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Foreword

The time has come to write it! For most of us, writing our habilitation thesis is not an easy matter, and I did
not depart from the rule. How to expose our works? How to establish a logical link between our works?
Some of many questions that should be answered before anything else.

So first the haunting question: What should be the best format? Fortunately or not (I would go for not
here), there are as many answers as people! Answers go from “extended abstract”to “PhD-like manuscript”,
and, as for what should be in, “cumulative”(based on previous research) or “monographical”(specific
unpublished results) ... well, answers do not help much here. The most appropriate format is often the
simplest but I guess it varies from person to person and depends on what you are expecting or looking for in
that exercise. So what am I expecting from this writing exercise? To cut a long story short, something useful
(at least for me). Therefore, to avoid a tedious and useless exercise, my choice has been to write a survey of
my works together with a brief exposition of the related results; something to which I can refer to for further
research. This should explain the rather long form of the present manuscript.

As for this famous “logical link”, quite naturally, I decided to focus on algorithms, and more specifically
on computational molecular biology, i.e., those algorithmic and combinatorial topics that are connected to
molecular biology. With this in mind, I have wilfully chosen to move some of my published papers apart
from my habilitation. It is not that there are too many of them but some definitively do not fit in the scope of
this manuscript. First, some are clearly totally (I did not want to write “too”here) biologically oriented and
have very little algorithmic content (and actually I am not really involved anymore in this activity). This
includes [ , b, , , ]. I shall not discuss this
part here. Neither shall I discuss about my interest in graph labelings and our recent works on alliances
and secure sets in graphs. Whereas my interest in these topics is clearly algorithmic, they are not related
in any way to any of the four parts of the present manuscript. This includes [ ;

, ]as well as [ , ]. One may argue that some parts of this habilitation thes1s are
quite far from any combinatorial topic connected to molecular biology (still this famous “logical link”). I
have, for example, in mind Section 2.3, Section 2.4, Section 2.6, Section 10.3, ..., and I do agree these topics
are very far — not to say independent — from any computational molecular biology consideration. However,
I came across these topics as special cases or relaxations of combinatorial objects that are, from my point
of view, clearly connected to exploring molecular biology (I do no claim practical applications for all of
them): d-intervals, linear graphs, exon shuffling, ... My opinion is thus that these topics have their rightful
places in my manuscript and, even more important from my point of view, gathering together these topics
with more practical issues such as “querying PPI network”or “designing fast heuristics for comparative
genomics”clearly reflects my way of doing research.
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Introduction

Computational biology is (should be?) an interdisciplinary field that applies the techniques of computer
science, applied mathematics and statistics to address biological problems. It encompasses many fields,
ranging from Computational biomodeling to Computational biochemistry. If I would really have to place myself
in this field (always such a difficult question for me, my preferred answer would be just algorithmic as I
never have laid down myself to restrict to this area) I would say: Bioinformatics (in the very very precise
sense of designing algorithms to the interpretation, classification and understanding of biological datasets)
and Comparative genomics (as a part of Computational genomics).

For the prerequisites, the reader is expected to be familiar with basic graph theory, classical complexity
theory and parameterized complexity theory. We only recall some basic definitions (the two following
paragraphs should constitute sufficient preparation).

In computer science and operations research, approximation algorithms are algorithms used to find ap-
proximate solutions to optimization problems (the best general references are [ , Jand [

, 1). Approximation algorithms are often associated with NP-hard problems since it is unlikely
that there can ever be efficient polynomial-time exact algorithms solving NP-hard problems, one settles
for polynomial-time sub-optimal solutions. Unlike heuristics, which usually only find reasonably good
solutions reasonably fast, one wants provable solution quality and provable run time bounds. Ideally, the
approximation is optimal up to a small constant factor. Given an instance x of an optimization problem P,
the performance guarantee (or approximation ratio ) R(x,y) of a solution y to the instance x is defined as

opt(x) f(y))
f(y) *opt(x) )’

R(x,y) = max (

where opt(x) is the value of an optimum solution for the instance x and f(y) is the value of the solution
y for the instance x. Clearly, the performance guarantee is greater than or equal to 1 (and equal to 1 if
and only if y is an optimal solution). If an algorithm A guarantees to return solutions with a performance
guarantee of at most v(n), then A is said to be an r(n)-approximation algorithm and has an approximation
ratio of r(n). Likewise, a problem with an r(n)-approximation algorithm is said to be r(n)-approximable or
have an approximation ratio of r(n). The class APX (an abbreviation of “approximable”) is the set of (NPO)

vii
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optimization problems that allow polynomial-time approximation algorithms with approximation ratio
bounded by a constant (or constant-factor approximation algorithms for short). In simple terms, problems
in this class have efficient algorithms that can find an answer within some fixed percentage of the optimal
answer. A PTAS is an algorithm which takes an instance of an optimization problem and a parameter
¢ > 0 and, in polynomial-time, produces a solution that is within a factor ¢ of being optimal. Notice that
the running time of a PTAS is required to be polynomial in n for every fixed ¢ but can be different for
different e. Thus, an algorithm, running in O(n'/¢) time or even O(n®P(1/¢)) time counts as a PTAS. A
practical problem with PTAS algorithms is that the exponent of the polynomial could increase dramatically
as ¢ shrinks, for example if the runtime is O(n'/¢). One way of addressing this is to define the efficient
polynomial-time approximation scheme or EPTAS, in which the running time is required to be O(n¢) for a
constant ¢ independent of e. This ensures that an increase in problem size has the same relative effect on
runtime regardless of what ¢ is being used; however, the constant under the big-O can still depend on ¢
arbitrarily.

For many applications the trade-offs inherent to approximation algorithms and heuristics are not satis-
factory. Fixed-parameter algorithms can provide an alternative by providing optimal solutions with useful
runtime guarantees (the best general references are [ , ; , ;

, ]1). The core concept is formalized as follows: An instance of a parameterized problem
consists of a problem instance x and a parameter k. A parameterized problem is fixed-parameter tractable if
it can be solved in f(k)[x|°(") time, where f is a computable function solely depending on the parameter
k, not on the input size |x|. For NP-hard problems, f(k) will of course not be polynomialsince otherwise
we would have an overall polynomial-time algorithm - but typically be exponential like 2 . Clearly, fixed-
parameter tractability captures the notion of “efficient for small parameter values”: for any constant k, we
obtain a polynomial-time algorithm. Moreover, the exponent of the polynomial must be independent of
k, which means that the combinatorial explosion is completely confined to the parameter. The standard
parameterization of an optimization problem such as VERTEX COVER or CLIQUE takes the size of the solution
as the parameter. Accompanying the work on designing efficient and practical parameterized algorithms, a
theory of parameterized intractability has been developed (Downey and Fellows 1999 monograph [

, ] gives a fairly complete picture of the theory then). In parameterized complexity, to
classify fixed-parameter intractable problems, a hierarchy, the so-called WI-]hierarchy | J,~, W[t], where
WIt] C W[t + 1] for all t > 0 has been introduced, in which the 0-th level W[0] is the class FPT. The hardness
and completeness have been defined for each level W[t] of the W[-]hierarchy for t > 1, and a large number
of W [i]-hard parameterized problems have been identified [ , ]. For example, the
VERTEX COVER problem is known to be fixed-parameterized tractable for the standard parameterization
whereas the CLIQUE problem has been proved to W[1]-complete. The fundamental conjecture FPT # W(1] is
very much analogous (but clearly weaker) to the conjecture that P # NP. Notice that, from an algorithmic
point of view, it is usually sufficient to distinguish between W([1]-hardness and membership in FPT.

This habilitation thesis is organized in four parts. I would say (i) algorithmic of (not so) linear structures,
(if) pattern matching in graphs, (iii) comparative genomics, and (iv) what is left and does not fit well in any
of the three first parts. If I would have to give a chronology, Part I contains the problems I was first interested
in as I came across 2-intervals as early as during my PhD thesis (actually as a naive attempt to build an
abstract model for autocatalytic group I introns). Part II and Part IV follow. My interest in comparative
genomics (Part III) is more recent; as far as I remember my first research activity in this field dates back to
2005. Let me now introduce briefly these four parts (to facilitate access to the individual topics, the chapters
are rendered as self-contained as possible).
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Part I is concerned with families of high-dimensional intervals, linear graphs, permutations and arc-
annotated sequences, all those graph-like combinatorial objects I can draw from left to right, align and
search for a pattern in. It is composed of three chapters. Chapter 1 is devoted to algorithmic aspects of high-
dimensional intervals and more specifically to algorithmic aspects of 2-intervals. This chapter encompasses
recognition of restricted 2-interval graphs and combinatorial problems on families of 2-intervals. Chapter 2
focuses on linear graphs and linear matchings, those graph with linearly ordered vertices. This chapter can
be seen as a follow-up of Chapter 1 as most questions could have been raised in the general framework of
2-intervals (for disjoint interval ground sets). However, as we shall see, linear graphs and linear matchings
deserve a separate chapter as they raise specific and important (and hard!) questions about permutation
patterns. In Chapter 3, we consider some algorithmic issues of arc-annotated sequences, a popular object
to represent RNA sequences. Common to these three chapters is the notion of relative positioning: for any
two disjoint objects, either one precedes the other, is included in the other, or they are crossing each over.
I have tried to develop in this manuscript a general and common framework (including notations) that
encompasses 2-intervals, linear graphs and arc-annotated sequences. Clearly, this is the part of my research
that was the most followed | , , ; , , , ; , ; ,

/I 7 I 4 ]'

Part II is devoted to pattern matching issues (in the broad sense) in graphs. It is composed of three
chapters. Chapter 4 is concerned with pattern matching in the common sense: finding an exact or an
approximate occurrence of a motif (given in the form of a graph) in a target graph. We focus in Chapter 4
on edge-conservation and injective mappings. With protein-protein interaction (PPI) networks in mind,
we consider additional restrictions: (i) each vertex of the pattern is associated to a (small) set of vertices of
the target graph it can be mapped to, and (ii) both the motif and the target graphs are vertex-colored and
any vertex of the motif must be mapped to a vertex of the target graph with the same color. We do believe
that a better approach would consist in using a set of colors instead of one color (thereby allowing for a
greater flexibly in the design) but we will not develop this point in this manuscript. Chapter 5 differs from
Chapter 4 by renouncing to topology conservation (this is actually a weak renouncement as we shall see),
we only require the occurrences to be connected. This recent problem (introduced in the context of metabolic
networks [ , ]) raises new, elegant and original questions. Finally, brief Chapter 6 is devoted
to presenting our contribution to a somewhat more classical view of pattern matching in PPI networks where
one is allowed to insert and delete vertices in the occurrence. Most of the interest in our contribution (based
on feedback vertex sets) is the PADA1 software that performs as well as QNet (the state-of-the-art software
to query PPI networks) on tree patterns while allowing for general graph patterns (the tree decomposition
based approach of QNet for dealing with general graph patterns has never been implemented due to its
complexity).

Part III is concerned with comparative genomics. Comparative genomics is a field by itself and we shall
only consider genome rearrangements with duplicate genes. It is composed of two chapters. Chapter 7
is by far the longest of the two. In this chapter we consider the problem of computing a distance (or a
(dis)similarity) between two genomes with duplicate genes from a pure algorithmic point of view. As we
shall see, most — not to say all - problems are intractable and sometimes even hard to approximate within
any ratio. Again, I have tried in this chapter to develop a common general framework (in the form of
permutations associated to matchings) that encompasses all these problems and allows me give a unified
exposition. Chapter 8 is devoted to presenting and analyzing a simple LCS-like problem that aims at
overcoming the difficulties I have raised in Chapter 7.

Part IV is actually concerned with two different topics. Chapter 9 is devoted to algorithmic aspects
of selenocysteine insertion and could be seen as a follow-up of [ , ] where the problem
of computing an mRNA sequence of maximum codon-wise similarity to a given mRNA (and hence, to a
given protein) that additionally satisfies some secondary structure constraints was introduced. Chapter 10



is devoted to a covering problem. My initial motivation for studying this problem came from a paper by
Bodlaender et al. [ , ], who described an application in the context of protein folding (the
authors actually referred to this problem as the DICTIONARY GENERATION problem). Indeed, many proteins
seem to be composed of relatively small regions which fold independently of other regions, and the theory
of exon shuffling proposes that all proteins are concatenations of such regions, where the regions are drawn
from a common ancestral dictionary [ , ; , ].

To avoid any confusion, the citations of external items (algorithms, theorem, ...) appear in the body
of the text as references whereas my results are — most of time, I have tried to stick to this rule as much as
possible — given in the form of propositions. Notable exceptions for this rule are pages 28 (a lemma by Noga
Alon) and 101 (the Local-Ratio lemma [ , D-

Finally, all along this document, I use thinking notes or perspective notes (sometimes also referred to as
headache notes in the text for obvious reasons) in the following form

P

to point out facts, important questions or even perspectives. It is not about all problems or special cases left
open in this manuscript (I would have to put such a note on each page I guess), but to shed light on points I
am particularly interested in. Therefore, it is worth keeping in mind that these notes are concerned with
both problems I have spent weeks (sometimes months) on ... without much success, and perspectives for
further research.

Last point, some new results are announced in this manuscript, most without proof. Two notable
exceptions are Proposition 2.4.1 (page 20) and Proposition 10.3.2 (page 103).
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Structures: from 2-intervals to annotated
sequences ...throught permutations






Introduction

This part is devoted to presenting our works on (not so) linear structures. Well, what are those (not so) linear
structures? In our context these will be all those combinatorial objects that I can draw from left to right, align
and search for a pattern in. More specifically, we will be concern with high-dimensional intervals, linear
graphs, linear matchings, permutations and arc-annotated sequences. The rationale for bringing together
these combinatorial objects is a common notion of relative positioning I am particularly interested in: for any
two disjoint objects, either one precedes the other, one is included in the other, or they are crossing each over.
My interest in such a property started with 2-intervals. It turns out that this property is also at the heart of
the algorithmic of linear graphs and arc-annotated sequences. This manuscript gave me the opportunity to
develop a general and common framework (including notations) that encompasses 2-intervals, linear graphs
and arc-annotated sequences: an family of objects is type M if any two objects in it are comparable for a
binary relation in M.

High-dimensional (or multi-dimensional, or d-interval) intervals are the union of disjoint intervals, and a
multi-dimensional interval graph is the intersection graph of a family of multi-dimensional intervals. Multi-
dimensional intervals together with multi-dimensional interval graphs constitute a natural generalization of
intervals and interval graphs (one of the most studied class of intersection graphs). We shall be interested
mainly on 2-intervals, i.e., unions of pairs of disjoint intervals. Our concern is twofold: recognition of some
restricted 2-interval graphs and algorithmic aspects of 2-intervals.

Linear graphs are graphs with linearly ordered vertices. These graphs certainly constitute a special case
of 2-intervals. Adopting the same strategy as for 2-intervals, we will be concerned with finding motifs in
linear graphs. This general problem includes both finding an occurrence of a linear graph in another linear
graph and finding a common motif (a linear graph here) that occurs in each input linear graph. Of particular
importance, linear graphs are a generalization of permutations, and hence a portion of this chapter will be
devoted to the problem of finding motifs in permutations. Indeed, as we shall see, hardness of finding motifs
in linear graphs (and in 2-intervals) originates from permutations.

Arc-annotated sequences can be seen both as a generalization of standard sequences (a string together
with some edges) and as a special case of linear graphs (a vertex-labeled linear graph). Arc-annotated
sequences have recently proved to be useful for modeling RNA structures. Again, we will adopt the very
same strategy as for 2-intervals and linear graphs.






Algorithmic aspects of 2-interval sets
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1.1 Introduction

Let 7 = {S1,S2,..., Sn} be a family of sets. The intersection graph of F, usually denoted Q(F), is the graph
having F as Vertex set with S; adjacent to Sj if and only if i # jand S; N S; = 0 ([

]Jand [ , ] are our favorlte references here). A graph G is an intersection graph
if there exists a family F such that Q(F) ~ G, where we typically display this isomorphism by writing
V(G) = {u1,uz,...,uy} with each u; corresponding to S; and {ui,u;} € E(G) if and only if S; N'S; # 0.
When Q(F) ~ G, the family F is called a representation if G. Notice that every graph is an intersection graph
(this property is ascribed to Marczewski in [ , 1) Therefore, while every graph has a
set representation, intersection graph theory uses properties of the set representations and various conditions
imposed thereon, rather than the conventional graph-theoretic approach that, in some sense, forgets the sets.

We shall be concerned in this chapter with high-order intervals (also referred as multidimensional intervals).
Notice, however, that, whereas we will present all definitions in the general setting of d-dimensional intervals,
most of out our concern will be 2-dimensional intervals. The term “d-dimensional interval”originated in the
late 1970s [ g ; , ; , ], where the focus
was on determining how small d can be so that a given graph is a d-interval graph. The first references
devoted to algorithmic aspects of d-interval graphs are [ , ] (actually in the form of an exercise)
and [ , ]. For an up-to-date survey of the algorithmic aspects of 2-intervals, we refer the
reader to our recent entry in the Encyclopedia of Algorithms [ , I

5
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1.2 Bestiary and definitions

Let us start by presenting some intersection graphs we will be concerned with in this manuscript (d-box
graphs are presented for the sake of completeness — as another way to generalize interval graphs — but we
shall not consider them in the sequel).

A d-interval (or multiple interval) is a set of the real line which can be written as the union of d disjoint
closed intervals [a;, bi]. Clearly, 1-intervals are the intervals. The intersection graph of a family of d-intervals
is a d-interval graph. The smallest d for which G is a d-interval graph is the interval number i(G).

A d-track interval is a union of d intervals, one each from d parallel lines (actually separate lines would
be a better definition as, for example, defining piercing sets for d-track intervals by vertical lines is a bit
confusing if they are defined on parallel lines). A graph is a d-track interval graph if it is the intersection graph
of d-track intervals. The intervals graphs are precisely the 1-track interval graphs (and also the 1-interval
graphs). The multitrack interval number of a graph G is the smallest d for which G is a d-track interval graph.
Notice that a d-track interval graph is the union of d interval graphs with the same vertex set.

Closely related are d-boxes and d-box graphs. A d-box is the Cartesian product of intervals [a;, bi],
1 <1< d. Agraph is a d-box graph if it is the intersection graph of d-boxes. Hence interval graphs are
precisely the 1-box graphs. Of interest in our context, a d-box graph is the intersection of d interval graphs
with the same vertex set. Notice that d-box graphs are not contained in d-interval graphs, neither d-interval
graphs are included in d-box graphs. Indeed, K3 ¢ is a 2-box graph but not a 2-interval graph, and the graph
obtained by subdivising edge each of K is a 2-interval graph but not a 2-box graph. The boxicity of a graph
G is the minimum d for which G is a d-box graph. We shall not develop d-box graphs in the sequel.

For a d-interval (resp, d-track interval, d-box) graph G, a d-interval (resp, d-track interval, d-box) representa-
tion of G is a family of d-intervals (resp, d-track intervals, d-boxes) F for which G is the intersection graph
of.

Example 1 Let G be the graph defined as follows:

Us
Ug us
uq Uz
A 2-interval representation of G is given by
Us uq uq us Ug Uz
— — — us u3
a 2-track interval representation of G is given by:
U2 Us
track 1: ug us Uy
Ug Us
track 2: uy uq us

and a 2-box representation of G is given by:
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For algorithmic considerations, convenient d-intervals are needed. For the sake of brevity, we define
restricted d-interval object but the same definitions do apply in a natural way for d-track intervals as well.

A d-interval I = (14, 15,...,14) is balanced if |I;| = |I2| = ... = |I4|. Notice that this restriction has been
introduce for RNA considerations [ , 1. A balanced d-interval graph is the intersection
graph of a family of balanced d-intervals.

A d-interval I = (I4,I,,...,1q4) is unit if it is composed of d intervals of length 1. A unit d-interval graph is

the intersection graph of a family of unit d-intervals. Clearly, unit d-interval graphs are balanced d-interval
graphs whereas the converse is not necessarily true.

A d-interval I = (I, I,,...,I4) with integer endpoints is type (11, 12,...,1q) if [Ii] =1 forall 1 <1 < d.
A d-interval graph type (11, 1;,...,1q) is the intersection graph of a family of d-intervals type (11, 12,...,1q4)
. Notice that unit d-intervals are d-intervals type (1,1,...,1) and that d-intervals type (1,1,...,1),1 € N*¥,
are balanced d-intervals. We can also notice that 2-interval graphs type (1, 1) are exactly line graphs: each
interval of length 1 of the ground set can be considered as the vertex of a root graph and each 2-interval
as an edge in the root graph. This implies, for example, that the coloration problem is also NP-complete
for 2-interval graphs type (2,2) and wider classes of graphs. It is also known that the complexity of the

MAXIMUM INDEPENDENT SET problem is NP-complete on 2-interval graphs type (2,2) [ , 1.
Recognition of 2-union graphs type (1,2), a related class (restriction of multitrack interval graphs), has been
also proved to be NP-complete [ , I

The depth of a family of d-intervals is the maximum number of intervals that share a common point. The
representation depth of a d-interval graph is the minimum depth of any d-interval representation of the graph.
Notice that any d-interval (or d-track interval) representation of a triangle-free graph must have depth at
most 2. On the other hand, for any constant d > 2, it is easy to construct a d-interval (or d-track interval)
representation of depth 2 of a triangle.

1.3 Recognizing multidimensional interval graphs

In this section, we shall mostly focus on d = 2. We study some restrictions of 2-interval graphs, and their
position in the hierarchy of graph classes as illustrated Figure 1.1.

Recognizing restricted graph classes in an ubiquitous problem in intersection graph theory, and indeed
there has been considerable interest in recognizing d-interval graphs (and related graph classes). The first
explicit reference to this question we are aware of is in [ , ]. A classical result of West and
Shmoys [ , ] states that, for any constant d > 2, recognizing d-interval graphs is
NP-complete (moreover, for any constants d > 2 and r > 3, recognizing d-interval graphs of representation
depth at most 1 is also NP-complete). The class of d-track interval graphs is clearly contained in the class of
d-interval graphs. Notice that the containment is proper as the complete bipartite graph K42, 41 441 isa
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Figure 1.1: Graph classes related to 2-interval graphs and its restrictions. A class pointing towards another
strictly contains it, and the dashed lines mean that there is no inclusion relationship between the two. Dark
classes correspond to classes not yet present in the ISGCI Database.

d-interval graph but is not a d-track interval graph [ , ]. Gyérfas and West [

, ] have however proved that recognizing 2-track interval graphs is NP-complete (their proof also
implies that, for any constant v > 3, recognizing 2-track interval graphs of representation depth at most r is
NP-complete). It is still an open problem (but conjectured to be true) to prove that, for any constant d > 2,
recognizing d-track interval graph is NP-complete ... To be honest, the problem is not really open any longer
as M. Jiang has recently communicated us a — correct as far as we can assess — NP-hardness proof for this
problem.

Our contributions for balanced 2-interval graphs is two-fold. We have shown that the class of balanced
2-interval graphs is strictly included in the class of 2-interval graphs. The rationale for this question was
concerned with approximation: does any approximation result for balanced 2-intervals propagate to (general)
2-intervals? The answer is No, unfortunately. Moreover, we have settled the complexity of recognizing
balanced 2-interval graphs.

Proposition 1.3.1 ([ , 1). The class of balanced 2-interval graphs is strictly included in
the class of 2-interval graphs.

Our proof is by exhibiting a 2-interval graph that has no balanced 2-interval realization (this latter point
being of course the hardest part of the proof). Without going into the details, the construction is by connecting
a bunch of gadgets Ks 3 (the complete bipartite graph Ks 3 is indeed not a unit 2-interval graph) together
with additional vertices to enforce an unbalanced 2-interval representation. Notice that we also proved that

the class of balanced 2-interval graphs strictly contains circular-arc graphs (see [ , ] for
definitions).
Proposition 1.3.2 ([ , ). Recognizing balanced 2-interval graphs is NP-complete.

To prove Proposition 1.3.2, we have adapted the proofs of [ , Jand [

, ], and gave a reduction from the HAMILTONIAN CYCLE problem for 2-regular triangle-free graphs, a
problem which has been proved to be NP-complete in [ , ]. Moreover, it is easy enough



to check that Gyarfas and West’s proof of NP-hardness of recognizing 2-track interval graphs [

, ] can be adapted, by adjusting the interval lengths in the representation (more or less as we did for
2-interval graphs [ , ]), to show that recognizing balanced 2-track interval graphs
is NP-complete as well.

As for 2-interval graphs type (1,1), we have obtained the following results.

Proposition 1.3.3 ([ , 1). Foranyl e N*, 1 > 2, the class of 2-interval graphs type (1,1)
is strictly contained in the class of 2-interval graphs type (L+ 1,1+ 1).

Proper containment of 2-interval graphs type (1,1) in 2-interval graphs type (1+ 1,1+ 1) is illustrated in
Figure 1.2.

(b)
V min— 174 ——
1 — — T —
l— T e
VZ — 7 e—
——— —
V3 b— Vﬁi
vi X Y —— T e——— X v
L. 1 4 3 ... 4 4. Lt
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2 3
v v
A ] ] % ‘ Ll | e

Figure 1.2: The graph K} (a) is (5,5)-interval but not (4,4)-interval.

Proposition 1.3.4 ([ , D.

{unit 2-interval graphs} = U {2-interval graphs type (1,1)}.
leN~

According to Proposition 1.3.4, if recognizing 2-interval graphs type (1,1) is polynomial-time solvable for
any | € N*, then recognizing unit 2-interval graphs is polynomial-time solvable. This problem has not been
settled yet.

Aiming at further deciphering the precise nature of unit 2-interval graphs, we have obtained the following
inclusion between proper circular-arc graphs (circular-arc graphs such that no arc is included in another in
the representation) and 2-interval graphs (recall that circular-arc graphs are balanced 2-interval graphs but
that circular-arc graphs are not necessarily unit 2-interval graphs).

Proposition 1.3.5 ([ , 1). The class of proper circular-arc graphs is strictly included in
the class of unit 2-interval graphs.
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Determining the complexity of recognizing unit 2-interval graphs is still an open problem. More
generally, what is the complexity of recognizing d-interval graphs type (2,2,...,2)? The question
is also open for 2-interval graphs type (1,1). A first step could be to focus on 2-track interval
graphs type (1,1). Indeed, 2-track interval graphs type (1, 1) are subclasses on unit 2-interval
graphs.

In [ , ], we have considered a class of graphs that generalizes quasi-line graphs
and contains unit 2-interval graphs. Quasi-line graphs are those graphs whose vertices are bisimplicial, i.e.,
the closed neighborhood of each vertex is the union of two cliques. This graph class has been 1ntroduced
asa generahzatlon of line graphs and as a useful subclass of claw-free graphs [

; , ]. Letk € N*. A graph G is all k—szmplzczal
if the neighborhood of each vertex u € V( G) can be partitioned into at most k cliques. The class of quasi-line
graphs is thus exactly the class of all-2-simplicial graphs.

Proposition 1.3.6 ([ , ). The class of unit 2-interval graphs is strictly included in the
class of all-4-simplicial graphs.

1.4 Combinatorial problems on 2-intervals

1.4.1 Introduction

Multiple-interval graphs are a natural generalization of interval graphs, and hence there is a natural interest
in studying standard combinatorial problems for multiple-intervals (and multiple-interval graphs, the
distinction is important since computing a multiple-interval representation of a graph is NP-complete). Of
particular interest, three standard graph problems, namely MINIMUM VERTEX COVER, MINIMUM DOMINATING
SET and MAXIMUM CLIQUE, for d-intervals are considered in [ , ]. Their results can be
summarized as follows: the MINIMUM VERTEX COVER problem is approximable within ratio (2 —1/d) (a
ratio which equals the best known ratio for 2d1 bounded degree graphs), the MINIMUM DOMINATING SET
problem is approximable within ratio d%, and the MAXIMUM CLIQUE problem is approximable within ratio
(d?d+1)/2.

We present here two contributions in this area. First, we discuss the 2-INTERVAL PATTERN problem which
can be seen as a generalization of the MAXIMUM INDEPENDENT SET for 2-intervals. Standard complexity and
approximation are considered. Second, we consider parameterized issues of some natural combinatorial
problems for 2-intervals. Parameterized issues of the 2-INTERVAL PATTERN problem are part of an ongoing
work with S. Guilemot and D. Hermelin, we shall only mention them briefly.

1.4.2 The 2-INTERVAL PATTERN problem

The 2-INTERVAL PATTERN problem is concerned with finding large constrained patterns in families of 2-
intervals. Given a single-stranded RNA molecule, a sequence of contiguous bases of the molecule can
be represented as an interval on a single line, and a possible pairing between two disjoint sequences can
be represented as a 2-interval, which is merely the union of two disjoint intervals. Therefore, 2-interval
representation considers thus only the bonds between the bases and the pattern of the bonds, such as hairpin
structures, knots and pseudoknots. A maximum cardinality pairwise disjoint subfamily of a candidate family
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Does there exist a polynomial-time algorithm for finding a maximum cardinality clique in a
family of 2-intervals? In other words, given an family of 2-intervals 7 = {D1, D3, ..., Dy}, is the
problem of finding a maximum cardinality subset 7' C F of pairwise intersecting 2-intervals
in P? The MAXIMUM CLIQUE problem in its natural decision setting is NP-complete for families
of 3-intervals [ , ], approximable within ratio (d?> — d + 1)/2 for families of
d-intervals (and hence within ratio 3/2 for families of 2-intervals) [ , ], and
fixed-parameter tractable for families of d-intervals for parameters d and k (k is the size of the
clique we are looking for) [ , I

The MAXIMUM CLIQUE problem for families of d-intervals is (or is likely to be) strongly related to
the interval piercing number. Let F be a family of d-intervals. A piercing set for F is a set of points P
on the real line such that, for any d-interval D € F, D NP # (. The piercing number of 7, denoted
T(F), is the size of a minimum cardinality piercing set of . Gyéarfas has proved that, for any
family of pairwise intersecting 2-intervals F, it holds that T(F) < 3. [ , ]
(see also [ . 1).

A stronger result holds for families of 2-track intervals and has proved to be useful. Indeed,
if  is a set of pairwise intersecting 2-track interval set, then T(F) < 2 and there is a piercing
set {p1,p2} of F with p; on track one and p, on track two [ , ] (see also
[ b ]). Starting from this property, we can prove that the MAXIMUM CLIQUE problem for
2-track intervals is in P (D. Hermelin, R. Rizzi and S. Vialette, Unpublished result). As another
step towards determining the complexity of the MAXIMUM CLIQUE problem for 2-intervals, we
announce the following result: The MAXIMUM CLIQUE problem for 3-track intervals is APX-hard
(D. Hermelin, M. Jiang and S. Vialette, Unpublished result).

of 2-intervals restricted to certain prespecified geometrical constraints can provide useful valid approximation
for RNA secondary structure determination. Therefore, the geometric properties of 2-intervals provide
a possible guide for understanding the computational complexity of finding structured patterns in RNA
sequences. Using a model to represent non sequential information allows us for varying restrictions on the
complexity of the pattern structure. Indeed, two disjoint 2-intervals, i.e., two 2-intervals that do not intersect
in any point, can be in precedence order (<), be allowed to nest (T) or be allowed to cross (). Furthermore,
the family of 2-intervals and the pattern can have different restrictions, e.g., all intervals have the same
length or all the intervals are disjoint. These different combinations of restrictions alter the computational
complexity of the problems, and need to be examined separately. This examination produces efficient
algorithms for more restrictive structured patterns, and hardness results for those less restrictive.

Let I = [a, b] be an interval on the line. Write start(I) = a and end(I) = b. A 2-interval is the union of
two disjoint intervals defined over a single line and is thus denoted by D = (I, ]), I is completely to the
left of ]J. Write left(D) = I and right(D) = J. Two 2-intervals Dy = (I, ]1) and D, = (I, ]2) are said to be
disjoint (or non-intersecting) if the two 2-intervals share no common point, i.e., (Iy UJ;) N (I UJ2) = 0. For
such disjoint pairs of 2-intervals, three natural binary relations, denoted <, T and {, are of special interest
(these three relations will be recurrent in the first part of this manuscript):

e Dy <D, (Dy precedes Dy),if I1 < J1 <12 <]z,
e D; C D, (D is nested in D5),if I, < I; < J1 < ]2, and

e D; ( Dy (Dy crosses D), if I1 <1 < J1 <2,
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where < denotes the usual precedence between (1-)intervals.

A pair of 2-intervals D; and D is said to be R-comparable for some R € {<,C, ()}, if either D;RD; or
D,RDy, i.e., Dy and D, are comparable by R. Note that any two disjoint 2-intervals are R-comparable for
some R € {<, C, ()} (good, we shall not miss something). A family of pairwise disjoint 2-intervals F is said to
be type M for some M C {<, C, (}, M # 0, if any pair of distinct 2-intervals in F is R-comparable for some
R € M. The non-empty subset R is usually called a model for F. It is implicitly assumed here that R is as
small as possible.

Given a family of 2-intervals, the 2-INTERVAL PATTERN problem asks to find in a maximum cardinality
subset of pairwise compatible 2-intervals. In the present context, compatibility denotes the fact that any two
2-intervals in the solution are (i) non-intersecting and (ii) satisfy some prespecified geometrical constraints.
The 2-INTERVAL PATTERN problem is formally defined as follows.

2-INTERVAL PATTERN '

o Input : A family of 2-intervals F and a model M C {<,, {}.
e Solution : A subfamily 7’ C F (of pairwise disjoint 2-intervals) type M.
e Measure : The size of 7/, i.e., |F'|.

Some additional definitions are needed for further algorithmic analysis. Let F be a family of 2-intervals.
The width (vesp. height, depth) is the size of a maximum cardinality subset 7' C F type {<} (resp {T}, {(}). The
interleaving distance of a 2-interval D; € F is defined to be the distance between the two intervals of Dy, i.e.,
start(right(D;)) — end(left(D1)). The total interleaving distance of the family of 2-intervals F, written £(F), is
the sum of all interleaving distances, i.e., £L(F) = ZD_I < r start(right(D;)) — end(left(D;)). The density of F,
written d(F), is the maximum number of 2-intervals in F over a single point. Formally,

d(F) = n)l(a()}){D € F :end(left(D) < x < start(right(D))}.
X€

The structure of the set of all (simple) intervals involved in a family of 2-intervals F turns out to be of
particular importance for algorithmic analysis of the 2-INTERVAL PATTERN problem. The interval ground set
of F, denoted Z(F), is the set of all intervals involved in F, i.e., Z(F) = {left(D;) : D; € F}U{right < (D;) :
Die Fl.In|[ , ; , ], we have introduced four types of interval ground sets:

e UNLIMITED: no restriction on the structure,

e BALANCED: each Z-interval D; € F is composed of two intervals having the same length, i.e.,
left(D:)[ = |right(D1)],

e UNIT: the interval ground set Z(F) is solely composed of unit length intervals,

e DISJOINT: no two distinct intervals in the interval ground set Z(F) intersect.

Recall that family of unit 2-intervals is balanced, while the converse is not necessarily true. Furthermore,
for most applications, one may assume that a family of pairwise disjoint 2-intervals is unit. Observe that in
this latter case, a family of 2-intervals reduces to a graph G equipped with a numbering of its vertices from 1
to |V| (see Chapter 2 for a complete treatment of this restriction). Considering additional restrictions such as
(i) bounding the width, the height or the depth of either the input family of 2-intervals or the solution subset,
or (ii) bounding the interleaving distances are also of interest for practical applications.
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Before going to algorithms, I would like to take the opportunity of this manuscript to clarify one
point about 2-intervals I never explicitly stated. This is the right place I guess. Indeed, I was
asked many times whether 2-intervals (and actually the same question would make sense for
linear graphs) would ever yield any competitive algorithm for RNA structure prediction. The
answer is No, and actually I did not ever think the answer could be Yes. Biology is of course too
complicated for such a simplistic solution (“Biology easily has 500 years of exciting problems to work
on, it’s at that level”, D. Knuth, Computer Literacy Bookshops Interview, 1993). Nobody would
think that 2-intervals and linear graphs are accurate models for RNA structure, ever! There are so
many parameters here, so many exceptions, so many exceptions to exceptions, ... “Parfois, mais
pas toujours, oui, non, enfin parfois, a dpend, pas toujours, non, voil, pas toujours”would say Jean-Pierre
Rousset. But this is precisely for this reason that I believe simple enough combinatorial objects are
needed to deal with specific issues involved in the big picture (I have for example in mind the
algorithmic impact of crossing structures). This was my guideline for introducing and studying
2-intervals in computational biology.

1.4.3 Algorithms and complexity

Let us start with some easy observations and statements. For one, the 2-INTERVAL PATTERN problem for
M = {<,, ()} is related to the MAXIMUM INDEPENDENT SET problem in 2-interval graphs with a given
2-interval representation (recall that, as we have seen, recognizing 2-interval graphs, and hence computing
a 2-interval representation, is NP-complete). For another, graphs of maximum degree A are [(A+1)/2]-
interval graphs [ , ], and hence any graph with maximum degree 3 is a 2-interval graph.
Therefore, since the MAXIMUM INDEPENDENT SET problem in its natural decision setting is NP-complete
for planar graphs with maximum degree 3 [ , ] (we note in passing that any planar graph
is a 3-interval graph [ , ]), it follows that the 2-INTERVAL PATTERN problem is
NP-complete in its whole generality. This is actually not very surprising (but we know what one is letting
oneself in for).

The best complexity results for the 2-INTERVAL PATTERN problem are given in Table 1.3 for various
models and interval ground sets, and we shall only discuss some very specific points in the sequel.

First, the O(nlog(n) + £) time algorithm of [ , ] for M = {C, (} and disjoint interval
ground set now supersedes our O(n? log(n)) time algorithm [ , ]. However, the techniques are
quite comparable and are based on the following property. For a 2-interval D, define its covering interval to
be c(D) = [start(left(D)), end(right(D))], i.e., the least interval that covers D. Let F be a family of 2-intervals
and let G be the intersection graph of the intervals {c(D) : D € F}; G is certainly an interval graph. Moreover,
any subfamily 7’ C F type {C, (} induces a clique in G. It is thus enough to focus on the maximal cliques of
G. But an interval graph G is a chordal graph and as such has at most |[V(G)| maximal cliques [

, ]. Furthermore, all the maximal cliques of a chordal graph can be found in O(n + m) time,
where n = [V(G)| and m = [E(G)|, by a modification of Maximum Cardinality Search (MCS) [
, ; , ]. The O(n? log(n)) time algorithm follows.

Second, if the 2-INTERVAL PATTERN problem is solvable in O(nlog(n)) time for both M = {<} (the
algorithm is trivial) and M = {C}, the two algorithms actually use different geometrical objects: intervals for
the former and trapezoids [ , ] for the latter (a structure which will prove extremely useful in
the sequel).
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Interval Ground Set Z(F)
Model M o ] o
Unlimited, Balanced, Unit Disjoint
{<,c,0} | APX-hard [ , ] OMnmyn)[
{<, 0} NP-complete [ , 1 NP-complete [ ,
{c, 0} APX-hard [ , ] O(nlogn)+ L) [
{<,C} O(nlog(n) +nd) [ , |
{<} O(nlog(n)) [ ,
{c} O(nlog(n)) [ , ]
{0} O(nlog(n) + £) [ , ]

Figure 1.3: Best complexity results for the 2-INTERVAL PATTERN problem for all combinations of models and
interval ground sets. For the polynomial-time cases, n = |F|, £ = L(F) and d = d(F).

Interval Ground Set Z(F)
Model M . ] .
Unlimited Balanced Unit Disjoint
{<o,0 | 471 , 1 47] , IEN , | N/A
=, 0} 41 , 1 4°] , 1 37 , ]  N/A
{<, 0} PTAS [ , ] (or effective 24 [ , D

Figure 1.4: Performance ratios for hard instances of the 2-INTERVAL PATTERN problem (the 2-INTERVAL
PATTERN problem for disjoint interval ground set and models M = {<, C, (j} and M = {C, (J} is polynomial-
time solvable).

1.4.4 Approximation

The best approximation ratio for the 2-INTERVAL PATTERN problem are given Figure 1.4 for various models
and interval ground sets, and, once again, we shall only discuss specific points.

First, we paid special attention to efficient approximation algorithms, and most of the results presented
Figure 1.4 support implementation. However, the 4-approximation for unlimited 2-intervals is by linear
programming and we are still not able to design a simple and practical approximation algorithm with the
very same performance ratio.

Second, the PTAS of Jiang [ : ] for M ={<, ()} supersedes our results [ , 1,
i.e., an approximation ratio (i) 6 for general 2-intervals, (ii) 4 for balanced 2-intervals, (iii) 3 for unit 2-intervals,
and (iv) 2 when the 2-intervals reduce to a linear graph (see next chapter). It is worth noticing that, like most
PTAS, Jiang’s algorithm does not support implementation (however, Jiang has proposed an approximation
algorithm with performance ratio 2 well-suited for practical applications).

Third, we considered in [ , ] a weighted variant of the 2-INTERVAL PATTERN problem:
each 2-interval is associated to a weight and the goal is to find a maximum weight subfamily of pairwise
disjoint 2-intervals with respect to a prespecified model M. Here, one can for instance weight a 2-interval
by the total sum of the lengths of its intervals, thereby allowing more refined solutions in the biological
application of the problem. We have shown in [ , ] that our results can be extended to
the weighted variant, while still maintaining the same approximation factors.

1.4.5 Parameterized complexity

We have considered in [ , ] the parameterized issues of some standard combinatorial
problems restricted to d-intervals. It is understood here that, even if the considered problems are defined for
graphs, we consider these problems on families of 2-intervals in terms of the associated 2-interval graphs.
For example, the MINIMUM DOMINATING SET problem (given a graph G, find a minimum cardinality set of
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vertices V' C V(G) such that any vertex in V(G) \ V’ has at least one neighbor in V') reduces for a family of
2-intervals F to finding a subfamily of 2-intervals 7' C F such that any 2-interval in F \ F’ intersects at
least one 2-interval in F'. Our results (negative and positive) can be summarized as follows.

According to Proposition 1.4.3, the 2-INTERVAL PATTERN problem for M = {C, (} is W[1]-hard
for its standard parameterization The parameterized complexity (standard parameterization)
of the 2-INTERVAL PATTERN problem for M = {<, ()} is more intriguing. So far, we are still not
able to determine the parameterized complexity of this problem. Recall that the 2-INTERVAL
PATTERN problem for M = {<, ()} has a polynomial-time approximation scheme (PTAS) [ p

], and hence proving that it is W[1]-hard would show that, in some sense, a PTAS is the best
approximation one can obtain (i.e., no efficient PTAS) for this problem.

Conjecture 1. The 2-INTERVAL PATTERN problem for M = {<, (} is WI1l-hard for its standard parame-
terization.

Proposition 1.4.1 ([ , ). The following problems are W[1l-hard for 2-interval graphs (assuming
a 2-interval representation is given along with the graph):

o the MAXIMUM INDEPENDENT SET problem parameterized by the size of the solution,
e the MINIMUM DOMINATING SET problem parameterized by the size of the solution, and
e the INDEPENDENT MINIMUM DOMINATING SET problem parameterized by the size of the solution.

It is worth noticing that [ , ] has rapidly become a well-cited paper, not in reason of
Proposition 1.4.1 but for the multicolored clique technique we have introduced. In a nutshell, the multicolored
clique technique allows for an almost systematic gadget-construction and helps in eliminating several

technical details (see [ , ] where a large portion is devoted to presenting this general
technique).
Proposition 1.4.2 ([ , ). The MAXIMUM CLIQUE problem for d-intervals is fixed-parameter

tractable when parameterized by d and k (k is the size of the clique we are looking for).

Central in the proof of Proposition 1.4.2 is the fact a d-interval graphs with no clique of size k has a vertex
of degree less than 2k. However, the algorithm is of limited practical interest due to the huge exponential

term in the running time, i.e., O (k2 (2 ﬂk)). Notice, however, that Jiang has recently proposed a better a

max{d© (k) 20(klogk)} . poly(n) time algorithm for MAXIMUM CLIQUE problem for d-intervals, where n is
the number of vertices in the graph [ ]. Designing a practical fixed-parameter algorithm for the
CLIQUE problem for d-intervals remains a challenging problem.

We conclude this chapter by discussing briefly parameterized issues of the 2-INTERVAL PATTERN problem.
First, according to Proposition 1.4.1 for M = {<, C, ()} is W[1]-hard for its standard parameterization. To
complement this result, the following proposition is announced with proof.

Proposition 1.4.3. The 2-INTERVAL PATTERN problem for M = {C, ()} is WI1]-hard for its standard parameteriza-
tion
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2.1 Introduction

This chapter is devoted to algorithmic aspects of linear graphs and is a natural follow-up of Chapter 1 as
linear graphs can be viewed as families of 2-intervals over a disjoint ground set (this was actually our initial
motivation for studying linear graphs). In Section 2.2 we set up notation and terminology. Section 2.3 is
devoted to introducing the relationship between permutations and linear matchings. The three following
sections are devoted to algorithmic considerations: In Section 2.4 we consider the pattern matching for
permutations problem, Section 2.5 is concerned with finding large common patterns in linear graphs whereas
Section 2.6 aims at bringing together common patterns and permutations.

2.2 Definitions

We follow standard notations in graph theory (see for example [ , 1). The order (resp. size) of a
graph G is defined as the number of vertices (resp. edges) of G.
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Definition 2.2.1 (Linear graph). A linear graph of order n is a vertex-labeled graph where each vertex is labeled by
a distinct label from {1,2,...,n}.

It is worth mentioning that we shall always assume in this chapter that a linear graph has no degree 0
vertices (see also note Page 30).

A linear graph can be thus viewed as a graph with vertices embedded on the integral line, yielding a
total order amongst them. In case of linear graphs, we write an edge between vertices i and j, 1 < j, as the
pair (i,j). By convention, if G is a linear graph, we let G[i...j], 1 <1 <j < |V(G)|, denote the subgraph
induced by all vertices labeled k with i < k < j. Two edges of a linear graph are disjoint if they do not share a
common vertex. Of particular interest in our context are edge-disjoint linear graphs.

Definition 2.2.2 (Linear matching). A linear matching is an edge-disjoint linear graph.

A linear matching with 2n vertices (should be indeed even) has thus n edges. Similarly to 2-intervals,
relative positioning of disjoint edges is of particular interest. Let e = (i,j) and e’ = (i’,j’) be two disjoint
edges in a linear graph or a linear matching G. We write:

e e <e'(eprecedese’)ifi<j<i <j/,
e e e’ (eisnestedine’)if i’ <i1<j<j’,and
e efje’ (eand e’ cross)ifi <i’ <j<j'.

Two edges e and e’ are R-comparable, for some R € {<, C, (J}, if eRe’ or e'Re. For a subset M C {<,, {J},
M # 0, edges e and e’ are said to be M-comparable if e and e’ are R-comparable for some R € M. A set of
edges E is M-comparable if any pair of distinct edges e, e’ € E are M-comparable. A linear matching whose
edge set is M-comparable is said to be type M. A subgraph of a linear graph G is a linear graph H which
can be obtained from G by a series of vertex and edge deletions, where the deletion of vertex i results in
removing vertex i and all edges incident to it from the graph, and then relabeling all vertices j with j > i to
j — 1. In our context, an edge-disjoint subgraph of a linear graph is also called a structured pattern.

2.3 From linear graphs to permutations ...and back

It is folklore that linear matchings type {<,C, ()} of order 2n are in bijection with fixed-point free (fpf)
involutions, i.e., permutations of &,,, with n cycles, each of length 2. The number of fpf involutions of &,y
is the double factorial number (2n —1)!l =1-3---(2n — 1) (see the On-Line Encyclopedia of Integer Sequences
for references).

It is also a simple observation that linear matchings type {C, (} of size nn are in bijection with permutations
of &,,. To see this, let us consider a linear matching G type {C, (} of size n. Then the vertices in G which
are left endpoints of edges are labeled {1, 2,...,n} and the right endpoints are labeled {n + 1,n + 2,...,2n}.
The permutation 7ig corresponding to G is defined by 7ig (j — n) =i if and only if (i,j) € E(G). Clearly, all
linear matchings type {C, ()} have corresponding permutations, and vice versa. It follows from this bijective
correspondence that the number of different linear matchings type {C, ()} of G of size n is n!. Interestingly
enough, notice that increasing subsequences in 7g correspond to subgraphs type {{J} of G, while decreasing
subsequences correspond to subgraphs type {C}. See Figure 2.1 for an illustration.

Both linear matchings type {<, C} and {<, {J} of order 2n are in bijection with Dyck words of length 2n
(should we call a linear matching type {<, (} an anti-Dyck pattern?). Recall that a Dyck word of length 2n
is a string consisting of n a’s and n b’s such that no initial segment of the string has more b’s than a’s (for
example, the following are the Dyck words of length 6: aaabbb, abaabba, ababab, aabbab, aababb). The
number of Dyck words of length 2n is n-th Catalan number C,, = (2;1) /(n + 1) (the best general reference
here is [ , D-
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g =594763218

Increasing subsequence 57 8

Figure 2.1: A linear matching G type {C, (} and the corresponding permutation mg =594763218. Also
illustrated is the bijective correspondence between decreasing subsequences (resp. increasing subsequences)
of g and patterns of G type {C} (resp. type {{}).

2.4 Pattern matching

We consider in this section the pattern matching problem for linear matchings: Given a pattern (in the form
of a linear matching) and a target linear matching, decide whether there is an occurrence of the motif in the
target. We refer to this problem as the PATTERN MATCHING FOR LINEAR MATCHINGS problem. According
to the preceeding section, if both the pattern and the target are linear matching type {C, ()} we are left with
the pattern matching problem for permutations (the bijection is indeed pattern-preserving). We refer to this
later problem as the PERMUTATION PATTERN problem. As we shall see, most of the difficulties in trying to
solve the PATTERN MATCHING FOR LINEAR MATCHINGS problem originate from the PERMUTATION PATTERN
problem.

Let us embed the PATTERN MATCHING FOR LINEAR MATCHINGS problem into permutations. A permuta-
tion 7t is said to contain the pattern (shorter permutation) o, in symbols o < 7, if there exists a subsequence
of entries of 7t that has the same relative order as o (alternatively, o is involved in 7). Otherwise, 7t avoids
0. For example, 3215674 contains the pattern 132 since the subsequence 154 is ordered in the same way
as 132. Pattern involvement in permutations has become a very active area of research. For one, pattern
containment restrictions are often used to describe classes of permutations that are sortable under various
conditions [ , ]. For another, a great deal of study has been devoted to counting pattern-avoiding
permutations [ , ], probably culminating in the proof of the Stanley-Wilf conjecture [



20

Does there exist a fixed-parameter algorithm (standard parameterization) for finding an occur-
rence of a permutation o € Sy in a permutation m € &,? In other words, does there exist an
algorithm for finding an occurrence of o in 7is f(k)n®(!) time, where f is an arbitrary function
depending only on k?

We thought for ages that the answer should be just No, unless FPT = W[1]. We changed our mind
radically about this issue. Every attempt to design a parameterized reduction leaded us to — more
or less — the same cul-de-sac.

Conjecture 2. The pattern matching for permutations problem is fixed-parameter tractable for its standard
parameterization.

We, however, do believe that proving this conjecture is quite a difficult difficult task ... far beyond
the reach of our arms for the time being.

Given two permutations o and 7, the PERMUTATION PATTERN problem is thus to decide whether o0 < 7t
(this problem is ascribed to H. Wilf in [ , ]). The PERMUTATION PATTERN problem is NP-hard
[ , ] (see [ , ] for an alternate proof), but is clearly polynomial-time solvable if o
has bounded size. Indeed, if o has size k and 7 has size n, a straightforward brute-force algorithm solves
the problem in O(n*) time. Improvements to this algorithm were presented in [ , ]and [?],
the latter describing a O(n%#7%+°(k)) time algorithm. Also, the problem is known to be polynomial-time
solvable (in k and n) if o is separable, i.e., o contains neither the pattern 2413 nor 3142 | , ; ,

]. In case o is monotone, ie., 0 =1...kor o =k...1,anice O(nloglog(n)) time algorithm is known
[ , 1

Is the PERMUTATION PATTERN problem fixed-parameter tractable for its standard parameterization? If
only one question were to be asked in this manuscript this has to be this one. We still don’t have any answer
here. Could it be the case that the PERMUTATION PATTERN problem is a special case of a more general
problem in FPT? Or in other words, does there exist a FPT proof for free? Since the PERMUTATION PATTERN
problem is a special case of the general PATTERN MATCHING FOR LINEAR MATCHINGS problem, one can
naturally reduces this question (in our context) to: is the PATTERN MATCHING FOR LINEAR MATCHINGS
fixed-parameter tractable for its standard parameterization? We answer this latter question in the negative
(unless FPT = WI[1], a fairly unexpected event) by proving the following new result (observe that this
does not, however, rule out the existence of another simpler problem in FPT containing the PERMUTATION
PATTERN problem ...hence the main question remains asked).

Proposition 2.4.1. The PATTERN MATCHING FOR LINEAR MATCHINGS problem is W[1l-hard for its standard
parameterization, i.e, the size of the pattern we are looking for.

Here is a sketch of the proof.

Proof. We propose a parameterized reduction from the CLIQUE problem which is known to be W[1]-hard

when parameterized by the size of the clique we are looking for [ , 1.
Let (G, k) be an arbitrary instance of the CLIQUE problem. Write V(G) = {uy,uz,...,un}and E(G) =
{e1,e2,...,em). Furthermore, let us write d; for the degree of u; € V(G), and for convenience let dp = 0.

Foreach 1 <1i < m, write Dy for dy +d + ...+ d;_7. Finally, for 1 <1i,j < n, write l; ; for the number of
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&
The following items might be useful tools towards proving fixed-parameter tractability of the
PERMUTATION PATTERN problem (Join work with S. Guillemot).
The all 1’s k x k binary matrix is denoted Ji. Let A = [a; ;] be a m x n binary matrix. It is said to be
pruned if it contains neither a all 0’s row nor a all 0’s column. For now on, we assume A is pruned.
A (p/m, q/n)-partition P is (i) a partition of {1,2, ..., m} into p intervals Ry, Rz, ..., Ry, and (ii) a
partition of {1,2,...,n}into q intervals Cy, C2,...,cq. The quotient of A by P, in symbols A/P,
is the p x g binary matrix A/P = [a/p;,;] defined by a/pi,; = 1 if and only if ay; = 1 for some
k € Ry and 1 € C;. Given two pruned binary matrices A and B of size m x n and p x g, respectively,
we say that B is contained in A, denoted by B < A, if there exists a (p/m, q/n)-partition P such
that B < A/P (this latter notation means that a/p;; = 1 whenever b;; = 1for 1 <1i < p and
A<j<q).
For a m x n pruned binary matrix A = [a; ;], it will be convenient to define ones(A) as follows

ones(A) ={(i,j) €{1,2,...,m} x{1,2,...,n}:ay; =1}

For any e = (i,j) € ones(A) and e’ = (i’,j’) € ones(A), define the distance between e and e’,
denoted da (e, e’), by da(e,e’) = max{[i—1i'l,|j —j’[}. The matrix A is k-locally-dense if there exists
distinct e, e’ € ones(A) such that da(e,e’) < k (by convention A is k-dense if |ones(A)| < 1).
Define the local-density of A, simply denoted d(A), to be the minimum k for which A is k-locally-
dense.

Conjecture 3. For any permutation matrix 7, if d(7) > k then Ji < .

Although at first odd, no counter-example has yet been found. Notice that the above conjecture
holds for k = 2 since non-separable permutations contain 3142 or 3142 and hence does contain
J2- It also holds for || = k? (details omitted). Finally, observe that, if True, the above conjecture
would imply D(7t) < A(7r), where D(n) = max{d(o) : 0 < pi} and A(n) is the maximum k for
which Jx < 7 holds.

neighbors u, of u; such that x < j, i.e.,

lij = Hux : {ug,uyp € E(G) A x < jll.

We construct the corresponding instance (Gargety Gpattern) Of the PATTERN MATCHING FOR LINEAR MATCH-

INGS problem as follows. The linear matching Giarget has order 4n + 8m + 4 and its edge set E(Giarget) is
defined by

2 3 4 5 6
U Etarget U Etarget U Etarget U Etarget U Etarget

E(Gtarget) = E1

target
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where

={({,dm+4dn+4i+1):1<i<m}

target

={i+1,dm+n+4+4):1<i<m}

target

target
={2m+2{,2m+2n+2i+Dj 1 +2):1 <i<n}

target

(

(
={2m+2i—-1,2m+2n+2i+D;+1):1<i<n}

(

(

={2m+2n+1,2m+2n+2),(dm+4n+3,4m+4n+4)}.

target

6
Let us now describe Eg, ..

n of course). We add two edges to Etarget for each edge of G. More precisely, if e; = {up,uq}, p < q,
is an edge of G, we add to Etar ot the two edges 2m +2n +2i+ D, + 1, ¢ + 2,4m 4+ 4n +4i + 2) and
2m+2n+2i+ Dy +1g,p + 2, 4m +4n + 4i + 2). This completes the Constructron of Grarget-

We now turn to constructmg Gpattem The linear matching Gpattern has order 4k% + 4 (dependmg solely of
k, good!) and its edge set E(Gtarget) is defined by

 Which is the only part of Giarget that depends on the input (apart from m and

1 2 3 4 5
E(Gpattern) Epattern U Epattern U Epattern U Epattern U Epattern U Epattern

using the very same construction as for Giarget but considering as input the complete graph Ky on k vertices
(and 1jk(k — 1) edges) instead of G.

It can be proved that there is an occurrence of Gpatern in Grarget if and only if G has a clique of size k. One
direction is trivial (by construction). For the other direction, we only mention that the following observation

is crucial for correctness (and for reducing the proof to a sequence of easy steps): the two edges of Epattem

must match the two edges of Etar - Indeed, a careful observation of Gpattern shows that, for any two edges
ei, ¢j € E(Gpatten), €1 < €jifand only if e; = 2m+2n+1,2m+2n+2) and ¢; = (4m+4n+3,4m+4n+4).
Similarly, for any two edges ei, ¢j € E(Guarget), €1 < ¢j if and only if e = (2m +2n + 1,2m + 2n + 2) and

ej = (4m+4n+3,4m+4n-+4). This property allows us to draw the following crucial property: for 1 <i <,
all edges of Epattem are matched to edges in Eta,rget From this point, the rest of the proof is just a sequence of
easy readings of the construction. O

In the light of the present situation (the parameterized complexity of the PERMUTATION PATTERN
for its natural parameterization is still open), we have considered in [ , ] the
PERMUTATION PATTERN problem in case o (possibly o and 71) avoids a pattern of length 3. Recall that Knuth
proved in [ , ] that for all six of the patterns of length 3 it is true that the number of permutations
of size n that avoid the pattern is the Catalan number C,, = (zn) /(n + 1). First, it is easy to see that the
PERMUTATION PATTERN problem is polynomial-time solvable if the pattern o avoids 132, 312, 213 or 231
since o is clearly separable in this case. Monotone patterns, i.e., 123 and 321, however, deserve separate
consideration (we focus here on 321-avoiding permutations but if a permutation avoids 123 then its reverse
avoids 321). The rest of this section is devoted to presenting our results.

First, combining ordered forest embeddings with labeled DAG morphisms, we have shown that the
PERMUTATION PATTERN problem is polynomial-time solvable if both 7t and o are 321-avoiding.

Proposition 2.4.2 ([ , 1). In case both 7 and o are 321-avoiding, the PERMUTATION
PATTERN problem is solvable in O(k*n®) time, where k = |o] and n = |r.

Second, if we relax the problem to only one 321-avoiding permutation (and it has to be o of course), we
have obtained the following result.

Proposition 2.4.3 ([ , 1). In case only o (the pattern) is 321-avoiding, the PERMUTATION
PATTERN problem is solvable in O(kn*V¥+12) time, where k = |o| and n = |.
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Notice that the above proposition does not settle the complexity of the PERMUTATION PATTERN problem
in case only o is 321-avoiding. In [ , ], we have conjectured this problem to be
NP-complete. Unfortunately (or fortunately, we were not wrong!) this conjecture is true as shown in the
following proposition (definitively too long proof omitted).

Proposition 2.4.4. The PERMUTATION PATTERN problem is NP-complete even if o is 321-avoiding.

We close this section by mentioning a generalization of the PERMUTATION PATTERN problem that may be
of independent interest. The c-COLORED PERMUTATION PATTERN problem is defined as follows: given two
permutations o and 71, and a stair decomposition D of o (see [ , ]and [

] for details), where o and 7 are c-colored permutations (i.e., a color in {1, 2,..., c} is associated to each
point of the permutation), find a color-preserving embedding of o into 7. We have obtained the following
result (recall that the Exponential-Time Hypothesis (ETH) is the assumption that the 3-SAT problem cannot
be solved in 2°(™) time, where n is the number of variables).

Proposition 2.4.5 ([ , 1). The 2-COLORED PERMUTATION PATTERN problem parame-
terized by k is WI1]-hard and cannot be solved in n°V*) time assuming ETH.

We also refer the reader to [ , ] for WNL-hardness issues of Proposition 2.4.5
(the parameterized class WNL was introduced in [ , ] to capture the parameterized complexity
of problems solvable by k-dimensional dynamic programming).

2.5 Finding common structures

2.5.1 Introduction

This section is devoted to finding common structures in linear graphs and linear matchings. We begin by
presenting this problem in its original setting. RNA and proteins exhibit a three-dimensional structure
that determines most of their functionality. This three dimensional structure can be modeled (at the
price of simplifications!) in two dimensions by a linear graphs. The corresponding structure-similarity or
structure-prediction problems that arise in such contexts usually translate to finding common linear matching
subgraphs, or common structured patterns, that occur in a family of general linear graphs. Examples of such

problems are the LONGEST COMMON SUBSEQUENCE problem [ , ; ,
], the MAXIMUM COMMON ORDERED TREE INCLUSION problem [ , ; , ;

, ], the ARC-PRESERVING SUBSEQUENCE problem [ , ; ,

; , ], and the MAXIMUM CONTACT MAP OVERLAP problem [ , ]

problem (more on this in the perspective note Page 30). A general framework for such problems is known as
the e MAXIMUM COMMON STRUCTURED PATTERN (MCSP) problem.

The MCSP problem was originally introduced (under a different name) by Davydov and Batzoglou
[ , ] in the context of non-coding RNA secondary structure prediction via multiple
structural alignment. There, an RNA sequence of n nucleotides is represented by a linear graph with n
vertices, and an edge connects two vertices if and only if their corresponding nucleotides are complementary.
A family of linear graphs is then used to represent a family of functionally-related RNAs, and a common
structured pattern in such a family is considered to be a putative common secondary structure element of
the family.

The MAXIMUM COMMON STRUCTURED PATTERN (MCSP) problem is formally defined as follows (see
Figure 2.2 for an illustrative example).
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(a) Linear graph G

~

L] L] [ ] [ ] L] L] [ ] L] L] [ ] [ ] L] L] [ ] [ ] L] L]
(b) Linear graph G

[ ] [ [ J [ J [ [ [ J [ ] [
(c) Linear graph G3

(d) Linear graph G4

e ey e3 es es

(e) Linear matching G

Figure 2.2: Four linear graphs G, G2, G3 and G4 and a common structured pattern (depicted as Gg,). The
occurrence of the structured pattern G, in each graph is emphasized in bold. Edges e», e3, e4 and es are
nested in edge e; ; edges e, and e3 precede edge es ; edge e; precedes edge e4 and crosses edge e3, while

edge e3 crosses both edges e, and e4.

¢ Input : A family of linear graphs G ={G1, G2, ..., Gn} and a non-empty subset M C {<, C, {}.
¢ Solution : A common structured pattern Gy type M of G, i.e., a linear matching type M that
occurs in each input linear graph of .

e Measure : The size of G, i.e., |[E(Ggo1)|.
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It will be convenient to introduce some special linear matching. A linear matching type {<} (resp. {C}, {(})
is called a sequence (resp. tower, staircase). Define the width (resp. height, depth) of a linear graph to be the size
of a maximum cardinality sequence (resp. tower, staircase) subgraph of the graph. A linear matching type
{<, .} with the additional property that any two maximal towers in it do not share an edge is called a sequence
of towers . Similarly, a linear matching type {<, (} is a sequence of staircases if any two maximal staircases do
not share an edge. A tower of staircases is a linear matching type {C, ()} where any pair of maximal staircases
do not share an edge, and a staircase of towers is a comparable linear matching type {T, {} where any pair of
maximal towers do not share an edge. A sequence of towers (resp. sequence of staircases, tower of staircases,
staircase of towers) is balanced if all of its maximal towers (resp. staircases, staircases, towers) are of equal
size. Figure 2.3 illustrates an example of the above types of linear graphs.

(a) A {<, C}-structured pattern of width 4  (b) A {<, (}-structured pattern of width 4 (c) A {C, (}-structured pattern of height 6
and height 4 and depth 4. and depth 3

raasS eV aasvaas TN TSN SN (7O T T A

(d) A sequence of towers of width 5 and  (e) A sequence of balanced towers of width  (f) A sequence of staircases of width 4 and
height 3. 3 and height 3. depth 4.

TR (7T (TR (777777 (7777777

(g) A sequence of balanced staircases of (h) A tower of staircases of height 4 and (i) A tower of balanced staircases of height
width 3 and depth 3. depth 3. 3 and depth 3.

N SN .. (77 RN

(j) A staircase of towers of height 3 and (k) A staircase of balanced towers of height
depth 4. 3 and depth 3.

Figure 2.3: Some restricted structured patterns. Edges are drawn above or below the vertices with no
particular signification.

The MCSP problem is relatively easy for simple M. Indeed, it is solvable in O(nm) time for M = {<}
[ , ], in O(nmloglog(m)) time for M = {C} [ , ], and in O(nm'-%) time
for M ={(} [ , ], where n = |G| and m = maxgeg [E(G)|.

We briefly review some related results. Valiente gave a dynamic programming algorithm for finding a
largest nested linear graph that occurs in two nested linear graphs [ , ] (see also
[ , ]). In a totally different context, Felsner et al. considered the matching problem
regardless of precise pattern definition and proved that given a linear graph G of size m, a maximum size
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nested subgraph of G can be found in O(m?) time [ , ]. The general problem of finding a
maximum size edge-independent subgraph of G is the well-known maximum matching problem [ ,

1.

2.5.2 Structured patterns type {<,C}

Of particular importance in the context of computational molecular biology, is the fact that the MCSP
problem for structured patterns type {<, C} has been shown to be NP-complete [ ,
]. We have strengthen this result in a drastic way.

Proposition 2.5.1 ([ , 1). The MCSP problem for structured patterns type {<, "} is NP-hard even
if each input linear matching is a sequence of towers of height at most 2.

Notice, however, that we have proved the MCSP problem to be polynomial-time solvable in case the
number of input linear graphs is a fixed integer [ , ]. As for the approximation, the MCSP
problem for structured patterns type {<, C} was proved to be approximable with ratio O (log2 (k) [

, ], where k is the size of an optimal solution. We have improved this result in [

,2006]

Proposition 2.5.2 ([ , ). The MCSP problem for structured patterns type {<, C} is approximable
within ratio O(log k) in O(nm?) time, where k is the size of an optimal solution, n = |G|, and m is the maximum
size of any linear graph in G.

2.5.3 Structured patterns type {<, ()}

Focusing on M = {<, {j}, we have obtained the following results (the first one is a straightforward conse-
quence of Proposition 2.5.1 whereas the second one requires two ingredients: (i) any structured pattern
type {<, ()} contains a sequence of staircases of substantial size and (ii) any sequence of staircases contains a
balanced subgraph of substantial size, details omitted).

Proposition 2.5.3 ([ , ). The MCSP problem for structured patterns type {<, ()} is NP-hard even if
each input linear graph is a sequence of staircases of depth at most 2.

Notice that a recent result in [ , ] implies that the MCSP problem for structured patterns
type {<, (} is hard even if G consists of only two linear graphs. However, the input linear graphs used in [
, ] are of unlimited structure, unlike Proposition 2.5.3. Interestingly enough, the case |G| = 1 has
been recently proved to be NP-hard [ , ].

Proposition 2.5.4 ([ , 1). The MCSP problem for structured patterns type {<, ()} is approximable
within ratio 2H(k) in O(nm?3-5 log(m)) time, where k is the size of an optimal solution, n = |G|, m = maxgeg |[E(G)],
and H(k) = 21‘11 1/1 is the k-th harmonic number.

2.5.4 Structured patterns type {C, ()}
Not surprisingly, the MCSP problem for structured patterns type {C, (J} is hard even for quite simple instance.

Proposition 2.5.5 ([ , ). The MCSP problem for structured patterns type {C, ()} is NP-hard even if
each input linear graph is a tower of staircases of depth at most 2. The same result applies for staircases of towers

As the reader might have guessed, the above result is an easy consequence of Proposition 2.5.1. As
observed before, this case in strongly related to pattern matching for permutations. The well-known Erd&s-
Szekeres Theorem [ , ] states that any permutation of &y contains either an increasing
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Proposition 2.5.1 raises the following entertaining problem. Let A = [ai,j} be a m x n matrix
with non-negative entries. Define a run v in A to be a mapping r : m — n. The weight of the
run 1 is defined by w(r) = min{a; ;1) : 1 <1 < m}. Let 1y and r; be two runs of A. The run 1y
precedes the run 1, in symbols 11 < 12, if 11 (i) < 72(1) for all 1 <i < m. We consider the problem
defined as follows: Given a m x n matrix with non-negative entries, find a sequence of runs
T1 <72 <...< T} with maximum total weight Zfﬂ w(ry). Observe that the number of runs in
the solution is not part of the input, one is only interested in maximizing the total weight of the
solution. Below is an illustration for a 5 x 6 matrix with three runs r; < 2 < 13 of total weight
w(r)+w(r)) +w(r3) =2+2+5=9.

T1 T2 T3

@14279
@31612

@92571
O:O: ¢

According to Proposition 2.5.1, the above problem is NP-complete even if every entry of the
matrix is one of the integers 0, 1 and 2 (each row denotes a sequence of tower and each entry
denotes the height of a tower). Moreover, it is easy to show that the problem is polynomial-time
solvable if every entry of the matrix is one of the integers 0 and 1 (Proposition 2.5.1 is tight). How
approximable is the general problem? Is it APX-hard? We would be very surprised if the answer
to this latter question for a fixed number of distinct non-negative integers was Yes. In other words,
we believe a PTAS exists for this special case. Notice that the straighforward greedy algorithm
(repeatedly select a maximum weight run) does not yield any approximation result. To see this,
consider the m x m matrix A = [a; ;] defined by a; ; = 2if i = j and a; ; = 1 otherwise.

AN
p, S ]

16O

According to [ , ], the PATTERN MATCHING FOR LINEAR MATCHINGS problem is
NP-complete is the pattern is type {<, ()}. What about the complexity if both the target graph and
the pattern are linear matchings type {<, (}?

Conjecture 4. Finding an occurrence of a linear matching type {<, ()} in another linear matching type
{<, 0} is polynomial-time solvable.

27
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or a decreasing subsequence of size at least vk. It is worth noticing that extremal Erdés-Szekeres (EES)
permutations, i.e., permutations that do not contain monotone subsequences longer than Vk, are known
to exist (for example, there are 4 EES permutations of length 4: 2143,2413,3142 and 34 12). Combining
this with algorithms for finding a largest common structured pattern type {T} or {()}, we have obtained the
following result.

Proposition 2.5.6 ([ , 1). The MCSP problem for model M = {C, ()} is approximable within ratio
Vk in O(nm!->) time, where k is the size of an optimal solution n = |G|, and m = maxgeg [E(G)|.

How tight Proposition 2.5.6 is? Central in Proposition 2.5.6 is the use of family of patterns to probe the
input. Can we use more complicated families of patterns to improve the approximation (notice that there
is tradeoff to be made here, the family should be large enough, but only polynomially large if we want to
possibly consider each member)? Unfortunately, the answer is negative. For k € N, let T, C &y be a set of
ITTx| permutations on k elements. Each permutation in ITy can be equivalently regarded as a linear matching
type {C, (}. Alon recently communicated us a proof of essentially the following lemma.

Lemma 2.5.7 (N. Alon, Private communication). For every family of permutations T, C &y, k € Nand [TTy| < 2,
there exists a permutation € Sx, K = Q(k?), which avoids all permutations in TTy.

Notice that Alon’s lemma shows that there exists a linear matching type {C, {} of size K = Q(k?) which
does not contain any linear matching type {, §} out of a family of at most 2* such graphs. Hence, even
using more involved or interesting families of linear matchings type {C, ()} to be used to probe our input
graphs, no approximation guarantee better than O(v/k) for maximum common structured patterns type
{C, 0} can be possibly achieved.

2.5.5 Putting everything together

We now consider structured patterns type {<, C, §}. We gave in [ , ] three approximation
algorithms with increasing time complexities but decreasing approximation ratios. Roughly speaking, these
three algorithms rely on sufficiently large sub-patterns that occur in any structured pattern type {<, C, (/},
and the fact that finding maximum common structured patterns of these types is polynomial-time solvable.

Our first approximation algorithm is based on Dilworth’s Theorem [ , ] and uses the
following simple structure lemma.

Lemma 2.5.8 ([ , ). Let G be a linear matching type {<, C, (} of size k. Then H contains a simple
(i.e, M ={<}, M ={C}or M = {{)}) structured pattern of size at least k'/3.

It is easily seen, however, that Lemma 2.5.8 is tight. One way to obtain an extremal example of this is as
follows: take k'/3 balanced towers of staircases, each one of depth k'/3 and height k'/3, and concatenate
them one next to the other into one supergraph of size k, reassigning labels accordingly. Combining the above
lemma with the fact that a maximum common simple structured pattern of G can be found in O(nm'->)
time, we have obtained the following approximation algorithm for general structured patterns.

Proposition 2.5.9 ([ , ). The MCSP problem for patterns type {<, C, (} is approximable within
ratio O(k?/3) in O(nm!->) time, where k is the size of an optimal solution, n = |G|, and m = maxgeg |E(G)|.

Our second approximation algorithm is based on [ , ] (see also [ ,
])- It uses the following structure lemma.

Lemma 2.5.10 ([ , D). Let G be a linear matching type {<, C, (} of size k. Then G contains a subgraph
of size Q) ( k/ log(k)) which is either type {<, T} or type {{}.
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Combining the above lemma with an algorithm for finding a maximum structured pattern type {(} and
the O(log(n))-approximation algorithm for structured patterns type {<, C}, we have obtained the following
result.

Proposition 2.5.11 ([ , ). The MCSP problem for structured patterns type {<, T, (} is approximable
within ratio O(4/ klog2 (k)) in O(nm?) time, where k is the size of an optimal solution, n = |G|, and m =
maxgeg [E(G)l.

We now turn to our third approximation algorithm. It uses the following structure lemma.

Lemma 2.5.12 ([ , I). Let G be a linear matching type {<, T, ()} of size k. Then G contains either a

tower or a balanced sequence of staircases of size Q ( k/ log(k))‘

Combining the above lemma with algorithms for finding a maximum common tower and a balanced
sequence of staircases in G (see [ , ] for details) we have obtained the following results.

Proposition 2.5.13 ([ , ). The MCSP problem for structured patterns type {<, T, (} is approximable
within ratio O(y/klog(k)) in O(nm3->logm) time, where k is the size of an optimal solution, n = |G|, and
m = maXgeg [E(G).

It remains a challenging problem to improve the approximation ratio for the MCSP problem for struc-
tured patterns type {<, C, {}.

(0{
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Let us consider here subgraphs of linear matchings type M for some M C {<, C, ()} with M| = 2.
Prove or disprove the following (we would go for prove): Any linear matching type {<,C, (} of
size k contains either a type {<, T} subgraph of size k*/3, a type {<, ()} subgraph of size k*/3, or a type
{C, O} subgraph of size k2/3. Notice that, unfortunately, true or false, this cannot be applied for
approximation purposes (approximating the MCSP problem for patterns type {C, ()} definitively
remains the bottleneck).

Let us put this problem in perspective. For one, we have shown in [ P ] that any
linear matching type {<, , (j} of size k contains a subgraph of size € k?*/3, where ¢ = (V17—1)/8 =
0.39, which is either type {<, T}, type {<, (}, or type {T, (}. For another, let k be an integer such
that k'/3 is an integer. A simple construction shows that there exists a linear matching type
{<,C, O} of size k that contains neither a subgraph type {<, "}, nor a subgraph type {<, {}, nor
a subgraph type {C, )} of size least e k*/3 for any ¢ > 1. Indeed, assuming the contrary, then
any linear matching type {<, C, )} of size k contains a subgraph with at least Ve k2/3 = ¢!/2k!/3
edges which is either type {<}, type {C}, or type {(}. A patent contradiction since it can be proved
(see [ , ]) that there exists a linear matching type {<, C, (} of size k that does not
contain a simple structured pattern of size € k'/3 for any ¢ > 1.

2.5.6 Towards biologically sounding models

As we have observed in [ , ], the MCSP problem does not completely succeed
in accurately modeling RNA structures. To this end, we have proposed in [ , ] to
consider the MCSP problem together with a simple RNA stacking-pair scoring scheme.
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A contact map is a useful graph-theoretic abstraction (and two-dimensional depiction) of the
structure of a protein. For a protein of size n, and a given threshold ¢, the contact map M, =
[me(i,j)] is an n x n 0-1 matrix whose entry m,(i,j) equals 1 if the distance between amino
acids i and j is less than or equal to ¢, and 0 otherwise [ , ]. Of particular
importance in our context, the contact map can also be viewed as a Hamiltonian path (usually
depicted horizontally) with nodes representing the amin acids and with edges added that join
pairs of nodes whose centers of gravity have been found to be closer to each other than a fixed
threshold e. Contact maps are thus linear graphs. Contact maps have been used for secondary
structure prediction, fold assignment, protein structure alignment, and threading (see [

P ] and references therein). A Contact map overlap is a measure of similarity of protein
structures based on maximum size common subgraphs in contact maps) [ g I
In their pioneered work, Goldman et al. [ , ] have laid the foundations of the
algorithmic issues of contact map overlap: the general problem is NP-complete and approximable
within a constant ratio for some restricted but interesting special cases. Also, they have introduces
special structures (stacks, queues and staircases) that are of particular importance for proteins. A
notable breakthrough in algorithmic aspects of contact map overlap is a recent paper of Xu et al.
[ , ] where some preliminary fixed-parameter algorithms are presented. Below are
some lines of research we plan to explore.

e Of particular importance, there exists a O(n®) time algorithm for finding the maximum
overlap of two degree 2 contact maps, one of which is either a stack or a staircase [
, ]. However, due to the high degree of complexity, it is not practical. Improving
the time complexity of this problem is a challenging and important problem.

e It is intuitively clear — and widely accepted — that contact maps of real proteins are far from
being arbitrary collections of edges since they have a specialized structure reflecting the
geometry of proteins. To this end, Goldman et al. [ , ] have introduced a
special class of contact maps (self-avoiding walk on the 2D grid) that seem to be a long way
toward capturing this structure (the problem of computing the maximum overlap remains,
however, hard for self-avoiding walks on the 2D grid ...not a real surprise as self-avoiding
walks do capture the complexity of real instances). Interesting questions include:

o Computing the maximum overlap between two self-avoiding walks on the 2D grid
is known to be approximable within ratio 4. Improving this ratio is crucial to bridge
the theory—practice gap. A promising line of research could be to improve the decom-
position of self-avoiding walks on the 2D grid (it is only known that a self-avoiding
walk can be decomposed into 2 stacks and 1 queue). Notice that it is not even known
whether this problem is APX-hard (self-avoiding walks on the 2D grid enjoy some
degree of planarity).

o Parameterized issues of self-avoiding walks on the 2D grid are completely unexplored.
Obtaining efficient fixed-parameter algorithms would be of particular interest for
practical perspectives.

o It would be of particular interest to discover favorable properties of 3-dimensional
self-avoid walks. Current approaches seem inherently 2-dimensional in that they
exploit topological properties of the plane. These aspects (properties, algorithmic
issues, ...) are completely unexplored yet.
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If we assume that the secondary structure of an RNA contains no pseudoknots, the secondary structure
can be decomposed into a few types of loops: stacking pairs, hairpins, bulges, internal loops and multiple
loops [ , . A stacking-pair is a loop formed by two pairs of consecutive bases (i,j) and
(i+1,j —1). By definition, a stacking-pair contains no unpaired bases, and any other kinds of loops contain
one or more unpaired bases. Since unpaired bases are destabilizing and have positive free energy, staking
pairs are the only type of loops that have negative free energy and stabilize the secondary structure, see
[ , ] for a nice application of the stacking-pair scoring scheme to RNA secondary structures.
We need some new easy definitions.

Definition 2.5.14 (SP scoring scheme). Let G be a linear matching type {<, C}. The SP-score of G, denoted SP(G),
is defined by

SP(G) =[{(i,j):i+1<j—1 A (i,j) € E(G) N (i+1,j—1) € E(G)}I.
Definition 2.5.15 (SP-Trim linear matching). A linear matching graph G type {<, C} is called a SP-trim nested
linear graph provided that SP(G) > SP(G[E(G) — e]) for all e € E(G).

The MCSP for pseudoknot-free RNA under the stacking-pair scoring scheme can be rephrased as follows.

e Input : A family of linear graphs G = {G1,G2,...,Gn}.

e Solution : A common SP-Trim pattern G4 type {<,C} of G, i.e., a SP-Trim pattern G4 type
{<, C} that occurs in each input linear graph of G.

e Measure : The SP-score of Gy, i.e., SP(Ggo ).

We briefly review the results we have obtained for the MCSP-SP problem. Not surprisingly (in the light
of Proposition 2.5.1), the MCSP-SP problem is computationally hard even for quite simple instances (notice
that Proposition 2.5.1 does not apply here as it is concerned with towers of height 1 or 2).

Proposition 2.5.16 ([ , ). The MCSP-SP problem — in its natural decision form — is
NP-complete even if G is composed of SP-trim linear matchings type {<, C}.

The above proposition may be contrasted with the following positive result.

Proposition 2.5.17 ([ , 1). The MCSP-SP problem is solvable in O(4¥kv/kn m* log(m))
time, where n = |G|, m = max{|E(G;i) : Gi € G}, and k is the SP-score of the sought common SP-Trim structured
pattern type {<, C}.

The proof of Proposition 2.5.17 is by enumeration and dynamic programming. The following result,
well-suited for fixed |G|, complements Proposition 2.5.17.

Proposition 2.5.18 ([ , 1). The MCSP-SP problem is solvable in Oo(m2m log“q (m™))
time, where n = |G|, m = max{|E(Gi)| : Gi € G}, and k is the SP-score of the sought common SP-Trim structured
pattern type {<, C}.

Interestingly enough, the proof of Proposition 2.5.18 is by a combination of high-dimensional trapezoids
diagrams and high-dimensional trapezoids graphs [ , ]. Crucial in our algorithm is a
procedure to compute a maximum weighted disjoint subset of high-dimensional trapezoids (in terms of
disjoint induced closed polygons).

According to Proposition 2.5.18, the MCSP-SP problem is polynomial-time solvable for fixed |G|. Fur-
thermore, as we have seen, the MCSP-SP problem is NP-complete even if G is composed of linear matchings
type {<, C}. Therefore, there is very little hope that a polynomial-time algorithm exists for this restricted case.
However, this raises the important question of whether there exists a more efficient algorithm, although
exponential in n, for fixed |G| in case G is composed of linear matchings type {<, C}. The answer is positive.
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Proposition 2.5.19 ([ , 1). The MCSP-SP problem for linear matchings type {<,C} is
solvable in O(nm?2™) time, where n = |G| and m = max{|E(G;) : G; € G}.

As the reader might have guessed, there is strong relationships between tree alignment problems and the
MCSP-SP problem in case G is composed of linear matchings type {<, C}, and this similarity is indeed at
the heart of Proposition 2.5.19. First, observe that a linear matching type {<, C} can easily be mapped to an
ordered tree structure. Second, grouping together stacking edges, we can assume that the ordered trees are
vertex weighted by the number of stacking edges, i.e., thickness. The goal is thus clearly to find a common
homeomorphic ordered subtree with additional constraints on the weights (see [ , ]
for details).

2.6 Separable patterns

The preceding sections were concerned with two problems: (i) searching for an occurrence of a permutation
in another one and (ii) finding a maximum size common pattern in a collection of linear graphs. But, as we
have observed, a permutation is nothing but a special linear graph, and hence there is a natural interest
in combining the two above-mentioned problems, i.e., finding a maximum size common permutation in a
collection of permutation. But the general problem of finding an occurrence of a permutation in another
one is NP-complete [ , ], and hence, for algorithmic purposes, we need to restrict ourselves to
classes of permutations for which the PERMUTATION PROBLEM problem is polynomial-time solvable. We
focus in this section on separable permutations (this is actually not really a choice as, as far as we are aware of,
separable permutations constitute the only non-trivial class of permutations for which the PERMUTATION
PATTERN problem is polynomial-time solvable).
Recall that a permutation is separable if it contains neither the subpattern 3142 nor 2413 [ ,
; , ] and that the PERMUTATION PATTERN problem is polynomial-time solvable for separable
patterns. There are actually numerous characterizations of separable permutations, for example in terms of
permutation graphs [ , ], of interval decomposition [ , ; ;
, ], or with ad-hoc structures [ , ]. Our results can be stated as follows.

FSAN
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We are not aware of any finitely based pattern-avoiding permutation classes C for which the
recognition problem (i.e., m € C?) is NP-hard. This remarks motivates the following problem: Is
the problem of finding a maximum size C-pattern in a collection of n permutations polynomial-
time solvable for any finitely based C? If not, exhibit such a class C for which this problem is
NP-hard. As far as we know, this problem is completely open.

Proposition 2.6.1 ([ , ). The problem of finding a common maximum size separable permutation in
a collection of m permutations, each of size at most n, is solvable in O(n®™*1) time.

Being exponential in the number of permutation is roughly the best one can obtain as shown in the
following proposition (we cannot exclude, however, a O(n® (V™ time algorithm).

Proposition 2.6.2 ([ , ). The problem of finding a common maximum size separable permutation in
a collection of permutations is NP-complete, even if each input permutation is separable.
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We end this section with a first attempt to address the following question: How much finding a common
maximum size separable permutation does help when looking for a common maximum size (general) pattern
in a collection of permutations. Put it in our context, is a common maximum size separable permutation a
good approximation of a common maximum size permutation? We have obtained the following — somewhat
negative — general result.

Proposition 2.6.3 ([ , ). Let TT be a set of permutations and C be any pattern avoiding permutation
class. Furthermore, let k (resp. K¢) be the maximum size of a common pattern (resp. maximum size of a common C
pattern) in TI. Then, k/k¢ < 'k, and the inequality is tight.

In other words, the problem of finding a common maximum size pattern in a collection of permutations
cannot be approximated within a performance ratio better than /opt by the problem of finding a common
maximum size C-pattern, where opt is the size of an optimal solution and C is any pattern-avoiding
permutation class.
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3.1 Introduction

Structure comparison for RNA has become a central computational problem bearing many computer science
challenging questions. Indeed, RNA secondary structure comparison is essential for (i) identification of
highly conserved structures during evolution (which cannot always be detected in the primary sequence,
since it is often unpreserved) which suggest a significant common function for the studied RNA molecules,
(if) RNA classification of various species (phylogeny), (iii) RNA folding prediction by considering a set of
already known secondary structures and (iv) identification of a consensus structure and consequently of a
common role for molecules.

From an algorithmic point of view, RNA structure comparison was first considered in the framework
of ordered trees [ , ]. More recently, it has also been considered in the framework of
arc-annotated sequences [ , ]. An arc-annotated sequence is a pair (u, P) where u is a sequence of
RNA bases and P represents hydrogen bonds between pairs of elements of u. From a purely combinatorial
point of view, arc-annotated sequences are a natural extension of simple sequences. However, using arcs for
modeling non-sequential information together with restrictions on the relative positioning of arcs allow for
varying restrictions on the structure of arc-annotated sequences.

Different pattern matching and motif search problems have been considered in the context of arc-
annotated sequences among which we can mention the Longest Arc-Annotated Subsequence (LAPCS)
problem, the Arc Preserving Subsequence (APS) problem, the Maximum Arc-Preserving Common Subse-

quence (MAPCS) problem, and the Edit-distance for arc-annotated sequence (EDIT) problem [ , ;
, ; , ; , ]. For an up-to-date survey of this area we refer the
reader to our chapter [ , 1.

35
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This chapter is devoted to presenting our algorithmic results for arc-annotated based problems. It is
organized as follows. Section 3.2 presents some preliminaries. Section 3.3 deals with the problem of finding
a common arc-annotated sequence (the LAPCS problem) whereas Section 3.4 is concerned with pattern
matching issues in arc-annotated sequences. In Section 3.5, we extend the standard model with RNA
applications in mind.

3.2 Definitions

Definition 3.2.1 (Arc-annotated sequence). An arc-annotated sequence over alphabet A is a pair (u, P), where
u (the sequence) is a string over A* and P (the annotation) is a set of arcs {(1,j) : 1 <1 <j < Jul}.

Notice that even if these objects are described in terms of arcs, the orientation is not relevant and we
are actually concerned with edges (but we follow the standard terminology here). In the context of RNA
structures, we have A = {A, C, G, U}, and u and P represent the nucleotide sequence and the hydrogen
bonds of the RNA structure, respectively. Characters in u are thus often referred to as bases. A letter of u is
said to be free if it is no incident to an arc of P (this point is crucial if one compare arc-annotated sequences
with linear graphs as the latters do not allow for free vertices). Two arcs of P are independent if they do not
share a vertex.

Definition 3.2.2 (Occurrence). Let (u, P) and (v, Q) be two arc-annotated sequences. The arc-annotated sequence
(v, Q) occurs in (u, P) if (v, Q) can be obtained from (u, P) by letter deletions.

Notice that the above definition does not allow for edge deletion, i.e., a a does not occurs in m.
The definition 3.2.2 is illustrated Figure 3.1.

(uup)=a b ¢ d b a ¢ a ¢ a d
(vwg)=b ¢ a ¢ 4

Figure 3.1: Occurrence of an arc-annotated sequence in another arc-annotated sequence.

c b

Again, the relative positioning of arcs is of particular importance for arc-annotated sequences. Following
the example of 2-intervals and linear graphs, this relative positioning is completely described by three binary
relations: (i) the precedence, denoted <, (ii) the inclusion, denoted , and (iii) the crossing, denoted (). For the
sake of consistency, we choose to adopt this general framework for presenting our results.

Definition 3.2.3. Let (u, P) be an arc-annotated sequence, and (i,j) and (k, 1) be two independent arcs of P. The
binary relations <, T and {) are defined as follows:
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e precedence: (i,j) < (k,1) ifand only if j < k,
e inclusion: (k,1) C (i,j) ifand only ifi <k and 1 < j, and
e crossing: (i,j) () (k,1) ifandonlyifi<k <j <l

The notations (k,1) C (i,j) and (i,j) 3 (k,1), and (i,j) < (k,1) and (k,1) > (i,j) are of course equivalent
(note, however, that there does not exist an equivalent for the relation §)). The binary relations <, C et () are
illustrated Figure 3.2.

Y7

(L,j) < (k1) uq W Uy u

5 A Y N
(k» 1) L (1)]) uq Uk up uj
(Ia]) Q (k) 1) uq Uk Wy w

Figure 3.2: The binary relations <, (), (.

For the sake of presentation, for two arcs (i,j), (k,1) € p, we write
e (i,j) ~< (k,1) if and only if (i,j) < (k,1) or (i,j) > (k, 1),

e (i,j) ~c (k,1) if and only if (i,j) C (k,1) or (i,j) 3 (k,1), and

e (i,j) ~y (k,1) if and only if (i,j) § (k,1) or (k,1) § (i,j).

In her pioneering work [ , ], Evans has introduced a five level hierarchy for arc-annotated
sequences that is described as follows

e UNLIMITED: No restriction.

CROSSING: for any two arcs (i,j), (k,1) € p, either (i,j) ~= (k,1), (i,j) ~c (k, 1), or (i,j) ~5 (k,1).

NESTED: for any two arcs (i,j), (k, 1) € p, either (i,j) ~< (k,1) or (i,j) ~c (k,1).
e CHAIN: for any two arcs (i,j), (k,1) € p, (i,j) ~< (k,1).
e PLAIN: No arc, i.e., p = ().

The PLAIN level thus corresponds to sequences in the usual sense. This hierarchy is clearly organized
according to the following chain of inclusions:

PLAIN C CHAIN C NESTED C CROSSING C UNLIMITED.

The hierarchy introduced by Evans is clearly incomplete (with respect to the combinatorics induced by
the three binary relations <, C and (). In particular, in the context of RNA secondary structures, the above
hierarchy does not allow to precisely describe stems. To this end, a first refinement of the NESTED level has
been proposed [ , ]: for any two arcs (1,j), (k,1) € p, (,j) ~c (k,1).

Extending our works on 2-intervals and linear graphs, we have proposed in [ , ] a clear
unified framework for arc-annotated sequences. While we claim no novelty at all, we do believe this general
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|UNLIMITED|

Type {<, C, (}

Type {<, 0}| |Type{T, §}| | Type{<,C}

Type {(} Type {<} Type {C}

PLAIN

Figure 3.3: The refined arc-annotated sequences hierarchy.

framework allows us for varying restrictions in a clear and precise way. We give an outline of this approach.
Let M C {<,,(}, M # (. An arc-annotated sequence (u, P) is type M if for any two arcs (i,j), (k,1) € p,
there exists a binary relation R € M such that (i,j) ~r (k,1). According to this definition, CROSSING
corresponds to type {<, , ()}, NESTED correspond to type {<, C}, and PLAIN is type {<}. If we define the
PLAIN level as the class of all arc-annotated sequences with at most one arc, we are left with the refined
hierarchy given Figure 3.3. It is this hierarchy we have chosen to adopt in the sequel.

3.3 Maximum common patterns

Evans has introduced in [ , ] the natural extension of longest common subsequences [
, | to arc-annotated sequences. This problem is known as the LAPCS
(LONGEST ARC-PRESERVING COMMON SUBSEQUENCE) problem.

o Input : Two arc-annotated sequences (u,p) and (v, Q).
¢ Solution : An arc-annotated sequence (w, R) that occurs in both (u, P) and (v, Q).
e Measure : The number of letters of (w, R), i.e., [w|.

For two subsets M, M’ € {<,, (}, M # 0, M’ # 0, we let LAPCS(M, M) stand for the LAPCS problem
where (u, P) (resp. (v, Q)) is an arc-annotated sequence type M (resp. M’).

The complexity (standard, approximation and parameterized) has been studied in numerous papers
and manuscripts [ , ,C; , ; , ; . ; , ]. Evans
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[ , ] was the first to prove that the LAPCS({<, C, (}, PLAIN) problem is NP-complete. On the
positive side, she proved that the LAPCS({<},{<}) problem is polynomial-time solvable. Jiang et al. [

, ] have proposed a O(nm?) time algorithm for both the LAPCS({<, =}, {<}) and LAPCS({<},{<})
problems. Of particular importance for pseudoknot-free RNA secondary structures, Lin ef al. [ , ]
have proved (such a clever reduction!) that the LAPCS({<, C},{<, C}) problem is NP-complete even if (u, P)
and (v, Q) are built over a one letter alphabet. This latter result leaves the possibility of a polynomial-time
algorithm for the LAPCS({C},{C}) problem computational biologists are particularly interested in (see also
[ , ])- Unfortunately (and surprisingly I would say ...I used to think that the problem was
polynomial-time solvable), our recent result rules out such a positive issue.

Proposition 3.3.1 ([ , ). The LAPCS({C},{C}) problem is NP-complete.

The complexity of the LAPCS({C},{C}) problem remains, however, open if the two arc-annotated
sequences are built over a fixed-size alphabet (quite a natural restriction for practical applications). Never-
theless, we conjecture that the LAPCS({C},{C}) problem remains NP-complete for a fixed-size alphabet (we
also conjecture that it would not be a piece of cake to prove hardness of this restriction).

V1Y
1
It is shown in [ p ] that a simple enumerative brute-force algorithm solves the
LAPCS({<,c}{<,}) in O((3|Al)* n1) time, where 1 is the length of the common subsequence
and | A| is the size of the underlying alphabet. Central in this approach is a dynamic programming
algorithm [ , ] that determines, given two arc-annotated sequences (u, P) and
(v, q)), in O(Jul[v|]) time whether (v, Q) is an arc-preserving subsequence of (u, V).

Clearly, the above presented result only leads to an efficient exact algorithm if parameter 1
(subsequence length) is small. To get round this limitation, a more involved — and probably
more practical — algorithm in presented in [ , ] to determine in O(3.31%1 k2 n)
time whether an arc-preserving common subsequence can be obtained by deleting (together with
incident arcs) k; letters from (u,v) and k; from (v, Q). It is a challenging problem to adapt this
search tree based algorithm or to develop a new approach for the NP-complete LAPCS({C},{C})
problem. This problem deserves deep consideration.

3.4 Pattern matching

The APS (ARC-PRESERVING SUBSEQUENCE) problem is the natural extension of the usual pattern matching
[ , ] to arc-annotated sequences.

APS

o Input : Two arc-annotated sequences (u,p) and (v, Q).

e Question : Does there exist an occurrence of (u, P) in (v, Q)?

Notice that, oppositely to the LAPCS problem, the APS problem is a pure decision problem. Again, for two
sets M, M’ € {<,C, ()}, M # 0, M’ # 0, we let APS(M, M) stand for the APS problem where (u, P) (resp.
(v, Q)) is an arc-annotated sequence type M (resp. M’).
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Guo [ , ] has shown that the APS({<, , §}, {<}) problem is NP-complete. He has also observed in

[ , , ] that the hardness of both the APS({<, C, {}, {<, C, (}) and APS(UNLIMITED, PLAIN)
problems are direct consequences of Evans” works on the LAPCS problem [ , ]. Algorithms with
O(nm) and O(n + m) running times, n = |u| et m = |v|, are described in [ , , ] for the

APS({<,C},{<,C}) and APS({<}, PLAIN) problem, respectively.
Trying to precisely confine the intractability of the APS problem, quite arduous polynomial reductions
have allowed us to refine and complete the results of Guo [ , ].

Proposition 3.4.1 ([ , ). The APS({, (}, PLAIN) and the APS({<, (}, PLAIN) problems are
NP-complete.

In other words, using the binary relation () in conjunction with < or C is enough to get intractability. This
negative result is confirmed by the following easy proposition that shows that the binary relation {§ alone
does not result in intractability.

Proposition 3.4.2 ([ , 1). The APS({(},{(}) problem is solvable in O(nm?) time, where n = [u| and
m =

3.5 Extending the standard model

Whereas clearly defined, one may naturally argues that the objective function of the LAPCS problem
considers letters only. If this definition makes sense, undoubtedly, for the standard pattern matching
framework, one may reasonably doubt about the adequacy and the accuracy of this model for RNA where
the weight of the arcs cannot be neglected. On that account, we have proposed in [ , ] a simple
extension of the LAPCS problem, referred hereafter as the MAPCS (MAXIMUM ARC-PRESERVING COMMON
SUBSEQUENCE) problem, where the objective function is concerned with both the number of letters and the
number of arcs in a solution.

e Input : Two arc-annotated sequences (u,p) and (v, Q) built over alphabet A, and functions
f:A— Nfand g:. 4% — N*.

¢ Solution : An arc-annotated sequence (w, R) that occurs both in (u, P) and in (v, Q).

e Measure : Thescore s((w, 1)) =) .., f(a)—l—ZHmET g(wlil, w[j]) of the arc-annotated sequence
(w, R).

Once again, for any two sets M, M’ € {<,, ()}, M # 0, M’ # (), we simply let MAPS(M, M’) stand for
the MAPS problem where (u, P) (resp. (v, Q)) is an arc-annotated sequence type M (resp. M’).

Observe that the LAPCS problem is nothing but the MAPCS problem for zero everywhere g, i.e.,
g((x,y)) =0 forall (x,y) € A%, and hence all negative results of the LAPCS problem directly propagate to
the MAPCS problem. Focusing on zero everywhere f, i.e., f(x) = 0 for all x € A, results in a more interesting
problem that deserves separate consideration. Our positive and negative contributions are given in the
following propositions (the first two are concerned with zero everywhere f).

Not surprisingly, the MAPCS problem is hard for simple instance.

Proposition 3.5.1 ([ , 1). The MAPCS({<,C}{<,C}) and MAPCS({<,C, (}, PLAIN) problems
are NP-complete.

Proposition 3.5.2 ([ , ). The MAPCS({<,C, 0},{<, T, (}) problem is NP-complete even for zero
everywhere f.
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The two following propositions give some positive results.

Proposition 3.5.3 ([ , 1). For zero everywhere f, the MAPCS({<, C},{<,C}), MAPCS({<, C},{<}),
and MAPCS({<},{<}) problems are solvable in O(n*m?), O(m?,n) and O(nm) time, respectively, where n = Ju|
and m = ).

Proposition 3.5.4 ([ , 1). The MAPCS({<, C},{<}) and MAPCS ({<},{<}) problems are solvable
in O(nm?3) and O(nm) time, respectively, where n. = [u| and m = |v|.
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Part 11

Pattern Matching in Graphs

43






Introduction

High- throughput analys1s makes possible the study of protein-protein interactions at a genome-wise scale
[ , ; , ], and comparative analysis tries to determine the extent to
which protein networks are conserved among species. Indeed, mounting evidence suggests that proteins
that function together in a pathway or a structural complex are likely to evolve in a correlated fashion, and,
during evolution, all such functionally linked proteins tend to be either preserved or eliminated in a new
species [ , 1.

Protein interactions identified on a genome-wide scale are commonly visualized as protein interaction
graphs, where proteins are vertices and interactions are edges [ , ]. Experimentally derived
interaction networks can be extremely complex, so that it is a challenging problem to extract biological
functions or pathways from them. However, biological systems are hierarchically organized into functional
modules. Several methods have been proposed for identifying functional modules in protein-protein
interaction graphs. As observed in [ , ], cluster analysis is an obvious choice of
methodology for the extraction of functional modules from protein interaction networks. Comparative
analysis of protein-protein interaction graphs aims at finding complexes that are common to different
species. Kelley et al. [ , ] developed the program PathBlast, which aligns two protein-protein
interaction graphs combining topology and sequence similarity. Sharan et al. [ , ] studied the
conservation of complexes (they focused on dense, clique-like interaction patterns) that are conserved in
Saccharomyces cerevisae (a species of budding yeast) and Helicobacter pylori (a gram-negative, microaerophilic
bacterium that infects various areas of the stomach and duodenum), and found 11 significantly conserved
complexes (several of these complexes match very well with prior experimental knowledge on complexes
in yeast only). They actually recasted the problem of searching for conserved complexes as a problem of
searching for heavy subgraphs in an edge- and node-weighted graph, whose vertices are orthologous protein
pairs. A promising computational framework for alignment and comparison of more than one protein
network together with a three-way alignment of the protein-protein interaction networks of Caenorhabditis
elegans, Drosophila melanogaster and Saccharomyces cerevisae is presented in [ 1.

This part is devoted to graph-based algorithmic aspects of this topic. We have d1V1ded our presentation
into three chapters. Chapter 4 is devoted to graph homomorphisms-like aspects. The rationale for this
research is that graph-homomorphisms do preserve adjacencies and hence are a natural choice for pattern
matching problems in biological networks (as long as injectivity is also required!). Chapter 5 is concerned
with a more recent view of graph motifs in biological networks. Here, topology is of lesser importance but
the functionalities of network nodes (expressed by colors) form the governing principle. Finally, we present
in Chapter 6 our contribution to a somewhat more classical view of pattern matching in biological networks.

45



46



Pattern matching in graphs

Contents

41 Introduction . . . . .. . . . i i e e e e e 43
42 Definitions . . . . . ... L e e e e e e e e 43
4.3 Finding eXact OCCUITENCES . . . . . v v v v v v i it et i ettt ettt et et e e e 44

43.1 Polynomial cases, hardness and coping with hardness . . . .. .. ... .. ... ... 44

43.2 Thecorrespondingnumber . . . ... ... Lo L L Lo 45
4.4 Approximate OCCUITENCES . . v v v v v v v v vttt et vt e e e it ettt oot a e e 46
45 Replacinglistsbycolors . . . .. .. .. o it i e e e 47

4.1 Introduction

We consider in this chapter two edge-preserving pattern matching problems in graphs (one being a restriction
of the other). Common to these two problems are the fact that each vertex of the motif (given in the form of a
graph) is allowed to match to only few vertices of the target graph. First, we shall consider the case where
each vertex of the motif is associated with the list of vertices of the target graph it is allowed to match. Notice
that we shall only discuss about “lists”whereas we actually mean “sets”as order is not relevant here ... but
most — not to say all — references in this area use the term list. Our interest in this problem will be for fixed
cardinality lists. Second, we shall consider a natural restriction on lists: any two intersecting lists are equal.
It will be more convenient to use colors instead of lists for this particular problem.

This chapter is organized as follows. Section 4.2 presents some preliminaries. Section 4.3 is devoted to
list graph matching and we consider in Section 4.4 approximate occurrences. Section 4.5 is concerned with
the relaxation to colors.

4.2 Definitions

A graph homomorphism 6 from a graph G to a graph H, written 6 : G — H, is a mapping 6 : V(G) — V(H)
from the vertex set of G to the vertex set of H such that {u, v} € E(G) implies {6(u),8(v)} € E(H). A graph
homomorphism is thus a mapping between two graphs that respects their structure; more concretely it maps
adjacent vertices to adjacent vertices. If 6 : G — H, G is said to be homomorphic to H or H-colorable. Indeed,
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in terms of graph coloring, k-colorings of G are precisely homomorphisms 0 : G — Ky, where Ky is the
complete graph with k vertices. As a consequence if G — H, the chromatic number of G is at most that of H.
The best general reference is [ , ]. If the homomorphism 6 : G — H is a bijection whose
inverse function is also a graph homomorphism, then 0 is a graph isomorphism. Determining whether there
is an isomorphism between two graphs is an important (but hard!) problem in computational complexity
theory (see [ , 1.

Given graphs G and H, and lists £(u) C V(H), u € V(G), a list homomorphism of G to H with respect to
the lists £(u), u € V(G), is an homomorphism 6 : G — H such that 8(u) € £(u) for all u € V(G). By abuse
of notation, for any v € V(H), we let £~ (v) stand for {u € V(G) : v € £(u)}. Recall that the degree of a vertex
5(u) is the number of vertices adjacent to u and that the degree of G is A(G) = max{6(u) : u € V(G)}. A
graph is regular of degree A or A-regular if the degree of all vertices equal A.

4.3 Finding exact occurrences

4.3.1 Polynomial cases, hardness and coping with hardness

The problem we are interested in is formally defined as follows.

Exact-(pg, ur)-Matching

e Input : Two graphs G and H, and the lists £(u) C V(H), u € V(G), such that (i) max{|£(u)] :
u € V(G)} < pg and (ii) max{|£~"(v)| : v € V(H)} < uy.

¢ Question : Does there exist an injective list homomorphism 0 : G — H with respect to the lists
L(u),uwe V(G)?

Clearly, we may assume |£(u)| > 0 for all u € V(G), and |£7(v)| > 0 for all € V(H) (a trivial clean-up
procedure would apply otherwise). For now on, unless explicitly stated, we assume pg and py to be
fixed constant. Indeed, observe that for unbounded pg and pp, the EXACT-(pn, g )-MATCHING problem
trivially contains the CLIQUE problem, and hence is NP-complete [ , ]. Furthermore,
to avoid heavy notations, we will let n and m stand for the number of vertices and the number of edges of G,
respectively, and p and q stand for the number of vertices and the number of edges of H, respectively.

As sketched above, most on our interest in the EXACT- (1, 1tg)-MATCHING problem is concerned with
small (and actually fixed) pg and py. We have proved in [ , ] that the problem we are
interested in is polynomial-time for pg < 2.

Proposition 4.3.1 ([ , ). The EXACT-(2, un)-MATCHING is solvable in O(n> + q) time. This
reduces to O(n + q) time if uy = O(1).

Notice that the counting problem associated to EXACT-(2, uy )-MATCHING is #P-complete and is solvable
in O(1.3247™) time [ , ]. We have completed the above proposition in [ , ].

Proposition 4.3.2 ([ , ). The EXACT-(pg, 1)-MATCHING is solvable in linear time for A(G) < 2,
for any constant pg.

One may argue, however, that the above proposition is too constrained to be of interest (each vertex
u € V(G) has private vertices in H and G is collection of paths and cycles). Unfortunately, despite the
simplicity of Proposition 4.3.2, the result is quite tight - taking into consideration both A(G) and A(H) - as
shown in the following proposition that summarize our negative results.
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Proposition 4.3.3 ([ , ; , 1). The following problems are NP-completes:
o the EXACT-(3,2)-MATCHING problem for A(G) < 1and A(H) < 2,
o the EXACT-(3,1)-MATCHING problem for bipartite G and H, and
e the EXACT-(3,1)-MATCHING for A(G) < 3 and A(H) < 4.

In the light of the negative results presented in Proposition 4.3.3, a substantial part of our work presented
[ , ] was devoted to coping with hardness by means of exponential-time algorithms.

Proposition 4.3.4 ([ , 1). The EXACT-(ug, ur)-MATCHING problem is solvable

in O(1.1889™) time and exponential space,

in O(1.2025™) time and polynomial-space,

in O(1.2388™+™) time, and
o in(2—2/(ng + 1))™ time within a polynomial factor.

Parameterized complexity issues of the EXACT-(ug, i )-MATCHING problem have been initiated in
[ , ] and further investigated in [ , ]. We have considered two natural
parameters: (i) the number of ambiguous vertices in G (those vertices that can match different vertices in H),
and (ii) an objective with respect to a weight function. It turns out that the first parameterization yields to
fixed-parameter tractability whereas the second yields to parameterized intractability.

Proposition 4.3.5 ([ , 1). The EXACT-(pG, i1 )-MATCHING problem is solvable in O (k (ng)* (n+
m)) time, where k = [{u € V(G) : [L(u)] > 1}].

Proposition 4.3.6 ([ , ). Let G and H be two graphs, L(u) C V(H), u € V(G) be lists, and
w: (V(G) x V(H)) — N7 be a scoring such that w(w,v) > 0 only if v € L(u). Deciding whether there exists an
injective homomorphism © : G — H with respect to the lists L(u), u € V(G), such that ZHGV(G) w(u,0(u)) >kis
a W[1l-hard problem with respect to parameter k.

In other words, under a reasonable and commonly accepted complexity hypothesis
[ ], there does not exist an algorithm exponential in k only to determine whether there exists an injective
homomorphism 6 : G — H with respect to the lists £(u), u € V(G), such that ZueV(G) w(uw,0(u)) > kltis
worth noticing that Proposition 4.3.6 holds even if w(u,v) € {0, 1} for all (u,v) € (V(G) x V(H)).

4.3.2 The corresponding number

Aiming at separating Yes instances from possibly No instances (and hence speeding-up our algorithms for
some special instances), we have introduced in [ , ] the correspondence number C(G, H, L) of
any instance of the EXACT-(g, 1)-MATCHING problem. It is defined as follow:

{u,vi:u e L(u) Av' e Lv) A{u,v'}e EMH)Y
IL(W)| L(v)]

C(G,H,E):min{ :{u,v}eE(G)}.

For now on, we assume that, for each edge {u,v} € E(G), there exists an edge {u’,v’} € E(H) such that
u' e L(u)andv’ € L(v) (see| , ] for details). The rationale for introducing the corresponding
number C(G, H, £) stems from the following observations. For one (ng) % < C(G,H, £) < 1. For another,
if C(G,H, L) =1, then there exists an injective homomorphism 6 : G — H with respect to the lists £(u),
u € V(G). Indeed, any injective mapping of G to H with respect to the lists £(u), u € V(G), is a solution
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(recall that py; = 1). Ideally, one would like to determine a bound c* as small as possible, g2 < c* < 1,
such that if C(G, H, £) > c* then (G, H, £) is a Yes instance and if C(G, H, £) < c* then (G, H, £) is possibly
a No instance. Unfortunately, we did not succeed in obtaining such a precise bound and we have thus
focused in [ , ] on the determination of two bounds ¢y, and cyp, Clow < cup, such that if
C(G,H, L) > cyp then (G, H, £) is a Yes instance, and if C(G, H, £) < cjow then (G, H, £) is possibly a No
instance. Of course, the smaller ¢, and cyp — Clow are, the better our estimation is.

Proposition 4.3.7 ([ , 1). Let (G, H, L) be any instance of the EXACT-(pg, 1)-MATCHING problem.
IfC(G,H, L) > % then there exists an injective homomorphism © of G to H with respect to the lists £(u),

u e V(G). If C(G,H, L) < AfG) then an injective homomorphism © of G to H with respect to the lists L(u),
u € V(G), might not exist.

The upper-bound is by the Lovasz local lemma [ ]. According to this bound, if
A(G) =1 (resp. A(G) =2, A(G) = 3) and C(G, H, £) > 0.633 (resp. C(G H, L) > 0.878, C(G,H, L) > 0.927)
then there exists an injective homomorphism 6 of G to H with respect to the 11sts L(u). As for the lower-bound,

for any d > 1, we provided a generic Construction of an instance (G, H, £) of the EXACT-(n1g, 1)-MATCHING

problem with A(G) = dand C(G,H, £) < ( 1 for which there does not exist an injective homomorphism

0 of G to H with respect to the lists £(u), u € V(G)

£32
&
Subsection 4.3.2 is concerned exclusively with the EXACT-(ug, 1)-MATCHING problem. The ratio-
nale for considering puy = 1 is that the problem of finding an injective homomorphism 6 : G — H
with respect to the lists £(u), uw € V(G), enjoys some “degree of independence”. Indeed, for any
distinct u,v € V(G), we have 6(u) # 6(v) in any solution 0 since £(u) N L(v) = (. Extending
Proposition 4.3.7 to any instance of the EXACT-(jg, 1t )-MATCHING problem would be of particu-
lar interest. In particular, does there exist a constant c* (possibly depending on 1 and ) such
that if C(G, H, £) > c* then there exists an injective homomorphism 6 of G to H with respect to
the lists £(u), u € V(G)? Most of these issues are completely unexplored.

4.4 Approximate occurrences

Requiring an injective homomorphism, i.e., an injective mapping that preserves all edges of G, might result
in an over-constrained problem, though it may exist good approximate solutions, i.e., solutions that match
many but not all edges of G. This remark is just common sense for practical considerations. We considered
in [ , ] one possible approach to deal with approximate occurrences (see also upcoming
Section 4.5 for a — from our point of view — more practical approach). We refer to this optimization problem
as the MAX-(pg, HH)-MATCHING problem.
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Max-(ug, pH)-Matching

e Input : Two graphs G and H, and the lists £(u) € V(H), u € V(G), such that (i) max{|£(u)] :
u € V(G)} < pug and (ii) max{|£~' (V)| : v € V(H)} < pup.

¢ Solution : A mapping 6 : V(G) — V(H) with respect to the lists £(u), u € V(G), i.e., 0(u) € L(u)
for allu € V(G).

e Measure : The number of edges conserved by 6, i.e., {{u,v} € E(G) : {8(u),0(v)} € E(H)}I.

Notice that for the MAX- (g, 1H)-MATCHING problem the solution mapping 6 may not be (and in general
is not) an injective graph homomorphism as it is not required to preserve all edges. Being a natural but mere
restriction of the EXACT-(pg, i )-MATCHING problem, the MAX-(g, 1 )-MATCHING problem inherits of
all the negative results of it (see Section 4.3). Therefore, we focus on approximation and (unfortunately) on
hardness of approximation. Indeed (and not surprisingly, I admit it), as we have shown in [ ,

], turning the pure decision EXACT-(g, i1 )-MATCHING problem into an optimization one results in a
harder problem (considering parameters pg and py).

Proposition 4.4.1 ([ , 1). The MAX-(1,2)-MATCHING is APX-hard even if G and H are bipartite
graphs with A(G) < 3and A(H) < 2.

The above proposition gains in interest if we compare it with Proposition 4.3.1 and Proposition 4.3.2.
Actually, it is an immediate consequence of Proposition 4.4.1 that the MAX-(1,2)-MATCHING problem for
A(G) = 3 and A(H) = 2 (resp. A(G) = 6 and A(H) = 5) is not approximable within ratio 1.0005 (resp.
1.0014), unless P = NP.

Proposition 4.4.2 ([ , 1). The MAX-(pg, 1)-MATCHING problem is approximable within ratio
2 [3A(G)/5] if A(G) is even and within ratio 2 [(3A(G) + 2)/5] if A(G) is odd.

Actually, we have shown a somewhat stronger result in [ , ]: if the linear arboricity
conjecture (see [ , ]) is true, then the MAX-(pg, 1)-MATCHING is approximable within ratio
A(G) + 2 if A(G) is even and within ratio A(G) + 1 if A(G) is odd, for any A(H) and any fixed p1g. Notice
that the linear arboricity conjecture has been shown to be asymptotically correct as d — oo [ , )|

Using a straightforward application of the probabilistic method [ , ] — a powerful
tool for demonstrating the existence of combinatorial objects — we gave in [ , ] a linear-time
randomized (g )?-approximation algorithm for the MAX-(pg, 1)-MATCHING problem. We have improved
this result in [ , .

Proposition 4.4.3 ([ , ). There exists a randomized 2pg-approximation algorithm for the MAX-
(KG, 1)-MATCHING problem, for any pg.

We close this section by discussing exponential issues of the MAX-(jtg, 1)-MATCHING problem. For any
instance (G, H, £) of the MAX-(ug, 1)-MATCHING problem, we have shown in | , ] that one
may construct in polynomial-time a (unfortunately complicated) graph I[G, H, £], called the incompatibility
graph of the instance, that satisfies the following properties:

1. there exists an injective mapping 0 : V(G) — V(H) with respect to the lists £(u), u € V(G), such that
[{{u,v} € E(G) : {6(u),08(v)} € E(H)}| > k if and only if the stability number of I[G, H, £] is at least k,
and

2. A(IIGH, £]) < (ng = 1 (2uc A(G) — pg +1).

Combining these properties, we have obtained the following result.
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Proposition 4.4.4 ([ , 1). The MAX-(ug, 1)-MATCHING problem is solvable in O(m (D + 1)¥)
time, where m is the number of edges of G and D = A(I[G, H, £]).

Notice that D is fixed as long as A(G), ng and py are fixed. Therefore, the MAX-(pg, 1)-MATCHING
problem is fixed-parameter tractable for parameter “number of conserved edges”.

(Q‘
(| S)

As the reader may have noticed, the approximation of the general MAX-(pg, i )-MATCHING
problem is almost completely unexplored. Indeed, we are still not be able to tackle the case
pun > 1. As noticed in the headache note Page 46, in case uy = 1, any injective mapping
0 : G — H with respect to the lists £(u), u € V(G), enjoys some “degree of independence” that we do
use for approximation design. Overcoming this difficulty remains a totally open but challenging
problem.

4.5 Replacing lists by colors

We consider in this section a restriction of the MAX-(pg, p)-MATCHING problem well-suited for better
modeling specific applications. Indeed, one may argue that using lists £(u), u € V(G), to represent the
putative correspondences is not restrictive enough for most practical applications (although allowing a
large degree of freedom in the design!). One very important objection is that one may reasonably asks for
L(u) = L(v) as soon as L(u) N L(v) # 0 as a golden rule. This objection becomes evident in the context of
protein-protein interaction networks where it is folklore to construct the putative correspondences (the lists)
by (i) (BLAST) comparing the sequences two by two, (ii) adjusting a cutoff to construct a correspondence
graph, and finally (iii) computing the connected components of the correspondence graph. See [

, ]and [ , ]. This additional constraint is better taken into account by using
colored-vertices instead of the lists £(u), u € V(G), in the MAX-(pg, uH)-MATCHING problem.

Let col be a set of colors and G equipped with a coloring mapping A : V(G) — col. For any color ¢; € col,
we denote by colg(ci) the set of vertices of G that are colored with color c;y, i.e., colg(ci) = {u € V(G) :
A(u) = ci}. The multiplicity of A in G, written mult(G, A), is the maximum number of occurrences of a color
in G, i.e., mult(G,A) = max{|colg(ci)| : ¢; € col}. Let G and H be two graphs and let 8 : V(G) — V(H) be
an injective mapping. The set of edges of G that are preserved in H by 6 is denoted by match(G, H, 8), i.e.,
match(G, H,0) = {{u,v} € E(G) : {6(u),0(v)} € E(H)}. If both G and H are equipped with some colorings
Ag : V(G) — col and A : V(H) — col of their vertices, a mapping 6 : V(G) — V(H) is said to be with respect
to Ag and Ay if Ag(u) = A (8(u)) for every u € V(G), i.e., 0 is a color-preserving mapping. For simplicity,

we shall usually abbreviate such a mapping as 6 : V(G) Ao y(H),

Max-(p, 0)-Matching-Colors

e Input : Two graphs G and H together with the coloring mappings Ag : V(G) — col and
AH : V(H) — col with mult(G,Ag) = p and mult(H,Ay) = o.

« Solution : An injective mapping 0 : V(G) 22 V(H).

o Measure : The number of edges of G matched by the injective mapping 6, i.e., [match(G, H, 8)|.
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We let EXACT-(p, 0)-MATCHING-COLORS stand for the extremal problem of finding an injective mapping

0:V(G) RACEUL V(H) that matches all the edges of G, i.e., © is required to be an injective graph homomor-
phism as we have considered in Section 4.3. Also, we call an instance of both MAX-(p, 0)-MATCHING-COLORS
and EXACT-(p, 0)-MATCHING-COLORS colorful if p = 1, i.e., each color occurs once in the motif graph G.

Clearly, MAX-(1, 0)-MATCHING—COLORS and MAX—(jg, 1)-MATCHING are equivalent problems (colorful
instances and disjoint lists do represent the same configuration). Then it follows that the MAX-(1, o)-
MATCHING-COLORS is approximable within ratio 2 [3A(G)/5] if A(G) is even and within ratio 2 [(3A(G) +
2)/5] if A(G) is odd, for any A(H) and any fixed oy (see Proposition 4.4.2).

We have proposed in [ , ] a random walk algorithm to deal with exact colorful instances
(recall that the O* notation suppresses polynomial terms) Observe that the EXACT-(1, 0)-MATCHING-COLORS

problem is easily solvable in O*(c™) time (n is the order of G): the easy brute-force algorithm tries all

possible injective mappings 6 : V(G) 2&M, V(H) and returns the best one.

Proposition 4.5.1 ([ , 1). There exists a randomized algorithm that, given any instance (G, H) of

the EXACT-(1, 0)-MATCHING-COLORS problem, returns an injective homomorphism 6 : V(G) Aoohu, V(H) (if

such a mapping exists) in O(f(o)™) expected time (ignoring polynomial factors), where

40(20 —2)3

f(o) = 42023 1 27(20—3)

Recall that the MAX-(1,2)-MATCHING-COLORS problem for bipartite graphs G and H with A(G) = 3 and
A(H) = 2 (resp. with A(G) = 6 and A(H) = 5) is APX-hard and is not approximable within ratio 1.0005
(resp. 1.0014), unless P = NP [ , ]. Therefore, there is a natural interest to investigate the
complexity issues of MAX-(p, 0)-MATCHING-COLORS for restricted graph classes. Our results are technical
but quite negative.

Proposition 4.5.2 ([ , 1). The MAX-(3,3)-MATCHING-COLORS (resp. MAX-(2,2)-MATCHING-
COLORS) problem is APX-hard even if both G and H are linear forests (resp. trees with maximum degree 3).

It remains open, however, whether the MAX-(p, 0)-MATCHING-COLORS problem for linear forests G and
H is polynomial-time solvable in case p < 3. In the light of the negative results of Proposition 4.5.2, there is a
natural interest on approximating the MAX-(p, 0)-MATCHING-COLORS problem for bounded-degree graphs.
We have shown the following result.

Proposition 4.5.3 ([ , 1). For any p and o, the MAX-(p, 0)-MATCHING-COLORS problem is
approximable within ratio 3/2(Apiy + 1) + € for any € > 0, where Ay, = min{A(G), A(H)}.

Central in the above result is a (3/2 + ¢)-approximation algorithm, for any ¢ > 0, for a new combinatorial
problem that may be of independent interest [ , ]: Given a graph G and a symmetric matrix
A= [ai,j] of order m whose entries are natural integers, find a maximum cardinality matching M C E(G)
subject to the constraint that, for 1 <1 <j < m, the number of edges in M having one end-vertex colored c;
and one end-vertex colored c; is at most a; ;.

Combining a random 2-labeling procedure (together with its induced cut) and a weighted bipartite
matching algorithm, we have obtained in [ , ] the following result.

Proposition 4.5.4 ([ , 1). There exists a randomized algorithm for the MAX-(p, 0)-MATCHING-
COLORS problem with expected performance ratio 4c.

We have already mentioned that the MAX-(3, 3)-MATCHING-COLORS problem is APX-hard even if both
G and H are linear forests. Furthermore, according to Proposition 4.5.3, the MAX-(p, 0)-MATCHING-COLORS
problem for linear forests is approximable within ratio 2(Amin + 1) = 6. This is strengthened by the following
proposition (it is worth mentioning that the technique is based on 2-interval patterns).
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Proposition 4.5.5 ([ , ). For any p and o, the MAX-(p, 0)-MATCHING-COLORS problem is
approximable within ratio 4 in case both G and H are linear forests.

We close this chapter by mentioning that we have proposed a better approximation for the MAX-(2, 2)-
MATCHING-COLORS problem.

Proposition 4.5.6 ([ , 1). MAX-(2,2)-MATCHING-COLORS is approximable within ratio 1.1442.



Searching for connected occurrences

Contents
51 Introduction . .. .. ... .. i it i e e e e e e 51
52 Definitions . . . . . .. L e e e e 52
5.3 Searching for exact connected occurrences. . . . . .. ... o oo e el oL 52
53.1 Polynomial-time and hardnessresults . . . ... .. ... ... ... ... ... ..., 52
5.3.2 Parameterized complexity . . . ... ... L L L o 53
5.4 Minimizing the number of connected components. . . . .. ... ... ............ 55
54.1 Algorithmsandhardness . . . . . ... ... ... .. .. .. .. 56
542 Parameterized complexity . . . . ... ... L L L L 57
5.5 Maximizing the size of the connected occurrence. . . . . ... .. ....... ... ..., 58
551 Algorithmsandhardness . . . . .. ... ... ... . ... .. o 59
55.2 Algorithms and parameterized complexity . . . . . .. ... ... ... ... L. 60
5.6 Furthervariants . . ... ... ... . ... e e e e e 60
5.6.1 Practicalissues. . . . ... ... . 61

5.1 Introduction

With the advent of network biology [ ; , ] and complex network
analysis in general, the study of pattern matching problems in graphs has become more and more important.
In this context, the term “graph motif "plays a central role.

Roughly speaking, there are two views of graph (or network) motifs. The older is the topological
view where one basically ends up with certain subgraph isomorphism problems. For instance, the term
“network motif” has been used to represent patterns of interconnections that occur in a network at frequencies
much higher than those found in random networks [ , ; ; ] (Chapter 4 was
concerned with such a view). By way of contrast, the second and more recent view on graph motifs takes a
more “functional approach”. Here, topology is of lesser importance but the functionalities of network nodes
(expressed by colors) form the governing principle. This approach has been propagated by Lacroix et al.

This chapter is organized as follows. Section 5.2 presents some preliminaries. Section 5.3 is devoted
to studying algorithmic aspects of the problem of finding a connected occurrence of a motif in a graph.

55
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Section 5.4 and Section 5.5 are concerned with optimization issues of this topic, and we briefly present in
Section 5.6 further variants of this problem we are particularly interested in.

5.2 Definitions

A multiset (or bag) is a pair (A, mult), where A is some set and mult : A — N* The set A is called the underlying
set of elements. For each a € A, the multiplicity (that is, the number of occurrences) of a is the number
mult(a). The maximum multiplicity of (A, mult) is defined to be max{mult(a) : a € A}. It is common to write
the function mult as a set of ordered pairs {(a, mult(a)) : a € A}. For example, {(a,2), (b, 3),(c, 1)} is the
multiset ({a, b, ¢, d}, mult), where mult : A — N* is defined by mult(a) = 2, mult(b) = 3, and mult(c) = 1.

We shall consider here motifs given in the form of multisets of colors and we write M = (col, mult). A
motif M is called colorful if it has maximum multiplicity 1, i.e., M reduces to a set.

The problem we are interested in is formally defined as follows.

Color-Matching I

e Input : A set of colors col, a motif M = (col,mult), and a vertex colored graph (G, A), where
A : V(G) — colis the coloring mapping.

¢ Question : Does there exist a connected induced subgraph of G colored by M, i.e., a subset
V’ C V(G) such that (i) G[V'] is connected, and (ii) A(V') = M ?

In other words, we are asked to find a connected subgraph of G with | M| vertices which is exactly colored
with the colors of M (including multiplicities, if any). See Figure 5.1 for an illustration.
The different vertex colors are used to model different functionalities. Although originally introduced in

a biological context [ , ], it is conceivable that the GRAPH MOTIF is an
interesting problem not only for b1010g1ca1 networks, but also may prove useful when studying complex
social or technical networks (this remark is also in [ D-

5.3 Searching for exact connected occurrences

5.3.1 Polynomial-time and hardness results

The GRAPH MOTIF problem has been shown to be NP-complete even if the target graph G is a tree in [
, ]. The following proposition complete this result (one may easily notice that the GRAPH MOTIF
problem is polynomial-time solvable if A(G) < 2).

Proposition 5.3.1 ([ , I). The two following variants of the GRAPH MOTIF problem are NP-complete:
1. the target G is a bipartite graph, A(G) = 4, and A is a proper 2-coloring of G, and
2. the target G is a tree, A(G) = 3, each color occurs at most three times in G, and M is a colorful motif.

We did not succeed in proving that the GRAPH MOTIF problem is NP-complete if the target G is a bipartite
graph, A(G) = 3, and A is a (not necessarily) proper 2-coloring of G. However, we conjecture this restriction
to be NP-complete.

Defining the precise tractability landscape of the GRAPH MOTIF is of particular interest to strengthen
hardness results. The following proposition shows that the jump in complexity is sudden and confirms that
the second item of Proposition 5.3.1 is the best possible.
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Figure 5.1: A vertex-colored graph (the pancake network of order 4) together with an occurrence (in bold) of
the motif M = {C1 y€1,€2,€3,C3,C3,C4q,Cs, Cq, 06}'

Proposition 5.3.2 ([ , ). The GRAPH MOTIF problem is solvable in polynomial-time if the target
G is a tree, each color occurs at most two times in G, and M is a colorful motif.

5.3.2 Parameterized complexity

In their pioneered work [ , ], the GRAPH MOTIF problem was proved to fixed-parameter
tractable when parameterized by the size of the given motif (i.e., [M]), in case the target graph is a tree.
However, as observed in [ , ], their fixed-parameter algorithm does not apply when the

vertex-colored graph is a general graph. For this case, they only provided a heuristic algorithm which works
well in practice. This motivates us to further investigate the tractability landscape of the GRAPH MOTIF
problem. From our point of view, a notable breakthrough in the study of the GRAPH MOTIF problem for
general graphs is that it is, as we shall see soon, fixed-parameter tractable when parameterized by the size
of the motif M [ , ]. This result is important in many ways. For one, it rests on a firm
foundation and paves the way to further fixed-parameter algorithms (current approaches are still limited
to motifs of size about 15 whereas practical applications do ask for motifs of size about 25-30 [
, ], not an order of magnitude difference). For another, it motivates the investigation of the GRAPH
MOTIF problem under different parameters which govern the structure of its input.
At the heart of our approach is the color-coding technique introduced by Alon et al. [ , 1
whose derandomized version crucially relies on the notion of perfect hash families.

Definition 5.3.3 (Perfect Hash Family [ , D). Let G be a graph. A family F of functions from V(G)
to{1,2,...,k} is perfect if for any subset V' C V(G) of k vertices there is a function f € F which is one-to-one on
'
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Aiming at accurate models, variants of the GRAPH MOTIF problem are greatly needed. To this aim,
Betzler et al. [ p ] replaced connectedness demand by more robust requirements,
and proved the problem of finding a biconnected occurrence of M in G to be W[1]-complete when
the parameter is the size of the motif. This result is of particular importance as it sheds light on
the fact that a seemingly small step towards motif topology results in parameterized intractability.
What about replacing the connectedness demand by modularity? Recall that a module in a graph
G is asubset V' C V(G) such that the neighborhoods outside the module of the vertices within
the module are all equal [ , ]. The problem now becomes: Given a
vertex-colored graph G and a motif M, find a subset V' C V(G) such that (i) V' is colored by
M, and (ii) V' is a module in G? We do believe this direction is a promising line of research that
we plan to expand in future works (this is actually a direction we are currently pursuing with
F. Sikora). For one, considering modules makes sense in the general setting of graphs motifs.
Indeed, a module is a set of vertices such that each vertex not in the module has a uniform
relationship to all members of the module, i.e., vertices of the module are indistinguishable from
the outside. For another, the notion of modules is shipped with modular decomposition trees, i.e.,
an organization in a tree of the strong modules. Below is an example of a graph together with its
modular decomposition tree

(11,2,3,4,5,6,7,8,9,10,11))

{1}

Modular decomposition trees should certainly help for algorithm design. Sure enough, replacing
connectedness by the notion of modules is not a strong enough relaxation (is it a relaxation?) to
push the GRAPH MOTIF problem towards tractability (actually, definitively not!). However, we
expect the modular tree decomposition to be a useful structure to design efficient fixed-parameter
algorithms. At a more general level, there does not exist any precise definition of what a motif is
(or should be) in a biological network, and hence we think that providing a parameterized toolbox
incorporating several definitions of graph motifs could be of particular interest for practical
applications.

Our result can be stated as follows.

Proposition 5.3.4 ([ , 1). The GRAPH MOTIF problem is solvable in 2°¥) n? log(n) time, where
k = |[M| and n is the number of vertices in the target graph G.

The GRAPH MOTIF problem is thus fixed-parameter tractable when parameterized by |[M|. We only
sketch the main ideas to prove Proposition 5.3.4. Suppose M has an occurrence V' in G, and suppose
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we are provided with a perfect family F of functions from V(G) to {1,2,...,k}. Since F is perfect, we are
guaranteed that at least one function in F assigns V'’ with k distinct labels. Let f € F be such a function.
ForagivenL C{1,2,...,k}, we define M1 (v) to be the family of all motifs M’ C M, |IM’| = |L|, for which
there exists an occurrence V" with v € V’, such that the set of (unique) labels that f assigns to V" is exactly
L. Since M occurs in G, we know that M € My, 1y(v) for some v € V(G). To determine whether M
occurs in G, we apply a dynamic programming to compute My (v) forallv € V(G) and L C {1,2,...,k}.
Now, fix L to be some subset of {1,2,...,k}, and let v be any vertex of G. Our goal is thus to compute M (v)
assuming M (u) has been previously computed for every vertex u € V(G) and any L’ C L\ {f(v)}. The
straightforward approach is to consider small motifs occurring at neighbors of v. However, a motif occurring
at v might be the union of motifs occurring at any number of neighbors of v, and so this approach might
require exponential running time in n. We have shown in [ , ] that there exists an alternative
method for computing M (v) that uses an even more naive approach, but one that requires exponential-time
only with respect to k. Notice that while the motifs computed by our algorithm are in general multisets of
colors, the procedure always considers sets of distinct labels.

The tree-width parameter of graphs [ , ] plays a central role in designing exact
algorithms for many NP-hard graph problems [ , ; , ]. Using
tree decompositions and nice tree decompositions of arbitrary graphs (in a somewhat nonstandard way to
tailor-fit our purposes), we have shown that the GRAPH MOTIF problem is polynomial-time solvable when
the target graph G has constant tree-width and M consists of a constant number of colors (but arbitrary
number of elements). This should be compared with the sharp hardness result of Proposition 5.3.1 which
states that there are rather restricted classes of graphs, such as bounded degree bipartite graphs, where the
GRAPH MOTIF problem is NP-complete even when M is built over only two colors.

Proposition 5.3.5 ([ , 1). The GRAPH MOTIF problem is solvable in O* (22%¢) time, where w is
the tree-width of the target graph G, and c is the number of distinct colors in the motif | M.

Although Proposition 5.3.5 gives a nice complementary result to the sharp hardness result of Proposi-
tion 5.3.1, it still leaves a certain gap. The following proposition closes this gap (by the negative).

Proposition 5.3.6 ([ , 1). The GRAPH MOTIF problem, parameterized by the number of distinct
colors c in the motif M, is W[1l-hard for trees.
Even if we do believe that the GRAPH MOTIF problem introduced by Lacroix et al. [ , ] has

shed new light on graph motifs, it suffers from much the same weaknesses as all pure decision problem: it
does not allow for approximate occurrences. The rest of this chapter is devoted to analyzing natural variants
of the GRAPH MOTIF problem that deal with approximate occurrences. As we shall see, the GRAPH MOTIF
problem enjoys several variants (reflecting different points of view) that deserve separate considerations.

54 Minimizing the number of connected components

We consider in this section the problem of finding an occurrence of a motif M in a vertex-colored graph that
results in a minimum number of connected components. This problem has been first considered in [

, ],and [ , ] presents some additional interesting results. We refer to this problem as
the MINIMUM CC problem (MINIMIZING THE NUMBER OF CONNECTED COMPONENTS). It is formally defined
as follows.

o Input : A set of colors col, a motif M = (col, mult), and a vertex colored graph (G, A).
e Solution : A subset V' C V(G) such that A(V') = M.
¢ Measure : The number of connected components in the induced subgraph G[V'].
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In other words, we are asked to find a subgraph of G with |M]| vertices which is exactly colored with the
colors of M (including multiplicities, if any) that induces a minimum number of connected components. See
Figure 5.3 for an illustration.

Figure 5.2: A vertex-colored graph together with an occurrence (in bold) of the motif M =
{c1,c1,c€2,€3,c3, 4, Cs5, e} that results in two connected components, i.e., {c1, 2, ¢3, ¢4, e} and {c3, c3,C5}.

5.4.1 Algorithms and hardness

It turns out that the MINIMUM CC problem is the most difficult variant of the GRAPH MOTIF problem if one
focuses on graph classes. Let us explain this point. We need some new definitions. Define an isogram to be a
word in which no letter is used more than once, and a pair isogram to be a word in which each letter occurs
exactly twice. A cover of size k of a word u is an ordered collection of words C = (v1,v2,..., Vi) such that
U = WiViwaVva ... WiV Wi for some words wi, w2, ..., wri1 and v =vyv, ... vy is an isogram The cover
is called prefix (resp. suffix) if wy (resp. wi1) is the empty word. Strongly related are proper 2-colorings. A
proper 2-coloring of a pair isogram u is an assignment f of colors ¢y and c; to the letters of u such that every
letter of u is colored with color ¢ once and colored with color ¢, once. If two adjacent letters x and y are
colored with different colors we say that there is a color change between x and y.

Example 2 Consider the pair-isogram u = abbcddeecafggfhh. A cover C of u of size 4 is given by
C = (ab, de, ¢, gfh) and the associated proper 2-coloration of u is given by

u=a b bcddeecafggfhh



61

£
o
r-{é:j))

A word u is said to be crossing-free (resp. inclusion-free) if there do not exist indices 1 < i; <
i) <1i3 <14 < [ul such that ufi;] = ufiz] # ulip] = ulis] (resp. ulis] = ufis] # uliz] = ufiz]).
Does there exist a polynomial-time for computing a minimum cardinality cover of a crossing-free
pair isogram? What about inclusion-free pair isograms?

How approximable is the MINIMUM CC problem for paths?

The 1-REGULAR-2-COLORS-PAINT-SHOP problem is defined as follows (see [ ; ,

, ] for the general PAINTSHOP-FOR-WORDS problem): G1ven a palr isogram

u, f1nd a 2-coloring f of u that minimizes the number of color changes in (u, f). Bonsma [ ]

proved that the 1-REGULAR-2-COLORS-PAINT-SHOP problem is APX-hard. Combining this with the fact

that a minimum cardinality cover of a pair isogram cannot be both prefix and suffix (see [ , D
we have obtained the following result.

Proposition 5.4.1 ([ , 1). The MINIMUM CC problem is APX-hard even if M is colorful and the
target graph G is a path in which each color appears at most twice.

Quite a negative result! The following proposition moderates the above proposition.

Proposition 5.4.2 ([ , 1). The MINIMUM CC problem for paths is solvable in O(n°**) time, where n
is the number of vertices in the path and c is the number of distinct colors in the motif M.

Focusing on trees, we have obtained the following positive and negative results (the positive results
being actually exponential-time algorithms).

Proposition 5.4.3 (| , 1). There exists a constant ¢ > 0 such that the MINIMUM CC problem for trees
cannot be approximated within performance ratio c log(n), where n is the number of vertices in the tree.

Proposition 5.4.4. The MINIMUM CC problem for trees is solvable in O(n2k(¢+1)° 1) time, where n is the number
of vertices in the tree, k is the size of the motif M, and c is the number of distinct colors in M.

Proposition 5.4.5 ([ , ). The MINIMUM CC problem for trees is solvable in O(nzz%) time, where
1 is the number of vertices in the tree.

5.4.2 Parameterized complexity

Extending our result (Proposition 5.3.4), we have shown the MINIMUM CC problem for its standard parame-
terization to be fixed-parameter tractable as well.

Proposition 5.4.6 ([ , 1). The MINIMUM CC problem is fixed-parameter tractable when parameterized
by the size of the motif.
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The O(4.32%k?*m |log(¢)|) time algorithm of [ , ] uses (to speed-up the dynamic
programming procedure) the technique of fast subset convolution. This novel technique was
developed by Bjorklund et al. [ , ], who used it to speed-up several dynamic
programming algorithms including the algorithm by Scott et al. [ p ] for computing
minimum weight size k trees in signaling networks.
From our point of view, fixed-parameter algorithmic results should support implementation
and experimental work. It would be of particular interest to investigate whether the recently
introduced subset convolution technique, which so far has been studied purely from a theoretical
point of view, also yields a significant speed-up in practice.
A similar question may be asked as to how much color coding techniques [ |
support implementation. (indeed, it turns out that the O(4.32k?*m |log(e)|) time algonthm of
, ] increases the number of colors that are used for color-coding in order to
increase the probability of an occurrence of M to receive a colorful recoloring, see [ ,
]). Is anybody aware of any implementation of perfect hash families to derandomize this
approach? I suspect there isn’t one, most approaches use a randomized color procedure and not
perfect hash families. However, recent research on implementation on (randomized) color-coding
based graph algorithms [ ; 5 , 5 , ] are, undoubtly,
positive experiences.

Our result is now superseded by [ , ] where it is shown (in a clever way) that the MINIMUM
CC problem can be solved with error probability e in O(4.32¥k*m |log(e)|) time, where k is the size of the
motif M and m is the number of edges in the target graph (see thinking note page 58).

The following proposition shows a sharp contrast in complexity if one considers the number of connected
components as the parameter of interest.

Proposition 5.4.7 ([ , ). The MINIMUM CC problem is W[2]-hard when parameterized by the
number of connected components, even if the target graph G is a tree.

It is worth mentioning that, answering an question we have raised in [ , 1, N. Betzler et al.
[ , | have recently proved the MINIMUM CC problem to be W[1]-hard only for paths (proof
from the W[1]-hard PERFECT CODE problem).

5.5 Maximizing the size of the connected occurrence

We now turn to another variant of the GRAPH MOTIF problem where one is interested in obtaining a single
connected component (as in the original GRAPH MOTIF problem) at the cost of “loosing”some colors. Several
definitions actually would perfectly fit to this. We focus here on finding a connected occurrence that uses as
much as possible colors from the motif (see next section for other possible definitions). We have introduced
this variant of the GRAPH MOTIF in [ , ] and we refer to it as the MAXIMUM MOTIF problem.
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Figure 5.3: A vertex-colored graph together with an maximum cardinality occurrence (in bold) of a submotif
M= {C1 y€1,€2,€3,€3,C4,C5,Cg, Cé, } of the motif M = {C1 y€1,€2,C3,C3,C4q,C4,C5,Cq, Ce, }

Maximum Motif '

e Input : A set of colors col, a motif M = (col, mult), and a vertex colored graph (G, A).

e Solution : A subset V' C V(G) such that (i) G[V’] is connected, and (ii) A(V’) = M’ for some
submotif M’ C M.

e Measure : The size of M’, i.e., |M/'|.

Intuitively, the MAXIMUM MOTIF problem thus asks for the largest submotif M’ C M that occurs in G as
a connected component. See Figure 5.3 for an illustration. Being a mere restriction of the GRAPH MOTIF
problem, the MAXIMUM MOTIF problem is NP-complete as well [ , I

5.5.1 Algorithms and hardness

Not surprisingly, the MAXIMUM MOTIF problem is hard to approximate. The following proposition prove
that the MAXIMUM MOTIF problem does not enjoy a PTAS even for trees and colorful motifs.

Proposition 5.5.1 ([ , 1). The MAXIMUM MOTIF problem is APX-hard even if the motif is colorful,
the target graph is a tree with maximum degree 3, and each color occurs at most twice in the tree.

It is worth mentioning that we do believe Proposition 5.5.1 not to be tight since we seriously doubt the
MAXIMUM MOTIF problem for colorful motifs and trees with bounded number of occurrences of colors to
be even in APX. The following proposition supports this sentiment (the rather technical proof is by the
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self-improvement technique, see for example [ , ; , ; , ] to see
this powerful technique in action).

Proposition 5.5.2 ([ , 1). For any constant & < 1, the MAXIMUM MOTIF problem for trees and
colorful motifs cannot be approximated within performance ratio 2198° ™ ypless NP C DTIME[2POlY logn],

First, notice that NP ¢ DTIME[2P°Y1°8™] i considered to be a reasonable complexity hypothesis (and is
actually widely believed to be true). It is also worth noticing that, as we have shown in [ , 1,
substituting the complexity hypothesis NP C DTIME[2P°YY 18] by the classical P = NP yields inapproxima-
bility within a constant ratio. Second, the only difference in the instances between Proposition 5.5.1 and
Proposition 5.5.2 is that the number of occurrences of each color is fixed in the former. Although at first odd,
we believe that this restriction is not stronger enough to imply membership to APX.

5.5.2 Algorithms and parameterized complexity

In the light of the negative results for approximating the MAXIMUM MOTIF problem, we turn to exponential-
time algorithms and parameterized complexity. We gave in | , ] two exact branch-and-bound
algorithms for the MAXIMUM MOTIF problem in case the target graph is a tree. The two results are summarized
in the following proposition.

Proposition 5.5.3 ([ , ). The MAXIMUM MOTIF problem for trees of size n can be solved in
O(1.62™ poly(n)) time. In case the motif is colorful, the time complexity reduces to O(1.33™ poly(n)).

Based on the color-coding technique and perfect hash families [ , ], we have considered
in [ , ] parameterized issues of the MAXIMUM MOTIF problem. Our results can be stated as
follows.

Proposition 5.5.4 ([ , 1). The MAXIMUM MOTIF problem for trees with n vertices is solvable in
O(k2*n3logn) 29 time, where k is the size of the submotif occurring in the tree. For general graphs of order n, the
MAXIMUM MOTIF problem is solvable in O(2°%kn? log® n) 4°%) time, where k is the size of the submotif occurring
in the graph.

One should admit that our parameterized results are still far from being able to support implementation.
However, we believe that the color coding approach reaches its limits here and that improving the running-
time of our algorithms requires different techniques.

5.6 Further variants

This short section is devoted to briefly presenting further variants of the GRAPH MOTIF problem we are
interested in. Indeed, as stated in the preceding section, relaxing the GRAPH MOTIF problem to allow for
approximate solutions may lead to distinct combinatorial problems (the MINIMUM CC and MAXIMUM MOTIFS
problems are two such possibilities). We are especially interested in variants where one is searching for
a single connected component at the cost of loosing/adding/modifying some colors as it seems that this
requirement is well-suited for practical applications.

e The MINIMUM DELETE MOTIF problem: Find a submotif M’ C M that occurs as a connected component
in the target graph. The optimization is concerned with deleting a minimum number of colors in M.

e The MINIMUM ADD MOTIF problem: Find a supermotif M’ D M that occurs as a connected component
in the target graph. The optimization is concerned with adding a minimum number of colors to M, or
equivalently minimizing |AM’|.
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e The MINIMUM SUBSTITUTION MOTIF problem: Find a motif M’ (related to M) that occurs as a connected
component in the target graph. The optimization is concerned with modifying a minimum number of
colors in M to obtain M.

Being mere variants of the GRAPH MOTIF problem, all these variants are of course NP-complete (actually, it
turns out that they are all APX-hard or not approximable). However, they correspond to different questions
one may ask for connected motifs. Hereafter we mention some thoughts about these three problems.

e In terms of optimal solutions, the MAXIMUM MOTIF and the MINIMUM DELETE MOTIF problems are
clearly equivalent. The comparison stops there. Indeed, considering approximation, dual combinatorial
problems usually enjoys opposite properties (this is not a rule, I admit, only a trend). As for the
parameterized complexity, the two problems seem to behave radically differently. Without going into
the details, we just mention that, oppositely to the MAXIMUM MOTIF problem, the MINIMUM DELETE
MOTIF problem for its standard parameterization is not fixed-parameter tractable.

e The MINIMUM ADD MOTIF problem seems to be more well-suited than the MINIMUM CC problem for
most applications. Indeed, in the MINIMUM CC problem, the focus is on the number of connected
components, regardless whether these connected components are arbitrary far in the graph. In some
sense, the MINIMUM ADD MOTIF problem allows us to control this aspect by putting the focus on the
number of colors to add to the motif to connect all those connected components into a single one.

e Although being a natural variant of the GRAPH MOTIF problem, the MINIMUM SUBSTITUTION MOTIF
problem is quite intriguing from an algorithmic point of view as it seems to add one level of freedom.
Interestingly enough (but unfortunately), the MINIMUM SUBSTITUTION MOTIF problem parameterized
by the number of substitutions is W[2]-hard.

5.6.1 Practical issues

As we have seen in this chapter, we are still far from being able to provide a complete algorithmic toolbox
to deal with the many flavors of the GRAPH MOTIF problem. Most fixed-parameter algorithms (including
ours) do not support implementation yet. However, bridging the gap between theory and practice is greatly
needed for practical applications.

A first step towards providing an integrated algorithmic solution is the TORQUE web server [

, ] (it implements the algorithms in [ , ] for querying protein sets across species).
TORQUE combines three approaches: a dynamic programming method utilizing color coding, integer linear
programming and a fast heuristic based on shortest paths. Quoting the authors [ I:
“TORQUE automatically selects the best method to apply at each stage and outputs the highest scormg match” .
Actually, there is no magical trick, TORQUE relies on color coding if the motif is small enough (about 15
elements) and switches to linear programming otherwise.

In collaboration with G. Blin and F. Sikora, we have also developed an integrated algorithmic toolbox,
named GraMoFoNe, to deal with the many flavors of the GRAPH MOTIF problem [ , ]. Notice
that, oppositely to TORQUE, GraMoFoNe is not a web server but a plugin for the popular cytoscape
open source platform (http://www.cytoscape.org/). Another notable difference with TORQUE is that
GraMoFoNe does not combine two techniques (color coding and linear programming) but uses boolean linear
programming. The rationale for this choice is twofold. For one, equipped with such a framework, TORQUE
is superseded by GraMoFoNe in terms of modeling as it allows to consider most variant of the GRAPH MOTIF
problem (TORQUE is indeed limited to colorful motifs). Without going into the details, it is worth noticing
that TORQUE and GraMoFoNe notably differ in the consideration of the connectedness property: whereas
TORQUE simulates a flow algorithm and hence does need linear programming, GraMoFoNe simulates a
breadth first search (BFS) procedure that can be performed by boolean linear programming. For another,
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Figure 5.4: Screenshot of the GraMoFoNe software: Querying the mouse DNA synthesome complex in the
yeast PPI network (see [ , D).

GraMoFoNe uses a pure pseudo-boolean programming engine together with some data reduction rules to
speed-up the computations. See Figure 5.4 for a screenshot of GraMoFoNe in action.

TORQUE and GraMoFoNe perform more or less the same in terms of performances for moderate size tree
motifs (GraMoFoNe is, however, not limited to trees). They also suffer from the same drawbacks: they are
not able to deal with large motifs. However, GraMoFoNe is by far more scalable and is completely integrated
in the cytoscape software (and hence can be easily used in combination with other cytoscape plugins). It is
a challenging and important problem to improve GraMoFoNe so that it can tackle motifs of size about 30.
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6.1 Introduction

This short chapter is devoted to a somewhat more classical view of pattern matching in protein-protein
interaction (PPI) networks. Comparative analysis of PPI tries to determine the extent to which protein
networks are conserved among species. Indeed, it was observed that proteins functioning together in
a pathway (i.e., a path in the interactions graph) or a structural complex (i.e., an assembling of strongly
connected proteins) are likely to evolve in a correlated fashion and during evolution, all such functionally
linked proteins tend to be either preserved or eliminated in a new species [ , 1.

The classical view of PPI network querying is as follows: Given a PPI network and a pattern with a
graph topology, find a subnetwork of the PPI network that is as similar as possible to the pattern, in respect
to the initial topology. Similarity is measured both in terms of sequence similarity and graph topology
conservation.

Unfortunately, this problem is clearly equivalent to the NP-complete SUBGRAPH HOMEOMORPHISM
problem [ , ]. Recently, several techniques have been proposed to overcome the
difficulty of this problem. By restricting the query to a path of length less than five, Kelley et al. [

, ] developped PathBlast, an exponential-time algorithm which allows one consecutive mismatch.
Later on, Shlomi ef al. [ , ] proposed an alternative, called QPath, for querying paths in a PPI
network (the algorithm is based on the color coding technique [ , ]). By restricting the query to
a tree, Pinter et al. [ , ] proposed an algorithm that is restricted to forest PPI networks, i.e.,
collection of trees. Finally, Dost et al. [ , ] developed QNet, a software to handle tree query in
the general context of PPI networks. Of particular importance, [ , ] proposed an algorithm
based on tree-decomposition for querying general graphs.

Indisputably, QNet is the state-of-the-art software to query PPI networks. Let us thus present it briefly
(more precisely, let us present the implemented part of QNet since, as we shall see soon, this distinction
is crucial in the present context). QNet is a fixed-parameter tractable randomized algorithm for querying
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trees in (general) PPI networks. The complexity is m2°(¥) log(e ") time, where k is the number of proteins
in the query, m the number of edges of the PPI network and 1 — € is the probability of success (for any
e > 0). Following the example of QPath, QNet combines (in a non-trivial way) a dynamic programming
procedure together with the color-coding technique. This completely described the implemented part of
QNet. However, QNet is shipped with an additional algorithm to query general graphs in PPI networks.
At the heart of this algorithm is a procedure to transform the query graph into a tree (the technique is by
tree-decomposition [ , ]). The running time is 2°(*n®+1 where w is the tree-width of the
query graph (recall, however, that computing the tree-width of a graph is NP-complete [ ,

])- A word of caution is necessary here. Indeed, the authors were not be able to implement this algorithm
(this is probably due to its inherent difficulties at dealing with tree-decomposition). Nevertheless, even
if they would succeed in implementing it, we highly suspected the huge constants hidden by the big-O
notation to make it useless.

This chapter is devoted to presenting an effective alternative to QNet called PADA1 (I am not being held
responsible for this Star Wars name!). It is organized as follows. Chapter 6.2 is intended to motivate our
investigation. Chapter 6.3 is devoted to practical considerations of our contribution.

6.2 A feedback vertex set approach

PADA1 [ , ] is an effective network querying algorithm that extends QNet to more general
query graphs. Following the example of QNet, PADAT1 is a two-step procedure: it first transforms the query
graph into a tree and next uses that tree to effectively perform the query. Notice that it allows for insertions
and deletions in the occurrence. While both QNet and PADA1 use a tree-like query, the two algorithms use
totally different approaches. Indeed, whereas QNet is based on tree-decomposition, PADA1 focuses on the
fact that most query graphs have relatively small feedback vertex set in practice (recall that a feedback vertex
set is subset of vertices whose removal leaves us with a cycle-free graph).

Finding a smallest feedback vertex set is a well-known NP-complete problem [ , 1.
The current implementation of PADA1 transforms the query graph into a tree by iteratively finding a cycle,
duplicating (and storing) a node on that cycle and finally breaking the cycle by edge deletion. More efficient
approaches, including iterative compression [ , ] and reduction to kernel [ , ], may
be used to identify a feedback vertex set and transform the query graph into a tree, but experimentations
show that our “brute-force”algorithm turns out to be the fastest in practice. Indeed, (i) iteratively finding
cycles relies on a fast BFS search (a O(n + m) time procedure), (ii) the feedback vertex set of most real
instances is very small, and finally (iii) finding an occurrence of the constructed tree into the PPI network is
definitively the most time-consuming part of our approach.

The second step of PADA1 consists in finding an occurrence (allowing insertions and deletions) of
the constructed tree into the PPI network. Our approach is by combining random coloring and dynamic
programming (see [ , ] for details). The main difficulty in this second step is to take into
account all those duplicated vertices, and more precisely to group process all the copies of a same vertex
(done by dynamic programming in the current implementation).

On the whole, the complexity of PADAT is O(mn!fIN 20 (k+Ni) Jog(e 1)) time, where k is the number
of proteins in the query, m the number of edges of the PPI network, 1 — € is the probability of success (for
any € > 0), Nips is the maximum number of insertions N4, is the maximum number of deletions, and f is the
feedback vertex identifies in the very first part of the algorithm. Of particular importance, observe that the
time complexity does not depend on the total number of duplicated nodes but on the size of the identified
feedback vertex set (good, exactly what we were looking for).
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6.3 Practical issues

We briefly discuss practical issues of PADA1. Since we wanted PADA1 to be an effective alternative to QNet,
we have confronted our results in [ , ] with thoses obtained by QNet. PADA1 has proved to
perform as well as QNet (we refer the reader to | , ] for details). For example, our second
experiment was performed across species. The Mitogen-Activated Protein Kinase (MAPK) is a collection
of signal transduction queries. According to [ , ], they have a critical function in the cellular
response to extracellular stimuli. They are known to be conserved through different species. We obtained the
human MAPK from the KEGG database [ , ] and tried to retrieve them in the fly network
as done in QNet. While QNet uses only trees, we were able to query general graphs (See Figure 6.1 for an

illustrative output of PADA1). The results were quite satisfying since we retrieved all of them, with only few
modifications.

375.3

338.5

Figure 6.1: An automatic dot file generated by PADA1 (verbose output omitted). Left: A MAPK human query

[ , ]. Right: The alignment graph given provide by PADAL1 in the fly PPI network. Dashed
lines denotes the BLAST homology scores between the proteins. See [ , ] for a discussion on
this particular query.
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Introduction

The third part of this manuscript is concerned with comparative genomics. The combinatorial study
of genome rearrangements started with permutations, but permutations lack the possibility of taking
duplications into account. Duplications are however a major evolutionary event, believed to be one of the
most important mechanisms for novel generations in evolution, and almost all datasets on eukaryotes
contain duplicated genes (see e.g. [ , ])- An appropriate tool for studying genomes with duplicated
genes was therefore needed, and strings are a very natural generalization of permutations that fit this purpose
well. It allows to add two possible rearrangement events: duplications and deletions. We shall see in this part
that NP-completeness and even inapproximability results are very numerous. The subject was surveyed in
2005 by [ ]. The most up-to-date reference to this field is our recent monograph [ ,

I

Biological motivations

Duplications can occur at several levels, ranging from the duplication of a single gene or small segment of
DNA to the duplication of a whole chromosome, and even whole genome duplications are known to occur.
These evolutionary events result in genomes in which where some markers are undifferentiable, and we call
them duplicated genes.

Given a set of genomes, all copies of a given gene among those genomes are said to be homologous, which
means that they originate from a common ancestral gene, and form a gene family. The presence of two copies
of a gene in a set of genome may be explained by speciation events, that is, the apparition of two distinct
species, each genome carrying the gene; it can also be explained by duplication events, which result in two
copies of a gene in the same genome. The relationships of the copies of a gene in a gene family can thus be
of several type. Two copies of a gene are said to be orthologous if they derive from a speciation event, and
Paralogous if they derive from a duplication event. Given two genomes and a gene family, a distinction is
made between out-paralogs, which are paralogous gene copies which derive from a duplication that occured
before the last common ancestor of the two genomes, and in-paralogs, that derive from a duplication that
occured after the last common ancestor. Note that the name gene is classically a bit ambiguous, as it refers
either to a family (there are several copies of a same gene in the genomes), or to copies (two genes may
derive from a duplication).

Those different situations motivate and justify the use of the models we will consider in this part. Indeed,
when comparing two sequences under the assumption that all copies of a given element in a single string are
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in-paralogs, the goal will be to identify the position of the unique ancestor. If there can be out-paralogs, then
the goal will be to detect orthologs by matching some copies. The distances between two strings will vary
according to which model is chosen. Every combinatorial problem we have seen so far can be reformulated
in terms of strings, but the algorithmic treatment is usually completely different. For instance, the breakpoint
graph, which is a ubiquitous objects when dealing with permutations, is not used on strings, in spite of some
attempts to define them in the case of whole genome duplications by [ , I

How to deal with multiple copies?

Two strings on the same alphabet that contain the same number of occurrences of each gene family are said
to be balanced. Two balanced strings obviously have same length. This property ensures that it is possible to
transform one string into another without deletions and duplications as rearrangements.

It is not equally difficult to take into account multiple copies when considering two balanced or two
general (that is, not necessarily balanced) strings. By convention, balanced strings are supposed to contain
only out-paralogs, which means that each of the h members of some gene family present on each string S and
T originates from one of the h members of the same gene family present on their last common ancestor. The
difficulty is then to identify (that is, to match) the pairs of members, one on each string, which originate from
the same member of the last common ancestor (i.e. are orthologous). On the contrary, general strings allow
to assume the existence of both out-paralogs and in-paralogs on each string, so that deletion and insertion
events have to be considered additionally to the rearrangement events when comparing general strings. The
assignation of ortholog pairs of genes given two strings reduces to finding a matching between them.

While comparing two strings u and v, a matching between u and v is aimed at representing the common
composition of the strings, as supported by their last common ancestor and regardless of (but without losing
touch with) the order of the characters. Any pair of matched characters is then assumed to correspond to
orthologous genes, while the unmatched characters are supposed to be in-paralogs. Here rearrangement
studies meet the important problem of ortholog identifications. The members of the same gene family
present on the same string and which are matched are out-paralogs. In order to distinguish out-paralogs
from each other, a relabeling may be performed, which gives new and distinct names. to out-paralogs and
renames the orthologous of each out-paralog accordingly. The last step of such a treatment of the strings is
the obtention of a pruning. The good news at this stage is that if we assume the relabeling is done such that
the characters in the pruned strings are integers, both strings are permutations and may be compared using
the usual distances on permutations.

Now, going back to our initial question “How to deal with multiple copies?”two answers are available: either
define a collection of possible rearrangement and compute the minimum number of operations needed to
transform one genome into the other, or reduce genomes to permutations using matchings and pruning and
then compute the distance (or (dis)similarity) between the permutations. We refer to these two approaches
as the block edit model and the match-an-prune model , respectively. Part III of this manuscript is devoted
to the match-and-prune model. For a thorough introduction to the block edit model we refer the reader to

[ , I
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7.1 Introduction

This chapter is devoted to algorithmic aspects of the match-an-prune model for genome rearrangements.
All problems follow the same guideline: start with two genomes with duplicate genes, i.e., strings, and
transform them into two permutations (by means of some special matching between the two genomes)
so as to optimize a given distance or (dis)similarity measure. The rationale for this guideline is that most
distances and (dis)similarity measures (more precisely those that are of interest in comparative genomics)
are computable in polynomial-time for permutations. The difficulty of the problem is thus to compute a
“good”transformation.

This chapter is organized as follows. Section 7.2 presents the relevant material thus making our exposition
self-contained. Section 7.3 is concerned with complexity issues of genome comparisons and we discuss in
Section 7.4 a family of fast general heuristics to cope with intractability.
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7.2 From genomes to permutations ...and back

7.2.1 Genomes

A signed genome G is a string over the alphabet of integers (excluding 0, to avoid having to write +-0 and
—0). An unsigned genome is defined analogously by forbidding negative integers, this is a thus string over
the alphabet of positive integers. In the context of comparative genomics, we refer to the letters of G as
genes (the sign denotes the orientation of the gene). We follow standard string terminology and the size of a
genome G is denoted |G|. We write G[i] for the gene at position 1in G, 1 < 1 < |G|, and we denote its sign
by sign(G[i]). A gene family of G is a positive integer that occurs in G regardless of its sign (here are those
famous duplications we are interested in). We will denote by F(G) the set of gene families that occur in G.
For simplicity of notation, we write g € G if g € F(G) (thus we may write g € G even if the gene g occurs
only negatively in G). We will denote by |G|4 the number of occurrences of a gene family g € G, and we let
deg(G) stand for the maximum number of occurrences of a gene family in G, i.e., deg(G) = max{|Glq : g € G}.
Of particular importance, notice that deg(G) is computed independently of the signs of the genes. A genome
G is duplication-free if |G[i]| # |G[j]| for all 1 <1i < j <|G|. In other words, a genome is duplication-free if any
gene occurs exactly once, regardless of its sign.

Example 3 For genome G=1 —423 —12,wehave F(G) ={1,2,3,4},|Gly =2,IG; =2,|Gl3 =1,|Gls =1,
and hence deg(G) = 2. On the other hand, genome H = —2 —1 3 5 4 is duplication-free. ||

Let G be a duplication-free genome of sizen, and iand j, 1 <1i<j < n.If g = G[i] and g’ = Glj], the
distance between gene g and gene g’ in G, denoted dist(G, g, g’), is defined by dist(G, g,g’) =j —i.

Definition 7.2.1 (Pegged genome). A genome G is pegged if each interval between two genes in the same gene
family contains at least one singleton (a gene that occurs exactly once in G).

Pegged genomes have the interesting property that singletons act as markers helping to uniquely identify
each occurrence of a non-singleton by its position with respect to these markers.

7.2.2 Permutations

The symmetric group on set {1,2,...,n}is written &, = &({1,2,...,n}), and we let &% = &({0,1,...,n})
stand for the symmetric groups on {0, 1,...,n}. A permutation 7 of size n is a bijectionm: &, — &S,. A
classical notation used in combinatorics to denote a permutation 7 is the two-row notation , where one
arranges the “natural”ordering of the elements being permuted on a row, and the new ordering on another

row. For example,
(1 2 3 45
™12 5 4 31

stands for the permutation 7 of the set {1, 2, 3,4, 5} defined by n(1) = 2, n(2) = 5, n(3) = 4, m(4) = 3, and
m(5) = 1. We will, however, adopt the more convenient — and standard — one-row notation that keeps only
the second row. Going back to our example, 7w = (2 5 4 3 1). The identity permutation (12 ... n)is denoted t,
regardless of n.

The composition of two permutations 7, o € &, denoted 7 o 0, is defined by mo 0 = (75, T, ... Mo, )
For example form= (314 2)and 0 = (413 2), we have mo 0 = (2 3 4 1). The inverse permutation of m € Sy,
is the permutation 7! defined by 71;1 =iforalll <i<n.

Signed permutations model the organization of genomes better than unsigned permutations, because they
take into account the double helix structure of DNA. A signed permutation on{1,2,...,n}is a permutation 7t
of theset {—n,...,—2,—1,1,2,...,n} such that m_; = —m; for all 1 < i < n. The one-row notation is also
used for signed permutations. For example, the permutation

(-5 -4 =3 -2 -1 1 2 3 4 5
™—\5 3 -1 4 2 —2 —41 -3 5
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is simply writtenm = (-2 —41 —35).

We recall here some basic definitions about permutations (we refer the reader to [ , ] for general
combinatorial aspects of permutations and to [ , ; , ] for
applications to comparative genomics).

Definition 7.2.2 (linear extension). The linear extension of a (signed or unsigned) permutation m € &y, is the

permutation 7' € &%, defined by n* = (07 7z ... T+ 1).

Definition 7.2.3. Let 7' be the linear extension of a (signed or unsigned) permutation m € S,,. A point is an ordered
pair (7}, 7t 1), 0 < i < n. This point is called

e anadjacency if mt, ; =7t +1,

e areverse adjacency if it =7t — 1,

e g breakpoint if if is not an adjacency, and

e g strong breakpoint if it is neither an adjacency nor a reverse adjacency.

Definition 7.2.4 (Interval (in a permutation)). An interval in a (signed or unsigned) permutation m € Sy, is a set
I ={lml, Imtiealy ..oy Imll 1 <1 <j < n. The elements vy and 7 of 1 are called the extremities of the interval.

Definition 7.2.5 (Common interval). An interval I is a common interval of permutations 7, o € &, if it is an
interval of both T and o.

In case 0 = i, an interval I = {|m|, [mi1l,...,Im]}, T <1 <j < n,isacommon interval of 7t and vif I is
a set of consecutive integers. The number of common intervals of two permutations 7 and o is denoted
CI(m, 0). For m, 0 € &y, it is easily seen thatn + 1 < CI(m, o) < (TZL) + 1, The lower bound is attained, for
example, if wetake m = (1 23 4)and 0 = (24 1 3) or 0 = (3 1 42) (the excluded patterns of separable
permutations [ , 1"). The upper bound is attained for t = ocor o = (7, ... M 7).

7.2.3 Turning a genome into a permutation

How to deal with multiple copies? The match-and-prune model addresses the following question, which
arises naturally when trying to discover the relationships between two genomes G and H: how can we take
into account, when comparing genomes with duplicates, that the structure of the last common ancestor of G
and H plays an important role in the evolutionary distance between the two genomes? As this structure is
unknown, unless we have very good reasons to conclude we can afford to keep it unknown, the solution is
to attempt to model it.

Three (sub)models are used to this aim. They have essential differences and essential common points. The
differences come from different assumptions with respect to composition of the last common ancestor. The
main common point is the method to compute measures (distances and similarities) between strings, which
only takes into account their common composition, as identified by the composition of the last common
ancestor. Speaking about the differences, the three models have the following features. In the exemplar
model , the last common ancestor is assumed to contain exactly one member of each gene family which has
members both on G and H. In the intermediate model , the last common ancestor is assumed to contain at least
one members of each gene family which is common to G and H. Finally, in the full model, the last common
ancestor is assumed to contain as many members as possible from any gene family.

We want to draw the attention of the reader on the fact that the intermediate introduce a level of difficulty.
Indeed, observe that for the exemplar and full models, we know in advance the size of the resulting
permutations as we keep exactly one gene or as many genes as possible from each gene family. The situation
is different for the intermediate model as we do not know in advance how many genes of each gene family
will be kept in an optimal solution.
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The history of these three models starts with Sankoff’s paper [ , ], who put the basis of
the exemplar model and, in the same time, of the most general match-and-prune model. Besides its
biological motivations, Sankoff’s idea has two important features, that make it attractive. Reducing to one
the cardinality of each gene family in each string implies that (1) the resulting strings are permutations, and
computing distances on permutations is both already studied and often polynomial; and (2) the one-to-one
correspondence of genes in the same family on the two strings is obvious, and thus may avoid further
complications. The next model to be defined was the full model, whose first ideas are suggested in Sankoff’s
paper [ , ] and that was more precisely defined by [ , ] for balanced strings.
The most recent one is the intermediate model we have introduced in [ , ]

Definition 7.2.6 (Matching). Let G and H be two genomes. A matching M between G and H is a set of pairs
M ={{i1,j1), (i2,j2), .-, (i, i) S PUL 2,00 1G] x {1, 2, .. [HID
such that
1. |G| = |H[| for all pairs (i,j) € M, and
2. if (i, ju) and (iv/,j1/) are two distinct pairs of M, then 1 # 1.
The 2k genes G[i1], G[i2], ... Glix], H[i1], H[i2], ... H[ix] are said to be saturated by the matching M.

Notice here that we do allow G[i] and HJj], (i,j) € M, to have opposite signs. In the sequel, it will be
enough to focus on compatible genomes as defined below.

Definition 7.2.7 (Compatible genomes). Two genomes G and H are said to be compatible if F(G) = F(H).

Definition 7.2.8 (Exemplar, intermediate and full matching). A matching M between two compatible genomes
G and H is an intermediate matching if M saturates at least one gene of each gene family of F(G) = F(H). An
intermediate matching is called an exemplar matching (resp. full matching) if it is of minimum (resp. maximum)
cardinality.

Roughly speaking, intermediate matchings correspond to standard matchings in graphs (in bipartite
graphs here) whereas exemplar and full matchings have additional constraints. In other words, exemplar
and full matchings are in intermediate matchings.

Example 4 Consider the two following compatible genomes G and H:
G=12-4-2314 -34
H=41-3-22124.

with F(G) ={1,2, 3,4} = F(H).
1. The matching M = {(1,2),(2,4), (5,3), (6,6), (7,8)} is an intermediate matching, and the pruned genomes

G and H, induced by M reduce to (indices 4 and y are used to disambiguate the induced mapping and
clarify the presentation):

Gr=14231p4
Hy=Ta —3 =21y 4

The associated permutations (according to a relabeling so that ig v = 1) are thus given by:

mem = (12345)
TTH, M :(1 -3 7245)
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2. The matching M’ ={(1,2), (2,4), (5,3), (?,8)} is an exemplar matching. The pruned genomes G- and
H ¢ induced by M’ reduce to:

Gy =1234
Hyo =1 -3 —24.

The associated permutations (according to a relabeling so that 7g A/ = 1) are thus given by:

7TG,.M’ 2(1 234)
TtH M :(] -3 —24)

3. The matching M"” ={(1,6),(2,7),(3,1), (4,5), (5,3), (6,2), (9, 8)} is a full matching. The pruned genomes
G and H s induced by M’ reduce to (once again, indices 4 and 1, are used to disambiguate the induced

mapping):
Gumr=142q —4a —2b3 1 4
Hyor =4 1o —3 24 14 24 44
The associated permutations (according to a relabeling so that 7tg o~ = () are thus given by:
mgmr =(12 -3 —4567)
HH,M”:(7654]23) I

It is now a simple matter to see that exemplar, intermediate and full matchings coincide if deg(G) = 1 or
deg(H) =1, i.e., G or H are duplication-free.

Definition 7.2.9 (M1 (G, H), Mint(G, H), and Mg,1(G, H)). For any two compatible genomes G and H, we let
Mexpi (G, H) (resp. Mt (G, H), Mpi(G, H)) stand for the set of all exemplar (resp. intermediate, full) matchings
between G and H.

The following definition will facilitate the exposition of subsequent sections.

Definition 7.2.10 (TTexp1 (G, H), Tint (G, H), and T (G, H)). For any two compatible genomes G and H, we define
nexpl(G) H)/ ”int(G) H) and ﬂfull(Ga H) b]/

ﬂexpl(G) H) = {(TEG,M)TEH,M) Me Mexpl(Ga H)})
nint(G) H) = {(WG,M)TEH,M) Me Mint(G) H)}) and
M (Gy H) = {(7t6, pm, Tt M)+ M€ Mpg(GyH)L

The set Mexp1 (G, H) (resp. Tint(G, H), TTean (G, H)) is thus the set of all permutations that correspond to
valid exemplar (resp. intermediate, full) matchings between G and H.

7.3 Comparing two compatible genomes

7.3.1 Introduction

We are now ready to compare genomes with respect to the match-and-prune model. Given two genome G
and H, our steps will be

1. find an matching (exemplar, intermediate or full) M between G and H,
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2. Construct the associated permutations g a4 and 7ty ¢, and

3. Compute the distance, similarity or dissimilarity measure we are interested in between 7ig »¢ and
TTH, M -

Let m and o be two signed permutations. We will focus in this section on the following standard measures:

e the breakpoint distance between 7 and o, denoted BK(m, 0), is the number of breakpoints between 7!

and o'.

e the signed reversal distance between m and o, denoted SR(m, 0), is the minimum number of signed
reversals to transform 7 into o, where a signed reversal is the operation of reversing an interval of 7t
(together with signs).

e the adjacency similarity between 7 and o, denoted ADJ(m, 0), is the number of adjacencies between 7!

and o'.

o the common intervals similarity between 7 and o, denoted CI(m, 0), is the number of common intervals
between 7t and o.

e the MAD and SAD numbers whose precise definitions are deferred to the related subsection.

7.3.2 Breakpoint distance

Together with the signed reversal distance, the breakpoint distance is one of the first applications of Sankoft’s
exemplar model. The two distances are defined on different bases: the reversal distance counts a minimum
number of operations to transform one genome into another one, whereas the breakpoint distance counts
the structural differences between the two genomes. However, as we shall see soon, they are closely related.

Computing the breakpoint distance between two compatible signed genomes G and H reduces to finding
a (exemplar, intermediate or full) matching between these two genomes that induces a minimum number of
breakpoints between the two associated permutations g and 7.

Definition 7.3.1. Let G and H be two signed compatible genomes. The measures BK 1, BKiy and BKg,y; of G and H
are defined by:

BKexpl(G) H) = min{BK(’nG)TCH) : (7TG)7TH) € nexpl(G> H)})
BKint(G) H) = min{BK(nG)ﬂH) : (ﬂG)nH) € ﬂint(G) H)}) and
BK1(G, H) = min{BK(7g, 7tn) : (76, 7tn) € Mz (G, H)}.

The measure BK1 (G, H) has been introduced in [ , ], and the measure BKg; (G, H) in [

, ]. As for the measure BK,;(G, H), we have introduced it in [ , ]. In 2000, Bryant
has shown that computing any of BKexp1(G, H), BKint(G, H) and BK¢1(G, H) is an NP-complete problem,
even for pegged genomes G and H [ , ]. Notice that Bryant’s proof does not actually need to
consider three separate cases as it holds even if deg(G) = 1 and deg(H) = 2. Nguyen has strengthened these
results by proving that computing any of BKe,,1(G, H) and BKj:(G, H) is an NP-complete problem even if
both G and H are unsigned pegged genomes [ , ]. The strongest inapproximability result known
so far is ours.

Proposition 7.3.2 ([ , 1). Computing any of the three measures BK,y, (G, H), BK;(G, H) and
BK1(G, H) is an APX-hard problem.
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The proof of Proposition 7.3.2 actually holds for deg(G) = 1 and deg(H) = 2, and hence does not need to
consider three separate cases.

Chenetal. [ , ] have shown that there exists a constant ¢ > 0 such that there does not exist a
polynomial-time algorithm with performance guarantee clog(n), n = max{|G|, [H[}, to compute BK¢,p1 (G, H)
and BKin(G, H). Of particular importance in this context, they have also shown that deciding whether
BKexpi (G, H) = 0 is an NP-complete problem even if deg(G) = 3 and deg(H) = 3. The same result holds if

we replace BKeXpl(G, H) = 0 by BKint(G, H) = 0. We have first completed the result of [ , ]in
[ , ] before proving a stronger result.
Proposition 7.3.3 ([ , 1). Deciding whether equality BK,,,(G,H) = 0 holds is an NP-complete

problem even if deg(G) = 2 and deg(H) = 2.

Notice that the above Proposition holds if we replace BKeyp1(G, H) = 0 by BKit(G,H) = 0. The above
proposition carries definitive implications for research design in the form of the following corollary.

Corollary 7.3.4 ([ , 1). There does not exist any approximation algorithm to compute BK,, (G, H) or
BKixt (G, H), even if deg(G) = 2 and deg(H) = 2.

The above corollary gains in interest if we notice that it precisely defines the inapproximability landscape.
Indeed, if deg(G =) = 1 or deg(H) = 1, it can be shown that deciding whether equality BKe,p1(G,H) = 0
holds is linear-time solvable. In other words, Proposition 7.3.3 is tight.

We mention to finish two results in this context that may be of independent interest. We have shown in
[ , ] that (i) deciding whether BKy;1(G, H) = 0 holds is solvable in O(nmloglog(nm))
time, where n = |G| and m = [H|, and that (ii) computing BKex,1(G, H) and BKi,(G, H) for two genomes
G and H such that deg(G) = 2 and deg(H) = 2 is solvable in O(poly(k) 1.61822) time, where k is upper-
bounded by the number of gene families that occur exactly twice in G and in H.

7.3.3 Signed reversal distance

The signed reversal distance is the second distance considered by [ , ] to illustrate his theory of
exemplar distances. Under the full model, the signed reversal distance is very well studied on balanced
strings and not studied at all on general strings.

Computing the signed reversal distance between two compatible signed genomes G and H reduces to
finding a (exemplar, intermediate or full) matching between these two genomes that induces a minimum
signed reversal distance between the two associated permutations g and 7tH.

Definition 7.3.5. Let G and H be two signed compatible genomes. The distances SR,yy1, SRyt and SRgy of G and H
are defined by:

SRexpl(Ch H) = min{SR(7g, 7tn) : (76, ) € nexpl(G) H)},
SRint(G,H) = min{SR(7g, 1) : (7, 7tn) € TTiut (G, H)}, and
SR (G, H) = min{SR(7tg, 7n) : (7tG, 7t) € TTru (G, H)}.

The distance SReyp1 has been introduced in [ , ], and the distance SR¢,j in [ , ].
As far as we know, no specific result exists for the intermediate model.

Bryant has shown that computing DRe,p1(G, H) is an NP-complete problem even if G and H are pegged,
and deg(G) =2 and deg(H) =2 [ , ]. It turns out that the inapproximability results we gave for
the breakpoint distance propagate to the signed reversal distance. Indeed, if G and H are two compatible
genomes, then 2 SRe,p1(Gy H) < BKeyp1 (G, H) < SReyp1 (G, H) (we refer the reader to our monograph [

, ] for an elementary proof).
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7.3.4 Adjacency similarity

We consider in this subsection a similarity measure which is the complement of the breakpoint distance. The
basis of this measure is the preserved adjacency between two consecutive characters in G and H.

Computing the adjacency similarity between two compatible signed genomes G and H reduces to finding
a (exemplar, intermediate or full) matching between these two genomes that induces a maximum number of
adjacencies between the two associated permutations g and my.

Definition 7.3.6. Let G and H be two signed compatible genomes. The measures AD],,;, ADJ;,, and AD]g,; of G
and H are defined by:

AD]expl(G) H) = min{AD](T[G) 7TH) : (7TG)7TH) € ﬂexpl(G» H)}»

AD]int(G) H) = min{AD](T[G) 7-[H) : (T[G)TEH) € nint(G) H)}) and

ADJ;(G,H) = min{AD](7g, 7tH) : (76, 7th) € TTru(G, H)J.

We have introduced the similarities AD].,
, ]. Chenetal. [ , ] have proved that computing any of ADJ

1 and ADJg; in [ , ]and AD]J,,,, in [
G,H),
ADJ;+(G, H) and ADJy;(G, H) is an NP-complete problem and is not approximable within ratio n'~¢ even
when deg(G) = 1 and deg(H) = 2. The problem is also known to W[1]-hard. For restricted instances (i.e.,
full matching and balanced genomes), we have obtained the following approximation results.

expl (

Proposition 7.3.7 ([ , ). Let G and H be two balanced genomes with deg(G) = deg(H) = k.
If k = 2, there exists an algorithm to compute ADJy,,, (G, H) with performance ratio 1.1442. If k = 3, there exists an
algorithm to co