC #102 (g) IC #578 (h) IC #1122

(i) Weights #102 (j) Weights #578 (k) Weights #1122

Figure 2.11: Samples from Starry Night sequence – Total of 1600 images.
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2.8 conclusion 59

2.8 conclusion

This chapter addressed different aspects of direct visual tracking methods. Many different
direct visual tracking methods present in the literature can differ by the employed similar-
ity measure, optimization strategy and geometric parameters. We first introduced different
similarity measures and discussed several properties, such as invariance and robustness to
illumination changes. Secondly, we presented different optimization techniques that can be
employed to obtain the tracking solution with reasonable computational effort.

The main contribution of this chapter is a novel solution using the NCC as similarity mea-
sure. This solution is based on three main pillars. Two techniques are presented to increase
the robustness against non-modeled effects, e.g. specular reflections and partial occlusion, and
these techniques highly improve the rejection of degraded areas. We also address a Newton-
like gradient solution using both inverse and forward compositional approaches.

The proposed method is exhaustively compared to other state of the art methods via the
analysis of the basin of convergence, the scores obtained using a planar based visual tracking
benchmark dataset, and challenging real-world video sequences. We verify that the proposed
method is able to cope with tracking partially occluded objects even under severe illumination
changes.

The downside of every gradient-based direct visual tracking method, however, is the need
of an initialization close enough to the optimal solution. In practice, it is difficult to initialize
the methods after large displacements, unless we either impose strong constraints on camera
motion, or introduce other sensors capable of measuring incremental displacements in faster
rates. Inertial sensors provide the latter property, and the next chapter discusses properties
and techniques of pose estimation with these sensors.
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3
N O N L I N E A R O B S E RV E R S F O R P O S E E S T I M AT I O N

This chapter concentrates on the data fusion process for pose estimation. The objective is
to combine low-frequency pose measurements with high-frequency measurements of angular
velocity and linear acceleration obtained by an IMU. In order to achieve this objective, we de-
velop nonlinear observers that can provide filtered pose estimates, and various parameters of
the sensors, e.g. IMU bias, gravitational acceleration, rotation and translation from camera-to-
IMU (c-to-IMU) frames. Bias estimates of these parameters can severely impair the data fusion
process. A first source of difficulties comes from IMU measurement bias. Although a constant
dynamics represents a good model for the these parameters, c.f. Section 1.2.4, the biases may
vary due to many factors (e.g. temperature variation, battery level, etc). Therefore, it is interest-
ing to permanently estimate these parameters. Another source of difficulties concerns various
parameters related to the use of multiple sensors and different coordinate frames, e.g. camera
and IMU frames, or the computation of relative pose with respect to a certain reference frame.
Usually, relative pose from c-to-IMU frames can be estimated in a preliminary step using
the accelerometers as a measurement of gravity (Lobo and Dias, 2007), however, such that
technique assumes that the IMU bias is known. An underlying difficulty of the concurrent
estimation of frame parameters and IMU bias is that persistent motion conditions must be
satisfied for the system to be completely observable.

The following sections discuss the design of nonlinear observers for the estimation of pose
and multiple parameters of the system, as well as analyses of motion condition under which
the system is observable. In order to obtain these condition, we initially recall some theoretical
results on the observability of systems, state-of-the-art results on filter design. We then pro-
vide sufficient conditions for the uniform observability of linear time-varying systems, and
one technique to obtain inputs that provide local-weak observability for nonlinear systems.
The analysis of the observability is specially important for the design and stability analysis of
the nonlinear observers next proposed. The most important discussions of this chapter con-
cern the design of nonlinear observers for pose estimation with concurrent IMU bias, and
c-to-IMU rotation. The respective nonlinear observers have been introduced in (Scandaroli
and Morin, 2011), (Scandaroli et al., 2011). These results are complemented with the observ-
ability analysis of the system, together with an original nonlinear observer for attitude and
gyro bias estimation, and new results on pose estimation with estimation of the gravitational
acceleration and c-to-IMU translation. We conclude the chapter with simulation results, and
compare the proposed nonlinear observers with other methods proposed in the Literature.

In order to discern the results presented in this thesis from other results provided by the
Literature, we use a non-standard nomenclature for the results. The results presented in this
thesis are stated as Propositions, whilst the results from the Literature are stated as Theorems.
We also separate completely the presentation of the results from their proofs. The proofs for
the propositions of the thesis are discussed in Appendix A.

61
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62 nonlinear observers for pose estimation

3.1 theoretical recalls

This section reviews some theoretical tools on nonlinear system analysis and nonlinear ob-
servers. Most of these results are found in control references, e.g. (Kalman, 1960b), (Chen,
1984), (Nijmeijer and van der Schaft, 1990), and tutorials on observability and observers (Be-
sançon, 2007). Let us start from a generic nonlinear system:

{
ẋ = f (x, u, t),

y = h(x, u, t),
(3.1)

where t denotes the time, the state x ∈ X, the input u ∈ U and the output y ∈ Y, such that X,
U and Y are connected manifolds of dimension n, m and p respectively, f (x, u, t) and h(x, u, t)
are vector functions with proper dimensions.

The general problem of observability and observer design concerns the reconstruction of
the state x(t0) of the dynamical system (3.1) from the knowledge of output trajectory y(·) and
inputs u(·).

3.1.1 Observability of systems

Rudolph Kalman first introduced the concept of observability for the analysis of linear
time-invariant systems (Kalman, 1960b), and thenceforward the observability property has
been extensively studied and extended for other classes: linear time-varying, state-affine, and
nonlinear systems. The observability is a prerequisite to derive exponentially stable observers.
In this section, we review some results presented so far in the literature, complementing with
a Proposition to identify sufficient conditions for the uniform observability of linear time-
varying systems. This result delineates a simple method to evaluate universal inputs that
yield a uniformly observable state-affine system.

Linear time-invariant systems

Linear time-invariant systems write
{

ẋ = Ax + Bu,

y = Cx + Du,
(3.2)

where the state vector x ∈ Rn, the input vector u ∈ Rm and the output vector y ∈ Rp, such
that A, B, C, and D are matrices with compatible dimension.

We can verify the observability of the system (3.2) via the observation space

O ,




C

CA
...

CAn−1




computed from A and C. The Kalman rank condition states that the system is observable iff
rank(O) = n, see e.g. (Kailath, 1979). If the system is observable, the pair (A, C) is defined as
observable. Remark that the observability of linear time invariant systems is independent of
the inputs u and time t, which may not be true for other classes of systems.
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3.1 theoretical recalls 63

Linear time-varying systems

Linear time-varying systems write
{

ẋ = A(t)x + B(t)u,

y = C(t)x + D(t)u,
(3.3)

where A(t), B(t), C(t), and D(t) are matrix-valued functions of the time t with compatible
dimension. The observability of linear time-varying systems can be categorized by different
aspects and (Chen, 1984) classifies the observability of a linear time-varying system according
to the following definitions.

Definition 3.1. A system is differentially observable if, ∀ t, the state x(t) can be computed from
the inputs u(τ) and outputs y(τ) during τ ∈ [t, t + τ] for τ > 0 arbitrarily small.

Definition 3.2. A system is instantaneously observable if, ∀ t, the states x(t) can be computed
from the inputs u(t), outputs y(t) and time derivatives u(k)(t), y(k)(t) with k≤n+1.

Definition 3.3. A system is uniformly observable if ∃ τ > 0 such that, ∀ t, the states x(t) can be
computed from the inputs u(τ) and outputs y(τ) during [t, t + τ].

The above definition of uniform observability is different from the one presented, e.g. (Gau-
thier and Kupka, 1994) or (Besançon, 2007), where uniformity is related to the inputs rather
than time.

We are specifically interested in uniform observability, which ensures that the state esti-
mation process is well-conditioned and can be solved via the design of exponentially stable
observers. The following assumption is made to simplify the exposition.

Assumption 3.1. The matrix-valued functions A, B, C and D of the linear time varying sys-
tem (3.3) are continuous and bounded on [0, ∞).

The next theorem is a well known result on uniform observability (Chen, 1984, Ch. 5).

Theorem 3.1. A linear time-varying system (3.3) satisfying Assumption 3.1 is uniformly ob-
servable if there exist τ, δ > 0 such that

∀t ≥ 0, 0 < δIn ≤ W(t, t + τ), (3.4)

where

W(t, t + τ) ,
∫ t+τ

t
Ψ(s, t)TCT(s)C(s)Ψ(s, t) ds,

and Ψ(s, t) is the state transition matrix of ẋ = A(t)x. The matrix W is called observability
Grammian of System (3.3).

Remark that the observability of linear time varying systems is independent of the input u,
but it is directly related to the system’s Grammian which, in turn, only depends on the matri-
ces A(t) and C(t). Hence, it should be clear from this definition that uniform observability is
independent of B. We say without distinction that System (3.3) or the pair (A, C) is uniformly
observable. Note also, as a consequence of Assumption 3.1, that W(t, t + τ) is upper bounded
by some δIn for any t ≥ 0.

An important property of uniform observability is that it ensures the existence of exponen-
tially stable linear time-varying observers with bounded gain matrix. Uniform observability
of a given pair (A, C), however, is usually difficult to establish since calculation of the Gram-
mian matrix requires explicit integration of the solutions of ẋ = A(t)x. It is well known that
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64 nonlinear observers for pose estimation

observability properties of linear time-varying systems are strongly related with properties of
the observation space of linear time varying systems (Chen, 1984, Ch. 5)

O(t) ,




N0(t)

N1(t)
...


 (3.5)

with

N0 , C, Nk+1 , Nk A + Ṅk for k = 1, · · · (3.6)

For example, instantaneous observability can be guaranteed at t if rank(On−1(t)) = n. How-
ever, uniform observability cannot be characterized in term of rank condition. We next pro-
pose a Lemma that provides a sufficient condition for uniform observability in terms of the
observability space O.

Lemma 3.1. Consider a linear time-varying system (3.3) satisfying Assumption 3.1 such that
the following statements hold:

1. The k-th order derivative of A (resp. C) is well defined and bounded on [0,+∞) up to
k = K ≥ 0 (resp. up to k = K + 1).

2. There exist an n × m matrix M composed of row vectors of N0, · · · , NK, and two scalars
δ, τ > 0 such that

∀t ≥ 0, 0 < δ ≤
∫ t+τ

t
|det(M(s)T M(s))| ds. (3.7)

Then, System (3.3) is uniformly observable.

The proof for this lemma is discussed in Appendix A.1.
A similar criterion is proposed in (Bristeau et al., 2010). The observability condition therein,

however, requires the evaluation of a similar inequality for every instant t ∈ [t0, t0 + τ], while
Proposition 3.1 presents the observability condition based on the state trajectory along the
same interval.

State-affine systems

State-affine systems write
{

ẋ = A(u)x + b(u),

y = C(u)x + d(u),
(3.8)

where A(u), C(u) are matrix valued functions, and b(u), d(u) vector valued functions with
proper dimensions. The observability of state-affine systems, differently from linear time in-
variant and time varying systems, depends on the inputs u, thus we are specially interested
in identifying the inputs that yield the observability of the system.

Definition 3.4. An input u is universal for the system (3.8) if the resulting system is observable.
An input u is singular if it is not universal (Sussmann, 1979).

We can see the observability analysis of state-affine systems likewise linear time varying
ones. More specifically, we define Au(t) = A(u(t)) and Cu(t) = C(u(t)) and the same tools
from the previous section apply for the pair

(
Au(t), Cu(t)

)
. Specially, Proposition 3.1 gives

sufficient conditions on the dynamics of uniformly universal inputs for System (3.8), i.e. we
can verify conditions on the trajectory of the inputs u(t) and via its derivatives u̇(t), ü(t), · · · ,
under which the state-affine system (3.8) is uniformly observable.

In the cases discussed in this thesis, we determine the dynamics of universal inputs, that
must, in turn, be continuous and bounded on [0, ∞) to satisfy Assumption 3.1.
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3.1 theoretical recalls 65

Nonlinear systems

Nonlinear systems write
{

ẋ = f (x, u, t),

y = h(x, u, t),

where the state x ∈ X, the input u ∈ U and the output y ∈ Y, such that X, U and Y are
connected manifolds of dimension n, m and p respectively, f (x, u, t) and h(x, u, t) are vector
functions with proper dimensions.

The concept of observability in nonlinear systems is different from the previous systems,
since some states can be indistinguishable due to the structural properties of certain nonlinear
systems (Hermann and Krener, 1977).

Definition 3.5. A pair (x0, x1) is indistinguishable if they realize the same input-output map.
A state x is indistinguishable from x0 if the pair (x, x0) is indistinguishable.

Nevertheless, we can relate the above definition to the original observability definition,
i.e. we can reconstruct the state x(t0) of a system from its inputs and outputs iff there exist
no indistinguishable pair (x, x0). This concept of observability, however, is still too general for
many nonlinear systems. Indeed, for such cases, one might be interested in distinguishing a
state x from its neighbors instead of the whole space of states.

The main result for the observability of nonlinear systems (Hermann and Krener, 1977)
defines a weaker notion of observability called local weak observability. More specifically, the
system (3.1) is locally weakly observable if the state x(t0) can be distinguished from its neighbors
without “going too far” (Besançon, 2007). Another advantage of the weaker observability is
that a simple algebraic test on the observation space O(h, x, u, t) characterizes that property.

A rank test is proposed in (Hermann and Krener, 1977) for the observability of nonlinear
time-invariant systems

{
ẋ = f (x, u),

y = h(x),
(3.9)

using the Lie derivate operator

L f h(x) =
(
∂xh(x)

)
f (x, u),

and the k-th successive computation of a Lie derivative defined by

Lk
f h(x) = L f

(
Lk−1

f h
)
(x) =

(
∂xLk−1

f h(x)
)

f (x, u)

for k = 2, · · · . Define the observability space

O(h, x) ,




h(x)

L f h(x)

L2
f h(x)

...




. (3.10)

computed with f (x, ui) for every possible constant value ui.

Theorem 3.2. Let the observable space O given by (3.10) evaluated for some constant input
u0 ∈ U. A nonlinear system (3.9) is locally weakly observable at x ∈ X

dim
(
∂xO(h, x)

)
= dim(X). (3.11)

The system is weakly observable if (3.11) holds ∀ x ∈ X.
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66 nonlinear observers for pose estimation

This result is particularly interesting for time invariant systems and systems where the out-
put is a sum of the initial state and a function of the inputs. The latter case even present
the strong property that if one input distinguishes between two initial states, then every in-
put does also distinguish between two states (Hermann and Krener, 1977). Remark that the
Kalman rank condition in linear time invariant systems, for instance, is obtained directly from
Theorem 3.2.

The rank condition provided by Theorem 3.2 may not be trivially verified when the ob-
servability depends on the inputs. Besides, the observability of nonlinear affine systems relies
often on the inputs, for example, consider





x = f0(x) +
m

∑
i=1

fi(x)ui,

y = h(x),

(3.12)

with ui the i-th element of the input u ∈ Rm, may not be guaranteed with u = 0. Moreover,
instead of tediously computing the observability space for “infinite” values of u, we can utilize
another definition of observability space, c.f. (Nijmeijer and van der Schaft, 1990),

O(h, x) ,




h(x)

L fθ0
(h)(x)

L fθ1
L fθ0

(h)(x)

L fθ2
L fθ1

L fθ0
(h)(x)

...




, (3.13)

with θi ∈ {0, 1, · · · , m}, and a similar rank test to verify the observability.

Corollary 3.1. Let observable space O given by (3.13). A nonlinear system (3.12) is locally
weakly observable at x ∈ X if:

dim
(
∂xO(h, x)

)
= dim(X). (3.14)

for some input u ∈ U. The system is weakly observable if (3.11) holds ∀ x ∈ X.

The above corollary follows from Theorem 3.2 using (3.13). This result guarantees that there
exist some trajectory of the input u such that (3.12) is locally weakly observable. It does not,
however, specify which are the universal inputs.

3.1.2 Definition of an observer

Given a process and measurement model, e.g. dynamics (3.1), we are interested in recon-
structing the state x(t) from the information of its inputs u(t) and outputs y(t). This problem
is trivial if the measurement function is invertible w.r.t. the state, i.e. x = h−1(y, u, t). That is
not the case in most situations however.

Definition 3.6. An observer f ∗ for system (3.1) writes:

˙̂x = f (x̂, u, t) + k(x̂, u, y, t), (3.15)

where x̂(t) ∈ X is the estimate of the state x(t) and k is an innovation term defined such that:

x̂(0) = x(0) ⇒ x̂(t) = x(t), ∀ u ∈ U , and t > 0.
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3.1 theoretical recalls 67

Note that k(x, u, y(x, u, t), t) ≡ 0. The above definition concerns only the equivalence be-
tween the observer and system dynamics, thus, if the estimation is exact in a certain instant
t it will continue being so afterwards. Most situations do not satisfy the premise x̂(0) = x(0)
however. The convergence properties of an observer will characterize the ability of obtaining
the state x(t) starting with some x̂(0) 6= x(0). Let us first consider the particular case where
X = Rn, and define the estimation error by

x̃(t) , x(t)− x̂(t). (3.16)

Definition 3.7. An observer (3.15) of system (3.1) is asymptotically stable if:
– x̃ = 0 is stable in the sense of Lyapunov;
– x̃(t) → 0n×1 as t → ∞ for x̂(0) ∈ V ⊂ X.

The observer is globally stable if V = X. Moreover, the observer is exponentially stable with
convergence rate a > 0 if there exists some ca > 0 such that |x̃(t)| ≤ cae−a(t−t0)|x̃(t0)| for any
t ≥ t0.

The estimates of an asymptotically (resp. exponentially) stable observer are stable (resp.
exponentially stable). The difference among various observer-based techniques lies on the
innovation terms k(x̂, u, y, t) designed to obtain the stability of the estimates. The remainder
of this section covers some results already shown in the literature.

3.1.3 Existence of observers

The estimation problem is directly related to the observability properties of the system. The
following Lemma summarizes two properties of uniformly observable systems. The first prop-
erty follows from (Anderson and Moore, 1969, Lemma 3) and the duality principle, c.f. (Chen,
1984, Th. 5-10). This principle, together with (Ikeda et al., 1972, Th. 3), imply the second prop-
erty.

Lemma 3.2. The following properties hold for linear time varying systems (3.3) satisfying
Assumption 3.1.

1. The pair (A, C) is uniformly observable iff the pair (A − KC, C) is uniformly observable,
with K(·) any bounded matrix-valued time-function.

2. If the pair (A, C) is uniformly observable, then for any a > 0 there exists a bounded
matrix K(t) such that the linear observer

˙̂x = A(t)x̂ + B(t)u + K(t)
(
y − (C(t)x̂ + D(t)u)

)
(3.17)

is uniformly globally exponentially stable with convergence rate a.

3.1.4 Observers for linear systems

Luenberguer observers

Luenberguer observers are defined for linear time invariant systems (3.2) exploiting directly
the general form (3.17), with K defined such A − KC is Hurwitz stable. This observer is
globally exponentially stable (Luenberger, 1966). The direct use of Luenberguer observers for
linear time varying systems does not imply necessarily a stable observer, i.e. choosing some
K(t) such that A(t) − K(t)C(t) is Hurwitz stable at each t ≥ 0 for system (3.3) does not
necessarily imply that the observer is stable, c.f. (Reinhard, 1989, p. 131). Considering linear
time varying systems, we must employ other tools, such as Lyapunov’s direct method, to
verify the stability of the system.
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68 nonlinear observers for pose estimation

Kalman-Bucy filter and variants

The Kalman-Bucy filter is defined for linear time varying systems (3.3) exploiting directly
the general form (3.17), with K given by

K(t) = P(t)CT(t)W−1(t),

Ṗ = A(t)P + PAT(t)− PCT(t)W−1(t)C(t)P + Q(t).
(3.18)

such that P(0) > 0, Q(t) ≥ 0, and W(t) > 0.
Using a stochastic rationale, Q(t) corresponds to the covariance matrix associated to the

process model and W(t) the covariance associated to the measurement and the Kalman-Bucy
filter obtains the optimal estimate for Gaussian probability distributions if the system is uni-
formly observable (Kalman and Bucy, 1961). Using the deterministic concept, the resulting
observer is uniformly globally exponentially stable iff the linear time varying system (3.3) is
uniformly observable.

Kalman-like filters are characterized by the dependence of the gain on an auxiliary matrix
P(t) computed from a Riccati equation. Remark that this matrix must be computed in addition
to the states x. Defining Q(t) = Q and W(t) = W for linear time invariant systems, however,
the matrix P(t) converges to a constant P∗ if the pair (A, C) is observable (Kalman and Bucy,
1961). An observer employing K(t) = P∗CTW−1 is known as “steady-state” Kalman-filter.

It is also possible to employ the Kalman-Bucy filter for the estimation of state-affine sys-
tems (3.8) by changing the observer structure into

˙̂x = A(u, t)x̂ + b(u, t)− K(t)
(
y − (C(u, t)x̂ + d(u, t))

)

and compute K as in (3.18) with A(t) = A(u(t), t), C(t) = C(u(t), t), c.f. (Bornard et al., 1989).
Furthermore, another Kalman-like gain can be employed:

K(t) = P−1(t)CT(u, t),

Ṗ = −kP + A(u, t)P + PAT(u, t)− CT(u, t)C(u, t).
(3.19)

such that P(0) > 0 and k > 0, c.f. (Hammouri and de Leon Morales, 1990). In the latter
formulation, there are less parameters to tune, thus a simpler Kalman-like filter is obtained.
The stability of observers for state affine systems is directly related to the inputs, i.e. the
estimates are uniformly globally exponentially stable if system (3.8) satisfies Assumption 3.1
and the input u(t) yields a uniformly observable system.

3.1.5 Observers for nonlinear systems

Extended Kalman filter

The extended Kalman filter is a standard linearization method for approximate nonlinear
filtering. The following observer is defined for a generic nonlinear system (3.1)

˙̂x = f (x̂, u, t) + K(t)
(
y − h(x̂, u, t)

)

with gain K(t) is given by (3.18) such that P(0) > 0, Q(t) ≥ 0, W(t) > 0, and A(t), C(t) given
by:

A(t) = ∂x f (x̂(t), u(t), t),

C(t) = ∂xh(x̂(t), u(t), t).
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3.1 theoretical recalls 69

Assuming that
– A(t) and C(t) are continuous and bounded in t ∈ [0, ∞],
– the pair (A, C) is uniformly observable using,

one can verify, e.g. , using Lyapunov’s indirect method (Khalil, 2002, p. 161), that the extended
Kalman filter is locally exponentially stable. The nonlinear form (3.1) is quite universal, how-
ever one must be aware that the observability of the linearized system may also depend on the
inputs. Furthermore, remark that these assumptions are often difficult to be ensured, since,
for instance, the boundedness of A and C require that x̂ is also bounded. That becomes, in
a certain level, a circular argument where the hypothesis merge with the result, as we can
ensure that x̂ is bounded only if the filter is stable.

Nonlinear observer design via output injection

There are some nonlinear structures that admit a Luenberguer-like observer. For instance,
let us consider the following system:

{
ẋ = Ax + Bu + ϕ(Cx + Du, u, t),

y = Cx + Du.

The above system presents an interesting characteristic: the nonlinear contribution is given by
an additive nonlinear function of the outputs. Therefore, we can asses this filtering problem
with the following observer form:

˙̂x = Ax̂ + Bu + ϕ(y, u, t) + K(t)
(
y − (Cx̂ + Du)

)
. (3.20)

This technique is known as linearization by output injection (Krener and Isidori, 1983). We
can obtain directly a Luenberguer-like observer defining K to obtain globally exponentially
stable estimates if the pair (A, C) is observable and A − KC is stable. The nonlinear observer
form (3.20) is also extensible to the time-varying and state-affine cases via a Kalman-like
approach, i.e. the aforementioned gains (3.18) and (3.19). Notice that the latter solution is
uniformly globally exponentially stable if the pair (A, C) is uniformly observable.

Luenberguer-like observers

Although the literature provides several filtering linear and nonlinear techniques, most
time-varying and nonlinear solutions must often compute Kalman-like gains to guarantee
the stability estimates on uniformly observable systems. In specific situations, however, we
can define filters with constant K and still obtain stable estimates. In order to do so, one
must often resort to nonlinear innovation terms, instead of the aforementioned ones. We de-
fine Luenberguer-like observers as the estimators satisfying the latter assertion, and rigorous
proofs demonstrate the stability properties of the resulting observer. These filters are written
more often for specific applications using tools from nonlinear control theory.

3.1.6 Observer definition for Lie groups

The stability of observers, as stated on Definition 3.7, depends explicitly on the estimation
error. Although it is quite standard (Luenberger, 1966) and intuitive to define the estima-
tion error with the Euclidean difference (3.16), that error may not preserve some geometric
properties of the manifold X. For instance, the Euclidean difference does not affect the struc-
ture of Rn, but that is generally not the case for Lie groups (Warner, 1987). Instead, an error
x̃ : X × X → X for a Lie group X can be defined using three important characteristics: oper-
ation, existence of inverse and identity elements. More specifically, the error can be written
such that x̃(x1, x2) = e iff x1 = x2, with e denoting the identity element of the group.
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70 nonlinear observers for pose estimation

The error structure defined in this section encompasses (3.16), since Rn is a Lie group under
the operation of addition with identity 01×n and the inverse element of x is −x. Indeed, the
error (3.16) does not affect the structure of Rn because it is defined within its structure. A
counter example, however, is given by the special orthogonal group SO(3), i.e. the Lie group
that represents rotation matrices. Considering the state given by R(t) ∈ SO(3) and an estimate
R̂ ∈ SO(3), it is trivial to verify that R − R̂ /∈ SO(3). The special orthogonal SO(3) is a group
under the operation of multiplication with identity I3 and the inverse element of R ∈ SO(3)
is RT. There exist, however, two different ways of writing the estimation error:

R̃ = R̂TR, or R̃ = RR̂T. (3.21)

The errors provided by the above definition are not necessarily equal due to the non-abelian
characteristic of SO(3). However, the errors are invariant, i.e. they preserve their value after
the simultaneous multiplication by a same element, on the left of R and R̂ respectively for the
leftmost definition. This is easily verified defining the invariant transformation for G ∈ SO(3),

ϕ : SO(3)× SO(3) → SO(3),

(G, R) 7→ ϕG(R) = GR

thus computing

R̃ =
(

ϕG(R̂)
)

T ϕG(R) = R̂TGTGR = R̂TR.

It is trivial to verify that the rightmost error definition in (3.21) is invariant to the simultaneous
multiplication by a same element on the right of R and R̂ respectively.

The nonlinear observer design in this thesis considers the definition for the estimation error
such that x̃ ∈ X. In order to define the exponential stability of the system, let us recall that
there also exists a local parametrization ψ : Rn → X, such that ψ(ξ̃) = e3 iff ξ̃ = 0n×1 with
inverse ψ−1. We can further generalize the definition of nonlinear observer stability.

Definition 3.8. An observer (3.15) of system (3.1) is asymptotically stable if:
– the estimation error x̃ = e is an equilibrium of ˙̃x(t);
– the equilibrium e is stable in the sense of Lyapunov;
– x̃(t)→e as t → ∞ for x̂(0) ∈ V ⊂ X.

The observer is globally stable if V = X. Furthermore, the observer is locally exponentially sta-
ble with convergence rate a > 0 if there exists some ca > 0 such that |ξ̃(t)| ≤ cae−a(t−t0)|ξ̃(t0)|
for ξ̃ = ψ−1(x̃).

3.1.7 Decoupling the dynamics

In some cases, it is possible to partially address the observability analysis of a nonlinear
system using tools from both linear and nonlinear system theory. To illustrate this point, let
us consider the following system:





ẋ1 = f1(x1, u1, t),

ẋ2 = A2(x1, u1, t)x2 + B2(x1, u1, t)u2,

y1 = h1(x1, u1, t),

y2 = C2(x1, u1, t)x2.

with x1 ∈ Rn1 , x2 ∈ Rn2 such that n = n1 + n2, f1 and h1 are vector functions and A2, B2,
and C2 matrix functions of proper dimensions. We can view this system as either a nonlinear
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3.2 estimation of the rotational dynamics 71

system with state x = (x1, x2), or as the cascade of a nonlinear system (in x1) interconnected
with a linear time-varying system (in x2), i.e.

ẋ2 = A∗
2(t)x2 + B∗

2(t)u2, y2 = C∗
2 (t)x2,

with M∗(t) = M(x1(t), u1(t), t) for M = {A2, B2, C2}. The latter interpretation will prevail in
this thesis due to the possibility to use techniques from linear-systems to (part of) the system,
that can provide stronger observability and stability properties.

nonlinear observers for pose estimation

So far, we have made preliminary recalls in this chapter. Let us proceed next to the design
of observers for pose estimation. We recall that Propositions describe the results developed in
this thesis, and the results from other works are labeled as Theorems. We present the proofs
of every proposition in Appendix A. Furthermore, we divide the results in two sections, the
prior refers to the estimation of the rotational dynamics as the latter refers to the estimation
of the translational dynamics. The following assumption is made for the sake of observability
and stability analysis of the nonlinear observers presented next.

Assumption 3.2. There exist four positive constants cω, cω̇, cω̈ and ca, such that ∀t ∈ [0, ∞):
|ωB(t)| ≤ cω, |ω̇B(t)| ≤ cω̇, |ω̈B(t)| ≤ cω̈, and |v̇R(t)| ≤ ca.

Clearly, the above hypothesis is satisfied for physical systems.

3.2 estimation of the rotational dynamics

Let us start with the analysis of the rotational dynamics. We can define two cases: calibrated
and uncalibrated frames. The first case present the systems defined in Sections 1.6.1 and
1.6.2, these systems present equivalent dynamics, hence the same nonlinear observer can be
employed for the orientation and gyro bias estimation. The main characteristic of this class
of system is that pose and angular velocity measurements are made with respect to the same
frame. The second case represent the system defined in Section 1.6.3. This system considers
that the angular velocity and orientation measurements are made in with respect to different
frames with an unknown rotation, and we obtain that such class of system is observable
under certain motion conditions. The designed nonlinear observer is stable if the observability
conditions are satisfied. We also show that the calibrated case can be seen as a special solution
of the system with uncalibrated frames.

3.2.1 Calibrated frames

We have that the orientation dynamics for the case with calibrated frame described in Sec-
tions 1.6.1 and 1.6.2 writes{

RṘB=
RRBS(Bω) ,

ḃω=03×1 .

with measurements given by (Ry, Bωy) = (RRB , Bω + bω). However, it is common to define a
system by its states, known-inputs and outputs. Even though RRB and Bωy are driven by the
actual angular velocity Bω, we only know effectively the value of the Bω + bω however. Thus,
the original system is equivalent to

{
RṘB=

RRBS(Bωy − bω) ,

ḃω=03×1 .
(3.22)
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72 nonlinear observers for pose estimation

with measurements Ry = RRB .
System (3.22) is invariant in the sense of (Martin et al., 2004) and (Bonnabel et al., 2008). Let

us consider a new reference frame R1 and body frame B1, then the system is invariant with
respect to changes in R and B frames to R1 and B1 and additive gyro bias bω0 . For instance,
let the states x = (RRB , bω), inputs u = Bωy and outputs y = Ry. Furthermore, let f (x, u) the
right hand side of (3.22) and h(x, u) = RRB , we can define the group G = SO(3)× SO(3)×R3

with elements G = (R1 RR, BRB1 , bω0) ∈ G, and the invariant actions

ϕG(x) ,
(R1 RR

RRB
BRB1 , B1 RBbω + bω0

)
,

ψG(u) ,
B1 RB

Bωy + bω0 ,

ρG(y) ,
R1 RRRy

BRB1

where
˙︷ ︸︸ ︷

ϕG(x) = f (ϕG(x), ψG(u)), i.e.

˙︷ ︸︸ ︷
R1 RR

RRB
BRB1 =

R1 RR
RRBS(Bωy − bω)

BRB1

= R1 RR
RRB

BRB1S
(
(B1 RB

Bω + bω0)− (B1 RBbω + bω0)
)

,
˙︷ ︸︸ ︷

B1 RBbω + bω0 = 03×1 ,

and ρG(h(x, u)) = h(ϕG(x), ψG(u)), i.e. R1 RRRy
BRB1 =

R1 RRRRBBRB1 .
Furthermore, System (3.22) with the proposed measurements is uniformly observable. We

can thus obtain asymptotically stable nonlinear observers independently of the angular mo-
tion. Let us define the following nonlinear observer:

{
R ˙̂RB=

RR̂BS(Bωy − b̂ω + αRB ) ,
˙̂
bω=αω .

(3.23)

Notice that the observer (3.23) satisfies indeed Definition 3.6, leaving us the design of the in-
novation αRB and αω to provide an asymptotically stable observer. Additionally, this observer
form preserves the invariance properties of the original system.

In order to establish the innovation terms and stability properties of the nonlinear observer,
let us recall that that there exists two forms to denote the error in SO(3), c.f. (3.21), which
yield errors in B and R frames, respectively. One can obtain similar results with both error
forms with slight modifications on the innovation terms. We proceed the analysis using the
error definitions in the R frame, i.e.

R̃ = RRB
B R̂R, b̃ω = bω − b̂ω ,

which results in the following error dynamics
{ ˙̃R = − R̃S

(RR̂B(b̃ω + αRB )
)
,

˙̃
bω = − αω.

(3.24)

The objective of the nonlinear observer, according to Definition 3.8, is to define αRB and αω

so that the point (R̃, b̃ω) = (I3, 03×1) defines an asymptotically stable equilibrium of the
above dynamics. Even though we would be eager to define the innovations in order to obtain
a globally stable equilibrium, there exists a topological obstruction on SO(3) that limits the
every result computed using the group to semi-global stability (Sontag, 1998, p. 250-252).
Several works in the literature have discussed solutions for attitude and gyro bias estimation
with semi-global stability properties, and the passive complementary filter (Mahony et al.,
2008) states the following result.
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3.2 estimation of the rotational dynamics 73

Theorem 3.3 (Passive complementary filter for SO(3)). Let
{

αRB = kRB
B R̂Rvex

(
Pa(R̃)

)
,

αω = − kω
B R̂Rvex

(
Pa(R̃)

)
.

(3.25)

with kRB , kω > 0. The following statements hold for the error dynamics (3.24):
– Every solution converges to Es ∪ Eu, with Es = (I3, 03×1), and Eu = {(R̃, b̃ω) ∈ SO(3)×

R3 | tr(R̃) = −1}.
– The equilibrium point (R̃, b̃ω) = (I3, 03×1) is locally exponentially stable.
– The elements of the equilibrium set E∗

u = {(R̃, b̃ω) ∈ SO(3) × R3 : tr(R̃) = −1, b̃ω =
03×1} ⊂ Eu are unstable.

– The domain of convergence of Es increases as k2 → ∞.

Theorem 3.3 yields a nonlinear observer invariant to coordinate changes in the B frame.
This observer has an interesting semi-global convergence property, and almost every solution
converges to the desired equilibrium. In order to increase the domain domain of attraction,
however, one must increase the gain kω, as, for instance, shown in (Vasconcelos et al., 2008b).
The values of the gains are related to the dynamics of the estimates, and, as we show in
Section 3.4, a larger value for kω implies a larger bandwidth for the bias estimate. Actually,
this is not a good property for the filter dynamics, as we are interested in the lower frequencies
of error, as we modeled the gyroscope bias by a constant. A simple change in the innovation
terms provide stronger stability properties, as shown in the following proposition.

Proposition 3.1. Let




αRB = kRB

B R̂Rvex
(
Pa(R̃)

)
(
1 + tr(R̃)

)2 ,

αω = − kω
B R̂Rvex

(
Pa(R̃)

)
.

(3.26)

with kRB , kω > 0. Then, the following statements hold for the error dynamics (3.24):
– The equilibrium (R̃, b̃ω) = (I3, 03×1) is locally exponentially stable.
– Every solution starting from

(
R̃(0), b̃ω(0)

)
/∈ Eu converges to Es, with Es = (I3, 03×1),

and Eu = {(R̃, b̃ω) ∈ SO(3)× R3 | tr(R̃) = −1}.

The proof of this proposition is discussed in Appendix A.4.1. Proposition 3.1 yields a nonlin-
ear observer invariant to coordinate changes in the B frame with stability domain independent
of the innovation gains. This result is inspired by Theorem 3.3 and almost-global stabilizers
for mobile robot trajectories, c.f. , e.g. , (Morin and Samson, 2008). Remark that, locally, the
resulting error dynamics by Theorem 3.3 and Proposition 3.1 are similar. The proposed nonlin-
ear observer, however, provides stronger stability properties with known domain of attraction.
Furthermore we can tune the gains of the nonlinear observer in order to obtain a low band-
width for the bias dynamics without reducing the claims on the domain of convergence.

The improvement on the stability property has a counterpart, because the innovation αRB is
singular for every point from Es. Although that singularity is more likely to occur theoretically
than in practical situations, it is still important to ensure that we do not divide by zero in αRB .
This protection can be done multiplying the innovation term by a function that shows the
same properties as the denominator at the bad set, i.e. let

µ(ε, R) =





(
1 + tr(R)

)2

ε2 , if |tr(R) + 1| < ε,

1, otherwise,
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74 nonlinear observers for pose estimation

thus αRB , kRBµ(ε, R̃)
B R̂Rvex

(
Pa(R̃)

)
(

1+tr(R̃)
)2 for ε > 0 very small in Proposition 3.1. In that case, we

have that the equilibrium set E∗
u is unstable, and the domain of convergence is enlarged as

ε → 0.
These nonlinear observers rely in a full reconstructed orientation matrix. Some systems,

however, provide measurements of vectors in the B frame with known coordinates in the R
frame. For these cases, a straightforward solution can compute the orientation matrix com-
puted via an intermediate step using the TRIAD or QUEST methods, c.f. Section 1.5, and af-
terwards apply the afore-discussed techniques. Nevertheless, we can avoid this intermediate
step by changing the innovation terms to consider directly vector measurements. (Vasconcelos
et al., 2008b) present the following nonlinear observer that yields similar stability properties
as Theorem 3.3.

Corollary 3.2. Consider N > 3 vectors with known-coordinates Rβi in the R frame, with
vector associated to a gain kβi

> 0 such that V = ∑
N
i=1 kβi

Rβi
Rβi

T is nonsingular. Assume that
we measure these vectors as Bβi in B coordinates. Let:

{
αRB = kRB

B R̂R ∑
N
i=1 ki

(
(V−1)Rβi

)
× (RR̂BBβi),

αω = − kω
B R̂R ∑

N
i=1 ki

(
(V−1)Rβi

)
× (RR̂BBβi) ,

(3.27)

with kRB , kω > 0. The error dynamics (3.24) is equivalent to Theorem 3.3.

The observer provided by this Corollary is also invariant to changes of the B frame likewise
Theorem 3.3. Notice that the first hypothesis requires at least three vectors as measurements.
At a first glance, this requirement can sound too restrictive, because the system comprising
orientation and gyro bias is observable using only two non-parallel vectors. However, we can
use the previous observer by considering a pseudo-measurement Bβ3 = Bβ1 × Bβ2 of the
known vector Rβ3 = Rβ1 × Rβ2 . In a same manner that Proposition 3.2 extends the stability
properties of Theorem 3.3, we can define a new nonlinear observer that extends the stability
of Corollary 3.2.

Corollary 3.3. Consider N > 3 vectors with known-coordinates Rβi in the R frame, with
vector associated to a gain kβi

> 0 such that V = ∑
N
i=1 kβi

Rβi
Rβi

T is nonsingular. Assume that
we measure these vectors as Bβi in B coordinates. Let:





αRB = kRB

B R̂R ∑
N
i=1 ki((V

−1)Rβi)× (RR̂BBβi)(
1 + ∑

N
i=1 kβi

((V−1)Rβi)T(RR̂BBβi)
)2 ,

αω = − kω
B R̂R ∑

N
i=1 ki((V

−1)Rβi)× (RR̂BBβi) ,

(3.28)

with kRB , kω > 0. The error dynamics (3.24) is equivalent to Proposition 3.1.

The proof of this Corollary is presented in Appendix A.4.2 These are interesting solutions
to avoid the explicit reconstruction of the orientation matrix, however these implementation
present two main problems. The first problem refers to the initial three-vector hypothesis.
Even though we can easily avoid the singularity of the auxiliary matrix V by including a
pseudo-measurement, in practice, that pseudo-measurement is noisier than the two original
vectors. The literature provides other nonlinear observers that do not consider the explicit
computation of the attitude nor consider this hypothesis, c.f. (Mahony et al., 2008, Theorem
5.1), (Martin and Salaun, 2008) and (Hua et al., 2013). The second issue arrives due to the
coupling of the directions measured by the vectors. This problem is particularly bad when we
have one accurate and one inaccurate measurement that refer to non-orthogonal directions. In
this case, the measurements provide overlapping information about the same direction, and
the information provided by the good measurement can be impaired if the other measurement
is strongly corrupted by noise or external direction.
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3.2 estimation of the rotational dynamics 75

3.2.2 Uncalibrated frames

The previous section considered the case where the angular velocity and orientation mea-
surements are made with respect to the same B frame. This section considers the problem
when the measurements are made from two different frames, i.e. the angular velocity is mea-
sured in IMU B-frame and the orientation in the camera C-frame, which refers to the con-
figuration described in Section 1.6.3. The techniques discussed in the previous section can
be employed then frame-to-frame rotation matrix, e.g. c-to-IMU rotation BRC , is negligible or
previously known. However, it is fundamental to have a good estimation of RRB when these
conditions are not satisfied. We propose hereafter a solution for this problem.

We can write the rotational dynamics for the system described in Section 1.31 as




RṘB=
RRBS(Bω) ,

ḃω=03×1 ,
B ṘC=03×3 .

with measurements given by (Ry, Bωy) = (RRC , Bω + bω) = (RRBBRC , Bω + bω). Moreover,
due to the same arguments from Section 3.2.1, we rewrite the above system as





RṘB=
RRBS(Bωy − bω) ,

ḃω=03×1 ,
B ṘC=03×3 .

(3.29)

with measurements Ry = RRBBRC .
The invariance properties (3.29) system are obtained analogously to (3.22), i.e. considering

a new reference frame R1, body frame B1, and camera frame C1, then the system is invariant
with respect to changes in R, B and C frames to R1, B1 and C1, and an additive gyro bias bω0 .
For instance, let the states x = (RRB , bω, BRC), inputs u = Bωy , outputs y = Ry. Furthermore,
let f (x, u) the right hand side of (3.29), and h(x, u) = RRBRRC , then we can define the group
G = SO(3) × SO(3) × SO(3) × R3 with elements G = (R1 RR, BRB1 , CRC1 , bω0), and the
invariant actions

ϕG(x) ,
(R1 RR

RRB
BRB1 , B1 RBbω + bω0 , B1 RB

BRC
CRC1

)
,

ψG(u) ,
B1 RB

Bωy + bω0 ,

ρG(y) ,
R1 RRRy

CRC1 .

where
˙︷ ︸︸ ︷

ϕG(x) = f (ϕG(x), ψG(u)), i.e.

˙︷ ︸︸ ︷
R1 RR

RRB
BRB1 =

R1 RR
RRBS(Bωy − bω)

BRB1

= R1 RR
RRB

BRB1S
(
(B1 RB

Bωy + bω0)− (B1 RBbω + bω0)
)

,
˙︷ ︸︸ ︷

B1 RBbω + bω0 = 03×1 ,
˙︷ ︸︸ ︷

B1 RB
BRC

CRC1 = 03×3 .

and ρG(h(x, y)) = h(ϕG(x), ψG(u)), i.e.

R1 RRRy
CRC1 =

R1 RR
RRB

BRC
CRC1 = (R1 RR

RRB
BRB1)(

B1 RB
BRC

CRC1).

The observability properties of System (3.24) and (3.29) differ, because the latter class is
observable under certain motion conditions. The following result refers to a condition under
which the System (3.29) is observable.
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76 nonlinear observers for pose estimation

Proposition 3.2. Let the angular velocity represented by a function Bω(t) that satisfies As-
sumption 3.2, and

∀ t ≥ 0, |Bω̇(t)× Bω̈(t)|2 > 0 . (3.30)

Then, System (3.29) represented by the states x=(RRB , bω, BRC), input u = Bω(t) and mea-
surements y = (Ry, Bωy) = (RRBBRC Bω + bω) is instantaneously observable ∀t ≥ 0. 1

The proof of this proposition is given in Appendix A.3.1. The above proposition describes
a universal input of system (3.29), which, in words, claims that the system is observable if the
angular acceleration is not parallel to the angular jerk.

The observability of c-to-IMU calibration was already analyzed in the Literature, e.g. , see
(Jones et al., 2007), (Mirzaei and Roumeliotis, 2008) and (Kelly and Sukhatme, 2011). Although
the three previous results arrive to the same conclusion, i.e. the system is observable, their
interpretation of the observability conditions is obscure. For instance, (Mirzaei and Roume-
liotis, 2008) and (Kelly and Sukhatme, 2011) claim that the system is observable if the body
undergoes rotation along two axis. The observability condition of the system, however, is related
to the trajectory of the angular velocity instead of its instantaneous value. Moreover, (Jones
et al., 2007) claims that the system is observable if the motion of Bω spans the entirety of the state
space. Notice that this latter condition is also sufficient, it is far from necessary, as comparing
to the expression presented in Proposition 3.2.

Let us continue to the estimation design, defining the nonlinear observer scheme:




R ˙̂RB = RR̂BS(Bωy − b̂ω + αRB ) ,
˙̂
bω = αω ,

B ˙̂RC = B R̂CS(αRC ) .

(3.31)

We can continue the design by defining innovation terms αRB , αω and αRC that provide an
asymptotically stable observer.

Likewise the case with calibrated-frames, there exist two possible forms to define the error
in SO(3). We can denote for the orientation error errors in B and R frames, and c-to-IMU
rotation in C and B frames. We proceed the analysis using the errors in R frame and B frame
for the attitude and c-to-IMU rotation respectively, i.e.

R̃ = RRB
B R̂R , b̃ω = bω − b̂ω , Q̃ = BRC

C R̂B .

which yields the following error dynamics




˙̃R = − R̃S
(RR̂B(b̃ω + αRB )

)
,

˙̃
bω − − αω ,
˙̃Q = − Q̃S(B R̂C αRC ) .

(3.32)

The objective, according to Definition 3.8, is to define the innovation terms αRB , αω and αRC

so that the point (R̃, b̃ω, Q̃) = (I3, 03×1, I3) defines an asymptotically stable equilibrium of
dynamics (3.32).

Let RR̂C = RR̂BB R̂C denote the estimate of RR̂C , as deduced from the estimates RR̂B and
B R̂C , and R̃C = RRCC R̂R. The following result states a new observer for orientation, gyro bias
and c-to-IMU rotation estimation, and it is originally introduced in (Scandaroli et al., 2011).

1. Notice that even though Definition 3.2 concerns the instantaneous observability linear systems, we can
extend it directly to nonlinear systems.
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3.3 estimation of the translational dynamics 77

Proposition 3.3. Let




αRB = kRB
B R̂Rvex

(
Pa(R̃C)

)
− B R̂CαRC ,

αω = − kω
B R̂Rvex

(
Pa(R̃C)

)
,

αRC = kRC
CRRPa(R̃C)

RR̂B(
Bωy − b̂ω),

(3.33)

with kRB , kω, kC > 0. Suppose that Assumption 3.2 holds and that the following condition is
satisfied

∃ τ, δ > 0 : ∀ t ≥ 0,
∫ t+τ

t
|Bω̇(s)× Bω̈(s)|2ds > δ. (3.34)

Then, (R̃, b̃ω, Q̃) = (I3, 03×1, I3) is locally exponentially stable equilibrium point of the error
dynamics (3.32).

The proof of this Proposition is discussed in Appendix A.4.3. Notice that the resulting
nonlinear observer preserves the invariance properties of the original system. Moreover, re-
lation (3.34) is a “persistent excitation” condition related to the observability properties of
the system. Indeed, as stated in Proposition 3.2, System (3.32) with (RRC , Bω + bω) as mea-
surements is not observable for every input Bω. Trivially, it is not observable when Bω(t) =
0, ∀ t ≥ 0. Furthermore, the relation can be can be seen as a uniform extension of Proposi-
tion 3.2, since the instantaneous observability does not take time intervals into account.

The proposed observer can be viewed as an extension of the passive complementary filter
on SO(3). More precisely, setting kRC = 0 in (3.33) and assuming that BRC = B R̂C = I3, the
observer reduces to an attitude and rate gyro bias estimator. In this special case, it has been
shown in Theorem 3.3 that this estimator is semi-globally exponentially stable, independently
of Bω. Despite the fact that semi-global exponential stability seems more difficult to prove
for this observer than the seminal case, we verify via simulation results that the domain of
attraction is also large. Additionally, this nonlinear observer could be extended using the
same procedure as Proposition 3.1, however, the local properties obtained by the proof are
unchanged.

In practice, Condition (3.34) will not always be satisfied and one must be careful with the
implementation of the proposed observer. A possibility consists in first using the full observer
in a preliminary calibration step with persistent motion, thus obtaining a good estimate for
BRC , and then setting kRC in order to use, as explained above, the observer as an attitude and
gyro bias estimator. A second possibility consists in using the observability–stability condi-
tion (3.34) so as to tune the gain kRC in function of the level of “motion excitation”. Basically,
this gain associated with the estimation of the c-to-IMU rotation should be non-zero only
when the quantity |Bω̇(s)× Bω̈(s)|2 is significantly larger than zero, so as to avoid possible
drift of B R̂C in case of weak motion excitation due to the integration of measurement noise in-
stead of the actual error. Although that quantity is not directly measured, it can be estimated
from angular rate gyro measurements ωy. This procedure is discussed with more details in
Section 4.3.1.

3.3 estimation of the translational dynamics

We continue with the analysis for the translational dynamics of the pose estimation. The
estimation part respective to the translational dynamics can be divided in three cases: cali-
brated frames, unknown gravitational acceleration field and uncalibrated case. The first case
is defined in Section 1.6.1, and it represents the situation where both acceleration and position
measurements are made with respect to the same frame, and the actual value of gravitational
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78 nonlinear observers for pose estimation

acceleration field in R coordinates is known. The second case is defined in Section 1.6.2 as an
extension of the previous one. The second class of systems considers that the position and ac-
celeration measurements are made with respect to the same frame, however, the actual value
of the gravitational acceleration field in R coordinates is unknown. The third and last system
is defined in Section 1.6.3, this class relaxes the hypothesis on the frames of position and
acceleration measurements, while also it estimates the acceleration due to local gravity. The
two previous configurations are observable under certain motion conditions, and the obtained
nonlinear observers are stable if the observability conditions are satisfied.

Notice that, without loss of generality, we can consider that the problem of orientation
estimation is already solved independently of the translational dynamics. This hypothesis
much simplifies the following analysis, as we can assume that both the orientation RRB and
angular velocity Bω are directly measured. Notice that the hypothesis on the knowledge of
the frames in which measurements are taken is then reduced to the knowledge of the position
in which the measurements are taken.

3.3.1 Calibrated frames

We can write the translational dynamics for the case with calibrated frames described in
Section 1.6.1 as





R ṗB = Rv
Rv̇ = RRB

Ba

ḃa = 03×1

with measurements (py, Ry, Bay , Bωy) = (RpB , RRB , Ba + ba − BRRRg, Bω).
This system is driven by the linear acceleration of the body. However, the accelerometers

measure the specific linear acceleration (sum of body linear acceleration and the gravitational
acceleration) with an additive bias. We thus suppose that Bay is a known input of the system,
and in this section exclusively, Rg is known. We can also estimate the orientation dynamics
using the nonlinear observers from Section 3.2, and we can consider initially RRB as another
known-input. The original system can be rewritten as





R ṗB = Rv ,
Rv̇ = RRB(

Bay − ba) +
Rg ,

ḃa = 03×1 ,

(3.35)

with measurements py = RpB .
System (3.35) is invariant in the sense of (Martin et al., 2004) and (Bonnabel et al., 2008). Let

us consider a new reference frame R1 and body frame B1, then the system is invariant with
respect to changes of translation and rotation from the R frame to R1, rotations from the B
frame to B1 and additive accelerometer biases ba0 . For instance, recall the equations for frame
changes (1.3) and define the states x = (RpB , Rv, ba), inputs u = (Bay , RRB , Rg), output
y = py. Furthermore, let f (x, u) the right hand side of (3.35) and h(x, u) = RpB , we can define
the group G = R3 × SO(3)× SO(3)× R3 with elements G = (R1 pR, R1 RR, BRB1 , ba0) ∈ G,
and the invariant actions

ϕG(x) ,
(R1 RR

RpB + R1 pR, R1 RR
Rv, B1 RBba + ba0

)
,

ψG(u) ,
(B1 RB

Bay + ba0 , R1 RR
RRB

BRB1 , R1 RR
Rg
)

,

ρG(y) ,
R1 RRpy +

R1 pR
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3.3 estimation of the translational dynamics 79

where
˙︷ ︸︸ ︷

ϕG(x) = f (ϕG(x), ψG(u)), i.e.

˙︷ ︸︸ ︷
R1 RR

RpB + R1 pR = R1 RR
Rv ,

˙︷ ︸︸ ︷
R1 RR

Rv = R1 RR
RRB(

Bay − ba) +
R1 RR

Rg

= R1 RR
RRB

BRB1

(
(B1 RB

Bay + ba0)− (B1 RBba + ba0)
)
+R1 RR

Rg,
˙︷ ︸︸ ︷

B1 RBba + ba0 = 03×1 ,

and ρG(h(x, u)) = h(ϕG(x), ψG(u)), i.e.

R1 RRpy +
R1 pR = R1 RR

RpB + R1 pR.

Notice that the dynamics is not invariant to a translation in the B frame using the proposed
configuration.

It is straightforward to verify that this system is uniformly observable and the observability
does not depend on body motion. We define the following nonlinear observer:





R ˙̂pB = Rv̂ + αpB ,
R ˙̂v = RR̂B(

Bay − b̂a) +
Rg + αv ,

˙̂
ba = αa ,

(3.36)

The goal is to design the innovation terms αpB , αv and αa to obtain an asymptotically stable
observer, and we define the estimation errors as

p̃ = RpB − R p̂B , ṽ = Rv − Rv̂ , b̃a = ba − b̂a

that yield the following error dynamics:




˙̃p = ṽ − αpB ,
˙̃v = − RRB b̃a − (I3 − R̃)B R̂R(

Bay − b̂a)− αv ,
˙̃
ba = − αa .

(3.37)

More specifically, the objective of the observer is to design αpB , αv and αa so that the origin
(03×1, 03×1, 03×1) is an asymptotically stable equilibrium of the above dynamics. The variables
considered in this section do not present topological problems, therefore we can provide
conditions for which the proposed filter has global exponential stability.

Initially, let us consider to measure RRB and Bω explicitly. As a consequence, we can con-
sider the dynamics of the nonlinear observer (3.36) with RR̂B = RRB . The following result
provides an observer for position and linear velocity of the body in R and accelerometer bias.
This result is originally introduced in (Scandaroli and Morin, 2011).

Proposition 3.4. Let




αpB = kpB p̃ ,

αv = kv p̃ ,

αa = − ka

(
I3 +

1
kpB

S(Bω)
)BRR p̃ ,

(3.38)

with kpB , kv, ka > 0 such that ka < kpBkv. Then, ( p̃, ṽ, b̃a) = (03×1, 03×1, 03×1) is a globally
exponentially stable equilibrium point of the estimation error dynamics (3.37).
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80 nonlinear observers for pose estimation

The proof for this proposition is stated in Appendix A.4.4 Remark that the resulting non-
linear observer satisfies Definition 3.6 when RR̂B = RRB , and also preserves the invariance
properties of the original system. This nonlinear observer provides a globally exponentially
stable estimator for position, velocity and accelerometer bias, independently of the rotational
dynamics. Note that we must satisfy a stability condition on the parameters relating to the
gains. However, this condition is due to the order of the system and is not induced by the
observer. More specifically, let us consider the case when Bω = 0, then the dynamics of
the estimation error is linear and autonomous. Remark that the gain conditions presented by
proposition 3.4 correspond exactly to the stability conditions of the linear autonomous system.

It is implicitly assumed in (3.38) that Bω is available as a measurement. In practice, this
term should be replaced by Bωy − b̂ω, with b̂ω being the output of an attitude observer from
Section 3.2. The next result, easily derived from Proposition 3.4, shows that this can be done
without further consequences on the stability of the observer.

Corollary 3.4. Let




αpB = kpB p̃ ,

αv = kv p̃ ,

αa = − ka

(
I3 +

1
kpB

S(Bωy − b̂ω)
)BRR p̃ ,

(3.39)

with kpB , kv, ka > 0 such that ka < kpBkv. If b̃ω converges asymptotically to zero, then ( p̃, ṽ,
b̃a) converges asymptotically to (03×1, 03×1, 03×1) along the solutions of the error dynamics
(3.37).

The proof for this Corollary is given in Appendix A.4.5. Finally, the measured rotation ma-
trix hypothesis that RRB is explicitly measured can be replaced by an estimate RR̂B . However,
the global asymptotic convergence cannot be achieved anymore, since observers on SO(3) are
not globally asymptotically stable.

Corollary 3.5. Let




αpB = kpB p̃ ,

αv = kv p̃ ,

αa = − ka

(
I3 +

1
kpB

S(Bωy − b̂ω)
)B R̂R p̃ ,

(3.40)

with kpB , kv, ka > 0 such that ka < kpBkv. If R̃ and b̃ω converge asymptotically to I3 and zero,
then ( p̃, ṽ, b̃a) converges asymptotically to (03×1, 03×1, 03×1) along the solutions of the error
dynamics (3.37).

The proof for this Corollary is very similar to Corollary 3.4 and therefore omitted.

3.3.2 Estimation of the gravitational field

The previous section discussed the case where the gravitational acceleration Rg was known.
That case represent, for instance, applications of visual tracking where the pose of the refer-
ence image is known with respect to the gravity. However, that assumption is not satisfied
very often. This section considers the situations where the gravitational acceleration Rg is un-
known. The dynamics for the case with unknown gravitational field discussed in Section 1.6.2
is given by





R ṗB = Rv ,
Rv̇ = RRB

Ba ,

ḃa = 03×1 ,
R ġ = 03×1 .
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3.3 estimation of the translational dynamics 81

with measurements (py, Ry, Bay , Bωy) = (RpB , RRB , Ba + ba − BRRRg, Bω).
Likewise the previous section, the linear acceleration is not available directly and we must

incorporate the accelerometer measurements as a known-input of the system. We thus assume
Bay , Bω, RRB as inputs. However, we estimate the variable Rg in this section additionally to
position, linear velocity and accelerometer bias. The system can be rewritten as





R ṗB = Rv ,
Rv̇ = RRB(

Bay − ba) +
Rg ,

ḃa = 03×1 ,
R ġ = 03×1 .

(3.41)

with measurements y = RpB .
System (3.41) is also invariant with respect to changes of translation and rotation from the

R frame to R1, rotation from the B frame to B1 and additive accelerometer biases ba0 . This
analysis is very similar to the previous Section, defining however the states x = (RpB , Rv, ba,
Rg), inputs u = (Bay), RRB) and output y = py.

One strong difference from the system discussed in Section 3.3.1 is the observability of
(3.41) depends on body motion. This is easily verified for constant values of RRB . In such
case, of course, the expression Rg + RRBba is constant and only the sum of these parameters
is observable. The following proposition refers to a condition under which System (3.41) is
uniformly observable.

Proposition 3.5. Let the angular velocity represented by a function Bω(t) satisfying Assump-
tion 3.2, and

∃ τ, δ > 0 : ∀ t ≥ 0,
∫ t+τ

t
|ωB(s)× ω̇B(s)|ds > δ. (3.42)

Then, System (3.41) given by the states x=(RpB , Rv, ba, Rg) with inputs u =
(Bay ,Bω

)
and

measurements y = (py, Ry) = (RpB , RRB) is uniformly observable.

The proof for this proposition is provided in Appendix A.3.2. The above proposition asserts
that the system comprising position, linear velocity, accelerometer bias and the gravitational
acceleration is observable if the angular velocity is not parallel to the angular acceleration.
Differently from Section 3.2.2, we now have a state-affine system, and we can thus obtain a
uniform condition for the system observability. Analogously, the observability of this system
was discussed in the Literature, c.f. (Jones et al., 2007), (Mirzaei and Roumeliotis, 2008) and
(Kelly and Sukhatme, 2011). These works, however, address only the weak observability of the
system, and therefore do not present an expression of the sufficient motion in order ensure
the observability.

We continue the estimator design defining the following observer form:




R ˙̂pB = Rv̂ + αpB
R ˙̂v = RR̂B(

Bay − b̂a) +
R ĝ + αv

˙̂
ba = αa

R ˙̂g = αg

We also define the following estimation errors

p̃ = RpB − R p̂B , ṽ = Rv − Rv̂, b̃a = ba − b̂a, g̃ = Rg − R ĝ,
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82 nonlinear observers for pose estimation

then the objective of the filter design is to define innovation terms αpB , αv, αa and αg that
makes the origin of





˙̃p = ṽ − αpB ,
˙̃v = − RRB b̃a + g̃ − (I3 − R̃)B R̂R(

Bay − b̂a)− αv ,
˙̃
ba = − αa .
˙̃g = − αg

(3.43)

an asymptotically stable equilibrium. Since the variables considered in this section do not
present topological complications, we can provide conditions for which the nonlinear observer
has global exponential stability.

Similarly to the previous Section, we initially consider to measure RRB and Bω explicitly.
The following result provides an observer for the estimation of position, linear velocity, ac-
celerometer bias and gravitational acceleration.

Proposition 3.6. Let




αpB = kpB p̃ ,

αv = kv p̃ ,

αa = − ka

(
I3 +

1
kpB

S(Bω)
)BRR p̃ ,

αg = kg p̃.

(3.44)

with kpB , kv, ka, kg > 0 such that (ka + kg) < kpBkv. Assume that

∃ τ, δ > 0 : ∀t ≥ 0,
∫ t+τ

t
|ωB(s)× ω̇B(s)|ds > δ. (3.45)

Then, ( p̃, ṽ, b̃a, g̃) = (03×1, 03×1, 03×1, 03×1) is a globally exponentially stable equilibrium
point of the (3.43).

The proof of the previous Proposition is presented in Appendix A.4.6. Remark that this
observer satisfies Definition 3.6 when RR̂B = RRB , and preserves the invariance properties
of the original system. Notice that even though we have four variables, the condition on the
gains resembles a third order system. Indeed, we can verify for constant RRB that system
is originally of third order. Moreover, we can separate the estimate of the accelerometer bias
and gravitational acceleration only if the system is observable, i.e. if the condition provided by
(3.42) is satisfied. That condition can be seen as the second “gain constraint” for a fourth order
system. This observer provides a globally exponentially stable estimator for position, linear
velocity, accelerometer bias and gravitational acceleration. This result has some properties
similar to Propositions 3.3 and 3.4. For instance, (3.45) is a “persistent excitation” condition
related to the observability properties of the system, c.f. Proposition 3.5.

We can see this observer as an extension of Proposition 3.4 to the case where the local
gravitational field is unknown, where a condition on the gains is imposed additionally to the
excitation term. More precisely, setting kg = 0 in (3.44) and assuming R ĝ = Rg, the observer
reduces to the position, linear velocity and accelerometer bias estimator. Since the structure of
this observer is basically the same to the observers discussed in Section 3.3.1, we can extend
the previous filter to include angular rate gyro measurements, and estimates of gyro bias and
orientation provided by any filter of Section 3.2 as Corollaries 3.4 and 3.5. In these cases, of
course, the global exponential guarantees of the original filter will become asymptotic, or local
exponential stability properties depending on the orientation variables.
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3.3 estimation of the translational dynamics 83

3.3.3 Uncalibrated frames

The previous sections treated the design of nonlinear observer for position, linear velocity
and accelerometer bias with known or unknown gravitational acceleration. Those results con-
sider that measurements of position and acceleration given by the accelerometers are made
with respect to the same frame B. This section considers the problem when the measurements
are made from two different frames, i.e. the position is made in the camera C frame and the
accelerometers in a different B frame. This task refers to the similar application discussed in
Section 3.2.2.

We can write the dynamics for the system described in Section 1.6.3 as




R ṗB = Rv ,
Rv̇ = RRB

Ba ,

ḃa = 03×1 ,
R ġ = 03×1 ,
B ṗC = 03×1

with measurements (py, Ry, Bay , Bωy) = (RpB + RRBBpC , RRBRRC , Ba + ba − BRRRg, Bω).
We have discussed the problems caused by using the linear acceleration as a known input of
the system and its relations to the actual accelerometer measurements in the previous sections.
Likewise, we consider that the c-to-IMU rotation is either known or given by the orientation
observer discussed in Section 3.2.2. Therefore, we rewrite the original dynamics to encompass
Bay , Bω and RRB as inputs, i.e.





R ṗB = Rv ,
Rv̇ = RRB(

Bay − ba) +
Rg ,

ḃa = 03×1 ,
R ġ = 03×1 ,
B ṗC = 03×1

(3.46)

with measurements py = RpB + RRBBpC .
The invariance properties of the system can be analyzed as in Sections 3.3.1 and Section 3.3.2.

There is, however, one additional degree of freedom, i.e. the system is invariant with respect
to change in orientation and position for a new reference frame R1, changes in orientation of
B1 frame and additive accelerometer bias. The invariance can be verified defining the states
x = (RpB , Rv, ba, Rg, BpC), inputs u = (Bay , RRB) and output y = py. Furthermore, let
f (x, y) the right hand side of (3.46) and h(x, u) = RpB + RRBBpC , we can define the group
G = R3 × SO(3) × SO(3) × R3 × SO(3) × R3 with elements G = (R1 pR, R1 RR, B1 RB , C1 pC ,
C1 RC , ba) and the invariant actions

ϕG(x) ,
(R1 RR

RpB + R1 pR, R1 RR
Rv, B1 RBba + ba0 , R1 RR

Rg, B1 RB
BpC

)
,

ψG(u) ,
(B1 RB

Bay + ba0 , R1 RR
RRB

BRB1

)
,

ρG(y) ,
R1 RRpy +

R1 pR

where
˙︷ ︸︸ ︷

ϕG(x) = f (ϕG(x), ψG(u)) can be verified similarly to Section 3.3.1, and we can verify
ρG(h(x, u)) = h(ϕG(x), ψG(u)) as

R1 RRpy +
R1 pR = R1 RR(

RpB + RRB
BpC) +

R1 pR
= (R1 RR

RpB + R1 pR) +
R1 RR

RRB
BRB1(

B1 RB
BpC).
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84 nonlinear observers for pose estimation

Remark that even though the system is invariant to changes in the rotation of the C frame,
c.f. Section 3.2.2, the final position RpB is unchanged by the action, which indeed agrees with
the invariance properties of obtained in Section 3.3.1.

Similarly to the observability properties discussed in Sections 3.2.2 and 3.3.2, the observabil-
ity of System (3.46) depends on body motion. More specifically, we can verify that the observ-
ability of the system depends only on the angular velocity. It seems, however, more difficult
to establish a universal input for this system than for the cases presented in Sections 3.2.2
and 3.3.2. Moreover, if the linear acceleration is known, i.e. b̂ − a = ba and R ĝ = Rg), it is
not very difficult to verify that the system comprising position, linear velocity and c-to-IMU
translation is observable for angular velocities that satisfy Proposition 3.5.

We continue the design of the filter with the following observer form:




R ˙̂pB = Rv̂ + αpB ,
R ˙̂v = RR̂B(

Bay − b̂a) +
R ĝ + αv ,

˙̂
ba = αa ,

R ˙̂g = αg ,
B ˙̂pC = αpC ,

Let us define the following estimation errors

p̃ = RpB − R p̂B , ṽ = Rv − Rv̂, b̃a = ba − b̂a,

g̃ = Rg − R ĝ, q̃ = BpC − B p̂C ,

then the goal of the design is to define innovation terms αpB , αv, αa and αg and αpC such that
the origin of





˙̃p = ṽ − αpB ,
˙̃v = − RRB b̃a + g̃ − (I3 − R̃)B R̂R(

Bay − b̂a)− αv ,
˙̃
ba = − αa ,
˙̃g = − αg ,
˙̃q = − αpC

(3.47)

is an asymptotically stable equilibrium.
Let R p̂C = B p̂C + RR̂BB p̂C , and consider to measure RRB and Bω, similarly to the previous

Sections, however, in order to prove stability for (part of) the system, we assume additionally
that b̂a = ba, R ĝ = Rg. The next result concerns an observer for position, linear velocity and
c-to-IMU translational displacement.5

Proposition 3.7. Assume that b̂a = ba, R ĝ = Rg and αa = αg = 0. Let




αpB = kpB p̃ − RRBαpC ,

αv = kv p̃ ,

αp = − kpCS(Bω)BRR p̃ ,

(3.48)

with kpB , kv, kpC > 0. Assume that

∃ τ, δ > 0 : ∀t ≥ 0
∫ t+τ

t
|ωB(s)× ω̇B(s)|ds > δ. (3.49)

is satisfied. Then, ( p̃, ṽ, q̃) = (03×1, 03×1, 03×1) is a globally exponentially stable equilibrium
point of the (3.43).
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3.4 gain tuning 85

The proof of the above Proposition is similar to 3.6 and therefore it is omitted in the Ap-
pendix. The above observer satisfies definition 3.6 when RR̂B = RRB , b̂a = ba, R ĝ = Rg
and αa = αg = 0 and preserves the invariance properties of the original system. This result
provides a globally exponentially stable observer for a reduced set of System 3.46 under “per-
sistent motion” conditions, however, we are not capable of extending a similar result to the full
system. This result can be extended likewise Corollaries 3.4 and 3.5, however the result does
not provide a full estimator for the system. Finally, we conjecture an observer for the full sys-
tem, i.e. position, linear velocity, accelerometer bias, gravitational acceleration and c-to-IMU
translational displacement.

Conjecture 3.1. Let




αpB = kpB p̃C − RRBαpC ,

αv = kv p̃C ,

αa = − ka

(
I3 +

1
kpB

S(Bωy − b̂ω)
)B R̂R p̃C +

ka
kpB

S(Bωy − b̂ω)αpC ,

αg = kg p̃C − kg

kpB
RRBαpC ,

αp = − kpCS(Bωy − b̂ω)
B R̂R p̃C ,

(3.50)

with kpB , kv, ka, kg, kpC > 0 and ka + kg ≤ kpBkv. Assume that enough “excitation” of Bω.
Then, ( p̃, ṽ, b̃a, g̃, q̃) = (03×1, 03×1, 03×1, 03×1, 03×1) is a stable equilibrium point of the error
dynamics (3.47).

Notice that the previous observer satisfies definition 3.6 and preserves the invariance prop-
erties of the original system.This proposition merges directly the results of Propositions 3.6
and 3.7, however we are unable to provide proofs of the stability properties or observability
conditions for the system.

3.4 gain tuning

We have discussed the design of nonlinear observers based on their stability analysis. A
large basin of convergence is a prerequisite to guarantee unbiased estimates for pose, linear
velocity, and the additive biased for angular rate gyroscopes and accelerometers. Moreover,
understanding the effects on the estimation dynamics of the gains corresponding to each
innovation term is also vital for obtaining high quality estimates under fast dynamics. The
stability properties given by the nonlinear innovation terms, however, only provides necessary
conditions for the convergence of the estimates. A solid and well-state tuning procedure for
the innovation gains enables to ensure a good response to estimation errors as well as to
respect the characteristics of the employed sensors.

For instance, the gains in stochastic filtering are directly related to noise and model uncer-
tainty characteristics, such as sensor, process covariance matrices, as well as sensor to sensors
stochastic correlation. The proposed filter design and respective analysis are based on the
dynamics of the estimation errors, it is more sound to perform a gain tuning strategy in
terms of time-response. Considering the IMU-based pose estimation discussed so far, we can
distinguish two dynamics:

– Fast dynamics for pose variables and derivatives: non-modeled effects that corrupt these
estimates, measurement noise itself for instance, usually present fast dynamics. Another
interpretation for the desired behavior is that the nonlinear observers can also be seen as
low-pass filters, thus a larger bandwidth is needed to track fast dynamics.

– Slow dynamics for angular rate gyroscopes and accelerometer biases: non-modeled effects
in these variables, effects due to temperature changes for instance, also present slow
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86 nonlinear observers for pose estimation

dynamics. The same low-pass filter interpretation applies. The variables should present
a very low bandwidth in order to neglect the fast dynamics.

In the same way as the observer design, we can analyze the gain tuning as two independent
procedures. First, let us consider the attitude observer from Proposition 3.1.

3.4.1 Orientation estimation

The gain tuning is made in function of two parameters τRB , τω > 0, that denote settling
times such that τRB is much smaller than τω.

The parameter τRB denotes a target settling time for the orientation estimation dynamics.
However, the implementation of the filter in discrete time is constrained by the sampling
frequency fp of the pose measurements. Furthermore, the choice of a small settling time
may yield to instability of the filter. A typical value considers τRB ∈ [ 1

fm
, 1]. As for τω, this

parameter denotes the desired settling time for gyroscope bias estimation error. Since this
bias varies slowly, a relatively large value of τω can be considered, τω ≥ 20 for example.

We define the gains kRB and kω for the attitude and gyro bias innovation terms of Proposi-
tion 3.1 as

kRB = 48
τRB + τω

τRBτω
, kω = 9

1
τRBτω

. (3.51)

We draw these gains starting with dynamics of (3.22)




˙̃R = − R̃ S

(
RR̂B b̃ω + kRB

vex
(
Pa(R̃)

)
(
1 + tr(R̃)

)2

)
,

˙̃
bω = kω

RR̂Bvex
(
Pa(R̃)

)
.

and further consider a parametrization of SO(3) such that R̃ ≈ I3 + S(θ̃) around I3, e.g. an
element θ̃ ∈ R3 of so(3) writes R̃ = exp(S(θ)) ≈ I3 + S(θ̃) around I3, and the variable change
z̃ = −RRB b̃ω. The linearized dynamics of the attitude estimation error dynamics around the
equilibrium point θ̃ = 03×1 yields

˙︷︸︸︷[
θ̃

z̃

]
=

[
−(kRB/16)I3 I3

−kω I3 03×3

] [
θ̃

z̃

]
, (3.52)

Note that the previous system can be decomposed into three independent autonomous linear
time-invariant systems, where each characteristic polynomial is given by

p(s) = s2 + kRB/16s + kω

= s2 + 3
τRB + τω

τRBτω
s +

9
τRBτω

=

(
s +

3
τRB

)(
s +

3
τω

)
.

Hence, the gain choice (3.51) yields two real eigenvalues λRB = −3/τRB , λω = −3/τω. More-
over, assuming τRB 6= τω and using the following variable change

[
xRB (t)

xω(t)

]
=

[
λRB 1

λω 1

] [
θ̃i(t)

z̃i(t)

]
, (3.53)

then Eq. (3.52) writes

˙︷ ︸︸ ︷[
xRB

xω

]
=

[
λRB 0

0 λω

] [
xRB

xω

]
. (3.54)
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3.5 simulation results 87

By using (3.53) and (3.54), it is not difficult to obtain the following expression for the solutions
of System (3.52):

θ̃i(t) = eλRB t θ̃i(0) + λω
eλRB t − eλωt

λRB − λω
θ̃i(0) +

eλRB t − eλωt

λRB − λω
z̃i(0)

z̃i(t) = eλωt z̃i(0) + λRBλω
eλRB t − eλωt

λRB − λω
θ̃i(0) + λω

eλRB t − eλωt

λRB − λω
z̃i(0)

Therefore the following (partial) dynamics decoupling is obtained:
– Fast exponential decrease of θ̃i(t) to zero, corrupted by slowly decreasing terms with

small amplitude: λω
λRB−λω

and 1
λRB−λω

tend to zero as τRB → 0 and τω → ∞.

– Slow exponential decrease of z̃i(t) to zero corrupted by slowly decreasing terms with
small amplitude.

3.4.2 Position estimation

The same rationale leads to the following definition of the estimation of translational vari-
ables. The gain tuning is made in function of three settling times τpB , τv, τa > 0 such that τpB ,
τv are much smaller than τa. Likewise, τRB , the values for τpB , τv ∈ [ 1

fm
, 1] and τa ≥ 20 often

present a good response for the error dynamics.
We define the gains kpB and kv and ka for the position, linear velocity and accelerometer

bias innovation terms of Proposition 3.1 as

kpB = 3
τpBτv + τpBτa + τvτa

τpBτvτa
, kv = 9

τpB + τv + τa

τpBτvτa
, ka =

27
τpBτvτa

. (3.55)

These gains satisfy the stability conditions of Proposition3.4. Choosing τpB , τv ≪ τa leads to
the same (partial) decoupling of the dynamics of p̃, ṽ on one hand, and b̃a on the other hand.

3.4.3 Gain tuning and observability conditions

We determined in the previous sections a gain tuning technique for systems that are observ-
able independently of the inputs. We have seen that other systems, however, are observable
under certain movements, for example: the estimation of orientation, gyro bias and c-to-IMU
rotation, c.f. Section 3.2.2, or position, linear velocity, accelerometer bias, with unknown grav-
itational acceleration, c.f. Section 3.3.2. For each of the prior cases, the resulting nonlinear
observer is stable under certain conditions of the motion and the analysis neglecting the angu-
lar velocity will not be able to allocate correctly the poles of the system. We propose to employ
the same gains to the other parameters as the ones obtained by the gyro and accelerometer
biases. However, in practical situations, we can tune the gain of each variable depending on
the each condition. We discuss such this approach in Section 4.3.1

3.5 simulation results

The previous sections discussed different aspects of nonlinear observer design for pose esti-
mation. The observers introduced have clear stability properties, which sometimes hold under
certain observability conditions. In this section, we perform series of simulations to validate
the convergence properties of the proposed filters, robustness to unmodeled parameters and
sensory noise. Moreover, the performance of the proposed filters is compared to results ob-
tained with implementation of other approaches from the Literature. Seven categories divide
the experiments
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88 nonlinear observers for pose estimation

– Orientation and gyro bias estimation;
– Orientation, gyro bias and c-to-IMU rotation estimation;
– Position and accelerometer bias estimation;
– Position, accelerometer bias and gravitational acceleration estimation;
– Position and c-to-IMU translation.
– Coupled estimators for orientation and position.

The first simulation compares Proposition 3.1 to the passive complementary filter, i.e. Theo-
rem 3.3, and an implementation of the multiplicative extended Kalman filter (MEKF) (Lefferts
et al., 1982). A brief introduction to the latter filter is given in Appendix C. The second sim-
ulation compares the nonlinear observer from Proposition 3.3 with an implementation of the
MEKF that includes c-to-IMU rotation estimation. The third, and fourth simulations compare
Propositions 3.4, 3.6 to an implementation of the Kalman filter (KF). Notice that we do con-
sider full knowledge of orientation dynamics for this simulation, therefore it is possible to
employ the KF instead of some extension. Those two simulations on translational displace-
ment also evaluate the effects of unmodeled errors on gravitational acceleration and c-to-IMU
translation. The fifth simulation concerns the performance of Corollary 3.7 and the results
are compared to the KF. The last simulation validates the implementation of the filters for
translation estimation using the orientation estimates, instead of the explicit variables.

The implementation of the KF and MEKF calls for a few remarks. First, the MEKF is based
on quaternion parametrization, which uses four parameters to represent the three dimen-
sional SO(3). Hence, the redundant degree may result in an ill conditioned covariance ma-
trix (Lefferts et al., 1982) that also may impair the performance of the extended Kalman fil-
ter (EKF). Indeed, there are several MEKF techniques discussed in the seminal article. We
refer to the specific formulation employing a reduced representation of the covariance matrix. This
version is chosen because it reduces the consequences from ill-conditioning of the covariance
matrix, also the diagonal values of the covariance matrix refer directly to the uncertainties
of angular and gyro bias estimates. Nevertheless, as we have discussed in Section 1.4, there
is a plethora of empirical techniques to improve the performance of EKF-based techniques.
Therefore, it is inaccurate and restrictive to claim something as the EKF, and we would rather
claim an implementation of the filter. Moreover, since the analyses employ simulated data, we
have access to every uncertainty of the system, i.e. noise, initial errors, etc. We thus set the pa-
rameters of the MEKF using the nominal values of initial errors and sensory noises. The same
procedure is made to tune the KF for estimation of translational dynamics and respective pa-
rameters. There are plenty of other Kalman-based techniques, as, e.g. , the unscented Kalman
filter. We leave aside these other techniques since they present mostly heuristic improvements
in the approximation of the covariance matrix of the estimates.

On the other hand, the setup of the proposed nonlinear observers requires fewer and rather
simpler parameters. We rely on the gain tuning technique described in Section 3.4. The gains
employed by Propositions 3.1 and 3.3 are computed using (3.51) with settling times τRB =
0.15 [s], τbω

= 15 [s]. The gains employed by Theorem 3.3 use the same settling times com-
puted using a similar rationale as introduced originally in (Scandaroli and Morin, 2011). When
required, the innovation c-to-IMU rotation employs the same gains as the gyro bias b̂ω. The
observers for the translational dynamics consider settling times of τpB = 0.15 [s], τv = 0.8 [s],
and τba

= 15 [s] and the gains are computed using (3.55). When required, the innovation
terms of the gravitational acceleration R ĝ employs the gain as the accelerometer bias b̂a and
c-to- IMU translation B p̂C employs gain with half of the value from the innovation of R p̂B .

The simulations consider different aspects of rotational and translational body motion.
More specifically, we designed a class of reference trajectories for which amplitude and fre-
quency can be randomly changed for each execution of a simulation. Two types of angular
motion are employed that we classify in good and bad angular motions. These adjectives refer
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3.5 simulation results 89

specifically to the observability properties provided by these inputs, and according to As-
sumption 3.2, the angular velocities must be continuous and have bounded derivatives. Good
and bad angular motions are given in function of the amplitude γa, frequency γp and delay γd,
with bad angular motion given by

B99Kω (t) =
[
γa,1 cos(γpt + γd) γa,2 cos(γpt + γd) γa,3 cos(γpt + γd)

]
T ,

and good motion given by

B ω(t) =
[
γa,1 cos(γpt + γd,1) γa,2 cos(γpt + γd,2) γa,3 cos(γpt + γd,3)

]
T.

The parameters γa are drawn from a Gaussian distribution (GD) with mean 2.1 [rad] and vari-
ance 0.5 · 10−3 [rad]2, this is equivalent to angular velocity with amplitude (maximum value
minus minimum value of the angular velocity) of 240 degrees in average, with minimum 210

and maximum 270 degrees amplitude. The parameters referring to the angular period γp are
drawn from a GD with mean 6.3 [rad/s] and variance 1.1[rad/s]2, this is equivalent to 1 [Hz]
frequencies in average, with minimum 0.5 and maximum 1.5 [Hz]. The parameters related to
the delay are drawn from a GD with zero mean and variance 0.84 [rad/s]2, this refers to delays
up to 25 degrees in the phase of angular velocity components. The delay of each component
of the angular velocity is the main difference between good and bad motions. Figure 3.1 de-
picts one example of good and bad angular velocities with the respective values given by
conditions (3.34) and (3.45) computed at each instant.

The simulation is also designed to evaluate the effects due to the translational dynamics. A
trivial solution could consider a constant acceleration in B frame for the trajectory, however,
if the acceleration is not null, the resulting position becomes numerically unstable after a
relatively short period. We designed a bounded trajectory divided in two main displacements:

R99KpB (t) =
[

γpcos(γ f t) 3
4 γpcos( 1

2 γ f t) 1
3 γpcos( 1

2 γ f t)
]

,

RL99pB (t) = −
[

γpcos(γ f t) 3
4 γpcos( 1

2 γ f t) 1
3 γpcos( 1

2 γ f t)
]

.

The constant γp is drawn from a GD with mean 1 [m] and variance 27.8 · 10−3 [m]2, which
provides a maximum and minimum amplitudes of 3 and 1 [m] respectively. Even though the
observability of the system is independent of the acceleration, this variable must still satisfy
Assumption 3.2, i.e. the linear accelerations and their first order time derivatives must be

bounded, so that the observability analysis is valid. Remark that R99KpB (t) and RL99pB (t) yield
linear accelerations that indeed satisfy Assumption 3.2, the transition between these two tra-

jectories results a discontinuous acceleration however. Thus, the transition between R99KpB (t),

and RL99pB (t) is given by a sixth-order polynomial to ensure the continuity of the accelerations.
Moreover, the measurements of the accelerometers are given in B frame, while we compute
analytically the acceleration in R frame. The simulation of the accelerometer measurements
depends on the resulting angular velocity, and, of course, the gravitational acceleration in R
frame. Figure 3.3 depicts the simulated specific acceleration using good and bad angular mo-
tion for the a reference trajectory.

Concluding the simulation setup, we consider that inertial and pose measurements are
synchronous and sampled at a frequency of 200 [Hz]. We analyze different cases with and
without measurement noise to compare different aspects of the filters. The measurement
noises considered for the inertial sensors are similar to an IMU xSens MTi-G, i.e. gyroscopes
are corrupted with noise drawn from a zero mean Gaussian distribution (ZMGD) with vari-
ance 33.8 · 10−6 [rad/s]2, and the accelerometers from a ZMGD with variance 0.7 · 10−6 [m/s2]2.
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90 nonlinear observers for pose estimation
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Figure 3.1: Example of good and bad angular motions.
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Figure 3.3: Specific acceleration of a reference trajectory with good and bad angular motions.
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3.5 simulation results 91

Furthermore, position measurements are corrupted by ZMGD with variance 2.8 · 10−6 [m]2,
that refer to measurements with an uncertainty of 0.5 [cm] roughly. In order to simulate
noise on the rotation matrix, we resort to the angle axis representation, i.e. a rotation ma-
trix R ∈ SO(3) can be represented by (θ, u) ∈ {R × R3 : uTu = 1} with R = exp(θS(u)). We
generate random matrices using angles θ drawn from ZMGD with variance 135.4 · 10−6 [rad]2,
which refer an uncertainty of 2 degrees. The rotation axis u is generated from three sam-
ples drawn out of a uniform distribution, and the resulting vector is normalized before the
computation of the exponential matrix.

3.5.1 Orientation and gyro bias

The first simulation evaluates the performance of the filters for orientation and gyro bias
estimation. This system is uniformly observable independently of the inputs. We compare
three filters, Proposition 3.1, Theorem 3.3 and the MEKF in two situations: convergence from
moderate initial errors and convergence from large initial errors. We can verify three aspects
from these simulations

– The three filters have a large basin of convergence for this problem;
– Proposition 3.1 and Theorem 3.3 have similar responses locally;
– Proposition 3.1 improves the convergence properties from Theorem 3.3 for large errors,

i.e. the estimates of the proposed nonlinear observer converge at the designed settling
time.

Convergence from moderate initial errors

This simulation tests the convergence of the filters starting from moderate initial errors.
The estimates of orientation are initialized with random samples from a ZMGD with vari-
ance 121.8 · 10−3 [rad]2, i.e. errors up to 60◦. Gyro bias estimates are initialized with random
samples from a ZMGD with variance 7.6 · 10−3 [rad/s]2, this refers to biases up 15 [◦/s]. Fig-
ure 3.4 shows a typical result obtained from repeated simulations. The curves in solid blue
denote the responses of Proposition 3.1, in dashed green the responses of Theorem 3.3 and
dashed red of the MEKF. Moreover, the light red areas represent the 3σ uncertainty regions
provided by the MEKF for each variable. Figure 3.4 (a) displays the estimation error neglecting
sensory noise, and Figure 3.4 (b) displays the steady state errors of the estimates considering
sensor noises. From top to bottom, the results correspond to the estimation error for body
orientation error in Euler angles in ◦ of roll θ̃B , pitch φ̃B , yaw ψ̃B angles, and gyro bias error
for the first, second and third components of b̃ω in [rad/s].

The estimates provided by the three filters converge to the correct states. The orientation
estimates from both nonlinear observers converge in about 0.15 [s] and the estimates of gyro
bias converge in 15 [s], as predetermined by the gain tuning. This can be considered as a
local convergence for both filters, we can also verify that the resulting dynamics is almost
identical. Furthermore, we can verify that the estimates of the MEKF converges almost instan-
taneously to the correct states. This property is typical of a Kalman-like filter on systems that
are observable regardless of the inputs. The steady-state responses of the estimates for noisy
measurements allow us to verify that the uncertainties of nonlinear observers are of the same
order of the MEKF, the observers do not compute the covariance matrix explicitly however.

Convergence from large initial errors

The next simulation analyzes the convergence of the estimates for large initial errors. The
orientation estimates are initialized with errors from a GD with mean π [rad] and variance 3.4 ·
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Figure 3.4: Orientation and gyro bias estimation with moderate initial errors.

10−9[rad]2. This orientation refers points close to the unstable invariant set of Theorem 3.3
and the singular set of Proposition 3.1. Gyro bias estimates are initialized with errors from a
ZMGD with variance 41.5 · 10−3 [rad/s]2, i.e. errors up to 35 [◦/s]. Figure 3.5 shows a typical
result obtained from repeated simulations and displacement of the results is the same from
the previous simulation.

The estimates computed by the three filters converge to the correct states. The response
of the MEKF is indeed similar to the previous one, i.e. the estimates converge to the real
states immediately. Moreover, concerning the nonlinear observers, we can verify that their
basin of convergence is very large, i.e. the estimates converge to the real states even very close
to what can be called bad cases, i.e. the singular and unstable sets for Proposition 3.1 and
Theorem 3.3. Remark, however, that the orientation estimates obtained using Proposition 3.1
still converge with the predefined settling time, i.e. 0.15 [s], whilst the estimates of the passive
complementary filter converge only after 0.5 [s]. This improvement in the convergence of the
estimates owes to the new innovation term that increases the innovation update for larger
orientation errors.

The last remark concerns the exponential convergence of the estimates of the nonlinear
observers. Let us consider the following energy function

V = tr(I3 − R̃) + 1
kbω

|b̃ω|2.

This energy function is strictly related to the stability proof for the estimates and it represents
an error measure of the states. Figure 3.6 represents the response of this function in logarith-
mic scale for the experiments of Figures 3.4 and 3.5. The curves in solid blue represent the
response of Proposition 3.1 and dashed green the response of Theorem 3.3. Notice in Fig-
ure 3.6 (a) that the curve is given by fast descent until 1 [s] followed by a straight decreasing
line. This straight line represents the exponential decay, since the Figure presents the y-axis
in logarithmic scale. We can remark a slightly different behavior in Figure 3.6 (b), where the
response of Proposition 3.1 is similar to the the previous one, whilst the energy of the pas-
sive complementary filter remains constant until 0.5 [s], and after 0.75 [s] achieves the region
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Figure 3.5: Orientation and gyro bias estimation with large initial errors.
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Figure 3.6: Exponential convergence of the errors – logarithmic y-scale.

with exponential convergence. We thus verify the stronger stability properties of the proposed
observer.

Identifying misaligned c-to-IMU rotation

The previous cases evaluated the case with known c-to-IMU rotation, and, in many appli-
cations, this variable can be roughly estimated either visually or using a CAD model. The
value in practice, however, can differ from this rough estimate, and the resulting estimate of B
orientation is biased. Let us analyze this case more carefully. Figure 3.7 presents the response
of gyro-bias error considering a measurement Ry = RRBBRC with c-to-IMU rotation BRC ob-
tained with a random axis and angle of 2◦. Figure 3.7 (a) displays the estimation error without
measurement noise and Figure 3.7 (b) shows the result with measurement noise. The effect
due to the parasite c-to-IMU rotation is easily verified for the simulation without noise, since
the bias estimated by the nonlinear observers oscillate in Figure 3.7 (a). The bias from the
MEKF, however, shows only a small offset and practically no oscillation. The oscillation is hid-
den in Figure 3.7 (b) due to the measurement noise of the orientation. Therefore a bad estimate
of the c-to-IMU orientation can be only identified using accurate orientation measurements,
which is indeed the case explored in Chapter 4.
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Figure 3.7: Estimated gyro bias with misaligned c-to-IMU rotation.

3.5.2 Orientation, gyro bias and c-to-IMU rotation

The second simulation concerns the estimation of orientation, gyro bias and c-to-IMU ro-
tation. In this section, we analyze the convergence of estimates from Proposition 3.3 and an
implementation of the MEKF for the same system. We can verify several aspects from these
results:

– both filters are locally stable;
– moderate (and large) initial errors severely degrade the performance of the MEKF;
– the observer from Proposition 3.3 has very large basin of convergence;

Convergence from small initial errors

This simulation analyzes the convergence of Proposition 3.3 and the MEKF for small initial
errors and angular motions that satisfy condition (3.34). Orientation and c-to-IMU rotation
estimates are initialized with errors from a ZMGD with variance 1.9 · 10−3 [rad]2, which to
errors up to 7.5◦ of the rotation matrices. Gyro bias estimates are initialized from a ZMGD
with variance 8.4 · 10−6 [rad/s]2, this distribution refers to errors up to 0.5[◦/s]. We can see
this simulation as a typical case with good initialization of the estimates. Figure 3.8 presents
a typical solution obtained from repeated simulations. The curves in solid blue denote the
response of Proposition 3.3 and dashed red the response for the MEKF. Moreover, the light
red bounds represents the 3σ uncertainty regions computed for each variable by the MEKF.
Figure 3.8 (a) displays the estimation error neglecting sensory noise and Figure 3.8 (b) displays
the steady state errors with measurement noise. From top to bottom, the results correspond
to body orientation error in Euler angles in ◦ of roll θ̃B , pitch φ̃B , yaw ψ̃B angles, the first,
second and third components of gyro bias error b̃ω in [rad/s], and estimation errors of c-to-
IMU rotation in Euler angles in ◦ of roll θ̃C , pitch φ̃C , and yaw ψ̃C angles. Figure 3.8 (c) depicts
the response of the energy function

V = tr(I3 − R̃C) + 1
kRB kRC

tr(I3 − Q̃) + 1
kRB kbω

|b̃ω|2 (3.56)

for the estimates obtained by the proposed nonlinear observer. Remark that the y-axis is
shown in logarithmic scale. This energy function is strictly related to the stability proof for
the estimates.

The proposed nonlinear observer and the MEKF solve this case trivially. First, let us focus
on the result of Proposition 3.3. We can verify the convergence of the estimation errors to
zero in Figure 3.8 (a) as predicted by the stability analysis of the observer. In this case, the
rationale for the gain tuning using settling times do not hold as expected, mostly because
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Figure 3.8: Orientation, gyro bias and c-to-IMU rotation estimation with low initial errors.
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Figure 3.9: Orientation, gyro bias and c-to-IMU rotation estimation with moderate initial errors.

the observability of the system is related to the angular motion. Concerning the MEKF, dif-
ferently from the previous simulation, the estimates do not converge immediately to the real
solution. This effect is due to the observability conditions of the system, and the estimates
do converge to the real states only after enough angular motion. We can notice likewise that
the 3σ uncertainty bounds of the MEKF reduce in a slower rate than for the case where the
observability is independent of the inputs. Finally, notice that uncertainties of the estimates
given by Proposition 3.3 are of the same order of the uncertainty bound given by the MEKF.

Convergence from moderate initial errors

This simulation analyzes the basin of convergence of both Proposition 3.3 and the MEKF
with angular motion that satisfy condition (3.34). In this simulation, we initialize the orien-
tation, c-to-IMU estimates and gyro bias with the same distributions as the moderate initial
error simulation from Section 3.5.1. The orientation and c-to-IMU rotation estimates are ini-
tialized with an estimate drawn from a ZMGD with variance 121.8 · 10−3 [rad]2, i.e. errors
from up 60◦. Gyro bias estimates are initialized with random samples from a ZMGD with
variance 7.6 · 10−3 [rad/s]2, which refers to biases up to 15 [◦/s]. Figure 3.9 shows a typical
result obtained from repeated simulations. Notation and displacement of the results are the
same from the previous simulation.

The trajectory of the estimates obtained using Proposition 3.3 perform similarly to the pre-
vious simulation, i.e. the estimates converge exponentially after some initial body motion. The
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Figure 3.10: Orientation, gyro bias and c-to-IMU rotation estimation with large initial errors.

steady-state uncertainty of the estimates is also similar to the previous simulation, however,
this behavior is masked by the poor response of the MEKF. The results for the MEKF are
degraded severely by the model initial errors, since the estimates do not converge to the real
states with similar response to the case with small errors. This situation may occur due to
several factors. For instance, the MEKF relies strongly on the uncertainties given by the covari-
ance matrix, since the Kalman gain is computed using this variable. Therefore, it is plausible
that the covariance matrix becomes too confident before enough motion has been made in
order to identify the real states. This process happens when a Kalman-like filter “learns” too
well the wrong model. We can notice from Figure 3.9 (b) that the error in bias and c-to-IMU
rotation are still decreasing towards zero, however, the MEKF estimates may take several min-
utes to reach the good solution. This is an example where the fine-tuning of a Kalman filter
plays a role more important than using the real parameters of the system. On the other hand,
the estimates obtained by the proposed filter are stable for moderate initial errors with the
same parameters employed in the local stability analysis.

Convergence for very large initial errors

Previous simulation results support that MEKF performs well only for small errors, whilst
the estimates given by Proposition 3.3 also converge for moderate errors. Clearly, if the angular
motion satisfy (3.34). We can further verify that the estimates of the proposed filter are stable
within an even larger domain of convergence. The next simulation initializes orientation and
c-to-IMU rotation estimates are from a GD with mean of π [rad] and variance 3.4 · 10−9 [rad]2,
i.e. errors close to the unstable set of passive complementary filter. Gyro bias estimates are
initialized with random samples from a ZMGD with variance 41.5 · 10−3 [rad/s]2, i.e. errors
up to 35 [◦/s]. Figure 3.10 depicts a typical result obtained from repeated simulations, where
Figure 3.10 (a) displays the error curves without measurement noise for the estimates, Fig-
ure 3.10 (b) shows the steady-state response of the estimate error considering measurement
noise. From top to bottom, the results correspond to the three components components of
the Euler angles of the orientation error R̃, gyro bias error b̃ω in [rad/s] and the Euler angles
in ◦ of c-to-IMU rotation error Q̃. Figure 3.10 (c) depicts the response of the energy func-
tion V from (3.56). We can verify that the estimates clearly converge to the real states even for
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98 nonlinear observers for pose estimation

large errors. Exponential stability, however, is obtained only after a long period, about 5 [s].
Unfortunately, we are not capable of defining accurately the domain of convergence for this
case.

The case with unobservable motion

Convergence analysis for very large initialization errors may sound but a theoretical re-
quirement for most systems. That property, however, is much important for systems that rely
on specific observability conditions. Previous results analyzed several situations where the
angular motion satisfy condition (3.34) indeed. However, the observability condition may not
be always satisfied in practical situation, and filters are likely to behave unsatisfactorily un-
der this ill-conditioned case. We now analyze the response of the estimates when the motion
does not yield an observable system. Orientation and c-to-IMU rotation estimates are ini-
tialized with errors from a ZMGD with variance 1.9 · 10−3 [rad]2, this distribution refers to
errors up to 7.5◦ in orientation. Gyro bias estimates are initialized from a ZMGD with vari-
ance 8.4 · 10−6 [rad/s]2, this distribution refers to errors up to 0.5 [◦/s]. Figure 3.11 represents
a typical result from repeated simulations. Figure 3.11 (a) presents the error curves for the esti-
mates of both filters regardless measurement noise, Figure 3.11 (b) presents the steady-state of
the the same simulation with measurement noise. The orientation error given in Euler angles
[◦], gyros bias error in [rad/s] and c-to-IMU rotation error in Euler angles [◦] are displayed
from top to bottom. Figure 3.11 (c) depicts the evolution of the energy function V from (3.56).

The estimates of both filters do not converge to the real states for this situation, as expected,
since the observability condition is not satisfied. However, we can verify one interesting prop-
erty for each filter. Analyzing Figure 3.11 (c), we can verify that the energy function decreases
during the first second, and becomes constant afterwards. In practice, any movement of the
body provides some information that allows us to identify a subset of the states. The main
difference between persistently exciting and non-exciting motion is that the prior allows us to
distinguish between every state, while the latter cannot distinguish the elements from a subset
of the state-space. The constancy of the energy function is a direct result from the indistin-
guishability of a subset of the state-space. For the proposed filter, this is not a crucial problem
however. Once the body performs any movement that yields instantaneous observability, the
energy function will decrease as the estimates tend towards the real states. That property is
valid due to the large basin of convergence of the filter.

3.5.3 Position and accelerometer bias

We now analyze the results proposed for the estimation of the translational dynamics. Ini-
tially, let us consider to measure RRB and Bω explicitly. This hypothesis is relaxed in Sec-
tion 3.5.6. We first consider the estimation of position, linear velocity and accelerometer bias.
This system is uniformly observable independently of the angular motion, therefore body
motion does not play an effective role if gravitational acceleration and c-to-IMU translation
are known. We compare the results obtained for the observer from Proposition 3.4 with a
Kalman filter (KF) derived with the original state-affine system. The estimates of position and
linear are initialized with samples from ZMGDs with variance of 11.1 [cm]2 and 11.1 [cm/s]2,
i.e. position and velocity errors up to 10 [cm] and 10 [cm/s], respectively. The estimates for the
accelerometer bias are initialized with samples from a ZMGD with variance 11.1 · 10−6 [m/s2]2,
i.e. biases up to 0.01 [m/s2]. Figure 3.12 shows a typical result obtained from repeated simu-
lations. The curves in solid blue refer to the response of Proposition 3.4 and dashed red the
response of the KF. Furthermore, the light red areas represent the 3σ uncertainty region of
the computed by the KF. Figure 3.12 (a) displays the estimates errors for a simulation without
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Figure 3.11: Orientation, gyro bias estimation and c-to-IMU orientation angular movements that do not
satisfy condition (3.34).
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Figure 3.12: Estimation of the translational dynamics – accelerometer bias.
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Figure 3.13: Estimation of the translational dynamics – accelerometer bias with errors in local gravita-
tional acceleration.

noise, while Figure 3.12 (b) shows the steady state results for the simulation with sensory
noise. From top to bottom, the results correspond to the position estimation error p̃ [cm], esti-
mation error of linear velocity ṽ [cm/s], and estimation error of accelerometer bias b̃a [m/s2].

We can verify that the estimates of both filters converge to real values of the states. As
expected, the KF converges instantaneously without measurement noise. The proposed filter,
on the other hand, converges in the settling times defined in Section 3.4. The uncertainties
of the estimates given by the proposed observer are of the same order as the KF, however,
Proposition 3.4 does not compute the covariance matrix of the system. We could obtain a
bias with a steady-state “more constant” than Figure 3.12, however, this corresponds also to a
slower settling time for the system.

Identifying misaligned local gravitational acceleration

In practice, the accelerometer bias is constant through long periods, other unmodeled effects
can, however, mislead to an the interpretation of a time-varying bias. Let us consider, for
instance, the estimation of pose, linear acceleration and accelerometer bias with an error of 2◦

in the direction of the gravitational acceleration in R frame. Figure 3.13 shows the steady state
response of the estimate errors with and without measurements noise considering angular
motion that satisfies Proposition 3.5 and the error in Rg. The resulting estimates of the KF
and Proposition 3.4 are biased, specifically accelerometers bias and velocity estimates. The

te
l-0

08
61

85
8,

 v
er

si
on

 1
 - 

13
 S

ep
 2

01
3



102 nonlinear observers for pose estimation

effects of the errors in each filter are slightly different however. The KF considers that the bias
is constant, whilst the accelerometers add the uncertainties to the estimation of position. On
the other hand, the rationale employed to tune the observer gains considers that the estimates
of position estimates converge faster than the accelerometer bias. Notice that the effect due to
the misaligned gravitational acceleration is easily verified for the estimates of the nonlinear
filter in the case without measurement noise. Considering Gaussian noise, however, this effect
is practically hidden. Therefore, a bad estimate of local gravitational acceleration can be only
determined using accurate measurements, which is the case discussed in Chapter 4. We can
compensate this bad effect by estimating the gravitational acceleration in R frame.

3.5.4 Position, accelerometer bias and gravitational acceleration

The next simulation considers the estimation of position, linear velocity, accelerometer bias
and the local gravitational acceleration in R frame. This system is not uniformly observable
for every angular velocity, and Proposition 3.5 enunciates an angular motion that provides uni-
form observability of this system. First, we verify the results obtained for the observer from
Proposition 3.6 and a KF derived with the original state-affine system considering exciting
motion. The estimates of position, linear velocity and accelerometer bias are drawn from the
same distributions as Section 3.5.3, and the estimates of local acceleration are drawn consid-
ering a misalignment rotation Rg computed using angle-axis parametrization with the angle
drawn from a ZMGD with variance 68.5 · 10−3[rad]2, i.e. the estimates R ĝ(0) = Rg

Rg are mis-
aligned by an angle up to 45◦. Figure 3.14 shows a typical result from repeated simulations.
The curves in solid blue refer to the response of Proposition 3.6 and dashed red the response
of the KF. Furthermore, the light red areas represent the 3σ uncertainty region of the com-
puted by the KF. Figure 3.14 (a) displays the estimates errors for a simulation without noise,
while Figure 3.14 (b) shows the steady state results for the simulation with sensory noise.
From top to bottom, the results correspond to the estimation error of position p̃ [cm], linear
velocity ṽ [cm/s], accelerometer bias b̃a [m/s2] and local gravitational acceleration g̃ [m/s2].
Similarly to the previous results, both filters converge to the real states in this simulation. Con-
cerning the KF, we can remark that the estimate errors b̃a and g̃ do not converge immediately
to zero for the noiseless case, instead, there is a short transient of about 2 seconds. This effect
is due to the observability condition imposed by the system. The estimates of Proposition 3.6
also show these effects. Once again, notice that the proposed gain tuning using settling times
present the similar uncertainty as the KF.

The case with unobservable motion

The previous simulation assumed that the angular angular motion satisfies Proposition 3.5,
we now verify the effects of non-exciting inputs. We perform this simulation with the param-
eters initialized with the previous distributions, however, the angular motion does not satisfy
the observability condition. Figure 3.15 shows a typical result from repeated simulations. The
response of position and linear velocity estimation errors are presented on the left, accelerom-
eter bias and local gravitational acceleration are shown on the right. We can remark some
interesting points from this simulation. First, position and linear velocity estimation errors
converge to zero independently of the angular motion. However, accelerometer bias and grav-
itational acceleration converge to a biased estimate. Although the non-exiting input does not
directly influence the position and linear velocity error, the estimates will become erroneous
as soon as the body perform an exiting motion.
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(b) Steady-state without measurement noise

Figure 3.14: Estimation of the translational dynamics – local gravitational acceleration.
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104 nonlinear observers for pose estimation
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Figure 3.15: Estimation of the translational dynamics – local gravitational acceleration without persis-
tent excitation (3.45).

Identifying misaligned c-to-IMU translation

We assume a constant model for accelerometer bias and local gravitational acceleration, ad-
ditionally we consider that measurements of body position do coincide with B frame. In prac-
tice, the latter hypothesis is false. It can be quite difficult to measure directly and accurately
the relative position of optic center of the lenses with respect to the IMU sensors in a visual
inertial system. Of course, we may resort to the CAD model or rough measures using a ruler
or a caliper, however we can loose in part the precision of the position measurements. Let us
analyze the effect caused by errors in the estimate of c-to-IMU translation. Figure 3.16 shows
the steady estimation error with and without measurement measurement for a situation con-
sidering a maximum error of 0.1 [cm] in the frame-to-frame translational displacement. The
estimation errors are displaced similarly to the previous simulations. We can clearly verify
that neither the estimates of the KF, nor the estimates from Proposition 3.6 converge to the
actual states. Again, the effects of this unmodeled parameters impact each filter slightly dif-
ferently. The KF, on one hand, considers that accelerometer bias and gravitational acceleration
are constant and the errors propagate mostly on linear position and velocity. It can be quite dif-
ficult to identify this problem without a ground truth. The observer from Proposition 3.6, on
the other hand, assumes that position and velocity estimates converge faster than accelerom-
eter bias and local gravitational acceleration with the proposed gain tuning procedure. We
can clearly verify that the accelerometer bias estimates oscillate in steady state, which clearly
violates the constant model assumed previously. The effects from a bad estimate of c-to-IMU
translation can be compensated by adding that variable to the estimator.

3.5.5 Position and c-to-IMU translation

The next simulation considers the estimation of position, linear velocity and c-to-IMU trans-
lation. Proposition 3.7 assumes that accelerometer bias and the local gravitational acceleration
are known, and the estimator is exponentially stable under condition 3.49. This is equivalent
to the uniform condition of Proposition 3.5, that refers to the concurrent estimation of ac-
celerometer bias and local gravitational acceleration. We verify the results obtained for the
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(a) Steady-state with measurement noise
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(b) Steady-state without measurement noise

Figure 3.16: Estimation of the translational dynamics – accelerometer bias with error in c-to-IMU trans-
lation.
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(b) Steady-state without measurement noise

Figure 3.17: Position, linear velocity, and c-to-IMU translation.

observer introduced in Proposition 3.7 and a KF derived from the original state-affine system.
We assume that position and linear velocity estimates are initialized from the same distribu-
tion as Section 3.5.3 and 3.5.4 and c-to-IMU translation estimates are drawn from a ZMGD
with variance 11.1 [cm]3, i.e. with a maximum error of 10 [cm]. Figure 3.17 presents a typical
result from repeated simulations. The curves in solid blue denote the responses of Proposi-
tion 3.1, in dashed green the responses of Theorem 3.3, dashed red of the MEKF, and the
light red areas represent the 3σ uncertainty regions provided by the MEKF for each variable.
Figure 3.17 (a) presents the estimation errors for the estimates of both filters without measure-
ment noise, while Figure 3.17 (b) displays the steady state considering measurement noises.
From top to bottom, the results correspond to the estimation errors of position p̃ [cm], linear
velocity ṽ [cm/s] and c-to-IMU translation q̃. Similarly to the previous results, the estimates of
both filters converge to the values of the states. Furthermore, the system is observable under
certain angular motion, which yields the estimates and uncertainties of the KF to be reduced
within a transient response, instead of instantaneously. The analysis of Conjecture 3.1 is left
out of the simulations, since we were unable to provide an input such that the filter is stable.
We verify via actual experimental data in Chapter 4, however, that the result is comparable to
the referring KF, as the observers previously discussed.
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3.6 conclusion 107

3.5.6 Coupled estimators for orientation and position

We have considered in Sections 3.5.3, 3.5.4 and 3.5.5 to measure body orientation and gyro
bias explicitly. The observers introduced in Propositions 3.4, 3.6, 3.7 assume that this hypoth-
esis holds indeed, but we have shown in respective corollaries that the estimates of a coupled
pose estimator are also asymptotically stable, with domain of convergence given by the ori-
entation observer. Let us investigate the effects of the coupled estimation in next simulation.
For the sake of simplicity, we consider the case of pose estimation (orientation and position)
with linear velocity, gyro and accelerometer bias estimation. This system is uniformly ob-
servable independently of the the dynamics, we thus consider the nonlinear observer from
Proposition 3.1 for orientation estimation, and Corollary 3.5 for the position estimation. The
orientation estimates are initialized with large errors from Sections 3.5.1 and 3.5.3. Figure 3.18

shows a typical result obtained from repeated simulations. The curves in solid blue represent
the estimation error for the coupled estimation, the the solid gray lines present the explicit
pose measurements. Figure 3.18 (a) presents the convergence results without measurement
noise and Figure 3.18 (b) the steady-state with measurement noise. From top to bottom, the
results correspond to the estimation error for body orientation error in Euler angles in ◦ for
roll θ̃B , pitch φ̃B , yaw ψ̃B and gyro bias error for the first, second and third components of b̃ω

in [rad/s], position estimation error p̃ [cm], estimation error of linear velocity ṽ [cm/s], and
estimation error of accelerometer bias b̃a [m/s2]. We can clearly verify that the estimates con-
verge to the real states. In this extreme situation, however, the convergence of linear velocity
and accelerometer bias estimates is slightly slower than in Section 3.5.3. This result holds also
with c-to-IMU rotation estimation, and the estimation of translational parameters such as lo-
cal gravitational acceleration and c-to-IMU translation. We consider this coupled approach in
the experiments of Chapter 4.

3.6 conclusion

This chapter addressed the data fusion process for pose estimation. In order to improve the
data fusion, we estimate several parameters of the system, e.g. gyroscope and accelerometer
bias, local gravitational accelerometers and camera-to-IMU rotation and translation.

We discussed the estimation of orientation and translational dynamics independently. First,
we employed tools from nonlinear control to address the orientation dynamics. We provided
three novel nonlinear observers on the group of rotation matrices. The first two observers are
extensions of the passive complementary filter that ensure (almost) global asymptotic stability
with domain of convergence independent of the magnitude of the innovation gains. We study
the estimation of orientation, gyro bias and c-to-IMU rotation afterwards. The observability
of this system is strictly related to angular body motion, and our observability analysis pro-
vides an explicit expression of the movements that ensure observability. We further propose
an extension for the passive complementary filter so as to estimate c-to-IMU rotation also.
We can ensure that the estimation error exponentially stability under specific (and specified)
conditions. The advantages of our filter against classical techniques are twofold. First, the
computation of the proposed observers is simpler, since we can evaluate the innovation terms
using instantaneous information only, i.e. there is no need to compute the integrals to obtain
the Kalman gains. Secondly, even though classical techniques are also locally exponential sta-
ble, we could verify via simulation results that the domain of convergence of the proposed
method is larger than the one provided by Kalman-based techniques.

The translational dynamics is analyzed as a linear time-varying system. Initially, we stud-
ied the estimation of position, linear velocity and accelerometer bias. This system is uniformly
observable independently of the body motion. We provided a globally exponentially stable
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108 nonlinear observers for pose estimation
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Figure 3.18: Coupled estimation of orientation and position.
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3.6 conclusion 109

nonlinear observer computed using instantaneous information, and studied the problem of
concurrent estimation of position, linear velocity, accelerometer bias with local gravitational
acceleration and c-to-IMU translation. The observability of these systems is related to the an-
gular motion, and our observability analysis provided explicit motion for (part of) the systems.
The resulting Kalman filter for these systems is also globally exponentially stable, however,
we provided observers that use innovation terms that use only instantaneous information. In
this way, the resulting filters are simpler than Kalman-based techniques that must compute
the covariance matrices additionally to the states themselves.

We also conjectured an observer for the estimation of the position, linear velocity and the
three parameters that interact with these variables. This conjecture, however, is not endowed
with a proof of stability. Concluding the chapter, we propose a procedure for tuning the gains
of the nonlinear observers based on the settling times of the estimate errors. Furthermore,
several simulation results endorse the simplicity and high performance of the proposed tech-
niques compared to Kalman-based filtering.

The proposed nonlinear observers can improve the performance of direct visual tracking
by providing accurate initialization after large displacements. The next Chapter presents the
results obtained for a visuo-inertial sensor employing the visual methods introduced in Chap-
ter 2 with the nonlinear observers previously introduced.
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4
R E S U LT S O N V I S U O - I N E RT I A L P O S E E S T I M AT I O N

This chapter addresses the validation of visuo-inertial pose estimation using the tools pre-
sented in this thesis. We discussed different direct visual tracking methods in Chapter 2, and
verified that these methods are indeed accurate solutions to compute relative pose of a mov-
ing camera. The downside of all gradient-based direct visual tracking methods, however, is
the need of an initialization close enough to the optimal solution. Inertial sensors can measure
incremental displacements in faster rates than the camera. We introduced multiple nonlinear
observers in Chapter 3. These observers take the inertial and pose data into account for pose
estimation with concurrent identification of several parameters of the system.

4.1 visuo-inertial sensor

The experimental data analyzed in this chapter was obtained using the sensor depicted
in Figure 4.1. This sensor consists of a xSens MTi–G IMU, with an AVT Stingray 125B camera.
The IMU consists of accelerometers and angular rate gyroscopes that are capable of providing
specific acceleration and angular velocity at 200 [Hz]. The camera provides a video stream
of 40 images per second with resolution of 800 × 600 [pixel]. The samples obtained from the
camera and IMU are synchronized. We can define two frames, B and C associated to the the
IMU and camera respectively. Notice that we can easily determine an estimate of the sensor-
to-sensor orientation by inspection

BRC =




0 0 1

−1 0 0

0 −1 0


 ,

and the translational displacement depends on the size of the lenses. We can either neglect this
displacement, assuming BpR = 03×1, or try to measure it using a caliper. However, these are

B

C

Figure 4.1: Inertial-visual sensor used in the experiments.
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112 results on visuo-inertial pose estimation

only rough estimates of the frame-to-frame calibration since we are unsure about the actual
location of the optical center.

The visual-inertial system considered in the experiments employed Theia SY125M lenses.
These are ultra wide-angle lenses that present practically no distortion at the the resolution
we employed. A previous calibration procedure to obtain the intrinsic parameters yielded the
matrix

K f =




448.85088 0 394.30650

0 450.26420 292.82383

0 0 1


 . (4.1)

4.2 pose estimation and direct visual tracking

We discussed in Section 2.6 how to employ the homography warp in direct visual track-
ing. That solution is interesting when we know previously the texture of a surface. More
specifically, let us suppose that the reference image IR is obtained with the optic center of the
camera coincident to a frame R, and IC is obtained with the optic center of the camera coinci-
dent to another frame C at time t. We can express relative the pose R(R, p)C by the Euclidean
homography (1.22),

CGR = CRR + (Rz−1)C pR
RnT ,

where RnT and Rz−1 denote the scaled normal vector and distance of the plane in R frame.
Moreover, the projective Homography, c.f. Section 1.3.4,

CHR ∝ K f
CGRK f

−1

is given as a function of the pose assuming that the intrinsic parameters K f of the camera,
and the normal vector Rn = (Rz−1)Rn. The relation to the Euclidean homography RGC is
straightforward, and we can decompose the Euclidean homography in components of orien-
tation, scaled position, and unitary normal vector, c.f. Section 1.3.4. Such decomposition yields
two possible solutions, and we can identify the correct one if the normal vector the scene is
known. Remark, however, that, in this case, we solve an optimization in 8 dimensions in or-
der to obtain a 6 dimensional pose. The extra two degrees of freedom are a drawback that
increases the likelihood of being trapped in local minima of the similarity functions.

Assuming that we know the actual normal vector and intrinsic parameters K f , we can re-
duce the dimension of the optimization by redefining the warp function in order to employ
the actual pose instead of the projective Homography. For instance, we can define an applica-
tion ζ for X = SO(3)× R3, i.e. X = C(R, p)R,

ζ : X × R3 × M(3) → SL(3),

(X, Rn, K f ) 7→ ζ(X, Rn, K f ),

directly from (4.2), i.e. ,

ζ(X, Rn, K f ) = K f

RRC + C pRRnT

3
√

1 + RnTRRCC pR
K f

−1.

Consequently, we can define a warp wE(X, p) = wP
(
ζ(X, Rn,K f ), p

)
. Notice, however, that

this is not actually a group action, since wE(X1X2, p) 6= wE(X1, wE(X2, p)), ∀ X1, X2 ∈ X.
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4.3 multi-rate data fusion 113

Algorithm 2 Integrate estimates

Require: IMU sampling period ∆I , gyro Bωy [n] and accelerometer Bay [n] measurements.
Auxiliary variables:

ω̂ = Bωy [n]− b̂ω[n−1], â = RR̂B [n−1]
(Bay [n]− b̂a[n−1]

)
+ ĝ[n−1],

Rω = I3 + sin(|ω̂|∆I)S
(

ω̂
|ω̂|

)
+
(
1 − cos(|ω̂|∆I)

)
S
(

ω̂
|ω̂|

)2

Integrate pose estimates:

RR̂B [n] =
RR̂B [n−1]Rω , b̂ω[n] = b̂ω[n−1], B R̂C [n] =

B R̂C [n − 1],
R p̂B [n] =

R p̂B [n−1] + Rv̂[n−1]∆I + â ∆I
2

2 , Rv̂[n] = Rv̂[n−1] + â∆I ,

b̂a[n] = b̂a[n−1], R ĝ[n] = R ĝ[n−1], B p̂C [n] =
B p̂C [n−1].

For the sake of simplicity, we only assume that the group action holds only locally, i.e. close
enough to X1, and the geometric Jacobian yields

∂xwE(φ(x), pi) = ∂HwP(I3, pi) · ∂Xζ(φ(x), Rn, K f ) · ∂xφ(0)

with ∂HwP(I3, pi) given by (2.36), and ∂Xζ(φ(x), Rn, K f ) · ∂xφ(0) is computed as (Benhimane,
2006, pp. 75-76). Notice that invariance properties (2.36) for group actions do not hold any-
more, therefore the geometric Jacobian is not constant and must be recomputed at each itera-
tion.

4.3 multi-rate data fusion

The main results of Chapter 3 concern nonlinear observers with stability proof for pose es-
timation. We employ tools from nonlinear control theory in order to determine the conditions
and stability properties, and the ensemble of results is obtained for continuous time. How-
ever, as we have introduced in this chapter, the IMU and camera provide samples of the data
different frequencies. Hence, the proposed nonlinear observers should be adapted to handle
other three requisites:

– Discrete time integration;
– Discrete time update;
– Forecast–update decoupling.

The first requisite correspond to the periods of time during which we obtain only inertial
measurements. During these periods, there is no pose measurement in order to compute the
innovation terms. Algorithm 2 describes the integration procedure:

Concerning the translational dynamics, we can compute the integrals using Euler’s method
directly, however, the same method is not valid for the rotational dynamics. Instead, we can
compute the integral explicitly

∫ tn

tn−∆I

Ṙ dt =
∫ tn

tn−∆I

R(t)S(ω(t)) dt,

where ∆I denotes the sampling period of the IMU, and, assuming that the angular rate is
sampled by a zero-order holder, then ω(t) = ω during the time interval [t0 − ∆, t0) and we
can compute

R[n] = R[n − 1]exp{S(ω∆I)},
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114 results on visuo-inertial pose estimation

Algorithm 3 Update estimates

Require: IMU measurements: gyroscope Bωy [n].
Require: Camera measurements: RpC [n], RRC [n].

Auxiliary variables:

ω̂ =Bωy [n]− b̂ω[n], RR̂C [n] =
B R̂C [n]

B R̂C [n], R p̂C [n] =
R p̂B [n] +

RR̂B [n]
B p̂C [n].

Compute errors:

R̃C = RRC [n]
C R̂R[n], p̃C = RpC [n]− R p̂C [n].

Compute innovation terms:

αRB = kRB
B R̂R[n]vex

(
Pa(R̃C)

)
− kRC

B R̂R[n]Pa(R̃C)
RR̂Bω̂,

αω = −kω
B R̂R[n]vex

(
Pa(R̃C)

)
, αRC = kRC

C R̂RPa(R̃C)
RR̂Bω̂,

αpB = kpB p̃C + kpCS
(RR̂B [n]ω̂

)
p̃C , αv = kv p̃C ,

αa = −ka

(
I3 +

1+kpC
kpB

S
(
ω̂
))B R̂R[n] p̃C ,

αg = kg p̃C + kg
kpC
kpB

S(RR̂B [n]ω̂) p̃C , αpC = −kpCS(ω̂)B R̂R[n] p̃C ,

Compute innovation rotation matrices:

RαRB
= I3 + sin(|αRB |∆C)S

(
αRB
|αRB |

)
+
(
1 − cos(|αRB |∆C)

)
S
(

αRB
|αRB |

)2
,

RαRC
= I3 + sin(|αRC |∆C)S

(
αRC
|αRC |

)
+
(
1 − cos(|αRC |∆C)

)
S
(

αRC
|αRC |

)2
,

Update pose:

RR̂B [n] =
RR̂B [n]RαRB

, b̂ω[n] = b̂ω[n] + αω∆C, B R̂C [n] =
B R̂C [n]RαRB

,
R p̂B [n] =

R p̂B [n] + αpB∆C, Rv̂[n] = Rv̂[n] + αv∆C,

b̂a[n] = b̂a[n] + αa∆C, R ĝ[n] = R ĝ[n] + αg∆C, B p̂C [n] =
B p̂C [n] + αpC ∆C.

where n = t/∆I . The exponential matrix of SO(3) is computed using Rodrigues rotation
formula:

exp{S(ω(t)∆I)} = I3 + sin(|ω(t)∆I |)S
(

ω(t)
|ω(t)|

)
+
(
1 − cos(|ω(t)∆I |)

)
S
(

ω(t)
|ω(t)|

)2
.

Remark that we must be careful with numerical precision when |ω(t)| ≈ 0.
The second requisite corresponds to the update on the estimates due to the innovation

terms defined by the nonlinear observers. The integrals in this case, are computed with re-
spect to the sampling period ∆C between two camera frames. We summarize Proposition 3.3
and Conjecture 3.7 in Algorithm 3. Notice that changing the filter towards Proposition 3.1 or
Corollary 3.3 is direct, i.e. we do not intend to estimate BRC , BpC , or Rg, we need simply to
update the corresponding gain kRC , kpC or kg to zero.

The third requisite corresponds to the different frequencies for the integration of IMU and
visual data. We summarize a general algorithm for visuo-inertial fusion in Algorithm 4.
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4.3 multi-rate data fusion 115

Algorithm 4 Visuo-inertial fusion

Require: initial state estimate x̂[0] = (RR̂B , b̂ω, B R̂C , R p̂B , Rv̂, b̂a, R ĝ, B p̂C).
Thread – IMU
for all new measurement u[n] = (Bωy , Bay) do(

x̂[n], u[n]
)

: integrate estimates → x̂[n + 1]
n = n + 1.

end for

Thread – Camera
for all new image do

verify corresponding sample nC < n
x̂[nC ] : compute pose from using visual tracker → x[nC ](
x̂[nC ], u[nC ], x[nC ]

)
: update estimates → x̂[nC ]

for all ni ∈ {nC , . . . , n} do(
x̂[ni], u[ni]

)
: integrate estimates → x̂[ni + 1]

end for
end for

4.3.1 Gain tuning and observability conditions

Section 3.4 presented a technique to tune the gains of the nonlinear observer based using
settling times of the estimates. However, this method holds only for the cases where the
system is uniformly observable independently of the motion. That hypothesis is not valid,
for instance, for the cases introduced in Sections 3.2.2, 3.3.2 and 3.3.3. These systems have
observability conditions based on the angular motion of the body. Moreover, the respective
observers, Proposition 3.3, Proposition 3.6 and Proposition 3.7, also require sufficient motion
to obtain exponential stability.

We propose to use variable gains kRC = kRC mδ(t), kg = kgmǫ(t) and kpC = kpC mǫ(t), modu-
lated by some δ(t) = |Bω̇(t)× Bω̈(t)| and ǫ(t) = |Bω(t)× Bω̇(t)|. This choice allows the ap-
plication of the innovation terms for C-to-IMU calibration and local gravitational acceleration
only if the observability condition is satisfied. The terms that provide sufficient observability
conditions cannot be directly measured, hence we design a secondary filter to identify this
condition from gyro measurements. We consider an approximate model of constant angular
jerk, i.e. B ...

ω = 0 and use a linear Kalman filter with Bω̂, B ̂̇ω , and B ̂̈ω as states, and Bωy as
measurement. The success of this filter relies on the fact that the bias bω is constant for rela-
tively long periods of time, therefore this variable does not influence the evaluation of B ̂̇ω and
B ̂̈ω instantaneously. Additionally, the goal of such estimation is not to estimate these variables
accurately, yet to identify when |Bω̇ × Bω̈| > δ, and |Bω × Bω̇| > ǫ, for δ > 0 and ǫ > 0.

We arbitrarily define

mδ(t) =
(
1 + e−

5
4 (δ(t)−100))−1, mǫ(t) =

(
1 + e−

5
4 (ǫ(t)−10))−1. (4.2)

The above functions address the problem caused by movements that do not necessarily yield
a fully observable system, we still have to choose the values of kRC , kg and kpC however. The
rationale from Section 3.4 only holds if the system is uniformly observable, and since these
parameters are modeled by constant terms, we employ the values of kω obtained in (3.51) for
kRC , and ka obtained in (3.55) for kg and kpC .

To evaluate the proposed classifier for the angular motion, we place the sensor on a tri-
pod and further perform three different angular motions. The first two movements are made
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Figure 4.2: Evaluation of the filter for identification of observability condition.

(a) Template 1 (b) Template 2 (c) Template 3

Figure 4.3: Template images employed in the experiments.

around single axes, from 0.4 to 3 [s], and 5.5 to 8 [s]. A third movement satisfying the observ-
ability condition is made from 9 to 13 [s]. The result obtained using the estimator is depicted
in Figure 4.2, where Figure 4.2 (a) shows, from top to bottom, the angular velocity Bωy [rad/s],
angular acceleration B ̂̇ω [rad/s2], angular jerk B ̂̈ω [rad/s3], whilst Figure 4.2 (b) displays, from
top to bottom, evaluations of the term |B ̂̇ω × B ̂̈ω | provided by (3.34) and the resulting kRC , the
term |Bω̂ × B ̂̇ω | provided by (3.45) and the resulting kg. It is clear that the estimated evolution
of angular acceleration and jerk are mostly parallel for the first two parts. For the third move-
ment, the angular acceleration and jerk are not parallel and |B ̂̇ω × B ̂̈ω |, |Bω̂ × B ̂̇ω | are large.
Note that in the end of this movement, around 13 [s], the terms |B ̂̇ω × B ̂̈ω | and |Bω̂ × B ̂̇ω |
decrease slowly, but the gain functions decrease faster. This behavior is substantial to ignore
slow motions that would not contribute to the estimation process with respect to the noise
value of gyro measurements.

4.4 experimental setup

We performed several hand-held experiments for the estimation of pose and system param-
eters to evaluate the proposed data fusion algorithm of pose estimation using direct visual
tracking methods and the proposed nonlinear observers. The experiments are conducted as
follows. First, we printed out versions of the templates depicted in Figures 4.3 (a), (b) and
(c) in 37.6 × 28.2 [cm] rectangles, and thus each target can serve as reference image IR to the
direct visual tracking method. For each experiment, a target is placed over a surface parallel
to the ground. Hence, we can define a reference frame R with two axes coincident to two
orthogonal sides of the target, and the third axis coincident to the gravitational acceleration.
For the sake of simplicity, we define the origin of R at the corner corresponding to the up-
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4.5 concurrent pose and imu bias estimation 117
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(a) Important camera frames (b) Initialization of camera pose via feature matching

Figure 4.4: Initialization setup of the system.

per left pixel of the digital image. Concerning the visual tracking methods, we use a IR with
320× 240 [pixel]. Let us define C0 as the frame associated with the optical center of the camera
measuring IR hypothetically. Therefore, the configuration of target with the known intrinsic
parameters from (4.1) allow us to compute the orientation and position R(R, p)C0

associated
to C0, and the respective scaled normal vector C0 n.

A simplified representation of the setup is depicted in Figure 4.4. Recall that direct visual
methods are incapable of computing the pose of the camera on the first frame, since these
methods employ local optimization schemes. Therefore, the initialization of the camera pose
is made using SIFT features from the template and IC. Using the corresponding features,
we can compute the projective homography CHC0 using the classic technique described in Sec-
tion 1.3.4. The initial pose R(R, p)C can be computed straightforwardly using a decomposition
of the obtained projective homography CHC0 and the scaled normal vector C0 n.

Each experiment correspond to a sequence of images and IMU measurements that evalu-
ated off-line with using the structure of Algorithm 4. An initial guess for the biases is obtained
after leaving the IMU over the same surface for a few seconds, and this bias is subtracted from
the raw IMU measurements afterwards. We employ a direct visual method derived from the
SSD with Huber weights and ESM optimization. We have employed this method instead of the
NCC from Algorithm 1, since the changes in illumination are not substantial. In this applica-
tion, both techniques provide similar results, however the SSD has slightly less computational
effort.

We still need to define the gains of the nonlinear observer. Recall from Section 3.4 the
continuous design of the filter allows to define the gains based on arbitrarily small settling
times. However, the settling times for the digital implementation are limited by the update-
rate of the system. We use the following “rule of the thumb” to define the settling times in
function of the update period:

τRB = 4∆C , τbω
= 15, τpB = 4∆C , τv = 8∆C , τba

= 15.

The corresponding gains are computed using (3.51) and (3.55), and, when applicable, we use
the reference gains kRC = kbω

, and kpC = kg = kba
.

4.5 concurrent pose and imu bias estimation

The first couple of experiments consider the pose estimation using the template from Fig-
ure 4.3 (a). The movements consist mostly in translational displacement with peaks of high
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Figure 4.5: IMU measurements.

angular velocities. Figure 4.5 shows the IMU measurements for these sequences. For these
initial experiments, we assume a rough calibration of c-to-IMU calibration, i.e.

BRC =




0 0 1

−1 0 0

0 −1 0


 , BRC ,




0

0

0


 . (4.3)

We thus compute only pose (orientation and position), linear velocity, and IMU biases. Recall
that the resulting system is uniformly observable independently of the inputs. The following
experiments explore the effects of update-rate reduction in pose estimation, and the ability of
the method to recover from complete occlusion of the target. The videos for these sequences
are available in http://goo.gl/68gH3.

4.5.1 Comparing multiple update-rates

We first inspect the effects of different update-rates in the pose estimation. The camera
provides, optimally, frames at 40 [Hz]. However, the direct visual tracking method is unable
to compute a solution for pose immediately. There are two main implications due to this delay.
First, the update-rate of the pose estimation system is given by, at least, the computation time
of the visual tracker. Secondly, the obtained solution is delayed by that same period. The
accuracy of the pose estimate obtained by the tracking method is unaffected though.

In this experiment, we evaluate using 5 different update rates: 40 [Hz], 20 [Hz], and 10 [Hz].
Figure 4.6 displays the results of this experiment. The upper left plot depicts the trajectory of
B frame as computed by the nonlinear observer updated at 40 [Hz], the upper right plot repre-
sents the normalized cross correlation (NCC) coefficient between two frames, and number of
iterations computed by the visual tracker. Then, the central right shows the translation estima-
tion error p̃ [cm], whilst the left plot displays the orientation innovation θ̃B = 180

π vex(Pa(R̃)).
The latter estimation error is equivalent (locally) to the angle-axis representation of the ori-
entation error in [◦]. The bottom figures depict estimated gyro b̂ω [rad/s], and accelerometer
b̂a [m/s2] biases at left and right, respectively. There are five curves displayed in each plot,
the dashed green curve denotes the response for 10 [Hz], solid blue for 20 [Hz] and dashed
red 40 [Hz]. Moreover, fifteen image samples from this sequence are organized in three rows
and five columns. The samples collected at a the same instant are displayed column-wise,
whilst the results obtained by the nonlinear observer updated at 40, 20 and 10 [Hz] are
displayed row-wise. Notice in each sample that two squares are drawn besides the image.
Squares in dashed magenta lines represent the projection of the corners of target using the
pose measured at the previous frame. For instance, on the first row, the green squares refer to
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Figure 4.6: Comparing multiple frame-rates.

te
l-0

08
61

85
8,

 v
er

si
on

 1
 - 

13
 S

ep
 2

01
3



120 results on visuo-inertial pose estimation

the projection the delayed by 25 [ms], on the second and third rows by 50 and 100 [ms], respec-
tively. Additionally, red, blue and green squares represent the projection of target corners of
using a forecast provided by the nonlinear observer at 40, 20 and 10 [Hz], respectively. These
samples provide a rough impression of the current velocity of the body, as we can compare
the results of the previous frame to a virtual ground truth provided by the target.

The resulting trajectory shows a rich translational motion throughout the experiment. The
positions vary from points of view close and far from the target. We can certify that the high
quality of the measurements throughout the experiment via the inter-frame NCC coefficient.
Recall that a high NCC coefficient between the frames is related to a good tracking of the
target, therefore the high coefficients ensure the high quality of the measurements. Moreover,
the integration of inertial data provides a better initialization of the tracking algorithm. In
fact, we can assume that each image sample displays the information available at the given
time instant. Hence, when the visual tracking method finishes to compute the pose estimate,
the camera has already moved. Therefore the provided pose measurement is already “out of
date”. We obtain indeed better estimates of the current pose using the high frequency inertial
data.

Remark from the NCC coefficients that the decreasing the update-rate of the visual tracker
does not imply notably worse pose measurements. However, the number of iterations to com-
pute the solution increase considerably with the reduction of the update-rate, the system at
10 [Hz] compute 3 or 4 iterations more than at 40 [Hz], i.e. an increase from 10 up to 40%. Be-
sides, the reduction of the frame-rate can be indeed dangerous for the visual tracking method.
Notice that innovation errors are related to the initialization errors of the visual tracking
methods, since they are computed directly from the difference between the initialization and
output of the visual tracking method. Although the errors on orientation are similar for all
of the evaluated update-rates, they increase slightly for lower update-rates. The translational
errors, on the other hand, degrade significantly in two out of the three axes with a decrease
of the update-rate. Therefore, we can verify that the visual tracking method may be already
at the limits of the basin of convergence at 10 [Hz], and may not provide the global solution
for even lower update rates.

Let us now focus on the results of the translational dynamics. Notice even though the
accelerometer data was corrected by a previous calibration step, the estimates converge to

a steady state about b̂a =
[
0.15 −0.15 0

]
T. That value may correspond to the influence

of the gravity within an error of 1 degree. We can point out two origins for this error: bad
calibration of c-to-IMU frames, or bad estimate of the local gravitational acceleration. Remark
that besides the effects on the bias, we can also verify that translational estimation error
increases with higher angular velocities. Hence, we can relate these effects to a bad estimation
of c-to-IMU translation. It is important to mention that the proposed algorithm works even
with a bad initialization of c-to-IMU frame, however, the estimates can be improved with
better sensor-to-sensor parameters.

4.5.2 Complete occlusion of reference image

We have verified that the proposed method performs well for different update-rates and,
from now on, we display results considering only updates at 20 [Hz]. This frame-rate is easily
obtained in current computers. One advantage claimed for the fusion of visual and inertial
data is the ability of obtaining a pose estimate even when the target is completely occluded.
We verify in the second experiment that the designed system is able to recover from loosing
the target out of the field of view. Notice that the direct visual tracking method is unable to
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4.6 concurrent pose , imu bias and sensor-to-sensor frame estimation 121

provide pose measurements during this period, therefore the estimates are computed only via
the integration of inertial measurements.

Figure 4.7 displays the results of this experiment similarly to the previous sequence. The
upper left plot depicts the trajectory of B evaluated by the nonlinear observer, and the up-
per right represents the NCC coefficient between two frames, and the number of iterations
computed by the visual tracker. Furthermore, the central right plot shows the translation es-
timation error p̃ [cm], whilst the left plot displays the (local) angle-axis representation of the
matrix corresponding to the orientation error in [◦]. The bottom figures depict the estimated
gyro b̂ω [rad/s], and accelerometer b̂a [m/s2] biases at the left and right, respectively. We also
present a few image samples of this sequence, where two squares are drawn besides the im-
age itself. The squares in green dashed lines represent the projection of the corners of target
using the pose measured at the previous frame, whilst the blue squares represent the projec-
tion of target corners using the forecast provided by the nonlinear observer. These samples
can indicate the current velocity of the body roughly, since we can compare the results of the
previous frame to a virtual ground truth provided by the target.

The estimated trajectory describes the motion of the sensor mostly parallel to the target,
however, around 14 [s] the visuo-inertial sensor moves farther from the target. We can verify
via the inter-frame NCC that the camera moves such that target indeed exits its field of view
around 16 [s], and latter the target is recovered afterwards around 17 [s]. The image samples
describe the event with richer details. Moreover, notice that the estimates are accurate even
without updates for over 0.5 [s], and the direct visual tracking method is capable of accurately
recovering the target once the target is back inside the field of view. Of course, the of orien-
tation and translation estimation errors are larger at the instant that the target returns to the
field of view than during the rest of the sequence. However, the system is still able to provide
a good initialization for the visual tracking method after a relatively large integration without
visual updates. Concluding, let us analyze the results for accelerometer bias estimation. No-
tice that the results are akin to the previous experiment, as the accelerometer bias converges to

a steady state about b̂a =
[
0.15 −0.15 0

]
T. Hence we have a stronger evidence of deviation

in the rough estimates of c-to-IMU frames.

4.6 concurrent pose , imu bias and sensor-to-sensor frame estimation

Previous results showed that, even though the method works with rough estimates of the
sensor-to-sensor calibration, high angular velocities may impair the calculation of high quality
pose estimates. The remaining experiments evaluate the performance of the proposed method
for pose estimation with accurate calibration of c-to-IMU frame. We perform evaluate two
sequences in Sections 4.6.1 and 4.6.2. The prior experiment computes the c-to-IMU frames
using the full Algorithm 3, whilst the latter compares the data fusion algorithm using the
obtained calibration frame, and compares the results with a system using the initial rough
estimates. Figure 4.8 shows the IMU measurements for these sequences, and the evaluation of
mδ(t) from Eq. (4.2). The experiment from Section 4.6.1 uses the template from Figure 4.3 (b),
and the proposed algorithm to computes c-to-IMU rotation and translational displacement.
The experiment from Section 4.6.2 uses the template from Figure 4.3 (c) and we thus verify
the benefits of using the calibrated frames over rough c-to-IMU estimates. The videos for these
sequences are available in http://goo.gl/68gH3.
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Figure 4.7: Recovering from complete occlusion of reference image.
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Figure 4.8: IMU measurements.

4.6.1 Calibration procedure

The next sequence corresponds to the c-to-IMU calibration itself. We initialize the c-to-IMU
frame parameters as (4.3) and use the full update scheme from Algorithm 3. Furthermore, we
analyze the same measurements with a Kalman filter designed for the translational dynamics
in order to compare the calibration results obtained. Figure 4.9 displays the results of this
experiment. The results are distributed as follows. The upper right plot shows the translation
estimation error p̃ [cm], whilst the upper left plot displays the (local) angle-axis representation
of the matrix corresponding to the orientation error in [◦]. The central plots depict the esti-
mated gyro b̂ω [rad/s], and accelerometer b̂a [m/s2] biases at the left and right, respectively.
Afterwards, the plots refer to results of c-to-IMU orientation and translational displacement.
Notice that we represent c-to-IMU rotation BRC using Euler angles: roll θC , pitch φC and yaw
ψC . The estimation of the local gravitational acceleration is shown in the center. The curves in
blue refer to the results obtained by the nonlinear observer and the curves in red the results
obtained by the Kalman filter. Finally, at the bottom left we present the trajectory of B evalu-
ated by the nonlinear observer and, at the bottom right, we present four image samples of this
sequence. The squares in green dashed lines represent the projection of the corners of target
using the pose measured at the previous frame and the blue squares represent the projection
of target corners using the forecast provided by the nonlinear observer.

The resulting trajectory presents regions with richer angular motion, that refer to the self-
calibration itself, and transition between these regions. We can identify five regions with richer
motion. The evolution of mδ(t) in Figure 4.8 (a) shows directly the five periods where the self-
calibration is computed. These periods present the larger angular velocity and are also the
regions with richer motion depicted in Figure 4.9. Again, we can verify that the initialization
provided by the estimator is closer to the current pose than the previous estimate obtained
by the visual method. We can verify that c-to-IMU rotation estimates converge towards a
steady-state about θC = −89.8◦, φC = −2◦ and yaw ψC − 88.5◦ and there are slight gyro
bias variations in the order of 2 · 10−3 [rad/s], i.e. 0.12[◦/s]. Moreover, notice that the gyro
bias estimates a sinusoidal behavior even with a a calibrated c-to-IMU frame. These effects
are probably caused by low frequency errors of the visual tracking method and errors due
to scale of the gyroscopes. First, the visual tracking methods have limited precision, and the
optimization techniques can yield small low frequency errors. Secondly, we use values of
gyro scale factors given by the manufacturers. These values may also vary over time and such
changes provide unomdeled effects that can thus influence the final estimates. Concerning the
translational dynamics, estimates of c-to-IMU translation converge towards a steady-state of
BpC =

[
0.0773 −0.0208 −0.0292

]
.
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Figure 4.9: Sensor-to-sensor frame calibration.
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The resulting calibration by the nonlinear observer provides:

B R̂C =




0.0290 0.0043 0.9996

−0.9987 −0.0412 0.0291

0.0415 −0.9991 0.0031


 , B p̂C =




0.0773

−0.0208

−0.0292


 . (4.4)

Remark that, apart from the second component, the c-to-IMU translation computed by
the nonlinear observer is similar to the one computed by the Kalman filter. The results con-
cerning accelerometer bias present the same trend, however, the Kalman filter present more
constant results. Differently from the previous experiments, the steady state of the accelerom-
eters converge to values closer to the pre-calibration of the sensors. The estimates on the local
gravitational field show largest discrepancy between the nonlinear observer and the KF. The
proposed algorithm displays variations mostly on the third component of R ĝ, whilst the KF
presents a practically constant third component with higher variations on the first and second
components. Although there is not enough information to certify which filter provided the
“correct” estimate, we can verify through the innovations p̃ that the proposed filter provides
more accurate forecasts than the KF. This difference clearly contradicts our simulation re-
sults, where the results had errors with similar order. Let us remark, however, the considered
unmodeled effects in the synthetic data consisted mostly of noises, and we knew all of the
parameters of simulation. The KF was be finely tuned for synthetic data, whilst this procedure
can be considerably more time consuming with real data. Probably, it is possible to tune better
the parameters of the KF, however, in this author’s opinion, the estimation problem should
be overwhelmed by ad hoc fine tuning. Even if the KF could be tuned and provide similar
or slightly better estimates the our filter, the proposed technique still provides benefits of the
simpler tuning and implementation.

4.6.2 Validation sequence

The last sequence provides a validation for the c-to-IMU calibration. We compare the results
for the proposed algorithm with calibrated c-to-IMU frames, using B(R, p)C from (4.4). and
uncalibrated frames, using B(R, p)C from (4.3). We use in this experiment a version of the non-
linear observer to estimate pose, linear velocity, IMU bias. This experiments consists mostly
of rotational movements, as we can verify from the IMU measurements of Figure 4.8 (b). Fig-
ure 4.9 displays the results of this experiment. The red curves correspond to the system with
uncalibrated c-to-IMU frames, while the blue curves correspond to a system with calibrated
c-to-IMU frames. The distribution of the results is similar to the previous experiment. The
upper left and right plots correspond the (local) angle-axis representation the orientation er-
ror in [◦] and translational estimation error p̃ [cm]. The central plots depict the estimated
gyro b̂ω [rad/s], and accelerometer b̂a [m/s2] biases at the left and right, respectively. More-
over, there is a plot displaying the normalized cross correlation (NCC) coefficient between
two frames, and number of iterations computed by the visual tracker. At last, there are eight
image samples of this sequence. The squares in green dashed lines represent the projection
of the corners of target using the pose measured at the previous frame, while red and blue
squares represent the projection of target corners of using the forecast provided by the non-
linear observer with uncalibrated and calibrated c-to-IMU frames, respectively.

This sequence does not present as much translational motions as the others, however, we
can verify from the images samples that angular motion also yields displacements of the
reference image inside the field of view. These high angular velocities allows us verify more
clearly the effects of calibrated c-to-IMU frame in the estimation. First, notice that errors in
position are larger for the uncalibrated case than the calibrated ones. Deficient calibration of c-
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Figure 4.10: Validation of sensor-to-sensor frame calibration.
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4.7 conclusion 127

to-IMU translation associated with high angular velocity yield corrupted estimates Rv, which
in turn imply worse forecasts of RpB . This effect is put into evidence due to the (relatively)
large errors of BpC . On the other hand, the slight errors of about 1◦ are practically unnoticeable
in the rotational dynamics. These errors, recalling from the results of Section 4.5, propagate
to the estimation of accelerometer bias. We can verify from the results of this sequence that
the accelerometer bias estimates with a calibrated c-to-IMU frame are indeed coherent with
pre-calibration procedure.

4.7 conclusion

This Chapter discusses several implementation issues and experimental results using real
visuo-inertial data. We initially discuss the implementation of pose estimation using direct
visual tracking methods. We further present a version of the afore-introduced nonlinear ob-
servers for discrete time, and we discuss implementation issues of the gain tuning for systems
where the observability is related to the angular motion. We use these techniques for pose es-
timation in practical situations. We perform four experiments to verify the viability of the our
method using real data. We compare the effects due to lower frame rates, and the advantages
of using accurate c-to-IMU calibration over roughly calibrated systems.
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E P I L O G U E

This thesis addressed the problem of pose estimation using visuo-inertial sensors. These
systems consist of one camera and inertial sensors that present complementary properties
exploited to provide highly accurate estimation with also high frequency.

We have analyzed the details of several direct visual tracking methods, presented a sur-
vey of multiple similarity functions, and discussed the robustness properties given by each
function. Also, we have discussed optimization techniques for these similarities. We were
particularly interested in the normalized-cross correlation (NCC) among the aforementioned
similarity functions. This similarity is intrinsically invariant to affine illumination changes
and the computation of a gradient-based solution is also simple. We have presented a new
method for direct visual tracking based on the NCC, which is built upon three pillars: rejec-
tion of bad regions of the image; pixel-wise weighting invariant to affine illumination changes;
Newton-like optimization that uses the information from forward and inverse compositional.
The proposed method was exhaustively compared to other state of the art methods via an
analysis of the basin of convergence, scores obtained using a planar based visual tracking
benchmark dataset, and challenging real-world video sequences. We have verified that the
choice of the similarity function plays indeed an important role in direct visual tracking, how-
ever, the optimization technique is equally important. Moreover, experimental results indicate
that our method presents substantial improvements for the tracking of partially occluded
objects under severe illumination changes.

Even though direct visual tracking methods provide highly accurate pose information, the
pose measurements are computed in lower frequencies than incremental measurements of the
IMU. On the one hand, the incremental data can be integrated to provide an accurate initial-
ization for the visual algorithms, the Achilles’ heel of gradient based direct visual tracking, and
also to compensate for momentary loss of sight. IMU measurements are corrupted by additive
bias and noise, however, the information from visual pose estimation bounds the drift due to
pure integration. A multi-sensory system also has to cope with multiple coordinate systems.
For instance, the coordinate frames of the camera and the IMU are not coincident, and, al-
though rough calibration parameters can be usually obtained by a CAD model or inspection,
the estimates obtained from a poorly calibrated system are indeed less accurate. Classical algo-
rithms for inertial visual data fusion are typically based on Kalman filters and its extensions.
The nonlinear nature of the dynamics may already impair classical solutions, and inherent
observability conditions make the estimation problem even more challenging.

We studied the pose estimation and self-calibration problem using a control theory point of
view. The main results of this thesis consist in new observers for pose estimation with the con-
current identification of multiple parameters of the system. We have analyzed the rotational
dynamics using tools from nonlinear control, provided stable observers on the group of rota-
tion matrices that consist of extensions to the nonlinear complementary filter on SO(3). First,
we develop a filter that whose domain of convergence is independent of the magnitude of the
gains. Secondly, we proposed an extension of to that filter so as identify the c-to-IMU rotation.
The proposed observers maintain invariance properties of the original systems, and ensure
exponential stability of the estimation error under specific (and specified) observability condi-
tions. Moreover, the translational dynamics is studied as a linear time-varying system, and we
propose new Luenberger-like observers for several configurations of the system. We were ca-
pable of determining motion conditions under which the system is observable. The thorough
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130 epilogue

observability analyses allow us to prove uniform stability of the proposed observers. We also
conjectured an observer for the estimation of the position, linear velocity, accelerometer bias,
local gravitational field and c-to-IMU position. That conjecture, however, is not endowed with
stability proofs.

The nonlinear observers are tested using synthetic data (simulations) to evaluate proper-
ties such as domain of convergence and effects caused by unmodeled noise and parameters.
We also evaluated the visuo-inertial data fusion with real data using direct visual tracking
methods and the proposed nonlinear observers. We were able to perform experiments from
40 [Hz] (optimally) down to 10 [Hz] (worst case). The estimation of IMU bias is practically
unchanged, but we could verify that the pose estimation errors increase substantially. It is
possible to use a direct visual tracking even under lower framerates, however, the system is
more prone to initialization with large errors. We also verified the quality of pose estimation
with self-calibration using the conjectured method, which obtained fair results similar to a
Kalman filter. The experimental results support the use of visuo-inertial data fusion over pure
vision, and also the improvements due to accurately calibrated sensor-to-sensor frames over
roughly calibrated systems.

The development of new data fusion techniques was the main challenge of this thesis, since
we had to face the well established theory of Kalman-filtering. The main difficulty to justify
novel data fusion methods is that Kalman filters (KFs) work very well in most situations. The
proposed methods are simpler than KF because we can use directly pose and IMU measure-
ments with constant gains. A reader familiar with KFs can recall that our methods do not
involve solutions of Riccati algebraic nor differential equations, utterly because our filters do
not rely on the computation of extra parameters, such as the time varying gain or covariance
matrix. The good performance of KFs is also related to the fine tuning of their parameters,
specially for the orientation estimation. The effort put into the KF tuning was not discussed
here but the work must not be underrated. Let us remark that the KF is severely impaired
by a bad choice of its parameters. In some way, the good performance of our filter may be
shadowed by the results of a finely tuned KF. On the other hand, the proposed methods are
notably easier to tune than KF. We were able to use the proposed filter with simulated and real
data with practically the same parameters, whilst the KF had to be tuned for each application.
The proposed filters are endowed with proofs of the convergence of the estimates for large
initial errors. These properties are specially important for nonlinear estimation of the orienta-
tion dynamics, whilst the classical KF fails to guarantee the convergence of the estimates, and
fails to keep invariance properties of the group. Concerning the translational dynamics, recall
that KFs have convergence proofs for linear time-varying systems. However, the reader should
remark that the stability proofs do not hold for the steady-state implementations of the filter,
thus the Riccati differential equation must be computed in order to ensure the convergence
of the KF estimates. The detailed observability analyses developed in this thesis are contribu-
tions not less important than the observers. Remark that stability properties for (part of) the
observers rely explicitly on body motion, which is in turn related to observability conditions
of the system. Our results provide explicit motion conditions that guarantee observability and
allow us to better understand the convergence properties of the proposed observers and also
the convergence of Kalman-based filters.

The end of a thesis is also followed by proposal of future outcomes and extensions of the
work developed. First, we expect to validate the proposed algorithms (visual tracking and
nonlinear observer) on mini-drones in the short future. The visual tracking invariant to illumi-
nation changes could be useful in this context. Moreover, although the experimental validation
of the data-fusion tried to stimulate fast displacements of the sensors, the IMU measurements
obtained in drones are impaired, for instance, by effects due to the vibration of the chassis.
This difficulty still needs to be addressed. A direct continuation of this thesis could focus a

te
l-0

08
61

85
8,

 v
er

si
on

 1
 - 

13
 S

ep
 2

01
3



epilogue 131

gain tuning analysis and investigation of direct relations to optimal criteria given by strict
Lyapunov functions (Sepulchre et al., 1997, Ch. 3). One could improve the performance of the
proposed techniques, for instance, with simple time varying gains and maybe obtain a similar
response to KF with simpler innovation terms. Moreover, we considered that multiplicative pa-
rameters of the system were already identified. Surely, bad estimation of these parameters can
also impair the pose estimation, however their estimation requires more complex observabil-
ity conditions and likely more complex observers. Finally, we considered a known structure of
the scene, however, one must also estimate the normal vector with respect to the plane in order
to employ our method in simultaneous localization and tracking using monocular vision in
an unknown environment. It is likely that one cannot write observers with constant gains and
stability proofs for these systems without considering either the derivatives of acceleration
and angular velocity, or the trajectory of the pose during a period of time.
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A
P R O O F S F O R C H A P T E R 3

a.1 proof of lemma 3 .1

In order to show that the linear time varying system (3.3) is observable, we have to verify
the existence of constants τ, δ > 0 such that (3.4), i.e.

∀t ≥ 0, 0 < δIn ≤ W(t, t + τ) ,
∫ t+τ

t
Ψ(s, t)TCT(s)C(s)Ψ(s, t) ds,

is satisfied. The above inequality is equivalent to xTW(t, t + τ)x ≥ δ|x|2 for any vector x ∈
K = {x ∈ Rn : |x| = 1}. Thus, the proof consists in showing the existence of constants τ, δ > 0
such that

∀t ≥ 0, 0 < δ ≤ min
x∈K

∫ t+τ

t
|C(s)Ψ(s, t)x|2 ds.

We proceed by contradiction. Assume that for any τ, δ > 0, there exists t(τ, δ) such that

min
x∈K

∫ t(τ,δ)+τ

t(τ,δ)
|C(s)Ψ(s, t(τ, δ))x|2 ds < δ

Take τ = τ with τ the constant in (3.7), and consider the sequence (δp = 1/p). Thus, for any
p ∈ N, there exists tp such that

min
x∈K

∫ tp+τ

tp

|C(s)Ψ(s, tp)x|2 ds <
1
p

so that there exists xp ∈ K such that
∫ tp+τ

tp

|C(s)Ψ(s, tp)xp|2 ds <
1
p

. (A.1)

Since K is compact, a sub-sequence of the sequence (xp) converges to some x ∈ K. From
Assumption 3.1, A is bounded on [0,+∞). Therefore,

∀x ∈ Rn, ∀t ≤ s, e−(s−t)‖A‖∞ |x| ≤ |Ψ(s, t)x| ≤ e(s−t)‖A‖∞ |x|, (A.2)

where ‖A‖∞ = supt≥0 ‖A(t)‖. Since C is also bounded (from Assumption 3.1) and the interval
of integration in (A.1) is of fixed length τ, it follows that

lim
p→+∞

∫ tp+τ

tp

|C(s)Ψ(s, tp)x|2 ds = 0.

By a change of integration variable, this equation can be written as

lim
p→+∞

∫ τ

0
| fp(s)|2 ds = 0, (A.3)
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144 proofs for chapter 3

where fp(t) = C(t + tp)Ψ(t + tp, tp)x. Furthermore, it is easy to verify that

f
(k)
p (t) = Nk(t + tp)Ψ(t + tp, tp)x, (A.4)

where f
(k)
p the k-th order derivative of fp and Nk defined by (3.6). The existence of f

(k)
p , for

any k = 0, · · · , K + 1, follows by Assumption 1 of Proposition 3.1. The end of the proof relies
on the following lemma, proved further.

Lemma A.1. For any k = 0, · · · , K,

lim
p→+∞

∫ τ

0
| f

(k)
p (s)|2 ds = 0. (A.5)

Since the matrix M in (3.7) is composed of row vectors of N0, · · · , NK, it follows from (A.4)
that

∫ τ

0
|M(s + tp)Ψ(s + tp, tp)x|2 ds ≤

K

∑
k=0

∫ τ

0
| f

(k)
p (s)|2 ds.

Therefore, from Lemma A.1,

lim
p→+∞

∫ tp+τ

tp

|M(s)Ψ(s, tp)x|2 ds = lim
p→+∞

∫ τ

0
|M(s + tp)Ψ(s + tp, tp)x|2 ds = 0. (A.6)

Then, for any ξ ∈ Rn

|M(s)ξ|2 ≥ |ξ|2 min
i

λi(MT(s)M(s)) = |ξ|2λ1(MT(s)M(s)) (A.7)

with λ1(MT(s)M(s))≤· · ·≤λn(MT(s)M(s)) the eigenvalues of MT(s)M(s) in increasing order.
Furthermore, since M is bounded on [0,+∞) (as a consequence of Assumption (3.1) and the
definition of M), there exists a constant c > 0 such that

max
i

λi(MT(s)M(s)) ≤ c, ∀ s.

Thus

λ1(MT(s)M(s)) =
det(MT(s)M(s))

∏j>1 λj(MT(s)M(s))
≥ det(MT(s)M(s))

cn−1

It follows from this inequality, (A.2), (A.7), and the fact that |x| = 1 that

∀p ∈ N,
∫ tp+τ

tp

|M(s)Ψ(s, tp)x|2 ds ≥ c
∫ tp+τ

tp

det(M(s)T M(s)) ds (A.8)

with c = e−2τ‖A‖/cn−1 > 0. Thus, it follows from (3.7) and (A.8) that

∀p ∈ N,
∫ tp+τ

tp

|M(s)Ψ(s, tp)x|2 ds ≥ cδ > 0

which contradicts (A.6). To complete the proof, we must prove Lemma A.1.
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A.2 computing important determinants 145

Proof of Lemma A.1

Let us proceed by induction. From (A.3), (A.5) holds true for k = 0. Assuming that it
holds true for j = 0, · · · , k < K, we show that it holds true for k + 1. First, Assumption 1 of

Proposition 3.1 implies that for any j = 1, · · · K + 1, f
(j)
p is well defined and bounded on [0, τ],

uniformly w.r.t. p.
We claim that f

(k)
p (0) tends to zero as p tends to +∞.

Assume on the contrary that f
(k)
p (0) does not tend to zero. Then, there exists ε > 0 and a

subsequence ( f
(k)
pj

) of ( f
(k)
p ) such that | f

(k)
pj

(0)| > ε for all j ∈ N. Since | f
(k+1)
pj

(0)| is bounded

uniformly w.r.t. j (because f
(k+1)
p is bounded on [0, τ] uniformly w.r.t. p), there exists a constant

t′ > 0 such that

∀j ∈ N, ∀t ∈ [0, t′], | f
(k)
pj

(t)| > ε/2

This contradicts the induction hypothesis (A.5) for k. Therefore, f
(k)
p (0) tends to zero as p

tends to +∞. By a similar arguments, one can show that f
(k)
p (τ) tends to zero as p tends to

+∞. Now,
∫ τ

0
| f

(k+1)
p (s)|2 ds =

n

∑
i=1

∫ τ

0

(
f
(k+1)
p,i (s)

)2
ds

= −
n

∑
i=1

∫ τ

0
f
(k)
p,i (s) f

(k+2)
p,i (s) ds +

n

∑
i=1

[
f
(k)
p,i (s) f

(k+1)
p,i (s)

]τ

0
,

≤
n

∑
i=1

(∫ τ

0

(
f
(k)
p,i (s)

)2
ds

)1/2 (∫ τ

0

(
f
(k+2)
p,i (s)

)2
ds

)1/2

+
n

∑
i=1

[
f
(k)
p,i (s) f

(k+1)
p,i (s)

]τ

0
.

Concluding, we have that each term
(∫ τ

0

(
f
(k)
p,i (s)

)2
ds

)1/2 (∫ τ

0

(
f
(k+2)
p,i (s)

)2
ds

)1/2

in the first sum tends to zero as p tends to infinity due to (A.5) for k and the fact that f
(k+2)
p

is bounded uniformly w.r.t. p. Boundary terms in the second sum also tend to zero as p tends
to infinity since f

(k)
p (0) and f

(k)
p (τ) tend to zero, and f

(k+1)
p is bounded.

a.2 computing important determinants

Several proofs on this chapter rely on the widely known decomposition using Schur’s com-
plement. Let A ∈ M(n), B ∈ M(n, m), C ∈ M(m, n), D ∈ M(m, n), with nonsingular A. We
can write

M =

[
A B

C D

]
=

[
In 0n×m

CA−1 In

] [
A 0n×m

0m×n D − CA−1B

] [
In A−1B

0m×n In

]
,

such that

det(M) = det(A)det(D − CA−1B), (A.9)

and we can also verify for nonsingular D that

det(M) = det(D)det(A − BD−1C). (A.10)

so that for the specific case when D = −Im, we immediately obtain

det(A + BC) = det(A)det(Im + CA−1B). (A.11)
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146 proofs for chapter 3

a.2.1 On the determinant of S(a)2 + S(b)2

We claim that

∀ a, b ∈ R3, det(S(a)2 + S(b)2) = −(|a|2 + |b|2)|a × b|2. (A.12)

The relation is clearly satisfied when a = 03×1, thus let us focus on the case when a 6= 03×1.
For any vector a, we have that S(a)2 = −|a|2 I3 + aaT, thus

det
(
S(a)2 + S(b)2) = det

(
−(|a|2 + |b|2)I3 +

[
a b

] [
a b

]
T
)

. (A.13)

Thus, using (A.11), one obtains after (A.13) that

det
(
S(a)2 + S(b)2) = −(|a|2 + |b|2)det

([
|a|2 + |b|2 0

0 |a|2 + |b|2

]
−
[
|a|2 aTb

bTa |b|2

])
,

= −(|a|2 + |b|2)(|a|2|b|2 − (aTb)2). (A.14)

Finally, let θ denote the angle between the vectors a and b, then (aTb)2 = |a|2|b|2 cos(θ)2 and
|a × b|2 = |a|2|b|2 sin(θ)2 = |a|2|b|2(1 − cos(θ)2). Hence, the relation (A.12) follows directly
from (A.14).

a.2.2 On the determinant of S(a)2 + S(b)

We claim that

∀ a, b ∈ R3, det
(
S(a)2 − S(b)

)
= −|a × b|2 (A.15)

The relation is clearly satisfied when a = 03×1. Let us assume that a 6= 03×1, then for any
rotation matrix R ∈ SO(3),

R
(
S(a)2 + S(b)

)
RT = S(Ra)2 + S(Rb) = S(a)2 + S(b) (A.16)

with a = Ra and b = Rb. Thus, let us consider the case with R such that Ra = a = (a1, 0, 0)T.
Then,

S(a)2 + S(b) =




0 b3 −b2

−b3 −a1
2 b1

b2 −b1 −a1
2




We obtain after some straightforward calculation that

det
(
S(a)2 + S(b)

)
= −a1

2(b2
2 + b3

2) = −|a × b|2 = −|a × b|2.

Since S(a)2 + S(b) = R(S(a)2 + S(b))RT and det(AB) = det(A)det(B), we have that Eq. (A.15)
follows directly from (A.16) and the above equality.

a.3 observability of visuo-inertial systems

a.3.1 Proposition 3.2

We claim in Proposition 3.2 that the system comprising body orientation RRB , angular
rate gyro bias bω and c-to-IMU rotation BRC with angular rate gyro measurements Bωy in
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A.3 observability of visuo-inertial systems 147

the body frame and orientation RRC in camera frame and is instantaneously observable if
Assumption 3.2 and Eq. (3.30) hold, i.e.

∀ t ≥ 0, |Bω̇(t)× Bω̈(t)|2 > 0.

Let us first recall the dynamics given in (3.29)




RṘB = RRBS(Bωy − bω),

ḃω = 03×1,
B ṘC = 03×3,

with measurement Ry = RRC = RRBBRC . We can rewrite this system in

X , (RRC , CRB(
Bωy − bω), CRB) = (R, w, Q)

coordinates as




Ṙ = RS(w),

ẇ = QBω̇,

Q̇ = 03×3,

(A.17)

with input u = Bω̇, and measurement Y , Ry = R. We can show that ∄ two states X1,
X2 : X1 6= X2, that generate the same output map if the inputs satisfy (3.30). First, let us
compute the expression of Y(t) and its derivatives

Y = R, (A.18)

Ẏ = RS(w), (A.19)

Ÿ = RS(w)2 + RS(QBω̇), (A.20)
...
Y = RS(w)Ÿ + RS(QBω̈). (A.21)

The output map R = Y in (A.18), ∀ t ≥ 0, is unique independently of the inputs. Furthermore,
we obtain from (A.19) that S(ω) = YTẎ =⇒ ω = vex(YTẎ), ∀ t ≥ 0, is also unique indepen-
dently of the inputs. The same property is verified for Q using (A.20) and (A.21), we obtain
that

S(QBω̇) = YTŸ − S(w)2 = Pa(Y
TŸ − S(w)2) = Pa(Y

TŸ),

S(QBω̈) = YT ...
Y − YTŸ = Pa(Y

T ...
Y − Ÿ)

and
[

vex
(
Pa(YTŸ)

)

vex
(
Pa(YT

...
Y − Ÿ)

)
]
=

[
Qω̇

Qω̈

]
. (A.22)

The above equation provides a linear map of that associates Q, Bω̇, Bω̈ to a function of
the outputs vex

(
Pa(YTŸ)

)
, vex

(
Pa(YT

...
Y − Ÿ)

)
. Moreover, this output map is unique if the

condition given by Eq. (3.30) holds. This concludes the observability analysis of (A.17), and
consequently the analysis for the original system.
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148 proofs for chapter 3

a.3.2 Proposition 3.5

We claim in Proposition 3.5 that the concurrent estimation body-position in the reference
frame RpB , accelerometer bias ba and the acceleration due to the gravitational field Rg in the
reference frame is uniformly observable if Assumption 3.2, (3.42), i.e.

∀ t ≥ 0, ∃ τ, δ > 0 :
∫ t+τ

t
|Bω(s)× Bω̇(s)|2ds > δ ,

hold. We verify this statement using Proposition 3.1. Let us recall the dynamics given in (3.41)
for the variables relating to the translational motion:





R ṗB = Rv ,
Rv̇ = RRB

Bay − z + Rg,

ż = S(Rω)z ,
R ġ = 03×1,

with measurements (py, Ry, Bωy) = (RpB , RRB , Bω). We can define a state-affine system with
states x = (RpB , Rv, z, Rg), inputs u=(BRR, Bω, Bay) and outputs y = RpB which yields a
state-affine system

{
ẋ = A(u)x + b(u) ,

y = Cx + d(u)

with

A(u) =




03×3 I3 03×3 03×3

03×3 03×3 −I3 I3

03×3 03×3 S(Rω) 03×3

03×3 03×3 03×3 03×3




, b(u) =




03×1
RRBBay

03×1

03×1




,

C(u) =
[

I3 03×3 03×3 03×3

]
, d(u) = 03×1.

We conclude the analysis using Proposition 3.1. Let us compute the elements of observable
space directly via (3.6), i.e.

N0 = C(u) =
[

I3 03×3 03×3 03×3

]
,

N1 = N0A + Ṅ0 =
[
03×3 I3 03×3 03×3

]
,

N2 = N1A + Ṅ1 =
[
03×3 03×3 −I3 I3

]
,

N3 = N2A + Ṅ2 =
[
03×3 03×3 −S(Rω) 03×3

]
,

N4 = N3A + Ṅ3 =
[
03×3 03×3 −

(
S(Rω)2 + S(Rω̇)

)
03×3

]
,

Moreover, we can define M(t) stacking the N0, N1, N2, and N4 i.e.

M(t) =




I3 03×3 03×3 03×3

03×3 I3 03×3 03×3

03×3 03×3 −I3 I3

03×3 03×3 −
(
S(Rω)2 + S(Rω̇)

)
03×3




, (A.23)

so that M is a square matrix, and directly via (A.11) we obtain det(M) = det
(
S(Rω)2 +S(Bω̇)

)
.

Moreover, let u, v ∈ R3 then R ∈ SO(3), |(Ra)× (Rb)| = |a × b| and using (A.15), we simplify
det(M) = −|Bω × Bω̇|2.
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A.4 nonlinear observers 149

We conclude this observability analysis verifying the requirements from Proposition 3.1. Let
Bω(t) such that Bω(t) and Bω̇(t) are continuous and bounded, as Assumption 3.2 states, then
det(MT M) = det(M)2, and we have that the system is uniformly observable if the original
hypothesis (3.42) holds, which concludes this proof.

a.4 nonlinear observers

The following result (Anderson and Moore, 1969, Th. 5) concerns the link between uniform
observability and uniform exponential stability.

Lemma A.2. Consider an autonomous linear system

ẋ = A(t)x (A.24)

with A(t) continuous and bounded on [0,+∞). Assume that there exists a smooth matrix-
valued function P satisfying the following Lyapunov inequalities for some constants c1, c2 > 0:

0 < c1 I ≤ P ≤ c2 I

Ṗ + PA + ATP = −CTC
(A.25)

with C a bounded and continuous matrix-valued function. Then, System (A.24) is uniformly
exponentially stable if the pair (A, C) is uniformly observable.

a.4.1 Proof of Proposition 3.1

This proof refers to the stability of the equilibrium point of the error dynamics (3.24) using
the innovation terms from Proposition 3.1. This proof is similar to the proof of Theorem 3.3
in (Mahony et al., 2008). It is given for completeness. Let us recall the dynamics obtained by
replacing the proposed innovation terms (3.26) in the (3.24)





˙̃R = −R̃ S

(
RR̂B b̃ω + kRB

vex
(
Pa(R̃)

)
(
1 + tr(R̃)

)2

)
,

˙̃
bω = kω

B R̂Rvex
(
Pa(R̃)

)
.

(A.26)

and defining Es = (I3, 03×1), and Eu = {(R̃, b̃ω) ∈ SO(3)× R3 | tr(R̃) = −1}, the proof thus
consists of three statements:

1. Local exponential stability of the equilibrium set Es;

2. Every solution stating in
(

R̃(0), b̃ω(0)
)

/∈ Eu converges to Es.

We can prove the first statement using Lyapunov’s indirect method, c.f. (Khalil, 2002, p.
161) together with Lemma A.2. We use a variable transformation z̃ = −RRB b̃w, Rω = RRBBω
and some parametrization R̃ ≈ I3 + S(θ̃) around the identity, e.g. an element θ̃ ∈ R3 of so(3)
writes R̃ = exp(S(θ)) ≈ I3 + S(θ̃) around I3. We obtain after linearizing (A.26)

˙︷︸︸︷[
θ̃

z̃

]
=

[
−(kRB/16)I3 I3

−kω I3 S(Rω)

] [
θ̃

z̃

]
, (A.27)

now, for kRB , kω > 0, we consider the following Lyapunov candidate function

V =
16
kRB

(
|θ̃|2 + 1

kω
|z̃|2
)

, (A.28)
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150 proofs for chapter 3

which along the solutions of (A.27)

V̇ = −|θ̃|2 ≤ 0. (A.29)

It is not very difficult to show using Barbalat’s Lemma (Khalil, 2002, p. 323) that (θ̃, z̃) = 0
is an asymptotically stable equilibrium of the linearized system, however, this is not even
sufficient to prove local asymptotic stability of the original system. Lemma A.2 relates the
uniform observability of a system to the uniform exponentially stability. Thus, let us define
the states x = (θ̃, z̃) and input u = Rω, then ẋ =

(
A(u) + LC

)
x with

A(u) =

[
03×3 I3

03×3 S(Rω)

]
, L =

[
−(kRB/16)I3

−kω I3

]
, C =

[
I3 03×3

]
.

Furthermore, let P ∈ M(6) a diagonal matrix where V = xTPx as Eq. (A.28), P and Eq. (A.29)
satisfy indeed (A.25) and we can show via Lemma A.2 that System (A.27) is uniformly expo-
nentially stable if the pair (A, C) is uniformly observable. Considering that Assumption 3.2
holds, such that that A(u) and its derivatives are bounded, we can trivially verify that the
pair (A, C) is uniformly observable using Proposition 3.1 independently of the system inputs.
Therefore, the origin (θ̃, z̃) = (03×1, 03×1) is an exponentially stable equilibrium of the lin-
earized system, and using Lyapunov’s indirect method (Khalil, 2002, p. 161), we verify that
(R̃, b̃ω) = (I3, 03×1) is a locally exponentially stable equilibrium of (A.26), which concludes
the proof of the first statement.

We continue the proof analyzing the Lyapunov candidate function

V = tr(I3 − R̃) +
1

kω
|z̃|2, (A.30)

and, along the solutions of (A.26), we obtain

V̇ = −tr
( ˙̃R
)
+

2
kω

˙̃zT z̃

= tr
(

R̃S(RR̂B b̃ω)
)
+ kRB

tr
(

R̃Pa(R̃)
)

(1 + tr(R̃))2
+ 2 vex(Pa(R̃))T RR̂B b̃ω (A.31)

The above derivative can be simplified recalling for u, v ∈ R3 and R ∈ SO(3) the properties

tr(RS(u)) = tr((Ps(R) + Pa(R))S(u)) = tr(Pa(R)S(u)),

tr(S(u)S(v)) = −2uTv,

Rvex(Pa(R)) = vex(Pa(R)),

thus we can write

V̇ = − 2 vex(Pa(R̃))TRR̂B b̃ω − 2kRB
|vex(Pa(R̃))|2
(1 + tr(R̃))2

+ 2 vex(Pa(R̃))T RR̂B b̃ω

= − 2kRB
|vex(Pa(R̃))|2
(1 + tr(R̃))2

≤ 0. (A.32)

Now, let us consider the angle axis parametrization for SO(3), i.e. θ̃ = θr̃ with θ ∈ (−π, π]
and r̃ ∈ R3 : |r|2 = 1 such that R̃ = exp(θR̃). Using the Taylor expansion for the exponential
matrix, it is easy to verify that Pa(R̃) = sin(θ)S(r̃) and tr(R̃) = 1 + 2 cos(θ). Moreover, the
derivative (A.32) can be written as

V̇ = − kRB

2
sin(θ)2

(1 + cos(θ))2 = − kRB

2
tan(θ/2)2 ≤ 0. (A.33)
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A.4 nonlinear observers 151

We can conclude so far that the errors are bounded since V̇ decreases, although not strictly. In
order to continue and use Barbalat’s lemma (Khalil, 2002) to show the asymptotic stability, we
must first verify that V̇ is uniformly continuous along the solutions of (A.26). Let us analyze
the angular part of the Lyapunov candidate function:

Vθ = tr(I3 − R̃) = 1 − cos(θ),

then, along the solutions of (A.26)

V̇θ = − kRB

2
tan(θ/2)2 − 2 sin(θ)(r̃ × b̃ω) ≤ − kRB

2
tan(θ/2)2 + 2|b̃ω|. (A.34)

We have shown that the states are bounded in (A.33), therefore the rightmost term of (A.34)

has an upper bound given by |b̃ω| ≤ b̃ω. Moreover, no matter how large but finite is b̃ω, there

always exist some ε > 0 : |θ| = π − ε ⇒ tan(θ/2)2 > b̃ω. Analogously, there will always
exist some |θ| < π such that V̇θ and, consequently, θ will decrease. We thus verified that V is
uniformly continuous starting from any θ ∈ (−π, π) and never reach θ = ±π. This concludes
the proof of the second statement.

We can now use Barbalat’s lemma to continue the analysis of the asymptotic stability. Since
the function V is bounded and V̇ is uniformly continuous, we obtain that V̇ → 0 as t → ∞.
Hence, the term tan(θ/2) → 0, which in turn implies that the orientation error R̃ → I3 as
t → ∞. Furthermore, we can verify that every higher order derivative of V̇ is uniformly
continuous and V̇ → 0 as t → ∞. Analogously, b̃ω → 03×1 as t → ∞, which concludes the
third statement and the proof of Proposition 3.1.

a.4.2 Proof of Corollary 3.3

In order to show that the error dynamics (3.24) using (3.28) is equivalent to the dynam-
ics (3.24) using (3.26), let us recall the proposed innovation terms





αRB = kRB

B R̂R ∑
N
i=1 ki

(
(V−1)Rβi

)
× (RR̂BBβi)

(
1 + ∑

N
i=1 kβi

(
(V−1)Rβi

)
T(RR̂BBβi)

)2 ,

αω = − kω
B R̂R ∑

N
i=1 ki

(
(V−1)Rβi

)
× (RR̂BBβi) .

where V = ∑
N
i=1 kβi

Rβi
Rβi

T. Remark that RR̂BBβi = R̃TRRBBβ = R̃TRβ , and considering
u, v ∈ R3, recall that S(u × v) = Pa(uvT), tr(uvT) = vTu. We can thus rewrite the innovation
terms (3.28) as





αRB = kRB

B R̂Rvex
(
Pa
(

R̃
(

∑
N
i=1 ki

Rβi
Rβi

T
)
V−1

))
(

1 + tr
(

R̃
(

∑
N
i=1 kβi

Rβi
Rβi)T

)
V−1

))2 ,

αω = − kω
B R̂Rvex

(
Pa
(

R̃
(

∑
N
i=1 ki

Rβi
Rβi

T
)
V−1

))

and from the definition of V we obtain




αRB = kRB

B R̂Rvex
(
Pa(R̃)

)

(1 + tr(R̃))2
,

αω = − kω
B R̂Rvex

(
Pa(R̃)

)
.

We immediately obtain that the error dynamics (3.24) using (3.28) is identical to the dynam-
ics (3.24) using (3.26).
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152 proofs for chapter 3

a.4.3 Proof of Proposition 3.3

This proof refers to the local exponential stability of equilibrium point of dynamics (3.32)
using the innovation terms from Proposition 3.3. Let us recall the dynamics obtained by re-
placing the innovation terms (3.33) in (3.32)





˙̃R = −R̃S
(
RR̂B

(
b̃ω + kRB

B R̂Rvex
(
Pa(R̃C)

)
− kRC

B R̂RPa(R̃C)
RR̂B(

Bωy − b̂ω)
))

,

˙̃
bω = kω

B R̂Rvex
(
Pa(R̃C)

)
,

˙̃Q = −Q̃S(kRC
B R̂RPa(R̃C)

RR̂B(
Bωy − b̂ω)) .

(A.35)

We claim in (3.30) if

∃ τ, δ > 0 : ∀ t ≥ 0,
∫ t+τ

t
|Bω̇(s)× Bω̈(s)|2ds > δ,

then (R̃, b̃ω, Q̃) = (I3, 03×1, I3) is a locally exponentially stable equilibrium of (A.35). We
verify this statement via Lyapunov’s indirect method, c.f. (Khalil, 2002, p. 161), showing the
uniform stability of a linearized system. In this case, we prove that the linearized system is
uniformly exponentially stable using Lemma A.2 and Proposition 3.1.

Notice that one form of the estimation error for RRC can be expressed by

R̃C = RRC
C R̂B

B R̂R = RRBQ̃B R̂R = R̃RR̂BQ̃B R̂R,

moreover, if (R̃C , b̃ω, Q̃) = (I3, 03×1, I3) denotes a stable equilibrium point then (R̃, b̃ω,
Q̃) = (I3, 03×1, I3) is also a stable equilibrium point of dynamics (3.32). We continue the
analysis considering the linearized system given by a parametrization of SO(3), i.e.

ξ̃ ∈ R3 : R̃C ≈ I3 + S(ξ̃), φ̃ ∈ R3 : R̃ ≈ I3 + S(φ̃), ψ̃ ∈ R3 : Q̃ ≈ I3 + S(ψ̃).

Around the equilibrium, we can assume that

Bω ≈ Bωy − b̂ω , RR̂B ≈ RRB ,

then using these approximations and the expression, R̃C = R̃RR̂BQ̃B R̂R we obtain that,
around the equilibrium, R̃C ≈ I3 + S(ξ̃) ≈ (I3 + S(φ̃))(I3 + S(RRBψ̃)). Thus,

S
( ˙̃ξ
)
≈ S

( ˙̃φ
)
+S(RRBS(Bω)ψ̃+RRB

˙̃ψ)

and using Eq. (A.35) and neglecting the higher order terms, we obtain

˙̃ξ ≈ − kRB ξ̃ − RRB b̃ω + kRCPa(R̃C)
RR̂B(

Bωy − b̂ω)

+ RRBS(Bω)ψ̃ − kRCPa(R̃C)
RR̂B(

Bωy − b̂ω)

and the linearized system for (R̃C , Q̃, b̃ω) writes




˙̃ξ = − kRB ξ̃ − RRB b̃ω + RRBS(ψ̃)Bω,
˙̃
bω = kω

BRR ξ̃ ,
˙̃ψ = kRCS(BRR ξ̃)Bω.

(A.36)

Now, consider the following variable change θ̃ = RRB ξ̃, then in coordinates (θ̃,b̃ω, ψ̃), Sys-
tem (A.36) is thus given by





˙̃θ = −
(
kRB I3 + S(Bω)

)
θ̃ − b̃ω − S(Bω)ψ̃,

˙̃
bω = kω θ̃,
˙̃ψ = − kRCS(Bω)θ̃.

(A.37)
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A.4 nonlinear observers 153

The stability of the linearized system is verified via the Lyapunov candidate function

V =
1

2kRB
|θ̃|2 + 1

2kRBkω
|b̃ω|2 +

1
2kRBkRC

|ψ̃|2. (A.38)

Then, we obtain along the solutions of (A.37)

V̇ = − |θ̃|2 − 1
kRB

θ̃T b̃ω − 1
kRB

θ̃TS(Bω)ψ̃ +
1

kRB
b̃ω

T θ̃ − 1
kRB

ψ̃TS(Bω)θ̃,

= − |θ̃|2 ≤ 0. (A.39)

From this point, it is not very difficult to show using Barbalat’s Lemma (Khalil, 2002, p. 323)
and the observability condition (3.30) that (θ̃, b̃ω , ψ̃) = 0 is an asymptotically stable equilib-
rium of the linearized system. However, this is not even sufficient to prove local asymptotic
stability of the original system.

We show in (Scandaroli et al., 2011) that it is possible to obtain a strictly decreasing Lya-
punov function, however, the original result states the stability when

∀ t > 0, |ω̇(t)× ω̈(t)| > 0 .

We can verify uniform stability of the solution via Lemma A.2, that relates the uniform observ-
ability to uniform exponential stability of an observer, and the observability condition given
by Proposition 3.1.

Notice that System (A.37) defines a state-affine system ẋ =
(

A(u) + L(u)C
)
x with states

x = (θ̃, b̃ω, ψ̃) and inputs u = Bω where

A(u) =




03×3 −I3 −S(Bω)

03×3 03×3 03×3

03×3 03×3 03×3


 , L(u) =



−kRB I3 − S(Bω)

kω I3

kRCS(Bω)


 , C =

[
I3 03×3 03×3

]
.

Let P ∈ M(9) the diagonal matrix associated with the Lyapunov candidate function in
(A.38), i.e. V = xTPx. Therefore P and Eq. (A.39) indeed satisfy (A.25), and we can show via
Lemma A.2 that System (A.37) is uniformly exponentially stable if the pair (A, C) is uniformly
observable. Considering that Assumption 3.2 holds, we obtain that A(u, t) and its derivatives
are bounded, we can verify a sufficient condition for the observability using Proposition 3.1.
We can compute the components of the observable space as

N0 = C =
[

I3 03×3 03×3

]
,

N1 = N0 A + Ṅ0 =
[
03×3 −I3 −S(Bω)

]
,

N2 = N1 A + Ṅ1 =
[
03×3 03×3 −S(Bω̇)

]
,

N3 = N2 A + Ṅ2 =
[
03×3 03×3 −S(Bω̈)

]
,

and define M(t) stacking the N0, N1, N2, and N3, i.e.

M =




I3 03×3 03×3

03×3 −I3 −S(Bω)

03×3 03×3 −S(Bω̇)

03×3 03×3 −S(Bω̈)




, MT M =




I3 03×3 03×3

03×3 I3 S(Bω)

03×3 −S(Bω) −S(Bω)2−S(Bω̇)2−S(Bω̈)2


.
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154 proofs for chapter 3

We thus obtain from (3.7) that the pair (A, C) is observable if

∃ τ, δ > 0 : ∀ t ≥ 0, δ ≤
∫ t+τ

t
|det(M(s)T M(s))| ds.

Thus, using (A.9), we directly compute that det(MT M) = −det
(
S(Rω̇)2 + S(Bω̈)2

)
, and, via

(A.12), det(MT M) = (|Bω̇|2 + |Bω̈
2|)|Bω̇ × Bω̈|2. We thus obtain using Proposition 3.1 that

the pair (A, C) is observable if condition (3.30) holds. This concludes the proof of uniform
exponential stability of the origin (θ̃, b̃ω, ψ̃)=0 for System (A.37), and consequently for the
linearized System (A.36). As the origin of (A.36) is a uniformly exponentially stable, then,
using Lyapunov’s indirect method, (R̃C , b̃ω, Q̃) = (I3, 03×1, I3) is a locally exponentially
stable equilibrium point of the nonlinear system and so is (R̃, b̃ω, Q̃) = (I3, 03×1, I3) for the
dynamics (A.35).

a.4.4 Proof of Proposition 3.4

This proof concerns the exponential stability of the equilibrium point of (3.37) using the
innovation terms from Proposition 3.4. In this specific case, we consider R̃ ≈ I3 and b̃ω ≈ 03×1.
Hence, we obtain the following dynamics from (3.37) and the innovation terms given by (3.38):





˙̃p = ṽ − kpB p̃ ,
˙̃v = − RRB b̃a − kv p̃ ,

˙̃
ba = ka

(
I3 +

1
kpB

S(Bω)
)BRR p̃ .

(A.40)

Let us consider the following variable change

z̃ = RRB b̃a +
ka

kpB
p̃, (A.41)

and k′v = kv − ka
kpB

, Rω = RRBBω. Hence, we can write system (A.40) in ( p̃, ṽ, z̃) coordinates
as





˙̃p = ṽ − kpB p̃ ,
˙̃v = − z̃ − k′v p̃ ,
˙̃z = S(Rω)z̃ + ka

kpB
ṽ .

(A.42)

Now, let us define the following Lyapunov candidate function:

V =
1

2kpB
| p̃|2 + 1

2kpBk′v
|ṽ|2 + 1

2k′vka
|z̃|2, (A.43)

and remark that V is indeed a definite positive function due to the constraint kpB , kv, ka > 0
with ka < kpBkv on the gains. We obtain along the solutions of System (A.42)

V̇ =
1

kpB
ṽT p̃ − | p̃|2 − 1

kpBk′v
z̃T ṽ − 1

kpB
p̃T ṽ +

1
kpBk′v

ṽT z̃

= −| p̃|2 ≤ 0. (A.44)

At this point, we could use Barbalat’s Lemma (Khalil, 2002, p. 323) and Assumption 3.2 to
prove that ( p̃, ṽ, z̃) = (03×1, 03×1, 03×1) is a globally asymptotically stable equilibrium point
of the system. However, we want to establish exponential stability. We show in (Scandaroli
and Morin, 2011) how to obtain a strictly decreasing Lyapunov function for System (A.42),
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A.4 nonlinear observers 155

but in this thesis we proceed using Lemma A.2, since the proof is straightforward using
Proposition 3.1.

Remark that System (A.42) defines a state-affine system ẋ =
(

A(u) + LC
)

x with states
x = ( p̃, ṽ, z̃) and inputs u = Rω where

A(u) =




03×3 I3 03×3

03×3 03×3 −I3

03×3 − ka
kpB

I3 S(Rω)


 , L(u) =



−kpB I3

−k′v I3

03×3


 , C =

[
I3 03×3 03×3

]
.

Let P ∈ M(9) denote the diagonal matrix associated with the Lyapunov candidate function
in Eq. (A.43), i.e. V = xTPx. Therefore, P and Eq. (A.44) satisfy indeed (A.25) and we can
show via Lemma A.2 that System (A.42) is uniformly exponentially stable if the pair (A, C)
is uniformly observable. Considering that Assumption 3.2 holds, we have that A(u) and its
derivatives are bounded, and it is straightforward to verify using Proposition 3.1 that the pair
(A, C) is uniformly observable independently of the system inputs. Therefore, the origin ( p̃,
ṽ, z̃) = (03×1, 03×1, 03×1) is a uniformly exponentially stable equilibrium of the system (A.42),
and ( p̃, ṽ, b̃a) = (03×1, 03×1, 03×1) is also a uniformly exponentially stable equilibrium of the
original system. This concludes the proof of Proposition 3.4.

a.4.5 Proof of Corollary 3.4

In the proof of Proposition 3.4, we assumed that R̃ ≈ I3 and b̃ω ≈ 03×1, and the equilibrium
of the resulting error dynamics is globally exponentially stable. That result can be initially
extended to the case where b̃ω → 03×1. We obtain the following dynamics from (3.37) and the
innovation terms given by (3.39):





˙̃p = ṽ − kpB p̃ ,
˙̃v = − RRB b̃a − kv p̃ ,

˙̃
ba = ka

(
I3 +

1
kpB

S(Bωy − b̃ω)
)BRR p̃ .

Moreover, defining the states the states X = ( p̃, ṽ, b̃a), the above dynamics can be written in
the form

Ẋ = A(t)X + f0(X, b̃ω , t), (A.45)

where A(t) is given by the right-hand side of System (A.42), and f0(X, b̃ω , t) is a “perturbation
term” that satisfies

| f0(X, b̃ω , t)| ≤ c|X||b̃ω| (A.46)

for some constant c > 0. The above relation implies that the solutions of the system are well
defined for all time. Recall from the proof of nonlinear observer 3.4, that since the system is
uniformly exponentially stable, there exists a positive definite Lyapunov function V such that,
along the solution of Ẋ = A(t)X,

V̇ ≤ −ηV , η > 0. (A.47)

Furthermore, if b̃ω(t) converges asymptotically to zero regardless of the initial conditions,
then we deduced from (A.46) and (A.47) that, along any solution of the System (A.45), there
exists T ≥ 0 such that for t ≥ T, V̇ ≤ − 1

2 ηV . Convergence to zero of X readily follows from
this inequality.
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156 proofs for chapter 3

a.4.6 Proof of Proposition 3.6

This proof refers to the local exponential stability of equilibrium point of dynamics (3.43)
using the innovation terms from Proposition 3.6. Let us recall the dynamics obtained by re-
placing the innovation terms (3.44) in (3.43)





˙̃p = ṽ − kpB p̃ ,
˙̃v = − RRB b̃a − kv p̃ + g̃ ,

˙̃
ba = ka

(
I3 +

1
kpB

S(Bω)
)BRR p̃ ,

˙̃g = − kg p̃ .

(A.48)

Moreover, we claim in (3.45) if

∃ τ, δ > 0 : ∀ t ≥ 0,
∫ t+τ

t
|ωB(s)× ω̇B(s)|ds > δ.

then ( p̃, ṽ, b̃a, g̃) = (03×1, 03×1, 03×1, 03×1) is a globally exponentially stable equilibrium
of the dynamics (A.48). We verify that this system is uniformly exponentially stable using
Lemma A.2 and Proposition 3.1. Let us consider the following variable change

z̃ = RRB b̃a +
ka

kpB
p̃, w̃ = g̃ − kg

kpB
p̃, (A.49)

and k′v = kv − ka+kg

kpB
, Rω = RRBBω. Hence, we can write system (A.48) in ( p̃, ṽ, z̃, w̃) coordi-

nates as




˙̃p = ṽ − kpB p̃ ,
˙̃v = − z̃ + w̃ − k′v p̃ ,
˙̃z = S(Rω)z̃ + ka

kpB
ṽ

˙̃w = − kg

kpB
ṽ.

(A.50)

Now, let us define the following Lyapunov candidate function:

V =
1

2kpB
| p̃|2 + 1

2kpBk′v
|ṽ|2 + 1

2k′vka
|z̃|2 + 1

2k′vkg
|w̃|2, (A.51)

and remark that V is indeed a definite positive function due to the constraint kpB , kv, ka kg > 0
on the gains with ka + kg < kpBkv. We obtain along the solutions of System (A.50)

V̇ =
1

kpB
ṽT p̃ − | p̃|2 − 1

kpBk′v
z̃T ṽ +

1
kpBk′v

w̃T ṽ − 1
kpB

p̃T ṽ +
1

kpBk′v
ṽT z̃ − 1

kpBk′v
ṽTw̃

= − | p̃|2 ≤ 0. (A.52)

Similarly to the proofs of Proposition 3.3 and 3.4, from this point, it is not very difficult to
show using Barbalat’s Lemma (Khalil, 2002, p. 323) and the observability condition (3.45)
that ( p̃, ṽ, z̃, w̃) = 0 is an asymptotically stable equilibrium of system (A.50). However, we
want to establish the exponential stability of the filter. We could use similar strategies to
(Scandaroli and Morin, 2011) and (Scandaroli et al., 2011) and obtain a strictly decreasing
Lyapunov function, but instead we consider Lemma A.2 so that we conclude the proof using
Proposition 3.1 and obtain a uniform condition.
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A.4 nonlinear observers 157

Remark that System (A.50) defines a state-affine system ẋ =
(

A(u) + LC
)

x with states
x = ( p̃, ṽ, z̃, w̃) and inputs u = Rω where

A(u) =




03×3 I3 03×3 03×3

03×3 03×3 −I3 I3

03×3
ka

kpB
I3 S(Rω) 03×3

03×3 − kg

kpB
I3 03×3 03×3




, L =




−kpB I3

−k′v I3

03×3

03×3




,

C =
[

I3 03×3 03×3 03×3

]
.

Moreover, let P ∈ M(9) denote the diagonal matrix associated with the Lyapunov candidate
function in Eq. (A.51), i.e. V = xTPx. Thus P and Eq. (A.44) satisfy indeed (A.25) and we can
show via Lemma A.2 that System (A.42) is uniformly exponentially stable if the pair (A, C)
is uniformly observable. Considering that Assumption 3.2 holds, we have that A(u) and its
derivatives are bounded and continue, thus the first requisite of Proposition 3.1 is satisfied.

Next, let us compute the components of the observable space

N0 = C =
[

I3 03×3 03×3 03×3

]
,

N1 = N0A + Ṅ0 =
[
03×3 I3 03×3 03×3

]
,

N2 = N1A + Ṅ1 =
[
03×3 03×3 −I3 I3

]
,

N3 = N2A + Ṅ2 =
[
03×3 − ka+kg

kpB
I3 −S(Rω) 03×3

]
,

N4 = N3A + Ṅ3 =
[
03×3

ka
kpB

S(Rω)
ka+kg

kpB
I3 −

(
S(Rω)2 + S(Rω)

)
− ka+kg

kpB
I3

]
.

This observable space is computed similarly to (A.23) in Section A.3.2, i.e. , we can define M(t)
stacking the N0, N1, N2, and N4:

M(t) =




I3 03×3 03×3 03×3

03×3 I3 03×3 03×3

03×3 03×3 −I3 I3

03×3
ka

kpB
S(Rω)

ka+kg

kpB
I3 −

(
S(Rω)2 + S(Rω)

)
− ka+kg

kpB
I3




,

so that M is a square matrix. Since ka+kg

kpB
> 0, we obtain directly via (A.11)

det(M) = det
(
S(Rω)2 + S(Bω̇)

)
.

Moreover, let u, v ∈ R3 then R ∈ SO(3), |(Ra)× (Rb)| = |a × b| and using (A.15), we simplify
det(M) = −|Bω × Bω̇|2. We thus obtain using Proposition 3.1 that the pair (A, C) is observ-
able if condition (3.45) holds. This concludes the proof of uniform exponential stability of the
origin ( p̃, ṽ, z̃, w̃)=0 for System (A.50), and ( p̃, ṽ, b̃a, g̃) = (03×1, 03×1, 03×1, 03×1) is also a
uniformly exponentially stable equilibrium of the original system. This concludes the proof
of Proposition 3.6.
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B
PA R A M E T E R E S T I M AT I O N R O B U S T T O O U T L I E R S

Many computer vision tasks relate to the problem of parameter estimation, where we must
separate data that actually belong to the model, i.e. inliers, from ones that do not, i.e. outliers.
The optimal parameter estimation problem is one of computing

x∗ = arg
x∈Rn

min V(x).

The above problem is a convex (resp. quasi-convex) minimization if V(x) ∈ R+ is a convex
(resp. quasi-convex) function (Boyde and VanderbergheL., 2004). Furthermore, the parameter
x∗i is the global minimum of a convex (resp. quasi-convex) V(x) iif:

a) ∂xV(x) = 0 ; b) ∂x
2V(x) > 0 . (B.1)

More specifically, we are interested in the optimization of convex functions of the linear resid-
uals

ri(x) , yi − ji
Tx, (B.2)

where yi ∈ R denote the i-th measurement, ji ∈ Rn refers to the measurement model, and
x ∈ Rn are candidate parameters.

b.1 weighted least-squares

The weighted least-squares is a problem with objective given by the weighted sum of
squared residuals, i.e.

V(x) =
1
2 ∑

i

wiri
2 =

1
2 ∑

i

wi(yi − ji
Tx)2 ,

where wi ∈ R+. This problem derives from the classic least-squares, i.e. with wi = 1, ∀ i,
however, in this case, some measurements are more reliable than others and wi can be tuned
to represent the level of confidence. The solution is given by computing (B.1, a),

(
∑ wi ji ji

T
)
x − ∑ wi jiyi = 0 . (B.3)

Furthermore, if condition (B.1, b) is verified, i.e. ∂2
xV(x) = ∑ wi ji ji

T > 0, the optimal solution
is then given by

x∗ =
(
∑ wi ji ji

T
)−1(∑ wi jiyi

)
. (B.4)

A possible choice for the weights wi is based on the variance of each measurement yi (Simon,
2006), this procedure is not robust to outliers however.

159
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160 parameter estimation robust to outliers

Table B.1: Examples of robust loss functions

type ρ(r) ψ(r) w(r)

L1 |r| sign(r) 1/|r|
L2 r2/2 r 1

Huber
{

if |r| < k ;

otherwise.

{
r2/2 ;

k(|r| − k/2) .

{r ;

k sign(r) .

{
1 ;

k/|r| .

Pseudo-Huber k2(
√

1 + (r/k)2 − 1) r/
√

1 + (r/k)2 1/
√

1 + (r/k)2

Tukey
{

if |r| < c ;

otherwise.

{
c2

6

(
1 − (1 − (r/c)2)3) ;

c2

6 .

{
r(1 − (r/c)2)2 ;

0 .

{
(1 − (r/c)2)2 ;

0, .

b.2 m-estimators

M-estimators are a class of robust estimators whose objective is given by

V(x) =
1
2 ∑

i

ρ(ri),

where ρ(·) ∈ R+ is convex symmetric function with a unique minimum at zero. M-estimators
make use of nonlinear ρ(·) to reduce the vulnerability of the cost function to outliers. Instead
of solving the nonlinear problem, we can solve an iterated weighted-least squares (Zhang,
1997), i.e. we obtain:

∑ ψ(ri(x))ji = 0

after computing condition (B.1,a), where ψ(r) = ∂rρ(r) denotes the M-estimator’s influence
function, for it represents the influence of each residue ri in the estimation. We can further
rewrite the above equation as

(
∑ w(ri(xp))ji ji

T
)
x − ∑ w(ri(xp))jiyi = 0 . (B.5)

where the weight function w(r) = ψ(r)/r, and xp denotes an a priori estimate of x. Remark
that (B.5) is equivalent to the weighted least-squares (B.3), such that the minimum is given by
(B.4) with wi = w(ri(xp)). Table B.1 shows five examples of loss functions, further details and
other robust functions can be found in, e.g. , (Huber, 1981) or (Zhang, 1997). We can relate the
tuning parameters to the standard deviation σ of the measurement’s distribution.

– L1 estimators are not stable as the weight function is unbounded and may yield an inde-
terminate solution.

– L2 estimators are not robust since their influence function is unbounded.
– Huber’s function behaves like the L2 estimator close to r = 0 and similarly to the L1 after
|r| > k. This estimator has been recommended for almost all situations with constant
k = 1.345σ.

– The pseudo-Huber function is an approximation with continuous derivatives of the orig-
inal Huber’s function.

– Tukey’s function cancels the outliers |r| > c instead of reducing their influence, and the
constant c = 2.9846σ is recommended.
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C
I N T R O D U C T I O N T O T H E M U LT I P L I C AT I V E E K F

c.1 quaternion representation for SO(3)

An element of the unitary quaternion group Q is given by the complex number q = s +
i r1 + jr2 + kr3, with s2 + r1

2 + r2
2 + r3

2 = 1. A unitary quaternion can be also expressed

in the vector form q =
[

s r T
]

T ∈ R4 with s ∈ R and r ∈ R3 such that s2 + |r |2 = 1.

The quaternion qe =
[

1 01×3

]
T denotes the identity element of Q, and q−1 =

[
s −r T

]
T

is the inverse element of q. The group operation of two quaternions q a and qb yielding q c is
defined by:

q c = q a · qb =

[
s a sb − r a

T rb

s a rb + sb r a + S(r a )rb

]
= S (q a )qb = D (qb )q a ,

with

S (q) =

[
s −r T

r s I3 + S(r)

]
, D (q) =

[
s −r T

r s I3 − S(r)

]
. (C.1)

A quaternion q is uniquely related to a rotation matrix R ∈ SO(3) as

R = I3 + 2sS(r) + 2S(r)2 ,

and we can further write the dynamics for quaternion representing rigid body motion defin-

ing the quaternion B
ω =

[
0 ω T

]
T such that

R q̇B =
1
2
RqB · B ω =

1
2
S (RqB )

B
ω , =

1
2
D (B ω )RqB .

For simplicity of notation, we can define

TS (q) =

[
−r T

s I3 + S(r)

]
, TD (ω ) =

[
0 −ω T

ω −S(ω )

]
, (C.2)

so that the dynamics also writes

R q̇B =
1
2

TS (
RqB )

B ω =
1
2

TD (B ω )RqB . (C.3)

c.2 orientation and gyro bias estimation via ekf

In order to estimate orientation and gyro bias, we can define x = (RqB , bω ), u = B ωy ,
f (x , u) =

( 1
2 TD (B ωy − bω )RqB , 0

)
and y = h(x) = RqB . The EKF is the straightforward

solution for this system, c.f. Section 3.1.5, i.e. the estimates are given by

x̂ = f ( x̂ , u) − K( t)(y − h( x̂))

161
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162 introduction to the multiplicative ekf

with K( t) = P( t)C T ( t)W−1 ( t) and P given by the Riccati differential equation

Ṗ = A( x̂ , u)P + PAT ( x̂ , u) − PC T ( x̂)W−1 ( t)C( x̂)P + Q( t) , (C.4)

matrices Q ≥ 0, W > 0 with proper dimension and A, C computed by

A(x, u) =

[
1
2 TD(Bωy − bω) − 1

2 TS (RqB)

03×4 03×3

]
, C(x) =

[
I4 04×3

]
.

There are two problems with the above formulation. First, Rq̂B is not represented by a
unitary quaternion since the state structure assumes RqB ∈ R4. Therefore, it is usual to incor-
porate the unitary norm constraint to the measurement. That measurement augmentation can
lead, in turn, to the second problem, since, if proper care is not taken, the matrix P(t) (orig-
inally positive definite) can become singular or even develop a negative eigenvalue (Lefferts
et al., 1982, Sec. 8).

c.3 orientation and gyro bias estimation via mekf

The multiplicative EKF can be implemented in three different versions: using a reduced
representation of the covariance matrix, using a truncated covariance representation or using
the representation of the body-fixed covariance (Lefferts et al., 1982). We use in this thesis the
reduced representation of the covariance matrix (Lefferts et al., 1982, Sec. 9). In this method,
the reduced covariance matrix P− is computed using (C.4) with

A(x, u) = M(x)T

[
1
2 TD(Bωy − bω) − 1

2 TS (RqB)

03×4 03×3

]
M(x), M(x) =

[
TS (RqB) 04×3

03×3 I3

]
,

and the complete covariance P retrieved computing P = M(x̂)P−M(x̂)T. Moreover, the esti-
mation error is employed using the quaternion representation, that is the measurement y = qe

and the measurement function h(x̂) = BqR
−1·Rq̂B , so that C(x̂) =

[
S(BqR−1) 0

]
.
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A B S T R A C T

Systems with multiple sensors can provide information unavailable from a single source,
and complementary sensory characteristics can improve accuracy and robustness to many
vulnerabilities as well. Explicit pose measurements are often performed either with high fre-
quency or precision, however visuo-inertial sensors present both features. Vision algorithms
accurately measure pose at low frequencies, but limit the drift due to integration of inertial
data. Inertial measurement units yield incremental displacements at high frequencies that
initialize vision algorithms and compensate for momentary loss of sight.

This thesis analyzes two aspects of that problem. First, we survey direct visual tracking
methods for pose estimation, and propose a new technique based on the normalized cross-
correlation, region and pixel-wise weighting together with a Newton-like optimization. This
method can accurately estimate pose under severe illumination changes. Secondly, we inves-
tigate the data fusion problem from a control point of view. Main results consist in novel
observers for concurrent estimation of pose, IMU bias and self-calibration. We analyze the
rotational dynamics using tools from nonlinear control, and provide stable observers on the
group of rotation matrices. Additionally, we analyze the translational dynamics using tools
from linear time-varying systems, and propose sufficient conditions for uniform observabil-
ity. The observability analyses allow us to prove uniform stability of the observers proposed.
The proposed visual method and nonlinear observers are tested and compared to classical
methods using several simulations and experiments with real visuo-inertial data.

R É S U M É

Les systèmes multi-capteurs exploitent les complémentarités des différentes sources senso-
rielles. Par example, le capteur visuo-inertiel permet d’estimer la pose à haute fréquence et
avec une grande précision. Les méthodes de vision mesurent la pose à basse fréquence mais
limitent la dérive causée par l’intégration des données inertielles. Les centrales inertielles me-
surent des incréments du déplacement à haute fréquence, ce que permet d’initialiser la vision
et de compenser la perte momentanée de celle-ci.

Cette thèse analyse deux aspects du problème. Premièrement, nous étudions les méthodes
visuelles directes pour l’estimation de pose, et proposons une nouvelle technique basée sur la
corrélation entre des images et la pondération des régions et des pixels, avec une optimisation
inspirée de la méthode de Newton. Notre technique estime la pose même en présence des
changements d’illumination extrêmes. Deuxièmement, nous étudions la fusion des données
a partir de la théorie de la commande. Nos résultats principaux concernent le développe-
ment d’observateurs pour l’estimation de pose, biais IMU et l’autocalibrage. Nous analysons
la dynamique de rotation d’un point de vue nonlinéaire, et fournissons des observateurs
stables dans le groupe des matrices de rotation. Par ailleurs, nous analysons la dynamique de
translation en tant que système linéaire variant dans le temps, et proposons des conditions
d’observabilité uniforme. Les analyses d’observabilité nous permettent de démontrer la stabi-
lité uniforme des observateurs proposés. La méthode visuelle et les observateurs sont testés et
comparés aux méthodes classiques avec des simulations et de vraies données visuo-inertielles.
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